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AAbbssttrraacctt		

CO2	is	a	product	of	aerobic	respiration	that	has	been	implicated	in	various	signalling	

pathways	in	health	and	disease.	However,	the	exact	mechanisms	of	CO2	signalling	are	

poorly	understood.	This	is	due	in	large	part	to	the	lack	of	technology	with	which	to	

study	 protein-CO2	 interactions,	 known	 as	 carbamylation,	 and	 thus	 identify	 CO2	

sensors.	 Recently	 a	 method	 for	 trapping	 carbamates,	 forming	 a	 carboxyethyl	

modification	to	the	target	residue,	has	been	developed	for	downstream	analysis	of	

carbamate	formation	by	MS.	The	aim	of	this	thesis	 is	to	use	this	novel	workflow	to	

identify	a	CO2	sensor.	MALDI-TOF	MS	was	performed	to	identify	peptides	containing	

carboxyethyl	modification.	LC-MS/MS	was	then	performed	to	identify	K33	and	K48	as	

sites	of	carboxyethyl	modification.	These	residues	were	demonstrated	to	be	sites	of	

carbamylation	 by	 introducing	 13C	 into	 the	 workflow.	 Finally,	 a	 cross-linking	 assay	

demonstrated	CO2-dependent	reduction	to	the	rate	of	ubiquitination.	Together	these	

results	 demonstrate	 two	 sites	 of	 carbamylation	 of	 ubiquitin	with	 consequences	 to	

ubiquitination	kinetics.	Therefore,	it	is	proposed	that	ubiquitin	is	a	CO2	sensor.	 	
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IPTG	 Isopropyl	β-D-1-thiogalactopyranoside	
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LC-MS/MS	 Liquid	chromatography	tandem	mass	spectrometry	
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-	cotransporter	
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p50	 NFκB	subunit	p50	
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PKA	 Protein	kinase	A	
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RuBisCO	 Ribulose-1,5-bisphosphate	carboxylase/oxygenase	

SCF	 SKP1-CUL1-F-box	protein	
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TMT	 Tandem	mass	tag	

Zfh	 Zinc	finger	homeobox	protein	(Drosophila	melanogaster)	
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11.. IInnttrroodduuccttiioonn		

11..11.. OOvveerrvviieeww		

Carbon	 dioxide	 (CO2)	 is	 a	 primary	 product	 of	 oxidative	 metabolism	 that	 was	 first	

discovered	by	Joseph	Black	in	the	18th	century	and	has	since	been	implicated	in	several	

human	diseases	(Cummins	et	al.,	2014;	West,	2014).	Fundamentally,	CO2	has	effects	

on	 respiration,	photosynthesis,	and	acid-base	homeostasis	 (Gutknecht	et	al.,	1977;	

Hetherington	and	Raven,	2005;	Joshi	and	Tabita,	1996).	It	readily	dissolves	into	cells	

due	to	its	hydrophobic	properties,	whereupon	it	becomes	hydrated	to	form	carbonic	

acid.	 Carbonic	 acid	 readily	 dissociates	 into	 HCO3
-	 and	 H+,	 thus	 linking	 the	

concentration	of	CO2	 in	a	cell	 to	the	pH	(Blombach	and	Takors,	2015;	Boron	et	al.,	

2011).	CO2	hydration	occurs	relatively	slowly	at	physiological	pH	and	is	therefore	the	

rate	 limiting	 step	 in	 the	 equilibrium	 (Khalifah,	 1973).	 In	 order	 to	 overcome	 this	

carbonic	anhydrase	catalyses	 the	hydration	of	CO2.	CAs	are	efficient	enzymes	with	

high	turnover	rates	(Frommer,	2010;	Lindskog,	1997).	Their	biological	importance	is	

demonstrated	by	their	evolutionary	conservation	in	all	kingdoms	of	life	(Moroney	et	

al.,	 2001;	 Supuran	 et	 al.,	 2003).	 This	 suggests	 the	 ability	 to	 sense	 and	 respond	 to	

changes	 in	CO2	 is	 an	 important	 homeostatic	mechanism.	However,	 this	 is	 a	 poorly	

understood	area	of	cell	biology	and	this	thesis	aims	to	better	understand	CO2	sensing.	

Therefore,	 the	 focus	 of	 this	 thesis	 is	 CO2	 signalling	 and	 its	 direct	 interaction	 with	

proteins.	

	

11..22.. CCaarrbbaammyyllaattiioonn		

The	 direct	 interaction	 of	 CO2	 with	 proteins	 results	 in	 a	 labile	 post	 translational	

modification	(PTM),	which	is	referred	to	in	the	literature	with	a	range	of	definitions	

(e.g.	 carbamate,	 carbamino	 adduct,	 carboxylate).	 Herein,	 it	 is	 referred	 to	 as	 a	

carbamate.	 The	 reaction	 resulting	 in	 a	 carbamate,	 termed	 carbamylation,	 occurs	

between	 aqueous	 CO2	 and	 uncharged	 amine	 groups	 on	 proteins	 (Figure	 1.1).	
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Carbamylation	changes	the	electrochemical	properties	of	the	modified	protein.	This	

in	turn	alters	the	possible	interactions	and	therefore	function	of	the	modified	protein.	

	

	

Figure	1.1|	Mechanism	of	carbamate	formation.	

	

Carbamates	are	formed	by	the	nucleophilic	attack	of	a	neutral	amine	on	the	carbon	

atom	of	carbon	dioxide	(Ewing	et	al.,	1980;	Hampe	and	Rudkevich,	2003).	In	proteins,	

this	can	occur	at	the	N-terminal	residue	or	on	an	epsilon-amine	on	the	side	chain	of	

lysine	 residues.	 This	 results	 in	 a	 change	of	 charge	 status,	which	 influences	protein	

structure	 and/or	 interactions	 with	 other	 molecules	 (Lorimer	 and	 Miziorko,	 1980;	

Terrier	and	Douglas,	2010).	Carbamylation	is	a	labile	modification	that	occurs	within	

specific	environments	where	the	pKa	of	the	amine	group	 is	below	9.5	(Chen	et	al.,	

1993;	Jimenez-Morales	et	al.,	2014).	The	pKa	of	lysine	residues	is	typically	between	9	

and	13,	which	means	 that	 at	 physiological	 pH	 the	 amine	 is	 positively	 charged	 and	

consequently	 unable	 to	 form	 a	 carbamate	 (Abraham	 et	 al.,	 2009).	 However	

carbamates	readily	form	at	higher	pH	(Stadie	and	O'Brien,	1936).	Thus	it	 is	thought	

that	 specific	 structural	 folds	 that	 harbour	 a	 lower	 pKa	 are	 required	 for	 carbamate	

formation	(Cleland	et	al.,	1998)	

	

Le	Chatelier’s	principle	may	be	applied	to	carbamate	formation.	This	principle	states	

that	when	an	equilibrium	is	subject	to	change,	the	equilibrium	shifts	in	such	a	way	as	

to	counteract	the	change.	This	effectively	nullifies	the	applied	change.	When	applied	

to	 carbamate	 formation	 within	 a	 cellular	 context	 it	 is	 likely	 that	 the	 interaction	

between	CO2	and	a	neutral	amine	results	in	carbamate	formation	and	a	shift	in	the	
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equilibria	to	generate	more	neutral	amines	for	further	carbamate	formation	(Hackling	

and	Garnett,	1985).	Moreover,	the	sequestering	of	CO2	by	carbamate	formation	drives	

the	dissociation	of	CO2	 from	carbonic	 acid,	which	 is	 utilised	 for	 further	 carbamate	

formation.		

	

11..33.. EExxaammpplleess		ooff		pprrootteeiinn		ccaarrbbaammyyllaattiioonn		

Carbamylation	occurs	on	proteins	found	in	all	kingdoms	of	life	(Table	1.1).	There	are	

a	wide	variety	of	physiological	processes	understood	to	be	entirely	dependent	upon	

CO2.	 Importantly,	 these	 proteins	 all	 demonstrate	 a	 physiologically	 relevant	

consequence	 of	 carbamylation	 i.e.	 the	 interaction	 of	 these	 proteins	 with	 CO2	

corresponds	 to	 a	 specific	 biological	 activity,	 rather	 than	 being	 an	 artefactual	

modification.	Despite	this,	the	list	of	proteins	reported	to	undergo	carbamylation	is	

relatively	 short.	 It	 is	 anticipated	 that	 there	 are	many	more	 proteins	 that	 undergo	

carbamylation	 in	 a	 physiologically	 relevant	 manner	 but	 these	 have	 not	 yet	 been	

reported.	This	is	due	to	a	technical	challenge	concerning	the	identification	of	a	labile	

modification.	Here	the	carbamylation	of	two	mammalian	proteins	is	discussed.	

Table	1.1|	List	of	known	protein	carbamates.	

OOrrggaanniissmm		 PPrrootteeiinn		
UUnniipprroott		
AAcccceessssiioonn		

SSiittee		ooff		
CCaarrbbaammyyllaattiioonn		

RReeffeerreennccee		

Homo	sapiens	 Haemoglobin	 P68871	 V1	 (Lorimer,	1983)	

Homo	sapiens	 Cx26	 P29033	 K125	
(Meigh	et	al.,	

2013)	

Spinacia	oleracea	 RuBisCO	 P00875	 K201	 (Lorimer	and	
Miziorko,	1980)	

Klebsiella	aerogenes	 Urease	 P18314	 K217	
(Yamaguchi	

and	Hausinger,	
1997)	

Pseudomonas	
diminuta	 Phosphotriesterase	 G8DNV8	 K169	

(Benning	et	al.,	
2001)	

Psuedomonas	
aeruginosa	 b	Lactamase	 P14489	 K70	

(Golemi	et	al.,	
2001;	

Maveyraud	et	
al.,	2000)	

Propionibacterium	
shermanii	

Transcarboxylase	 Q70AC7	 K184	 (Hall	et	al.,	
2004)	

Geobacillus	
stearothermophilus	

Alanine	Racemase	 P10724	 K129	
(Morollo	et	al.,	

1999)	
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1.3.1. Haemoglobin	

Haemoglobin	 is	well	 known	 for	 its	 role	 in	oxygen	 transportation	 in	 red	blood	cells.	

Oxygen	 dissociation,	 and	 therefore	 tissue	 oxygenation,	 is	 encouraged	 by	 a	

phenomenon	known	as	the	Bohr	effect.	This	is	where	an	increased	pCO2	in	the	blood	

decreases	 the	affinity	of	haemoglobin	 for	oxygen,	 facilitating	O2	dissociation	 (Hsia,	

1998).	The	deoxy-haemoglobin	is	then	able	to	bind	CO2	to	transport	it	from	respiring	

tissues	 to	 the	 lungs,	 from	where	 it	 is	expelled	 from	the	body.	The	 formation	of	N-

terminal	 carbamates	 on	 deoxy-haemoglobin	 is	 responsible	 for	 up	 to	 20%	 of	 CO2	

transport	from	tissues	to	the	lungs	(Lorimer,	1983;	Vandegriff	et	al.,	1991).	CO2	binds	

to	neutral	N-terminal	amino	groups	of	haemoglobin	to	form	carbamate	adducts	with	

a	preference	for	the	b	chains	rather	than	a	chains	(Kilmartin	et	al.,	1973;	Matthew	et	

al.,	1977).	

	

Dick	 et	 al.	 demonstrated	 that	 interference	 with	 N-terminal	 protonation	 perturbs	

carbamate	adduct	formation	(Dick	et	al.,	1999).	This	initially	seems	counterintuitive	

since	it	is	the	unprotonated	amine	group	that	is	able	to	interact	with	CO2	to	form	the	

adduct.	 Nonetheless	 Dick	 and	 colleagues	 show	 that	 perturbed	 carbamate	 adduct	

formation	 in	 these	 conditions	 is	 a	 true	 phenomenon	 because	 R141	 is	 also	

deprotonated,	 removing	 the	 cationic	 species	 that	 serves	 to	 stabilise	 the	 anionic	

carbamate	through	electrostatic	interactions	(Dick	et	al.,	1999).	This	is	an	important	

demonstration	 of	 carbamate	 stabilisation	 by	 the	 electrostatic	 interaction	 of	 a	

positively	charged	residue	in	close	proximity	to	the	labile	carbamate.	

	

1.3.2. Connexin	26	

Another	 example	 of	 carbamate	 stabilisation	 is	 observed	 in	 Connexin	 26	 (Cx26).	 A	

recent	paper	demonstrated	direct	detection	of	CO2	by	Cx26,	which	is	in	contrast	to	

the	then	commonly	held	belief	that	CO2	detection	occurred	by	proxy	of	pH	changes	
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(Huckstepp	et	al.,	2010a).	Cx26	 is	a	hemichannel	 that	 is	 sensitive	 to	CO2,	with	ATP	

release	evoked	upon	activation	of	this	gap	junction	in	order	to	mediate	downstream	

signalling	events	that	regulate	respiration	(Huckstepp	et	al.,	2010a).	Cx26	 is	one	of	

three	connexins	(Cx26,	Cx30,	and	Cx32)	that	are	sensitive	to	CO2	(Meigh	et	al.,	2013).	

During	this	investigation,	the	authors	observed	that	a	carbamylation	motif,	KVREI,	is	

present	 in	 each	 of	 these	 hemichannels	 whereby	 carbamate	 formation	 at	 K125	 is	

stabilised	by	formation	of	a	salt	bridge	with	R104.	This	carbamylation	motif	has	been	

introduced	to	a	CO2-insensitive	connexin,	Cx31.	The	introduction	of	this	motif	showed	

CO2-sensitive	function	in	a	manner	analogous	to	WT	Cx26.	K125R	or	R104A	mutation	

ablated	the	sensitivity	of	Cx26	to	CO2.	Moreover,	introduction	of	K125E	to	Cx26,	which	

is	analogous	to	carbamylated	K125,	resulted	in	a	constitutively	open	hemichannel.	It	

is	clear	from	these	genetic	manipulations	that	carbamylation	of	K125	is	required	for	

appropriate	activation	of	Cx26	in	a	CO2-sensitive	fashion.	This	has	broad	implications	

for	vertebrate	physiology,	whereby	it	has	been	demonstrated	that	the	affinity	of	Cx26	

has	 evolved	 in	 a	 species-specific	 manner	 to	 suit	 the	 P	 CO2	 of	 the	 environment,	

highlighting	the	importance	of	respiratory	regulation	(de	Wolf	et	al.,	2017).		

	

11..44.. CCOO22		iinn		ssiiggnnaalllliinngg		ppaatthhwwaayyss		

Recent	 studies	 indicate	 that	 CO2	 acts	 effectively	 as	 a	 small	 signalling	molecule.	 In	

particular,	CO2	alters	the	activity	of	many	membrane	transporters.	This	regulation	can	

occur	 by	 direct	 interaction	 of	 CO2	 with	 the	 membrane	 protein	 or	 indirectly	 by	

signalling	 events	 typically	 downstream	 of	 CO2-dependent	 changes	 to	 intracellular	

cAMP	concentrations.		

	

1.4.1. Direct	CO2	signalling	

CO2	binds	 to	Cx26,	a	hemichannel,	at	K125	 to	 form	a	carbamate	bridge	with	R104	

(Meigh	 et	 al.,	 2013).	 This	 interaction	 causes	 Cx26	 to	 open,	 resulting	 in	 ATP	 efflux	

(Huckstepp	et	al.,	2010b).	This	release	of	ATP	has	downstream	effects	that	contribute	
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to	 the	 chemosensitive	 regulation	 of	 respiratory	 drive	 (Huckstepp	 et	 al.,	 2010a).	 In	

addition	to	Cx26	a	K+	influx	channel,	Kir,	has	also	been	reported	to	be	responsive	to	

direct	binding	of	CO2.	However,	a	direct	interaction	between	CO2	and	Kir	has	not	yet	

been	demonstrated	(Huckstepp	and	Dale,	2011).	

	

1.4.2. Indirect	CO2	signalling	

Indirect	 regulation	 of	 membrane	 transporters	 by	 CO2	 is	 due	 to	 CO2-dependent	

changes	in	cAMP	levels	(Turner	et	al.,	2016).	Na+/HCO3
-	cotransporter	(NBC)	activity	is	

upregulated	in	the	context	of	elevated	CO2	levels	(Adijanto	et	al.,	2009),	whilst	Cl-	and	

fluid	secretions	by	CFTR	are	reduced	in	similar	conditions	(Turner	et	al.,	2016).	This	is	

in	agreement	with	other	research	that	observes	CO2-dependent	decreases	in	cAMP	

production	and	corresponding	cAMP-dependent	signalling	in	kidney	cells	(Cook	et	al.,	

2012).	 However,	 there	 are	 also	 reported	 instances	 of	 CO2-dependent	 increases	 in	

cAMP	production	and	signalling	(Lecuona	et	al.,	2013;	Townsend	et	al.,	2009).	Na+/K+	

ATPase	proteins	are	also	negatively	regulated	in	hypercapnic	conditions	(Briva	et	al.,	

2007).	 The	 role	 of	 CO2	 in	 the	 negative	 regulation	 of	 Na+/K+	 ATPase	 activity	 is	 to	

upregulate	Na+/K+	ATPase	endocytosis	 (Vadasz	et	al.,	2008).	Thus,	hypercapnia	has	

differential	 effects	 of	 membrane	 transporter	 activity	 that	 is	 cell	 type	 and	 tissue	

context	dependent.	A	challenge	going	forwards	is	to	define	the	exact	mechanism	of	

action	of	CO2	in	these	signalling	pathways.	The	binding	site	of	CO2	is	known	for	Cx26	

and	this	has	been	informative	to	deepen	the	understanding	of	the	regulation	of	this	

protein.	Such	clarity	is	desired	for	the	other	signalling	processes	described.		

	

1.4.3. NFkB	Signalling	

The	 NFκB	 family	 of	 transcription	 factors	 belong	 to	 one	 of	 two	 distinct	 signalling	

pathways,	canonical	and	non-canonical.	Release	of	the	active	transcription	factor	 is	

essential	in	both	pathways,	and	the	mechanism	by	which	it	is	released	categorises	the	

type	of	NFκB	pathway.		
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Canonical	 NFκB	 signalling	 requires	 the	 proteasomal	 degradation	 of	 IκB	 to	 release	

NFκB,	 whilst	 non-canonical	 NFκB	 signalling	 requires	 the	 proteolytic	 processing	 of	

precursors.	Typically,	p100	and	p105	are	cleaved	to	p52	and	p50,	respectively,	which	

form	a	heterodimer	to	achieve	transcriptional	regulation.	

	

1.4.3.1. Canonical	NFκB	signalling	

The	key	irreversible	step	in	canonical	NFkB	signalling	is	the	release	of	the	cytoplasmic	

inhibitor,	 IkB,	 via	 proteolysis.	 IkB	 degradation	 releases	 NFkB,	 allowing	 for	 nuclear	

translocation	and	subsequent	association	with	DNA	to	initiate	transcription	of	target	

genes.	 One	 of	 these	 target	 genes	 is	 IκB,	 which	 associates	 with	 NFkB	 to	 perform	

nuclear	export	of	the	transcription	factor	(Brown	et	al.,	1993;	Karin	and	Ben-Neriah,	

2000).	Therefore,	the	activation	and	termination	of	NFkB	mediated	gene	expression	

is	tightly	regulated	by	IkB	(Beg	et	al.,	1993;	Sun	et	al.,	1993).		

	

Initial	experiments	demonstrating	dissociation	of	IkB	as	an	important	activation	step	

in	NFkB	signalling	were	performed	using	detergent	(Baeuerle	and	Baltimore,	1988).	

Furthermore,	 it	 was	 revealed	 that	 phosphorylation	 of	 IkB	 was	 essential	 for	 its	

degradation	 and	 that	 inhibiting	 IkB	 degradation	 prevented	 NFkB	 activation.	 This	

group	 also	 demonstrated	 that	 phosphorylation	 alone	 was	 not	 sufficient	 for	 NFkB	

activation,	suggesting	an	additional	regulatory	factor	is	involved	(Henkel	et	al.,	1993).	

This	 additional	 layer	 of	 regulation	 was	 demonstrated	 to	 be	 ubiquitination	 and	

subsequent	 proteasomal	 degradation	 of	 phosphorylated	 IkB	 (Alkalay	 et	 al.,	 1995;	

Chen	et	al.,	1995).	

