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Abstract: Emergence is a philsophical concept that has proved to be attractive

and long lasting. However in some forms, theories of emergence can be at odds with

the process of deductive scientific research. Here I develop a theory of historical

emergence based on our inability to describe, and therefore explain highly complex

physical systems. To provide evidence for this hypothesis, I perform electronic struc-

ture calculations on cyclobutadiene, iron arsenide, elemental iron, and manganese

oxide using DFT. I find that only in the iron calculations was historical emergence

found. I conclude that historical emergence is an effective definition of emergence,

as only the iron calculations exhibited all the behaviour expected in a system that

hosts emergence, namely dependent novelty, irreducibility, and unpredictability.

Further, I propose a general theory that is able to calculate the wavefunction of

the nuclei in an effective potential. I use this to calculate the Raman spectrum of

cyclobutadiene, in which an energy splitting of vibrational energy levels is found

due to tunnelling between two chemically equivalent rectangular configurations. I

find that the structure of this spectrum, including the tunnelling splitting, can be

explained by recourse to the typical motions predicted from a semiclassical model.

I conclude that the properties different isomers cannot be calculated using a single



generalised quantum calculation, even though isomers are composed of the same

particles and have the same Hamiltonian. Therefore chemical systems are likely to

host historically emergent explanations.

From the analysis of single-crystal XRES measurements on FeAs, and symmetry

considerations I propose a new canted magnetic structure commensurate with the

incommensurate elliptical helical magnetic order. I justify this with an orbital

projection method that is able to calculate the susceptibilities of the material to

spin-orbit interactions.

I also detail a spin initialisation procedure based on rotations of the exchange-

correlation potential, that aims to reduce bias towards undesired density config-

urations by the density search algorithms in noncollinear systems. I present its

application to symmetry unconstrained, noncollinear calculations of manganese ox-

ide and elemental iron. I conclude that this procedure is not suitable for systems

with magnetic configurations robust to changes in their exchange and correlation

potentials. Additionally symmetry unconstrained calculations are nontrivial, and

future calculations will require modified density search algorithms to deal with sym-

metry unconstrained calculations on many conductors due to complex interactions

at the Fermi surface.



Declaration

The work in this thesis is based on research carried out in the Department of Physics

at Durham University. No part of this thesis has been submitted elsewhere for any

degree or qualification.



Acknowledgements

I would like to thank the Templeton Foundation for generously funding my work.



Contents

Abstract ii

1 Introduction 1

1.1 Motivation for emergence . . . . . . . . . . . . . . . . 4

1.1.1 Batterman’s singular limit emergence . . . . . . . . . 7

1.1.2 Computational emergence . . . . . . . . . . . . . 9

1.1.3 Historical emergence . . . . . . . . . . . . . . . 10

1.2 The method of study: why density functional theory? . . . . . 22

1.3 Historical emergence in practice . . . . . . . . . . . . . . 24

1.3.1 Summary of the researched physical systems . . . . . . 24

1.3.2 Utility of historical emergence . . . . . . . . . . . 29

2 Method of density functional theory 30

2.1 Background . . . . . . . . . . . . . . . . . . . . . 30

2.2 Implementation . . . . . . . . . . . . . . . . . . . 34

2.2.1 Plane wave basis set, and pseudopotentials . . . . . . . 35

2.2.2 Norm-conserving pseudopotentials . . . . . . . . . . 37

2.2.3 Ultrasoft pseudopotentials . . . . . . . . . . . . . 37

2.2.4 Search for the density . . . . . . . . . . . . . . . 40



Contents vii

2.3 Spin polarization in DFT . . . . . . . . . . . . . . . . 42

2.4 Determining parameter convergence in DFT . . . . . . . . . 43

2.5 Computer code resources used . . . . . . . . . . . . . . 44

3 Emergence in chemical structure: cyclobutadiene 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 46

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Eigenvalue Computation . . . . . . . . . . . . . 54

3.2.2 Convergences . . . . . . . . . . . . . . . . . . 56

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Restricted 2D calculations . . . . . . . . . . . . . 68

3.3.2 4D calculations . . . . . . . . . . . . . . . . . 70

3.4 Symmetry and Raman excitations . . . . . . . . . . . . . 73

3.4.1 Raman excitations . . . . . . . . . . . . . . . . 75

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . 80

3.5.1 Conclusions about emergence . . . . . . . . . . . . 82

4 Iron arsenide 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Physical background . . . . . . . . . . . . . . . 84

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 DFT parameters . . . . . . . . . . . . . . . . 91

4.2.2 Calculating spin-orbit perturbations . . . . . . . . . 93

4.3 Study and results . . . . . . . . . . . . . . . . . . . 98

4.3.1 Structure of the magnetic order . . . . . . . . . . . 98



Contents viii

4.3.2 Mechanism of magnetic order . . . . . . . . . . . . 103

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Emergence . . . . . . . . . . . . . . . . . . . 108

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . 110

4.5.1 Philosophical conclusions . . . . . . . . . . . . . 111

5 Spin initialisation in noncollinear DFT 113

5.1 A method: the spin setting procedure . . . . . . . . . . . 115

5.2 Method example: iron . . . . . . . . . . . . . . . . . 119

5.2.1 Material background . . . . . . . . . . . . . . . 119

5.2.2 Initial results . . . . . . . . . . . . . . . . . . 123

5.2.3 New PBE states . . . . . . . . . . . . . . . . . 126

5.3 Discussion of iron . . . . . . . . . . . . . . . . . . . 138

5.4 Method example: manganese oxide . . . . . . . . . . . . 142

5.4.1 Computational background . . . . . . . . . . . . . 145

5.4.2 Convergences . . . . . . . . . . . . . . . . . . 146

5.4.3 Results . . . . . . . . . . . . . . . . . . . . 148

5.4.4 Future work and preliminary study of YMnO3 . . . . . 152

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . 154

5.5.1 Implications for emergence . . . . . . . . . . . . . 156

6 Conclusions 160

6.1 Physical methods . . . . . . . . . . . . . . . . . . . 160

6.2 Historical emergence . . . . . . . . . . . . . . . . . . 164

A Appendix 168

A.1 Isosurface point picker . . . . . . . . . . . . . . . . . 168

A.2 Dependence of resistivity on temperature . . . . . . . . . . 168



Contents ix

Abbreviations

CM Collinear magnetism

DFT Density functional theory

DM Density mixing

EDFT Ensemble density functional theory

LDA Local density approximation

MP Monkhorst-Pack

NCM Noncollinear magnetism

PBE Perdew Burke Ernzerhof

XRES x-ray resonant electron scattering



Chapter 1

Introduction

Emergence is the process by which, to borrow Anderson’s turn of phrase [1], more

becomes different. In this process, the objects that compose a system of interest

exhibit new properties and behaviour; the behaviours of objects that compose the

system are changed. Due to this, the study of emergence is deeply linked to reductive

explanation, in which the behaviour of a system is described and explained in terms

of the fundamental properties of the system’s constituents alone. In a reductive

explanation the new properties and behaviour directly result from a combination of

the properties and behaviour of the constituents. Systems that display this sort of

reducible emergence are usually called weakly emergent [2].

But consider another type of emergence, often called strong emergence. It is proposed

that in strong emergence the behaviour cannot be reductively explained in terms

of the system’s constituents. This type of system is of especial interest to some

philosophers; for them it is an opportunity to create a new framework for explanation.

The allure of this framework is that it may give a robust theoretical method by which

explanatory power, or perhaps physical properties and behaviours, are associated

not with the divisible constituents of the system, but with something new, be it an

object or set of governing laws. The implication would be that as the new thing is not

divisible from the system as a whole, it has fundamentally different properties, and

might therefore be distinguishable from the usual fundamental physical constituents
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or laws present in the world. This line of thought follows a heritage of philosophical

study, from Plato’s realms of ideals [3], or indeed Cartesian theories of the soul or

modern philosophies of the mind, such as non-reductive physicalism. In these theories

the new objects or governing laws play decisive explanatory and even causative

roles [4, 5, 6]. For this reason the development of such a non-reductive framework

that is widely acceptable would be a worthy philosophical achievement.

However those philosophical works which concern the causal and explanatory roles

of unphysical objects are unsatisfying to many. Instead most scientists conclude

that in a physical experiment, the failure of reductive explanation is likely not to

be evidence of a new object, but is instead a failure in the construction of the

explanation [7, 8]. Their reasoned position is that the world is extremely complex,

and so while a non-reductive theory may capture the behaviour in a simple and easy

to understand way, it ultimately fails to give the deeper understanding and knowledge

of the complexity. Further in scientific studies there will often be a large number of

similar phenomena that are explained only in terms of their physical constituents.

In this context the appeal to an new object or governing law to describe a system’s

behaviour is considered to be a last resort to be used only when exhaustive analysis

of the complexity has failed.

These two types of explanatory framework represent two extremes, the so called

strong emergentist’s and strong reductionist’s positions. But there is a third conceiv-

able system, in this case it is not possible to give a reductive explanation, even if all

the properties and behaviours are directly attributable to the system’s constituents.

Due to the complexity often present in physical systems, it is not unreasonable

to expect that such a system may exist. This type of emergence I call epistemic

emergence because if it exists it will not be possible to validate that the system is

reducible. Necessarily, to describe the emergence in such systems one must describe

how a system’s properties and behaviours cannot be deduced or explained by refer-

ence to the properties of the constituents. This requires an understanding of specific

system properties, and the challenge is therefore to describe how this occurs in a



Chapter 1. Introduction 3

sufficiently general yet satisfactory fashion.

Epistemic emergence seems the most fruitful area in which to make progress on the

philosophical account of emergence. This is because as at one extreme a strong

reductionist position places all the weight on a theoretical explanation and requires

no deeper discussion of philosophy. At the other extreme a phenomenon that is

strongly emergent has yet to be conclusively experimentally isolated, and requires a

large and challenging philosophical description. Instead the philosophical quandary

of epistemic emergence is present and less severe, though may additionally be able

to contribute both to the understanding of how a satisfying theoretical explanation

is constructed, and provide an account of how such a reductive explanation is not

possible and the necessary consequences for the study of physical phenomena that

result. As a result I will focus on this type of emergence.

In this thesis I will develop a theory for a type of epistemic emergence, which is based

on complexity and the physical and practical limitations that constrain information

and knowledge. This theory entails that when the number of experimental outcomes

or physical states that must be described for a satisfactory understanding of an

explanation are too large to be represented physically, such a system must be treated

differently and deserves to be called emergent. I will show that in such a system at

least some of the outcomes of an experiment on such an emergent physical system will

not be verifiably repeatable, as the number of different outcomes are too numerous

for the same result to be expected each time. Therefore an experimenter can only

understand the processes of the system by reference to a specific measured outcome,

and cannot create a complete understanding of the system. As such I call this type

of emergence “historical emergence”.

However a study of epistemic emergence of this sort must rely on a study of physics

and the behaviour of physical systems. To this end I will also model some physical

systems which have been selected for their relevance to emergence, with density

functional theory (DFT) [9]. DFT was chosen as it provides an effective way to

describe and explain the origin of physical processes, while at the same time providing
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the pragmatic advantage of speed when it is used to study many electron systems.

This is by comparison to more precise approaches like quantum Monte-Carlo, and

GW approximation approaches that are computationally much more intensive and

therefore much slower [10].

I will first study the benefits and limitations of DFT for a study of historical emer-

gence, by performing symmetry relaxed and noncollinear calculations on the well

understood materials elemental Fe in the bcc structure and the magnetic insulator

MnO in chapter 5.2. I will then study physical systems to inform the discussion

of historical emergence. The systems I study will be FeAs in chapter 4, which was

chosen for its complex magnetic structure formed of a noncollinear elliptical canted

spin-spiral, which has a periodicity that is itinerant under temperature variation; the

four-membered carbon ring cyclobutadiene in chapter 3, was chosen as it exhibits

quantum mechanical tunnelling between two chemically equivalent configurations,

and therefore does not have a fixed chemical structure.

This study of physical systems will show how historical emergence is able to inform

and contribute to the process of science. I show that this definition of historical

emergence is able to distinguish between different types of physical system. As it

distinguishes between them, it is also able to show why particular processes and

systems deserve to be treated differently. It provides a framework to explain why

not everything can be deduced from the fundamental physical laws, and at the same

time can inform the process by which further research can be performed.

1.1 Motivation for emergence

In the process of emergence, the objects that compose a system of interest exhibit

new properties and behaviour; the behaviour of the objects that compose the system

are changed [1]. This definition helps to capture the sense of emergence, however

alone it is not really a satisfactory definition. This is because as discussed in the

previous section, there are a number of senses in which this can be true. However
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before presenting or discussing specific theories of emergence, I will outline the

motivation for considering emergence as a concept at all.

The concept of emergence was originally coined by the British emergentists, the most

prominent of these was C.D. Broad [11]. The motivation behind their proposition was

the observed disunity in the sciences. While physics was highly effective at describing

and manipulating mechanical systems and single free particles like electrons [12, 13] in

the 1920’s, it had no satisfactory explanation for chemical behaviour, and chemistry

was observed to have the same relationship with biology. For the British emergentists,

this was taken as empirical evidence for the disunity of the sciences. The word

emergence was coined to describe the process by which a new behaviour comes into

existence from the combination of the well understood fundamental constituents. For

them, examples of systems that might possibly be emergent included life, mentality,

and acetone [11, 12].

Of course with hindsight, what was a mystery of how the fundamental particles form

new phenomena such as chemical compounds has been well explained by quantum

mechanics in a way that now seems to undermine Broad’s original position. As

such discussions of emergence have continued in two forms, in the first form life and

mental phenomenon have not been explained by new theories, and so continue to be

discussed in similar ways in the philosophical literature [14, 15, 16]. The second form

which is more relevant to this work is based on the observation that the considerable

explanatory advances of quantum mechanics have not unified science into a single

field of study. Science is still composed of a wide array of specialised fields. Despite

the apparent dependence of these on more fundamental theories, most of the work

done relates only to the specific area of specialism [17, 18].

That scientific study can be independent of a description of the fundamental phe-

nomena, implies that an explanation in terms of the fundamental constituents is

not required and perhaps inappropriate. On this basis a philosophy in which all

phenomena must be grounded in, and described by, the properties of the funda-

mental constituents is at best unhelpful and at worst simply incorrect. However for



1.1. Motivation for emergence 6

a useful philosophy that can be used in the process of research and the study of

new phenomena, an applied theory of strong emergence along the lines discussed

above is likely to be just as unhelpful. As has been shown by the historical example

of Broad and others, an application of the theory of strong emergence is especially

susceptible to the formulation of an incorrect hypothesis. In short, to get caught up

in the tangle of strong emergence just as one is trying to understand a new system

is to invite disaster.

The source of this trouble is that in the study of an incompletely understood system,

a failure to explain a behaviour by reference to the fundamental behaviour of the

constituents may originate in either the inadequacy of the method of explanation,

the inability for the problem to be explained in a particular way, or an insufficiency

of the fundamental behaviour 1. However regardless of which it is, a scientist needs

some way to make sense of the situation, and an appeal to either of the extreme

reductionist/emergentist positions cannot provide this. However an epistemic theory

of emergence is sensitive to how a method of explanation can be inadequate, and so

will have a practical use.

It is important to note however, since theories of epistemic emergence deliberately

concern themselves with the particular methods of analysis [19, 20], such theories

are open to the criticism that they are not worth studying. The argument runs that

since they are about our own subjective theories, they necessarily have nothing useful

to say about objective behaviour, and as we get closer to the correct objective theory

we will end up having to discard or re-run the argument. On this reasoning it would

instead be better to work on an objective theory from the start. However I disagree.

First, objective accounts of emergence have been motivated by subjective theories,

but has had nothing useful to say about them. For example of Broad and chemistry:

despite the work put in this study failed to inform or advance the understanding

of chemical knowledge. Ultimately it has either been discarded or been through

significant amendment, so that work seems to have been wasted. In this case it

1Like trying to explain planetary motion with respect to electromagnetism.
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might have in fact been more useful to detail a subjective theory that contributed

to the scientific discussion. Secondly as yet there is no convincing account for an

objective emergence, nor do I feel there to be any promising ones.

Instead it may be more fruitful to make incremental progress on a less complex

problem. Indeed, it may be that physics in fact does place objective limits on any

subjective theory. In this case it would be no less fundamental than a theory of

emergence, and possibly a great deal more useful. However before the discussion of

a new type of epistemic emergence, it is useful to discuss previous work on epistemic

emergence.

1.1.1 Batterman’s singular limit emergence

In Batterman’s account of emergence [19] , he starts his book with the Euler strut [21,

ch. 14]. This is a thought experiment that is composed of a single vertical structural

beam that is gradually loaded until at the critical loading weight, it collapses in one

of two directions: either left or right. Crucially the gross structure of the beam is

symmetric, such that it is the dynamic microstate of the system that determines

which way the beam collapses. With this example he observes that although the

microstructure is decisive in determining the direction in which the beam will collapse,

which of the possible different microstates the strut is in gives essentially no extra

explanatory information about the critical collapse weight. Instead this collapse

weight can be determined by macrostructural properties of the strut: the shape

and area of its cross-section, its Young’s modulus, and its length. He observes that

once one knows the gross structure of the beam, the instantaneous microstructure is

completely unnecessary to explain the most important quantity, the critical collapse

weight of the system.

This argument about the Euler strut is only illustrative however, since it must

be conceded that when one is provided with details about both the micro- and

gross structure of the system, one is in fact being supplied with the same relevant
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information (that of the gross structure) twice. This is because if one is given the

microstructure of the system, one may concede that via a renormalisation procedure,

it might be possible to recover the gross structure of the beam [7]. Batterman

however counters this criticism, as he reasons that this generation of the gross

structure relies on an appeal to a continuous beam which only makes sense in the

limit where the size of the beam becomes infinite. However this infinite limit is

necessarily unrealisable. As a result the gross structure of the strut is qualitatively

different to the microstructure of the physical system, and he reasons the use of this

method can never precisely reproduce a continuum structure like the gross structure

of the beam which is used to determine the Euler strut equation in the classical

limit [19, p. 124].

In this way, Batterman purports to show how his theory of emergence captures how

an emergent system becomes qualitatively different to the properties of its parts.

What distinguishes his account from theories of strong emergence, is that his theory

turns only on the explanatory roles of the different theoretical objects. In so doing his

discussion is partly about the physical objects. However the emergence in the system

is actually not a property of the physical system, but of the theoretical description.

It is for this reason that I class Batterman’s emergence as epistemic emergence,

since it is principally concerned with a practical inability to explain properties and

behaviours in terms of the microstructural constituents of a physical system.

However criticism is often levelled at Batterman’s description of emergence, as he

grants that it might be possible to explain the behaviour of the system without an

appeal to these singular theoretical objects. In such a situation he observes that

this would be done “poorly” [19, p. 52]. In so doing Batterman makes clear that his

conception of emergence is primarily practical in its motivation. The concern for

this theory of emergence is that it is not robust as it may be open to an attack that

is motivated by changes or improvements in the practical methods that he relies on.

However the systems that he studies: the Euler strut, behaviour at thermodynamic

critical points, and optical systems which require both ray and diffraction optics, are
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understoody with capable, simple, and are so far unchanged methods. Nonetheless,

many eschew his account in favour of an objective account, that would remain

unaffected when the practical methods relevant to the problem improve.

1.1.2 Computational emergence

It is worth examining computational emergence as well. In the philosophy of pancom-

putationalism, the world is studied using principles of computer science [22]. This is

motivated by the ability to model any physical system as a computer, and is defined

with respect to an effective quantisation of space and time. The time quantisation is

the time taken to perform a single operation in the model computer and is given by

the minimum time period it takes for a physical system to evolve between different

states [23]. The space quantisation determines the effective memory for the model

computer, and is the total number of available states available in the physical sys-

tem [22]. These two components, the memory and the number of compute operations

performed during a time period, make up the computational resources available to

a physical system.

Computational emergence is motivated by the observation that physical systems

appear to instantiate particular algorithms. The definition of an algorithm is reg-

ular process which results in a particular physical state or property being realised.

However, in certain cases the computational overhead in terms of memory and com-

pute operations for computing the algorithm exceeds the computational resources

available to the system. Such a system is called emergent [24]. A common example

in the literature is protein folding, which is said to instantiate the minimum energy

search algorithm [24, 20, 25]. In this example it is observed that the number of

compute operations that are required to perform an exhaustive energy search of all

the different conformations of a protein is vastly larger than the number of different

compute operations available to the system during the time in which a protein folds.

However there are a number of concerns about computational emergence. The
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principle weakness is the observation or assertion that a physical system instantiates

an algorithm. The observation of an instantiated algorithm which must be emergent,

necessarily conflicts with the observation of the available computational resources.

Further, many algorithms give similar results, but there is no way to account for

which one of these algorithms the physical system in question truly instantiates. In

a system that appears emergent, it may be the case that there is another similar

algorithm that is functionally equivalent, but is not emergent. For example in

the protein folding example frequently used, an alternative algorithm is the local

minimum energy algorithm further aided by certain symmetries or patterns in the

protein structure itself [26, 27]. Even for a choice of algorithm there are many

implementations. Indeed for the local minimum energy search algorithm, a quantum

nonadiabatic computational implementation requires significantly fewer resources

than a classical computational implementation [28].

Therefore while computational emergence has strengths, namely a rigorous way to

determine if a system is emergent or not, it suffers from a flaw that the method used

to discern if computational emergence is present, is unsound in its practice. This

is because there is not yet a rigorous way to determine if a system only appears to

be emergent due to an incorrect assessment about the instantiated algorithm, or

because it really is emergent. Some progress has been made based on Kolmogorov-

Chaitin incompressibility [24], as an incompressible algorithm cannot be replaced

by a more efficient algorithm. However the underlying concerns remain, as it may

be that while the algorithm chosen may reproduce certain aspects of the observed

physical behaviour, the correct instantiated algorithm is different. To my knowledge

there are no concrete physical examples of computationally emergent systems.

1.1.3 Historical emergence

Much of the motivation for and problems with emergence, centre around difficulties

in an account of complexity. Historical emergence is motivated by complexity as
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well. However as I demonstrated in the discussion of pancomputational emergence,

physical systems are usually open so that they interact with the rest of the world.

Due to this, discussion about complexity needs to be constrained, or else depending

on an individual’s opinion, an open system may grow to larger proportions as it

includes all the influences of the cosmos, or collapse2. This ultimately distracts from

the real interest which originates in the physical system itself.

In previous accounts of emergence, whether or not a physical system is emergent

can be based on whether the explanation of the physical process has a particular

construction, like in the accounts of Batterman [19], Mumford [2, pp. 92-109], and

Luisi [25]. It can also be based on whether or not the causal processes must be of

a particular form, like in Broad’s account [11]. Indeed these two approaches are

closely related, but it is useful to rest a definition of emergence on a single secure

foundation. Since I aim to describe historical emergence epistemically, it is more

natural to couch the account in an explanatory, rather than the causal framework.

An account of explanation

Modern theoretical discussion of a philosophical theory of explanation was started

by Hempel and Oppenheim in 1948 [29]. Their theory, which was later named the

deductive-nomological (D-N) theorem of scientific explanation, formed a key part of

much of the ensuing philosophical discussion on the topic [30]. There are however

some valid criticisms of this account of scientific explanation. As a result I will

take their theory and modify it so that it can be practically used in an account

of emergence. In particular I will omit the condition that an explanation must be

grounded in physical or general laws. Doing this allows me to skirt a number of

thorny philosophical issues, though introduces the added complication that I must

support my argument by grounding it in the wider scientific literature.

In an explanatory set-up constructed in the D-N form I identify three important

2The reasoning follows that if the universe is in a pure state all the behaviour and properties in
it may be obtained by the simple application of the relevant operators to that state [8].
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Figure 1.1: The length of a shadow from a tower can be explained
by deduction.

components. There are the physical conditions or constraints, A, of the system in

question that are to be explained3. There are the physical laws, L, which determine

the behaviour of the system. Then there is the explanandum, or the phenomena

which is to be explained α. In Hempel’s D-N account, an explanation of α is equi-

valent to its prediction from A acting under L [29]. An objection to this symmetry

between prediction and explanation is that an explanation can also be cast as a

retrodiction [31]. As a result I will broaden Hempel’s definition, such that an explan-

ation is equivalent to a deduction. In this way a logical or mathematical deduction

can be written as:

LA:α(A) = α (1.1.1)

where LA:α is the logical or mathematical operator that is composed of an application

of L, which deduces the explanandum α from the conditions A in question. The

operator LA:α must be dependent on α and A, since changes in the boundary

conditions or explanandum demand different explanations even if the laws remain

unchanged. The strength of this definition is in the simplicity of the formulation.

However there are a number of criticisms of it. In order to examine these, I shall first

3Often called boundary conditions.
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take an example in which a tower illuminated by a collimated light source (like the

sun) casts a shadow on the ground. A diagram of this process is shown in fig. 1.1.

In this system the initial conditions are the angle of illumination, the height of the

tower x, and that the tower rises perpendicularly from the ground. The governing

laws are that light is projected in a straight line, and that the tower is opaque. Using

this, one can deduce that the length of the shadow on the ground is l = xcot(θ).

This value of l constitutes the explanandum.

This example was first used by Bromberger to elucidate a criticism of Hempel’s

approach [32, pp. 79-105]. In this example the length of the shadow can be explained

by reference to the height of the tower, and indeed this can be deduced. However

it seems strange to say that the height of the tower is explained by the length of

the shadow, even though this can be deduced [30]. However, I perceive this to be

a linguistic trap. This is because it seems perfectly reasonable to say that “in this

explanatory set-up, what the height of the tower must be is explainable by the length

of the shadow and the angle of illumination”.

I perceive that this linguistic trap exists because from an everyday perspective, the

explanandum “the height of the tower”, can in fact be explained in a great number

of different ways. Some methods of explanation, perhaps those that appeal to its

design and construction, are of much greater interest from the practical perspective

of everyday use of the tower than the transient and ephemeral properties of the

shadow. As a result one would intuit that if the length of the shadow was invoked

in response to the request “please explain the height of the tower”, while it might

constitute a logically consistent explanation, the response would probably not be

met with satisfaction. If however, the purpose of the explanation was to detail how

the height of the tower might be measured, this would be very satisfactory.

I believe it is for similar reasons related to satisfaction that Hempel and Oppenheim

insisted that the laws that are used in a D-N explanation are general laws. Such an

insistence on generality appears to bias a proper explanation towards a reductive

conception, in which more general, “true” laws are used to explain specific behaviour.
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Such a grounding in terms of the general laws would make an explanation similarly

general, and it would be as inviolable as the laws on which it was based. However

it is very difficult to find a completely general physical law. For example while one

might claim that as a general law “solid gold expands when heated”, under certain

conditions, for example if it is wedged by a material of a larger thermal coefficient

of expansion, the gold would in fact contract [30, p.84]. Instead what is required

for an explanation is that the laws invoked are able to describe all the necessary

behaviour, of all the necessary states of the system that arise under the conditions

of the explanatory set-up. Specifically, the necessity of these requirements relates to

the deduction of the explanandum that occurs.

To give an example, when zinc is immersed in sulphuric acid, an exothermic gas-

producing reaction occurs. When the explanandum is the answer to “how does the

experiment proceed?”, physical laws that relate to heat, gas, acid-base reactions and

the thermal properties of all the constituents in the reaction are certainly necessary.

However, during the explanation the possible nuclear reactions of the zinc nuclei

that occur as a result of proton bombardment are not necessary, since although both

protons and zinc nuclei are present they never actually undergo nuclear reactions.

While they may certainly be included to give a richer understanding of the physical

processes present, since they are not necessary for the explanandum, they do not for

a requisite part of the explanation.

Since not all systems are purely deterministic, probabilistic systems must be included

in an account of explanation. While Hempel did this by a modification of the core of

a D-N explanatory account [33], others extend his account in the so-called deductive-

statistical account in a way which means the ontic nature of a deduction need not

be dropped [34, pp.448-452] [30, pp.172-177]. To make a probabilistic explanation

ontic, let us first observe that there are two ways in which a probabilistic occupation

of different states can occur in an system. The first way is that the initial conditions

are uncertain, this can be accounted for by treating each of the possible initial states

as a separately in the deduction. The second way is if the governing laws of the
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system are indeterminisitic, such a system can be treated equivalently to the first,

with the exception that the number of states that are considered increases each

time an indeterministic event occurs. Therefore after every inderministic event the

number of different states in the deduction might increase4. Regardless of which way

the uncertainty arises in the calculation a consistent explanation can still be made,

although it may be that certain explanandums like the answer to the request “explain

why the uranium nucleus will not decay”, are strictly forbidden with respect to the

governing laws5, as they are nonsensical. This makes an account of explanations in

certain applied sciences difficult, like an explanation of how a particular person is to

blame for an oil disaster [34, pp.448-452]. However, as my work concerns only pure

science I do not need to account for these issues.

Under the considerations discussed above, equation 1.1.1 constitutes my definition of

an explanation. For philosophers however there is one principle flaw in my definition:

I have omitted an account for how an explanation becomes ontological or scientific.

But I believe that to place philosophical restrictions on the kind of content that can

constitute a scientific explanation is asking for trouble. This is because there are a

large variety of methods that different scientific schools of thought use to determine

whether an explanation is satisfactory. In particular explanations are often perceived

to be valid only on the basis of a large amount of past accumulated literature that

may be formed from the work of many people. As a result an explanation often

cannot be judged solely on intrinsic merits or failures, but only by reference to the

broader literature.

A philosophical account of whether an explanation is scientific or not is therefore

likely to be a much larger project6 that can not be explained or even described in this

work. Further my analysis above suggests that the relevant justifications that make

4The number of states required to treat the system does not necessarily increase, for example
there are some systems like Markov chains in which the state space of the computation may not
increase after each indeterministic event.

5This explanandum should be rephrased as “explain why the uranium nucleus will probably not
decay”.

