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Abstract In this thesis we are concerned with norm-resolvent estimates for unbounded

linear operators. The text is structured into four parts. The first two parts contain

mathematical preliminaries, reviews of previous work and an introduction into the two

results which constitute parts three and four.

In the third part we are concerned with the non-normal Schrödinger operator H =

−∆ + V on L2(Rd), where V ∈ W 1,∞
loc (Rd) and ReV (x) ≥ c|x|2 − b for some c, b > 0.

The spectrum of this operator is discrete and its real part is bounded below by −b. In

general, the ε-pseudospectrum of H will have an unbounded component for any ε > 0

and thus will not approximate the spectrum in a global sense [KSTV15].

By exploiting the fact that the semigroup e−tH is immediately compact, we show a

complementary result, namely that for every δ > 0, R > 0 there exists an ε > 0 such

that the ε-pseudospectrum

σε(H) ⊂ {z : Re z ≥ R} ∪
⋃

λ∈σ(H)

{z : |z − λ| < δ}.

In particular, the unbounded component of the pseudospectrum escapes towards +∞
as ε decreases. Additionally, we give two examples of non-selfadjoint Schrödinger

operators outside of our class and study their pseudospectra in more detail.

In Part IV, we prove norm-resolvent convergence for the operator −∆ in the per-

forated domain Ω \⋃i∈2εZd Baε(i), aε � ε, to the limit operator −∆ + µι on L2(Ω),

where µι ∈ C is a constant depending on the choice of boundary conditions on the

holes (we consider Dirichlet, Neumann and Robin boundary conditions).

This is an improvement of previous results [CM97], [Kai85], which show strong

resolvent convergence. In particular, our result implies Hausdorff convergence of the

spectrum of the resolvent for the perforated domain problem.
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I. Mathematical Preliminaries

I.1. Spectral Theory of Unbounded Operators

In this section we will review fundamental definitions and theorems about unbounded

operators on Hilbert spaces. We will mostly follow [Wer08],[Kat95],[RS80].

I.1.1. Closed and Closable Operators

Let us first recall the definition of a closed operator. We will restrict ourselves to the

case of Hilbert spaces which will be sufficient for our purposes. In this section, H will

denote a complex Hilbert space and 〈·, ·〉, ‖·‖ its scalar product and norm. All operators

in the following are assumed to be linear and we do not distinguish in notation between

the norm on H and the operator norm in L(H) defined as ‖B‖ := sup‖x‖H=1 ‖Bx‖H.

Definition I.1.1. Let D ⊂ H be a linear subspace and A : D → H a linear operator.

A is called closed if

If a sequence (xn) ⊂ D converges to x ∈ H and the sequence (Axn) converges

to y ∈ H, then x ∈ D and Ax = y.

An operator A is closed if and only if its graph is a closed subspace of H×H. The

closed graph theorem from functional analysis states that every closed operator with

D = H is bounded. The domain of an operator A is denoted dom(A).

Definition I.1.2. An operator A is called closable, if there exists a closed extension

of A. The smallest closed extension is called the closure of A and is denoted A.

A convenient tool for determining the closure of an operator A is given by

Lemma I.1.3 ([RS80, Kapitel VIII]). Let A be closable. Then

Γ(A) = Γ(A),

where Γ(A) denotes the graph of A.
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I. Mathematical Preliminaries

I.1.2. Selfadjoint Operators

Definition I.1.4. An operator A : dom(A)→ H is called

(i) symmetric, if

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ dom(A)

(ii) densely defined, if dom(A) ⊂ H is dense.

Definition I.1.5. Let A : dom(A)→ H be a densely defined operator and let

dom(A∗) := {x ∈ H : ∃z ∈ H such that 〈Ay, x〉 = 〈y, z〉 ∀y ∈ dom(A)}

For such x ∈ H we define an operator A∗ by A∗x := z. This operator is called the

adjoint of A.

The Riesz-Fréchet theorem implies that x ∈ dom(A∗) if and only if | 〈Ay, x〉 | ≤ C‖y‖
for all y ∈ D(A).

Note that the definition of A∗ only makes sense if dom(A) is dense in H, since

otherwise the condition 〈Ay, x〉 = 〈y, z〉 ∀y ∈ dom(A) does not uniquely determine z.

Lemma I.1.6 ([Wer08]). Let A be densely defined and symmetric. Then A is closable.

Definition I.1.7. An operator A : dom(A)→ H is called

(i) selfadjoint, if A = A∗.

(ii) essentially selfadjoint, if A is symmetric and A is selfadjoint.

In particular, for a selfadjoint operator, one necessarily has dom(A) = dom(A∗). The

following classical theorem is known as the fundamental criterion for selfadjointness.

Theorem I.1.8 ([Wer08]). Let A : dom(A) → H be densely defined and symmetric.

Then the following are equivalent.

(a) A is selfadjoint.

(b) A is closed and ker(A∗ ± i) = {0}

(c) Ran(A± i) = H,

where Ran(A ± i) denotes the range of A ± i, i.e. Ran(A ± i) = {y ∈ H : y =

Ax± ix for some x ∈ dom(A)}.

2



I.1. Spectral Theory of Unbounded Operators

Corollary I.1.9. Let A : dom(A)→ H be symmetric. Then the following are equiva-

lent:

(a) A is essentially selfadjoint;

(b) ker(A∗ ± i) = {0};

(c) Ran(A± i) is dense in H.

I.1.3. Basic Spectral Theory

Definition I.1.10. Let A : dom(A) → H be a closed operator. The resolvent set of

A is defined by

ρ(A) := {λ ∈ C : (A− λ) : dom(A)→ H is bijective}.

Note that for λ ∈ ρ(A) the open mapping theorem implies that

(A− λ)−1 : H → H

is bounded. The map (A − λ)−1 is called the resolvent of A at λ. A modification of

the argument for bounded operators shows the following:

Theorem I.1.11 ([Wer08]). Let A : dom(A) → H be closed and densely defined.

Then

(i) ρ(A) is open;

(ii) The resolvent mapping λ 7→ (A − λ)−1 is analytic and for λ, λ0 ∈ ρ(A) with

|λ− λ0| < ‖(λ0 −A)−1‖−1 one has the series expansion

(λ−A)−1 =
∞∑
k=0

(λ0 − λ)k(λ0 −A)−k−1, (I.1)

which converges in operator norm.

(iii) For every pair λ, µ ∈ ρ(A) the resolvent identity

(λ−A)−1 − (µ−A)−1 = (µ− λ)(λ−A)−1(µ−A)−1 (I.2)

holds.

Let us now define the spectrum of a closed operator.

3



I. Mathematical Preliminaries

Definition I.1.12. Let A be as in Definition I.1.10.

(i) The spectrum of A is defined to be the closed set

σ(A) := C \ ρ(A).

(ii) A number λ ∈ C is called an eigenvalue of A if there exists a x ∈ dom(A) such

that Ax = λx. The set of eigenvalues of A is also called the point spectrum of A

and denoted σp(A).

(iii) The spectral radius of A is defined as r(A) := sup {|λ| : λ ∈ σ(A)} ∈ R ∪ {∞}.

Clearly, one has σp(A) ⊂ σ(A), but the converse inclusion is not necessarily true.

Lemma I.1.13 ([Wer08]). For any bounded operator T : H → H one has

r(T ) = lim
n→∞

‖Tn‖ 1
n .

The question arises, whether there is a connection between the spectrum of a closed

operator A and the spectrum of its resolvent (λ0 − A)−1. Naively, one would expect

that if µ ∈ σ(A) then 1
λ0−µ ∈ σ((λ0 − A)−1). Under mild assumptions, this is in fact

the case, as the next theorem shows.

Theorem I.1.14. Let A : H ⊃ dom(A) → H be a closed operator with nonempty

resolvent set. Then

σ((λ0 −A)−1) \ {0} =

{
1

λ0 − µ
: µ ∈ σ(A)

}
for each λ0 ∈ ρ(A). (I.3)

Proof. Let 0 6= µ ∈ C and λ0 ∈ ρ(A). We have

(
µ− (λ0 −A)−1

)
x = µ

(
λ0 − 1

µ −A
)
(λ0 −A)−1x for all x ∈ H (I.4)

= µ(λ0 −A)−1
(
λ0 − 1

µ −A
)
x for all x ∈ dom(A). (I.5)

Now (I.5) shows that
(
µ− (λ0 − A)−1

)
x = 0, if and only if

(
λ0 − 1

µ − A
)
x = 0, since

(λ0 − A)−1 is bijective (note that
(
µ − (λ0 − A)−1

)
x = 0 implies that x ∈ dom(A)).

Hence ker
(
µ − (λ0 − A)−1

)
= ker

(
λ0 − 1

µ − A
)
. Moreover, (I.4) immediately yields

that Ran
(
µ− (λ0 −A)−1

)
= Ran

(
λ0 − 1

µ −A
)

(again by bijectivity of (λ0 −A)−1).

Hence, µ ∈ σ((λ0 −A)−1) if and only if λ0 − 1
µ ∈ σ(A).
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I.1. Spectral Theory of Unbounded Operators

Corollary I.1.15. Let there be a λ0 ∈ ρ(A) such that (λ0−A)−1 is a compact operator.

Then (λ−A)−1 is compact for every λ ∈ ρ(A) and σ(A) consists of isolated eigenvalues

of finite multiplicity.

Proof. Let λ ∈ ρ(A). By (I.2) we have

(λ−A)−1 = (λ0 − λ)(λ−A)−1(λ0 −A)−1 + (λ0 −A)−1.

Both operators on the right-hand side are compact, hence so is (λ − A)−1. The

remaining assertions follow immediately from the spectral theory of compact operators

and the proof of Theorem I.1.14.

Corollary I.1.16. For every λ ∈ ρ(A) one has

‖(λ−A)−1‖ ≥ 1

dist(λ, σ(A))
(I.6)

Proof. Just note that, as for any bounded operator, one has r((λ − A)−1) ≤ ‖(λ −
A)−1‖

For any continuous Banach space valued function u : [0, T ]→ H one can define the

Riemann integral
∫ b
a u(t) dt (for a, b ∈ [0, T ]) in the usual way. Fundamental properties

of the integral such as linearity, the standard estimate
∥∥∥∫ ba u(t) dt

∥∥∥ ≤ ∫ b
a ‖u(t)‖ dt

and the fundamental theorem of calculus can be shown just like in the scalar case.

Moreover, the definition of improper integrals
∫∞
a u(t) dt := limb→∞

∫ b
a u(t) dt carries

over from the scalar case verbatim. This definition also enables us to define complex

line integrals along piecewise smooth paths and Cauchy’s integral formula carries over

to vector valued analytic functions. In particular, integrals of meromorphic functions

do not depend on the specific path chosen, as long as the number of singularities inside

the curve remains unchanged.

Definition I.1.17. Let A : H ⊃ dom(A)→ H be a closed operator and λ ∈ σ(A) be

an isolated point. Then the Riesz projection Pλ : H → H associated with λ is defined

by

Pλ :=
1

2πi

∮
γ
(z −A)−1 dz,

λ

γ

where γ ⊂ C is any small circle such that int(γ) ∩ σ(A) = {λ}.

5



I. Mathematical Preliminaries

Theorem I.1.18 ([GGK90]). Let A : H ⊃ dom(A) → H be a closed operator and

λ ∈ σ(A) be an isolated point. The Riesz projections Pλ satisfy the following

(i) P 2
λ = Pλ;

(ii) Ran(Pλ) ⊂ dom(A) and A|Ran(Pλ) is bounded;

(iii) σ(A|Ran(Pλ)) = {λ}

In particular, if Ran(Pλ) is finite-dimensional, then A|Ran(Pλ) is given by a matrix

and we can conclude from (iii) that λ is an eigenvalue of A|Ran(Pλ) and hence of A.

I.1.4. The Spectral Theorem

In this section we will take a closer look at selfadjoint operators and their spectral

properties. A first simple observation is the following.

Proposition I.1.19 ([Wer08]). Let A : dom(A)→ H be selfadjoint. Then σ(A) ⊂ R.

Proof. Let z = λ+ iµ with µ 6= 0. Define the operator S := T
µ − λ

µ on domT . Then S

is selfadjoint. Note that since ‖ · ‖ is induced by a scalar product, we have

‖(z − T )x‖2 = µ2‖(S − i)x‖2 = µ2‖Sx‖2 + µ2‖x‖2 ≥ µ2‖x‖2.

Hence (z−T ) is injective. But by Theorem I.1.8 we have Ran(S−i) = Ran(z−T ) = H,

so z − T is surjective.

We conclude this section by quoting the spectral theorem for unbounded selfadjoint

operators. A proof can be found in [RS80, Ch. VIII].

Theorem I.1.20 (Spectral Theorem - Functional calculus form). Let A be a self-

adjoint operator on H. Then there exists a unique map Φ from the bounded Borel

functions on R into L(H) such that

(i) Φ(fg) = Φ(f)Φ(g) and Φ(f̄) = Φ(f)∗.

(ii) ‖Φ(f)‖L(H) ≤ ‖f‖∞.

(iii) If fn(x)→ f(x) pointwise and if ‖f‖∞ is bounded, then Φ(fn)→ Φ(f) strongly.

(iv) If Ax = λx then Φ(f)x = f(λ)x.

As an intuitive notation one usually writes Φ(f) = f(A).

6



I.1. Spectral Theory of Unbounded Operators

Corollary I.1.21. If A is selfadjoint and λ ∈ ρ(A), then one has equality in (I.6).

Proof. Let f(t) = 1
λ−t . This is a bounded Borel function on R. Now use (ii) in

Theorem I.1.20.

I.1.5. The Numerical Range

Let A : H ⊃ dom(A) → H be a closed operator. In this section we briefly study the

so-called numerical range of A which can give a rough, but easily computable estimate

for the location of the spectrum.

Definition I.1.22. The numerical range of A is the set

Θ(A) := {〈Ax, x〉 : x ∈ dom(A), ‖x‖ = 1} .

It can be shown that Θ(A) is always a convex set [Dav80, Ch. 6].

Proposition I.1.23. Let S := C \ Θ(A) be connected and S ∩ ρ(A) 6= ∅. Then one

has S ⊂ ρ(A) and

‖(λ−A)−1‖ ≤ 1

dist
(
λ,Θ(A)

) for all λ ∈ S.

Proof. By assumption we have S ∩ ρ(A) 6= ∅. Note first that for any λ ∈ ρ(A) ∩ S we

have

‖(λ−A)x‖ ≥ |〈(λ−A)x, x〉| ≥ dist(λ,Θ(A))‖x‖ for all x ∈ dom(A)

Since (λ−A) is invertible, we obtain

‖(λ−A)−1‖ ≤ dist(λ,Θ(A))−1

We will now show that S ∩ρ(A) is both open and closed in S. Since S is connected,

this will imply S ∩ ρ(A) = S and conclude the proof.

Since ρ(A) is open in C, it is clear that ρ(A) ∩ S is relatively open in S. To show

closedness, let (λn) be a sequence in ρ(A) ∩ S converging to λ ∈ S. Then we have for

all x ∈ dom(A)

lim sup
n→∞

‖(λn −A)−1‖ ≤ dist(λ,Θ(A))−1

7



I. Mathematical Preliminaries

for all n ∈ N. Applying Corollary I.1.16, we obtain

1

dist(λ, σ(A))
≤ lim sup

n→∞

1

dist(λn, σ(A))

≤ lim sup
n→∞

‖(λn −A)−1‖

≤ 1

dist(λ,Θ(A))
.

Hence

dist(λ, σ(A)) ≥ dist(λ,Θ(A)) > 0

and consequently, λ ∈ ρ(A) which proves that ρ(A) ∩ S = S.

The numerical range will become important later in the context of one-parameter

semigroups which we will discuss next.

I.2. One-Parameter Semigroups

I.2.1. General Facts about Semigroups and Generators

In this section we review the theory for the treatment of abstract Cauchy problems of

the form du
dt = Au

u(0) = x0

(I.7)

where A is a closed operator and u : [0,∞)→ H is an unknown vector-valued function.

Formally, eq. (I.7) is solved by u(t) = etAx0. We will now develop a mathematically

rigorous construction of a bounded linear operator etA : H → H in order to solve

problem (I.7). Our discussion follows [Wer08, EN00, Dav80, Kat95].

Definition I.2.1. A strongly continuous semigroup (or C0 semigroup) is a family

T (t) : H → H of bounded linear operators on a Hilbert space H such that

(i) T (0) = id

(ii) T (s+ t) = T (s)T (t) for all s, t ≥ 0

(iii) limt→0 T (t)x = x for all x ∈ H.

8



I.2. One-Parameter Semigroups

Lemma I.2.2 ([Wer08]). If T = (T (t))t≥0 is a C0 semigroup on a Hilbert space H
then there exist M > 0, ω ∈ R such that

‖T (t)‖ ≤Meωt ∀t ≥ 0. (I.8)

The number

ω0 := ω0(T ) := inf{ω : ∃M > 0 s.t. (I.8) holds} (I.9)

is called the growth bound for T . If (I.8) holds with M = 1 and ω = 0, T is called a

contraction semigroup.

Definition I.2.3. Let (T (t))t≥0 be a C0 semigroup on a Hilbert space H. The in-

finitesimal generator (or simply generator) of (T (t))t≥0 is defined to be the operator

Ax := lim
h→0

T (h)x− x
h

on the domain dom(A) =
{
x ∈ H : limh→0

T (h)x−x
h exists

}
.

It can be shown that the generator of a C0 semigroup is always closed, densely

defined and determines the semigroup uniquely. A commonly used notation for the

semigroup (T (t))t≥0 generated by an operator A is T (t) =: etA. We will frequently

adopt this notation in Parts III and IV.

Theorem I.2.4 ([Wer08]). Let A be the generator of a C0 semigroup (T (t))t≥0 on H
and let x0 ∈ dom(A). Then the function u : [0, T ]→ H; u(t) = T (t)x0 is continuously

differentiable, maps into dom(A) and solves the abstract Cauchy problem (I.7). Fur-

thermore, u is the only solution with these properties and it depends continuously on

the initial condition x0.

Lemma I.2.5 ([EN00]). For the generator A of a strongly continuous semigroup

(T (t))t≥0 the following hold.

(i) For all x ∈ H, τ > 0 one has

∫ τ

0
T (t)x dt ∈ dom(A),

(ii) If x ∈ dom(A), then T (t)x ∈ dom(A) and

d

dt
T (t)x = T (t)Ax = AT (t)x for all t ≥ 0,

9



I. Mathematical Preliminaries

(iii) For every t ≥ 0 one has

T (t)x− x = A

∫ t

0
T (s)x ds for all x ∈ H

=

∫ t

0
T (s)Axds for all x ∈ dom(A)

The following proposition is the first step towards the important Hille-Yosida char-

acterisation theorem for generators of strongly continuous semigroups.

Proposition I.2.6. Let (T (t))t≥0 be a strongly continuous semigroup on H and let

M,ω be chosen such that ‖T (t)‖ ≤ Meωt (cf. Lemma I.2.2). Let A denote the gen-

erator of (T (t))t≥0. If λ ∈ C is such that
∫∞

0 e−λtT (t)x dt exists for all x ∈ H, then

λ ∈ ρ(A) and

(λ−A)−1x =

∫ ∞
0

e−λtT (t)x dt. (I.10)

Proof. Denote Ux :=
∫∞

0 e−λtT (t)x dt. By rescaling we may assume λ = 0. Then we

have for h > 0 and x ∈ H

T (h)− id

h
Ux =

T (h)− id

h

∫ ∞
0

T (t)x dt

= h−1

∫ ∞
0

T (s+ h)x ds− h−1

∫ ∞
0

T (s)x ds

= h−1

∫ ∞
h

T (s)x ds− h−1

∫ ∞
0

T (s)x ds

= −h−1

∫ h

0
T (s)x ds.

Since the limit for h → 0 of the right-hand side exists and is equal to T (0)x = x, we

conclude that Ran(U) ⊂ dom(A) and AU = −idH. To show UA = −iddom(A), let

x ∈ dom(A) and note that by Lemma I.2.5 we have

A

∫ t

0
T (s)x ds =

∫ t

0
T (s)Axds.

By assumption, the limit for t→∞ of the right-hand side in the above equation exists

and is equal to UAx. Hence, the limit limt→∞A
∫ t

0 T (s)x ds exists as well. From

closedness of A we conclude that Ux ∈ dom(A) and limt→∞A
∫ t

0 T (s)x ds = AUx.

10



I.2. One-Parameter Semigroups

Since AU = −idH, this implies

lim
t→∞

∫ t

0
T (s)Axds = −x

⇔ UAx = −x,

which concludes the proof.

We will often use the shorthand notation

(λ−A)−1 =

∫ ∞
0

e−λtT (t) dt (I.11)

to mean that (I.10) be satisfied for all x ∈ H. Notice that
∫∞

0 e−λtT (t)dt does not

necessarily converge in operator norm.

Corollary I.2.7. Let (T (t))t≥0 and A be as in Proposition I.2.6. Then

(i) Let Reλ > ω. Then λ ∈ ρ(A) and (I.11) holds.

(ii) One has ‖(λ−A)−1‖ ≤ M
Reλ−ω for all Reλ > ω.

I.2.2. The Hille-Yosida Theorem

From the discussion in the previous subsection we can infer several necessary conditions

that a linear operator A needs to satisfy in order to be the generator of a strongly

continuous semigroup:

1. A is closed and densely defined;

2. there exists ω ∈ R such that ρ(A) ⊃ {z ∈ C : Re z > ω};

3. for all λ ∈ C with Reλ > ω there exists M > 0 such that ‖(λ−A)−1‖ ≤ M
Reλ−ω .

These facts suggest that generation properties of C0 semigroups are intimately con-

nected to the resolvent of A. The question immediately arises to what extent the

above conditions are sufficient for A to be a generator. This question is resolved by

the famous Hille-Yosida theorem which we will prove next. We will consider separately

the case of contraction semigroups (i.e. semigroups with ‖T (t)‖ ≤ 1 for all t ≥ 0) and

the general case.

Theorem I.2.8 (Hille-Yosida). Let A be any linear operator on a Hilbert space H.

Then the following are equivalent.

11
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(i) A generates a strongly continuous semigroup of contractions.

(ii) A is closed, densely defined and for every λ > 0 one has λ ∈ ρ(A) and

‖λ(λ−A)−1‖ ≤ 1. (I.12)

This theorem has been proved independently by E. Hille and K. Yosida in 1948

using different methods of proof. We will give Yosida’s proof here.

Proof. The implication (i)⇒ (ii) has been shown in the previous section. It remains

to prove (ii)⇒ (i). To this end, define the Yosida Approximation

An := nA(n−A)−1 = n2(n−A)−1 − n id

which is a sequence of bounded, commuting operators. Consider the sequence Tn of

associated semigroups defined by

Tn := etAn :=

∞∑
k=1

(tAn)k

k!
.

Claim: One has Anx→ Ax for all x ∈ dom(A).

Proof of claim: Let y ∈ dom(A) and note that n(n−A)−1y = (n−A)−1Ay + y. The

first summand converges to 0 as n → ∞ since by assumption ‖(n − A)−1‖ ≤ 1
n

and hence n(n − A)−1y → y. Since ‖n(n − A)−1‖ is uniformly bounded, this

implies n(n−A)−1x→ x for all x ∈ H. Now compute

Any = An(n−A)−1y = n(n−A)−1Ay → Ay

by the above.

To conclude the proof, we will show the following three properties of (Tn) from which

the assertion of the theorem follows.

(a) The limit T (t)x := limn→∞ Tn(t)x exists for each x ∈ H.

(b) (T (t))t≥0 is a strongly continuous semigroup on H.

(c) This semigroup has generator A.

Proof of (a): Note that ‖Tn(t)‖ are uniformly bounded in n and t, since

‖Tn(t)‖ ≤ e−nte‖n2(n−A)−1‖t ≤ e−ntent = 1.

12
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Hence it suffices to prove (a) for x ∈ dom(A). To this end, let 0 ≤ s ≤ t and m,n ∈ N
and compute

Tn(t)x− Tm(t)x =

∫ t

0

d

ds

(
Tm(t− s)Tn(s)x

)
ds

=

∫ t

0
Tm(t− s)Tn(s)(Anx−Amx) ds

⇒ ‖Tn(t)x− Tm(t)x‖ ≤ t‖Anx−Amx‖

By pointwise convergence of An, we infer that (Tn(t)x−Tm(t)x) is a Cauchy sequence

and converges uniformly in t on bounded intervals.

Proof of (b): By passing to the limit in the semigroup law Tn(s+ t) = Tn(s)Tn(t),

we see that (T (t))t≥0 satisfies condition (ii) of Definition I.2.1. Moreover, one has

‖T (t)x‖ = limn→∞ ‖Tn(t)x‖ ≤ 1 for all x ∈ H, so (T (t))t≥0 is a contraction semigroup.

Finally, the strong continuity property (iii) of Definition I.2.1 follows because for every

x ∈ H, the map t 7→ T (t)x is (locally) the uniform limit of a sequence of continuous

functions Tn(t)x.

Proof of (c): Let B denote the generator of (T (t))t≥0 and fix x ∈ dom(A) and

note that the functions ξn : t 7→ Tn(t)x converge uniformly on compact intervals to

ξ : t 7→ T (t)x. Moreover, the sequence of derivatives ξ′n(t) = Tn(t)Anx converge

uniformly on compact intervals to η : t 7→ T (t)Ax. By a standard theorem from

Analysis these two facts imply that ξ is differentiable and ξ′(0) = η(0). Hence every

x ∈ dom(A) is in dom(B) and Ax = Bx for all x ∈ dom(A). Now let λ > 0. Then

• (λ−A)−1 is a bijection between dom(A) and H by assumption and

• (λ−B)−1 is a bijection between dom(B) and H by Corollary I.2.7.

But we have λ − A = λ − B on dom(A). This is only possible if dom(A) = dom(B)

and A = B.

Next we will state the Hille-Yosida theorem in the general case first proved by Feller,

Miyadera and Phillips in 1952.

Theorem I.2.9 (Feller-Miyadera-Phillips). Let A be any linear operator on a Hilbert

space H and let ω ∈ R and M > 0 be constants. Then the following are equivalent.

(i) A generates a strongly continuous semigroup satisfying

‖T (t)‖ ≤Meωt for t ≥ 0.

13
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(ii) A is closed, densely defined and for every λ > ω one has λ ∈ ρ(A) and

∥∥(λ− ω)n(λ−A)−n
∥∥ ≤M for n ∈ N.