	

In	the	canonical	NFkB	pathway	elevated	CO2	has	been	shown	to	induce	reversible	IKK	

nuclear	translocation	(Cummins	et	al.,	2010).	IKK	phosphorylates	IκB,	thus	priming	it	

for	 ubiquitination	 and	 proteasomal	 degradation.	 The	 nuclear	 translocation	 of	 IKK	

prevents	phosphorylation	of	IkB.	This	in	turn	prevents	degradation	of	IkB	so	that	NFkB	
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remains	sequestered	in	the	cytoplasm.		It	is	unclear	where	exactly	CO2	modulates	the	

activity	of	the	signalling	cascade,	since	there	are	multiple	upstream	steps	that	could	

be	 influenced.	 This	 suppression	 of	 NFkB	 signalling	 results	 in	 innate	 immune	

suppression,	 which	 is	 also	 observed	 in	 rats	 that	 are	 still	 able	 to	 perform	 renal	

buffering,	suggesting	the	effect	is	CO2	mediated	and	independent	of	pH	(Nichol	et	al.,	

2009).	It	is	thought	that	CO2-mediated	immune	suppression	may	be	beneficial	to	the	

overall	health	of	an	individual	as	a	method	of	tolerating	metabolic	stress	(Amato	et	

al.,	1998;	Hanly	et	al.,	2006;	Laffey	et	al.,	2004).	

	

1.4.3.2. Non-canonical	NFκB	signalling	

In	 the	 non-canonical	 NFkB	 signalling	 pathway	 ubiquitination	 and	 proteasomal	

degradation	 enables	 the	 generation	 of	 the	 active	 NFkB	 subunit,	 p50,	 from	 its	

precursor,	p105	(Palombella	et	al.,	1994).	Sequence	homology	identified	a	conserved	

N-terminal	sequence	containing	two	serine	residues,	at	positions	32	and	36,	that	are	

essential	for	phosphorylation	and	subsequent	ubiquitin-mediated	IkB	degradation	by	

the	 proteasome	 (Brown	 et	 al.,	 1995;	 Chen	 et	 al.,	 1995;	 Yaron	 et	 al.,	 1997).	 The	

importance	of	this	conserved	sequence	was	highlighted	by	comparing	the	half-life	of	

IkB	in	resting	cells	and	activated	cells.	In	the	former	the	half-life	is	approximately	140	

minutes,	whilst	in	activated	cells	it	is	approximately	1.5	minutes	(Henkel	et	al.,	1993).	

	

An	SCF	E3	ligase	is	responsible	for	the	ubiquitination	of	phosphorylated	IkB,	p100	and	

p105	 for	 their	 subsequent	 interaction	with	 the	 proteasome	 (Fong	 and	 Sun,	 2002;	

Heissmeyer	et	al.,	2001;	Orian	et	al.,	2000;	Wu	and	Ghosh,	1999).	It	achieves	this	by	

bringing	the	substrate	lysine	of	IkB	into	closer	proximity	to	the	E2~ubiquitin	complex,	

permitting	 more	 efficient	 ubiquitin	 transfer	 (Wu	 et	 al.,	 2003).	 The	 SCF	 E3	 ligase	

recognises	phosphorylated	proteins	through	its	beta-TrCP	subunit	(Yaron	et	al.,	1998).	

Its	ability	to	differentiate	between	various	substrate	phosphoproteins	 is	due	to	the	

protein	 recognition	 subunit,	 F	 box	 protein	 (FBP),	 which	 has	 a	 protein	 recognition	

domain	at	its	C-terminus	(Cardozo	and	Pagano,	2004;	Deshaies,	1999).	
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Members	of	 the	non-canonical	NFkB	signalling	pathway	have	been	 reported	 to	be	

sensitive	to	CO2	(Oliver	et	al.,	2012).	This	effect	has	also	been	observed	in	downstream	

genes	 of	 Relish,	 an	NFkB	orthologue	 in	D.	melanogaster	 (Helenius	 et	 al.,	 2009).	 A	

recent	 paper	 recorded	 the	 first	 identification	 of	 a	 conserved	 20	 amino	 acid	 CO2	

responsive	domain	(CORD)	located	at	the	C-terminus	of	RelB	(Keogh	et	al.,	2017).	RelB	

is	subject	to	multiple	PTMs	(Hailfinger	et	al.,	2009;	Marienfeld	et	al.,	2001;	Neumann	

et	al.,	2011).	After	being	subject	to	hypercapnic	conditions	RelB	is	cleaved	at	the	CORD	

(Keogh	et	al.,	2017).	The	CORD	is	situated	within	the	transactivation	domain	of	RelB,	

which	explains	the	reduced	NFkB	mediated	gene	expression	observed	in	hypercapnic	

conditions	(Perkins,	2007).	It	was	also	shown	that	p100	nuclear	translocation	occurs,	

and	this	is	thought	to	be	important	for	the	NFkB-dependent	response	to	CO2	(Keogh	

et	 al.,	 2017).	 One	 explanation	 for	 this	 may	 be	 due	 to	 the	 prerequisite	 of	 p100	

processing	 to	 p52	 for	 normal	 non-canonical	 NFkB	 signalling	 activation.	 The	 intact	

p100	 subunit	 may	 prevent	 DNA	 binding	 through	 the	 Rel	 homology	 domain	 and	

consequently	 attenuate	 non-canonical	 NFkB	 signalling.	 In	 addition	 to	 this	 the	

polyubiquitination	of	RelB	augments	transcriptional	activity.	This	occurs	despite	K48R	

K63R	double	mutants	of	ubiquitin	(Leidner	et	al.,	2008).	This	suggests	that	ubiquitin	is	

linked	through	isopeptide	bonds	formed	at	alternative	lysine	residues	to	K48	and	K63.		

	

It	was	 recently	 identified	 that	 heat	 shock	 factor	 1	 (HSF1),	 a	 heat	 shock	 protein,	 is	

upregulated	 in	 hypercapnia.	 This	 is	 associated	 with	 decreased	 expression	 of	

proinflammatory	cytokines	(Lu	et	al.,	2018).	HSF1	has	previously	been	implicated	as	a	

NFκB	inhibitor,	which	suggests	the	mechanism	for	hypercapnic	immune	suppression	

is	through	increased	expression	of	HSF1	(Lu	et	al.,	2018;	Song	et	al.,	2008).		
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1.4.3.3. D.	melanogaster	development	

Embryonic	 development	 and	 egg	 laying	 are	 developmental	 processes	 that	 are	

perturbed	 by	 hypercapnic	 conditions.	 This	 is	 independent	 of	 the	 CO2	 sensitive	

neurones,	Gr63a	(Helenius	et	al.,	2009).	RNAi	knockdown	of	Zfh2	partially	restored	

the	effects	of	elevated	CO2	on	egg	hatching	(Helenius	et	al.,	2016a).		

	

11..55.. CCOO22		iinn		ppaatthhoollooggyy		

1.5.1. Perturbed	fluid	reabsorption	in	pulmonary	disease	

Patients	 with	 acute	 respiratory	 distress	 syndrome	 (ARDS)	 or	 COPD	 present	 with	

hypercapnia.	Fluid	 reabsorption	at	 the	alveolar	epithelium	 is	critical	 to	maintaining	

optimal	gas	exchange	in	the	lungs.	This	is	achieved	by	the	active	transport	of	fluid	into	

the	 cell	 by	 the	Na+/K+	ATPase	 (Matthay	et	 al.,	 2002;	 Sznajder,	 2001;	Vadasz	et	 al.,	

2007).	 Hypercapnia	 decreases	 Na+/K+	 ATPase	 activity,	 which	 impairs	 alveolar	 fluid	

reabsorption	and	leads	to	alveolar	epithelial	dysfunction	(Briva	et	al.,	2007;	Vadasz	et	

al.,	2008).	This	is	also	observed	in	Drosophila	(Helenius	et	al.,	2009).	Decreased	Na+/K+	

ATPase	is	achieved	through	JNK-dependent	endocytosis	of	the	Na+/K+	ATPase.	Here,	

AMPK	 and	 PKC-zeta	 are	 activated	 which	 causes	 activation	 of	 JNK	 through	 its	

phosphorylation	 at	 S129	 (Vadasz	 et	 al.,	 2012).	 Endocytosis	 of	 this	 pump,	 and	 the	

resulting	alveolar	epithelial	dysfunction,	worsens	prognosis	in	patients	with	COPD	and	

ARDS.		

	

1.5.2. Muscle	atrophy	in	pulmonary	disease	

Muscle	atrophy	 is	 recognised	as	a	major	 contributor	 to	worse	clinical	outcomes	 in	

patients	with	pulmonary	disease	(Celli	et	al.,	2004)	and	recovery	of	muscle	mass	 in	

COPD	patients	has	proven	to	be	beneficial	to	pulmonary	rehabilitation	(Puhan	et	al.,	

2011).	Recent	research	has	demonstrated	that	hypercapnia	stimulates	skeletal	muscle	

degradation	 via	 the	 ubiquitin	 proteasomal	 degradation	 pathway	 (Jaitovich	 et	 al.,	
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2015).	Here,	AMPKa2	is	readily	phosphorylated	in	the	presence	of	elevated	CO2	levels.	

This	causes	an	increase	in	FoxO3a	activation	which	in	turn	upregulates	expression	of	

muscle-specific	ubiquitin-E3	ligases	muscle	RING	finger	1	(MuRF1).	The	upregulation	

of	 MuRF1	 in	 muscle	 atrophy	 is	 consistent	 with	 other	 reports	 despite	 different	

upstream	signalling	events	occurring	(Glass,	2005).	The	results	obtained	by	Jaitovich	

and	 colleagues	 showed	 that	 the	 hypercapnia-induced	 muscle	 atrophy	 was	

independent	of	pH	change	and	therefore	this	effect	must	be	due	to	carbamylation.	

The	substrate	for	carbamylation	has	not	been	identified.	

	

1.5.3. Hypercapnia	mediates	immune	suppression	

Hypercapnia	 induces	expression	of	metabolic	and	decreases	expression	of	 immune	

genes	in	Drosophila	(Helenius	et	al.,	2009).	This	was	shown	to	be	independent	of	a	

neuronal	CO2	sensing	pathway,	suggesting	a	role	for	a	cell	autonomous	CO2	sensing	

pathway.	The	identified	genes	repressed	in	hypercapnia	are	under	regulatory	control	

of	 the	 NFκB	 transcription	 factor.	 Similarly,	 studies	 in	 mammalian	 alveolar	

macrophages	have	implicated	NFκB	in	a	CO2–responsive	signalling	pathway	whereby	

increased	levels	of	CO2	suppress	expression	of	proinflammatory	cytokines	(Wang	et	

al.,	 2010).	 Importantly,	 both	 of	 these	 aforementioned	 studies	 demonstrated	 the	

effect	of	hypercapnia	on	 immune	suppression	 (1)	was	 independent	of	acidosis,	 (2)	

increased	mortality	from	specific	bacterial	infection,	and	(3)	occurred	independently	

of	 IκB	 proteolysis	 in	 the	 NFκB	 pathway.	 These	 results	 suggest	 an	 evolutionary	

conserved	 mechanism	 of	 CO2	 signalling	 that	 regulates	 immune	 and	 inflammatory	

pathways	with	physiological	consequences.	

	

A	 recent	 RNAi	 screen	 identified	 Zfh2	 as	 a	 mediator	 of	 hypercapnic	 immune	

suppression	in	D.	melanogaster	(Helenius	et	al.,	2016a).	Zfh2	is	expressed	in	adipose	

tissue,	which	is	the	major	immune	organ	of	Drosophila.	Knockdown	of	Zfh2	in	ex-vivo	

cultured	fat	bodies	expressed	2-fold	more	diptericin	compared	to	control	in	buffered	

hypercapnic	conditions.	This	corresponds	to	improved	survival	of	S.	aureus	infection.	
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Zfh2	has	mammalian	homologs,	ZFHX3	and	ZFHX4.	It	is	not	yet	understood	whether	

these	 transcription	 factors	 also	 mediate	 hypercapnic	 immune	 suppression	 in	

mammals	 but	 if	 this	 were	 confirmed	 it	 would	 suggest	 an	 evolutionary	 conserved	

pathway	 through	 which	 CO2	 mediates	 immune	 suppression.	 The	 authors	 of	 this	

investigation	are	quick	to	point	out	that	there	is	more	to	be	understood	about	this	

process.	In	particular,	it	is	likely	that	Zfh2	is	the	effector	and	that	the	CO2	sensor	is	yet	

to	be	identified	(Helenius	et	al.,	2016a).		

	

Several	 compounds	 have	 recently	 been	 identified	 that	 improve	 the	 expression	 of	

antimicrobial	peptides	during	hypercapnia	(Helenius	et	al.,	2016b).	Of	these,	evoxine,	

a	furoquinolone	alkaloid,	increased	the	expression	of	the	pro-inflammatory	cytokines	

IL-6	and	CCL2	in	mammalian	alveolar	macrophages	during	hypercapnia.	This	is	the	first	

demonstration	of	using	a	small	pharmacological	compound	to	reverse	the	effects	of	

hypercapnia,	which	provides	 the	platform	upon	which	 further	 research	can	aim	 to	

therapeutically	 target	 hypercapnic	 pathologies.	 Of	 particular	 importance	 will	 be	

structural	 studies	 that	 elucidate	 the	 precise	 interaction	 between	 these	 small	

molecules	 and	 their	 targets.	 This	 will	 inform	 future	 studies	 aiming	 to	 generate	

pharmacological	agents	with	which	to	treat	pathologies	actively	enhanced	by	elevated	

CO2	levels.	

	

11..66.. TThheessiiss		oouuttlliinnee		

The	 biological	 question	 underpinning	 this	work	 is	 how	 cells	 sense	 and	 respond	 to	

changes	in	CO2	levels.	CO2	is	a	product	of	aerobic	respiration	and	could	therefore	act	

as	a	signalling	molecule	to	contribute	to	the	metabolic	status	of	the	cell.	A	greater	

understanding	 of	 this	 biological	 phenomenon	 will	 broaden	 understanding	 of	

fundamental	 biological	 processes	 linking	 cellular	 metabolism	 and	 homeostasis.	

Elevated	 CO2	 levels	 are	 observed	 in	 patients	 with	 pulmonary	 disease	 and	 this	

hypercapnia	has	been	reported	to	worsen	prognosis.	Therefore,	 this	work	will	also	
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contribute	to	a	greater	understanding	of	the	pathophysiology	of	these	diseases	which,	

in	turn,	will	lead	to	the	development	of	therapies	to	treat	these	diseases.		

	

CO2	 has	 previously	 been	 demonstrated	 a)	 to	 bind	 directly	 to	 proteins	 to	 form	

carbamates	b)	to	be	 involved	 in	cellular	signalling	processes	c)	to	both	directly	and	

indirectly	regulate	protein	activity	and	d)	to	contribute	to	pathological	states.	A	recent	

proteomics	using	A.	thaliana	leaf	lysate	investigation	suggests	ubiquitin	is	susceptible	

to	carbamylation	(Linthwaite,	2016).	In	this	screen	ubiquitin	was	identified	as	a	high	

confidence	 candidate,	with	 a	 similarly	 low	probability	of	 error	 score	as	RuBisCO,	 a	

bona	fide	target	of	CO2-dependent	carbamylation.	Despite	this,	carbamate	formation	

on	ubiquitin	was	not	validated.	

	

Ubiquitin	 is	 a	 small	 (~8	 kDa)	 evolutionary	 conserved	 protein	with	 broad	 signalling	

functions	(Chen,	2005;	Finley	and	Chau,	1991).	Ubiquitin	is	conjugated	to	substrate	

proteins	 through	 a	 series	 of	 reactions	 catalysed	by	 enzymes	 from	 the	3	 classes	 of	

ubiquitin	ligases.	The	activating	E1	ligase	forms	a	thiol	ester	with	the	carboxyl	group	

of	ubiquitin	G76.	The	conjugating	E2	ligase	forms	a	thiolester	with	G76.	The	E3	ligase	

transfers	ubiquitin	from	the	E2	 ligase	to	the	substrate,	forming	an	 isopeptide	bond	

between	the	substrate	lysine	Ne-amine	group	and	G76	of	ubiquitin	(Pickart,	2001).	A	

polyubiquitin	 chain	 forms	 when	 further	 ubiquitin	 molecules	 are	 conjugated.	 The	

diverse	 array	 of	 ubiquitin	 signalling	 is	 conferred	 through	 the	 type	 and	 mode	 of	

ubiquitin	cross-linking.	PTMs	occurring	on	ubiquitin	itself	regulate	its	ability	to	cross-

link	(Matsuda,	2016).	CO2-dependent	carbamylation	and	ubiquitin	cross-linking	both	

occur	 on	 lysine	 residues,	 suggesting	 a	 physiologically	 relevant	 role	 for	 ubiquitin	

carbamylation.		

	

Altogether,	 the	hypothesis	of	 this	work	 is	 that	CO2	binds	directly	 to	ubiquitin	with	

physiologically	 relevant	 consequences.	 To	 investigate	 this	 hypothesis	 a	 mass	
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spectrometry	approach	is	taken	to	investigate	CO2-dependent	carbamate	formation	

on	ubiquitin.	Upon	confirmation	of	two	sites	of	carbamylation,	a	functional	assay	is	

performed	to	investigate	the	consequence	of	carbamate	formation.	 	
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22.. MMeetthhooddss		

22..11.. EE..		ccoollii		ssttrraaiinnss		

Table	2|	E.	coli	strains	and	genotypes	used	for	expression	of	recombinant	proteins.	

SSttrraaiinn		 GGeennoottyyppee		

BL21	(DE3)	 F–	ompT	hsdSB	(rB–	mB
–)	gal	dcm	(DE3)	

Rosetta	(DE3)	pLysS	 F-	ompT	hsdSB(rB-	mB
-)	gal	dcm	(DE3)	pLysSRARE	(CamR)	

Rosetta	2	(DE3)	pLysS	 F-	ompT	hsdSB(rB-	mB
-)	gal	dcm	(DE3)	pLysSRARE2	(CamR)	

	

22..22.. PPrrootteeiinn		eexxpprreessssiioonn		aanndd		ppuurriiffiiccaattiioonn		

2.2.1. pET	28	mE1	

BL21	(DE3)	were	transformed	with	pET28	mE1	 (a	gift	 from	Jorge	Eduardo	Azevedo	

(Addgene	plasmid	#32534))	and	protein	expression	was	 induced	by	addition	of	0.5	

mM	 IPTG	 at	 an	OD600	 0.6	 for	 20	 hours	 at	 16oC	 (Carvalho	 et	 al.,	 2012).	 Cells	were	

harvested	at	4000	g	and	subjected	to	a	freeze-thaw	cycle	before	being	resuspended	

in	E1	Lysis	buffer	(50	mM	Tris-HCl	pH	8.0,	150	mM	NaCl	0.1%	(w/v),	Triton	X-100,	1	

mM	EDTA-NaOH	pH	8.0,	1	mM	DTT,	0.1	mg/mL	phenylmethylsulfonyl	fluoride,	1:500	

(v/v)	 Sigma	 mammalian	 protease	 inhibitor	 mixture)	 and	 lysed	 by	 sonication.	 The	

soluble	fraction	was	obtained	after	centrifugation	at	21,000	g	and	incubated	with	0.5	

mL	Ni2+	NTA	resin	per	1	L	pellet	for	2	hours	at	4oC	with	end	to	end	agitation.	The	resin	

was	washed	with	15	BV	wash	buffer	(50	mM	sodium	phosphate	pH	8.0,	150	mM	NaCl)	

and	eluted	with	3	x	1	BV	elution	buffer	(wash	buffer,	100	mM	imidazole).	The	eluted	

fractions	 were	 resolved	 on	 SDS-PAGE	 and	 fractions	 containing	 mE1	 were	 pooled,	

concentrated	and	buffer	exchanged	into	AEC	buffer	(10	mM	Tris-HCl	pH	8.0,	0.1	mM	
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EDTA-NaOH	pH	8.0,	1	mM	DTT).	This	was	loaded	onto	Bio-Scale	Mini	Macro-Prep	High	

Q	Cartridge	(Bio-Rad)	at	a	flow	rate	of	0.5	ml/min.	and	eluted	with	a	linear	gradient	

of	0	 -	0.5	M	NaCl	 in	AEC	elution	buffer	 (AEC	buffer,	0.5	M	NaCl).	 Following	buffer	

exchange	to	SEC	Buffer	(20	mM	Tris	HCl	pH	8.0,	100	mM	NaCl,	1	mM	EDTA-NaOH	pH	

8.0,	1	mM	DTT)	mE1	was	loaded	onto	Superose	12	column	HR	10/30	(GE	Healthcare)	

with	 flow	rate	of	0.5	mL/min	and	fractions	were	resolved	by	SDS-PAGE.	Fractions	

containing	mE1	were	pooled,	concentrated,	and	stored	at	-80oC.	

	

2.2.2. pGEX-4T	E2-25K	

Rosetta	 (DE3)	pLysS	 cells	were	 transformed	with	pGEX-4T	E2-25K	 (a	gift	 from	Titia	

Sixma	 (Addgene	plasmid	#63572))	and	grown	 to	an	OD600	0.7	at	37oC.	GST-E2-25K	

expression	was	induced	with	0.5	mM	IPTG	for	20	hours	at	16oC	(Pichler	et	al.,	2005).	

