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Joshua James Podmore 

 

Abstract 

Over the past decade there have been substantial improvements in vision based Brain-Computer 

Interface (BCI) spellers for quadriplegic patient populations. This thesis contains a review of the 

numerous bio-signals available to BCI researchers, as well as a brief chronology of foremost 

decoding methodologies used to date. Recent advances in classification accuracy and information 

transfer rate can be primarily attributed to time consuming patient specific parameter optimization 

procedures. The aim of the current study was to develop analysis software with potential ‘plug-in-

and-play’ functionality. To this end, convolutional neural networks, presently established as state 

of the art analytical techniques for image processing, were utilized. The thesis herein defines deep 

convolutional neural network architecture for the offline classification of phase and frequency 

encoded SSVEP bio-signals. Networks were trained using an extensive 35 participant open source 

Electroencephalographic (EEG) benchmark dataset (Department of Bio-medical Engineering, 

Tsinghua University, Beijing). Average classification accuracies of 82.24% and information 

transfer rates of 22.22 bpm were achieved on a BCI naïve participant dataset for a 40 target 

alphanumeric display, in absence of any patient specific parameter optimization. 
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Aim 
The aim of the present thesis is to summarise and then extend upon findings across a vast array of 

non-invasive Brain-Computer Interface (BCI) research. Here I will scientifically examine the 

potential of deep learning neural networks to decode Steady State Visual Evoked Potentials 

(SSVEP) bio-signals, as harnessed via Electroencephalogram (EEG) for BCI communication 

applications. The majority of BCI spelling systems involve assigning alphanumeric characters to 

unique stimulus classes which produce reliable changes in bio-signal time-series data. In order to 

reduce misclassification error researchers often optimize the stimulus and EEG configurations on 

the single-subject level. The central premise under investigation is whether or not there exists 

sufficient similarity between 40 classes of SSVEP EEG data across trials and critically across 

participants to produce classification accuracy values >=70%. This is a crucial step in the 

development of a ‘plug-in-and-play’ BCI speller for rehabilitation and assistive applications.  This 

refers to a BCI which is capable of performing at industry level standards (>=70%) without; 

extensive pre-interfacing data collection, intensive training periods or laborious optimization 

processes. I will discuss in successive order the alternative bio-signals available for BCI 

applications, ultimately validating our selection of the SSVEP due to: 1) signal stability, 2) low 

latency/ refractory period, 3) minimal incidence of BCI illiteracy, and 4) primarily bottom up 

activation pathway. I will justify the implementation of a matrix style graphical user interface 

based on: 1) short training period, 2) low user operational fatigue, and 3) potential for maximal 

information transfer rates. I will finally substantiate the claim that convolutional neural networks 

(CNNs) possess qualities which surpass the techniques currently employed in terms of: 1) noise 

resilience, 2) generalisability across participants, 3) user specific data integration, and 4) potential 

for rapid deployment.  

BCI Definition and Origins 

BCIs are integrated hardware and software ensembles that harness bio-signals to power assistive 

devices (Vidal, 1973, Wolpaw, Birbaumer, McFarland, Pfurtscheller & Vaughan, 2002, Blankertz 

et al, 2006). These differ from Neural Computer Interfaces (NCI) which acquire signals from 

neurones peripheral to the brain, utilizing such techniques as electromyographic recording from 

afferent effectors (motor neurones within intact muscle groups) (Mackenzie & Ashtiani, 2011, 

Vasiljevas, Turčinas, & Damaševičius, 2014). Over the past decade a number of significant 

developments have fostered a surge in BCI performance. Firstly, bio-signal acquisition devices 

such as eye trackers, electroencephalographs (EEG) and electromyograms (EMGs) have been 

introduced to the consumer market. This has improved online trouble-shooting documentation, the 

quantity of open source datasets and provided manufacturers with greater incentives to optimize 

their products across platforms, enhancing compatibility.  Advances in signal processing 

algorithms for estimating optimal acquisition device configurations, pre-processing methods for 

artefacts removal and online device calibration techniques have led to the collection of cleaner, 

higher fidelity data. Finally, progress in long-life, high capacity, lightweight battery packs have 

enabled researchers to test BCI during mobile tasks, increasing the practicality of wearable BCI 

technology.  

 

Synchronous vs Asynchronous/ Reactive vs Active BCI differentiation  

There is a multifarious array of BCI formats which researchers must consider in relation to BCI 

end-users. Synchronous BCIs refer to systems in which the stimuli code is temporally locked.  The 

discrete timing sequences of stimuli events are logged and serve as triggers to begin data 

acquisition, or operate as markers for the partitioning of data.  Subsequently, analysis of the bio-

signal time-series data is then performed. Finally, predictions are then made estimating the 

operation the user intends to perform. The BCI then cycles through these operations, all of which 

are dependent the initial presentation of a pre-specified time-locked stimulus. (Diez, Mut, Perona 

& Leber, 2011) These forms of BCI are also often found, however not exclusively, alongside so-

called reactive BCI formats (Zander, Kothe, Jatzev & Gaertner, 2010). These systems involve 

attending external stimuli, such as a visual array, in order to generate reliable bio-signals for 
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controller systems to interact with afferent effectors. In contrast, asynchronous systems monitor 

user bio-signals continuously (Krumpe, Walter, Rosentiel & Spüler, 2016). Initiation of a cue is 

locked to a specific event. Assistive eye-tracking devices, more broadly categorized as Human-

Computer Interfaces (HCIs), are often used in these contexts, as user fixation position can be 

monitored continuously with a high degree of resolution. Events such as the prolonged fixation of 

a visual target (dwell time), or a systematic pattern of winking and blinking can be programmed to 

operate different HCI functions. The latter is more problematic in BCI applications due to the 

inherently noisy characteristics of brain-based bio-signals. In order to maintain data integrity pre-

processing must be carried out iteratively via repeated manual calibration, or performed 

automatically by script-based algorithms. Active BCI formats are frequently paired with these 

asynchronous systems. These utilize internally generated signals in absence of external stimuli, 

such as imagined movements to power assistive devices. These methods are therefore theoretically 

capable of providing any individual, irrespective of medical condition, some level of BCI control. 

The task requirements of active BCIs to date are however far more cognitively taxing, meaning 

substantial training is necessary for smooth operation. The current thesis will explore the 

development of an analysis pipeline for a synchronous reactive style BCI, whereby time-locked 

SSVEP stimuli provide external stimulation to trigger bottom up brain-based bio-signals.  

 

BCI Configuration 

Numerous bio-signals have been identified and tested over the past decades allowing developers to 

target BCIs to specific patient populations. Signal selection will differ depending on: 1) patient 

condition, 2) the task in which the individual is being assisted, and 3) the patient’s willingness for 

invasive surgery. Irrespective of the BCI format and target end user population, all BCIs share a 

network of fundamental components. 1
st
: a bio-signal sensor. 2

nd
: signal acquisition hardware. 3

rd
: 

signal amplification hardware. 4
th
: signal pre-processing software. 5

th
: feature extraction. 6

th
: 

device interface. 7
th
: effector hardware.  The core aim of implementing this chain of code-based 

and hardware components is to ‘close the loop’ between the human user and their environment. In 

other words the goal of BCI is to provide real-time feedback between the user and their 

environment by restoring critical processes such as mobility and communication.  

Target Population 

The target population for the BCI research conducted herein is quadriplegic patients with anarthria 

(inability to vocalize) and dexterous vision in at least one eye. There are many aetiological 

pathways to this condition, the majority of which involve damage to either the brainstem or ventral 

pons. The most common pathways to injuring these cerebral areas are traumatic cerebral events 

such as ischemia (principally obstruction of the basilar arteries) (Patterson & Grabois, 1986) or 

haemorrhage (Kompanje, 2007). Less frequently cited aetiologies include progressive motor 

neurone diseases, such as amyotrophic lateral sclerosis, multiple sclerosis, polyneuritis with 

Guillain-Barre Syndrome, central pontine myelinolysis, cerebrospinal injury (thoracic level) and 

tumour formation (Smith & Delargy, 2005).  

 

Quadriplegic patients are referred to as having “locked-in syndrome” (LIS) when in a state of 

wakefulness in concert with evidence of awareness inside a non-functioning body (Reigada, 

Mendes, Paiva, Tavares & Goncalves, 2014). There exist many classification systems for locked in 

syndrome, ranging from classical (some residual muscle dexterity), incomplete (residual vertical 

eye movements and blinking retained) and complete locked in syndrome (absence of all voluntary 

muscular control).  The degenerative nature of progressive diseases, such as multiple sclerosis, 

lead to gradual reductions in the dexterity of muscle groups which initially appear unaffected by 

the condition. An individual could feasibly receive each of the above mentioned classifications 

throughout the duration of their life. The BCI research conducted thus far has focused primarily on 

the restoring functions which individuals with severe forms of paralysis can no longer perform 

independently. These include the restoration of mobility and communication. This thesis contains 

references to both these variants of BCI, however as the research conducted here involves the 

development of a BCI spelling device, the literature discussed mainly explores communication-

based BCIs. 
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During the initial stages of progressive motor diseases, vocalized communication may persist with 

a lower level of control, meaning communication can still be established with the use of vocal 

sounds. Emotive context may also be ascertainable from characteristic inflections in the delivery 

of the vocalized sounds. Eventually, communication may be dependent on the use of a picture or 

alphabet board containing images or characters. Users can use these types of apparatus to spell out 

their thoughts or current internal state to an observant conversational partner or clinical assistant. 

In the later stages of motor degeneration, use of alphabet boards and potentially even simplistic 

yes/ no answering system based on blinks can become unviable (Smith & Delargy, 2005). Many 

LIS patients cannot use conventional devices made for patients with severe motor disability, 

because these require reliable control over at least one muscle group (Khanna, Verma & Richard, 

2011). Previous studies into the mortality rate of patients suffering LIS vary depending on the 

aetiological basis for the condition (Patterson & Grabois, 1986). Associated vascular insults, 

specifically in relation to damage of the pons and brainstem demonstrate the highest risk of death 

and lowest probability of functional recovery. The most recent literature review reveals that 

despite modern therapeutic interventions only between 40-60% of patients survive the first four 

months after onset (Casonova, Lazzari, Lotta & Mazzuchi, 2003).  From these studies it is evident 

that BCI researchers must work tirelessly to keep open the window of communication between 

patients and patient families for as long as possible. The target population for which this thesis is 

aimed at excludes those with severe incomplete or complete locked syndrome and is primarily 

aimed at classical locked in syndrome patients with retained dexterous eye movements. 

 

Functionality  

Surveys conducted on potential and current users of BCIs reveal functionality is the most 

important aspect of an assistive device. This term constitutes; device usability, usage load (fatigue 

induction) and system set-up/ calibration time (Lopes, 2001). In the past two decades huge leaps 

have been made in the development of: 1) signal noise reduction (bio-signal sensor 

advancements), 2) user interface design (graphic user interface layout) and 3) system portability. 

In the last decade continual improvements in performance have been demonstrated at lower 

computational cost which is pushing BCIs to the above mentioned end-goal of closed-loop real-

time user control. The steady state visual evoked potential (SSVEP)-based convolutional neural 

networks (CNNs) defined herein possesses computational qualities which can achieve many of the 

critical characteristics a functional BCI must present. Primarily in relation to short system 

deployment duration, minimal training time and reduced mental workload during usage. 

Performance Metrics 

In order to evaluate BCIs across different use cases, stimuli designs and analyses methods, a 

number of performance metrics have emerged. Accuracy of Classification (AoC) is determined by 

calculating the proportion of correct predictions made in relation the total number of predictions. 

Often, AoC is expressed in an inverted format and referred to as error. In contrast this involves 

measuring the number of incorrect predictions, in relation to the total number of predictions made. 

Average Precision (AP) is determined by finding the proportion between the class predicted most 

frequently (mode) and the total number of predictions made. If an analytical method continuously 

predicts the same class, the method would be highly precise, this method could however 

continuously predict the same incorrect class. In this instance the analytical method demonstrates 

high precision and low accuracy. AoC and AP are primarily used by researchers to optimize the 

parameters of their BCI, for example these metrics would inform them of an uneven distribution of 

performance across classes. It is crucial to maintain consistent decode performance across classes 

in order to prevent interruptions in user workflow during real-time operation. The mean AoC 

(mAoC) and mean AP (MaP) metrics are used primarily to demonstrate BCI performance to 

external research groups and describes network performance across all classes tested. 

 

Information transfer rate (ITR) refers to the speed at which users can issue commands, typically 

expressed in bits per minute. This metric was originally developed to measure the practical output 

of telecommunication devices. Wolpaw & Ramoser (1998) were the first researchers to introduce 
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this metric to evaluate the performance of BCIs. The ITR equation includes the following 

variables: 1) total data acquisition time, 2) number of executable operations (referred to as targets 

or classes) per trial and 3) the mean error in class prediction. ITR has become a common metric in 

the field of BCI as it demonstrates the functional capabilities of a system. In other words, ITR 

demonstrates the ecological validity of a BCI by defining performance over time.  In reference to 

the equation below, N refers to the number of potential targets for classification, P denotes the 

probability that the target will be classified accurately and T indicates the duration of the data 

capture period. 

 

B = log2 (N) + P*log2 (P) + (1 - P)*log2 ((1-P)/ (N-1)) 

  

Bits per minute= B*60/T 

 

Infrequent mentions of analogous terminology such ‘letters per minute’ are present in BCI speller 

literature, as well as alternative methods of evaluating communication rate such as the ‘effective 

transfer rate’. However as AoC, mAoC, AP, MaP and ITR at the time of writing have been 

established as industry standards, these metrics will be used exclusively. 
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Electroencephalography 

The application of Electroencephalography (EEG) is at the forefront of BCI development. These 

systems are composed of electrodes designed to rest against the scalp, detecting changes in micro-

voltage across the lateral surface (Olejniczak, 2006). Neurones undergoing an action potential 

experience a shift in charged particles through the axon. This generates a primary electrical current 

and subsequent magnetic field. The harmonious propagation of action potentials leads to the 

generation of higher power magnetic fields.  In contrast, magneto-encephalographs (MEGs) are 

capable of detecting primary currents due to the use of superconducting quantum interference 

devices (SQUIDs) (Stufflebeam, Tanaka & Ahlfors, 2011). Non-invasive MEG systems are 

utilized primarily for pre-surgical mapping (Solomon, Boe & Bardouille, 2015, Ahmed & Rutka, 

2016, Alkhalili, Niranjan & Engh, 2016), post-surgical evaluation (Knowlton, 2008a, Knowlton et 

al, 2008b) and functional connectivity research (Spencer, Niznikiewicz, Shenton & McCarley, 

2008). Despite MEG’s higher resolution on the temporal axis, as well as increased spatial 

localization capabilities, these systems are extremely costly. Maintenance of a low magnetic 

interference environment (Faraday cage), substantial power demands and lack of mobility reduce 

the applicability of such systems in research. 

 

EEG differs from MEG by detecting so-called ‘secondary’ currents. Post-excitation a secondary 

magnetic field is generated which offsets the difference in charge across the neurone. The 

interaction of these magnetic fields leads to changes in the electrical potentials (micro-voltage) 

across the scalp. Behavioural, emotional and cognitive phenomena have been linked to changes in 

EEG signal amplitude and changes in the prevalence of frequency spectra (for review see, Mauss 

& Robinson, 2009). Traditionally, electrodes are housed in a flexible cap arranged according to the 

standardized 10-20 international EEG layout (refer to Figure 1). To minimise the impedance level 

for each sensor a thin medium of conductive gel is injected between the sensor and the skull, these 

are categorized as wet-systems. Impedance (Ω) defines the degree to which the flow of an 

alternating current is inhibited as it passes across a conductive surface. This differs from 

resistance, which defines a similar phenomenon in relation to direct current. Higher impedance 

levels lead to lower signal amplitudes which have been shown to negatively impact EEG: signal 

coherence (Tautan et al, 2014) and signal-to-noise-ratios (Kappenmann & Luck, 2010, Chi et al, 

2012).  

