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Abstract 

Rockfalls exert a first-order control on the rate of rock wall retreat on mountain slopes and on 

coastal rock cliffs. Their occurrence is conditioned by a combination of intrinsic (resisting) and 

extrinsic (driving) processes, yet determining the exact effects of these processes on rockfall 

activity and the resulting cliff erosion remains difficult. Although rockfall activity has been 

monitored extensively in a variety of settings, high-resolution observations of rockfall occurrence 

on a regional scale are scarce. This is partly owing to difficulties in adequately quantifying the full 

range of possible rockfall volumes with sufficient accuracy and completeness, and at a scale that 

exceeds the influence of localised controls on rockfalls. This lack of insight restricts our ability to 

abstract patterns, to identify long-term changes in behaviour, and to assess how rock slopes 

respond to changes in both structural and environmental conditions, without resorting to a space-

for-time substitution. 

This thesis develops a workflow, from novel data collection to analysis, which is tailored 

to monitoring rockfall activity and the resulting cliff retreat continuously (in space), in 3D, and 

over large spatial scales (> 104 m). The approach is tested by analysing rockfall activity and the 

resulting erosion recorded along 20.5 km of near-vertical coastal cliffs, in what is considered as the 

first multi-temporal detection of rockfalls at a regional-scale and in full 3D. The resulting data are 

then used to derive a quantitative appraisal of along-coast variations in the geometric properties 

of exposed discontinuity surfaces, to assess the extent to which these drive patterns in the size 

and shape of the rockfalls observed. High-resolution field monitoring is then undertaken along a 

subsection of the coastline (> 102 m), where cliff lithology and structure are approximately 

uniform, in order to quantify spatial variations in wave loading characteristics and to relate these 

to local morphological conditions, which can act as a proxy for wave loading characteristics.  

The resulting rockfall inventory is analysed to identify the characteristics of rock slope 

change that only become apparent when assessed at this scale, placing bounds on data previously 

collected more locally (< 102 m). The data show that spatial consistencies in the distribution of 

rockfall shape and volume through time approximately follow the geological setting of the 

coastline, but that variations in the strength of these consistencies are likely to be conditioned by 

differences in local processes and morphological controls between sites. These results are used to 

examine the relationships between key metrics of erosion, structural, and morphological controls, 

which ultimately permits the identification of areas where patterns of erosion are dominated by 

either intrinsic or extrinsic processes, or a mixture of both. Uniquely, the methodologies and data 

presented here mark a step-change in our ability to understand the competing effects of different 

processes in determining the magnitude and frequency of rockfall activity, and the resulting cliff 

erosion. The findings of this research hold considerable implications for our understanding of 

rockfalls, and for monitoring, modelling, and managing actively failing rock slopes.
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Chapter 1 

Introduction 

The mechanical properties and stress state of a rock mass play a fundamental role in landscape 

evolution by influencing surface morphology and moderating the efficiency of erosive processes 

(Clarke and Burbank, 2011; Koons et al., 2012). At the hillslope scale, intact rock strength and 

the density, orientation, and spatial distribution of discontinuities combine to control rock mass 

strength (Douglas et al., 1991; Coe and Harp, 2007; Stead and Wolter, 2015). These physical 

characteristics, which are intrinsic (and elsewhere termed ‘resisting’) to the rock mass, are often 

conceptualised as resisting or inhibiting rock slope failure (Gunzberger et al., 2005; Gischig et al., 

2016) and are constantly in transition as extrinsic (erosional, or ‘driving’) processes act upon the 

rock. These processes include thermal stresses (Collins and Stock, 2016), (chemical) weathering 

(Viles, 2013), seismic loading (Parker et al., 2015), and, on coastal cliffs, wave impacting (Lim et 

al., 2011). However, determining the relative importance of intrinsic versus extrinsic controls on 

mass wasting processes, and the resulting erosion that they accumulate, remains difficult, 

particularly across different spatial and temporal scales. Although mass wasting processes have 

been monitored extensively in a variety of settings, high-resolution observations of rock slope 

erosion on a regional scale (> 104 m) are scarce. This is primarily due to difficulties in capturing 

data in a way that ensures a volumetrically complete inventory, and at length scales over which 

both resisting and driving stresses may vary. This restricts our ability to assess how rock slopes 

respond to changes in structural and environmental conditions, both at present and in the future. 

This thesis seeks to address these challenges by attempting to relate regional-scale 

variations in cliff erosion, primarily via rockfalls, to a set of well-constrained controls. The aim of 

this research is to provide a unique understanding of why rockfalls occur where they do, and to 

establish the relative importance of resisting (intrinsic) and driving (extrinsic) forces on erosion. 

This requires the ability to make a step-change in our understanding of changes in rock slope 

morphology, shifting the focus towards the regional scale (103 – 104 m) while retaining the high 
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resolution and precision of existing terrestrial monitoring practices (< 10-2 m) and allowing 

variability in drivers to be considered at scales previously not possible. Addressing this issue 

requires the development of novel workflows, from data collection to analysis, and a site that 

enables the effects of these controls to be isolated. The approaches developed in this thesis are 

applied to the coastal cliffs of North Yorkshire, UK. The physiographic setting of these cliffs, 

where rock type, precipitation regime, and weathering environment are approximately consistent 

along their length, enables an assessment of variations in rock mass structure and the assailing 

forces of waves that drive rockfall, all within ca. 24 km of coastline. 

1.1 Rationale 

Rockfalls exert a first-order control on the rate of rock wall retreat on mountain slopes 

and on rock cliffs (Moore et al., 2009). They are a frequent process initiated when rock blocks 

become detached from a rock mass under the influence of gravity (Selby, 1982). Their volumes 

typically range from ca. 10-2 – 102 m3, but in some cases they have been known to reach 105 m3 

(for example, Wieczorek et al., 1998; Stock et al., 2012a). Rockfall activity is also a chronic hazard 

(Evans and Hungr, 1993; Guzzetti et al., 2003; Wieczorek et al., 2008), often posing significant 

risks to transportation corridors (Guzzetti et al., 2004; Katz et al., 2011; Blais-Stevens et al., 2012; 

Michoud et al., 2012; Ansari et al., 2014), pipelines (Blais-Stevens et al., 2010; Couture et al., 

2010), and to areas beneath (sea) cliffs (Dewez et al., 2013; Marques et al., 2013). Rockfall activity 

has been monitored extensively in these settings, and in some cases this monitoring has been used 

to provide hazard and risk forecasting (Collins and Stock, 2012; Stock et al., 2012a; Royán et al., 

2013).  

Rock slope evolution is not uniquely governed by large, infrequent events, but it instead 

reflects a continuum of change where failures can also be small in magnitude and variable in 

frequency over large areas (Lim et al., 2010). While the smallest events have been observed to 

occur at high frequencies, often resulting in near-continuous mass wasting and therefore 

representing a chronic hazard in some areas, the scars and debris of catastrophic events tend to 

reside in the landscape for longer, controlling long-term rates of landform and landscape evolution 

(Hovius and Stark, 2006). However, much of the existing research undertaken has made use of 

datasets covering relatively short extents (cliffs ca. 101 – 102 m in width), often defined by 

monitoring instrument capabilities and logistics rather than by any scientific rationale. The 

consequences of this are that (1) data captured at a single site are likely to reflect and potentially 

be dominated by site-specific conditions, and therefore remain difficult to extrapolate, (2) the 

effects of gradual, long wavelength (> 102 m) changes in resisting versus driving stresses cannot 

be observed at a local scale, and (3) establishing a direct cause-effect relationship from the high 

levels of inherent noise in rockfall observations remains challenging. To address these challenges, 

an idealised study might consider variations in the occurrence of and controls upon rockfalls 
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observed along a valley (for example, Strunden et al., 2015), on a coastline that changes in aspect 

(for example, Matsumoto et al., 2017), or across a climatic gradient (for example, Dietze et al., 

2017). There is a similar need for this knowledge in an applied context; for example, in assessing 

rockfall risk to transportation corridors, which requires an extensive but detailed approach (for 

example, Lato et al., 2009a). 

The following discussion reviews the challenges associated with monitoring regional-scale 

variations in rockfall activity and the resulting cliff erosion (Section 1.1.1), with particular 

emphasis on the processes occurring at coastal cliffs (Section 1.1.2). The current state of knowledge 

on the implications of these processes for the spatio-temporal distribution of rockfalls is also 

outlined (Section 1.1.3). The discussion explores the context and justification for understanding 

what drives regional-scale variations in rockfall activity, and is used to define the research aim, 

questions, and objectives identified in Section 1.2. The thesis structure is then outlined in Section 

1.3. 

1.1.1 Monitoring regional-scale variations in rockfall activity 

Initial methods used to measure rates of rock wall retreat and rockfall supply include 

acoustic observations and subsequent estimations of rockfall size (Gardner, 1970, 1980), painted 

rock walls (Matsuoka, 1990; Matsuoka and Sakai, 1999), and rockfall nets (Krautblatter, 2003; 

for a comprehensive review, see Krautblatter and Dikau, 2007). Recently, significant advances in 

our ability to detect changes to rock slopes and to quantify the resultant retreat have come from 

the use of ground-based LiDAR and Structure-from-Motion photogrammetry (Metternicht et al., 

2005). These techniques have become increasingly widespread owing to their ability to rapidly 

acquire dense point clouds that can be used to derive 3D slope geometry on vertical rock walls 

(for example, Rosser et al., 2005a; Abellán et al., 2009; Royán et al., 2013). However, monitoring 

rockfall activity at length scales over which both resisting (for example, rock mass strength and 

structure) and driving (erosional) factors also vary requires upscaling from the ground-based 

monitoring campaigns typically undertaken on a single rock slope to extents > 103 m. 

Upscaling detailed monitoring of rock slopes is difficult, both in terms of capturing and 

processing data, as the topographic complexity of the area monitored inevitably increases with 

scale. This can mean moving from a single, near-planar rock face to a more complex series of 

hillslopes with variable lithology, geometry, and structure. Upscaling is, therefore, very rarely a 

case of applying local approaches more extensively. Similarly, increasing the likelihood of capturing 

a large event by prolonging the period of monitoring can be prohibitively costly, and, where 

monitoring intervals do increase, the data captured are inevitably subject to rockfall coalescence 

and superimposition, which decreases the likelihood of detecting small events (Williams et al., 

2018). Whether or not ergodic reasoning (space-for-time substitution) can be applied also remains 

to be tested. This has implications for our understanding of rock slope failure. A fundamental 
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uncertainty, for example, is whether monitoring 1.0 km2 of cliff face over 1 year would generate a 

rockfall inventory that is statistically comparable to that captured from 0.1 km2 over 10 years, 

from a set of apparently uniform cliffs. This is unlikely where the timescales of path-dependent 

behaviour in rockfall evolution, via brittle fracture growth (Kemeny, 2003) and progressive failure 

(Stock et al., 2012b), and over longer time scales via changes to slope-profile form and/or post-

glacial or post-incision relaxation (Cordes et al., 2013; Messenzehl et al., 2017), are commensurate 

with or exceed those of most monitoring campaigns. 

As with many other natural hazards, inventories of rockfall activity have revealed that 

event volumes adhere to power law magnitude-frequency relations that hold over several orders 

of magnitude (Malamud et al., 2004; Guthrie and Evans, 2007). A considerable body of research 

has been published on magnitude-frequency distributions and their application to quantifying the 

cumulative yield of rockfalls on montane, alpine, and arctic rock walls (Dussauge-Peisser et al., 

2002; Malamud et al., 2004; Santana et al., 2012; Messenzehl and Dikau, 2017), along transport 

corridors (Bunce et al., 1997; Hungr et al., 1999; van Veen et al., 2017), and on sea cliffs (Dong 

and Guzzetti, 2005; Teixeira, 2006; Rosser et al., 2007; Marques, 2008; Lim et al., 2010; Young et 

al., 2011; Barlow et al., 2012; Rohmer and Dewez, 2013; Kuhn and Prüfer, 2014; Williams et al., 

2018). One empirical/statistical approach to compensate for the difficulty in capturing regional-

scale observations is to use the power law behaviour in rockfall magnitude and frequency to 

upscale, in both time and space, and model future rockfalls and hence cliff erosion, assuming that 

what is monitored at a small scale is more widely representative (Lim et al., 2010). These 

approaches have inherent assumptions and limitations that restrict their application, including 

(1) that they rely on extrapolating a non-biased, assumed complete portion of an inventory to 

predict both larger and smaller volume frequencies, (2) the need to apply power laws within limits, 

in order to avoid generating biased scaling coefficients (Barlow et al., 2012), (3) the implicit 

assumption that a single underlying mechanism, and hence a single form of power law behaviour, 

transcends all scales of events under investigation (Brunetti et al., 2009), and that extrinsic 

controls are essentially constant, and (4) that all rockfalls in an inventory are statistically 

independent of one another, although it is known that rockfalls exhibit some degree of spatial 

and/or temporal path-dependency (Rohmer and Dewez, 2015). Fundamentally, this approach 

loses any site specificity, generating only broad rockfall magnitude probabilities rather than an 

estimation of what could or will happen at an individual location. 

An increasingly viable alternative, enabled by rapid advances in (mobile) 3D data capture 

on near-vertical surfaces, is to monitor rockfalls over a larger area while retaining a high spatial 

resolution (Lato et al., 2009a). To achieve this, some airborne LiDAR systems have the capability 

to collect data from oblique as well as vertical view angles, permitting the capture of point cloud 

data both on near-vertical surfaces and over much larger extents. However, the volume and quality 

of data that can be collected using airborne LiDAR present their own unique challenges. Such 
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data require methods that are able to retain the 3D character of the data while also being able to 

measure rockfall volumes that can span over 6 – 7 orders of magnitude, and over spatial extents 

that can exceed ca. 106 m2. These settings could include, but are not limited to, a length of 

coastline, cut slopes along a transport corridor, or a full valley-side escarpment. However, at 

present there exists no workflow optimised for detecting wide-area rock slope adjustment while 

retaining point cloud data in their original 3D form. The ability to monitor at length scales over 

which both resisting and driving controls on rockfall activity may also vary is therefore crucial to 

further our understanding of rock slope behaviour. 

1.1.2 Coastal cliffs under wave loading 

Along hard rock cliffs, which are the focus of this thesis and front over three-quarters of 

the world’s coastlines (Bird, 2000), rising global sea-level in conjunction with projected changes 

in winds, tides, precipitation, storm events, and wave climate has been projected to accelerate 

coastal cliff retreat and threaten populations (IPCC, 2013). The result is a pressing need to 

understand and model the erosional response of hard rock coastlines to these processes (Trenhaile, 

2011). While there has been a growing interest in hard rock coasts over the past decade, much of 

the recent research has used case-specific approaches that infer a wider morphological model of 

the evolution of cliff and platform systems from only a limited selection of sites (Kennedy et al., 

2017). These methodological shortcomings, as well as those detailed above, have limited the 

development of predictive models that can be used for assessing the evolution of coastal rock 

slopes under a changing climate (Castedo et al., 2012), with many models remaining limited to a 

stochastic representation of cliff behaviour. These are often based on assumptions regarding the 

magnitude and frequency of rockfalls in a probabilistic framework (for example, Lee et al., 2001; 

Hall et al., 2002; Williams et al., 2004; Drake and Phipps, 2007; Walkden and Hall, 2005, 2011), 

with limited reference to the role and interplay between intrinsic and extrinsic controls on change. 

In the context of this thesis, rocky coastlines offer the ideal physiography for investigating the 

relative importance of these controls on rockfall occurrence: many coastlines, such as that studied 

here, are actively eroding, with aggressive weathering and marine conditions combining to drive 

high rates of erosion via rockfall. Periodic straining of the rock mass by wave loading often varies 

considerably along shore due to variable coastal geometry and bathymetry: this variability in 

wave loading, combined with varying lithology and structure, should permit the constraint of the 

nature of rockfall occurrence beyond that observed on a single slope. The following discussion 

explores why these sites are ideal for exploring the underlying aims of this thesis, and why insights 

gained from studying coastal cliffs may hold implications for (non-coastal) rock slopes more widely.   

One means of examining marine controls on coastal erosion is to examine the ground 

motions generated by ocean waves. Recent research has demonstrated that coastal cliff ground 

motions are reliable proxies for a number of environmental drivers that influence wave energy 
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delivery to the cliff face, including coastal geometry and foreshore bathymetry (Young et al., 2011, 

2012, 2013, 2016; Dickson and Pentney, 2012; Norman et al., 2013; Earlie et al., 2015; Vann Jones 

et al., 2015). These measurements of coastal cliff ground motion can be used to inform 

investigations into incremental damage and, therefore, cliff erosion (Adams et al., 2002, 2005; 

Brain et al., 2014). Along coastal cliffs, the repeated loading and unloading cycles delivered to the 

cliff face by wave activity involve variations in the magnitude of the dynamic stresses, their 

amplitude relative to baseline stress conditions, and their orientation relative to existing fracture 

sets and ground surface topography (Zhang and Sanderson, 2001). Critical stressing of a rock mass 

can be achieved under cyclic loading, provided that the applied stress amplitude is sufficiently 

high relative to the ultimate intact failure stress (Attewell and Farmer, 1973). When considering 

progressive failure, smaller, more iterative events relative to this baseline stress are important. A 

number of studies have investigated brittle fracture initiation and coalescence in rock samples 

subjected to regular patterns or sequences of cyclic loading and random patterns of loading. It is 

well known that load interaction and sequencing effects can have a significant influence on the 

fatigue crack growth rate and, consequently, fatigue life (Skorupa, 1999). Experimental results 

from random amplitude cyclic testing of steel bridge piers attest to this effect, showing that a 

sudden increase or decrease in displacement amplitude can result in a rapid increase in cumulative 

damage (Ge and Kang, 2014). This effect has also been observed in cliff-top microseismic datasets, 

where periods of relatively low amplitude microseismic ground motion are often interrupted by 

periods of greater displacement during energetic storm events (Adams et al., 2005; Brain et al., 

2014). During these events, higher amplitude displacements are thought to cause more damage to 

the rock mass, extending microcracks beyond conditions achievable by low amplitude background 

displacements. 

The cumulative effect of this (micro)seismicity has been suggested to play a crucial role 

in reducing rock slope stability by allowing macro-scale rock fracture to occur at values that are 

considerably less than the peak strength of intact rocks (Stead and Wolter, 2015). Evidence of 

this effect can be seen in the field, where some rock slopes remain intact during large seismic 

events despite experiencing a similar stress state to those that collapse, implying that the rock 

mass must accrue a sufficient amount of damage to instigate final collapse (Parker et al., 2013). 

If this is the case, then cyclic fatigue of coastal cliffs via wave impacting could hold important 

implications for the timing and spatial distribution of coastal change (Brain et al., 2014), and for 

how iterative damage accumulation influences landscape evolution more generally. However, the 

relative importance of the various components of cyclic loading (magnitude, frequency, and 

direction) in preparing rock slopes for failure is difficult to constrain, particularly in coastal 

landscapes, which are inherently noisy and subject to a wide range of conditions. This is, in part, 

due to the complexity of factors that control the dynamic response of potentially unstable rock 

slopes. However, there is also a lack of instrumental observations of slope-specific ground motion, 
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which can be useful in providing a constraint on laboratory testing and slope dynamic behaviour 

modelling. Although short-term seismic monitoring has been attempted on some unstable rock 

slopes, these experiments have encountered difficulties in recording enough events with sufficiently 

differentiated properties for inferring general characteristics of rock slope behaviour under seismic 

shaking (Gaudio and Wasowski, 2011). 

1.1.3 Spatio-temporal distribution of rockfalls 

Rock slope stability is controlled by the mechanical properties and stress state of the rock 

mass as well as the effectiveness of environmental forcing (Moore et al., 2009). On rock slopes, 

numerical modelling suggests that critical levels of stress propagate along a spatially concentrated 

failure surface that is relatively close to the rock face, and that shear stresses along this surface 

reduce significantly with depth from the fracture surface (Wolters and Müller, 2008; Styles et al., 

2011). A similar effect can be observed along major tectonic faults (Mitchell and Faulkner, 2008). 

Brain et al. (2014) suggest that this spatial pattern of in situ stresses results in a strong spatial 

pattern in the effectiveness of (micro)seismic ground motions in propagating and connecting 

microcrack populations. On coastlines, the opportunity for cyclic loading to cause damage and 

weakening through propagation and coalescence of microcracks is likely to be spatially and 

temporally restricted. However, determining the exact effects of these motions on rockfall activity 

and the resulting cliff erosion remains difficult.  

High-resolution monitoring of progressive collapses has given a considerable insight into 

the rates and patterns of failure propagation on rock slopes. Stock et al. (2012b) considered a 

sequence of 14 progressive rockfall events that occurred over 15 months, highlighting the 

importance of stress redistribution from preceding rockfalls in conditioning subsequent instability 

in adjoining areas over time. Similarly, Rohmer and Dewez (2015) applied spatial statistics to 

several thousand rockfall scars, inferring that progressive incremental failure is manifest as small 

rockfall events (10-3 – 10-2 m3) that aggregate in clusters across the cliff face. On coastal cliffs, the 

propagation of rockfalls has been observed to facilitate the transmission of marine loading up the 

cliff face over time (Rosser et al., 2013). These observations are supported by numerical modelling 

of the response of the rock mass to marine loading, which confirms the role of upward migration 

of shear strain through the cliff in inducing tensile failure and crack growth at the cliff top (Styles 

et al., 2011). The connectivity between events attests to the importance of stress redistribution 

following previous rockfalls in promoting damage accumulation and, eventually, further rock slope 

failure (Amitrano, 2006). However, the response of rock slopes to different preparatory and 

triggering conditions remains poorly understood (Krautblatter et al., 2012). If rock slope evolution 

is driven by progressive failure, which is the product of iterative and then runaway microcracking, 

progressive damaging of the rock mass could explain the poor correlations between rockfall activity 

and energetic environmental conditions (Vann Jones et al., 2015). 
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1.2 Research aim, questions, and objectives 

The aim of this research is to use high-resolution field monitoring techniques, deployed at 

regional scales (> 104 m), in order to understand how regional-scale variations in cliff structure 

and wave loading interact to condition variations in rockfall activity. A series of research questions 

has been designed in order to achieve this aim: 

 

RQ1. How do rockfalls and the resulting cliff erosion vary over regional scales?  

RQ2. To what extent does rock slope structure drive spatial variations in rockfall activity?  

RQ3. Do spatial variations in cliff erosion reflect variations in wave loading conditions? 

RQ4. What is the relative importance of cliff structure and wave loading in determining rates 

of erosion, and is there an optimal scenario of conditions that drives high rates of erosion?  

 

An outline of the theoretical framework for this research is presented in Figure 1.01. A number of 

requirements must be fulfilled in order to address the above research questions, and these 

requirements are addressed in the following research objectives: 

 

RO1. To identify a field site where both structure and wave loading vary, and rockfalls are 

frequent (Chapter 2).  

RO2. To develop a workflow for detecting and characterising rockfalls across multiple scales 

(Chapter 3). 

RO3. To use this workflow to produce a quantitative estimate of multi-temporal, regional-scale 

variations in rockfall magnitude, frequency, and the resulting cliff erosion, taking into 

account patterns in both cliff profile- and plan-form (Chapter 3). 

RO4. To derive a quantitative appraisal of spatial variations in the geometric properties of 

exposed discontinuity surfaces, and to assess the extent to which these drive patterns in 

the size and shape of rockfalls (Chapter 4). 

RO5. To use high-resolution field monitoring in order to quantify local (101 – 102 m) variations 

in wave loading characteristics at a representative site, and to relate these variations to 

morphological and environmental conditions (Chapter 5).  

RO6. To establish the relative importance of intrinsic versus extrinsic controls on coastal cliff 

change behaviour by synthesising the findings of this thesis (Chapter 6). 

1.3 Thesis structure 

The methodological focus of this thesis is to develop novel workflows for undertaking 

regional-scale (> 104 m) assessments of rockfall activity at previously unprecedented resolutions 

(10-1 m). Uniquely, this thesis seeks to relate rockfall activity to along-coast variations in structural 

and morphological controls, upscaling previous work undertaken at the local scale (101 – 102 m) 
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and therefore marking a step-change in our understanding of (the drivers of) changes in rock slope 

morphology. The thesis comprises six chapters following the Introduction. Each of the results 

chapters (Chapters 3, 4, and 5) are presented in a self-contained style with an introduction and 

brief review of the relevant literature, description of the methods used, and presentation of results. 

Chapter 2 provides an overview of the field site, which comprises ca. 20.5 km of coastal 

rock cliffs in North Yorkshire, UK. The overview describes the stratigraphic succession of the 

surrounding Cleveland Basin, before discussing the prevailing environmental conditions, including 

climate, wave climate, and tidal regime. The history of monitoring in the area is outlined, with 

particular emphasis on recent research into rockfall activity between Boulby and Staithes. This 

area constitutes an important case study in Chapter 5. 

Chapter 3 presents a novel workflow for detecting and characterising multi-scale changes 

in rock slope morphology via rockfalls in 3D. The work presented in this chapter draws on high-

density point clouds derived from uniquely high-resolution, multi-temporal airborne LiDAR 

surveys to monitor regional-scale variations in rockfall activity along the North Yorkshire coast. 

Using the resulting inventory of rockfall activity, this chapter explores regional-scale variations in 

rockfall magnitude, frequency, and the resulting erosion along the North Yorkshire coast. 

Chapter 4 presents the methods used to derive a detailed, quantitative appraisal of 

regional-scale variations in rock mass structure. This involves using the point clouds obtained in 

Chapter 3 to derive the geometric properties of exposed discontinuity surfaces (‘facets’), which 

are used in this study as a proxy for rock mass structure. The analyses presented in this chapter 

explore how rock mass structure varies, here along the coastline, and to what extent patterns in 

the size and shape of rockfalls are related to the differences in rock mass structure identified. 

Chapter 5 presents the results of a yearlong monitoring campaign, which aimed to identify 

relative variations in the ground motion response to wave impacting along a ca. 900 m stretch of 

cliffs. The findings constitute some of the first concurrent observations of along shore variations 

in wave impact-driven ground motions on coastal cliffs. The chapter explores how wave loading 

characteristics vary along the coastline, how these are related to morphological controls, and the 

implications of these for driving spatial variations in erosion, which were quantified in Chapter 3. 

Chapter 6 synthesises the results presented in Chapters 3, 4, and 5, in the development 

of a new, semi-empirical analysis of coastal cliff change behaviour. The implications of these results 

for monitoring rockfall activity, and for understanding its drivers on (coastal) cliffs, are discussed. 

 Chapter 7 summarises the major findings of this work in relation to the research questions 

outlined in Section 1.2. The chapter concludes with a discussion of directions for future research 

based on the findings of this study. 

Figure 1.01 Overleaf. An outline of the theoretical framework for this research with respect to the research 

questions and objectives (Section 1.2). 
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Chapter 2 

Study site 

The discussion presented in Chapter 1 demonstrates the importance of monitoring at length scales 

over which both intrinsic (rock mass strength and structure) and extrinsic (erosional) processes 

on rockfall activity may vary. A regional-scale field site that is suited to addressing some of the 

complexities discussed is presented in this chapter, where (1) there are long wavelength (> 103 m) 

changes in lithology and structure, (2) the cliffs are exposed to a range of wave loading (erosional) 

conditions, and (3) there is a high rate of rockfall activity. The latter allows an investigation into 

the influence of (1) and (2) on rock slope failure. This chapter introduces the study site (Section 

2.1) and provides an overview of the statigraphic succession of the surrounding Cleveland Basin. 

The implications of the regional geology for the evolution of coastal cliffs in the area are then 

discussed, in addition to the prevailing environmental conditions, including climate, wave climate, 

and tidal regime. The history of research in this area is outlined with particular emphasis on 

recent monitoring of rockfall activity between Boulby and Staithes (Section 2.2). This constitutes 

an important case study later in this research, with the directions of this research summarised in 

Section 2.3. 

2.1 Regional setting 

The highest coastal rock slopes in England, and some of the highest in the UK, are found 

along the North Yorkshire coast (Figure 2.01). The cliffs reach heights of over 150 m and are cut 

into near-horizontally interbedded Lower Jurassic mudstones, shales, siltstones, limestones, and 

sandstones, which are often capped by silty glacial tills (Rawson and Wright, 2000). The cliff 

surfaces are weathered, with dilated joints and face-parallel fractures (Rosser et al., 2013). Much 

of the coastline is fringed by a gently sloping (ca. 2°) foreshore platform that extends up to 300 m 

seaward of the cliff toe. This is partially exposed at low tide, and fully exposed when high 

atmospheric pressure systems coincide with the lowest astronomical tides and calm conditions. 
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The cliffs have been extensively monitored, providing a baseline dataset on erosion rates, rockfall 

inventories, nearshore wave conditions, and patterns of energy delivery along the coastline (Agar, 

1960; Robinson, 1974; Lim et al., 2005, 2010; Rosser et al., 2005a, 2005b, 2013; Lim, 2006; Barlow 

et al., 2012; Norman, 2012; Norman et al., 2013; Brain et al., 2014; Vann Jones et al., 2015). 

2.1.1 Location and geology 

The Jurassic and Cretaceous rocks that were deposited in the Cleveland Basin and on the 

adjacent northern margin of the East Midlands Shelf can be seen in a series of exposures along 

the North Yorkshire coast (Rawson and Wright, 2000). Along much of the coastline, Quaternary 

drift deposits of boulder clays (tills) overlie Jurassic deposits of interbedded mudstones, shales, 

Figure 2.01 (a) Map of the North Yorkshire coast. The total length of cliff face monitored is approximately 

20.5 km, (b) topographical map, with contours at 20 m intervals, (c) bedrock geology, and (d) superficial 

geology. Maps produced using shapefiles from the Ordnance Survey © Crown Copyright and Database Right 

2017. Ordnance Survey (Digimap Licence). 
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siltstones, limestones, and sandstones (Figure 2.02). The tills, which were deposited following the 

last (Devensian) glaciation, form composite sheets containing erratic pebbles and boulders derived 

from sources as distant as the Lake District (north west England), Scotland, and Scandinavia, in 

addition to some local materials (Rawson and Wright, 2000). During the Middle Jurassic, 

sedimentation in the Cleveland Basin was characterised by marine transgressions that advanced 

in a north-westerly direction due to tilting of the Mid North Sea High in response to doming 

(Powell, 2010). Basin uplift accompanied by gentle folding in the late Toarcian to the early 

Aalenian removed much of the late Toarcian succession, such that the Dogger Formation now 

rests unconformably on beds as low as the Alum Shales over much of the basin (Figure 2.03; 

Hemingway, 1974). The Jurassic sequences along the North Yorkshire coast therefore rise and fall, 

producing a coastline characterised by crenulous coves and headlands formed of solid outcrops 

separated by embayments, such as Runswick Bay, which are formed where the glacial tills outcrop 

at sea level. In places, these headlands rise up to form cliffs exceeding 150 m, such as the cliffs at 

Boulby, while embayments are characterised by sandy beaches backed by low cliffs (< 10 m). 

Given the alongshore variability in the exposed stratigraphy, photographs are provided alongside 

all of the site-specific analyses presented in Chapters 3 – 5.  

Figure 2.02 Aerial photos of four sites along the North Yorkshire coast, including the cliffs at (a) Boulby, 

(b) Old Nab (foreground) and Staithes (background), (c) Kettleness, and (d) Sandsend. Locations are shown 

in Figure 2.01b. The height of these cliffs above the foreshore platform varies between 20 m (Sandsend) and 

150 m (Boulby). 
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2.1.2 Wave climate and tidal regime 

The North Yorkshire coast is macro-tidal, experiencing two daily tides that cycle between 

spring and neap highs over a range of ca. 6 m (Figure 2.04a). The bases of the cliffs are often 

submerged during high spring tides, in places up to a depth of 3 m. When high spring tides coincide 

with storm events and high swells, the vertical reach of the tide can exceed 4.3 m (Rosser et al., 

2013). Over the monitoring period of this study (August 2014 – September 2017), the maximum 

wave height recorded by the Datawell Directional WaveRider (Mk III) buoy, located 5 km east of 

Sandsend, was 10.8 m in the winter storms of November 2016 (Figure 2.04b). Wave fetch at the 

site is limited in most directions by the boundary coasts of the North Sea. Winds from the north 

and northeast have the longest fetch, ca. 860 km, and often result in the largest waves, although 

their impact is dependent upon local factors, including cliff aspect and bathymetry (Trenhaile, 

2002). The wave climate is dominated by mixed wind and swell wave conditions, which can be 

Figure 2.03 Subdivision of the Lower Jurassic (Hettangian-Toarcian) and Middle Jurassic (Aalenian-

Bathonian) sequences in the Cleveland Basin, with approximate stratigraphical ranges indicated for sites 

named in Figure 2.01, as well as East Cliff, Whitby. Adapted from Rawson and Wright (2000, p. 4). 
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inferred from their statistical properties, including significant wave height and peak wave period 

(Figure 2.04c). Significant wave height represents the mean height of the highest third of waves, 

from trough to crest, while peak wave period represents the wave period associated with the peak 

of the wave energy spectrum. Wave regimes that are dominated by wind waves tend to have 

shorter peak wave periods, and regimes dominated by swell tend to have longer wave periods 

(Schwartz, 2005). The wave buoy recorded a mean peak wave period of ca. 4.8 s between August 

2014 and September 2017 (Figure 2.04c). Over this period, conditions varied from low-energy pure 

swell, mixed swell-sea, to strongly wind-forced conditions. This macro-tidal, storm-dominated 

setting generates highly variable conditions at the cliff face, both over a single semi-diurnal tidal 

cycle and between seasons. Trends toward higher storm surge levels have recently been reported 

for the North Sea (Woth et al., 2006; Vousdoukas et al., 2016), renewing the need to understand 

the links between wave impacting, regional geology, and cliff erosion.  

2.1.3 Climate 

The marine climate of the North Sea is dominated by pronounced seasonal variations in 

wind velocities and directions, much of which is associated with pressure anomalies that arise from 

the North Atlantic Oscillation (NAO; Woolf et al., 2002). The winter months (December – 

February) are characteristically colder and marginally wetter than the summer months (June – 

August), with daily mean minimum air temperatures of 3.2°C experienced in January, based on 

records taken at the Whitby weather station located 15 km south east of Sandsend (Figure 2.04d). 

Air temperatures are partially moderated by the coastal setting, seldom yielding conditions below 

freezing for more than several hours at a time. The climate of the North Yorkshire coast is 

generally drier than most of the UK, with an average annual rainfall over the monitoring period 

of 513 mm and mean monthly precipitation peaking at 79 mm in January (Figure 2.04e). Cliff 

aspect ranges from ca. 290° to ca. 120°, exposing the coastline to easterly and northerly North Sea 

storm wave events while sheltering the cliffs from prevailing south-westerly weather systems. As 

a result, wave conditions are such that the cliffs are constantly exposed to highly variable loading 

conditions. The effect of winter storms on cliff erosion is expressed in seasonal signals of heightened 

rockfall activity, particularly in temperate regions such as the North Yorkshire coast (Lim, 2014). 

Daily average wind speeds have been recorded at over 38 km h-1 during the winter months, with 

gusts of up to 85 km h-1 recorded during Storm Frank on 30th December 2015 (Figure 2.04f). A 

total of 14 named stormed events, active between November and March, occurred during the 

monitoring period. These events have been named since 2015 by the UK Met Office in order to 

highlight their potential severity.  

In summary, the energy available for delivery to coastal cliffs is highly moderated by the 

combined effects of waves, wind, and rainfall. The impact of these processes on patterns of erosion 

observed at sites along the North Yorkshire coast is therefore reviewed in Section 2.2. 
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Figure 2.04 Environmental conditions over the monitoring period (August 2014 – September 2017). (a) 

Tide elevations and residuals from Whitby tide gauge data, (b) wave heights measured at a wave buoy ca. 

1.5 km offshore from Whitby, (c) peak wave period, (d) mean temperature measured at Whitby, (e) 

precipitation accumulation measured at Whitby, (f) mean wind speed measured at Whitby. In subplots (b – 

f), data presented are raw (grey) and smoothed using a 30-day moving average (black). Red bands denote 

the start of each calendar year. White bands denote missing data. 



 

Chapter 2. Study site 

17 

2.2 Geomorphology and erosional processes 

The North Yorkshire coast is shaped by an inheritance of marine, subaerial, and 

anthropogenic (mining exploitation and management intervention) processes, leading to complex 

patterns of morphological change as the coastline adjusts and retreats (Lim, 2014). The rate of 

cliff erosion at Staithes (Figure 2.01a) has been estimated at ca. 0.05 m yr-1 over the last century, 

based on the analysis of historic maps and photographs (Agar, 1960). This has been derived from 

a calculated retreat rate of ca. 0.04 m yr-1 for headlands and ca. 0.07 m yr-1 for embayments. 

However, when considered at this scale and monitoring interval, this rate falls well beneath the 

minimum achievable mapping precision at any given point. Measurements of coastal erosion using 

historic map data neglect processes of undercutting and small scale, iterative failures of localised 

sections of the cliff face, instead focussing on the overall recession of the cliff top or toe (see Lim 

et al., 2005 and Rosser et al., 2005a). The practical implications of this are that erosion rates 

determined using these approaches are associated with very high levels of uncertainty. 

In recent years, the use of terrestrial LiDAR has become increasingly widespread owing 

to its ability to rapidly acquire dense 3D point clouds that can be used to derive 3D slope geometry 

on steep to vertical rock faces (Jaboyedoff et al., 2012; Royán et al., 2013; Abellán et al., 2014). 

An overview of change detection using laser scanning technologies, with particular reference to 

monitoring slope deformation and rockfalls, is given in Section 3.1. The cliffs at Whitby (ca. 5 km 

southeast of Sandsend and outside of the area monitored in this research) and between Staithes 

and Boulby have been extensively monitored using terrestrial LiDAR in the past; these sites are 

shown in Figure 2.05, with corresponding rates of erosion provided in Table 2.01.  

Although the behaviour of hard rock cliffs, both in terms of rockfalls that occur on the 

rock face and the resultant step-back retreat, is often described as episodic, monitoring at Whitby 

and at Staithes has revealed that smaller and more iterative changes occur at higher frequencies 

(Rosser et al., 2005a, 2005b). An inventory of over 100,000 individual changes on these cliffs (sites 

A, B, D – F) over a 20-month period demonstrated that failure activity occurs over a range of 

scales, with the volume of individual changes ranging from ca. 1.25 × 10-4 m3 to over 2.50 × 103 m3 

(Lim et al., 2010). Multiple failure mechanisms, including constant spalling of material, overhang 

collapse, fragmentation, and large-scale, coherent rockfalls were observed and related to differences 

in lithology across the rock face and between sites. Monitoring at the same sites (A – G) over a 

seven-year period revealed that erosion rates in the inundated zone of the cliff broadly outpace 

those of the cliff above, yet there is no evidence of longer-term profile form change (Rosser et al., 

2013). Failure scars were observed to evolve through time, progressing upwards and also laterally 

(confined by lithology). The absence of notching in these areas indicates that abrasion by wave 

impacting appears not to be a dominant process in driving rock slope failure in this setting. 

Instead, both fracturing of rock bridges and discontinuity-controlled failure have been inferred 

from scar morphology (Rosser et al., 2013). These are discussed further in Section 2.2.1.  
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2.2.1 Evidence for the influence of lithology and structure 

The strata exposed at sites A – G, in particular the shales of the Lias Group, are friable 

and can be subject to considerable rates of erosion dependent upon local characteristics, such as 

cliff aspect and the presence of the foreshore platform. A range of rock strengths, bedding patterns, 

and jointing mean that the exposed sections at these sites are variable, comprising a mixture of 

smooth and irregular, blocky surfaces. Triaxial testing of samples taken from the cliffs at Staithes 

revealed a peak in resistance at the mudstone base (uniaxial compressive strength, σucs = 

41.54 MPa), which is overlain by weakened shale (σucs = 16.69 MPa) and by more competent 

siltstone (σucs = 30.20 MPa) and sandstone (σucs = 34.21 MPa) above (Lim et al., 2010). Failures 

in the till capping the cliffs often stain the cliffs red-brown and concentrate the flow of water over 

the rock face, with recent failures on the cliff face leaving clean, easily distinguishable scars (Lim, 

2006). Where this occurs, the cliffs have a steep lower section and a shallow upper profile. Failures 

in the till have also been observed to dislodge other rock material from the underlying strata. 

Patterns of retreat broadly reflect the exposed area of each rock type, with shales eroding 

iteratively through many small-scale losses, while mudstones and sandstones erode to greater 

depths, yielding larger, more coherent block failures (Lim et al., 2010). Similar patterns occur at 

Whitby, where low rates of detachment are observed from the comparatively strong, widely jointed 

sandstone bands, and the weaker shales show consistently increased levels of activity (Rosser et 

al., 2005a). Although there is little evidence of a wave-cut notch at the base of these cliffs, either 

because they are too short-lived or because they never form, the majority of change is known to 

occur in the mudstone at the cliff base, indicating that the overlying strata quickly adjust to 

changes in the stress environment brought about by erosion at the cliff toe (Barlow et al., 2012).  