Cells	were	harvested	at	4000	g	and	 subjected	 to	a	 freeze-thaw	cycle	before	being	

resuspended	in	E2	Lysis	buffer	(50	mM	Tris-HCl	pH	7.6,	1	mM	EDTA,	2	mM	DTT,	1	mM	

PMSF)	 and	 lysed	 by	 sonication.	 The	 soluble	 fraction	 was	 obtained	 following	

centrifugation	at	21,000	g	and	passed	over	0.8	mL	SuperGlu	resin	per	1	L	pellet	at	a	

flow	rate	of	0.5	mL/min.	The	resin	was	then	washed	with	10	BV	1x	PBS	before	GST-E2-

25K	 (herein	 referred	 to	 as	 E2-25K)	was	 eluted	with	 1	 BV	 1x	 PBS,	 10	mM	 reduced	

glutathione	and	dialysed	for	16	hours	into	GF	buffer	(20	mM	Tris-HCl	pH	8.0,	300	mM	

NaCl,	1	mM	DTT,	1	mM	EDTA).	E2-25K	was	then	loaded	onto	a	Superdex	75	column	at	

a	flow	rate	of	1	mL/min.	Fractions	were	resolved	by	SDS-PAGE	and	those	containing	

E2-25K	were	pooled,	concentrated,	and	stored	at	-80oC.			

	

2.2.3. Ubiquitin	(Homo	sapiens)	

BL21	 (DE3)	cells	containing	pET28	UBC	 (a	gift	 from	Rachel	Klevit	 (Addgene	plasmid	

#12647))	were	grown	to	an	OD600	0.6.	Ubiquitin	expression	was	induced	with	0.5	mM	

IPTG	for	16	hours	at	16oC	(Brzovic	et	al.,	2006).	Cells	were	harvested	at	4000	g	and	

lysed	by	sonication	in	50	mM	Tris-HCl	pH	8.0,	150	mM	NaCl,	0.1%	(w/v)	Triton	X-100,	

1	mM	EDTA-NaOH	pH	8.0,	1	mM	DTT,	Protease	inhibitor	cocktail	(Thermo	Scientific).	

Soluble	 protein	 was	 separated	 from	 cell	 debris	 by	 centrifugation	 at	 21,000	 g	 and	
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incubated	with	1	mL	Ni2+-NTA	resin	(50%	slurry)	for	2	hours	with	end	to	end	shaking.	

Weakly	bound	protein	was	washed	with	10	BV	50	mM	Tris-HCl	pH	8.0,	150	mM	NaCl,	

10	mM	 Imidazole.	 Bound	protein	was	eluted	across	 a	 range	of	 50	mM	–	250	mM	

imidazole.	 Each	 protein	 fraction	 was	 stored	 at	 -80oC	 in	 elution	 buffer	 with	 20%	

glycerol.	

	

2.2.4. Ubiquitin	(Arabadopsis	thaliana)	

Rosetta	2	(DE3)	pLysS		cells	containing	pET30a	UBQ11	(a	gift	from	Ari	Sadanandom)	

were	grown	to	an	OD600	0.7,	at	which	point	Ubiquitin	expression	was	induced	with	1	

mM	IPTG	for	4	hours	at	37oC	(Pangestuti,	2009).	Cells	were	harvested	at	4000	g	and	

lysed	in	50	mM	Tris-HCl	pH	8.0,	150	mM	NaCl,	1	mM	EDTA-NaOH	pH	8.0,	protease	

inhibitor	 cocktail	 (Sigma).	 Soluble	 protein	 was	 separated	 from	 cell	 debris	 by	

centrifugation	at	21,000	g	before	incubation	with	2	mL	Ni2+-NTA	resin	(50%	slurry)	for	

1.5	hours	with	end	to	end	shaking.	Weakly	bound	protein	was	washed	with	10	BV	50	

mM	Tris-HCl	pH	8.0,	150	mM	NaCl,	10	mM	Imidazole.	Bound	protein	was	eluted	across	

a	range	of	50	mM	–	250	mM	imidazole.	Each	protein	fraction	was	stored	at	-80oC	in	

elution	buffer	with	20%	glycerol.	

	

22..33.. CCOO22		ttrraappppiinngg		eexxppeerriimmeenntt		

0.5	mg	purified	recombinant	protein	was	dialysed	into	50	mM	Phosphate	Buffer	pH	

7.4.	The	trapping	reaction	mixture	was	supplemented	with	20	mM	NaHCO3	and	the	

trapping	 reaction	 was	 initiated	 by	 addition	 of	 10x	molar	 excess	 of	 TEO.	 The	 total	

volume	for	the	trapping	reaction	was	4	mL	at	t=0	and	titration	of	1	M	NaOH	ensured	

that	 the	 pH	was	maintained	 at	 7.4	 for	 1	 hour	 before	 terminating	 the	 reaction	 by	

dialysing	into	dH2O.	
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22..44.. PPhhyyssiiccaall		CChheemmiissttrryy		

2.4.1. FASP	Trypsin	Digest	

Following	dialysis	the	insoluble	protein	was	obtained	by	centrifugation	at	5000	g	for	

10	minutes.	The	protein	aggregate	was	resuspended	in	1%	SDS	and	trypsinolysis	was	

performed	using	the	FASP	trypsin	digest	kit	according	to	the	manufacturer’s	protocol	

(Wisniewski	et	al.,	2009).	

	

2.4.2. Sample	concentration	using	ZipTip	

TFA	 was	 added	 to	 samples	 at	 a	 final	 concentration	 0.01	 %	 (v/v).	 Washing	 was	

performed	with	100	%	acetonitrile	and	then	equilibrated	with	0.1	%	TFA.	30	µL	sample	

was	immobilised	and	washed	with	0.1	%	(v/v)	TFA.		Finally,	peptides	were	eluted	in	

0.1	%	TFA	50	%	acetonitrile	(v/v).		

	

2.4.3. Sample	fractionation	using	StageTip	

Sample	 fractionation	 was	 performed	 using	 a	 C18	 StageTip	 according	 to	

manufacturer’s	protocol	(Rappsilber	et	al.,	2007).	Peptides	were	fractionated	using	a	

50	–	500	mM	ammonium	acetate	gradient.	

	

2.4.4. MALDI-TOF	MS	

0.3	µg	peptide	samples	were	mixed	with	a-CHCA,	50	%	CAN,	0.05	%	TFA	at	a	ratio	1:1	

and	applied	to	the	MALDI	plate.	Following	20	min	incubation	at	room	temperature	the	

plate	was	placed	 in	the	 ion	source.	Data	collection	was	performed	using	4800	plus	

TOF/TOF	Analyzer	(SCIEX)	utilising	100	pulse	shots	with	variable	laser	intensity.	
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2.4.5. LC-MS/MS	

0.3	µg	samples	were	resuspended	in	2	%	ACN,	0.1	%	formic	acid	and	injected	at	a	flow	

rate	0.1	mL/min	over	a	2	hour	gradient	from	2	–	80	%	ACN,	0.1	%	formic	acid.	Peptides	

eluted	from	the	acetonitrile	gradient	were	resolved	using	TripleTOF	6600	Quadrupole	

time	of	flight	(QTOF;	SCIEX)	in	data	dependent	acquisition	(DDA)	mode	implementing	

top	 30	 precursor	 ion	 selection	 over	 10	 ms	 acquisition	 time.	 Selected	 peptide	

fragmentation	was	achieved	by	CID.	

	

2.4.6. Data	Analysis	

The	LC-MS/MS	data	was	analysed	using	the	GPM	database	X!Tandem	and	MaxQuant.	

Carbamidomethyl	cysteine	was	searched	for	as	a	fixed	variable,	whilst	carboxyethyl	

(72.0211	 Da)	 and	 ethyl	 (28.0313	 Da)	 transfer	 were	 searched	 for	 as	 variable	

modifications.	Parent	ion	mass	error	was	set	to	+/-	20	ppm	and	reverse	peptides	were	

enabled.	The	searches	were	performed	against	Human	(SwissProt)	and	Arabadopsis	

thaliana	(UniProt)	databases.	

	

22..55.. UUbbiiqquuiittiinn		ccrroossss--lliinnkkiinngg		aassssaayy		

The	cross-linking	assay	contained	0.75	µM	mE1,	20	µM	E2-25K,	and	1.2	µM	Ubiquitin.	

Reactions	were	performed	in	250	mM	Tris-HCl	pH	8.0,	25	mM	MgCl2,	2.5	mM	ATP,	1	

mM	 DTT,	 50	 mM	 Creatine	 Phosphate	 (Roche,	 0621714001),	 3	 U/mL	 inorganic	

pyrophospatase	(Sigma,	I1643),	and	3	U/mL	Creatine	phosphokinase	(Sigma,	C3755).	

35	mM	 NaCl	 and	 35	mM	 NaHCO3	 pH	 8.0	 were	 added	 to	 the	 appropriate	 assays.	

Reactions	 were	 carried	 out	 in	 a	 final	 volume	 of	 50	 μL	 at	 37oC	 for	 15	 minutes,	

terminated	by	the	addition	of	1	mM	EDTA	and	reducing	the	temperature	to	4oC	for	15	

minutes.	Samples	were	resolved	by	SDS-PAGE	following	incubation	with	non-reducing	

Laemmli	buffer	for	20	minutes.	 	



	
34	

33.. RReessuullttss		

When	CO2	interacts	with	uncharged	Ne-amine	groups	of	lysine	residues	a	carbamate	

is	generated,	which	changes	the	electrostatic	properties	of	the	protein	(Lorimer	and	

Miziorko,	 1980).	 Ubiquitin	 is	 a	 small	 (~8	 kDa)	 protein	 involved	 in	 a	 wide	 array	 of	

signalling	process.	The	diverse	range	of	signalling	pathways	influenced	by	ubiquitin	is	

only	possible	because	of	the	many	different	combinations	of	ubiquitin	crosslinking	to	

form	 various	 polyubiquitin	 chains	 (Zinngrebe	 et	 al.,	 2014).	 Polyubiquitin	 chain	

synthesis	 requires	 isopeptide	 bond	 formation	 between	 Ne-amine	 groups	 of	 lysine	

residues	and	the	C-terminal	glycine	of	the	next	ubiquitin.	PTMs,	such	as	acetylation	

and	 phosphorylation,	 are	 known	 to	 impact	 on	 the	 rate	 of	 polyubiquitin	 chain	

formation	(Ohtake	et	al.,	2015;	Wauer	et	al.,	2015).	Therefore,	the	overall	hypothesis	

of	this	work	is	that	CO2	binds	directly	with	Ne-lysine	of	ubiquitin	to	confer	a	biological	

signal	modulating	the	rate	of	polyubiquitin	chain	formation.	The	initial	aims	were	to	

identify	sites	of	CO2-dependent	carbamylation	of	ubiquitin	and	consequently	to	define	

a	change	in	function	associated	with	the	PTM.	Here,	MALDI-TOF	(hereafter	referred	

to	simply	as	MALDI)	and	LC-MS	investigations	prove	that	K33	and	K48	of	ubiquitin	are	

sites	 of	 CO2-dependent	 carbamylation.	 This	 is	 followed	 by	 an	 in	 vitro	 cross-linking	

assay	that	suggests	carbamate	formation	reduces	the	rate	of	ubiquitin	discharge	from	

its	E2	ligase,	which	provides	a	mechanism	to	support	the	overall	hypothesis.	

33..11.. RReeccoommbbiinnaanntt		pprrootteeiinn		eexxpprreessssiioonn		

Recombinant	A.	thaliana	and	H.	sapiens	His6-ubiquitin	were	expressed	 in	Rosetta	2	

pLysS	and	BL21	(DE3)	cells,	 respectively,	and	purified	by	 immobilized	metal	affinity	

chromatography	 (IMAC)	 (Figure	 3.1.A,	 B,	 respectively).	 These	 proteins	 have	 high	

sequence	similarity	(Figure	3.1.G)	and	were	deemed	to	be	greater	than	95	%	pure	by	

densitometry	 (data	 not	 shown).	 For	 both	 ubiquitin	 samples	 fractions	 1	 –	 5	 were	

pooled	and	concentrated	for	use	in	MS	investigations	and	in	vitro	crosslinking	assays.	

His6-mE1	was	expressed	in	BL21	(DE3)	and	purified	by	IMAC	(Figure	3.1.C).	The	three	

elution	 fractions	 were	 pooled,	 concentrated	 and	 purified	 by	 AEC	 (Figure	 3.1.C).	

Fractions	 corresponding	 to	 Fig	 1.C	 lanes	 6	 and	 7	 were	 further	 purified	 by	 SEC	

(Figure	3.1.D).	These	fractions	were	determined	to	be	>	98	%	pure	by	densitometry	
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and	were	pooled	and	concentrated	for	us	in	in	vitro	crosslinking	assays.	GST-E2-25K	

was	 expressed	 in	 Rosetta	 (DE3)	 pLysS	 and	 purified	 by	 affinity	 chromatography	

(Figure	3.1.E).	GST-E2-25K	was	further	purified	by	SEC	(Figure	3.1.F),	with	 fractions	

corresponding	to	lanes	2-11	pooled	and	concentrated	for	use	in	in	vitro	crosslinking	

assays.	

	

Figure	 3.1|	 Recombinant	 protein	 expression	 resolved	 by	 SDS-PAGE.	 A)	 Ni2+	 NTA	 purification	 of	 A.	

thaliana	ubiquitin.	Lanes	1	–	5:		50	–	250	mM	imidazole	elutions,	respectively.	B)	Ni2+	NTA	purification	

of	H.	sapiens	ubiquitin.	Lanes	1	–	5:	50	–	250	mM	imidazole	elutions,	respectively.	Lanes	6	–	8:	1	M	

imidazole	fraction,	pooled	and	concentrated	fractions	1	–	5,	and	insoluble	fraction,	respectively.	C)	mE1	

purification.	Lanes	1	–	4:	final	wash	and	3x	100	mM	elutions.	Lanes	5	–	7:	AEC	fractions.	D)	Lanes	1	–	5:	

mE1	SEC	fractions.	E)	GST-E2-25K	purification.	Lane	1-2:	 final	wash	fraction	and	10	mM	glutathione	

elution,	respectively.	F)	GST-E2-25K	SEC	fractions.	Lanes	2	–	12	(inclusive)	were	pooled	for	future	use.	
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G)	 sequences	 of	 A.	 thaliana	 and	 H.	 sapiens	 ubiquitin.	 Lysine	 residues	 are	 highlighted	 in	 bold	 red	

typeface	 and	 their	 position	 is	 annotated.	 Differing	 residues	 are	 highlighted	 in	 green	 underlined	

typeface.	

33..22.. CCoonnffiirrmmaattiioonn		ooff		TTrraappppeedd		CCaarrbbaammaatteess		uussiinngg		TTEEOO		bbyy		ddeetteeccttiioonn		wwiitthh		MMAALLDDII--

TTOOFF		

Carbamates	 are	 labile	 and	 thus	 their	 identification	 by	 MS	 remains	 a	 technical	

challenge.	 Recently,	 a	 method	 to	 trap	 carbamates	 with	 an	 alkylating	 reagent,	

triethyloxonium	tetrafluoroborate	(TEO),	has	been	developed	in	which	carboxylic	acid	

groups	 are	 ethylated,	 introducing	 a	 modification	 with	 a	 mass	 of	 28.0303	 Da	

(Linthwaite,	2016).	A	trapped	carbamate	is	recognised	as	a	carboxyethyl	modification,	

which	has	a	mass	of	72.0211	Da.	This	modification	is	stable	and	can	be	detected	by	

MS	after	the	protein	has	been	digested	by	trypsin.	MALDI	is	a	quick,	low	cost	form	of	

MS	 that	 rapidly	 identifies	 peptides.	 Since	 the	 mass	 of	 a	 peptide	 modified	 by	 the	

reaction	 with	 TEO	 can	 be	 calculated,	 the	 hypothesis	 of	 this	 investigation	 is	 that	

carboxyethylated	peptides	can	be	detected	by	MALDI.	

	

The	trapping	experiment	was	performed	using	recombinant	A.	thaliana	and	H.	sapiens	

Ubiquitin	in	solution	with	20	mM	NaHCO3	pH	7.4	and	a	molar	excess	of	TEO.	This	was	

followed	by	tryptic	digest	and	the	resulting	peptides	were	analysed	by	MALDI.	Given	

that	MALDI	measures	peptides	by	mass,	a	key	question	 is	how	can	a	distinction	be	

made	 between	 a	 carboxyethylated	 peptide	 and	 a	 random	 isobaric	 peptide?	 The	

solution	 to	 this	 problem	 can	 be	 found	 by	 searching	 for	 an	 ethylation	 series	

corresponding	 to	 the	peptide	of	 interest.	An	ethylation	series	 is	generated	when	a	

protein	is	differentially	ethylated	during	the	reaction	with	TEO.	Following	trypsinolysis,	

this	gives	 rise	 to	a	number	of	detected	peptides	 increasing	by	28.0303	Da	 (i.e.	 the	

mass	 of	 an	 ethylation).	 Therefore,	 ethylation	 series	 are	 a	 positive	 control	 to	

demonstrate	the	reaction	with	TEO	has	taken	place	on	the	peptide	of	interest.	If	the	

peptide	of	interest	has	a	72.0211	Da	modification	within	an	ethylation	series,	it	can	

be	deduced	that	this	is	an	ethylated	carbamate.	An	ethylation	series	was	obtained	for	
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two	peptides	of	ubiquitin,	43LIFAGKQLEDGR54	and	30IQDKEGIPPDQQR42	(Table	3.1	and	

3.2,	respectively).	

Table	 3.1|	 Ethylation	 series	 of	 tryptic	 digest	 peptide	 corresponding	 to	 carboxyethylation	 of	 K48	 of	

ubiquitin.	Only	peptides	with	K48	miscleavage	are	considered.	The	predicted	mass	is	accurate	±	0.5	Da.	

Et	=	ethylation,	Ce	=	carboxyethylation.	

4433LLIIFFAAGGKKQQLLEEDDGGRR5544		

PPrreeddiicctteedd		mmaassss		 DDeetteecctteedd		PPeeppttiiddee		MMaassss		 MMooddiiffiiccaattiioonn		

1346.74272	 -	 -	
1374.77402	 1374.753174	 Et	
1402.80532	 1402.781738	 2x	Et	
1418.76382	 1418.723389	 Ce	
1446.79512	 1446.714722	 Ce,	Et	
1474.82642	 -	 Ce,	2x	Et	

	

It	was	hypothesised	that	carboxyethylated	peptides	could	be	identified	by	MALDI-TOF.	

It	is	possible	to	infer	the	existence	of	such	peptides	by	delineating	the	ethylation	series	

of	 the	peptide.	Using	 this	 approach,	 a	 1418.723	Da	peptide	was	 confirmed	as	 the	

carboxyethyl	peptide	corresponding	to	 43LIFAGK(Ce)QLEDGR54	(table	3.1).	A	second	

carboxyethylated	peptide	was	detected	as	part	of	an	ethylation	series	with	a	1595.799	

Da	mass	 that	 corresponds	 to	 30IQDK(Ce)EGIPPDQQR42	 (table	3.2).	 These	ethylation	

series	are	a	strong	indicator	that	the	carboxyethyl	peptides	were	derived	downstream	

of	the	reaction	with	TEO	and	it	can	thus	be	accepted	that	carboxyethylated	peptides	

can	be	detected	by	MALDI.	

Table	 3.2|	 Ethylation	 series	 of	 tryptic	 digest	 peptide	 corresponding	 to	 carboxyethylation	 of	 K33	 of	

ubiquitin.	The	predicted	mass	is	accurate	±	0.5	Da.	Et	=	ethylation,	Ce	=	carboxyethylation.	

3300IIQQDDKKEEGGIIPPPPDDQQQQRR4422		

PPrreeddiicctteedd		mmaassss		 DDeetteecctteedd		PPeeppttiiddee		MMaassss		 MMooddiiffiiccaattiioonn		

1523.78129	 1523.763428	 -	
1551.81259	 1551.792236	 Et	
1579.84389	 1579.82312	 2x	Et	
1595.80239	 1595.79895	 Ce	
1623.83369	 1623.817383	 Ce,	Et	
1651.86499	 -	 Ce,	2x	Et	
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Other	 peptides	with	 a	mass	 corresponding	 to	 carboxyethyl	modification	were	 also	

identified	(Table	3.3).	However,	an	ethylation	series	could	not	be	derived	for	these	

peptides.	 Therefore,	 it	 is	not	possible	 to	 confirm	 the	presence	of	 the	carboxyethyl	

modification	as	a	direct	result	of	the	trapping	reaction	with	TEO.		