Proof. We only give the general idea of the proof. The central idea is to introduce a

new norm

|||x||| := sup
µ>ω

sup
n∈N0

∥∥µn(µ−A)−nx
∥∥

on H which can be shown to be equivalent to the previous norm ‖ · ‖H. With respect

to this new norm, the operator A can be seen to satisfy the assumptions of Theorem

I.2.8 and hence generates a contraction semigroup w.r.t. |||·|||. Rewriting everything in

terms of ‖ · ‖H yields the assertion.

I.2.3. Accretive and Sectorial Operators

As a first step towards the spectral theory for semigroups of operators, let us briefly

study accretive and sectorial operators which will turn out to be generators for special

classes of semigroups. Let us fix the following convenient notation. By a sector in the

complex plane we mean a set of the form

Σθ := {z ∈ C : | arg(z)| ≤ θ} (I.13)

for some θ ∈ (0, π).

Definition I.2.10. A linear operator A : H ⊃ dom(A)→ H is said to be

(i) accretive if Θ(A) is a subset of the right half-plane, that is, if Re 〈Ax, x〉 ≥ 0 for

all x ∈ dom(A). It is called dissipative, if −A is accretive.

(ii) maximally accretive, or m-accretive, if A is accretive and {z ∈ C : Re(z) < 0} ⊂
ρ(A) with

‖(λ−A)−1‖ ≤ 1

|Reλ| for Reλ < 0.

(iii) sectorial, if Θ(A) ⊂ Σθ + γ for some θ ∈ (0, π2 ) and γ ∈ C. The numbers γ and θ

are called the vertex and semi-angle of A, respectively.

(iv) m-sectorial, if A is sectorial and A+ z is m-accretive for some z ∈ C.

14
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Note that the vertex and semi-angle of a sectorial operator are not uniquely de-

fined. The key statement of this section is the Lumer-Phillips theorem which gives a

convenient characterisation for generators of contraction semigroups.

Remark I.2.11. The reader should be cautious and note that there are different notions

of sectoriality used in the literature. The notion we use in this text is sectoriality in

the sense of Kato (cf. [Kat95]). The authors of [EN00, Haa06] use a less restrictive

definition which is implied by sectoriality in Kato’s sense.

Our distinction between accretive and dissipative operators is convenient because

in practice one often encounters operators A such that −A generates a contraction

semigroup.

Lemma I.2.12. A is dissipative if and only if

‖(λ−A)x‖ ≥ λ‖x‖ (I.14)

for all λ > 0 and x ∈ dom(A).

Proof. If A is dissipative, then

‖(λ−A)x‖‖x‖ ≥ | 〈(λ−A)x, x〉 | ≥ λ‖x‖2 − Re 〈Ax, x〉︸ ︷︷ ︸
≤0

≥ λ‖x‖2.

Conversely, assume ‖(λ − A)x‖ ≥ λ‖x‖ ∀λ > 0, x ∈ dom(A). Then we have for

x ∈ dom(A)

λ‖x‖ ≤ ‖(λ−A)x‖ =

〈
(λ−A)x,

(λ−A)x

‖(λ−A)x‖

〉
= ‖(λ−A)x‖−1

(
λ2‖x‖2 + ‖Ax‖2 − 2λRe 〈x,Ax〉

)
⇔ λ‖x‖

(
‖(λ−A)x‖ − λ‖x‖︸ ︷︷ ︸

≥0

)
= ‖Ax‖2 − 2λRe 〈x,Ax〉

⇒ Re 〈Ax, x〉 ≤ ‖Ax‖
2

2λ

The result follows by letting λ→∞.

Theorem I.2.13 (Lumer-Phillips). Let A be a densely defined linear operator on H.

Then A generates a contraction semigroup if and only if A is dissipative and there

exists λ0 > 0 such that Ran(λ0 −A) = H.

15
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Proof. If A generates a contraction semigroup, Theorem I.2.8 shows that (0,∞) ⊂
ρ(A) and ‖λ(λ−A)−1‖ ≤ 1 which immediately yields (I.14).

To show the converse, let A be dissipative and note that (I.14) implies that λ0 −A
is injective. Since by assumption, λ0 − A is surjective as well, we have λ0 ∈ ρ(A).

Hence (λ0 − A)−1 is bounded and A closed. Since A is dissipative, eq. (I.14) shows

that ‖λ(λ − A)−1‖ ≤ 1 for all λ ∈ ρ(A) ∩ (0,∞). It remains to show that actually

(0,∞) ⊂ ρ(A). Then by Theorem I.2.8, A will generate a contraction semigroup. We

will show that ∅ 6= ρ(A) ∩ (0,∞) is both open and closed in (0,∞) which will yield

the result. First, it is clear by definition that ρ(A) ∩ (0,∞) is open in (0,∞). To see

closedness, let (λn) ⊂ ρ(A) ∩ (0,∞) be a sequence with λn → λ > 0. By (I.14) and

(I.6) we have

dist(λn, σ(A)) ≥ 1

‖(λn −A)−1‖ ≥ λn.

Passing to the limit, this yields dist(λ, σ(A)) ≥ λ > 0 and concludes the proof.

Corollary I.2.14. If A is m-accretive, then −A generates a strongly continuous con-

traction semigroup.

I.2.4. Compact and Analytic Semigroups

Next we will discuss special subclasses of semigroups. As we will see in the next

section, these classes exhibit interesting spectral behaviour.

Norm continuous semigroups

Definition I.2.15. A strongly continuous semigroup (T (t))t≥0 is called

(i) norm continuous if the map t 7→ T (t) is continuous from [0,∞)→ L(H);

(ii) eventually norm continuous if there exists t0 > 0 such that the map t 7→ T (t) is

continuous from (t0,∞)→ L(H);

(iii) immediately norm continuous if one can choose t0 = 0 in (ii);

(iv) eventually differentiable if there exists t0 > 0 such that the maps t 7→ T (t)x are

differentiable on (t0,∞) for every x ∈ H;

(v) immediately differentiable if one can choose t0 = 0 in (iv)

Lemma I.2.16. If (T (t))t≥0 is norm continuous, the generator A is bounded.
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Proof. Let (T (t))t≥0 be a norm continuous semigroup. By assumption, there exists

τ > 0 such that ∥∥∥∥1

τ

∫ τ

0
T (t) dt− id

∥∥∥∥ ≤ 1

τ

∫ τ

0
‖T (t)− id‖ dt < 1.

By the Neumann series, 1
τ

∫ τ
0 T (t) dt is surjective. But Ran

(
1
τ

∫ τ
0 T (t) dt

)
⊂ dom(A),

by Lemma I.2.5 (i). Hence dom(A) = H and A is bounded by the closed graph

theorem.

Note the difference between a norm continuous semigroup and an immediately norm

continuous semigroup. While the former always has a bounded generator, as we have

just seen, there is no reason why this should be true for the latter. Indeed, we will see

examples of immediately norm continuous semigroups with unbounded generators in

Part III.

A first observation about the spectral properties of eventually norm continuous

semigroups which we will need later on is the following.

Lemma I.2.17. Let A be the generator of an eventually norm continuous semigroup

(T (t))t≥0. Then for every b ∈ R the set

{λ ∈ σ(A) : Reλ ≥ b}

is bounded.

Proof. Fix a > ω0 (cf. (I.9)). Proposition I.2.6 yields the formula

(λ−A)−n−1x =
1

n!

∫ ∞
0

e−λt tn T (t)x dt

for x ∈ H, Reλ > ω0 and n ∈ N. Indeed, this follows from (I.10) using the formula

(λ−A)−n−1 = (−1)n

n!
dn

dλn (λ−A)−1 which easily follows from the resolvent identity (I.2)

by induction. We need to show that choosing r > 0 large enough we will obtain a

uniform bound on ‖(a+ ir −A)−1‖.
To this end, let ε > 0, x ∈ H and choose t1 > 0 such that (T (t))t≥0 is norm

continuous on [t1,∞). Furthermore, let t2 > t1 to be determined later and choose

ω ∈ (ω0, a) such that (I.2.2) holds. Then for every n ∈ N we have

‖(a+ ir −A)−n−1x‖ =

∥∥∥∥ 1

n!

∫ ∞
0

e−(a+ir)t tn T (t)x dt

∥∥∥∥
17
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≤ 1

n!

∫ t1

0
e−attn‖T (t)x‖ dt+

1

n!

∥∥∥∥∫ t2

t1

e−irte−at tn T (t) dt

∥∥∥∥ ‖x‖
+

1

n!

∫ ∞
t2

e−at tn ‖T (t)x‖ dt

≤ tn1
n!
M

∫ t1

0
e−ateωt dt‖x‖ +

1

n!

∥∥∥∥∫ t2

t1

e−irte−at tn T (t) dt

∥∥∥∥ ‖x‖
+
M

n!

∫ ∞
t2

tne−ateωt dt‖x‖

Next, choose n large enough such that
tn1
n!M

∫ t1
0 e−ateωt dt < εn+1

3 and t2 large enough

such that M
n!

∫∞
t2
tne−ateωt dt < εn+1

3 . These choices leave us with

‖(a+ ir −A)−n−1x‖ ≤ 2

3
εn+1‖x‖ +

1

n!

∥∥∥∥∫ t2

t1

e−irte−at tn T (t) dt

∥∥∥∥ ‖x‖
Finally, choose r0 > 0 such that

∥∥∥ 1
n!

∫∞
t2
eirttne−atT (t) dt

∥∥∥ < εn+1

3 whenever |r| > r0.

This is possible by the Riemann-Lebesgue-Lemma applied to the norm continuous

function t 7→ tne−atT (t) (note that by norm continuity this function is measurable).

We have shown that for n large enough

‖(a+ ir −A)−n−1x‖ ≤ εn+1‖x‖ for |r| > r0.

To conclude the proof, let b ∈ R be an arbitrary constant and define ε := 1
2|b−a| . Then

by the above, there exist r0 > 0 and n ∈ N such that

dist(a+ ir, σ(A)) ≥ ‖(a+ ir −A)−1‖−1 ≥ ‖(a+ ir −A)−n‖−1/n

≥ 1

ε

= 2|b− a|

for |r| > r0, where we have used Corollary I.1.16 in the first line. Hence,

dist(b+ ir, σ(A)) ≥ dist(a+ ir, σ(A))− |b− a|
≥ |b− a|

for |r| > r0 which immediately yields the assertion.

Compact semigroups. An important subclass of eventually norm continuous semi-

groups are semigroups which are compact operators for some t > 0. In fact, we have
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the following

Lemma I.2.18. Let (T (t))t≥0 be a strongly continuous semigroup on H and assume

that there exists t0 > 0 such that T (t0) is a compact operator. Then T (t) is compact

for all t > t0 and the map t 7→ T (t) is norm continuous on [t0,∞).

Proof. The first assertion follows immediately from the semigroup law (cf. Definition

I.2.1 (ii)). To prove norm continuity, note that for t > t0

T (t+ h)− T (t) = (T (h)− id)T (t0).

Thus, if (xn) is any bounded sequence, the sequence (T (t0)xn) has a convergent sub-

sequence T (t0)xnk → y. To conclude, let hn ↘ 0, and compute

(T (t+ hnk)− T (t))xnk = (T (hnk)− id)T (t0)xnk

→ (T (0)− id)y

= 0.

Applying the above argument to every subsequence yields the assertion.

Definition I.2.19. A strongly continuous semigroup (T (t))t≥0 is called

(i) eventually compact if there exists t0 > 0 such that T (t0) is compact;

(ii) immediately compact if T (t) is compact for all t > 0.

Eventually compact semigroups are a convenient tool because compactness is often

easier to verify directly than norm continuity. This point is emphasised by the following

example.

Example 1. Let Ω ⊂ Rd be a bounded open subset with smooth boundary and let

A = ∆ onH = L2(Ω) with dom(A) = H2(Ω)∩H1
0 (Ω) be the Dirichlet Laplacian. Then

the Lumer-Phillips theorem shows that A generates a strongly continuous contraction

semigroup. This semigroup is given by

(et∆f)(x) =

∫
Ω
K(t, x, y)f(y) dy for f ∈ L2(Ω),

with an integral kernel K(t, x, y) = (4πt)−
d
2 e−

|x−y|2
4t + ϕ(t, x, y), where ϕ is a smooth,

bounded function depending on Ω. Clearly, we have
∫

Ω×Ω |K(t, x, y)|2 dxdy < ∞
for t > 0, that is, et∆ is Hilbert-Schmidt and thus compact. We conclude that the

semigroup (et∆)t≥0 is immediately norm continuous.
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Analytic semigroups. Finally, we will discuss analytic semigroups which are even

more tame than eventually compact semigroups. As a necessary evil, the restrictions

on the associated generators are more severe. The idea behind the definition of analytic

operator semigroups is to use Cauchy’s integral formula to define

ezA :=
1

2πi

∫
γ
eµz(µ−A)−1 dµ

for z ∈ C and a suitable path γ enclosing z. This definition is justified if the integral

on the right-hand side converges. In order to investigate the above idea, let us make

the following

Hypothesis I.2.20. Let A be a closed, densely defined linear operator such that

(i) there exists δ > 0 such that the sector Σπ
2

+δ is contained in the resolvent set of

A,

(ii) for each ε ∈ (0, δ) there exists Mε > 0 such that for all z ∈ Σπ
2

+δ−ε one has

‖(z −A)−1‖ ≤ Mε
|z| .

For A satisfying Hypothesis I.2.20, let δ > 0 be as in (i), δ′ ∈ (0, δ) and fix z ∈
Σδ′ . Furthermore, set ε := δ−δ′

2 . We first choose an explicit path γz ⊂ C as the

concatenation of the following

γ1
z =

{
−ρe−i(

π
2 +δ−ε) : −∞ < ρ < −r

}
γ2
z =

{
reiα : −(π2 + δ − ε) < α < π

2 + δ − ε
}

(I.15)

γ3
z =

{
ρei(

π
2 +δ−ε) : r < ρ <∞

}
where r = 1

|z| (cf. Figure I.1). Elementary geometric considerations lead to the

estimates

‖eµz(µ−A)−1‖ ≤ e−|µz| sin(ε)Mε

|µ| for z ∈ Σδ′ and µ ∈ γ1
z ∪ γ3

z (I.16)

‖eµz(µ−A)−1‖ ≤ eMε|z| for z ∈ Σδ′ and µ ∈ γ2
z . (I.17)

We conclude that∥∥∥∥∫
γz

eµz(µ−A)−1 dµ

∥∥∥∥ ≤ 3∑
k=1

∫
γkz

∥∥eµz(µ−A)−1
∥∥ dµ

≤ 2Mε

∫ ∞
|z|−1

1

s
e−s|z| sin(ε) ds + eMε|z|

2π

|z|
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Re z

Im z

δ

δ − ε

r

γ1
z

γ2
z

γ3
z

σ(A)

Figure I.1.: Sketch of the path of integration composed of γ1z , γ
2
z , γ

3
z (originally from [EN00]).

= 2Mε

∫ ∞
1

e−s sin(ε)

s
ds+ 2πeMε

The right-hand side is just a finite constant independent of z which shows that

the integral along γz converges absolutely and uniformly for z ∈ Σδ′ . Furthermore,

since the integrand is an analytic function (cf. Theorem I.1.11), the integral does not

depend on the specific path chosen. The above considerations also imply that the

integral
∫
γz
eµz(µ − A)−1 dµ defines an analytic function for z ∈ Σδ. We recapitulate

our results in the following

Theorem and definition I.2.21. Let A satisfy Hypothesis I.2.20 and let δ > 0 be

as in (i), δ′ ∈ (0, δ). For z ∈ Σδ′, the formula

T (z) :=
1

2πi

∫
γ
eµz(µ−A)−1 dµ (I.18)

specifies a well-defined analytic family of uniformly bounded operators for any piecewise

smooth path γ : R→ ρ(A) such that asymptotically γ(−∞) =∞e−(π
2

+δ′)i and γ(∞) =

∞e(π
2

+δ′)i.

The above observation is the starting point for the theory of analytic semigroups.

Note that up to now we have merely defined an analytic family of bounded operators

without any additional structure. To make progress, let us make the following
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Definition I.2.22. A family of bounded operators (T (z))z∈Σδ∪{0} is called an analytic

semigroup of angle δ ∈ (0, π2 ], if

(i) T (0) = id and T (z + w) = T (z)T (w) for all z, w ∈ Σδ;

(ii) the map z 7→ T (z) is analytic in Σδ;

(iii) lim
z→0
z∈Σδ′

T (z)x = x for all x ∈ H and δ′ ∈ (0, δ).

Theorem I.2.23. Let A satisfy Hypothesis I.2.20. Then (I.18) defines an analytic

semigroup.

Proof. Let δ be as in I.2.20. Condition (ii) of Definition I.2.22 has already been proven

above. To verify (i), let z, w ∈ Σδ and choose δ′ ∈ (0, δ) such that z, w ∈ Σδ′ . Next

choose γ as in (I.15) and let γ̃ := γ + c, where c ∈ C is such that γ ∩ γ̃ = ∅. Now

compute

T (z)T (w) =
1

(2πi)2

∫
γ

∫
γ̃
eµzeλw(µ−A)−1(λ−A)−1 dλdµ

=
1

(2πi)2

∫
γ

∫
γ̃
eµzeλw(λ− µ)−1

[
(µ−A)−1 − (λ−A)−1

]
dλdµ

=
1

2πi

∫
γ
eµz(µ−A)−1

(
1

2πi

∫
γ̃

eλw

λ− µ dλ
)
dµ

− 1

2πi

∫
γ̃
eλw(λ−A)−1

(
1

2πi

∫
γ

eµz

λ− µ dµ
)
dλ,

where we have used Fubini’s theorem and the resolvent identity (I.2). Now, Cauchy’s

integral theorem implies that

1

2πi

∫
γ

eµz

λ− µ dµ = 0,

since all λ ∈ γ̃ lie outside γ. On the other hand, again by Cauchy’s integral formula,

1

2πi

∫
γ̃

eλw

λ− µ dλ = eµw.

Plugging these identities back into our expression for T (z)T (w) we obtain

T (z)T (w) =

∫
γ̃
eµ(z+w)(µ−A)−1 dµ

= T (z + w).
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It remains to verify (iii) of Definition I.2.22. Since the definition of T (z) is independent

of the path γ, let us assume that γ = γ1 in the following (cf. (I.15)). Since by Cauchy’s

integral theorem, 1
2πi

∫
γ1

eµz

µ dµ = 1 for z ∈ Σδ′ , we can compute for x ∈ dom(A)

T (z)x− x =
1

2πi

∫
γ1

eµz
(

(µ−A)−1 − 1

µ

)
x dµ

=
1

2πi

∫
γ1

eµz

µ
(µ−A)−1Axdµ

for all z ∈ Σδ′ , where we have used the identity (µ−A)−1Ax = µ(µ−A)−1x−x which

holds for all x ∈ dom(A). By (I.16), we have the estimate∥∥∥∥eµzµ (µ−A)−1Ax

∥∥∥∥ ≤ Mε

|µ|2
(

1 + e|z|
)
‖Ax‖ (I.19)

for all µ ∈ γ and z ∈ Σδ′ . This yields an integrable majorant uniformly in z near 0.

Applying Lebesgue’s dominated convergence theorem, we conclude that

lim
z→0
z∈Σδ′

T (z)x− x =
1

2πi

∫
γ1

1

µ
(µ−A)−1Axdµ = 0,

where the second equality follows by closing the path γ1 on the right by circles of

increasing diameter and using Cauchy’s integral theorem. The integrals over the circles

tend to zero with increasing diameter by estimate (I.19).

This settles condition (iii) for all x ∈ dom(A) and the corresponding statement for

all x ∈ H follows by the uniform boundedness (i).

This theorem finally justifies the

Definition I.2.24. If A satisfies Hypothesis I.2.20 and the semigroup (T (z))z∈Σδ is

defined by (I.18), then we call A the generator of (T (z))z∈Σδ .

It can be shown that if A generates the analytic semigroup (T (z))z∈Σδ in the sense

of Definition I.2.24, then A is also the generator of the strongly continuous semigroup

(T (z))z≥0 in the sense of Definition I.2.3 (cf. [EN00, Ch. II.4]).

Recalling Definition I.2.10, we immediately conclude the following

Proposition I.2.25. Let A be a sectorial operator with vertex γ such that Re γ ≥ 0.

Then −A generates an analytic semigroup.

Proof. It follows immediately from Proposition I.1.23 that −A satisfies the conditions

in Hypothesis I.2.20.
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I.2.5. Spectral Theory for Semigroups and Generators

We have already seen in Corollary I.2.7 that being a generator imposes certain re-

strictions on the spectrum and resolvent of an operator A. In this section we will

investigate this point further and ask to what extend the special classes of semigroups

discussed in the previous section impose stronger restrictions on the spectrum of the

generator.

Spectral bound. As a first step to execute the above plan, let us study how growth

and decay properties of the semigroup affect the location of its generator’s spectrum.

The reader is encouraged to recall the definition of the growth bound, eq. (I.9).

Definition I.2.26. Let A : H ⊃ dom(A)→ H be a closed operator. Then

s(A) := sup {Reλ : λ ∈ σ(A)} ∈ R ∪ {−∞} ∪ {∞}

is called the spectral bound of A.

In order to prove the next proposition we need the following elementary fact from

analysis which we quote without proof.

Lemma I.2.27. Let ϕ : [0,∞)→ R be bounded on compact intervals and subadditive,

i.e. ϕ(s+ t) ≤ ϕ(s) + ϕ(t) for all s, t ≥ 0. Then

inf
t>0

ϕ(t)

t
= lim

t→0

ϕ(t)

t

exists. �

Proposition I.2.28. Let A be the generator of a strongly continuous semigroup with

growth bound ω0 := ω0((T (t))t≥0). Then one has

−∞ ≤ s(A) ≤ ω0 = inf
t>0

log ‖T (t)‖
t

= lim
t→0

log ‖T (t)‖
t

=
log r(T (t0))

t0
< ∞

for any t0 > 0, where r(T (t)) denotes the spectral radius (cf. Definition I.1.12 (iii).

In particular, one has

r(T (t)) = eω0t for all t ≥ 0. (I.20)
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Proof. Define ϕ(t) := log ‖T (t)‖. Then ϕ is bounded on compact intervals because

of (I.8) and it is subadditive because ϕ(t + s) = log ‖T (t + s)‖ = log ‖T (t)T (s)‖ ≤
log(‖T (t)‖‖T (s)‖) = log ‖T (t)‖+log ‖T (s)‖ = ϕ(t)+ϕ(s). Hence we can apply Lemma

I.2.27 and infer that

v := inf
t>0

log ‖T (t)‖
t

= lim
t→0

log ‖T (t)‖
t

.

exists. It follows that evt ≤ elog ‖T (t)‖ = ‖T (t)‖ for all t ≥ 0, hence v ≤ ω0, by the

definition of ω0. Now let w > v. Then by the definition of v there exists t0 > 0 such

that
log ‖T (t)‖

t
≤ w for all t ≥ t0,

hence ‖T (t)‖ ≤ etw for t ≥ t0. This implies that there exists M > 0 such that for all

t ≥ 0

‖T (t)‖ ≤Mewt,

i.e. w ≥ ω0. Overall we have proved that v ≤ ω0 and w > ω0 for every w > v and

hence v = ω0.

To prove (I.20), we use Lemma I.1.13 to compute

r(T (t)) = lim
n→∞

‖T (t)n‖ 1
n

= lim
n→∞

et·
log ‖T (nt)‖

nt

= et·limn→∞
log ‖T (nt)‖

nt

= etω0 .

The inequalities −∞ ≤ s(A) ≤ ω0 <∞ follow immediately from Corollary I.2.7.

Spectral Mapping Theorems. A question which is immediate in the spectral theory

of semigroups and their generators is whether there exist any relations between the

spectrum of an operator A and its semigroup (T (t))t≥0. Naively one would expect a

relation of the form

σ(T (t)) =
{
eλt : λ ∈ σ(A)

}
similar to the situation in Theorem I.1.14. However, in the case of semigroups the

situation is more complicated and one cannot expect a spectral mapping theorem of the
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above form without assuming any additional structure. In the most general situation

the best one can achieve is the following spectral inclusion which is an immediate

consequence of Lemma I.2.5.

Theorem I.2.29 (Spectral inclusion theorem). Let A be the generator of the strongly

continuous semigroup (T (t))t≥0 on H. Then for all t ≥ 0

σ(T (t)) ⊃
{
eλt : λ ∈ σ(A)

}
, (I.21)

σp(T (t)) ⊃
{
eλt : λ ∈ σp(A)

}
(I.22)

Proof. To prove (I.21), let λ ∈ C and denote by S(t) := e−λtT (t) the rescaled semi-

group whose generator is A − λ as can be seen by differentiating at t = 0. Lemma

I.2.5 (iii) applied to (S(t))t≥0 yields

e−λtT (t)x− x = (A− λ)

∫ t

0
e−λsT (s)x ds for x ∈ H (I.23)

=

∫ t

0
e−λsT (s)(A− λ)x ds for x ∈ dom(A). (I.24)

Multiplying these identities with eλt shows that eλt − T (t) is not bijective if λ− A is

not bijective.

To see (I.22), let λ0 ∈ σp(A) and let x0 ∈ dom(A) be a corresponding eigenvector.

From (I.24) we conclude

T (t)x0 − eλ0tx0 =

∫ t

0
eλ0(t−s)T (s)(A− λ0)x0 ds

= 0.

Hence, x0 is an eigenvector of T (t) with eigenvalue eλ0t for all t ≥ 0.

In the following we will limit ourselves to proving a spectral mapping theorem for

the point spectrum σp which is enough for our purposes, i.e. we will show the converse

inclusion in eq. (I.22). In fact, the converse inclusion in (I.21) also holds true under

certain conditions, e.g. when the semigroup is eventually norm continuous. The

interested reader may indulge in [EN00, Ch. IV.3].

In order to prove our spectral mapping theorem, we have to take a quick excursion

into the theory of periodic semigroups.

Definition I.2.30. A strongly continuous semigroup (T (t))t≥0 on H is called periodic
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if there exists t0 > 0 such that T (t0) = idH. In such a case, we call

τ := inf {t > 0 : T (t) = id}

the period of (T (t))t≥0.

Lemma I.2.31. Let (T (t))t≥0 be a periodic strongly continuous semigroup with period

τ > 0 and generator A. Then

σ(A) ⊂ 2πi

τ
Z and (I.25)

(λ−A)−1 =
1

1− e−λτ
∫ τ

0
e−λsT (s) ds for λ /∈ 2πi

τ
Z. (I.26)

Proof. Let λ ∈ C \ 2πi
τ Z and consider eqs. (I.23), (I.24) with t = τ

(e−λτ − 1)x = (A− λ)

∫ τ

0
e−λsT (s)x ds for x ∈ H

=

∫ τ

0
e−λsT (s)(A− λ)x ds for x ∈ dom(A).