 

 
Figure 1. Diagram depicting the standardized layout of EEG electrodes across the lateral surface of 

the skull for the International 10-20 system. 
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The process of conductive gel application to each wet-EEG electrode can be time consuming as all 

electrodes must be adequately coated to minimize impedances. Coupling refers to an instance in 

which gel from neighbouring electrodes overlaps. The readings from the two overlapping 

electrodes will blend and invalidate signal localization assumptions, therefore necessitating a 

complete repetition of the procedure. This costly step-up time can be avoided with recent 

technological developments in materials science. Dry-EEG setups are now available with sensors 

coated in silver alloys to maintain sub-5kOhms impedances while keeping electrical interference 

to a minimum. The sensors for dry-EEG are often constructed to maximise contact against the 

scalp, with some featuring ‘feet’ to penetrate through user hair. Other methods utilize foam and 

spring-loaded housings, as well as intricate tightening mechanisms to accommodate for the unique 

proportions of the head. Primarily, dry-EEG benefits from rapid deployment, high portability and 

increased user comfort (Lopez-Gordo, Sanchez-Morillo & Valle, 2014, Mathewson, Harrison & 

Kizuk, 2017).  Conversely, agitation of sensors in these applications result in more exaggerated 

changes in signal stability. 

 

Development of EEG analysis techniques must consider the non-stationary qualities of the EEG 

signal. Fundamentally, these signals are non-linear with high dimensionality. Therefore, even 

when experimental protocols are repeated, signals derived from exposure to the same stimuli will 

differ over time (Vaid, Singh & Kaur, 2015). Corroboration of these EEG signal characteristics 

was provided after researchers produced phase portraits of EEG output via the use of 

reconstructive algorithms (Mayer-Kress, Gotfried & Layne, 1987). Authors identified that EEG 

time series evolve along a chaotic trajectory where minute changes in the initial conditions of data 

collection such as; skin conductivity, electrical interference and user concentration can result in 

divergent outcomes (Layne, Mayer-Kress & Holzfuss, 1986, Blanco, Garcia, Quiroga, Romanelli 

& Rosso, 1995). 

 

When compared with other techniques such as functional magnetic resonance imaging, EEG kits 

suffer from poor spatial resolution across each Cartesian axis, with signal acquisition penetrating 

on average 1-2cm. Moreover, systems are typically restricted to the detection of neural wave 

patterns between 7 and 70Hz (Nunez & Srinivasan, 2006). Both aforementioned issues are the 

result of interference from the skull and cerebrospinal fluid during signal acquisition (Ng 

Logothetis & Kayser, 2013). Electrocorticography (Ecog) circumvents this issue by placing ‘depth 

sensors’ typically in a uniform grid format across the cerebral cortex enabling higher frequency 

sampling of up to 200Hz (Pfurtscheller & Graimann, 2003, Leuthardt et al, 2004). The technique 

however requires invasive surgical procedures to enable the implantation of sensors (Alcaraz & 

Manninen, 2017, Panov et al, 2017). Birbaumer (2006) revealed just one complete locked in 

syndrome patient out of sample group n= 17 indicated their willingness for sub-dural implantation. 

Additionally, the surgical trauma, clinician costs, hygiene upkeep and patient discomfort reduce 

the feasibility of implementing such systems on a large scale. Critically, EEG systems lack high 

spatial resolution; however the temporal sensitivity to changes in neuronal pattern firing is 

exceptional (sub-millisecond). BCI spellers employing tasks featuring time-locked decision 

making are therefore highly compatible with this set-up. Moreover, systems with high temporal 

resolution are arguably more conducive to the development of effective BCI spellers, as such 

devices are inherently more adept at contributing higher ITR metrics.  

 

EEG-based BCIs 

Numerous bio-signals are present within EEG output such as: P300 waves, sensorimotor rhythms 

and Steady State Visual Evoked Potentials (SSVEPs). Each of the aforementioned signals has been 

successfully applied in BCI speller device development. In the following sections I will briefly 

discuss the different approaches research teams across the globe have implemented in the 

development of assistive devices for individuals with severe forms of paralysis. Primarily this 

discussion will focus on the different bio-signals utilized and will examine the: practicality, 

performance and technical obstacles related to each approach. Ultimately, this investigation aims 

to validate the claim that EEG and more specifically, SSVEP-based EEG, is currently positioned 

as the optimal method of acquiring bio-signals for BCI applications. 



  

14 | P a g e  
 

Sensorimotor based-BCIs 

Motor Imagery (MI) based BCIs typically harness signals known as sensorimotor rhythms (SMR) 

using EEG recording hardware. Imagined movements of effector muscles lead to predictable 

changes in neural firing patterns across corresponding motor regions. Such movements often make 

use of dominant effector movements to ensure maximum amplification of the signal (Müller-

Gerking, Pfurtscheller & Da Silva, 1999, Ang, 2012). Imagined or intended movement of e.g. 

dominant right hand to perform a power grip has been shown to highly correlate with a decrease in 

the amplitude of low frequency EEG components such as mu (range: 9-11Hz) and beta (range: 13-

18Hz) rhythms in corresponding regions of primary somatosensory cortex (Pfurtscheller, 1999, 

Yuan et al, 2010). Typically, electrode locations: Cz, C3 and C4 (refer to Figure 1) are analysed 

due to the high levels of SMR propagation at these locations. This phenomenon is known as event 

related desynchronization (Pfurtscheller & Aranibar, 1979). Due to the top-down initiation of 

SMRs, successfully eliciting this signal can provide BCI applications for individuals with severe 

motor disabilities in combination with conditions impairing visual acuity and dexterity. This signal 

is therefore extremely flexible as it does not require the dexterous movement of any user muscle 

groups. Arguably BCI systems utilizing these bio-signals are available to a larger proportion of the 

most severely paralyzed patient populations, as compared with eye-tracking systems which require 

dexterous control of the ocular muscles. 

 

 Due to the somatotopic organisation of sensorimotor rhythms it provides the potential for BCI 

based applications to utilize many of the human body’s degrees of freedom. Theoretically, this 

could enable users to operate BCI devices across multiple dimensions. However, successful fine 

control of a SMR based BCI under continuous translation with real-world patient users in a 3D 

context has been documented only a handful of times (Doud, Lucas & Piansky, 2011, LaFleur et 

al, 2013). Power-based motor imagery of each individual effector: right arm and leg, left arm and 

leg, are reliably decoded with minimal error. However, inter-effector MI differentiation is 

problematic due to the restrictions of reduced spatial separation. For example right arm movement 

is easily distinguished from left arm movement. In contrast, right arm movement leftward vs right 

arm movement rightward is far more complex. This reduces the navigability of any MI based 

graphic user interface (GUI) for speller applications to around just 4-8 different command 

selections. Comparable SSVEP and P300 based systems have recently achieved up-to 40 and 72 

possible command selections respectively (Chen et al, 2015, Townsend & Platsko, 2016), making 

these systems vastly more functional than SMR-based counterparts.  

 

Moreover, there are considerable individual differences in the development of neural structures 

associated with the propagation of SMR signals. Those lacking the necessary structural integrity 

and white matter myelination (Halder et al, 2013) are termed ‘BCI illiterate’ (Kübler & Birbaumer, 

2007). Moreover, inter-subject variability in: perception of self-worth (Burde & Blankertz, 2006), 

mental workload capacity (Hammer et al, 2012) and degree of past dominant hand utilization 

(Randolph, Jackson & Karmakar2010) have also been shown to correlate significantly with SMR 

signal power and ultimately user performance metrics. These same factors can also influence the 

quality of SSVEP and P300 waveform prevalence in EEG time-series; however BCI systems 

utilizing these bio-signals simply require users to fixate an external stimulus, as opposed to 

generating a dense mental image of limb movement. Therefore, despite the fact SMR-based BCI 

systems possess the potential for applications with high degrees of freedom, analytical methods for 

differentiating between the actuation of these different degrees is restricted. Effectively users 

would be constrained to sequential GUI command layouts. The distinct disadvantage of such a 

system is the need to illicit multiple bio-signals successively in order to execute just one target 

selection. When such systems are paired with SMR-based BCIs, this therefore necessitates 

multiple user imagined motor movements. Moreover, the impact of misclassification is 

compounded as the number of operations required for a selection increases.  

 

Additionally, SMR-based BCI spellers require a prolonged training period before reliable 

classification results are acquired (Ahn & Jun, 2015). Previously researchers gathered substantial 

amounts of participant specific data in order to fine tune data pre-processing and analysis 

parameters. Target patients endured many hours of data collection in order to develop low noise 

reference waveforms with which to compare online EEG data output. For the lowest signal to 
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noise ratio users must expend vast amounts of energy concentrating on imagined movements 

which consistently share the same qualities: duration, power, context, handedness and end goal. 

This process is fatiguing due to the high mental workload and large number of repetitions required. 

To mitigate patient exhaustion during this data collection period it is possible to collect a small 

user dataset and then apply generative algorithms to produce artificial data. This is then employed 

to fine tune classification analysis parameters offline prior to online usage. However, the accuracy 

of reference signal representations can degrade overtime due to the aforementioned non-stationary 

properties of the EEG signal. Therefore, resulting data augmentations only provide relevant 

reference signal templates for short periods of time, requiring consistent re-collection of subject 

baselines. Researchers have also suggested BCI training prior to the on-set of a complete-locked-in 

state can also improve online performance in the long-term (Kübler & Birbaumer, 2008). However 

the mental concentration required during user-device-interfacing cannot be avoided. This therefore 

makes such a BCI paradigm inaccessible to many individuals with severe quadriplegia as chronic 

fatigue is often a co-morbid symptom.  

 

In comparable SSVEP and P300-based systems, a short period at the start of an experimental 

session is used to collect reference data. Users are then tasked with fixating and attending stimuli. 

In contrast to SMR-based BCI, the provision of simplistic instructions for an intuitive task makes 

these alternative bio-signals far more accessible for both research and real-world user applications. 

Crucially, research has also shown that the LIS patient performance on classical motor imagery 

assessments such as the hand laterality task (Conson et al, 2008) is significantly lower than healthy 

participant counterparts. Further, research revealed the prevalence of event-related 

desynchronization in an SMR-based motor imagery assessments was significantly reduced in LIS 

patient groups (Hill et al, 2006). Importantly, this effect increased in power according to the 

severity of patient condition. Authors attributed this to a number of potential factors, namely; 

reduced utilization of relevant motor pathways, cognitive impairments and temporary attentional 

lapses during the task. Irrespective of the basis for these results, ultimately the findings indicate 

that the laborious training process required before the implementation of motor imagery based BCI 

may be at best substantially more problematic in LIS patient populations. Therefore, regardless of 

the theoretical capabilities of SMR based systems, the feasibility of implementing such BCIs in a 

real-world setting is at present extremely low. The plethora of justifications provided indicate why 

the development of a SMR-based multiple step BCI speller was avoided.  

 

Efforts have been made to improve the performance of SMR-based BCI communication devices 

by introducing novel graphical stimulus designs. The Hex-o-Spell, developed at the Technical 

University of Berlin, represents arguably the most efficient form of sequential command GUI to 

date (Blankertz et al, 2006). A display containing six groups of letters, bunched in alphabetical 

order (Group 1= A-F, Group 2= G-L etc.) is presented on a computer monitor. First users identify 

which of the 6 groups their target letter resides in. Navigation between targets in the visual array is 

achieved via imagined movement of either the right (clockwise movement) or left arm (anti-

clockwise movement). User intended direction is inferred from bio-signal analysis and the GUI 

changes accordingly. The 6 locations previously occupied by the 6 alphanumeral groups are then 

populated with individual characters from the group selected (Muller & Blankertz, 2006). In other 

words, to select the letter ‘A’ user must 1
st
 attend Group 1. Then they would have to navigate to 

the solitary letter A at the 12 o’clock position. After this, a simple two class screen (yes and no 

box) is presented asking the user if the letter selected is their intended choice. The Hex-o-Spell 

design is extremely intuitive, due to the alphabetical grouping of targets, minimising user training 

time. Crucially, this format normalizes the selection time for all targets in the array, however at 

least 4 seconds are required to derive a reliable prediction from the SMR EEG data. With a 

minimum of 3 steps per character, maximal performance for such a system peaks at around 7.5 

characters per minute.  

 

A truly functional BCI speller should aim at making user commands as efficient as possible; 

therefore the development of one-step GUIs to increase ITRs is imperative. The most commonly 

used one-step GUI format is known as a matrix speller, specifically in relation to vision based 

BCIs. This involves having all targets (alphanumeric characters) presented at once, selecting the 

intended target after a single data collection period. This is problematic, irrespective of bio-signal 
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due the issue of target separation. An increase in the number of targets in an array reduces the 

distance between neighbouring targets. In other words, as the GUI becomes more densely 

populated the correlation between adjacent targets increases, therefore heightening the risk of 

misclassification. An increase in misclassification negatively influences the ITR as this 

necessitates the users to execute more commands to correct the mistakes of the bio-signal 

decoding algorithms in place.  

 

Eye Tracker based-BCIs 

Eye tracking based methods integrating matrix style GUIs have been successful in many 

applications including BCI wheelchair control, computer cursor control and spelling paradigms, 

(for review see, Majaranta & Raijha, 2002). Such devices are typically optical (camera based) and 

calculate the difference in orbital rotation of the eye to estimate user fixation point. This paradigm 

typically involves users viewing a display with targets spread across a computer monitor. 

Command execution is conventionally determined by a specific dwell time threshold (period of 

fixation upon a target). Patients with typical eye movement dexterity would be well suited to such 

paradigms. State-of-the-art eye tracking systems are capable of reliably distinguishing fixation loci 

differing by just 0.002
o
 of visual angle. The spatial resolution of this technique therefore 

compliments a matrix style selection methodology, enabling one step selections from a densely 

populated target array. Successful attempts at creating ultra-low cost alternatives with high 

mobility and low computational demand have also been demonstrated, meaning these devices are 

economically viable (Abbot & Faisal, 2012).  

 

Despite these inherent advantages such devices are impractical for many individuals with 

progressive motor degeneration conditions and those with severe cerebral motor area damage due 

to poor ocular motor control. When considering the target population for communicative BCIs eye 

tracking systems are sub-optimal as the ability to fixate steadily is not often retained by those 

suffering from congenital or progressively induced quadriplegia (Smith, 2005). It is also common 

for eye movements to be restricted to the horizontal plane; therefore any target array would have to 

be arranged in a thin column of characters (Riccio, Mattia, Simione, Olivetti & Cincotti, 2012). 

Moreover, as fixation density in the human eye reduces as a function of distance from the resting 

ocular centre point, a feature often exaggerated in quadriplegic patients, it makes such a GUI 

unfeasible. Eye-Tracker systems are inherently gaze-dependent and therefore not functionally 

relevant to a large portion of the BCI patient population. It is therefore necessary to explore brain-

based bio-signals to power assistive BCI devices. SMR-based systems are not restricted by patient 

ocular muscle control and are therefore positioned as far more applicable to patients with complete 

locked-in-syndrome. Further, P300 and SSVEP-based systems are arguably semi-dependent on 

user gaze, however to a far lower degree than comparable eye-tracking based methods.  

 

 Systems incorporating eye-tracking as a peripheral compensation for error however, do seem to 

have some functional applicability. These operate by locating regional points of fixation, as 

opposed to the exact spatial location. Lim et al (2015) implemented a hybrid webcam eye-tracker 

and SSVEP BCI speller paradigm. When compared to a standard SSVEP set-up the hybrid BCI 

revealed, over the course of a 68 character trial period, an average of 39 typographical errors were 

avoided. Nevertheless, recent research has directly compared SSVEP based BCI spellers and eye-

tracking based spellers on low density visual arrays (4 targets) (Suefusa, 2017). Critically, authors 

reported SSVEP based methods had significantly higher information transfer rates and mean 

accuracies for smaller visual targets (40 mm
2
 and 20mm

2
). Matrix format arrays currently utilize 

target stimulus dimensions of around 200mm
2
. However the aforementioned findings illustrate that 

there is substantively more potential for increasing array density using SSVEP based BCI formats 

as compared to eye-tracking interfaces. It is for these reasons that the current thesis did not harness 

eye movement bio-signals for BCI speller applications. 

 

P300 

The seminal work of Sutton (1965) revealed that when human users attend to stimuli with a unique 

time-locked feature, a positive deflection with a latency of around 300ms is exhibited over the 
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central and parietal regions of the scalp during EEG recording. Farwell and Donchin (1988) 

exploited this characteristic waveform for BCI speller applications via an oddball paradigm. This 

involves displaying an array of target stimuli, all of which are programmed to augment at unique 

time locked points during the data acquisition period. In order for the user to demonstrate their 

intention to select a specific target they are instructed to attend a target in the array during the data 

capture period. The EEG output will reveal a distinct positive deflection around 300ms post 

stimulus augmentation. Analysis involves subtracting the latency of the P300 deflection (300ms) 

from the EEG time series. This enables researchers to estimate the point in time in which the 

stimulus augmentation occurred. This unit of time is then compared against the unique time locked 

values assigned to each target in the array and a prediction for the target intended for selection is 

deduced. There are numerous forms of stimulus augmentation; colour, size, motion (e.g. rotation) 

and texture to name a few.  