6To be sure, this is likely an extremely worthwhile and interesting project.
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an explanation scientifically satisfactory must already be performed by scientists

in the broader scientific literature. Therefore, in this work it will be sufficient to

justify each of my explanations as I present my scientific study, in a fashion relevant

to the area of study in which the explanation is grounded. With this definition for

what constitutes an explanation, I now proceed to discuss a practical definition of

emergence.

Definition and discussion

First it is important to note that a realisation of epistemic emergence is dependent

on a particular explanation. Of course a scientific explanation must aim to be

grounded in a physical system, and in this case the emergence will have important

and interesting scientific and ontological import. However because of this dependence

historical emergence must be a property of a specific explanatory set-up. This is

why a good account of explanation is necessary to detail a new theory of epistemic

emergence.

Indeed this approach has historical precedent, for when Hempel and Oppenheim

presented their definition of an explanation they also attempted to detail a conception

of emergence [29]. The position of the British emergentists, the motivations for which

are discussed in chapter 1.1, was that explanandums in an emergent system could not

be explained using physical laws that determine the behaviour of the fundamental

particles in the system7. I interpret this to mean that it is not possible to construct

an explanation in the form of equation 1.1.1 using these laws.

However, there are two ways that equation 1.1.1 might fail to be constructed. The

first way is that the explanandum is simply incompatible with the initial conditions or

the physical laws, as they apply to completely different kinds of system, or because

the physical laws are insufficient to determine or predict the behaviour specified

in the explanandum. Regardless of whether such a situation is a failure in the

7This includes those with different boundary conditions.
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explanandum or physical laws, a simpler diagnosis of the failure of explanation will

always be that a better explanatory set-up must be sought. The protein folding

example of computational emergence is in this category.

The second way is because there is some limitation such that, while the governing laws

can be shown to apply to all the behaviour the system can exhibit, it is not possible

to detail how the explanandum can be deduced, as the deduction is intractable.

This is the more interesting case. The usually occurs through a discussion of the

physical laws of the system, when these laws generate a mathematical or deductive

intractability. For example this may be caused by a state crossing during the process

of an adiabatic continuation. However it may be that such a failure in deduction

simply results from a failure in deductive skill, and a further investment in time and

ability may solve the problem. Batterman’s theory of emergence can be subjected to

such a criticism, and indeed he aknowledges it as a valid criticism (although as his

is a practical theory he does not feel the criticism carries the philosophical weight

others invest in it).

However, I observe that there is another way by which an explanandum cannot be

deduced. This is motivated by the observation that many systems have an extremely

large state space. In some explanatory set-ups which of these states the system is

in is critical. This means that in the explanandum all the different available states

must be considered, so the information for each state must be stored. Information

requires a physical instantiation and, as the computational emergentists observe,

there are physical limits to the information that can be stored even in the entire

accessible universe. Therefore there must be some explanatory set-ups for which an

explanation cannot be given, since the information required to detail the explanation

exceeds the physical constraints which the information must be subject to. Such an

explanatory set-up I call historically emergent.

A crucial part of this definition turns on the word ‘must’. It is clearly the case that

a specific determination in an explanatory set-up will be strongly dependent on the

method being used, but some methods require more states to be considered than
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others. There are always an absolute minimum number of states that are required in

an explanation. These are the number of states that are required8 to give detail and

meaning to the explanandum itself. An example of a method that requires a large

number of states to construct an explanation is cyclobutadiene, discussed in chapter

3. The eigenvalue solver method used requires a large number of position states to

work, although only a small number of energy eigenstates are really of interest. As a

result one finds that the explanatory set-up in cyclobutadiene cannot be considered

emergent.

How does this definition of historical emergence aid an understanding of explanation?

To address this I will use some thought experiments. To begin with, I will explain

why a system each state may need to be explained separately. Let us examine a

thought experiment in the form of a card game. The rules of the game are as follows:

I The game is formed of cards, and at the start of the game all the cards are

randomly arranged in the deck.

II Players each take turns to draw cards from the deck, which they keep in their

hands.

III Players are not allowed to look at the cards until they are drawn.

IV Each card is worth a number of points, and the player with the highest number

of points when the deck is empty wins the game.

V On each card are written some additional rules, actions or information that

must be followed by the players as soon as they draw the card.

On half of the cards there is the following instruction: “take the top card of the

deck and place it outside the game, do not look at the card”. On one of the cards is

8In the case where a property is the explanandum, it must be observed that a property needs
to be related to a physical state to have a physical instantiation. Note that average properties still
only need one state: pressure only needs to be related to a single molecular rebound to have a
physical basis even if it is defined as the average of many.
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written the rule “This is the winning card. The player who draws this card instantly

wins the game and the game ends”.

From these rules and the details of the cards, it can be seen that there are two ways

the game can end. One way is that one of the players draws the winning card, they

win and the game ends. Let us call this the fast way. The second way is that a card

is drawn which causes the winning card to be placed outside the game. In this case

the players run through the deck, and the game ends. Let us call this the exhaustive

way. Now, let us say that after two people have played the game, a friend asks them

“who drew the winning card?”. As we know all the rules of the game, and all the

details of the cards, it is easy for us to work out what the friend means. Likewise if

the players finished the game the fast way, they will know how to respond. However

if the players finished the game the exhaustive way; there is no answer to give. In

this instance the question will not make sense to them, as it will lie outside their

experience9.

What this card game example illustrates is that in some cases an experience of a

system or process will be incomplete, and that such a limitation will mean that one

is unable to formulate or even understand the goal or purpose of an explanation or

experiment. In order for the players to understand the card game, there is a simple

solution: they could repeatedly play the game until they find the winning card, and

understand the question.

This kind of exploratory thought experiment is common in many theoretical and

experimental works; the explanandum of the (thought) experiment is to explain

what can happen. This illustrates why in some cases each outcome or state needs to

be considered separately for a full explanation to be given. It is because under the

conditions of the explanandum the individual states belong to completely different

classes and so must be treated separately.

There are also many areas of physical study where experience is necessary to provide

9It is implied that the correct answer would be: “no-one drew the winning card”.
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an explanation. For example all the behaviour in solar cells is based on exactly

the same physics: quasiparticle excitation and transfer [35]. The really interesting

physics that drives current work in the field refers to properties of the material when

it is engineered to improve the efficiency of energy conversion. In order to provide

an explanation, first one must know what the state of the system is when it is most

efficient. Since this is strongly dependent on the efficiency of charge transfer, it often

concerns crystal inclusions, defects, and also the device structure [36].

Although a system that requires experience to understand is one property of an

emergent explanatory set-up, this is not unique to emergent explanations. I show

this in chapter 4, as in order to study the magnetic order of iron arsenide, it is

necessary to first study experimental x-ray diffraction results. Therefore there are

other qualities a set-up must also have if it is historically emergent. I will illustrate

these with a second thought experiment. I call this the cat box death experiment.This

thought experiment is similar to Schrödinger’s cat. I place my cat who I will call Theo,

in an adiabatic box. In the box I also place the necessary life support equipment. I

close the box, and wait for a suitable period of time, perhaps a week. I then open

the box to see what happened. However immediately before I place Theo in the box

I infect him with special virus. This virus mutates rapidly, so as it spreads inside

Theo it has the capacity to mutate into a large variety of different lethal strains.

The number of different outcomes of the experiment are vast: depending on which

mutation occurs, and at which time and which place in the body this happens, the

virus may kill Theo in one of a large number of different ways. It may also be the

case that Theo is left permanently debilitated in a particular way, or depending on

the precise events, that Theo’s body successfully contains the infection so that he

feels no ill effects at all.

In the cat box death experiment, a reasonable explanandum to ask for may be to

“explain the ways Theo can die”. However in this experiment it is likely that there

an uncountably large number of different different types of death Theo may suffer.

This means that one is unable to detail all the possible outcomes of the experiment.
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Worse still it may be vanishingly unlikely that even if one detailed a large range of

different ways that Theo may die, none of them would be likely to happen. This

means that the whole process of seeking an explanation is a doomed exercise.

However it is important to note that if the experiment was run, and Theo died, it

would be possible to explain “how Theo died”. One cannot explain how Theo could

die, but once he has died, one can explain how Theo did die. A meaningful account

of the death of Theo can therefore only be provided after the event has taken place,

and cannot be provided before.

A well known type of physical system that behaves similarly to this thought experi-

ment is the weather. Precise knowledge of weather effects is additionally extremely

important, since weather prediction is used to direct scarce resources. However it

is not possible to predict weather phenomenon by much more than a week using

current methods. In the same way as the cat box death experiment, a reasonable

assessment of the weather cannot be made ten days in advance. Instead one must

wait and see what happens.

I have shown that a system that hosts an historically emergent explanatory set-

up must have certain properties that are relevant to the scientific study of the

explanation. One must expect that an experimental result that contributes to the

explanandum will be at the very least extremely difficult to repeat. This condition

violates one of the expectations of a good scientific experiment, namely that the

results are independently verifiable. Also, although an explanation of the entire

behaviour of the system is not available, an explanation of how a particular outcome

may arise is available. As in general an explanation of a particular result that has

occured is at least as relevant, and usually more relevant than the explanation of a

random result, an explanation can become important through the occurence of an

event. This is the reason I have named this type of emergence “historical emergence”.

There is an ambiguity in my definition of historical emergence: the upper limit of

the different states that are required in an explanation. As detailed in chapter 1.1.2

there is a phsyical limit to the amount of representable information is limited, and
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this could serve as a suitable limit. However in practice a strict upper limit like

this on the number of states is not actually required, because past a certain limit

of complexity, an explanation loses its appeal. This is because although in reality

there are many physical systems in which the outcomes of all the various states are

extremely important and must be dealt with separately, resources are always scarce

so there will be many systems in which the utility of the results is too small to

bother with. One can note that there are likely to be many systems which, although

not strictly emergent, are emergent in practice. Once an exhaustive state analysis

for these system is ruled out, they become for all intents and purposes historically

emergent.

Similar to the determination of whether or not an explanation is scientifically satis-

factory discussed at the end of chapter 1.1.3, a philosophical definition of whether or

not an explanatory set up is practically emergent is beyond the scope of this work.

Instead for the system where I find a system which is emergent in practice, in chapter

5.2, I will detail why a full description of all the different states is inaccessible using

considerations related to the system under study and methods being used.

1.2 The method of study: why density

functional theory?

While the theory of historical emergence may be consistent, it is important to examine

whether any physical systems host historically emergent explanatory set-ups . As I

search for such a system, I must provide an account for how my explanations are

scientifically satisfactory, and how an explanatory set-up is practically emergent.

In order to do this I will us a consistent method to compare different systems

and minimise the quantity of scientific justification that must be given. For these

purposes I have chosen density functional theory (DFT).

To detail why I have chosen DFT, let me return to Batterman’s theory of emergence.
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Regardless of whether or not his is a good theory of emergence, it correctly identifies

that it is often very challenging to construct an account of a system’s behaviour

in terms of processes at the fundamental level. This is important as the theory of

historical emergence is indifferent to the theoretical challenges faced in a deduction.

In the study of condensed matter systems, the explanandums of interest are related

properties of the materials in question. There are two general methods capable of

modelling properties in a broad range of systems: wavefunction methods and DFT.

In the construction of a particular explanation however, the less complexity that

is required the better. It is found that while wavefunction methods are suitable

for systems with small numbers of electrons, it is very challenging to model more

than around forty electrons due to the exponential scaling properties involved in

wavefunction solvers [10, 37].

By comparison DFT is in practice able to calculation many of the same properties.

The theory of Hohenberg and Kohn shows that all the properties of a single state, of

a many-electron system can be expressed as a function only of the electron density of

the state, and the potential that the electrons are in [38]. What this theory implies is

that the wavefunction does not need to be calculated at all. This greatly reduces not

only the computational overhead in the calculation, but provides an easier way to

describe the behaviour of systems in terms of changes only in the electron density [9].

Aside from these explanatory advantages that DFT can offer in our study of applied

historical emergence there are other benefits to using DFT. As DFT is a general

theory, it can be applied to a wide range of different systems. This means that

these different systems can be compared and analysed using the same methodology.

Additionally it is a widely used method and there is a great deal of experience and

knowledge in the condensed matter physics community around the interpretation

of the results of DFT. This means that a discussion of emergence, or a particular

instantiation of it, will be understood by much of the scientific community. This is

important for the wider discussion of emergence.
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1.3 Historical emergence in practice

Limitations of the approach One downside of restricting this work to a single

method is that when I study any particular system I must accept all the inadequacies

and problems of the method. In particular in chapter 5.2 I conclude that the iron

system when calculated using DFT exhibits practical emergence. The method of

DFT is an important part of this conclusion. However as long as I remain clear that

the “laws” in the explanatory set-up are only related to the physical system via DFT,

useful conclusions can still be drawn with an appeal to historical emergence. Whether

or not the results of the DFT calculation represent the real physical processes in

iron, or only exist due to the approximate treatment should not affect the conclusion,

as it is shown that historical emergence is able to inform the analysis of the system.

The framework of historical emergence is additionally able to inform and motivate a

discussion of alternatives and improvements to the method used, and in such a way

inform the process of scientific research.

1.3.1 Summary of the researched physical systems

This work combines philosophical analysis with computation physics research. Since

the study is motivated by philosophical considerations, in the process of analysing

physical systems there is also the opportunity to improve the methods of study that

are applied to research areas that are thought to hold really interesting emergent

systems. Additionally I find number of important results about the physical systems

which I study.

Cyclobutadiene In chapter 3 I study cyclobutadiene in an effort to understand

how different isomeric compounds are related to each other. Chemistry and isomers

are thought to host emergent phenomena, as there are a great many different chem-

ical structures with markedly different properties but with the same Hamiltonian [2,

pp.146-163]. Cyclobutadiene is a molecule that can transition betwee two rectan-
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gular configurations, via a process called automerization. Automerization is similar

to chemical reactions, as it involves the motion of nuclei to a different structural

conformations. However in automerization the product and reactant in the reaction

are identical, and the transition does not require thermal or collision processes as it

is permitted by quantum tunnelling [39, 40, 41, 42]. These distinctive qualities of

cyclobutadiene means that when one studies this molecule one can study how struc-

ture changes when nuclei tunnel, without additional complications such as dynamic

molecular collisions.

In order to calculate this nuclear tunnelling, I propose a general method for calcu-

lating the energy eigenstates and wavefunctions of nuclei bound in molecules. As

the electron energy levels are sufficiently well seperated in energy, I am able to use

the Born-Oppenheimer approximation, and use an effective potential energy surface

determined by the electrons and Coulombic forces to model the nuclear motion. I

use this to calculate the Raman spectrum and molecular wavefunctions using the

symmetry-conserving motions permitted under rectangular symmetry. I am able to

determine how the nuclear motions for different Raman resonance states affect the

rate of tunnelling. I show how the calculation and interpretation of the wavefunction

reveals the sensitivity of the system to environmental effects, and how the inclusion

of hydrogenic motion affects the carbon motion and the strength of the tunnelling

interaction.

As the method I use is based on the wavefunctions and eigenstates, it is not imme-

diately clear how to interpret the 4D wavefunction in a way that yields information

about the physical processes. In cyclobutadiene, although the effective internuclear

potential energy surface is anharmonic over its entire extent, the potential minima

are sufficiently deep and the potential energy surface is harmonic enough, that the

typical motions of the model expected from semiclassical models [43, 44] can still

be identified in the multidimensional wavefunctions. This is done using specific

operators, and in this way these typical motions can be used to explain why different

excited states have different tunnelling rates. I also extend the study to symmetry
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breaking processes in cyclobutadiene. I do this by considering small symmetry-

breaking perturbations, and reasoning the influences that these potentials will have

on the tunnelling rates and Raman transition amplitudes. Here I am able to de-

tail how different chemical structures are related to each other through symmetry

breaking, and that since the behaviour of these symmetry-broken structures must

be explained individually, historical emergence must be present at some level of

chemical complexity.

Iron arsenide Many correlated electron systems are thought to be emergent [45,

46], however they are usually under conceptions of emergence like Batterman’s as

the electrons correlate into states with properties and behaviours that are novel,

with respect to the properties of individual electrons. It is therefore of interest to

see if historical emergence can inform the behaviour in systems that exhibit electron

correlation. In chapter 4 I study iron arsenide. This is a material that displays an

elliptic incommensurate helimagnetism that changes with temperature[47], leading to

a continuum of magnetic structures with different periodicities. Even if the material

does give rise to a historically emergent explanatory set-up, a study might be used to

investigate symmetry breaking caused by electron correlation in noncollinear systems,

as XRES measurements have found a right-handed chiral state in the material [47].

It has been suggested that the helimagnetic structures results from competing low-

energy magnetic states [48]. This helimagnetic structures breaks a number of crystal

symmetries. Based on neutron diffraction studies by Frawely et al. [47], I propose a

magnetic structure based on local environment and symmetry arguments, in which

the magnetic moments canted out of the a-b plane. I perform DFT calculations on

the material, and probe the local Fe atom environment using spin-orbit coupling

as a perturbation and a projection of orbitals at the Fermi surface. I use these

calculations to justify how the canting may arise in the material.

Based on an analysis of the different spin configurations and their relative energies,

I conclude that the magnetism in the system has its origin in a Stoner-type Fermi
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surface instability, which must be significantly complicated by correlations in the

material. With DFT I also examine the local Fe-potentials for different magnetic

states, and these suggest that magnetic order in the system causes a distortion in

the crystal lattice positions, similar to that occuring in chromium [49, 50]. There

is therefore no reason to expect that iron arsenide can host a historically emergent

explanation.

Noncollinear magnetism and spin initialisation In spin polarised DFT cal-

culations there are often a number of different stable spin configurations. While in

collinear calculations there are usually relatively few of these, in noncollinear calcu-

lations there is the possibility that there are a large number of such states. Such

systems would be ideal candidates for historical emergence, due to the multiplicity

of different states that they can support. Indeed frustrated systems are one such

class of system, and many think that they exhibit emergence, as the large number of

competing states leads to complexity, and novel unexpected behaviour [51, 52, 53].

Therefore it is important to implement a method of spin initialisation which can

drive the density search algorithm towards a desired spin configuration in NCM

calculations. Methods already exist for this purpose [54, 55, 56, 57, 58], however each

of these methods may bias the density search algorithms in unexpected or undesired

ways. In chapter 5.2 I develop a method of spin initialisation that is designed to avoid

these problems, which works by performing rotations of the exchange-correlation

potential.

Additionally it is often the case that symmetry is broken in unexpected ways in

magnetic systems. Therefore although enforcing symmetry constraints on a par-

ticular DFT calculation may reduce the computational load of a calculation (see

chapter 2), it is not always desirable. To examine how symmetry-unconstrained

DFT calculations behave in magnetic systems, and also to test the spin initialisation

method I developed, I perform calculations on elemental iron and manganese oxide.

Calculations on iron show my spin initialisation procedure is able to push the mag-
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netic order in systems into particular orientations. They also find that the relaxation

of the symmetry conditions allows the density search algorithm to find new low

energy magnetic configurations in iron. These configurations are likely stable due

to complex interactions between states at the Fermi surface. In real space the in-

teractions appear to be localised in either interstitial electron states, or electron

states close to the nuclei. Each of these interactions cause deviations from the

lowest energy configuration of a particular symmetries, and by particular energies.

This allows the exclusive identification of the interacting states in the calculations.

There is an extremely large multiplicity of these different magnetic configurations,

all with different energies and density distributions. Since each configuration can be

distinctly identified and has a different structure, beyond the broad identification of

the interstitial or localised deviations from the ground state it is not practically pos-

sible to provide a unified account for the properties of these different configurations.

I therefore conclude that Fe hosts a practically historically emergent explanatory

set-up, at least in the calculations presented here.

Calculations on manganese oxide showed a bias towards the ferromagnetic spin

configuration. This was likely caused by interactions in unstable electronic config-

urations early in the calculation, before the correct d-shell configuration on the Mn

atoms was found by the density search algorithm. The spin initialisation procedure

was only partially able to counteract this bias. This was because the magnetic

structure and the lack of a Fermi surface, meant the different magnetic states were

stable with respect to changes in the exchange correlation potential. This stability

however means that other less sensitive spin initialisation procedures could be used

in MnO, without fear of causing bias to an undesired magnetic configuration. Finally,

as the different magnetic configurations were robust, the relaxation of symmetry

constraints did lead to any new states or configurations being found. Manganese

oxide does not seem to host any historically emergent explanatory set-up.
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1.3.2 Utility of historical emergence

When proposing a new theory of emergence, there is a risk of unintended con-

sequences. By this I mean that there may be a large number of systems that would

not normally be considered emergent, and do not really exhibit any of the typical

qualities associated with emergence, which nonetheless are technically defined as

emergent under the new definition. In the physics research carried out here, I find

that of the four physical systems that were investigated, three of them displayed

none of the qualities typical to an emergent system, and were also not found to

be historically emergent. These are cyclobutadiene in chapter 3, iron arsenide in

chapter 4, and manganese oxide in chapter 5.2.

The remaining system, elemental iron in chapter 5.2, was found to display historical

emergence. While elemental iron is not typically considered to be an emergent

system, the calculations performed did show many of the qualities expected from

emergent systems, such as dependent novelty, irreducibility, and unpredictability.

Additionally all these were closely related to the historical emergence exhibited in

the system. This demonstrates the discerning and effective nature of historical

emergence as a definition.



Chapter 2

Method of density functional

theory

2.1 Background

Density functional theory has been a remarkably successful and computationally

cheap method of estimating the properties of the ground state of quantum systems [59,

60]. The theorem of Hohenberg and Kohn (HK) shows that the energy of the ground

state EGS of any electronic system can be represented as a functional of the density.

This density corresponds to a global minimum of an energy functional, allowing the

state to be found variationally with respect to changes in the density, it is usually

expressed as [38]:

EGS = F [ρ]+
∫

drρ(r)V (r) = T [ρ]+Exc[ρ]+
∫

drρ(r)
[
V (r) + 1

2VH[ρ](r)
]
, (2.1.1)

where V (r) is the potential supplied by the nuclei, ρ(r) is the ground state electron

density, and the HK functional F [ρ] is arbitrarily divided into the kinetic energy func-

tional T [ρ], the exchange and correlation functional Exc[ρ], and the inter-electronic

Hartree potential VH[ρ](r). However although such a functional is proven to exist in

principle, the form is unknown and DFT calculations have to use approximations

instead. It seems from early work that an important term to capture accurately
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is the large contribution from the kinetic energy, since early attempts such as the

Thomas-Fermi approximation [61] do not match well to experiments [62, 63] and

these have been largely replaced by the Kohn-Sham (KS) orbitals technique discussed

below. DFT-HK Kohn and Sham showed that decomposition of the density into

single-particle like orbitals is mathematically equivalent provided that the correct

orbital functionals are employed [64]. The orbitals ψi are chosen such that

ρ(r) =
N∑
i

ψ∗i (r)ψi(r), (2.1.2)

where the sum is over all orbitals N . This relationship between the KS wavefunctions

and the density leads to a relationship between the KS wavefunctions and the density

functional, and this arises because the energy EGS[ρ] is minimised for the choice of

the ground state density ρ(r) [9, p. 123]. Formally speaking, under an infinitesimal

change in the ground state density ρ(r)→ ρ(r) + δρ(r), if one places the constraint

that electron number must be conserved then

∫
drδρ(r) = 0. (2.1.3)

Due to the variational principle the energy of the system in the energy of the

extremal ground state is unchanged under the infinitesimal variations of δρ(r) . One

can perform the same procedure for each of the KS wavefunctions. In the same way

one can vary wavefunction ψi(r) by δψi(r) so that

δρ(r) = δψi(r)ψ∗i (r) + δψ∗i (r)ψi(r). (2.1.4)

The ψi are complex, and this means that variations in the phase of ψi will leave

ρ(r) unchanged. For this reason variations in δψi(r) will be constrained so that

δψ∗i (r)ψi(r) is real. One thus obtains

δρ(r) = 2δψi(r)ψ∗i (r). (2.1.5)

If one enforces the same constraint specified in equation 2.1.3, it must necessarily
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be the case that ∫
drδρδψi

δρ

δEGS

δψi
= 0, (2.1.6)

This variation can be rewritten as

∫
drδψi

δEGS

δψi
= 0. (2.1.7)

so that ∫
dr δρ
ψ∗i

∂EGS

∂ψi
= 0. (2.1.8)

However since our choice in the variation δψi and by extension the variation δρ is

arbitrary with respect to r, for equations 2.1.3 and 2.1.8 to both be satisfied

∂EGS[ρ]
∂ψ∗i (r) = εiψi(r), (2.1.9)

where εi is the energy of orbital ψi. These εi can be used to help calculate the

energy of the system, since they completely account for the first order response of

the system to changes in ρ

EGS[ρ] =
N∑
i

ψ∗i εiψi + Eremainder[ρ], (2.1.10)

where
δEremainder[ρ]

δρ
≡ 0 (2.1.11)

for any δρ, even those that do not conserve electron density.

It is not immediately clear how to calculate these εi, which are clearly dependent on

the number of electrons and the external potential. In addition there is no guarantee

for the uniqueness of the ψi and εi. However Kohn and Sham observed that for

the particular model problem of the noninteracting electron system, this orbital

decomposition of the density was mathematically equivalent to a fully quantum

mechanical calculation. They reasoned that since this formulation was able to

calculate the kinetic energy in an noninteracting system, non-interacting orbitals ψi

could be used to approximate the kinetic energy of interacting electrons[65].

Motivated by this they developed the local density approximation (LDA). This
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calculates the energy of the system by reference to the interacting homogeneous

electron gas (HEG), which is exactly solvable using Monte-Carlo techniques [66]. An

orbital energy operator is constructed as

εiψi = Hψi =
(

~2

2me
∇2 + Vxc [ρ] (r) + VH,n(r)

)
ψi (2.1.12)

where VH,n(r) = VH(r) + V (r), the sum of the Hartree and external potentials,

and Vxc is the potential term due to exchange and correlation. The orbitals are

also set to obey the orthogonality condition, required by noninteracting electrons,

and are occupied in such a way that leads to the correct total number of electrons

with the lowest possible energy, and the phases of the orbitals must minimize the

energy of the entire orbital system, as in the noninteracting electron case. This

framework provides sufficient means to deduce the properties and values of Exc and

Eremainder, such that in the jellium case the calculated energy is calculated exactly

(or as accurately as the original Monte-Carlo calculations).

From this treatment of LDA it seems that the orbitals chosen, although corresponding

to the orbitals of a non-interacting system lack physical interpretation aside from

their collective properties (i.e. density and energy). However, the orbital energies

(and their “bandstructure”) are extremely useful in explaining physical properties

of the material. This is because in periodic crystals, the energies and densities of

the highest occupied state and the lowest unoccupied state can be determined from

the KS orbitals. This was shown by Janak [67], and the argument runs that upon

a small change in the electron density, perhaps corresponding to the addition or

removal of a single electron in the entire crystal, the system will remain in a ground

state and will be similarly determinable using the ground state density functional

EGS. Since the addition is so small, the density and overall energy change will be

negligible and the orbital structure will remain broadly unaffected. The distribution

of changes in density and energy will therefore be representative of a ‘quasiparticle’

moving through the system, meaning DFT should be able to accurately predict band

gaps.
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2.2 Implementation

DFT can represent both molecular and periodic systems, however while isolated

molecular systems have only a finite number of electrons, periodic systems are

infinite. Therefore in order to accommodate this calculations make use of the

periodic symmetry. To do this, each of the KS orbitals has a Bloch translation

eigenvalue αk [9, pp. 85-90]:

ψi,k(r + a) = αa·kk ψi,k(r). (2.2.1)

Since these ψi,k are necessarily orthogonal over the entire extent of the crystal, the

number of states that must be orthogonalized in the calculation is greatly reduced.

However in this transformation it is important to note that k can vary continuously,

so that technically there are still an infinite number of KS states to deal with.

However in practice the energies of the orbitals given in equation 2.1.12 also change

continuously, and so an effective calculation can be performed in which reciprocal

space in k is discretised into cells, each cell being modelled by a single set of KS

orbitals with a set value of k chosen for each cell. As the KS orbitals of each material

are different, the spacing of these cells therefore needs to be at least some some

minimum value for the material to be modelled accurately. In all the calculations

used here, the cells are divided up using a Monkhorst-Pack (MP) grid, in which each

cell is a cuboid in reciprocal space [68]. In addition to the periodic symmetry, space

group symmetry operations of the crystal can all be utilised to reduce computation

considerably. If under the space group symmetry two k-points are equivalent, only

one of them needs to be calculated, thus allowing a further reduction in computational

load.

Due to the discretisation of reciprocal space and the reduction of symmetry, the

density is calculated as the sum of the occupied states over the irreducible Brillouin

zone (IBZ) [9]:

ρ(r) =
IBZ∑
k

occ∑
i

wk,iψk,i(r)ψ∗k,i(r), (2.2.2)
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where second sum is over the occupied orbitals i at k, and wk,i is a weighting function,

which is used to account for the kpoints ‘doubled-up’ via symmetry operations.

2.2.1 Plane wave basis set, and pseudopotentials

The KS orbitals are computed as solutions to the noninteracting electron problem.

This problem can be effectively solved through the use of a basis set. The choice of

this basis set is one of the most important factors in the speed at which the solution

is found, and the precision of the results. For the purposes of this thesis, I will use

the plane wave basis set. The benefit of this basis is that it is easy to construct an

orthogonal basis set, and it is effective at modelling the electrons between nuclei that

form the bond structures. However, there are significant problems with the use of a

plane wave basis set to represent both these interstital electrons and the electrons

near to the nuclei, as in these regions the wavefunction varies rapidly. This requires

the plane waves used to have a large range in frequencies, and greatly increases the

cost of the computation.

It is observed that in most materials the electronic structure closest to the nuclei

is largely unchanged between the free atomic case and that situation found in

materials, and so hardly contributes at all to the important physical properties of

the material. This means that the precise structure of the wavefunction near the

nucleus is actually unimportant for most material properties. One defines two regions

in a material, these core regions around nuclei where the KS orbitals are largely

unchanged, and the interstitial regions. The core regions do not contribute much to

the material properties. Therefore in order to model the material effectively, only

the interstitial orbitals need to be calculated, as long as the phase and amplitudes

of the wavefunction near the boundary between the core and interstitial regions.