Figure 2.05 Previously monitored sites in the Boulby/Staithes area, North Yorkshire. Details of monitoring 

periods, the associated rates of erosion, and references are included in Table 2.01. Map produced using 

shapefiles from the Ordnance Survey © Crown Copyright and Database Right 2017. Ordnance Survey 

(Digimap Licence). 
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Analysis of the shape of rockfall scars at Boulby (site A) suggests a structural control on 

rockfall geometry, with failures tending to cluster around single or multiple joint sets (Rosser et 

al., 2005b; de Vilder et al., 2017). The shales and siltstones are fissile deposits that abrade, yielding 

small, slab-like failures. The more widely jointed limestone and sandstones tend to produce 

elongated failures, which is likely explained by shallow bedding depths and wide joint spacing. 

Mudstones in particular tend towards blocky shapes, representing failures deeper into the rock 

face (Rosser et al., 2005b). Block shape also appears to vary up the cliff, indicating a potential 

transition from marine-controlled processes at the toe to weathering and rock mass collapse further 

up the cliff. Failure of convex features, such as overhangs, occurs as a function of localised stress 

concentration, removing support from the material above.  

At each of the sites, rockfalls are observed to evolve through time, propagating both 

upwards and laterally (Rosser et al., 2013). This occurs only where it is kinematically permissible, 

and is moderated by the local lithology, rock mass structure, and subaerial processes (Rosser et 

al., 2013). At some elevations, exposures of massively jointed, fine-grained sandstones inhibit 

failure propagation, reflecting previously observed structural controls on rockfall magnitude-

frequency scaling (Barlow et al., 2012). Where large-scale failure of the cliff face has occurred (site 

D, for example, underwent a > 2,400 m3 failure in January 2005), deeper seated and/or cantilever 

failure is thought to have been driven by locally high toe incision during high astronomical tides.  

Table 2.01 Erosion rates derived from terrestrial monitoring of rockfalls at the sites shown in Figure 2.05.

Site 
Erosion rate Monitoring period Reference 

m yr-1 mm/yyyy – mm/yyyy -  

A 

0.009 10/2003 – 04/2005 Lim (2006); Lim et al. (2010) 

0.004 09/2003 – 09/2010 Rosser et al. (2013) 

0.024 07/2008 – 06/2010 Vann Jones et al. (2015) 

B 

0.079 10/2003 – 04/2005 Lim (2006); Lim et al. (2010) 

0.052 09/2003 – 09/2010 Rosser et al. (2013) 

C 0.009 09/2003 – 09/2010 Rosser et al. (2013) 

D 

0.073 10/2003 – 04/2005 Lim (2006); Lim et al. (2010) 

0.079 09/2003 – 09/2010 Rosser et al. (2013) 

E 

0.068 10/2003 – 04/2005 Lim (2006); Lim et al. (2010) 

0.007 09/2003 – 09/2010 Rosser et al. (2013) 

F 

0.128 10/2003 – 04/2005 Lim (2006); Lim et al. (2010) 

0.024 09/2003 – 09/2010 Rosser et al. (2013) 

G 0.011 09/2003 – 09/2010 Rosser et al. (2013) 
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2.2.2 Evidence for environmental drivers 

Quantification of marine and atmospheric energy delivery to the coastal cliffs at Boulby 

(site A) has been undertaken using microseismic monitoring, which draws on different frequency 

bands of ground motion as proxies for wind and wave conditions (Lim et al., 2011; Norman, 2012; 

Norman et al., 2013; Brain et al., 2014; Vann Jones et al., 2015). Monitoring has shown that 

energy delivery to the cliffs is highly variable over time, and is strongly conditioned by tide height 

and foreshore microtopography (Lim et al., 2011). Peak energy transfer occurs during the largest 

storm events, where bottom frictions and water depths are sufficient to maintain constant wave 

impacting, and therefore energy delivery, at the cliff (Norman, 2012; Norman et al., 2013). The 

variability observed in certain frequency bands of a two-year microseismic dataset obtained from 

the cliffs at Boulby shows moderate, statistically significant correlations (r2 < 0.6, p < 0.001) with 

rockfall activity observed across the whole cliff face, rather than solely within the inundated wet 

zone (Vann Jones et al., 2015). This indicates that the marine influence on erosion extends above 

and beyond the inundated area of the cliff. Ground motions generated by wind and wave processes 

are therefore thought to play a role in the final release of rockfalls from the upper parts of the 

cliff face, which were previously considered to be disconnected from marine processes occurring at 

the cliff toe (Rosser et al., 2005a). Moderate correlations may be partially explained by the strong 

geological controls on rockfall occurrence (Section 2.2.1), although analysis undertaken over 

monitoring intervals of 4 – 8 weeks fails to differentiate between the observed failures occurring 

as a near-immediate or a lagged response to forcing. 

In addition to acting as proxies for environmental forcing, microseismic ground motions 

are hypothesised to play a direct role in fracturing rock via cyclic loading and subcritical crack 

growth. A 32-day microseismic dataset obtained from the cliff top at site A demonstrated that 

periods of relatively low amplitude microseismic ground motion are often interrupted by periods 

of greater displacement during energetic storm events (Brain et al., 2014). Ground motions with 

a sustained cliff-normal component were also observed during these events. Brain et al. (2014) 

suggested that changes in loading direction beyond those that are commonly experienced could 

lead to a change in the micro-scale stress field and therefore the crack tip separation mode, 

extending microcracks beyond conditions achievable by low amplitude background displacements. 

As a result, the opportunity for microseismic loading to cause damage and weakening through 

propagation and coalescence of microcracks is likely to be spatially and temporally restricted. 

However, determining the exact effects of these motions on damage accumulation as a trigger for 

rockfall remains difficult.  

Between Staithes and Boulby, the propagation of rockfalls has been observed to facilitate 

the transmission of marine loading up the cliff face over time (Section 2.2.1; Lim et al., 2010; 

Rosser et al., 2013; Vann Jones et al., 2015). However, the response of rock slopes to different 

promoting and triggering conditions remains poorly understood. If rock slope evolution is driven 
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by progressive failure, which is the product of iterative and then runaway microcracking that is 

independent of external loading, progressive damaging of the rock mass could explain the poor 

correlations between rockfall activity and energetic environmental conditions thus far.  

2.3 Summary 

The discussion presented in Chapter 1 demonstrated the importance of being able to 

upscale existing monitoring of rockfall activity, in order to account for the influence of variations 

in intrinsic (here, rock mass strength and structure) and extrinsic (here, erosion induced by wave 

loading) controls. This in turn may provide an understanding of how these controls interact to 

condition patterns of rockfall occurrence. In this chapter, a field site has been identified that 

constitutes a suitable analogue for a range of wave loading conditions, and where the relationships 

between wave loading, rock mass structure, and rockfall occurrence can be investigated. In this 

context, the North Yorkshire coast is suitable for a number of reasons, including: 

1. The cliffs fall inside one of three distinct precipitation sub-regions in North Yorkshire, 

which are defined using at least 10 years of precipitation observations from 150 sites 

(Fowler et al., 2000, 2005), such that the effect of weather on rockfall occurrence is 

effectively held constant along their length; 

2. Periodic straining of the rock mass by wave loading varies considerably along the coastline 

due to variable coastal geometry and bathymetry. This variability can occur over short 

(< 102 m) and longer (> 103 m) length scales; 

3. This variability in wave loading, combined with varying lithology and structure 

(predominantly over length scales of > 103 m), permits the constraint of the nature of 

rockfall occurrence beyond that observed on a single slope, which is often the maximum 

that is achievable due to limitations in data capture. 

In order to do this, Chapter 3 focuses on developing a workflow for detecting and characterising 

regional-scale changes to rock slope morphology in 3D, and uses this workflow to explore regional-

scale variations in rockfall magnitude, frequency, and erosion along the North Yorkshire coast. 
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Chapter 3 

Quantifying regional variations in 

rockfall activity along coastal cliffs

A paper published using some of the material from this chapter (Benjamin et al., 2016) 

is presented in Appendix A, and is referred to in text. 

The ability to precisely quantify and understand rockfall behaviour on a regional scale is critical 

for a number of reasons (Chapter 1), including (1) that rockfalls are an important factor in defining 

rates of rock wall retreat in sea cliff and high-mountain geosystems, (2) that monitoring at this 

scale overcomes site-specific conditions, allowing a full assessment of the emergent characteristics 

of rock slope failure and the associated drivers, and therefore (3) for successfully modelling the 

present and future dynamics of failing rock slopes. This chapter therefore uses high-density point 

clouds derived from airborne LiDAR to monitor rockfalls along the North Yorkshire coast. 

Building on existing monitoring data presented in Chapter 2, this research upscales previous work 

undertaken using terrestrial LiDAR and shifts the focus towards understanding changes in rock 

slope morphology at the regional scale. Quantifying the magnitude of these changes has previously 

proven problematic, with a range of approaches currently adopted to measure the retreat, area, 

or volume of changes to rock slopes. The following discussion reviews a number of these approaches 

(Section 3.1), before proposing a workflow for detecting and characterising regional-scale changes 

to rock slope morphology (Section 3.2.). This method is used to detect rockfalls along ca. 20.5 km 

of coastal cliffs over three approximately equal monitoring intervals between August 2014 and 

March 2017. Using the resulting inventory of rockfall activity, Section 3.3 explores regional-scale 

variations in rockfall magnitude, frequency, and erosion along the North Yorkshire coast (RQ1). 

These findings are summarised in Section 3.4. 
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3.1 Change detection using laser scanning 

The most significant advances in our ability to detect rock slope deformation and to 

quantify change across a range of spatial and temporal scales have come from the application of 

terrestrial, airborne, and/or spaceborne remote sensing (Metternicht et al., 2005). Among these, 

the use of terrestrial LiDAR has become increasingly widespread. Sequential surveys can be used 

to monitor displacements and detachments on cliffs, providing a more accurate representation of 

the distribution of types and rates of cliff change than 2D measurements of cliff top recession (Lee 

and Clark, 2002) or measurements of rockfall volume flux derived from sediment traps 

(Krautblatter and Dikau, 2007). 

Quantification of volumetric change between LiDAR surveys, in a manner that permits 

individual rockfalls to be considered, is commonly achieved by rasterising successive point clouds 

and differencing the resultant Digital Elevation Models (DEMs, Figure 3.01). This technique has 

been used to monitor rock slope deformation (Bauer et al., 2005) and precursors to slope failure 

(Abellán et al., 2009); debris flows (Scheidl et al., 2008; McCoy et al., 2010; Schürch et al., 2011; 

Blasone et al., 2014); landslide dynamics (Corsini et al., 2009; Burns et al., 2010; Kasperski et al., 

2010); rock glaciers (Avian and Kellerer-Pirklbauer, 2009); and slope failures in rapidly eroding 

soft rock sea cliffs (Kidner et al., 2004; Xhardé et al., 2006; Kuhn and Prüfer, 2014; Young, 2015). 

Quantifying change using this technique is simple and fast, and permits the explicit calculation of 

uncertainties related to point cloud quality, co-registration, and surface roughness.  

Differencing two DEMs derives a 1D measurement of change in the z direction only, 

typically aligned towards the sensor (Avian and Kellerer-Pirklbauer, 2009). A number of 

techniques have therefore been developed to compute a displacement field based on the 

identification of corresponding elements within two DEMs. These techniques are based on a set 

of image-based cross-correlation techniques and have been used to monitor glacier movements 

(Abdalati and Krabill, 1999; Schwalbe et al., 2008); mudslides (Travelletti et al., 2008); landslides 

(Aryal et al., 2012; Feng et al., 2012; Ghuffar et al., 2013); and post-seismic ground displacements 

(Ayoub et al., 2009; Borsa and Minster, 2012). The use of cross-correlation functions exploits the 

high point densities acquired by laser scanners, although the quality of these techniques is limited 

in the presence of vegetation and minimally textured surfaces. Object-oriented methods expand 

on these techniques and quantify deformation by separating measured displacements into 

rotational and translational components, using either manual or semi-automatic methods 

(Monserrat and Crosetto, 2008; Oppikofer et al., 2008, 2009; Travelletti et al., 2008; Carrea et al., 

2012). These approaches consist of the manual identification and tracking of features common to 

both point clouds in order to calculate a series of displacement vectors and velocities, yielding 

precise information (10-2 m) on small-scale deformations on slope surfaces (Oppikofer et al., 2008, 

2009; Carrea et al., 2012). However, the accuracy of these methods strongly depends upon the 

identification of consistent point pairs between scans and the deformation patterns of the tracked 
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objects. Given that the point pairs are often identified manually, object-oriented methods can 

represent a fastidious processing task for very large datasets (Travelletti et al., 2014).  

The gridding of data during DEM creation requires a fixed cell width to be selected, which 

is ultimately defined by the maximum point spacing and therefore acts to average out smaller 

scale features. Rasterising rough surfaces also generates patterns of occlusion that are view-

dependent and convolute volume estimation. Deviation away from the normal viewing angle (0°) 

can have a profound influence on the magnitude of change detected. The case in Figure 3.01 

illustrates the influence of viewing angle on the amount of occlusion generated by roughness and 

pre-/post-failure micro-topography across the rockfall surface, and the consequences of this for 

volume estimation. Where rock slopes have more a complex, non-planar aspect, this type of 

Figure 3.01 Differencing technique using DEMs derived from 3D point clouds. Here, the rockfall (a) is 

shown on the plot of 2D surface change and is used to illustrate the influence of viewing angle on the 

magnitude of change detected. The rockfall (volume = 16.20 m3) was recorded at Staithes, North Yorkshire 

(UK) over a 10-month monitoring period between August 2014 and June 2015. Note that the 2D volume 

quoted here differs to 3D volumes quoted later, for reasons explained in Section 3.1 (p. 27). 
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approach requires the scan data to be rasterised and differenced in separate sections in order to 

maintain a cliff-normal viewing angle. Given that there is no coherent relationship between the 

estimated volume and view-angle, the degree of under- or over-estimation of change cannot 

necessarily be compensated for if the view-angle from the sensor to the slope is known. Reducing 

3D point cloud data to a pseudo-3D surface in this manner therefore hinders accurate 

quantification of rock wall adjustment and retreat (Abellán et al., 2014). This has the effect of 

losing detail and the true 3D character of the data, with the development of new algorithms for 

3D deformation tracking and change detection therefore representing a priority for monitoring 

rock slope dynamics (Carrea et al., 2012). 

A number of 3D methods have been developed to measure the distance between two 

successive point clouds (Girardeau-Montaut et al., 2005). These techniques include cloud-to-mesh 

(C2M) and cloud-to-cloud (C2C) comparison methods. C2M methods create a surface model from 

the reference point cloud via meshing or triangulation and measure the distance between this and 

subsequently gathered point clouds (Abellán et al., 2009, 2010; Olsen et al., 2010). Such methods 

have been successfully used to investigate cases of structural or surface deformation, including 

monitoring of a large dam (Alba et al., 2006); detecting land surface changes in the Grand Canyon, 

Arizona (Collins et al., 2012); and quantifying erosion in the coastal bluffs of the Le Sueur River, 

southern Minnesota (Day et al., 2013). To accurately determine volumetric change, triangulated 

surfaces must be free of topological holes and intersecting triangles. To do this, the vector 

perpendicular to the surface at the centroid of each triangle, known as the surface normal, must 

be calculated. The surface normal for each triangle is calculated using the orientation of its three 

edges, and must also point towards the same side of the mesh. The majority of surface 

reconstruction techniques have been developed and tested using regular shapes and denoised point 

clouds (Lim and Haron, 2014), meaning that they are difficult to employ on rough, complex 

surfaces defined by marked topographic variability (Olsen et al., 2015). 

C2C techniques instead estimate surface changes directly from the distance between point 

neighbours in successive point clouds, eliminating the need for mesh construction and the 

smoothing of any noisy data (Lague et al., 2013). These distances can be measured automatically 

using the Hausdorff metric, which computes the unsigned distance for each point in the reference 

cloud to its nearest neighbour in the second cloud. Where point clouds are sparse, they can be 

improved by using a local model of the reference surface obtained by a quadratic height function, 

a least square fit, or a Delaunay triangulation of the closest point neighbours (Gruen and Akca, 

2005). These provide a better approximation of the true position of the surface and are better able 

to deal with outliers and variations in surface roughness. These techniques have recently been 

extended by the Multiscale Model-to-Model Cloud Comparison (M3C2) approach, the principles 

of which are illustrated in Figure 3.02 (Lague et al., 2013). More widely, M3C2 has been used to 

monitor lava lakes (Smets et al., 2016), patterns of erosion in bedrock gorges (Beer et al., 2017; 
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Cook, 2017), landslides (Stumpf et al., 2015), cliff erosion (Warrick et al., 2017), the evolution of 

Antarctic moraine complexes (Westoby et al., 2016), and glacier surface topography (Midgley and 

Tonkin, 2017). For each point, M3C2 estimates the surface normal and measures the signed mean 

surface change along the normal direction, with the explicit calculation of a spatially variable 

confidence interval (SVCI). M3C2 incorporates a local measure of cloud roughness and point 

density for estimating the SVCI, which can be used to test the statistical significance of any 

measured changes (Barnhart and Crosby, 2013; Earlie et al., 2013; Stumpf et al., 2015). The 

measured surface change is then projected back onto either the pre- or post-event point cloud.  

The volume and quality of data that can be collected using laser scanning technologies is 

unprecedented and presents its own unique challenges for regional-scale research, including 

questions regarding how data scales from the local to regional level, where data may increase in 

size from 106 to 109 points. Many approaches resort to gridding the data in order to reduce 

processing time and complexity (Leyland et al., 2017). However, localised tests examining the 

relative benefits of 2D and 3D methods of change detection show that the total erosion estimated 

by differencing DEMs of a rock slope can exceed that obtained by volumetric meshing by over 

25% (Benjamin et al., 2016; Appendix A, p. 171). This is attributed to the fact that 2D and 3D 

approaches behave differently when considering small depth changes on the periphery of a rockfall 

(Williams et al., 2018). Assuming a similar performance, these results suggest that existing 

inventories may considerably overestimate rockfall volumes, reaffirming the need to develop new 

ways of processing and analysing point cloud data for monitoring regional-scale rock slope 

dynamics.  

Figure 3.02 Principles of the M3C2 technique. In the first step (a), the surface normal at each point in 

the reference cloud (S1) is estimated by considering all points in a neighbourhood of radius D/2, where D is 

the user-defined normal diameter. The distance at each point is then calculated as the mean distance between 

all points in a neighbourhood of the size d/2, where d is the user-defined projection scale. These 

neighbourhoods are denoted i1 and i2. When used on complex topography (b), normals can be estimated at 

a scale too small with respect to the surface roughness characteristics (D1), meaning that their orientation 

varies strongly. A larger scale (D2) yields more uniform normal orientations. Diagram adapted from Figure 

3 in Lague et al. (2013, p. 14). 
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3.2 Measuring regional-scale variations in rockfall activity 

The most commonly used methods for calculating rockfall volume involve differencing 

high resolution DEMs (Santana et al., 2012) or meshes (Rabatel et al., 2008; Zimmer et al., 2012; 

Stock et al., 2013). While these methods can be useful for estimating the volume of a single 

rockfall, they prove time consuming when considering large rockfall inventories covering wide 

areas. Integrating the mean distance between two point clouds as calculated by a C2C comparison 

can also be problematic due to local changes in surface roughness and normal direction (Earlie et 

al., 2013), which may lead to considerable under- or over-estimation of the calculated volume. To 

address these difficulties, a workflow for detecting and characterising regional-scale change in 3D 

is proposed in Figure 3.03. In this workflow, M3C2 is used to detect change between two scans 

and to project the measured changes onto both the pre- and post-event point clouds. The point 

cloud is then filtered to remove areas of deposition and insignificant change, as defined by the 

SVCI. At this stage, a threshold for detectable change can be defined by the user, if necessary. 

Each individual rockfall event is classified using the data clustering algorithm DBSCAN (Ester et 

al., 1996), and the PowerCrust algorithm is then used to construct a watertight triangular surface 

mesh for each rockfall (Amenta et al., 2001). The volume, volumetric error, and centroid of each 

mesh is then derived, and other properties including the surface area, width, depth, and height of 

the observed rockfalls are also calculated. 

Figure 3.03 Workflow for detecting and characterising regional-scale change in 3D. The changes between 

two scans in (a) are detected using M3C2 (b) and projected onto both the pre- and post-event point clouds. 

The clouds are filtered and merged in (c) and rockfalls are clustered using DBSCAN (d). The clustered 

points are then meshed using the PowerCrust algorithm in (e). 
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3.2.1 Data acquisition 

Four surveys of the North Yorkshire coast (Chapter 2) were captured at approximately 

equal intervals using a mobile mapping system installed on a twin engine EuroCopter AS355 F1 

helicopter. The system comprises a RIEGL VQ-450 or VUX-1 laser scanner coupled with an IGI 

AeroControl III navigation system, which combines a GPS receiver with an Inertial Measurement 

Unit (IMU-IIe) in order to measure the position and attitude (pitch, roll, and yaw) of the 

helicopter. The scanner uses a high pulse repetition rate (up to 550 kHz) near-infrared laser and 

a rotating mirror to return a swath of range estimates beneath the flight path (RIEGL, 2014). 

During the surveys, the mapping system was housed in a protective pod on the front of the 

helicopter, providing a 180° downward- and sideways-looking field-of-view. This enabled both the 

terrain surface and near-vertical cliff faces to be scanned simultaneously. An example of the data 

collected is shown in Figure 3.041. A number of overlapping flight lines were flown in each survey 

to increase point density, and variations in the attitude of the aircraft gave multiple views of the 

same area of the cliff face, minimising any occlusions due to surface roughness. In addition, a 

downward-looking 36.3 MP Nikon D-800 camera with a 24 mm lens captured optical imagery. 

The system was deployed at an average flying height of ca. 100 m above the foreshore, providing 

a spatial resolution of ca. 0.01 m for the optical imagery (Figure 3.05b). Leica 1200 GPS receivers 

recorded ground control data at one sample per second. The GPS antennas were mounted on 

tripods placed over targets in 12 locations (Figure 3.05a). A summary of the data collected is 

presented in Table 3.01 and ground control data are provided in Appendix B (p. 181). 

 

Table 3.01 Summary of the raw airborne LiDAR data collected. Vertical RMSE are quoted as the average 

difference between the laser z and each of the ground control z (see Appendix B, p. 181). 

Date 
Number of points Average point density Vertical RMSE 

-  points m-2 m 

15/08/2014 381,649,773 30 – 50  0.025 

04/06/2015 422,283,194 40 – 60  0.053 

08/04/2016 476,025,155 50 – 70  0.032 

29/03/2017 555,389,153 60 – 80  0.010 

 

3.2.2 Point cloud processing 

Point cloud data were assigned to a global coordinate system by 3D Laser Mapping Ltd 

and provided as .las files containing the x, y, and z coordinates for each point, as well as RGB 

values (derived from orthophotos) and 16-bit intensity information. The point clouds were clipped 

in plan-view to retain the extent of the vertical cliff faces, which were mapped using a 0.25 m  

                                                            
1 Flythroughs can be viewed at: https://www.youtube.com/channel/UCKXC7KN_eL8N_ciKB5a281g  
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raster of the LiDAR point cloud derived from the first survey and coloured by RGB value. The 

data were divided into 38 blocks to increase processing efficiency, with each block 500 m in width. 

To minimise the error between surveys, the data were re-aligned block-by-block for each 

monitoring period using an iterative closest point alignment, with a maximum permissible 

registration error of 0.10 m. The cliffs and their corresponding blocks are shown in Figure 3.05c.  

Airborne LiDAR data are routinely classified using point filters designed to separate bare-

earth from vegetation, such as the adaptive Triangular Irregular Network (TIN) method developed 

by Axelsson (2000). This is required to ensure that only rockfalls are included in the subsequent 

analysis. The algorithm creates and iteratively densifies a TIN from a sparse distribution of seed 

points. Seed points are local low points, which are initially classified as ground points. The 

algorithm assumes that the triangles in the TIN initially created from the seed points are mostly 

below ground level, since their vertices are the lowest points in a localised area. In each iteration, 

a point is added to the TIN if the point meets certain criteria in relation to its bounding triangle. 

These criteria are that the angle the point makes to the triangle must be below a defined threshold 

Figure 3.05 Map showing the ground control points used in the four airborne LiDAR surveys undertaken 

(see Appendix B, p. 181). Red points denote sites that were repeated in all four surveys, while blue points 

denote those that were used in the first survey only. The data was divided into 38 blocks for processing and 

merged for analysis. Orthophoto tiles cover the full extent of the surveyed area. 

Figure 3.04 Overleaf. Mosaicked orthophotos (a) and a point cloud (b,c) of the cliffs between Cowbar and 

Boulby. Inset: map of the surrounding area, including sites previously monitored (Section 2.2). 
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(the ‘iteration angle’), and that the point must be within a minimum distance of the nearest 

triangle node (the ‘iteration distance’). Many existing filters operate under similar assumptions, 

and can therefore fail when classifying steep terrain, particularly cliff edges and overhangs (Sithole 

and Vosselman, 2004). This is illustrated in Figure 3.06. Increasing the iteration angle and distance 

can partially overcome this problem, but doing so acts to include vegetation and other objects 

into the ground model. Although Riquelme et al. (2014) present a solution, which involves rotating 

the point cloud such that the cliff surface is upward facing and therefore capable of being 

successfully classified, this is unfeasible for large datasets where cliffs vary considerably in aspect.  

The point cloud data for each of the surveys were classified using RGB information taken 

from 11 training sets of exposed rock and vegetated surfaces along the coastline. The training data 

for the cliff surfaces comprised the Lower-Middle Jurassic strata, tills, and overhangs that caused 

shadow in the orthophotos. Above the cliffs, vegetation occurs predominantly as grasses and 

shrubs growing in the glacial till. Training sets included different types of vegetation, as well as 

patches of vegetation under different light conditions, in order to capture the associated differences 

in colour. The final training sets were plotted in RGB colour space to ensure no overlapping 

between each set. The data were classified into exposed rock and vegetated points using a macro 

routine informed by the training data. Isolated ‘air’ points (for example, birds) were then classified 

by finding the median and standard deviation of the elevation of all the neighbouring points within 

a radius of 5 m. A point was considered as an air point if its elevation exceeded the standard 

deviation multiplied by a given factor (default = 5) above the median elevation, in order to 

account for changes in surface roughness. The results of the classification were manually checked 

and corrected, as warping of the orthophotos on the steepest surfaces yielded inaccurate results in 

some areas. Field photos were used to verify the results, where possible. The relative benefits of 

this technique over the adaptive TIN method are illustrated in Figure 3.06. All vegetated surfaces 

were filtered out prior to change detection.  

Figure 3.06 Point cloud of the cliffs at Cowbar Nab, showing (a) classes derived 

using the adaptive TIN method, which have wrongly classified much of the vertical 

cliff face as ‘high vegetation’, (b) the RGB data, and (c) classes derived using the 

RGB data. 
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3.2.3 Change detection analysis 

The four monitoring periods were defined using the airborne LiDAR data collected 

between 2014 – 2015, 2015 – 2016, 2016 – 2017 and 2014 – 2017 (Table 3.01). For each monitoring 

period, change was estimated between the point clouds block-by-block using the M3C2 algorithm 

(Lague et al., 2013). As illustrated in Section 3.1, the algorithm was implemented in two stages, 

(1) the estimation of 3D surface normals using the normal diameter, D, and (2) quantification of 

the mean distance between the two point clouds along the normal vector using the projection 

scale, d. This step includes the explicit calculation of the SVCI, which can be used to test the 

statistical significance of any measured changes.  

Change detections on four different types of surface were undertaken to demonstrate how 

the measured change differs between surfaces of varying roughness, and with variations in normal 

diameter and projection scale (Figure 3.07). For this purpose, surface roughness is defined as the 

standard deviation of local surface elevations (σ). Vegetated surfaces are shown for completeness, 

but were filtered out prior to change detection on the cliffs themselves (Section 3.2.2). A trial-

and-error approach was used to estimate the normal diameter, D. Surface normals must be 

estimated at a scale that is small enough to capture medium-to-large scale changes in surface 

orientation, such as changes in cliff aspect, but large enough to avoid fluctuation of the resulting 

normals due to small scale changes in roughness, such as small cobbles or overhangs. A normal 

diameter, D, of 2 m was selected as a compromise (Figure 3.07a). Smaller projection scales (d  

1 m) sample too few points from each point cloud and exaggerate change, while larger projection 

scales (d  3 m) cause smearing and average out many of the largest changes recorded. This effect 

is most pronounced on blocky and vegetated surfaces (Figure 3.07b). The diameter of the 

projection scale, d, was therefore specified as 1 m. This ensured that the number of points sampled 

in each cloud was  30, following Lague et al. (2013), while minimising the effect of averaging. 

Cloud-to-cloud distances were projected onto the pre- and post-event point clouds, and 

both were filtered to remove any areas of deposition and insignificant change, as defined by the 

SVCI. This is also known as the level of detection (LoD) threshold for a 95% confidence interval: 
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where reg is the user-defined registration error, which is substituted for the alignment error for 

point clouds n1 and n2 (ca. 0.10 m) of surface roughness σ1 and σ2. Given the uniformity of the 

point distribution across the datasets, this error is assumed to be isotropic and spatially uniform. 

However, the LoD selected represents the maximum of all blocks in the dataset, in order to 

minimise the likelihood of capturing noise. Having isolated the areas of erosion, the pre- and post-

event point clouds were merged for each block and for each monitoring period. 
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3.2.4 Rockfall detection and clustering 

The points belonging to each individual rockfall event were grouped using the clustering 

algorithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise), developed by 

Ester et al. (1996). Contiguous points of change are assumed to belong to a single event, although 

the influence of rockfall scar coalescence through time is also recognised in later analysis (Williams 

et al., 2018). The principles of the DBSCAN technique are illustrated using three rockfall events 

recorded at Staithes (Figure 3.08). DBSCAN is the most commonly used single-scan clustering 

technique and defines clusters based on the local density of points. The algorithm requires two 

inputs: the minimum number of points (MinPts) within a maximum radius (ε) from each randomly 

chosen point (p) in the dataset. DBSCAN defines a neighbourhood of points, Nε, which falls within 

the circle of radius ε around a point, p. MinPts is defined as the minimum number of neighbours 

of point p to consider p as a core object. If Nε contains more than MinPts, the algorithm creates 

a new cluster with p as the core point, and iteratively collects directly density-reachable points 

from p. The process terminates when no new points can be added to any cluster. If each point in 

the cluster is plotted against the distance to its kth nearest neighbour, the threshold point p in the 

k-distance graph can be used to define ε = kth dist(p), where MinPts = k. All points with a higher 

k-dist value are considered as noise (Ester et al., 1996). For databases where each point only 

occurs once, Sander et al. (1998) proposed that MinPts is equal to twice the number of dimensions 

of data. 

Figure 3.07 Overleaf. Cumulative distribution functions of the change measured across surfaces of varying 

roughness. The surfaces were sampled from two LiDAR surveys taken on the North Yorkshire coast in 

August 2014 and June 2015. Given that no rockfalls were observed, the plots demonstrate how change differs 

with variations in (a) the normal diameter, D, and (b) projection scale, d, used in the M3C2 algorithm.  

Figure 3.08 Principles of the DBSCAN technique illustrated using three rockfall events recorded at Staithes 

over a 10 month monitoring period between August 2014 and June 2015. Inset: sorted 6th-distance graph for 

the rockfall points, where the point of inflection is used to define the value of ε.  
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After merging the filtered pre- and post-event rockfall inventories, each block of points 

was run sequentially using a parallel DBSCAN algorithm (PDSDBSCAN-S) developed by Patwary 

et al. (2012) for shared memory computation. Parallelisation of the algorithm achieves 

considerable speedups when compared to traditional approaches, and is therefore optimised for 

large volumes (> 107 points) of high-dimensional data. MinPts was set to 6 (2	×	the number of 

dimensions) and ε was determined by plotting the 6th-distance graph for the rockfalls in each block 

and averaging the distance at the point of inflection, p, for all blocks (ε = 0.45 m). The results for 

each block were manually verified, and any noise objects were filtered out of the dataset. For each 

monitoring period, this yielded 38 files containing the x, y, and z coordinates of each rockfall point 

and a unique class identifier, which is used as the rockfall ID.  

3.2.5 Meshing and volumetric characterisation 

The use of triangulated surfaces for surface reconstruction and the volumetric 

characterisation of objects is well-established, and attempts to quantify rockfall volume and shape 

have been made using the alpha shapes method on a site-specific scale (Guerin et al., 2014; Carrea 

et al., 2015; van Veen et al., 2017). These are often subject to considerable post-processing in order 

to ensure a watertight mesh and fail to provide error estimates for the calculated volumes. Here, 

the PowerCrust algorithm was used to construct a watertight triangular surface mesh for each 

rockfall (Amenta et al., 2001). This algorithm is depicted in 2D for simplicity (Figure 3.09). For 

a given group of points, S, the PowerCrust algorithm is able to extract a simplified skeletal shape, 

or the medial axis, which is then used to produce a surface representation of the points. The 

medial axis transform (MAT) represents a solid by the set of maximal balls completely contained 

in its interior (Figure 3.09a). The MAT is approximated by a subset of Voronoi vertices of S, 

called poles, which lie near the medial axis (Figure 3.09b). The balls surrounding the poles are 

known as polar balls (Figure 3.09c), the radius of which determines the weighting of each pole. 

An inverse transform is approximated by using a power diagram of the weighted poles. This acts 

like a weighted Voronoi diagram by dividing space into polyhedral cells (Figure 3.09d). These are 

then divided into interior and exterior faces, where the boundary of separation of these subsets 

forms the output surface, or PowerCrust (Figure 3.09e). The PowerCrust is therefore a watertight 

boundary of the 3D solid described by the approximate MAT (or power shape), and eliminates 

the need for the polygonalisation, hole-filling, or manifold extraction post-processing steps required 

in other surface reconstruction algorithms (Berger et al., 2014; Lim and Haron, 2014).  

The MATLAB® implementation of the PowerCrust algorithm was used on an event-by-

event basis to construct a watertight triangular surface mesh for each rockfall (Sanche, 2016). The 

algorithm uses each set of rockfall points and a tolerance, defined between 0 and 1, as inputs. The 

tolerance is used to determine the inner and outer poles of the power diagram, which defines the 

boundary of the power crust (Figure 3.09d). In the majority of cases, a higher tolerance yields a 
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more robust fit, although this varies from mesh to mesh. To ensure the most robust fit in every 

case, each rockfall was meshed at nine different tolerances and the mesh closest to the average 

volume of the nine resulting meshes was chosen. The lower and upper bounds of the calculated 

rockfall volumes, interpreted here as the minimum and maximum rockfall volume, were then 

determined for each rockfall by using the smallest and largest possible meshes. An example of the 

outcome of this process is shown in Figure 3.10. It should be noted that the error in volume 

estimates is conditioned by the number of meshing configurations available for each set of points: 

if there is only one meshing configuration for a set of points, the error is reported as ± 0.00 m3. 

The volume and centre of mass of each rockfall mesh was calculated using the divergence 

theorem, a process that is described in detail in Appendix C (p. 183) and is summarised here. All 

rigid bodies, and therefore their parameters, can be expressed in terms of 3D moments (Semechko, 

2014). Closed-form expressions for the 3D moments of objects represented by triangular surface 

meshes can be derived and used to calculate volume, V, which is equal to the zeroth moment: 
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and the position of the centre of mass: 
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Figure 3.09 Principles of the PowerCrust algorithm, where (a) shows an object with its medial axis, with 

one maximal interior ball, (b) the Voronoi diagram of S, with the Voronoi ball surrounding one pole, (c) 

the inner and outer balls, (d) the power diagram cells of the poles, labelled inner and outer, and (e) the 

power crust and power shape of the solid. Diagram adapted from Amenta et al. (2001). 
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which is equal to the value of the first moments of x, y, and z, divided by volume. The surface 

area, width, depth, and height of each rockfall mesh were also calculated for each rockfall. For 

each monitoring period, this yielded a database of rockfalls spanning the length of the North 

Yorkshire coastline between Skinningrove and Sandsend (ca. 20.5 km of cliffs). The properties 

recorded in the rockfall databases are listed in Table 3.02 and will be used in this chapter to 

consider spatial variations in rockfall activity and the resulting erosion, and in Chapter 4 to 

consider the structural control on rockfalls. 

 

 

Table 3.02 Summary of the properties recorded for each rockfall in the inventory. 

Rockfall mesh 
Centre of mass Axis length Surface area Volume 

- m m2 m3 

Nodes, triangles x y z a b c Min Mean Max Min Mean Max 

             

Figure 3.10 Three 3D triangular surface meshes generated using the PowerCrust algorithm. The minimum, 

average, and maximum possible mesh sizes for the given rockfall are shown. 
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3.2.6 Negative power law estimation 

It is well-established that rockfall magnitude-frequency distributions exhibit a negative 

power law scaling that can be modelled using: 

 

																																																																														�(��) = ���
��,																																																																												[3.4] 

 

where f(VR) is the frequency density of a rockfall of magnitude VR, and s and β are empirical 

constants (Malamud et al., 2004). These provide an indication of the level of activity and relative 

size distribution in an inventory, respectively. Power law scaling relationships were therefore fitted 

to each rockfall inventory, in order to assess both along-coast and up-cliff variations in the 

magnitude and frequency of rockfall activity. For each inventory, rockfall magnitude-frequency 

was plotted on logarithmic axes using logarithmically binned data. Frequency densities were 

calculated for events of differing magnitudes using the formula provided by Malamud et al. (2004): 
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where δNR is the number of rockfalls with volumes that fall within the range of δVR, and δVR is 

the associated bin width. Parameter estimation was undertaken using least squares regression on 

the logarithmically transformed data (Goldstein et al., 2004). This is in keeping with previous 

research undertaken along the coastline and ensures full comparability with other findings. Due 

to the high rate of rockfall along the cliffs (Lim et al., 2005, 2010; Rosser et al., 2005a, 2005b, 

2007, 2013; Barlow et al., 2012; de Vilder et al., 2017), the effect of superimposition and coalescence 

of rockfall scars on the form of the magnitude-frequency distribution is also assessed by comparing 

the scaling coefficients s and β derived from annual inventories to those of a change detection 

between the first and last survey only.  

3.2.7 Spatial variations in power law scaling parameters 

Although the length of time over which rockfall frequency estimates are made is known 

to exert a profound influence on β (Barlow et al., 2012; Williams et al., 2018), the length scale, L, 

over which a single power law can be applied remains poorly constrained. Many previously 

reported observations do not indicate whether power laws derived on a site-specific basis 

(L < 102 m) can adequately explain behaviour over larger spatial scales (L > 103 m). Given the 

emerging need to address this scale of investigation (Kennedy et al., 2017), the effect of using a 

variable length scale to calculate β was considered. The size of the longest rockfall axis, 100 m 

(see inset, Figure 3.11a), was used to determine the minimum window size, L, which also 

approximates a common scale of site-specific monitoring (for example, Lim et al., 2010). L was 
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increased in 100 m increments to a maximum window length Lmax = 24 km, which is equal to the 

length of coastline monitored. For each value of L, β was estimated using a sliding window of 

length L, repeating for 240 iterations, I. The sliding distance, S, of the window is inversely 

proportional to its length:  
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For every iteration, a negative power law was fitted to all rockfall volumes that fell within the 

sliding window. The distribution of the 240 β values obtained for each window length was used to 

assess the influence of the scale of monitoring on rockfall magnitude-frequency relationships.  

3.3 Results 

Quantifying rockfall activity has proven problematic, particularly at the regional scale, 

with a range of approaches currently drawn upon (Section 3.1). In order to bridge this gap, a 

novel workflow was presented in Section 3.2 that has been used to detect and characterise regional-

scale rockfall activity from airborne LiDAR data, providing an inventory of > 58,000 rockfalls 

along 20.5 km of cliffs on the North Yorkshire coast, UK. The results of these procedures are 

presented and discussed in the following sections. 

3.3.1 Rockfall magnitude, frequency, and cliff erosion 

Over 58,000 rockfalls were observed along 20.5 km of cliffs along the North Yorkshire 

coast between August 2014 and March 2017. The area monitored constitutes ca. 805,739 m2 of 

cliff face, with an average cliff height of ca. 40 m (Table 3.03). Rockfalls ranged in volume from 

< 0.0001 ± 0.00 m3 to 15,498.05 ± 552.36 m3, with a mean rockfall volume of 2.15 ± 0.24 m3 

(Table 3.03). Rock yield totalled 124,843.31 m3, equalling an average erosion rate of 0.06 m yr-1, 

which is the same order of magnitude as rates derived from previous terrestrial monitoring of 

rockfalls between Boulby and Staithes (Table 2.01, p. 19) and represents the best estimate 

available for erosion along this stretch of coastline. Across the inventories, the average meshing 

error for the total eroded volume is ± 10.73%, which is relatively low despite the conservative 

approach used to calculate error margins in Section 3.2.5 (Abellán et al., 2014). 