Table	 3.3|	 Peptides	 of	 interest	 detected	 by	MALDI	 without	 a	 corresponding	 ethylation	 series.	 The	

predicted	mass	is	accurate	±	0.5	Da.	Et	=	ethylation,	Ce	=	carboxyethylation.	

SSeeqquueennccee		 PPrreeddiicctteedd		PPeeppttiiddee		MMaassss		 DDeetteecctteedd		PPeeppttiiddee		MMaassss		 MMooddiiffiiccaattiioonn		
12TITLEVEPSDTIENVKAK29	 2059.08052	 2059.023193	 Ce	
28AKIQDKEGIPPDQQR42	 1822.96578	 1822.954	 Ce,	Et	
28AKIQDKEGIPPDQQR42	 1850.99706	 1850.976	 Ce,	2x	Et	

55TLSDYNIQKESTLHLVLR72	 2225.20678	 2225.098145	 Ce,	Et	

	

The	 aim	 of	 this	 investigation	 was	 to	 identify	 peptides	 with	 the	 carboxyethyl	

modification	 indicative	 of	 a	 trapped	 carbamate.	 Identification	 of	 a	 peptide	 was	

achieved	by	comparing	predictive	mass	with	the	mass	of	peptides	detected	by	MALDI.	

If	 a	 suspected	 carboxyethylated	 peptide	 is	 detected	 and	 found	 to	 have	 a	

corresponding	ethylation	series	it	can	be	concluded	that	a	carboxyethyl	modification	

was	 likely	 derived	 from	 the	 trapping	 reaction	with	 TEO.	 However,	 if	 an	 ethylation	

series	does	not	exist	the	most	likely	explanation	is	that	an	isobaric	peptide	was	actually	

detected.	In	this	investigation	two	peptides,	corresponding	to	carboxyethylated	L43-

R54	and	I30-R42,	were	identified	concurrently	with	respective	ethylation	series.	This	

confirms	the	initial	hypothesis	and	therefore,	the	aim	of	this	investigation	has	been	

achieved.	

	

33..33.. CCoonnffiirrmmaattiioonn		ooff		UUbbiiqquuiittiinn		ccaarrbbooxxyyeetthhyyll		mmooddiiffiiccaattiioonn		aatt		KK3333		aanndd		KK4488		bbyy		

LLCC--MMSS		

In	 the	 previous	 investigation,	 it	was	 demonstrated	 that	 carboxyethylated	 peptides	

could	 be	 detected	 and	 confirmed	 by	MALDI	 and	 an	 ethylation	 series,	 respectively	

(Chapter	3.1).	This	confirms	 the	 trapping	 reaction	with	TEO	occurred	but	does	not	
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provide	 accurate	 information	 regarding	 the	 modified	 residue.	 Consequently,	 this	

investigation	aims	to	identify	the	specific	site	of	modification	in	the	peptide	sequence.	

It	 is	known	that	carbamates	are	formed	at	uncharged	Ne-amino	groups.	Therefore,	

the	hypothesis	of	this	investigation	is	that	carboxyethyl	modifications	occur	at	lysine	

residues.	 The	 trapping	 reaction	 was	 performed	 with	 both	A.	 thaliana	 and	 human	

recombinant	ubiquitin.	Following	tryptic	digest,	peptides	were	resolved	by	LC-MS/MS	

and	the	MS2	data	was	compared	with	the	corresponding	Uniprot	proteome	databases	

using	X!Tandem.	Using	this	approach	it	was	confirmed	that	K33	and	K48	are	sites	of	

carboxyethyl	modification.	
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Table	3.4|	Ubiquitin	peptides	identified	with	carboxyethyl	modification.	Ce	=	carboxyethylation,	Et	=	

Ethylation.	

OOrrggaanniissmm		 PPeeppttiiddee		 MMooddiiffiiccaattiioonnss		
IIddeennttiiffiieedd		
mm++hh		bbyy		LLCC--
MMSS//MMSS		

LLoogg((ee))		
FFaallssee		

PPoossiittiivvee		

A.	
thaliana	

7TLTGKTKVLEVESSDTIDNVK27	 K11Ce,	E18Et	 2377.27080	 -3.4	 √	
7TLTGKTKVLEVESSDTIDNVK27	 K13Ce	 2349.23950	 -4.4	 √	

28AKIQDKEGIPPDQQR42	 K29Ce	 1794.93448	 -6.5	 √	
28AKIQDKEGIPPDQQR42	 K29Ce,	D32Et	 1822.96578	 -4.9	 √	
28AKIQDKEGIPPDQQR42	 K29Ce,	D39Et	 1794.960	 -4.2	 √	
28AKIQDKEGIPPDQQR42	

K29Ce,	D32Et,	
E34Et	

1850.99706	 -3.7	 √	
30IQDKEGIPPDQQR42	 K33Ce	 1595.80237	 -5.8	 	

28AKIQDKEGIPPDQQR42	 K33Ce	 1794.93448	 -4.7	 √	
30IQDKEGIPPDQQR42	 K33Ce,	E34Et	 1623.83367	 -5.6	 	
43LIFAGKQLEDGR54	 K48Ce	 1418.76378	 -3.3	 	
43LIFAGKQLEDGR54	 K48Ce,	E51Et	 1446.79508	 -4.0	 	

H.	
sapiens	

28AKIQDKEGIPPDQQR42	 K29Ce,	D32Et	 1822.96575	 -5.5	 √	
28AKIQDKEGIPPDQQR42	 K29Ce,	D32Et,	

E34Et	
1850.99705	 -3.1	 √	

30IQDKEGIPPDQQR42	 K33Ce	 1595.80237	 -4.7	 	
30IQDKEGIPPDQQR42	 K33Ce,	E34Et	 1623.83367	 -4.5	 	
43LIFAGKQLEDGR54	 K48Ce	 1418.76378	 -3.3	 	
43LIFAGKQLEDGR54	 K48Ce,	E51Et	 1446.79510	 -4.5	 	
43LIFAGKQLEDGR54	 K48Ce,	E51Et	 1432.77945	 -5.8	 	

	

The	hypothesis	of	this	investigation	is	that	carboxyethyl	modifications	occur	at	Lysine	

residues	 in	the	ubiquitin	sequence.	Using	LC-MS/MS	paired	with	X!Tandem	protein	

identification	software	enabled	the	identification	of	carboxyethyl	(72.	0211	Da)	and	

ethyl	(28.0313	Da)	modifications	to	specific	residues	along	peptide	sequences.	This	

approach	 resulted	 in	 11	 and	7	 carboxyethyl	modified	 peptides	 for	A.	 thaliana	 and	

human	 ubiquitin,	 respectively	 (Table	 3.4).	 Not	 all	 the	 carboxyethyl	 modifications	

recorded	 are	 true	 positives.	 This	 is	 demonstrated	 in	 figure	 3.1,	 where	 manual	

inspection	of	the	fragmentation	pattern	clearly	demonstrates	there	are	no	matched	

peptides	for	fragments	that	include	the	lysine	reported	to	be	carboxyethyl	modified.	

This	 indicates	 a	weak	 correlation	between	 the	detected	peptide	 and	 the	database	

entry.	In	addition	to	this	the	peptide	is	matched	with	the	gene	product	of	A.	thaliana	

UBQ12,	which	has	a	lysine	residue	at	position	13	of	its	sequence	(figure	3.1).	This	is	
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clearly	 incorrect	 because	 recombinant	 ubiquitin	 was	 generated	 from	 A.	 thaliana	

UBQ11	or	human	UBC	gene,	which	have	an	isoleucine	residue	at	this	position.	These	

are	examples	of	how	the	software	can	assign	the	detected	mass	to	a	peptide	in	the	

database	to	generate	a	false	positive.	Therefore	it	is	imperative	to	manually	inspect	

each	MS2	data	in	order	to	validate	the	assigned	peptide	is	a	true	positive.	In	addition	

to	matched	fragments,	the	log(e)	score,	which	is	the	likelihood	of	the	peptide	being	

matched	with	a	random	peptide,	is	a	good	indicator	of	the	accurate	assignment	of	a	

detected	peptide	to	a	peptide	in	the	database.	The	lower	the	log(e)	score	the	higher	

the	 confidence	 in	 the	 assignment.	 This	 approach	 was	 used	 to	 assess	 the	 results	

generated	by	X!Tandem	peptide	assignment	(table	3.4).	
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Figure	3.2|	Peptide	fragmentation	pattern	corresponding	to	carboxyethyl	modification	at	a)	K11	and	b)	

K13.	Complete	list	of	modifications,	mutations,	and	miscleavage	events	are	stated	in	upper	left	corner.	

Matched	y	ions	are	listed	in	red.	

	

Two	lysine	residues	that	were	identified	by	LC-MS/MS	for	carboxyethyl	modification	

are	likely	true	positives,	K33	and	K48.	Using	the	aforementioned	approach	for	manual	

inspection	 of	 the	 MS2	 data,	 it	 is	 clear	 that	 carboxyethyl	 K33	 has	 been	 correctly	

assigned	(Figure	3.2).	The	fragmentation	pattern	shows	matched	peptides	throughout	

the	entire	peptide	sequence	and	the	log(e)	score	is	good.	Moreover,	the	peptides	are	

also	present	with	multiple	ethylations,	which	is	consistent	with	the	data	from	chapter	

3.1.	Therefore,	K33	can	be	accepted	as	a	site	of	carboxyethyl	modification.	
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The	peptide	corresponding	to	carboxyethyl	K48	also	has	a	 thorough	fragmentation	

pattern	combined	with	a	good	log(e)	score	(Figure	3.3).	This	peptide	is	also	observed	

with	ethylations,	which	was	expected	based	on	the	results	using	MALDI	(chapter	3.1).	

Therefore	K48	can	also	be	accepted	as	a	site	of	carboxyethyl	modification.	

	

	

Figure	3.3|	Peptide	fragmentation	pattern	corresponding	to	carboxyethyl	modification	at	K33	of	human	

ubiquitin.	a)	K33	carboxyethyl	modification.	b)	K33	carboxyethylation	with	ethylation	at	E34.	Matched	

y	ions	are	listed	in	red.	
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LC-MS/MS	is	a	powerful	tool	for	assigning	the	amino	acid	specific	site	of	PTMs.	Here,	

the	importance	of	manually	inspecting	the	MS2	data	was	highlighted	in	order	to	avoid	

accepting	false	positive	results.	From	this	it	could	also	be	confirmed	that	K33	and	K48	

are	sites	of	carboxyethyl	modification	along	the	ubiquitin	sequence.	This	is	consistent	

with	the	results	from	the	MALDI	investigation	and	has	enabled	the	specific	modified	

residues	 to	 be	 defined.	 The	 results	 also	 demonstrate	 a	 consistency	 for	 sites	 of	

carboxyethyl	 modification	 between	 plant	 and	 human	 ubiquitin.	 Therefore	 the	

hypothesis	of	this	investigation,	that	carboxyethyl	modification	of	ubiquitin	occurs	at	

lysine	 residues,	 can	 be	 confirmed.	 Moreover	 it	 has	 been	 demonstrated	 that	 this	

modification	specifically	occurs	at	only	two	lysine	residues.	

	

	

Figure	 3.4|	 Peptide	 fragmentation	 pattern	 corresponding	 to	 peptides	 containing	 carboxyethyl	

modification	of	 K48.	 Complete	 list	 of	modifications	 are	 stated	 in	 upper	 left	 corner.	 Predicted	 y	 ion	

masses	are	listed	with	matched	detected	peptides	in	red.	
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33..44.. UUbbiiqquuiittiinn		ccaarrbbooxxyyeetthhyyll		mmooddiiffiiccaattiioonn		iiss		CCOO22--ddeeppeennddeenntt		

In	 the	 previous	 investigation,	 it	 was	 demonstrated	 that	 K33	 and	 K48	 are	 sites	 of	

carboxyethyl	 modification	 (Chapter	 3.2).	 Although	 this	 modification	 has	 a	 mass	

corresponding	 to	 a	 trapped	 carbamate,	 it	 has	 not	 been	 confirmed	 that	 the	

modification	 is	 CO2-dependent.	 NMR	 studies	 utilise	 13C	 supplemented	 media	 to	

demonstrate	 formation	 of	 carbamate	 adducts	 from	 CO2.	 It	 was	 therefore	

hypothesised	that	13C	could	be	used	to	confirm	the	carboxyethyl	modification	is	a	CO2-

derived	carbamate	trapped	by	reaction	with	TEO.	To	achieve	this	the	trapping	reaction	

is	 supplemented	with	NaH13CO3,	which	will	 readily	 dissociate	 to	 form	 13CO2	and	 is	

subsequently	ethylated	during	the	reaction	with	TEO.	Consequently,	the	carboxyethyl	

modification	has	a	mass	of	73.0244	Da.	Subsequently,	 the	peptides	containing	K33	

and	K48	were	confirmed	as	sites	of	CO2-dependent	carboxyethyl	modification.		
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Figure	 3.5|	 13C	 peptide	 fragmentation	 patterns	 corresponding	 to	 CO2-dependent	 carboxyethyl	

modification	of	ubiquitin.	aa))	carboxyethyl	modification	at	K33.	bb))	Carboxyethyl	modification	at	K33	with	

ethylation	at	E34.	cc))	Carboxyethyl	modification	at	K48	with	ethylation	at	E51.	Predicted	y	ion	masses	

are	listed	with	matched	detected	peptides	in	red.	Ce=Carboxyethylation,	Et=Ethylation	

	

The	 aim	 of	 this	 investigation	 was	 to	 use	 13C	 to	 demonstrate	 the	 carboxyethyl	

modification	 is	CO2-dependent.	 The	 trapping	 reaction	was	performed	with	20	mM	

NaH13CO3,	which	was	theorised	to	yield	a	carboxyethyl	modification	with	a	+1	Da	shift	
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from	 that	 of	 the	 12C	 investigations.	 This	 resulted	 in	 identification	 of	 the	 peptides	

corresponding	to	carboxyethyl	K33	and	K48	(Figure	3.4).	There	is	no	matched	peptide	

for	the	y	ion	of	carboxyethyl	K33	(Figure	3.4.A)	but	this	is	present	for	the	peptide	that	

includes	ethylation	at	E34	(Figure	3.4.B).	Despite	this,	the	N	terminal	fragments	(i.e.	

fragments	 including	 the	 carboxyethyl	 lysine	 residue)	 are	 matched	 y	 ions.	 This,	

combined	with	log(e)	scores	of	-3.7	and	-2.3,	provides	evidence	in	favour	of	a	trapped	

CO2-dependent	carbamate	at	K33	of	ubiquitin.	In	addition,	the	fragmentation	patterns	

for	 carboxyethyl	 K48	 contains	 matched	 peptides	 including	 and	 surrounding	 the	

modified	lysine.	This	MS2	data	has	a	log(e)	score	of	-3.2,	suggesting	the	carboxyethyl	

modification	is	due	to	a	trapped	CO2-dependent	carbamate.	

	

	

Figure	 3.6|	 MaxQuant	 MS2	 data	 for	 13C	 carboxyethyl	 a)	 K33	 and	 b)	 K48	 indicating	 carboxyethyl	

modification	on	the	y10	and	y7	ions,	respectively.	
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Different	software	packages	use	alternative	algorithms	to	assign	a	peptide	mass	to	an	

entry	 in	 the	 proteome	 database.	 By	 using	 multiple	 software	 packages	 greater	

confidence	can	be	achieved	for	peptides	that	have	been	matched	with	the	differing	

algorithms.	Consequently,	the	13C	data	was	also	processed	in	MaxQuant	(Figure	3.5).	

This	clearly	shows	matched	peptides	for	the	y	ions	of	the	carboxyethylated	K33	and	

K48.	In	addition	the	high	scores	(117.09	and	138.66	for	K33	and	K48,	respectively),	

provide	 greater	 confidence	 that	 these	 results	 are	 not	 due	 to	 chance,	 which	 is	

consistent	 with	 the	 results	 generated	 in	 X!Tandem.	 Modification	 of	 these	 lysine	

residues	with	a	73.0244	Da	adduct	requires	the	incorporation	of	a	13CO2	(44.9941	Da)	

and	its	alkylation	during	the	trapping	reaction,	resulting	in	an	additional	ethyl	(28.0303	

Da)	 to	 this	 adduct.	 The	 reaction	mixture	was	 supplemented	with	NaH13CO3,	which	

dissociated	to	form	13CO2.	This,	in	turn,	enabled	the	labile	carbamate	to	form	on	these	

lysine	residues.	When	compared	to	the	trapping	experiment	using	12C,	the	expected	

+	1.0033	Da	mass	 shift	 of	 the	modification,	 corresponding	 to	 the	different	 carbon	

isotopes,	is	observed.	Moreover,	the	13C	modification	is	only	observed	at	the	residues	

previously	 identified	 as	 sites	 of	 ubiquitin	 carboxyethyl	 formation.	 Altogether,	 this	

investigation	proved	that	the	carboxyethyl	modifications	identified	at	K33	and	K48	are	

due	to	carbamate	formation	derived	from	CO2.	

	

33..55.. CCOO22		iinnhhiibbiittss		uubbiiqquuiittiinn		ddiisscchhaarrggee		ffrroomm		EE22		lliiggaassee..		

The	MS	experiments	have	confirmed	that	CO2	interacts	with	K33	and	K48	of	ubiquitin.	

However,	 the	 physiological	 significance	 of	 this	 interaction	 requires	 elucidation.	

Polyubiquitin	chains	are	generated	by	the	formation	of	isopeptide	bonds	between	the	

Ne-Lysine	 on	 the	 substrate	 protein	 or	 ubiquitin	 and	 the	 carboxyl	 group	 of	 the	 C-

terminal	glycine	residue	of	the	next	ubiquitin.	Formation	of	a	carbamate	reverses	the	

charge	 status	 of	 the	 Ne-amine	 group	 on	 lysine	 residues.	 Therefore,	 it	 was	

hypothesised	 that	 physiologically	 high	 CO2	 concentration	 will	 reduce	 the	 rate	 of	

polyubiqutin	chain	formation.		
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To	test	this	hypothesis	a	previously	established	cross	linking	protocol	was	adapted	and	

performed	in	the	presence	of	35	mM	NaHCO3	(Pickart	and	Raasi,	2005).	Upon	NaHCO3	

dissociation	this	equates	to	~2	mM	CO2,	which	is	observed	in	patients	with	chronic	

hypercapnia*.	Under	these	conditions	there	are	two	mass	shifts	of	the	E2	ligase	that	

correspond	to	the	addition	of	mono-	and	di-ubiquitin	chains	(Figure	3.6).	This	effect	is	

independent	 of	 increased	 cation	 concentration	 and	 boiling	 samples	 introduced	

protein	bands	at	~45	kDa.	It	is	thought	that	these	are	artefactual	polyubiquitin	chains	

that	cross	link	upon	boiling	(Pickart	and	Raasi,	2005).	

	

	

Figure	3.7|	Ubiquitin~E2	discharge	 is	perturbed	by	2	mM	CO2.	Ubiquitin	discharge	from	E2	 ligase	 is	

perturbed	 upon	 addition	 of	 35	 mM	 NaHCO3,	 which	 dissociates	 to	 ~2	 mM	 CO2	 at	 pH	 7.5	 and	 is	

independent	of	an	increase	in	cation	concentration.	Resolved	by	SDS-PAGE,	left	four	lanes	represent	

boiled	samples	in	Laemmli	buffer.	Right	hand	lanes	represent	samples	incubated	in	Laemmli	buffer	at	

room	temperature.	Mass	shifts	observed	are	due	to	*)	mono-ubiquitin	and	**)	di-ubiquitin.	n	=	1.	