 

Historically, P300 event-related potentials have been defined as gaze independent bio-phenomena 

and have therefore been classified as more applicable to locked-in patient populations in relation to 

eye-tracking or SSVEP-based BCI methods. This is due to the perceived top-down nature of the 

P300 bio-signal. In other words, the propagation of a P300 is contingent on the user making a 

conscious decision to attend a specific target in the array. As gaze and attention are not co-

dependent, numerous authors assert that covertly attending to the target stimulus is sufficient to 

produce a viable ERP. Foreseeably, this paradigm therefore possesses a large scope of 

applicability across many levels of motor disorder severity, specifically in relation to users with 

poor or absent ocular control. As a result a multitude of studies have utilized these Event Related 

Potentials (ERPs) for the purposes of BCI spelling (Blankertz, Lemm, Treder, Haufe & Müller, 

2011, Yeom, Fazli, Müller & Lee, 2014).   

 

However, the pivotal article from Brunner et al (2010) revealed that P300 propagation is partially 

dependent on gaze. A typical 36 character array (6x6 matrix) was presented to healthy participants 

utilizing the popular row/ column paradigm. Each row and column was assigned individual time 

locked values which control the onset of the visual target augmentation. This results in all targets 

possessing a unique combination of row and column augmentation onset values. In one condition 

participants were free to fixate the intended letter for selection and reached and average AoC of 

100% using step-wise regression analysis. The second condition required participants to fixate 

centrally (monitored via eye tracking systems) and were informed to shift their attention to 

characters intended for selection. Critically, fixation of the central cross was continuously 

monitored using eye-tracker systems. The latter condition resulted in random classification 

accuracies for over half the participants involved, also performance decreased as the distance 

between the fixation cross and the target letter increased. This therefore suggests that the P300 

should be re-classified as semi-gaze dependent at best and does not have the potential applicability 

cited in many BCI speller review articles circulating presently. Critically, these results have been 

corroborated in additional studies (Treder & Blankertz, 2010).  

 

Additional, yet pertinent issues associated with a P300 based BCI paradigms are related to signal 

degradation. Repeated exposure to the same stimulus augmentation reduces the amplitude of P300 

wave deflection. Therefore, periods of usage must be rationed according to the rate of decay 

expressed for each user and thus the functionality of such a system drops drastically (Gonsalvez & 

Polich, 2002).  These same obstacles are present in the implementation of SMR-based BCI, which 

often demand prolonged concentration in order to generate viable motor imagery neural signals. In 

contrast, SSVEP-based signals do not degrade in amplitude over-time; therefore these bio-signals 

are arguably better suited to long-term use cases. Some researchers have attempted to remedy this 

methodological issue in P300-based contexts by assigning alternative stimulus augmentation 

methods for different targets. The type of augmentation is also randomised over data capture 

periods to ensure that frequently used letters do not suffer from signal degradation to a greater 

extent than less frequently used letters. Efforts have also been made to optimise the stimulus 

presentation format of P300 based BCIs using ‘codebooks’. These are essentially binary 

representations which indicate distinct points in time at which stimulus augmentation occurs 

throughout the trial period. Essentially, instead of using one P300 event, multiple P300s are 

induced across the data acquisition period. The EEG output is then matched to the time-locked 
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codebook pattern assigned to one of the targets in the display. The implementation of such 

methods does significantly decrease misclassification error, however this comes at a substantial 

computational cost.  

 

Impressive ITRs have been achieved utilizing the P300 in a BCI speller context. Townsend (2016), 

managed to achieve real-online BCI speller performance between 96 and 120 bpm in group of 9 

healthy participants. These results were achieved by implementing a stimulus presentation 

paradigm based on user performance constraints in both the spatial and temporal domain. Optimal 

oddball temporal parameters were attuned to participant performance online, reducing the total 

data capture period. Additionally, sophisticated spatial positioning of individual oddball 

presentations were developed to overcome the issue of neighbouring target misclassification. 

Traditional methods of stimulus augmentation were replaced with newly corroborated methods 

which introduce human facial images as the oddball stimulus targets. This amplified the 

commonly low signal-to-noise ratios inherent to the P300 bio-signal. Authors calculate that the 

theoretical upper-bounds of this methodology could reach as high as 258 bits per minute and the 

online results collected herein represent arguably the highest event related potential based BCI ITR 

to date.  

 

In contrast, comparative SSVEP based bio-signals have achieved significantly higher ITRs in real-

time experiments (>180bpm) (Chen et al, 2014, Chen et al, 2015). This is due to the lower latency 

of the SSVEP bio-signal (140ms) as compared to the P300 waveform (300ms), therefore data 

capture periods per alphanumeric character can be minimized to a greater extent in the SSVEP-

based systems, ultimately increasing the rate at which users can spell. Moreover, as participants 

were tested over a relatively short time period, therefore the characteristic effects of P300 signal 

degradation were not fully explored. The study herein aims to define an analytical methodology 

with maximal generalizability and long term home usage. This rational therefore justifies our 

selection of the SSVEPs over the P300 and associated event-related potential bio-signals. 

 

Steady State Evoked Potentials 

SSVEPs are periodic waveforms that propagate across the lateral surface of the occipital and 

parietal lobes. These waveforms are a fundamentally bottom up phenomenon measured via EEG. 

Human users fixating or attending a visual flickering stimulus demonstrate EEG waveforms which 

mimic the phase and frequency of the stimulus flicker rate (Norcia, Appelbaum, Ales, Cottereau & 

Rossion, 2015). In other words, attending a stimulus with an 8Hz frequency and a phase angle of 

0
o
 will result in the propagation of an 8Hz EEG waveform with 0

o
 phase angle across the occipital 

and parietal areas (Naz & Bawne, 2016) (refer to, Figure 2). Crucially, the SSVEP bio-signal has 

the lowest latency of any brain-based bio-signal, at just 140ms (Di Russo & Spinelli, 1999, 

Johansson & Jakobsson, 2000). This low latency in concert with a rapid remission to baseline 

activity gives SSVEPs a distinct advantage over alternative bio-signals, with SMR paradigms 

requiring seconds of imagined movement data and P300 systems requiring at least 300ms for 

waveform elicitation. This positions SSVEPs as the ideal bio-signal for attaining high ITRs in BCI 

speller applications.  

 

Moreover the absence of signal attenuation over time affords SSVEP based BCI the potential for 

continual, long term real-world use (Cecotti, 2011). Additionally, the principally bottom up nature 

of this signal means that no complex, fatigue inducing training period is required prior to device 

interfacing, as necessitated by SMR-based paradigms. Guger et al (2012) found that SSVEPs 

could be reliably detected across a sample of 53 participants, achieving a mean accuracy of 

classification on a 4 target LED array in 95.5% of trials. Similar studies utilizing large sample 

sizes (n =>80) have been performed using comparable P300-based systems (Guger et al, 2009), 

showing 89% of subjects achieved >80% AoC and in SMR-based systems (Guger et al, 2003), just 

19% of subjects showed an AoC >80%, after a 30 minute training period.  This also suggests that 

the potential risk of BCI illiteracy is low in relation to SSVEP-based BCI systems.  

 

As the SSVEP bio-signal can be reliably decoded in the largest proportion of the general 

population, it provides BCI utilizing this bio-signal with the greatest scope.  However, the stimuli 
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utilized in SSVEP-based paradigms can introduce obstacles to data collection. During the 

acquisition of EEG-based SSVEP data for BCI applications, researchers primarily utilize 

electrodes positioned over the occipital cortex. Data collected at these sites has been shown to 

contain, on the whole, the highest quality SSVEP signals. However, due to significant individual 

differences in the responsivity to SSVEP stimuli, parietal regions closely neighbouring the 

occipital electrodes are also monitored. The literature surrounding the optimal frequency ranges 

for eliciting SSVEPs with the highest SNR ratio differ. Generally it is accepted this optimum lies 

between 8 and 16Hz (Herrmann, 2001). It is important to note that the range off stimulation 

frequencies typically defined as optimal overlap considerably with visual stimulations patterns 

known to induce epileptic seizure (Fisher, Harding, Erba, Barkley & Wilkins, 2005).  Photic 

sensitivity is estimated to be present in around 15-20% of those diagnosed with epilepsy 

(Shiraishi, Fujiwara, Inoue & Yagi, 2001). The incidence of epilepsy in the general population is 

relatively low (1/100), however it is important to note prior to exposure of low frequency 

stimulatory patterns.  This therefore restricts the applicability of such systems to exclusively non-

photo-epileptic populations. However, some researchers have recently published findings 

indicating that higher frequency stimulation patterns outside the ranges specified to induce 

epileptiform activity may produce waveforms with higher temporal stability (Won, Hwang, 

Dähne, Müller, Lee, 2016).   

 

Further limitations to the application of SSVEP based-BCI spellers include their historic 

classification as gaze-dependent bio-signals in BCI literature (Kübler, Kotchoubey, Kaiser, 

Wolpaw & Birbaumer, 2001, Gao, Cheng & Gao, 2003, Riccio et al, 2012). In other words, the 

propagation of an SSVEP is reliant on users fixating respective target stimuli, thus necessitating 

dextrous eye movement in order to form the basis of a reliable BCI speller system. Gaze 

dependency of the SSVEP signal therefore excludes patients with the most severe forms of 

quadriplegia from utilizing BCIs based on this waveform. To the opposite effect, a subset of 

studies directly researching this classification have produced results which suggest SSVEPs are 

more accurately defined as a semi-gaze-dependent (Muller, Malinowski, Gruber & Hillyard, 2003, 

Allison et al, 2008). Kelly, Lalor, Reilly, & Foxe, (2005) showed that SSVEPs could be accurately 

classified when attending one of two flicker visual stimuli in 71% of trials while controlling for 

fixation deviation via eye tracking systems.  The minimal number of studies defining the semi-

gaze-dependent nature of the SSVEP signal primarily include low density target displays. The 

apparent misclassification of SSVEP gaze-dependence has likely stunted the progress of purely 

attention based SSVEP BCI spellers. Therefore AoC performance of a purely attention based 

SSVEP-BCI in modern matrix style (>= 36 characters) GUI format is currently unknown. 

Arguably, the dependency of SSVEP propagation on attentional mechanisms could present 

obstacles to quadriplegic patients with low working memory capacity or chronic fatigue. However, 

ultimately the scope of SSVEP based BCI applications is potentially much larger than currently 

understood. This therefore poses the possibility that quadriplegic patients with low or absent 

ocular dexterity are in fact eligible for the use of SSVEP based BCI spellers.  

 

In the past GUIs for SSVEP-based BCI used visual displays composed of Light Emitting Diodes 

(LEDs), as opposed to modern methods which rely on LED-based computer monitors. To reliably 

produce intended stimulatory patterns, target frequency values selected had to be divisible by the 

refresh rate of the device. For example, a 60Hz computer monitor is capable of reliably generating 

an 8.57Hz signal, as this corresponds to 7 frames per second (fps) (60Hz/ 8.57Hz = 7fps). LED 

devices previously exceeded the refresh rate of readily available computer monitors. Therefore, a 

larger portion of the optimal frequency range of SSVEPs (8-15Hz) could be utilized. Users were 

therefore required to attend two devices; an LED stimulator and computer monitor, to track the 

feedback (predicted target character) from the BCI speller.   

 

In recent years the implementation of LED monitors with higher refresh rates in concert with state-

of-the-art presentation algorithms, principally the approximation method, have remedied this 

obstacle (Manyakov, Chumerin & Van Hulle, 2012). Researchers have demonstrated that non-

integer fps values, which are therefore non-divisible by the monitor refresh rate can reliably induce 

SSVEPs. This is achieved by interleaving two stimulation frequencies within a single refresh 

cycle. In order to generate a 9Hz stimulus frequency, researchers code a target to flicker at either 
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8.57Hz (7fps) or 10Hz (6fps) for a given portion of the refresh rate cycle. The proportion of 

8.57Hz and 10Hz stimulus patterns is calibrated such that when the stimulus signal is averaged 

over the refresh cycle (e.g. 60Hz) it produces a 9Hz (6.67fps) stimulus pattern.  

 

This same process of averaging is also true for the stimulus patterns embedded in the SSVEP EEG 

time-series. This affords the ability to increase the array density in matrix style GUI formats 

providing a larger number of operations to BCIs employing this presentation methodology (Hwang 

et al, 2012, Chen, Wang, Nakanishi, Jung & Gao, 2015). In conclusion, the capability for high 

density matrix style arrays with low latency has assisted researchers employing SSVEP-based 

BCIs in achieving the highest ITRs to date in both speller (Hwang et al, 2012, Chen, Wang, 

Nakanishi, Jung & Gao, 2014, Chen, Wang, Nakanishi, Jung & Gao, , 2015) and non-speller 

applications (Kwak, Müller & Lee, 2015). On review, the SSVEP bio-signal possesses the highest 

potential to form the basis for an out-of-the-box BCI speller for target quadriplegic patient 

populations.  
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Machine Learning 

Machine Learning involves training a computational algorithm to classify (differentiate) or 

regress. Regression is used to estimate outcomes for an event in the future. For example, based on 

the current quality of EEG data (electrode impedance levels), researchers could estimate the 

likelihood that EEG signals will remain stable over time. Classification in contrast involves 

generating discrete observations such as estimating the frequency of an SSVEP. A number of the 

signal processing methods of EEG classification fall under this field of study. All methods 

incorporate analytical elements that learn features of the data for the purposes of optimization. A 

thorough discussion of the main analytical methods used for EEG analysis is documented herein. 

Decoding Algorithms 

 

Power Spectral Density Analysis 

During Power Density Spectral Analysis (PDSA) of SSVEP data the EEG output undergoes a Fast 

Fourier Transform, which effectively converts EEG data from the time-frequency domain to an 

exclusively frequency based domain. Targets are determined by finding the frequency with the 

highest PSD value, then identifying the character corresponding to the predicted frequency value 

(Wang, Gao, Hong, Jia & Gao, 2008). Successful implementation of PDSA in relation to the 

decoding of SSVEP data has been demonstrated in numerous studies (Middendorf, McMillan, 

Calhoun & Jones, 2000). Additionally, the inclusion of harmonic and sub-harmonic component 

analysis fostered significant increases in classification accuracy (Cheng, Gao, Gao & Wu, 2002, 

Müller-Putz, Scherer, Brauneis & Pfurtscheller, 2005). The approach however requires substantial 

time windows in order to produce accurate readings (Lin, 2006). Therefore the ITR of systems 

implementing PDSA exclusively is typically low. Such analysis may have facilitated the discovery 

of distinct waveform frequency bands (delta, theta, alpha, beta and gamma), however fast Fourier 

transforms are highly susceptible to noise. Additionally, the methods of addressing these issues 

such as the application of autoregressive parametric power spectrum estimation are not optimal. 

These forms of additional analysis assume that the EEG output is linearly dependent on previous 

sampled data points. However the non-stationary nature of EEG waveforms over time diminishes 

the integrity of this assumption. Moreover PDSA is restricted to single channel analysis, whereas 

the practise of taking a grand average across multiple EEG channels to boost classification 

accuracy is now standard practise (Friman, Volosyak & Graser, 2007). PSDA, though initially 

popular in EEG waveform classification, are now less viable than other means. In order to 

overcome the incidence of misclassification in high density matrix style spellers more powerful 

methods of classification analysis were developed.  

 

Canonical Correlation Analysis 

Multi-Channel optimization significantly improves signal to noise ratios by amplifying relevant 

data features. Techniques such as canonical correlation analysis (CCA) have demonstrated this 

definitively (for review see, Vialatte, Maurice, Dauwels & Cichocki, 2010). Previously these 

methods have been employed on large scale data analytics, assisting researchers in extracting 

relevant information from vast datasets (von Storch & Zwiers, 2002). CCA, in relation to SSVEP 

classification, involves generating reference signal patterns with identical properties to the target 

stimuli patterns. For example if the letter A is assigned a stimulus pattern in which a stimulus 

square overlaid onto the target letter flashes on and off 8 times per second, a corresponding 8Hz 

reference signal is generated (refer to Figure 2). Signals are also matched for; length of stimulation 

period, number of EEG channels, micro-voltage range and sample rate. The first study to utilize 

CCA for SSVEP detection (Lin et al, 2006) was motivated by the restrictions imposed by PSDA 

methods, which limit analyses to just one EEG channel. In CCA classification of SSVEP data, 

each EEG time-series channel is denoted as n
th
 of matrix X. The adjacent dataset, denoted as n

th
 of 

Y, is made up of a Fourier series for one of the stimulus frequencies used to control the SSVEP 

targets. Each row of the Y matrix is a harmonic of the stimulus frequency expressed as a vector. 