The magnitude-frequency distributions for rockfalls captured over the three monitoring 

periods were modelled using negative power law scaling relationships (Figure 3.11a), where the 

exponent β ranged from 1.54 (2016 – 2017) to 1.69 (2014 – 2015). These values fall inside the 

1.00 – 2.00 range commonly found for non-cumulative plots of rockfall volume-frequency density 

(see Appendix D, p. 187 for relationships derived from previous terrestrial monitoring of rockfalls). 

In all cases, the data only follow a negative power law for events greater than 1	×	10-3 m3. This is 
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attributed to censoring by under-sampling and other biases, such as the threshold that was set 

for the minimum detectable change (0.10 m) during data processing, as well as differences in the 

way that cloud-to-cloud comparison methods identify insignificant change. Another important 

difference is that DBSCAN requires the user to set a minimum number of points to be defined as 

a cluster, meaning that the smallest changes (here < 0.1%) are unlikely to be resolved using 

meshing approaches. All parameters quoted hereafter are for power laws fitted to the uncensored 

data only. The superimposition and coalescence of rockfalls has the effect of lowering the power 

law coefficient of the single change detection over a period (2014 – 2017) relative to that derived 

from more frequent sampling over the same period (Figure 3.11b). This explains the decrease in 

the overall number of rockfalls observed (from 58,032 to 25,969), and a corresponding increase in 

individual rockfall volumes. Yearly monitoring periods were therefore used for further analysis.  

The mean erosion rate varied between years, increasing by an order of magnitude from 

0.02 m yr-1 (2014 – 2015) to 0.10 m yr-1 (2016 – 2017; Table 3.03). This change is partly driven 

by an increase in the rate of rockfalls year-on-year, but is mostly accounted for by the occurrence 

of eight large (> 1,000 m3) cliff collapses, comprising half of the total volumetric flux observed 

during 2016 – 2017. The mean rockfall volume more than trebled in this time, from 0.99 ± 0.04 m3 

(2014 – 2015) to 3.31 ± 0.28 m3 (2016 – 2017), while the median (ca. 0.01 m3) and mode 

Table 3.03 Variations in rockfall activity along the North Yorkshire coast, UK, from 2014 – 2017. 

 Date  

2014 – 2015 2015 – 2016 2016 – 2017 

Cliff length (m) 20,459 20,459 20,459 

Cliff area (m2) 746,539 854,958 815,719 

Number of rockfalls (-) 14,460 18,729 24,843 

Mean rockfall volume (m3) 0.99 ± 0.04 1.51 ± 0.11 3.31 ± 0.28 

Median rockfall volume (m3) 0.02 0.02 0.01 

Rockfall density (m-2) 0.02 0.02 0.03 

Minimum eroded volume (m3) 11,467 21,600 69,727 

Average eroded volume (m3) 14,375 28,291 82,177 

Maximum eroded volume (m3) 15,076 30,344 89,223 

Dry cliff volume eroded (%) 92 95 97 

Wet cliff volume eroded (%) 8 5 3 

Erosion rate (m yr-1) 0.02 0.04 0.10 

Standardised yield (m3 m-1 yr-1) 0.87 1.63 4.13 

Notes: Monitored cliff area calculated by measuring the surface area of a point cloud-derived mesh. 

Standardised yield is calculated per linear coastline m, per annum.  
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(ca. 0.2	×	10-2 m3) remained relatively constant. The dominance of larger events is also reflected 

in the volume-frequency scaling exponent, β, which decreases through time (Figure 3.11a). Year-

on-year, events of all magnitudes increased in frequency, marking an overall increase in the rate 

of rockfall activity along the coastline. Rock yield averaged 2.32 m3 per linear meter of coastline 

per year, which approximates a mean areal cliff erosion rate of 0.06 m yr-1 (Table 3.03). 

3.3.2 Spatial variations in erosion rates 

Erosion rates derived in 100 m bins along the coast are highly variable within years 

(Figure 3.12), ranging from as much as 1.12	×	10-5 – 1.63 m yr-1 (2016 – 2017). Erosion rates at a 

number of cliff sections sharply increased over the monitoring period, most notably at Port 

Mulgrave, which eroded at an average rate of < 0.002 m yr-1 during 2014 – 2015. Due to a number 

of large rockfalls and landslips (31,943.47 m3 in total), this rate increased to 0.04 m yr-1 (2015 – 

2016) and then 0.28 m yr-1 (2016 – 2017). Although erosion rates along the coast are highly 

variable, in other places there are consistent patterns of spatial variation over time and space 

(Figure 3.12). Variations in erosion rates are often systematic across contiguous sections of the 

coastline, rather than showing a more random distribution where erosion rates vary independently 

between adjacent cliff sections. Sections with notably high rates include the ca. 3.5 km stretch of 

cliffs between Boulby and Cowbar Nab, which eroded at an average rate of 0.02 m yr-1 during 

2014 – 2015, increasing to a rate of 0.07 m yr-1 during 2016 – 2017 (Figure 3.12). The highest rates 

of erosion along the coastline are observed here, with local erosion rates regularly exceeding 

0.05 m yr-1 and reaching 1.47 m yr-1 in the event of a cliff collapse (15,498.05 ± 552.36 m3, 2016  

Figure 3.11 Power law scaling and parameter estimations for (a) 2014 – 2015 (r2 = 0.95), 2015 – 2016 

(r2 = 0.95) and 2016 – 2017 (r2 = 0.98). Inset: histogram and corresponding kernel density estimate of the 

longest rockfall axis across all three inventories, and (b) the effect of superimposition of rockfall scars on 

power law plots. Data with a ca. 10-month sampling resolution (r2 = 0.97) are plotted alongside that derived 

from a ca. 32 month sampling resolution (r2 = 0.91). 



 

Chapter 3. Quantifying regional variations in rockfall activity along coastal cliffs 

43 

 



 

Chapter 3. Quantifying regional variations in rockfall activity along coastal cliffs 

44 

– 2017). The highest frequencies of both small (≤ 0.1 m3) and larger (> 0.1 m3) rockfalls occurred 

along this stretch of cliffs (Figure 3.12), with over 11,000 of the recorded 58,032 rockfalls having 

occurred here. This is partly attributable to the fact that the cliffs between Boulby and Staithes 

are the highest along the coastline, reaching up to 150 m towards Boulby. North-facing sections 

of the coast such as Boulby show the highest rates of erosion, most likely due to their exposure to 

easterly and northerly North Sea storm wave events in comparison to the relatively sheltered 

embayments such as Runswick Bay, which eroded at an average rate of 0.005 m yr-1 between 2014 

and 2017. Erosion rates also remained low at Kettleness throughout the monitoring period. 

3.3.3 Spatial variations in power law scaling parameters 

The relationship between β and the window length, L, was modelled using a two-term 

power series model (Figures 3.13a-b). Over each monitoring period, an inflection occurred at 

L ≈ 2.5 km (Figure 3.13a), indicating that monitoring at length scales < 2.5 km has a significant 

effect on the frequency estimates of the largest events, potentially giving rise to considerably 

higher frequencies than is the case. This similarity occurs despite differences in β between years. 

The inflection implies that a magnitude-frequency distribution that is physically meaningful for 

modelling regional cliff erosion only becomes stable when captured at measurement length scales 

that exceed this distance (equivalent to a cliff area of ca. 1	×	105 m2 assuming an average cliff 

height of 40 m), when surveyed at approximately annual intervals. This is pertinent for research 

using terrestrial LiDAR to monitor rockfall activity, of which there is an abundance, as this 

typically operates over only short length scales (see Abellán et al., 2014 for a review). 

Figure 3.12 Overleaf. Rates of erosion monitored along the North Yorkshire coast, UK, from (a) 2014 – 

2015, (b) 2015 – 2016, and (c) 2016 – 2017. The monitored cliff area is divided into 100 m bins and coloured 

by erosion rate. The frequency of small (≤ 0.1 m3) and large (> 0.1 m3) rockfalls is also shown. 

Figure 3.13 Relationships between β and the length scale of monitoring, L, from (a) 2014 – 2015 (r2 = 

0.97), 2015 – 2016 (r2 = 0.98), and 2016 – 2017 (r2 = 0.99). The relationships were modelled using a two-

term power series model, with confidence intervals shown in (b), and in (c) the data are plotted alongside β 

values derived from previous monitoring of rockfalls along the North Yorkshire coast (Table 3.04). 
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Rates of erosion derived from previous monitoring vary between 0.004 m yr-1 and 

0.128 m yr-1, capturing well the mean rate of erosion along the coastline but poorly representing 

the extremes of the rockfall volume distribution and, importantly, their contribution to coastal 

erosion rates (Figures 3.14a-b). Values of β derived from previous terrestrial monitoring of rockfalls 

at a number of sites along the North Yorkshire coast range between ca. 0.60 and 2.40 (Figure 

3.13c). These sites were monitored at length scales ≤ 600 m and at approximately equal monitoring 

intervals (ca. 30 days). Given that the data indicate that values of β converge when the spatial 

extent of monitoring is increased beyond L ≈ 2.5 km, the influence of monitoring over a continuous 

section as compared to monitoring multiple segments that in total are at least this length scale is 

considered. Neighbourhood differences in the erosion rates shown in Figure 3.12 indicate that, for 

years with less intra-annual variability, there is a relatively small difference between each 100 m 

bin and its neighbours (Figure 3.14c), suggesting that there is more structure (or less variation) 

in the erosional signal if contiguous cliff sections are monitored. This suggests that, to overcome 

local (102 m) structure in the data and to assess more general behaviour of the coastline, the 

2.5 km of monitoring should be distributed along-coast in multiple segments, rather than 

concentrated in one continuous stretch.  

3.3.4 Vertical distribution of erosion 

Measurements of cliff top recession (Lee and Clark, 2002) do not record the processes of 

undercutting and small scale, iterative failures that occur across the cliff face and lead to profile 

form adjustment through time. Here, erosion profiles show the pattern of net cliff change over 

each monitoring period, representing how erosion results from the cumulative imprint of rockfalls,  

Figure 3.14 (a) Distribution of the rates of erosion monitored along the North Yorkshire coast (shown in 

Figure 3.12), with rates derived from previous terrestrial monitoring at the sites shown in (b) also plotted 

(Table 2.01, p. 19), and (c) pairwise differences in erosion rate between each 100 m bin and its neighbours. 
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which may map more directly onto potential drivers (Figures 3.15a-c). Year-on-year, the 

distribution of eroded depths varies up cliff. Erosion at the toe is marked by a pronounced 

inflection in β, indicating that the size distribution of rockfall activity below the elevation of the 

highest astronomical tide is dominated by relatively large, more episodic failures. This contradicts 

the widely-accepted notion that cliff toe erosion occurs iteratively through abrasion, attrition, and 

rapid void pressure changes that lead to fracture and detachment (for example, Trenhaile, 1987; 

Carter and Guy, 1988; Sunamura, 1992; Hampton, 2002; Young and Ashford, 2008). However, the 

small number of relatively large rockfalls occurring in the wet zone contributes little to the overall 

erosion: an average of only 5.13% of the eroded volume occurred in this zone, despite representing 

10.70% of the total cliff area (Table 3.03). Profiles of erosion rate up cliff show similar trends, 

with some of the lowest rates of erosion occurring at the cliff toe (Figure 3.16). 

Above the cliff toe, the value of β remains stable up to a height of ca. 60 m, indicating 

that, year-on-year, the relative volume of material contributed by events of varying sizes stabilises 

above the limit of marine influence, where the majority of change is driven by episodic, larger-

scale failures (Figures 3.15a-c). This suggests that, where subaerial processes begin to dominate, 

erosion is primarily driven by incremental wasting, and that the onset of these processes can be 

constrained using variations in rockfall magnitude-frequency up cliff. These gradual changes in β  

Table 3.04 Absolute β values derived from previous terrestrial monitoring of rockfalls along the North 

Yorkshire coast. Data are used in Figure 3.13c. 

Location 
Cliff dimensions β Date Interval Reference 

width, m height, m - mm/yy days - 

N. Yorkshire 20,459 20 – 150 1.69 08/14 – 06/15 294 This study 

N. Yorkshire 20,459 20 – 150 1.64 06/15 – 04/16 310 This study 

N. Yorkshire 20,459 20 – 150 1.54 04/16 – 03/17 356 This study 

Boulby – Staithes 604 22 – 55 1.12 – 2.37 09/02 – 05/05 ~30 Rosser et al. (2013)* 

Boulby – Staithes 482 35 – 71 1.80 10/03 – 04/05 ~30 Lim et al. (2010) 

Boulby – Staithes 482 22 – 55 1.12 – 2.12 09/03 – 03/05 ~30 Barlow et al. (2012)* 

Boulby 88 55 2.17 07/08 – 06/10 ~30 Norman (2012) 

Boulby 300 60 0.82 05/12 – 06/14 ~30 Whadcoat (2017) 

Cowbar 130 37 0.71 05/12 – 06/14 ~30 Whadcoat (2017) 

Cowbar 85 37 0.82 05/12 – 06/14 ~30 Whadcoat (2017) 

Staithes 220 33 0.86 05/12 – 06/14 ~30 Whadcoat (2017) 

Whitby 215 60 2.27 03/15 – 12/15 1 h Williams et al. (2018) 

Whitby 215 60 1.78 03/15 – 12/15 30 Williams et al. (2018) 

* Denotes papers that provide monthly variations in β, which is given here as a range. 
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Figure 3.15 Erosion monitored along the North Yorkshire coast, UK, between (a) 2014 – 2015, (b) 2015 

– 2016 and (c) 2016 – 2017. In the upper panel, the vertical distribution of erosion depths (d) is shown in 

coloured shading (0.2 m bins). The exponent of the magnitude-frequency distribution, β, is shown alongside 

(2.0 m bins). In the lower panel, local cliff heights have been normalised to illustrate the effect of relative 

position up cliff between (d) 2014 – 2015, (e) 2015 – 2016 and (f) 2016 – 2017. The vertical distribution of 

erosion depths is shown in coloured shading (bin width = 0.002) and β is shown alongside (bin width = 

0.02). Error bars were derived using minimum and maximum possible rockfall volumes. The variation in the 

exponent is shown in purple as the moving standard deviation, σ, of β (window length = 3) in both panels.  
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may be linked to changes in the groundwater regime, weathering environment and the stress field 

up cliff. Above a height of ca. 60 m, the value of β begins to decrease. This trend is broadly 

consistent over time and is also evident when considering profiles of erosion depth that are 

normalised by cliff height (Figures 3.15d-f). Normalising the profiles by cliff height acts to smooth 

the vertical distribution of erosion depths, particularly in the lower half of the cliffs (normalised 

cliff elevation < 0.5). The high rates of toe incision evident in the raw data are largely smoothed 

out, as are large variations in β at the cliff tops, although there remains a general decrease in β 

from the cliff toe upwards. However, in both the raw and normalised data, the vertical distribution 

of material loss across the coastline in 2016 – 2017 is dominated by eight large (> 1,000 m3), full-

scale cliff collapses (Figures 3.15c and 3.15f). 

The highest cliffs (at Boulby, for example) are prone to isolated zones of rockfalls, which 

often erode to a consistent depth (Figures 3.15a-c). These areas, which commonly occur at 

elevations > 100 m, are apparently uncoupled from erosion at the toe and are also characterised 

by large variations in β (σ > 0.3) and locally high erosion rates (Figure 3.16). With the exception 

of these rockfalls, rates of erosion are generally higher below ca. 70 m and decrease with height, 

implying that the average cliff profile is steepening over time (Figures 3.16a-b). This suggests that, 

over the shorter term, the dominant mode of cliff erosion leads to steepening with less frequent 

failures of the cliff top, resetting the global profile form by a number of full-scale cliff collapses 

(Figure 3.16c). 

Figure 3.16 (a) Distribution of cliff heights along the North Yorkshire coast, UK. The vertical distribution 

of erosion rates is also shown between (b) 2014 – 2015, (c) 2015 – 2016, and (d) 2016 – 2017. For each 

year, the erosion rate is plotted in 0.1 m bins (black) alongside its reciprocal, time, on a log scale (red).  
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3.3.5 Cliff toe erosion 

In the inundated toe (at elevations of ca. 0 – 4 m OD), the majority of change is driven 

by episodic, large-scale failures, across over 24 km of coastline. The vertical distribution of erosion 

at the toe is often modelled as a direct function of inundation duration (Sunamura, 1975, 1977; 

Trenhaile and Layzell, 1981; Carr and Graff, 1982; Belov et al., 1999; Trenhaile, 2000, 2009, 2011; 

Walkden and Dickson, 2008; Ashton et al., 2011), a relationship that has been incorporated into 

a number of widely-used numerical erosion models, including SCAPE (Walkden and Hall, 2005, 

2011). The relationship between inundation duration and the vertical distribution of erosion at 

the toe of the cliffs along the North Yorkshire coast was therefore explored to assess whether such 

assumptions hold in respect of these data.  

To approximate conditions across the coastline, monitored distal waves and tidal data are 

modelled using a transformation based on Battjes and Stive (1985) derived by Norman et al. 

(2013, Supporting Information). Data were used from the nearest available tide gauge (UK 

National Tide Gauge Network, Whitby, ca. 25 km south) and hourly significant wave heights 

obtained from an offshore wave buoy (CEFAS Wave Net, Whitby) to populate the model, which 

is run on 20 equally-spaced profiles along the coastline. The modelled tide, wave, and set-up 

elevations are then averaged across the profiles to give an approximation of the inundation 

durations along the coastline, over 2014 – 2017.  

Aggregating monitored and modelled water elevation leads to a net elevation increase in 

the combined tide, wave and set-up signature in comparison to the observed tidal inundation 

duration alone. Over the monitoring period, erosion rates at the cliff toe appear to lag behind 

Figure 3.17 Cliff toe erosion monitored along the North Yorkshire coast, UK, between (a) 2014 – 2015, 

(b) 2015 – 2016, and (c) 2016 – 2017. For each year, the vertical distribution of erosion depths (d) up the 

first 10 m of the cliffs is shown, with contours marking the position of the 1%, 2%, 3% and 10% depths. The 

observed tidal inundation frequency and combined tide and surge (monitored), wave and set-up elevations 

(modelled) are shown in (d) for the whole monitoring period (2014 – 2017). The highest astronomical tide 

(HAT), mean high water spring (MHWS), and mean high water neap (MHWN) are also labelled. These 

consider only tidal inundations, and not set-up and wave effects. 
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those of the cliff above (Figures 3.17a-c), although this is likely to vary in space based on variations 

in local rock mass strength and structure, and wave energy, which is conditioned by nearshore 

and foreshore bathymetry. The vertical distribution of erosion throughout the wet zone correlates 

well with modelled wave and set-up elevations, but only where erosion is most active (Figure 

3.17d). Statistically significant (p < 0.05) correlations between inundation duration and erosion 

depth are only found across an equivalent of ca. 1.50% of the cliff toe between 2014 and 2017 

(Figure 3.18). Across a greater proportion of the monitored cliff area this trend is reversed, and 

the cliff face is instead eroded to greater depths on and above the highest astronomical tide line 

(Figures 3.16 and 3.17), as indicated by a shift towards negative correlations (Figures 3.18a-c). 

This suggests that rising sea level may have a lesser impact upon this stretch of coastline than 

previous modelling may have predicted. 

3.4 Summary 

Using high-resolution, multi-temporal airborne LiDAR data, this chapter has explored 

regional-scale variations in rockfall magnitude and frequency, the extent to which these relations 

are sensitive to the spatial scale of monitoring, and patterns in the vertical distribution of erosion 

along the North Yorkshire coast. This work has shown that high-resolution airborne LiDAR 

provides a robust means to monitor rockfall activity and the resulting cliff retreat continuously 

(in space), in 3D, and over large spatial scales (> 103 m). The workflow presented here is semi-

automatic, providing a 3D mesh, centres of mass and gravity, principal axes, and, uniquely, the 

volumetric uncertainty for each rockfall. The resulting inventory of rockfall activity has been used 

to show that: 

1) Although erosion rates along the coast are highly variable, in many places there are 

consistent patterns of spatial variation over time. 

Figure 3.18 Correlations between the vertical distribution of erosion depth (d) and inundation frequency 

(by height), plotted against the percentage of the cliff face eroded to depth d, between (a) 2014 – 2015, (b) 

2015 – 2016, and (c) 2016 – 2017. Error bars show 95% confidence intervals. Red outlines indicate 

correlations that are statistically significant (p < 0.05). 
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2) With the exception of isolated zones of rockfall activity occurring at the cliff tops, the 

exponent of the magnitude-frequency distribution, β, and the erosion rate decrease with 

elevation. This is likely to be driven by changes in the weathering environment and stress 

field up cliff. Over time, this effect would cause the average cliff profile to steepen before 

being reset by numerous full-scale cliff collapses. 

3) Year-on-year, inundation duration constitutes a significant control on erosion at the cliff toe, 

but only for < 2% of the monitored cliff length. Instead, the majority of the cliffs surveyed 

are consistently eroded to greater depths at elevations on and above the highest astronomical 

tide line. This suggests that, while there may be considerable impacts upon wave climate, 

rising sea levels may have a lesser effect upon this stretch of coastline than previous models 

would have predicted. 

4) Rockfall magnitude-frequency relationships are highly sensitive to the spatial scale of 

monitoring, such that monitoring at length scales < 2.5 km significantly increases the 

frequency estimates of the largest events. This has considerable implications for research 

using terrestrial LiDAR to monitor rockfall activity, both in coastal and non-coastal 

environments, as any scaling relationships obtained previously may have incorrectly informed 

measures of risk reduction. However, it may be possible to assess more general patterns of 

rockfall occurrence across large length scales, provided that the 2.5 km of monitoring is 

distributed along the site in multiple segments, rather than concentrated in one continuous 

stretch. 

The work presented in this chapter has upscaled previous work undertaken using terrestrial 

LiDAR on the North Yorkshire coast and shifted the focus towards understanding changes in rock 

slope morphology at the regional scale, allowing variability in drivers to be considered at scales 

previously inaccessible using terrestrial monitoring campaigns alone. The patterns of rockfall 

activity and distribution of erosion shown in this chapter will therefore be evaluated with respect 

to structural controls in Chapter 4, where other properties, including rockfall shape, are derived. 
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Chapter 4 

Evaluating structural controls on 

variations in rockfall activity 

The relative importance of various conditioning factors for rockfall remains difficult to isolate on 

a regional scale. This is partly due to the methodological shortcomings associated with collecting 

high-resolution data at large scales (> 103 m). However, it also reflects the wider challenges 

associated with the fact that the local-scale causes of rockfalls occurring on individual rock slopes 

are likely to contrast with those that are causative over regional scales, due to emergent system 

behaviour and increasing system complexity with spatial scale (Messenzehl et al., 2017). Although 

rock mass structure is known to play an important role in determining when, where, and how a 

rockfall may occur, regional-scale observations of variations in rockfall activity (Chapter 3) and 

rock mass structure (this chapter) remain scarce. The following discussion reviews rock mass 

structural properties and their roles as conditioning factors for rockfalls in Section 4.1. In Section 

4.2, a workflow is presented that derives a detailed, quantitative appraisal of along-coast variations 

in the geometric properties of exposed discontinuity surfaces, which are known, to some extent, 

to control rockfall release. This section also describes the methods used to quantify rockfall shape 

and the clustering (or coalescence) of events over time, given that both are known to be defined 

by rock mass strength and structure. Section 4.3 presents the results of this analysis: first by 

describing both up-cliff and alongshore variations in a number of rock mass structural properties 

(including joint spacing, density, dip, and the difference between joint orientation and cliff aspect), 

before assessing rockfall shape and identifying patterns in the distribution of rockfall shape as a 

function of volume. The results presented in Section 4.3 are then used to explore how rock mass 

structure varies along the coastline, and to what extent patterns in the size and shape of rockfalls 

are related to differences in rock mass structure (RQ2). These findings are then summarised in 

Section 4.4. 
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4.1 Structural controls on rockfall activity 

The stability of a rock slope is controlled by the mechanical properties and stress state of 

the rock mass, as well as the effectiveness of environmental forcing (Moore et al., 2009). Although 

the relative importance of these controls on the mechanisms of erosion and overall cliff retreat are 

locally specific, both the role of intact rock strength and the presence and geometry of 

discontinuities (for example, spacing/density, orientation, persistence, and surface roughness) are 

known to play a major role in determining when, where, and how rockfalls occur (for example, 

Douglas et al., 1991; Coe and Harp, 2007; Stead and Wolter, 2015). More specifically, the 

structural setting and spatial distribution of joint sets control rock mass fragmentation and 

eventual modes of failure, both in terms of block geometry and in terms of size. Rockfalls have 

previously been observed in areas with low intact rock strength (Selby, 1980; Vehling et al., 2015), 

a high joint density (Sass, 2005; Loye et al., 2012), and an unfavourable joint orientation relative 

to the cliff face strike (Cruden and Hu, 1994; Moore et al., 2009). An illustrated example of some 

of the features of jointing, and their role in defining the broader scale surface topography of a rock 

mass, is provided in Figure 4.01. 

Numerical modelling suggests that once a rockfall has occurred, critical levels of stress 

propagate along the failure surfaces at the near-surface, and that shear stresses along this surface 

reduce significantly with depth from the fracture surface (Wolters and Müller, 2008; Styles et al., 

2011). High-resolution monitoring of progressive collapses has given a considerable insight into the 

rates and patterns of failure propagation on rock-slopes (for example, Rosser et al., 2007a; Abellán 

et al., 2010; Stock et al., 2011; Royán et al., 2015). Stock et al. (2012b) considered a sequence of 

14 progressive rockfall events that occurred over 15 months, highlighting the importance of stress 

redistribution from preceding rockfalls in conditioning subsequent instability in adjoining areas 

over time. Specifically, rockfalls propagated both upwards and laterally along sheeting joints, 

leading to high stress concentrations at the intersections of these discontinuities and promoting 

the development of new joints and failures. This effect has been observed elsewhere, with 

weathering, erosion, and eventually rockfalls favourably exploiting areas where there are high joint 

densities (Sturzenegger et al., 2007). Similarly, Rohmer and Dewez (2015) applied spatial statistics 

to several thousand rockfall scars, inferring that progressive incremental failure is manifest as 

small rockfall events (10-3 – 10-2 m3) that aggregate in clusters across the cliff face. On coastal 

cliffs, the propagation of rockfalls has been observed to facilitate the transmission of marine 

loading up the cliff face over time (Rosser et al., 2013). These observations are supported by 

numerical modelling of the response of the rock mass to marine loading, which confirms the role 

of upward migration of shear strain through the cliff in causing tensile failure and crack growth 

at the cliff top (Styles et al., 2011). The connectivity between events attests to the importance of 

stress redistribution following previous rockfalls in promoting damage accumulation and, 

eventually, further rock slope failure (Amitrano, 2006).   
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On coastal cliffs, the intersection between rock mass structure and marine forcing drives 

observable patterns in rockfall activity over time, where rockfalls facilitate the transmission of 

marine loading up the cliff face by exploiting structurally- or lithologically-defined discontinuities 

(for example, Rosser et al., 2013; Vann Jones et al., 2015). Although these observations have 

previously been made on a site-specific basis, they imply that consistencies in the spatial 

distribution of rockfall activity and cliff retreat observed in Chapter 3 could be related to along-

coast variations in, and interactions between, rock mass structure, cliff surface topography, and 

loading/unloading cycles driven by ocean waves (both in terms of the magnitude, frequency, and 

orientation of loading relative to existing fracture sets). This chapter therefore focuses on 

identifying structural controls on the rockfall activity observed in Chapter 3, before considering 

the local scale influences of wave impacting in Chapter 5.  

Figure 4.01 Features of joints and jointing observed at Staithes, North Yorkshire, including (a) an image 

of the rock face at Staithes, with a profile of this section in (b), (c) evidence of variations in joint density 

across the surface of the cliffs, (d) variation in the orientation, or dip-direction, of joint sets. Here, three 

continuous and regular joint sets intersect an excavation surface to generate potentially removable blocks, 

and (e-f) show the role of lithology and block/scar shape in determining cliff face topography. 
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4.2 Extracting surface structural information from point clouds 

The findings in Chapter 3 demonstrate that an entirely 3D approach to processing high-

resolution airborne LiDAR data can provide a robust means to monitor rockfall activity. This 

allows cliff retreat to be characterised continuously in space, in 3D, and over large spatial scales 

(> 104 m). When mounted on a helicopter, continuous swaths from this type of LiDAR can be 

used to collect data along steep, near-vertical slopes, presenting a considerable advantage over 

mobile terrestrial LiDAR when scanning large areas that are limited by range and occlusion (Lato 

et al., 2009a; Dunham et al., 2017). Point cloud data obtained from close range applications of 

terrestrial LiDAR (scanner-object distances < 300 m) yield enhanced precision on slope angle, 

aspect, and, on bare rock faces, lineaments, and other structural features (see reviews by 

Sturzenegger and Stead, 2009 and Jaboyedoff et al., 2012). Terrestrial LiDAR therefore enables 

measurement across the entire rock mass (Slob et al., 2005; Assali et al., 2014), with good 

agreement generally found between field measurements and LiDAR-derived estimates of several 

geometric properties of discontinuities (for example, Oppikofer et al., 2009; Sturzenegger and 

Stead, 2009; Slob, 2010; Umili et al., 2013; Riquelme et al., 2015). However, it is crucial to recognise 

that both approaches measure only the exposed surfaces of discontinuities. These are subject to 

weathering and alteration by other surface processes, therefore requiring an assumption to be 

made regarding how representative they are of the surrounding rock mass.  

Given that rock mass structure plays a critical role in defining both block geometry and 

size (Section 4.1), this section aims to derive a detailed, quantitative appraisal of along-coast 

variations in the geometric properties of exposed joint surfaces. A number of parameters known 

to influence rock slope stability, including the orientation of discontinuities (Slob et al., 2005; 

Jaboyedoff et al., 2007; Ferrero et al., 2009; Gigli and Casagli, 2011; Sturzenegger et al., 2011; 

Riquelme et al., 2014), the spacing of discontinuities (Slob et al., 2005; Oppikofer et al., 2009; 

Riquelme et al., 2015), and surface roughness (Haneberg, 2007; Sturzenegger and Stead, 2009; 

Oppikofer et al., 2011), are extracted from the point cloud data described in Chapter 3. These are 

then related to individual rockfall properties, such as block shape and volume, as well as wider-

scale variations in rockfall activity up-cliff and along-coast. 

4.2.1 Data acquisition 

Variations in rockfall activity along the North Yorkshire coast were characterised using 

the data and methods presented in Chapter 3. The data were collected at three approximately 

equal intervals between August 2014 and March 2017, giving four high-resolution point clouds 

captured along ca. 20.5 km of cliffs (Table 3.01, p. 29). During the surveys, the LiDAR system 

was housed in a protective pod on the front of the helicopter, to provide a 180° downward and 

sideways-looking field-of-view. This reduced the likelihood of an orientation bias in any surface 

dip and orientation data extracted from the resulting point clouds, as the data were not captured 
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at a single preferential incidence angle (Lato et al., 2010). The system was deployed at an average 

flying height of ca. 100 m above the ground, yielding an average point density across the four 

surveys of ca. 50 points m-2 (corresponding to an average point spacing of ca. 0.15 m). Although 

this introduces a scale bias where discontinuity sets are below the point spacing (Sturzenegger 

and Stead, 2009), any data collected on discontinuities, field-derived or otherwise, must ultimately 

contain a cut-off below which certain features are not examined. Here, and in other research using 

LiDAR for the characterisation of discontinuities, the point spacing imposes a systematic cut-off 

that is approximately uniform across datasets. Though there is inevitably some variation between 

settings, Assali et al. (2014) found that variations in point spacing had little effect on the 

interpretation of discontinuities below a sampling resolution of 0.50 m.   

4.2.2 Surface structural information 

Following the processing steps undertaken in Section 3.2.2 (p. 29), the open source 

software ‘Facets’ (Dewez et al., 2016) was used to isolate and extract the geometry of exposed 

planar discontinuity surfaces, a process that is described in detail in Section 4.2.2.1. Given that 

the shape of rockfalls and their tendency to cluster (or coalesce) over time are, to an extent, 

defined by rock mass strength and structure (Section 4.1), both are quantified in Sections 4.2.2.2 

and 4.2.2.3. 

The ‘Facets’ detection routine (Dewez et al., 2016), which is a plug-in to the open source 

point cloud processing software CloudCompare, was used to divide the cliffs into subgroups of 

geometrically similar, visually persistent, and exposed surfaces using the point clouds obtained in 

Chapter 3. These were then post-processed to derive a number of geometric properties, including 

facet spacing (both horizontal and vertical), area, density, dip angle, and aspect (the orientation 

of the facet). The extracted properties were then used to assess the influence of structural controls 

on the size distribution and characteristics of rockfalls observed in Chapter 3. The term ‘facets’ is 

used here to describe the extracted discontinuities, while acknowledging that some discontinuities 

may be too subtle for identification in point cloud data alone.  

The plug-in performs planar facet extraction by sub-dividing a point cloud into clusters 

of adjacent points, each of which shares some user-defined degree of co-planarity (Dewez et al., 

2016). First, the algorithm spatially partitions the point cloud using a form of tree-structuring 

(Preparata and Shamos, 1985) known as a K-D tree, which recursively subdivides the points into 

balanced subcells, leaving each subcell with approximately the same number of points. Once the 

space has been sub-divided, these small planes are then clustered using a co-planarity criterion. 

The main parameters used to define the criterion in this work were as follows: minimum number 

of points per facet (5); maximum angle between neighbouring patches (25°); and a distance or 

roughness criterion (0.15 m), which is used to determine the planarity of a facet. Here, this requires 

that > 99% of the points that make up a facet are within 0.15 m of the facet plane. Of these 
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parameters, the overall output is most sensitive to changes in the minimum number of points per 

facet. This parameter was selected after a process of trial and error, where a visual comparison of 

the facets with the point cloud (coloured by RGB values derived from orthophotos) was used 

alongside a comparison of photographs, hillshades (derived from point cloud data), and facets 

along certain sections of the coastline where photographs of the cliffs were available. An example 

of the facets derived on the cliffs at Staithes is shown in Figure 4.02.  

Once extracted, the facets were converted into meshes. These break each facet into a 

series of triangular faces, allowing a number of parameters known to influence rock slope stability, 

including the facet spacing (both horizontal and vertical), area, density, dip, and facet aspect to 

be calculated. The horizontal and vertical spacing were calculated for each facet by determining 

its overall width and height, and the surface area was then calculated by the sum of the areas of 

all the constituent faces. An approximation of facet density was then calculated by searching for 

all of the facets within a 1 m radius of the centroid of each facet and dividing the total number 

of facets by their combined area. 

Figure 4.02 Demonstration of facet analysis undertaken on a cliff section at Staithes. The point cloud and 

derivatives (hillshade, facets) were processed using airborne LiDAR data obtained in June 2015. The 

lithologies are labelled in (a), including mudstone (Mdst), shale (Sh), interbedded sandstone (Ss) and siltstone 

(Slts), which are capped by glacial till. In panel (b) four 6 × 6 m subsections are shown, which are used to 

demonstrate the outcomes of the facet analysis in panels (c – f). These include a photograph, a 0.10 m 

hillshade, and polygons of the facets. 
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To calculate the facet dip and aspect, the points that make up each facet are fitted with 

a plane. This is achieved by computing the singular value decomposition (SVD) of the covariance 

matrix of each group of points, a process that yields the principal components (directions) of 

variation in the data. The equation of the plane, which describes the relationship between a query 

point, q, at the centroid of the plane and its normal vector, ��⃗ , has the following form: 

  

                                                                     ��⃗ ��� + ��⃗ ��� + ��⃗ ��� + � = 0,                                                          [4.1] 

 

where u (easting), v (northing), and w (vertical) are the indices of the surface normal, which is 

the vector perpendicular to the plane, and d is a constant determined by the vector dot product: 

 

                                                                                 −�⃗(�,�,�) ∙ ��⃗ (�,�,�).                                                                     [4.2] 

 

Given a set of points in 3D, the surface normal is approximated by the third eigenvector, which 

represents the direction of the least variance, such that: 

 

                                                                                      ��⃗ = (�, �, �).                                                                        [4.3] 

 

However, the orientation of surface normals computed through SVD is ambiguous, 

meaning that they are unlikely to be consistently oriented over an entire point cloud dataset. 

Surface normals can be reoriented to point consistently towards a known viewpoint; a common 

procedure when post-processing point cloud data derived using terrestrial LiDAR (for example, 

Jaboyedoff et al., 2007; Matasci et al., 2017; Williams et al., 2018). However, this is difficult when 

considering airborne or mobile data acquired from an unknown, nonstationary viewpoint and is 

increasingly complex for lengths of rock face with highly variable aspect. To ensure all surface 

normals were oriented consistently, the point cloud data were processed block-by-block, as in 

Section 3.2.2, to introduce artificial viewpoints for each facet. A point, pi, central to each block 

and set back from the cliff face, was defined using the point cloud, pc, as follows: 

 

                                       ��(�, �, �) = ��������
� +

�����(���
)

2
, ��� ����

� , �������
��.                            [4.4] 

 

The centroid of each facet was then calculated using the arithmetic mean of its constituent 

points. The facets were then translated into a local coordinate system by subtracting pi from the 

centroid of each facet. The point cloud was scaled by a factor of 1.5 before being converted back 

into the original coordinate system by adding pi. This process is illustrated on the headland at 

Old Nab in Figure 4.03, providing an artificial viewpoint, s, for each facet that is always offshore. 

This ensures that all normals are oriented consistently even along a coastline of changing aspect. 
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The sign ambiguity of the normals is corrected using the position of each query point, q, relative 

to the artificial viewpoint, s, by: 

 

                                                                        �⃗ = ���, ��, ��� − ���, ��, ���                                                          [4.5] 

                                                                             �� ℝ�: � = (‖�⃗ × ��⃗ ‖�),                                                               [4.6] 

 

where × denotes the vector cross product, ‖ denotes the Euclidean norm of the cross product, and 

α denotes the angle between the unit normal vector ��⃗  at q, and �⃗ the vector between q and s (as 

in Williams et al., 2018). If � >
�

�
 or � < −

�

�
, i.e. if the angle between the direction of the normal 

vector and that between the surface and the artificial sensor is not within ± 90°, then the normal 

direction is reversed as follows: 

 

                                                                        ��⃗ �(�, �, �) = ��⃗ (−�, −�, −�).                                                       [4.7] 

 

Once the normals are oriented consistently, the dip and aspect of each facet is calculated. The dip 

is the angle between the facet surface and a horizontal plane through the facet (Figure 4.04): 

 

                                                                                     ���� = cos�� �.                                                                    [4.8] 

Figure 4.03 Reorientation of surface normals around a headland. For each facet centroid, q, shown in (a), 

its surface normal is shown in red. The normals show an orientation bias around the headland, which is 

corrected in (b) by using a point pi to translate the points into a local coordinate system. The centroids are 

scaled by a factor of 1.5 and used as artificial viewpoints, s, to reverse incorrectly oriented normals (c).  
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The dip angle calculated for each facet represents the declination of the plane with respect to the 

horizontal but, crucially, the angle calculated here differs with respect to conventional measures 

of dip, which vary between 0° (horizontal plane) and 90° (vertical plane). The dip angle calculated 

here is not wrapped between 0° and 90° but is instead allowed to vary to 180° (Figure 4.04), in 

order to visually distinguish between gently sloping (θdip < 90°), vertical (θdip = 90°), and 

overhanging surfaces (θdip > 90°). The aspect of a facet is then the azimuth of its normal vector, 

��⃗ . That is, the angle (θ’) between the horizontal component of the normal vector of the facet and 

the positive x-axis (or the direction of true north), such that: 

 

                                                                              �� = cos�� �
�

√�� + ��
�.                                                            [4.9] 

 

However, Equation 4.9 only gives an angular range of 0 – 90°. In order to calculate the correct 

aspect, the quadrant in which the aspect falls should be established (Feng et al., 2001; Slob, 2010; 

Kissi, 2016). The correct aspect, θdir, can be determined using the following conditional equations: 

 

                                                                       ���� = �′, �� � ≥ 0 ��� � ≥ 0,                                                     [4.10] 

                                                                 ���� = 180 − �′, �� � ≥ 0 ��� � < 0,                                              [4.11] 

                                                                 ���� = 180 + �′, �� � < 0 ��� � < 0,                                              [4.12] 

                                                                 ���� = 360 − �′, �� � < 0 ��� � ≥ 0,                                              [4.13] 

 

which equate to facet aspects between 0° and 90° (Equation 4.10), 90° and 180° (Equation 4.11), 

180° and 270° (Equation 4.12), and 270° and 360° (Equation 4.13). 

Figure 4.04 Calculation of facet dip. In (a) this is demonstrated on a point cloud of the headland shown 

in Figure 4.03. For each facet, represented as a plane in (b) for simplicity, the dip is defined as the angle 

between the facet surface and a horizontal plane through the facet. The dip angle is not wrapped between 0° 

and 90°, but is instead allowed to vary to 180°, as shown in (c), in order to easily distinguish between gently 

sloping surfaces (θdip < 90°), vertical surfaces (θdip = 90°), and overhangs (θdip > 90°). 
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This analysis produced a database of 1,279,508 facets spanning the length of the North 

Yorkshire coastline, with an average density of ca. 16.8 facets m-2. An example of the different 

properties extracted from the facets on the headland at Old Nab is shown in Figure 4.05. These 

illustrate several patterns in the surface structure of the cliffs. For example, the spacing, area, and 

density of the facets varies both with elevation and around the headland itself (Figures 4.05b–d). 