	

Under	 conditions	 representing	 physiological	 hypercapnia	 there	 is	 a	 significant	

decrease	 in	 ubiquitin	 discharge	 from	 E2-25K	 (Figure	 3.6).	 This	 resulted	 in	 the	
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formation	of	E2~Ub	conjugates	that	are	also	observed	by	other	groups	investigating	

ubiquitylation	kinetics	(Buetow	et	al.,	2015;	Das	et	al.,	2009;	Saha	et	al.,	2011).	This	

suggests	that	carbamate	formation	at	K48	disrupts	ubiquitin	discharge	in	a	manner	

analogous	 to	 mutations	 that	 disrupt	 the	 stabilising	 interactions	 between	 E2	 and	

Ubiquitin	(Saha	et	al.,	2011).	Of	note,	none	of	these	investigations	report	perturbed	

discharge	of	di-ubiquitin.	This	is	because	they	perform	experiments	with	a	substrate	

protein	whereas	the	experimental	set	up	here	does	not.	It	will	be	necessary	to	perform	

a	similar	experiment	and	demonstrate	that	a)	the	rate	of	polyubiqutin	chain	formation	

is	 reduced,	 b)	 the	 effect	 of	 perturbed	 ubiquitin	 discharge	 is	 dose-dependent,	 c)	

carbamate	stoichiometry	correlates	with	the	dose	response,	and	d)	the	same	effect	is	

observed	with	K33.	This	information	will	prove	useful	when	attempting	to	determine	

a	 physiologically	 relevant	 role	 for	 CO2-dependent	 ubiquitin	 carbamylation.	 One	

possible	 role	 for	 this	 phenomenon	 is	 the	 reduction	 of	 proteasomal	 activity.	 The	

proteasome	 is	 a	 large	 complex	 that	 degrades	 proteins	 tagged	 with	 polyubiquitin	

chains.	It	has	been	demonstrated	that	substrate	proteins	tagged	with	tetraubiquitin	

chains	 are	 preferentially	 degraded	 by	 the	 proteasome	 (Singh	 et	 al.,	 2016).	 CO2-

mediated	 carbamate	 formation	 on	 K33	 and	 K48	 may	 reduce	 the	 activity	 of	 the	

proteasome	by	reducing	ubiquitylation	kinetics.	

	

33..66.. CCoonncclluussiioonn		ooff		rreessuullttss		

Here	 it	 has	 been	 demonstrated	 that	 K33	 and	 K48	 are	 sites	 of	 CO2-dependent	

carbamate	formation	on	ubiquitin.	The	use	of	TEO	enabled	the	labile	carbamate	to	be	

trapped	and	readily	identified	by	MS.	MALDI-TOF	was	originally	used	to	confirm	the	

presence	of	carboxyethylated	peptides	as	part	of	an	ethylation	series	before	MS/MS	

data	revealed	the	site	of	modification.	Subsequently	a	13C	 investigation	proved	the	

modification	 is	 due	 to	 CO2-dependent	 carbamate	 formation.	 This	 resulted	 in	 the	

conclusive	 assignment	 of	 K33	 and	 K48	 as	 sites	 of	 CO2-mediated	 carbamylation.	

Despite	this,	a	physiological	role	for	this	PTM	has	not	yet	been	elucidated.	However,	

initial	 investigations	 suggest	 carbamate	 formation	 reduces	 the	 rate	 of	 ubiquitin	
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discharge.	Chapter	4	contains	a	more	detailed	discussion	of	these	results	and	includes	

suggestions	of	future	research.	 	
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44.. DDiissccuussssiioonn		

CO2	has	been	demonstrated	to	have	a	signalling	role	in	normal	biological	processes	

and	 disease	 (Cummins,	 2017;	 Cummins	 and	 Keogh,	 2016).	 CO2	 can	 interact	 with	

protein	at	uncharged	amine	groups	 to	 form	a	 labile	 covalent	modification	 called	a	

carbamate	(Ewing	et	al.,	1980).	This	modification	introduces	a	change	of	charge	status	

that	may	have	profound	effects	on	protein	interactions	(Terrier	and	Douglas,	2010)	or	

enable	metal	 chelation	 for	 enzyme	 function	 (Lorimer	 et	 al.,	 1976).	 An	 alternative	

method	for	the	stabilisation	of	carbamates	is	achieved	by	the	positioning	of	positively	

charged	residues	in	close	proximity	to	the	lysine	residue	interacting	with	CO2	(Meigh	

et	 al.,	 2013).	 Thus,	 carbamate	 formation	 is	 known	 to	 exert	 an	 influence	 on	 the	

structure,	function	and	activity	of	several	proteins.	Despite	this,	the	number	of	known	

proteins	to	interact	with	CO2	via	carbamate	formation	is	relatively	low.	This	is	largely	

due	 to	 the	 labile	 nature	 of	 carbamates	 preventing	 their	 identification	 by	 high	

throughput	 techniques.	 Therefore,	 the	emphasis	 of	 previous	 research	has	been	 to	

identify	effectors	of	CO2-mediated	signalling	processes.	The	aim	of	this	project	was	to	

identify	a	signalling	molecule	sensitive	to	fluctuating	CO2	levels.	Previous	work	from	

this	research	group	suggested	ubiquitin	was	susceptible	to	carbamylation	and,	due	to	

its	 known	 role	 in	 cellular	 signalling,	 was	 selected	 as	 the	 focus	 of	 this	 project	

(Linthwaite,	2016).	

	

44..11.. MMaassss		ssppeeccttrroommeettrryy		ccoonnffiirrmmss		uubbiiqquuiittiinn		iiss		ccaarrbbaammyyllaatteedd		aatt		KK3333		aanndd		KK4488		

A	technique	has	been	previously	developed	to	enable	identification	of	carbamates	by	

MS	(Linthwaite,	2016).	This	involves	the	ethylation	of	acidic	residues	by	reaction	with	

the	alkylating	reagent	TEO,	which	traps	carbamates	onto	the	protein.	Since	glutamate	

and	aspartate	are	also	ethylated	by	the	reaction	with	TEO,	an	ethylation	series	will	be	

generated	 for	 each	 peptide.	 This	 is	 where	 a	 series	 of	 peptides	 are	 identified	

corresponding	 to	 all	 possible	 combinations	 of	 ethylation	 events,	 including	 the	

carboxyethyl	 modification	 indicative	 of	 the	 trapped	 carbamate.	 The	 initial	

investigation	 therefore	 aimed	 to	 verify	 carbamates	 that	 could	 be	 trapped	 and	
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identified	 by	MS	 using	MALDI-TOF.	 Two	 peptides	were	 identified	 to	 incorporate	 a	

mass	corresponding	to	a	carboxyethyl	modification	as	part	of	an	ethylation	series	on	

Asp	 and	Glu	 residues	within	 the	 peptide	 (Table	 3.1	 and	 Table	 3.2).	 This	 is	 a	 good	

indicator	of	the	peptide	containing	a	carboxyethylated	residue	but	it	does	not	confirm	

the	site	of	modification.		

	

LC	MS/MS	is	used	to	assign	PTM	localizations.	By	taking	this	approach	it	was	confirmed	

that	K33	and	K48	are	sites	of	carboxyethylation	on	ubiquitin,	along	with	 ruling	out	

false	positive	 results.	However,	 it	was	not	 formally	possible	 to	conclude	that	 these	

modifications	are	due	to	CO2.	Therefore,	an	experiment	was	performed	that	utilised	
13C	 to	 demonstrate	 the	modifications	 at	 K33	 and	 K48	 are	 CO2-dependent	 trapped	

carbamates.	 Whilst	 this	 confirmed	 K33	 and	 K48	 as	 sites	 of	 CO2	 interaction,	 the	

physiological	 relevance	 of	 this	 modification	 is	 not	 clear.	 A	 limitation	 of	 the	

experimental	setup	is	the	inability	to	quantify	the	relative	abundance	of	unmodified	

and	carboxyethylated	peptides.	This	is	complicated	by	carboxyethylation	resulting	in	

miscleavage	of	the	lysine	residue.	

	

Modification	of	ubiquitin	 lysine	residues	have	been	proposed	to	exert	 influence	on	

subsequent	ubiquitin	modifications,	 including	polyubiquitin	chain	synthesis	(Ohtake	

et	al.,	2015).	Here,	acetylation	of	K6	and	K48	are	proposed	to	repress	isopeptide	bond	

formation	between	ubiquitin	molecules	at	K11,	K48	and	K63.	The	inhibitory	effect	on	

polyubiquitin	chain	formation	is	proposed	to	be	due	to	the	hydrophobic	property	of	

the	acetyl	group	attenuating	interaction	with	ubiquitin	binding	proteins	including	the	

E2	and	E3	ligases	that	perform	chain	elongation	(Husnjak	and	Dikic,	2012;	Ohtake	et	

al.,	 2015).	 Since	 carbamylation	 reverses	 the	 charge	 status	 of	 lysine	 residues,	 it	 is	

possible	that	CO2	exerts	a	similar	effect	on	ubiquitin	crosslinking	to	that	of	acetylation.		
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44..22.. PPhhyyssiioollooggiiccaall		iimmpplliiccaattiioonnss		ooff		uubbiiqquuiittiinn		ccaarrbbaammyyllaattiioonn		

Ubiquitin	 is	 an	 8	 kDa	 protein	 conserved	 throughout	 the	 eukaryotic	 kingdom.	 It	 is	

involved	in	a	variety	of	cellular	process	ranging	from	protein	tagging	for	degradation	

to	 signal	 transduction	 and	 DNA	 repair	 (Passmore	 and	 Barford,	 2004).	 A	 variety	 of	

factors	 influence	 the	process	mediated	by	ubiquitination:	ubiquitin	polymerisation,	

cross-linking	of	specified	lysine	residues,	ubiquitin	chain	branching	and	positioning	of	

ubiquitin	on	the	target	protein	(Sadowski	and	Sarcevic,	2010).	In	order	for	ubiquitin	to	

bind	 to	 its	 target	protein	a	 series	of	 reactions	occur	 that	 result	 in	 formation	of	an	

isopeptide	bond	between	the	ubiquitin	C-terminal	glycine	residue	(G76)	and	the	ε-

amine	group	of	a	lysine	residue	of	the	substrate	protein	(Pickart,	2001).	This	process	

requires	ATP	and	 is	 catalysed	by	E1,	E2,	and	E3	ubiquitin	 ligases	 (Finley	and	Chau,	

1991;	Jentsch,	1992).	A	protein	bearing	a	single	ubiquitin	molecule	is	relatively	stable,	

whilst	proteins	tagged	with	poly-ubiquitin	chains	are	often	rapidly	degraded	(Chau	et	

al.,	 1989;	Gregori	 et	 al.,	 1990;	 Singh	et	 al.,	 2016).	 K48-linked	poly-ubiquitin	 chains	

predominate	and	are	the	principle	signal	for	26S	proteasomal	degradation	(Chau	et	

al.,	 1989).	 However,	 ubiquitin	 contains	 7	 lysine	 residues	 and	 all	 of	 these	 may	 be	

utilised	for	poly-ubiquitin	chain	formation	along	with	the	N-terminal	methionine	(Peng	

et	al.,	2003).	Specificity	of	cross-linked	poly-ubiquitin	chains	is	accomplished	through	

particular	 E2/E3	 pairing	 and	 the	 proximal	 environment	 that	 surrounds	 the	 lysine	

residues	(Petroski	and	Deshaies,	2005;	Sadowski	and	Sarcevic,	2010).		

	

It	has	been	demonstrated	 that	K33	and	K48	are	 sites	of	 carbamylation.	K33	 linked	

ubiquitin	 is	 typically	 involved	 in	 non-proteolytic	 signalling	 processes.	However,	 the	

extent	of	signalling	performed	by	this	atypical	ubiquitin	chain	is	poorly	understood.	

Despite	 this,	 K33-linked	 ubiquitination	 has	 been	 implicated	 in	 the	 DNA	 damage	

response	(Elia	et	al.,	2015),	AMPK	signalling	(Al-Hakim	et	al.,	2008),	TCR	inactivation	

(Huang	et	al.,	2010;	Yang	et	al.,	2015),	repression	of	type	I	interferon	transcription	(Liu	

et	al.,	2018),	recruitment	to	the	pre-autophagosomal	phagophore	(Nibe	et	al.,	2018),	

and	post-golgi	trafficking	(Yuan	et	al.,	2014).	In	contrast	to	K33,	K48	linked	ubiquitin	is	

almost	exclusively	involved	in	targeting	substrate	proteins	for	degradation	by	the	26S	
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proteasome	(Thrower	et	al.,	2000).	It	is	not	yet	clear	how	carbamylation	of	K33	and	

K48	affects	these	processes.	

	

The	results	of	the	cross-linking	assay	suggest	carbamylation	of	K48	reduces	the	rate	

of	 ubiquitylation.	 This	 is	 consistent	 with	 previous	 findings	 that	 report	 reduced	

ubiquitin	kinetics	upon	destabilising	interactions	between	ubiquitin	and	E2/E3	ligases	

(Saha	 et	 al.,	 2011).	 However	 this	 is	 in	 contrast	 to	 a	 recent	 report	 of	 increased	

ubiquitylation	under	hypercapnic	conditions	(Gwoździńska	et	al.,	2017).	It	should	be	

noted,	however,	that	for	this	investigation	Nedd-4	was	used	for	ubiquitination	assays.	

Nedd-4	 is	 an	 E3	 ligase	 that	 specifically	 catalyses	 K63-linked	 polyubiquitin	 chains	

(Maspero	et	al.,	2013).	Since	carbamylation	was	only	seen	to	occur	at	K33	and	K48,	it	

is	 unlikely	 that	 hypercapnia	 would	 reduce	 K63-linked	 polyubiquitination.	 In	 fact,	

carbamate	formation	may	prevent	crosslinking	at	these	residues,	which	increases	the	

probability	of	crosslinking	at	the	remaining	lysine	residues	(Ohtake	et	al.,	2015).		

	

Due	to	the	reduced	rate	of	ubiquitination	it	would	be	anticipated	that	an	in	vivo	model	

would	 demonstrate	 reduced	 proteasomal	 activity.	 This	 is	 because	 proteins	 tagged	

with	smaller	ubiquitin	chains	are	more	stable	than	those	with	longer	chains	(Singh	et	

al.,	 2016).	Despite	 this,	 proteasomal	 activity	 has	 been	 reported	 to	 increase	 during	

hypercapnic	conditions	(Jaitovich	et	al.,	2015;	Ottenheijm	et	al.,	2006).	This	may	be	

explained	 by	 alternative	 CO2-sensitive	 signalling	 pathways.	 Increased	 cAMP	

concentrations	and	PKA	activation	are	both	mechanisms	through	which	proteasome	

phosphorylation	 is	 stimulated	 and	 this	 is	 correlated	 with	 enhanced	 proteasomal	

degradation	 (Lokireddy	 et	 al.,	 2015).	 It	 has	 previously	 been	 shown	 that	 elevated	

bicarbonate	 causes	 sAC	 to	 increase	 cAMP	 production	 and	 stimulate	 PKA	 activity	

(Lecuona	et	al.,	2013;	Townsend	et	al.,	2009).	Moreover,	proteasomal	inhibition	has	

been	reported	to	increase	ER	stress,	induce	aberrant	signalling	pathways	and	reduce	

Drosophila	 lifespan,	 with	 a	 compensatory	 mechanism	 afforded	 by	 increased	

autophagy	(Suraweera	et	al.,	2012;	Velentzas	et	al.,	2013).	This	provides	a	mechanism	
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through	which	 hypercapnia	mediates	 increased	 proteasome	 activity	 but	 questions	

remain	concerning	elevated	CO2	and	rates	of	ubiquitination.	

	

It	has	previously	been	reported	that	CO2	may	act	as	a	readout	for	metabolic	burden	

(Vadasz	et	al.,	2012).	Na+/K+	ATPase	activity	 is	 reported	 to	consume	up	to	40	%	of	

cellular	ATP	therefore	CO2-responsive	endocytosis	of	this	membrane	protein	provides	

transient	metabolic	relief	until	CO2	levels	return	to	normal	(Vadasz	et	al.,	2012;	Vadasz	

et	al.,	2007).	This	may	also	be	the	basis	of	an	evolutionary	conserved	CO2-responsive	

immune	suppression	(Helenius	et	al.,	2009).	Here	the	priority	of	the	cell	is	survival	to	

replication	 and	 reducing	metabolic	 burden.	 As	 previously	mentioned,	 proteasome	

activity	 is	non-redundant	(Suraweera	et	al.,	2012;	Velentzas	et	al.,	2013).	However,	

ubiquitylation,	 which	 costs	 ATP,	 is	 redundant	 since	 protein	 turnover	 by	 the	

proteasome	can	continue	on	previously	ubiquitinated	proteins.	Upon	return	to	basal	

CO2	levels	these	dampened	processes	return	to	normal	rates.	In	the	context	of	chronic	

hypercapnia	where	ubiquitylation	rates	are	reduced,	expression	of	chaperones	such	

as	 HSF1	 may	 maintain	 proteostasis	 (Lu	 et	 al.,	 2018).	 This	 provides	 a	 mechanism	

through	which	the	metabolic	burden	of	the	cell	can	be	reduced	without	compromising	

essential	homeostatic	mechanisms.	

	

The	 present	 study	 suggests	 K48-linked	 polyubiquitin	 chain	 formation	 would	 be	

decreased,	which	is	in	contrast	to	a	previously	published	report	that	found	K48-linked	

polyubiquitination	was	increased	under	hypercapnic	conditions	(Haegens	et	al.,	2012).	

Such	 contradictory	 reports	 are	 commonplace	 when	 investigating	 the	 effect	 of	

hypercapnia.	 For	 example,	 NFκB	 is	 reported	 to	 be	 activated	 under	 elevated	 CO2	

conditions	(Abolhassani	et	al.,	2009;	Oliver	et	al.,	2012)	but	other	findings	report	NFκB	

inactivation	(Contreras	et	al.,	2012;	Helenius	et	al.,	2009;	Takeshita	et	al.,	2003).	There	

are	also	contrasting	reports	of	p44/42	MAPK	activation	under	hypercapnic	conditions	

(Otulakowski	et	al.,	2014;	Welch	et	al.,	2010).	Thus,	it	is	not	surprising	that	the	results	

of	the	cross-linking	assay	suggest	an	alternate	role	for	carbamylated	ubiquitin	to	that	
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of	the	literature.	Further	research	is	required	to	better	understand	the	inconsistencies	

between	published	reports.	

	

44..33.. FFuuttuurree		wwoorrkk		

4.3.1. Carbamate	stabilisation	and	Stoichiometry	

Carbamates	are	a	labile	modification	that	typically	require	some	form	of	stabilisation.	

This	 can	 be	 achieved	 through	 coordination	 of	 a	metal	 ion	 (Lorimer	 and	Miziorko,	

1980),	interaction	with	a	proximal	charged	amine	(Meigh	et	al.,	2013),	or	because	of	

the	proximal	environment	providing	a	suitable	pKa	for	carbamate	stability	(Jimenez-

Morales	et	al.,	2014).	It	is	not	known	which	of	these	is	responsible	for	stabilisation	of	

carbamates	at	K33	and	K48	of	ubiquitin,	although	 it	 is	unlikely	 that	a	carbamate	 is	

stabilised	 on	 ubiquitin	 through	 chelation	 of	 a	 metal	 ion.	 Structural	 studies	

investigating	 this	 will	 not	 only	 provide	 insights	 to	 the	 mechanism	 of	 carbamate	

stabilisation	 on	 ubiquitin	 but	 also	 to	 the	 general	 physicochemical	 properties	 of	

carbamate	formation.	This	will	impact	the	field	by	providing	better	predictive	tools	of	

proteins	susceptible	to	carbamylation.	

	

A	CO2	sensor	must	respond	to	fluctuating	levels	of	CO2.	In	order	to	understand	this	

process,	it	is	imperative	to	define	carbamate	stoichiometry	at	various	CO2	levels.	This	

could	be	achieved	 in	multiple	ways.	 Firstly,	 use	of	 an	 isobaric	 tag,	 such	as	TMT	or	

iTRAQ,	enables	 the	 relative	quantification	of	 carbamate	 formation	at	different	CO2	

concentrations.	 This	 approach	 has	 been	 applied	 to	 other	 PTMs,	 such	 as	

phosphorylation	 (Glibert	 et	 al.,	 2015;	 Lim	 et	 al.,	 2017).	 Secondly,	 chemical	

modification	 of	 ubiquitin	 with	 an	 isotopic	 carboxyethyl	 group	 following	 the	 initial	

trapping	experiment	would	enable	the	relative	quantitation	between	the	biological	

and	chemical	modifications.	This	approach	has	been	performed	in	acetylation	studies	

and	 has	 the	 advantage	 of	 reducing	 sample	 complexity	 (Gil	 et	 al.,	 2017).	 These	

approaches	 offer	 two	 complementary	 approaches	 to	 defining	 carbamate	
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stoichiometry	under	various	conditions.	It	is	expected	that	carbamylation	of	K33	and	

K48	relative	to	the	unmodified	peptide	would	change	in	a	dose-dependent	manner.	

However,	a	potential	difficulty	with	 the	use	of	 isobaric	 tags	 is	 that	 the	unmodified	

peptide	 will	 be	 cleaved	 at	 K33	 or	 K48.	 By	 taking	 the	 same	 approach	 as	 Gil	 et	 al.	

ubiquitin	 will	 be	 exclusively	 cleaved	 at	 arginine	 residues,	 thus	 streamlining	 the	

quantitation	process.	