For these reasons pseudopotentials, potentials that mimic the behaviour of the true

atomic potential to obtain the same phase and amplitude relations, are used. In the

plane wave basis set this is implemented in a particular way. When the plane wave
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interacts with the atomic potential, it scatters. These scattering amplitudes are

invariant to changes of the phase in increments of 2π, and so a good pseudopotential

is as weak as possible as this minimises the maximum energy of the plane waves that

must be used in the calculation, but still reflects the correct boundary conditions

between the interstitial and core regions [9, Ch. 11].

Additionally in the use of pseudopotentials, the atomic orbital states are separated

into core and valence states, the core electrons represent the low energy electrons

that are resistant to perturbations typical to material binding energies, and so they

do not play a role in material properties.

While it is possible to construct a pseudopotential that gives a good fit with ex-

perimental data, in modern implementations it is more common to use an ab-initio

calculation as the basis for determining the pseudopotential. It is most common to

fit the pseudopotential to the KS wavefunctions and their phase shifts in the free

atom, and then to use this pseudopotential in a full material calculation. However

this brings up the issue of transferability, as the atomic environment is different to

the environment experienced in other materials. This means that pseudopotentials

have a limited range of applicability and the right pseudopotential must be chosen

for the problem at hand.

Additionally there are a number of methods that can be used to construct pseudopo-

tentials to deal with the difficulties of transferability and computational load. Two

common ones that are used in this work are norm-conserving and ultrasoft pseudo-

potentials and these are discussed below. The use of the pseudopotential is able to

reduce the size of the basis set. However the basis set size used depends both on the

material in question and the chosen pseudopotential. As a result this needs to be

optimised for the purposes of the calculation being performed.
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2.2.2 Norm-conserving pseudopotentials

In general pseudopotentials may be inaccurate. This is because pseudopotentials are

usually transferred between systems. In this transfer while the wavefunctions and

density near the nucleus remains mostly unchanged in the all-electron case, in the

pseudopotential case this is no longer guaranteed and this means that the wrong

amplitude and phase differences will be used in the calculation.This is especially

important when an atomic system is used to generate a pseudopotential, since the

atomic and material environments can be very different.

However mathematical study of pseudopotentials determined that if the electron

density in the region of the pseudopotential was equal for both the fully determined

system and the pseudopotential system, the scattering phase shifts for both systems

display the same perturbation response to a linear order [69, 70]. This constraint

is called the norm-conservation condition. Satisfying it ensures that the pseudopo-

tential is more transferable, as it they are better able to model systems which are

dissimilar to the free atomic case case, than those that are not norm conserving.

2.2.3 Ultrasoft pseudopotentials

Satisfying the norm-conservation condition often does not allow the pseudopotential

to be much softer than the original all-electron atomic potential, even after core and

valence state separation are taken into account [71]. This has led to the devolopment

of ultrasoft pseudopotentials. The wavefunctions of these pseudopotentials are not

strictly norm-conserving, but the pseudopotential is constructed in a way that they

satisfy the same conditions [71, 72]. This is possible as long as the pseudopotential

is able to replicate not only the phase properties of the occupied wavefunction states

in the KS formulation, but also the energies of the unoccupied states.

This condition is less restrictive than the norm-conservation condition, and allows the

choice of a softer pseudopotential. An ultrasoft pseudopotential can be constructed

in a consistent way by defining a new auxiliary function. Before detailing the
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pseudopotential method, it is useful to observe that a set of modified functions βs

are often used in the implementation of DFT, it is defined as:

|βs〉 =
∑
s′

(εs −HPS
loc) |ψPS

s 〉
〈ψPS

s |(εs −HPS
loc)|ψPS

s′ 〉
. (2.2.3)

where HPS
loc is the Hamiltonian modified to include a pseudopotential which has the

eigenfunctions ψPS
s (r) and eigenvalues εs, and the sum is over all the eigenfunctions

used in the calculation. Through this definition in norm-conserving pseudopotentials,

the nonlocal part of the pseudopotential can be efficiently represented using these

modified functions, since when the correct eigenvalues are found (εs −HPS
loc) |ψPS

s 〉 =
ˆδV |ψPS

s 〉, where ˆδV is the nonlocal part of the pseudopotential.

Now let us move on to a description of how an ultrasoft pseudopotential is constructed.

If one assumes radial symmetry about the nucleus, the auxiliary functions ∆Qs,s′

are defined as:

∆Qs,s′ =
∫ Rc

0
dr
[
r2ψs(r)ψ∗s′(r)− r2ψPS

s (r)ψ∗PS
s′ (r)

]
(2.2.4)

where ψs(r) is the wavefunction of energy level s in the all-electron case, r is the

radial distance from the nucleus, and Rc is the cutoff radius of the pseudopotential.

This auxiliary function is the charge density difference between the pseudopotential

eigenfunctions and the all-electron eigenfunctions. It is included in the generalised

eigenvalue equation as an overlap operator Ŝ, where

Ŝ = I +
∑
s,s′

∆Qs,s′ |βs〉 〈βs′| . (2.2.5)

With this overlap operator, the generalised eigenvalue equation is modified to be-

come [71, 72] [
H− εsŜ

]
|ψPS
s 〉 = 0. (2.2.6)

However it is important to note that the addition of Ŝ to this equation now means that

the β functions defined in equation 2.2.3 can no longer be used in a straightforward

manner to represent the application of the non-local part of the pseudopotential.
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Figure 2.1: Ultrasoft pseudopotential used for oxygen in chapter
5.2. 1s2 orbitals are taken to be core. a) s- b) p- c) d- d)
f- orbitals. Dashed lines are all-electron wavefunctions,
bold lines are pseudopotential wavefunctions. Red lines
are the ground state wavefunctions, and blue then green
are the wavefunctions for fractionally occupied excited
states.

Instead the modified application must include the use of the overlap operator, since

(εsŜ −HPS
loc) |ψPS

s 〉 = ˆδV |ψPS
s 〉 . (2.2.7)

As a result the inclusion of the overlap operator and the requirement to calculate

unoccupied eigenvalues and their eigenstates leads to increased computational cost.

What is most important is then the computational load, and whether a consideration

of the many plane waves required for norm-conserving pseudopotentials is more

cumbersome than that required for ultrasofts. In practice it is most often the case

that ultrasofts are preferable, as with modern eigenvalue solvers reducing the basis

set causes the largest gains in reducing computational burden [73]. An example

pseudopotential can be seen in figure 2.1.
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2.2.4 Search for the density

In any implementation it is important to find the density distribution of the ground

state of the system. This is not immediately trivial since the KS system is a coupled

system of KS wavefunctions and density. There are a number of ways of finding

the lowest energy state. One is the method of density mixing (DM) [74]. This

method observes that in the ground state the KS wavefunctions and the density

are self consistent, but in intermediate density configurations, the KS wavefunc-

tions commensurate to that density’s potential do not have to produce a consistent

density distribution. This inconsistency can then be used to rapidly guide a cal-

culation towards the lowest energy density configuration. Formally speaking, the

self-consistency of the jth calculation iteration is calculated using equations 2.1.2

and 2.1.12, so that from some initial density ρj, the KS wavefunctions ψ′j,i are

ε′j,iψ
′
j,i(r) =

(
T̂ +Xxc[ρj] + V̂

)
ψ′j,i(r), (2.2.8)

where ψ′j,i have been solved self-consistently and othogonalised over i. One can

calculate the density of these new KS wavefunctions as

ρ′j =
∑
i

αj,iψ
′∗
j,iψ

′
j,i, (2.2.9)

where αj,i are the occupancies of the orbitals, usually calculated with the standard

Fermi-Dirac statistics. This allows us to calculate the discrepancy between the initial

density and the resultant density ∆j, where

∆j =
∫

dr
∣∣∣ρ′j − ρj∣∣∣ . (2.2.10)

The value of ∆j can then be used to determine how close ρj is to the correct ground

state density. From these ∆j and the density distributions, a new ρ for the next

iteration in the calculation is generated. Providing a good weighting function is used

for the ∆j’s, this can often lead to rapid convergence of a DFT calculation onto the

desired state [75, 76].
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However the method of density mixing can notably fail in certain systems, such as

those where the wavefunction naturally changes quite rapidly in response to small

variations in the density. This is is often the case in conductors, in which the static

response is necessarily non-zero. This behaviour is known as charge sloshing. While

there are a number of ways to dampen this behaviour based different algorithms [74],

but for some systems it is more effective to use a different density search method.

One such method is ensemble density functional theory (EDFT) [77]. This method

works first by using a projected functional, in which the occupancy of the orbitals is

determined as the functional is calculated. Minimisation of the projected functional

G[ψi] is equivalent to the minimisation of the original density functional, but it lifts

the dependence on occupation and on unitary rotations of the wavefunction in hte

minimizer. The algorithm involves the construction of two iteration loops. In the

inner loop, for a choice of KS orbital wavefunctions, the charge density and orbital

occupations are successively updated until the energy has been minimized. This

constitutes a calculation of G[ψj,i], on the jth iteration of this outer loop. In the

outer loop the gradients of G[ψj,i] with respect to ψj,i are calculated, and these are

used to generate the wavefunction ψj+1,i for the next iteration. These gradients Gj,i

are computed as [77].

Gj,i =
(
T̂ + V̂xc[ρ′j] + V̂H,n

)
ψj,i (2.2.11)

where ρ′j is the density found from the result of the inner loop. To generate the

wavefuntion ψj+1,i, trial steps are taken in the direction of Gj,i which are calculated

over successive repeats of the inner loop, until the minimum energy in that direction

has been determined. As this algorithm is variational, it is much more consistent in its

convergence. However this consistency comes at a significantly higher computational

cost.
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2.3 Spin polarization in DFT

DFT can be extended to include spin polarisations. There are two types of calculation

that include spin terms: collinear [78] and noncollinear [79, 80]. These both require

different considerations.

Collinear In a collinear system, all magnetic polarization is aligned along a single

axis. As a result in these systems in the noninteracting system of electrons in the

Kohn-Sham Hamiltonian, it is possible to separate the electrons into two subsystems,

one each for up and down [78]. In this way there are two coupled systems, one each

for spin up and down, which have the form in equation 2.1.12. The mutual interaction

between these systems is mediated by the exchange-correlation potential, which has

the form Echarge[ρ↑, ρ↓] ± E spin[ρ↑, ρ↓], where the second term uses the positive for

the spin up system and the negative for the spin down system. In this work two

correlation functions are used, the local spin density approximation [81], and the

generalised gradient approximation [82].

Noncollinear spin polarisation In the noncollinear case, the noninteracting

electrons need to be treated using spinor wavefunctions as in quantum electrodynam-

ics [83, 56]. In the same way, the spin polarization is extracted from the spinor

wavefunctions Ψj using the spin-half Pauli matrices σi. In this way the spin polar-

isation in direction i = x,y, z is

ρSP
i (r) =

∑
j

Ψ†j(r)σiΨj(r) (2.3.1)

and the charge density is

ρC(r) =
∑
j

Ψ†j(r)Ψj(r). (2.3.2)

The governing KS equations remain unchanged in their form, and the spin-dependent

exchange-correlation potential is also applied to the system through the use of Pauli

spinor matrices. In the case of LSDA, for a spin polarisation density ρσ(r) and
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charge density ρC(r) the exchange-correlation energy in the NCM case ENCM
LSDA, is

given by

VNCM
LSDA(ρσ(r), ρC(r)) =Vspin

LSDA(|ρσ(r)|, ρC(r))
x,y,z∑
i

[
ρ̂σ(r) · î

]
σi

+ Vcharge
LSDA (|ρσ(r)|, ρC(r))I.

(2.3.3)

Here Vspin
LSDA and Vcharge

LSDA are the spin and charge contributions of exchange correlation

contribution, I is the identity, and ρ̂ is the normalised density vector [79].

Extensions of the LDA coefficient are available for the PBE exchange-correlation

coefficient, except that since PBE is dependent on the gradient of the spin-density,

E spin
PBE is a function of the spin polarization ρσ(r) instead of the absolute value of the

spin polarisation |ρσ(r)| [80]. This straightforwardly reduces to the collinear case,

when all the spin is aligned in the z-direction. In the general case the KS equations

are therefore (
(−∇2 + VH,n(r))I + VNCM

xc

)
Ψj = εjΨj. (2.3.4)

2.4 Determining parameter convergence in DFT

There are two parameters which need to be addressed in the calculation of periodic

system using DFT. One is the plane wave energy cutoff, another is the spacing of

the MP grid points.

These paramaters need to be tuned to at least a minimum value for the properties

and behaviour of the system to be accurately calculated. However due to the

pseudopotential method, the core orbitals in the pseudopotential often continue to

respond to changes in the parameters even past the effective minimum value. This

means that total energy is not necessarily a good indicator of the sorts of properties

one may be interested in. Instead the value of each of the significant properties must

be independently converged. In order to do this, I have constructed a measure for

the value of convergence. For the systems I will study, I will be comparing different
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states. The relevant quantity will therefore be the energy difference between these

two states, calculated as

E ′(x) = E1(x)− E0(x) (2.4.1)

where E1(x), E0(x) are the energies of the states of interest, as a function of the

paramater of study x. As x → ∞, E ′(x) → E, where E is the true value of the

energy difference. One can express the fractional convergence of the energy towards

the true energy difference by

convergence fraction = E ′(x)− E
E

= ∆E(x)
E

. (2.4.2)

However, in practice it is not actually possible to determine E, as a result E must

be estimated from a highly converged calculation instead. When this convergence

fraction reaches a small enough quantity for the purposes of the study, then the

value of the parameter x required for the calculation is known.

In addition to periodic systems, isolated systems can also be calculated. To calculate

such systems using the same method, only one point is requied in the MP grid.

However, in order to truly model the system as isolated, a large amount of empty

space needs to be included in the effective unit cell of the system, to space out the

electrons in successive unit cells. In chapter 3 the molecular system cyclobutadiene is

modelled. In this process, the empty space needs to be converged using the method

above as well.

2.5 Computer code resources used

DFT outputs are necessarily three-dimensional. Fortunately a large number of

3-d visualisation packages are readily available. Two packages, blender [84] and

xcrysden [85] were used in this study, in the projection of density isosurfaces into

the unit cell, and of the Fermi surface into the Brillouin zone.

Additionally a number of surface plots and standard 2-dimensional graphs were

required. These used the gnuplot package [86].
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Finally the CASTEP codebase was both modifed and used in order to perform the

DFT calculations presented here [87].



Chapter 3

Emergence in chemical structure:

cyclobutadiene

3.1 Introduction

The motions and locations of nuclei underpin how we define molecular structure,

structural transitions, and chemical reactions. However these chemical structures do

not obviously appear as objects in the many-body quantum mechanical wavefunction

or Hamiltonian. It is therefore important to give an account for how quantum

mechanics informs these chemical structures and their reactions. Of particular

interest for my purposes is that a multiplicity of different isomers can often be formed

from a fixed set of atoms. Indeed this behaviour has motivated others call chemical

structures emergent [2, pp.146-163]. For the purposes of historical emergence, this

seems a fruitful area. This is because different isomers can have very different

properties like example reactivity, catalytic activity, or thermodynamic behaviour,

that are most commonly explained using individual chemical structures rather than

solely by recourse to the governing Hamiltonian. What is not necessarily clear is

how these different structures are related to each other at a quantum mechanical

level. If each of these structures are simple extensions or modifications of each other,

it might be possible to combine the behaviour of isomers in a general way, and dilute
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Figure 3.1: The structure of cyclobutadiene and the process of auto-
merisation.

any expectations of historical emergence.

Cyclobutadiene as a free molecule exhibits nuclear delocalization that determines

the point group symmetry, for although the lowest-energy electronic configuration

suggests that the molecule is rectangular with two double and two single bonds,

the molecule automerizes via nuclear tunnelling which results in an overall square

symmetry [88, 89]. This process is shown in figure 3.1 A study of cyclobutadiene

will therefore allow us to examine the relationship between molecular structure

and the underlying quantum mechanics, to examine how in quantum mechanics

the relationship between the two different structural conformations of the ring is

mediated.

This system converts between the two rectangular configurations, via a process called

automerization. This automerization is similar to a reaction, since it involves the

motion of nuclei to a different structural conformation. However it is a process

distinct from chemical reactions since the reactant is chemically identical to the

product, and the transition does not require thermal or collision processes. These

qualities therefore present an opportunity to study how structure changes when nuclei

tunnel, without additional complications such as dynamic molecular collisions. Here

I calculate the energy eigenstates of the nuclear motion that correspond to active

infra-red (IR) excitations, and their corresponding nuclear wavefunctions. With

these wavefunctions I am able to describe and explain how the different motions of

the molecule can enhance or suppress the rate of tunnelling.

There are two electronic configurations at low energies in cyclobutadiene, a singlet
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state and an antiaromatic triplet state [90]. Historically it was unclear which state

was most important in the low temperature behaviour of cyclobutadiene [91]. While it

was found that the singlet state has the lowest energy [92, 90], the electronic structure

of the triplet state remains of considerable interest due to conflicting accounts

of the aromatic stabilization or antiaromatic destabilization, and the role of ring

strain in the electronic structure [93, 94, 95, 96]. At low temperatures the molecule

tunnels between two singlet configurations [97, 98], and theoretical studies of the

automerization between the two rectangular configurations suggest that the triplet

state may determine the effective height of the reaction barrier [99, 42, 100]. However

the precise structural conformation where the energies of the singlet and triplet state

are equivalent is not precisely known [101], if it exists at all [41, 102]. Additionally in

the free molecule the strength of the spin-orbit interaction, which permits a transition

between the singlet and triplet states, is small by comparison to the kinetic energy of

the nuclei [103], and this will suppress the transition between the singlet and triplet

configurations. In this work, we therefore assume that singlet-triplet transitions are

symmetry-forbidden, so only the singlet state will be considered.

Some theoretical studies of tunnelling in the singlet ground state focus on the en-

ergetic surface and barrier height of this nuclear tunnelling process, as these are

required to calculate the tunnelling rate [39, 40, 41, 42]. In chemical systems, the

most straightforward approaches to calculate tunnelling rates use WKB(J) formalism

[100, 104, 105], however this formalism requires that reverse-tunnelling processes

are negligible. There is therefore reason to doubt its applicability to the case of

cyclobutadiene where the two configurations are symmetry-equivalent and reverse

tunnelling can readily occur. Another common method of calculating rates uses

instantons[106], which can be used to map the system onto a one-dimensional tun-

nelling problem [107, 108]. However as the nuclear potential is anharmonic in

cyclobutadiene it is likely that an instanton-based model will not be able to accur-

ately reproduce the tunnelling rate and other properties, such as the motion of the

hydrogen nuclei, which is dependent on wavefunction configurations different from
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those on the instanton path.

Other work focuses on the prediction of the Raman spectrum of the molecule,

which is important to recognise and classify the experimental Raman response of the

molecule [109, 110]. However due to time evolution’s dependency on the Hamiltonian,

the calculations of the Raman spectrum and the tunnelling rate in this single-

molecule system are equivalent, and it is possible to study the system under a single

framework [109, 88]. The behaviour of current interest is the nuclear tunnelling

between the rectangular configurations, this tunnelling results in a small correction

where each of the known Raman peaks that have been previously classified under a

rectangular symmetry divide into pairs. A previous study by Čársky et al. [109] used

a three-dimensional Taylor expansion on a potential calculated under the generalized

valence bond method, to approximate the wavefunction and to calculate the energy

separation of these pairs. Unfortunately the energy separation that they predicted

was not experimentally observed when cyclobutadiene was bound in a solid matrix,

possibly due to environmental breaking of the square symmetry [89, 111].

As the calculation of the Raman spectrum and tunnelling rates are the same it is

worth discussing the suitability of methods usually used to calculate vibrational

spectra. The vibrational self-consistent field (VSCF) is commonly used in the

literature [112, 113] to calculate anharmonic vibration states. This method is similar

to the Hartree method for electron systems, as the wavefunction of the system is

approximated as a single product [112, 113]. As a result the accuracy of the method

is highly dependent on the basis set used, as it assumes that motions in each of

the coordinates are separable. In this way correlation between nuclear motions can

only be included through basis set functions. Due to this effective assumption about

the separability (or near separability) of the basis, this method is unsuitable for

application to cyclobutadiene, in which the tunnelling rate is calculated as a very

small energy difference between two similar eigenstates. As a result a calculation of

this value under VSCF would be especially sensitive to the choice of basis set, making

it unsuitable. In the wider literature this shortcoming of VSCF has prompted the



3.2. Methods 50

development of more general methods that calculate more complete wavefunctions, so

are necessarily more computationally expensive. In keeping with the nomenclature of

electronic structure methods, these are called vibrational coupled-cluster, vibrational

Møller-Plesset, and vibrational configuration interaction calculations[114, 115, 113].

Due to the sensitivity of the tunnelling of cyclobutadiene I will use the vibrational

configuration interaction method, as it is the most general and accurate.

In this chapter I propose a general method for calculating the energy eigenstates and

wavefunctions of nuclei bound in molecules based on an effective potential energy

surface determined by the electrons and Coulombic forces. I use this to calculate

the Raman spectrum and molecular wavefunctions using the symmetry-conserving

motions permitted under the rectangular symmetry. I am able to determine how the

nuclear motions for different Raman resonance states affect the rate of tunnelling.

I show how the calculation and interpretation of the wavefunction reveals the sens-

itivity of the system to environmental effects, and how the inclusion of hydrogenic

motion affects the carbon motion and the strength of the tunnelling interaction.

In cyclobutadiene I find the tunnelling mediates the interaction between the wave-

function at different structural conformations. As this tunnelling leads to diverse

behaviour among the Raman active energy levels in the system, it is not possible to

explain the properties of each of the excited states in a single way. Therefore even in

cyclobutadiene since the two rectangular conformations at the potential minima are

symmetry equivalent, one might intuit that the combined behaviour of the system

is no more complex than a system that involved only one rectangular conformation,

this is not the case. This constitutes evidence therefore that the inclusion of differ-

ent isomeric structures in a quantum mechanical leads to more complexity, so that

one ought to expect historical emergence to be present at some level of chemical

complexity.
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Figure 3.2: The (rectangular) ag motions permitted in cyc-
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used here, shown on a single quadrant of the molecule.
This new coordinate set is related to the absolute posi-
tions by r′CH = rH − rC, and r′C = rC.
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3.2 Methods

Assuming adiabatic separation between the electrons and nuclei, I consider the four in-

plane (rectangular, D2h) ag symmetry-preserving motions of the molecule, as shown

in fig. 3.2. This assumes the effective potential, which is a function of the nuclear

positions, can be expressed as a sum of potentials. Each of these potentials is related

to a particular symmetry operator, and is a function of only those nuclear coordinates

that break that particular symmetry operator [43, 44]. This effectively assumes

that the motion in each of these symmetry directions is independent, permitting

us to decouple the symmetry-breaking and symmetry-conserving motions. The

Hamiltonian for this system is therefore

H = p†C · pC

2mC
+ p†H · pH

2mH
+ Veff(rH, rC), (3.2.1)

where rC and rH are the displacements of the carbon and hydrogen atoms from the

centre of mass, mC and mH are the effective masses of the carbon and hydrogen

that are determined by the concerted motion of the nuclei, and both being four

times the value of the natural masses of the nuclei. Here Veff is the effective poten-

tial determined by the adiabatically separated electrons, and the nuclear momenta

operators defined in the usual way [104] with the canonical commutation relations

[pH · ei, rH · ej] = −i~δij, [pC · ei, rC · ej] = −i~δij, where e0 and e1 are a pair of

two-dimensional perpendicular unit vectors. However calculation in this basis is

inconvenient because there are large regions of rH which can be effectively ignored.

A choice of basis set in vibration wave function methods can determine both the

accuracy and computational load of a calculation. A common basis set used is the

normal mode basis set calculated under the harmonic approximation [112]. However

cyclobutadiene is demonstrably very dissimilar from a harmonic system as there

are two local potential energy minima, one for each conformation in fig. 3.1. For

such a normal mode calculation there are two options. The first is to us the high

symmetry point at the crest of the potential energy barrier as the origin in an
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harmonic expansion. This method must necessarily require a large basis set, as there

is almost no wavefunction density at the high symmetry point. Another possible

normal mode set may be constructed using two complementary harmonic expansions,

each centred on one of the potential minima. However this combined basis will not

necessarily be orthogonal. Worse still the overlap will be in the important tunnelling

region, so is similarly unsuitable for the purposes of cyclobutadiene.

While it is possible to construct some more complex hybrid basis set with harmonic

and real-space components or based on VSCF calculations [115], for the ease of

implementation I instead use a real-space grid for the basis set. To make the

problem tractable this grid must accommodate the different masses of the hydrogen

and carbon. I therefore choose a new set of coordinates for the calculation, shown

in fig. 3.3. This coordinate transformation results in a transformed set of canonical

momenta that are related by pC = p′C−p′CH, and pH = p′CH. In these new coordinates

the Hamiltonian is
H =p′†C · p′C

2mC
− p′†C · p′CH + p′†CH · p′C

2mC

+ mC +mH

mCmH
p′†CH · p′CH + Veff .

(3.2.2)

This basis choice reflects the structure of the molecule, which is determined by Veff .

The potential is four dimensional, however because of the structure one is in practice

able to subdivide the potential into three terms that reflect the potential energy of

the C-C ring or the C-H bond, and the cross terms between them. I use

Veff = V1(r′C) + V2(r′CH) + V3(r′C, r′CH), (3.2.3)

V1(r′C) = Veff(r′C,RCH), (3.2.4)

V2(r′CH) = Veff(RC, r′CH), (3.2.5)

where the coordinates RCH and RC are the chosen such that Veff(RC,RCH) is the

global minimum of the potential. The potential V3(r′C, r′CH) is the four-dimensional

correction term that accounts for the coupled nature of the bonding. If one has

chosen the basis well then V3(r′C, r′CH) is small everywhere, and one can qualitatively
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characterise the molecule as a simple combination of C-C and C-H bond motions, in

a form analogous to the harmonic approximation [43, 44].

The choice of this basis also enables us to impose appropriate boundary conditions

on the system. A pair of potential cutoffs V max
1 , V max

2,3 were chosen, so that in the

calculation only regions where V1(r′C) < V max
1 and V2(r′CH) + V3(r′C, r′CH) < V max

2,3

are included. A potential cut-off is appropriate as regions outside the boundary

have too high a potential energy, so have a negligible amplitude contribution to

the wavefunction and energy. I make two different choices of potential cutoff since

the carbon and hydrogen nuclei have very different masses and different amounts of

potential energy.

The potential Veff(rC, rCH) was calculated with density functional theory (DFT).

This was performed using the plane-wave code CASTEP [87]. As plane-wave code

relies on a periodic basis set, the size of the unit cell and the cutoff energy of the

plane waves was converged, to where the error in the barrier height energy was

less than 0.9 meV. The exchange correlation correction was calculated using the

LDA [116].

3.2.1 Eigenvalue Computation

To compute the eigenvalues, a Cartesian basis set was first chosen. From this

basis set an n × n matrix Hamiltonian was constructed, where n is the number of

elements in the basis set. In order to compute the eigenvalues, the matrix was first

tridiagonalised using the Householder algorithm [117], in which an orthogonal matrix

is constructed that that transforms the principal matrix to tridiagonal form. With

this tridiagonalised matrix, the differential quotient difference with shifts (dqds)

algorithm was used to compute the eigenvalues [118], which is based on the general

family of GR eigenvalue algorithms [119]. In this family algorithm the tridiagonal

matrix T is factorised so that T = GR, where R is an upper right-hand bidiagonal

matrix, and G is a matrix of specific properties, dependent on the exact algorithm
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being used. A new tridiagonal matrix T′ is then constructed as T′ = RG, and this

new matrix has the same eigenvalues as the original T, except that the off-diagonal

elements are smaller. If this process is carried out a sufficient number of times, the

off-diagonal elements become arbitrarily small, so that the diagonal elements can be

made to be arbitrarily close to the eigenvalues.

The qd algorithm, the basis for the dqds algorithm, first constructs a complementary

asymmetric matrix ∼ T = D−1TD, where D is a diagonal matrix, such that the

upper right-hand off diagonal is entirely composed of ones[117]. This matrix has

by construction the same eigenvalues as T. This matrix is then decomposed into

∼ T = LR, where L is a lower left-hand bidiagonal matrix with ones on the diagonal,

and R is an upper right-hand bidiagonal matrix, with ones on the off-diagonal. In the

GR formalism these are then used to calculate the next tridiagonal in the iteration

∼ T′ = RL, but the qd algorithm does not calculate ∼ T′, and instead calculates

L′ and R′, the decomposition of ∼ T′, directly from L and R. This algorithm

has two benefits, first the simplicity of the LR decomposition lends itself to rapid

computation, and second that it is more accurate as the L and R matrices are better

stores of the eigenvalues than the tridiagonal matrices[118].

The difference between qds and qd algorithms is in the use of transformations of

the form ρI, where ρ is a constant[117]. The qd algorithm is only guaranteed to be

effective on matrices with positive eigenvalues, and so a shift can be introduced to

change the eigenvalues to become positive. Further in the GR algorithm the lowest

eigenvalues converge the most rapidly, and so it is useful to choose a shift such that

the lowest eigenvalue is small and still positive. Once this eigenvalue is found to

the desired accuracy it can be removed from the calculation via a rank-reduction of

the matrix, and a new shift chosen for the new lowest eigenvalue. In this way the

eigenvalues can all be computed to a high relative accuracy. Further development

of the qds algorithm resulted in the dqds algorithm, which eliminates unneccessary

subtractions, and improves the accuracy further [117].