The toe of the cliffs is steep and slightly concave in profile (Figure 4.05e). Dip also varies up-cliff, 

with distinctive bands in the profile that vary in concavity up to an elevation of ca. 20 m, above 

which the cliff slopes gently backwards (Figures 4.05a and 4.05e). These bands are often associated 

with an increase in facet density. In order to understand the extent to which regional scale 

variations in the surface structure of the cliffs plays a role in defining rockfall activity, the 

geometric properties of the facets extracted here are related to local rockfall properties, such as 

block shape and scar contiguity, which are derived in Sections 4.2.3 and 4.2.4.  

 

Figure 4.05 Different facet properties, as demonstrated on a point cloud of the headland shown in Figure 

4.03, in (a). Properties derived from the facets include (b) facet spacing, (c) facet area, (d) facet density, 

(e) facet dip, and (f) facet aspect. Note that colour bars for facet spacing, area, and density are log-scaled. 
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4.2.3 Deriving rockfall shape 

The shape of each rockfall that occurred along the North Yorkshire coast between August 

2014 and March 2017 was quantified in order to, at least in part, account for the influence of 

structural discontinuities on block generation. Here, ‘shape’ is defined as the broad and medium-

scale aspects of the morphology of a rockfall, while surface texture would refer to surface features 

that are small-scale relative to the size of a rockfall. The shape of rockfalls and their scars partially 

reflects the permissible kinematics of failure, as well as potential structural control (Section 4.1). 

Although the shape of large-scale instabilities is often characterised using LiDAR datasets (for 

example, Oppikofer et al., 2009; Viero et al., 2010), the shape of rockfalls is rarely quantified other 

than by visual interpretation (van Veen et al., 2017). Shape typically comprises four main 

characteristics, which include the form, roundness, irregularity, and sphericity, detailed 

descriptions of which are provided by Blott and Pye (2008).  

Rockfalls were classified in relation to the aspect ratios of the principal length axes (a, b, 

and c), where a > b > c (Sneed and Folk, 1958; Graham and Midgley, 2000; Lukas et al., 2013). 

This gave one of three end-member shapes, either blocky (a = b = c), slab-like (a = b, c = 0), or 

elongate (a > 0, b = c = 0), which themselves were divided into 10 sub-categories (Sneed and 

Folk, 1958). An example of the outputs of this process is shown in Figure 4.06, which provides an 

overall indication of the ratios of the principal length axes as they appear in a ternary plot. The 

ratios of the three axes vary linearly, resulting in a continuum of rockfall shapes. This type of 

analysis, where particle form is defined by its so-called ‘tri-dimensional characteristics’, has been 

used extensively in the field of geomorphology, principally for clast fabric analysis in glacial 

deposits (including, but not limited to, Barrett, 1980; Illenberger, 1991; Benn and Ballatyne, 1993; 

Bennett et al., 1997), but also to determine particle form in arid environments (Higgitt and Allison, 

1999) and fluvial reaches (Allan et al., 2006; Byers et al., 2015), to distinguish between storm and 

tsunami deposits (Costa et al., 2017), and to quantify the shape of rockfalls (Rosser et al., 2005b; 

van Veen et al., 2017; Williams, 2017) and mass movement deposits (Šilhán and Pánek, 2010). 

Figure 4.06 Derivation of rockfall shape, as demonstrated on a rockfall captured at Staithes (a). Rockfall 

shapes are divided into 10 sub-categories, defined by Sneed and Folk (1958), and are shown in (b). Examples 

of the shapes are shown in (c), which is adapted from Figure 3 in Blott and Pye (2008, p. 36). 
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4.2.4 Rockfall contiguity 

The tendency for rockfall scars to coalesce over time has been observed using terrestrial 

LiDAR at a number of sites (Rosser et al., 2005a, 2005b, 2007, 2013; Rohmer and Dewez, 2015; 

Royán et al., 2015) and is a clear indicator that, where kinematically permissible to do so, rockfalls 

often propagate from the scars of previous rockfalls in a manner moderated by the local strength 

and structure of the rock mass. Landslides also demonstrate the existence of path-dependency 

(Samia et al., 2017a, 2017b), which is a concept that originates from complexity theory and 

dictates that the current state of a system depends on its past state (Phillips, 2006; Temme et al., 

2015). When applied to mass movement processes, such as rockfalls, path dependency implies that 

previous activity affects (the susceptibility for) future activity through one or more legacy effects. 

These can include the effect of earthquakes (Parker et al., 2015) as well as antecedent rainfall, 

hydrological properties, and accumulated damages in hillslopes (Fan et al., 2015). In order to 

understand the degree to which rockfalls along the North Yorkshire coast were spatially associated, 

the proportion of rockfalls in the inventory whose scars coalesced with those of other rockfalls was 

calculated. This assumes that each rockfall occurred as a single event, given that this analysis 

considers the longer-term (ca. 10 – 12 month) spatial associations between rockfall scars. To assess 

the extent to which rockfalls can be considered a statistically independent, or random, process, 

these results were then compared to those of a randomised control.  

Between two monitoring periods m1 and m2, a rockfall, R1, was considered to have 

coalesced with another rockfall, R2, if any points belonging to R2 fell inside the mesh of R1 or if 

any points belonging to R2 fell within 0.20 m (approximately the maximum possible point spacing) 

of any points belonging to R1, such that the scars of the two rockfalls were spatially contiguous 

(Figure 4.07). For each rockfall, this gave the IDs of any rockfalls captured in other monitoring 

Figure 4.07 Schematic diagram illustrating how levels of coalescence were determined between the rockfall 

inventories. The example uses three rockfalls, each of which occurred during separate monitoring periods. 

Every rockfall in the database is first tested to determine whether any rockfall points lie within the mesh of 

R1. Any rockfall whose points fall inside the mesh, in this case those of R2, is labelled as having coalesced 

with R1, shown in (a). Any rockfall whose points are touching those of R1, in this case those of R3, is also 

labelled as having coalesced with R1, shown in (b). A rockfall touches another rockfall when any of its points 

are < 0.20 m (approximately the maximum possible point spacing) from those of the rockfall of interest. 
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periods that were spatially associated with the scar of that rockfall. Three possible scenarios of 

rockfall coalescence were then considered, including 1) year-on-year coalescence, where a rockfall 

in m2 or m3 had coalesced with the scar of one that occurred in m1 or m2, 2) sporadic coalescence, 

where a rockfall in m2 or m3 had coalesced with the scar of one that occurred in m1, and 3) 

concentrated coalescence, where a rockfall in both m2 and m3 had coalesced with the scar of one 

that occurred in m1, and also each other. 

The proportion of rockfalls that coalesced in the same scenarios but under complete spatial 

randomness was also tested, in order to assess the extent to which the patterns observed along 

the coastline are indicative of path-dependency among rockfalls. This was achieved by randomly 

generating a new centroid for each rockfall by sampling points from the entire cliff surface. Each 

rockfall was then registered to its new centroid by using the iterative closest point (ICP) algorithm, 

producing a randomly positioned and oriented rockfall. The outcome of this process for rockfalls 

that occurred over a 500 m section of cliffs is shown in Figure 4.08. Although computationally 

intensive, this procedure was repeated 50 times and the proportion of rockfalls that coalesced was 

then averaged for each scenario. The inventory was split into rockfalls that had/not coalesced, 

and the properties of facets associated with rockfalls in the two sub-inventories were examined to 

assess whether any differences could be attributed to variations in rock mass structure.  

Figure 4.08 Schematic diagram illustrating how rockfalls in each of the rockfall inventories were randomly 

assigned new locations. For each rockfall in (a), a new centroid was randomly generated by sampling points 

from the entire surface. Each rockfall was registered to its new centroid by using the iterative closest point 

(ICP) algorithm, giving a new, randomly positioned rockfall. The outcome of this process for rockfalls that 

occurred over a 500 m section of cliffs at Skinningrove is shown in (b). This process was repeated 50 times 

and the proportion of rockfalls that coalesced was then averaged for each scenario. 
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4.3 Results 

Although a wealth of publications concern the extraction of rock mass structural data 

from LiDAR point clouds, this work has largely been focussed on individual rock outcrops (Olariu 

et al., 2008; Sturzenegger and Stead, 2009; Gigli and Casagli, 2011; Vöge et al., 2013; Riquelme et 

al., 2014, 2015). The results presented here describe alongshore and up-cliff variations in LiDAR-

derived estimates of the geometric properties of exposed joint surfaces, or facets, observed along 

20.5 km of cliffs on the North Yorkshire coast. Many of the major sources of error associated with 

field measurements of discontinuities are not applicable to the dataset used in this chapter. For 

example, (1) there is little censoring of discontinuities (Baecher and Lanney, 1978; Priest, 1993) 

and no length bias (Zhang and Einstein, 2000; Sturzenegger et al., 2011) as the entire rock face 

was sampled, and (2) there is little or no orientation bias as there was no preferential viewing 

angle during data collection (Terzaghi, 1965; Sturzenegger et al., 2007; Lato et al., 2009b).  

However, the facet analysis undertaken here must be appropriately caveated: as with all 

surveys, truncation occurs where discontinuities are too small to measure (Baecher and Lanney, 

1978; Zhang and Einstein, 2000; Sturzenegger et al., 2011), and, in LiDAR surveys, a scale bias is 

introduced where discontinuity sets are below the point spacing, although this bias is systematic 

and approximately uniform, both spatially and across datasets (here ca. 0.15 m; Sturzenegger and 

Stead, 2009). It is also crucial to recognise that only exposed joint surfaces were measured, which 

themselves are subject to weathering and alteration by other surface processes. With this in mind, 

the geometric properties of the facets measured here are considered to be indicative of the 

condition of the damaged ‘skin’ (Williams, 2017) of the rock mass, which is assumed to have 

accumulated to shallow depths (ca. 101 m) through weathering and the exploitation of 

microcracks. All of the facet data were validated using a visual comparison of the facets with the 

point clouds (coloured by RGB values) alongside oblique aerial photographs and high-resolution 

hillshades derived from the point cloud data, due to difficulties in accessing the foreshore and the 

large volumes of data involved. The data are therefore interpreted with caution but deemed 

suitable for examining relative variations in cliff structure alongshore and up-cliff, as shown in the 

following example.  

An example of the geometric properties of the facets observed along the North Yorkshire 

coast is shown in Figure 4.09. The figure shows different facet properties derived for a point cloud 

of the cliffs at Boulby (Figure 4.09a), demonstrating the facet analysis undertaken in Figure 4.05 

on a broader scale (> 102 m). The cliffs at Boulby constitute a geological conservation review site, 

which reflects their (inter)national importance both in terms of geology and geomorphology 

(Simms et al., 2004). They are the highest in England, forming a vertical exposure through the 

Redcar Mudstone, Staithes Sandstone, Cleveland Ironstone, and Whitby Mudstone formations, 

which together constitute the Pleinsbachian and Toarcian stages of the Cleveland Basin (Figure 

2.03, p. 14).  
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Figure 4.09 Different facet properties, as demonstrated on a point cloud of the cliffs at Boulby, in (a). 

Properties derived from the facets include (b) facet density, (c) facet dip, and (d) facet aspect. Note that the 

colour bar for facet density is log-scaled. The stratigraphical range can be found in Figure 2.03 (p. 14). 
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Approximately 45 m of shales and siltones of the upper part of the Ironstone Shale 

Member of the Redcar Mudstone Formation are exposed on the foreshore and at the toe of the 

cliff. The upper two thirds of the cliff expose the full thickness of the Staithes Sandstone (ca. 

24.5 m thick) and Cleveland Ironstone (ca. 25.5 m thick) formations, the top of which forms a 

broad shelf, and behind which a further cliff rises to the summit, exposing the entire Whitby 

Mudstone Formation (ca. 72.0 m thick). The succession is unbroken by faults, and lies on the axis 

of a broad, gentle anticline that stretches from east of Staithes westwards towards Skinningrove 

(Simms et al., 2004). The influence of lithology on cliff structure is evident when considering facet 

density and dip (Figures 4.09b and 4.09c), which clearly show the westward dipping ironstone 

bands and intervening seams of shale that are characteristic of the Cleveland Ironstone Formation. 

4.3.1 Spatial variations in cliff structure 

The geometric properties of the facets extracted along the North Yorkshire coast are 

summarised in Figure 4.10, with alongshore variations shown in Figure 4.11. Both horizontal and 

vertical spacing are lognormally distributed (Figure 4.10a), which is common in discontinuity 

spacing data (Priest and Hudson, 1981; Sen and Kazi, 1984; Rouleau and Gale, 1985; Narr and 

Suppe, 1991). The surface areas of the facets are also lognormally distributed (Figure 4.10b), with 

a median facet area of 0.07 m2. It therefore follows that facet density is lognormally distributed, 

but negatively skewed (Figure 4.10c), with a median density of 12.3 facets m-2. These distributions 

are illustrative of the fact that, in an extreme case, kilometre-scale discontinuities such as regional 

faults are exponentially less frequent than metre-scale joints, which in turn are less frequent than 

microcracks. Although larger spacings (here > 100 m) occur less frequently, their relative influence 

on the overall rock mass structure is greater given that they are more likely to generate larger 

block sizes (Ortega et al., 2006). The negative exponential distribution has also been applied to 

discontinuity spacing (Priest and Hudson, 1976; La Pointe and Hudson, 1985; Villaescusa and 

Brown, 1990), while normally spaced discontinuities are rare (Huang and Angelier, 1989).  

Figure 4.10 Histograms of (a) facet spacing (horizontal in black and vertical in red), (b) facet area, and 

(c) facet density along the North Yorkshire coast, UK. Note that the x-axis for each plot is log-scaled. 
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Alongshore variations in the distribution of facet spacing, area, and density are shown in 

Figure 4.11, while variations in facet dip and aspect are shown in Figure 4.12. Areas with a larger 

average facet spacing and area, and therefore a lower density, primarily include Runswick Bay (at 

distances of ca. 1.50 – 1.65 × 104 m, 10.3 facets m-2) and Sandsend (> 2.30 × 104 m, 11.4 facets m-2), 

both of which are characterised by lower cliffs of drift materials that separate steeper headlands, 

such as Kettleness (1.85 × 104 m). Although many of the cliffs composed of glacial drift are subject 

to erosion throughout their profile (Agar, 1960), the majority of the cliffs in bays such as Runswick 

are characterised by shallow dips (< 50°) with a slipping face (Figure 4.12). Conversely, the 

headlands at Boulby (0.22 – 0.25 × 104 m, 19.9 facets m-2), Cowbar Nab (0.75 × 104 m, 19.7 

facets m-2), Staithes (0.82 × 104 m, 17.4 facets m-2), Penny Nab (0.90 × 104 m, 20.1 facets m-2), 

Old Nab (1.00 × 104 m, 21.9 facets m-2), and Kettleness (1.85 × 104 m, 25.7 facets m-2) are 

characterised by high facet densities. These cliffs are near-vertical, with mean dips exceeding 70° 

(Figure 4.12), and are the product of marine erosion on a landscape of high relief, with alternating 

ridges and valleys abutting on the coast roughly at right angles (Section 2.1.1, p. 12). 

More locally, the 900 m stretch of cliffs between Staithes and Cowbar (0.73 – 0.82 × 104 m; 

marked on Figures 4.11d and 4.12e), which is the focus of a field investigation into the spatial 

variations in ground motion response to wave impacting (Chapter 5), is approximately uniform in 

geology and structure (see Appendix E, p. 191 for a diagram of the facets along this stretch of 

cliffs; Howarth, 1955; Simms et al., 2004; Powell, 2010). There is little variation in mean facet 

density (16.4 ± 2.5 facets m-2, ± 2σ) or dip (67.0° ± 2.7°, ± 2σ), and variations in mean facet 

aspect are primarily controlled by the geometry of the coastline. Elsewhere, abrupt changes in 

facet properties between bins appear to coincide with a number of conditions (Figures 4.11 and 

4.12): for example, from Penny Nab to Port Mulgrave (1.00 – 1.25 × 104 m), sharp changes in 

facet density, which ranges from a mean value of 12.4 – 24.7 facets m-2 over a distance of 1.5 km, 

appear to occur where cliffs are dissected by landslide activity. Landsliding has occurred along 

this stretch of coastline where the deposits from repeated cliff collapses have accumulated over 

time, decreasing the gradient in places (< 50°). Towards Kettleness, a sharp increase in facet 

density from a mean value of 8.7 facets m-2 to 21.0 facets m-2 (at a distance of ca. 1.64 × 104 m) 

marks the transition from cliffs formed predominantly of more deformable drifts to cliffs formed 

of harder, lithified rock types (see Appendix E, p. 189 for a diagram of the facets at Kettleness). 

At Sandsend (> 2.20 × 104 m), variations in facet density (11.5 ± 6.0 facets m-2, ± 2σ) appear to 

be associated with a series of crenulous coves separated by till cliffs. 

Figure 4.11 Overleaf. Variations in (a) facet spacing, (b) area, and (c) density along the North Yorkshire 

coast, UK. Facet properties are plotted as stacked bar graphs, with distance along the coastline divided into 

100 m bins. The inset in (d) shows in detail the previously monitored sites (Table 2.01, p. 19) as well as the 

sites monitored in Chapter 5. Note that the colour bars are log-scaled. White bands denote harbours, beachy 

embayments and other gaps in the point cloud data where cliffs are absent or densely vegetated. 
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4.3.2 Vertical variations in cliff structure 

Variations in the geometric properties of facets as a function of cliff elevation are shown 

in Figure 4.13. The considerable along-coast variability in facet spacing, area, and density means 

that much of the variation in these properties is averaged out, although there is a slight decrease 

in both facet spacing and area up-cliff, with a corresponding increase in facet density. The 

distribution of facet dip, and the difference between facet and the cliff aspect measured over the 

surrounding 20 m window, vary considerably up-cliff. The bases of the cliffs (< 6 m OD) are 

characterised by shallower dips (ca. 50°, global mean of ca. 60°) and larger differences (ca. 53°, 

global mean of ca. 36°) on average, further highlighting the apparent absence of notching along 

much of the coastline. Mean values of dip remain stable (ca. 63° ± 1°, 2σ) up to an elevation of 

ca. 90 m, while mean differences progressively decrease, stabilising between elevations of ca. 50 – 

90 m (ca. 33° ± 2°, 2σ). Above elevations of ca. 100 m, the cliffs at Boulby form a broad shelf, 

resulting in low dips (ca. 47° ± 4°, 2σ). A further cliff rises behind this shelf, up to a summit of 

ca. 150 m, causing dips to briefly return to a mean of ca. 63°. The large differences, which increase 

to mean values of up to ca. 58°, are likely to be the result of extensive quarrying activity in the 

Alum Shale Member of the Whitby Mudstone Formation (Simms et al., 2004). 

 

Figure 4.12 Overleaf. Variations in (a) facet dip, (b) mean dip, (c) facet aspect (with mean aspect 

overlaid), and (d) the mean difference between facet and cliff aspect along the North Yorkshire coast, UK. 

Facet properties are plotted as stacked bar graphs, with distance along the coastline divided into 100 m bins. 

In (d), cliff aspect was calculated using a 20 m moving window. The inset in (e) shows in detail the previously 

monitored sites (Table 2.01, p. 19) as well as the sites monitored in Chapter 5. White bands denote harbours, 

beachy embayments and other gaps in the point cloud data where cliffs are absent or densely vegetated. 

Figure 4.13 Variations in (a) facet spacing, (b) facet area, (c) facet density, (d) facet dip, and (e) the 

difference between facet and cliff aspect along the North Yorkshire coast, UK. Facet properties are plotted 

as stacked bar graphs (coloured) and as compact box plots (blue) against elevation. Bins are in 2 m 

increments from an elevation of 0 m OD. 
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4.3.3 Rockfall shape 

Both the shape and size of rockfalls is governed by failure along joint planes or 

discontinuities (Jaboyedoff, 2011; Lambert and Nicot, 2011), such that they can be associated 

with the specific geological settings of the rock mass from which they were released (Fityus et al., 

2013). Rockfall shape along the North Yorkshire coast is therefore shown for each monitoring 

period in Figure 4.14. The shapes correspond to 10 sub-categories of three end-member shapes, 

blocky, slab-like, or rods, as defined by Sneed and Folk (1958). In each year, rockfall shapes are 

distributed throughout the ternary plot, with no distinctive patterns evident year-on-year. The 

majority of rockfalls (> 60% in each dataset) are compact (or blocky), lying in the top half of the 

ternary plot, with relatively few very platy, bladed, or elongate shapes (< 10% in each dataset). 

There appears to be little correlation between rockfall shape and volume for the largest 50 rockfalls 

in each inventory. To investigate this further, rockfall volumes are plotted on logarithmic axes 

using logarithmically binned data, as in the magnitude-frequency analysis undertaken in Section 

3.2.6, and their shape class plotted as a stacked bar graph. In the combined inventory 

(n = 58,032), which is shown in Figure 4.15, rockfalls occurring at the tails of the distribution 

Figure 4.14 Rockfall shape monitored along the North Yorkshire coast, UK, from (a) 2014 – 2015, (b) 

2015 – 2016, and (c) 2016 – 2017. Diamonds represent the largest 50 rockfalls in each inventory. Colours 

correspond to rockfall volume. Shapes are divided into 10 sub-categories, defined by Sneed and Folk (1958).  
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(< 10-3 m3 and > 101 m3) comprise approximately equal proportions of blocky, slab-like, and rod 

shapes, with a tendency towards very platy and elongate forms, particularly for rockfalls of VR > 

102 m3. However, there is a clear peak in the stacked bar graph for rockfalls of volume 0.002 m3 – 

0.064 m3 (n = 30,766), the majority of which (> 70%) are blocky in shape. This equates to a cube 

of dimensions between ca. 0.13 m and ca. 0.40 m, which is of a similar order of magnitude to 

discontinuity-defined structural control on block size and shape at this scale (de Vilder et al., 

2017; observations made at the Boulby cliffs). Importantly, this peak does not coincide with the 

peak in the probability density of rockfall frequency as a function of volume (Figure 4.15), ruling 

out any influence of the observed frequency, or censoring, of rockfalls on the distribution of their 

shapes.  

The results shown in Figure 4.15 show that, along the North Yorkshire coast, the 

probability distribution of rockfall shape as a function of volume is broadly predictable, and 

critically that rockfall shape is scale dependent. While a greater proportion of very small 

(< 10-3 m3) and very large (> 101 m3) rockfalls tend towards very platy and elongate forms, the 

majority of rockfalls (> 70%) of volume 0.002 – 0.064 m3 (n = 30,766) are blocky in shape. This 

occurs year-on-year (Figure 4.16), potentially marking a transition from rockfall as a structurally-

defined process to rockfall as either small scale consequences of incremental weathering 

(VR < 10-3 m3), or fracturing-related mass-movements that break through rock bridges to generate 

larger, predominantly cliff face-parallel rockfall (VR > 102 m3; de Vilder et al., 2017). The 

possibility of a structural control on rockfall shape is therefore investigated in Section 4.3.5. This 

relationship also holds important consequences for modelling future cliff erosion, both along cliffed 

shorelines and in non-coastal settings. This is the case if such relationships are used to place limits 

on the dimensions of modelled rockfalls, and the step-back events that result (for example, Dong 

and Guzzetti, 2005; Young et al., 2011), using rockfall magnitude-frequency relationships. 

 

Figure 4.15 Rockfall shape, derived for all 58,032 rockfalls in the inventory, plotted as a stacked bar graph 

in (a). The probability density of rockfall frequency as a function of volume is overlaid in white. Colours 

correspond to the 10 sub-categories shown in (b), defined by Sneed and Folk (1958). Examples of the shapes 

are shown in (c), which is adapted from Figure 3 in Blott and Pye (2008, p. 36). 
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Beyond weathering processes, the shape and size of rockfalls are primarily governed by 

the geometric properties of discontinuities, including orientation and spacing (Wyllie and Mah, 

2004; Jaboyedoff, 2011; Lambert and Nicot, 2011). The ability to monitor at length scales where 

there are variations in these factors is therefore crucial in aiding our understanding of the 

sensitivity of sea cliffs, such as those on the North Yorkshire coast, to future change. Alongshore 

variations in the distribution of rockfall shape are therefore shown for each year of monitoring in 

Figures 4.17a–c. The distribution of rockfall shape varies along the coastline, and the structure of 

this variation is generally consistent year-on-year. If each 100 m bin of cliffline consistently 

produces similar shapes of rockfall, then the existence of these patterns at least partly confirms 

the assertion that rockfall shape is controlled by the geometric relationships of rock mass 

discontinuities. To further test this, a moving correlation (± 200 m) was applied to the frequency 

data presented in Figure 4.17. Correlation coefficients were calculated for each rockfall shape class, 

in each 100 m bin along the coastline, using the rockfalls observed in both 2014 – 2015 and 2015 

– 2016, and 2015 – 2016 and 2016 – 2017. The results were displayed only if a statistically 

significant positive correlation was observed for both cases, in which case they were amalgamated 

and a mean correlation was calculated.  

Figure 4.18 (p. 78) shows the extent to which different 100 m cliff sections along the North 

Yorkshire coast produced the same or similar distributions of rockfall shapes year-on-year. The 

headlands at Boulby (at distances of ca. 0.22 – 0.25 × 104 m and 0.57 × 104 m), Cowbar Nab (0.75 

× 104 m), Staithes (0.82 × 104 m), Old Nab (1.00 × 104 m), Port Mulgrave (1.35 × 104 m), and 

Kettleness (1.85 × 104 m) show the strongest correlations, having all produced similar  

Figure 4.16 Rockfall shape monitored along the North Yorkshire coast, UK, from (a) 2014 – 2015, (b) 

2015 – 2016, and (c) 2016 – 2017. The results are plotted as a stacked bar graph, with colours corresponding 

to the 10 sub-categories shown in Figure 4.15b, defined by Sneed and Folk (1958). Histograms show the 

frequency of rockfalls in each volume bin. 
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distributions in at least seven or more of the 10 shape classes (Figure 4.18b). These areas are 

sometimes separated by embayments, such as Runswick Bay and Sandsend, which have only 

produced similar distributions in fewer than four of the 10 shape classes. This implies that the 

geological setting of the coastline, where ridges of solid rock are separated by lower cliffs of drift 

(Section 2.1.1, p. 12), directly influences spatial variations in the distribution of rockfall shapes, 

and, by inference, rockfall volumes along the North Yorkshire coast. 

Over 66% of the total monitored cliff length along the North Yorkshire coast consistently 

produced blocky (compact) shapes (Figure 4.18), with upwards of 35% of the cliffs also producing 

other sub-categories of blocky shapes (compact-platy, compact-bladed, or compact-elongate). 

Although a large proportion of the rockfalls observed were blocky (> 23%), over the entire 

inventory they contributed a relatively small proportion (< 11%) of the total eroded volume, with 

a mean volume of ca. 1.04 ± 0.16 m3. This complements patterns observed in the volumetric data, 

which were derived using the same methods and show spatial variations in the correlation between 

the distribution of rockfall volumes observed along the North Yorkshire coast (Appendix F, p. 

192). These data demonstrate a peak in volumes between 10-2 and 10-1 m3, which approximately 

coincides with the peak observed in Figure 4.15a, and indicates that up to 50% of the coastline 

consistently produces rockfall material in this volume range. As in Figure 4.18b, the headlands at 

Boulby (at distances of ca. 0.22 – 0.25 × 104 m and 0.57 × 104 m), Cowbar Nab (ca. 0.70 – 0.75 × 

104 m), and Old Nab (ca. 1.00 × 104 m) show the strongest correlations, having all produced 

statistically similar distributions in at least 14 or more of the 24 volume classes. 

Both very elongate and very bladed shapes were consistently produced along much of the 

coastline (50% and 45% of the monitored cliff length, respectively). Although these contributed a 

small proportion (ca. 7%) of the rockfalls observed, together they constituted over 17% of the 

total eroded volume, with a mean volume of ca. 5.95 ± 1.37 m3 and 4.93 ± 0.79 m3, respectively. 

Areas with strongly positive correlations in these shapes often coincide with areas that produce 

blocky shapes (Figure 4.18a), with concentrations often around headlands. Although the largest 

rockfalls tend towards these shapes (Figure 4.15a), rockfalls with a volume greater than ca. 262 m3 

(n = 53) did not occur with any spatial consistency over the monitoring period (Appendix F, p. 

192). However, rockfalls with a volume between ca. 131 m3 and 262 m3 (n = 58) did concentrate 

around the headland at Boulby (at a distance of ca. 0.57 × 104 m), with correlation coefficients 

there exceeding 0.70. 

Figure 4.17 Overleaf. Rockfall shape monitored along the North Yorkshire coast, UK, from (a) 2014 – 

2015, (b) 2015 – 2016, and (c) 2016 – 2017. Rockfall shape is plotted as a stacked bar graph, with distance 

along the coastline divided into 100 m bins. Colours correspond to the 10 sub-categories shown in Figure 

4.15b, defined by Sneed and Folk (1958). The inset in (d) shows in detail the previously monitored sites 

(Table 2.01, p. 19) as well as the sites monitored in Chapter 5. White bands denote harbours, beachy 

embayments and other gaps in the point cloud data where cliffs are absent or densely vegetated. 
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The distribution of rockfall shape and the exponent of the magnitude-frequency 

distribution, β, is shown in Figures 4.19a and 4.19b as a function of cliff elevation. In the combined 

inventory (n = 58,032), rockfalls occurring at the base of the cliffs (< 6 m OD) are more evenly 

distributed throughout the ternary diagram (Figure 4.19c). Over a third of rockfalls (ca. 33.9%) 

that occurred at these elevations are very platy, bladed or elongate, with relatively few compact 

(or blocky) shapes (ca. 9.7%). This is also marked by a pronounced inflexion in the exponent of 

the magnitude-frequency distribution β (Figure 4.19b), which indicates that the size distribution 

of rockfall activity at the cliff toe is dominated by relatively large failures (as in Section 3.3.4). 

The distribution of rockfall shapes remains stable up to an elevation of ca. 70 m OD; at these 

elevations, the majority of rockfalls (> 60%) are compact (or blocky) in shape, lying in the top 

half of the ternary plot. This approximately reflects the value of β, which remains stable at these 

elevations, indicating that the relative volume of material contributed by events of varying sizes 

stabilises above the limits of marine influence, as discussed in Chapter 3. These patterns could be 

related to changes in the groundwater regime, weathering environment, and the stress field up 

cliff, or to changes in structure, such as joint spacing and density (Section 4.3.2). 

 

Figure 4.19 Rockfall shape, derived for all 58,032 rockfalls in the inventory, plotted as a stacked bar graph 

against elevation in (a). The probability density of cliff elevation is overlaid in white. Colours correspond to 

the 10 sub-categories shown in Figure 4.15b, defined by Sneed and Folk (1958). Bins are in 2 m increments 

from an elevation of 0 m OD. The exponent of the magnitude-frequency distribution, β, of rockfall volumes 

is plotted against elevation in (b). A subset of the shape distributions for two bins at different elevations, 

and with different values of β, is shown in (c). 

Figure 4.18 Overleaf. Spatial variations in the correlations between rockfall shapes shown in Figure 4.17. 

Correlations are windowed (± 200 m) and only shown in (a) if there is a positive correlation between shapes 

observed in both 2014 – 2015 and 2015 – 2016, and 2015 – 2016 and 2016 – 2017. The total number of 

positively correlated shape classes for each 100 m bin is shown in (b). The inset in (c) shows in detail the 

previously monitored sites (Table 2.01, p. 19) as well as the sites monitored in Chapter 5. 
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4.3.4 Rockfall contiguity and relationships with cliff structure 

When divided into separate inventories, the properties of contiguous and non-contiguous 

rockfalls differ considerably (Table 4.01). Despite contributing a relatively small proportion of the 

rockfalls observed (ca. 18%), together, contiguous rockfalls constituted > 83% of the total eroded 

volume, with a mean volume of ca. 9.82 ± 1.13 m3, as compared with the mean volume of non-

contiguous rockfalls (ca. 0.43 ± 0.08 m3). This is likely because over half (ca. 53,721 m3) of the 

total (ca. 104,326 m3) volume eroded by contiguous rockfalls was contributed by 12 large 

(> 1,000 m3) events. The proportion of rockfalls that occurred along the North Yorkshire coast 

that were spatially associated (contiguous), regardless of the scenario considered, is consistently 

an order of magnitude higher than those measured under complete spatial randomness. On 

average, 10.5% of rockfalls that occurred along the North Yorkshire coast had coalesced with the 

scars of those that had occurred the previous year, in comparison with a value of ca. 1.7% that 

would be expected under conditions of complete spatial randomness (Figure 4.20). Of the 58,032 

rockfalls that occurred over the 32-month monitoring period, approximately 3.6% were part of a 

sequence of rockfalls that had propagated year-on-year (‘concentrated coalescence’) compared to 

ca. 0.1% estimated in the randomised control. Just as path-dependency has been observed among 

landslides (for example, Samia et al., 2017a), these data demonstrate a clear spatial dependence 

among rockfalls occurring along the North Yorkshire coast, suggesting that they are not Poissonian 

processes. However, the linkage observed at this scale only applies to a small percentage of the 

Table 4.01 Summary of rockfall characteristics across three different inventories. 

2014 – 2015, 2015 – 2016, 2016 – 2017 

All rockfalls Contiguous Non-contiguous 

Cliff length (m) 20,459 20,459 20,459 

Cliff area (m2) 805,739 805,739 805,739 

Number of rockfalls (-) 58,032 10,622 47,410 

Mean rockfall volume (m3) 2.15 ± 0.24 9.82 ± 1.13 0.43 ± 0.08 

Median rockfall volume (m3) 0.014 0.104 0.010 

Rockfall density (m-2) 0.072 0.013 0.059 

Minimum eroded volume (m3) 102,794.44 88,171.39 14,623.05 

Average eroded volume (m3) 124,843.31 104,326.48 20,516.83 

Maximum eroded volume (m3) 134,642.52 112,295.51 22,347.01 

Annual retreat (m yr-1) 0.059 0.049 0.010 

Standardised yield (m3 m-1 yr-1) 2.320 1.939 0.381 

Notes: Monitored cliff area is an average of the areas presented for each monitoring period in Table 3.01

(p. 29). Standardised yield is calculated per linear coastline metre, per annum. 
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total. Using the locations of previous events as an indicator of future rockfall risk from these cliffs 

is therefore problematic, as by far the majority appear unrelated to the location of those that have 

occurred in the two years monitored previously. 

To establish whether differences in the properties of contiguous and non-contiguous 

rockfalls are driven by variations in cliff structure, the distribution of rockfall shape, facet spacing, 

area, density, dip, and the difference between facet aspect and cliff aspect as a function of rockfall 

volume was plotted for both inventories (Figure 4.21). There are few conspicuous differences 

between the inventories, as demonstrated by the box plots in Figure 4.21, although the differences 

for all inventories demonstrate a peak in volumes between 10-3 and 10-1 m3, which approximately 

coincides with the peak observed in Figure 4.15a. These data illustrate the difficulties in 

elucidating any meaningful relationships between spatial variations in cliff structure and patterns 

of rockfall contiguity at regional scales. While the distribution of rockfall shape and volume 

through time have been shown to be spatially consistent, approximating the geological setting of 

the coastline (Section 4.3.3), relating the properties of individual rockfalls to variations in the 

geometric properties of exposed joint (or facet) surfaces at these scales remains difficult. 

Figure 4.20 Schematic diagram illustrating patterns of rockfall coalescence along the North Yorkshire coast 

between 2014 and 2017. Diagrams indicate possible coalescence scenarios. Colours indicate that percentages 

are applicable to both directions of coalescence. Numbers in large text were derived by dividing the number 

of rockfalls that coalesced by the total number of rockfalls that occurred across the monitoring periods of 

interest. Numbers in small text indicate the proportion of coalescence under complete spatial randomness. 
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Figure 4.21 Rockfall shape plotted as a stacked bar graph for three different inventories: all rockfalls 

(n = 58,032), contiguous rockfalls (n = 10,622), and non-contiguous rockfalls (n = 47,410). The probability 

density of rockfall frequency as a function of volume is overlaid in white. Colours correspond to the 10 sub-

categories shown in Figure 4.15b, defined by Sneed and Folk (1958). Variations in facet spacing, area, 

density, dip, and the difference between facet and cliff aspect are plotted as compact box and whisker plots 

underneath for each volume bin. Red lines indicate the global mean in each case.  
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4.4 Summary 

Using high-resolution airborne LiDAR data, this chapter has derived a detailed, 

quantitative appraisal of variations in the geometric properties of exposed joint surfaces along the 

North Yorkshire coast. The chapter has explored how rockfall properties, such as block shape and 

volume, are related to wider-scale variations in these properties, both up-cliff and along-coast. 

Specifically, the resulting analyses have been used to show that: 

1. Cliff structure, as defined by the geometric properties of exposed joint surfaces, varies 

alongshore. These variations appear to reflect variations in lithology, and are most clearly 

expressed in the headland and embayment sequences that are characteristic of the coastline, 

where lower cliffs composed of drift materials separate steeper headlands.  

2. Rockfall shape is not scale invariant, and the relationship between rockfall volume and block 

shape is persistent year-on-year, providing the potential to predict future distributions of 

rockfall shape using magnitude-frequency relationships. Variations in mean rockfall shape 

with volume also imply a systemic shift in the underlying mechanisms of detachment with 

scale, questioning the validity of applying a single probabilistic model to the full range of 

observed rockfall volumes along the North Yorkshire coastline. 

3. Spatial consistencies in the distribution of rockfall shape and volume through time 

approximately follow the geological setting of the coastline, where ridges of solid rock are 

separated by lower cliffs of drift. Spatial variations in the strength of correlations could be 

conditioned by differences in local processes (for example, nearshore wave impacts) and 

morphological controls between sites. 

4. Rockfall occurrence at a regional scale is not a Poissonian phenomenon, although the 

proportion of contiguous rockfalls observed in this inventory is low enough (ca. 10.5%) to 

preclude hazard management using solely a database of precursory events. This finding has 

considerable implications for modelling future rockfall activity using magnitude-frequency 

distributions, which assume statistical independence between the observed events.   

The results presented in this chapter have shown that variations in cliff structure can partially 

account for the consistent patterns of spatial variation in cliff retreat that were observed in 

Chapter 3. In order to understand the potential influence of spatial variations in cliff base wave 

impacting on these patterns, the ground motion response to wave impacting along a ca. 900 m 

stretch of cliffs of relatively uniform lithology and structure is therefore evaluated in Chapter 5. 
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Chapter 5 

Coastal cliff ground motions and 

response to wave loading 

In (micro)seismically active zones, laboratory testing and numerical modelling have shown that 

repeated loading cycles involve variations in both the magnitude of dynamic stresses, their 

amplitude relative to baseline stress conditions, and their orientation relative to existing fracture 

sets and ground surface topography (Chapter 1). The cumulative effect of this (micro)seismicity 

has been suggested to play a crucial role in reducing rock slope stability by allowing macro-scale 

rock fracture to occur at stresses that are considerably less than the peak strength of intact rocks. 

If this is the case, then cyclic loading and consequent fatigue of rock slopes could hold important 

implications for the timing and distribution of landform and landscape susceptibility to change. 

In coastal settings, it is unknown how cliff response to wave impacting varies alongshore, or 

whether differences in the ground motion response between sites drive spatial variations in cliff 

erosion. Along-coast variations in coastal geometry and foreshore bathymetry should mean that 

spatial variations in cliff erosion are the product of differences in resisting and driving processes, 

meaning that coastal cliffs present an ideal case study for separating the effects of cliff structure 

from wave loading. The following discussion reviews the state of knowledge on the ground motions 

that occur on cliffed shorelines, and the conditions responsible for driving them (Section 5.1). 

Section 5.2 outlines a workflow for integrating and processing data from a number of sources, 

with the aim of identifying relative variations in the ground motion response to wave impacting 

along a ca. 900 m stretch of cliffs, where other factors (lithology, structure, weather, groundwater 

regime) are broadly constant. Section 5.3 presents the first concurrent observations of alongshore 

variations in wave impact-driven ground motions at coastal cliffs. Using the resulting inventory 

of wave impacting, this section explores how wave loading characteristics vary along the coastline, 

and how these are related to varying morphological controls and coastal processes (RQ3). 
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5.1 Ground motions on cliffed shorelines 

Ambient vibrations of the ground, termed seismic noise or microseismicity, occur due to 

a range of natural and anthropogenic sources (Gutenberg, 1958). These vibrations have been used 

to forecast volcanic eruptions (Brenguier et al., 2008), to constrain the seismic response of 

potentially unstable hillslopes (Burjánek et al., 2012; Luo et al., 2014; Del Gaudio et al., 2015), to 

identify iceberg calving events (Amundson et al., 2008), to detect and characterise mass 

movements (Amitrano et al., 2005) such as precursory cracking prior to rockfall (Senfaute et al., 

2009) and the force-histories of rock avalanches (Allstadt, 2013; Ekstrom and Stark, 2013; Hibert 

et al., 2014), and to measure fluvial discharge (Hsu et al., 2011) and sediment transport (Roth et 

al., 2014, 2016). Ground motions generated by ocean waves, which are often considered as noise 

in such studies, have been used for a range of purposes including monitoring of offshore oil and 

gas fields (de Ridder and Biondi, 2013), wave hindcasting (Powell et al., 2010), tsunami monitoring 

(Yuan et al., 2005), and for characterising coastal cliff ground motions as a proxy for wave loading 

and therefore erosion (Adams et al., 2002, 2005; Young et al., 2011, 2012, 2013, 2016; Dickson and 

Pentney, 2012; Norman et al., 2013; Earlie et al., 2015; Vann Jones et al., 2015). 