Correlational coefficients for Xn
th
 and Yn

th
 are calculated to observe the amount of variance each 

Xn
th
 and Yn

th
 can count for in the adjacent matrix. CCA then operates to find the linear 

combination of coefficients which maximises the correlational relationship between datasets X and 

Y. This is referred to as the correlational variable and is expressed as an ordinary correlation (p).   
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Typically, during CCA analyses, the number of correlational variables calculated is equal to the 

depth of the smallest dataset utilized. In the application of CCA for SSVEP detection, only the first 

correlational variable is calculated as this accounts for the most variance and reduces the 

computational load of the analysis. Correlational variables are calculated for each stimulus 

frequency against the EEG input data. The stimulus frequency which produces the highest 

correlational variable (p) forms the prediction for the SSVEP embedded in the EEG time-series 

(Lin, Zhang, Wu & Gao, 2007). CCA does not depend on state-of-the-art hardware, in terms of 

computational load and is therefore relatively well suited for real-time speller applications. Bin, 

Gao, Yan, Hong & Gao (2009) demonstrated the validity of such analysis, achieving a mean AoC 

of 95.30% (12 participants) and an ITR of 58 bits per minute during online experiments for a 6 

target sequential SSVEP based BCI speller.  

 

The researchers implementing CCA for SSVEP detection must assume that the changes in micro-

voltage across the scalp, responsible for SSVEP propagation is the product of a linear system in 

which the SSVEP stimulus signal is the input. This assumption is problematic due to the inherently 

non-linear and non-stationary characteristics of EEG time-series (Klonowski, 2009). Another 

primary drawback of implementing standard CCA (as described herein) is the methodology for 

constructing reference signals. Sine-cosine functions are used to generate template references 

which are inherently too precise. In other words, as they are not based off real-world samples they 

lack the presence of latent EEG features making dense matrix style GUI formats unfeasible (Pan, 

Gao, Duan, Yan & Gao, 2011). Advances in CCA have involved blending artificial random noise 

into generated reference signals, as well as user specific EEG output. So-called Multiway-CCA 

(MCCA) builds on this weakness of standard CCA by constructing a reference signals that 

incorporate relevant data features from a sample of EEG tensor data to produce more flexible 

reference signals. However such adaptations still incorporate a restricted set of highly precise 

frequency templates, ignoring natural background noise and other latent variables. This therefore 

leads to analysis being constrained to representing exclusively within-class relationships, over-

looking between-class information (Zhang et al, 2013). 
 

Common Feature Analysis 

Common Feature Analysis (CFA) arguably overcomes the inherent issues of CCA to a greater 

extent than MCCA by generating references signals purely based on participant data. Zhang, Zhou, 

Jin, Wang & Cichocki (2015) tested the performance of these three classification models using 

highly simplified SSVEP stimuli; four red squares flickering at 4 distinct frequencies (6, 8, 9 and 

10Hz). Authors proceeded under the assumption that there are inherent similarities in the data 

collected from one participant exposed to the same stimulus frequency over multiple trials. Latent 

features hidden within the participant specific data are computed by finding correlations between 

within target data. This therefore builds the template arrays with which to correlate raw un-

grounded data for prediction. Analysis of performance stats via paired t-tests revealed that CFA 

and MCCA produce significantly higher classification accuracies than CCA for all time windows 

(0.5-4 seconds in 0.5 second increments). CFA also significantly outperformed MCCA in terms of 

accuracy for both the 0.5 (70% vs 43%) and 1 second (78% vs62%) time windows.  Critically 

CFA was also significantly less likely to select non-targets as compared to both MCCA and CCA. 

In relation to computational efficiency CFA was significantly more accurate than both MCCA and 

CFA for the 0.5 second time window and matched MCCA for efficiency in the 1sec time window. 

This decreases dramatically for CFA as the time window increases. Greater data capture requires 

more computational time for the development of the common feature values. Therefore after this 1 

second time window the efficiency advantage is lost. A CFA model would therefore only be 

applicable for experienced BCI users capable of interacting with the device in decision windows of 

just 0.5 seconds. Conversely, MCCA would be advisable for first time BCI users. This study is an 

excellent example of how selection of the classification algorithm is highly dependent on the BCI 

application and user.  
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K-Nearest Neighbour  

K-Nearest Neighbour (KNN) methods are a simple form of non-parametric analysis with low 

computational training demands (Cover & Hart, 1967). KNNs firstly plot novel data points into a 

feature space populated by training data. The area of a regional ‘neighbourhood’ encompassing the 

data point is then calculated, the subscript denoting this area being k. The novel input is then 

classified by determining which target group has the highest number of data points within the 

regional ‘neighbourhood’ defined. In the instance of more than one class providing an equal 

number of neighbouring data points the novel input is assigned to the target group with the most 

proximal data points in the feature space populated by the training data (Kataria & Singh, 2013). If 

implemented with a substantial training set and high k value KNN methods can reliably classify 

non-linear data (Lotte, Congedo, Lécuyer, Lamarche & Amaldi, 2007). These properties initially 

inspired BCI researchers to employ these methods in the classification of EEG data however 

attempts were not successful. This can be ascribed to KNNs performing poorly on data with high 

dimensionality and in the context of data with large ranges. However, such issues can be mitigated 

with the implementation of principal component analysis and normalization pre-processing stages 

(Khasnobish, Bhattacharyya, Konar & Tibarewala, 2010, Nasehi & Pourghassem, 2011).  

In the past decade KNN methods have not been frequently selected for online BCI spelling devices 

due to the protracted computational periods involved in predictive search times. However, some 

success has been shown when KNNs are combined with principal component analysis and 

multivariate linear discriminant analysis (MLDA) in a processing pipeline.  Wang, Chen, Gao & 

Gao (2016) first gathered data using a simple 4 class paradigm. The participants completed a task 

which involved fixating one of four flickering red squares (6, 8, 9 and 10Hz) in a randomized 

sequence. Performance of a MLDA/PCA/KNN, standard CCA, MCCA and CFA was compared 

across participants for 8 different data capture periods (0.5-4seconds with 0.5second increments). 

PCA on raw EEG data lead to the identification of multiple variables which in combination 

accounted for 99% of all data variance. The data was then labelled using the values assigned by 

the newly defined feature variables. MLDA was then applied which harnesses gradient descent to 

reduce the sum of squares (error). Finally a k-nearest neighbour’s algorithm is applied (k value = 

5).  

Analysis revealed that MLR/PCA/KNN (83%) was significantly more accurate than CIFA (67%) 

during the 0.5-second data capture period. MLR also outperformed MCCA on all time windows 

under 4 seconds and was significantly more accurate than standard CCA in all data capture 

periods. Critically MLR/PCA/KNN showed the least class imbalance across all data capture 

periods. This is essential for BCIs which aim to adapt to user performance. If the model changes 

time window duration based on user performance to enhance ITR it is important that performance 

is consistent. In other words, similar classification accuracy should be observed for a range of data 

capture periods (0.5-4seconds). CCA does have a distinct advantage over MLR in that no model 

training time is necessary, however only 2 or 3 samples of training data are required to ensure the 

MLR/PCA/KNN significantly outperforms CCA on all time window conditions. Moreover 

MLR/PCA/KNN can be implemented with an average computational period of just 0.1seconds; 

making this the system extremely useful in real-time applications. 

 

Support Vector Machines 

Support Vector Machines (SVMs) classify data by comparing known-ground truth data values to 

novel input data. Initially SVMs were designed for the purposes of classifying linearly separable, 

binary data. Each data point is expressed as a vector based on respective input variables. Adjacent 

vectors from each group with the shortest distance are used to define the connecting line (2D), 

plane (3D) or hyperplane (>3D) depending on the number of input variable dimensions (Burke, 

1998). Essentially the process of classification is represented as a minimisation problem which 

aims to bisect the data with a separating line which maximises the margin between target groups. 

Critically, the calculation is restricted to data points neighbouring the computed hyper-plane 

(dimensional area in which categorical overlap can occur) (Bennett & Campbell, 2000). The 

distance in decision space between the un-labelled novel data and the hyperplane is far more 
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computationally economical as compared to for example linear discriminant analysis based 

methods as these calculate the distance between all past data and the current input. Past research 

has revealed the successful implementation of SVMs primarily for classification of SMR-based 

BCIs (Xu, Guan, Siong, Rangantha & Thulasidas, 2004, Schlögl, Bischof & Pfurtscheller, 2005, 

Siuly & Li, 2012) and optimization of EEG channel selection (Lal et al, 2004, Schröder, 

Hinterburger, Bogdan & Birbaumer, 2005). Lotte (2007) also cites the low number of hyper 

parameters and overtraining resilience as advantageous to the implementation of SVM based 

analysis. 

 

Kernel Trick 

In order to accommodate for non-linear data, SVM feature space can be projected into higher 

dimensions using transformations such as; polynomial functions, Gaussian radial basis functions 

and sigmoid functions (Boser, Guyon & Vapnik, 1992). Known as the ‘kernel trick’, the purpose 

of projection is to increase the probability of calculating a linear separator which defines a 

hyperplane with a larger margin. Maximising the width of the margin has the effect of reducing 

classification error when labelling data which shares the features of more than one variable input 

(Lotte, 2007). Additionally, margin maximisation between groups affords the SVM higher 

generalisation capabilities (Jain, Duin & Mao, 2000). Impressive results in relation specifically 

P300 based-BCI speller have been demonstrated in multiple studies (Kaper, Meinicke, 

Grossekathoefer, Linger & Ritter, 2004, Li, Guan, Li & Chin, 2008). Importantly however, it must 

be noted that projection into higher dimensional space greatly increases the burden of 

computational cost restricting the applicability of such methods in a real-time context. Moreover, 

repeated increases in dimensionality have been found to introduce a greater degree of 

generalization error in relation to novel input data classification (Jin & Wang, 2012).  

 

Ensemble SVMs 

Ensemble SVMs (ESVMs) where first proposed by Vapnik (1999) in order to provide flexibility to 

the implementation of SVMs on non-binary (multi-class) problems. It is important to note the 

increase of prediction calculators, each assigned weighted terms to define the level of contribution 

to the output answer, does not enable the modelling of non-linear relationships. SVMs in the 

ensemble are trained separately on randomly selected batches from the training dataset. This 

results in SVMs becoming selective to a subset of feature space. Localizing the classification 

capabilities of the SVMs in ensembles has been shown to dramatically increase the performance of 

such forms of analysis in comparison to individual SVMs. However, ESVMs have been shown to 

perform poorly on EEG classification problems large numbers of classes (Li, 2014). Therefore, 

designing a BCI around this form of analysis would result in a device with low operational 

flexibility and sub-optimal average classification performance. 

 

Filter Bank Analysis  

Chen et al (2015) have produced arguably the highest ITR for a complete 40 class target array of 

alphanumeric characters (5 x 8 stimulation matrix) to date. This was achieved by modulating both 

the phase and frequency of targets individually. The manipulation of stimulus phase offsets in the 

context of SSVEP research has been studied previously (Hartmann & Kluge, 2007, Kluge & 

Hartmann, 2007, Wilson & Palaniappan, 2009, Lee et al, 2010, Jia, 2011, Manyakov et al, 2011). 

However Chen et al (2015) have maximised the theoretical potential by assigning targets in an 

SSVEP-based BCI speller unique phase and frequency values to enhance performance of standard 

CCA classification algorithms. This technique was initially inspired by research in the 

telecommunications industry and has had a significant effect on the previous restrictions of 

spectral separation. As the number of targets in the visual array increases, the amount of spectral 

separation between target frequencies decreases. Therefore the likelihood of misclassifying 

neighbouring frequency values increases and dramatic reductions in ITR follow. By assigning 

target stimulation patterns unique frequency and phase values the similarity in resulting SSVEP 

waveforms is substantially reduced, therefore decreasing misclassification errors. 
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Initially, authors carried out frequency optimization procedures to determine the frequencies to 

which individual participants were maximally responsive (Wang, Wang, Gao, Hong & Gao, 

2006). Previous research has shown that on healthy human participants are maximally responsive 

to stimulation patterns within the range of 8-15Hz. However BCI developers have taken advantage 

of individual differences in the distribution of responsivity within this range. By validating the 

exact frequencies prospective users are responsive to researchers can optimise the target 

frequencies presented.  Finer incremental increases can be achieved nearer to the locus of optimal 

signal to noise ratio as the ability to differentiate between neighbouring target frequencies is 

higher. Further optimization in the form of filter bank analysis was also carried out to establish 

optimal frequency harmonic ranges for each participant. Filters which proved more effective to the 

successful classification of EEG data were provided more weight throughout a sub-band training 

process. The ranges were learned iteratively by feeding EEG data into 5 overlapping frequency.  

Critically, each arrangement of filter weights was unique based on the input of each participant in 

the study.  Researchers tested the performance of a joint frequency and phase coding method 

(JFPM) using an array of 40 target alphanumeric characters. JFPM is optimized for the decoding 

of SSVEP signals generated from a dense array of targets with frequency increments of just 2Hz 

by integrating evenly spaced corresponding target phases. This was performed in order to 

maximise the difference between correlational coefficients of neighbouring stimulation patterns.  

Each character in the array was tested in a random sequence. Targets for fixation were initially 

cued by a surrounding red square. Such task manipulations would greatly reduce visual search 

time and mental workload which would artificially increase the data quality. Therefore, free-

spelling tasks were also implemented and demonstrated similar results (4.5 bpm). The JFPM 

model in online analysis produced an ITR of 170 bits/min and mean accuracy of 88.83%.  

  

Despite the impressive performance stats reported the hours of pre-training data collection for sub-

band optimization mean that this system does not possess ‘out-of-the-box’ functionality. 

Individual differences in SSVEP responsivity are not stationary, therefore repeated measurements 

for setting these tailored increments would have to be routinely calculated. The methodology of 

stimulus presentation has been adopted in this study by utilizing a benchmark dataset produced by 

the same Beijing Institute (Wang, et al 2016). However a deep neural network was applied in the 

process of target classification to produce an EEG decoding methodology that functions at 

industry standards (>=70% accuracy) as soon as a novel user is introduced to a BCI speller. 

Critically, user-specific parameter optimization was not implemented due to the potential for this 

step to reduce the deployment time of systems developed at a later date. 
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Neural Networks- Review 

Developments in the field of computational engineering are often fostered by the investigation of 

neuroscientific phenomena (for review see, James et al, 2017). In the same vain, neural networks 

are analytical software structures which aim to mimic the classification capabilities inherent to 

biological systems. Networks are composed of functional units (‘nodes’) arranged in operational 

layers which learn to model and classify incoming data, much like neuronal circuits. The 

characteristic of redundancy (presence of additional components to ensure success in the event of 

other components failing) which makes the human brain so computationally powerful is harnessed 

for the classification of many different data inputs. Neural networks are commonly termed ‘black 

boxes’, meaning that the data features represented by the nodes which populate the network are 

not entirely discernible. This characteristic of artificial neural networks (ANNs) also underpins one 

of the major obstacles of its implementation: architecture building. The process of constructing a 

neural network can be time consuming as there is no definitive methodology that can guarantee 

high performance.   

 

The development of such models has many factors; initial weight optimization, number of nodes 

per layer, variant of normalization performed, degree of down-sampling, network depth, selection 

of activation function, convolutional filter dimensions and rate of drop-out. All such elements 

influence the performance of the network. Attempts to investigate structural qualities of a network 

are problematic as many studies have revealed that models with major differences in terms of the 

aforementioned factors provide highly similar accuracy results (Sjöberg et al, 1995). Generally, the 

selection methodology for models in novel applications usually consists of identifying networks 

used in a similar context as opposed to the bottom up development of a tailored network structure 

(Prieto et al, 2016). The ‘weights’ of a network consist of matrices of randomly generated values 

in typically uniform dimensions (e.g. 6x6). The values which populate this array should contain 

comparable characteristics to the input data in terms of: variance, range and mean. This process of 

assigning the base weight values is known as initialization. Improper initialization can lead to 

exorbitant training periods therefore, this first step is crucial in terms of research time constraints. 