Since (e−λτ − 1) is nonzero by assumption, the first equation shows that λ − A is

surjective while the second shows that λ−A is injective. Hence λ /∈ σ(A).

The formula (I.26) for the resolvent of A shows that near a point 2πik
τ , (λ − A)−1

has at worst a simple pole. This fact can be exploited to prove the following

Lemma I.2.32. Let A be as in Lemma I.2.31. Then σ(A) is nonempty and we have

σ(A) = σp(A).

Proof. Denote µk := 2πik
τ with k ∈ Z and let x ∈ H. Applying (λ − A) to eq. (I.26)

yields

x =
1

1− e−λτ (λ−A)

∫ τ

0
e−λsT (s)x ds

(note that
∫ τ

0 e
−λsT (s) ds maps into dom(A) by Lemma I.2.5). Multiplying this equa-

tion by (λ− µk) and letting λ→ µk we get

0 = (µk −A)
1

τ

∫ τ

0
e−µksT (s)x ds

=: (µk −A)Pkx,
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that is, we have RanPk ⊂ ker(µk −A) for every k ∈ Z.

It remains to show that Pk 6= 0 if µk ∈ σ(A). To this end, let us first note that we

have in fact∥∥∥∥1

τ

∫ τ

0
e−λsT (s) ds− Pk

∥∥∥∥ =

∥∥∥∥∫ τ

0
(e−λs − eµks)T (s) ds

∥∥∥∥
≤ ‖e−λ· − eµk·‖L∞([0,τ ])

∫ τ

0
‖T (s)‖ ds

→ 0 as λ→ µk,

i.e. we have 1
τ

∫ τ
0 e
−λsT (s) ds→ Pk in the operator norm topology. Now, let µk ∈ σ(A)

and go back to eq. (I.26) which immediately yields

dist(λ, σ(A))‖(λ−A)−1‖ =
dist(λ, σ(A))

|1− e−λτ |

∥∥∥∥∫ τ

0
e−λsT (s) ds

∥∥∥∥
≤ |µk − λ|
|1− e−λτ |

∥∥∥∥∫ τ

0
e−λsT (s) ds

∥∥∥∥ .
Now, if Pk = 0, the right-hand side of this equation converges to 0 as λ → µk. By

Corollary I.6, this is only possible if µk /∈ σ(A).

Theorem I.2.33 (Spectral mapping theorem for the point spectrum). Let A be the

generator of a strongly continuous semigroup (T (t))t≥0 on H. Then one has

σp(T (t)) \ {0} =
{
eλt : λ ∈ σp(A)

}
for all t ≥ 0.

Proof. By Theorem I.2.29 it only remains to prove the inclusion “⊂”. Let t0 > 0 and

λ ∈ σp(T (t0)) \ {0}. First note that by considering the rescaled semigroup S(t) =

e−t log λT (tt0) with generator B := t0A− log λ we can assume w.l.o.g. that t0 = λ = 1.

Indeed, for this rescaled semigroup, 1 is an eigenvalue of S(1).

Using these assumptions, consider the subspace

V := {x ∈ H : T (1)x = x}

which is invariant under T (t) for every t ≥ 0 and nonempty by assumption. This

allows us to define the family of restrictions
(
T (t)|V

)
t≥0

which can easily be seen to be

a strongly continuous one-parameter semigroup with generator A|V . Moreover, this

semigroup is periodic by definition of V with some period τ ∈
{
n−1 : n ∈ N

}
. By

Lemmas I.2.31, I.2.32, we have ∅ 6= σp(A|V ) ⊂ 2πi
τ Z, that is, we can find k ∈ Z such
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that 2πik
τ ∈ σp(A|V ) ⊂ σp(A). Accordingly,

e2πi k
τ = 1,

since τ−1 ∈ N. We conclude that 1 ∈
{
eλt : λ ∈ σp(A)

}
.

The above spectral mapping theorem readily implies the following important corol-

lary which will be used in Part III.

Corollary I.2.34. Let A : H ⊃ dom(A)→ H generate the strongly continuous semi-

group (T (t))t≥0 and assume that (T (t))t≥0 is eventually compact. Then

(i) The spectrum of A consists of isolated points in C and σ(A) = σp(A);

(ii) One has σ(T (t)) \ {0} =
{
eλt : λ ∈ σ(A)

}
for all t ≥ 0

Proof. Let t0 > 0 such that T (t0) is compact. Then σ(T (t0)) = σp(T (t0)) by the spec-

tral theory of compact operators. The above spectral inclusion and spectral mapping

theorems now give the identities

{
eµt : µ ∈ σ(A)

}
⊂ σ(T (t)) \ {0}
= σp(T (t)) \ {0}

=
{
eλt : λ ∈ σp(A)

}
⊂
{
eµt : µ ∈ σ(A)

}
for all t ≥ t0. We conclude that

{
eλt : λ ∈ σp(A)

}
=
{
eµt : µ ∈ σ(A)

}
for all t ≥ t0

which implies σ(A) = σp(A).

I.3. Convergent Sequences of Unbounded Operators

Consider a sequence (An)n∈N of closed operators An : H ⊃ dom(An) → H. It is

already familiar from the theory of bounded operators on Banach spaces that different

notions of convergence have to be studied (e.g. strong convergence versus convergence

in operator norm). However, in the situation of unbounded operators neither strong

convergence nor operator norm convergence can a priori be defined in a meaningful

way. The former is ill-defined because the domains of the An may depend on n, while

the latter fails simply because ‖An‖L(H) does not exist. The solution to this problem

is to not consider the operators An directly, but rather study their resolvents. In this

way, the question of convergence of unbounded operators is reduced to a question
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about bounded operators which behave in a much more tame way. The drawback is,

of course, that the resolvents of the An must exist, that is, there has to be a λ ∈ C
such that λ ∈ ρ(An) for all n. To ensure that this is always the case, we restrict our

attention to m-accretive operators (cf. Definition I.2.10). The results in this section

are classical and versions of them can be found in [RS80, Kat95].

Definition I.3.1. Let A : dom(A) → H and An : dom(An) → H be m-accretive for

all n ∈ N. We say that (An)n∈N converges to A

(i) in the strong resolvent sense if (id +An)−1x→ (id +A)−1x for all x ∈ H,

(ii) in the norm resolvent sense if
∥∥(id +An)−1 − (id +A)−1

∥∥
L(H)

→ 0.

The following two propositions demonstrate that this is a reasonable definition.

Proposition I.3.2. If (Bn)n∈N is a sequence of bounded operators Bn : H → H, then

Bn → B in norm resolvent sense if and only if ‖Bn −B‖L(H) → 0.

Proof. It is easy to see that for any z with Re z < 0 the formulas

(z −B)−1 − (z −Bn)−1 = (z −B)−1 (Bn −B) (z −Bn)−1 (I.27)

Bn −B = (Bn − z)
(

(z −B)−1 − (z −Bn)−1
)

(B − z) (I.28)

hold from which the assertion follows immediately.

Proposition I.3.3. One has An → A in norm resolvent sense if and only if
∥∥(λ +

An)−1 − (λ+A)−1
∥∥
L(H)

→ 0 for all λ ∈ C with Reλ < 0.

Proof. Assume that
∥∥(id + An)−1 − (id + A)−1

∥∥
L(H)

→ 0 and let λ ∈ C \ {−1} with

Reλ < 0. A simple computation shows that we have the following identity for the

resolvent at λ

(λ−A)−1 = −(λ+ 1)−1 − (λ+ 1)−2
(

1
λ+1 − (id +A)−1

)−1
(I.29)

with an analogous identity for An. For notational convenience, let us define B :=

(id + A)−1, Bn := (id + An)−1 and z := 1
λ+1 . Equation (I.29) applied to A and An

yields for their difference∥∥∥(λ−A)−1 − (λ−An)−1
∥∥∥ = |λ+ 1|−2

∥∥∥(z −Bn)−1 − (z −B)−1
∥∥∥

≤ |λ+ 1|−2
∥∥(z −B)−1

∥∥∥∥(z −Bn)−1
∥∥ ‖Bn −B‖ ,
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where we have used eq. (I.28) in the second line. The right-hand side of the above

equation converges to 0 because ‖Bn −B‖ → 0 by assumption and
∥∥(z −B)−1

∥∥ re-

mains bounded since (λ+ 1)−1 has a fixed distance from σ(Bn) for all n.

Next we show that the concept of norm-resolvent convergence is not only reasonable

but actually very useful in spectral analysis.

Theorem I.3.4. Let An be a sequence of m-accretive operators converging to A in

norm resolvent sense. Then

(i) for every compact K ⊂ ρ(A) there exists N ∈ N such that K ⊂ ρ(An) for all

n > N .

(ii) For any U ⊂ C such that U ⊂ ρ(An) for almost all n one has U ⊂ ρ(A).

Proof. We first prove (i). W.l.o.g. we may assume that K lies in the right half plane.

Let K ⊂ ρ(A) be compact. For λ ∈ K denote z := 1
1+λ and note that

∥∥(z − (1 +A)−1
)
−
(
z − (1 +An)−1

)∥∥ =
∥∥(1 +A)−1 − (1 +An)−1

∥∥ (I.30)

Since λ ∈ ρ(A) we have z ∈ ρ((1 + A)−1) by Theorem I.1.14 and
(
z − (1 + A)−1

)
is boundedly invertible. Since the set of invertible operators is open in L(H), eq.

(I.30) implies that
(
z− (1 +An)−1

)
is boundedly invertible for n large enough and we

conclude that z ∈ ρ((1+An)−1). Since the resolvent set is open, it follows immediately

that w ∈ ρ((1 +An)−1) for all w in an open neighbourhood of z (which can be chosen

independent of n by convergence of ‖(λ − An)−1‖). Applying Theorem I.1.14 again

we conclude that an open neighbourhood of λ is contained in ρ(An) for all sufficiently

large n.

This procedure yields an open covering {Uλ}λ∈K of K such that for each λ there

exists nλ ∈ N such that Uλ ⊂ ρ(An) for all n > nλ. By compactness of K we

can extract finitely many Uλ1 , . . . , Uλm such that K ⊂ ⋃m
k=1 Uλk which implies that

K ⊂ ρ(An) for all n > max{nλ1 , . . . , nλm}.
Assertion (ii) follows by an analogous argument.

Corollary I.3.5. If An → A in norm resolvent sense and λ ∈ σ(A) then there exists

a sequence (λn) such that λn ∈ σ(An) for all n and λn → λ.

Proof. We argue by contradiction. Assume that there were no such sequence (λn).

Then there exists an ε-neighbourhoodBε(λ) withBε(λ) ⊂ ρ(An) for all n. By Theorem
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I.3.4 (ii) we would have Bε(λ) ⊂ ρ(A) and thus λ ∈ ρ(A) which contradicts our

assumption.

Corollary I.3.6. Every bounded sequence (λn) with λn ∈ σ(An) for all n has an

accumulation point in σ(A).

Proof. Proof by contradiction. Assume that no accumulation point in σ(A) exists.

Then we can extract a subsequence (λnk) such that the compact setK := {λnk : k ∈ N}
is contained in ρ(A). By Theorem I.3.4 (i) we would have K ⊂ ρ(Ank) for large k

contradicting the assumption that λn ∈ σ(An) for all n.

Theorem I.3.4 implies that for every compact L ⊂ C the sets L∩ σ(Aε) converge to

L ∩ σ(A) in the Hausdorff sense (see e.g. [RW98]):

Definition I.3.7. Let M,N ⊂ C be two nonempty subsets. The Hausdorff distance

between M and N is defined as

dH(M,N) := max

{
sup
x∈M

inf
y∈N
|x− y| , sup

y∈N
inf
x∈M
|x− y|

}
= inf

{
ε > 0 : M ⊂ Uε(N) and N ⊂ Uε(M)

}
,

where Uε(·) denotes the ε-neighbourhood of a set. A sequence of sets (Mn) ⊂ C is

said to converge to M ⊂ C in the Hausdorff sense, if dH(Mn,M)→ 0 as n→∞.

Indeed, let L ⊂ C be compact and ε > 0. Put Kε := L \ Uε(σ(A)). If An → A in

the norm resolvent sense, Theorem I.3.4 (i) states that Kε ⊂ ρ(An) for almost all n.

Hence, for almost all n we have L ∩ σ(An) ⊂ L ∩ Uε(σ(A)). An analogous argument

using Theorem I.3.4 (ii) shows that L∩ σ(A) ⊂ L∩Uε(σ(An)) for almost all n, which

concludes the proof.
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The previous sections have shown the relevance of norm-resolvent estimates for both

pure mathematics and applications. We have already seen two contexts in which these

estimates are particularly relevant: the generation of strongly continuous semigroups

(cf. Theorem I.2.8) and the convergence of spectra (cf. Theorem I.3.4).

This thesis studies two mathematical problems which illustrate the importance of

norm-resolvent estimates in these two contexts. We will first demonstrate the amount

of information contained in the resolvent norm in the context of non-selfadjoint oper-

ators and then take a more general point of view and consider sequences of operators

and norm-resolvent convergence.

II.1. Pseudospectra

We have seen in Section I.1 that if A is a selfadjoint operator, the spectrum of A

contains a great deal of information about A, such as (cf. Theorems I.2.8, I.1.20 and

Corollary I.1.21)

• Does A generate a one-parameter semigroup?

• Large t-behaviour of ‖e−tA‖,

• Norm of the resolvent ‖(z −A)−1‖ for arbitrary z ∈ ρ(A),

• Location of σ(A+ V ) if V is a bounded perturbation.

In addition, if A has compact resolvent, the eigenvectors of A form a basis, by the

spectral theorem for compact operators and Theorem I.1.14.

For non-selfadjoint (NSA) operators, however, none of the above properties can, in

general, be deduced from the spectrum. This demonstrates that for NSA operators

the spectrum by itself contains very little information about A. Due to the lack of

the Spectral Theorem, the spectral theory of such operators is quite rich and yields

interesting phenomena. NSA operators have to be carefully controlled and failure to

do so can lead to undesired outcomes [Gre12]. The following example provides an
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informative illustration of this fact. For c ∈ R consider the non-normal differential

operator

Hc = − d2

dx2
+ ix3 + cx2 (II.1)

on its maximal domain dom(Hc) = {φ ∈ L2(R) : Hcφ ∈ L2(R)}. A numerical plot of

the spectrum of Hc is shown in Figure II.1.

−10 0 10 20 30 40 50 60

−10

0

10

Figure II.1.: The spectrum of Hc for c = 1, obtained in MATLAB using the EigTool package
and a modified code from [Tre01, TE05].

It was shown in [DDT01] that the spectrum of Hc is indeed real and positive.

Moreover, Hc is closed and has compact resolvent [CGM80, Mez01] so the spectrum

is also discrete. On the other hand, Novák and Krejčǐŕık have obtained the following

result

Theorem II.1.1 ([Nov14]). The operator Hc has the following properties:

(i) The eigenfunctions of Hc do not form a (Schauder) basis in L2(R).

(ii) −iHc does not generate a bounded semigroup.

(iii) Hc is not similar to a self-adjoint operator via bounded and boundedly invertible

transformations.

This theorem makes it clear that Hc is very different from a selfadjoint operator

even though its spectrum looks well-behaved.

The above considerations motivate the definition of a finer indicator than the spec-

trum for non-selfadjoint operators.

Definition II.1.2. For any closed operator A and ε > 0 the set

σε(A) := σ(A) ∪
{
z ∈ ρ(A) : ‖(z −A)−1‖ > 1

ε

}
is called the ε-pseudospectrum of A.
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By Corollary I.1.16, the ε-pseudospectrum always contains an ε-neighbourhood of

the spectrum. Moreover, Corollary I.1.21 shows that the ε-pseudospectrum of a self-

adjoint operator is always equal to the set {z ∈ C : dist(σ(A), z) < ε}. In particular,

the spectrum and the pseudospectrum contain the same amount of information about

the operator in the selfadjoint case. As we will see, in the non-selfadjoint case the

pseudospectrum contains significantly more information about the operator than the

spectrum. We begin with a theorem concerning bounded perturbations. The proof we

present here is taken from [TE05].

Theorem II.1.3. Let A be a closed operator on H. One has

σε(A) =
⋃

‖V ‖L(H)≤ε

σ(A+ V ).

Proof. We first prove the inclusion σε(A) ⊃ ⋃‖V ‖L(H)≤ε σ(A+ V ). Let λ ∈ C \ σε(A)

and V be bounded with ‖V ‖ < ε. Then we can write

λ− (A+ V ) = (id− V (λ−A)−1)(λ−A).

By assumption on V we have ‖V (λ−A)−1‖ < ε‖(λ−A)−1‖ ≤ 1 and hence id−V (λ−
A)−1 is invertible by means of the Neumann series. We conclude that λ /∈ σ(A+ V ).

To prove the converse inclusion, let λ ∈ σε(A). By definition of the operator norm,

there exists x ∈ H with ‖x‖ = 1 such that ‖(λ − A)−1x‖ > 1
ε , or equivalently,

there exists y ∈ dom(A) such that ‖y‖ = 1 and ‖(λ − A)y‖ < ε. By the Hahn-

Banach theorem there exists an operator V ∈ L(H) such that V (y) = −(λ−A)y and

‖V ‖ = ‖(λ−A)y‖ < ε. By construction, ker(λ−A−V ) 6= ∅ and thus λ ∈ σ(A+V ).

This theorem shows that the spectra of slightly perturbed operators must always be

contained in the pseudospectrum. Consequently, if the ε-pseudospectrum of an opera-

tor A is large, a perturbation V with ‖V ‖ < ε might alter the spectrum of A dramat-

ically, while of σε(A) is small, the spectrum of A is stable under such perturbations.

This general picture even extends beyond bounded perturbations as demonstrated by

the following classical theorem which we quote without proof.

Theorem II.1.4 ([Kat95, Th. IV.3.17]). Let A be a closed operator in H and let

B be an operator such that dom(B) ⊃ dom(A) and ‖Bx‖ ≤ a‖x‖ + b‖Ax‖ for all

x ∈ dom(A) with a > 0 and b ∈ (0, 1). If there exists z ∈ ρ(A) such that

a
∥∥(z −A)−1

∥∥+ b
∥∥A (z −A)−1

∥∥ < 1 (II.2)
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then S := A+B is closed and z ∈ ρ(S) with

∥∥(z − S)−1
∥∥ ≤ ‖(z −A)−1‖

1− a‖(z −A)−1‖ − b‖A (z −A)−1‖
. (II.3)

�

Remark II.1.5. Operators B as in Theorem II.1.4 are said to be relatively bounded

with respect to A and the number b is called its relative bound.

Numerical approximation of spectra. Formulas (II.2) and (II.3) clearly demonstrate

the significance of the knowledge of ‖(z −A)−1‖. To illustrate this point, suppose

that A is some differential operator and we would like to find a reasonable numerical

approximation for σ(A). Common methods typically discretise the domain on which

A operates on a certain length scale h which leads to a finite-dimensional matrix Sh

expected to approximate A. The spectrum of Sh can be readily computed by matrix

factorisation methods. But clearly, passing from A to Sh constitutes a perturbation

and a-priori it is not at all clear whether σ(Sh) will be a good approximation of σ(A),

even if h is small, unless information about σε(A) is known. Thus, the pseudospectrum

is an essential tool in assessing the reliability of such methods.

For c = 0 it was shown by Krejčǐŕık and Siegl [KSTV15] that the pseudospectrum

of the operator Hc always contains an unbounded component. More precisely, they

showed that for every δ > 0 there exist constants C1, C2 > 0 such that for all ε > 0

σε(H0) ⊃
{
z ∈ C : |z| ≥ C1, | arg z| <

(π
2
− δ
)
, |z| ≥ C2

(
log

1

ε

)6/5
}
. (II.4)

This shows that the large eigenvalues of H0 are highly unstable under small perturba-

tions. A similar result for c = 1 was shown by Novák in [Nov14] and is easily extended

to arbitrary c > 0. Figure II.2 shows a numerical computation of the pseudospectrum

of H1.

Equation (II.4) and Figure II.2 make it clear that for every fixed ε the pseudospec-

trum of Hc contains a whole sector in the complex plane for c > 0. Moreover, the

opening angle of the sector can be chosen arbitrarily close to π provided that a ball of

sufficiently large radius around 0 is removed. In particular, large eigenvalues are very

unstable under small perturbations.

On the other hand, Figure II.2 suggests that the unbounded component of the
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Figure II.2.: Numerical plot of the lines of constant resolvent norm of H1 also obtained using
the EigTool package and a modified code from [Tre01, TE05]. The colour bar
shows the values of log10(‖(λ−H1)−1‖).

pseudospectrum escapes towards +∞ as ε → 0. All of this suggests that the lower

eigenvalues of Hc should indeed be stable (for c > 0) under small perturbations of Hc,

despite the above results.

It should be noted that the operator Hc was first considered in the works of Bender

et al. who studied it in the context of non-Hermitian Quantum Mechanics (see e.g.

[BB98, BBM99, Ben07]). This theory is inspired by the desire to relax the condition

of self-adjointness which is commonly imposed on quantum mechanical observables.

Instead, a weaker condition known as PT symmetry is assumed: an operator H is

called PT symmetric if HPT = PT H, where Pψ(x) = ψ(−x) and T ψ(x) = ψ(x).

Under certain additional assumptions, the spectrum of a PT symmetric operator can

indeed be shown to be real [Mos02]. In this thesis we will not be concerned with the

physical relevance of non-Hermitian Quantum Mechanics, but focus on the underlying

mathematics whose applications extend beyond quantum theory.

Other examples of Schrödinger operators exhibit a similar behaviour. The so-called

complex harmonic oscillator (or Davies oscillator) − d2

dx2 +ix2 on L2(Rd) has been stud-

ied in [Dav00, Dav99]. It has a discrete spectrum and its ε-pseudospectrum contains

an unbounded component for every ε > 0. An upper bound on the pseudospectrum

has been found by Boulton [Bou02].

In Part III we will study a class of non-normal Schrödinger operators containing

the operators Hc, (c > 0). More precisely, we will prove an upper bound on the

pseudospectrum of the operator H = −∆ + V , where ReV (x) ≥ c|x|2 − b for some

c, b > 0 on L2(Rd), which complements the results of [KS12, Nov14]. Our method of

proof is based on ideas from [Bou02].
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II.2. Norm-Resolvent Convergence in Homogenisation

We have seen above that norm resolvent estimates give essential information about

the quality of numerical estimates for the spectrum of an operator.

In certain applications however, numerical approximations are not feasible in the

first place. In such situations, norm-resolvent estimates may be used to prove that an

effective model with virtually the same physical properties may be considered instead.

A popular field of research in which the above paradigm has been applied success-

fully for decades is the theory of homogenisation of which we will now give a brief

introduction.

Suppose we are given a material with mechanical properties alternating on a fine

length scale ε (e.g. a crystal, which has a fine periodic structure). Studying the physics

of such media will involve the consideration of differential equations whose coefficients

oscillate on a length scale ε. In the simplest (interesting) case, one is led to a scalar

second order equation of the formAεu := −∇ · (aε∇uε) = f in Ω

uε = 0 on ∂Ω,
(II.5)

where Ω denotes the region of space occupied by the periodic medium, f ∈ L2(Ω)

and aε(x) = a
(
x
ε

)
, where a ∈ L∞(Rd,Rd×d) is a matrix valued function of period

Y ∈ Rd such that a(x) is symmetric for almost all x and there exists α > 0 such that

ξ · a(x)ξ ≥ α|ξ|2 for all ξ ∈ Rd and almost all x (cf. Figure II.3).

Ω

Figure II.3.: Sketch of the periodic medium in the domain Ω. The varying shades of grey
indicate varying values of aε(x)

If we assume Ω to be bounded, problem (II.5) is easily seen to possess a unique

weak solution uε by virtue of the Poincaré inequality and the Lax-Milgram theorem.

However, if the period ε of the coefficients is much smaller than the spatial extent of
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the object Ω, this solution will oscillate on a very fine length scale (this is illustrated

in Figure II.4 for a simple 1-dimensional problem). For such functions numerical

approximation is not feasible, because e.g. in a finite element setting the triangulation

of Ω would have to be finer than ε in order to resolve the oscillations of u which

quickly becomes too computationally expensive. An idea to circumvent this problem

is to “average out” the fine oscillations of uε while retaining its macroscopic behaviour.

The result is expected to be a function varying on a finite length scale which can be

resolved numerically. This process is known as homogenisation.

Figure II.4.: Plot of the real part of the solution to the equation d
dx

(
e

2πix
ε + 1.1

)
duε
dx = 1 for

ε = 0.05. We can clearly observe two features: (i) u oscillates on a length scale of
order ≈ 0.05 and (ii) Besides the oscillations there exists a global shape describing
a “macroscopic behaviour”.

In the abstract framework of eq. (II.5), the idea of homogenisation leads to the

following questions.

(i) Does the sequence of solutions (uε) converge to a unique limit u in L2?

(ii) If so, does u satisfy any reasonable boundary value problem that can be computed

from (II.5)?

If the answer to both of the above questions turns out to be affirmative, one refers to

the limit problem satisfied by u as the homogenised problem.

For didactic purposes, let us investigate this question in the one-dimensional setting,

i.e. let Ω = (a, b) ⊂ R and assume that uε is a weak solution of (II.5). The variational

formulation of (II.5) reads∫ b

a
aεu
′
εϕ
′
ε dx =

∫ b

a
ϕf dx for all ϕ ∈ H1

0 ((a, b))
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Plugging in ϕ = uε and using Poincaré’s inequality and our assumptions on a imme-

diately yields

‖uε‖H1((a,b)) ≤ C‖f‖L2((a,b)) (II.6)

for some C > 0. Hence there exists u ∈ H1
0 ((a, b)) such that uε ⇀ u in H1. Moreover,

it is easy to see using periodicity that aε
∗−⇀ 〈a〉 in L∞((a, b)), where

〈a〉 =
1

Y

∫ Y

0
a(y) dy

denotes the mean value of a. A crude guess for the homogenised equation might be

that u satisfy d
dx

(
〈a〉dudx

)
= f , but this is not correct in general, as we show now. To

this end, denote by pε := aεu
′
ε the flux of uε and note that we have

‖pε‖2L2((a,b)) ≤ ‖a‖L∞‖u′ε‖2L2((a,b)), ‖p′ε‖2L2((a,b)) = ‖f‖2L2((a,b)).