Recent seismic observations at coastal cliffs suggest that the ground motions generated 

by ocean waves may constitute a suitable proxy for wave impacting at the cliff. This is based on 

the assumption that the ground motions recorded reflect the timing, magnitude, and efficacy of 

wave forcing (Vann Jones et al., 2015). Previously, due to challenges in collecting data on 

nearshore wave conditions, far-field observations were instead used to approximate conditions in 

the nearshore, such as wave power propagation and dissipation, through numerical 

transformations (for example, Collins and Sitar, 2008; Young et al., 2009). These transformations 

have since been used, often without validation, to estimate cliff response to marine forcing 

(Trenhaile and Kanyaya, 2007) and to underpin models of past and future cliff evolution (Young 

et al., 2009; Revell et al., 2011; Castedo et al., 2012). The vertical distribution of wave erosion in 

a number of these numerical models, including SCAPE (Walkden and Hall, 2005, 2011), is 

modelled as a direct function of inundation duration (Sunamura, 1975, 1977; Trenhaile and 

Layzell, 1981; Carr and Graff, 1982; Belov et al., 1999; Trenhaile, 2000, 2009, 2011). However, on 

many non-carbonate coastlines there is little evidence of notching at the cliff toe (Pierre and 

Lahousse, 2006; Rosser et al., 2007; Young et al., 2009; Vann Jones et al., 2015), meaning that 

the relationships between the vertical distribution of erosion, inundation duration, and wave 

impacting in these areas has remained poorly understood. 

The absence of direct observations of wave-cliff interaction, and the resulting erosion, has 

led to the use of cliff-top microseismic ground motions as a proxy for wave impacting. Variations 

in cliff ground motions are driven by a range of local mechanisms that give rise to distinct 

microseismic frequencies (Figure 5.01). Superimposition of sea waves in the open ocean, which 

often propagate trans-continental distances, generates ‘double frequency’ microseisms that are 
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twice the frequency of ocean waves. Local sea, swell (Adams et al., 2005), or infragravity (Young 

et al., 2011, 2012, 2013) waves in nearshore waters generate low frequency cliff motion (0.01 – 

0.10 Hz), or ‘flexing’. This consists of downward and seaward ground motion and seaward ground 

tilt during wave loading and the opposite during unloading, amounting to a vertical ground 

displacement of ca. 0.5 – 10.0 μm at the cliff-top over each loading cycle when significant wave 

heights are > 3 m (Adams et al., 2005). Cliff flexure occurs ca. 3 million times annually, with the 

Figure 5.01 Cliff-top ground motion response to wave height, tides, and wind over one week, where (a) is 

a power spectrogram (z-component) showing three frequency bands identified across the 0.1 – 50.0 Hz (0.02 

– 10.00 s) spectrum of ground motions, and (b) is wave height, tide elevation, and wind velocity. Adapted 

from Figure 2 in Norman et al. (2013, p. 6811). 
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amplitude of these cycles decaying exponentially with distance inland (Adams et al., 2005). This 

cross-shore gradient in vertical displacements is suggested to fatigue the bedrock through 

microcracking, leaving the cliff face more susceptible to erosional processes associated with wave 

attack. Waves that directly impact the cliff generate higher frequency ground motion (> 0.3 Hz) 

or ‘shaking’ (Adams et al., 2002), which is also caused by waves breaking in the nearshore 

(Poppeliers and Mallinson, 2015), on fronting shore platforms (Dickson and Pentney, 2012), wind 

buffeting (Norman et al., 2013), and anthropogenic sources, including vehicle traffic. Frequency 

band widths and the number of peaks within these are likely to vary from site to site due to 

variations in local conditions, cliff geometry, and geological composition.  

Previous research has shown that energy delivery to the cliff face is strongly modulated 

by tide, with both cliff shaking and cliff flexing increasing with water depth and incident wave 

height (Adams et al., 2002, 2005; Young et al., 2011), although this can vary with platform 

elevation and platform microtopography. For example, Dickson and Pentney (2012) found that 

the majority of wave energy at Okakari Point, New Zealand, was dissipated at the seaward edge 

of an elevated foreshore platform, which acted to amplify cliff-top ground motions at mid-low 

tides. Similarly, the extent (> 200 m) and microtopography of the foreshore platform at Boulby 

was shown to strongly condition wave energy flux and impact timing (Lim et al. 2011). Peak 

energy transfer occurs during the largest storm events, where bottom frictions and water depths 

are sufficient to maintain constant wave impacting, and therefore energy delivery, at the cliff face 

(Norman, 2012; Norman et al., 2013). In Porthleven, Cornwall, significant wave heights of ca. 6 – 

8 m in January/February 2014 generated vertical ground motions in excess of 50 – 100 μm at the 

cliff-top, driving rates of erosion up to two orders of magnitude higher than the long-term rate 

(Earlie et al., 2015). A 32-day microseismic dataset obtained from the cliff-top at Boulby 

demonstrated that energetic storm events generate ground motions with a sustained cliff-normal 

component (Brain et al., 2014), with the implication that changes in loading direction beyond 

those commonly experienced could lead to a change in the micro-scale stress field. This would act 

to extend microcracks beyond conditions achievable by low amplitude background displacements 

(those experienced during sea cliff flexure, for example), which are considered insufficient to 

damage the rock mass. 

Previous studies lack quantitative analysis of spatial variations in cliff base waves and 

shaking, with many instead focussing on cross-shore variability (Adams et al., 2005; Young et al., 

2011, 2012; Dickson and Pentney, 2012; Norman, 2012). Although a direct link between wave-

induced ground shaking and cliff erosion is yet to be clearly demonstrated, findings presented in 

Chapter 3 show consistent patterns of spatial variation in cliff retreat over time. Some of this 

variation can be accounted for by variations in cliff structure (Chapter 4); in this chapter, this 

variable is removed by monitoring variations in the ground motion response to wave impacting 

along a ca. 900 m stretch of cliffs, of relatively uniform lithology and structure, over one year. 
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5.2 Measuring cliff toe ground motions 

The distribution of cyclic loading across a single rock slope, or an entire landscape, can 

be captured using a dense network of seismometers located on hillslopes likely to be affected by 

(micro)seismic ground motions. For example, Moore et al. (2011) and Burjánek et al. (2012) used 

a network of 12 tri-axial velocity sensors and nine digital seismic systems to record ambient 

vibrations on the Walkerschmatt rock slope in the southern Swiss Alps. Data obtained from 

installations such as these can be used to determine the site response characteristics of rock slopes 

subjected to variable loading conditions. This approach is adopted here in order to monitor relative 

variations in the cliff response to cyclic loading by wave impacting. Data are integrated from four 

sources. These include ground motion data, which were collected using an array of tri-axial 

accelerometers and treated as a proxy for the energy imparted to the cliff from the incoming wave 

field. Offshore wave conditions were recorded by a wave buoy and were combined with tidal data 

to populate a wave transformation model used for simulating nearshore wave conditions, including 

wave and set-up elevations, at each site. Spatial variations in rockfall activity were monitored 

using high-resolution, multi-temporal LiDAR (Chapter 3). Each dataset is outlined in detail below.  

5.2.1 Data acquisition 

Monitoring was undertaken along a stretch of cliffs west of Staithes and Cowbar Nab 

(Figure 5.02). Erosion along several cliff sections here has been extensively monitored using 

terrestrial LiDAR in the past, and this monitoring history is discussed in detail in Section 2.2. 

Airborne LiDAR surveys of the cliffs undertaken in Chapter 3 show that retreat rates are highly 

variable, both within and between years (Figure 3.12, p. 43). Cliff retreat varied between 

Figure 5.02 Accelerometer installation sites west of the village of Staithes, North Yorkshire, plotted on top 

of a point cloud obtained in August 2014. Grey/yellow markers denote un/successful installations. Inset: 

circular histogram of wave directions recorded over the monitoring period, with the mean marked in red. 
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4.010 × 10-4 m yr-1 and 0.006 m yr-1 from 2014 – 2015, 4.071 × 10-4 m yr-1 and 0.010 m yr-1 from 

2015 – 2016, and 9.760 × 10-4 m yr-1 and 0.114 m yr-1 from 2016 – 2017. In places, locally high 

rates of change have been driven by the occurrence of large rockfalls, including one that caused a 

step-back of up to 6.50 m (636.19 ± 23.63 m3, 2016 – 2017), threatening the access road from 

Staithes to Cowbar. The cliffs are relatively uniform in height and geology across the 900 m 

section. Cliff aspect ranges from 280° on the west side of Cowbar Nab to 80° in Staithes harbour, 

and the cliffs are fringed by as much as 270 m of foreshore platform in some places, and as little 

as 40 m in others. Given that the geology and wider environmental conditions over this section 

are broadly uniform (Appendix E, p. 191), large spatial variations in cliff aspect and nearshore 

bathymetry may drive differences in rockfall activity, and therefore erosion, at these sites.  

5.2.1.1 Ground motion data 

Ground motions were measured at eight sites with MSR 165 tri-axial accelerometers, 

which are optimised for recording high-frequency ground accelerations. The sensors were housed 

in a custom aluminium casing and set in the cliff face ca. 1.5 m above the cliff toe at each site, 

shown in Figure 5.03 (p. 92), using a 56 mm core drill. The instruments were set into the cliff toe 

in accordance with observations from other sites, where this elevation has provided the clearest 

indication of high frequency shaking induced by wave impacting (Dickson and Pentney, 2012). 

With the exception of S5, where a rockfall occurred on 12/01/2017 (Figure 5.03e), each position 

was occupied for a year between 6 September 2016 and 6 September 2017 in order to capture the 

full range of seasonal variations in ground motions. Recording was interrupted by 48 – 76 hour 

breaks approximately every 28 days for data download, recharging, and redeployment. The time 

lost during these periods equates to ca. 59 days, or 16.2% of the monitoring period, when 

synchronised across the eight sites. The sensor frequency was set to 200 Hz as the sensors had not 

previously been deployed to analyse cliff motion from wave impacting. Previous studies of cliff 

motion under wave loading have used seismometers monitoring at 100 Hz in order to determine 

cliff movement associated with the primary and secondary microseismic peaks (Adams et al., 2002, 

2005; Young and Adams, 2011). A GPS with Real Time Kinematic correction was used to 

determine the position and elevation of all the instruments, which are recorded in Table 5.01.  

5.2.1.2 Oceanographic data 

To approximate conditions across the cliffs, monitored distal waves and tidal data were 

modelled using a transformation based on Battjes and Stive (1985) derived by Norman et al. 

(2013) and summarised in Appendix G (p. 195). Half-hourly tidal elevations and residuals from 

the nearest available tide gauge (UK National Tide Gauge Network, Whitby, ca. 25 km south) 

and significant wave heights (Hs) obtained from an offshore wave buoy (CEFAS Wave Net, 

Whitby) were used to populate the model, which was run on 1,000 m long profiles taken at each 

site. An initial distance of 1,000 m was used as the water depth, and therefore wave conditions, 
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at that distance are approximately equal to those at the buoy according to linear wave theory. 

The modelled total water level was subsequently used to give an approximation of the inundation 

durations at each position of the array between 6 September 2016 and 6 September 2017.  

Outputs from the model were validated using nearshore wave and tide information derived 

from an RBRsolo water depth channel logger, which was deployed ca. 5 m seaward of the cliff toe 

at the site shown in Figure 5.03h. The instrument was deployed over a two-week period from 6 

February 2017 to 21 February 2017, during which time significant wave heights observed at the 

offshore wave buoy exceeded 5 m. The instrument uses a pressure sensor with ± 0.05% accuracy, 

sampling 8 Hz bursts for ca. 17 minutes, every half an hour (totalling 8,192 samples per burst). 

Local water depths were computed as the mean water depth over the pressure sensor during each 

burst. Atmospheric pressure was removed from the record using half-hourly observations collected 

at the Loftus Met Office weather station, approximately 4 km northwest of the site. Timeseries 

were detrended and converted to hydrostatic elevation relative to the Ordnance Datum (m OD, 

at Newlyn, UK). Modelled total water level provides a good estimate of the observed maximum 

cliff base water level, with a comparison of modelled and measured water depths yielding a 

correlation coefficient of 0.93, with a mean absolute error of 0.09 m (Appendix H, p. 200). 

 5.2.1.3 Rockfall data 

Longer-term variations in rockfall activity and the resulting cliff retreat between the sites 

were monitored using the data and methods presented in Chapter 3. The data were collected at 

three approximately equal intervals between August 2014 and March 2017. The aim of this chapter 

is not to demonstrate a direct physical link between wave-induced ground motions and cliff 

erosion, but rather to examine spatial variations in both in order to develop a more generalised 

understanding of how variations in loading magnitude, frequency, and direction may correlate 

with broader scale patterns of cliff erosion and retreat. 

Table 5.01 Accelerometer location, elevation, and aspect for each monitoring site. 

Site 
Easting Northing Elevation Aspect 

m m m OD ° 

1 477633.43 518903.39 2.26 320 

2 477676.08 518942.75 2.08 346 

3 477729.80 518950.73 2.22 357 

4 477758.23 518947.91 1.90 45 

5 477860.81 518857.85 2.87 16 

6 477931.51 518882.26 2.13 335 

7 478076.23 518959.95 2.63 318 

8 478205.81 519051.85 3.19 13 
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5.2.2 Data processing 

Processing ground motion data typically involves a number of steps, although it should 

first be noted that there are several differences between motion data recorded using an 

accelerometer and those recorded using a seismometer (as in the research outlined in Section 5.1). 

Firstly, previous research conducted using accelerometers to monitor ground motions at Mesnil-

Val, France, has noted that microseismic events recorded during high tides are directly related to 

the action of waves on the cliff face and are often subject to high levels of signal attenuation 

(Senfaute et al., 2009). The accelerometers used here measure ground accelerations that are driven 

purely by local (direct) wave impacting, which broadly equates to the high frequency shaking 

band (> 0.3 Hz), and removes the need to process the data in multiple frequency bands, as is the 

case with seismometer data. Secondly, in many seismic records observed at coastal cliffs, ground 

tilt maps part of the vertical gravitational acceleration onto the observed horizontal component 

of ground motions (Rodgers, 1968; Crawford and Webb, 2000), particularly at swell (0.04 – 

0.10 Hz) and infragravity (0.01 – 0.04 Hz) frequencies (Young et al., 2012), and therefore must be 

corrected. However, at high frequencies there is little contamination of cross-shore accelerations 

by ground tilt (Young et al., 2012). This contribution is therefore ignored on the grounds that 

high frequency shaking, caused by waves directly impacting on the cliff, is the focus of this chapter. 

The workflow for processing the ground motion data collected in this chapter is detailed in Figure 

5.04, which illustrates the main stages of data acquisition and processing. 

Figure 5.03 Continued from overleaf. Vertical panels show photos of each installation site, as well as a 

location map and a cliff profile. Red arrows denote profile direction, while blue arrows denote the point of 

view from which each photograph was taken. Accelerometers 1 – 8 are shown in horizontal panels (a – h), 

respectively.  
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Figure 5.04 Schematic diagram illustrating the main stages of data acquisition and processing detailed in 

this chapter. Rockfall data were acquired and processed for the coastline in Chapter 3, and a subset of the 

inventory from Staithes was used here.  
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The raw data recorded at each site were processed to derive acceleration, velocity, 

displacement, and energy. Time series captured in the x (cliff-parallel), y (cliff-normal), and z 

(vertical) axes, which approximate the local shoreline orientation, were also rotated into compass 

coordinates (N-S and E-W) for all processing. The data were first synchronised using the system 

clock of the setup computer and, where appropriate, were adjusted for British Summer Time 

(BST). Hours containing significant ground motion from post-installation settlement were 

removed. The data were divided into 14 h epochs, each with ca. 1 × 107 observations, and were 

detrended and converted from g to m s-2. The acceleration time series for each axis was high-pass 

filtered using a Butterworth filter with a cut-off frequency of 0.05 Hz, in order to ensure that 

signals with a longer period than the roll-off frequency of the instrument were not analysed. This 

prevents bias and drift in the signal upon integration, both of which are caused when the lower 

range of the instrument bandwidth is larger than 0 Hz. This is known as DC response, and the 

effects of integration on a signal with this bias are shown in Figure 5.05. A high-pass filter was 

Figure 5.05 Diagram illustrating the effect of DC bias on integration, using synthetic data, where (a) shows 

two identical acceleration waveforms, the latter of which is offset by -0.01 m s-2, (b) shows trapezoidally 

integrated velocities of the acceleration signals shown in (a). The baselines v1 and v2 illustrate the influence 

of this offset, with baseline v2 representing a linear drift, and (c) shows trapezoidally integrated displacements, 

which become unbounded over time. After each integration, the high frequency content of the original 

waveforms is increasingly diminished. 
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therefore used following integration to remove the DC component of the resulting velocity and 

displacement signals (Figure 5.06).  

The ground motion data were synchronised with linearly interpolated observations of tide 

elevations before being divided into individual high tide records. This gave a total of 541 high 

tides monitored at each accelerometer with the exception of S5, which recorded ground motions 

for a total of 183 high tides. The data were divided in this way on the basis that cliff shaking 

signals were only above noise levels during periods of wave-cliff interaction. Individual impact 

events were then extracted using a moving short-term average/long-term average (STA/LTA) 

ratio, with an STA of 1 s and an LTA of 60 s, in order to prevent false triggering by noise. Event 

start and end times were then used to generate an inventory of impact events at each site, using 

the N-S velocity time series. The compass direction (azimuth) and the vector magnitude 

(displacement) were then calculated for each impact event using its particle motion ellipsoid. 

5.3 Results 

5.3.1 Cliff toe ground motions 

A representative series of contemporaneous acceleration records of microseismic response 

to variations in tide and nearshore wave height for one of the accelerometers (S4) is presented in 

Figure 5.07. Horizontal accelerations (N-S and E-W) are much greater than vertical accelerations, 

Figure 5.06 Diagram of the double integration process. Each signal is filtered, both before and after 

integration, using a high-pass Butterworth filter in order to remove bias and drift in the signal. 

Figure 5.07 Ground motions observed at S4, where (a) is vertical ground motion, (b) is north-south ground 

motion, and (c) is east-west ground motion. Note the influence of the tide in the acceleration record.  
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and the semidiurnal tidal influence is apparent in all three directions of ground motion. The 

greatest variations in microseismic accelerations occurred during periods of high tide for north-

south ground motions, while the least variation in accelerations occurred at low tide, where 

instrument noise (ca. ± 0.05 m s-2) dominates the recorded signal.  

When high tides and large swells coincide (Hs = 4.12 m, Hmax = 7.69 m), a 12 – 15 s 

periodicity is clearly visible in the ground motion data (Figure 5.08), particularly in the horizontal 

components of motion where accelerations are greatest (> 4 m s-2). Ground motion at high tide 

during smaller or more moderate swells (Hs = 0.23 m, Hmax = 0.51 m) is diminished. Particle 

motion plots of the ground motions captured in these conditions are presented in Figure 5.09. The 

particle motion observed by the sensor is plotted during a single 15 s interval, which is marked in 

Figure 5.08. As observed by Adams et al. (2005), the cliff sways simultaneously downwards and 

towards the incoming wave field, which maps out an ellipsoid approximately parallel to the 

nearshore wave direction. The particle motion pattern observed when the cliff is impacted by 

small waves (Figure 5.09a) is consistent in shape with that during impacting by large waves 

(Figure 5.09b), although the length of the longest axis of the particle motion ellipsoid is ca. 1/5 of 

the length.  

 

Figure 5.08 Samples of ground motions captured at S4 over a 6 hour and an 8 minute window, at (a) high 

tide, with small waves, and (b) high tide, with large waves. When waves are large, note the strong 9 – 12 s 

periodicity (Tpeak) and higher frequency crashers (Tz) that ride along on the longer period sway. 



 

Chapter 5. Coastal cliff ground motions and response to wave loading 

98 

 

Figure 5.09 Simultaneous particle motion plots of ground motions captured at S4, at (a) high tide, with 

small waves, and (b) high tide, with large waves. The plots correspond to the acceleration plots shown in 

Figure 5.08 and are of individual wave events captured over a 15 s interval. Note that the cliff sways 

simultaneously downwards and towards the wave field (approximated from the offshore wave buoy), which 

maps out an ellipsoid approximately parallel to the nearshore wave direction. This effect can be seen for both 

small and large waves.  
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5.3.2 Spatial variations in ground motions 

Although cross-shore decay of cliff top ground motions is well understood (Adams et al., 

2005; Young et al., 2011, 2012; Dickson and Pentney, 2012; Norman, 2012), previous studies lack 

quantitative analysis of alongshore variations in cliff base waves and shaking, which require 

detailed observations of cliff impacts in both space and time. Figure 5.10 illustrates a yearlong 

time series of the cliff toe ground motions observed at eight sites along ca. 900 m of coastline 

between Staithes and Cowbar. Assuming an average wave period of 8.25 s over the monitoring 

period, as recorded at the nearest offshore wave buoy, these cliffs undergo > 3.8 × 106 nearshore 

wave-induced flexing cycles per year (Adams et al., 2005). However, the observed ground motions 

vary considerably alongshore, with sheltered sites, such as S1 and S7, undergoing fewer impacting 

events and at lower amplitudes than exposed sites, such as S2 – S4. The number of impacts 

observed over the monitoring period, excluding those recorded at S5, ranges between ca. 1.00 × 106 

at S8 to ca. 4.16 × 106 at S3, which corresponds to an average rate of between 10.9 and 20.6 

impacts min-1 when waves are directly in contact with the cliff toe (Table 5.02). Sites undergoing 

consistently high rates and amplitudes of impacting generally exhibit greater average horizontal 

than vertical displacements on impact (for example, S2 – S5), a finding that is at odds with 

microseismic measurements of cliff toe ground motion undertaken at a separate site by Dickson 

and Pentney (2012).  

Figure 5.10 Simultaneous plots of the ground motions captured at each site throughout the monitoring 

period (06 September 2016 – 06 September 2017). The ground motions plotted are those observed in the N-

S axis. Monitoring at S5 was interrupted on 12 January 2017 by a rockfall. Red bands denote the passing of 

named storms and white bands denote missing data. 
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Simultaneous particle motion plots of the ground motions and wave conditions captured 

at six of the eight sites show considerable variability in ground motion patterns, and hence energy 

delivery, alongshore (Figure 5.11). The acceleration time series, particle motion plots, and aerial 

photographs shown in Figures 5.11a and 5.11b were captured concurrently and are shown here as 

representative results that demonstrate the differences in ground motions captured across the 

sites, and at different times after high tide. As shown on a site-specific basis in Figures 5.07b and 

5.08b, large swells (Hs = 4.49 m, Hmax = 7.26 m) drive a ca. 12 – 15 s periodicity (Tpeak, also 

observed at an offshore wave buoy) in ground motions approximately an hour after high tide 

(1.56 m OD), with the impact of higher frequency ‘crashers’ (Tz) that ride along on the longer 

period sway also evident at some sites (Figure 5.11a). The particle motion ellipsoids observed at 

the sites where strong impacting occurred, S2 – S6, are oriented approximately parallel to the 

nearshore wave direction, as is also shown in Figure 5.09. However, these patterns are only evident 

where instruments are not sheltered and where the instrument, and hence cliff toe, elevation is 

well within the range of modelled tide, wave, and set-up elevations (referred to from herein as the 

total water level). This is indicative of a strong relationship between impact ground motions 

observed at the cliff toe and the total water level, which is consistent with previous research 

undertaken using cliff top seismometers (Young et al., 2016) and is investigated further in Section 

5.3.3. The ground motions and wave conditions captured approximately two and a half hours 

after high tide (0.66 m OD) are further illustrative of this relationship: the long axes of the particle 

motion ellipsoids at each site are at least 1/2 of the length of those captured an hour and a half 

previously (Figure 5.11b). Very sheltered sites (S1, S6, and S7), as well as sites that lie consistently 

on or above the total water level (S7 and S8), therefore receive very little impacting.  

Table 5.02 Impact events observed at each site over the monitoring period.   

Site 
Impacts Rate of impacts 

Average displacement on impact 

Horizontal Vertical 

- min-1 µm µm 

1 2,677,956 14.1 75.9 97.3 

2 3,213,238 17.0 118.9 106.1 

3 4,160,598 20.6 127.2 97.8 

4 3,120,380 15.6 106.4 89.1 

5* 441,860 19.2 111.8 110.1 

6 2,825,580 14.2 89.9 97.6 

7 1,310,992 10.9 73.7 101.8 

8 1,000,892 16.4 113.0 98.4 

* Observations at this site were recorded over 102 days (as opposed to 306) due to a rockfall that occurred 

on 12/01/2017. 
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Over the 541 high tides recorded, the ground motions captured at each site are highly 

directional, with strong peaks at azimuths ranging between ca. 25° and 65° (Figure 5.12). The rose 

plots shown in Figure 5.12 illustrate the characteristic impact ground motions observed at each 

site over the monitoring period, where the directional data are derived using the azimuth of the 

particle motion ellipsoid for each impact and plots are coloured by vector magnitude. Variations 

in the direction and strength of the concentration peaks are likely caused by the combined effects 

of variations in the incoming wave height (mean Hs over the monitoring period = 0.95 m) and 

direction (mean = 30.9°) relative to the cliff strike.  

The lowest average displacements are observed at sites S1, S6, and S7 (ranging from 

73.7 µm to 89.9 µm), which are relatively sheltered. The sites are similar in aspect, which ranges 

from 318° to 335°, and are characterised by strong directionality under weak impacting 

(displacements < 50 µm). For these displacements, ground motions are preferentially oriented at 

angles ca. 45° to the main concentration peak. The directionality of ground motion recordings 

obtained along exposed coastal sections, such as sites S2 – S5 and S8, does not show a preferential 

orientation at these displacement magnitudes. Ground motions at sites S2 – S5, located around 

the headland at Cowbar, show strong directionality at azimuths of between ca. 40° and 60°. This 

stretch of coastline is characterised by varying wave exposure and, with the exception of S5, a 

short foreshore platform and low cliff toe/instrument elevation. These sites, where impacting at 

high magnitudes and frequencies occurred throughout the monitoring period, show little 

directionality for relatively small impacts (displacements < 50 µm), but highly directional ground 

motion for the largest impacts (displacements > 1000 µm). During these events, ground motions 

predominantly occur in a direction that is approximately perpendicular to the main concentration 

peak, a behaviour unique to these four sites.  

Given that the sensors were installed at an approximately uniform height relative to the 

cliff toe, and across sites of uniform geologic composition, variations in the magnitude, frequency, 

and azimuth of impacting recorded at each sensor are highly likely to be driven by variations in 

cliff aspect and platform geometry, as well as variations in total water level and incoming wave 

direction. Although the influence of total water level on cliff motion is well known (Lim et al., 

2011; Norman et al., 2013; Vann Jones et al., 2015; Adams et al., 2016), previous studies lack 

concurrent observations of cliff shaking alongshore, such that the effects of variations in wave 

direction relative to cliff strike have remained difficult to isolate. 

Figure 5.11 Overleaf. Simultaneous particle motion plots of ground motions captured at six accelerometers, 

(a) an hour after high tide, and (b) two and a half hours after high tide. The plots correspond to the 

accelerations shown in the top panel and are of individual wave events captured over a 10 s interval, shown 

in red. This interval is captured in the aerial photograph (AP) in the middle panel. Inset: instrument 

elevations plotted against the observed tide, O, average modelled tide, wave, and set-up elevations, M, and 

the range in these elevations, R. Sites S4 and S5 were unable to be included in this analysis due to rockfall. 
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5.3.3 Energy transfer and environmental conditions 

Temporal patterns of energy transfer to the cliffs between Staithes and Cowbar 

correspond, in part, to changing environmental conditions (Figure 5.13a). The tidal range along 

the North Yorkshire coast is largely macro-tidal, experiencing two daily tides that cycle between 

spring and neap highs over a range of ca. 6 m (Figure 5.13b). The bases of the cliffs are often 

submerged during high spring tides, in places up to a depth of at least 3 m. The coincidence of 

mean high water springs (ca. 2.59 m OD) with storm events, which drive high swells (maximum 

Hs = 10.82 m, Tpeak = 28 s; Figures 5.13c and 5.13d) and peaks in precipitation and wind speeds 

(maximum rainfall accumulation = 27.40 mm, wind speed = 33 km h-1; Figures 5.13e and 5.13f), 

appears to accentuate ground motions at the cliff toe at all sites, but to varying degrees, and with 

the exception of S7.  

Figure 5.12 Rose plots of the characteristic impact ground motions observed at each site over the 

monitoring period, ca. 306 days (with the exception of S5, where recordings were undertaken for a total of 

102 days). Directional data are derived using the azimuth of the particle motion ellipsoid for each impact, 

and plots are coloured by vector magnitude (in µm, log scale). The direction of the cliff strike at each site 

is marked by a red dashed line. 



 

Chapter 5. Coastal cliff ground motions and response to wave loading 

104 

 

Figure 5.13 (a) Ground motions captured at each site, plotted alongside observations of (b) tide elevations, 

(c) significant wave height, (d) peak wave period, (e) precipitation accumulation, and (f) mean wind speed. 

In subplots (b – f), data presented are raw (grey) and smoothed using a 30-day moving average (black). 
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The total water level exceeded the elevation of the cliff toe at each of the sites for between 

ca. 41.83 and 148.08 days, excluding at S5 (Table 5.03). Continuous wave-cliff interaction 

therefore occurred for between 13.68% and 48.40% of the monitoring period across the sites, as 

waves did not reach any of the sites at low tide. Continuous wave-cliff interaction at the elevations 

of each of the sensors, which were installed at an approximately uniform height relative to the 

cliff toe, occurred for between 0.03% and 12.85% of the monitoring period (Table 5.03). As the 

spatial range of detectable wave-cliff impacts is highly limited, bursts of elevated ground motion 

are almost always coincident with an increase in cliff base water levels. Similarly, wave breaking 

at the fronting foreshore platform does not excite ground motion at any of the sensors, as observed 

by Young et al. (2013, 2016).  

To examine any potential relationships between tidal forcing and the recorded impacting 

at each site, the timing of impact events was compared to periodic components of the observed 

tidal cycle (Figures 5.14 and 5.15). Classical tidal harmonic analysis was performed on the half-

hourly tidal elevations and residual series shown in Figures 5.14a and 5.14b, which show a tidal 

variation superimposed on subtidal variability. The analysis tested the significance of 35 tidal 

constituents, where significant constituents were identified if the signal-to-noise ratio exceeded 1. 

Of the 35 tidal constituents tested, 18 were judged to be significant (Figure 5.14c). The majority 

of the significant constituents are in the diurnal (0.04 cycles hour-1) and semidiurnal (0.08 cycles 

hour-1) frequency bands, although a number of higher frequency constituents are also significant, 

including those in the terdiurnal (0.13 cycles hour-1), quarter-diurnal (0.17 cycles hour-1), and 

sixth-diurnal (0.25 cycles hour-1) bands. Despite the large amount of energy in the fortnightly 

band (0.002 cycles hour-1), which approximates the spring-neap tidal cycle, the fitted constituents 

are not significant.  

 

Table 5.03 Time elapsed where the total water level exceeded the cliff toe and instrument elevations. 

Site 
Cliff toe Instrument Water on/above cliff toe Water on/above instrument 

m OD m OD dd:hh:mm % dd:hh:mm % 

1 0.66 2.26 132:21:10 43.43 16:11:47 5.39 

2 0.68 2.08 131:21:40 43.11 27:02:22 8.86 

3 0.54 2.22 140:13:45 45.94 18:18:31 6.13 

4 0.42 1.90 148:02:14 48.40 39:08:00 12.85 

5* 1.81 2.87 16:14:52 16.29 00:08:31 0.35 

6 0.55 2.13 140:01:48 45.78 23:21:07 7.80 

7 1.35 2.63 83:22:44 27.43 03:14:11 1.17 

8 1.86 3.19 41:20:27 13.68 00:01:50 0.03 

* Observations at this site were recorded over 102 days (as opposed to 306) due to a rockfall that occurred 

on 12/01/2017. 
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The power spectral density of the ground motion time series recorded at each sensor is 

shown in the periodograms in Figure 5.15. Coloured lines correspond to different false-alarm 

probabilities (Pfa), each of which indicate the probability that a peak with power exceeding this 

threshold is the result of random statistical fluctuations. With the exception of the ground motions 

recorded at S8, all of the time series exhibit significant (Pfa < 1%) semidiurnal periodicity, which 

reflects the twice-daily tidal cycle. This semidiurnal component is superimposed on subtidal 

variability of differing frequencies, including the terdiurnal component at S6 and S7; the quarter-

diurnal component at S3, S4, and S7; the fifth-diurnal component at S3; and the sixth-diurnal 

component at S1, S2, and S5 (Figure 5.15). The presence of statistically significant peaks at 

frequencies that correspond to those of significant tidal constituents (Figure 5.15) indicates that 

the frequency of cliff impacting is tidally modulated at these sensors. The elevated foreshore 

platform and cliff toe at S8 (1.861 m OD) means that wave-cliff interaction only occurred for 

13.68% of the monitoring period, with total water levels only reaching the instrument for less than 

two hours (Table 5.03), and therefore precludes any significant periodicity in the ground motion 

time series.  

Figure 5.14 Tidal harmonic analysis for Whitby, showing (a) tidal elevations, (b) tidal residuals, and (c) 

amplitude of all the analysed components with the 95% significance level. Significant constituents are marked 

with a solid circle. Full details of the analysis are given in Appendix I (p. 201). Analysis undertaken using 

the T_TIDE toolbox developed by Pawlowicz et al. (2002). 
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Although the magnitude of displacements observed at each instrument trend consistently 

during hours of wave-cliff interaction, there is considerable scatter around displacement 

magnitudes independent of the total water depth (Figure 5.16a, p. 108). Cliff toe impacting at all 

sites is most elevated at high tide, but the amount of spread around this time differs by as much 

as two hours either side of high tide. Similarly, the largest displacements observed at each site are 

driven by total water levels of varying depths, sometimes by as much as 2 m; both of these 

observations are most likely due to differences in site morphological controls such as foreshore 

elevation, which are considered in Section 5.3.4. To further illustrate this, the proportion of events 

of different displacement magnitudes occurring at specified total water levels is plotted for each 

site as a stacked bar graph in Figure 5.16b (p. 108). Up to a particular threshold, the displacements 

recorded at sites that are elevated, such as S5, S7, and S8 (Table 5.03), are driven by total water 

levels that vary in approximately equal proportions. Given that this occurs at all sites, although 

it is sharper at some more than others, it most likely represents the impact events that occur 

under subdued wave conditions (Figure 5.09a), which result in relatively small event magnitudes 

(displacements < 100 µm). Above this threshold, the largest displacements occurring at S5, S7, 

and S8 are almost entirely driven by the deepest waters (> 3.0 m OD), which only reach the 

sensors for < 1.17% of monitoring period (Table 5.03). The other sensors, which are characterised 

by approximately equal inundation durations (Table 5.03), instead show gradual trends whereby 

an increasing proportion of high magnitude events are associated with deeper total water levels 

(Figure 5.16b, p. 108).  

Figure 5.15 Lomb-Scargle periodograms illustrating the power spectral density of the ground motion time 

series shown in Figure 5.10. Levels corresponding to false-alarm probabilities of 50%, 10%, 1%, and 0.01% 

are annotated. The false-alarm probability denotes the probability that at least one out of M independent 

power values in a prescribed frequency band of a power spectrum computed from a white-noise time series 

is as large as or larger than the threshold, Pfa. 
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The spatial differences in energy transferred to the cliffs can therefore be partly explained 

by differences between total water level and foreshore elevation. The observations of locally wave-

generated ground motions shown in Figure 5.13a, which are tidally modulated at most sites, are 

consistent with previous research (Adams et al., 2002, 2005; Young et al., 2011, 2012, 2016). 

However, beyond foreshore elevation, spatial variations in tidal influence point towards important 

differences in local processes and morphological controls between sites, which could also explain 

differences in the directionality of the ground motions observed at each site (Figure 5.12).  

Figure 5.16 (a) Time from high tide versus displacement magnitude for each impact, as recorded at each 

instrument, and (b) displacement magnitudes plotted as a stacked bar graph. Note that the axes are scaled 

differently for each site. The maximum displacement used corresponds to the upper quartile (0.75) of the 

distribution for each site in order to maintain a representative number of samples in each bar. Both plots are 

coloured by total water level (modelled).  
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5.3.4 Energy transfer and local characteristics 

Observations at S2 and S6 offer a comparison between instruments with the same 

elevation (± 0.048 m OD; Table 5.03), and aspect (346° and 335°; Table 5.01), but with different 

platform morphologies. Shaking at S2 is elevated on the shoulders of the tide (± 4 hours) while 

shaking at S6 is less frequent, lower in magnitude but concentrated around high tide (± 2 hours; 

Figure 5.17a). At S2, as well as S3 and S4, the short platform (< 100 m; Figure 5.02 and Figure 

5.03b) and deeper water allows waves to approach the cliffs without much tidal change in 

dissipation. Conversely, due to the long (> 150 m), gently sloping foreshore platform at S6 (Figure 

5.03f), shallower water depths on the shoulders of the tide cause wave shoaling and breaking prior 

to wave-cliff interaction. The gentle slope therefore drives tidal modulation of wave dissipation 

and brings energy closer to the cliff at high tide, an effect that can be seen in the aerial photos 

shown in Figure 5.11. Similarly, although S5 is elevated in comparison to S2 and S6 (+ 0.736 m), 

the platform fronting the cliffs drops off abruptly over a short distance (Figure 5.03e; Appendix 

G, p. 195). Deeper water, as at S2 – S4, and the aspect of the sensor (16°) exposes S5 to the mean 

wave direction (30.9°). These findings are consistent with previous research undertaken in a variety 

of settings (for example, Lim et al., 2011; Dickson and Pentney, 2012), which has demonstrated 

that platform morphology influences wave energy delivery to cliffs.  

Morphological control of the ground motions recorded between Staithes and Cowbar is 

further demonstrated by the signal directionality shown in Figure 5.12. At each site, the azimuth 

of the recorded impacts deviates from the local cliff strike in a systematic manner that varies 

along the coast (Figure 5.17). At sites facing north-west, such as S1 – S3 and S7, the majority of 

Figure 5.17 Distribution of the differences between impact azimuth and the local cliff strike, as observed at 

each site. Low-level impacting that occurs under subdued wave conditions is not shown (displacements 

< 100 µm). At sensors that experienced frequent, high magnitude impacting (displacements > 500 µm) this 

distribution is also shown in red. 
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impacts are oriented between ca. 20°/160° and 30°/150° to the local cliff strike, although the peaks 

in the distributions are not uniform across these sites. For example, ground motions display strong 

preferential directivity at S1 and S7, which are more sheltered from the predominant wave 

direction than S2 and S3 and therefore have limited exposure to any incoming waves. At S4 and 

S5, which face northeast, the majority of impacts are oriented ca. 80° – 100° to the local cliff 

strike. However, this distribution inverts at those sites where high magnitude displacements were 

recorded (displacements > 500 µm), implying that, during abnormal loading conditions, a 

preferential loading direction is sustained that is approximately perpendicular to that of those 

most frequently experienced (displacements < 100 µm). This effect is also demonstrated in the 

rose plots shown in Figure 5.12, where the orientation of the inner ellipsoid is consistently oriented 

ca. 75° – 90° to the main concentration peak. 

5.3.5 Establishing the controls on energy transfer 

The spatial differences in energy transferred to the cliffs between Staithes and Cowbar 

appear to correspond with differences in local processes and morphological controls between sites 

(Sections 5.3.3 and 5.3.4). A number of variables discussed above, including the instrument aspect 

(which acts as a proxy for cliff aspect), foreshore platform morphology/geometry (both length and 

slope), and inundation duration at the cliff toe are therefore compared to measures of impact 

magnitude and frequency in Figure 5.18. The impact magnitude was derived using the overall 

vector magnitude of the particle motion ellipsoid for each impact, and the mean, median, and 

maximum values recorded at each site are presented in Figure 5.18.  