In order to estimate the quantity of nodes necessary for each layer the data complexity must be 

taken into account also. Datasets collected with low resolution hardware or sets consisting of data 

which is inherently noisy may require a greater number of nodes per layer in order to increase the 

probability of salient data features being represented. A network with too many nodes can lead to 

over-fitting and ‘noise-trailing’. Overfitting occurs when the model becomes highly adept at 

classifying data solely from the dataset used in training (Piotrowski & Napiorkowski, 2013). 

Therefore, if the model were to be used in the context of novel data, the classification accuracy 

would be low or potentially random. Conversely, too few nodes can lead to low classification 

accuracy when complex data is inputted (inability to analyse non-linear relationships).  

 

Artificial Neural Networks 

There exists a multifarious array of ANN architectures and training methods; however the focus of 

this thesis is to examine the application of convolutional neural networks, trained using supervised 

learning for the classification of SSVEP data. Each aspect of the network must be rigorously fine-

tuned to achieve the maximal error reduction in the prediction of classes. Despite this lack of 

clarity and laborious development period, higher classification results are consistently found 

during the application of these networks. Typical ANNs contain an input layer (data) and output 

(decision) layer, this is a highly simplistic model and classification is only feasible for linear 

relationship detection. A network typically converges towards global minima (lowest proportion of 

classification error achievable) via a loss function which aims to maximally reduce the mean 

squared error (Zhang, 2000). Essentially this involves calculating the distance between a predictor 

(in this case an ANN nodes) and the input data, then utilizing this information to reduce this gap in 

future classification operations. Networks can be categorized as either supervised or 

unsupervised. The later refers to training a model to classify data in the absence of a ground-truth 

(data label). This enables the self-organization of the analytical structure, in which the model 

generates data classes with maximal separation. In contrast, supervised learning functions by 

feeding the network input data and corresponding class labels with the aim of defining data 

features which separate explicit target groups. 
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Applications of neural networks extend too many disparate fields such as; financial solvency 

estimation (Wilson & Sharda, 1994, Lacher, Coats, Sharma & Fant, 1995), early speech 

recognition research (Lippmann, 1989, Bourlard & Morgan, 1993) and medical diagnosis (Baxt, 

1990, Burke et al, 1997, Amato et al, 2013). Pertinently these analytical methods have shown 

significant classification capabilities in relation to EEG based data for the detection of epilepsy 

(Srinivasan, Eswaran & Sriraam, 2007) and mental states (Vuckovic, Radivojevic, Chen & 

Popovic, 2002). Initially, the efficiency of ANN models to classify EEG based bio-signals for BCI 

applications was limited in comparison to other linear analytical methods (Dreiseitl & Ohno-

Machado, 2002). However, due to the increase in availability of ANN based software performance 

steadily improved (Robert, Gaudy & Limoge, 2002).  

 

Multi-Layer Perceptrons 

Multi-Layer Perceptron Neural Networks (MLPNN) differ from simple ANNs due to the presence 

of a hidden layer (Schmidthuber, 2015). MLPNNs are highly adaptive to a range of classification 

problems presenting differing levels of pattern complexity. Light-weight implementations can 

achieve impressive results analogous to basic parametric analysis for simple pattern recognitions 

tasks. Likewise, increasing the depth and node quantity allows the network to model of highly 

complex systems. The application of a non-linear activation functions at the hidden intermediate 

processing stage affords the analysis of non-linear systems (Sarle, 1994). Conceivably MLPNNs 

are capable of modelling a limitless number of functions, warranting the description of MLPNNs 

as ‘universal estimators’ (Nicolas-Alonso & Gomez-Gil, 2012). Reaching maximal network 

performance is possible when enough nodes, arranged in the optimal number of layers are 

formulated. However restrictions arise in terms of processing power. The efficacy of such 

networks in relation to EEG data has been researched primarily in the context of potential clinical 

applications; detection of epileptic seizure events (Işik & Sezer, 2012 Artameeyanant, 

Sultomsanee & Chamnogthai, 2017, Jaiswal & Banka, 2017) and Alzheimer’s onset evaluations 

(Samiee, Kovacs & Gabbouj, 2015, Cecere, Corrado & Polikar, 2014, Er et al, 2017).  Moreover, 

these models have also been employed in BCI relevant fields such as; mental state classification 

(Anderson, Devulpalli & Stolz, 1995, Nasehi & Pourghassem, 2013) and EEG channel 

optimization (Ang, Chin, Wang, Guan & Zhang, 2012). Pertinently, numerous researchers have 

demonstrated that MLPNNs are effective in classifying SMR bio-signals in BCI contexts 

(Balakrishnan & Puthusserypady, 2005, Chatterjee & Bandyopadhyay, 2016). Importantly, direct 

performance comparisons between MLPNNs and Logistic Regression techniques revealed 

MLPNN (L-M) produced higher AoCs (93%) than LR models (89%), higher specificity (92.3% vs 

90.3%) and higher sensitivity (92.8% vs 89.2%) ,(Subasi & Ercelebi, 2005). These results suggest 

that the ability of neural networks to detect latent EEG features with potentially non-linear 

relationships in the data contribute to higher accuracy of classification. Additional recent research 

has since corroborated these findings (Shedeed, Issa & El-Sayed, 2013, Nurse, Karoly, Grayden & 

Freestone, 2015). 

 

Additionally, Manyakov et al (2012) performed an SSVEP classification study modulating both 

frequency and phase using a shallow feed forward MLPNN. The task involved fixating a centrally 

located flickering target. Stimuli were presented individually at unique frequency rates. Phase shift 

to the targets was added post-hoc and the analysis performed offline. 83% classification accuracy 

was reported on the 16 class implementation with a data acquisition time of 5 seconds. SSVEPs 

are however also triggered via covert attention, meaning that participants are capable of 

distraction from the intended target for selection if the visual saliency of neighbouring targets 

reaches a specific threshold. In other words, as the array becomes more densely populated the 

degree to which covert visual attention of non-target neighbours increases. Therefore, the 

individual presentation of targets means that these results are unlikely to translate into a real-world 

setting where up to 40 targets are presented simultaneously.  

 

Within the literature there are arguably more frequent accounts of this methodology failing to 

exceed classification capabilities of less computationally expensive forms of analysis (for review 

see, Lotte, 2007). Bai et al (2007) compared the performance of numerous analytical 

methodologies on an offline 2 class task involving the classification of SMR imagined hand 

movement data. A combination of independent component analysis, power density spectral 
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estimation and SVMs showed significantly higher accuracies as compared to MLPNNs.  

Additionally, Ilyas, Saad, Ahmad & Ghani (2016) demonstrated that in the context of a 3 target 

sensorimotor classification task for MI-based BCI both SVMs and LR outperformed MLPNNs. As 

previously noted, the capabilities for MLPNN techniques to model highly complex non-linear 

systems are substantial. The sub-par performance of MLPNN models in the aforementioned 

instances can be attributed to a number of factors; insufficient data quantities or resolution, poor 

optimization of network hyper-parameters and unsatisfactory numbers of network node volumes 

or depth. Recent advances in the utilization of graphic processing units (GPUs) for the calculation 

of weight updates in neural networks have assisted numerous researchers in tackling these issues. 

GPUs are traditionally employed to increase the rate at which images are rendered on digital 

displays. This hardware is designed to function with a high level of parallelism for the purpose of 

calculating potentially millions of common operations. Oh & Jung (2004) were the first to 

successfully utilize GPU hardware for the purpose of neural network specific computations. Input 

data is transformed into a GPU compatible data format, for example vertex values representing 

colour, position or texture. Matrix multiplications corresponding to derivative calculations for 

network weight updates are then passed to a pixel shader these compute coded changes in pixel 

attributes prior to image rendering. Authors were able to achieve convergence at 20 times the rate 

of a CPU using a benchmark dataset and template neural network code for a text localization task. 

Similar performance increases have been noted in numerous articles (Luo, Liu & Wu, 2005, 

Chellapilla  Puri & Simard, 2006,  Strigl, Kofler, Podlipnig, 2010), and critically it has been shown 

to scale effectively to more computationally demanding networks (see for review, Raina, 

Madhavan & Ng, 2009). 

 

With the development of NVIDIA’s CUDA software access to high speed network training rates 

has become an industry standard. The increase in processing power afforded by the 

aforementioned GPU techniques has enabled researchers to make use of ensembles of MLPNNs. 

Separate shallow MLPNNs are trained on individually randomised subsets of EEG training data. 

This process leads to development of networks all of which possess a variety of data feature 

representations. All networks provide predictions regarding the class of the novel input data, the 

class with the highest incidence of selection across all models is chosen as the final prediction. 

These methods have been found as effective means of classification in relation to motor-imagery 

based BCI (Silva, Barbosa, Viera & Lima, 2016) and SSVEP-EEG data (Chen, Chen & Wu, 

2016). Despite these promising results on shallow MLPNN and ensemble networks, only a handful 

of researchers have endeavoured to develop truly deep neural networks for the classification of 

SSVEP-EEG data. 

 

Deep Learning 

Deeping learning refers to a wider field which employs the use of neural networks with multiple 

layers to enhance the complexity of data features represented by the model. The origins of the deep 

learning can be traced to Fukushima’s (1979, 1980) development of the NeoCognitron. This 

architecture is cited by many as the first true deep neural network (Schmidhuber, 2015). Early 

research of Mountcastle (1957) and the later investigations of Hubel and Wiesel (1962) both 

evidenced the presence of a topographical architecture in the mammalian visual brain. 

Interestingly, deep neural networks, having been initially inspired by human visual brain, are now 

being implemented to provide a greater understanding of these structures (Dähne et al, 2015, 

Cichy, Khosla, Pantazis, Torralba & Oliva, 2016). The hyper-interconnectivity between successive 

layers of the mammalian cortex results in a monotonic increase of receptive field size. This 

property of the visual brain is harnessed by the NeoCognitron to foster invariance to subtle 

changes in the quality of input data.  

 

Similar levels of node connectivity and depth across layers had previously proven impractical due 

to computational bottlenecks. The NeoCognitron circumvents this obstacle by applying a ‘weight 

sharing’ (WS) procedure. Feature maps are data matrices produced by operations which contain 

some abstraction of the input data that may be useful for the classification task. A weight, 

otherwise known as a filter, is a matrix or array of random values which is used to produce the 

feature maps.  As the network process the input, data is grouped into windows, which specify a 

subsection of the input on which the filters operate. Collectively, these filters cover the entire input 
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data array and can be overlapping. The higher the degree of overlap, the higher the number of 

operations and therefore the greater the computational cost. The depth of the filter is matched to 

the depth of the windows covering the data. Feature map values are therefore computed by 

performing a matrix multiplication, in which the n
th 

value of the filter and the n
th 

value of the data 

window are multiplied. The same filter values are used in the computation of all feature map 

values and are not changed throughout the network testing period.  

 

The training of MLPNNs requires the computation of individual weight functions. This is far more 

computationally expensive and leads to an increase in the amount of training time necessary for 

the model to converge. Envisage a network which is designed to detect squares within an image. 

Each filter relates to a different segment of the image. Therefore, every single weight must be 

individually optimized to detect squares, as foreseeably the squares could appear at any location in 

the image. It is more computationally efficient to share the weights and optimize the values in the 

filter array collectively. This saves computational time and allows the network to detect squares 

independently of square’s positioning in the image. These same principles apply in relation to 

EEG temporal data. It is more efficient to share the weights of filters across an entire input such 

that data features relevant to the task of classification can be extracted, irrespective of where these 

are positioned temporally. This constitutes the fundamental difference between simple, shallow 

multi-layer perceptrons and deeper neural networks. Numerous studies have shown that using 

shared weights does not drastically decrease network performance, as the huge reduction in 

computational load allows for a: higher number of epochs and slower learning rate (Schmidhuber, 

2015).   

 

Convolutional Neural Networks 

CNNs are state-of-the-art deep learning models typically employed primarily in the domain of 

computer vision. Computer vision refers to the field of developing analytical systems which 

process visual information to classify or segment salient features or objects (Lee, Grosse, 

Ranganth & Nh, 2011). Deep Learning CNNs were are amongst the first to demonstrate human 

detection level performance (LeCun, Bottou, Bengio & Haffner, 1999) and have a proven track 

record of winning some of the most coveted computer vision competitions in recent history, 

ImageNet (Krizhevsky, Sutskever & Hinton, 2012),  GoogleNet (Lofee & Szegedy, 2015) (LeCun, 

Bengio & Hinton, 2015).  

 

Unlike simple, shallow MLPNNs, deep CNNs take advantage of the abovementioned weight-

sharing principle to minimise computational processing time. Another feature differentiating deep 

CNNs from MLPNNs is the use of sparse, local connectivity. In traditional MLPNNs, all nodes in 

adjacent layers are weighted, in other words they are fully connected. During the development of 

deep CNNs, it is assumed that there is a high correlation between neighbouring nodes. In other 

words the output of convolutions performed on neighbouring windows of data is predicted to be 

highly correlated, as compared to windows positioned at the start and end of the data matrix. In 

deep CNNs, weights are combined across these locally positioned nodes and connected to nodes in 

adjacent layers. Initially, this means nodes in successive layers are only exposed to data from a 

small region (spatial) or time period (temporal) of the input. However, as the depth of the network 

increases so too does the receptive field size of respective nodes, as output from distally positioned 

data is eventually integrated into convolutional operations. In the top layers of the network, node 

receptive fields can span the entire length of the initial input data. CNNs are therefore not the 

optimal choice for localization tasks. These nets are highly adept at predicting the presence of 

patterns within data, as opposed to segmenting or identifying when (timing) a specific pattern 

occurred during data collection.  

 

Recent applications of CNNs include medical image diagnosis (Bevilacqua, Mastronardi & 

Marinelli, 2006, Dou et al, 2016, Esteva et al, 2017), facial recognition (Zhang & Zhang, 2014, 

Farfade, Saberian & Li, 2015,  Li, Lin, Shen, Brandt & Hua, 2015) and satellite imagery scanning 

for interstellar objects (Kim & Brunner, 2016, Kimura et al, 2017).  CNNs are however not 

restricted to exclusively visual information. Impressive performance in; prosthesis kinematic 

estimation (Allard et al, 2016, Atzori, Cognolato & Müller, 2016), EEG anomaly detection 

(Wulsin, Blanco, Mani & Lit, 2010), epileptic EEG pattern detection (Antoniades, Spyrou, Took 
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& Sanei, 2016, Cılasun & Yalçın, 2016, Johansen et al, 2016) have been demonstrated.  Also, 

these same methods have been implemented effectively in the context of BCI bio-signal 

classification for; mental imagery (Jingwei, Yin & Weidong, 2015, Walker, Disenroth & Faisal, 

2015, Tabar, 2016, Schirrmeister et al, 2017) and P300 detection for BCI speller applications 

(Cecotti, 2011, Lawhern et al, 2016).   

 

The application of CNNs in decoding SSVEP data for BCI applications has however not received 

significant attention from the academic community. Past research using actual end-point patient 

populations is extremely scares among the literature, between 16-25 legitimate studies. Clinical 

applications of assistive devices incorporating neuro-feedback have demonstrated generally 

positive outcomes (Birbaumer, Murguialday, Weber & Montoya, 2009). However, only a small 

minority these studies represent long-term home usage of BCI systems, the majority of which 

employ P300 paradigms for BCI speller applications (Peridikis, 2014). There are many reasons for 

this dearth of research: patient access, heterogeneity of patient populations and funding grant time 

constraints (Holz, Botrel, Kaufmann & Kubler, 2015). Even if all cited obstacles can be 

circumvented it still remains that the real-time BCI hardware and software integration must be 

seamless in order to ensure the collection of viable data. The difficulty in adapting pre-processing 

methods for the often irregular neural activity present in patient user EEG outputs makes this 

process extremely problematic. The justification of CNNs is therefore evident in that irrespective 

of potential abnormalities network weights can be adjusted in real-time and compensate for the 

unique variations in EEG signal of the user. The successful development of a generalizable 40 

target SSVEP based BCI speller across a large sample of experienced and naïve participants would 

allow rapid deployment of the system. This would by-pass the need for prolonged data collection 

periods prior to online use as baseline accuracy of around 70% would allow for an immediate 

moderate level of control. During online-use training of a parallel network with weighs fine-tuned 

to the user’s unique EEG could be run simultaneously. Therefore fatiguing initial data collection is 

averted while continuously improving the classification accuracy. A similar process was explored 

by Williams (2017); with intra-subject transfer learning following an initial inter-specific training 

period which resulted in higher accuracies of classification.  