The relatively robust representations (RRR) algorithm was used to compute the
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eigenvectors of the tridiagonal using twisted factorisations. It is straightforward to

construct a singular value decomposition of the tridiagonal matrix, however this is

unreliable, as small numerical errors in the eigenvalue λ lead to large errors in the

eigenvector. Twisted factorisations can be used in a more reliable method. A set

of twisted factorisations are defined as (T − λI) = LkDkDT
k , where Dk is diagonal,

and Lk is lower bidiagonal with unit diagonal until the k − 1th column, and upper

bidiagonal with unit diagonal after the kth column [120, 121]. The important values

are the kth diagonal elements of Dk which I label γk, as an approximation for the

eigenvectors zkcan be calculated from Lkzk = ekγk. Therefore if we choose a value r,

such that γr = min|γk|, we can compute an approximation for the eigenvector. This

method has been shown to be effective provided that the eigenvectors are relatively

well-separated, that is that γr is much closer to zero than any of the other γk, which

is only possible when the eigenvalues are determined to a high relative accuracy.

The RRR algorithm separates eigenvalues into close groupings, and using the dqds

algorithm ensures that the eigenvalues for each of these groupings are well determined

relative to each other. The twisted factorisation procedure detailed above is then used

to calculate the eigenvectors, which are then transformed back to the original basis

using the transformation matrices determined in the tridiagonalisation [120, 121].

3.2.2 Convergences

DFT convergence DFT calculations here need only be converged with respect to

the plane-wave energy cutoff and the free space between cyclobutadiene molecules.

The convergence for these cutoffs was calculated using the fractional energy difference

between the lowest energy molecular configuration and one other distorted one, using

the method detailed in section 2.4. I take E ′ to the energy difference between the

lowest energy and the distorted state. The results for this plane wave energy cutoff

are shown in fig. 3.4. For the energy cutoff I took the value of 2000eV, which

corresponds to an accuracy of one part in 50,000.
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Figure 3.4: Convergence of the fractional energy difference between
distorted molecular states as calculated using DFT, with
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0

0.004

0.008

0.012

0.016

0.02

10 11 12 13 14 15 16 17 18 19

∆
E
/E

(%
)

cell length (Å)
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Figure 3.6: Convergence of the energy transition between the
ground and first excited states of the rCH potential,
with respect to the cutoff energy

For the free space between cyclobutadine molecules I use the same convergence

method, where the length of the unit cell is the important parameter. The results

for this convergence are shown in fig. 3.5. For the unit cell size I took the value of

15Å, which corresponds to an accuracy one part in 10,000.

Eigensolver convergence: C-H bond To perform the eigensolver calculations,

I identify two calculation parameters that must be converged. First, the gridsize

is the number of spatial divisions along each edge in the Cartesian mesh. Second

is the cutoff energy, as points above a certain potential energy do not need to be

considered. It is appropriate to choose cutoff energy for each of the potentials V1

and V2 as the expected value of the momentum for spatial variation in each of these

potentials is different. I will again use the convergence method detailed in section

2.4, where I take E ′ to be the energy interval between different excited states, as a

function of both the gridsizes and the two cutoff energies.

For the C-H stretch potential, the Cartesian mesh is rectangular and had an extent

of 0.42 Å in the stretch direction, and 1.2Åin the waggle direction. E(∞) was

estimated by E ′(43 points, 2.0 eV). With respect to the cutoff energy, shown in fig.

3.6, the computational cost of increasing the cut-off energy is very small, and so for

this case the error was overconverged and the value of the cutoff chosen to be 2eV,

corresponding to an error of 0.01%. With respect to the number of point, shown in
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Figure 3.9: Convergence of the energy transition between the
ground and second excited states of the rC potential,
with respect to the gridsize and cutoff energy.

figs. 3.7,3.8, the gridsize was chosen to be 21 corresponding to a convergence of one

part in 30, this is therefore the limit of accuracy in this calculation.

Eigensolver convergence: ring In the eigensolver calculations for the ring po-

tential, the Cartesian mesh is square and has an edge length of 1 Å, and E(∞) was

estimated by E ′(60 points, 2.0 eV). Result of the convergence between the ground

and second excited states are shown in fig 3.9. It was found that a choice of a gridsize

of 39 and a cutoff of 1.13 corresponded to a convergence to one part in 30. This is

shown in fig. 3.9.

For the carbon ring the tunnelling rates are of interest, and their convergence must

be determined as well. The convergence of the TSE of the 1Ag state is shown in fig.

3.10, and it shows that for my chosen values of gridsize and cutoff, it is converged to

one part in 30. I will also compare the relative rates of tunnelling between different

states. The convergence of the difference in tunnelling rates between the 1Ag and

2Ag excitations are shown in fig. 3.11, and it was found that these were converged

to one part in 111 for the chosen gridsize and cutoff.

While the tunnelling rates of the excited states are sufficiently converged, the rapid
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variation of the wavefunction in the tunnelling region for the ground state wavefunc-

tion is less so. The same convergence calculations indicate that the ground state

TSE is only converged to one part in four. However the TSE difference with respect

to the 1Ag state is converged to one part in 40. Therefore I will restrict myself to

a discussion of relative rather than absolute rates in tunnelling in the discussion of

the ground state TSE. Combining the ring and C-H bond convergence parameters

results in 38000 grid points in the calculation.

3.3 Results

DFT calculations found that when the potential is separated into V1, V2 and V3

terms, the range of V3 never exceeded 10 percent of the energetic variation from the

global potential minimum, and there was no discernible change in the position of

the minimum of V2(r′CH) +V3(r′C, r′CH). This will permit us to qualitatively interpret

the results as linearly linked C-H and C-C bond motions. I find the V1 potential, for

which a cross-section is shown in fig. 3.12, to be very similar to the standard 1-D

double well system in which the first few energy levels are well localized. As their

energy is less that the barrier height, their wavefunctions tunnel through the central

barrier. The characteristic features of localized states in the double well, is that they

are found in closely energetically spaced symmetric/antisymmetric pairs, and that

the tunnelling rate across the barrier is proportional to this energy separation of the

pairs. The more localized these states are, the smaller the energy separation between

these pairs is, and correspondingly the smaller the rate of tunnelling. I performed

computations on the two-dimensional potentials as well as the four-dimensional

potential to compare how motion of the hydrogen nucleus affects the tunnelling of

the carbon ring.
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Figure 3.15: a)-f) Real wavefunctions of the finite 2-dimensional
system with fixed rCH so that V2 = 0.0, with the
first three (rectangular) states and their symmet-
ric/antisymmetric pair. Values of ψ are normalized
over the sum of their squares, all coordinates lC, dC
are in Angstroms. a), b) correspond to the ground
state under rectangular considerations, c),d) to the
long-bond excitation, and e),f) to the short-bond ex-
citation.
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Ring Only
state D2h energy (cm−1) TSE (cm−1)
0 & 1 ground 0 0.0008
2 & 3 1Ag 1067 0.112
4 & 5 2Ag 1611 0.112

C-H only
state D2h energy (cm−1)
0 0 0
1 1Ag 1248
2 1A2

g

3 1A3
g

4 2Ag 3139

Table 3.1: Energies of eigenstates calculated under ring-only and
C-H only constraints. States are labelled by energy hier-
archy and rectangular symmetry considerations (D2h).
For the ring-only case the energy separation between
symmetric and antisymmetric states is also shown, la-
belled as Tun. Sep.

states D2hlabel energy (cm−1) TSE (cm−1)
0&1 ground 0 0.025
2&3* 1Ag 839 0.074
4&5* 2Ag 1005 0.046
6&7* 3Ag 1481 0.26
8&9 1A2

g 1661 0.13
10&11 1Ag × 2A1g 1811 0.14
12&13 2A2

g 1980 0.057
...
...
28&29* 4Ag(+) 3073 0.13

Table 3.2: Energies and the tunnelling separation energy between
symmetric/antisymmetric pairs (TSE), of eigenstates
ranked by energy and classified with D2h symmetry con-
siderations in the full 4-dimensional calculation. Prin-
cipal excitations that I expect to dominate the Raman
spectrum are marked with a star. A large number of
states are not presented. Since they are not principal
excitations they are unconverged. Due to this the state
numbers of the final two excitations is likely incorrect.
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Figure 3.16: Pairwise average of the wavefunction densities of the
first three principal rectangular excitations projected
onto a)-c) the ring coordinates, d)-f) hydrogenic co-
ordinates, and the fourth principal rectangular excita-
tion projected onto g) ring coordinates, h) hydrogenic
coordinates. Coordinate distances are in Å, and the
densities normalized over the grid.
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Figure 3.17: Ag excitations in cyclobutadiene
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Figure 3.18: The expectation function 〈dCH(rC)〉, which shows how
the hydrogen and carbon motions are correlated. The
values of all axes are in Angstroms.
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3.3.1 Restricted 2D calculations

In order to understand how the multidimensional nature of the system affects the

tunnelling rate, I performed calculations on two 2D subsystems in addition to the

full 4D case. The 2D calculations were performed where either V2 + V3 ≡ 0 (called

ring-only), or V1 +V3 ≡ 0 (called C-H-only). The results for the C-H-only calculation

are straightforward as unlike V1 there is only one potential well that is predominantly

harmonic. The V2 potential and wavefunctions are shown in fig. 3.13. There are two

principal excitations, which I define as those states in which there is only one node

in the wavefunction, as these correspond to the experimentally observable Raman

excitations from the ground state. These states will dominate the spectrum since

the wavelength of infrared radiation is much longer than the size of the molecule, so

the gradient of a resonant electric field is roughly constant, and states with multiple

wavefunction nodes will generate a smaller response. These principal excitations

are fairly conventional with both the waggle mode where the wavefunction node is

aligned along lCH shown in fig. 3.13c), and the stretch mode in with the wavefunction

mode aligned along dCH shown in fig. 3.13b). The energies in table 3.1 show that

the waggle mode has a lower energy than the stretch mode, due to the shape of the

potential as the C-H bond is stiffer with respect to length changes than to lateral

changes.

The V1 potential used for the ring only calculation is shown in fig. 3.14. The shape of

the potential is analogous to a two dimensional version of the double well potential

as shown in the cross-section shown in fig. 3.12. Compared to the coupled-cluster

calculations, the LDA potential used here has a similar barrier shape and height,

but has wider wells [110]. Comparatively this will lead to a reduced localization

of the wavefunction and weaker tunnelling than if a coupled-cluster potential was

used. The contours around the two wells of the V1 potential in fig. 3.14 resemble a

pair of egg-shaped ovals, and the effects of the single and double electronic bonds

are visible. The long direction of each oval is aligned with the single bond, and the
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short width of the oval is aligned with the double bound. The wavefunctions for

the lowest six energy states shown in fig. 3.15 are the principal excitation states.

These need to be defined slightly differently to the C-H bond case since there are no

calculations in which there is a single continuous wavefunction node, as it continues

past the potential cutoff in the calculation. I define the principal excitation states

here as the states in which there is only one wavefunction node in each potential

well. Due to the anharmonicity of the potential the existence of multiple nodes does

not suppress the Raman response. This is because in anharmonic systems under the

perturbation of a linear spatial potential the ground state can transition to a multiple

noded wavefunction, as the sum of the raising and lowering operators â† + â is not

proportional to the position operator x̂. The wavefunctions show that the single and

double bonds give rise to these principal excitations, with those corresponding to

the length-excitation with the wavefunction node across the short axis of the oval fig.

3.15c),d), and those corresponding to the width excitation with the wavefunction

node along the long axis fig. 3.15 e),f).

The six lowest-energy states are shown in Table 3.1. They are found in symmet-

ric/antisymmetric pairs and are separated by a small energy which I call the tunnel-

ling separation energy (labelled TSE). Within each pair the wavefunction density,

the square of the wavefunction, is very similar and differs significantly only in the

tunnelling region between the two wells. By contrast in this region the wavefunc-

tion phase either stays the same (symmetric states) or changes sign (antisymmetric

states). In each pair the symmetric state is of lower energy than the antisymmetric

state, in the low energy states that I calculated. By analogy to the double well,

the differences in energy between each state in the pair gives the rate of tunnel-

ling for those states. These energy differences, shown in table 3.1, determine the

tunnelling rate. The greater the energy difference between the pair, the higher the

tunnelling rate. This is because a localized state constructed from a superposition of

the symmetric/antisymmetric states will oscillate between the wells at a frequency

f = ∆E/~, which increases as energy separation ∆E. As expected the pair splitting
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increases with respect to the total state energy, but this relationship is not linear;

the length and width excitations both have around the same tunnelling separation

energies despite having different total energies. This is because the motion and the

momentum in the short-bond is more tangentially aligned to the barrier, and so the

wavefunction does not penetrate so far through it.

To summarise, in the two-dimensional calculations one finds that in the C-H-only

calculations the bond motion is very similar to the archetypal C-H bond, with a high

energy stretch mode of energy around 3100 cm−1, and a low energy waggle mode[44].

In the ring-only calculations one finds that the potential reflects the long and short

bonds determined by the electrons, and these two bonds are responsible for the

two different vibrational excitation energies. The system behaves similarly to a 1-D

double well as states are found in symmetric/antisymmetric pairs, but the energy of

a vibrational state is not enough to determine the tunnelling, as the distribution of

the momentum is also important.

3.3.2 4D calculations

When one considers the hydrogenic and carbon-ring motions together, there are four

principal excitations possible from D2h symmetry considerations, and the ground

state [122]. The most important effect of coupling the hydrogen and ring systems

together is a mixing of the motions. As a result the hydrogen and carbon motions

become correlated and illustrative sketches of these correlated motions are shown in

fig. 3.17.

Of these the ring motions and the C-H waggle mix the most strongly, and form

three different states. The C-H stretch motion only weakly couples with the ring

motion, and as a result the energy is very similar to the C-H stretch calculated in

the two-dimensional case. This can be seen from the projected densities, defined

as ρCH(rCH) = ∑
rC ψ(rC, rCH)2, and ρC(rC) = ∑

rCH ψ(rC, rCH)2, shown in fig. 3.16;

since the wavefunctions’ nodes do not pass through the four-dimensional space
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perpendicular to either the hydrogenic coordinates or the ring coordinates, there

are no nodes where the density falls to zero in any of the density projections. Most

importantly the density is still split into two regions on either side of the central

barrier and this corresponds to a small energy separation between the symmetric and

antisymmetric pair. This means that along with the correlations between hydrogenic

and carbon-ring motion, the excited states are well localized into the rectangular

states.

The first two excited states, 1Ag and 2Ag shown in figs. 3.16 b),e) and c),f), are

the result of strong mixing between the C-H waggle and the long-bond excitation

in the ring. Of these, the 1Ag excitation is broader and mixes more strongly. This

can be observed since while in both excitations there is a saddle point between

the two density maxima, which are present in both H and ring motion. In the

1Ag excitation the density at the saddle point is more similar to the density at the

maxima than in the 2Ag excitation. This is likely because the carbon and hydrogen

nuclear movements are mixed, and must share the limited energy available in the

state. This means they are constrained to remain near the minima in the potential.

The 3Ag excitation is mostly comprised of the short bond excitation in the ring, and

is accompanied by a much smaller amount of hydrogen motion than for the other

excitations, as the projected density for the hydrogen is very similar to that of the

ground state.

However the projected densities do not provide important information on correlations

of the nuclear motion in the excited states. While they show how much the hydrogenic

and carbon motions have combined, they do not show how the motions are correlated.

This information is required to match the states with schematic motions in fig. (3.17).

It is given by the expectation function

〈dCH(rC)〉 =
∑

rCH dCHψ(rCH, rC)2∑
rCH ψ(rCH, rC)2 , (3.3.1)

which calculates the expected position of the hydrogen for a choice of ring coordinates.

This is shown in fig. (3.18). Using this one is able to obtain the correlated motions
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of the atoms. In the 1Ag excitation, when the long bond is stretched, the hydrogen

waggles in the same direction. The two are positively related, and so the hydrogen

waggle and long-bond stretch are in phase. The 2Ag is the reverse situation, and so

the motions are instead out of phase. In the 3Ag excitation, there is less movement

overall in the C-H waggle, but the short-bond excitation and the waggle motion are

also out of phase. In the 2Ag excitation there is a sharp change in the hydrogen

displacement at dC = 0 accompanied by a sign change in 〈dCH〉, this is possible

without the energetic penalty associated with a rapid change in the wavefunction

because the wavefunction amplitude here is so low.

These calculations are able to calculate the energies and wavefunctions of nuclear

energy states, which can be used to calculate all the properties of the excited states.

However to perform this calculation effectively, and in order to interpret the results,

the coordinate system used needed to reflect the structure of the potential energy

surface. Since the potential energy surface is determined by the electrons one is able

to use the bond lengths and angles (or the interatomic distances) as this basis. It

is also important to restrict the space of the calculation, and this can be done by

an appeal to the structure of the potential energy surface. It is important to ensure

that the curvature of the wavefunctions, determined by the width of the well and

the effective mass of the system in the chosen coordinates, is captured effectively.

While this is done by choosing appropriate potential energy cutoffs and a choice of

mesh grid spacing, the unequal curvature of the wavefunctions in figs. 3.18, 3.13,

3.15 suggests that improvements could be made which would further reduce the size

and complexity of the computation.

In the ring-only vibrations (detailed in Table 3.1), the inclusion of the hydrogenic

motion (detailed in Table 3.2) suppresses tunnelling motion in long-bond excitation

states, but enhances it in the short-bond excitation states. This is in contrast to

the two-dimensional results in which the tunnelling rate is equal for both single and

double-bond stretches. There are two causes for difference in the tunnelling rate

as more degrees of freedom are considered: in the 1Ag excitation the combination
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of hydrogen motion with the long bond stretch lowers the energy of the vibration

from 1067 cm−1 to 839 cm−1. This lower energy results in a reduction of the nuclear

momentum and the tunnelling energy difference from 0.112 cm−1 to 0.074 cm−1.

The second is caused by correlations between the carbon and hydrogen nuclei that

suppress the tunnelling rate. For the 3Ag out-of-phase waggle state shown in fig.

3.18 b), as the ring conformation approaches dC = 0, 〈dCH〉 remains high, and at

dC = 0 there is a sharp change in 〈dCH〉. This means that when the ring is in a

conformation that is conducive to tunnelling, the hydrogen is out of place, and so

the tunnelling rate is suppressed for this vibrational mode.

3.4 Symmetry and Raman excitations

Point group symmetries are used to classify and assign the eigenstates of nuclear

motion [43, 44], however in cyclobutadiene the symmetry of the molecule is ambigu-

ous. This is because there are two equivalent minima in the potential energy surface,

at nuclear configurations that correspond to a D2h symmetry, but tunnelling means

that the eigenstates of the system are superpositions of these two configurations

with a D4h symmetry. Additionally the typical energies of the tunnelling separation

are small enough that they may be distorted by an external perturbation, so I give

an account for how this can occur as well.

In harmonic systems only excitations from the ground state to eigenstates with

single nodes (principal transitions) are easily observable. Point group symmetries

are useful for such systems as they allow us to predict the number of, and symmetry

of, these principle transitions [122]. When one treats cyclobutadiene as a molecule

with D2h symmetry, this theory predicts that our calculations will accommodate four

principle transitions of Ag symmetry. When one treats it with D4h symmetry, it is

predicted that there are two principle transitions with a A1g symmetry and two with

B2g symmetry. This conflicts with our results, which show ten eigenstates arranged

in pairs of similar energy, corresponding to up to nine principle transitions. The
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discrepancy between these two models is due to the anharmonicity of the potential.

While D4h is a higher symmetry, the lowest energy nuclear configuration of D4h

symmetry is in fact a saddle point rather than a minimum so the requirement for

this type of treatment, that the potential is harmonic, is not satisfied.

Since this anharmonicity is most significant in the V2 potential, it is instructive to re-

examine the 2-D wavefunctions of fig. 3.15. All of these states satisfy D4h symmetry:

symmetric states correspond to A1g motions, and the antisymmetric states to B2g

motions. However most of the wavefunction is localised around the energetic minima

located at configurations of D2h symmetry, and around which the potential is almost

harmonic. From the energies in table 3.1 the effective width of the potential barrier

at the D4h symmetry point is high enough that the tunnelling separation energies

are much less than the energies of the lowest energy eigenstates. This means that

for energetic purposes superpositions of configurations around the two minima in

the potential are well separated and only interact weakly, and the coarse structure

of the spectrum (in which the symmetric/antisymmetric pairs are treated as single

eigenstates) can be readily interpreted using a D2h symmetry approach, that relies

on harmonicity [109, 110]. The overall D4h symmetry is therefore only relevant

for an experiment sensitive to the tunnelling separation energy, or for high-energy

excitations that can tunnel through the barrier more easily. This is similar to the

inversion doubling of spectral peaks, for example in ammonia [123, 124].

Anharmonicity and symmetry is of further relevance to calculations of cyclobutadiene.

In particular I made the assumption that the different symmetry breaking and

conserving motions could be decoupled. However recent calculations [125, 126]

found metastable configurations of similar energy to the ground state, including a

puckered configuration with an energy higher than the ground state by 302cm−1,

and a distorted planar ring configuration like that observed in the related tetrasilyl-

substituted molecule with out-of-plane C-H bonds, that was higher in energy by

533cm−1. While these metastable configurations are different enough from the D2h

and D4h configurations that they are unlikely to contribute to tunnelling, they
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Figure 3.19: a) the eight regions (L±l , S±s ), that can be used to

determine Raman excitations to the principal excited
states, and maps of the sign of the phase in b) the
symmetric 1Ag excitation and c) the antisymmetric
1Ag excitation

show that the full potential energy surface of cyclobutadiene is complex and is not

harmonic with respect to deviations that break the same symmetry. This suggests

that motions which break different symmetries are not completely separable. Indeed

other theoretical studies on cyclobutadiene that focus on more accurate calculations

of the potential function, also separate the different symmetry motions and show

only a partial improvement over the work performed here [101, 41, 110]. Therefore

for more accurate calculations on cyclobutadiene, further study of these coupled

motions may be necessary.

3.4.1 Raman excitations

Due to the tunnelling and the anharmonicity, it is not immediately clear what the

realtive intensities of the infra-red transitions will be. As such I will examine how

Raman scattering can be used to probe transitions between energy levels. Trans-

itions between nuclear vibrational energy levels will correspond directly to Raman

resonances [43, 44] due to the symmetry in cyclobutadiene. The amplitude of an

optical-induced transition is dependent on a transition due to the polarizability
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operator [127]

Ta→b = 〈ψb|P̂ |ψa〉 (3.4.1)

where the transition is from nuclear vibration state a to state b, ψa is the wave-

function of state a, and the polarizability operator for the chosen field direction ε

is given byP̂ε =
∫

dxn |xn〉P (xn) 〈xn|, where the sum is over the permitted nuclear

configurations xn and Pε(xn) is the polarizability of the electrons for the nuclear

configuration xn. The polarizability operator is further defined as a projection of

the polarizability tensor into the field direction ε.

The most straightforward application of this theory to simple hydrocarbons makes

use of an approximation, that the polarizability tensor changes linearly with respect

to changes in the molecular configuration [128, 129]. This means that in harmonic

systems the transition amplitude is dependent only on the first derivatives of the

polarizability tensor. Moreover, because of the linear response, the overall polarizab-

ility of the molecule can be expressed as a sum of polarizability contributions from

each individual bond. Since the polarizability is already a second-order perturbative

property, even for harmonic systems its derivative can in many cases not be approx-

imated as constant. Due to this and the anharmonicity, this method therefore needs

to be modified in cyclobutadiene to calculate the amplitudes of Raman scattering.

The polarisability matrix is given by 1
2

∂2E
∂εα∂εβ

, where εα is the electric field in direction

α. As the polarizability is a ground state property of the electrons, it can be

calculated in DFT. This can be performed using density functional perturbation

theory. In a periodic implementation such as CASTEP, the contribution of an

infinitesimal periodic electrostatic potential can be used to determine the response

to a constant electric field[130]. In order to calculate the response of the electron

density, while it is possible to use a numerical derivative, in practice it is much

easier to construct a variational expression for the energetic perturbation, and then

perform a variational search for the perturbation density. This variational search

can be performed using the same methods as for the search for the ground state

density.
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In order to calculate the Raman response of cyclobutadiene, it is neccessary to

calculate the polarizability response of all the different configuraitons of the molecule.

After this it only remains to calculate the transition amplitues of equation 3.4.1

between the ground and excited states, using the wavefunctions presented in section

3.3.2. However as the DFT calculations were not converged with respect to the

values of the polarisability tensor, I will instead use the experimental results to

examine how the symmetry of this molcule affects the transitions.

I will compare the transitions from the ground state (state 0) to the two 1Ag states

(states 2 and 3), to investigate the interaction of the Raman spectrum with the

tunnelling. First I must set up the basis that I will study. Motivated by previous

observations that most of the wavefunction is localised near the two minima with D2h

symmetry, I separate the configuration space into two, these are shown by the red

ovals in fig. 3.19. It is necessary to use the wavefunctions of the excited vibrational

states, and the only significant difference between these two wavefunctions is in their

phase dependence on rC. The phases for the excited states are shown for our two

calculation regions in fig. 3.19 b) and c). For the electric field, I take its orientation

to be along the direction of one of the C-C bonds, as this breaks the D4h symmetry

in a way that permits transitions from symmetric A1g to antisymmetric B2g states.

Finally I need the polarizability responses of the bonds to this electric field. I label

the responses for C-C bonds using T±t , where T has a value of either L for long

bonds or S for short bonds, t describes the orientation of the electric field ε to the

the bond (either parallel or perpendicular), and ± describes the configuration of the

bond which is either stretched (+) or compressed (−). With this labelling one can

distinguish eight distinct sub-regions that contribute to the polarizability calculation,

these are shown in fig. 3.19 a).

With this basis set one can calculate the transition amplitude in terms of these
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sub-regions of the configuration space. If one defines the sub-region polarizability as

P (L±l , S±s ) =∫
(L±
l
,S±s )

drC

∫
drCH 〈ψ3|rC, rCH〉 P̂ (rC, rCH) 〈rC, rCH|ψ0〉 ,

(3.4.2)

where the integral in rC is over the limits of the sub region (L±l , S±s ). One is then able

to write the transition amplitude as a sum of the contributions of each sub-region

T0→3 ≈
(
P (L+

‖ , S
−
⊥) + P (L+

‖ , S
+
⊥)
)

−
(
P (L−‖ , S

−
⊥) + P (L−‖ , S

+
⊥)
)

−
(
P (L+

⊥, S
−
‖ ) + P (L+

⊥, S
+
‖ )
)

+
(
P (L−⊥, S−‖ ) + P (L−⊥, S+

‖ )
)
.

(3.4.3)

This sum is approximate as I have not included the contribution from areas around

the anharmonic central barrier where the wavefunction amplitude is very small.

Previous work calculated T0→3 to be approximately zero [89], but that T0→2 was

non-zero. From this one can infer that P (L+
l , S

±
s ) − P (L−l , S±s ) is non-zero, as the

0 → 2 transition is non-zero, so for T0→3 the contributions from each side of the

barrier cancel out. Simply put, the derivative of the polarizability is symmetric with

respect to a reflection about dC = 0. This is potentially unexpected, as it means

that the polarizability response when the long bonds are aligned parallel to the

electric field, is the same as when the short bonds are aligned parallel. What can be

interpreted from this is that the long and short bonds are not separable because the

polarizability must be dependent on the conformation of the whole ring. This puts

cyclobutadiene in the same category as long alkene chains, in which the polarizability

is dependent on the interactions between bonds, and cannot be isolated in individual

bonds or sub-systems [131].

The energy differences between the symmetric and antisymmetric states are about

5 meV, and as a result I expect these properties of the system to be sensitive with

respect to interactions with the surrounding environment. To analyse how thermal

and symmetry-breaking external potentials have an effect on the system, I divide the
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possible effects on the Raman spectrum of a symmetry-breaking external potential

into three different classes when there is a i) negligible, ii) weak, or iii) large external

potential, compared to the energy splitting caused by tunnelling.

When there is no external potential, there will be no localization into rectangular

states. Optical excitations from symmetric to antisymmetric wavefunctions cannot

be observed, and this means that the energy splitting caused by tunnelling is not

observable. However if the temperature is high enough (kBT ≈ tunnelling separation

energy), then there is a thermal occupation of the antisymmetric pair of the ground

state, and the Raman permitted transitions between antisymmetric pairs will be ob-

servable as excitations from the antisymmetric state to higher energy antisymmetric

states are possible.

When the external potential is slightly larger than the lowest symmetric/antisymmetric

pair energy difference, only those lowest energy states will be localized into a spe-

cific rectangular state, as these have the lowest nuclear momentum and the weakest

tunnelling, and a small energetic perturbation will localise them. To first order

the wavefunctions of these low energy states will be approximately, in terms of the

free-state wavefunctions ψ± = ψ0 ± ψ1. The higher energy states will retain most

of their tunnelling characteristics. The ground state will completely lose its square

symmetry. This localisation means that the transition amplitude T0→3 changes, and

instead is

T0→3 ≈
√

2
(
P (L+

‖ , S
−
⊥) + P (L+

‖ , S
+
⊥)
)

−
√

2
(
P (L−‖ , S

−
⊥) + P (L−‖ , S

+
⊥)
) (3.4.4)

and excitations to all the high energy states will be observable regardless of the

temperature. This enhancement is reminiscent of catalysis, in which a metastable

binding to another medium enables transitions to new states without the need for

an increase in temperature.

When the external potential is larger than the highest symmetric/antisymmetric

pair energy difference, all the energy states accessible from a ground-state transition
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will be localized. There will be very little tunnelling across the barrier in any of the

states. Due to the localization each state has a rectangular configuration and since all

the states will be strongly localised, optical excitations between the two rectangular

configurations will be strongly suppressed. Additionally at temperatures high enough

to cause transitions between the two low energy rectangular states, tunnelling effects

will not be found since tunnelling is suppressed for all states. Instead, depending

on the exact form of the external potential, there may be vibrational differences

between states in which either the long or short bonds are aligned parallel to the

gradient of the potential.