The magnitude and frequency of impacting are both conditioned by the instrument (or 

cliff) aspect (Figures 5.18a and 5.18e). Peaks in both impact magnitude and frequency are observed 

at ca. 357° – 13°, which approximately corresponds with peaks in the distribution of wave 

directions observed at both the Whitby (ca. 25 km south) and Tees (ca. 40 km north) offshore 

wave buoys. A correlation or relationship between the magnitude and frequency of impacting with 

aspect is also apparent in Figure 5.13a. Given that the accelerometers used here measure ground 

accelerations driven purely by local (direct) wave impacting, if a cliff face is fully exposed to the 

predominant wave direction then a correlation between the magnitude and frequency of impacting 

and aspect is to be expected, local morphological influences aside. However, given that instruments 

facing the same or similar aspects record different ground motion responses (for example, S5 and 

S8), as observed in Figure 5.13a, the influence of aspect is clearly moderated by other conditions. 

Observations at two sites that offer a comparison between instruments with the same 

elevation and aspect, but with different platform morphologies, indicate that platform length 

and/or morphology at this site influences wave energy delivery to the cliffs (Section 5.3.4). Both 

the magnitude and, to a lesser extent, the frequency of impacting are conditioned by platform 

length (Figures 5.18b and 5.18f), with sites fronted by a short (< 100 m) platform experiencing 
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Figure 5.18 Measures of impact magnitude (mean, median, and maximum) and frequency (number and rate of impacts) plotted against the aspect (a,e), 

platform length (b,f), platform slope (c,g), and inundation duration (d,h) observed at each site. For measures of impact magnitude, the strongest relationship 

is plotted for each variable, with the alternatives plotted as an inset. Both the platform length and slope were measured in the predominant wave direction 

(30.9°). Measurements of both in other probable directions based on cliff aspect and the incoming wave direction are also included using the standard deviation 

of these measurements (± 1σ), which are included as error bars. All values are given in Appendix J (p. 203). 
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higher mean, median, and maximum impact displacements than elsewhere. A similar relationship 

is observed for platform slope (Figures 5.18c and 5.18g), where, on average, high gradients are 

associated with impacts of a greater magnitude, which occur at higher rates. These findings are 

consistent with previous research, which has demonstrated that the presence of foreshore platforms 

can cause wave shoaling and breaking prior to wave-cliff interaction (Trenhaile and Kanyaya, 

2007; Porter et al., 2010), filtering the incoming wave energy to levels as low as 5% as waves 

propagate across the platform (Stephenson and Kirk, 2000). These findings also explain why there 

is no coherent relationship between impact magnitude and inundation duration (Figure 5.18d): 

for example, the instrument at S5 recorded large impacts (> 4.0 × 103 µm) despite being exposed 

more frequently than elsewhere. Although it is one of the most elevated sites, the platform fronting 

the cliffs drops off abruptly over a short distance (Appendix G, p. 195). Deeper water allows waves 

to approach the cliffs at S5 without much tidal change in dissipation, such that the sensor is 

exposed to large waves when spring tides and large swells coincide. 

5.3.6 Rockfall activity and cliff erosion 

Variations in rockfall activity across the sites were monitored between August 2014 and 

March 2017 using the data and methods presented in Chapter 3. These data are used here to 

examine spatial variations in wave-induced ground motions and rockfall activity in order to 

develop a more generalised understanding of how variations in loading magnitude, frequency, and 

direction may correlate with broader scale patterns of cliff erosion and retreat. However, it should 

again be noted that it is not the aim of this chapter to demonstrate a direct physical link between 

wave-induced ground motions and cliff erosion. 

Erosion profiles show the pattern of net cliff change observed over the 50 m of cliffs 

surrounding each instrument between August 2014 and March 2017 (Figure 5.19). Although some 

tendency for notching appears to occur at certain sites (for example, S1 and S5), relatively little 

erosion occurs below the elevation of the highest astronomical tide (HAT), with erosion rates at 

the cliff toe at all sites appearing to lag behind those of the cliff above. This reflects the patterns 

of erosion observed along the entire coastline, which are presented in Section 3.3.4, where 

statistically significant (p < 0.05) correlations between inundation duration and erosion depth are 

only found across an equivalent of ca. 1.50% of the cliff toe between 2014 and 2017. Except for 

the occurrence of a large (15.83 ± 0.47 m3), isolated rockfall at S7, low rates of face-parallel cliff 

retreat occur at S6 – S8, which are either sheltered from the predominant wave direction (30.9°), 

elevated in comparison to the other sites, or both. Conversely, at S1, S2, and S4, isolated zones 

of rockfalls occur at elevations > 15 m. These rockfalls appear to erode to approximately consistent 

depths, and they are largely uncoupled from any erosion that has occurred at the cliff toe. 

Although the cliffs are not necessarily more exposed where this occurs, they often have a shorter 

fronting platform.  
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Figure 5.19 Vertical distribution of erosion depths monitored between Staithes and Cowbar Nab. Profiles show the pattern of net cliff change observed over the 50 m of cliffs 

surrounding each instrument, between August 2014 and March 2017. Erosion depths are shown in coloured shading (0.1 m bins). Note that the aspect ratios of the profiles are 

not exactly equal. See Figure 5.03. 
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Plots of the net cliff change accumulated across all eight of the instrumented sites are 

illustrative of the trends described above: generally low rates of erosion at the cliff toe are outpaced 

at the HAT line, above which the cliffs are eroded to progressively greater depths (Figure 5.20a). 

The vertical distribution of erosion across the sites is also representative of the net cliff change 

observed over the entire 900 m section of cliffs monitored between Staithes and Cowbar Nab 

(Figure 5.20b). This suggests that, over the shorter term, the dominant modes of cliff erosion at 

this site are operating such that the slope profile can reach an equilibrium (near-vertical) state. 

This is also evident when considering the profile form of the cliffs (Figures 5.03 and 5.19), many 

sections of which are steep (S6, S7) and even concave (S5, S8).   

To assess the relationship between wave impact-driven ground motions and rockfall 

activity, the total volume of erosion that occurred at each site between 2014 and 2017 is plotted 

against measures of wave impact magnitude and frequency in Figure 5.21. The eroded volume 

correlates well with the maximum impact displacements, yielding a correlation coefficient of 0.51 

(Figure 5.21a). When S3 is removed, this coefficient increases to 0.90. There is a less coherent 

Figure 5.20 Vertical distribution of erosion depths monitored between Staithes and Cowbar Nab. Profiles 

in (a) show the combined pattern of net cliff change observed over the 50 m of cliffs surrounding each 

instrument, and profiles in (b) show the pattern of net cliff change observed along the entire 900 m section, 

between August 2014 and March 2017. Erosion depths are shown in coloured shading (0.1 m bins). The 

exponent of the magnitude-frequency distribution, β, is plotted alongside (2.0 m bins). 
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relationship between the total volume eroded and measures of impact frequency (Figures 5.21b 

and 5.21c), with two sites that typically undergo high rates of impacting (S3 and S8) experiencing 

little erosion (21.05 ± 5.17 m3 and 17.57 ± 3.71 m3). This may be explained by site-specific factors, 

including those discussed in Section 5.3.5, or it may simply imply that monitoring was not 

undertaken over a long enough period to capture fully the conditions occurring at these sites. 

Relationships between the erosion flux and the local processes and morphological controls 

discussed in Section 5.3.5 attest to the former (Figure 5.22). There is some correlation between 

the total eroded volume and aspect (Figure 5.22a), although S5 and S8, which are of similar aspect 

(16° and 13°), recorded different ground motion responses (Figure 5.13a) and volume fluxes (58.67 

± 12.39 m3 and 17.57 ± 3.71 m3). The influence of aspect is clearly moderated by other conditions: 

these include platform length, inundation duration, and, to a lesser extent, platform slope (Figure 

5.22). By inference, these findings confirm observations from both modelling and site-specific field 

studies, which indicate the importance of bed or platform morphology on wave transformation in 

the surf zone (Nakamura et al., 1966; Svendsen et al., 1978). The observations presented here 

therefore confirm the importance of the amount of wave energy available for erosional work, and 

the way in which this energy is distributed alongshore.   

5.4 Summary 

Using concurrent observations of wave impact-driven ground motions, this chapter has 

explored how the cliff response to wave impacting varies alongshore, how these variations are 

related to morphological controls and coastal processes, and whether differences in the ground 

motion response between sites drives spatial variations in cliff erosion. The resulting inventory of 

> 18 × 106 impacts, measured along a ca. 900 m stretch of cliffs, has been used in conjunction  

Figure 5.21 Total rockfall volume plotted against (a) the magnitude (mean, median and maximum), (b) the 

rate, and (c) the number of impacts observed at each site. Volume was calculated as the total volume of the 

rockfalls that occurred over the 50 m of cliffs (± 25 m) surrounding each instrument, between August 2014 

and March 2017. Error bars are included and reflect the minimum and maximum possible meshing volumes 

derived in Section 3.2.5 (p. 36). All values given in Appendix J (p. 203). 
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Figure 5.22 Total rockfall volume plotted against (a) aspect, (b) platform length, (c) platform slope, and (d) inundation duration observed at each site. Volume was 

calculated as the total volume of the rockfalls that occurred over the 50 m of cliffs (± 25 m) surrounding each instrument, between August 2014 and March 2017. Error 

bars are included and reflect the minimum and maximum possible meshing volumes derived in Section 3.2.5 (p. 36). All values given in Appendix J (p. 203). 
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with observed variations in rockfall activity to show that: 

1) The cliff response to wave impacting varies considerably alongshore. 

2) Observations of locally wave-generated ground motions at all sites are tidally modulated, 

consistent with previous research. However, spatial variations in the form and strength of 

this influence are conditioned by differences in local processes and morphological controls 

between sites.  

3) Specifically, both the magnitude and frequency of wave impacting are strongly conditioned 

by cliff aspect, as well as foreshore platform morphology and geometry. 

4) Longer-term variations in rockfall activity and the resulting cliff retreat between the sites 

are broadly correlated with wave impact-driven ground motions, and variations in the 

morphological conditions that drive them.  

This chapter has presented the first concurrent observations of alongshore variations in wave 

impact-driven ground motions on coastal cliffs. The findings of this chapter will be synthesised 

with those of Chapter 3 and Chapter 4, which together examined the patterns of rockfall activity 

and distribution of erosion with respect to structural controls, in order to gain new insights into 

the drivers of regional scale rockfall activity in Chapter 6.  
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Chapter 6 

Discussion 

In this thesis, high-resolution field monitoring techniques were deployed in order to investigate 

how regional-scale variations in cliff structure and wave loading conditions relate to variations in 

rockfall activity (Chapters 3, 4, and 5). This was undertaken as one of the first attempts to 

consider the relative importance of intrinsic versus extrinsic controls on rockfalls, and therefore 

erosion, at spatial scales where these controls vary. To constrain variations in rockfall frequency, 

magnitude, and the resulting rockwall retreat over regional scales (> 104 m), the work presented 

in Chapter 3 developed an approach for using high-resolution, multi-temporal airborne LiDAR 

data for detecting and characterising changes in the morphology of near-vertical rock slopes in 

3D. In Chapter 4, these data were drawn upon to derive a quantitative appraisal of regional scale 

variations in the geometric properties of exposed discontinuity surfaces, and the extent to which 

these geometries drive patterns in the occurrence, size, and shape of observed rockfalls. A 

representative subsection of the coastline (102 m), where cliff lithology and structure are 

approximately uniform, was selected for higher-resolution field monitoring in Chapter 5 to quantify 

spatial variations in loading characteristics, here via wave action, and to relate these to 

morphological and prevailing environmental conditions. 

In this chapter, these findings are synthesised in Section 6.1, which evaluates the 

relationships between key metrics of erosion (Chapter 3), structural controls (Chapter 4), and 

morphological controls (as a proxy for wave loading; Chapter 5). Spatial variations in these 

relationships are then examined along the North Yorkshire coastline, and are used to identify 

whether erosion in this setting can be quantitatively shown to be dominated by either structural 

(intrinsic) or morphological (as a proxy for extrinsic) controls, a mixture of both, or simply random 

(no correlation). Patterns in erosion rates and their dominant controls are then explored, and 

examples of ‘type sites’ for the conditions and controls are presented. Notably, this analysis allows 

the 20.5 km of coastal cliffs to be classified based on the dominant controls on change, thereby 
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enabling a first order identification of sections of the coast that may be either more or less 

susceptible to changes in the rates of driving processes, such as those induced by future sea level 

rise. The aim of this chapter is then to set the findings of the work presented in Chapters 3, 4, 

and 5, and synthesised in Section 6.1, within the wider context of (1) the implications for 

monitoring and modelling rockfall activity over wide extents (Section 6.2), (2) understanding 

patterns of rockfall occurrence, the resulting cliff erosion, and their drivers (Section 6.3), and (3) 

the associated implications for cliff evolution (Section 6.4). Section 6.5 concludes the chapter by 

presenting a summary of these findings. Based on the understanding gained from the research 

undertaken in this thesis, this highlights the conditions that promote or inhibit rockfalls, and 

therefore cliff erosion, along hard rock coastlines. 

6.1 Synthesis: intrinsic or extrinsic controls on rockfalls? 

In order to understand how regional-scale variations in cliff structure and wave loading 

drive variations in rockfall activity, this section aims to derive relationships between metrics of 

erosion (rockfall frequency, total volume eroded, and erosion rate; derived in Chapter 3), structural 

controls (mean facet density, facet dip, and the difference between facet and cliff aspects; derived 

in Chapter 4), and morphological controls as a proxy for wave loading (cliff toe elevation, platform 

length, slope, and wave approach angle; derived in Chapter 5). For each 100 m bin along the 

North Yorkshire coast, shown in Figure 3.12 (p. 43), the total number of rockfalls (frequency), the 

total volume eroded, and the mean erosion rate over the whole monitoring period (August 2014 – 

March 2017) were calculated. The data were then aggregated by the mean of each control, in each 

bin, in order to consider correlations with the observed rockfalls and resulting erosion. For 

structural controls, the mean values of all of the facets within each bin were assessed, while for 

morphological controls, the mean value of estimates taken for every 10 m of cliff length along the 

coastline were assessed. This reduces the effect of noise inherent in estimating values of the controls 

at shorter length scales (< 100 m), while avoiding the effect of smoothing at longer length scales 

(> 102 m; Matsumoto et al., 2017). The full results of this analysis are presented in Appendix K 

(p. 204), and only statistically significant controls are considered in Figures 6.01 and 6.02. 

There are a several statistically significant structural (mean facet density, dip, and the 

difference between facet and cliff aspects) and morphological (cliff toe elevation, platform slope, 

and wave approach angle) controls on both the total volume eroded and the erosion rate (Appendix 

K, p. 204). These are summarised in Figures 6.01 and 6.02, and spatial variations in these controls 

are shown in Figure 6.03 (p. 124). Figures 6.01 and 6.02 illustrate several important observations, 

including (1) that the relationships between erosion and both structural and morphological 

controls are not random, (2) that substantial erosion is more likely with an increase in facet 

density, dip, and, to an extent, cliff toe elevation and platform slope, and also with a decrease in 

wave approach angle and the difference between facet and cliff aspects, and (3) that, while a broad 
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range of outcomes is possible at any given value of any of these controls, this range in outcomes 

varies significantly as a function of the controlling variable in question. Where the frequency 

distributions converge, this most likely represents a small number of samples observed for certain 

conditions (for example, Figures 6.01c and 6.02c). 

The highest mean erosion rate observed over the monitoring period (at a distance of ca. 

0.67 × 104 m along the coastline; VRmax = 1,633.58 ± 767.04 m3, ERmax = 0.54 m yr-1) coincided 

with a high facet density (15.7 facets m-2), dip (65°), and platform slope (6.7%), and a moderate 

difference between facet and cliff aspects (58°), cliff toe elevation (1.19 m OD), and wave approach 

angle (47°). Conversely, the lowest mean erosion rate observed (at a distance of ca. 1.42 × 104 m; 

VRmin = 0.04 ± 0.01 m3, ERmin = 1.90 × 10-6 m yr-1) coincided with a lower facet density 

(12.7 facets m-2), dip (58°), platform slope (0%, no platform), and wave approach angle (24°), and 

a similar difference between facet and cliff aspects (69°) and cliff toe elevation (1.41 m OD). The 

existence of these patterns on a regional scale, and the implications of having identified these 

patterns, are outlined below for both structural and morphological controls.  

Figure 6.01 Percentile plot of a bin-by-bin comparison of the total volume eroded against a selection of 

structural (a – c) and morphological (d – f) controls, including (a) mean facet density, (b) mean facet dip, 

(c) the mean difference between facet and cliff aspects, (d) cliff toe elevation, (e) platform slope, and (f) 

wave approach angle. Ensemble of percentile lines illustrates frequency distribution of the total volume eroded 

for any given control. Symbols represent the properties of key sites selected from Figure 6.03. 
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 Previous observations of individual rockfalls, and rockfall sequences, have demonstrated 

that the structural setting and spatial distribution of joint sets control rock mass fragmentation 

and eventual modes of failure, both in terms of block geometry and in terms of detachment size 

(Section 4.1, p. 54). Here, both facet density and facet dip appear to control rockfall activity when 

observed at the regional scale (Figures 6.01a,b and 6.02a,b), reflecting local observations made 

elsewhere. These include alpine environments, where high rates of rockwall retreat 

(> 1 × 10-3 m yr-1) are typically associated with the weakening of bedrock due to a combination 

of high joint densities and steep rockwalls, as well as post-glacial stress relaxation (André, 1997; 

Arsenault et al., 2005). The rate of cliff erosion is shown here to be inversely related to the relative 

orientations of the cliff face and their constituent facets beyond a mean angle of ca. 45° (Figures 

6.01c and 6.02c), although there is considerable scatter for angles below ca. 30°. Along the North 

Yorkshire coast, these patterns are likely to reflect discontinuity-defined structural controls on 

block size and shape (Section 4.3.3, p. 73). For example, very platy, elongate, and bladed rockfalls 

dominate the erosional flux (> 25%), despite representing < 10% of the inventory (mean volume 

Figure 6.02 Percentile plot of a bin-by-bin comparison of the erosion rate against a selection of structural 

(a – c) and morphological (d – f) controls, including (a) mean facet density, (b) mean facet dip, (c) the 

mean difference between facet and cliff aspects, (d) cliff toe elevation, (e) platform slope, and (f) wave 

approach angle. Ensemble of percentile lines illustrates frequency distribution of the erosion rate for any 

given control. Symbols represent the properties of key sites selected from Figure 6.03. 
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of ca. 5.48 ± 1.13 m3). These are shallow slabs and rods with a slope-parallel orientation and 

therefore a small mean difference between block orientation and cliff aspect, and are similar in 

behaviour to sheeting joints (Martel, 2006; Moore et al., 2009). Conversely, rockfalls that are 

blocky, and therefore more three-dimensional, in shape are more likely to have a large orientation 

angle relative to the cliff surface. Along the North Yorkshire coastline, however, these are largely 

limited to small volumes < 0.064 m3, contributing a small proportion of the total eroded volume 

(< 11%), despite representing > 23% of rockfalls. 

Relationships between cliff erosion and morphological controls, here acting as a proxy for 

the efficacy of wave impacting at the cliff toe (Chapter 5), are less clear than those observed for 

structural controls. Both cliff toe elevation and platform slope appear to control cliff erosion at 

the regional scale (Figures 6.01d,e and 6.02d,e). This broadly reflects previous observations, which 

have demonstrated that platform morphology can strongly influence wave shoaling and breaking 

prior to wave-cliff interaction (Trenhaile and Kanyaya, 2007; Porter et al., 2010). Rates of erosion 

sharply increase with cliff toe elevation between ca. -1 m and 0 m OD, before gradually levelling 

off above 2 m OD, although there is considerable scatter in this range. Similarly, rates of erosion 

sharply increase with platform slope between values of ca. 0% and 2%, before decreasing and 

levelling off above slopes of 4%. Cliff erosion is inversely related to the wave approach angle 

(Figures 6.01e and 6.02e). This contradicts relationships between the angle of wave approach and 

wave-sustained sediment transport, which has been previously suggested to peak at angles of ca. 

45° (Ashton et al., 2001; Nienhuis et al., 2013). This may be a function of the relatively short 

duration of observations here (made over a total period of 2 years and 7 months) as compared to 

the time required for an erosion signal to fully develop, such that this could retain an impression 

of the wave loading signal over and above noise.  

To understand how regional-scale variations in cliff structure and wave loading drive 

variations in cliff erosion, and how these patterns manifest themselves spatially in contiguous 

compartments, a windowed correlation (± 200 m) was applied to the data presented in Figure 

6.02. Sliding-window correlations are commonly used for estimating time-varying relationships 

between signals, where correlation coefficients are calculated on overlapping segments of time 

series data. Here, this concept was applied spatially. For each 100 m bin along the site, correlation 

coefficients were calculated between the mean of each control and the mean rate of erosion 

observed in each window. Figure 6.03 therefore shows the extent to which patterns in erosion rates 

in the ± 200 m surrounding each bin are preferentially correlated with (hereafter ‘conditioned’ 

by) different structural and morphological controls. These controls are assumed to strongly 

condition erosion rates where the correlation coefficient is greater than ± 0.75. Rates of erosion 

are strongly conditioned by solely structural controls along ca. 19% of the total monitored cliff 

length, and by morphological controls along ca. 25% of the coastline. Along ca. 31% of the 

coastline, erosion rates are strongly conditioned by both structural and morphological controls. 
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 Cliff erosion at Boulby (0.28 – 0.33 × 104 m), Cowbar Nab (0.75 × 104 m), Staithes 

(0.82 × 104 m), Old Nab (1.00 × 104 m), Port Mulgrave (1.35 × 104 m), and also Kettleness 

(1.85 × 104 m) appears to be structurally controlled (Figure 6.03). Each of these sites are 

headlands that generally project seaward from the general line of the coast. These headlands also 

coincide with areas that were observed to produce similar distributions of rockfall shapes year-on-

year (Figure 4.18, p. 78). This implies that the geological setting of the coastline, where ridges of 

solid rock with an absence of faulting are separated by lower cliffs and embayments, directly 

influences spatial variations in the distribution of rockfall shapes and the volume of material 

eroded. Between Old Nab and Port Mulgrave (1.10 – 1.25 × 104 m), rates of erosion are conditioned 

by a combination of structural and morphological controls where cliffs are dissected by landslide 

activity. At Sandsend (> 2.20 × 104 m), erosion appears to be associated with a series of crenulous 

coves, which are separated by mainly till cliffs. A subsection of the coastline at Staithes, which is 

a type site for these conditions, is shown in Figure 6.04. The cliff surface is characterised by a 

relatively high facet density and dip (17.0 facets m-2 and 67°, respectively), and a low difference 

between facet and cliff aspect (34°; values for all controls shown in Figures 6.01 and 6.02). The 

headland eroded at a mean rate of ca. 6.30 × 10-3 m yr-1 over the monitoring period, which is the 

same order of magnitude as the mean rate of erosion across all sites where patterns of erosion are 

conditioned by variations in rock mass structure (9.30 × 10-3 m yr-1, median = 1.04 × 10-2 m yr-1). 

These range over nearly three orders of magnitude, from 8.66 × 10-4 m yr-1 to 9.24 × 10-2 m yr-1 

(Figure 6.04). Visual inspection of this section of the cliff shows a clear prominence of exposed 

joint surfaces on the rock face, where recent rockfall scars are apparently both exploiting and 

limited in extent by rock mass structure. 

Rates of erosion in areas that are characterised by landsliding, such as Runswick Bay 

(1.50 – 1.65 × 104 m) and lower cliffs of drift materials, such as Sandsend (2.16 – 2.20 × 104 m), 

are primarily morphologically controlled (Figure 6.03). However, erosion along some stretches of 

rock cliffs, such as Boulby (0.34 – 0.50 × 104 m) and towards Cowbar Nab (0.59 – 0.74 × 104 m) 

is also strongly conditioned by morphological controls. At Kettleness, a change from 

predominantly morphological to structural controls on erosion (1.60 × 104 m) is coincident with 

Figure 6.03 Overleaf. Spatial variations in the correlations between the total volume eroded in each bin 

and a selection of structural and morphological controls. These include the mean facet density, dip, difference 

between facet and cliff aspects, cliff toe elevation, platform length (displayed here, although not statistically 

significant in Appendix K, p. 204), platform slope, and the wave approach angle. Correlations are windowed 

( 200 m) and only shown in (a) if there is a positive/negative correlation, depending on the relationships 

observed in Appendix K. Where erosion is defined as being only structurally (or morphologically) controlled, 

this requires the presence of at least one strongly (± 0.75) correlated structural (or morphological) variable, 

and an absence of any morphological (or structural) controls. The inset in (b) shows in detail the previously 

monitored sites (Table 2.01, p. 19) as well as the sites monitored in Chapter 5. 
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the transition from cliffs formed predominantly of more deformable drifts to cliffs of harder, 

lithified rock types. A subsection of the coastline at Kettleness, which is a type site for these 

conditions, is shown in Figure 6.05. Beyond the headland, where erosion reverts to being 

structurally controlled, rates of erosion along the cliffs are strongly conditioned by morphological 

controls, with a short platform length (144.6 m), a moderate cliff toe elevation and wave approach 

angle (2.65 m OD and 44°, respectively), and a high platform slope (6.9%; values for all controls 

shown in Figures 6.01 and 6.02). The cliffs at Kettleness eroded at a mean rate of ca. 

9.70 × 10-3 m yr-1 over the monitoring period, with the mean rate of erosion across all sites where 

rates of erosion are strongly correlated with morphological controls ranging over three orders of 

magnitude, from 8.60 × 10-4 m yr-1 to 5.80 × 10-1 m yr-1 (Figure 6.05). 

 Patterns of erosion along approximately one third of the coastline (31%) were strongly 

correlated with both structural and morphological controls, rather than one of these alone or an 

apparently random behaviour shown by no correlation. The cliffs at Boulby (at a distance of ca. 

0.40 × 104 m) are a type site for these conditions, and are shown in Figure 6.06. The cliffs eroded 

Figure 6.04 A subsection of the North Yorkshire coastline at Staithes (a), where patterns of erosion are 

strongly correlated with structural controls, shown in (b). Erosion at the headland, pictured in (c), is one of 

a number of structurally controlled features along the coastline, with others marked in Figure 6.03. Inset: 

box plot of erosion rates along the coastline, grouped by structural (S), morphological (M), both structural 

and morphological (B), and no (N) controls. The data for all (A) erosion rates are also shown. 

Figure 6.04 A subsection of the North Yorkshire coastline at Staithes (a), where patterns of erosion are 

strongly correlated with structural controls, shown in (b). Erosion at the headland, pictured in (c), is one of 

a number of structurally controlled features along the coastline, with others marked in Figure 6.03. Inset: 

box plot of erosion rates along the coastline, grouped by structural (S), morphological (M), both structural 

and morphological (B), and no (N) controls. The data for all (A) erosion rates are also shown. 
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at a mean rate of ca. 2.93 × 10-2 m yr-1 over the monitoring period (75th percentile). This high 

erosion rate is driven by a combination of high facet densities and steep rockwalls (15.4 facets m-2 

and 64°, respectively), a similar orientation of the cliffs relative to their constituent facets (mean 

difference of 26°), a moderate toe elevation (1.31 m OD), a high platform slope (7.6%), and a 

relatively low angle of wave approach (20°; values for all controls shown in Figures 6.01 and 6.02). 

However, the mean rate of erosion across all sites with both structural and morphological controls 

(5.70 × 10-3 m yr-1, median = 7.50 × 10-3 m yr-1), is greater when they are considered separately 

(Figure 6.06). 

 These findings illustrate the importance of both cliff structure and wave loading (inferred 

using relationships with morphological controls observed on a local scale in Chapter 5) in driving 

regional-scale variations in rockfall activity and the resulting cliff erosion. Spatial patterns in the 

rates of erosion that occurred along over half of the 20.5 km of cliffs monitored in this research 

were strongly correlated with either structural or morphological conditions (50% vs. 55%). 

Oceanographic forcing has historically been viewed as the dominant driver of coastal cliff erosion 

Figure 6.05 A subsection of the North Yorkshire coastline at Kettleness (a), where patterns of erosion are 

strongly correlated with local morphological controls, shown in (b). Unlike the headland at Kettleness, the 

cliffs pictured in (c) are one of a number of stretches of morphologically controlled cliffs along the coastline. 

Inset: box plot of erosion rates along the coastline, grouped by structural (S), morphological (M), both 

structural and morphological (B), and no (N) controls. The data for all (A) erosion rates are also shown.   



 

Chapter 6. Discussion 

128 

(for example, Bartrum, 1926; Edwards, 1951; Sunamura, 1978a, 1978b; Tsujimoto, 1987; 

Trenhaile, 2000) and ultimately must, to some extent, set a base level for the rate of erosion along 

coastlines. However, these findings also attest to the importance of rock mass structure in 

controlling how rockfall and erosion respond to wave impacting and other processes occurring 

along rocky coasts. Here, this influence includes the role of joint density, the dip of the release 

surface, and the relative orientation of the joints to that surface, each of which vary on a regional 

scale and have been shown to relate to alongshore patterns in rockfall volume and shape. It is, 

however, acknowledged that the relative importance of these processes may also change over time, 

and may vary considerably year-on-year. The findings presented in Chapters 3, 4, and 5, and 

synthesised here, are now discussed in the following sections within the wider context of (1) the 

implications for monitoring and modelling rockfall activity over wide extents (Section 6.2), (2) 

understanding patterns of rockfall occurrence, the resulting cliff erosion, and the relative 

importance of intrinsic versus extrinsic controls on erosion (Section 6.3), and (3) the associated 

implications for cliff evolution (Section 6.4). 

Figure 6.06 A subsection of the North Yorkshire coastline at Boulby (a), where patterns of erosion are 

strongly correlated with both structural and morphological controls, shown in (b). A subsection of the cliffs 

is pictured in (c). Inset: box plot of erosion rates along the coastline, grouped by structural (S), morphological 

(M), both structural and morphological (B), and no (N) controls. The data for all (A) erosion rates are also 

shown.   
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6.2 Implications for monitoring rockfall activity 

The findings of this thesis demonstrate that a full 3D treatment of high-resolution airborne 

LiDAR provides a robust means to monitor rockfall activity and the resulting cliff erosion 

continuously (in space), in 3D, and over large spatial scales (> 104 m). When mounted on a 

helicopter, continuous swaths from this type of airborne LiDAR can be used to collect data along 

narrow corridors even with steep, near-vertical slopes, presenting a considerable advantage over 

mobile terrestrial LiDAR when scanning areas that are often limited by range, view direction, and 

can feature extensive occlusion (Lato et al., 2009a; Dunham et al., 2017). The point cloud data 

obtained from airborne LiDAR give increased precision on slope angle, aspect, and, on bare rock 

faces, joints, and other structural features. Multi return and colour data can be used during 

segmentation and classification routines (Axelsson, 1999; Sithole and Vosselman, 2004; Vosselman 

et al., 2005) as a means of vegetation filtering (Section 3.2.2, p. 29). The workflow developed and 

used to process airborne LiDAR data in Chapter 3 is semi-automatic and, uniquely, provides a 

means of analysing regional-scale variations in rockfall activity along rock slopes with a non-linear 

plan-form geometry. Most importantly, retaining the true 3D character of the data here has 

permitted comparisons with both structural and morphological controls at a comparable 

resolution. The approach outlined here gives a 3D watertight mesh, centre of gravity, principal 

axes, volume, and volumetric uncertainty for each rockfall. The 3D nature of the rockfall inventory 

derived here has permitted the shapes and volumes of real, observed rockfall detachments to be 

linked to variations in cliff structure and wave loading on a regional scale (> 104 m).  

A key finding of the analysis presented in Chapter 3 is that localised estimates of rockfall 

activity captured over small extents (< 103 m2) do not generate stable magnitude-frequency 

distributions, and so cannot be upscaled for the purpose of modelling wider-scale or longer-term 

cliff evolution. Here, monitoring at length scales < 2.5 km (equivalent to ca. 1 × 105 m2 assuming 

an average cliff height of 40 m) has a significant effect on the frequency estimates of the largest 

events, potentially giving rise to considerably higher (where, by chance, a large event is captured) 

or lower (where no large event occurs) frequencies than is actually the case. Here, the surface area 

of the largest recorded event is ca. 7.5 × 103 m2, equating to 7.5% of this ‘minimum’ area. Along 

the North Yorkshire coast, this figure represents ca. 12% of the total cliff length or area monitored. 

This extent, which is a function of the probability of being able to capture a statistically valid 

sample of the largest possible events, is likely to vary between settings based on differences in 

weathering and other environmental conditions (for example, precipitation, temperature, and the 

frequency of triggering events), triggering mechanisms, and lithological characteristics, each of 

which are thought to influence the power law scaling of rockfalls (Barlow et al., 2012).  

In order to increase the likelihood of capturing a stable magnitude-frequency relationship 

and therefore a complete distribution of rockfall activity, monitoring of the cliffs under 

examination here should be undertaken at multiple sites totalling at least 2.5 km in length, rather 
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than in a single, continuous section (Section 3.3.3, p. 44). This length scale is likely to vary 

between settings based on, for example, variability in rock strength and structure, and ideally 

should be constrained elsewhere. This could reflect spatial variations in the dominant controls on 

erosion (Figure 6.03), which can remain approximately uniform over continuous sections of up to 

1.7 km for areas where erosion is strongly structurally controlled (mean = 500 m), and 1.8 km 

where erosion is strongly morphologically controlled (mean = 700 m). These estimates also include 

areas where no strong, statistically significant controls on erosion have emerged. Assuming that 

the patterns of erosion observed form part of a longer-term cycle of cliff failure and profile-form 

adjustment that is not fully captured by the relatively short duration of monitoring undertaken 

here (2 years and 7 months), then neighbouring bins are more likely to be at a similar stage of 

this process than more distal sites. Previous research has demonstrated that the propagation of 

instability and failure along these cliffs operates at 101 year timescales. For example, Rosser et al. 

(2013) estimated an average resurfacing time of 28.1 yr along ca. 710 m of cliffs at sites A – G 

(Section 2.2, p. 17) based on extrapolating the spatial footprints of failures derived from monthly 

monitoring over a seven-year period. The assumption of similarities between neighbouring bins 

can be justified given the longer wavelength variations of rock mass structure along the coastline 

(ca. 103 m), which are likely to moderate the erosional effects of shorter wavelength variations in 

wave loading (< 102 m, observed in Chapter 5). If this cyclical nature of cliff erosion and retreat 

does exist, and it is characterised by time-dependent failure processes (for example, incremental 

oversteepening leading to large-scale failure), then a stable magnitude-frequency relationship can 

only be observed over a longer total duration of monitoring, or over a more widely-distributed 

area of monitoring. Moreover, sampling in a distributed manner is more likely to capture the 

erosional response of the cliffs to a wider variety of controls and, by inference, at different stages 

of the longer-term failure cycle. 

Given the increasing tendency towards collecting large inventories on potentially 

hazardous geomorphic processes (Korup et al., 2012), these findings attest to the importance of 

collecting a dataset that is both temporally and spatially complete. Although large pools of data 

were previously thought to enable a statistically robust analysis of magnitudes, frequencies, and 

the formulation of exceedance probabilities for hazard appraisals (Korup et al., 2012), this is only 

the case if the quantitative input for these is complete over a large enough spatial scale relative 

to the scale of the events experienced. This is pertinent for research using terrestrial LiDAR to 

monitor rockfall activity, as such approaches typically operate at short length scales (see Abellán 

et al., 2014 for a review). More widely, the analysis has considerable implications for monitoring 

the evolution of non-coastal slopes, where magnitude-frequency scaling is often used to inform 

hazard assessment and mitigation (Abellán et al., 2011; Dewez et al., 2013), and where accurately 

defining rockfall recurrence intervals is essential (for example, Budetta and Nappi, 2013; Budetta 

et al., 2016; Moos et al., 2017).  
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Just as path-dependency has been observed for landslides (for example, Samia et al., 

2017a, 2017b), the data presented in Chapter 4 demonstrate a clear spatial dependence among 

rockfalls occurring along the North Yorkshire coast, suggesting that they cannot be considered a 

Poissonian process. However, the linkage observed at this scale only applies to a small percentage 

of the total: year-on-year, approximately 10.5% of rockfalls that occurred along the North 

Yorkshire coast between 2014 and 2017 had done so in locations where others had previously 

failed (compared to ca. 1.7% estimated under conditions of complete spatial randomness). It is, 

however, likely that with higher frequency monitoring, which has been shown elsewhere to 

disaggregate single scars observed over longer periods into multiple overlapping events, this 

tendency may be observed to increase. On a regional scale, using the locations of previous events 

or the quality of the rock mass (discussed in Section 6.3) as an indicator of future rockfall risk is 

therefore problematic, as by far the majority of rockfalls appear unrelated to the location of those 

that have occurred in the two years monitored previously.  

Risk management using the magnitude-frequency distributions of rockfalls is therefore 

complicated: rockfall activity along the North Yorkshire coast, and likely elsewhere, is not 

sufficiently statistically independent for the purposes of rockfall frequency analyses, irrespective 

of the volume range considered. Conversely, levels of coalescence in the rockfall inventory derived 

here are not sufficiently high enough to reliably use precursory rockfall activity, here measured at 

annual intervals, as a means of forecasting future change. For example, Kromer et al. (2017) 

compiled a pre-failure deformation database of 90 rockfall events that occurred over a 1,252-day 

period. Of these events, 64 exhibited measurable deformation (movement) prior to failure, and 

the authors use these cases to present an empirical framework for forecasting the location, volume, 

and kinematics of potential rockfalls. However, the database of regional-scale rockfall coalescence 

derived in Chapter 4 indicates that only a fraction of rockfalls that occurred along the coastline 

did so where others had occurred previously, leaving a large percentage with no observable pre-

failure rockfall activity in the year immediately prior to monitoring (> 0.10 m LoD defined in 

Section 3.2.3, p. 33). It may be that the rockfalls considered here are too small to exhibit 

observable pre-failure behaviour up to a year before the event itself, but nonetheless, this analysis 

shows a significant challenge to using previous behaviour as an indicator of future risk.  

 These findings also hold for variations in the total volume of rock eroded along the 

coastline. As demonstrated in Chapter 4, the proportion of the cliffs monitored that consistently 

(year-on-year) produced material in any given volume range did not exceed 50%, and more 

commonly remained below 35%. This reflects observations made elsewhere, where localised 

(< 102 m) comparisons between historical and recent retreat rates are often poorly correlated 

(Young, 2018). Using site-specific erosion rates, measured over short (sub-decadal) intervals, to 

predict or project future decadal scale cliff retreat is therefore problematic. This poses challenges 

for longer-term assessments of coastline responses to environmental change, as it is only recently 



 

Chapter 6. Discussion 

132 

that the uncertainties in monitoring have been reduced to a point whereby erosion rates can be 

monitored with confidence. The findings presented in Chapter 3, which tested the sensitivity of 

rockfall magnitude-frequency distributions to the spatial scale of monitoring, also reflect this. 

Along the entire coastline, spatially averaged erosion profiles attest to the stochastic nature of 

cliff erosion, where two years of overall steepening were followed by a year in which the profile 

was effectively reset by a series of full-scale cliff collapses. Monitoring over a wider variety of 

timescales is therefore needed in order to quantify how long-term rates of erosion emerge from 

apparently sporadic changes that result from discrete, large events (Finnegan et al., 2014; Ganti 

et al., 2016), and to establish the minimum timescale over which time-averaged erosion rates are 

representative of the longer-term erosion signal. Ultimately, however, the findings presented in 

Section 6.1 could be drawn upon to suggest that extrapolating historical rates of rockfall activity 

and the associated cliff erosion is problematic, without incorporating some measure of the forcing 

mechanisms and system feedbacks over the monitoring period (Lee, 2008). 

6.3 Implications for cliff erosion 

Much of the recent research into coastal cliff erosion has used case-specific approaches 

that infer a wider morphological model of the evolution of cliff and platform systems from only a 

limited selection of sites (Kennedy et al., 2017). This reflects a wider issue in geomorphology, 

where undertaking regional-scale (> 104 m) monitoring of surface processes and their drivers at 

high resolutions is methodologically difficult, as discussed in Chapter 1. On coastal cliffs, previous 

research undertaken at these scales lacks observations of drivers and controls at resolutions that 

are commensurate with the detail of volumetric changes provided by airborne LiDAR surveys 

(Matsumoto et al., 2017), potentially contributing to the poor correlations observed between recent 

rates of cliff erosion and metrics of wave-cliff impact, precipitation, and rock strength (Young, 

2018). In addition, these shorelines transcend precipitation sub-regions or geological gradients, and 

comprise subsections of the monitored coastline that are either engineered or fronted by beaches, 

or both, introducing a number of geomorphic feedbacks that complicate the analysis of driver-

effect relationships (Kline et al., 2014; Young, 2015). The data presented in this thesis provide 

new insights into regional-scale cliff adjustment and retreat, constituting the first large-scale 

assessment of rockfall activity and the resulting coastal cliff erosion undertaken at high resolution. 

The significance of these findings, and their implications for our understanding of coastal processes, 

monitoring, and modelling, are discussed here. 