≤ C‖f‖2L2((a,b))

Hence, pε is bounded in H1((a, b)) by (II.6). Using the Rellich-Kondrachov theorem,

we conclude that for a subsequence

pε → p in L2((a, b))

for some p ∈ H1((a, b)). Combining our results we see that

a−1
ε pε ⇀

〈
a−1
〉
p weakly in L2((a, b)).

But on the other hand we also have a−1
ε pε = u′ε ⇀ u′ weakly in L2((a, b)), since uε ⇀ u

in H1((a, b)). We conclude that

du

dx
=
〈
a−1
〉
p.

Finally, we note that p′ = f , which follows from the definition of pε. We obtain the

homogenised problem

Au :=
d

dx

(〈
a−1
〉−1 du

dx

)
= f, (II.7)

with the homogenised coefficient matrix
〈
a−1
〉−1

(which is 1 × 1 in our case). We
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II.2. Norm-Resolvent Convergence in Homogenisation

conclude that questions (i), (ii) can be answered in the affirmative in the 1-dimensional

case and that the “averaged” solution u is a good approximation for uε in the sense

that ‖uε − u‖L2((a,b)) → 0 as ε→ 0 (cf. Figure II.5).

Figure II.5.: Plot of the real part of the solution uε from Figure II.4, together with the ho-
mogenised solution u, which displays the macroscopic behaviour of uε

A physical understanding of the homogenised coefficient
〈
a−1
〉−1

can be gained by

the following interpretation: Equation (II.5) models the diffusion of particles in an

inhomogeneous medium with diffusion constant aε (that is, aε is constant in time, but

depends on space). Assume that there are enough diffusing particles around to be

described by our deterministic model. For simplicity, let us further assume that aε

alternates between two constant values, i.e.

a(x) =

α1, for x ∈ [0, q)

α2, for x ∈ (q, 1),

where q ∈ (0, 1), α2 > α1 > 0 and aε is extended to R by periodicity. This choice

represents diffusion inside a long tube filled with periodically alternating media (e.g.

water and honey). In order to find the effective diffusion constant for small ε, recall

that the physical definition of the diffusion constant in a homogeneous medium is

D := `vT
3 , where vT is the mean thermal velocity and ` is the mean free path of

the particles. Now suppose we let our particles diffuse for some time T . We have a

decomposition T = T1 + T2, where

• T1 ∼ 1
`1

is the mean time that particles spend in water, where aε(x) ≡ α1 and

• T2 ∼ 1
`2
> T1 is the mean time that particles spend in honey, where aε(x) ≡ α2.

Obviously, the time to traverse a given distance s � ε will be proportional to the
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weighted mean

T := qT1 + (1− q)T2 ∼
q

`1
+

1− q
`2

∼ q

α1
+

1− q
α2

=
〈
a−1
〉
.

Hence for the effective diffusion constant D of the particles for small ε we obtain the

relation D ∼ ` ∼ T−1 ∼
〈
a−1
〉−1

.

Convergence theorems like the above can be obtained in much more general situa-

tions (cf. the classical textbook [PBL78] from which the above discussion was taken).

But note that in the above we have only shown strong convergence (rather than op-

erator norm convergence). Indeed, the statement uε
L2

−→ u can be reformulated in

operator-theoretic terms as

A−1
ε f → A−1f for all f ∈ L2((a, b)).

This is not enough to answer certain questions of physical interest, e.g. whether σ(A)

is a good approximation for σ(Aε), or whether the decay rate of e−tA approximates

that of e−tAε . To address these questions, norm resolvent estimates are necessary (cf.

Theorem I.3.4). In fact, the question of norm resolvent convergence in the situation of

classical homogenisation described so far has been addressed in previous works, most

notably by Birman and Suslina [BS03, BS06] (see also the references therein). In these

two works, the authors develop and apply operator-theoretic recipes to obtain norm-

resolvent estimates in many physically relevant PDE, including acoustic equations,

linear elasticity and Maxwell’s equations.

However, there exist mathematically interesting homogenisation problems which

cannot be tackled by the above methods. One class of such problems is given by high

contrast homogenisation in which the condition aε ≥ α > 0 fails to be true uniformly

in ε (clearly, the proof shown above breaks down in this case). Homogenisation results

in high contrast media have been obtained by [Zhi00] who proved strong resolvent

convergence for the equation −∇ · (aε(x)u(x)∇) = f , where aε(x) = a1

(
x
ε

)
+ ε2a0

(
x
ε

)
and a1, a0 are periodic and a1(y) + a2(y) is uniformly elliptic. Clearly, these assump-

tions allow high contrast in the limit ε→ 0. Later, the authors of [KS18] and [CC16]
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extended these results.

Another class of examples which do not fall in the category of classical homogeni-

sation are problems in which the domain Ω depends on ε and becomes singular in

the limit ε → 0. Homogenisation problems of this type have been studied e.g. in

[Zhi00, Pas06] (for Neumann boundary conditions) and in [MK64, CM97, RT75] (for

Dirichlet boundary conditions). It is this field field in which the present thesis makes

a contribution.

The crushed ice problem Consider a container filled with some medium of nonzero

heat conductance occupying a domain Ω ⊂ Rd. We are interested in the efficiency of

cooling the medium by adding crushed ice to the container. This problem has been

posed and studied in [Rau75]. In order to obtain a well-defined mathematical problem,

we make the following idealising assumptions:

(i) The ice cubes in the container are spherically shaped objects∗ Br(i) sitting at

the vertices i of a periodic lattice 2εZd ∩ Ω,

(ii) the ice does not melt and remains at temperature 0 throughout the cooling

process.

Ωε

2r 2ε

Figure II.6.: Sketch of the crushed ice problem

The above situation is modelled by the heat equation∂tuε,r = ∆uε,r in Ω \⋃i∈εZd∩ΩBr(i)

uε,r = 0 on ∂Ω ∪⋃i∈εZd∩Ω ∂Br(i),

where we have assumed for convenience that ∂Ω is held at temperature 0. We pose

the question to what extent crushing the ice (that is, decreasing the size of the Br(i)

∗Sincere apologies for implying that cubes are spheres.
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and increasing their number) accelerates the cooling process. It is clear from intuition

that reducing the radius r of the balls and their distance ε simultaneously in such a

way that ε−n|Br(i)| remains constant should make the cooling more efficient. Indeed,

this process keeps the total mass of the ice constant while increasing its surface area

which enhances thermal contact.

On the other hand, keeping the distance ε between the ice cubes fixed and letting

r → 0 will surely diminish the cooling effect. We immediately are led to the follow-

ing question: What happens at intermediate scalings? More precisely, what are the

convergence properties of the solution uε,rε if rε
ε → 0 at various rates as ε→ 0?

These are in fact classical questions which have been addressed in several works

starting from the 1960s. We quote two theorems about the stationary situation which

illustrate the above discussion. With the notation from above, let the radius of the

ice cubes be of the form rε := Cεα for some C > 0 and α > 1. Furthermore, for

notational convenience, denote by Tε :=
⋃
i∈εZd∩ΩBrε(i) the set of holes. Then one

has the following

Theorem II.2.1 ([Rau75, RT75]). Let Ω ⊂ Rd, d ≥ 3 be a bounded domain, let

f ∈ L2(Ω) and uε : Ω \ Tε → R be the solution of−∆uε = f in Ω \ Tε
uε = 0 on ∂(Ω \ Tε).

Then

(i) if α > d
d−2 , then uε → u strongly in H1(Ω), where u solves the Dirichlet problem

in Ω: −∆u = f in Ω

u = 0 on ∂Ω;

(ii) if α < d
d−2 , then u→ 0 strongly in L2(Ω).

This theorem confirms our intuitive expectation, but makes no statement about the

borderline case α = d
d−2 , where the transition between “infinitely effective cooling”

in the limit and “no cooling at all” happens. Indeed, this case has a mathematically

interesting solution which was found by [MK64] and extended in [CM97].
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Theorem II.2.2 ([MK64, CM97]). Let Ω and uε be as in Theorem II.2.1 with rε =

Cε
d
d−2 . Then uε ⇀ u weakly in H1(Ω), where u solves(−∆ + µ)u = f in Ω

u = 0 on ∂Ω,

with µ = Cd−2 (d−2)|∂B1(0)|
2d

> 0.

Remark II.2.3. Several comments are in order.

(i) The actual time-dependent problem has been considered in [MK74], while [Rau75,

RT75] have proven estimates on the lowest eigenvalue of −∆ on Ω \ Tε.

(ii) We note that the restriction d ≥ 3 is not essential and we have omitted the case

d = 2 merely for cosmetic reasons. The analogous result in the 2-dimensional

case can be found in [CM97].

(iii) An analogous result to Theorem II.2.2 in the case of Robin boundary conditions

on the holes has been found in [Kai85, Kai89].

Theorem II.2.2 shows that at least in the case of a bounded domain, there exists a

reasonable limit operator which is not equal to merely the Laplacian, but shifted by

a positive constant. In other words, cooling becomes more efficient in this case, but

only by a finite rate constant µ.

However, convergence has only been shown in the strong (or pointwise) sense. In-

deed, Theorem II.2.2 states that for fixed f ∈ L2(Ω) one has uε → u weakly in H1(Ω)

and thus strongly in L2(Ω), by the Rellich-Kondrachov theorem. As we have argued

above, this is not enough to prove e.g. convergence of the spectrum of the operator.

Norm resolvent convergence in perforated domains has been studied previously in

a number of publications (cf. [Pas06, BCD16] and the references therein). However,

previous results have only covered the subcritical case α = 1 and their methods of

proof do not extend to the critical case α = d
d−2 .

In Part IV we will investigate the question of norm-resolvent convergence in the sit-

uation of Theorem II.2.2. Our results will apply not only to the Dirichlet problem, but

to any of Dirichlet, Neumann or Robin boundary conditions with a complex parameter

α ∈ C. Furthermore, our results extend to unbounded domains Ω. Note that in the

case of Robin boundary conditions the corresponding operator can be non-selfadjoint.
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III. Norm-Resolvent Estimates for a Class

of Non-Selfadjoint Schrödinger

Operators.

III.1. The Operator of Interest and Main Results

Unless otherwise stated, the notation L2(Rd) will always denote L2(Rd,C). The same

convention holds for other function spaces. Motivated by the examples in the intro-

duction, we are going to investigate Schrödinger Operators with growing real parts.

III.1.1. Definition of the Operator

To begin with, let us quote results by [BST17] and [EE87] which allow the rigorous

definition of a large class of Schrödinger operators.∗

Proposition III.1.1 ([BST17, EE87]). Let V ∈W 1,∞
loc (Rd) be a function such that

(i) ReV ≥ 0

(ii) There exist a, b′ > 0 such that |∇V |2 ≤ a+ b′|V |2

(iii) V is unbounded at infinity: |V (x)| → ∞ as |x| → ∞

Then we have the following.

1. The minimal operator

Hmin := −∆ + V, D(Hmin) := C∞0 (Rd) (III.1)

is closable on L2(Rd) with closure

T = −∆ + V, dom(T ) = H2(Rd) ∩ {ψ ∈ L2(Rd) : V f ∈ L2(Rd)};
∗The original proposition in [BST17] in fact allows even more general potentials than the one we

state here.
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2. T is m-accretive;

3. The resolvent of T is compact.

Using the above proposition, let us define an operator H on L2(Rd) as follows.

Definition III.1.2. Let V : Rd → C satisfy the conditions of Prop III.1.1 and assume

in addition that there exist constants c, b > 0 such that

ReV (x) ≥ c|x|2 − b. (III.2)

We denote by H the linear operator H : dom(H)→ L2(Rd) as the closure of

Hmin := −∆ + V on C∞0 (Rd).

according to Proposition III.1.1.

III.1.2. Main Results

From now on, unless otherwise stated, H will denote the operator defined in Definition

III.1.2. Our first result is the following.

Lemma III.1.3. The one-parameter semigroup generated by −H is immediately com-

pact (i.e. e−tH is a compact operator for every t > 0).

This is used to prove our main theorem

Theorem III.1.4. Let H be defined as in Definition III.1.2. Then for every δ,R > 0

there exists an ε > 0 such that

σε(H) ⊂ {z : Re z ≥ R} ∪
⋃

λ∈σ(H)

{z : |z − λ| < δ}. (III.3)

We immediately obtain the following corollary about the so-called harmonic oscil-

lator with imaginary cubic potential.

Corollary III.1.5. Let

Hc = − d2

dx2
+ ix3 + cx2

for some c > 0 be defined on dom(Hc) = H2(R)∩{ψ ∈ L2(R) : x3ψ ∈ L2(R)} ⊂ L2(R).

Then one has the inclusion (III.3) for the pseudospectrum of Hc.
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λ4

· · · R

Figure III.1.: The pseudospectrum of H
is contained in sets of the
above shape.

We remark that the inclusion (III.3) is op-

timal in the sense that the unbounded com-

ponent of the pseudospectrum cannot be con-

tained in a sector of opening angle less than

π as the discussion following equation (II.4)

shows.

Moreover, Theorem III.1.4 can be seen as

complementary to the results of [Nov14]. In-

deed, while it was shown there that there al-

ways exist infinitely many eigenvalues which

are highly unstable under bounded perturba-

tions, our result shows that the lower eigen-

values (that is, those with small real part) do remain stable if the perturbation is small

enough in norm.

The method of proof of Theorem III.1.4 is inspired by ideas in [Bou02] and based

on estimates of the semigroup generated by −H.

III.2. Proof of Theorem III.1.4

In this section we will first prove Lemma III.1.3 and then use it to prove Theorem

III.1.4. Throughout this section, H denotes the operator defined in Definition III.1.2

and we will make frequent use of properties 1., 2., 3. of Proposition III.1.1 without

further reference.

III.2.1. Proof of Lemma III.1.3

It is well-known (cf. Theorem I.2.4) that for all φ0 ∈ L2(Rd) the semigroup generated

by −H is nothing but the solution operator to the initial value problem∂tφ = −Hφ
φ(0) = φ0.

(III.4)

In this section we will show that the operator e−tH is compact on L2(Rd) for t > 0.

The first step will be to turn (III.4) into a coupled system of real equations and then

using the results of [DL11].
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Rewriting the equation as a system. We will use the fact that L2(Rd,C) is canon-

ically isomorphic to L2(Rd,R2). In the following we will denote this isomorphism by

U : L2(Rd,C)→ L2(Rd,R2).

Now, let us write φ(x) = f1(x) + if2(x). A straightforward calculation shows that

(III.4) is equivalent to the system{
∂tf1 = ∆f1 + Im(V )f2 − Re(V )f1

∂tf2 = ∆f2 − Im(V )f1 − Re(V )f2

(III.5)

which we will write as

∂t

(
f1

f2

)
= [∆ +Q(x)]

(
f1

f2

)

= −UHU−1

(
f1

f2

)
,

where Q(x) =

(
−ReV (x) ImV (x)

− ImV (x) −ReV (x)

)
. Along the lines of [DL11] we define κ(x) :=

−c|x|2 + b(with c, b from Definition III.1.2) which satisfies the estimate

〈Q(x)ξ, ξ〉 ≤ κ(x)‖ξ‖2 ∀ξ ∈ R2, (III.6)

according to our assumptions about V . We also define the scalar differential operator†

Ĥ2κ := −∆− 2κ(x) on L2(Rd,R). (III.7)

The operators −UHU−1 and −Ĥ2κ satisfy Hypothesis 2.1 of [DL11] enabling us to

prove the following lemma by following the proof of [DL11, Prop. 2.4].

Lemma III.2.1. Let f0 ∈ C∞0 (Rd,R2). There exists a unique classical solution to

the initial value problem [(III.5), f(0, ·) = f0] and one has

|f(t, ·)|2 ≤ e−tĤ2κ
(
|f0|2

)
, t ≥ 0. (III.8)

Proof. This proof uses the local Hölder continuity of V . By [DL11, Th. 2.6] there

exists a unique classical solution f = (f1, f2) for our choice of initial condition. Let

us now multiply the first equation of (III.5) by f1 and the second by f2 and add the

†More precisely, Ĥ2κ should be regarded as the L2-closure of the operator initially defined on the
space C∞0 (R).
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resulting equations. We obtain

1

2
∂t|f |2 = f ·∆f − Re(V )|f |2.

Using the product rule this may be rewritten as

∂t|f |2 = (∆− 2 ReV )|f |2 − 2|∇f |2

=
(
∆+2κ(x)− 2W (x)

)
|f |2 − 2|∇f |2

= −Ĥ2κ

(
|f |2

)
− 2
(
W (x)|f |2 + |∇f |2

)
,

where we have defined W (x) := ReV (x) + κ(x) ≥ 0. Now, define w := |f |2 −
e−tĤ2κ

(
|f0|2

)
. We obviously have w(0, ·) = 0 and from the above calculation we

obtain

(∂t −∆−2κ(x))w ≤ 0, t > 0.

Thus applying the maximum principle [DL11, Prop. 2.3 (ii)] we obtain w ≤ 0.

The operator Ĥ2κ. Regarded as an operator on L2(Rd,R), the operator Ĥ2κ is

of course nothing but the harmonic oscillator with frequency ω =
√

8c, shifted by

the constant −2b. Its negative is well-known to generate a one-parameter semigroup

e−tĤ2κ which can be represented by the Mehler kernel

(
e−tĤ2κg

)
(t, x) = e2td

(2π

ω
sinh(2ωt)

)− 1
2

∫
e
−ω

2
cosh(2ωt)(|x|2+|y|2)−2x·y

sinh(2ωt) g(y) dy

=:

∫
K(t, x, y)g(y) dy

(cf. [Dav80, Chapter 7.2]).

Lemma III.2.2. Let t > 0 and 0 < α ≤ cosh(2ωt)−1 and define µ(x) := e
− αω

2 sinh(2ωt)
|x|2

.

Then

|K(t, x, y)| ≤ Ct,ω µ(x)µ(y), (III.9)

where Ct,ω depends only on t and ω.

Proof. We only have to check that −α(|x|2 + |y|2) ≥ − cosh(2ωt)(|x|2 + |y|2)− 2x · y.

This follows immediately from the assumption on α. Note that cosh(2ωt)− 1 > 0 for

t > 0, so such an α exists.

Note that this lemma implies that e−tĤ2κ is a Hilbert-Schmidt operator.
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Compactness of e−tH . The following lemma states that a cut-off version of e−tH

converges in norm to e−tH .

Lemma III.2.3. Let t > 0 and θn ∈ Cc(Rd) such that χBrn (0) ≤ θn ≤ χB2rn (0), where

rn is defined such that

sup
x∈Rd\Brn (0)

(
µ(x)

)
<

1

n2
(III.10)

(where µ was defined in Lemma III.2.2) and define the operator Rn(t) by

Rn(t)f := (Ue−
t
2
HU−1)

(
θn(Ue−

t
2
HU−1)f

)
.

Then

‖Ue−tHU−1 −Rn(t)‖L(L2(Rd,R2)) → 0 (n→∞). (III.11)

Proof. Let n ∈ N and f ∈ C∞0 (Rd,R2) and compute

|Ue−tHU−1f(x)−Rn(t)f(x)|2 ≤ e−tĤ2κ
(
|Ue− t2HU−1f − θn(Ue−

t
2
HU−1)f |2

)
(x)

=

∫
K
(
t
2 , x, y

)∣∣(1− θn(y))(Ue−
t
2
HU−1)f(y)

∣∣2 dy
where we have used Lemma III.2.1 in the first line. Now integrate both sides over x.

‖Ue−tHU−1f −Rn(t)f‖2L2≤
∫∫

K
(
t
2 , x, y

)∣∣(1− θn(y))(Ue−
t
2
HU−1)f(y)

∣∣2 dxdy
≤ C

∫∫
µ(x)µ(y)|1− θn(y)|2 |(Ue− t2HU−1)f(y)|2 dxdy

≤C
(∫

µ(x)dx

)
‖µ(y)(1− θn(y))2‖∞

∫
|(Ue− t2HU−1)f(y)|2dy

≤ C ′
(

sup
y∈Rd\Brn

µ(y)
)
‖(Ue− t2HU−1)f‖2L2

≤ M

n2
‖(Ue− t2HU−1)f‖2L2

for some M > 0. Using the unitarity of U and the fact that e−
t
2
H is a bounded

operator on L2(Rd,C) we finally arrive at

‖Ue−tHU−1f −Rn(t)f‖2L2(Rd,R2) ≤
(
M

n2
‖e− t2H‖2

)
‖f‖2L2(Rd,R2). (III.12)

By density of C∞0 (Rd,R2) we conclude that this inequality is valid for all f ∈ L2(Rd,R2).
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This immediately yields

‖Ue−tHU−1 −Rn(t)‖L(L2(Rd,R2)) ≤
L

n
(III.13)

for some L > 0.

We can now use Lemma III.2.3 to prove Lemma III.1.3. By closedness of the set of

compact operators and Lemma III.2.3 we only have to show that Rn(τ) is compact

for every n. Since furthermore Ue−
τ
2
HU−1 is a bounded operator on L2(Rd,C), we

only show that Tn(τ) := θnUe
− τ

2
HU−1 is compact. This will be established in several

steps:

Step 1: Pass to a bounded domain by suitably cutting off the solution f of (III.5).

The cut function u will satisfy the inhomogeneous equation

∂tu +Hu = gn (III.14)

with gn ∈ H−1.

Step 2: Use Galerkin approximation to obtain the estimate

‖u‖2L2((0,1);H1
0 ) ≤ C‖gn‖2L2((0,1);H−1) (III.15)

Step 3: Cut off again to improve the estimate to

‖v‖2L∞((0,1);H1
0 ) ≤ C‖hn‖2L2((0,1);L2) (III.16)

Step 4: Conclude that

‖u(1)‖H1
0
≤ C‖f0‖L2 . (III.17)

Let us begin with the details.

Step 1

Let f be a solution of (III.5) and let ψ ∈ C∞([0, 1]) with

ψ(0) = 0, ψ
∣∣
[ 1
2
,1]
≡ 1
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and ηn ∈ C∞c (Rd) such that

χB2rn (0) ≤ ηn ≤ χB4rn (0).

Now define

u := ψ(t)ηn(x)f(t, x). (III.18)

A straightforward calculation shows that u satisfies the equation

∂tu +Hu = gn, (III.19)

where gn = ηn(∂tψ)u−ψ(∆ηn)u−2ψ∇ηn ·∇u. Since gn contains a spatial derivative

of the L2-function u we only have gn(t, ·) ∈ H−1(B4rn(0);R2).

Let us denote Ω := B4rn(0). Note that we have chosen ηn and ψ such that u has

the boundary values u(x, t) = 0, ∀x ∈ ∂Ω, t > 0

u(x, 0) = 0, ∀x ∈ Ω
(III.20)

Step 2

Notation. In this step we will apply Galerkin approximation to the system (III.19)

with boundary conditions (III.20) to obtain an estimate for ‖u‖2
L2((0,1);H1

0 )
. We follow

a standard procedure presented in many PDE textbooks. First, let us introduce the

notation

a(w,v) =

∫
Ω
∇w · ∇v dx+

∫
Ω

(Vw) · v dx (III.21)

for w,v ∈ H1
0 (Ω;R2), where “ · ” denotes the scalar product in R2. Then, we have

a(v,v) = ‖v‖2H1
0

+ c‖|x|v‖2L2 (III.22)

|a(w,v)| ≤ C‖w‖H1
0
‖v‖H1

0
. (III.23)

Now we choose a set {wj} of eigenfunctions of ∆ which forms an orthonormal basis

of L2(Ω) and of H1
0 (Ω). The eigenvalue corresponding to wj will be denoted λj . We

have that

(a) v = (v1, v2) ∈ L2(Ω;R2) if and only if vα =
∑∞

j=1 c
α
j wj for a sequence (cj) with∑∞

j=1 |cαj |2 <∞ for α = 1, 2.

(b) v ∈ H1
0 (Ω;R2) if in addition

∑∞
j=1 λj |cαj |2 <∞ for α = 1, 2.

54



III.2. Proof of Theorem III.1.4

Furthermore, we denote EN = span(w1, ..., wN ).

Construction of approximate solution.

Definition III.2.4. A function uN : [0, 1] → EN × EN is called an approximate

solution to the initial value problem (III.19), (III.20) if

(i) uN ∈ L2((0, 1);EN × EN ) and ∂tuN ∈ L2((0, 1);EN × EN )

(ii) for all v ∈ EN × EN one has∫
Ω

(∂tuN ) · v + a(uN ,v) = 〈gn,v〉 (III.24)

pointwise a.e. in t ∈ (0, 1), where 〈·, ·〉 denotes the dual pairing between H−1

and H1
0 .

(iii) uN (0) = 0

Now, expand the components as uαN (t, x) =
∑N

j=1 c
α
j (t)wj(x), plug this into (III.19)

and test the resulting equation with (wk, 0) and (0, wk), respectively. We get

dcαk
dt

+
∑
j

cαj 〈∇wj ,∇wk〉L2 +
∑
j,β

〈
V αβcβjwj , wk

〉
L2

= 〈gαn , wk〉 (III.25)

⇔ dcαk
dt

+
∑
j,β

Aαβj,kc
β
j = gαk (III.26)

for α ∈ {1, 2}, k ∈ {1, ..., N}, where Aαβj,k = 〈∇wj ,∇wk〉L2δαβ +
〈
V αβwj , wk

〉
L2 and

gαk = 〈gαn , wk〉H−1,H1
0
.

Lemma III.2.5. The system of ODEs (III.26) has a unique solution c = (c1, c2) ∈
C([0, 1];R2N ) with c(0) = 0.

Proof. This is a standard application of Banach’s fixed point theorem. Note that

‖Aαβjk ‖∞ ≤ |λj |2 + ‖V ‖L∞(Ω).

Lemma III.2.5 gives us an approximate solution uN ∈ C([0, 1];EN × EN ). Note

that we have

dc

dt
= −Ac + (gαk ) ∈ L2((0, 1);R2N ) ⇒ ∂tuN ∈ L2((0, 1);EN × EN )
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Proposition III.2.6. For every N ∈ N this approximate solution satisfies

‖uN‖L∞((0,1);L2) + ‖uN‖L2((0,1);H1
0 ) + ‖∂tuN‖L2((0,1);H−1) ≤ C‖gn‖L2((0,1);H−1).

(III.27)

Proof. Take v = uN in (III.24):

〈∂tuN ,uN 〉L2 + a(uN ,uN ) = 〈gn,uN 〉

⇔ 1

2
∂t

∫
Ω
|uN |2 + ‖uN‖2H1

0
+ c1‖xuN‖2L2 = 〈gn,uN 〉

⇒ 1

2
∂t‖uN‖2L2 + ‖uN‖2H1

0
≤ ‖gn‖H−1‖uN‖H1

0
.