3.5 Conclusion

Quantum mechanical tunnelling is important in many chemical reactions [132, 100]

and structural phenomena. However while tunnelling in one dimension is easy

to calculate, the extension to a multi-dimensional system like a coupled molecule

represents a significant challenge [133]. A method of reducing this complexity is

by choosing a suitable tunnelling pathway [132, 134]. In cyclobutadiene, as in

ammonia [124], the tunnelling of particular states is sensitive to the distribution

of momentum. The effect of this is that particular vibration states tunnel through

the barrier along different paths, and so the calculation space must include these

different tunnelling routes. The rates of tunnelling reactions that proceed via an

adiabatic pathway are therefore dependent on eigenstates of the nuclear motion

and their momentum distribution. I have shown that in some cases these can be

understood as anharmonic extensions of the well understood harmonic resonance

approximation, that is used to classify the resonances [43, 44]. This means that

the nuclear motions under the well known harmonic approximation can be used to

qualitatively understand the rates and pathways of tunnelling reactions, despite the

multidimensional complexity of the problem.

Calculations performed here show that the square symmetry of cyclobutadiene is due



3.5. Conclusion 81

to quantum tunnelling, comprised of correlated nuclear motion through an energetic

barrier. This tunnelling leads to a small correction in the energies of the vibrational

frequencies of the molecule calculated under an assumed rectangular symmetry.

Each energy level separates into a symmetric and an antisymmetric pair, and by

analogy to the 1D double well potential, the size of the energy separation between

these symmetric and antisymmetric pairs is related to the tunnelling rate across

the barrier. From a comparison of the different vibrational states I find that the

tunnelling rate across the barrier is sensitive to the distribution of momentum in the

molecule, and the correlations between the motion of the nuclei. Our expectations

about the motion of the molecule, for example tunnelling suppression in the out-

of-phase waggle state, is able to give an accurate account for the strength of the

tunnelling process. I also find that despite the overall square symmetry a combination

of square and rectangular labels is most appropriate to classify the dominant system

excitations and the Raman spectrum. This is because the square potential is so

anharmonic that the usual assumption, that at the symmetry point there is an

energetic minimum, fails. Instead the global energetic minima are at points that

have rectangular symmetry.

The tunnelling effects are sensitive to an external potential, and a small external

interaction can enable transitions to states that would otherwise be forbidden without

a thermal excitation, while a large external interaction will again suppress that

transition. This process is reminiscent of catalysis activation, and over-binding

where a catalyst suppresses a reaction by trapping the reactants in a bound state.

I have demonstrated that this method of calculating wavefunctions and energies

can incorporate and enable the analysis of many complex quantum mechanical

phenomena under a single approach. Perhaps more importantly, it can successfully

inform our qualitative understanding and intuition about molecular motion as it

generates quantitative results.
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3.5.1 Conclusions about emergence

I have found that cyclobutadiene is not historically emergent in a meaningful sense.

Instead it is a small, eight atom molecule with a restricted set of available states.

While there are many excitations, there is no reason to suggest that beyond the

point group symmetry of the molecule and the various symmetry breaking modes,

each excitation has distinct properties which make it worthy of special study. No ex-

planandum other than symmetry-breaking excitations is demanded of cyclobutadiene

which would mean that each of these states would need to be considered separately.

This means that there is no large multiplicity of different states required in any

explanandum, so the molecule cannot be historically emergent.

However in this study of cyclobutadiene, it is the breaking of the symmetry that

leads to an observation of a specific chemical structure as detailed in chapter 3.4.1.

Although the properties of these structures can be cast in a combined form in a

symmetric ground state, in order to realise the broken symmetries that are observed

in a chemical molecules, the different symmetry-breaking operations that result in

different molecular structures cannot be mutually reconciled into a single account.

This means that the irreducible multiplicity of different chemical structures that

is observed in chemistry must also be reflected in the properties of the underlying

physics equations.

If, for an explanatory set-up, one chooses the explanandum “explain the functional

properties of molecules”, as there is a great multiplicity of molecular structures, each

structure will have its own functional properties such that they must be considered

separately. This means the explanatory set-up must be historically emergent. This

will be the case regardless of whether or not the explanation is grounded in either

a quantum mechanical or chemical description. The implications of this are that

the different molecules must be studied independently. That is to say that all the

diverse properties of chemical molecules cannot be predicted using a single generic

method, as some imply [135, 8].



Chapter 4

Iron arsenide

4.1 Introduction

In condensed matter physics, it has been suggested that correlated electron phe-

nomena may be emergent. This is usually done with respect to phenomena that is

unexpected or novel with respect to usual electron behaviour. Examples include the

fractional quantum hall effect (FQHE) [45] and the magnetic excitations Skyrmi-

ons [46]. These phenomena are usually emergent under conceptions like Batterman’s,

discussed in chapter 1.1.1, since when a material exhibits these phenomena the correl-

ated electrons become qualitatively different to the properties of individual electrons.

However the materials form these coherent states predictably1, so it is not clear if

historical emergence can add anything to discussions of correlated electron behaviour.

In particular in an explanatory set-up relevant to these systems, the different states

all share similar properties, and exhibit these properties in a predictable fashion.

In some incommensurate systems, for example GdSi [136], Ho[137], Cr[138], there are

many different magnetic phases. As such examination of incommensurate materials

may yield a system in which there are a large number of different magnetic structures,

each with qualitatively distinct properties, that would be relevant to historical

1Predictable in the sense that an experiment can be reliably repeated.
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emergence. Of especial interest would be a system in which there are a large number

of different structures, in which the mechanism that drives and maintains each of the

structures can only be explained by recourse to the magnetic structure itself. This

is salient to historical emergence, because to explain the behaviour in such a system

it would be necessary to treat each of the different states independently, rather than

by reference to a single model about the collective behaviour.

In order to inform the relationship that correlated electronic and magnetic states

have with historical emergence, I will study iron arsenide. Iron arsenide (FeAs) is

related to the iron arsenide superconductors [139], in which the correlated electrons

form a coherent superconducting state. Although it is not superconducting, FeAs

has been found to have a noncollinear incommensurate spin spiral structure [140].

The periodicity of this structure is also known to change with temperature [47],

so iron arsenide at least satisfies the requirement that in a historically emergent

explanatory set-up there are a large number of different states. It has been suggested

that the magnetic structure originates as a result of frustration between different

magnetic configurations [48], and so it may be possible that the change in the

magnetic periodicity originates from changes in interactions between these competing

configurations.

4.1.1 Physical background

Iron arsenide is a material that displays an elliptic incommensurate helimagnetism

that changes with temperature. It has been suggested that this is a result of com-

peting low-energy magnetic states [48], and since the energetic contribution of the

spin-orbit interaction in iron systems only around 1 meV in elemental iron [141], it

is unlikely that the second-order Dzyaloshinskii-Moriya interaction drives the heli-

magnetism. Further this helimagnetic order breaks a number of crystal symmetries.

These properties make it a reasonable candidate for emergent phenomena.

Additionally FeAs is currently of research interest in the physics research community,
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Figure 4.1: The structure of FeAs, showing the irregular face-
sharing octahedra linked by arsenic atoms (green) with
Fe atoms (brown) near their centers. Also shown in
a) are a set of example axes along which the spin may
preferentially align, confined in the a-c plane.
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AFM1 state. c) shows selected regions around two Fe
atoms where the electron density is lower in the AFM1
state, and d) where it is higher.
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due to the similarity with the compounds of the iron pnictide superconductor family,

in which the superconductivity is localized in planes of FeAs4 tetrahedra [139].

However while FeAs shares the same Fe-Fe linkages, it crystallises in the B31 (MnP-

type) structure (space group Pnma) [142] which is composed of FeAs6 octahedra.

These octahedra are face sharing along the a-axis and edge sharing along the b-

and c-axes (fig. 4.1). The iron atoms sit at the 4c Wyckoff site, giving rise to four

positions in the unit cell: Fe1 at [140] (x, 1
4 , z), Fe2 at (x̄+1

2 ,
3
4 ,z+

1
2), Fe3 at (x̄, 3

4 ,

z̄) and Fe4 at (x+1
2 ,

1
4 , z̄+

1
2), where x = 0.004 and z = 0.199 as shown in fig. 4.2.

Neutron powder diffraction measurements found a magnetic state that was best

decribed by a nearly antiferromagnetic incommensurate magnetic order. The period-

icity of the magnetic order can be described by a wavevector q = [0, 0, 0.375] and an

ordered magnetic moment of 0.5 µB. The onset temperature of the magnetic order

is TN = 77 K, and as the material is cooled further below this temperature the size

of wavevector changes, until it stabilizes at around 30 K [140].

Heat capacity measurements on FeAs [143] confirmed the value of TN, and found

that the transition is accompanied by only a small change in the Debye temperature

from 351.3 K at 90 K to 350.2 K at 50 K. This behaviour contrasts with the incom-

mensurate antiferromagnet chromium in which Fermi surface nesting accompanied

by a lattice expansion drives the magnetic ordering [50, 144], and also by the very

similar material CrAs in which the magnetic order is accompanied by a structural

transition [145]. This implies that the nuclei are mostly unaffected by the trans-

ition to magnetic order, and that the order is driven primarily by purely electronic

interactions.

With regard to the electronic properties, FeAs is best described as a correlated

metal. This is borne out in DFT calculations show that the Fermi surface is strongly

distorted by comparison to materials with nearly free electrons like sodium or copper.

Experimental measurements on the transport properties of FeAs find that as the

material is cooled through the magnetic transition, there is a derivative discontinutity

in the resistivity. Upon further cooling, the resistivity displays neither a T 2 or
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T 2e−
γ
T dependence typical of isotropic or anisotropic gapped magnon scattering in

a Fermi liquid [146, 147], nor a T 5 Bloch-Gruneisen dependence typical of phonon

scattering [148]. Instead my analysis of the results [149] in appendix A.2 indicates

that it is matches closely to a T n dependence beween 5K and 60K, where n =3.11

for resistivity in the c direction, and n = 3.66 for the b direction. This is a

temperature dependence typical for a highly correlated metals, as it is caused by

multiple bands of different masses with different interactions, which leads to a

breakdown in assumptions about the interactions between excited electrons that

underly the Fermi liquid model [148]. Further transport measurements on the Hall

coefficient also indicate a complex Fermi surface, as the dominant carriers between

50 K and 150 K are hole-like, and outside of this range are electron-like. There

is a derivative discontinuity of the Hall coefficient with respect to temperature at

TN, revealing that the transition to magnetic order involves a reconfiguration of the

Fermi surface [149].

As concerns the magnetic properties, the axis-aligned magnetic susceptibilities

χa, χb, χc change as the material passes through TN. At temperatures above 200 K,

χa and χc are very similar, while χb is lower [149]. These high-temperature sus-

ceptibilities can be explained if one assumes that the distorted FeAs6 octahedra are

the source of the spin-anisotropy. These octahedra shown in fig. 4.1, are angled

at approximately 500 away from the a axis in the a-c plane. This angle means

the octahedra are roughly equivalently aligned towards each of the a and c axes,

which correlates with the rough equivalence of their magnetic susceptibilities. As the

temperature is reduced below 200 K, the susceptibilities begin to fall, and χa and

χc begin to diverge from each other. With the onset of magnetic order, there is a

derivative discontinuity in χa and χb, which is to be expected from a spin-spiral with

moments localized in the a-b plane. For χc, there is no kink, but its second-order

derivative abruptly changes sign, which indicates that the c-axis alignment of the

moments interacts with the magnetic order [149].

In the magnetic susceptibility there is also evidence for interactions between magnetic
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order and impurities or crystal defects. A study of single crystals with different

structural disorder found that despite similar gross structure, the application of a

magnetic field of 10 mT as the sample is cooled through TN was able to significantly

disrupt the formation of the magnetic ordered phase, but only in the structurally

disordered sample [150]. In a single crystal with less disorder, they found only a

small difference in the susceptibility measured between zero-field cooled and field

cooled under the application of an external field of 100 mT, and this only below

the 60 K, some 17 K below TN. This behaviour was explored further in an earlier

study [149] which found that under 300 mT of external field, the susceptibility

behaviour matched that of the disordered crystal in which χb drops below 25 K, by

comparison to the zero-field cooled crystal in which the susceptibility increases until

χb ≈ χa. This behaviour indicates that the magnetic state continues to change and is

not completely stabilized until at least 40 K, the temperature at which ZFC and FC

measurements begin to diverge from each other. This behaviour may be due to the

behaviour of the low-lying magnonic excitations, and their ability to form mesoscopic

spin-structures under different environmental and crystalline perturbations similar

to Bloch or Néel walls found in other materials.

More recent diffraction experiments by Frawley et al. used x-ray resonant electron

scattering to probe the magnetic order [47]. Due to self-interaction between the

excited electron and the hole in the nuclear core, this technique is unable to give

energetic information, though it is sensitive to orbital and spin occupation near

the Fermi surface for specific atoms [151, 152]. Excitations from the 2p → 3d

orbitals in iron at the Fermi surface provides a direct probe of the spins. They

were able to identify new Bragg peaks which they attributed to be satellite peaks of

the [0, 0, 1] reflection caused by the magnetic order, [0, 0, 1 ± |q|]. However [0, 0, 1]

reflections are symmetry-forbidden by the screw-symmetry along the c-axis, and

this additional peak was not consistent with the helical or collinear spin structures

proposed previously [140].

The relationship between the Fe nuclei and the spin structure is also of interest,
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and a recent Mössbauer study by Blachowski et al. has found that upon transition

to the magnetic ordered state, interactions between an iron nucleus and the rest

of the crystal change [153]. They were able to fit experimental data by assuming

that two distinct iron with differing environments exist in the unit cell. However

since Mössbauer is purely a local probe, they were not able to identify the precise

nature of this structural shift. They instead inferred that the Fe1 and Fe2 atoms

were partially displaced in the reflection plane perpendicular to b, which like the

proposed spiral ordering breaks the Pnma screw symmetry along c. A particular

feature of Mössbauer is also its ability to probe the local magnetic environment, and

they found a continuing change in the field anisotropy as the material is cooled past

TN to 40 K in agreement with the ongoing changes in the electronic and magnetic

structure below the transition temperature discussed previously. The change in the

nuclear interactions leads to an increase in the recoilless fraction in the Mössbauer

results, which was attributed to an increased rigidity of the lattice on transition to

the magnetically ordered state. In summary the Mössbauer studies suggest that the

magnetic state is similar to chromium, in which the incommensurate magnetic order

is accompanied by shifts in the positions of the nuclei, and their electron-mediated

interaction with the crystal.

In iron arsenide the magnetic structure is not understood, as resonant x-ray results

measures periodicities incompatible with previously proposed structures, and studies

to date have not been able to point to a Fermi-surface instability [48] or a localized

coupled-spin system [143] as the mechansim that drives the magnetic order. Here I

propose a magnetic structure based on local environment and symmetry arguments,

in which the magnetic moments canted out of the a-b plane. I justify how this

correction arises in the material using arguments based on the projection of orbitals

at the Fermi surface calculated under DFT, and probe the local Fe atom environment

using spin-orbit coupling as a perturbation. Based on an analysis of the different

spin configurations and their relative energies, I conclude that the magnetism in

the system has its origin in a Stoner-type Fermi surface instability, which must be
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significantly complicated by correlations in the material. With DFT I also examine

the local Fe-potentials for different magnetic states, and these suggest that magnetic

order in the system causes a distortion in the crystal lattice positions, similar to

that occuring in chromium. I further discuss the implications of these findings and

the experimental studies on the role of emergence in this incommensurate magnetic

material.

Historical emergence These results of the physical investigation reveal that the

different periodicities in the material are unlikely to require a historically emergent

explanatory set-up. Instead if one constructs a free energy equation under Landau

theory [154], the periodicity and canting of the magnetic moment are likely to be

included in some form in the order parameter. This is possible because all of the

different periodicities have qualitatively similar properties.

4.2 Methods

4.2.1 DFT parameters

Calculations were performed on the single unit cell of iron arsenide shown in fig. 4.1

a), b), where a = 5.4560 Å, b = 3.3284 Å, c = 6.0310 Å[140]. Collinear and zero-

spin DFT calculations of FeAs were run with the CASTEP electronic structure

code using the PBE exchange-correlation functional [155, 87], as LDA often has

problems accounting for the d-orbitals in iron [156]. Energy differences between spin

configurations were converged to 1 part in 10,000, and to generate the Fermi-surface

a MP k-point grid of 23× 27× 19 was used. To account for core state contributions

on atoms an ultrasoft core-corrected iron pseudopotential with 8 valence electrons

and an arsenic pseudopotential with 15 valence electrons were used. A non-magnetic

configuration and a range of collinear ordered spin-structures were considered.



4.2. Methods 92

−8

−7

−6

−5

−4

−3

−2

−1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

lo
g
1
0
(∆

E
/
E
)

plane-wave energy cutoff (eV)

Figure 4.3: Convergence of energy differences between magnetic
configurations, with respect to the energy cutoff of the
plane waves.

−8

−7

−6

−5

−4

−3

−2

−1

36 1080 11799

lo
g
1
0
(∆

E
/
E

(%
))

Number of k-points

Figure 4.4: Convergence of energy differences between magnetic
configurations, with respect to the total number of op-
timally spaced k-points in the MP grid.



4.2. Methods 93

Convergences As a periodic crystal FeAs calculations under plane-wave code

need to be converged with respect to the cutoff energy of the plane-waves and the

kpoint density. The values of these parameters that are required for our calculations

are determined using my convergence function in chapter 2.4. The energy differences

of interest are between magnetic states, so I use the energy difference between a

calculation with no spins, and the lowest-energy collinear magnetic configuration as

the energy parameter in the convergence function.

The convergence for the energy cutoff of the plane waves is shown in fig. 4.3, and I

note two points of interest. A plane-wave cutoff value of 800 eV will be adequate for

many systems with an accuracy of 1 part in 100, and a higher cutoff of 2000 eV will

be used for fine-detail calculations as this gives accuracy to one part in 10,000, or

as an absolute energy about 0.1 meV.

Convergence with respect to the number of kpoints is shown in fig. 4.4. Similar to

the plane wave cutoff I note two points, 36 kpoints give a convergence of 1 part in

100, and 1080 to one part in 10,000.

4.2.2 Calculating spin-orbit perturbations

In order to see the effect of the spin orbit interaction or a similar perturbation on the

ordered magnetic structure, I calculate the energetic perturbation of the spin-orbit

interaction between the iron electron spins and the projected atomic orbitals. This

is used to estimate the preferred direction of Fe spin alignment.

The perturbation to the ground state energy can be calculated using the minimization

of the energy density functional given by

H = H0[ρ] + εHspin-orbit[ρ], (4.2.1)

where H0[ρ] is our unperturbed density functional for the energy and ρ is the electron

density. In the Kohn-Sham representation one can use the usual electronic formula-

tion for the spin-orbit interaction, including it as a correction term to the electrostatic
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field around a given atom. The energetic perturbation on the Kohn-Sham orbitals

to lowest order is given by

Hspin-orbit[ρ] =
∑
i,k

〈Ψi,k|ĤLS|Ψi,k〉,

=
∑
k

NF∑
n=0

∞∑
n′>NF,k

∣∣∣〈Ψn,k|ĤLS|Ψn′,k〉
∣∣∣2

En′ − En

(4.2.2)

where the sum is over the Kohn-Sham orbitals Ψi,k labelled by band i and kpoint k,

n is the sum over occupied orbitals, with NF,k the number of occupied orbitals at k

. The first term in this equation is the paramagnetic response, and the second term

is the diamagnetic response. The paramagnetic term will produce a change in the

energy of the system by shifting the energy of the bands. This will lead to a change

in the energy of the orbitals to first order, and can be positive or negative depending

on the relationship between the spin orientation and the orbitals. By contrast the

second diamagnetic term is always positive as it involves a second-order mixing

of the higher-energy Kohn-Sham orbitals. For conductors the diamagnetic term

is usually much smaller than the paramagnetic term as the presence of the Fermi

surface additionally allows a reorganisation of the occupancies of the bands. As

FeAs is a conductor, I will only consider the paramagnetic term here. The spin-orbit

operator is

ĤLS = − µB

e~c2 ŝ · L̂ dV̂
dratom

1
r̂atomm

, (4.2.3)

where V̂ is the electrostatic potential around the atomic nucleus, r̂atom is the distance

to the centre of the atom, and m is the band mass of the Kohn-Sham orbitals.

In FeAs, the electrostatic potential around the iron atoms, for which an isosurface is

shown in fig. 4.5, is almost completely spherical around the location of the iron atom.

This is because the core orbitals that play the most important role in shielding the

nuclear charge are not affected by the bonding. If one approximates the dependence

of the potential around the iron atom to be entirely radial, this leads to the condition[
L̂, dV̂

dratom

]
= 0. When one only considers the Fe3d orbitals which are the dominant

bands at the Fermi surface. These two constraints permit a significant simplification



4.2. Methods 95

z

x

y

Figure 4.5: The isosurface of the electrostatic potential V = 0 in
FeAs, around the Fe2 atom

of the calculation.

For zero-spin calculations where ρ↑ = ρ↓, the energetic perturbation Hspin-orbit[ρ],

which I abbreviate to α, is second-order in the perturbation parameter [157, p.291] ε.

This is because the energetic response of the spin up and spin down electrons must

be equivalent, as in equation 4.2.2, |Ψ↑〉 = |Ψ↓〉 and s↑ = −s↓. One can calculate

this effect using the diagram shown in fig. 4.6. Without loss of generality, one can

label the band that increases in energy the spin-up band, and the one that decreases

spin-down. Both bands shift by the same energy δELS = 〈Ψ|L̂z′/m|Ψ〉, where z′

is the direction of the spin moment an atom and Lz′ is the component of angular

momentum in this direction. These energetic shifts lead to a re-organisation of the

band-occupation around the Fermi-surface (a transition from the red region to the

blue in the diagram), and so for all kpoints at the Fermi surface, this change is given

by

α ∝ −ε2
∫ |〈Ψ|Lz′/m|Ψ〉|2

|∇U |
dΨ, (4.2.4)

The integral is over all orbitals Ψ that lie on the Fermi surface, and is dependent

on the gradient of the energy U of those orbitals |∇U(Ψ)|. One finds that the

diamagnetic contribution of the orbitals is small compared to α and has therefore
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Figure 4.6: Diagram of the affect of a perturbation on the reor-
ganisation of model quadratic bands around the Fermi
Surface, in the direction normal to the Fermi surface kN.
The shaded area above the fermi surface is the energy
saved by shifting the occupancy to the lower band, and
the shaded area below is the energy gained by occupy-
ing the lower bands. The total energy change at a point
on the Fermi surface is the difference betwen these two
shaded areas.



4.2. Methods 97

been neglected. This perturbation will change the density to second order, and since

according to Janak’s theorem dE
dρ = 0 [67], and so density changes will only have a

third-order contribution to the energy. As such one is free to choose the value of

z′ and calculate a physically meaningful energetic perturbation for this chosen spin

orientation, and create a full map of the energetic perturbation for different spin

alignments. This allows us to assess the spin anisotropy of a specific atom, providing

there is no band crossing at the Fermi surface.

The principal parts of a plane-wave pseudopotential calculation are the projections of

the Kohn-Sham orbitals onto the atomic basis set. The atomic orbital projections do

not necessarily obey crystal symmetries. To generate the full set of projections the

relevant local symmetry operators are calculated from the Wigner-d matrices [158]

and, if required, the application of a reflection. From this complete orbital projection,

projection amplitudes for points at the Fermi surface are calculated using a B-spline

interpolation [159]. The points are chosen using an algorithm detailed in appendix

A.1 .This projection of the Fermi surface is then used as the basis for the energetic

perturbation computation.

The final result is calculated by applying Eq. 4.2.4 to each Fermi surface point, and

Lz′ is calculated using a Mulliken orbital projection [160], and the use of Wigner-d

matrices to include a rotation from the z-direction to z′ [158]. This is performed

successively for each value of z′ to generate a full map (in energy) of the perturbation,

which is chosen to be a polar map with regular intervals in both θ and φ coordinates. I

take the unperturbed state (corresponding to H0[ρ]) to be the zero spin configuration.

Computational implementation I use here the area as a proxy for all the surface

properties. The convergence for this is shown in figure 4.7. Due to the nature of the

grid chosen, it converges slowly for the surfaces with the most curvature. The graph

shows that these areas are converged to one part in 30. Fortunately, due to the

shape of the Fermi surface, it was not necessary to introduce additional functions to

deal with singularities, such as if |∇U | → 0 or m→ 0 in equation 4.2.4.
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Figure 4.7: Convergence of the area using the method detailed in
appendix A.1

4.3 Study and results

4.3.1 Structure of the magnetic order

To provide an explanation for the magnetic structure, I examined the local environ-

ment of the iron atoms as it is their magnetic moments that are used to experimentally

determine the structure. The new structure must be a correction to the previously

proposed spiral structure, since this matches with all the other observations. The

new peaks of interest, that must be accommodated are the satellite peaks around

[0, 0, 1] reflection, that is forbidden due to the two-fold screw symmetry along the c

axis. This screw symmetry relates Fe1 to Fe2, so the magnetic moment must interact

differently with the local environment on each atom to generate the satellite peaks.

To provide the argument I refer to fig. 4.1, in which I examine the interaction of

constant spin moment pointing in the a direction with a proposed easy axis aligned

with the arsenic octahedra (the black lines in the diagram). The spin moment will

be canted towards the easy axis. It can be seen that the local iron environment

provided by the distorted arsenic octahedra will interact with the spin moment dif-

ferently in each case. The presence of a reflection in the a-c plane means that an

easy-axis must be restricted to that plane, and the spiral symmetry means the Fe1

and Fe2 axes will be related by rotation around c. As the Fe1 and Fe2 easy axes

point in different directions, the spins will be canted into different directions on each

atom. This would break the screw symmetry in the magnetic structure, and permit
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Figure 4.8: The proposed spin structure of FeAs, with arrows rep-
reseting the spin-direction and magnitude on Fe1 and
Fe2 in successive unit cells. Blue ellipses around the
atoms show the permitted amplitudes around the re-
spective atoms for any given spin orientation. (image
needs modification)
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Figure 4.9: The Fermi surface for the zero-spin calculation, showing
crossing bands 1 (red) through to 4 (yellow). Unoccu-
pied bands are on the lighter side of each surface.
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Figure 4.10: Orbital susceptibilities presented by band, calculated
using equation 4.2.4.
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otherwise forbidden satellite peaks. This proposed structure shown in fig. 4.8 gener-

ates a testable hypothesis; that the forbidden peaks are predominantly the result of

magnetisation in the c-axis. This has been verified by X-ray scattering results [47],

which found that the satellite peaks are entirely polarised in the c direction. Further

these satellite peaks are found at [0,0,1±q], providing evidence that they are related

to the helical magnetic order in the a-b plane.

The success of the above argument about moment-canting motivates us to examine

the electronic structure to provide a theoretical justification. Usually spin-orbit

interactions are weak in iron, but as the wave-vector of the magnetic spiral order

changes with temperature, this constitutes evidence that the magnetic order is

sensitive to small perturbations. To this end I applied the LS-perturbation technique

detailed in section 4.2.2 to the spin-zero DFT calculations, as this will probe the

orbital structure in iron arsenide. The choice of the nonmagnetic calculation means

that I will only obtain qualitative results, as the band masses and gradients will

be incorrect. However as the character of the orbitals will remain the same after

reformation, the calculation will be an accurate probe of how the iron d-orbitals

interact with the local crystal environment. I expect the iron d-orbitals to drive

the magnetic structure, as the magnetism occurs on the iron atoms, and of the

iron orbitals the d-orbitals comprise the largest component of bands around the

Fermi surface [48]. The Fermi surface is shown in fig. 4.9. The results of the LS-

perturbation on this Fermi surface are shown in fig. 4.10, of these bands crossing

bands 3 and 4 (the green and yellow surfaces in fig. 4.9 ) give much larger responses,

as their Fermi surfaces are large and they have a higher density of Fe d-orbitals. On

band 3 the highest energy perturbation occurs when the Fe spin points in the a-c

plane, at an angle of 23◦ from the c-direction (towards a). I find that spin alignment

along the b-axis is energetically unfavourable. The results for band 3 compare

favourably with the measured susceptibilities in the high temperature paramagnetic

spin state, in which χa ≈ χc > χb [149].

While fig. 4.10 gives useful information about the angular dependence of the suscept-
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ibilities, it does not give information about the directional anisotropy of the suscept-

ibility, as α is represented only in arbitrary units. Instead to discuss this, I calculated

the anisotropy from the second order correction energy α(θ, φ) as (1− αmin/αmax).

This quantity, on band 3, is high in the a-c plane, at 81%. This means that the

local environment strongly affects the Fe d-orbitals in this band. The other bands

have anisotropies of 77% (band 1), 51% (band 2) and 97% (band 4). For crossing

band 2 the lowest energy spin direction lies exactly midway between a and −c; and

in crossing band 4 it lies along c. The moment on the iron cannot satisfy all of

these conditions simultaneously, but by far the largest proportion of d-orbitals lie on

crossing band 3. However, it is notable that the optimal direction of spin alignment

lies off-axis in the a-c plane, and that spin-orbit effects will couple ordering in the a

and c directions, with the relative orientation dependent on the iron site.

From this I conclude that the orbital structure around the iron atom at the Fermi

surface is anisotropic, as a result of the distorted arsenic ocatehdra around the iron.

This provides a theoretical justification for the canting of the spin into the c axis, in

a form that will break the screw symmetry in and allow otherwise forbidden satellite

peaks to be observed.

4.3.2 Mechanism of magnetic order

Non-collinear calculations of iron arsenide were unable to reproduce the spin-spiral

in the material [161]. However while DFT is unable to model this phenomenon,

I do expect it to inform the type of physics present in the material. Both the

AFM and zero-spin calculations give Fermi-surfaces in iron arsenide, in agreement

with conductivity measurements which found that the material remains a conductor

through the onset of magnetic order [162]. The Fermi surface undergoes a large

change, from 4 bands in the zero-spin calculation to 2 in the AFM calculation, this is

consistent with the multiple changes of the dominant current carriers as the material

is cooled.
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Figure 4.11: Comparison of relative energies and spin magnitudes
for different states calculated with PBE, which show an
almost linear relation between the two. The AFMSF
state has varying spin magnitudes, so the mean value
of these is used.