	

4.3.2. In	vivo	applications	

At	present	 the	 trapping	 reagent	can	only	be	used	 in	vitro	or	ex	vivo.	 This	makes	 it	

difficult	to	observe	carbamylation	in	cellular	contexts	and	therefore	development	of	

a	cell	membrane-permeable	reagent	is	desired.	Such	a	reagent	would	also	ideally	be	

optimised	to	enrich	carbamylated	proteins.	Together,	this	would	provide	a	workflow	

for	enhanced	 identification	of	proteins	 susceptible	 to	carbamylation,	 thus	enabling	

identification	of	 the	 ‘carbamylome’.	Until	 such	a	probe	 is	developed,	a	proteomics	

investigation	to	identify	more	proteins	susceptible	to	carbamylation	could	be	achieved	

with	 SILAC.	 This	 is	 a	 technique	 that	 enables	 quantitative	 proteomics	 by	 labelling	

proteins	 in	vivo	with	 isotopic	 lysine	and	arginine	residues.	This	permits	up	to	three	

experimental	 conditions	 to	 be	 tested	 and	 for	 the	 proteins	 to	 be	 trapped	 ex	 vivo.	

Additionally,	 such	 an	 experimental	 setup	 could	 be	 used	 to	 observe	 the	 differing	

proteomes	of	 cells	 exposed	 to	hypercapnic	or	normocapnic	 conditions.	A	previous	

study	 compared	 two	 populations	 of	 eastern	 oysters	 that	 had	 been	 exposed	 to	

normocapnic	 or	 hypercapnic	 conditions.	 The	 authors	 of	 this	 study	 found	 that	 a	

relatively	 high	 proportion	 	 (12%	 of	 456)	 of	 identified	 proteins	 were	 differentially	

expressed	 in	 hypercapnia	 (Tomanek	 et	 al.,	 2011).	 This	 study	 leaves	 room	 for	

improvement	with	regards	investigating	proteome	depth	and	a	proteomic	analysis	of	

mammalian	cells	exposed	to	varying	 levels	of	CO2	could	provide	useful	 information	

regarding	some	of	the	previously	described	pathologies	associated	with	hypercapnia.	

To	 this	 end,	 a	 similar	 strategy	 has	 been	 performed	 at	 the	 genome	 level,	 which	

identified	an	effector	of	CO2	signalling	pathways	(Helenius	et	al.,	2016a).	
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A	possible	in	vivo	experiment	aimed	at	defining	the	dynamic	arrangement	of	ubiquitin	

under	elevated	CO2	is	to	expose	cells	to	hypercapnic	conditions	and	measure	changes	

to	ubiquitin	pools	using	a	protein	standard	absolute	quantification	assay	(Kaiser	et	al.,	

2011).	This	would	reveal	key	information	regarding	the	effect	of	carbamate	formation	

on	 ubiquitin	 crosslinking	 and	 the	 degree	 of	 substrate	 protein	 ubiquitination.	 Such	

insights	would	be	better	placed	 to	provide	 information	 regarding	 the	physiological	

relevance	 of	 carbamylation.	 Additionally,	 a	 novel	 fluorescence	 imaging	 technique,	

called	PolyUb-FC,	has	been	developed	to	inform	investigators	of	polyubiquitin	chain	

dynamics	 and	potential	 interactors	 (Nibe	et	 al.,	 2018).	 Since	 antibodies	 to	 atypical	

ubiquitin	 chains	 do	 not	 exist,	 it	 is	 not	 possible	 to	 derive	 this	 information	 from	 IP	

experiments	for	K33-linked	chains.	

	

4.3.3. In	vitro	applications	for	Ubiquitin	kinetics	

The	 formation	 of	 carbamates	 at	 K33	 and	 K48	 reverse	 the	 charge	 status	 of	 these	

residues.	 Research	 investigating	 other	modifications	 at	 lysine	 residues	 of	 ubiquitin	

indicate	that	a	change	in	charge	status	inhibits	isopeptide	bond	formation	(Ohtake	et	

al.,	2015).	Because	carbamylation	is	labile	it	is	unlikely	this	modification	fully	inhibits	

isopeptide	bond	formation.	It	was	therefore	hypothesised	that	carbamylation	at	these	

sites	reduces	rate	of	isopeptide	bond	formation.	A	ubiquitin	cross	linking	assay	was	

performed	 using	 E2-25K,	 which	 exclusively	 cross	 links	 at	 K48	 (David	 et	 al.,	 2010).	

Under	 hypercapnic	 conditions	 ubiquitin	 discharge	 from	 E2	 is	 inhibited.	 However,	

dimer	formation	occurs,	suggesting	carbamate	formation	does	not	inhibit	isopeptide	

bond	formation.	Therefore,	 it	can	be	concluded	that	carbamate	 formation	reduces	

the	rate	of	polyubiquitin	chain	formation.	This	 is	 in	agreement	with	other	research	

that	demonstrate	a	change	in	charge	status	reduces	the	rate	of	ubiquitination	but	not	

ubiquitin	binding	affinity	(Rodrigo-Brenni	et	al.,	2010).	The	experimental	setup	here	

was	limited	to	investigate	K48	crosslinking	at	high	CO2	concentrations.		
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Due	to	time	constraints	it	was	not	possible	to	complete	the	investigation	of	carbamate	

formation	on	ubiquitin	kinetics.	The	future	direction	of	this	project	would	have	been	

to	consider	the	following:	

• K33	 was	 also	 identified	 as	 a	 site	 of	 carbamylation.	 It	 will	 be	 important	 to	

confirm	 the	 effect	 of	 carbamylation	 on	 K33-linked	 polyubiquitin	 chain	

formation.	

• In	a	cellular	context	there	are	multiple	E2	and	E3	ligases	that	perform	ubiquitin	

crosslinking	at	the	8	sites	of	cross	linking.	It	would	be	informative	to	investigate	

whether	carbamylation	at	K33	and	K48	result	in	increased	crosslinking	of	other	

residues.	

• Within	a	cell	a	range	of	CO2	concentrations	will	be	experienced.	It	is	anticipated	

that	the	rate	of	ubiquitination	is	dose	dependant	and	that	this	would	correlate	

with	 the	 stoichiometry	 of	 carbamylation	 at	 various	 CO2	 concentrations.	 To	

investigate	this	the	cross-linking	assay	should	be	performed	over	a	range	of	

CO2	 concentrations.	 This	 investigation	 would	 complement	 a	 future	 mass	

spectrometry	based	assay	to	investigate	carbamate	stoichiometry		

	

44..44.. CCoonncclluussiioonn		

CO2	 is	 a	 fundamentally	 important	 to	 life.	 It	 is	 able	 to	 exert	 influence	 over	 cellular	

function	 through	 carbamylation	 of	 susceptible	 proteins	 involved	 in	 cell	 signalling	

pathways.	 Whilst	 many	 effects	 of	 elevated	 CO2	 in	 health	 and	 disease	 have	 been	

reported,	not	much	is	known	regarding	the	CO2	sensors.	Therefore,	the	aim	of	this	

project	was	initially	to	identify	a	CO2	sensor	and	define	the	mechanism	through	which	

CO2-dependent	 regulation	 occurs.	 Due	 to	 time	 constraints,	 however,	 this	 was	 not	

performed	to	completion.	A	MS	based	approach	defined	K33	and	K48	of	ubiquitin	as	

sites	 of	 carbamylation	 and	 a	 functional	 assay	 demonstrated	 the	 reduced	 rate	 of	

ubiquitination	 upon	 K48	 carbamylation.	 This	 is	 consistent	 with	 other	 reports	 that	

observe	reduced	rates	of	ubiquitination	upon	a	change	of	charge	status	to	targeted	

lysine	 residues.	 The	 implications	 of	 this	work	 are	 not	 clear	 but	 a	 potential	 role	 in	



	
61	

reducing	 metabolic	 burden	 has	 been	 outlined.	 Future	 work	 is	 required	 to	 better	

understand	ubiquitin	 carbamylation.	 First,	 the	 factors	 governing	 carbamylation	are	

poorly	understood.	 It	 is	 not	 yet	 known	what	 the	occupancy	of	 carbamylation	 is	 at	

various	 CO2	 concentrations	 or	 how	 the	 carbamate	 is	 stabilised.	 Second,	 the	 direct	

impact	 of	 elevated	 CO2	 on	 ubiquitin	 dynamics	 and	 its	 association	 with	 substrate	

proteins	 requires	 investigation.	 Finally,	 more	 information	 regarding	 ubiquitination	

kinetics	of	K33	and	K48	is	desired.	Overall	this	project	has	provided	evidence	of	a	novel	

CO2	 sensor	 and	 provides	 a	 platform	 for	 future	work	 to	 elucidate	 the	 physiological	

consequences	of	this	interaction.		 		



	
62	

55.. BBiibblliiooggrraapphhyy		

Abolhassani,	M.,	Guais,	A.,	Chaumet-Riffaud,	P.,	Sasco,	A.J.,	and	Schwartz,	L.	(2009).	
Carbon	dioxide	 inhalation	causes	pulmonary	 inflammation.	Am	J	Physiol	 Lung	Cell	
Mol	Physiol	296,	L657-665.	

Abraham,	S.J.,	Kobayashi,	T.,	Solaro,	R.J.,	and	Gaponenko,	V.	(2009).	Differences	in	
lysine	 pKa	 values	 may	 be	 used	 to	 improve	 NMR	 signal	 dispersion	 in	 reductively	
methylated	proteins.	J	Biomol	NMR	43,	239-246.	

Adijanto,	J.,	Banzon,	T.,	Jalickee,	S.,	Wang,	N.S.,	and	Miller,	S.S.	(2009).	CO2-induced	
ion	and	fluid	transport	in	human	retinal	pigment	epithelium.	J	Gen	Physiol	133,	603-
622.	

Al-Hakim,	 A.K.,	 Zagorska,	 A.,	 Chapman,	 L.,	 Deak,	M.,	 Peggie,	M.,	 and	 Alessi,	 D.R.	
(2008).	Control	of	AMPK-related	kinases	by	USP9X	and	atypical	Lys(29)/Lys(33)-inked	
polyubiquitin	chains.	Biochem	J	411,	249-260.	

Alkalay,	 I.,	 Yaron,	 A.,	 Hatzubai,	 A.,	 Orian,	 A.,	 Ciechanover,	 A.,	 and	 Ben-Neriah,	 Y.	
(1995).	 Stimulation-dependent	 I-kappa-B-alpha	 phosphorylation	 marks	 the	 NF-
kappa-B	 inhibitor	 for	 degradation	 via	 the	 ubiquitin-proteasome	 pathway.	
Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America	92,	
10599-10603.	

Amato,	 M.B.P.,	 Barbas,	 C.S.V.,	 Medeiros,	 D.M.,	 Magaldi,	 R.B.,	 Schettino,	 G.D.P.,	
Lorenzi,	G.,	Kairalla,	R.A.,	Deheinzelin,	D.,	Munoz,	C.,	Oliveira,	R.,	et	al.	(1998).	Effect	
of	 a	 protective-ventilation	 strategy	 on	mortality	 in	 the	 acute	 respiratory	 distress	
syndrome.	New	England	Journal	of	Medicine	338,	347-354.	

Baeuerle,	 P.A.,	 and	 Baltimore,	 D.	 (1988).	 Activation	 of	 DNA-binding	 activity	 in	 an	
apparently	 cytoplasmic	 precursor	 of	 the	 NF-kappa-B	 transcription	 factor.	 Cell	 53,	
211-217.	

Beg,	 A.A.,	 Finco,	 T.S.,	 Nantermet,	 P.V.,	 and	 Baldwin,	 A.S.	 (1993).	 Tumor-necrosis-
factor	 and	 interleukin-1	 lead	 to	 phosphorylation	 and	 loss	 of	 I-kappa-B-alpha	 -	 a	
mechanism	for	NF-kappa-B	activation.	Molecular	and	Cellular	Biology	13,	3301-3310.	

Benning,	M.M.,	Shim,	H.,	Raushel,	F.M.,	and	Holden,	H.M.	(2001).	High	resolution	X-
ray	 structures	 of	 different	 metal-substituted	 forms	 of	 phosphotriesterase	 from	
Pseudomonas	diminuta.	Biochemistry	40,	2712-2722.	

Blombach,	B.,	and	Takors,	R.	(2015).	CO2-Intrinsic	Product,	Essential	Substrate,	and	
Regulatory	Trigger	of	Microbial	and	Mammalian	Production	Processes.	Frontiers	in	
bioengineering	and	biotechnology	3,	108-108.	

Boron,	W.F.,	Endeward,	V.,	Gros,	G.,	Musa-Aziz,	R.,	and	Pohl,	P.	(2011).	Intrinsic	CO2	
Permeability	of	Cell	Membranes	and	Potential	Biological	Relevance	of	CO2	Channels.	
ChemPhysChem	12,	1017-1019.	

Briva,	 A.,	 Vadasz,	 I.,	 Lecuona,	 E.,	 Welch,	 L.C.,	 Chen,	 J.,	 Dada,	 L.A.,	 Trejo,	 H.E.,	
Dumasius,	V.,	Azzam,	Z.S.,	Myrianthefs,	P.M.,	et	al.	 (2007).	High	CO2	 levels	 impair	
alveolar	epithelial	function	independently	of	pH.	PloS	one	2,	e1238.	



	
63	

Brown,	K.,	Gerstberger,	S.,	Carlson,	L.,	Franzoso,	G.,	and	Siebenlist,	U.	(1995).	Control	
of	I-kappa-B-alpha	proteolysis	by	site-specific,	signal-induced	phosphorylation.	Aids	
Res	Hum	Retrovir	11,	S118-S118.	

Brown,	 K.,	 Park,	 S.,	 Kanno,	 T.,	 Franzoso,	 G.,	 and	 Siebenlist,	 U.	 (1993).	 Mutual	
regulation	of	 the	 transcriptional	 activator	NF-kappa-B	and	 its	 inhibitor,	 I-kappa-B-
alpha.	 Proceedings	 of	 the	 National	 Academy	 of	 Sciences	 of	 the	 United	 States	 of	
America	90,	2532-2536.	

Brzovic,	P.S.,	Lissounov,	A.,	Christensen,	D.E.,	Hoyt,	D.W.,	and	Klevit,	R.E.	(2006).	A	
UbcH5/ubiquitin	 noncovalent	 complex	 is	 required	 for	 processive	 BRCA1-directed	
ubiquitination.	Mol	Cell	21,	873-880.	

Buetow,	L.,	Gabrielsen,	M.,	Anthony,	N.G.,	Dou,	H.,	Patel,	A.,	Aitkenhead,	H.,	Sibbet,	
G.J.,	Smith,	B.O.,	and	Huang,	D.T.	(2015).	Activation	of	a	primed	RING	E3-E2-ubiquitin	
complex	by	non-covalent	ubiquitin.	Mol	Cell	58,	297-310.	

Cardozo,	T.,	and	Pagano,	M.	(2004).	The	SCF	ubiquitin	ligase:	Insights	into	a	molecular	
machine.	Nature	Reviews	Molecular	Cell	Biology	5,	739-751.	

Carvalho,	A.F.,	 Pinto,	M.P.,	Grou,	 C.P.,	 Vitorino,	 R.,	Domingues,	 P.,	 Yamao,	 F.,	 Sa-
Miranda,	C.,	and	Azevedo,	J.E.	(2012).	High-Yield	Expression	in	Escherichia	coli	and	
Purification	of	Mouse	Ubiquitin-Activating	Enzyme	E1.	Mol	Biotechnol	51,	254-261.	

Celli,	B.R.,	Cote,	C.G.,	Marin,	J.M.,	Casanova,	C.,	Montes	de	Oca,	M.,	Mendez,	R.A.,	
Pinto	Plata,	V.,	 and	Cabral,	H.J.	 (2004).	 The	body-mass	 index,	 airflow	obstruction,	
dyspnea,	and	exercise	capacity	index	in	chronic	obstructive	pulmonary	disease.	New	
Engl	J	Med	350,	1005-1012.	

Chau,	 V.,	 Tobias,	 J.W.,	 Bachmair,	 A.,	 Marriott,	 D.,	 Ecker,	 D.J.,	 Gonda,	 D.K.,	 and	
Varshavsky,	 A.	 (1989).	 A	 multiubiquitin	 chain	 is	 confined	 to	 specific	 lysine	 in	 a	
targeted	short-lived	protein.	Science	243,	1576-1583.	

Chen,	J.G.,	Sandberg,	M.,	and	Weber,	S.G.	(1993).	Chromatographic	method	for	the	
determination	 of	 conditional	 equilibrium-constants	 for	 the	 carbamate	 formation	
reaction	from	amino-acids	and	peptides	 in	aqueous-solution.	 J	Am	Chem	Soc	115,	
7343-7350.	

Chen,	Z.J.	(2005).	Ubiquitin	signalling	in	the	NF-kappaB	pathway.	Nat	Cell	Biol	7,	758-
765.	

Chen,	 Z.J.,	 Hagler,	 J.,	 Palombella,	 V.J.,	 Melandri,	 F.,	 Scherer,	 D.,	 Ballard,	 D.,	 and	
Maniatis,	T.	 (1995).	Signal-induced	site-specific	phosphorylation	targets	 I-kappa-B-
alpha	to	the	ubiquitin-proteasome	pathway.	Genes	&	Development	9,	1586-1597.	

Cleland,	W.W.,	Andrews,	T.J.,	Gutteridge,	S.,	Hartman,	F.C.,	and	Lorimer,	G.H.	(1998).	
Mechanism	of	Rubisco:	The	carbamate	as	general	base.	Chemical	Reviews	98,	549-
561.	

Contreras,	M.,	Ansari,	B.,	Curley,	G.,	Higgins,	B.D.,	Hassett,	P.,	O'Toole,	D.,	and	Laffey,	
J.G.	 (2012).	 Hypercapnic	 acidosis	 attenuates	 ventilation-induced	 lung	 injury	 by	 a	
nuclear	factor-kappa	B	dependent	mechanism.	Crit	Care	Med	40,	2622-2630.	



	
64	

Cook,	 Z.C.,	 Gray,	 M.A.,	 and	 Cann,	 M.J.	 (2012).	 Elevated	 carbon	 dioxide	 blunts	
mammalian	 cAMP	 signaling	 dependent	 on	 inositol	 1,4,5-triphosphate	 receptor-
mediated	Ca2+	release.	The	Journal	of	biological	chemistry	287,	26291-26301.	

Cummins,	 E.P.	 (2017).	 Physiological	 gases	 in	 health	 and	 disease	 -	 key	 regulatory	
factors,	not	just	a	lot	of	hot	air.	Journal	of	Physiology-London	595,	2421-2422.	

Cummins,	 E.P.,	 and	 Keogh,	 C.E.	 (2016).	 Respiratory	 gases	 and	 the	 regulation	 of	
transcription.	Exp	Physiol	101,	986-1002.	

Cummins,	E.P.,	Oliver,	K.M.,	Lenihan,	C.R.,	Fitzpatrick,	S.F.,	Bruning,	U.,	Scholz,	C.C.,	
Slattery,	C.,	Leonard,	M.O.,	McLoughlin,	P.,	and	Taylor,	C.T.	(2010).	NF-kappa	B	Links	
CO2	Sensing	to	 Innate	 Immunity	and	 Inflammation	 in	Mammalian	Cells.	 Journal	of	
Immunology	185,	4439-4445.	

Cummins,	 E.P.,	 Selfridge,	 A.C.,	 Sporn,	 P.H.,	 Sznajder,	 J.I.,	 and	 Taylor,	 C.T.	 (2014).	
Carbon	dioxide-sensing	in	organisms	and	its	implications	for	human	disease.	Cellular	
and	Molecular	Life	Sciences	71,	831-845.	

Das,	 R.,	 Mariano,	 J.,	 Tsai,	 Y.C.,	 Kalathur,	 R.C.,	 Kostova,	 Z.,	 Li,	 J.,	 Tarasov,	 S.G.,	
McFeeters,	 R.L.,	 Altieri,	 A.S.,	 Ji,	 X.,	 et	 al.	 (2009).	 Allosteric	 activation	 of	 E2-RING	
finger-mediated	ubiquitylation	by	a	structurally	defined	specific	E2-binding	region	of	
gp78.	Mol	Cell	34,	674-685.	

David,	 Y.,	 Ziv,	 T.,	 Admon,	 A.,	 and	Navon,	 A.	 (2010).	 The	 E2	Ubiquitin-conjugating	
Enzymes	 Direct	 Polyubiquitination	 to	 Preferred	 Lysines.	 Journal	 of	 Biological	
Chemistry	285,	8595-8604.	

de	Wolf,	E.,	Cook,	J.,	and	Dale,	N.	(2017).	Evolutionary	adaptation	of	the	sensitivity	
of	connexin26	hemichannels	to	CO2.	Proc	R	Soc	B-Biol	Sci	284,	7.	