 

A handful of notable studies investigating deep CNNs for SSVEP classification are present in the 

literature and deserve consideration. Cecotti et al (2011) developed a deep CNN for the 

classification of 4 SSVEP stimulation targets differentiated by frequency. The authors positioned a 

fast Fourier transform within the network in order to convert EEG data from a time-frequency 

domain to a purely frequency based format. A mean classification accuracy of 95.61% was 

achieved; however the sparse target array limits the potential flexibility of BCI spellers built 

around this model. In a related study, CNNs were also found to outperform alternative methods 

such as standard CCA and a CCA/ KNN hybrid analysis (Kwak, Müller & Lee, 2017) in the 

classification of SSVEP in an ambulatory (mobile) environment. These findings corroborate the 

claims that CNNs possess significant noise resilience in relation to EEG data artefact.  

 

With end-point applications of BCI spellers being their utilization by individuals with quadriplegia 

it is necessary to consider the decrease in bio-signal quality from such patient populations. 

Geronimo, Simmons and Schiff (2016) tested a heterogeneous sample of ALS patients on a variety 

of performance metrics when interfacing with BCIs using both motor imagery and P300 based bio-

signals.  Authors concluded that behavioural dysfunction as a result of progressive cognitive 

impairment reduced signal quality significantly. Additional research has also revealed that 

working memory training prior to use of BCI systems can boost ITR performance (Sprague, 

McBee & Sellers, 2016). Irrespective, applications should be designed to feature: minimal-no 

training time, short data capture windows and employ classification techniques which are highly 

resilient to noise.  

 

During the preliminary literature review in preparation for this thesis, it became apparent that as 

yet there has not been a successful research article defining a means of accurately classifying 

SSVEP BCI speller data across a large sub-set of participants for a densely populated visual array. 

Chen et al (2015) trained participant specific frequency sub-band filters to enhance classification 

performance on the single subject level. This process necessitates a long data collection period 
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prior to any real-time classification. Therefore the purpose of this research is to produce a neural 

network capable of achieving >=70% classification on wet-EEG data for a large sample of 

patients. Successful development of such a network would accelerate the deployment of SSVEP 

based BCI spellers and also provide the possibility of integrating user data into later network 

training sessions to further optimise the system to the individual. In other words the initial obstacle 

of near random performance during the first few trials of EEG classification would be overcome. 

Deep CNNs were implemented for the classification of an 8 and a 40 target classification problem. 

The data used in both model training and validation were derived from a benchmark dataset 

provided by the Tsinghua Institute (Beijing) (see, Wang et al, 2016 for further details). 
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Methodology 

 

Data Origins 

The data used to train, validate and test all networks outlined in this study was acquired from an 

online open source repository hosted by the Department of Biomedical Engineering, Tsinghua 

University (Beijing) (Wang et al, 2016). The following section defines the experimental features of 

the data acquisition carried out in the above mentioned study. Efforts have been made to expand 

on the reasoning behind the protocols implemented with the aim of providing additional 

understanding. For further information, refer to the original article. The accompanying dataset 

publication gave no suggested analytical methodology. In other words, all data organisation, pre-

processing and analysis were performed with custom code unless specified explicitly.     

Participants  

A total of 35 participants were recruited for the original study (18 males, age range: 17-34 years, 

mean age= 22 years). All participants tested had normal or corrected to normal vision. A subset (8) 

of the participants had prior experience with SSVEP-based BCI spellers from partaking in past 

studies with the respective institute. The remaining 27 participants had no prior experience with 

such systems and are there classified as naïve. All participants were informed about the study 

requirements and procedure prior to gaining consent. Ethics approval was provided by the relevant 

institutional committee (Research Ethics Committee of Tsinghua University). 

 

Stimulus Presentation  

The study consists of a 40 target BCI speller experiment. Targets comprise a selection of English 

alphabetical characters (26), numerical digits (10) and symbols (4) in a 5 x 8 visual target array. 

The targets were displayed on a 60cm Acer GD245HQ LCD computer monitor with a latency of 

2ms and 1920x1080 resolution at a frame rate of 60Hz. Targets (size: 32x32 pixels/ 1.8x1.8cm) 

were centrally oriented inside stimulus squares (sizes: 140x140 pixels/ 8.1x8.1cm), with a uniform 

distance between adjacent targets of 50 pixels/ 3cm across both vertical and horizontal planes. The 

distance between monitor and participant was kept consistent at 70cm throughout the data 

collection period. Stimulus presentation code was programmed using MATLAB (Mathworks, Inc.) 

and associated library, Psychophysics Toolbox. Unique stimulus patterns were assigned to 

individual targets following the joint frequency and phase modulation methodology (refer to 

Figure 2). Dual frequency and phase combinations were developed as per:  

 

(𝑘𝑥,𝑘𝑦)=𝑓0+Δ𝑓×[(𝑘𝑦−1)×5+(𝑘𝑥−1)]  

 

∅(𝑘𝑥,𝑘𝑦)=∅0+Δ∅×[(𝑘𝑦−1)×5+(𝑘𝑥−1)] (1).  

 

In which kx refers to the row and ky the column index of the visual array. Where 𝑓0 denotes 8Hz 

and Δ𝑓 0.2Hz (range: 8-15.5). The stimulus presentation followed a sampled sinusoidal 

stimulation approach. With 𝑓 and ∅, a presentation order s(𝑓,∅,𝑖) is produced via altering monitor 

luminance: 

  

(𝑓,∅,𝑖)= 12{1+sin [2π(𝑖 RefreshRate ) + ∅ ]} (2)  

 

sin() creates a sine wave and i represents the frame index within the sequence in which 0 

represents dark and 1 represents maximal luminance (refer to Figure 2).  

 

In order to ensure that the coded stimuli patterns match the actual stimuli patterns on screen, 

researchers calibrated the BCI system using photo-diode measurements. The photo-diode was 

placed on the monitor used to present target stimulus patterns and generated read-outs expressed in 

micro-volts. These micro-volt values were then converted into units of luminance to ensure that 

the changes in stimulus brightness matched the coded values. Further, luminance changes were 

also measured over time for each coded stimulus pattern to ensure that the frequencies 
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programmed also matched actual target frequencies presented on screen. These methods were 

adapted from the research performed by Manyakov et al (2013) and implemented in collected of 

these data, as well as an additional previous study (Chen, Chen, Gao, Gao, 2014). Authors do not 

explicitly make note of the difference between expected and actual stimulus patterns during the 

collection of the benchmark dataset in question. 

 

 
Figure 2. Cartoon of the stimulus patterns used to control the stimulus squares overlaid onto the 

target letters, numbers and symbols. The top panel shows a representation of the alphanumeric array 

presented to subjects via a computer monitor. In the top-right section there is a visual representation of how 

the stimulus frequencies are generated, by alternating an overlaid stimulus square between black and white 

onto each target character. The bottom panel shows a graphical representation of how the coded stimulus 

signals alter the behaviour of stimulus squares over time. The frequency of the sinusoid signals define the 

rate at which the stimulus squares oscillate between black and white. As shown in the figure, stimulus 

patterns with higher frequencies iterate between black and white brightness more frequently per second. As 

the signal reaches one, the stimulus square is presented with maximal brightness. As the signal drops to zero, 

the brightness of the monitor region dedicated to the stimulus square is at minimal brightness. Further, the 

figure illustrates how the fluctuation in brightness controls the phase offset of the signal.  

 

Experimental Design  

Participants were required to perform a cued target selection task. Initially targets are cued via the 

presentation of a red square at the intended target for selection (0.50 seconds). Participants are 

instructed to fixate upon the pre-cued target (5 seconds), after which the monitor returns to a 

resting blank state (0.50seconds). During the fixation period all 40 targets flash concomitantly 

according to their respective stimulus patterns. The total time period for cueing, acquisition and 

resting was therefore, 6 seconds. In order to minimise the amount of non-relevant data included 

into the samples collected participants were instructed to rapidly redirect their gaze to following 

targets. Moreover, in order to minimise the presence of EEG artefacts participants were asked to 
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refrain from blinking or jaw clenching during the fixation period. One block consisted of fixating 

all 40 targets in the visual array once (6seconds*40 targets= 4minutes). A total of 6 blocks were 

collected with each participant and a mandatory break was implemented after every 2 blocks.  

 

Data Acquisition  

The EEG system utilized for SSVEP data acquisition was the 64 channel Synamps2 EEG 

(Neuroscan) which adheres to the standardised 10-20 electrode arrangement. EEG samples were 

consistently collected at a rate of 1000Hz. For the purposes of this study analysis was restricted to 

the following channels: O1, O2, Oz, P3, P4 and Pz. An electrode impedance level threshold of 

<=10kΩ was maintained throughout the testing period. During data acquisition time stamps were 

paired to stimulus events in order to correct for temporal instabilities in the collection period with 

time synchronisation techniques. Subjects were tested in a low-light soundproof room while sat in 

a padded chair. 

 

Data Pre-Processing  

Past research utilizing the aforementioned task and hardware revealed that applying an upper-

bound of 90Hz for SSVEP harmonics extraction was optimal; therefore this same procedure was 

adopted. Post-collection all data were down-sampled by a factor of 4 to minimise memory 

demands and computational load. Removal of power-line noise was achieved via application of a 

50Hz notch filter.  Additionally all data was normalized around a mean of zero and scaled between 

+1 and -1. Finally, data across selected occipital and parietal channels were grounded (via 

subtraction) using data derived from the Cz (vertex) electrode). 

 

Many implementations of CNNs make use of data augmentation in order to increase the sample 

size of data on which their neural networks are trained on. This can involve horizontal data 

flipping, data cropping and the addition of artificial noise/ data blurring. Data augmentation serves 

the purpose to ensure that the network being trained becomes more resilient/ robust to noisy data 

input and avoid over-fitting of the model. The reason why such data pre-processing was not 

performed in this study was due to the nature of the data. Due to the presence of EEG non-

stationarities, the EEG is already inherently noisy or ‘blurred’. Moreover data flipping or cropping 

would reduce the spectral separation of our target signals. Flipping the data of an 8.50Hz signal at 

a 50
o
 degree phase shift would indeed leave the frequency the same, however the phase offset of 

the data would no longer be consistent across targets of the same class. Effectively this would 

remove one of the data components that is integral to differentiating between the target signals. 

 

Datasets for Classification 

The raw EEG benchmark data was split into two separate sets. A subset of data consisting of EEG 

output collected during the fixation of 8 targets was collated. These targets were selected to ensure 

maximal neighbouring frequency separation to populate a dataset with the dimensions; 6 x 1500 x 

1 x 1680. Development of a low computational cost implementation attempting to classify targets 

in the 8 class dataset allowed us to accelerate the initial debugging period as well as providing us 

with a successful model for the classification of targets in a less densely populated visual array. A 

secondary dataset consisting of all data present in the benchmark repository was formatted in the 

following dimensions; 6 (electrodes) x 1500 (samples) x 1 (channel) x 8400 (40 letters * 6 blocks 

* 35 participants).  

 

Both datasets were spilt according to the following ratio: 70% training, 15% validation, 15% test. 

Training data refers to the SSVEPs which the network is iteratively learns to model, the validation 

and test data however were never used in the calculation of weight updates. The performance 

metrics associated with the validation and test data are analogous to an unsupervised learning 

procedure whereby the ground truth label is not made evident to the model.  

 

The final AoC, mAoC, AP, MaP and ITR metrics are calculated exclusively in relation to the 

performance of the network when classifying the test dataset. The test dataset does not include any 
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data which the neural networks have previously been trained on. Further, these participants 

included in the test dataset where all BCI-naïve, meaning these individuals had no previous 

experience with BCI systems. These measure were taken to introduce some of the constraints that 

are present in the real-world decoding of brain-based bio-signals. 

 

Training Hardware 

8 Class network implementations were developed under MATLAB 2017a (MathWorks Inc.) using 

the MatConvNet convolutional network library (Vedaldi & Lenc, 2015). A template LeNet 

architecture for classification of the well-established ‘mnist’ hand-written digits dataset was used 

as a foundation for the creation of all subsequent models. However, substantial modification of 

said template code was necessary. The 2GB NVIDIA GTX 750 Ti GPU (1
st
 generation Maxwell 

architecture) was utilized via CUDA toolkit 7.5 to train the 8 class network defined herein. 40 

Class network implementations were trained via remote server on a 12GB NVIDIA Titan X GPU 

(1
st
 generation Pascal architecture) running CUDA 8.0. 

Network Features 

The definitions populating this chapter are intended to provide the reader with a general 

understanding of the processes employed. A detailed mathematical definition of the machine 

learning operations is beyond the scope of this thesis. However, documentation expanding upon 

these processes is referenced alongside. Both models utilized the same network architecture, to 

view the network architecture as plotted using the MatConvNet visualisation function, refer to 

appendix D, Figure 7. Additionally, the 40 and 8 class network implementations utilized same 

meta parameters; batch size (5), momentum (0.9) and total number of epochs for training (1500). 

The models differ in terms of learning rate (LR) with rates of 0.00005 and 0.000001 applied to the 

8 and 40 class models respectively. 

Back-Propagation 

Back-Prop is a highly popular method of optimizing network weights. It is essentially a means of 

applying updates to weight functions of individual neurones based on the error (delta) or distance 

between layer output and actual ground truth examples. A process of stochastic gradient descent is 

applied where labelled ground truth inputs are compared to current network node representations. 

The functional properties of the node are changed such that the output of the layer and the actual 

target data become more similar.  The degree of change made to the node, based on the error 

calculation, is known as the Learning Rate (LR). Selection of an appropriate learning rate is 

critical. Too large and the potential for overshooting past the global minima (lowest error 

achievable by the model) is high. If set too low, the training period becomes longer and also the 

ability of the network to move out of local minima (periods in training where error reduces 

significantly, but not to the point of global minima) is also reduced (Schumacher, Roßner & Vach, 

1996). Implementing a fixed learning rate can be problematic. It is theoretically preferable to have 

large initial jumps, followed by smaller more accurate steps towards the global minima when 

training neural networks. The development of a momentum value helped overcome this issue. 

Momentum functions to ensure that the adopted change in weight is proportional to the gradient of 

the previous change (Rumelhart, Hinton & Williams, 1985). Therefore the process of applying 

error based weight updating undergoes initial acceleration towards convergence followed by 

deceleration as the model approaches convergence such that overshooting is avoided. 

 

Feature Extraction: Convolutional Layer 

Fukushima (1979, 1980) pioneered a revolutionary data operation now known as a ‘convolutional 

layer’, which invariably constitutes the first layer of any CNN. This involves initially specifying a 

rectangular array (for example 3x3) constituting a ‘window’ with which to isolate and operate on 

subsections of input data. A weight vector (also known as a filter) is then applied to the data 

occupied by this subsection of input. The distance between windows is specified by the stride 

value, higher stride values are more computationally efficient as this reduces the total number of 
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operations carried out. Conversely, decreasing the stride effectively increases the degree of overlap 

between neighbouring windows (for example shifting the array just one data point at a time, as 

opposed to three at a time) increases the richness of representational information included. A stride 

value of 1 was maintained throughout all network implementations defined herein. Filters consist 

of an array with the same dimensions as the sliding window. The values within this filter are 

usually initialized with random numbers between -1 and 1, the same protocol was followed herein. 

The dot-product between the subsection of input data and the values in the filter array is computed 

and finally the weighted sum of this element-wise multiplication produces a single data point. The 

newly computed values populate an adjacent output array. Filters are conditioned iteratively over a 

series of training epochs to represent some feature of the input data. Convolutional layers 

positioned deeper within the network build up higher level representations allowing for the 

classification of more complex features.  

 

The primary task of the networks developed in this research is to extract frequency information 

from SSVEPs embedded in EEG time series data. During the initial phase of neural network 

development, uniform 6x6 filter dimensions where selected. This filter size would move across all 

6 channels sampled, as well as 6 data points from the initial raw input EEG data. As data the EEG 

time-series were sampled at 250Hz, this means a micro voltage value was recorded every 4ms. 

Therefore, a 6x6 filter would capture 24ms (6x4ms) worth of temporal EEG data. It was theorized 

that, given sufficient network depth and node density, that the models would develop 

representations of the gradient of the frequency stimulus patterns, as opposed to representations of 

the entire phase cycle of a stimulus pattern. These dimensions however proved unsuccessful, 

despite rigorous attempts to optimize meta parameters and modify pre-processing procedures.   