Collinear spin-polarized calculations were performed on iron arsenide. Under col-

linear constraints there are 5 possible magnetic configurations in the unit cell, for

all spin parallel-antiparallel pairings in the unit cell. There are three antiferromag-

netic states, a ferromagnetic state (FM), and a ferrimagnetic state where one spin

is flipped from the FM state (AFMSF). The antiferromagnetic states are identified

by the iron atoms which have parallel spins: Fe1 ‖ Fe3 (AFM1), Fe1 ‖ Fe4 (AFM2),

and Fe1 ‖ Fe2 (AFM3). The relative energies and ordered spin moment for these

states and the zero-spin state using PBE are shown in Figure 4.11. These agree

with previous calculations [48]. The LDA results follow the same trends as the PBE

results, but with lower ordered moments.

The magnitude of the ordered moment is found to increase with the number of

antiferromagnetically aligned pairs of Fe moments. I also find that the energy of the

states varies linearly with ordered moment. The energy relative to the AFM3 state

is best fitted by E = γ
∑
i |si|+ β, where the sum is over spins i, γ = −74.8 meV/µB

and β = 394 meV. The observed linear energy dependence on spin magnitude

contrasts sharply with the Heisenberg and Ising models which have a quadratic

energy dependence, and is instead reminiscent of a Stoner instability as found in

ferromagnetic metals [163]. Examination of the electron density in the system also

shows that it changes with the transition to the ordered spin-state. From this I
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Figure 4.12: a)Isosurfaces of the potential experienced by the Fe2
atom moving independently from the rest of the nuclei.
Silver bounding box indicates the limits of the calcula-
tion, each edge is of length 0.2Å. The centre of the box
is the coordinate observed by Selte [142]. Isosurfaces
are at energies of 50, 100 and 300 meV. b) Isosurface
of the sum of the spin-moment magnitudes of the iron
atoms. Silver bounding box is as for a). Isosurface is
at 3.5 µB, moments are small on the light side of the
isosurface.

conclude that despite the absence of nesting in the calculated Fermi surface, the

magnetic order is likely still driven by a reorganisation of states at the Fermi surface.

4.4 Discussion

Because the Fermi surface is highly distorted by comparison to nearly ideal metallic

Fermi surfaces such as that of sodium, and because the bands at the Fermi surface

have both hole and electron character, iron arsenide can be described as a correlated

metal. The restructuring of the Fermi surface through the different magnetic orders

indicates that it is closely linked to the magnetic order. This indicates a similarity

with the incommensurate magnetic order found in chromium. In chromium this

order can be explained using using the random phase approximation [49, 50] in

a calculation of the susceptibility. In this case the susceptibility of the electronic

structure to a periodic perturbation of wavevector λ can be estimated in DFT by
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using the nesting vector technique, as the perturbation will cause orbitals seperated

by a wavevector λ in reciprocal space to combine, and in so doing the energy of the

system changes. This method can be used to detect a Stoner instability, as when

the perturbation response of the system is large enough, the first order response will

itself drive a larger second order response (and so on).

However this method has not been successful for FeAs [48]. Despite this, the strength

of the local moment on the iron atoms is linearly correlated with the energy of the

state, a behaviour that is found in magnetic structures driven by a Fermi surface

Stoner instability [163]. This is possibly because while in chromium the density of

states at the Fermi surface is 0.06 eV−1Å−3 [144, 50], in nonmagnetic FeAs the density

of states was calculated to be more than double at 0.13 eV−1Å−3. Additionally the

energy difference between the AFM states in chromium was found to be around 10

meV (per Cr) [144] whereas in FeAs I find it to be 19 meV (per Fe) between AFM1

and AFM2. This implies a larger reorganisation of states around the Fermi level

between magnetic calculations in FeAs. The failure of a nesting-vector argument does

not rule out the Fermi-surface as the principle driving mechanism, as the Lindhard

function only calculates the response of the electron gas to first order, and has

been calculated under the assumption that the energies associated with the applied

perturbation λ are very small so that
∫
δλ∂E

∂ρ
∂ρ
∂λ
<<

∫
δλdE

dλ , as δρ ≈ 0. [48]. Under

the above conditions, and given that the magnetic order is both helical and elliptical,

it should perhaps be expected that a collinear spin state with one magnetic moment

is not a good starting point for a Lindhard susceptibility argument, in the same way

that the ferromagnetism in iron cannot be described by this method [164].

The reorganization of electronic states at the Fermi surface is corroborated by differ-

ences in electron density between the non-magnetic and magnetic calculations, shown

in fig. 4.2. Relative to the nonmagnetic calculation, the magnetic calculation has

reduced density between the Fe pairs 1&2 , and 3&4. This electron density moves to

the Fe-As bonds between Fen-Asn pairs. However due to the Hellman-Feynman the-

orem the forces on the nuclei and their projected positions will change as well [165].
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While a shift in the iron position as the material enters the magnetic phase was

not observed in X-ray or neutron studies, Mössbauer studies did observe qualitative

differences in the iron environment between the disordered and ordered phases [153].

Additionally they found that the onset of magnetic order was accompanied by an

enhancement in the recoilless fraction, measured as the fraction of iron nuclei that

remain stationary after the emmision of a gamma ray. This indicates that the single

iron atoms are able to transfer momentum to the rest of the material more effectively,

and that the magnetic order does in fact interact with the crystal structure.

If the magnetic and crystal structures are linked, I can study this with DFT. To

this end I calculated the local potential of the Fe3 atom for both the zero-spin and

antiferromagnetic states. Isosurfaces of the zero-spin potential are shown in fig. 4.12

a). This shows that the potential is slightly anisotropic as the surfaces are ellipses,

and indicates that the electronic structure does not change dramatically under motion

of the Fe atom. The calculations of the potential on the antiferromagnetic states

required the breaking of symmetry conditions. This led to a scatter of different

energies, similar to that found in ferromagnetic iron in section 5.2. However the

potential isosurfaces remained mostly unchanged from the zero-spin calculation. In

these calculations however, it was found that the spin of the unit cell changed as

the Fe3 atom was moved around the unit cell. I also examined the sum of the spin

moment magnitudes in the unit cell, as I found this was a useful proxy for the energy

of the spin ordering of the system. An isosurface for this property of the iron atoms

is shown in fig. 4.12 b). Due to the relaxation of the symmetry, there was a fair

amount of scatter in the magnetisation as well. However one can discern certain

trends, as motion of the atom in the x-z plane, or in an x-y plane translated by

[0,0,-0.1Å] from the lowest energy position, causes little change in the sum over the

spin moment magnitude. However motions away from these areas leads to a fall in

the sum of the iron atoms’ spin moment magnitude. This means that the magnetism

is linked to the crystal structure of the lattice. The energies implied by these shifts

in the spin moment are comparable to the energies of the zero-spin motions, with the
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isosurface in fig. 4.12 corresponding to an energy of around 130 meV. On the basis

that the nuclear position and the spin moment magnitudes are linked, it is therefore

at least plausible that this could be due to interactions between the position of the

iron nucleus and the magnetic order in the system.

4.4.1 Emergence

This study is predicated on the experimental results about the nature of the magnetic

order in FeAs. Without that knowlege, the method of orbital projection would not

have been performed. However while this appears to be “novelty” in the sense of

emergence, there is no reason to suggest that all methods would be unable to predict

the noncollinear structure ab initio. This is because the calculations that were used

to justify the presence of canted moments were based on non-spin-polarised calcu-

lations. Taken on their own these calculations do not mean that a full noncollinear

magnetic calculation will exhibit canted moments. This explanatory set-up this

cannot be considered an example of historical emergence, as the novelty arises from

an inadequacy of the “laws” used in the model collinear calculations.

I conclude that magnetic order in FeAs arises from a Fermi surface instability, coupled

with a distortion of the crystal lattice.Under this model, each of the different peri-

odicities and their associated canted structures share the same physical mechanism.

It is therefore not the case that each of the different magnetic orders in FeAs need

to be treated differently, and so there is no reason to think that a historically emer-

gent explanatory set-up exists, which relates to the different magnetic periodicities.

However there are specific phenomena in FeAs that deserve a discussion; the low-

temperature susceptibility when cooled in a magnetic field, and the observed chirality

of the magnetic order [47]. Each of these behaviours are particular to the magnetic

state in FeAs.

The low temperature magnetic susceptibility χb differs between when the material

is cooled in a magnetic field, and when it is not [149]. This was attributed to small
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regions in which there is a different magnetic order to that of the bulk. Presumably

the presence of the magnetic field stabilises this phase in certain regions of the

material. What is particularly interesting about this phenomena is that it is robust,

as both field-cooled and zero-field-cooled measurements were performed in a magnetic

field of the same intensity. This means that the magnetic properties of the material

are path-dependent, so that different structures can be stabilised as the sample

is subjected to different temperatures and magnetic fields. Since the dominant

interaction between the magnetic field and the sample is via the term B · S, it

is likely that these structures are stabilized and “frozen in” at the temperature

the susceptibilities begin to diverge. The divergence in the susceptibility is seen

in the so-called spin glasses [166], and it is possible that structural defects in the

crystals change the properties of the magnetic phase [150]. The temperature at which

the susceptibilities diverge is around 50 K, 27 K below the transition temperature

TN =77 K, which means that above this temperature the system is ordered, but

is also fluid in the sense that it is possible to move from one structure to another

without a significant barrier. It is possible that this is indicative of interesting

behaviour and dynamics in FeAs, although in the current absence of a full model of

the material’s magnetism more experimental investigation is needed to determine if

these structures are of interest to a student of emergence.

A probe of the electronic states of FeAs indicates that it is chiral. Moriya has

observed that a preference for a specific chirality must come from interactions between

electrons and the effective magnetic field that they experience [167]. This means that

in iron arsenide, spin-orbit coupling could provide an explanation for the chirality.

Another explanation could also be the interaction of the spin with a macroscopic

field generated by electron currents on neighbouring atoms, but this is likely very

weak as the magnetic order is close to antiferromagnetic in iron arsenide.
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4.5 Conclusions

FeAs forms a spiral magnetic structure. On the basis of symmetry arguments and

anomalous diffraction peaks that have been observed [47], a modified magnetic spiral

structure was proposed in which the spins were canted out of the a-b plane into the

c-direction. Using DFT calculations I show that the d-orbitals around the iron atoms

are susceptible to anisotropic perturbations off-axis in the a-c plane. A potential

source for these perturbations is interactions between the spin and the motion of the

electrons.

I have also performed calculations to asses the origin of the magnetic order in

FeAs. Under DFT the magnitude of the spin moment on the iron atoms is linearly

correlated with the energy of the magnetic configuration, and this suggests that the

magnetic order has its origins in a Fermi surface instability despite the failure of a

nesting condition [48]. If this is the case the instability will likely also redistribute

the electronic charge in the material, and this in turn will affect the crystal symmetry

of the material. There is additional evidence of this from Mössbauer studies [153],

and using DFT calculations I was able to show that the electronic state and the

position of the iron nuclei are closely linked. From these considerations, it seems

that the origin of magnetic order in FeAs is similar to that in Cr, even if the nesting

condition of the Fermi surface is not satisfied.

From this it is difficult to definitively point to a property that can be described as

emergent in FeAs. Since I conclude that the crystal structure and the magnetic order

are linked to each other, their behaviour cannot be seperated into different parts;

they share a common cause. This means that the helimagnetic structure is fully and

singly determined by the nuclear positions in the material. Since the structure is

uniquely determined, under the definition of emergence I have proposed, it is not

emergent. Finally that the crystal lattice symmetry is broken, it is a non-starter for

levels-based emergence, since any lower level in the material is deformed, and the

periodicity of the crystal lattice is destroyed by the magnetic order. However there
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are a number of phenomena that indicate there is further complexity in FeAs that

may be related to emergence, in particular the formation of novel structures that

arise when the sample is cooled in a magnetic field.

Future experimental work on FeAs could involve revisiting neutron diffraction studies

on the magnetic structure, to determine if the [0, 0, 1− τ ] peak observed at 40K in

XRES studies [47] is only found in the orbital structure of the material, or if it is

also found in the spin even if it is only a minor contribution. A closer study of field-

cooled samples would also be of interest, to determine the thermodynamic properties

and robustness of the structures that increase the susceptibility. From a theoretical

perspective, if the magnetic order is linked to the structure of the crystal, it should be

possible to replicate this in DFT. This could be done by simultaneously performing a

non-collinear calculation in tandem with a structural relaxation. Finally while work

performed here suggests that interactions between electron spins and the orbitals

are present, how this occurs is unclear. It is possible that they play an important

role in how the magnetic order is formed. However it is also possible that the system

performs like a simple broken-symmetry system that can be treated under Landau

theory, such that the observed preference for right-handed chirality was only a result

of the measured sample’s particular state at the time of the experiment.

4.5.1 Philosophical conclusions

It seems that there is no reason to expect that explanations of iron arsenide’s

behaviour are historically emergent in a meaningful way. This is because although

the periodicity of the magnetic order changes as it continues to be cooled below

TN, these changes do not appear discretely. If each of the magnetic periodicities

were discrete, semi-stable and displayed a hysteresis as the temperature changed,

then it might at least be possible for the dynamics of the different orders to be

separable and qualitatively distinct [168]. Instead the periodicity varies continuously

with temperature, and this work indicates that it is unlikely that the dynamics
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qualitatively change many times as the temperature is lowered.

The only behaviours of FeAs that might reasonably lend themselves to an account

of historical emergence, are the promises of complex behaviour that originate in the

zero-field/field cooling experiments [149]. These imply that upon the application of

a magnetic field, as the material is cooled through the magnetic transition, different

structures will form. However it is not yet clear whether it would be meaningful

to isolate and analyse an exact instantiation of any of these structures. While

there may be specific objects of interest, like the form of boundaries between the

structures, there is no gaurantee that these would display historical emergence. Put

another way, while one might be able to construct an experimental set-up that could

support a vast number of different microstates, it is not clear what the value of

such an experiment would be or if each of these microstates would have important,

qualitatively different properties.

For these reasons it is not appropriate to treat iron arsenide as a system that displays

historical emergence. Instead it appears that the complexity of the system lends

itself towards a consideration using Batterman’s theory of emergence, in which

the quality of the physical description changes and instead of individual electrons

some quasiparticle or perhaps long-range magnon quasiparticle is used. The only

conclusion that one can come to is that any particular structure which may be

observed in field-cooled system, is not likely to be repeatable. While such a system

would very likely be historically emergent, unless these magnetic defects were shown

to be long lasting and robust so that they might be put to practical use, a close study

of these systems and their dynamics and behaviour is unlikely to be performed.



Chapter 5

Spin initialisation in noncollinear

DFT

Although there is no guarantee that the same functional of the ground state can

be applied to different magnetic configurations, in practice DFT can model many

different metastable magnetic magnetic configurations, which are manifestly not

ground states [78]. However this flexibility raises a problem, as in a particular

calculation although while one might aim to calculate the properties of a specific

magnetic configuration, due to the multiplicity of different metastable configurations

the density search algorithm may return the configuration of a different local energy

minimum.

To investigate systems, in the application of DFT it is important to implement a

method of spin initialisation which can drive the density search algorithm towards

a specific configuration. However there are important differences in the technical

application of DFT methods to collinear and noncollinear systems. In collinear

calculations it is possible to fix the net spin moment of a system, by varying the

Fermi energy, for each of the up and down bands. In noncollinear systems all the

electrons form a single system, so this is not possible. Instead only methods which

change the spin and charge densities that determine the KS Hamiltonian can be

used. As was detailed in the introduction to chapter 4, it is most often noncollinear
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systems that are though to host emergent phenomenon, and so it this area deserves

special attention for the purposes of this work.

A number of methods of spin initialisation have been developed for noncollinear

systems [54, 55, 56, 57, 58], but they usually enforce strong constraints on the per-

mitted charge and spin configurations and these may consistently bias a calculation

towards an incorrect configuration. It is particularly important to avoid such a bias

in noncollinear systems which are often frustrated or sensitive to small perturbations,

as for these systems a small initial bias can be decisive. To address this problem I de-

velop a new spin initialisation method which I call the spin setting procedure, based

on a Wick rotation of the exchange-correlation potential. This biases a calculation

towards a specific spin configuration using a perturbation based on the exhange and

correlation energies intrinsic to the system. As the calculation approaches the desired

configuration, the method reduces the magnitude of the corrective perturbation and

allows the convergence algorithm to explore the space of states near to the desired

spin configuration.

Here I detail the spin setting procedure and apply the method to a pair of well

understood collinear systems, elemental iron and manganese oxide, to test if the

method is able to initialise the desired spin state in certain conditions. I find

that in manganese oxide, which has a metastable configuration quite robust to

perturbations, this initialisation procedure is too weak to force the search algorithm

towards the desired configuration. However in iron it is effective at initialising the

correct orientation and desired magnetic configuration. In the application of the

spin setting procedure to these magnetic systems, there is evidence for historical

emergence. It is not found in manganese oxide, with its stable configurations, but in

iron. This is the case because there are a multiplicity of different self-consistent and

metastable states that the iron system can be found in, if the crystal symmetries

are relaxed.
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5.1 A method: the spin setting procedure

When magnetic materials are treated under DFT, there are often many magnetic

configurations that are metastable. As a result it is often necessary in a calculation

to bias the outcome of the calculation, so that a specific configuration is found.

The usual method for collinear calculations relies on the separation of electrons

into two coupled band structures, one each for electrons of up and down spins.

Different Fermi energies can be set for each of these bandstrucutres, which allows

the user to manipulate the total spin density. However this method is not available

for noncollinear calculations, since all the electrons are treated together in a single

bandstructure. Instead other methods have been employed, such as: 1) modifying the

noncollinear spin-polarization potential in the region around ions so that it is aligns

along a certain direction [54, 55], 2) energetically penalising deviations from desired

orientation [56], 3) initialising a trial state which superficially displays the desired

spin configuration [57], and 4) generation of a trial wavefunction by application of

an unphysical magnetic field that interacts only with the spin component of the

wavefunction in the area around an atom [58].

However these methods come with drawbacks. One drawback, relevant for methods

1) and 2), is the assumption that the spin localised on specific atoms is aligned only

in one direction. This is often a reasonable assumption; in addition to the atomic

orbital effects discussed in chapter 5.4, in an itinerant system there is a kinetic

energy penalty incurred when the spinor changes direction. As such spin density is

locally correlated and tends to locally be aligned in the same direction. However

there are magnetic materials in which some atoms, even though they are important

to the mechanisms of spin order, host no net spin moment. Materials which exhibit

Anderson superexchange [169], in which the atom over which the spin exchanges has

no net moment, are good examples. In these sorts of materials, initialisation of the

net spin moment along a specific direction will probably fail since there is no net

spin moment around the important atom. A second drawback, relevant to systems
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2) an 4), is that methods that change the energetic landscape have the potential to

push the spin distribution of the system towards the wrong state. To compensate for

such a failure, they often contain parameters that can be varied, but the parameters

add to the complexity of the calculation and so it would be preferable to get rid of

them. A third drawback relevant to methods 3) and 4), is that if one consistently

initialises the wavefunction to a specific configuration, one may regularly initialise

an incorrect configuration regarding either the spin or charge-density, especially in

systems where the different spin configurations are sensitive to perturbation. These

initialisations therefore require special attention to ensure that they do not regularly

cause convergence to a metastable or otherwise undesired state.

In addition to these methods based on the initialisation of local moments, it is

possible to constrain magnetic configuration with the imposition of symmetry. This

method either involves the use of the usual symmetry transformations, albeit usually

a restricted set as the spinor wavefunctions are altered by the symmetry transform-

ations, or the use of generalised Bloch waves to account for incommensurate or

long-range ordered states [170, 171, 56]. These methods have been very successful in

their application to simple noncollinear states such as circular helimagnets [172, 173],

as in addition to reducing the size and length of the calculation, they are able to ef-

fectively constrain the range of available magnetic states. However for other systems

such as elliptical helimagnets, or those that include canting such as iron arsenide

found in chapter 4, they are inapplicable as even with a rotation of the spin density,

there is no symmetry operator aside from a periodic translation that makes the spin

sites equivalent. Such a structure cannot be modelled with a reduced unit cell.

To provide an improvement, I have developed the spin setting procedure, based

on the method of altering the spin potential [54, 55] that is designed to avoid the

difficulty in application to systems in which the magnetic moment varies on the

atom. In the method a bias to a chose spin orientation is acheived by rotating

the noncollinear spin-polarization potential in the region around ions, by the same

angle in the entire region. This means that the spin polarization is not biased to be
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region Ri

ρ̂i

Figure 5.1: Illustration of ar region in an example square array of
atoms, and the net spin of that region, as detailed in
the spin setting procedure

aligned all in the same direction, but is free to deviate as the calculation approaches

self-consistency.

Concerning the specific implementation, the volume of the unit cell is divided into

regions Ri as shown in fig.5.1. For simplicity these regions are divided by the planes

equidistant to the ions in a Wigner-Seitz construction[174, p. 118]. The purpose of

the method is to align the net spin in each region along the chosen directions ρ̂′i. In

the calculation the total spin for each region ρi is calculated by

ρi =
∮
Ri

dV ρ(r), (5.1.1)

where ρ(r) is the spin-polarized density of the electrons as defined in equation??.
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From the the total spin density, the net spin ρ̂i is

ρ̂i = ρi/|ρi|. (5.1.2)

Rotation operators Ri are chosen so that

Riρ̂i = ρ̂′i, (5.1.3)

and these are used to create a rotated spin polarized density fieldρ′(r) which is

defined such that within each region i

ρ′(r) = Riρ(r). (5.1.4)

This modified field ρ′(r) is used in place of the usual spin polarized density field

ρσ(r) in the calculation of the exchange correlation energy in equation 2.3.3. This

method minimizes changes in the potential, and regardless of the spin structure

around the atoms, the modification of the x-c functional to tends to zero as the

orientation of the net spin polarisation around the atom tends to desired direction.

In this way it contrasts with other methods that continue to affect the energetic

landscape as a calculation reaches self-consistency.

A possible drawback to this method is the convergence onto a false state, for example

one in which the spins of the K-S wavefunction anti-align with the desired spin

direction. Fortunately such a failure is easy to check, as one should expect that over

the duration of the calculation the angle of rotation of the spins tends to zero. If this

condition is not satisfied, one will know that the state of the calculation is unstable

if the spins are released, and therefore is not self-consistent, a condition required by

DFT. There is a second drawback as well. The DFT Hamiltonian can be divided

into three terms: the potential energy, the kinetic energy, and the x-c correction.

Spin order can be determined by both the kinetic energy and the x-c correction.

However the spin-alignment procedure only affects the x-c correction. Therefore in

cases where the kinetic energy contributions are much larger than the x-c correction,

the spin alignment procedure will be insufficient to bias the calculation towards the
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desired configuration.

An important part of current DFT calculations is the convergence algorithm used

to find a self consistent low energy state. As these form an important part of a

calculation, I will test how the spin setting procedure is affected by the use of

different density search algorithms presented in chapter 2.2.4. Also as discussed

previously, noncollinear systems are sensitive to symmetry. However the effect of

releasing symmetry constraints on noncollinear DFT calculations will change the

efficacy of the convergence algorithm, as a relaxation of symmetry increases the

number of directions in configuration space that the convergence algorithm must

consider. In particular in noncollinear systems there are often many competing

energetic phenomena and states, often with similar energies. In such cases it is not

clear if the existing convergence algorithms will be effective at finding the ground

state, or if they will interact with these multiple states, and so be unable to find

a state, or instead find the wrong state. I will examine two common convergence

algorithms, density mixing (DM) and (EDFT), and examine how they interact with

symmetry-relaxed non-collinear systems.

There are therefore three things to investigate for the calculation of noncollinear

magnetic phenomena in DFT. The validity of the spin setting procedure, the effect

of relaxing symmetry, and the effectiveness of the convergence algorithms. In order

to do this I have chosen two contrasting case studies, the conducting ferromagnet

Fe, and the insulating antiferromagnet MnO, and applied these methods to a DFT

calculation of their properties.

5.2 Method example: iron

5.2.1 Material background

To test the spin setting procedure, I calculate the properties of elemental iron. It has

two stable cubic structures, either face (fcc) or body (bcc) centred [175, 176]. The
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ferromagnetic bcc phase shown in fig. 5.2a) was chosen for the calculation as spiral

magnetic structures in the FCC phase may complicate the calculations[177]. Like

the other magnetic metals nickel, cobalt, and chromium, the magnetism arises from a

Fermi surface Stoner-type instability of the nonmagnetic state, that leads to a recon-

struction of the Fermi surface [144, 163, 154]. However the Fermi surface instability

is insufficient to describe all the properties of iron, as it is not a simple electron gas;

instead most of the magnetisation is localized around the iron nucleus [164]. In the

magnetic phase, iron displays a spin-orbit dependent magnetic anisotropy which has

led it to be the subject of noncollinear calculations ranging from rudimentary band-

character calculations to ab-initio under DFT [178, 179, 180, 141, 181]. Due to the

existence of previous noncollinear calculations, and the simple crystal and magnetic

structure of iron it is a good test case for our implementation of non-collinear spin.

Since DFT calculations are usually ab-initio, it is not important to choose between

different Stoner instability models. Instead the properties of bcc iron in DFT are

strongly dependent on the choice of x-c functional. LDA predicts the wrong bulk

properties for iron as calculations find that an antiferromagnetic FCC state is of

a lower energy than the ferromagnetic bcc state [182]. This directly conflicts with

experimental evidence in which the fcc state is only thermodynamically stable at

high temperatures, although the PBE functional does obtain the correct relationship

between the two [156, 183, 184]. These studies also show differences in the spin

density between PBE and LDA, these are shown in the zero-spin density isosur-

faces in fig. 5.2 b). In LDA, the spin on the iron atoms is, at 2.13 µB per iron

atom, by comparison to 2.17 µB calculated in PBE. These are both similar to the

experimentally observed value of 2.12 µB.

To compare the efficacy of noncollinear calculations, I first summarize the results of

collinear calculations on iron. As an itinerant ferromagnet, the magnetism originates

in a reorganization of the states around the Fermi level. In this reorganisation there

is an accompanying change in the both the spin and the charge density through the

unit cell. Isosurfaces for the changes in spin and charge density, when the zero-spin
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Figure 5.2: a) Structure of the unit cell of bcc iron. b) The zero spin
density isosurface of BCC iron, calculated here using
the LDA (left, purple) and PBE (right, blue) X-C func-
tionals. c) Regions in which the charge density increases
and d) decreases, upon transition to the magnetic state.
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Figure 5.3: The convergence of energies between distorted states,
as the a) energy cut-off of the plane waves is varied b)
the number of kpoints is varied

constraint is relaxed in DFT calculations are shown in fig. 5.2 c) and d). From these

changes in the charge density one can observe that the relaxation of the spin-zero

symmetry principally allows the redistribution of electrons among the Fe d-orbitals

and a slight reduction in the occupation of the s-orbitals. The d-orbitals with

increased occupation are coordinated towards the iron nearest-neighbours, which

increases the charge density on these bonds and reduces the interstitial density in

the rest of the unit cell.
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Figure 5.4: The convergence of energies between different the fer-
romagnetic and non-magnetic states, as the number of
kpoints per axis is varied

5.2.2 Initial results

As a periodic crystal bcc Fe calculations under plane-wave code need to be con-

verged with respect to the cutoff energy of the plane-waves and the kpoint density.

Convergence calculations performed on bcc iron were performed to take the dif-

ference in energy between two similar structural configurations of iron, with the

same symmetry. The values of these converged parameters are determined using the

convergence function found in chapter 2.4. The convergence for the energy cutoff of

the plane waves is shown in fig. 5.3 a). A plane-wave cutoff value of 600 eV will be

adequate for an accuracy of 1 part in 1000.

Convergence with respect to the number of k-points is shown in fig. 5.3 b). Similar

to the plane wave cutoff preliminary calculations based on a difference in structural

conformations found that 512 k-points, corresponding to an 8× 8× 8 k-point grid is

adequate with an accuracy of 1 part in 1000, 0.3meV. However further convergence

tests found that the difference in energies between magnetic (rather than structural)

states converged more slowly. For energy differences between the spin-zero and

ferromagnetic calculations, shown in fig. 5.4, an accuracy of 1 part in 1000 (again

0.3meV) is not reached until a 16 × 16 × 16 kpoint grid is used. However in order

to balance the load between computing resources and accuracy, for the inititial
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Figure 5.5: convergence of the spin onto the y-direction, using the
spin-align method and EDFT.

calculations I used a 12× 12× 12 k-point grid, which gives an accuracy of one part

in 740.

The spin alignment procedure was able to effectively align the spin along a specific

direction. The convergence of the spin onto a specific direction is shown in fig. 5.5

and this reveals two features. First is that it only takes 2 scf cycles under the EDFT,

for the spin to align along the chosen direction from a random initial configuration to

one part in 10,000. Second is that in the first scf cycle there is hardly any convergence

at all, for while the Fe2 atom has converged the spin to one part in ten, the Fe1 atom

is still unstable and jumps about through the cycle, sometimes reversing direction.

The stabilisation of the spin moment and its alignment occurs in the second scf cycle,

likely because in the first SCF loop most of the minimisation is due to changes in

the charge density, since the Coulombic terms are much larger than spin polarisation

terms in the x-c potential. While the charge density is still being minimised, the

ensemble DFT (EDFT) minimisation algorithm used neglects optimisation of the

spin-direction in favour of finding an accurate charge density. As can be seen in

fig. 5.5, by the end of the first scf cycle the energy is converged to about 3 eV, and

by the end of the second scf cycle it is converged to 0.5 eV. The energy at the end

of the second cycle is less than the energy difference between the nonmagnetic and
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DM LDA DM PBE EFDT LDA EDFT PBE
NCM*+A no issue non-convergent no issue scattered, other state
NCM* no issue non-convergent no issue scattered, other state
CM* – converges slowly – scattered, other states
CM – converges – converges single state

Table 5.1: Calculations performed on bcc iron, star indicates that
no symmetry constraints have been applied. The “+A"
calculation used the spin alignment procedure.

ferromagnetic calculations of 0.9 eV.