Deshaies,	R.J.	(1999).	SCF	and	cullin/RING	H2-based	ubiquitin	ligases.	Annu	Rev	Cell	
Dev	Biol	15,	435-467.	

Dick,	 L.A.,	 Heibel,	 G.,	 Moore,	 E.G.,	 and	 Spiro,	 T.G.	 (1999).	 UV	 resonance	 Raman	
spectra	 reveal	 a	 structural	 basis	 for	 diminished	 proton	 and	 CO2	 binding	 to	
alpha,alpha-cross-linked	hemoglobin.	Biochemistry	38,	6406-6410.	

Elia,	A.E.,	Boardman,	A.P.,	Wang,	D.C.,	Huttlin,	E.L.,	Everley,	R.A.,	Dephoure,	N.,	Zhou,	
C.,	 Koren,	 I.,	 Gygi,	 S.P.,	 and	 Elledge,	 S.J.	 (2015).	 Quantitative	 Proteomic	 Atlas	 of	
Ubiquitination	and	Acetylation	in	the	DNA	Damage	Response.	Mol	Cell	59,	867-881.	

Ewing,	 S.P.,	 Lockshon,	 D.,	 and	 Jencks,	 W.P.	 (1980).	 Mechanism	 of	 cleavage	 of	
carbamate	anions.	J	Am	Chem	Soc	102,	3072-3084.	

Finley,	D.,	and	Chau,	V.	(1991).	Ubiquitination.	Annu	Rev	Cell	Biol	7,	25-69.	

Fong,	 A.,	 and	 Sun,	 S.C.	 (2002).	 Genetic	 evidence	 for	 the	 essential	 role	 of	 beta-
transducin	 repeat-containing	 protein	 in	 the	 inducible	 processing	 of	 NF-kappa	
B2/p100.	Journal	of	Biological	Chemistry	277,	22111-22114.	

Frommer,	W.B.	(2010).	CO(2)mmon	Sense.	Science	327,	275-276.	

Gil,	 J.,	 Ramirez-Torres,	 A.,	 Chiappe,	 D.,	 Luna-Penaloza,	 J.,	 Fernandez-Reyes,	 F.C.,	
Arcos-Encarnacion,	 B.,	 Contreras,	 S.,	 and	 Encarnacion-Guevara,	 S.	 (2017).	 Lysine	



	
65	

acetylation	 stoichiometry	 and	 proteomics	 analyses	 reveal	 pathways	 regulated	 by	
sirtuin	1	in	human	cells.	The	Journal	of	biological	chemistry.	

Glass,	D.J.	(2005).	Skeletal	muscle	hypertrophy	and	atrophy	signaling	pathways.	Int	J	
Biochem	Cell	Biol	37,	1974-1984.	

Glibert,	P.,	Meert,	P.,	Van	Steendam,	K.,	Martens,	L.,	Deforce,	D.,	and	Dhaenens,	M.	
(2015).	Phospho-iTRAQ	data	article:	Assessing	isobaric	labels	for	the	large-scale	study	
of	phosphopeptide	stoichiometry.	Data	in	brief	4,	60-65.	

Golemi,	D.,	Maveyraud,	L.,	Vakulenko,	S.,	Samama,	J.P.,	and	Mobashery,	S.	(2001).	
Critical	 involvement	of	a	carbamylated	 lysine	 in	catalytic	 function	of	class	D	beta-
lactamases.	Proc	Natl	Acad	Sci	U	S	A	98,	14280-14285.	

Gregori,	 L.,	 Poosch,	M.S.,	 Cousins,	G.,	 and	Chau,	V.	 (1990).	A	uniform	 isopeptide-
linked	 multiubiquitin	 chain	 is	 sufficient	 to	 target	 substrate	 for	 degradation	 in	
ubiquitin-mediated	proteolysis.	Journal	of	Biological	Chemistry	265,	8354-8357.	

Gutknecht,	 J.,	Bisson,	M.A.,	and	Tosteson,	F.C.	 (1977).	Diffusion	of	carbon-dioxide	
through	lipid	bilayer	membranes	-	effects	of	carbonic-anhydrase,	bicarbonate,	and	
unstirred	layers.	Journal	of	General	Physiology	69,	779-794.	

Gwoździńska,	P.,	Buchbinder,	B.A.,	Mayer,	K.,	Herold,	S.,	Morty,	R.E.,	Seeger,	W.,	and	
Vadász,	 I.	 (2017).	 Hypercapnia	 Impairs	 ENaC	 Cell	 Surface	 Stability	 by	 Promoting	
Phosphorylation,	Polyubiquitination	and	Endocytosis	of	β-ENaC	in	a	Human	Alveolar	
Epithelial	Cell	Line.	Front	Immunol	8.	591	

Hackling,	M.W.,	and	Garnett,	P.J.	 (1985).	Misconceptions	of	 chemical-equilibrium.	
European	Journal	of	Science	Education	7,	205-214.	

Haegens,	A.,	Schols,	A.M.,	Gorissen,	S.H.,	van	Essen,	A.L.,	Snepvangers,	F.,	Gray,	D.A.,	
Shoelson,	 S.E.,	 and	 Langen,	 R.C.	 (2012).	 NF-kappa	 B	 activation	 and	 polyubiquitin	
conjugation	are	required	for	pulmonary	inflammation-induced	diaphragm	atrophy.	
Am	J	Physiol-Lung	Cell	Mol	Physiol	302,	L103-L110.	

Hailfinger,	S.,	Lenz,	G.,	Ngo,	V.,	Posvitz-Fejfar,	A.,	Rebeaud,	F.,	Guzzardi,	M.,	Penas,	
E.-M.M.,	Dierlamm,	J.,	Chan,	W.C.,	Staudt,	L.M.,	et	al.	(2009).	Essential	role	of	MALT1	
protease	activity	in	activated	B	cell-like	diffuse	large	B-cell	lymphoma.	Proceedings	
of	 the	National	Academy	of	Sciences	of	 the	United	States	of	America	106,	19946-
19951.	

Hall,	P.R.,	Zheng,	R.,	Antony,	L.,	Pusztai-Carey,	M.,	Carey,	P.R.,	and	Yee,	V.C.	(2004).	
Transcarboxylase	5S	structures:	assembly	and	catalytic	mechanism	of	a	multienzyme	
complex	subunit.	EMBO	J	23,	3621-3631.	

Hampe,	E.M.,	and	Rudkevich,	D.M.	 (2003).	Exploring	reversible	reactions	between	
CO2	and	amines.	Tetrahedron	59,	9619-9625.	

Hanly,	E.J.,	Fuentes,	 J.M.,	Aurora,	A.R.,	Bachman,	S.L.,	De	Maio,	A.,	Marohn,	M.R.,	
and	Talamini,	M.A.	 (2006).	Carbon	dioxide	pneumoperitoneum	prevents	mortality	
from	sepsis.	Surgical	Endoscopy	and	Other	Interventional	Techniques	20,	1482-1487.	

Heissmeyer,	 V.,	 Krappmann,	 D.,	 Hatada,	 E.N.,	 and	 Scheidereit,	 C.	 (2001).	 Shared	
pathways	of	 I	 kappa	B	kinase-induced	SCF	beta	TrCP-mediated	ubiquitination	and	



	
66	

degradation	for	the	NF-kappa	B	precursor	p105	and	I	kappa	B	alpha.	Molecular	and	
Cellular	Biology	21,	1024-1035.	

Helenius,	I.T.,	Haake,	R.J.,	Kwon,	Y.J.,	Hu,	J.A.,	Krupinski,	T.,	Casalino-Matsuda,	S.M.,	
Sporn,	P.H.S.,	Sznajder,	J.I.,	and	Beitel,	G.J.	(2016a).	Identification	of	Drosophila	Zfh2	
as	 a	 Mediator	 of	 Hypercapnic	 Immune	 Regulation	 by	 a	 Genome-Wide	 RNA	
Interference	Screen.	Journal	of	Immunology	196,	655-667.	

Helenius,	I.T.,	Krupinski,	T.,	Turnbull,	D.W.,	Gruenbaum,	Y.,	Silverman,	N.,	Johnson,	
E.A.,	 Sporn,	 P.H.S.,	 Sznajder,	 J.I.,	 and	 Beitel,	 G.J.	 (2009).	 Elevated	 CO2	 suppresses	
specific	Drosophila	innate	immune	responses	and	resistance	to	bacterial	 infection.	
Proceedings	of	 the	National	Academy	of	Sciences	of	 the	United	States	of	America	
106,	18710-18715.	

Helenius,	 I.T.,	 Nair,	 A.,	 Bittar,	 H.E.T.,	 Sznajder,	 J.I.,	 Sporn,	 P.H.S.,	 and	 Beitel,	 G.J.	
(2016b).	Focused	Screening	Identifies	Evoxine	as	a	Small	Molecule	That	Counteracts	
CO2-Induced	Immune	Suppression.	J	Biomol	Screen	21,	363-371.	

Henkel,	T.,	Machleidt,	T.,	Alkalay,	I.,	Kronke,	M.,	Ben-Neriah,	Y.,	and	Baeuerle,	P.A.	
(1993).	 Rapid	 proteolysis	 of	 I-kappa-B-alpha	 is	 necessary	 for	 activation	 of	
transcription	factor	NF-kappa-B.	Nature	365,	182-185.	

Hetherington,	A.M.,	and	Raven,	J.A.	(2005).	The	biology	of	carbon	dioxide.	Current	
Biology	15,	R406-R410.	

Hsia,	C.C.W.	 (1998).	Mechanisms	of	disease	 -	Respiratory	 function	of	hemoglobin.	
New	England	Journal	of	Medicine	338,	239-247.	

Huang,	H.N.,	Jeon,	M.S.,	Liao,	L.J.,	Yang,	C.,	Elly,	C.,	Yates,	J.R.,	and	Liu,	Y.C.	(2010).	
K33-Linked	 Polyubiquitination	 of	 T	 Cell	 Receptor-zeta	 Regulates	 Proteolysis-
Independent	T	Cell	Signaling.	Immunity	33,	60-70.	

Huckstepp,	 R.T.,	 and	 Dale,	 N.	 (2011).	 CO2-dependent	 opening	 of	 an	 inwardly	
rectifying	K+	channel.	Pflugers	Arch	461,	337-344.	

Huckstepp,	R.T.R.,	Bihi,	R.I.,	Eason,	R.,	Spyer,	K.M.,	Dicke,	N.,	Willecke,	K.,	Marina,	N.,	
Gourine,	 A.V.,	 and	 Dale,	 N.	 (2010a).	 Connexin	 hemichannel-mediated	 CO2-
dependent	release	of	ATP	in	the	medulla	oblongata	contributes	to	central	respiratory	
chemosensitivity.	Journal	of	Physiology-London	588,	3901-3920.	

Huckstepp,	 R.T.R.,	 Eason,	 R.,	 Sachdev,	 A.,	 and	 Dale,	 N.	 (2010b).	 CO2-dependent	
opening	of	connexin	26	and	related	beta	connexins.	 Journal	of	Physiology-London	
588,	3921-3931.	

Husnjak,	K.,	and	Dikic,	 I.	 (2012).	Ubiquitin-binding	proteins:	decoders	of	ubiquitin-
mediated	cellular	functions.	Annu	Rev	Biochem	81,	291-322.	

Jaitovich,	A.,	Angulo,	M.,	Lecuona,	E.,	Dada,	L.A.,	Welch,	L.C.,	Cheng,	Y.,	Gusarova,	G.,	
Ceco,	E.,	Liu,	C.,	Shigemura,	M.,	et	al.	(2015).	High	CO2	Levels	Cause	Skeletal	Muscle	
Atrophy	via	AMP-activated	Kinase	(AMPK),	FoxO3a	Protein,	and	Muscle-specific	Ring	
Finger	Protein	1	(MuRF1).	Journal	of	Biological	Chemistry	290,	9183-9194.	

Jentsch,	S.	(1992).	Ubiquitin-dependent	protein	degradation:	a	cellular	perspective.	
Trends	in	cell	biology	2,	98-103.	



	
67	

Jimenez-Morales,	D.,	Adamian,	L.,	Shi,	D.S.,	and	Liang,	J.	(2014).	Lysine	carboxylation:	
unveiling	 a	 spontaneous	 post-translational	 modification.	 Acta	 Crystallogr	 Sect	 D-
Struct	Biol	70,	48-57.	

Joshi,	 H.M.,	 and	 Tabita,	 F.R.	 (1996).	 A	 global	 two	 component	 signal	 transduction	
system	 that	 integrates	 the	control	of	photosynthesis,	 carbon	dioxide	assimilation,	
and	nitrogen	fixation.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	
States	of	America	93,	14515-14520.	

Kaiser,	 S.E.,	 Riley,	 B.E.,	 Shaler,	 T.A.,	 Trevino,	 R.S.,	 Becker,	 C.H.,	 Schulman,	H.,	 and	
Kopito,	R.R.	(2011).	Protein	standard	absolute	quantification	(PSAQ)	method	for	the	
measurement	of	cellular	ubiquitin	pools.	Nat	Methods	8,	691-U129.	

Karin,	 M.,	 and	 Ben-Neriah,	 Y.	 (2000).	 Phosphorylation	 meets	 ubiquitination:	 The	
control	of	NF-kappa	B	activity.	Annual	Review	of	Immunology	18,	621-+.	

Keogh,	 C.E.,	 Scholz,	 C.C.,	 Rodriguez,	 J.,	 Selfridge,	 A.C.,	 von	 Kriegsheim,	 A.,	 and	
Cummins,	 E.P.	 (2017).	 Carbon	dioxide-dependent	 regulation	of	NF-kappa	B	 family	
members	 RelB	 and	 p100	 gives	 molecular	 insight	 into	 CO2-dependent	 immune	
regulation.	Journal	of	Biological	Chemistry	292,	11561-11571.	

Khalifah,	 R.G.	 (1973).	 Carbon-dioxide	 hydration	 activity	 of	 carbonic-anhydrase	 -	
paradoxical	consequences	of	unusually	rapid	catalysis.	Proceedings	of	the	National	
Academy	of	Sciences	of	the	United	States	of	America	70,	1986-1989.	

Kilmartin,	 J.V.,	 Fogg,	 J.,	 Luzzana,	 M.,	 and	 Rossiber.L	 (1973).	 Role	 of	 alpha-amino	
groups	of	alpha	and	beta	chains	of	human	hemoglobin	in	oxygen-linked	binding	of	
carbon-dioxide.	Journal	of	Biological	Chemistry	248,	7039-7043.	

Laffey,	 J.G.,	Honan,	D.,	Hopkins,	N.,	Hyvelin,	 J.M.,	Boylan,	 J.F.,	and	McLoughlin,	P.	
(2004).	Hypercapnic	acidosis	attenuates	endotoxin-induced	acute	lung	injury.	Am	J	
Respir	Crit	Care	Med	169,	46-56.	

Lecuona,	 E.,	 Sun,	 H.,	 Chen,	 J.,	 Trejo,	 H.E.,	 Baker,	 M.A.,	 and	 Sznajder,	 J.I.	 (2013).	
Protein	kinase	A-Ialpha	regulates	Na,K-ATPase	endocytosis	in	alveolar	epithelial	cells	
exposed	 to	 high	 CO(2)	 concentrations.	 American	 journal	 of	 respiratory	 cell	 and	
molecular	biology	48,	626-634.	

Leidner,	U.,	Palkowitsch,	L.,	Marienfeld,	U.,	Fischer,	D.,	and	Marienfeld,	R.	 (2008).	
Identification	 of	 lysine	 residues	 critical	 for	 the	 transcriptional	 activity	 and	
polyubiquitination	of	the	NF-kappa	B	family	member	RelB.	Biochem	J	416,	117-127.	

Lim,	 M.Y.,	 O'Brien,	 J.,	 Paulo,	 J.A.,	 and	 Gygi,	 S.P.	 (2017).	 Improved	 Method	 for	
Determining	Absolute	Phosphorylation	Stoichiometry	Using	Bayesian	Statistics	and	
Isobaric	Labeling.	Journal	of	proteome	research	16,	4217-4226.	

Lindskog,	S.	(1997).	Structure	and	mechanism	of	carbonic	anhydrase.	Pharmacology	
&	Therapeutics	74,	1-20.	

Linthwaite,	V.	(2016).	Development	of	a	novel	proteomics	tool	for	the	discovery	of	
unknown	carbamates	(University	of	Durham),	p.	240.	

Liu,	S.,	Jiang,	M.,	Wang,	W.,	Liu,	W.,	Song,	X.,	Ma,	Z.,	Zhang,	S.,	Liu,	L.,	Liu,	Y.,	and	Cao,	
X.	(2018).	Nuclear	RNF2	inhibits	interferon	function	by	promoting	K33-linked	STAT1	
disassociation	from	DNA.	Nat	Immunol	19,	41-52.	



	
68	

Lokireddy,	 S.,	 Kukushkin,	 N.V.,	 and	 Goldberg,	 A.L.	 (2015).	 cAMP-induced	
phosphorylation	of	26S	proteasomes	on	Rpn6/PSMD11	enhances	their	activity	and	
the	degradation	of	misfolded	proteins.	Proc	Natl	Acad	Sci	U	S	A	112,	E7176-7185.	

Lorimer,	G.H.	 (1983).	Carbon-dioxide	and	carbamate	formation	 -	 the	makings	of	a	
biochemical	control-system.	Trends	in	Biochemical	Sciences	8,	65-68.	

Lorimer,	 G.H.,	 Badger,	M.R.,	 and	 Andrews,	 T.J.	 (1976).	 Activation	 of	 ribulose-1,5-
bisphosphate	 carboxylase	 by	 carbon-dioxide	 and	 magnesium-ions	 -	 equilibria,	
kinetics,	 a	 suggested	mechanism,	 and	physiological	 implications.	Biochemistry	 15,	
529-536.	

Lorimer,	G.H.,	and	Miziorko,	H.M.	(1980).	Carbamate	formation	on	the	epsilon-amino	
group	 of	 a	 lysyl	 residue	 as	 the	 basis	 for	 the	 activation	 of	 ribulosebisphosphate	
carboxylase	by	CO2	and	mg2+.	Biochemistry	19,	5321-5328.	

Lu,	 Z.,	 Casalino-Matsuda,	 S.M.,	 Nair,	 A.,	 Buchbinder,	 A.,	 Budinger,	 G.R.S.,	 Sporn,	
P.H.S.,	and	Gates,	K.L.	(2018).	A	role	for	heat	shock	factor	1	in	hypercapnia-induced	
inhibition	of	inflammatory	cytokine	expression.	FASEB	J,	fj201701164R.	

Marienfeld,	 R.,	 Berberich-Siebelt,	 F.,	 Berberich,	 I.,	 Denk,	 A.,	 Serfling,	 E.,	 and	
Neumann,	 M.	 (2001).	 Signal-specific	 and	 phosphorylation-dependent	 RelB	
degradation:	 a	 potential	 mechanism	 of	 NF-kappa	 B	 control.	 Oncogene	 20,	 8142-
8147.	

Maspero,	E.,	Valentini,	E.,	Mari,	S.,	Cecatiello,	V.,	Soffientini,	P.,	Pasqualato,	S.,	and	
Polo,	 S.	 (2013).	 Structure	of	 a	 ubiquitin-loaded	HECT	 ligase	 reveals	 the	molecular	
basis	for	catalytic	priming.	Nat	Struct	Mol	Biol	20,	696-701.	

Matsuda,	N.	(2016).	Phospho-ubiquitin:	upending	the	PINK-Parkin-ubiquitin	cascade.	
J	Biochem	159,	379-385.	

Matthay,	M.A.,	Folkesson,	H.G.,	and	Clerici,	C.	(2002).	Lung	epithelial	fluid	transport	
and	the	resolution	of	pulmonary	edema.	Physiol	Rev	82,	569-600.	

Matthew,	 J.B.,	 Morrow,	 J.S.,	 Wittebort,	 R.J.,	 and	 Gurd,	 F.R.	 (1977).	 Quantitative	
determination	 of	 carbamino	 adducts	 of	 alpha	 and	 beta	 chains	 in	 human	 adult	
hemoglobin	 in	 presence	 and	 absence	 of	 carbon	 monoxide	 and	 2,3-
diphosphoglycerate.	The	Journal	of	biological	chemistry	252,	2234-2244.	

Maveyraud,	L.,	Golemi,	D.,	Kotra,	L.P.,	Tranier,	S.,	Vakulenko,	S.,	Mobashery,	S.,	and	
Samama,	J.P.	(2000).	Insights	into	class	D	beta-lactamases	are	revealed	by	the	crystal	
structure	of	the	OXA10	enzyme	from	Pseudomonas	aeruginosa.	Structure	8,	1289-
1298.	