The literature on coastal cliff behaviour and evolution often categorises cliffed coastlines 

into perceivably stable ‘hard’ rock cliffs and actively retreating ‘soft’ rock cliffs, with the 

implication of this distinction being that soft rock coasts are considered more vulnerable to 

instability and rapid change (Allison, 1989; Sherman and Gares, 2002). As demonstrated in 

Chapter 3, rates of cliff erosion can vary significantly both within and between regions. Along the 
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North Yorkshire coast, erosion rates ranged from as much as 1.12 × 10-5 – 1.63 m yr-1 over the 

monitoring period of this study. This reflects wider trends across the British Isles, where rates of 

landward retreat range from < 0.001 m yr-1 in what are apparently the most resistant rocks, to 

> 10 m yr-1 where cliffs are composed of soft, conformable glacial tills (Brooks and Spencer, 2012). 

The susceptibility of soft rock coastlines to erosion and retreat has meant that they are often 

prioritised in coastal management schemes (Lee and Clark, 2002), leaving the binary distinction 

implying some level of uniformity of behaviour or erosion within each subcategory.  

The results presented in Chapter 3, however, demonstrate that local (102 m) erosion rates 

along stretches of perceivably ‘hard’ rock coastline can reach approximately the same order of 

magnitude as the highest rates of erosion occurring on soft rock coastlines, even over the annual 

timescales considered here. Along the North Yorkshire coast, almost half (ca. 53,721.72 m3) of the 

total (ca. 124,843.31 m3) volume eroded by rockfalls between August 2014 and March 2017 accrued 

in only 12 large (> 1,000 m3) cliff collapses, eight of which occurred between April 2016 and March 

2017, resulting in an instantaneous step-back of the coastline by up to 6 m in places. Assuming 

that the longest axis of these events is cliff-parallel (representing rockfall width) and the shortest 

axis is cliff-normal (representing rockfall depth), then these events alone caused an average step-

back of ca. 1.92 m over 972 m of the coastline, equating to approximately 4.8% of the total cliff 

length monitored over a period of 2 years and 7 months. Present models of cliff retreat fail to 

capture the timing and scale of episodic events, and, at present, little is known of how the long-

term rates of erosion derived by these models arise from the accumulation of individual, 

instantaneous events. Rising global sea-levels in conjunction with projected changes in winds, 

tides, precipitation, storm events, and wave climate are expected to accelerate coastal cliff retreat 

and threaten coastal populations in many areas (Sunamura, 1988; Bray and Hooke, 1997; Dickson 

et al., 2007; Nicholls et al., 2007; Trenhaile, 2010, 2014), resulting in a pressing need to understand 

and model the erosional response of hard rock coastlines like the North Yorkshire coast to these 

processes (Trenhaile, 2011).  

6.3.1 Intrinsic controls on erosion 

Determining the relative importance of intrinsic versus extrinsic controls on rockfalls, and 

the resulting erosion that they accumulate, is complex, particularly across different spatial and 

temporal scales. Although rockfalls have been monitored extensively in a variety of settings, high-

resolution observations of rock slope erosion on a regional scale (> 104 m) are scarce. This is 

primarily due to difficulties in capturing data in a way that ensures a volumetrically complete 

inventory, and at length scales over which both resisting and driving stresses may vary. At the 

local scale, it is difficult to establish the extent to which variations in rockfall activity are actually 

part of inherent variability. The influence of subtle changes in different driving stresses (for 

example, thermal stresses, weathering, seismic loading, and, on coastal cliffs, wave impacting) is 
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also difficult to assess unless this is done at scale (Messenzehl et al., 2017). The findings of this 

thesis demonstrate that, along a coastline where other controlling factors (tides, weather, offshore 

waves) are held approximately constant, rates of erosion are strongly conditioned by solely 

structural or morphological controls in approximately equal proportions (19% vs. 25%), where 

morphological controls act as a proxy for the erosional effects of wave impacting observed in 

Chapter 5. These patterns also hold when considering the locations where rates of erosion are 

strongly conditioned by structural and/or morphological controls (50% vs. 55%), amounting to 

ca. 10,229 m and 11,252 m of the coastline, respectively. Although oceanographic forcing has 

historically been viewed as the dominant driver of coastal cliff erosion (for example, Bartrum, 

1926; Edwards, 1951; Sunamura, 1978a, 1978b; Tsujimoto, 1987; Trenhaile, 2000), the data 

presented in Chapter 4 and synthesised here attest to the importance of cliff structure (primarily 

joint density, dip, and the relative orientation of joints to the cliff face) in defining regional-scale 

rates, the nature, and patterns of rockfall activity. This appears to override, at least in some 

places, the marine controls on erosion afforded by the macro-tidal, storm-dominated coast. Along 

coastal cliffs, previous research into the role of rock hardness and discontinuities on landform 

development has primarily been carried out on foreshore platforms (for example, Dickson et al., 

2004; Blanco-Chao et al., 2007; Chelli et al., 2010; Coombes et al., 2013), although localised studies 

have also demonstrated the importance of rock mass characteristics in defining rates of cliff erosion 

(Budetta et al., 2000; Duperret et al., 2005; Lawrence et al., 2013; Lee and Park, 2014). These 

have not managed to put local observations into a wider scale context, as here. 

Along the North Yorkshire coast, spatial variations in cliff structure, as defined by the 

geometric properties of exposed joint surfaces, broadly follow the wider-scale geological setting of 

the coastline. In areas where high rates of erosion are strongly controlled by cliff structure, the 

cliff face is generally characterised by a combination of high joint densities, a steep gradient, and 

joints that lie sub-parallel to the topography, reflecting local observations made elsewhere (André, 

1997; Moore and Griggs, 2002; Arsenault et al., 2005; Dornbusch et al., 2008). The strong 

relationship with joint density likely reflects small-scale transitions between different lithological 

units, which effectively promote failure due to contrasting hydraulic regimes and stress conditions 

(Evans and Hungr, 1993; Fischer, 2010). Previous research has identified the susceptibility of 

cataclinal slopes with surface-parallel joints, due to the pre-existence of sliding planes (Cruden 

and Hu, 1998; Moore et al., 2009).  

Cliff erosion at headlands is primarily structurally controlled (Valvo et al., 2006), with 

headlands tending to produce similar distributions of rockfall shapes and volumes year-on-year, 

as compared to other areas. For example, rockfalls with a volume between ca. 131 m3 and 262 m3 

(n = 58) consistently occurred around the headland at Boulby (at a distance of ca. 0.57 × 104 m). 

This implies that the geological setting of the coastline, where ridges of solid rock are separated 

by lower cliffs of drift, directly influences spatial variations in the distribution of rockfall shapes 
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and the volume of material eroded, while small differences in the strength of these patterns are 

likely to be driven by local processes and morphological controls. However, relating the properties 

of individual rockfalls to variations in the geometric properties of exposed joint (or facet) surfaces 

at these scales (> 104 m) remains difficult. Neither the distribution of rockfall shape, nor the 

distribution of different metrics of jointing as a function of rockfall volume, are sufficiently 

different between inventories of contiguous and non-contiguous rockfalls to conclude that rockfalls 

propagate along joints, conditioning subsequent instability in adjoining areas over time. 

6.3.2 Extrinsic controls on erosion 

At a local scale (< 103 m), over a stretch of cliffs that are relatively uniform in both 

geology and structure, longer-term variations in rockfall activity and the resulting cliff erosion are 

correlated with wave impact-driven ground motions, and variations in the morphological 

conditions that drive them: these include platform length, slope, cliff toe elevation, and wave 

approach angle (Chapter 5). These findings reflect the processes outlined in many conceptual 

models as well as previous observations made at other sites, which have demonstrated that 

platform morphology can strongly influence wave shoaling and breaking prior to wave-cliff 

interaction (for example, Nakamura et al., 1966; Svendsen et al., 1978; Trenhaile and Kanyaya, 

2007). Although it is often assumed that the dissipation of higher frequency wave energy across a 

shore platform is a direct function of platform width (Johnson 1919; Stephenson and Thornton 

2005), the results presented in Chapter 5 also attest to the importance of the basic control of 

water depth (for example, Thornton and Guza 1982; Farrell et al. 2009; Marshall and Stephenson 

2011; Ogawa et al. 2011, 2012). This reflects the known sensitivity of wave energy at higher (or 

‘gravity’) frequencies to tidal-level changes (Ogawa et al., 2016). For example, generalised 

observations of wave characteristics across six sites on the North Island, New Zealand, 

demonstrate that rapid attenuation of gravity waves occurs on wider and higher (and therefore 

shallow) foreshore platforms, while narrower and deeper platforms allow a greater proportion of 

higher frequency energies to propagate across the surface (Ogawa et al., 2016). This coincides with 

observations at S4 and S5, which are detailed in Chapter 5: these sites have pronounced differences 

in cliff toe elevation (0.42 m vs. 1.81 m) and even platform widths (87 ± 25 m vs. 155 ± 13 m), 

but the platform fronting the cliffs at S5 drops off abruptly over a short distance. Although S4 is 

situated on a headland and is therefore more exposed, deeper water allows waves to approach the 

cliffs at S5 without much tidal change in dissipation. The sensor is therefore exposed to large 

waves when spring tides and large swells coincide. This could be the driver of comparative long-

term erosional fluxes (76.17 ± 7.46 m3 vs. 58.67 ± 12.39 m3) despite S5 only being inundated for 

a fraction of the monitoring period (48.4% vs. 16.3%). If cliff-toe wave regimes are primarily 

determined by water depths, then this raises the possibility that certain platform geometries may 

be exposed to a persistent hydrodynamic regime regardless of the incident wave and tidal 
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conditions. The importance of total water level in driving both the magnitude and frequency of 

cliff toe wave impacting therefore holds implications for modelling future change under sea level 

rise, where certain stretches of coastline may transition towards gravity wave-dominated 

conditions over the long term.  

On a regional scale (> 104 m), however, the analysis of driver-effect relationships between 

these processes is more difficult, with the data synthesised in this chapter demonstrating more 

scatter than for structural controls on cliff erosion. Variability in cliff structure (primarily joint 

density, dip, and the relative orientation of joints to the cliff face) could explain some of these 

discrepancies, with previous research highlighting that reversals in relationships between platform 

morphology and the expected environmental controls (tidal range, wave intensity) can be 

explained by rock mass structure, which can be locally dominant (Trenhaile, 1987). A more likely 

explanation is that the morphological conditions, used as a proxy for wave impacting at the cliff 

toe, simply introduce too much variability on a regional scale. 

6.4 Implications for cliff evolution 

The results presented in Chapter 3 show that, within the inundated toe of the cliff, the 

majority of change is driven by episodic, large-scale failures, across over 24 km of coastline. 

However, the small number of relatively large rockfalls occurring in the wet zone contributes little 

to the overall erosion: an average of only 5.1% of the eroded volume occurred in this zone, despite 

representing 10.7% of the total cliff area. This appears to contradict the widely-accepted notion 

that cliff toe erosion occurs iteratively through abrasion, attrition, and rapid void pressure changes 

that lead to fracture, detachment, and subsequently undercutting (for example, Trenhaile, 1987; 

Carter and Guy, 1988; Sunamura, 1992; Hampton, 2002; Young and Ashford, 2008). On sections 

of the coast where erosion is most active, there is a statistically significant marine influence; 

however, this correlation only holds for an equivalent of ca. 2% of the monitored cliff length, even 

when monitored over multiple epochs. This is likely to reflect spatial variations in local rock mass 

strength and structure (Chapter 4; Sunamura, 1982; Allison and Kimber, 1998; Collins and Sitar, 

2008; 2011; Dornbusch et al., 2008), and wave energy, which is conditioned by nearshore and 

foreshore bathymetry (Chapter 5; Komar, 1998; Trenhaile and Kanyaya, 2007; Ogawa et al., 

2011). The limited marine influence evident in this data could explain why, as on many non-

carbonate coastlines, there is little evidence of a wave cut notch at the base of these cliffs (Pierre 

and Lahousse, 2006; Rosser et al., 2007; Young et al., 2009; Vann Jones et al., 2015). 

The vertical distribution of wave erosion is often modelled as a direct function of 

inundation duration (Sunamura, 1975, 1977; Trenhaile and Layzell, 1981; Carr and Graff, 1982; 

Belov et al., 1999; Trenhaile, 2000, 2009, 2011; Walkden and Dickson, 2008; Ashton et al., 2011). 

This relationship has been incorporated into a number of widely used numerical models, including 

SCAPE (Walkden and Hall, 2005, 2011). Although the data presented in Chapter 5 demonstrate 
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correlations between measurements of wave impacting recorded at the cliff toe and overall cliff 

erosion, these observations only hold for rockfalls occurring across the cliff face, and not solely 

below the highest astronomical tide line. The findings presented in this thesis call the processes 

that underpin many numerical models into question, and, in some cases, coastal retreat models 

could therefore overstate the role of cliff toe incision and subsequent cantilever collapse. In most 

cases, rising sea level will increase the depth of the water over sloping and horizontal foreshore 

platforms, acting to lower rates of wave attenuation and causing wave breaking zones to migrate 

landwards (Trenhaile, 2014). The data presented in Chapter 3 appear to indicate that, year-on-

year, the majority of the cliffs surveyed along the North Yorkshire coast are eroded to greater 

depths at elevations on and above the highest astronomical tide line. This suggests that, while the 

impacts upon wave climate may be profound, rising sea level may have a lesser effect upon this 

stretch of coastline than previous models would have predicted. 

Along the North Yorkshire coast, the relative volume of material contributed by events 

of varying sizes stabilises above the limit of marine influence (ca. 10 m OD), where the majority 

of change is driven by episodic, large-scale failures. At a site-specific scale, the propagation of 

rockfalls has been observed to facilitate the transmission of marine undercutting up the cliff face 

over time (Rosser et al., 2013). Where subaerial processes begin to dominate, erosion is primarily 

driven by incremental wasting, and the onset of these processes can be constrained using variations 

in rockfall magnitude-frequency and rockfall shape up-cliff. These gradual changes in β and in 

rockfall shape may be linked to changes in the groundwater regime, weathering environment, and 

the stress field up-cliff. These observations are supported by numerical modelling of the response 

of the rock mass to marine loading, which confirms the role of upward migration of shear strain 

through the cliff in causing tensile failure and crack growth at the cliff top (Styles et al., 2011). 

The connectivity between events attests to the importance of stress redistribution following 

previous rockfalls in promoting damage accumulation and, eventually, further rock slope failure 

(Amitrano, 2006). On a regional scale, these processes are reflected in spatially-averaged erosion 

profiles, where two consecutive years of overall steepening are followed by a year in which the 

profile is effectively reset by full-scale cliff collapses, most likely related to an increased incidence 

in storms. 

6.5 Summary 

The research undertaken in this thesis has developed high-resolution field monitoring 

techniques with the aim of establishing the relative importance of intrinsic versus extrinsic controls 

on regional-scale (> 104 m) variations in rockfall activity. The analysis presented in Section 6.1 

builds on the research presented in Chapters 3, 4, and 5 by synthesising these findings in order to 

develop a new, semi-empirical understanding of coastal cliff change behaviour. The coastline was 

discretised into 100 m compartments prior to testing the relationships between erosion in each bin 
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(the total volume eroded and the observed erosion rate), and a series of rock mass structural 

controls and local morphological controls (considered here as a proxy for wave loading). The 

findings have demonstrated observable, and in some cases strong, relationships between erosion 

and joint density, overall dip, and the relative orientation of joints to the cliff aspect (structural 

controls). Morphological controls that appear to exert an influence on erosion include cliff toe 

elevation (as a proxy for inundation duration), platform slope, and wave approach angle. Moving 

correlations (applied across each bin and its neighbours) were then used to assess the strength of 

relationships between spatial patterns in the observed erosion rate and these controls. This has 

highlighted the conditions that may promote or inhibit rockfalls and therefore cliff erosion, and 

shown how they vary along over 24 km of coastline.  

The results presented here have enabled a unique insight into rockfall dynamics and how 

they vary on a regional scale. There are considerable implications for monitoring and modelling 

rockfall occurrence: extrapolating historical rates of rockfall activity and the associated cliff erosion 

is problematic without incorporating some measure of forcing mechanisms over the monitoring 

period, particularly when estimates have been made over short length scales (< 103 m; Section 

6.2). Along a stretch of hard rock cliffs, rates of erosion have been shown to reach approximately 

the same order of magnitude as the highest rates of erosion occurring on soft rock coastlines, 

emphasising the importance of step-back events (Section 6.3). How the erosional work done by 

episodic, large-scale events accumulates into a long-term rate of erosion remains to be seen, with 

present models of cliff retreat failing to capture the timing, scale, or drivers of these events. More 

widely, these findings stress the importance of cliff structure and its ability to predispose particular 

stretches of coastline to increased (and also decreased) rates of erosion, reflecting local observations 

made in other settings (Section 6.3.1). In places, this influence can be negated or exacerbated by 

local morphological conditions, which control the dissipation of wave energy in the nearshore 

(Section 6.3.2). 
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Chapter 7 

Conclusions 

The aim of this research was to understand how regional-scale variations in cliff structure and 

wave loading interact to condition variations in rockfall activity. A series of research questions 

and objectives was outlined in Chapter 1, having identified key knowledge gaps in the literature, 

in order to address this aim. This thesis has identified a section of coastal cliffs along which micro-

straining of the rock mass through wave impact loading varies considerably due to variable coastal 

geometry and bathymetry (Chapter 2). This variability, combined with variations in lithology and 

cliff structure, highlighted the importance of constraining the nature of rockfall occurrence beyond 

that observed on a single slope. To constrain variations in rockfall magnitude, frequency, and the 

resulting cliff erosion over regional scales (> 104 m), high-resolution, multi-temporal LiDAR data 

were used to detect and characterise changes in the morphology of rock slopes in 3D (Chapter 3). 

These data were used to undertake a quantitative appraisal of along-coast variations in the 

geometric properties of exposed discontinuity surfaces, to assess the extent to which these drive 

patterns in the size and shape of rockfalls observed (Chapter 4). A representative subsection of 

the coastline (102 m), but where cliff lithology and structure were approximately uniform, was 

chosen for high-resolution field monitoring for the purpose of quantifying spatial variations in 

wave loading characteristics, and relating these to local morphological conditions (Chapter 5). The 

findings of Chapters 3, 4, and 5 have been synthesised to further our understanding of coastal cliff 

change behaviour (Chapter 6). The results have enabled unique insights into the regional-scale 

dynamics of rockfall activity, the importance of cliff structure and its ability to predispose 

particular stretches of coastline to increased rates of erosion, and the relationships between local 

morphological characteristics and longer-term variations in erosion. This marks a step-change in 

our ability to understand the competing effects of different processes in determining the magnitude 

and frequency of rockfall activity. Section 7.1 summarises these findings in relation to the research 

questions outlined in Chapter 1, before discussing directions for future research in Section 7.2.  
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7.1 Summary of findings 

The research presented in this thesis was based on a detailed study of actively failing rock 

slopes along a macro-tidal storm-dominated coast. The stretch of coastal cliffs that was the focus 

of this thesis offered the unique opportunity to investigate the relationships between rock mass 

structure, wave loading, and rockfall occurrence on a regional scale (RO1). This section revisits 

each of the research questions in Section 1.2 (p. 8) and outlines the key findings of this thesis. 

RQ1. How do rockfalls and the resulting cliff erosion vary over regional scales?  

A workflow for detecting and characterising rockfalls across multiple scales was developed 

in Chapter 3 (RO2). This workflow was then applied to high-resolution airborne LiDAR data in 

what is considered by the author as the first multi-temporal detection of regional-scale variations 

in rockfall magnitude, frequency, and the resulting cliff erosion in 3D (RO3). In total, over 58,000 

rockfalls were observed along 20.5 km of coastal cliffs. Rock yield totalled 124,843.31 m3, equating 

to an average erosion rate of 0.059 m yr-1, which is the same order of magnitude as rates derived 

from previous terrestrial monitoring of rockfalls at local scales (102 m). The analysis presented 

takes into account spatial variations in both cliff profile- and plan-form, and considers the 

implications of these findings for wider monitoring of rockfall activity. Specifically, the resulting 

inventory of rockfall activity and cliff erosion has been used to show that: 

 Local (102 m) rates of cliff erosion can vary over six orders of magnitude along a 20.5 km 

stretch of hard rock cliffs. The widespread occurrence of episodic step-back events, 12 of 

which accumulated an average step-back of ca. 1.92 m over nearly 5% of the cliff length 

monitored, dispels the concept that hard rock coastlines are relatively stable and 

highlights the importance of understanding and modelling the erosional response of hard 

rock coastlines under a changing climate. 

 In the tidally inundated toe section of the cliffs, the majority of change is driven by 

episodic, large-scale failures. The small number of relatively large rockfalls occurring in 

the wet zone contributes little to its overall retreat, with an average of only 5.1% of the 

eroded volume having occurred here, despite representing 10.7% of the total cliff area.  

 Inundation duration constitutes a significant control on erosion at the cliff toe, but only 

for < 2% of the monitored cliff length. Instead, the majority of the cliffs surveyed are 

consistently eroded to greater depths at elevations on and above the highest astronomical 

tide line. This contradicts the widely accepted notion that cliff toe erosion occurs 

iteratively, leading to notching, although it is acknowledged that the relatively short 

duration of observations here may preclude the full development of this signal. 

 The relative volume of material contributed by events of varying sizes stabilises above 

the limit of marine influence. This suggests that, where the erosive action of subaerial 

processes begins to dominate, erosion is primarily driven by incremental wasting, and that 
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the onset of these processes can be constrained using variations in rockfall magnitude-

frequency and shape. These gradual changes may be linked to changes in the groundwater 

regime, weathering environment, and the stress field up-cliff. 

 Stress redistribution following rockfalls is crucial in promoting further rock slope failure, 

and evidence of this can be seen on a regional scale. Spatially averaged erosion profiles 

have been used to infer that, over the short term, the dominant mode of cliff erosion leads 

to steepening of the cliff profile, with less frequent failures at the cliff top. Two consecutive 

years of overall steepening are followed by a year in which the profile is effectively reset 

by full-scale cliff collapses, most likely related to an increased incidence in storms. 

 Rockfall magnitude-frequency relationships are highly sensitive to the spatial scale of 

monitoring, such that monitoring at length scales < 2.5 km in this setting considerably 

increases the frequency estimates of the largest events. This window of monitoring should 

be distributed in multiple segments, rather than concentrated in one continuous stretch, 

to avoid bias. This has profound implications for research using methods of data 

acquisition that typically operate at short length scales, as any scaling relationships 

derived may be subject to significant bias as a function of spatial monitoring extent. 

RQ2. To what extent does rock slope structure drive spatial variations in rockfall activity?  

Chapter 4 details the methods used to extract the geometric properties of exposed 

discontinuity surfaces on near-vertical rock slopes, on a regional scale. In total, over 1.2 × 106 

facets were extracted, which were then used to explore how the properties of rockfalls, such as 

block shape and volume, are related to wider-scale variations in the quality of the rock mass, both 

up-cliff and along-coast (RO4). The results of this analysis demonstrated that: 

 Rockfall shape is scale dependent. The dominance of small (10-3 <VR < 10-1 m3), blocky 

shapes and large (VR > 102 m3), slab-like shapes potentially marks a transition from 

rockfalls as a structurally-defined process to rockfall as either small-scale consequences of 

incremental weathering or fracturing-related mass movements that break through rock 

bridges to generate larger, predominantly face-parallel rockfalls. Variations in the 

distribution of rockfall shape with volume therefore imply a systemic shift in the 

underlying mechanisms of detachment with scale, questioning the validity of applying a 

single probabilistic model to the full range of rockfall volumes observed here. 

 The scars of rockfalls are spatially associated through time. This complicates rockfall risk 

management using magnitude-frequency distributions, as they assume statistical 

independence between the observed events, irrespective of the volume range considered. 

However, the proportion of contiguous rockfalls observed here (10.5%) is not sufficiently 

high to reliably use a database of precursory rockfall activity, here measured at annual 

intervals, as a means of forecasting future change. 
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 Relating the properties of individual rockfalls to indicators of the quality of the rock mass 

on a regional scale is difficult. Neither the distribution of rockfall shape, nor the 

distribution of different metrics of jointing as a function of rockfall volume, are sufficiently 

different between inventories of contiguous and non-contiguous rockfalls to conclude that 

the contiguous rockfalls observed here propagate along joints, conditioning subsequent 

instability in adjoining areas over time. 

 Spatial consistencies in the distribution of rockfall shape and volume through time follow 

the geological setting of the coastline, although variations in the strength of these patterns 

are likely to be driven by variations in local processes and morphological controls.  

RQ3. Do spatial variations in cliff erosion reflect variations in wave loading conditions? 

Chapter 5 presented a workflow for integrating and processing data from a number of 

sources, with the aim of quantifying local variations in the ground motion response to wave loading 

along a ca. 900 m stretch of cliffs, where other factors (lithology, structure, weather, groundwater 

regime) are held broadly constant, over one year. The findings were used to explore how wave 

loading characteristics vary along the coastline, whether these are related to varying morphological 

controls and coastal processes, and how these variations manifest themselves in relation to 

observed variations in rockfall activity (R05). Specifically, analysis of the resulting inventory of 

more than 1.8 × 107 impacts has shown that: 

 Observations of locally wave-generated ground motions are tidally modulated, consistent 

with previous research.  

 Spatial variations in the strength of the influence of total water level on ground motions 

are conditioned by morphological controls. The cliff response to wave impacting varies 

considerably alongshore, with variations in the magnitude, frequency, and directionality 

of impacting reflecting variations in platform length, slope, and the wave approach angle. 

 Locally, longer-term variations in rockfall activity are broadly correlated with wave 

impact-driven ground motions, and the morphological conditions that drive them. These 

observations confirm the importance of the amount of wave energy available for erosional 

work, and reflect the processes outlined in many conceptual models of coastal processes, 

as well as observations made elsewhere. 

RQ4. What is the relative importance of cliff structure and wave loading in determining rates 

of erosion, and is there an optimal scenario of conditions that lead to rockfalls and 

sustained cliff erosion?  

The findings of this thesis were synthesised in Chapter 6, which evaluated the relationships 

between key metrics of erosion (derived in Chapter 3), structural controls (derived in Chapter 4), 

and morphological controls (as a proxy for wave loading, derived in Chapter 5). The analysis 
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presented takes into account spatial variations in these relationships, which are used to identify 

areas where patterns of erosion are dominated by either structural or morphological controls, or 

a mixture of both (RO6). The findings demonstrate that, along a macro-tidal, storm-dominated 

coastline: 

 Rates of cliff erosion are strongly correlated with structural or morphological controls in 

approximately equal proportions along the coast (50% versus 55%), where morphological 

controls act as a proxy for the erosional effects of wave impacting.  

 Specifically, regional-scale patterns of rockfall activity and the resulting cliff erosion are 

strongly conditioned by only structural controls along 19% of the coastline. In areas where 

high rates of erosion are strongly controlled by cliff structure, the cliff face is generally 

characterised by a combination of high joint densities, a steep gradient, and joints that 

lie sub-parallel to the topography, reflecting local observations made elsewhere. 

 Regional-scale patterns of rockfall activity and the resulting cliff erosion are strongly 

conditioned by only morphological controls along 25% of the coastline. Where high rates 

of erosion are strongly controlled by coastal morphology, the coastline is generally 

characterised by a narrower and deeper foreshore platform, and a small wave approach 

angle. 

7.2 Directions for future research 

The methodological focus of this thesis was to develop novel workflows for undertaking 

regional-scale (> 104 m) assessments of rockfall activity at previously unprecedented resolutions 

(10-1 m), and to complement these observations with high-resolution field monitoring of both the 

intrinsic and extrinsic controls on rockfalls. The resulting inventory of rockfall activity and cliff 

erosion has demonstrated the importance of sea cliff retreat as an episodic process, where sudden, 

large (> 1,000 m3) rockfall events punctuate periods of relative stability. The majority of models 

instead simulate future patterns of cliff retreat by time-averaging these processes, seemingly 

without any direct knowledge of what drives long-term rates of retreat: are they caused by the 

accumulation of several large events, or many smaller events? The challenges for developing future 

models of coastal retreat are therefore (1) to understand how long term rates of erosion emerge 

from the accumulation of individual, instantaneous events, and (2) to establish the minimum 

timescale of monitoring over which time-averaged retreat rates are representative of the longer-

term cliff retreat signal. Along slowly eroding, hard rock cliffs such as those that were the focus 

of this study, this requires monitoring over 101 year timescales (rather than 100 year timescales, 

as here), which are commensurate with time-dependent failure processes operating alongshore. 

In an idealised scenario, rock slope monitoring would be undertaken at relatively high 

frequencies (< 100 year) and over long timescales (> 101 year), in order to capture the full range 

of time-dependent failure processes that drive large-scale, profile-form change. For example, 
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observations of contiguous failure scars coalescing, and consequently destabilising the rock face 

above, are relatively common in previous research undertaken along the North Yorkshire coast. 

However, the coarse temporal resolution of monitoring undertaken here permitted the observation 

of only a small proportion of spatially contiguous rockfalls (10.5%), in comparison with a value of 

1.7% that would be expected under conditions of complete spatial randomness. This attests to the 

importance of stress redistribution following previous rockfalls in promoting damage accumulation 

and, eventually, further rock slope failure, even on a regional scale. This tendency would likely 

increase with higher frequency monitoring, which has been shown elsewhere to disaggregate single 

scars observed over longer periods into multiple overlapping events. The method developed for 

assessing the 3D spatio-temporal contiguity of rockfalls in this research is advantageous over 

commonly-used approaches that rely on the analysis of point pattern processes, such as Ripley’s 

K-function. Such approaches assume that the dimensions of a rockfall are negligible in relation to 

the surface from which they are released. With higher frequency monitoring, future research could 

therefore explore the propagation of failures through time (in 3D), rockfall scar geometries, and 

relationships with the quality of the rock mass. 

A core motivation of this thesis has been to make a step-change in our understanding of 

the drivers of rockfalls, shifting the focus towards the regional scale. The findings of this research 

have demonstrated the importance of rock mass structure in conditioning spatial variations in 

both the shape and size of rockfalls, and the resulting erosion, at a regional scale. Here, variations 

in the geometric properties of exposed discontinuity surfaces have partly been treated as a proxy 

for the effect of lithology, in the absence of data recorded at a commensurate resolution. Previous 

local-scale observations of rockfall occurrence along the coast have stressed the importance of 

lithology in defining both rockfall shape and scar contiguity through time. With the increasing 

pervasiveness of low-cost platforms able to undertake high-resolution monitoring, a priority for 

research in this area should be in honing the ability to derive lithological models at scale. This 

could potentially involve UAV-acquired photography and Structure-from-Motion point cloud data 

to aid detailed mapping, or interpolating nearby borehole measurements and using the lithological 

boundaries from the resulting 3D geological model to subdivide point clouds into lithological 

classes. 

Relationships between local scale (102 m) observations of cliff toe wave impacting and 

morphological controls (aspect, platform length, platform slope, and inundation duration) were 

stronger than those applied at regional scales (> 104 m). This difference could simply be driven 

by spatial variations in rock mass structure, or it could represent the effect of site-specific 

conditions, potentially introducing geomorphic feedbacks that complicate the analysis of driver-

effect relationships. Given the known importance of nearshore and foreshore bathymetry in driving 

spatial variations in wave energy delivery to the cliffs, wave and water level conditions at the cliff 

toe should be monitored directly in the future. At a regional scale, a more appropriate means of 
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upscaling these observations would entail using nearshore wave models to model patterns of wave 

propagation and changes in wave properties due to refraction, diffraction, shoaling, and 

interactions with currents alongshore. This would allow for a stronger process-based understanding 

of the links between variations in morphological controls, wave impacting, and cliff erosion. 

Along a stretch of cliffs where lithology and structure remain approximately uniform, the 

ground motion data collected here have demonstrated a clear correlation between the dynamic 

loading of coastal cliffs and observations of longer-term rockfall activity. Future research should 

aim to test whether there is a direct driver-effect relationship, or if the relationship observed here 

simply arises because cyclic loading acts as a proxy for other processes, such as variations in 

energy delivery. On coastal rock slopes, isolating the damage effects caused by each forcing 

variable is difficult due to the number of processes operating concurrently that are conducive to 

damage and subsequent fracture. Future research should therefore seek to test the role of 

variations in loading characteristics on damage accumulation in a laboratory setting, using stress 

magnitudes and frequencies of the same order of magnitude as those observed in the field, in order 

to establish their importance for the timing and distribution of rock slope susceptibility to failure. 
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1. INTRODUCTION 

The most significant advances in our abil-
ity to detect rock slope deformation and to 
quantify change across a range of spatial 
and temporal scales have come from the 
application of terrestrial, airborne and 
spaceborne remote sensing techniques 
(Metternicht et al., 2005). Among these, 
the use of Terrestrial Laser Scanning (TLS) 
technology has become increasingly wide-
spread due to its ability to rapidly acquire 
dense 3D point clouds that can be used to 
derive 3D slope geometry on steep to verti-
cal rock faces (Royán et al., 2013). Sequen-
tial TLS can be used to efficiently monitor 
rockfall activity, providing a more accurate 
representation of the distribution of types 
and rates of cliff erosion and failure than 
measurements of cliff top recession (Lee & 
Clark, 2002; Rosser et al., 2013).  

The ability to precisely quantify and 
therefore understand rockfall behaviour is 
critical for a number of reasons, including 
(1) that rockfalls are an important factor 
in defining rates of rock wall retreat in cliff 
and high-mountain geosystems (Moore et 
al., 2009), (2) that rockfall shapes, vol-

umes, source area locations and cliff sur-
face geometry are known to influence rock-
fall trajectories (Leine et al., 2014), (3) for 
successfully modelling the present and fu-
ture dynamics of failing rock slopes, and 
(4) that the reliability and efficiency of 
rockfall hazard protection measures de-
pends on the outcome of these modelling 
practices (Crosta et al., 2015). However, 
quantifying rockfall activity has proven 
problematic, with a range of approaches 
currently used to measure the retreat, area 
or volume of changes in rock-slopes 
(Abellán et al., 2014). 

In this paper we examine the relative 
benefits of 2D and 3D methods of change 
detection for quantifying rockfall volume. 
The paper begins by introducing both 
methods of change detection before dis-
cussing the influence of the chosen method 
on rockfall volume estimates, which is 
demonstrated using data obtained from an 
inventory of rockfalls recorded at Staithes, 
North Yorkshire (UK). We conclude by 
considering the implications of 3D tech-
niques for defining rockfall geometry and 
for inferring different processes of change 
on near-vertical rock slopes. 
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 ABSTRACT: The most commonly used methods for detecting and characterising re-
gional-scale changes in cliff morphology involve differencing high resolution Digital Ele-
vation Models. An inherent assumption of this 2D method is that the cliff can be reduced 
to a planar surface, which becomes invalid where cliffs change aspect. In this paper we 
examine the relative benefits of 2D and 3D methods of change detection, the latter of 
which draw on raw point cloud data, for deriving inventories of change. In our analysis 
we test both methods of change detection on two high resolution point clouds derived 
from Terrestrial Laser Scanning of the coastal cliffs at Staithes, North Yorkshire (UK). 
The analysis highlights the importance of the chosen method for accurately constraining 
the size distributions of rockslope failures, as well as the geometry of the failures them-
selves. We conclude by considering the implications of 3D techniques for defining rockfall 
geometry and inferring different processes of change. 
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2. 2D CHANGE DETECTION 

Quantification of volumetric change be-
tween TLS surveys is most commonly 
achieved by rasterising successive point 
clouds and differencing the resultant Digi-
tal Elevation Models (DEMs; James et al., 
2012). Many of these approaches resort to 
gridding the data into erosional cells in or-
der to reduce processing time and com-
plexity. This technique has been used to 
monitor rock-slope deformation (Bauer et 
al., 2005) and precursors to slope failure 
(Abellán et al., 2009); debris flows (Scheidl 
et al., 2008; McCoy et al., 2010; Blasone et 
al., 2014); landslide dynamics (Corsini et 
al., 2009; Burns et al., 2010; Kasperski et 
al., 2010); rock glaciers (Avian & Kellerer-
Pirklbauer, 2009); and for monitoring 
slope failures in rapidly eroding, soft rock 
sea cliffs (Adams & Chandler, 2002; 
Kidner et al., 2004;  Xhardé et al., 2006; 
Kuhn & Prüfer, 2014;  Young, 2015). 
Quantifying change by differencing DEMs 
is relatively simple, fast and permits the 
explicit calculation of uncertainties related 
to point cloud quality, co-registration and 
surface roughness. 

However, representing a surface as a 
regular 2D grid imposes a limit on the level 
of detail that can be obtained when using 
that surface in subsequent change detec-
tion analyses. This is particularly im-
portant when considering surfaces that are 
prone to changes such as rockfall activity, 
which occurs over different length scales 
(Lim et al., 2010). Differencing these sur-
faces derives a one-dimensional measure-
ment of change in the z direction only, typ-
ically aligned towards the sensor (see 

Avian & Kellerer-Pirklbauer, 2009). 
Rough surfaces therefore generate patterns 
of occlusion that are view-dependent and 
convolute volume estimation. Deviation 
away from the normal viewing angle (0 de-
grees) can have a profound influence on 
the magnitude of change detected. The 
case in Fig. 1 illustrates the influence of 
viewing angle on the amount of occlusion 
generated by roughness and pre-/post-fail-
ure micro-topography across the rockfall 
surface, and the consequences of this for 
volume estimation. Where rock slopes 
have more a complex, non-planar aspect, 
for example in a headland-embayment se-
quence, this type of approach requires the 
scan data to be rasterised and differenced 
in separate sections in order to maintain a 
cliff-normal viewing angle. Given that the 
pattern in the range of volume estimates 
is not consistent, the degree of under- or 
over-estimation of change cannot neces-
sarily be compensated for if the view-angle 
from the sensor to the slope is known.  

Reducing 3D point cloud data to a 
pseudo-3D surface in this manner there-
fore hinders accurate quantification of 
rock wall adjustment and retreat (Abellán 
et al., 2014). This has the effect of losing 
detail and the true 3D character of the 
data, with the development of new algo-
rithms for 3D deformation tracking and 
change detection thus representing a pri-
ority for monitoring rock slope dynamics 
(Carrea et al., 2012). The use of these 
methods will allow the precision of 2D 
techniques to be assessed, and to thereby 
place more realistic error margins on 
previous estimates of rockfall volume or 
rates of rockwall retreat.   

Figure 1. Influence of viewing angle on the magnitude of change detected. The rockfall (volume 
= 16.20 m3) was recorded at Staithes, North Yorkshire (UK) over a 10 month monitoring pe-
riod between August 2014 and June 2015. 
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3. 3D CHANGE DETECTION 

A number of 3D methods have been devel-
oped to measure the distance between two 
successive point clouds (Girardeau-Mon-
taut et al., 2005). These techniques include 
cloud-to-mesh (C2M) and direct cloud-to-
cloud (C2C) comparison methods. C2M 
methods create a surface model from the 
reference point cloud via meshing or trian-
gulation and measure the distance be-
tween this and subsequently gathered 
point clouds (e.g. Abellán et al., 2009; 
2010; Olsen et al., 2010). Such methods 
have been successfully used to investigate 
cases of structural or surface deformation, 
including structural monitoring of a large 
dam (Alba et al., 2006); detecting land 
surface changes in the Grand Canyon, Ar-
izona (Collins et al., 2012); and quantify-
ing erosion in the coastal bluffs of the Le 
Sueur River, southern Minnesota (Day et 
al., 2013). However, in order to accurately 
determine volumetric change, triangulated 
surfaces must be free of topological holes 
and intersecting triangles. The surface 

normal for each triangle, which is calcu-
lated using the orientation of its three 
edges, must also point towards the same 
side of the mesh. The majority of surface 
reconstruction techniques have been devel-
oped and tested using regular shapes 
and/or denoised point clouds (see Lim & 
Haron, 2014 for a review), meaning that 
they are difficult to employ on rough, com-
plex surfaces defined by marked topo-
graphic variability (Olsen et al., 2015). 

C2C techniques instead estimate sur-
face changes directly from the distance be-
tween point neighbours in successive point 
clouds, eliminating the need for mesh con-
struction and the smoothing of any noisy 
data (Lague et al., 2013). These distances 
can be measured automatically using the 
Hausdorff metric, which computes the un-
signed distance for each point in the refer-
ence cloud to its nearest neighbor in the 
second cloud. If and where point clouds are 
sparse, their quality can be improved by 
using a local model of the reference surface 
obtained by using a least square fit, a 
quadratic height function, or a Delaunay 

Figure 2. Aerial photo of the coastal rock slopes at Staithes, North Yorkshire. The cliffs are 
divided into Sites A and B to account for the changing aspect of the coastline. 
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triangulation of the closest point neigh-
bours (Gruen & Akca, 2005). These pro-
vide a better approximation of the true po-
sition of the surface and are better able to 
deal with outliers and variations in surface 
roughness than Hausdorff distances. These 
techniques have recently been extended by 
the Multiscale Model-to-Model Cloud 
Comparison approach (M3C2; Lague et 
al., 2013). M3C2 estimates surface normals 
in 3D and measures the signed mean sur-
face change along the normal direction, 
with the explicit calculation of a spatially 
variable confidence interval (SVCI). The 
algorithm incorporates a local measure of 
cloud roughness and point density for es-
timating the SVCI, which can be used to 
test the statistical significance of any 
measured changes (Barnhart & Crosby, 
2013; Earlie et al., 2013; Stumpf et al., 
2015). 