Integrating this inequality from 0 to t, we get

1

2

(
‖uN (t)‖2L2 − ‖uN (0)‖2L2

)
+‖uN‖2L2((0,t);H1

0 ) ≤
∫ t

0
‖gn‖H−1‖uN‖H1

0
ds

≤
(∫ t

0
‖gn‖2H−1

) 1
2
(∫ t

0
‖uN‖2H1

0

) 1
2

≤ 1

2
‖gn‖2L2((0,t);H−1)+

1

2
‖uN‖2L2((0,t);H1

0 )

⇒ ‖uN (t)‖2L2 + ‖uN‖2L2((0,t);H1
0 ) ≤ ‖gn‖2L2((0,t);H−1)

Taking the supremum over t ∈ (0, 1) we get

‖uN‖2L∞((0,1);L2) + ‖uN‖2L2((0,1);H1
0 ) ≤ ‖gn‖2L2((0,1);H−1) (III.28)

To estimate the time derivative, note that since ∂tuN ∈ EN × EN :

‖∂tuN (t)‖H−1 = sup
v∈EN×EN\{0}

〈∂tuN ,v〉
‖v‖H1

0

.

Furthermore,

〈∂tuN ,v〉
(III.24)

= 〈gn,v〉 − a(uN ,v)

≤ |〈gn,v〉|+ |a(uN ,v)|
(III.23)

≤
(
‖gn‖H−1 + C‖uN‖H1

0

)
‖v‖H1

0
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This shows that we have

‖∂tuN‖2H−1 ≤ C
(
‖uN‖2H1

0
+ ‖gn‖2H−1

)
(III.29)

for some new constant C. Integrate this with respect to t and use (III.28).

Convergence of approximate solutions. Proposition III.2.6 implies that

(uN ) is bounded in L2((0, 1);H1
0 )

(∂tuN ) is bounded in L2((0, 1);H−1).

From the Banach-Alaoglu theorem it follows that there exists a subsequence (which

we again denote by (uN )) with

uN ⇀ u in L2((0, 1);H1
0 ) and ∂tuN

∗
⇀ ∂tu in L2((0, 1);H−1)

Let ϕ ∈ C∞c (0, 1), w ∈ EM × EM and take v = ϕw in (III.24):∫ 1

0

[
〈∂tuN , ϕw〉L2 + a(uN , ϕw)

]
dt =

∫ 1

0
〈gn, ϕw〉dt. (III.30)

Now, take N →∞ on both sides. Then

•
∫ 1

0
(∂tuN , ϕw)L2dt→

∫ 1

0
(∂tu, ϕw)L2dt because of weak∗ convergence in H−1

• From (III.23) it follows that u 7→
∫ 1

0 a(u, ϕw)dt is a continuous linear form on

L2((0, 1);H1
0 ) and so we have∫ 1

0
a(uN , ϕw)dt→

∫ 1

0
a(u, ϕw)dt.

Thus, (III.30) becomes∫ 1

0
ϕ
[
(∂tu,w)L2 + a(u,w)

]
dt =

∫ t

0
ϕ〈gn,w〉dt (III.31)

and since this holds for every ϕ ∈ C∞c (0, 1) this implies

〈∂tu,w〉L2 + a(u,w) = 〈gn,w〉 ∀w ∈ EM × EM . (III.32)

Since
⋃
M∈NEM × EM is dense in H1

0 (Ω;R2), this holds for all w ∈ H1
0 (Ω;R2).
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Initial condition Let now ϕ ∈ C∞(0, 1), ϕ(0) = 1, ϕ(1) = 0. Partial integration in

(III.32) gives

〈u(0),w〉L2 =

∫ 1

0
∂tϕ 〈u,w〉L2 dt+

∫ 1

0
ϕ
[
〈gn,w〉 − a(u,w)

]
dt. (III.33)

Similarly,

0 =

∫ 1

0
∂tϕ 〈uN ,w〉L2 dt+

∫ 1

0
ϕ
[
〈gn,w〉 − a(uN ,w)

]
dt. (III.34)

for w ∈ EM×EM and N > M . Letting N →∞ we may conclude that 〈u(0),w〉L2 = 0

for any w ∈ L2((0, 1);H1
0 ) and thus u(0) = 0.

Uniqueness Let u1,u2 obey (III.19) and set u3 = u1 − u2. Then

〈∂tu3,u3〉L2 + a(u3,u3) = 0

⇔ 〈∂tu3,u3〉L2 + ‖u3‖2H1
0

+ c1‖xu3‖2L2 = 0

⇒ 〈∂tu3,u3〉L2 ≤ 0

⇔ d

dt
‖u3‖2L2 ≤ 0

Together with u3(0) = 0 this implies u3 = 0 and so u1 = u2

Step 3

Recall that we had u(t, x) = ψ(t)ηn(x)f(t, x) and ψ|[ 1
2
,1] ≡ 1, ηn|B2rn (0) ≡ 1, so we

have

u = f on [1
2 , 1]×B2rn(0)

and thus

t 7→ f(t, ·) ∈ L2
(
(0, 1);H1(B2rn(0))

)
.

Now let us cut off again by choosing new functions φ ∈ C∞([1
2 , 1]) with

φ(1
2) = 0, φ(1) = 1

and θn with

χBrn (0) ≤ θn ≤ χB2rn (0)
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(cf. Lemma III.2.3) and put

v(t, x) := φ(t)θn(x)u(t, x) (III.35)

t

x
−2rn −rn rn 2rn

1
2

1

ψηn ≡ 1

φθn ≡ 1

Figure III.2.: The cutting process in the x-t plane

Note that we have v = φθnf wherever φθn 6= 0. The same calculation as at the

beginning of Step 1 shows that v satisfies the boundary value problem
∂tv +Hv = hn

v(1
2 , x) = 0

v(t, x) = 0, for x ∈ ∂B2rn(0), t > 1
2 ,

(III.36)

where hn = φθngn + θn(∂tφ)f −φ(∆θn)f − 2φ∇θn ·∇f . Note that we now have hn ∈
L2
(
(0, 1);L2(B2rn(0))

)
, in contrast to before, when we had gn(t, ·) ∈ H−1(B4rn(0)).

Denote Ω̃ := B2rn(0). A modification of Theorem 5, Chapter 7.1 in [Eva98] (checked

assumptions in this theorem; the condition hn ∈ L2
(
(0, 1);L2(B2rn(0))

)
is sufficient.)

gives that

v ∈ L2
(
(0, 1);H2(Ω̃;R2)

)
∩ L∞

(
(0, 1);H1

0 (Ω̃;R2)
)

∂tv ∈ L2
(
(0, 1);L2(Ω̃;R2)

)
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and

‖v‖L2((0,1);H2) + ‖v‖L∞((0,1);H1
0 ) ≤ C‖hn‖L2((0,1);L2) (III.37)

Finally, note that

v(1, x) = θn(x)u(1, x)

= θn(x)
(
Ue−HU−1f0

)
(x)

so we obtain

∥∥θn(Ue−HU−1f0
)∥∥
H1

0 (Ω̃;R2)
≤ C‖hn‖L2((0,1);L2(Ω̃;R2)) (III.38)

Step 4

In this last step we will estimate the right-hand side of (III.38) by the L2-norm of the

initial condition f0. Constants C may change from line.

By definition of hn we have

‖hn‖L2((0,1);L2(Ω̃;R2)) ≤ C‖u‖L2((0,1);H1
0 (Ω̃;R2)).

Using (III.27) (which also holds for u) we get

‖hn‖L2((0,1);L2(Ω̃;R2)) ≤ C‖g‖L2((0,1);H−1(Ω̃;R2))

≤ C‖g‖L∞((0,1);H−1(Ω̃;R2))

= C‖(∂tψ)f‖L∞((0,1);H−1(Ω̃;R2))

≤ C‖f‖L∞((0,1);H−1(Ω̃;R2))

≤ C‖f(0)‖H−1(Ω̃;R2)

since the operator Ue−HU−1 is bounded and ‖e−H‖ ≤ 1. Recalling our initial condi-

tion u(0) = f0, we thus get

‖hn‖L2((0,1);L2(Ω̃;R2)) ≤ C‖f0‖H−1(Ω̃;R2)

≤ C‖f0‖L2(Ω̃;R2)

≤ C‖f0‖L2(Rd;R2).
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Using this in (III.38), we finally arrive at

∥∥θn(Ue−HU−1f0
)∥∥
H1

0 (Ω̃;R2)
≤ C‖f0‖L2(Rd;R2). (III.39)

Thus, the image of the unit ball in L2(Rd;R2) under θnUe
−HU−1 is bounded in

H1
0 (Ω̃;R2). By the compact embedding H1

0 (Ω̃;R2) ↪→ L2(Ω̃;R2) we conclude that

{
θn
(
Ue−HU−1f0

)
: ‖f0‖L2(R;R2) ≤ 1

}
(III.40)

is precompact in L2(Ω̃;R2) (and thus in L2(Rd;R2)). Thus the operator

θnUe
−HU−1 : L2(Rd;R2)→ L2(Rd;R2)

is compact which completes the proof of Lemma III.1.3.

Corollary III.2.7. The semigroup e−tH is immediately norm-continuous.

Proof. This follows from the above compactness result, together with Lemma I.2.18.

Note that by applying Lemma I.2.17, we obtain the following bound on the spectrum

of H:

Corollary III.2.8. Let b ∈ R. Then the set

{λ ∈ σ(H) : Reλ ≤ b}

is bounded.

III.2.2. Bound on the Pseudospectrum

Recall from the introductory sections that by Proposition I.2.28, the large-t behaviour

of a strongly continuous semigroup T (t) with generator A is determined by the spec-

trum of T (t). However, as we noted, it is not necessarily determined by the spectrum

of its generator, A, since σ(T (t)) might be larger than eσ(A) for generic semigroups.

This issue vanishes for eventually compact semigroups, as we have seen in Corollary

I.2.34.
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Moreover, recall from Corollary I.2.7 that if (T (t))t≥0 is a one-parameter semigroup

with ‖T (t)‖ ≤Meat for all t ≥ 0, then

‖(z −A)−1‖ ≤ M

Re z − a ∀z : Re z > a. (III.41)

Note that in the following we will be dealing with accretive operators, rather than

dissipative ones, i.e. their negative generates a semigroup. The reader should be

aware of the corresponding sign changes.

Example: The imaginary Airy Operator. The theorems mentioned above can be used

to estimate the pseudospectra of m-accretive operators. As an illustrative example,

let us treat the imaginary Airy operator defined as

HAi = − d2

dx2
+ ix on dom(HAi) = {φ ∈ L2(R) | − φ′′ + ixφ ∈ L2(R)}. (III.42)

This operator is m-accretive, and thus generates a one-parameter semigroup. Using

the Fourier transform one can show that [Dav07]

‖e−tHAi‖ = e−
t3

12 , (III.43)

which, together with the Hille-Yosida theorem, implies that σ(HAi) = ∅. Let now

a > 0. Choosing Ma = supt≥0

(
eat−

t3

12

)
we have

e−
t3

12 ≤Mae
−at

and so

‖e−tHAi‖ ≤Mae
−at. (III.44)

Thus Corollary I.2.7 tells us that

‖(z −HAi)
−1‖ ≤ Ma

a− Re z
∀z : Re z < a. (III.45)

(note that the generator of the semigroup is not HAi but −HAi). In particular, we

have for (say) Re z < a− 1 that

‖(z −HAi)
−1‖ ≤Ma. (III.46)
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This shows that for ε < 1
Ma

the set {z | Re z < a − 1} does not intersect the ε-

pseudospectrum. In more suggestive terms: The ε-pseudospectrum wanders off to-

wards +∞ as we decrease ε.

A simple calculation shows that Ma = supt≥0

(
eat−

t3

12

)
= e

4
3
a3/2

. This even enables

us to estimate how fast the pseudospectrum moves with decreasing ε. To this end, let

z ∈ σε(HAi) for some fixed ε > 0. Then by (III.46) we have

1

ε
≤ ‖(z −HAi)

−1‖

≤ e 4
3

(Re z+1)3/2

≤ ew(Re z)3/2

for some w > 0 and Re z large enough. This inequality immediately leads to

Re z ≥ w−1

(
log

1

ε

)2/3

, (III.47)

with w independent of ε. This shows that indeed every point in the ε-pseudospectrum

moves towards +∞ at a rate of at least
(
log 1

ε

)2/3
.

Let us compare this to the results of [KSTV15]. Using semiclassical techniques the

authors showed that there exist constants C1, C2 > 0 such that for all ε > 0

σε(HAi) ⊃
{
z : Re(z) ≥ C1, Re(z) ≥ C2

(
log

1

ε

)2/3
}
.

Equation (III.47) confirms that the scaling found in [KSTV15] is in fact optimal. The

same result has previously been obtained in [Bor13] using a different method of proof.

Note that together with the observation that ‖(HAi− z)−1‖ is independent of Im(z)

(see [Dav07, Problem 9.1.10]) the pseudospectrum of HAi is (essentially) completely

characterised: it consists of half-planes moving towards +∞ with asymptotic velocity(
log 1

ε

)2/3
.

The General Case: A First Estimate. Let us now turn back to the operator H =

−∆ + V of Definition III.1.2. To conclude the proof of Theorem III.1.4 we will need

several lemmas which will be established next. By Corollary I.2.34 we know that

σ(e−tH) = {0} ∪ {e−tλ |λ ∈ σ(H)}. (III.48)

Let us denote the eigenvalues of H by λj such that Reλj ≤ Reλi for j < i (and we
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do not count multiplicities). Thus, λ0 denotes an eigenvalue with minimal real part.

In fact, up to now we could have Reλ0 = −b. We will account for this problem below

in Lemma III.2.9. With this notation, we obtain from eq. (III.48) that

r(e−tH) = e−tReλ0 , (III.49)

Thus by Proposition I.2.28 we have

−Reλ0 = lim
t→∞

t−1 log ‖e−tH‖. (III.50)

In other words, we have that for every α < Reλ0

lim
t→∞

eαt‖e−tH‖ = 0. (III.51)

Let such an α < Reλ0 be fixed and choose tα such that eαt‖e−tH‖ < 1 for all t > tα.

On the whole we have

‖e−tH‖ < e−αt ∀t > tα

‖e−tH‖ ≤ 1 ∀t > 0 (since e−tH is a contraction semigroup),

so we finally arrive at

‖e−tH‖ ≤Mαe
−αt ∀t > 0, (III.52)

with Mα = eαtα .

We are now in the position to proceed as for the imaginary Airy operator. Corollary

I.2.7 tells us that

‖(z −H)−1‖ ≤ Mα

α− Re z
∀z : Re z < α. (III.53)

Note, however, that this time we cannot simply let α → +∞ since we are restricted

to α < Reλ0.

Pushing the Pseudospectrum Towards Infinity. Let Qn = 1
2πi

∮
γ(H−z)−1dz denote

the Riesz projection associated with H, where γ encloses only the n-th eigenvalue

λn (which is possible since the spectrum of H is discrete). Moreover, define Pm :=∑m
n=0Qn. Then each of the operators Qn, Pm commutes with the resolvent of H.

Since H has compact resolvent, we have that dim(RanQn) <∞ ∀n. For each m ∈
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N the space L2(Rd) decomposes into a direct sum of closed, H-invariant subspaces‡

L2(Rd) = RanQ0 ⊕ · · · ⊕ RanQm ⊕ Ran(I − Pm) (III.54)

Because e−tH commutes with the resolvent of H, each of the above subspaces is in-

variant under e−tH and hence the generator of e−tH |RanQn is −H|RanQn . The same is

true for Ran(I − Pm).

Since the spectrum of H|Ran(I−Pm) is {λn : n > m} (and since the restriction of a

compact operator is compact), applying Corollary I.2.34 again gives

σ
(
e−tH

∣∣
Ran(I−Pm)

)
= {0} ∪ {e−tλn}∞n=m+1. (III.55)

Lemma III.2.9. For all z ∈ ρ(H), one has

‖(H − z)−1‖ ≤ C
(

m∑
n=0

‖(H|RanQn − z)−1‖+ ‖(H|Ran(I−Pm) − z)−1‖
)

(III.56)

where C depends only on ‖Qn‖ (n ≤ m).

Proof. Let z ∈ ρ(H) and ξ, ψ ∈ L2(Rd) such that (H − z)ξ = ψ and ‖ψ‖ = 1. We

want to estimate ‖ξ‖. To do this, note that by surjectivity of (H − z) we have

L2(Rd) =

(
m⊕
n=0

Ran(H|Ran(Qn) − z)
)

+ Ran(H|Ran(I−Pm) − z). (III.57)

Note that the first term on the right hand side is actually equal to
⊕m

n=0 RanQn, since

RanQn is H-invariant.

Claim: We have Ran(I − Pm) = Ran(H|Ran(I−Pm) − z).

Proof of Claim: Since the Qn commute with H, we have

Ran(H|Ran(I−Pm) − z) = Ran
(
(H|Ran(I−Pm) − z)(I − Pm)

)
= Ran

(
(I − Pm)(H|Ran(I−Pm) − z)

)
⊂ Ran(I − Pm).

Now, suppose there was a 0 6= φ ∈ Ran(I − Pm)\Ran(H|Ran(I−Pm) − z). Since

(III.54) is a direct sum φ cannot have any components in
⊕m

n=0 RanQn. But

‡H-invariance follows from the fact that the Qn commute with H and closedness of Ran(I − Pm)
follows from the Fredholm alternative.
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then φ /∈ Ran(H − z), by (III.57), which contradicts surjectivity.

Now, decompose

ψ =

m∑
n=1

Qnψ + (I − Pm)ψ

=:
m∑
n=1

ψn + ψ̃.

Choose ξn ∈ RanQn such that (H − z)ξn = ψn and ξ̃ ∈ Ran(I − Pm) such that

(H − z)ξ̃ = ψ̃ (which is possible since Ran(I − Pm) = Ran(H|Ran(I−Pm) − z)). But

now it is clear that

‖ξn‖ ≤ ‖(H|RanQn − z)−1‖‖ψn‖ ≤ ‖(H|RanQn − z)−1‖‖Qn‖‖ψ‖
‖ξ̃‖ ≤ ‖(H|Ran(I−Pm) − z)−1‖‖ψ̃‖ ≤ ‖(H|Ran(I−Pm) − z)−1‖‖(I − Pm)‖‖ψ‖

Finally, using the triangle inequality we obtain

‖ξ‖ ≤
m∑
n=1

‖ξn‖+ ‖ξ̃‖

≤
(

m∑
n=0

‖Qn‖‖(H|RanQn − z)−1‖+ ‖(I − Pm)‖‖(H|Ran(I−Pm) − z)−1‖
)
‖ψ‖

≤
(

1 +

m∑
n=0

‖Qn‖
)(
‖(H|RanQn − z)−1‖+ ‖(H|Ran(I−Pm) − z)−1‖

)
which concludes the proof.

We are finally able to complete the proof of Theorem III.1.4. In (III.56) the first

term on the right hand side is nothing but a sum of the resolvents of matrices (cf.

Theorem I.1.18). These are well-known to decay in norm at infinity. In fact, a simple

calculation shows that one has ‖(T − λ)−1‖ ≤
(
|λ| − ‖T‖

)−1
as |λ| → ∞. As a

consequence, the ε-pseudospectra of (H|RanQn − z)−1 are contained in discs around

the λn for ε small enough.

For the second term we can use (III.55) in Proposition I.2.28 and Corollary I.2.7 to

obtain an estimate similar to (III.53), but with α < Reλm+1 instead. By Corollary

III.2.8 we necessarily have Reλn → ∞ as n → ∞. Thus we obtain a bound on

‖(H−λ)−1‖ on vertical lines with arbitrarily large real part and the proof of Theorem

III.1.4 is completed.
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III.3. Potentials with vanishing or negative real part

It is natural to ask whether the condition ReV (x) ≥ c|x|2 − b can be relaxed. In

this section we will discuss two examples giving hints as to what might or might

not be possible. First, we will consider an example of a Schrödinger operator with

ReV = 0 which still satisfies the inclusion (III.3). Second, we will show that in the

case ReV (x) ≤ −c|x|2 one can not expect any inclusion of the form (III.3).

III.3.1. Example: The Imaginary Cubic Oscillator

In this section we consider the operator

HB = − d2

dx2
+ ix3 on L2(R), (III.58)

defined in the sense of Proposition III.1.1. HB is sometimes called the imaginary

cubic oscillator, or the Bender oscillator. We immediately obtain closedness of HB,

compactness of its resolvent and m-accrevity from Proposition III.1.1. Moreover, it

is known [DDT01, Shi02] that the spectrum of HB is entirely real and positive which

enables us to number the eigenvalues λi of HB such that λi ≤ λj for i ≤ j and λ0 > 0.

In this section, we will prove the following result about HB.

Theorem III.3.1. For the pseudospectrum of HB the inclusion (III.3) holds and in

addition there exists a C > 0 such that for every δ > 0 there is an ε > 0 such that

σε(HB) ⊂
{
z : Re z ≥ C

(
log

1

ε

)6/5
}
∪

⋃
λ∈σ(HB)

{z : |z − λ| < δ}. (III.59)

In particular, apart from disks around the eigenvalues, the ε-pseudospectrum is con-

tained in the half plane
{

Re z ≥ C
(
log 1

ε

)6/5}
.

Proof. As in the previous section we want to estimate ‖e−tHB |Ran(I−Pm)‖ for m ∈
N. We know that the eigenfunctions of HB form a complete set in L2(R) and the

algebraic eigenspaces are one-dimensional [KS12, Tai06]. Thus, we can use Lemma

3.1 of [Dav05]:

Lemma III.3.2 ([Dav05]). Let T (t) be a strongly continuous semigroup and {ψn}∞n=1

a complete set of linearly independent vectors. Let Tn(t) denote the restriction of T (t)

to span{ψ1, . . . , ψn}. Then

‖T (t)‖ = lim
n→∞

‖Tn(t)‖ (III.60)
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for all t ≥ 0.

From now on, let {ψn}∞n=1 denote the set of eigenvectors of HB and let V n
m :=

span{ψm, . . . , ψn} =
⊕n

k=m Ran(Qk). The Lemma now implies

‖e−tHB |Ran(I−Pm−1)‖ = lim
n→∞

‖e−tHB |V nm‖.

The analytic functional calculus (see [TL80, Ch.V.]) shows that
∑n

k=mQk is a projec-

tion again and thus we have ψ =
∑n

i=mQiψ for every ψ ∈ V n
m which we can use as

follows.

‖e−tHB |Ran(I−Pm)ψ‖ = lim
n→∞

‖e−tHB |V nmψ‖

= lim
n→∞

∥∥∥∥∥
n∑

k=m

e−tλkQkψ

∥∥∥∥∥
≤ lim

n→∞

n∑
k=m

e−tλk‖Qk‖‖ψ‖

=

( ∞∑
k=m

e−tλk‖Qk‖
)
‖ψ‖

so we obtain

‖e−tHB |Ran(I−Pm)‖ ≤
∞∑
k=m

e−tλk‖Qk‖. (III.61)

In [Hen14b] it was shown that limk→∞
log ‖Qk‖

k = π√
3
. Accordingly, for every µ > π√

3

there exists a C > 0 such that

‖Qk‖ ≤ Ceµk. (III.62)

In particular, choosing µ = 2, we obtain ‖Qk‖ ≤ Ce2k for some C > 0.

On the other hand, it is well-known from [Sib75] that

λk ≥ ck6/5. (III.63)

Combining these two facts, we arrive at

‖e−tHB |Ran(I−Pm)‖ ≤
∞∑
k=m

e−tck
6/5
Ce2k

= C

∞∑
k=m

e−tck
6/5+2k
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Clearly, there exists a k0 such that 1
2 tck

6/5 > 2k for all k > k0 and k0 is independent

of t as long as (say) t ≥ 1. So we can decompose

‖e−tHB |Ran(I−Pm−1)‖ ≤ C
k0∑
k=m

e−tck
6/5+2k + C

∞∑
k=k0+1

e−
c
2
tk6/5

Since k0 is independent of m and t, the first term in this estimate is only present as

long as m < k0.

Since we are interested in asymptotics, let us assume m > k0 ≥ 1 from now on. Our

task is thus to estimate the second term in the above inequality. This is easily done

by using bx+ 1c ≥ x for all x > 0 and calculating

∞∑
k=m

e−
c
2
t(k+1)6/5 ≤

∫ ∞
m

e−
c
2
tx6/5

dx

≤
∫ ∞
m

(
6
5x

1/5
)
e−

c
2
tx6/5

dx

= 2
ct

[
−e−

c
2 tx

6/5
]∞
m

= 2
cte
− c2 tm

6/5

This finally shows our main ingredient

Lemma III.3.3. There exist constants k0,M, ω > 0 such that

‖e−tHB |Ran(I−Pm−1)‖ ≤Me−ωm
6
5 t

for all m > k0, t ≥ 1.

This immediately leads to§

‖(HB|Ran(I−Pm−1) − z)−1‖ ≤ M̃

ωm
6
5 − Re z

(III.64)

for all Re z < ωm
6
5 , where M̃, ω are independent of m. On the whole, the resolvent of

HB is estimated by (see the proof of Lemma III.2.9)

∥∥(HB−z)−1
∥∥≤(1+

m∑
k=1

‖Qk‖
)( m∑

k=1

∥∥(HB|RanQk−z)−1
∥∥+
∥∥(HB|Ran(I−Pm)−z)−1

∥∥)
§Since we only know that ‖e−tHB‖ is bounded by 1 between t = 0 and t = 1, we might need to

increase M to obtain (III.64).
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≤
(

1 +
m∑
k=1

‖Qk‖
)( m∑

k=1

1

|λk − z|
+

M̃

ω(m+ 1)
6
5 − Re z

)

The first summand in the second factor gives the discs around the eigenvalues in

(III.3), the second gives the half-plane. If we keep the distance of Re(z) to ω(m+1)6/5

constant, the second factor on the right-hand side stays bounded as m → ∞. Since

the first factor grows as e(constant)·m, we have

‖(HB − z)−1‖ ≤ CeC′(Re z)5/6
(III.65)

uniformly in z as long as dist(z, σ(HB)) is bounded below by a positive constant.