Meigh,	L.,	Greenhalgh,	S.A.,	Rodgers,	T.L.,	Cann,	M.J.,	Roper,	D.I.,	and	Dale,	N.	(2013).	
CO2	 directly	modulates	 connexin	 26	 by	 formation	 of	 carbamate	 bridges	 between	
subunits.	Elife	2,	13.	

Morollo,	A.A.,	Petsko,	G.A.,	and	Ringe,	D.	(1999).	Structure	of	a	Michaelis	complex	
analogue:	propionate	binds	 in	 the	substrate	carboxylate	site	of	alanine	 racemase.	
Biochemistry	38,	3293-3301.	

Moroney,	 J.V.,	 Bartlett,	 S.G.,	 and	 Samuelsson,	 G.	 (2001).	 Carbonic	 anhydrases	 in	
plants	and	algae.	Plant	Cell	Environ	24,	141-153.	



	
69	

Neumann,	M.,	Klar,	S.,	Wilisch-Neumann,	A.,	Hollenbach,	E.,	Kavuri,	S.,	Leverkus,	M.,	
Kandolf,	 R.,	 Brunner-Weinzierl,	 M.C.,	 and	 Klingel,	 K.	 (2011).	 Glycogen	 synthase	
kinase-3	beta	is	a	crucial	mediator	of	signal-induced	RelB	degradation.	Oncogene	30,	
2485-2492.	

Nibe,	 Y.,	 Oshima,	 S.,	 Kobayashi,	 M.,	 Maeyashiki,	 C.,	 Matsuzawa,	 Y.,	 Otsubo,	 K.,	
Matsuda,	H.,	Aonuma,	E.,	Nemoto,	Y.,	Nagaishi,	T.,	et	al.	(2018).	Novel	polyubiquitin	
imaging	 system,	 PolyUb-FC,	 reveals	 that	 K33-linked	 polyubiquitin	 is	 recruited	 by	
SQSTM1/p62.	Autophagy,	1-12.	

Nichol,	A.D.,	O'Cronin,	D.F.,	Howell,	K.,	Naughton,	F.,	O'Brien,	S.,	Boylan,	J.,	O'Connor,	
C.,	O'Toole,	D.,	Laffey,	J.G.,	and	McLoughlin,	P.	(2009).	Infection-induced	lung	injury	
is	worsened	after	renal	buffering	of	hypercapnic	acidosis.	Crit	Care	Med	37,	2953-
2961.	

Ohtake,	F.,	Saeki,	Y.,	Sakamoto,	K.,	Ohtake,	K.,	Nishikawa,	H.,	Tsuchiya,	H.,	Ohta,	T.,	
Tanaka,	K.,	and	Kanno,	 J.	 (2015).	Ubiquitin	acetylation	 inhibits	polyubiquitin	chain	
elongation.	EMBO	Rep	16,	192-201.	

Oliver,	 K.M.,	 Lenihan,	 C.R.,	 Bruning,	 U.,	 Cheong,	 A.,	 Laffey,	 J.G.,	 McLoughlin,	 P.,	
Taylor,	C.T.,	and	Cummins,	E.P.	(2012).	Hypercapnia	Induces	Cleavage	and	Nuclear	
Localization	of	RelB	Protein,	Giving	Insight	into	CO2	Sensing	and	Signaling.	Journal	of	
Biological	Chemistry	287,	14004-14011.	

Orian,	A.,	Gonen,	H.,	Bercovich,	B.,	Fajerman,	I.,	Eytan,	E.,	Israel,	A.,	Mercurio,	F.,	Iwai,	
K.,	 Schwartz,	 A.L.,	 and	 Ciechanover,	 A.	 (2000).	 SCF	 beta-TrcP	 ubiquitin	 ligase-
mediated	processing	of	NF-kappa	B	p105	requires	phosphorylation	of	its	C-terminus	
by	I	kappa	B	kinase.	Embo	Journal	19,	2580-2591.	

Ottenheijm,	C.A.C.,	Heunks,	L.M.A.,	Li,	Y.P.,	Jin,	B.W.,	Minnaard,	R.,	van	Hees,	H.W.H.,	
and	Dekhuijzen,	P.N.R.	 (2006).	Activation	of	 the	ubiquitin-proteasome	pathway	 in	
the	diaphragm	in	chronic	obstructive	pulmonary	disease.	Am	J	Respir	Crit	Care	Med	
174,	997-1002.	

Otulakowski,	 G.,	 Engelberts,	 D.,	 Gusarova,	 G.A.,	 Bhattacharya,	 J.,	 Post,	 M.,	 and	
Kavanagh,	B.P.	(2014).	Hypercapnia	attenuates	ventilator-induced	lung	injury	via	a	
disintegrin	and	metalloprotease-17.	Journal	of	Physiology-London	592,	4507-4521.	

Palombella,	V.J.,	Rando,	O.J.,	Goldberg,	A.L.,	and	Maniatis,	T.	(1994).	The	ubiquitin-
proteasome	pathway	is	required	for	processing	the	NF-kappa-B1	precursor	protein	
and	the	activation	of	NF-kappa-B.	Cell	78,	773-785.	

Pangestuti,	 R.	 (2009).	 An	 Investigation	 into	 the	Role	 of	 the	Ubiquitin-Proteasome	
System	 in	 Plant	 Defence.	 In	 Faculty	 of	 Biomedical	 and	 Life	 Science	 (University	 of	
Glasgow).	

Passmore,	 L.A.,	 and	 Barford,	 D.	 (2004).	 Getting	 into	 position:	 the	 catalytic	
mechanisms	of	protein	ubiquitylation.	Biochem	J	379,	513-525.	

Peng,	 J.M.,	 Schwartz,	 D.,	 Elias,	 J.E.,	 Thoreen,	 C.C.,	 Cheng,	 D.M.,	 Marsischky,	 G.,	
Roelofs,	J.,	Finley,	D.,	and	Gygi,	S.P.	(2003).	A	proteomics	approach	to	understanding	
protein	ubiquitination.	Nat	Biotechnol	21,	921-926.	



	
70	

Perkins,	N.D.	 (2007).	 Integrating	cell-signalling	pathways	with	NF-kappa	B	and	 IKK	
function.	Nature	Reviews	Molecular	Cell	Biology	8,	49-62.	

Petroski,	 M.D.,	 and	 Deshaies,	 R.J.	 (2005).	 Function	 and	 regulation	 of	 Cullin-RING	
ubiquitin	ligases.	Nature	Reviews	Molecular	Cell	Biology	6,	9-20.	

Pichler,	 A.,	 Knipscheer,	 P.,	 Oberhofer,	 E.,	 van	 Dijk,	 W.J.,	 Korner,	 R.,	 Olsen,	 J.V.,	
Jentsch,	S.,	Melchior,	F.,	and	Sixma,	T.K.	(2005).	SUMO	modification	of	the	ubiquitin-
conjugating	enzyme	E2-25K.	Nat	Struct	Mol	Biol	12,	264-269.	

Pickart,	 C.M.	 (2001).	 Mechanisms	 underlying	 ubiquitination.	 Annual	 Review	 of	
Biochemistry	70,	503-533.	

Pickart,	C.M.,	and	Raasi,	S.	 (2005).	Controlled	synthesis	of	polyubiquitin	chains.	 In	
Ubiquitin	 and	 Protein	 Degradation,	 Pt	 B,	 R.J.	 Deshaies,	 ed.	 (San	 Diego:	 Elsevier	
Academic	Press	Inc),	pp.	21-36.	

Puhan,	M.A.,	 Gimeno-Santos,	 E.,	 Scharplatz,	M.,	 Troosters,	 T.,	Walters,	 E.H.,	 and	
Steurer,	 J.	 (2011).	 Pulmonary	 rehabilitation	 following	 exacerbations	 of	 chronic	
obstructive	 pulmonary	 disease.	 The	 Cochrane	 database	 of	 systematic	 reviews,	
Cd005305.	

Rappsilber,	 J.,	Mann,	M.,	 and	 Ishihama,	 Y.	 (2007).	 Protocol	 for	micro-purification,	
enrichment,	 pre-fractionation	 and	 storage	 of	 peptides	 for	 proteomics	 using	
StageTips.	Nature	protocols	2,	1896-1906.	

Rodrigo-Brenni,	M.C.,	Foster,	S.A.,	and	Morgan,	D.O.	(2010).	Catalysis	of	lysine	48-
specific	ubiquitin	chain	assembly	by	residues	in	E2	and	ubiquitin.	Mol	Cell	39,	548-
559.	

Sadowski,	M.,	and	Sarcevic,	B.	(2010).	Mechanisms	of	mono-	and	poly-ubiquitination:	
Ubiquitination	specificity	depends	on	compatibility	between	the	E2	catalytic	core	and	
amino	acid	residues	proximal	to	the	lysine.	Cell	Div	5,	5.	

Saha,	A.,	Lewis,	S.,	Kleiger,	G.,	Kuhlman,	B.,	and	Deshaies,	R.J.	(2011).	Essential	role	
for	ubiquitin-ubiquitin-conjugating	enzyme	 interaction	 in	ubiquitin	discharge	 from	
Cdc34	to	substrate.	Mol	Cell	42,	75-83.	

Singh,	S.K.,	Sahu,	I.,	Mali,	S.M.,	Hemantha,	H.P.,	Kleifeld,	O.,	Glickman,	M.H.,	and	Brik,	
A.	 (2016).	 Synthetic	 Uncleavable	 Ubiquitinated	 Proteins	 Dissect	 Proteasome	
Deubiquitination	and	Degradation,	and	Highlight	Distinctive	Fate	of	Tetraubiquitin.	J	
Am	Chem	Soc	138,	16004-16015.	

Song,	M.,	Pinsky,	M.R.,	and	Kellum,	J.A.	(2008).	Heat	shock	factor	1	inhibits	nuclear	
factor-kappaB	nuclear	binding	activity	during	endotoxin	tolerance	and	heat	shock.	
Journal	of	critical	care	23,	406-415.	

Stadie,	W.C.,	and	O'Brien,	H.	(1936).	The	carbamate	equillbrium	I.	The	equilibrium	of	
amino	acids,	carbon	dioxide,	and	carbamates	in	aqueous	solution;	With	a	note	on	the	
Ferguson-Roughton	 careamate	method.	 Journal	 of	 Biological	 Chemistry	 112,	 723-
758.	

Sun,	S.C.,	Ganchi,	P.A.,	Ballard,	D.W.,	and	Greene,	W.C.	(1993).	Nf-kappa-B	controls	
expression	of	 inhibitor	 I-kappa-B-alpha	 -	 evidence	 for	 an	 inducible	autoregulatory	
pathway.	Science	259,	1912-1915.	



	
71	

Supuran,	C.T.,	Scozzafava,	A.,	and	Casini,	A.	 (2003).	Carbonic	anhydrase	 inhibitors.	
Medicinal	Research	Reviews	23,	146-189.	

Suraweera,	A.,	Munch,	C.,	Hanssum,	A.,	and	Bertolotti,	A.	(2012).	Failure	of	amino	
acid	homeostasis	causes	cell	death	following	proteasome	inhibition.	Mol	Cell	48,	242-
253.	

Sznajder,	 J.I.	 (2001).	 Alveolar	 edema	 must	 be	 cleared	 for	 the	 acute	 respiratory	
distress	syndrome	patient	to	survive.	Am	J	Respir	Crit	Care	Med	163,	1293-1294.	

Takeshita,	K.,	Suzuki,	Y.,	Nishio,	K.,	Takeuchi,	O.,	Toda,	K.,	Kudo,	H.,	Miyao,	N.,	Ishii,	
M.,	 Sato,	 N.,	 Naoki,	 K.,	 et	 al.	 (2003).	 Hypercapnic	 acidosis	 attenuates	 endotoxin-
induced	nuclear	factor-[kappa]B	activation.	American	journal	of	respiratory	cell	and	
molecular	biology	29,	124-132.	

Terrier,	P.,	and	Douglas,	D.J.	(2010).	Carbamino	Group	Formation	with	Peptides	and	
Proteins	Studied	by	Mass	Spectrometry.	J	Am	Soc	Mass	Spectrom	21,	1500-1505.	

Thrower,	J.S.,	Hoffman,	L.,	Rechsteiner,	M.,	and	Pickart,	C.M.	(2000).	Recognition	of	
the	polyubiquitin	proteolytic	signal.	Embo	Journal	19,	94-102.	

Tomanek,	 L.,	 Zuzow,	 M.J.,	 Ivanina,	 A.V.,	 Beniash,	 E.,	 and	 Sokolova,	 I.M.	 (2011).	
Proteomic	response	to	elevated	PCO2	level	in	eastern	oysters,	Crassostrea	virginica:	
evidence	for	oxidative	stress.	J	Exp	Biol	214,	1836-1844.	

Townsend,	P.D.,	Holliday,	P.M.,	Fenyk,	S.,	Hess,	K.C.,	Gray,	M.A.,	Hodgson,	D.R.,	and	
Cann,	M.J.	(2009).	Stimulation	of	mammalian	G-protein-responsive	adenylyl	cyclases	
by	carbon	dioxide.	The	Journal	of	biological	chemistry	284,	784-791.	

Turner,	M.J.,	Saint-Criq,	V.,	Patel,	W.,	 Ibrahim,	S.H.,	Verdon,	B.,	Ward,	C.,	Garnett,	
J.P.,	 Tarran,	 R.,	 Cann,	M.J.,	 and	Gray,	M.A.	 (2016).	 Hypercapnia	modulates	 cAMP	
signalling	 and	 cystic	 fibrosis	 transmembrane	 conductance	 regulator-dependent	
anion	and	fluid	secretion	in	airway	epithelia.	J	Physiol	594,	1643-1661.	

Vadasz,	 I.,	Dada,	 L.A.,	Briva,	A.,	Helenius,	 I.T.,	 Sharabi,	K.,	Welch,	 L.C.,	Kelly,	A.M.,	
Grzesik,	B.A.,	Budinger,	G.R.S.,	Liu,	J.,	et	al.	(2012).	Evolutionary	Conserved	Role	of	c-
Jun-N-Terminal	Kinase	in	CO2-Induced	Epithelial	Dysfunction.	PloS	one	7,	9.	

Vadasz,	I.,	Dada,	L.A.,	Briva,	A.,	Trejo,	H.E.,	Welch,	L.C.,	Chen,	J.,	Toth,	P.T.,	Lecuona,	
E.,	 Witters,	 L.A.,	 Schumacker,	 P.T.,	 et	 al.	 (2008).	 AMP-activated	 protein	 kinase	
regulates	 CO2-induced	 alveolar	 epithelial	 dysfunction	 in	 rats	 and	 human	 cells	 by	
promoting	Na,K-ATPase	endocytosis.	The	Journal	of	clinical	 investigation	118,	752-
762.	

Vadasz,	I.,	Raviv,	S.,	and	Sznajder,	J.I.	(2007).	Alveolar	epithelium	and	Na,K-ATPase	in	
acute	lung	injury.	Intensive	care	medicine	33,	1243-1251.	

Vandegriff,	K.D.,	Benazzi,	L.,	Ripamonti,	M.,	Perrella,	M.,	Letellier,	Y.C.,	Zegna,	A.,	and	
Winslow,	 R.M.	 (1991).	 Carbon-dioxide	 binding	 to	 human	 hemoglobin	 cross-linked	
between	the	alpha-chains.	Journal	of	Biological	Chemistry	266,	2697-2700.	

Velentzas,	 P.D.,	 Velentzas,	 A.D.,	 Mpakou,	 V.E.,	 Antonelou,	M.H.,	 Margaritis,	 L.H.,	
Papassideri,	 I.S.,	 and	 Stravopodis,	 D.J.	 (2013).	 Detrimental	 effects	 of	 proteasome	
inhibition	activity	in	Drosophila	melanogaster:	 implication	of	ER	stress,	autophagy,	
and	apoptosis.	Cell	biology	and	toxicology	29,	13-37.	



	
72	

Wang,	N.Z.,	Gates,	K.L.,	Trejo,	H.,	Favoreto,	S.,	Schleimer,	R.P.,	Sznajder,	J.I.,	Beitel,	
G.J.,	 and	 Sporn,	 P.H.S.	 (2010).	 Elevated	 CO2	 selectively	 inhibits	 interleukin-6	 and	
tumor	necrosis	 factor	 expression	 and	decreases	phagocytosis	 in	 the	macrophage.	
Faseb	Journal	24,	2178-2190.	

Wauer,	 T.,	 Swatek,	 K.N.,	Wagstaff,	 J.L.,	 Gladkova,	 C.,	 Pruneda,	 J.N.,	Michel,	M.A.,	
Gersch,	M.,	Johnson,	C.M.,	Freund,	S.M.,	and	Komander,	D.	(2015).	Ubiquitin	Ser65	
phosphorylation	affects	ubiquitin	structure,	chain	assembly	and	hydrolysis.	EMBO	J	
34,	307-325.	

Welch,	L.C.,	Lecuona,	E.,	Briva,	A.,	Trejo,	H.E.,	Dada,	L.A.,	and	Sznajder,	J.I.	 (2010).	
Extracellular	 signal-regulated	kinase	 (ERK)	participates	 in	 the	hypercapnia-induced	
Na,K-ATPase	downregulation.	FEBS	Lett	584,	3985-3989.	

West,	J.B.	(2014).	Joseph	Black,	carbon	dioxide,	 latent	heat,	and	the	beginnings	of	
the	discovery	of	the	respiratory	gases.	Am	J	Physiol	Lung	Cell	Mol	Physiol	306,	L1057-
1063.	

Wisniewski,	J.R.,	Zougman,	A.,	Nagaraj,	N.,	and	Mann,	M.	(2009).	Universal	sample	
preparation	method	for	proteome	analysis.	Nat	Methods	6,	359-362.	

Wu,	C.,	and	Ghosh,	S.	(1999).	beta-TrCP	mediates	the	signal-induced	ubiquitination	
of	I	kappa	B	beta.	Journal	of	Biological	Chemistry	274,	29591-29594.	

Wu,	 G.,	 Xu,	 G.Z.,	 Schulman,	 B.A.,	 Jeffrey,	 P.D.,	 Harper,	 J.W.,	 and	 Pavletich,	 N.P.	
(2003).	 Structure	 of	 a	 beta-TrCP1-Skp1-beta-catenin	 complex:	 Destruction	 motif	
binding	and	lysine	specificity	of	the	SCF	beta-TrCP1	ubiquitin	ligase.	Molecular	Cell	
11,	1445-1456.	

Yamaguchi,	 K.,	 and	 Hausinger,	 R.P.	 (1997).	 Substitution	 of	 the	 urease	 active	 site	
carbamate	by	dithiocarbamate	and	vanadate.	Biochemistry	36,	15118-15122.	

Yang,	M.J.,	Chen,	T.Y.,	Li,	X.L.,	Yu,	Z.,	Tang,	S.Q.,	Wang,	C.,	Gu,	Y.,	Liu,	Y.F.,	Xu,	S.,	Li,	
W.H.,	et	al.	(2015).	K33-linked	polyubiquitination	of	Zap70	by	Nrdp1	controls	CD8(+)	
T	cell	activation.	Nature	Immunology	16,	1253-1262.	

Yaron,	 A.,	 Gonen,	 H.,	 Alkalay,	 I.,	 Hatzubai,	 A.,	 Jung,	 S.,	 Beyth,	 S.,	 Mercurio,	 F.,	
Manning,	A.M.,	Ciechanover,	A.,	and	Ben-Neriah,	Y.	(1997).	Inhibition	of	NF-kappa	B	
cellular	function	via	specific	targeting	of	the	I	kappa	B-ubiquitin	ligase.	Embo	Journal	
16,	6486-6494.	

Yaron,	A.,	Hatzubai,	A.,	Davis,	M.,	Lavon,	I.,	Amit,	S.,	Manning,	A.M.,	Andersen,	J.S.,	
Mann,	M.,	Mercurio,	 F.,	 and	 Ben-Neriah,	 Y.	 (1998).	 Identification	 of	 the	 receptor	
component	of	the	I	kappa	B	alpha-ubiquitin	ligase.	Nature	396,	590-594.	

Yuan,	W.C.,	Lee,	Y.R.,	Lin,	S.Y.,	Chang,	L.Y.,	Tan,	Y.P.,	Hung,	C.C.,	Kuo,	J.C.,	Liu,	C.H.,	
Lin,	M.Y.,	Xu,	M.,	et	al.	(2014).	K33-Linked	Polyubiquitination	of	Coronin	7	by	Cul3-
KLHL20	Ubiquitin	E3	Ligase	Regulates	Protein	Trafficking.	Molecular	Cell	54,	586-600.	

Zinngrebe,	 J.,	Montinaro,	 A.,	 Peltzer,	N.,	 and	Walczak,	H.	 (2014).	Ubiquitin	 in	 the	
immune	system.	EMBO	Rep	15,	28-45.	

	