The remainder of fig. 5.5 shows that the spin alignment procedure is very effective

at aligning the spins. By the end of the 7th scf loop the deviation flatlines at around

one part in 1010, a negligible quantity at the limit of double precision. Indeed further

scf cycles lead to only very small reductions in the overall energy less than 10−6 eV.

Such rapid and effective convergence shows that the spin alignment procedure does

not affect the convergence to the lowest energy state of the system.

To test whether the spin alignment procedure made an impact on any of the calcu-

lation properties, three different types of calculations were performed: a standard

collinear calculation with symmetry and occupancy constraints (CM), a collinear

calculation with only occupancy constraints (CM*), and a noncollinear calculation

with spin-settling (NCM*). Each of these types of calculation was performed with

two convergence methods, density mixing (DM), and EDFT, and the two functionals,

LDA and PBE. For each of these calculations, between 90 and 100 different initial-

izations or spin-setting configurations was used. A qualitative summary from each

of these calculations is found in table 5.1. The results show that the spin-setting

procedure does not affect the calculation properties or convergence from the collinear

calculations.

However the results show that the symmetry constraints in iron do not only reduce

the cost of computation; they also affect the convergence to low energy states. For

the LDA x-c functional there is no difference between calculations with or without

the constraints. However for the PBE calculations, the relaxation of symmetry leads

to differences between the DM and EDFT calculations. For the DM method the
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Figure 5.6: Energy differences between the principal bcc FM state,
and the lowest energy calculations of the low-spin and
split states against the number of kpoints per axis. The
scatter of the states is indicated by the length of the
bars, and calculated as the standard deviation of the
associated energies multiplied by a factor of ten. For
the 2nd bcc state at 20 kpoints, only 3 points and so
the standard deviation is not calculated and is omitted.

relaxation of symmetry the algorithm converges onto the same symmetric state,

though this requires a longer convergence time. The EDFT algorithm does not

converge onto a completely symmetric state. Instead I find two features in the

calculation results: there are a number of new low energy states that differ in energy

by about 1 meV, and the algorithm converges onto a scatter of configurations which

are localised around these low energy states. This energy difference is so small

that I need to perform additional convergence tests. The differences between these

magnetic configurations need to be examined, as small energy differences are often in

noncollinear magnetic systems. I find three of these new states, two in the collinear

calculations, and one in the noncollinear calculations.

5.2.3 New PBE states

Two new states were observable in the collinear calculations without symmetry

constraints using EDFT and PBE. These can be distinguished from their energies
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and the lowest energy calculations of the low-spin and
split states against the smearing width. The scatter of
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and the spin densities on the Fe atoms. A state of energy 1.5-2.0 meV above the

symmetric state was found in which the iron atoms were split into two distinct sites

of atomic moments 2.24 and 2.26 µB, where the symmetry-constrained state had a

moment of 2.23 µB per iron atom. I call this state the split state. The other state

had an energy of 1.2 meV above the symmetric state, and retained the primitive

unit cell of bcc iron but still broke cubic symmetries. It had a magnetic moment of

2.22 µB per atom. These two new states only obeyed inversion symmetry, possibly

due to the inclusion of time-reversal symmetry as a the only remaining symmetry

condition on reciprocal space.1

While there are differences in the number k-points required to calculate structural

and magnetic energy differences in iron, the differences between these new states

are small enough that they need to be converged in their own right. These states

are very low-lying in energy and are strongly dependent on itinerant phenomenon,

1Spin polarisation in many DFT systems is the most important component of magnetic structure.
This means I ignore the magnetic field as exchange-correlation, charge, and kinetic terms are much
larger. Due to this the calculations preserve time reversal symmetry, despite the magnetisation.
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so they must also be converged with respect to the smearing width of the EDFT

algorithm. The smearing width is a tool that aids the convergence onto a single

state in EDFT, because having a sharp cut-off in the band occupation at the Fermi

level can lead to the convergence onto undesirable metastable states. However it is

similar in its effect to raising the temperature of the material, and so for these low

energy states that are dependent on small band shifts, it must be considered.

Since the converged energies can be extremely small, the formula for convergence in

section 2.4 is not appropriate and so I compare the convergence of energy differences

between states on a linear scale. For repeatability all energy differences are taken

with respect to the symmetry-constrained calculation, as this does not display any

scatter. For the convergence with respect to k-points in fig. 5.6, the convergence

is slower than the convergences in section 5.2.2 and it takes until 20 k-points per

axis to converge to within one-tenth of an meV. The convergence with respect to the

smearing width calculated at 12 k-points per axis, is shown in fig. 5.7. The energy

difference only begins to meaningfully converge to one-tenth of an meV when the

smearing width is below 10 meV. Concerning the scatter of the different states, there

is no meaningful trend as the k-points are varied.

Of particular note in these calculations is that independent random initialisations

of the multi-electron wavefunction did not converge onto completely identical con-

figurations. Instead each of the different states hosts a scatter of different similar

configurations, so it is difficult to isolate the properties of each of the states. Further

as show in fig. 5.7, as the different parameters are converged, the scatter does not

disappear, although it does converge. Fortunately I found that the scatter is suffi-

ciently small that the different states can be distinguished both by their energy and

also by their magnetic configuration, so the particular properties of the state can

be determined, on the condition that a large enough number of different randomly

initialised calculations are performed. However this is undesirable as it considerably

increases the computation load of the calculations, additionally if hidden in the

scatter there are competing states of very similar energy, calculations like those
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performed here are unable to isolate them.

The data suggest that the energy of the symmetric state was calculated to within

0.05 meV. Energy differences between these states were not converged with respect

to the energy cutoff of the basis set. This was both because performing a convergence

between these new states is costly due to the need to perform many calculations to

confirm that the scatter does not bias the result, and also because it was already

found that the energies between magnetic states were previously converged to one

tenth of a milli-electronvolt at 800 eV. The convergence parameters required are

equivalent with the calculations performed elsewhere, which found that 4000 k-

points in the primitive unit cell (13×13 × 13 in the unit cell used here) gave an

energy convergence of 0.5 meV per unit cell, and found that a smearing width (or

effective temperature) of 0.04 eV gave a convergence of 0.5 meV per unit cell [172].

In order to find the origins of these low energy states, I must examine the details

of their spin and charge densities. The difference between the symmetric and split

states is shown in fig. 5.8. This shows that transition from the alternative to the split

state increases the charge density in the second-nearest neighbour bonds between

atoms with a lower spin moment magnitude. The charge density on the same bonds

between the atoms with a high spin moment magnitude is instead reduced. This

charge redistribution of the bonds appears to satisfy cubic symmetries. The cubic

symmetry is only visibly broken close to the Fe nuclei, in which both iron sites show a

redistribution of charge density in their d-orbital states. This reorganisation satisfies

inversion symmetry, with the centre of inversion on the iron atom. The lobes of

the d-orbital density increase are coordinated in the ±b direction, and towards the

second nearest neighbour bonds between Fe1 atoms, which are parallel to b. However

the orientation of these lobes of density change do not obey a cubic symmetry. This

behaviour of the d-orbitals is the same for both iron sites. The orientation of these

regions is the same for both iron sites. The non-cubic redistribution of the core states

contrasts with the approximately cubic redistribution of the charge density in the

interstitial regions. What this implies is that these two phenomena are independent,
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Figure 5.8: Density differences between the split and symmetry con-
strained states in PBE, computed as a change from the
transition from the split to the symmetry constrained
state. Shows selected regions of density change, yellow
surfaces enclose regions of increase, green surfaces en-
close regions of decrease, charge density increases more
or decreases less on the darker side of the isosurface.
Portions of surfaces in the octant of the unit cell closest
to the viewer have been removed for clarity.
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Figure 5.9: Spin differences between the split and symmetry con-
strained states in PBE, computed as a change from the
transition from the split to the symmetry constrained
state. a) zero-spin isosurface, spin density decreases in
the regions on the bold side of the isosurface. b) se-
lected regions of spin density change, blue represents
regions of increase, green represents regions of decrease
(Fe atoms have positive spin) In b) portions of surfaces
in the octant of the unit cell closest to the viewer have
been removed for clarity.

or at least represent independent responses of the material to a common cause.

As regards the spin in the split state, the difference between the symmetric and split

state is shown in fig. 5.9. Most apparent from fig. 5.9 a) is the inequivalence of

the Fe1 and Fe2 sites, as they have differing spin magnitudes. Like the interstitial

changes in charge density the interstitial spin-zero isosurface roughly satisfies cubic

symmetries and is similar in for the isosurfaces observed in the transition from

the zero-spin to symmetric ferromagnetic states, shown in fig. 5.2 b). However

this isosurface in the region between the atoms hides changes to the spin moment

magnitude on the d-orbitals of the iron atom. It seems these variations near to the

nucleus are likely related to the density changes, since they obey the same inversion

symmetry, however the lobes are not aligned along any of the same directions. There

are similar features on the low spin iron atom. While the spin densities changes

near the nucleus are different between the two iron sites, it seems that they differ

by only an almost constant shift in the spin polarisation, as they retain the same
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Figure 5.10: Charge density differences between the alternative and
symmetry constrained states in PBE, computed as a
change from the transition from the cubic to BCC
state. a) Selected regions of density change, yellow
surfaces enclose regions of increase, green surfaces en-
close regions of decrease, charge density increases more
or decreases less on the darker side of the isosurface b)
isosurface of zero charge density change, regions on the
yellow side of the face are regions of charge increase.
In both images portions of surfaces in the octant of
the unit cell closest to the viewer have been removed
for clarity.

structure near to the nucleus. This behaviour provides evidence that this state is a

combination of both independent itinerant and localised interactions.

The charge density changes for the alternative state are shown in fig. 5.10. The

two iron sites are equivalent in this state. Outside the iron cores, a transition from

the symmetric to the alternative state leads to small increases in the density of the

nearest-neighbour bonds, and a small reduction in the density elswhere. However in

the core of the atomic orbitals, the density changes are extremely similar to those

present in the split state.

The spin density changes for the alternative state are shown in fig. 5.11. As for

all the previous changes, these changes can be divided into core and interstitial

structures. Outside the core, the spin density isosurface is very similar to the spin

density isosurface from fig. 5.2 b), except this time the blue regions enclose regions of

spin density increase. This means that there is a drop in the confinement of the spin
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Figure 5.11: Spin differences between the alternative and symmetry
constrained states in PBE, computed as a change from
the transition from the cubic to BCC state. Shown are
selected regions of spin density change, blue represents
regions of increase, green represents regions of decrease
(Fe atoms have positive spin). Portions of surfaces in
the octant of the unit cell closest to the viewer have
been removed for clarity.
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density, as it moves from regions close to the iron atom to regions far away. Close to

the iron atom, there are regions of both increased and decreased spin density. Both

of these regions form structures with six lobes around each atom, which indicates

the d-character of the orbitals involved. The isosurfaces almost show three-fold and

two-fold symmetry, with the two-fold rotation about b, and the three-fold rotation

about [1,0,-1]. However while the two-fold rotation is shared with one of the cubic

four-fold rotations, the three-fold symmetry is not aligned along any of the cubic

three-fold rotation axes.

From these results I can distinguish that there are two separable contributions to

the differences between the states, a reconfiguration of the core states driven by

localised d-electrons, and changes that affect the interstitial regions, which leave the

cubic symmetry unchanged. The alternative state is very similar to the symmetry

state in the non-core regions; it has the same magnetic moment, and only differs by

a slight transfer of electrons from near the iron atom to regions further away. The

only significant differences originate in the reconfiguration of d-orbitals in the core

region. In the split state, there is a similar reconfiguration of d-orbitals in the core

region. However this is accompanied by an expansion of the primitive unit cell to

one that contains two iron atoms. In common between to all the calculations is the

reconfiguration of d-orbitals in the core region, although this reconfiguration incurs

an energy penalty. From this I conclude that the EDFT convergence algorithm is

being consistently misled towards this high energy configuration.

Hubbard previously observed that the localised interactions are determined mostly by

Coulombic interactions, and the itinerant phenomena by electron exchange between

the nuclei [164, 185]. Additionally I am able to distinguish phenomena with two

distinct symmetries in Fe, changes in the d-orbitals localised around the nuclei that

obey only inversion symmetry, and changes that affect the interstitial regions as well

which satisfy a cubic symmetry. From this I conclude that the changes that satisfy the

cubic symmetry are caused by itinerant phenomena, and that they can be separated

from the localised changes. It might therefore be expected that there is a third
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low-energy state in which the two iron sites are inequivalent like in the split state,

but in which the localised d-orbitals are the same as in the symmetry-constrained

state. Its energy would be the difference between the split and alternative states,

about 0.3-0.8 meV.

noncollinear state The noncollinear state that was found had an energy of

5.1 meV. In this state the two iron sites are equivalent like in the alternative state,

however the sites are equivalent only under an inversion about [1
4 ,

1
4 ,

1
4 ], the primitive

unit cell contains two iron atoms. The noncollinear state has a higher spin moment

per iron atom of 2.26 µB, as such I call this state the increased spin state. For the in-

creased spin state the energetic, and spin and charge density differences with respect

to the symmetry constrainted state are similar to the same differences calculated for

the split and alternative states, therefore previous convergence tests apply to this

state.

This state was only found in the noncollinear calculations, which implies that the

noncollinear moments are important for the properties of this state. A graph of

the energy scatter against the residual noncollinear magnetic moment magnitudes

is shown in fig. 5.13. It shows that there is no relationship between the energy of

a state and the magnitude of the residual magnetic moment. Typical regions of

noncollinear residuals are shown in fig. 5.14. These show that much of the noncol-

linear spin is located in the core regions. Noncollinear spins display a preference

for antiferromagnetic configurations. These are the longest-range perturbations per-

mitted in the unit cell used, and since the lowest energy magnetic excitations occur

in iron occur over long ranges [186], one would expect to find such deviations at

low energies. One other region where nonzero magnitudes of noncollinear spins are

found is on the zero-density spin isosurface which is shown in fig. 5.2 b). However

the extremely low magnitudes and the lack of correlation between their direction

implies that noncollinear spin density residuals are energetically and functionally

negligible by comparison to other effects, and that their presence is merely a result
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Figure 5.12: Differences between the increased spin and symmetry
constrained states in PBE, computed as a change from
the transition from the increased spin to the sym-
metry constrained state. a) Selected regions of dens-
ity change, yellow surfaces enclose regions of increase,
green surfaces enclose regions of decrease, charge dens-
ity increases more or decreases less on the darker side
of the isosurface. Ribbing caused by interpolation. b)
Selected regions of density change, blue represents re-
gions of increase, green represents regions of decrease
(Fe atoms have positive spin). Portions of surfaces in
the octant of the unit cell closest to the viewer have
been removed for clarity. In both images portions of
surfaces in the octant of the unit cell closest to the
viewer have been removed for clarity.

of the negligible penalty for localised noncollinear spin polarisation in these regions.

The differences between the increased spin state and the symmetry constrained state

must therefore be caused by differences in the spin charge density. The change in the

charge density on the transition from the symmetry constrained to the increased spin

state are shown in fig. 5.12 a). As before I can separate the charge density changes

into core and non-core changes. Near the nuclei the same d-orbital structure found

in the split and alternative states is present. Outside the core there is more electron

density on the next-nearest-neighbour bonds than in the symmetry constrained

state, and less electron density on the nearest-neighbour bonds. Transition from

the symmetry constrained state to the increased spin state, while also strengthening

the magnitude of the spin moment, reduces the electron density on these nearest-
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neighbour bonds. This behaviour contrasts with the expected behaviour, as the

transition from the nonmagnetic to the magnetic state, shown in fig. 5.2, involves

an increase of the charge density on the nearest-neighbour bonds, yet the increased

spin state has a higher spin polarisation. It is this behaviour that distinguishes the

increased spin state from the split state, for while the atoms have the same magnetic

moment as the high-spin atom in the split state, it is the next nearest neighbour

bonds between low spin atoms that have an increased electron density in the split

state. Due to these differences, as well as the higher energy of the increased spin

state, it is at least partly independent from the split and alternative states.

The spin density changes on a transition from the symmetry constrained state to

the high-spin state is shown in fig. 5.12 b). This gives insight into how the density

changes lead to a higher overall spin. The d-orbitals coordinated along the second

nearest neighbour bonds have a reduced spin moment magnitude. This means all

the increase in the spin density is localised on those orbitals oriented in the direction

of the nearest-neighbour bonds. In the core regions around the iron atom, the

spin density changes have the same three-lobed regions of increased electron density

around the nucleus, but unlike the split and alternative states these density changes

are contiguous to the non-core regions. It is possible therefore that this state has

been isolated in the calculation by a rapid convergence in the density of the core

regions to a low energy state, which is then followed later in the calculation by

convergences in the non-core regions.

All three new iron states are of very slightly higher energy than the symmetry-

constrained ground state, between 1 and 5meV, and display a scatter as many

self-consistent states of similar energy were found. These energies follow a trend:

the more degrees of freedom that are permitted, the higher the energy. The obvious

conclusion to draw here is that the EDFT algorithm used is unable to fully explore

the energy space of the different electronic configurations. The larger the number

of degrees of freedom that are permitted, the less effective the EDFT algorithm is.

However the different energy states follow specific patterns. These small deviations
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Figure 5.13: scatter plot of the residual noncollinear moment mag-
nitudes against the energy in the different calculations
under which NCM* under EFDT and PBE converged,
energy differences are calculated to within 10 neV.

from the symmetry of the lowest-energy configuration can be divided into deviations

near the nucleus, and deviations that affect the whole of the unit cell. These two

types of deviation match with Hubbard’s results [164, 185]. He found that the

energies of localised and itinerant deviations were comparable, though the energy

changes from localised deviations were mostly caused by Coulombic forces, and the

energy changes from itinerant deviation were mostly caused by internuclear exchange

processes.

5.3 Discussion of iron

The motivations of this work were to test the spin-setting procedure, and to examine

the effect a relaxation of symmetry constraints has. The spin setting procedure

was effective in iron calculations performed here: in conjunction with the EDFT

method it was able to align the spins rapidly onto the desired direction in only 3 self-

consistent field iteration loops. As the calculation results in table 5.1 show, it did not

affect the ability of the algorithm to converge onto low-energy states. Further, as the

calculation proceeds, if the initial directions specified are correct and the calculation

converges onto a self-consistent state, the perturbation induced by the spin alignment

procedure tends to zero. This means that it also provides a straightforward way to

test if the spin orientation specified is in fact a ground state. In cases of a poor choice
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Figure 5.14: Selected regions of residual noncollinear magnetic mo-
ments. Blue and green regions have opposing moments.
Portions of surfaces in the octant of the unit cell closest
to the viewer have been removed for clarity.. In both
images portions of surfaces in the octant of the unit
cell closest to the viewer have been removed for clarity.

of spin orientation, the spin alignment procedure will continue to have a discernable

effect as the calculation proceeds to its conclusion. This means that it can be

applied to test the stability of chosen spin configurations, and determine if they

instead need to be canted like in the noncollinear U3X4 (X=P,As) compounds [56].

This is an advantage over fixed spin or initialisation methods that enforce particular

symmetries, when they initialise a spin configuration.

However the relaxation of the symmetry condition revealed that noncollinear calcula-

tions suffer from a problem: the failure of a convergence algorithm to find low energy

states. The existing EDFT and DM convergence algorithms have been developed

to function in collinear and symmetric calculations. Their straightforward applica-

tion to a collinear symmetry-unconstrained calculation revealed that for metallic Fe,

while the DM algorithm was able to occasionally find the ground state after a large

number of iterations, EDFT converged fairly rapidly onto metastable higher energy

states (1-2 meV). As the symmetry was relaxed further so spins were allowed to

become noncollinear, these problems intensified and the DM algorithm was unable

to converge onto any states in 60 iterations, and the EDFT algorithm converged
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onto an even higher energy state (5 meV).

This sort of failure in the convergence is typical for itinerant systems. In such systems

the DM algorithm suffers from “charge sloshing” as the charge moves relatively fluidly

between each of the different low energy states. It is for this reason that EDFT

is preferable to DM in itinerant systems. However while the EDFT algorithm is

extremely effective at converging onto specific states, in so doing it risks converging

onto the wrong state. An important observation however, was that the energetic

deviation from the lowest energy state increased, as a larger number of degrees of

freedom were permitted. According to DFT, as detailed in chapter 2, the energy

gradient dE
dρ(r) = 0 for any position r in the unit cell. Increasing the number of degrees

of freedom therefore needlessly increases the complexity of the solution space by

permitting energetically and configurationally equivalent deviations from the correct

ground state. When one observes that the self-consistent deviations from the correct

ground state were linked to the electronic structure in iron, one must expect that

in an asymmetric system, the physical processes that lead to the asymmetry will

distort the energy gradient dE
dρ(r) , lift the degeneracy, and remove the problem.

However this line of reasoning does not extend to frustrated systems. In these systems

there are processes that cannot be mutually satisfied. In such cases there are often

many states of similar energy. While EDFT is effective at finding a self consistent

state, the calculations on iron suggest that for a sufficiently frustrated system, in

which there must be many degrees of freedom corresponding to the different mutually

unsatisfiable physical processes, the correct ground state may be very difficult to

find. I will therefore examine these deviations from the ground state.

There are two distinct sources of difficulty in the search for the ground state. Through-

out the calcuations I find a small scatter as the EDFT algorithm converges onto

a variety of different states. These scattered states are tightly localised around

different metastable configurations. The scatter causes problems as it can lead to

the mis-identification of states: if a scattered state is found which is very different in

energy from the intended state, this can cause an incorrect assessment of the prop-
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erties of the configuration. The second and larger problem is the convergence onto

the metastable configurations, as these prevent the algorithm’s convergence onto the

ground state that one desires, and are unlikely to be solved by some incremental

improvement to the EDFT algorithm.

How might these problems be overcome? The scatter can only successfuly be dealt

with through the improvement of the algorithm’s convergence behaviour, as difference

in energy between the scattered states is too small. However the convergence onto

the metastable configurations ought to be tackled using a different procedure, as

from a noncollinear perspective one will often be interested in the energies and

properties of these configurations. This would imply that one either uses a different

convergence algorithm to search for the ground state, or that one constructs a series

of different initialisations, each tailored to converge onto the desired state.

However a tailored initialisation of the calculation requires advance knowledge about

the sorts of states that are required. This means that this approach will necessarily

require advance knowledge of the system in question. As DFT has proven itself to

be useful as a method to accompany and drive, rather than simply verify research.

While an exhaustive search of different states may be performed, it would be a time

consuming task that may be computationally unfeasible or impossible, so while a

restricted search over the permitted configurations may be performed, it will not

guarantee that the lowest energy state is actually found.

This behaviour of these itinerant electrons therefore also highlights the success of

the symmetry-fixing method for determining specific noncollinear spin configura-

tions [170, 171]. In iron, if the symmetry of the system is restricted to the correct

bcc configuration, this improves the speed of convergence onto the correct low-energy

state and the size of the calculation (see chapter 2.2). What I interpret from this,

is that even if the correct symmetry of the system is not known, due to the relative

ease of performing a high symmetry calculation, structure searches will be much

easier to interpret and compare if the high-symmetry state is used as a reference,

even if it does not have the lowest energy.
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Figure 5.15: Crystal structure of MnO, showing the FCC arrange-
ment of alternating planes of oxygen and Mn atoms.

This analysis indicates that the largest hurdle to low-symmetry calculations is the

multiplicity of states available, and the tendency for algorithms to converge onto

metastable states. The spin-setting procedure developed can be effective at orienting

the spin moment along the desired direction, and additionally does not bias or

otherwise affect the convergence algorithm.

5.4 Method example: manganese oxide

The spin setting procedure was found to be able to effectively initialise specific

magnetic configurations in iron, in which the reorganisation of the Fermi surface
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drives magnetic order. However magnetic phenomena caused by spin polarization

are also found in insulators. Among these insulators there is a large class of system

which can be analysed using the Ising model, in which most of the spin polarisation

is localised in the electron density around individual nuclei, and in which the spin

moment magnitude of this polarisation is fixed for each nucleus. This occurs because

the electrostatic interaction of electrons on incompletely filled atomic orbital shells is

strongly repulsive while the nuclear potential is strongly attractive, and the overall

energy is minimised when the electron orbitals are made to be antisymmetric under

exchange. This means a spin-polarized atomic configuration, in which the electrons

have parallel spins and the wavefunction is antisymmetric, has a lower overall en-

ergy [187, Ch. 11]. These on-atom exchange and correlation interactions are typically

quite large, and so the magnetisation on individual atoms can persist well beyond

room temperature and is resilient to perturbation by inter-atomic interactions that

affect spin polarisation. As a result magnetic order in these materials arises from

interactions between on-atom spins, instead of from correlations between itinerant

quasiparticles as in iron.

As in the case of iron I will test the use of the spin-setting procedure and the

relaxation of symmetry constraints on manganese oxide (MnO), which is an example

of an Ising-like system. MnO crystallises in the fcc rock-salt type structure at room

temperature [188], this structure is shown in fig. 5.15. The manganese atoms host

a net spin moment magnitude of about 4.6 µB [189, 190]. This value is close to the

value of 5 µB expected for a half-full d-electron shell. According to Hund’s rules this

half-filled shell is stable to perturbation, and MnO is also an insulator with a band

gap of nearly 4 eV [191]. These properties have allowed theorists to successfully use

Ising-like spins in which the spin moment magnitude on each atom is fixed [192, 169],

in contrast to itinerant magnetic systems like iron. Additionally these properties led

Anderson to consider it as an ideal example of superexchange.

As MnO is an insulating Ising-like system the electrons around the atoms are localised,

and so there is only a small overlap between adjacent atomic orbitals. Anderson [169]
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found that this small overlap between adjacent orbitals determines the magnetic

order. The important interactions between these orbitals are the same exchange

processes that cause the localised Ising-like spins, except that the electron orbitals

relevant to the magnetic behaviour are on separate atoms rather than the same one.

Anderson identified two distinct types of interaction in spin polarised systems. The

largest is direct exchange between adjacent magnetic ions, which usually dominates

when it is present and like for on-atom orbitals results in a ferromagnetic spin

configuration. The second is superexchange, which is so named because the relevant

orbital overlap between magnetic ions occurs on top of a third atom with no net spin.

Superexchange results in an antiferromagnetic configuration since it is energetically

unfavourable for a net spin to exist on the neutral atom. It is only decisive in cases

where direct exchange is negligible, as in the case of a half-filled d-shell like MnO.

As MnO is cooled below TN = 118 K, the magnetic moments order into an an-

tiferromagnetic configuration, in which the spin moment direction alternates in

planes perpendicular to the [1,1,1] direction. This magnetic order is accompan-

ied by a structural change that occurs at the same temperature, in which the

crystal contracts slightly in the same [1,1,1] direction, which results in an overall

R3̄m symmetry [188, 193]. This structure is further complicated by interactions

between the lattice and the spin structure, that result in an overall local mono-

clinic symmetry[194, 192], from which the rhombohedral R3̄m is recovered over

approximately 0.1 µm.

As both the rhombohedral and monoclinic deviations from the cubic symmetry are

small, they can usually be ignored in computational and theoretical works on the

mechanism behind drives magnetic order [169, 195, 196]. When these additional

effects are discounted, the magnetic unit cell is relatively simple and comprises only

4 atoms, and this simplicity has led it to be used as a test case for a range of different

methods [169, 192].
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5.4.1 Computational background

In computational studies MnO can be treated as part of a broader group of anti-

ferromagnetic transition metal oxides, which includes FeO, CoO, and NiO. This is

because all these materials are insulators with magnetic order determined by ex-

change processes. Further, their properties are strongly dependent on the d-orbitals

on the metal ion, which are difficult to model in DFT. Early DFT calculations on

the transition metal oxides by Mattheis [197, 198] that used Hartree-Fock provided

important information about the structure of the d-orbitals, namely that the ex-

citation of an electron to the unoccupied d-orbitals was energetically very costly

(around 5 eV) in accordance with Hund’s rules. This suggested that magnetic order

will not cause large changes in d-orbital occupation, and the magnetic moment on

the transition metal ion. However Mattheis’ work was unable to determine whether

a band theory approach that contained delocalised electrons, was the appropriate

means to study the magnetic order.

However a short communication by Anderson which detailed the success of a band

structure approach in the modelling of core orbitals, inspired calculations in the

early 1980’s based on the LDA [196]. These constituted a substantial improvement,

as they were able to model the antiferromagnetic order and provided evidence for

the superexchange processes, in addition to confirming the high energy of bands that

contained unoccupied d-orbitals. However these calculations had a single notable

failing, namely the prediction that MnO is a conductor with a Fermi surface, ex-

cept when in the antiferromagnetic configuration. This conflicts with experimental

observations that MnO is an insulator even when there is no magnetic order.

The inability of the LDA to effectively model the d-electrons came to be a particular

problem with the discovery of the cuprate superconductors [199], which necessitated

the development of new methods to account for these d-electrons. Particular success

was obtained for the transition metal oxides with the parameter based LDA+U

method [200]. However while in MnO a good choice of the relevant parameters is
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able to predict a band gap of 3.8 eV, compared to the experimentally measured

band gap of 4 eV [191], this is accompanied by a much worse prediction of the

magnetic moment at 1.7 µB [201]. The field has therefore continued to develop,

and contemporary work uses perturbative corrections on a DFT basis to obtain the

correct band gap [195], though these methods are beyond the scope of a study which

focuses only on methods in DFT.

Due to the wealth of comparable calculations on MnO, and its properties as an

insulating magnetic system driven by exchange processes, I have chosen it as the

second example for the use of the spin-setting method. This will allow a comparison

between magnetic order driven by either itinerant or localised physical processes.