Keeping this in mind, suppose now that z ∈ σε(HB) ∩ {dist(z, σ(HB)) > 1}. We

deduce

log

(
1

ε

)
≤ log ‖(HB − z)−1‖ ≤ C ′′(Re z)5/6

⇔
(

log
1

ε

)6/5

≤ C ′′ Re z

Together with the complementary estimate in (II.4) this proves the scaling in (III.59).

Let us compare Theorem III.3.1 to the results of [KSTV15]. As noted in the intro-

duction, it was shown there that for every δ > 0 there exist constants C1, C2 > 0 such

that for all ε > 0

σε(HB) ⊃
{
z ∈ C : |z| ≥ C1, | arg z| <

(π
2
− δ
)
, |z| ≥ C2

(
log

1

ε

)6/5
}
.

Clearly, we have found the same scaling in (III.59). Thus, Theorem III.3.1 shows that

the scaling (II.4) obtained in [KSTV15] is sharp.

Moreover, we obtain as a byproduct the following two statements about the semi-

group and the resolvent of HB.

Corollary III.3.4. The semigroup e−tHB is immediately differentiable.

Corollary III.3.5. The resolvent norm of HB satisfies

lim
r→∞

‖(HB − s− ir)−1‖ = 0 (III.66)

for all s ∈ R.
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Proof. By [EN00, Cor. II.4.15] and the estimate (III.64) the semigroups e−tHB |Ran(I−Pm)

are immediately differentiable for every m and hence immediately norm-continuous.

By [EN00, Cor. II.4.19] one has

lim
r→∞

∥∥(HB|Ran(I−Pm−1) − (s+ ir)
)−1∥∥→ 0 ∀s < ωm

6
5 .

Together with the estimate (III.56) the assertion follows.

Notice that the strategy of the proof of Theorem III.3.1 also applies to more general

classes of operators. The essential ingredients were the knowledge of the norms of the

spectral projections, together with the fact that these norms are asymptotically small

compared to e−tλk . Examples of operators satisfying these conditions are considered

in [Hen14a, MSV17].

III.3.2. Counterexample: An Operator with Negative Real Part

Let us again consider the operator Hc from (II.1), but now let c < 0. This operator

can be defined rigorously using [BST17, Prop 2.4] and is still well-behaved in the sense

that it is closed and its resolvent is compact. Moreover, its spectrum is still real and

positive [Shi02, Cor. 3]. However, as we will show, its pseudospectrum is not well-

behaved at all. In fact, Hc does not even generate a one-parameter semigroup in this

case.

Theorem III.3.6. For Hc , c < 0 no inclusion of the type (III.3) is possible. More

precisely, for every C,R,M > 0 there exists z ∈ C such that Re z < −R, |z| > M and

‖(Hc − z)−1‖ ≥ C. (III.67)

In particular, Hc does not generate a one-parameter semigroup.

Proof. We will use Theorem 3.1 and Lemma 4.1 of [Nov14]. Similarly to their strategy,

let us define the unitary transformation

(Uψ)(x) := τ1/2ψ(τx),

with τ > 0. This transformation takes Hc to its semiclassical analogue

Hh
c := τ−3UHcU−1 = −h2 d

2

dx2
+ ix3 − ch2/5x2,
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Figure III.3.: The semiclassical pseudospectrum of Hh
c . The boundary curve approaches the

imaginary axis as h→ 0.

where h = τ−5/2. The semiclassical pseudospectrum (cf. (3.2) in [Nov14]) for this

operator is the set (cf. Figure III.3)

Λh = {ξ2 + ix3 − ch2/5x2 : ξ, x 6= 0}.

We obviously have i ∈ Λh for every h > 0 (remember that c < 0). By [Nov14, Theorem

3.1] and the unitarity of U there exists a C > 0 such that

‖(Hc − iτ3)−1‖ = τ−3‖(Hh
c − i)−1‖

≥ h6/5C1/h

Sending τ = h−2/5 →∞, we see that the resolvent norm of Hc diverges exponentially

on the imaginary axis.

To show divergence on vertical lines with strictly negative real part we may shift Hc

by a real constant and then apply the above procedure. More precisely, let α > 0 and

consider the operator Hc + α. Its semiclassical analogue is

τ−3U(Hc + α)U−1 = Hh
c + h6/5α

and its semiclassical pseudospectrum

Λh = {ξ2 + ix3 − ch2/5x2 + h6/5α : ξ, x 6= 0}
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is shifted to the right by h6/5α. Its boundary curve intersects the imaginary axis when

−ch2/5x2 + h6/5α = 0 the solution of which is h2/5
(
α
c

)1/2
. Since this tends to 0 as

h → 0 one can always find h0 > 0 such that i ∈ Λh for all h < h0. This enables us

to apply the above procedure for the shifted operator and obtain again exponential

divergence on the imaginary axis.

Remark: Given the above lower estimate of ‖(Hc − z)−1‖, let us mention that it is

still possible to obtain weaker upper bounds on the resolvent norm of Hc. Boegli,

Siegl and Tretter have shown in [BST17] that for a very general class of Schroedinger

operators, including H,Hc and HB, the resolvent norm always decays in a sector in

the complex plane which opens to the left.

In other words, operators such as Hc are still sectorial in the sense of [Haa06] (but

not in the sense of Definition I.2.10). In particular, there exists an analytic functional

calculus for these operators which, in turn, yields the existence e.g. of fractional powers

of Hc.

73





IV. Norm-Resolvent Convergence in

Perforated Domains

In this part we study the following homogenisation problems labelled by ι ∈ {D,N, α}
(“D” for Dirichlet, “N” for Neumann, and “α” for Robin). Let Ω ⊂ Rd, d ≥ 2, be

open (bounded or unbounded) We make the following further assumptions on Ω:

Dirichlet case: ∂Ω is uniformly C2 (cf. [AF03, Definition 4.10]) and there exists

δ > 0 such that for all y ∈ Rd \ Ω there exists a ball B with radius δ such that y ∈ B
and B ∩ Ω = ∅, i.e. the complement of Ω does not become “too narrow”.

Neumann and Robin case: ∂Ω is of class C2 and Ω is translation invariant, i.e.

for every j ∈ Zd one has Ω + j = Ω.

Note that the interesting special case Ω = Rd satisfies all the above assumptions.

Let α ∈ C \ {0}, Re(α) ≥ 0 and denote Ωε := Ω \⋃i∈Lε Brε(i) where ε ∈ (0, 1), Brε(i)

is the ball of radius

rD
ε =

ε
d/(d−2), d ≥ 3,

e−1/ε2 , d = 2,
rN
ε = o(ε) (ε→ 0), rαε = ε

d/(d−1). (IV.1)

centered at the point i ∈ Lε, and

Lε := {i ∈ 2εZd : dist(i, ∂Ω) > ε}. (IV.2)

(cf. Figure IV.1). Consider the boundary value problems(−∆ + 1)uε = f in Ωε,

uε = 0 on ∂Ωε,
(Dir)
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IV. Norm-Resolvent Convergence in Perforated Domains

(−∆ + 1)uε = f in Ωε,

∂νu
ε = 0 on ∂Ωε,

(Neu)

(−∆ + 1)uε = f in Ωε,

∂νu
ε + αu = 0 on ∂Ωε,

(Rob)

i.e. the resolvent problem for the Laplacian, subject to the Dirichlet, Neumann and

Robin boundary conditions, respectively. It is easy to see, using the Lax-Milgram

theorem, that for all ε ∈ (0, 1) each of these problems has a unique weak solution uε.

It is a classical question, which we refer to as the homogenisation problem, whether

the family of solutions to (Dir), (Neu), (Rob), obtained by varying the parameter ε,

converges in the sense of the L2-norm to a function u ∈ L2(Ω) as ε→ 0 and whether

the limit function u solves, in a reasonable sense, some PDE whose form is independent

of the right-hand side datum f.

Ωε

ε

2rιε 2ε

Figure IV.1.: Sketch of the perforated domain with an ε-neighbourhood of the boundary in
which there are no holes.

Homogenisation problems of this type have been studied extensively for a long

time [CM97, RT75, MK64, Kai85, Zhi00, Pas06, BCD16]. For example, results by

Marchenko-Khruslov and Kaizu give a positive answer to the previous question for all

three choices of boundary conditions at least in the case of bounded domains. In fact,

they showed that the solutions of (Dir), (Rob), (Neu) converge strongly in L2(Ω) to
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IV.1. Convergence of Operators on Varying Spaces

the solution u ∈ H1(Ω) of (−∆ + 1 + µι)u = f , where

µι =



π
2 , ι = D, d = 2,

(d−2)Sd
2d

, ι = D, d ≥ 3,

0, ι = N,

αSd
2d
, ι = α

(IV.3)

and Sd denotes the surface area of the unit ball in Rd.
In this article we attempt to improve this result in two directions. First, we show

the above convergence not only in the strong sense, but in the norm resolvent sense

(that is, the right-hand side f is allowed to depend on ε). Second, our result is then

extended to unbounded domains Ω. As a corollary, we obtain a statement about the

convergence of the spectra of the perforated domain problems (Dir), (Neu), (Rob) as

ε→ 0.

This part is organised as follows. In section IV.1 we review concepts of convergence

on varying Hilbert spaces, in Section IV.2 we will briefly give a more precise formulation

of the problem and include previous results. In Section IV.3 we will state our main

result and its implications. Sections IV.4, IV.5 and IV.6 contain the proof of the main

theorem and in Section IV.7 we consider implications of our main theorem on the

semigroup generated by the Robin Laplacian.

IV.1. Convergence of Operators on Varying Spaces

This preliminary section is intended to deal with the technical complication presented

by the fact that the spaces L2(Ωε) in which the operators act depend on ε. Due to

this issue the notion of norm resolvent convergence is ill-defined a priori. On the other

hand, convergence of the spectra does not depend on the domains of the operators

and it is a legitimate question whether the spectra of the perforated domain operators

converge to the spectra of the limit operators −∆ + 1 + µι.

In the following we will review the results of [MNP13] who introduced an extended

notion of norm resolvent convergence for operators Aε with varying domains. In order

to make sense of this, one needs to introduce identification operators between the

domains of the Aε. In short, the result we are going to prove states that if these

identification operators satisfy a set of reasonable conditions, then a notion of norm

resolvent convergence can be defined which implies spectral convergence. We use the
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IV. Norm-Resolvent Convergence in Perforated Domains

notation and conventions from Part I.

Let Hε,H be Hilbert spaces and A : H ⊃ dom(A) → H be m-accretive and for

ε > 0 and let Aε : Hε ⊃ dom(Aε) → Hε be a sequence of m-accretive operators. Let

us denote Vε :=
(
Hε, ‖ · ‖Aε

)
and V :=

(
H, ‖ · ‖A

)
, where ‖ · ‖A denotes the norm

generated by the sesquilinear form of A, that is, ‖u‖2V := ‖u‖2A := ‖u‖2H+ Re 〈Au, u〉H
(analogously for ‖·‖Vε). By m-accretivity of the operators involved we have −1 ∈ ρ(Aε)

for all ε > 0 and −1 ∈ ρ(A) and the operator norms
∥∥(1 + A)−1

∥∥
L(H,V)

are finite.

Indeed, we have

Lemma IV.1.1. For z ∈ ρ(A) one has

∥∥(z −A)−1
∥∥2

L(H,V)
≤
(

1 + |1 + z|
∥∥(z −A)−1

∥∥
L(H)

)2
. (IV.4)

Proof. Let z ∈ ρ(A). Then

∥∥(z −A)−1u
∥∥2

V ≤
∣∣〈(A+ id)(z −A)−1u, (z −A)−1u

〉
H
∣∣

=
∣∣〈(1 + z)(z −A)−1u− u, (z −A)−1u

〉
H
∣∣

≤
(
|1 + z|

∥∥(z −A)−1u
∥∥
H + ‖u‖H

) ∥∥(z −A)−1u
∥∥
H,

hence

∥∥(z −A)−1
∥∥2

L(H,V)
≤
(

1 + |1 + z|
∥∥(z −A)−1

∥∥
L(H)

)∥∥(z −A)−1
∥∥
L(H)

≤
(

1 + |1 + z|
∥∥(z −A)−1

∥∥
L(H)

)2
.

Definition IV.1.2. Assume that there exist operators Jε : Hε → H and Iε : H → Hε
such that

(i) IεJε = idHε ,

(ii) ‖JεIε − idH‖L(V,H) → 0 as ε→ 0,

(iii) ‖Iε‖L(H,Hε), ‖Jε‖L(Hε,H) ≤M for some M > 0 uniformly in ε,

(iv)
∥∥Jε(idHε +Aε)

−1 − (idH +A)−1Jε
∥∥
L(Hε,H)

→ 0 as ε→ 0.

Then we say that the sequence (Aε) converges to A in the norm resolvent sense.
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IV.1. Convergence of Operators on Varying Spaces

Note that if Hε ≡ H for all ε > 0 and Iε = Jε = idH for all ε > 0, this definition

reduces to the classical definition I.3.1. In order to demonstrate the usefulness of

this definition, let us give an exposition of the proof in [MNP13] showing that this

notion of norm resolvent convergence implies spectral convergence. This turns out to

be considerably more difficult than the classical proof; mainly because the Iε, Jε are

not necessarily invertible.

Lemma IV.1.3. If Aε → A in norm resolvent sense, then

∥∥(idHε +Aε)
−1Iε − Iε(idH +A)−1

∥∥
L(H,Hε) → 0 (IV.5)

if Iε is as in Definition IV.1.2.

Proof. For notational convenience, denote Rε := (idHε +Aε)
−1 and R := (idH+A)−1.

A quick calculation shows that

RεIε − IεR = Iε(JεRε −RJε)Iε − (IεJε − idHε)RεIε

= Iε(JεRε −RJε)Iε,

by (i) of Definition IV.1.2. Hence

‖RεIε − IεR‖L(H,Hε) ≤ ‖Iε‖2L(H,Hε)‖JεRε −RJε‖L(Hε,H)

→ 0

as ε→ 0, by (iii) and (iv) of Definition IV.1.2.

Lemma IV.1.4 ([MNP13]). For every l, r > 0 there exist δ > 0 and L > 0 such that

if ∥∥Jε(idHε +Aε)
−1 − (idH +A)−1Jε

∥∥
L(Hε,H)

< δ

and z ∈ ρ(Aε) ∩ ρ(A) ∩Br(0) and ‖(z −A)−1‖L(H) ≤ l, then ‖(z −Aε)−1‖L(Hε) ≤ L.

The useful point in this lemma is that L does not depend on z as long as z ∈
ρ(Aε) ∩ ρ(A) ∩Br(0) and ‖(z −A)−1‖L(H) ≤ l.

Proof. As above, we use the shorthand notation Rε(z) := (z − Aε)−1 and R(z) :=

(z −A)−1. For z ∈ ρ(Aε) ∩ ρ(A) ∩Br(0) define

V (z) := JεRε(z)−R(z)Jε.
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IV. Norm-Resolvent Convergence in Perforated Domains

The resolvent identity can be used to show that

(
R(−1)−R(z)

)
JεRε(z)Rε(−1) = R(z)R(−1)Jε

(
Rε(−1)−Rε(z)

)
which implies

R(−1)V (z)Rε(−1) = R(z)V (−1)Rε(z)

or

V (z) = (idH +A)R(z)V (−1)Rε(z)(idHε +Aε)

=
(
idH − (1 + z)R(z)

)
V (−1)

(
idHε − (1 + z)Rε(z)

)
on dom(Aε) and thus on Hε by density. Using our assumptions we deduce that

‖V (z)‖L(Hε,H) ≤ δ
(
1 + |1 + z|l

)(
1 + |1 + z|‖Rε(z)‖L(Hε)

)
. (IV.6)

Now, use IεJε = idHε to write

Rε(z) = Iε
(
JεRε(z)−R(z)Jε

)
+ IεR(z)Jε. (IV.7)

This representation, together with (IV.6) shows that

‖Rε(z)‖L(Hε) ≤ ‖Iε‖L(H,Hε)‖V (z)]‖L(Hε,H) + ‖Iε‖L(H,Hε)‖Jε‖L(Hε,H)‖R(z)‖L(H)

≤Mδ
(
1 + |1 + z|l

)(
1 + |1 + z|‖Rε(z)‖L(Hε)

)
+M2l

≤ δM(1 + |1 + z|l)|1 + z|‖Rε(z)‖L(Hε) + δM(1 + |1 + z|l) +M2l

≤ δM(1 + (1 + r)l)(1 + r)‖Rε(z)‖L(Hε) + δM(1 + (1 + r)l) +M2l

Thus, if we choose δ < 1
M(1+(1+r)l)(1+r) , we obtain the estimate

‖Rε(z)‖L(Hε) ≤
δM(1 + (1 + r)l) +M2l

1− δM(1 + (1 + r)l)(1 + r)
(IV.8)

=: L (IV.9)

uniformly for z ∈ ρ(Aε) ∩ ρ(A) ∩Br(0).

Theorem IV.1.5 ([MNP13]). Let Aε : Hε ⊃ dom(Aε) → Hε converge to A : H ⊃
dom(A)→ H in norm-resolvent sense. Then for every compact, connected K ⊂ ρ(A)
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IV.1. Convergence of Operators on Varying Spaces

such that K ∩ ρ(Aε) 6= ∅ for ε small enough there exists ε0 > 0 such that K ⊂ ρ(Aε)

for all ε ∈ (0, ε0).

Proof. We use the notation from the previous proof. Let K ⊂ ρ(A) be compact and

choose r > 0 such that K ⊂ Br(0). Denote

l := sup
z∈K
‖R(z)‖L(Hε) <∞

and choose δ > 0 as in Lemma IV.1.4 and ε0 > 0 such that
∥∥Jε(idHε +Aε)

−1− (idH+

A)−1Jε
∥∥
L(Hε,H)

< δ for all ε ∈ (0, ε0), which is possible by norm resolvent convergence.

Let Kε := ρ(Aε) ∩K, which is non-empty by assumption and by definition relatively

open in K.

We will show that Kε is also relatively closed in K which by connectedness of

K implies Kε = K. To this end, let (zn) be a sequence in Kε converging to z ∈
K. By Lemma IV.1.4, the sequence

(
‖Rε(zn)‖L(Hε)

)
n∈N is bounded. Finally, using

Corollary I.1.16, we conclude that z ∈ ρ(Aε). Hence, Kε is closed in K and the proof

is completed.

Using an analogous reasoning as in the previous proof, one can show

Theorem IV.1.6 ([MNP13]). If Aε → A in norm resolvent sense, then for every

compact, connected K ⊂ C such that K ⊂ ρ(Aε) for all ε ∈ (0, ε0) and K ∩ ρ(A) 6= ∅
one has K ⊂ ρ(A).

Sketch of proof. Since the proof is largely analogous to that of Theorem IV.1.5, we

only sketch the idea. As in equation (IV.7), write

R(z) = Jε(IεR(z)−Rε(z)Iε) + (idH − JεIε)R(z) + JεRε(z)Iε.

In order to estimate ‖R(z)‖L(H) by ‖Rε(z)‖L(Hε), as in (IV.8), we can proceed as in

the proof of Lemma IV.1.4, but we will have to estimate ‖(idH − JεIε)R(z)‖(H). This

is easily done by noting that

‖(idH − JεIε)R(z)‖(H) ≤ ‖idH − JεIε‖L(V,H)‖R(z)‖L(H,V)

and applying (ii) of Definition IV.1.2 and (IV.4).

The proof of spectral convergence now follows that of Theorem IV.1.5 verbatim,

exchanging the roles of A and Aε.

As in Section I.3, we readily obtain the following
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IV. Norm-Resolvent Convergence in Perforated Domains

Corollary IV.1.7. Let Aε : Hε ⊃ dom(Aε)→ Hε converge to A : H ⊃ dom(A)→ H
in norm-resolvent sense. Then for every compact K ⊂ C, one has K ∩ σ(Aε) →
K ∩ σ(A) in Hausdorff sense (cf. Definition I.3.7).

IV.2. Geometric Setting and Previous Results

As above, assume d ≥ 2, and let

Tε :=
⋃
i∈Lε

T εi , T εi := Brιε(i), i ∈ Lε,

with rιε, Lε as in (IV.1), (IV.2). Denote Ωε := Ω \ Tε. We also denote Bε
i := Bε(i)

and P εi := ε[−1, 1]d + i for i ∈ Lε. Constants independent of ε will be denoted C and

may change from line to line. Note that our assumptions on Ω ensure that the set

{φ|Ω : φ ∈ C∞0 (Rd)} is dense in H1(Ω) (cf. [Bre10, Cor. 9.8]).

Moreover, we define the identification operators

Jε : L2(Ωε)→ L2(Ω), Jεf(x) =

f(x), x ∈ Ωε,

0, x ∈ Ω \ Ωε

(IV.10)

Iε : L2(Ω)→ L2(Ωε), Iεg(x) = g|Ωε (IV.11)

Tε : H1(Ωε)→ H1(Ω), Tεu =

u in Ωε,

v in Tε,
(IV.12)

where v is the harmonic extension of u into the holes, i.e.∆v = 0 in Tε,

v = u on ∂Tε.
(IV.13)

The above definitions are in fact useful in the context of norm resolvent convergence,

as the following lemma shows.

Lemma IV.2.1. Denote Hε := L2(Ωε) and H := L2(Ω) and V := H1(Ω). The

operators Iε, Jε defined in (IV.10), (IV.11) satisfy (i) and (ii) of Definition IV.1.2.

Proof. It is clear that IεJε = idL2(Ωε). To prove that ‖idH−JεIε‖L(H1(Ω),L2(Ω)) → 0, let

f ∈ H1(Ω). Then ‖f − JεIεf‖L2(Ω) = ‖f‖L2(Tε). To show that this quantity converges

to 0 uniformly in f , denote Qk := [0, 1)d + k for k ∈ Zd a cube shifted by k, so that

82



IV.2. Geometric Setting and Previous Results

Rd =
⋃
k∈Zd Qk. Then we have

‖f‖2L2(Tε)
=
∑
k∈Zd
‖f‖2L2(Qk∩Tε)

≤
∑
k∈Zd
‖1‖2L2p(Qk∩Tε)‖f‖

2
L2q(Qk∩Tε)

for p, q > 1 with p−1 + q−1 = 1, by Hölder’s inequality. Since f ∈ H1(Ω), we can

use the Gagliardo-Sobolev-Nierenberg inequality to conclude (for q = 2∗, the Sobolev

conjugate exponent) that

‖f‖2L2(Tε)
≤ ‖1‖2L2p(Q0∩Tε)

∑
k∈Zd
‖f‖2L2q(Qk∩Tε)

‖f‖2L2(Tε)
≤ ‖1‖2L2p(Q0∩Tε)

∑
k∈Zd
‖f‖2L2q(Qk)

≤ ‖1‖2L2p(Q0∩Tε)

∑
k∈Zd

C‖f‖2H1(Qk)

= |Q0 ∩ Tε|1/pC‖f‖2H1(Ω)

with some suitable p > 0. Since |Q0 ∩ Tε| → 0 as ε → 0 (cf. the definition of rιε,

(IV.1)), the desired convergence follows.

Lemma IV.2.2. The harmonic extension operator Tε satisfies

(i) lim supε→0 ‖Tε‖L(H1(Ωε),H1(Ω)) <∞.

(ii) There exists C > 0 such that ‖Tεw‖H1(P εi ) ≤ C‖w‖H1(P εi ) for all w ∈ H1(Ωε)

and i ∈ Lε.

(iii) For any sequence wε such that lim supε→0 ‖wε‖H1(Ωε) < ∞ one has ‖Tεwε −
Jεwε‖L2(Ω) → 0.

Proof. See [Kai85], [RT75, p. 40].

In the above geometric setting, we will study the linear operators Aιε, ι = D,N, α in

L2(Ωε), defined by the differential expression −∆ + 1, with (dense) domains

D(AD
ε ) = H1

0 (Ωε) ∩H2(Ωε),

D(AN
ε ) =

{
u ∈ H2(Ωε) : ∂νu = 0 on ∂Ωε

}
,

D(Aαε ) =
{
u ∈ H2(Ωε) : ∂νu+ αu = 0 on ∂Ωε

}
,
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respectively, and the linear operators Aι in L2(Ωε) defined by the expression −∆ +

1 + µι, with domains

D(AD) = H1
0 (Ω) ∩H2(Ω),

D(AN) =
{
u ∈ H2(Ω) : ∂νu = 0 on ∂Ω

}
,

D(Aα) =
{
u ∈ H2(Ω) : ∂νu+ αu = 0 on ∂Ω

}
,

respectively, where µι, ι = D,N, α, are defined in (IV.3).

Remark IV.2.3. In the case when d ≥ 3 one has the characterisation

µD =
1

2d
inf

{∫
Rd\B1(0)

|∇u|2, u ∈ H1(Rd), u = 1 on B1(0)

}
. (IV.14)

Note that the factor 1/2d arises from the fact that the unit cell is of size 2ε.

Using the notation above, we recall the following classical results.

Theorem IV.2.4 ([MK64, CM97]). Let Ω ⊂ Rd be open (bounded or unbounded).

Suppose that f ∈ L2(Ω), and let uε and ũ be the solutions to

(−∆ + 1)uε = f, uε ∈ H1
0 (Ωε),

(−∆ + 1 + µD)ũ = f, ũ ∈ H1
0 (Ω).

Then Jεu
ε ε→0−−−⇀ ũ in H1

0 (Ω).

Theorem IV.2.5 ([Kai85]). Let Ω ⊂ Rd be open (bounded or unbounded), and suppose

that ∂Ω is smooth. Suppose also that f ∈ L2(Ω), and let uε and ũ be the solutions to

(−∆ + 1)uε = f, uε ∈ D(Aα,Nε ),

(−∆ + 1 + µα,N)ũ = f, ũ ∈ D(Aα,N).

Then one has

Tεuε ε→0−−−⇀ ũ in H1(Ω).

Proof of Theorems IV.2.4 and IV.2.5. The results are obtained by following the proofs

of [CM97, Thm 2.2], [Kai85, Thm 2]. Note that the weak convergence in H1(Ω) is

immediately obtained also for unbounded domains (and complex α).

An important ingredient in the proofs are auxiliary functions wιε ∈ W 1,∞(Rd) de-
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fined, for each ε ∈ (0, 1), as the solution to the problems

wN
ε ≡ 1,



wD
ε = 0 in T εi ,

∆wD
ε = 0 in Bε

i \ T εi ,

wD
ε = 1 in P εi \Bε

i ,

wD
ε continuous,



∂νw
α
ε + αwαε = 0 on ∂T εi ,

∆wαε = 0 in Bε
i \ T εi ,

wαε = 1 in P εi \Bε
i ,

wαε continuous,

(IV.15)

used as a test function in the weak formulation of the problems (Dir), (Neu), (Rob).