 

The filters were therefore redesigned in order to capture the entire phase cycle of the respective 

stimulus patterns. The lowest target frequency assigned to a stimulus pattern was 8Hz. This means 

that peak-to-peak, the waveform could only be expressed in its entirety over the course of 32 

samples. This is due to the fact that cycle of an 8Hz signal has a latency of 125ms.  Therefore, the 

minimal data depth for representing a full 8Hz cycle, at a 250Hz sampling rate, is 32 samples. In 

order to accommodate for this, the first convolutional filters which received the raw EEG input 

data were set at the dimensions 6x30. This ensured that each convolutional filter contained roughly 

enough data for the expression of the lowest target frequency stimulation patterns. The height of 

the first convolutional filter was also maintained at 6. This was based off of the well-established 

process of data averaging in EEG analysis. Therefore, instead of actively pre-processing the data 

in this manner, information across channels was collapsed into a singleton dimension after the first 

convolutional operation, as evident from the network architecture diagram (see appendix D, Figure 

7).  

Normalization and Regularization: Batch Normalization 

Batch Normalization aims to remedy what Loffe and Szegedy (2015) termed internal covariate 

shift. This refers to the phenomenon where deep neural network inputs transmitted between 

subsequent layers can change dramatically based on minor shifts in the distribution of training 

data. This problem is analogous to improperly randomising training data prior to learning. Initially, 

network weights shift to more accurately model input data and thus the parameters of the model 

rapidly become accustomed to the characteristics of the input. Minor changes in the input data can 

lead to significant reductions in convergence rate as parameters must go through an adjustment 

period to become accustomed to the new qualities of the input data. This is usually addressed by 

setting extremely low learning rates and thus results in long training periods. Internal covariate 

shifting becomes more problematic with increased network depth as more time is required to alter 

layer parameters further up the hierarchy. Batch normalization acts as a regularization layer in that 

filter values are re-distributed according to a population-wise view of the input data as opposed to 

a batch-wise view. This has the effect of allowing for higher learning rates and mitigates the need 

for the excessive application of drop-out layers. This technique has been successfully implemented 

in many networks, namely the GoogleNet and inception networks (Szegedy et al, 2015). 
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Drop-Out 

These operational layers address the ever present issue of network over-fitting. During training, 

networks learn iteratively to classify input data. However, during this process it is necessary to 

avoid allowing the network to become adept at exclusively classifying input data. If the network 

over-fits to input data the generalizability of the network is diminished. Therefore, networks will 

only be able to accurately classify data from the set on which it is trained. Researchers ultimately 

intend for models to be applied to novel datasets and overfitting can mitigate or entirely impede 

this possibility. Drop-out layers function as a form of data augmentation, restricting the number of 

nodes on which weight updates are performed (Srivastava, Hinton, Krizhevsky, Sutskever & 

Salakhutdinov, 2014). The rate of ‘drop-out’ is traditionally set at 0.5, meaning only 50% of nodes 

in subsequent layers are included in the weight update process. This drastically increases the 

amount of time required to train the model as nodes are effectively trained at half the pace. By 

restricting the number of nodes included in the weight updates the diversity of data features to 

which nodes become responsive towards increases. By increasing the number of data features 

represented by network nodes it defends against the possibility of nodes becoming exclusively 

selective to features primarily found in the training set.  

 

Down-sampling: Max Pooling 

Customarily in CNN architectures contain an aggressive down-sampling layers known as max 

pooling (MP) layers. This can be conceptualised in a similar manner to the convolutional layer 

were a non-overlapping rectangular window isolates a subsection of the input array. The highest 

value in this window then populates a corresponding point in an adjacent output array. The size of 

this window will influence the resolution of the output data, with larger windows resulting in a 

smaller output array. The first applications of this operation can be found in the Cresceptron 

(Weng, Ahuja & Huang, 1992) and HMAX (Riesenhuber & Poggio, 1999) architectures. MP 

CNNs trained via backpropagation are arguably the most successful computer vision competition 

winners, (Schmidhuber, 2015). Other methods such as average pooling are available. These layers 

effectively create a mean of all values in a sliding filter window instead of simply identifying the 

highest value as per max pooling. This technique has been used successfully in recent CNN 

architectures (Szegedy, 2015), however the computational cost of such pooling is far higher, and 

therefore this technique was not selected in this study. 

 

Activation Function: Rectified Linear Activation 

In simplistic terms the purpose of an activation function is to classify incoming data as stimulatory 

or non-stimulatory. Duch and Jankowski (1999) identified over 500 such functions. In CNN 

architectural arrangements the activation step is primarily performed following a down-sampling 

operation. Output values from neurones occupying a preceding max pooling layer are ‘squashed’ 

into a specified range via a transformation function. This assists in differentiating between active 

and non-active nodes and ultimately helps to predict whether the original input data does or does 

not contain features that are relevant for classification. The activation functions are therefore 

crucial in the training of weights during back-propagation as they can be used to determine the 

error between targets and current output values.  

 

Envisage the output of each node being squashed through a sigmoid function between the range of 

0 and 1. The advantage of applying a non-linear activation function is their characteristic 

differentiation of values. In other words each node’s activity is represented across a sigmoid 

output curve occupying a unique position and therefore has an individual corresponding error 

value.  A major drawback in the application of sigmoid based activation functions is their 

characteristic ‘saturation’ of gradient when approaching 0 or 1. Weight updates in back-

propagation are calculated using the gradient between total error demonstrated (x axis) and the 

activation of the node (y-axis). If training is successful the node will become highly selective, 

therefore resulting in a high probability of positioning on the 0 or 1 plateaus. In the later stages of 

training when applying this non-linear activation function to node outputs it leads to the clustering 

of many nodes along these plateaus. If the gradient calculated is minimal then the corresponding 

derivatives calculated to update the weights based on delta (error) scores will also be small. This 
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leads to the highly problematic phenomenon of convergence failure or ‘vanishing gradient’. Other 

activation functions such as tahn and even modern function adaptations such as the ‘leaky 

sigmoid’ do not suffer the same vanishing gradient pitfalls, however the computational cost of 

numerous calculations featuring differentiable non-linear functions makes their application 

limited. 

 

A viable alternative to the aforementioned activation functions are Rectified Linear Units 

(ReLUs), now the most popular for application in recent competition winning MPCNNs. The 

method was initially introduced by Hahnloser (2000), effectively applied and eventually endorsed 

by the neural network community (Glorot, Bordes & Bengio, 2011, LeCeun, Bengio & Hinton, 

2015).  ReLUs apply a near linear transformation on incoming node stimulation data and position 

them across an unbounded range. This means that lines plotted in this mapping space do not 

plateau, therefore eliminating the issue of the vanishing gradient problem. Moreover ReLUs do not 

feature calculations of exponential functions therefore they are significantly more computationally 

efficient. Krizhevsky et al (2012) demonstrated that deep nets trained using the ImageNet database 

(1.2 million images) reached 25% error performance 6 times faster when using ReLUs as 

compared to a tanh activation function counterpart. Therefore, these very same methods were used 

to deduce node activations in the networks defined herein. 

 

Decision Function: Softmax 

The final layer of a CNN is fully connected and functions in a similar manner to logistic regression 

by assigning a class value to each of the groups specified for classification. This class value, as per 

the softmax operation is calculated in a similar manner to the previously discussed convolutional 

layers (via dot-product). However the dimensions of the filter and subsequent output is restricted 

to the number of groups the model is trained to classify. For example in a binary classification task 

the final output would be represented by a 1x1x2 array. The SoftMax function increases the 

contrast in class values transforming them over the range 0:1. This assists in the differentiation 

between targets for tasks with a high number of classes. In its simplest form these final values 

indicate the degree to which the input has activated the learned representations of each group 

hidden within the network. 

 

Summary 

The networks are comprised of operational layers arranged in clusters consisting of a 

convolutional layer, a batch normalization layer, a drop out layer, a rectified linear unit and a 

pooling layer. The network consists of five such clusters with a final convolution and soft max 

layer. In the training configuration the network contains a total of 22 operational layers (refer to 

appendix D, Figure 7). In the testing configuration batch normalization and drop out layers are by 

passed as these are only necessary during the network training phase. Therefore in the testing 

configuration the network is comprised of just 16 operational layers.  

 

Hypothesis 

It is expected that the networks trained on the 8 class problem datasets will produce higher AoCs 

and APs in comparison to the 40 class problem networks. This is due to the lower correlational 

coefficients between target stimulation patterns in the 8 class set. The potential differences in bit-

rate exhibited by prospective network implementations are problematic to deduce. 8 class 

networks may demonstrate higher AoCs, allowing for a heightened bit-rate in comparison to 40 

class networks. However, the higher number of targets in the 40 class implementation could 

amplify AoCs beyond those of the 8 class networks.  
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Results 

Alongside ITR, AoC and MaP the training graphs for each dataset are shown, as well as a 

confusion matrix detailing test results. The training graphs plot network error over training epochs. 

The error refers to a metric which is essentially the inverse of AoC, as it represents the probability 

of incorrectly predicting the letter users intended to spell. If a network demonstrated an error of 

zero, the network would be classed as 100% accurate, as it would have never provided an incorrect 

prediction.  The term ‘error’, is used primarily in relation to the performance of the networks 

during training. The term AoC, is used primarily when commenting on the network performance 

in the test phase.  

When using the soft max operational layer (final layer in the network architecture), all classes are 

assigned a probability value from zero to one indicating which target character the user is most 

likely to be fixating. Classes are then ranked using these values in ascending order from least, to 

most likely. The top 1 error refers to the probability that the correct letter is positioned at the top of 

this ranked list. In contrast, the top 5 error refers to the probability that the correct letter is 

positioned within the 5 highest ranked positions on this list. There is a higher likelihood that the 

correct prediction will lie within the 5 highest ranked classes, as opposed to occupying just the 

first class. Therefore, the top 5 error values are typically far lower for the majority of the training 

period.  

The confusion matrix is a graphical representation of all predictions made by the networks for the 

test dataset and is used widely in the evaluation of network performance. The predictions made by 

the network for each class are cross-tabulated against the actual ground truth labels. In this study 

the ground truths relate to the character subjects were cued to fixate and the predictions refer to the 

classifications the network made based on the EEG time-series data. Confusion matrices are used 

in the evaluation of networks to see if certain classes are being consistently misclassified, or which 

classes are ‘confused’, as well as revealing the direction of this misclassification. For instance, 

classes with stimulus patterns which are similar in terms of frequency, such as a 8.0Hz and 8.2Hz 

signal, would likely be confused as they are more highly correlated, as compared to more distally 

positioned stimulus patterns, such as 8.0Hz and 15.0Hz.  

Confusion matrices are often coloured in order to communicate these relationships more clearly, 

these coloured figures are often referred to as heat maps. The MatLab heat map function used to 

generate the figures in this work uses a blue-red colour scale, with red indicating a higher number 

of class selections and blue indicating a low number of class selections.  Each value represents a 

percentage of the total number of predictions made. Therefore, when all values in the heat map are 

summed it totals 100. The intersection of each class shows the percentage of correct predictions 

made for that class. For example, the first row and first column for both heat maps herein shows 

the percentage of letter A predictions, when the user was actually fixating the letter A.  

The optimum percentages each of these class intersections for the 8 class problem is 12.5, as 100/8 

= 12.5. The optimum percentages for the 40 class problem is 2.5, as 100/40 = 2.5. Any percentages 

shown to lie outside the diagonal points of target and ground truth intersection represent 

misclassifications, or points of class ‘confusion’. The heat maps herein can be used to illustrate 

network accuracy by examining the ‘redness’ of cells positioned along the class intersections. A 

solid red colour at these intersecting points indicates that the classes were selected only when the 

corresponding targets were fixated. Network precision can be inferred by examining the degree of 

confusion for each class. The number of cells which are not presented as solid blue and are not 

positioned on the points of class intersection indicate the network was not operating with maximal 

precision.  
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8 Class Results 

After 1500 epochs of training, the model shows a top 1 error of 0.01%, with a top 5 error of 0%. 

Additionally, the model produced a top one validation error of 22.22% (refer to Figure 3) and a 

top five error of 0.06%. ITR calculations using the final test mAoC (82.94%) revealed a bit rate of 

19.74 bits per minute. 

 

 

Figure 3. This graph illustrates the decrease in classification error throughout the training period 

for the 8 Class network in terms of both the training and validation datasets. Classification error is an inverse 

measure of AoC, indicting the probability of incorrectly selecting the actual target a user was cued to fixate. 

The top 1 error refers to the likelihood of the target class being ranked as the most probable prediction 

estimated by the network. The top 5 error refers to the likelihood of the target class being ranked in the top 5 

predictions out of a possible 40 classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

41 | P a g e  
 

Figure 4. This is a heat map populated with percentages which relate to the cross-tabulation of 

network predictions (y axis) and actual ground truth labels (x axis). A shift of colour from blue to red 

indicates a general decrease in classification error. For more detailed information refer to appendix A, Table 

1. 

 

As shown in the heat map, there is an even distribution of misclassification errors across the target 

stimulation frequencies (refer to Figure 4). However target class D demonstrates a particularly low 

average precision (0.59). Class D was selected as the target prediction in substantially more 

instances than other target classes which has evidently inflated the corresponding target AoC 

percentage (90.32%). In contrast target class H was classified with 100% precision. The mean 

average precision of the network across all classes was calculated at 0.82. The lowest AoC 

observed is associated with target A at just 67.74%, whereas the highest AoC is attained by target 

F (93.75%).  
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40 Class Results 

After 1500 epochs of training, the model’s top 1 training error of 0.01%, with a top 5error of 0%. 

Additionally, the network produced a top one validation error of 16.82% (refer to Figure 5) and a 

top five error of 1.08%. ITR calculations utilized metrics from the performance of the model in 

relation to the test dataset (mAoC= 82.94%) and revealed a bit rate of 21.22 bits per minute. 

 

Figure 5. This graph illustrates the decrease in classification error throughout the training period 

for the 40 class network in terms of both the training and validation datasets. Classification error is an 

inverse measure of AoC, indicting the probability of incorrectly selecting the actual target a user was cued to 

fixate. The top 1 error refers to the likelihood of the target class being ranked as the most probable 

prediction estimated by the network. The top 5 error refers to the likelihood of the target class being ranked 

in the top 5 predictions out of a possible 40 classes. 
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Figure 6. Heat map showing the distribution of predictions (represented by percentage) made by 

the 40 class network implementation for each target class during the test period. For the purposes of 

presentation the table has been reduced, a larger reference can be found in appendix C. More detailed 

information on the relevant data values presented in appendix B, Tables 2a-2d. 

 

The confusion matrix indicates that the instances of misclassification are evenly distributed across 

the alternative stimulation patterns utilized (see, Figure 6 & appendix C).  The lowest AoCs 

reported herein corresponded to targets B, C, E and I with all respective stimulatory patterns 

yielding 74.19% AoCs. Targets D (11.00Hz, 4.71 radians, AP= 0.58) and 0 (10.60Hz, 3.14 

radians, AP= 0.57) represent the lowest average precision (AP) metrics calculated across the 

dataset (refer to, appendix B: Tables 2a-2d). Both values are substantially lower than the mean 

average precision of 0.85 (k=1).  The highest precision values achieved are related to targets: 5 

(15.60Hz, 4.71 radians), 7 (9.80Hz, 2.57 radians), 8 (10.80Hz, 3.14 radians) and ‘,’ (13.80Hz, 1.57 

radians) all of which reached an AP of 1.00. 
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Discussion 

 

Results Summary 

Critically, all metrics defined herein represent the results of test data classified via the 

aforementioned networks. Participant data populating the test set were used exclusively in this 

regard. Meaning at no point was data from these participants included in the training process. 

Moreover, the participant data populating both the validation and test sets were classified by the 

authors of the Tsinghua benchmark dataset as ‘unexperienced’. Therefore the results herein 

represent the closest approximation of a real-world implementation as feasibility possible with the 

data available. From the results it is evident that the network implementations were mostly 

successful. The 40 class implementation produced higher test mAoC (82.94%), MaP (0.85) and 

ITR (22 bpm) values when compared to the 8 class implementation (mAoC= 80.15%, MaP= 0.82, 

ITR= 19.74 bpm).  This may initially seem counter-intuitive as the 8 class dataset, contained 

waveforms with distinctly lower between class correlational coefficients than the 40 class dataset. 

However, in light of previous studies which employ correlation based analysis, coefficients do not 

give a true indication of data similarity. It is therefore clear that the two datasets contain similar 

levels of latent variables such as; harmonic frequency components which are weighted more 

heavily in the accurate classification of corresponding character waveforms.  