4. APPLICATION TO ROCKFALL 

DATA 

We now explore the implications of differ-
ent methods of change detection using 
rockfall data derived from a near-vertical 
coastal rock slope at Staithes, North York-
shire (UK; Fig. 2). The cliffs along the 
North Yorkshire coast have been exten-
sively monitored using TLS for over a dec-
ade, providing a baseline dataset on ero-
sion rates, rockfall inventories, nearshore 

wave conditions and patterns of energy de-
livery to the cliffs (e.g. Lim et al., 2005, 
2010;  Rosser et al., 2005, 2013; Barlow et 
al., 2012). Our analysis is divided into two 
parts: a comparison between inventories 
derived using both a 2D and a 3D method 
of change detection, and secondly, a com-
parison between these and a number of 
other 3D methods discussed in Section 3. 
Two inventories were first produced using 
data that was captured over a 10 month 
monitoring period between August 2014 
and June 2015. A 2D inventory was ob-
tained by rasterising the two point clouds 
at 0.05 m grid spacing and differencing the 
resultant DEMs. A 3D inventory was then 
obtained using M3C2 to identify areas of 
significant volumetric change. Four addi-
tional 3D inventories were also obtained 
for the same dataset using C2C compari-
son methods (Hausdorff distance; height 
function; least squares plane; Delaunay 
triangulation). These areas were then iso-
lated and meshed to generate a 3D rockfall 
inventory. In all cases, a minimum detect-
able change of 0.10 m was used in order to 
allow for registration errors and to ensure 
comparability between the datasets. 

The differences between the outputs of 
2D and 3D methods of change detection 
are first illustrated using two rockfalls cap-
tured by both inventories, which are 
shown in Fig. 3. Volumetric meshing 
clearly presents a significant advantage 
over traditional 2D approaches to change 

Figure 3. Two large rockfalls captured by both inventories. The volumetric meshes are viewed in 
the Y-Z (left), X-Z (right) and X-Y (top) directions for both rockfalls. The 2D polygon and hill-
shade image is displayed for each rockfall alongside its volumetric mesh.  
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detection by virtue of its ability to retain 
the 3D shape of the failure. The resultant  
meshes are not view-dependent, unlike the 
rasterising process used to generate rock-
fall polygons. This allows for more accu-
rate characterisation of the failure geome-
try and surface roughness as well as deri-
vation of the centre of mass and/or grav-
ity. In the future, measures of surface tex-
ture and roughness derived from 3D 
meshes could be developed and used to de-
termine rock slope failure mode, such as 
fracturing, sliding, circular failure or top-
pling. Inventories that are obtained in 3D 
therefore have the potential to considera-
bly improve rockfall runout modelling and 
the design of structural mitigation 
measures. It is also worth noting that an 
important area for future research will be 
to extend these procedures in order to ef-
ficiently evaluate rockfalls occurring over 
greater areas than are presented in this pa-
per. 

Over 460 rockfalls were captured in 
both inventories, with volumes ranging be-
tween < 0.0001 m3 and c. 27 m3. The vol-
ume-area scaling relationship for both in-
ventories is shown in Fig. 4A. Both relate 
to a power law scaling relationship of the 
form V = αAγ, where α = -0.588 (2D) and 
-1.391 (3D), and γ = 1.202 (2D) and 1.491 
(3D). The large difference in α between the 
two datasets is likely to be due in part to 
differences in the way that each method 
calculates the surface area: 2D methods 
generate a polygonal rockfall scar area 
while 3D methods calculate the surface 
area of the rockfall mesh. However, the dif-
ference between rockfall volumes esti-
mated by 2D and 3D methods also sug-
gests that the scale and manner in which 
they differ varies with rockfall magnitude 
(Fig. 4B). This reflects the fact that 2D 
and 3D approaches behave differently 
when considering small depth changes on 
the periphery of a rockfall. For example, 
changes in point density, surface rough-
ness and normal direction are known to 
lead to considerable under- or over-estima-
tion of calculated volumes (e.g. Earlie et 
al., 2013). For smaller rockfalls (< 0.01 
m3) the volumetric differences introduced 
by these edge effects constitute a greater 
proportion of the overall rockfall volume 
than larger rockfalls, such as those shown 

in Fig. 3. In 2D volume estimates these ef-
fects are compounded by the influence of 
viewing angle on the amount of occlusion 
generated by roughness and micro-topog-
raphy across the rockfall surface.  

We now consider the differences be-
tween magnitude-frequency distributions 
derived using 2D and 3D volume esti-
mates. Considerable research has been 
published on magnitude-frequency distri-
butions and their ability to quantify the 
erosive impact of geomorphic processes, 
such as landslides and rockfalls, over large 
areas (Malamud et al., 2004). It is well-
established that rockfall magnitude-fre-
quency distributions exhibit a negative 
power law scaling that can be modelled us-
ing: 

 
																									�(�) = ����																			(1) 

 

Figure 4. A. Volume-area scaling for the rock-
fall inventories obtained in Section 4. B. Dif-
ference between 2D and 3D volumes ex-
pressed as a percentage of 2D volume. 

A 

B 
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where f(V) represents the frequency den-
sity, V is the event magnitude, and s and 
β are constants (Brunetti et al., 2009). 

Both the 2D and 3D inventories can be 
represented using power law scaling rela-
tionships, where the exponent β falls inside 
the 0.60 – 1.50 range for rockfalls sug-
gested by Hergarten (2003; Fig. 5A). The 
inventories also exhibit a clear rollover in 
the distribution at low event magnitudes 
(< 0.01 m3). This can be attributed to cen-
soring by under-sampling and other biases, 
such as the relatively high threshold that 
was set for the minimum detectable 
change (0.10 m) during data processing, as 
well as differences in the way that direct 
cloud-to-cloud comparison methods iden-
tify and treat ‘insignificant’ change.   

Our most notable finding is that the 
forms of the magnitude-frequency distri-
butions obtained using 2D and 3D meth-
ods of change detection are profoundly dif-
ferent: this is reflected by the pronounced 

differences between the values for s (1.219 
and 1.025) and β (-0.861 and -0.699) for 
both datasets, respectively (Table 1). 
While there is some variation in the mag-
nitude-frequency distributions obtained by 
other methods of 3D change detection 
(Fig. 5B; Table 1), this is to be expected 
given that the various approaches behave 
differently when considering different 
types of surface. For example, distance 
computation using a local model with a 
Delaunay triangulation is more adapted to 
representing sharp edges, while a quad-
ratic height function best represents 
smooth surfaces. These differences have 
important ramifications for our ability to 
accurately quantify and predict the volu-
metric erosional fluxes associated with 
rockfalls. Here, the total erosion estimated 
using a 2D method of change detection 
(139.86 m3) exceeds that obtained by vol-
umetric meshing (101.09 m3) by over 25%. 
Assuming a similar performance across 

Figure 5. A. Magnitude-frequency distributions for the 2D and 3D rockfall inventories. B. Magni-
tude-frequency distributions for the five methods of 3D change detection tested (M3C2; C2C; C2C 
with a quadratic height function (HF); with a least squares plane (LSP) and with a Delaunay 
triangulation (2DT). 

A             B 

Table 1. Volume estimates and corresponding scaling relationships 
 V Erosion rate Scaling 

 m3 m yr-1 - 

2D 139.86 0.0095 1.219V-0.861 

3D (M3C2) 101.09 0.0069 1.025V-0.699 

3D (C2C) 96.29 0.0066 1.031V-0.688 

3D (C2C HF) 97.47 0.0066 1.013V-0.673 

3D (C2C LSP) 100.03 0.0068 0.997V-0.649 

3D (C2C DT) 96.31 0.0066 1.016V-0.676 
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other datasets, the results obtained sug-
gest that existing inventories may consid-
erably overestimate rockfall volumes.  

4. CONCLUSIONS 

Using observed rockfall data we have ex-
plored the implications of different meth-
ods of change detection for rockfall volume 
estimation. The results indicate that rock-
fall geometry has a profound influence on 
the ability of any given method to accu-
rately quantify rockfall volume. This is at-
tributed to the combined effects of viewing 
angle and surface texture, whereby the 
most appropriate change detection 
method for any given rock slope can be de-
fined as a function of point density, surface 
roughness and the overall shape or geom-
etry of the rockfalls being generated. The 
pronounced variability between these 
methods clearly demonstrates a need for 
specific and consistent processing of TLS 
data in order to maximize analytical accu-
racy. Our analysis demonstrates that re-
ducing 3D data to a pseudo-3D surface can 
exert a profound effect on rockfall volume 
estimation, and we therefore encourage a 
thorough appraisal of the influence of the 
change detection method used during the 
creation of rockfall volume inventories. 
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Appendix B 

Ground control data for airborne LiDAR surveys 

Below is a map showing the ground control points used in the four airborne LiDAR sur-

veys undertaken. The locations of each of the repeated sites (CBAR, GOLF, KETT, RUNS, and 

SKIN) differ only slightly between surveys, and so are represented by the same point.  
 

Ground control points and measured data for the first airborne LiDAR survey (15/08/2014). ‘Outside’ 

denotes that the point was beyond the laser range. 

Site 
Easting Northing Known Z Laser Z DZ 

- - m m m 

GCP1 486212.91 512722.60 7.13 7.16 +0.03 

GCP2 483041.05 515631.56 88.99 89.02 +0.03 

GCP3 477655.35 518824.29 50.13 50.16 +0.03 

GCP4 477652.29 518884.98 49.50 49.51 +0.01 

GCP5 480895.89 516001.91 24.23 24.22 -0.01 

GCP6 479581.41 517653.39 92.66 92.61 -0.05 

GCP7 471440.21 520102.31 6.34 Outside - 

Base 482857.46 513475.47 198.23 Outside - 

CBAR 477952.36 518874.76 40.37 40.42 +0.03 

GOLF 487742.31 511977.04 36.03 36.03 0.00 

KETT 483188.69 515750.95 96.14 96.12 -0.02 

RUNS 481001.77 515993.46 7.17 7.12 -0.01 
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Ground control points and measured data for the second airborne LiDAR survey (04/06/2015). 

Site 
Easting Northing Known Z Laser Z DZ  

- - m m m 

CBAR 477657.55 518843.71 50.12 50.10 -0.02 

GOLF 488240.44 511967.09 5.59 5.65 +0.06 

KETT 483188.70 515749.60 95.99 96.09 +0.10 

RUNS 481008.19 515990.98 7.37 7.40 +0.03 

SKIN 472577.04 519814.29 75.91 75.95 +0.04 

 

 

Ground control points and measured data for the third airborne LiDAR survey (08/04/2016). 

Site 
Easting Northing Known Z Laser Z DZ  

- - m m m 

CBAR 477655.09 518844.78 50.09 50.05 -0.04 

GOLF 488236.92 511966.69 5.57 5.62 +0.05 

KETT 483188.16 515750.10 96.09 96.09 0.00 

RUNS 481005.92 515991.91 7.34 7.35 +0.01 

 

 

Ground control points and measured data for the fourth airborne LiDAR survey (29/03/2017). 

Site 
Easting Northing Known Z Laser Z DZ  

- - m m m 

CBAR 477659.64 518844.08 50.08 50.08 0.00 

GOLF 488243.69 511965.36 5.56 5.56 0.00 

KETT 483188.96 515751.77 96.53 96.55 +0.02 

RUNS 480979.79 516006.53 13.26 13.25 -0.01 

 

 

Summary statistics for each of the four airborne LiDAR surveys undertaken. 

Survey 
Min DZ Max DZ Average DZ RMSE SD 

m m m m m 

15/08/2014 -0.05 +0.03 +0.004  0.03 0.03 

04/06/2015 -0.02 +0.10 +0.040  0.05 0.04 

08/04/2016 -0.04 +0.05 +0.005  0.03 0.04 

29/03/2017 -0.010 +0.02 +0.002  0.01 0.01 
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Appendix C 

Calculating the volume of objects represented by triangular surface meshes 

The volume and centroid of a rigid body represented by a triangular surface mesh can be 

calculated using the divergence theorem. All rigid bodies, and therefore their parameters, can be 

expressed in terms of 3D moments. Closed-form expressions for the 3D moments of objects repre-

sented by triangular surface meshes are derived here. The workings are summarised from 

Semechko (2014), whose RigidBodyParams function was used in this work. The function can 

be downloaded from the MATLAB® file exchange, at: https://uk.mathworks.com/matlabcen-

tral/fileexchange/48913-compute-exact-rigid-body-parameters-of-objects-represented-by-triangu-

lar-surface-meshes. 

If a region of space Ω  ℝ3 is occupied by a rigid body, the material density of which is 

described by the scalar function: 

 

																																																																														�(�, �, �): �
	
→ ℝ�,																																																																							[C1]  

 

for a particular point in space, then the 3D moment of order � + � + � is defined as: 
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For an object with uniform density, �(�, �, �) is constant, so Equation 2 can be simplified to: 

 

																																																																						���,�,�(Ω) = ��
������Ω

	

�
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The 3D moments defined in Equation C4 can also be evaluated by changing the domain of 

integration from the volume occupied by the region, Ω, to the surface enclosing that region, S, 

such that ���,�,�(Ω) = ���,�,�(�). This equivalence is enabled by the divergence theorem, which 

states that the outward flux of a vector field through a closed surface is equal to the volume 

integral of the divergence over the region inside the surface: 

 

																																																																									����⃗ ∙ �⃗��Ω

	

�

= � �⃗ ∙ ��⃗ ��,																																																														[C4] 

 

where ��⃗ =
�

��
I� +

�

��
ȷ̂ +

�

��
k�, and �⃗ = �	

� (�, �, �)I� + �	
� (�, �, �)ȷ̂ + �	

� (�, �, �)k�. 
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Let �⃗ = �⃗�,�,�, so that, by combining Equation C3 and Equation C4: 

 

																																																																							��⃗ ∙ �⃗ = ��⃗ ∙ �⃗�,�,� = �
�����.																																																														[C5] 

 

Therefore: 

 

																																																						������ =
�� �	
�
�,�,��
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+
�� �	
�
�,�,��

��
+
�� �	
�
�,�,��

��
.																																													[C6] 

 

One of the solutions of this partial differential equation is: 

 

																																																																							 �	
�
�,�,� =

1

3(� + 1)
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																																																																							 �	
�
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1
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																																																																							 �	
�
�,�,� =

1

3(� + 1)
��������.																																																																				 

 

Since a triangular surface mesh is composed from a union on N triangles (�	 = 	⋃��), the moment 

of the region enclosed by the mesh surface can be written as the sum of the moments of the 

individual triangles: 

 

																																				���,�,�(S) = � �⃗�,�,�

	

�

∙ ��⃗ �� =� ��⃗�,�,� ∙ ��⃗ �� =
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�

���

���,�,�(��)

�

���

.																														[C8] 

 

By combining Equation C7 with Equation C8: 

 

																																																																	��,�,�(��) = ���� � �	
�
�,�,���

	

��

�

���

.																																																											[C9] 

 

This can be rewritten in terms of barycentric coordinates (see Figure C1), such that: 

 

																																																							� �	
�
�,�,���

	

��

= 2�� � � ��,�,�(�, �)�����
�

���

�

�

�

,																																															[C10] 

 

where Ai is the area of the triangle Ti, and the integrand ��,�,�(�, �)�
�

 is defined as: 
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																																	 ��,�,�(�, �)�
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�(�, �), � = 1																																																

1
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�(�, �)��

���(�, �)��
�(�, �), � = 2																																				[C11]

1

(� + 1)
��
�(�, �)��

�(�, �)��
���(�, �), � = 3																																																

 

 

where: 

 

																																																									��(�, �) = (��� − ���)� + (��� − ���)� + ���,																																																				 

																																																									��(�, �) = (��� − ���)� + (��� − ���)� + ���,																																									[C12] 

																																																									��(�, �) = (��� − ���)� + (��� − ���)� + ���,																																																						 

 

To summarise: 
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The total volume, V, of the region Ω occupied by the rigid body is: 

 

																																																																																				� = ��Ω

	

�

,																																																																													[C14] 

 

which, by comparison with Equation 3, is equal to the zeroth moment: 

 

																																																																																					� = ��,�,�.																																																																												[C15] 

 

 

Figure C1 Barycentric coordinates (u,v) can be used to specify the location of a point inside a planar 

triangle. Note that 0 ≤ u, v ≤ 1 and 0 ≤ u + v ≤ 1. 
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Centroids of the rigid body with respect to the x-, y-, and z-axes are defined as: 

 

																		�̅ =
∫ ��Ω
	

�

∫ �Ω
	

�

,																																					 �� =
∫ ��Ω
	

�

∫ �Ω
	

�

,																																					 �̅ =
∫ ��Ω
	

�

∫ �Ω
	

�

,												[C16] 

 

where comparison with Equation 3 gives: 

 

																			�̅ =
��,�,�
��,�,�

,																																											�� =
��,�,�
��,�,�

,																																											�̅ =
��,�,�
��,�,�

.														[C17] 

 

For reference, a figure showing the trianglular surface mesh of a rockfall is shown below. In order 

to accurately calculate rigid body parameters, the face normals of the mesh must be consistent in 

their orientation and point outwards, away from the region enclosed by the surface (Figure C2).

Figure C2 Triangular surface mesh of a rockfall recorded at Staithes over a 10-month monitoring period 

between August 2014 and June 2015. The mesh is viewed from the side. The surface normals for each triangle 

are pointing outwards, away from the region enclosed by the surface. 
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 Appendix D 

Power law scaling parameters derived from terrestrial monitoring of rockfalls 

 Absolute β/ρ values derived from previous terrestrial monitoring of rockfalls, sorted by β. Values in bold are those reported. 

Location 
Rockfalls Length scaleb Intervalc Volume Thresholdd  Distributione PDFf CCDF Reference 

- m hr/d/m/yr m3 m3 - Slope, β Slope, ρ - 

North Yorkshire, UK 

14,460 20,459 294 d 10-4 – 103 1 × 10-3 

NC F(VR) 

1.69 0.69 

This work 18,729 20,459 310 d 10-4 – 103 1 × 10-3 1.64 0.64 

24,843 20,459 356 d 10-4 – 104 1 × 10-3 1.54 0.54 

Sharon Escarpment, Israel 101 730 V 100 – 103 1 × 100 NCF 1.02 0.02 Katz and Mushkin (2013) 

Grenoble, France 87 120,000 60 yr 10-2 – 106 5 × 101 CF 1.41 0.41 Dussauge-Peisser et al. (2002) 

British Columbia, Canada 390 - 30 yr 10-2 – 104 1 × 100 CF 1.43 0.43 Hungr et al. (1999) 

Upper Arly Gorges, France 59 2,200 22 yr 100 – 104 2 × 101 CF 1.45 0.45 Dussauge-Peisser et al. (2002) 

Yosemite Valley, California 101 100,000 78 yr 100 – 106 5 × 101 CF 1.46 0.46 Dussauge-Peisser et al. (2002) 

Mesnil-Val, France 8,582 750 6 m 10-4 – 104 1 × 10-3 CF 1.54 0.54 Dewez et al. (2013) 

Balza Tagliata, Italy 1,696 2,200 E 10-5 – 101 2.4 × 10-5 NC F(VR) 1.60 0.60 Guzzetti et al. (2004) 

British Columbia, Canada 918 n/a 22 yr 10-2 – 104 1 × 100 CF 1.65 0.65 Hungr et al. (1999) 

Illgraben, Switzerland 2,170 1,250 19 yr 101 – 106 1 × 102 NC F(VR) 1.65 0.65 Bennett et al. (2012) 

Feifeng, China 27 150 200 yr 10-1 – 102 1 × 100 CF 1.65 0.65 Wang et al. (2014) 
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La Cornalle, Switzerland 118 115 6 m 10-2 – 101 1 × 10-1 CF 1.68 0.68 Carrea et al. (2015) 

Lauterbrunnen, Switzerland 122 6,000 2 m 10-2 – 102 1 × 10-2 NC F(VR) 1.71 0.71 Strunden et al. (2015) 

Illgraben, Switzerland 1,475 1,250 19 yr 101 – 106 1 × 103 NC F(VR) 1.76  0.76 Bennett et al. (2012) 

Boulby – Staithes, UK 114,505 482 30 d 10-6 – 103 1.25 × 10-4 CF 1.80 0.80 Lim et al. (2010) 

Whitby, UK > 180,000 215 30 d 10-3 – 101 1 × 10-3 NC F(VR) 1.81 1.81 Williams et al. (2018) 

Hong Kong 201 n/a 5 yr 10-1 – 103 1 × 100 CF 1.89 0.89 Chau et al. (2003) 

British Columbia, Canada 1,982 1,000 38 – 114 d 10-2 – 101 3 × 10-2 CF 2.01 1.01 van Veen et al. (2017) 

Boulby, UK 31,987 88 30 d 10-3 – 101 1 × 10-3 NC F(VR) 2.17 1.17 Norman (2012) 

Whitby, UK > 180,000 215 < 1 hr 10-3 – 101 1 × 10-3 NC F(VR) 2.27 1.27 Williams et al. (2018) 

Boulby – Staithes, UK 61,529 482 30 d 10-6 – 104 3 × 10-4 NC F(VR) 1.12 – 2.12 0.12 – 1.12 Barlow et al. (2012)* 

Boulby – Staithes, UK 513,576 604 30 d 10-6 – 103 5 × 10-4 NCF 1.12 – 2.37 0.12 – 1.37 Rosser et al. (2007)* 

a Specifies whether the inventory was collected in 2D (rockfall polygons) or 3D (rockfall meshes). 

b Horizontal length scale over which the inventory was collected. For example, along 100 m of cliffs, or in a 2,000 m long valley. 
c Monitoring interval in hours, days, months or years. Note that this is not the same as the monitoring period, which might either be the same or longer. E, event-based; 

V, variable. 
d Threshold volume below which the power law scaling relationship can no longer be applied. 
e Type of power law distribution: CF, cumulative number or frequency per year; NCF, non-cumulative number or frequency per year; F(VR) frequency density. 
f Slope of the power law distribution. This varies depending on whether the power law distribution is modelled using a probability density function (PDF, slope = β) or a 

complementary cumulative distribution function (CCDF, slope = ρ). The slope of the CCDF is related to β by ρ = β - 1. 

* Denotes papers that provide monthly variations in β, which is given here as a range. 
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Appendix E 

Regional-scale examples of facet analysis 

Included in this appendix are three figures that demonstrate the facet analysis undertaken 

in Chapter 4 on a broader scale (> 102 m). Point clouds and the facets derived during the analysis, 

which are coloured by density, facet dip, and facet aspect, are shown for the cliffs at Kettleness, 

Staithes, and Boulby. 
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Appendix F 

Spatial variations in rockfall volume distributions 

The two figures presented in this appendix complement the analyses shown in Figures 

4.17 (p. 76) and 4.18 (p. 78), which consider variations in rockfall shape along the North Yorkshire 

coast, and variations in how rockfall shape is correlated through time. Accompanying information 

is included below. 

The first figure (p. 193) complements Figure 4.17 (p. 76) and shows rockfall volume 

distributions monitored along the North Yorkshire coast, UK, from (a) 2014 – 2015, (b) 2015 – 

2016, and (c) 2016 – 2017. Rockfall volume is plotted as a stacked bar graph, with distance along 

the coastline divided into 100 m bins. Colours correspond to volumes that were plotted using 

logarithmically binned data, as in the magnitude-frequency analysis undertaken in Section 3.2.6. 

The inset in (d) shows in detail the previously monitored sites (Table 2.01, p. 19) as well as the 

sites monitored in Chapter 5. White bands denote harbours, beachy embayments, and other gaps 

in the point cloud data where cliffs are absent or densely vegetated. 

The second figure (p. 194) complements Figure 4.18 (p. 78) and shows spatial variations 

in the correlations between rockfall volumes. Correlations are windowed (± 200 m) and only 

shown in (a) if there is a positive correlation between volumes observed in both 2014 – 2015 and 

2015 – 2016, and 2015 – 2016 and 2016 – 2017. The total number of positively correlated volume 

classes (out of a possible 24) for each 100 m bin is shown in (b). The percentage of 100 m bins 

(total = 237) in each volume class that exhibit positive correlations is shown in (c). The inset in 

(d) shows in detail the previously monitored sites (Table 2.01, p. 19) as well as the sites monitored 

in Chapter 5.  
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Appendix G 

Wave transformation modelling 

 To approximate conditions across the cliffs, monitored distal waves and tidal data were 

modelled using a transformation based on Battjes and Stive (1985) derived by Norman et al. 

(2013). The information presented here is summarised from Norman et al. (2013). The model uses 

two types of inputs, including (1) those calculated at each timestep and at each location in the 

profiles given in Figure G1, and (2) those that were given initial values at the offshore location. 

An initial distance of 1,000 m was used as the water depth at this distance, and therefore wave 

conditions, are approximately equal to those offshore according to linear wave theory. 

Figure G1 Bathymetric profiles at each monitoring site. Red arrows show the profile direction, which was 

chosen using the prevailing wave direction observed over the monitoring period (inset). Black squares 

represent where wave characteristics were estimated by the model. 
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Still water depths were calculated at each timestep and at each location in the profiles 

based on the tidal elevation relative to the bathymetry at that location. The wave number, k, was 

then calculated as follows: 

 

																																																																																						� =
2�

�
,																																																																																		[G1] 

 

where the dependence of k on the wavelength, L, means that k varies with depth. The wave period, 

T, for each timestep was recorded by the wave buoy and assumed constant throughout the depth 

profile for each timestep. Initial values of the wave height at 1,000 m offshore were obtained by 

shoaling the offshore significant wave heights, Hs, measured at the wave buoy. This was converted 

to the root mean square wave height, Hrms, using: 

 

																																																																														���� = 1.42 ∙ ��.																																																																									[G2] 

 

These values were then provided as initial wave height values as follows: 

 

																																																																																�� = ���
����
����

,																																																																										[G3] 

 

where c1 and c2 are the wave celerity at the wave buoy and 1,000 m offshore (Equation G4), and 

n1 and n2 are equal to n at the wave buoy and 1,000 m offshore (Equation G5). According to Airy 

linear theory, the calculation of wave celerity varies depending on the ratio of the water depth 

below the still water tide level, d, to offshore wavelength, Lo, such that: 

 

																																																							�ℎ�����	����ℎ�	 �
�

��
≤ 0.05� , � = ���,																																																				 

																																									������������	����ℎ�	 �0.05 < 	
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��
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�

�
,																																					[G4] 
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																																																																								� =
1

2
�1 +

2��

sinh(2��)
� ,																																																																			[G5] 

 

where g is the gravitational acceleration (9.81 m s-2). The level of energy dissipation in a breaking 

wave, α, and the fraction of breaking waves, γ, are used as coefficients in the model. Battjes and 

Stive (1985) obtained values for these coefficients by comparing modelled results with laboratory 

and field experiments, with α equal to 1 and γ variable relative to the offshore wave steepness, so 
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(Hrms/Lo). Given that the input wave and bathymetric conditions are similar to those monitored 

along the North Yorkshire coast, these values are also used here. The breaker height coefficient, 

γ, which is used to predict breaking wave heights, is calculated as follows: 

 

																																																																					� = 0.5 + 0.4 ∙ tanh(33 ∙ ��) .																																																												[G6] 

 

This is then used to calculate the breaking wave height, Hm, which is determined by the offshore 

wave steepness, the local water depth, and wave number: 

 

																																																																			�� = 0.88 ∙ �
�� ∙ tanh �

���

0.88
� .																																																											[G7] 

 

The model calculates energy dissipation, D, based on the fraction of waves, Q, that are breaking. 

The breaking wave height is used as a threshold to identify the proportion of breaking waves in 

the cumulative probability distribution of wave heights. Q is calculated iteratively based on the 

ratio of Hrms to Hm. When Hrms ≥ Hm, the water depth approaches 0 and Q is equal to 1, signalling 

that the majority of waves have broken. When Hrms ≥ Hm, Hrms is set equal to Hm so that the 

wave energy decreases once the majority of waves have broken: 

 

																																																																													
1 − �

− ln�
= �

����
��

�
�

.																																																																								[G8] 

 

The variables and coefficients derived above are then used to calculate the rate of energy dissipa-

tion per unit of horizontal area, D, that occurs as waves are breaking: 

 

																																																																					� =
1

4
∙ � ∙ � ∙ � ∙ � ∙ � ∙ ��

�,																																																													[G9] 

 

where f is equal to the peak wave frequency, which is obtained from the offshore wave buoy, and 

� is the density of sea water (1,030 kg m-3). The energy dissipation is used in the integration of 

the energy flux through the depth profile. This accounts for the energy dissipation due to the 

fraction of waves that are breaking as they progress towards the coast. The energy flux, P, is 

integrated from 1,000 m to the water’s edge and varies according to the rate of energy dissipation, 

D, as follows:  

 

																																																																																		�� = � ∙ ��,																																																																														[G10] 

 

where E is the wave energy density, and cg is the wave group celerity, which is the speed at which 

the energy density is transported. These are derived as follows: 
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																																																																																	� =
1

8
� ∙ � ∙ ��,																																																																						[G11] 

  

																																																																																					�� = � ∙ �.																																																																													[G12] 

 

The energy flux, P, is integrated over the wave profile at each location, x, accounting for the 

energy dissipation due to wave breaking that occurs between x and the previous location (x - 1), 

such that:  

 

																																																																																
���
��
+ � = 0.																																																																												[G13] 

 

Following Battjes and Stive (1985), this is solved as follows: 

 

																																																																									�� = ���(−��) + ����.																																																																[G14] 

 

The predicted Hrms is then calculated as follows: 

 

																																																																										����� = �
8 ∙ ��
� ∙ � ∙ ��

.																																																																					[G15] 

 

The momentum flux, Sxx, of waves on sloping beaches/foreshores causes changes in the mean 

water level as waves break (Komar, 1998). These changes are commonly referred to as set-up or 

set-down, and are calculated at each location along the depth profile by integrating the momentum 

flux. As waves approach a sloping beach or foreshore, there is a shoreward increase in momentum 

that exerts stresses that act in a number of directions (Davidson-Arnott, 2010). This stress, known 

as the shoreward radiation stress, represents the shoreward momentum flux, Sxx. This increases 

as the wave height increases towards the breakpoint. Wave set-up or set-down is therefore the 

response to the changes in momentum flux as the wave approaches, and eventually passes, the 

breakpoint. The momentum flux is derived as follows: 

 

																																																																					��� = �
1

2
+

2�ℎ

sinh(2�ℎ)
� �,																																																																	[G16] 

 

where h is the sum of the water depth at still tide level, d, at location x and the wave set-up 

height, η, calculated at the previous location (x-1). Initial values of wave set-up height 1,000 m 

offshore were therefore calculated as follows: 
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																																																																									� =
���

8 ∙ sinh(2��)
.																																																																									[G17] 

 

The wave set-up that occurs across the rest of the profile is then calculated via the integration of 

the momentum balance: 

 

																																																																		
����
��

+ 	� ∙ � ∙ (� + �)
��

��
= 0,																																																											[G18] 

 

which is solved using the following: 

 

																																																	�� = �−
����
��
� ∙ �

1

� ∙ � ∙ (�� + ����)
� �� + ����.																																												[G19] 

 

The model loops through the depth profiles shown in Figure G1, integrating both the energy flux 

and momentum flux to produce a number of key outputs. These include the root mean square 

wave height (Hrms), wave set-up (η), energy flux (P), and energy flux dissipation (D) at each 

location. After the waves break, Hrms is set to Hm for the other positions in the depth profile up 

to the water’s edge. This acts to simulate surf zones, where broken waves travel through the surf 

zone and dissipate energy to the foreshore via bed friction and turbulence, which results in a 

decrease in wave height (Komar, 1998).  
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Appendix H 

Validation of the wave transformation model 

Outputs from the wave transformation model detailed in Appendix G and used in Chapter 

5 were validated using nearshore wave information derived from an RBRsolo depth channel logger, 

which was deployed ca. 5 m seaward of the cliff toe at S8 (Figure H1). Over a two-week period 

from 6 February 2017 to 21 February 2017, during which time significant wave heights were 

observed to exceed 5 m at the offshore wave buoy, a comparison of modelled and measured water 

depths yielded a correlation coefficient of 0.93, with a mean absolute error of 0.09 m.  

Figure H1 Model validation water depths observed at S8. Model inputs include (a) tide elevation, (b) 

significant wave height, and (c) peak wave period, which were obtained from the nearest available tide gauge 

(UK National Tide Gauge Network, Whitby, ca. 25 km south) and an offshore wave buoy (CEFAS Wave 

Net, Whitby). Observed and modelled water depths are shown in (d). Modelled depths include the combined 

effects of the tide, wave, and set-up elevations. 
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Appendix I  

Harmonic tidal constituents 

Harmonic tidal constituents of the Whitby tide gauge data presented in Figure 5.14 (p. 

106), derived using the MATLAB® toolbox T_TIDE, developed by Pawlowicz et al. (2002). 

 

Harmonic tidal constituents. *Denotes significant constituents. 

  Frequency Amplitude Error SNR 

Long period cycles hr-1 m m - 

Ssa Solar semiannual 0.00023 0.0316 0.037 0.8 

Msm Solar monthly 0.00131 0.0146 0.032 0.2 

Mm Lunar monthly 0.00151 0.0312 0.042 0.5 

Msf Lunisolar synodic fortnightly 0.00282 0.0043 0.030 0.02 

Mf Lunisolar fortnightly 0.00305 0.0196 0.038 0.3 

      

Diurnal 

ALP1  0.0344 0.0099 0.014 0.5 

2Q1 Larger elliptic diurnal 0.0357 0.0033 0.009 0.1 

σ1 Lunar variation 0.0359 0.0050 0.012 0.2 

*Q1 Larger lunar elliptic diurnal 0.0372 0.0284 0.014 4.2 

ρ1 Larger lunar evectional diurnal 0.0374 0.0099 0.012 0.7 

*O1 Lunar diurnal 0.0387 0.0937 0.016 36.0 

*τ1  0.0390 0.0198 0.015 1.8 

χ1 Smaller evectional 0.0405 0.0036 0.011 0.1 

*P1 Solar diurnal 0.0416 0.0597 0.014 17.0 

*K1 Lunar diurnal 0.0418 0.0944 0.014 44.0 

φ1 Second-order solar 0.0420 0.0165 0.015 1.1 

θ1 Evectional 0.0431 0.0080 0.011 0.5 

J1 Smaller lunar elliptic diurnal 0.0433 0.0053 0.010 0.3 

OO1 Lunar diurnal 0.0448 0.0042 0.011 0.2 

      

Semi-diurnal 

OQ2  0.0760 0.0115 0.061 0.04 

2N2 Lunar elliptical semidiurnal 0.0775 0.0391 0.061 0.4 

MU2 Variational 0.0777 0.0165 0.062 0.1 
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*N2 Larger lunar elliptic semidiurnal 0.0790 0.3244 0.077 18.0 

NU2 Larger lunar evectional 0.0792 0.0728 0.078 0.9 

*M2 Principal lunar semidiurnal 0.0805 1.5834 0.083 370.0 

*MKS2  0.0810 0.1203 0.072 2.8 

L2 Smaller lunar elliptic semidiurnal 0.0820 0.0768 0.075 1.1 

*S2 Principal solar semidiurnal 0.0833 0.5268 0.087 37.0 

*K2 Lunisolar semidiurnal 0.0836 0.1429 0.082 3.0 

MSN2  0.0848 0.0248 0.057 0.2 

      

Higher harmonics 

*MO3  0.1192 0.0074 0.004 3.9 

*M3 Lunar terdiurnal 0.1208 0.0090 0.004 5.2 

SO3  0.1221 0.0040 0.003 1.4 

MK3 Shallow water terdiurnal 0.1223 0.0043 0.004 1.3 

SK3  0.1251 0.0014 0.003 0.2 

*MN4 Shallow water quarter diurnal 0.1595 0.0105 0.004 6.5 

*M4 
Shallow water overtides of the 

principal lunar 
0.1610 0.0246 0.004 33.0 

SN4  0.1623 0.0045 0.004 1.1 

*MS4 Shallow water quarter diurnal 0.1638 0.0229 0.005 19.0 

*MK4  0.1641 0.0104 0.004 5.4 

S4 
Shallow water overtides of the 

principal solar 
0.1667 0.0038 0.004 0.8 

SK4  0.1669 0.0048 0.005 1.0 

2MK5  0.2028 0.0020 0.002 1.3 

2SK5  0.2084 0.0010 0.002 0.4 

2MN6  0.2400 0.0031 0.002 1.5 

*M6 
Shallow water overtides of the 

principal lunar 
0.2415 0.0058 0.002 6.0 

*2MS6  0.2444 0.0074 0.003 7.3 

2MK6  0.2446 0.0032 0.003 1.6 

2SM6  0.2472 0.0010 0.002 0.3 

MSK6  0.2474 0.0006 0.002 0.1 

*M8 Shallow water eighth diurnal 0.3220 0.0014 0.001 2.5 

M10  0.4026 0.0007 0.001 0.9 



 

 

 A
p
p
en

d
ices 

 Appendix J 

 

Cliff toe ground motions and relationships with drivers 

Summary of the data presented in Figures 5.18, 5.21, and 5.22.  

Site 

Displacement magnitudea Frequencyb Drivers Rockfalls 

Mean Median Maximum Impacts Rate Aspect Platform lengthc Platform sloped Inundatione Volumef 

µm µm × 103 µm - min-1 ° m % dd:hh:mm m3 

1 56.9 60.1 1.66 2,677,956 14.1 320 202 ± 18 1.3 ± 0.1 132:21:10 37.32 ± 3.95 

2 94.5 94.2 6.21 3,213,238 17.0 346 92 ± 26 2.7 ± 0.2 131:21:40 84.71 ± 2.31 

3 99.6 100.7 6.63 4,160,598 20.6 357 80 ± 20 3.1 ± 0.3 140:13:45 21.05 ± 5.17 

4 71.2 70.2 4.80 3,120,380 15.6 45 87 ± 25 2.9 ± 0.3 148:02:14 76.17 ± 7.46 

5* 85.4 86.7 5.43 441,860 19.2 16 155 ± 13 2.5 ± 0.3 16:14:52 58.67 ± 12.39 

6 66.9 70.6 3.66 2,825,580 14.2 335 216 ± 26 1.5 ± 0.3 140:01:48 44.78 ± 2.82 

7 54.8 58.4 0.95 1,310,992 10.9 318 245 ± 25 1.3 ± 0.1 83:22:44 24.16 ± 0.88 

8 85.8 90.8 2.17 1,000,892 16.4 13 226 ± 17 2.4 ± 0.3 41:20:27 17.57 ± 3.71 

a Metrics derived using the vector magnitude of the particle motion ellipsoid for each impact.  

b Metrics derived using the number of impacts recorded at each site. 
c Platform length measured in the predominant wave direction (30.9°). Measurements of platform length in other probable directions (based on cliff aspect and incoming wave 

direction) are included by calculating the standard deviation of these measurements (± 1σ). 
d Platform slope and standard deviations calculated as in c. 
e Time elapsed where the total water level exceeded the cliff toe. 
f Total volume of the rockfalls that occurred over the 50 m of cliffs (± 25 m) surrounding each instrument, between August 2014 and March 2017. 

* Observations at this site were recorded over 102 days (as opposed to 306) due to a rockfall that occurred on 12/01/2017. 
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Appendix K  

Structural and morphological controls on cliff erosion 

Scatterplots demonstrate the relationships between cliff erosion and structural controls 

(derived in Chapter 4), in Figure K1, and cliff erosion and morphological controls (derived in 

Chapter 5), in Figure K2. For each 100 m bin along the North Yorkshire coast, shown in Figure 

3.12 (p. 43), the total number of rockfalls (frequency), the total volume eroded, and the mean 

erosion rate over the monitoring period (August 2014 – March 2017) was calculated. These 

estimates of erosion were then related to the mean of each control. 

Figure K1 Relationships between cliff erosion and structural controls, identified in Chapter 4. Correlations 

are shown for several indicators of cliff erosion, which were derived in Chapter 4, and include the frequency 

of rockfalls, the total volume eroded, and the erosion rate in each 100 m bin along the North Yorkshire coast. 

Panels (a) – (c) show correlations between cliff erosion and the mean facet density, panels (d) – (f) the 

mean dip, and panels (g) – (i) the mean difference between facet and cliff aspects. Correlation coefficients 

and their p-values are shown where relationships are statistically significant (red). 
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Figure K2 Relationships between cliff erosion and morphological controls, identified in Chapter 5. 

Correlations are shown for several indicators of cliff erosion, which were derived in Chapter 4, and include 

the frequency of rockfalls, the total volume eroded, and the erosion rate in each 100 m bin along the North 

Yorkshire coast. Panels (a) – (c) show correlations between cliff erosion and the mean cliff toe elevation, 

panels (d) – (f) the mean platform length, panels (g) – (i) the mean platform slope, and panels (j) – (l) the 

mean wave approach angle. All morphological controls were measured at 10 m intervals within each 100 m 

bin and then averaged. Correlation coefficients and their p-values are shown where relationships are 

statistically significant (red). 
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