∆wD
ε = 0

wD
ε = 0

wD
ε = 1

2ε

Figure IV.2.: Sketch of the auxiliary function wD
ε in the Dirichlet case.

These functions were used in [CM97, Kai85] as test functions to prove strong con-

vergence of solutions. They are “optimal” in the sense that they minimise the energy

in annular regions around the holes. In the Dirichlet case, the function wD
ε is nothing

but the potential for the capacity cap
(
Bε(i);BrD

ε
(i)
)
. It can be shown that one has

the convergences

Tεwαε ⇀ 1

wD
ε ⇀ 1

}
weakly in H1(Ω) (IV.16)

−∇ · (χΩε∇wαε ) + αwαε δ∂Tε → µα strongly in W−1,∞(Ω) (IV.17)

−∆wD
ε = µε + νε, where νε vanishes on H1

0 (Ωε) and

µε → µD strongly in W−1,∞
loc (Ω) (IV.18)

as ε → 0, where δ∂Tε denotes the Dirac measure on the boundary of the holes (for a

proof of the above facts, see [CM97, Lemma 2.3] and [Kai85, Section 3]).

IV.3. Main results

In what follows we prove the following claim.
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Theorem IV.3.1. Let Jε, A
ι
ε, A

ι be defined as in the previous section. Then for

ι ∈ {D,N, α} one has

∥∥Jε(Aιε)−1 − (Aι)−1Jε
∥∥
L(L2(Ωε), L2(Ω))

→ 0 (ε→ 0),

that is, the operator sequence Aιε converges to Aι in the norm-resolvent sense.

This theorem implies that for solutions uιε of (Dir), (Neu), (Rob) and the correspond-

ing “limit functions” uιε = (Aι)−1Jεf there is an error estimate which is independent

of the right hand side datum f . More precisely: There exists a function a(ε) with

a(ε) → 0 for ε → 0 such that ‖Jεuιε − uιε‖L2(Ω) ≤ a(ε)‖fε‖L2(Ωε) for any uniformly

bounded family (fε) with fε ∈ L2(Ωε) ∀ε > 0.

Applying Corollary IV.1.7, we immediately obtain the following important conse-

quence of the above theorem.

Corollary IV.3.2. For all compact K ⊂ C, one has σ(Aιε) ∩ K
ε→0−−−→ σ(Aι) ∩ K in

the Hausdorff sense.

In particular, this corollary shows that (if Re(µι) > 0) a spectral gap opens for Aιε

between 0 and Re(µι).

Remark IV.3.3. We note that our assumption on the spherical shape of the holes was

made only for the sake of definiteness, and our results easily generalise to more general

geometries as detailed in [CM97, Th. 2.7]. Moreover, our results are also valid for

more general elliptic operators div(A∇) with continuous coefficients A (cf. [CM97]).

IV.4. Uniformity with respect to the right-hand side

In this section we prove that the result of Theorems IV.2.4, IV.2.5 hold in a strength-

ened form, namely, uniformly with respect to the right-hand side f . More precisely,

the following holds.

Theorem IV.4.1. Suppose that εn ↘ 0, fn ∈ L2(Ωεn), n ∈ N, with ‖fn‖L2(Ωεn ) ≤ 1,

and let uιn and ũιn be the solutions to the problems (ι ∈ {D,N, α})

(−∆ + 1)uιn = fn, uιn ∈ D(Aιεn), (IV.19)

(−∆ + 1 + µι)ũ
ι
n = Jεnfn, ũιn ∈ D(Aι). (IV.20)

Then for every bounded, open K ⊂ Ω one has

Jεnu
ι
n − ũιn → 0 strongly in L2(K),
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IV.4. Uniformity with respect to the right-hand side

Jεn∇uιn −∇ũιn → 0 weakly in L2(K),

for ι ∈ {D,N, α}.

Proof. We have the following a priori estimates (note Lemma IV.2.2):

‖Tεnuα,Nn ‖H1(Ω) ≤ C‖Jεnfn‖L2(Ω),

‖JεnuD
n ‖H1(Ω) ≤ C‖Jεnfn‖L2(Ω),

‖ũιn‖H1(Ω) ≤ C‖Jεnfn‖L2(Ω) ∀ι ∈ {D,N, α}.

Thus, there exists a subsequence (still indexed by n) and uι, ũι ∈ H1(Ω) such that

Jεnu
D
n

n→∞−−−⇀ uD

Tεnuα,Nn
n→∞−−−⇀ uα,N

ũιn
k→∞−−−⇀ ũι, ι ∈ {D,N, α}

 weakly in H1(Ω). (IV.21)

Note that that for every bounded K ⊂ Ω the convergence statements (IV.21) are

strong in L2(K). In particular, employing Lemma IV.2.2 (i), (iii) we immediately

obtain

Jεnu
ι
n → uι strongly in L2(K), (IV.22)

Jεn∇uιn ⇀ ∇uι weakly in L2(K). (IV.23)

for all ι ∈ {D,N, α}. Next, choose a further subsequence (still indexed by n) such that

also Jεnfn
n→∞−−−⇀ f weakly in L2(Ω), where the limit f may depend on the choice of

subsequence.

Dirichlet and Neumann case. We restrict ourselves to the Dirichlet and Neumann

problems first and comment on the Robin problem at the end of the proof. Consider

the weak formulations of the problem (IV.20), i.e.∫
Ω
∇ũιn∇φ+ (1 + µι)

∫
Ω
ũιnφ =

∫
Ω
fnφ,
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IV. Norm-Resolvent Convergence in Perforated Domains

where φ ∈ C∞0 (Ω) for ι = D and φ ∈ C∞0 (Rd) for ι = N. Letting n → ∞ and using

the convergencies (IV.22),(IV.23) (with K = Ω ∩ suppφ) we obtain∫
Ω
∇ũι∇φ+ (1 + µι)

∫
Ω
ũιφ =

∫
Ω
fφ.

Next consider the weak formulation of (IV.19),where we choose the test function wιεnφ:∫
Ωεn

∇uιn∇
(
wιεnφ

)
+

∫
Ωεn

uιnw
ι
εnφ =

∫
Ωεn

fnw
ι
εnφ,

where again φ ∈ C∞0 (Ω) for ι = D and φ ∈ C∞0 (Rd) for ι = N. It follows from the

results of [CM97, Kai85] (cf. (IV.16)-(IV.18)) that the left and right-hand side of this

equation converge to ∫
Ω

(
∇uι∇φ+ (1 + µι)uιφ

)
and

∫
Ω
fφ,

respectively. Thus, we obtain∫
Ω

(
∇uι∇φ+ (1 + µι)uιφ

)
=

∫
Ω
fφ,

and hence uι and ũι are weak solutions to the same equation. Uniqueness of solu-

tions (for all ι ∈ {D,N}) implies ũι = uι, which shows the assertion for the chosen

subsequence.

Finally, applying the above reasoning to every subsequence of (Jεnu
ι
n − ũιn) yields

the result for the whole sequence.

Robin case. In the Robin case, the above proof remains valid in the interior of Ωε,

but convergence of the boundary terms∫
∂Tεn

wιεnu
ι
nφ and

∫
∂Ω
uιnφ

has to be shown. Convergence of the second term follows since uιn ⇀ uι in L2(∂Ω),

while convergence of the first term follows from (IV.17). For details, see [Kai85].

Corollary IV.4.2. If the domain Ω is bounded, one has

∥∥Jε(Aιε)−1 − (Aι)−1Jε
∥∥
L(L2(Ωε), L2(Ω))

→ 0 (ε→ 0)
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for ι ∈ {D,N, α}, i.e., Theorem IV.3.1 holds in that case of bounded Ω.

Proof. Since Ω is bounded, the embedding of H1(Ω) in L2(Ω) is compact, thus the

sequence Jεnu
ι
n−ũιn from the previous proof has a subsequence converging to 0 strongly

in L2(Ω). Since this can be done for every subsequence of (Jεnu
ι
n − ũιn), the whole

sequence converges to 0.

Now, choose a sequence fn ∈ L2(Ωεn), ‖fn‖L2(Ωε) ≤ 1, such that

sup
f∈L2(Ωεn )
‖f‖≤1

∥∥(Jεn(Aιε)
−1−(Aι)−1Jεn)f

∥∥
L2(Ωε)

− 1

n
<
∥∥(Jεn(Aιεn)−1−(Aι)−1Jεn)fn

∥∥
L2(Ωεn )

.

By the above, the right-hand side of this inequality converges to zero, which implies

the claim.

Remark IV.4.3. We note that the conclusion of Theorem IV.4.1 remains true if we

replace the lattice Lε on which the holes are situated by a lattice L∗ε, which is “shifted

of order ε”, i.e. L∗ε = Lε + yε with Rd 3 yε → 0 as ε→ 0. Indeed, it is straightforward

to prove that the convergences (IV.16)-(IV.18) are still valid for the shifted auxiliary

functions wι ∗ε := wιε( · + yε). Replacing wιε by wι ∗ε in the proof of Theorem IV.4.1

yields the desired result.

For more details in the Dirichlet case, see the proof of Lemma IV.6.1 (cf. Claim 3

there).

Treating unbounded domains requires further effort. Since we lack compact embed-

dings in this case, we will have to take advantage of the sufficiently rapid decay of

solutions to (−∆ + 1)u = f and a decomposition of the right hand side with a bound

on the interactions.

IV.5. Exponential decay of solutions

We begin with a general result which we assume is classical, but include for the sake of

completeness. Let U ⊂ Rd open satisfying the strong local Lipschitz condition, λ > 1
2

and consider the problems (cf. (Dir), (Neu), (Rob))(−∆ + λ)uα = f in U,

∂νu
α + αuα = 0 on ∂U ;

(IV.24)
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(−∆ + λ)uN = f in U,

∂νu
N = 0 on ∂U ;

(IV.25)

(−∆ + λ)uD = f in U,

uD = 0 on ∂U.
(IV.26)

Let x0 ∈ Rd, and define the function ω(x) = cosh(|x − x0|). Then the following

statement holds.

Proposition IV.5.1. Let f ∈ L2(U), supp(f) compact. Then each of the problems

(IV.24)–(IV.26) has a unique weak solution uι ∈ H1(U) satisfying∫
U
|uι|2ω dx ≤M

∫
U
|f |2ω dx (IV.27)∫

U
|∇uι|2ω dx ≤M

∫
U
|f |2ω dx, (IV.28)

where M := max
{

2, (λ− 1
2)−1

}
.

We postpone the proof, in order to introduce some notation and prove auxiliary

results. First, let us denote dµ := ωdx and introduce the weighted Sobolev spaces

H := W 1,2(U ;ω), H0 := W 1,2
0 (U ;ω) with scalar product

〈u, v〉H =

∫
U
uv dµ+

∫
U
∇u · ∇v dµ.

Moreover, let λ > 1
2 and define the sesquilinear forms

aα(u, v) :=

∫
U

(∇u · ∇v + λuv) dµ+

∫
U
v∇u · ∇ω

ω
dµ+ α

∫
∂U
uv ω dS on H,

(IV.29)

aN(u, v) :=

∫
U

(∇u · ∇v + λuv) dµ+

∫
U
v∇u · ∇ω

ω
dµ on H,

(IV.30)

aD(u, v) :=

∫
U

(∇u · ∇v + λuv) dµ+

∫
U
v∇u · ∇ω

ω
dµ on H0.

(IV.31)
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Lemma IV.5.2. For λ > 1
2 and ι ∈ {D,N, α}, the form aι is continuous and coercive

on H (on H0 in the case ι = D).

Proof. We will only treat the Robin case here, the other cases being analogous. Denote

by I the second term in (IV.29) and note that ω was chosen so that |∇ω| ≤ ω. By

Hölder’s inequality with respect to µ one has

|I| ≤
∥∥∥∥∇ωω

∥∥∥∥
∞︸ ︷︷ ︸

≤1

‖∇u‖L2(µ)‖v‖L2(µ) ≤
1

2
‖∇u‖2L2(µ) +

1

2
‖v‖2L2(µ),

and thus

∣∣a(u, u)
∣∣ ≥ ‖∇u‖2L2(µ) + λ‖u‖2L2(µ) + |α|

∥∥ω1/2u
∥∥2

L2(∂U)
+ I

≥ ‖∇u‖2L2(µ) + λ‖u‖2L2(µ) −
1

2
‖∇u‖2L2(µ) −

1

2
‖u‖2L2(µ)

=
1

2
‖∇u‖2L2(µ) +

(
λ− 1

2

)
‖u‖2L2(µ),

which shows coercivity in H. Continuity follows by estimating the boundary term. By

the trace theorem [DiB16, Prop. IX.18.1] we have, for each δ > 0,∫
∂U
|u|2ω dx ≤ 2δ‖∇(ω

1/2u)‖2L2(U) +
C

δ
‖ω1/2u‖2L2(U). (IV.32)

The first term can be estimated using the special choice of ω :

‖∇(ω
1/2u)‖2L2(U) =

∫
U

∣∣∣∣ω1/2∇u+
1

2
u
∇ω
ω1/2

∣∣∣∣2 dx
≤ 2

∫
U
ω|∇u|2 dx+

1

2

∫
U
|u|2 |∇ω|

2

ω
dx

≤ 2‖∇u‖L2(µ) + 2

∥∥∥∥∇ωω
∥∥∥∥2

∞

∫
U
|u|2ω dx

≤ 2‖∇u‖2H1(µ). (IV.33)

The desired continuity now follows immediately by combining (IV.32) and (IV.33).

Lemma IV.5.3. Let f ∈ L2(U), ι ∈ {D,N, α}, and suppose that supp(f) compact.
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Then the problem

aι(u, v) =

∫
U
fv dµ ∀v ∈ H (IV.34)

has a solution in H.

Proof. By Hölder inequality, one has∣∣∣∣∫
U
fv dµ

∣∣∣∣ ≤ ‖f‖L2(µ)‖v‖L2(µ) ≤ ‖ω‖L∞(supp f)‖f‖L2(U)‖v‖L2(µ),

so f ∈ H′. The assertion now follows from Lemma IV.5.2 and the Lax-Milgram

theorem for complex, non-symmetric sesquilinear forms [TL80, Thm. VI.1.4].

Proof of Proposition IV.5.1. Again we focus on the Robin case, the other cases being

analogous. Denote by u the solution obtained from Prop. IV.5.3. Then u ∈ H1(U),

since H ⊂ H1(U). Moreover, let φ ∈ C∞0 (Rd) be arbitrary and decompose it as

φ = ωψ. Then ψ ∈ C∞0 (Rd) ⊂ H and one has∫
U
∇u · ∇φdx+ λ

∫
U
uφ dx+ α

∫
∂U
uφ dS

=

∫
U
∇u ·

(
ω∇ψ + ψ∇ω

)
dx+ λ

∫
U
uψω dx+ α

∫
∂U
uψω dS

= aα(u, ψ)

=

∫
U
fψ dµ

=

∫
U
fφ dx.

Thus, the function u solves the problem∫
U
∇u · ∇φdx+ λ

∫
U
uφ dx+ α

∫
∂U
uφ dS =

∫
U
fφ dx ∀φ ∈ C∞0 (Rd). (IV.35)

Uniqueness of solutions and density of C∞0 (Rd) in H1(U) implies that u is the weak

solution in H1(U) to the Robin problem (IV.24).

The estimates (IV.27), (IV.28) follow from the coercivity of aι.

IV.6. Decomposition of the right-hand side

In this section we prove norm resolvent convergence in the case of unbounded Ω. We

conclude the proof of Theorem IV.3.1 by decomposing the domain into cubes Qi,
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writing f =
∑

i fχQi and then applying the above results to each term fχQi . The

following lemma shows uniform convergence with respect to the position of the cubes.

Lemma IV.6.1. Let εn ↘ 0 and fn ∈ L2(Ωεn), n ∈ N, be such that ‖Jεnfn‖L2(Ω) ≤ 1

and supp(fn) ⊂ Qin, where Qin = [0, 1]d + in with in ∈ Zd. Let uιn, ũ
ι
n be the solutions

to the problems

Aιεnu
ι
n = fn, Aιũιn = Jεnfn, n ∈ N, ι ∈ {D,N, α}. (IV.36)

Then ‖Jεnuιn − ũιn‖L2(Ω) → 0 for all ι ∈ {D,N, α}.

Proof. The idea of the proof is to use translation invariance, in order to shift supp(fn)

back near zero for every n, and then use the Fréchet-Kolmogorov compactness criterion

to obtain a convergent subsequence of (Jεnu
ι
n − ũιn); Theorem IV.4.1 will identify its

limit as zero. In order not to overburden notation we omit the index ι.

We now carry out the outlined strategy. We set, for i ∈ N,

u∗n(x) := un(x+ in), ũ∗n(x) := ũn(x+ in), f∗n(x) := fn(x+ in).

These functions still solve the problems (IV.36) with fn replaced by f∗n and Ω replaced

by Ω− in. The new sequence f∗n has the nice property that supp(f∗n) ⊂ [0, 1]d for all n.

In the following we consider Jεnu
∗
n, ũ

∗
n, f

∗
n as elements of L2(Rd) that are zero outside

Ω− in. We will now show that ũ∗n − Jεnu∗n converges to zero in L2(Rd). To this end,

consider the bounded set

F := {ũ∗n − Jεnu∗n : n ∈ N} ⊂ L2(Rd). (IV.37)

Claim: F is precompact in L2(Rd).

We postpone the proof of this claim to Lemma IV.6.2. We immediately obtain that

(ũ∗n − Jεnu∗n) has a convergent subsequence in L2(Rd). In the remainder of the proof

we distinguish the Dirichlet case from the Neumann and Robin cases.

Neumann and Robin case. By translation invariance of Ω, all quantities with asterisks

are still in H1(Ω) with Neumann, resp. Robin boundary conditions. In addition, by

ε-periodicity there exists a null sequence (yn) ⊂ Rd such that Lε + in = Lε + yn

for all n. Therefore, Theorem IV.4.1 and Remark IV.4.3 can be applied to conclude

that ‖ũ∗n − Jεnu∗n‖L2(K) → 0 for every bounded K ⊂ Rd which identifies the limit of
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the subsequence as zero. Arguing as above for all subsequences of (ũn − Jεnun), we

conclude that ũn − Jεnun → 0 in L2(Ω).

Dirichlet case. We know that a subsequence of ũ∗n − Jεnu∗n is convergent in L2(Rd).
The limit is denoted h∗ ∈ L2(Rd). Since the sequence (ũ∗n− Jεnu∗n) is also bounded in

H1(Rd), there exists a subsequence (still indexed by n) converging weakly in H1(Rd).
This weak limit must coincide with h∗. Therefore, h∗ ∈ H1(Rd). The goal is to prove

h∗ = 0. Define the set

Ω∗ := {x ∈ Rd | ∃ε > 0 : Bε(x) ⊂ (Ω− in) for almost all n}.

Clearly, Ω∗ is open. The idea is to show that

(I) outside Ω∗, h∗ is identically zero and

(II) inside Ω∗, h∗ is harmonic with zero boundary values (hence zero).

Proof of (I):

Claim 1: Let η > 0. There exists a δ > 0 such that for every x ∈ Rd \Ω∗ there exists

a ball Bx with radius δ such that

(i) dist(x,Bx) < η

(ii) h∗ = 0 on Bx.

Proof. Let x ∈ Rd \ Ω∗ and η > 0. By definition of Ω∗, we have

Bη(x) ∩ (Rd \ (Ω− in)) 6= ∅

for infinitely many n. Choose a sequence (yk) with yk ∈ Bη(x)∩(Rd\(Ω−ink)) for

all k. (in the following, we relabel nk → n). Then, by the assumption on Ω, there

exists a sequence of balls Bn with radius δ and yn ∈ Bn and Bn ⊂ Rd \ (Ω− in)

for all n.

Now let φ ∈ C∞0 (Bδ(0)) and define φn := φ( · + cn), where cn denotes the centre

of Bn. The sequence (cn) is bounded in Rd and therefore has a convergent

subsequence cnk → c∞. The corresponding subsequence φnk then converges in

L2(Rd) to a limit φ∞, which has the form φ∞ = φ( · + c∞) ∈ C∞0 (B∞) for the

δ-ball B∞ with centre c∞ (this follows e.g. from dominated convergence).
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Since ũ∗n − Jεnu∗n ≡ 0 on Bn for all n, we obtain

0 = lim
k→∞

∫
Rd

(ũ∗nk − Jεnku
∗
nk

)φnk dx

=

∫
B∞

h∗φ∞ dx.

Since the function φ ∈ C∞0 (Bδ(0)) was arbitrary, we conclude that the equation∫
B∞

h∗ϕdx = 0

holds for all ϕ ∈ C∞0 (B∞) and hence h = 0 on B∞. This proves the claim.

From Claim 1 it follows that h∗ = 0 on Rd \ Ω∗ as the next assertion shows.

Claim 2: We have h∗ = 0 on Rd \ Ω∗.

Proof. Let η > 0 and take a lattice Lη := η · ZN . Then choose for every k ∈ Lη \ Ω∗

a ball Bk of radius δ as in Claim 1. The union of all Bk will not cover all of

Rd \ Ω∗, but we can do the following: Let K ⊂ Rd \ Ω∗ be compact. Then∣∣∣∣∣∣K \
⋃
k∈Lη

Bk

∣∣∣∣∣∣→ 0 as η → 0

For m ∈ N define the set

S>m :=
{
x ∈ K

∣∣ |h∗(x)| > m
}

and compute

∫
K\S>m

|h∗|2 dx ≤ m2

∣∣∣∣∣∣K \
⋃
k∈Lη

Bk

∣∣∣∣∣∣
→ 0 (η → 0)

hence h∗ = 0 on K \ S>m. Since m was arbitrary, we immediately obtain

h∗ = 0 on K
∖ ⋂
m∈N

S>m.

But
⋂
m∈N S>m has measure zero, hence h∗ = 0 almost everywhere on K.

This concludes the proof of (I).
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Proof of (II): Let φ ∈ C∞0 (Ω∗). Then for every x ∈ supp(φ) there exists ε = ε(x) > 0

such that

Bε(x)(x) ⊂ Ω− in for almost all n ∈ N

(by definition of Ω∗). These Bε(x)(x) cover supp(φ). Hence, there is a finite subcovering

{Bε1(x1), . . . , Bεν (xν)}. In other words, there exists n0 ∈ N such that supp(φ) ⊂
(Ω− in) for all n > n0. Hence, we can write down∫

Rd
∇ũ∗n · ∇φdx+ (1 + µ)

∫
Rd
ũ∗nφdx =

∫
Rd
f∗nφdx (IV.38)∫

Rd
∇(Jεnu

∗
n) · ∇(w∗εnφ) dx+

∫
Rd
Jεnu

∗
nw
∗
εnφdx =

∫
Rd
f∗nw

∗
εnφdx, (IV.39)

where w∗ε(x) = wε(x + in). By H1-boundedness, (ũ∗n) and (Jεnu
∗
n) have convergent

subsequences. We denote the limits ũ∗ and u∗, respectively. Clearly, we have h∗ =

ũ∗−u∗. Furthermore, one can assume fn ⇀ f in L2 for some f . Convergence of every

term in (IV.38) is immediate. Convergence in (IV.39) is treated by

Claim 3: For φ ∈ C∞0 (Ω∗), we have∫
Rd
∇(Jεnu

∗
n) · ∇(w∗εnφ) dx→ µD

∫
Rd
u∗φdx (IV.40)∫

Rd
Jεnu

∗
nw
∗
εnφdx→

∫
Rd
u∗φdx (IV.41)∫

Rd
f∗nw

∗
εnφdx→

∫
Rd
fφ dx. (IV.42)

Proof. Let φ ∈ C∞0 (Ω∗) and denote K := supp(φ). We first show that w∗εn ⇀ 1 in

H1(K). First, note that w∗εn is bounded in H1(K), so there exists a weakly

convergent subsequence w∗εn ⇀ 1. By ε-periodicity of w∗εn = wε( · + in), there

exists a null sequence (xn) ⊂ Rd with w∗εn = wε( · + xn). Choose an open ball

B such that K ⊂ B and let n be large enough such that K − xn ⊂ B. Then

compute ∫
K
|w∗εn(x)− 1|2 dx =

∫
K
|wεn(x+ xn)− 1|2 dx

=

∫
K−xn

|wεn(x)− 1|2 dx

≤
∫
B
|wεn(x)− 1|2 dx
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→ 0

as n→∞, since the unshifted function satisfies wε
ε→0−−−→ 1 on bounded sets. The

convergence w∗εn ⇀ 1 proves (IV.41) and (IV.42).

To prove (IV.40), we closely follow [CM97]. We have∫
Rd
∇(Jεnu

∗
n) · ∇(w∗εnφ) dx =

〈
−∆w∗εn , φ Jεnu

∗
n

〉
−
∫
Rd
u∗n∇φ · ∇w∗εn dx.

The last term converges to 0, since wεn ⇀ 1 in H1(K) and u∗n converges strongly

in L2. The first term on the right-hand side is proportional to〈
νn∑
k=1

εnδ∂(Uεnk +in) , φ Jεnu
∗
n

〉
,

where νn denotes the number of holes in K and U εnk denotes the ball of radius

ε centered on the k-th hole (see [CM97, eq. (2.6)]). Since φJεnu
∗
n is weakly

convergent in W 1,1(K), the assertion will be proved if we show that

νn∑
k=1

εnδ∂(Uεnk +in) →
|∂B1(0)|

2d
strongly in W−1,∞

loc (Rd).

To this end, introduce the auxiliary function q∗εn , defined as the solution of
−∆q∗εn = d in U εnk + in

∂νq
∗
εn = ε on ∂(U εnk + in)

q∗εn = 0 on ∂(U εnk + in).

Extend this function by zero to the cube of edge length ε centered at U εnk + in

and then to all of Rd by periodicity. This yields a function with ‖∇q∗εn‖∞ < ε,

hence

q∗εn → 0 in W 1,∞(Rd). (IV.43)

Denote χnU := χ⋃
k(Uεnk +in). Then

−∆q∗εn = dχnU +

d∑
k=1

εnδ∂(Uεnk +in).
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It follows from (IV.43) that −∆q∗εn → 0 strongly in W−1,∞(Rd), so the claim is

proved if we can show that χnU
∗−⇀ |∂B1(0)|

d2d
weakly∗ in L∞(Rd) (and hence strongly

in W−1,∞
loc (Rd)). As above, choose a sequence (yn) ⊂ Rd with yn → 0 such that⋃

k(U
εn
k + in) =

⋃
k(U

εn
k + yn). We have for f ∈ L1(Rd)

〈χnU , f〉 =

∫
⋃
k(Uεnk +yn)

f(x) dx

=

∫
⋃
k U

εn
k

f(x+ yn) dx

=

∫
Rd
χ⋃

k U
εn
k
· f(x+ yn) dx

The characteristic function in this last integral is known to converge to |∂B1(0)|
d 2d

weakly∗ in L∞(Rd) (cf. [CM97], proof of Lemma 2.3), while the sequence f( · +

yn) converges to f strongly in L1(Rd) (this follows by smooth approximation).