5.4.2 Convergences

To account for exchange and correlation, I will use PBE’s exchange and correlation

functional, which gives a marginally higher band gap of 0.9 over 0.8 eV for the

LDA. While these values are small by comparison to experiment [191], the presence

of a band gap for both functionals indicates DFT does at least succesfully obtain

the conductive properties. Convergence calculations were performed on MnO. The

convergence of the cutoff energy of the plane waves, shown in fig. 5.16 a), was

performed comparing the energies of zero-spin calculations, and the ground AFM

state. Using the method chapter 2.4, it was found that this energy difference was

converged to one part in 10,000 at 1300 eV. This corresponded to a convergence in

the relative energy of below 1 meV. For the convergence with respect to k-points it

was found that the zero-spin calculations converged much more slowly than the AFM

state, since it does not have a band gap. Therefore for the convergence calculations

I used the total energy of the AFM state. Energy differences between states must

converge at least as fast as this quantity. The convergences, shown in fig. 5.16 b),

show that at 512 k-points, the energy is converged to below 1 meV.
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Figure 5.16: Convergence graphs a) the convergence of the en-
ergy difference between spin-zero calculations and
the ground state b)Convergence of the energy of the
ground state with respect to the number of kpoints, n.
Here E∞ taken as E1331.
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DM EDFT
NCM*+A occasional convergence two states
NCM* occasional convergence, FM state FM state
CM* converges slowly converges
CM converges converges

Table 5.2: A table of the calculations performed on MnO, star in-
dicates that no symmetry constraints have been applied.
The “+A" calculation used the spin alignment procedure.

5.4.3 Results

Noncollinear spin alignment results To start, it is useful to examine the elec-

tronic structure of MnO, calculated under collinear and symmetry constraints. The

most important quantity for the determination of magnetic order is the spin density

shown in fig. 5.17. The figure shows 4 isosurfaces of the spin density, the green

and red spheres surround the manganese nuclei and are regions of high up, or down

spin. The purple and blue surfaces are regions of lower spin density. The calculation

shows that as expected from Hund’s rules, the manganese atoms have a large spin

that points in a uniform direction. In the theory of superexchange, the interactions

which drive the antiferromagnetic order are localised on the oxygen atom. However

while the oxygen atom has no overall spin moment, there is spin density around the

oxygen atoms. It can be seen that the spin polarised orbitals that extend from the

manganese atoms onto the oxygen, on which there is are complex structures in spin

density.

From the spin density in fig. 5.17, one can observe that the important orbitals to

consider on the oxygen are the p-orbitals, as the lobes of spin density close to the

nucleus come in pairs. What is most striking is that the spin density around the

oxygen oscillates: near to the oxygen nucleus the net spin density is aligned with

the nearest manganese plane, but in between the oxygen nucleus and the manganese

plane, the net spin density reverses and is instead anti-aligned with the Mn plane.

Anderson in his theory of superexchange inferred that the antiferromagnetic con-

figuration is preferred since it reduces the kinetic energy of the spin up and down
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Figure 5.17: Isosurfaces of the spin density in Mn, around the Mn
atoms at the centre of red and green isosurfaces and
the oxygen atom in the centre of the image. Green/red
isosurfaces are for high spin up/down densities, and
blue/purple are for low spin up/down densities. Spin
polarisation is always larger on the darker side of the
isosurface.
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orbitals, by allowing them to extend onto and share low energy orbitals on the

oxygen atom [169]. However a spin-up orbital cannot extend onto a net spin-down

Mn atom, so must be be curtailed before this point. It may be that the orbital that

is most effectively curtailed actually extends further away from the oxygen nucleus,

since there is a significant spin-up polarisation in between the oxygen atom and

the spin-down maganese atom. However regardless of the mechanism, the oxygen

orbitals which drive the exchange process have an occupation cannot be explained

by a simply in terms of atomic oxygen orbitals, since these have reflection symmetry

and there is a clear anisotropy in the spin density.

A range of different types of calculations were performed on MnO in order to test

how the spin-setting procedure affected the final result. The results of the calcu-

lations are shown in table 5.2. For each of these types, at least ten calculations

were performed. They show that collinear calculations converged, even when the

symmetry conditions were relaxed and DM was used. Instead the relaxation of the

collinear restriction was more significant. For the DM calculations, the algorithm

was successfully able to converge onto an antiferromagnetic state. However this state

was higher in energy than the true ground state of the system by 20 meV. The use of

the spin alignment procedure with DM calculations did not change this result. For

EDFT calculations, an unconstrained NCM calculation regularly converged onto a

ferromagnetic arrangement, and was unable to find to the AFM ground state. The

use of the spin alignment procedure partially solved the problem, as when it was

used, the system found the AFM state in roughly half of the performed calculations,

when the system was randomly initialised.

It was found that when symmetry constraints were relaxed the DM algorithm was

still able to find the low energy states of the system. However it was unreliable. While

the EDFT found a self-consistent state in every calculation, the DM calculation did

not. It appears that the convergence of the DM algorithm is sensitive to the initial

randomised wavefunction of the system, and the size of the parameter space that

must minimised. Where EDFT uses the gradient of the Hamiltonian to find a low
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energy state, DM uses an approach that weights different density configurations

according to an estimate of their energy. While this can be very efficient, in cases

where the energy landscape is quite complex with many similar configurations, as

the density configurations are not self-consistent the estimate of the energy is not

precise enough to allow the algorithm to converge.

Starting from a randomly initialised state is not unbiased towards antiferromagnetic

or ferromagnetic order. To explain this one can recall that the largest energy contri-

butions that concern the magnetism arise from satisfying the high-spin state on the

Mn atom. This is because the energy difference between the FM/AFM configurations

is about 0.31 eV, but the energy difference between a zero-spin constrained state and

a spin state is much larger, at around 4.5 eV. As discussed by Anderson [169], indirect

antiferromagnetic exchange processes are much smaller than ferromagnetic direct

exchange processes, except in the special case of the half-full d shell when direct

exchange is not permitted. What this means is that early in a calculation, when the

spin and charge densities are not in the lowest-energy half-full d configuration, the

spin states on adjacent Mn ion will tend to align. Once the spins on the manganese

have aligned, the remainder of the calculation will be biased towards a ferromagnetic

configuration.

When the spin-setting procedure is used, the situation is improved as around half

of the calculations find the antiferromagnetic ground state. What this indicates is

that for the process that biases the ferromagnetic order, the electrostatic and kinetic

energy contributions are roughly the same as the spin-polarised part of the local

exchange and correlation energy contributions. As only the self-consistent half-full

d configuration has a physical analogue, this fact is not very interesting in itself.

However what it does indicate is that the spin-setting procedure is not appropriate

for this class of system. The inadequacy is caused by two phenomena: that the

local x-c correlation energy associated with the spin polarisation is less that the

kinetic and electrostatic energy that maintains the particular stability of a particular

configuration, and in which there are processes early in a calculation that bias the



5.4. Method example: manganese oxide 152

results towards a particular configuration that are larger than or comparable to the

x-c correlation energies for that part of the calculation.

In MnO the resilience of the spin configuration, when subjected to even an inver-

sion of the spin-polarised part of the x-c functional, indicates the resilience of the

configuration to perturbation. For these reasons the problems associated with other

spin initialisation methods detailed in chapter 5.1, specifically that they will bias

the calculation to converge onto a specific incorrect electronic state, are no longer

important. This is because the resultant possible states are so resilient to perturba-

tion that even a relatively poorly chosen initialisation will still give a good result, at

least after the perturbation is removed. Therefore while the spin-setting procedure

is better than nothing, it is not likely to be the best choice for the initialisation of

Ising-like systems with ordered magnetic structures resistant to perturbation.

5.4.4 Future work and preliminary study of YMnO3

MnO is an insulator with a large band gap and a stable magnetic configuration that

is resistant to perturbation of the order of eV in the spatial potential2. However

persistence of the insulating behaviour of MnO into the high temperature disordered

phase indicates that an insulating band structure may not necessarily lead to a

resilient ground state spin configuration. This kind of behaviour is to be expected in

frustrated systems, in which there are competing magnetic interactions that cannot

all be satisfied. An example of such a material is YMnO3, which is composed of

manganese atoms arranged on the corners of a triangle. The magnetic interactions

between these atoms are mediated in the same way as in MnO, via a superexchange

process over nearby oxygen atoms.

Neutron studies on YMnO3 have revealed that the lowest energy state is the same as

that for a classical system with an Ising Hamiltonian, that is the spins are all angled

by 120o with respect to each other [202]. Recently performed DFT calculations

2excluding the structural distortions from cubic symmetry present in the ordered magnetic
phase
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suggest that density functional theory is able to replicate this triangular arrangment,

however there are a large range of different configurations, and the study only

explicitly included all the symmetry states that were compatible with the neutron

results [203], so it is possible that DFT is in fact unable to replicate the correct

results. Of additional concern is that the states in YMnO3 may like MnO have the

wrong electronic properties, for example they may be conductive when the material

is reality an insulator [195].

However preliminary calculations on YMnO3 that do not constrain the symmetry find

that the state space is too large to permit a consistent minimisation. Foremost among

them appears to be that the spin on the manganese is not accurately reproduced;

while a spin is present it does not point in a uniform direction. Due to the nature

of the spin setting procedure, it does not reorient moments on the Mn atom, so

that they all point in the same direction. Due to the nature of the system, density

mixing is not effective. Therefore this inconsistency is possibly a failure of the EDFT

minimisation algorithm, as is converges onto a metastable configuration that very

dissimilar to the true ground state.

The potentially most fruitful, but possibly most complex task, would be to develop

an improved convergence algorithm that is able to take account of at least the many

small metastable states like those found in iron. The principle challenge is that

EDFT is extremely effective at finding a nearby self-consistent state, even when

a user is not in fact interested in a nearby state, but instead in the lowest energy

state. Noncollinear systems are especially prone to falling into a particular local

well, since the range of available configurations is so large, and a rigorous search

of them all is difficult. For example the DFT calculations on YMnO3 indicate that

the moment is canted slightly out of the plane [203]. However there this implies

that there are nearby states in which not all the moments are all canted in the

same direction, which likely have a similar energy. The development of an algorithm

that can consistently find the low energy state regardless of these traps or pitfalls is

therefore highly desirable.



5.5. Conclusions 154

5.5 Conclusions

This work has examined the efficacy of the spin setting procedure in initialisation of

the magnetic structures of iron and MnO, and the relaxation of symmetry constraints.

It was found that its effectiveness was dependent on the physical properties of the

system in question. In iron the spin-setting procedure could be used to calculate a

ferromagnetic configuration, and aligned the spin in the desired direction effectively

after roughly the correct charge density had been found.

However relaxation of symmetry constraints led to difficulties in the search for the

correct ground state in iron. It was found that when the PBE x-c functional was used

the DM algorithm was unable find the correct ground state, and when the EDFT

algorithm was used the calculations were consistently misled towards a number of low

symmetry self consistent states. These states were up to 5 meV in energy above the

ground state. In the case of the iron unit cell used, there are 96 different symmetry

operations. This results in a large space of degenerate configurations when the

symmetry constraints are relaxed, and it is likely that the degeneracy causes the

difficulty in the convergence to the correct state. As a result in many asymmetric

noncollinear systems a low symmetry state is unlikely to cause the same problems.

Such reasoning will not apply to certain frustrated systems. This is because in

iron, the properties of the asymmetric states could be explained by reference to

two distinct physical phenomena present in the system. As a result in a multiply

frustrated system, it may be possible that there are many states of similar energy,

which results in an even larger solution space, in which the lowest energy state is

not symmetric like in iron. It is feasable that in such a system the DM algorithm

may fail, and the EDFT algorithm might be consistently misled. This will make the

study of such systems under DFT difficult. For these systems a new convergence

algorithm may be needed.

In MnO I found that a random initialisation of the calculation does not lead to an

unbiased search of the different spin configurations of the system. Instead based
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on a consideration of exchange processes [169], it is likely that the preferred spin

configuration of a high-energy charge density configuration is different to that of

the correct ground state, which causes an inherent bias to a calculations. It was

found that the spin setting procedure is not able to consistently push the calculation

towards the correct ground state configuration, and this was both because the energy

of the spin-polarised part of the exchange and correlation potential is comparable to

other energies in the system, and because the different configurations are resilient to

changes in, and of the order of, the x-c potential. One of the motivations behind using

the spin setting procedure was to avoid the biasing the convergence onto a similar

configuration, but which was not the correct ground state. However the spin states in

MnO are resistant to changes in the x-c potential, in that the different available spin

configurations are well-separated in energy and it is difficult to transition between

them. This means that the use of one of the other spin initialistion methods is

unlikely to bias the calculation to a particular incorrect configuration. It therefore

seems the spin setting procedure is not the best choice of initialisation procedure for

systems such as MnO.

Calculations on MnO performed here show how in DFT the mechanism of super-

exchange causes the small pockets of the electron density around the oxygen atom

to become spin polarised, as the orbitals on the manganese reduce their kinetic

energy by extending onto the neighbouring oxygen orbitals. The small unit cell of

manganese oxide makes it an appropriate material to test new calculation methods,

and I have shown that the current widely used DM and EDFT algorithms are both

able to function in symmetry unconstrained non-collinear systems. As MnO is an

insulator, the band gap means that the ground state spin configuration of the sys-

tem is more stable to with respect to changes in the combined effective potential

VH,n +Vxc, and this makes it possible for DM to find self consistent states, in contrast

to the ferromagnetic iron example.
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Figure 5.18: the explanatory set-up of the Fe NCM calculations
performed here.

5.5.1 Implications for emergence

In the case of MnO, there was no evidence to suggest that a multiplicity of states

existed. Instead only an antiferromagnetic and ferromagnetic configuration were

found.

For the Fe calculations performed here, a diagrammatic representation of the ex-

planatory set-up is shown in fig. 5.18. For the purposes of historical emergence, the

important quality of this set-up is that in the calculation (or determining laws) the

initial wavefunction was randomised, and this leads to a multiplicity of different res-

ults in the output of the calculation. While in the outputs groups could be identified

that had similar magnetisations and energies, none of the different initializations

resulted in an identical final state. Further, I was primarily interested in one specific

state, the lowest energy state, but during the calculations it was not found.

One additional property was observed, and that was that when the same wavefunction

was used in the initialisation of the calculation, the same resultant state was found.
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This means that it must be possible to exactly determine how each of the different

initialisations relate to final metastable states in the calculation. However it is seems

likely that there is at least a very large number of qualitatively different deterministic

descriptions, because as can be seen in fig. 5.13, there is very little structure in the

energies of the outputs of the calculation. Additionally there are a large number of

other states that exist, that have not even been found, such as the cases in which

the symmetry is partially or fully constrained, as in the collinear calculations. As a

result, for all practical purposes, this set-up must be treated as historically emergent.

This explanatory set-up also satisfies some of the predicted qualities of historical

emergence: it is unpredictable, and a particular outcome is vanishingly unlikely to

be repeated. As discussed in chapter 1 this makes the value of these calculations

limited. To be precise, one can draw only two conclusions, first that the results

group into specific sorts of structure, and second that the calculations are unable to

give details of these structures past a specific degree of accuracy.

Future work

This set-up is undesirable because we are interested in the precise details of these

broad structures into which the different results can be grouped. This provides a

motivation to construct modifications to the model in order to remove the historical

emergence. There are a number of ways one could make this can happen. The

simplest way is to do away with the random wavefunction generator, and instead

to include an initial wavefunction as one of the conditions or constraints. However

as these calculations show, unless the choice of wavefunction is special in some

way, there is no reason to think that the output of the calculation will have the

desired qualities, such as the minimum energy condition. Another problem with this

approach is that it may also end up biasing the result of the calculation, which will

lead to incorrect conclusions about the behaviour of the system. Indeed this was the

motivation for the relaxation of the symmetry in the first instance. For this reason

this approach is unlikely to be satisfactory in the general case.
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The most satisfactory way would be to improve the convergence algorithm, so that it

instead consistently converges onto the desired low energy state. However EDFT is

well-known to be extremely effective due to its strictly variational nature as detailed

in chapter 2.2.4. Such an algorithm would likely need to be variational like EDFT,

since it was shown that the DM algorithm was not able to find the state due to the

complex state space. EDFT uses a line minimisation algorithm, and the most obvious

way to improve this would be to probe other areas of the energy surface of the density

functional. However such an algorithm would likely be even more expensive than

EDFT, and so may perhaps not be worth the trouble. Alternatively a set of manually

initialised calculations with specific symmetries may allow a more detailed search of

the state space. However given that there are 96 different symmetry operations in

iron, combinatorically the number of different possible symmetry initialisations is

too numerous, and it would be preferable to have a method that gets us straight to

the desired answer.

What seems likely is that these many different metastable configurations arises from

complicated interactions present from small restructuring of the Fermi surface. As

such a different Brillouin zone sampling method might lead the system towards a

desired state. While the MP method is straightforward to visualise and implement,

other schemes exist [204, 205]. Although it seems unlikely that the full range of

different metastable configurations might be determinable from any of these methods,

it may at least be the case that one of them can precisely determine different

progenitor states for each of the broad groups in which the different states reside.

This would at least permit a rigorous explanation of how these groups arise.

Conclusions

The analysis of the results of these calculations on iron in the terms of historical

emergence show that this theory of emergence has practical use. It provides a natural

framework to understand how complexity leads to difficulty in the interpretation of

results, and in how an explanation can be provided. Additionally the framework of
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historical emergence is able to accommodate descriptions for how a modification or

perhaps extension of the set-up used can localise the emergent nature in a particular

part of the system, and in so doing isolate the non-emergent parts of the system so

as to provide an explanation for how they arise.

The calculations on manganese oxide used a very similar set-up to those on iron.

However instead of a multiplicity of states only two were found, as in the calculation

the randomness in the initial conditions was systematically reduced by the density

search algorithms. Due to this I was able to interpret the results and suggest an

explanation for the results that I observed when the spin setting procedure was used.

It can therefore be seen that in this case an explanatory description was available,

in line with our expectations about set-ups that are not historically emergent.



Chapter 6

Conclusions

6.1 Physical methods

Noncollinear magnetism and spin initialisation DFT can be used to study

a wide range of physical systems. However there are some limitations around its

implementation, as only approximations have been made for the general Hohenberg-

Kohn functionals [81, 155, 82, 206], and the density search algorithms make certain

assumptions about the nature of the functional’s energy space (see chapter 2.2.4).

Although DFT aims to calculate the properties of material in the ground state, in

practice it is at least as capable at finding metastable states, even those with the

same symmetry.

As a result it is important to have a spin initialisation method that does not inappro-

priately influence a calculation to converge onto an incorrect spin or charge density

state. I developed a new spin initialisation method in chapter 5.2 which worked by

modifying the spin-dependent potential generated by the x-c functional, creating a

bias toward a particular atomic spin configuration. In this procedure the corrective

terms are gauranteed to disappear as the spins align in the desired direction.

The spin setting procedure was effective in iron, but due to the accompanying

relaxation of symmetry conditions, a multiplicity of different iron states were found.



6.1. Physical methods 161

I found that these different iron states displayed deviations from the ground state

configuration localised in either atomic iron core states, or the interstitial regions.

However there were too many of these states to give anything more than a broad

characterisation of the behaviour.

If these metastable states in iron are to be studied further, there are some possible

steps one might take to address this problem. One solution might be to develop

a new density search algorithm. Another solution would be to perform manual

initialisations with different symmetries. A third solution might be to use a different

method to sample the k-point mesh. Given the large number of different metastable

states it is likely that no complete account of the properties of all the states can be

given. Although as I was able to identify broad classes of states, it might be possible

to calculate progenitor states for each of these classes which exhibits the most salient

or important properties shared among each of the broad classes.

It was hypothesised that the large number of different metastable states was facilit-

ated by complex interactions at the Fermi surface. This hypothesis was supported by

calculations on MnO, presented in chapter 5.2. MnO is an insulating antiferromagnet,

and only two magnetic configurations were found even in symmetry unconstrained

calculations. Indeed in MnO interactions between bands which cross the Fermi

surface do not neet to be precisely accounted for, as there is no Fermi surface.

However while the spin setting procedure was successful in iron, in MnO it was

only partially able to bias the calculation towards the desired configuration. This

was because of two reasons, first because the energy scale of the x-c functional is

smaller in MnO than the energies of the dominant processes that cause magnetic

order. Second because the states in MnO are resistant to perturbation. This means

while the spin initialisation procedure developed here has only a limited utility, in

those systems where it does not function, less subtle methods can be used without

fear of changing the properties of the resultant spin state.

This study of different spin initialisations ought to be extended to other materials.

Materials that exhibit noncollinear order like YMnO3 would be particularly interest-



6.1. Physical methods 162

ing to study, as their behaviour is thought to be that of a frustrated antiferromagnetic

Manganese atoms arranged in a triangle [202]. While calculations have been per-

formed on YMnO3, these have mostly made use of symmetry constraints [203], and

it would be worth investigating if the solution space for YMnO3 was similar to that

in iron or manganese oxide, and if the spin setting procedure used here is useful for

frustrated systems.

Cyclobutadiene In the calculations on cyclobutadiene presented in chapter 3,

the adiabatic separability of the electrons and nuclei allowed an unmodified version

of DFT to be used to calculate a potential for the nuclei. It was found that the

resulting potential was adequate for a description of the tunelling behaviour of the

molecule. For further calculations, the principle challenge to an accurate calculation

is the flexibility of the molecule. Most studies of phonon and Raman interactions

in molecules seperate motions that break different symmetries, as this is permit-

ted under the harmonic approximation. However in cyclobutadiene the mismatch

between experimental and theoretical frequencies implies that this condition must be

lifted, as the nuclear wavefunction probes anharmonic parts of the effective nuclear

potential.

While the method I proposed could technically be used to perform these calculations,

this would be very challenging to implement. The challenge arises because the

position basis set that I used was not appropriate for the problem, and because

the extension of the method to larger numbers of dimensions, to accommodate the

flexing of the molecule in more directions will increase the burden of the calculation

beyond reasonable levels. In an improved caluclation a refined basis set in which

the states are similar to the eigenstates of the Hamiltonian could be used. The

obvious choice of basis set in the case of cyclobutadiene would be orthogonalised

energy eigenstates of the semiclassical harmonic model. The anharmonicity of the

potential could be included as crossing terms between these different states in the

Hamiltonian, and could be calculated using DFT in the same way as was done here.
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A calculation set up in this way would have the benefit that it would be much

easier to interpret the tunelling behaviour of the different excitations in terms of the

semiclassical harmonic states. However it would be more complex to implement due

to the requirement that the basis set be composed of orthogonal states.

Iron arsenide In iron arsenide calculations presented in chapter 4, although DFT

was unable to reproduce the desired incommensurate behaviour, it was able to

provide a justification for the observation of a new diffraction peak. This was

aided by symmetry arguments and projections of the wavefunction that detailed

suscesptibity of the bandstructure to perturbations localised around the iron atoms.

It was suggested that, due to an observed preference for a right-handed chirality in

the material, spin-orbit coupling might be the mechanism that drives this behaviour.

However it is not clear if the material displays a preference for right-handed chirality,

if the material undergoes a symmetric symmetry breaking process between left- and

right-handed chirality, and in the particular experiment that was performed a right-

handed chirality was observed. To put it another way, let us construct a free energy

equation [154] like

F = b1C + a2C2 + b3C3 + a4C4..., (6.1.1)

where C is some magnetic order parameter dependent on the (+ve or −ve) chirality,

F is the free energy, and ai and bi are temperature dependent coefficients. It is not

clear if the coefficients bi that would cause a preference for a particular chirality,

presumably caused by spin-orbit interactions, are nonzero. This is because only one

set of polarised xray diffraction experiments have been performed, and it may be the

case that in the particular experiment that was performed a right-handed chirality

was observed.

Further work on iron arsenide might therefore include repeating the polarised XRES

experiments that were performed to verify that there is a preference for right-handed

chirality. However more DFT calculations could also be performed. Previous non-

collinear calculations initialised a helical spin-density wave in the material [207].
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This could be extended to permit elliptical and canted configurations. As discussed

elsewhere [207], these calculations could also be extended to include different struc-

tural configurations to determine if a modification of the lattice is critical in the

mechanism for the magnetic order, or only coupled to it.

6.2 Historical emergence

Of the four example systems studied here – iron arsenide, cyclobutadiene, noncol-

linear magnetism in iron, and noncollinear magnetism in manganese oxide – only

the noncollinear calculations in iron may deserve to be called historically emergent.

These results are encouraging, for they suggest that historical emergence is neither

too rare nor too common. Instead it functions as a definition that is able to identify

important behaviour that commonly exists in physical systems.

The study of noncollinear magnetism in iron in chapter 5.2, revealed calculations

that were for practical purposes historically emergent. A historically emergent set-

up is predicted to exhibit unreapeatability in practice, and this was found in the

calculations. In the historically emergent set-up the method was no longer able to

reliably find the correct ground state properties of iron. As such I was unable to give

an unified explanatory account for how each of the different configurations arose. In

so doing this explanatory set-up behaved as an historically emergent system.

This behaviour in iron contrasts with other theories of emergence. In Batterman’s

singular limit emergence he generally calls phenomena that are robust and reliable

emergent. By contrast, historical emergence appears to be extremely sensitive, as in

the case of iron a small change in the initial conditions resulted in a different ground

state. However certain patterns could be observed in the results of the calculation.

A complete explanation could not be provided for all the calculation results and their

behaviour, I was able to distinguish coarse classes of phenomena. For example I was

able to conclude that there were two different mechanisms which originated in core

and interstitial electons respectively. This constitutes a notable success of historical
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emergence, as it is able to accommodate explanations for reductive patterns, which

appear in an otherwise irreducible set of results.

Further work could be performed to investigate if historical emergence is typical to

metallic systems in general in symmetry unconstrained calculations, or if iron is in

some way unique. Collinear magnetic insulators with band gaps in excess of 0.5eV

seem unlikely candidates for historical emergence of this type, based on complex

reconfigurations at the Fermi surface. However it is not clear if frustrated noncollinear

systems like YMnO3 might have different properties, since calculations show that

many different orientations are seperated only by tens of meV in energy [202, 203].

In iron arsenide I was not able to find any new evidence that might indicate that

meaningful historical emergence was present. Instead it seems most likely that

although there is a continuum in the permitted periodicity of the magnetic order,

all these periodicities are related. This is because below TN there are no further

discontinuities in the material’s properties with respect to a change in temperature.

What this implies is that all the behaviour in the magnetic state can be related

through an adiabatic continuation, and for a particular crystal no further information

than the temperature is required.

However I restricted the study to iron arsenide’s bulk behaviour. Based on exper-

imental results disorder has an important role in the magnetic structure of iron

arsenide. Additionally it has been shown that even similar single crystals can have

slightly different properties. What this means is that while there is no indication

that iron arsenide can host historical emergence, there is still ample scope for further

research into the material’s properties. The possibility of historical emergence’s

existence has not been ruled out in this material.

As presented in chapter 3, cyclobutadiene was not found to be historically emergent,

but the analysis of the physical properties of the molecule elucidated the relationship

between molecules and the physical equations that determine their behaviour. In

quantum mechanics chemical isomers have the same governing equations. This

implies that it might be possible to explain the different chemical behaviours in a
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single explanation. However what the study of cyclobutadiene has shown is that it

is still necessary to consider each of the isomers independently even in a quantum

mechanical treatment. This is because although the general Schrödinger equation

for the system implies that a series of symmetries are held in the material, each of

the chemical functions of the isomers cannot be accounted for in a single generalised

symmetry calculation. This means that each of the functional properties of the

isomers must be described and explained seperately. This sort of multiplicity must

therefore, at some level of molecular complexity, become historically emergent.

What this work reveals is that the account of historical emergence describes important

details about the interaction between theory and physical systems. It is able to show

how an emergent system is wholly dependent on a reductive description, even as

it is able to detail how such a reductive description can never be provided. In this

way it is able to inform the process of science, so that the explanatory set up can

be modified and the unpredictability can be removed. It is additionally able to do

this with a definition that can be unambiguously applied to a wide range of physical

systems, in a discerning and concise manner.

Further work on historical emergence might also be performed. The philosophy of

this work did not extend itself to two areas: the first was in the account of how an

explanation can become scientifically satisfying; the second is how an explanatory

set-up be emergent in practice. I was able to show how the iron example was

historically emergent in practice, by reference to wider scientific work and the field

of study. However it would be desirable to have a more rigorous set of principles by

which an explanatory set-up might be defined to be practically emergent.

The philosophy in this work benefited from a close proximity to physics research.

This approach has limitations, as some of the conclusions that were drawn had to

concern the practice of science. This means that for some such a work is slightly

counter to the goals of philosophy, which is to inform reality independently of

practical limitiations [5, 7, 8, 11, 16, 18, 29, 33]. However it must be noted that

if a useful philsophical theory is to be applied to science, and meaningfully inform
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its process (a deeply practical activity), it must in some way be able to describe

and accommodate practical limitations. In this way it is worthy of study in its own

right [19, 17, 4].



Appendix A

Appendix

A.1 Isosurface point picker

The points at the Isosurface were chosen by picking paths through the reciprocal

space Brillouin zone, and using a B-spline interpolation to find the crossing points

on the paths. These paths where chosen to be the paths between nearest-neighbours

in the MP grid used in the DFT calculation. Points that were too close to each

other (closer than 0.3 of the smallest MP grid spacing) were assumed to be duplicate

points, and were consolidated with the most recently generated points deleted. Two-

dimensional Voronoi cells projected onto the plane normal to the Isosurface, of the

remaining points were constructed. To improve the efficiency of this construction

a rough Delauney mesh was constructed, in which vertices were allowed to cross

in intermediate cases, and these mesh-connections were used as the basis for the

Voronoi cell construction. The resultant points are the triangular faces of the Voronoi

cell construction, and each face has a weight proportional to the area of the triangle.

A.2 Dependence of resistivity on temperature
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Figure A.1: Analysis of the low-temperature results of the resistivity
of iron arsenide. Graphs show the power law relation-
ship exhibited by a straight line on a log-log scale.
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