Thus, we obtain

〈χnU , f〉 →
|∂B1(0)|
d 2d

∫
Rd
f dx.

Hence χnU
∗−⇀ |∂B1(0)|

d 2d
weakly∗ in L∞(Rd) and the lemma is proved.

Conclusion. Claim 3, together with eqs. (IV.38), (IV.39) immediately yield∫
Ω∗
∇h∗ · ∇φdx+ (1 + µ)

∫
Ω∗
h∗φ = 0. (IV.44)

for φ ∈ C∞0 (Ω∗). We know from (I) that h∗ ∈ H1(Rd) and that h∗ = 0 outside Ω∗.

Hence, we have h|Ω∗ ∈ H1
0 (Ω∗) and uniqueness of solution of equation (IV.44) implies

that h∗ = 0 on Ω∗. Hence h∗ ≡ 0 in L2(Rd).

Arguing as above for all subsequences of (ũn−Jεnun), we conclude that ũn−Jεnun →
0 in L2(Ω).

Lemma IV.6.2. The set F defined in (IV.37) is precompact in L2(Rd).

Proof. We will use the notation and conventions from the previous proof and distin-

guish between the Dirichlet case and the Robin/Neumann cases.
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Dirichlet case. Step 1: We have

sup
n

∥∥τh(ũ∗n − Jεnu∗n)− (ũ∗n − Jεnu∗n)
∥∥
L2(Rd)

→ 0 as h→ 0 ∀n ∈ N,

where τh denotes the operator of translation by h. Indeed, the standard regularity

theory implies

∥∥τh(ũ∗n − Jεnu∗n)− (ũ∗n − Jεnu∗n)
∥∥
L2(Rd)

≤
∥∥∇(ũ∗n − Jεnu∗n)

∥∥
L2(Rd)

|h|

≤ C‖fn‖L2(Ω)|h|.

Step 2: Notice that

sup
n
‖ũ∗n − Jεnu∗n‖L2(Rd\BR(0)) → 0 as R→∞,

due to the following estimate in which we set ω0(x) := cosh(|x|).

‖ũ∗n − Jεnu∗n‖2L2(Rd\BR(0)) ≤ 2‖ũ∗nω0ω
−1
0 ‖2L2(Ω\BR(0)) + 2‖Jεu∗nω0ω

−1
0 ‖2L2((Rd\BR(0))

≤ 4M‖f∗nω0‖2L2(Rd)‖ω−1
0 ‖2L∞(Rd\BR(0))

Prop. IV.5.1
≤ C‖Jεnfn‖2L2(Ω) exp(−R).

which completes Step 2. Applying the Fréchet-Kolmogorov theorem yields the pre-

compactness of F .

Neumann and Robin case. Here the strategy is the same, but matters are complicated

by the fact that Jεnu
∗
n is not in H1(Rd). To show that F is precompact, we decompose

elements in F as

ũ∗n − Jεnu∗n = (ũ∗n − Tεnu∗n) + (Tεn − Jεn)u∗n,

define F1 := {ũ∗n − Tεnu∗n : n ∈ N}, F2 := {(Tεn − Jεn)u∗n : n ∈ N} and show that F1

and F2 are precompact in L2(Rd). We will begin by showing that F1 is precompact.

To this end, denote by E : H1(Ω)→ H1(Rd) an extension operator satisfying Eu|Ω = u

and ‖Eu‖H1(Rd) ≤ C‖u‖H1(Ω) for all u ∈ H1(Ω) [AF03, Theorem 5.24].

Clearly, for every ξ ∈ Rd the operators Eξ : H1(Ω− ξ)→ H1(Rd) defined by Eξu :=
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τξEτ−ξu satisfy ‖Eξ‖L(H1(Ω−ξ),H1(Rd)) = ‖E‖L(H1(Ω),H1(Rd)). We start by proving that

sup
n

∥∥τhEin(ũ∗n − Tεnu∗n)− Ein(ũ∗n − Tεnu∗n)
∥∥

2
→ 0 as h→ 0

This readily follows from the estimate

∥∥τhEin(ũ∗n − Tεnu∗n)− Ein(ũ∗n − Tεnu∗n)
∥∥
L2(Rd)

≤
∥∥∇Ein(ũ∗n − Tεnu∗n)

∥∥
L2(Rd)

|h|

≤ C‖ũ∗n − Tεnu∗n‖H1(Ω+in)|h|

≤ C‖Jεnf∗n‖L2(Ω+in)|h|

≤ C|h|.

Next we prove that

sup
n

∥∥Ein(ũ∗n − Tεnu∗n)
∥∥
L2(Rd\BR(0))

→ 0 as R→∞.

Indeed, notice first that

∥∥Ein(ũ∗n − Tεnu∗n)
∥∥2

L2(Rd\BR(0))
≤ C

(
‖ũ∗n‖2L2((Ω+in)\BR(0)) + ‖Tεnu∗n‖2L2((Ωεn+in)\BR(0))

)
= C

(
‖ũn‖2L2(Ω\BR(in)) + ‖Tεnun‖2L2((Ωεn )\BR(in))

)
,

(IV.45)

To treat the two terms on the right-hand side we apply Lemma IV.2.2 (ii) and Propo-

sition IV.5.1 with ωin(x) = cosh(|x − in|) as follows. For the second term in (IV.45),

we obtain

‖Tεnun‖L2(Ωεn\BR(in)) ≤ C
(
‖un‖L2(Ω\BR/2(in)) + ‖∇un‖L2(Ω\BR/2(in))

)
≤
∥∥ω1/2

in
ω
−1/2
in

un
∥∥
L2(Ω\BR/2(in))

+
∥∥ω1/2

in
ω
−1/2
in
∇un

∥∥
L2(Ω\BR/2(in))

≤ C
(∥∥ω1/2

in
un
∥∥
L2(Ω\BR/2(in))

+
∥∥ω1/2

n ∇un
∥∥
L2(Ω\BR/2(in))

)
‖ω−1/2

in
‖L∞(Ω\BR/2(in))

≤ CM
∥∥fnω1/2

in

∥∥
L2(Ω)

exp(−R/3)

≤ 2CM exp(−R/3),
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where we used the fact that ωin is bounded by 2 on supp fn. With an analogous

calculation for the first term in (IV.45), we finally find

∥∥Ein(ũ∗n − Tεnu∗n)
∥∥
L2(Rd\BR(0))

≤ C exp(−R/3), (IV.46)

with C independent of n. Applying the Fréchet-Kolmogorov theorem yields the pre-

compactness of the set {Ein(ũ∗n − Tεnu∗n) : n ∈ N}. Finally, noting that F1 =

{Ein(ũ∗n − Tεnu∗n) : n ∈ N} ·χΩ and that multiplication by χΩ is a bounded opera-

tor on L2(Rd) we obtain precompactness of F1.

To prove precompactness of F2, first note that by Lemma IV.2.2 (iii) for any δ > 0

there exists a n0 such that

∥∥(Jεn − Tεn)u∗n
∥∥

2
< δ ∀n > n0.

Let us fix arbitrary δ > 0 and n0 as above. It remains to estimate the terms

∥∥τh(Jεn − Tεn)u∗n − (Jεn − Tεn)u∗n
∥∥
L2(Rd)

, n ≤ n0,

but these are only finitely many, which clearly converge to zero individually as h→ 0,

and hence

sup
n≤n0

∥∥τh(Jεn − Tεn)u∗n − (Jεn − Tεn)u∗n
∥∥

2
→ 0 as h→ 0

Altogether we have shown that

sup
n

∥∥τh(Jεn − Tεn)u∗n − (Jεn − Tεn)u∗n
∥∥
L2(Rd)

≤ max

{
sup
n≤n0

∥∥τh(Jεn − Tεn)u∗n − (Jεn − Tεn)u∗n
∥∥

2
, 2δ

}
h→0−−−→ 2δ.

Since δ > 0 was arbitrary we finally get

lim
h→0

sup
n∈N

∥∥τh(Jεn − Tεn)u∗n − (Jεn − Tεn)u∗n
∥∥
L2(Rd)

= 0.

This completes the first Fréchet-Kolmogorov-condition. The proof of the second con-
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dition

sup
n

∥∥(Jεn − Tεn)u∗n
∥∥
L2(Rd\BR(0))

→ 0 as R→∞

is analogous to the case of F1. Applying the Fréchet-Kolmogorov theorem yields

precompactness of F2 and completes the proof.

Corollary IV.6.3. There exists δε with δε
ε→0−→ 0 such that

∥∥(Jε(A
ι)−1 − (Aιε)

−1Jε)(fχQi∩Ωε)
∥∥
L2(Ω)

≤ δε‖fχQi‖L2(Ω)

for all f ∈ L2(Ω) and i ∈ Zd.

Proof. We argue by contradiction. Suppose that there is no such function δε. Then

there exist sequences εn, fn, in with ‖fn‖L2(Ω) = 1 such that ‖(Jε(Aι)−1− (Aιεn)−1Jε) ·
(fnχQin∩Ωεn )‖L2(Ω) does not converge to zero, which is a contradiction to Lemma

IV.6.1.

In order to finalise the decomposition, we require the following two lemmas.

Lemma IV.6.4. Suppose that f ∈ L2(Ωε), and denote

ui :=
(
Jε(A

ι)−1 − (Aιε)
−1Jε

)
(fχQi∩Ωε), i ∈ Zd.

Then one has

∣∣〈ui, uj〉L2(Ω)

∣∣ ≤ Ce−|i−j|/2‖fχQi‖L2(Ω)‖fχQj‖L2(Ω) (IV.47)

for all i, j ∈ Zd with i 6= j, where 〈·, ·〉L2(Ω) denotes the standard inner product in

L2(Ω).

Proof. For convenience we write fi := fχQi , i ∈ Zd. Denote ωi(x) = cosh(|x − i|)
and note that by Proposition IV.5.1 we have ‖ω1/2

i ui‖L2(Ω) ≤ C‖fiω
1/2
i ‖L2(Ω). The

statement of the lemma is a consequence of the following estimate:

∣∣〈ui, uj〉L2(Ω)

∣∣ ≤ ∫
Ω
|ui(x)||uj(x)| dx

=

∫
Ω

(
|ui(x)|ω1/2

i

)(
|uj(x)|ω1/2

j

)
ω
−1/2
i ω

−1/2
j dx

≤
∥∥uiω1/2

i

∥∥
L2(Ω)

∥∥ujω1/2
j

∥∥
L2(Ω)

∥∥ω−1/2
i ω

−1/2
j

∥∥
L∞(Ω)
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≤ C‖fiω
1/2
i ‖L2(Ω) ‖fjω

1/2
j ‖L2(Ω) ‖ω−

1/2
0 ω

−1/2
j−i ‖L∞(Ω)

≤ C‖fi‖L2(Ω)‖fj‖L2(Ω)e
−|i−j|/2,

where we use the fact that supp(fi) ⊂ Qi and ωi|Qi ≤ 2.

Lemma IV.6.5. Suppose that f ∈ C∞0 (Ωε) and let ui := (Jε(A
ι
ε)
−1−(Aι)−1Jε)(fχQi),

i ∈ Zd. Then for every n > 1 one has the inequality∥∥∥∥∥
N∑
m=1

uim

∥∥∥∥∥
2

L2(Ω)

≤ C
(
n3

N∑
m=1

‖uim‖2L2(Ω) + ‖f‖L2(Ωε)e
−n/3

)
, (IV.48)

where N is the number of cubes such that Qik ∩ supp(f) 6= ∅, and C, n do not depend

on N .

Proof.∥∥∥∥∥
N∑
m=1

uim

∥∥∥∥∥
2

L2(Ω)

≤
N∑

m,p=1

〈uim , ujp〉L2(Ω)

=

∞∑
k=0

( ∑
|i−j|∈[k,k+1)

〈ui, uj〉L2(Ω)

)

≤
n∑
k=0

( ∑
|i−j|∈[k,k+1)

‖ui‖L2(Ω)‖uj‖L2(Ω)

)
+
∞∑
k=n

( ∑
|i−j|∈[k,k+1)

〈ui, uj〉L2(Ω)

)

≤
n∑
k=0

∑
|i−j|∈[k,k+1)

(
‖ui‖2L2(Ω)

2
+
‖uj‖2L2(Ω)

2

)

+

∞∑
k=n

( ∑
|i−j|∈[k,k+1)

〈ui, uj〉L2(Ω)

)

≤
n∑
k=0

N∑
m=1

(
‖uim‖2L2(Ω)

∑
{j:|im−j|∈[k,k+1)}

1

)
+

∞∑
k=n

( ∑
|i−j|∈[k,k+1)

〈ui, uj〉L2(Ω)

)

≤ C
n∑
k=1

k2
N∑
m=1

‖uim‖2L2(Ω) +
∞∑
k=n

( ∑
|i−j|∈[k,k+1)

〈ui, uj〉L2(Ω)

)

≤ Cn3
N∑
m=1

‖uim‖2L2(Ω) +

∞∑
k=n

( ∑
|i−j|∈[k,k+1)

〈ui, uj〉L2(Ω)

)
. (IV.49)
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We now study the last term of (IV.49). It follows from Lemma IV.6.4 that

∣∣〈ui, uj〉L2(Ω)

∣∣ ≤ C‖fi‖L2(Ω)‖fj‖L2(Ω)e
− 1

2
|i−j|.

Using this fact and fixing k for the moment, we obtain∣∣∣∣∣∣
∑

|i−j|∈[k,k+1)

〈ui, uj〉L2(Ω)

∣∣∣∣∣∣ ≤ C
∑

|i−j|∈[k,k+1)

‖fi‖L2(Ω)‖fj‖L2(Ω)e
−|i−j|/2

≤ C
∑

|i−j|∈[k,k+1)

(
‖fi‖2L2(Ω)

2
+
‖fj‖2L2(Ω)

2

)
e−
|i−j|/2

≤ C
N∑
m=1

‖fim‖2L2(Ω)k
2e−

k/2

= C‖f‖2L2(Ω)k
2e−

k/2

≤ C‖f‖2L2(Ω)e
−k/3.

Summing this inequality from k = n to infinity concludes the proof.

Combining the above lemmas, we have the following quantitative statement.

Proposition IV.6.6. Suppose that f ∈ C∞0 (Ωε). Then for every n ∈ N,

∥∥(Jε(A
ι
ε)
−1 − (Aι)−1Jε)f

∥∥2

L2(Ω)
≤ C

(
n3δ2

ε + e−
n/3
)
‖f‖2L2(Ω)

for some C > 0, where δε was defined in Corollary IV.6.3.

Proof. We denote uεi := (Jε(A
ι
ε)
−1 − (Aι)−1Jε)(fχQi), i ∈ Rd, and estimate

∥∥(Jε(A
ι
ε)
−1 − (Aι)−1Jε)f

∥∥2

L2(Ω)
=

∥∥∥∥∥
N∑
m=1

uεim

∥∥∥∥∥
2

L2(Ω)

Lemma IV.6.5
≤ C

(
n3

N∑
m=1

‖uεim‖2L2(Ω) + e−
n/3‖f‖L2(Ωε)

)
Cor. IV.6.3

≤ C
(
n3δ2

ε

N∑
m=1

‖fim‖2L2(Ωε)
+ e−

n/3‖f‖L2(Ωε)

)

= C
(
n3δ2

ε + e−
n/3
)
‖f‖2L2(Ω).
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Proof of Theorem IV.3.1. Let g ∈ L2(Ωε) with ‖g‖L2(Ωε) ≤ 1. Fix δ > 0 and choose

f ∈ C∞0 (Ωε) such that ‖g − f‖2L2(Ωε)
< δ and choose n ∈ N such that e−n/3 ≤ δ. Now

compute

∥∥(Jε(A
ι
ε)
−1 − (Aι)−1Jε)g

∥∥2

L2(Ω)
≤ 2
∥∥(Jε(A

ι
ε)
−1 − (Aι)−1Jε)f

∥∥2

L2(Ω)

+ 2
∥∥(Jε(A

ι
ε)
−1 − (Aι)−1Jε)(g − f)

∥∥2

L2(Ω)

≤ C
((
n3δ2

ε + e−
n/3
)
‖f‖2L2(Ωε)

+
∥∥Jε(Aιε)−1 − (Aι)−1Jε

∥∥2︸ ︷︷ ︸
bounded

‖g − f‖2L2(Ωε)

)
≤ C(n3δ2

ε + δ)‖g‖2L2(Ωε)
+ Cδ,

hence

sup
‖g‖L2(Ωε)≤1

∥∥(Jε(A
ι
ε)
−1 − (Aι)−1Jε)g

∥∥2

L2(Ω)
≤ Cn3δ2

ε + Cδ + Cδ,

and therefore

lim sup
ε→0

∥∥(Jε(A
ι
ε)
−1 − (Aι)−1Jε)

∥∥2

L(L2(Ωε),L2(Ω))
≤ Cδ.

Since δ > 0 is arbitrary, the result follows.

IV.7. Behaviour of the Semigroup

In this section we want to give an application of Theorem IV.3.1. In particular, we

focus on the non-selfadjoint operator Aα and study the large-time behaviour of its

semigroup. In order to do this, we shall first study the numerical range of the Robin

Laplacians more closely. In the remainder of this section, unless otherwise stated,

the symbols ‖ · ‖ and 〈·, ·〉 will denote the L2 (operator-) norm and scalar product,

respectively, and the symbol Σθ denotes a sector of half-angle θ in the complex plane.

IV.7.1. Decay of e−t(A
α−id)

Let α ∈ C and assume Reα > 0. We want to study the decay properties of the

heat semigroup et(∆−µα). To this end, let us denote by Bα := Aα − id the Robin

Laplacian on Ω. It is our goal to derive estimates on the numerical range of Bα. Let
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u ∈ D(Bα) = D(Aα) and assume that ‖u‖L2(Ω) = 1. Notice that

〈Bαu, u〉 =

∫
Ω
|∇u|2 dx+ µα

∫
Ω
|u|2 dx+ α

∫
∂Ω
|u|2 dS

= ‖∇u‖2 + µα + α‖u‖2L2(∂Ω),

and therefore

Re
〈
Bαu, u

〉
≥ Reµα + Reα‖u‖2L2(∂Ω),

| Im〈Bαu, u〉| ≤ | Imµα|+ | Imα|‖u‖2L2(∂Ω).

Now, let λ ∈ (0,Reµα) and compute

∣∣Im〈(Bα − λ)u, u
〉∣∣ ≤ | Imµα|+ | Imα|‖u‖2L2(∂Ω)

=
| Imµα|
Reµα

Reµα +
| Imα|
Reα

Reα‖u‖2L2(∂Ω). (IV.50)

Recall from (IV.3) that µα = αSd/2
d and hence | Imµα|/Reµα = | Imα|/Reα. Com-

bining this with (IV.50), we obtain

∣∣Im〈(Bα − λ)u, u〉
∣∣ ≤ | Imα|

Reα

(
Reµα + Reα‖u‖2L2(∂Ω)

)
≤ | Imα|

Reα

(
Re
〈
(Bα − λ)u, u

〉
+ λ

)
≤ | Imα|

Reα− λ
2−dSd

Re
〈
(Bα − λ)u, u

〉
.

Using Theorem I.2.21, the next statement follows.

Proposition IV.7.1. The operator −(Bα−λ) generates a bounded analytic semigroup

in the sector Σπ
2
−θλ, where

θλ = arctan

(
| Imα|

Reα− λ
2−dSd

)
.

Equivalently, −Bα generates an analytic semigroup with

∥∥e−zBα∥∥ ≤ e−λz ∀z ∈ Σπ
2
−θλ .
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arctan
(
| Imα|
Reα

)

θλ

Re(µα)

Im(µα)

λ

Figure IV.3.: The sector of decay and angle θλ for Bα.

IV.7.2. Decay of e−t(A
α
ε−id)

In this section we denote Bα
ε := Aαε − id. By calculations analogous to the above, we

have

∣∣Im〈Bα
ε u, u〉

∣∣ ≤ | Imα|
Reα

Re〈Bα
ε u, u〉,

that is, Bα
ε is sectorial with sector Σθ0 , where θ0 = arctan(| Imα|/Reα), and hence

generates a bounded analytic semigroup in the sector Σπ
2
−θ0 . In this subsection we

improve this a priori result using spectral convergence. To this end, let δ > 0 and

define the compact set

Kδ :=
{
x+ iy : x ∈ [0,Reµα], y ∈

[
−| Imµα|, | Imµα|

]}
.

Note that then Σθ0 ∩ {Re z ≤ Reµα − δ} ⊂ Kδ. By [EE87, Th. III.2.3] one has

Kδ ⊂ ρ(Bα) for every δ > 0. Applying Corollary IV.3.2 we see that for every δ > 0

there exists a ε0 > 0 such that Kδ ⊂ ρ(Bα
ε ) for all ε < ε0.

In particular we have shown that the resolvent norm ‖(Bα
ε − z)−1‖ is bounded on

Σθ0∩{Re z ≤ Reµα−δ}. By a trivial calculation analogous to the previous subsection

this leads to the following statement.

Lemma IV.7.2. For every λ ∈ (0,Reµα − δ) one has

σ(Bα
ε − λ) ⊂ Σθδλ

, θδλ = arctan

( | Imµα|
Reµα − λ− δ

)
.

Furthermore, we obtain the following lemma.
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IV. Norm-Resolvent Convergence in Perforated Domains

Lemma IV.7.3. For every λ ∈ (0,Reµα− δ) one has C \Σθδλ
⊂ ρ(Bα

ε − λ) and there

exists a M = M(λ, δ) > 0 such that

∥∥(Bα
ε − λ− z)−1

∥∥ ≤ M

|z| ∀z ∈ C \ Σθδλ
.

Proof. This is obtained by combining Lemma IV.7.2 with the following two facts:

| Im〈Bα
ε u, u〉| ≤

| Imα|
Reα

Re〈Bα
ε u, u〉,

∥∥(Bα
ε − z)−1

∥∥ ≤ C on Kδ.

By the theory of analytic semigroups (cf. Section I.2.4), we immediately obtain the

following corollary.

Corollary IV.7.4. For all λ ∈ (0,Reµα−δ), the operator Bα
ε −λ generates a bounded

analytic semigroup in the sector Σπ
2
−θδλ

.

This yields the main result of this section, as follows.

Theorem IV.7.5. For every δ > 0 there exists ε0 > 0 such that for every λ ∈
(0,Reµα − δ) there exists M > 0 such that

∥∥e−zBαε ∥∥ ≤Me−λRe z ∀z ∈ Σθδλ
, ε ∈ (0, ε0).

Remark IV.7.6. It is straightforward to repeat the above proof for the case of Dirich-

let boundary conditions to obtain an analogous result for
∥∥e−t(AD−id)

∥∥. Here, the

selfadjointness of AD allows us to choose the half-angle θ arbitrarily close to π/2.
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V. Conclusion

Non-Selfadjoint Schrödinger Operators: We have shown that for ReV ≥ c|x|2 the

unbounded component of the pseudospectrum of H = −∆ + V moves towards +∞ as

ε→ 0. We note that this result holds for arbitrary imaginary part of the potential.

For a similar operator with ReV = 0 we were able to give a precise scaling for how

fast this happens. To obtain this scaling the knowledge of the norms of the Riesz

projections was crucial.

Let us remark that an analogous result to Theorem IV.3.1 trivially holds for op-

erators which are m-sectorial (in the sense of [Kat95]). This is due to the fact that

the resolvent norm decays outside the numerical range. This includes e.g. the Bender

oscillator − d2

dx2−(ix)ν , 2 < ν < 4 (cf. [Mez01] for a precise definition). The conclusion

of Theorem IV.3.1 holds for H if 2 < ε ≤ 3. Furthermore, by semiclassical methods,

the conclusion of Theorem III.3.6 holds if 3 < ε < 4.

More generally, Schrödinger Operators with a potential whose range is contained in

a sector belong to the above category (cf. [BST17, Prop. 2.2] for a precise study).

A number of open questions remain.

• To the authors’ knowledge the norms of the Riesz projections of the harmonic

oscillator with imaginary cubic potential have not been computed yet, but we

strongly suspect that the scaling ‖Qk‖ ∼ eωk (which holds for the Bender oscil-

lator) is also true in this case.

• Furthermore, we have seen that the resolvent norm of the Bender oscillator HB

goes to zero on vertical lines in the complex plane. However, we do not know

the rate of the decay. Clearly, there exists no C > 0 such that

‖(Hc − s− ir)−1‖ ≤ C

|r| , ∀s ∈ R

because this would imply that HB generates an analytic semigroup (which is false

by (II.4)). The question remains exactly how slow the decay is. The answer could

be used to confirm the results of [Bor13] who computed the asymptotic shape of

the level sets of the resolvent norm.
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V. Conclusion

• Finally, there is the obvious question as to whether the central assumption

ReV ≥ c|x|2− d can be relaxed. It is not obvious how to generalise our method

of proof to potentials which do not satisfy this lower bound. Indeed, our com-

pactness proof of the semigroup heavily relied on the fundamental solution of

the harmonic oscillator. However, the examples of the imaginary cubic oscillator

and the imaginary airy operator suggest that the lower bound on ReV is not

essential. It seems likely to the authors that under suitable conditions on ImV

the semigroup of −∆ + V will be compact even for ReV = 0. This issue has

been partially addressed in [KS17]

Perforated Domains: We have shown norm-resolvent convergence in the classical

perforated domain problem with Dirichlet boundary conditions which has the inter-

esting implication of spectral convergence (Cor. IV.3.2). Some questions remain open

and will be addressed in the future. While the norm ‖JεA−1
ε − A−1Jε‖L(L2(Ωε),L2(Ω))

converges to 0, it is not clear from our method of proof what the rate of convergence

is. It would be desirable to obtain a precise convergence rate. In the case of Dirichlet

boundary conditions an explicit convergence rate has been found by [KP18].

Another interesting question is whether in the case Ω = Rd there exist gaps in

the spectrum of Aε and how these depend on ε. The existence of spectral gaps has

been confirmed in two dimensions [NRT12], but to the authors’ knowledge the higher-

dimensional case is still open.
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