 

Accuracy of Classification 

Critically, AoC did not drop below 70% for any of the 40 class targets. Targets yielding the 

highest AoC values were H (15 Hz, 4.71 radians) and T (11.4 Hz, 4.71 radians) suggesting larger 

phase offsets could boost network capabilities for target differentiation (refer to table 2a-2d, in 

appendix B). Moreover, there appears to be a trend for higher misclassification of target 

frequencies with integer value, however this is likely circumstantial. Interestingly, all targets 

possess either 0 or 1.57 degree phase offsets. It could be argued that at these lower phase offsets 

increase the probability of neighbouring target stimulation patterns sharing harmonic components, 

therefore increase the chance of misclassification. However this did not significantly influence the 

AoCs or precision metrics of numerous other targets sharing similar properties.  

Differences in the AoCs between the 8 and 40 class implementations can be attributed to unique 

learning rates. The 40 class implementation was assigned a learning rate (LR) of just 0.000001, as 

compared to the 8 class LR of just 0.00005. This has substantially increased the generalisability of 

the model, as evident from the comparatively lower difference between training, validation and 

test AoCs of the 40 class network. Furthermore, the higher performance metrics of the 40 class 

model could also be attributed to the patently larger dataset used in training. Providing more 

ground truth data inevitably decreases classification error as the model is able fine tune meta-

parameters to a broader palate of real-world examples by enhancing the number of EEG waveform 

representations embedded in the model. Despite the test mAoC for the 40 class implementation 

being greater than the research standard of 70%, around 1 in every 5 words intended for selection 

will represent a misclassification error.  Frequent character misclassification would undoubtedly 

reduce user workflow during device interfacing.  The standard procedure when designing SSVEP 

based BCI stimuli is to restrict the frequency range of potential target patterns to between 8-

15.5Hz. This is due to a large body of past research indicating that this sub-band in frequency 

space provides optimal signal to noise ratio across a normally distributed population. Despite these 

findings application of such target frequencies can either isolate or endanger some potential end-

users due to the risk of inducing epileptic seizures. Current research however suggests that 

utilization of higher frequency values (>15 and <70Hz) can nullify the inherent risks of 

epileptiform activity. Additionally, these stimulation patterns produce EEG output with higher 

signal stability and also dramatically reducing participant perceptions of stimulus induced 

discomfort (Won et al, 2016). Moreover, this increases the range of frequency values available 

when selecting target stimulus patterns, allowing for large incremental differences between 

neighbouring frequency values. The inevitable dramatic decrease in resulting SSVEP waveform 

similarity between targets would undoubtedly increase classification accuracies. Also it is 

important to note, the networks defined herein represent the bottom-end of the theoretical deep 



  

45 | P a g e  
 

CNN classification capabilities.  User data from continual online use could be used to train the 

network, effectively tailoring it to the specific EEG characteristics of the patient. Real-time 

performance using similar EEG device configurations implementing these networks online is 

necessary to fully validate these results. 

 

Information Transfer Rate 

The ITR reported herein is comparatively low when considering recent BCI speller research. This 

can be attributed to the 6 second data capture period. Previous studies have explored the possibility 

of modulating data capture periods in real-time in response to user performance (Yin, Zhou, Jiang, 

Yu & Hu, 2015). This technique has the benefit of retaining high classification accuracies 

independent of user processing speed. The optimization can be performed prior to substantial 

online analysis by collecting a small sub-set of user SSVEP EEG signals. The prevalence of 

necessary data features is then calculated and an optimal data capture period is estimated. This 

initial assessment functions to speed up the system-user calibration process, allowing more time 

for task training prior to online-usage. This process of optimizing the data acquisition period 

duration has also been performed online to ensure changes in performance throughout the 

interfacing period do not impede classification accuracy (Kha, Nguyen, Kha & Dutkiewicz, 2017). 

Optimization of algorithms which dictate these parameters could potentially be achieved in real-

time through the implementation of a fairly shallow CNN. 

 

The performance of the 8 and 40 class networks were not tested using shorter time windows as the 

CNN architecture requires input data of consistent dimensions. This is a potentially limiting factor 

to the maximal ITR attainable by such networks. A potential means of circumventing this obstacle 

would be to train 6 separate neural networks using iteratively larger input dimensions (1:6 

seconds). During the training phase a model configured for large input dimensions corresponding 

to 6 seconds of data capture could be utilised. If consistently high classification accuracies are 

achieved, the use of a model accepting smaller input arrays could then be substituted as the 

SSVEP decoder. Decreases in classification accuracy due to user fatigue or low SNR would 

trigger the utilization of networks tuned for larger data capture windows in order to maintain 

functionality. A more sophisticated solution however would be to implement a hybrid recurrent-

convolutional neural network. Traditionally Recurrent Neural Networks have been used in the 

domain of semantic language processing and speech recognition. RNNs are arguably more flexible 

architectures as they are capable of accepting data input sequences of varying length. Development 

of a hybrid CNN-RNN was beyond the scope of this thesis; however this is clearly a potentially 

fruitful investigation for future research. Additional methods of increasing BCI speller ITRs 

include the integration of language models to improve user performance and experience. 

Techniques such as: auto-correct and auto-completion have been studied extensively (for review 

see, Speier, Arnold & Pouratian, 2016). However, there have as yet been no efforts made to 

integrate emoticons into BCI speller visual target arrays. The potential for increasing ITR as well 

as providing BCI speller users more tools to add directional valence to their printed text is 

substantial. Others means of embellishing the printed text from BCI spellers with emotional 

content include digital vocalisation of the decoded characters. Arguably, the ability to introduce 

more emotional context to the text printed represents the next challenge in the development of BCI 

spellers. 

 

Confusion Matrix 

When inspecting the confusion matrices of both 8 and 40 class implementations, both indicate a 

preponderance for selection of target class D leading to distinctly lower average precision values. 

This may seem abnormal in consideration of the fact that the stimulation frequency (11Hz) is 

positioned centrally in the optimal range for low noise SSVEP signals. However, as previously 

discussed it is not uncommon for there to be significant individual differences in relation to the 

responsivity of participants to certain stimulation frequencies. The test participant population may 

contain a number of individuals sharing a distinctly lower responsivity to the 11Hz frequency. 

This therefore suggests that the EEG data collected during fixation of the class D target may 

contain significantly lower quality SSVEP signals. Increased noise can result in the random 

expression of data features typically associated with other target waveforms, therefore increasing 
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misclassification. Alternatively, this phenomenon may be product of the target’s positioning on the 

computer monitor which displays both the flickering targets and character predictions after each 6 

second stimulation period. The D character occupies a central position neighbouring the region of 

the screen which prints visual feedback (characters predicted). During the task, participants may 

use region of the screen occupied by letter D as a default resting position. This would explain the 

over-classification of letter D due to the inclusion of a small but potentially relevant amount of 

SSVEP signals generated in response to the flickering of D during the initial moments of the 

flicker period. This could be remedied by instructing participants to avoid this behaviour and 

placing a fixation cross centrally while monitoring the deviance of gaze during the inter-trial 

period using an eye-tracker. Another possibility is to retrain the networks defined herein on the 

same datasets after excluding the first 100ms of data. This would ensure that unnecessary data 

associated with feedback monitoring and target visual search would not be feed into the model.  

 

Ultimately, irrespective of the methods it is imperative that each operation potentially executable 

by the user possesses the same likelihood for selection. This is critical in order for user work flow 

to be consistent during device interfacing. Such functionality would foster seamless application of 

the BCI in real-world applications.  Interestingly, the results reported herein suggest the 

integration of more targets in the visual array is feasible as the jump from 8 classes to 40 classes 

did not result in a net decrease of performance statistics. It is clear however that in order to 

accurately classify SSVEP data from densely populated targets arrays a substantial training set is 

required. Inclusive to the current Tsinghua dataset the application of data augmentation techniques 

was overlooked. Authors outline a procedure whereby the phase off-sets applied to the data can be 

reversed, therefore feasibly a larger range of phase offset values could be utilized to produce 

significantly more frequency and phase pairings for additional targets. This would necessitate the 

repeated usage of the stimulus frequencies employed, however with sufficient phase offsets the 

correlational coefficients could be reduced to similar levels. In addition, to increase network 

resilience subsets of the data could be augmented by applying noise prior to training. This would 

ensure that the models maintain high rates of classification during prolonged periods of use.  

Specifically this added robustness would be useful when networks are paired with wet-EEG 

systems as SNRs have been shown to decrease when conductive gel begins to evaporate. 

 

 

Tsinghua Benchmark Data  

The hardware and meticulous procedure employed by the developers of the Tsinghua benchmark 

dataset (Wang et al, 2016) were key to the acquisition of the performance metrics reported herein. 

The use of a high fidelity wet-EEG system in low electrical interference conditions lead to the 

production of EEG data with minimal noise and movement artefacts. This undoubtedly assisted in 

the definition of network parameters sufficient for the differentiation of target waveform patterns. 

The use of wet-systems in real-world user settings may be impractical as often target patients are 

housed in clinical environments which are densely populated with devices producing electrical 

interference. Often such devices are necessary to assist patients in critical processes which they are 

no-longer able to sustain independently. Consequently, the removal of these machines from the 

environment is not a realistic solution. Therefore, effective implementation of BCI spellers in a 

real-world context requires substantial advances in the development of EEG sensors with more 

protective shielding. Despite the execution of high quality data collection by the Tsinghua research 

group, the open source data available was down-sampled prior to release. Authors justify this pre-

processing by asserting that this step removes a significant amount of high frequency noise from 

the samples (Wang et al, 2016). However, it would have been interesting to explore the 

classification capabilities of a network implementation trained on this higher resolution dataset. In 

future, in-house data collection using dry mobile kits (Cognionics Quick 20) at higher sampling 

rates (1kHz) will be performed. The inevitable increase in EEG noise may be offset by the higher 

resolution of the EEG data input. Outcomes of such experimentation are difficult to predict due to 

difference in data collection hardware, pre-processing software and participant experience level. 

However, the potential maintenance or increase in classification capabilities in concert with 

increased kit mobility would produce a BCI speller with a higher degree of flexibility. 
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Meta Parameters 

Through a process of experimentation it became evident that lower batch sizes significantly 

reduced the tendency for models to over-fit as well as increasing the final top one validation 

accuracy. Traditionally, batch sizes (the number of training examples included in the weight 

update calculations) are set at around 20, constituting a typical memory capacity of around 1MB. 

However, this is of course entirely arbitrary in relation to the format of data used as the initial 

network input. A reduction in batch size contingently increases in the amount of processing time 

required per epoch. Training at lower batch sizes has also been found to significantly improve final 

validation error results, however as previously alluded this comes with a higher price in terms of 

research time. All networks including were trained with batch sizes of 5. As reported by Breuel 

(2015), the combination of low batch sizes with; ReLUs, convolutional layers and softmax output 

operations in the context of deep network architectures produced the highest performance metrics 

across a number of classic image processing benchmark datasets. It is however clear that further 

manipulation of the meta-parameters could lead to the acquisition of significantly higher mAoCs. 

However, the aim of the project was to achieve >=70% mAoC across all 35 participants for a 40 

class problem, therefore this took priority in terms of research time allocation.  

 

With a reduction in batch size, typically a reduction in the learning rate is also necessitated. The 

inordinately low learning rates of 0.00005 and 0.000001 were used in the 8 and 40 class 

implementations respectively. This step was critical in order to avoid over-fitting across the 

learning period to the training data set. Additional measures to mitigate overfitting include the 

deployment of a drop out layer after the first convolutional layer. Interestingly, despite 

recommendations from the developers of the batch normalization technique, the inclusion of a 

solitary drop out layer improved mAoC dramatically in both the 40 class and 8 class 

implementations. However, the addition of further drop-out layers to the model had a negative 

impact on the global minima attained. This is likely due to the drop-out layers reducing the ability 

of ReLUs to convey the incidence of node stimulation in relation to the input data. Such a 

phenomenon is common when combining both drop-out and ReLUs and forms the basis of the 

argument set out in Loffe & Szegedy (2015) as to why inclusion of drop-out layers in tandem with 

batch normalization is unadvisable. 

Network Improvements 

 

Network Initialization: Unsupervised Pre-Training 

In order to speed up the rate of convergence researchers have shown the utility of deploying 

networks on a simplified unsupervised learning task for a low number of epochs prior to the 

primary classification task. The process involves pre-training each layer to represent a non-linear 

transformation of the outputs from the previous layer, characterising the primary differences of the 

input. This essentially acts as a form of regularization, by reducing the variance in node values 

across the network while encouraging expedient arrangements of parameter space (Erhan et al, 

2010). Unsupervised pre-training has been employed in a number of the most successful image 

classification and segmentation CNNs to date (Krähenbühl, Doersch, Donahue & Darrell, 2015). 

Authors of the aforementioned models attest to the capacity for this form of pre-training to 

ultimately reduce global minima and the instance of model over-fitting (Jarrett, Kavukcuoglu, 

LeCun, 2009). Future optimization of the networks should consider employing this means of 

parameter initialization. 

 

Local Response Normalization 

The regularization method implemented in the networks defined herein was a by-product of the 

batch-normalization layer operations. Regularization protocols have also been implemented more 

directly in the form of discrete normalization layers such as Local Response Normalization (LRN). 

LRN attempts to engender the characteristic lateral inhibition (LI) expressed in biological 

neurones in artificial networks. LI defines the process whereby the net-neurone activity reduces in 

response to increased activity of neighbouring neurones. Moreover, excitation of individual 

neurones in the absence of neighbouring activity leads to significantly higher levels of activity in 

the said neurone. This effect has been demonstrated countless times in the mammalian visual 
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system and has been shown to drastically improve the perceptible differences in fundamental 

features of visual space such as texture and edge. LRN layers in the context of artificial neural 

networks therefore function to amplify the detectable differences in node activity as the data 

moves through the network. Previous studies have asserted the efficacy of implementing LRN 

layers specifically when also utilizing ReLUs due their un-bounded activations. Replacing batch 

normalization with LRNs would undoubtedly increase the total training time required to meet 

convergence. However this may come with the benefit of a lower global minima. Experimentation 

into finding an arrangement whereby both forms of normalization are utilized by the model may 

permit the retention of positive characteristics from both. 

CNNs for Pre-Processing 

The use of CNNs as a data-pre-processing tool has been previously established (Wulsin, 2010). 

During the collection of EEG data, despite some models being marketed as ‘mobile’ EEG signal 

quality deteriorates rapidly when electrodes experience friction and un-alignment with the scalp. 

Movement artefacts may be less of a contributing factor when in use by real-world target patient 

populations. However, during the intermediate research stage where data collection from healthy 

participants is necessary to assess network efficacy the implementation of CNNs as movement 

artefact tools could increase the yield of usable data per testing session and thus increase the rate 

of research. Moreover, these same forms of pre-processing could eventually be utilized as eye 

blink removal software during online use by quadriplegic patients.  

GPU Deployment 

Critical to attaining >70% mAoC on both implementations of the network was the utilization of 

GPUs during the training period. Specifically in relation to the 40 class implementation, without 

the use of the aforementioned NVidia Titan X, training a model of the network described herein 

would have been unachievable. The 40 class implementation is arguably a success, however the 

memory demands to run a single test character are significant. This therefore places added cost to 

the BCI hardware used to decode the SSVEP bio-signals. However, with significant advances in 

the field of computational processing and efforts from technology retailers to market tailored CNN 

training hardware into convenient bundles means this limitation should not represent a major 

obstacle.  

Real-World Application 

Despite impressive results the scope of application for SSVEP based BCI spellers are restricted 

due to a number of factors. Primarily, individuals suffering visual defects from traumatic, 

congenital or progressive disorders would not be able to utilize such systems. Attempts at 

developing BCIs which harness related bio-signals such as Steady State Auditory Evoked 

Potentials, or Steady State Somatosensory Potentials (Hori, 2017) have been explored. However, 

information transfer rates of such systems are significantly lower than current vision based BCI 

spellers. Critical to the assessment of SSVEP based BCI speller applicability is an investigation of 

SSVEP gaze independence in the context of a dense target array. As previously mentioned SSVEP 

gaze dependency is a divisive topic in the field of BCI. Establishing the level of real-time 

performance attainable with the appropriate gaze fixation controls is crucial to understanding the 

upper limits of the SSVEP bio-signal as a means for powering BCI spellers. The powerful 

computational methods defined are highly noise resilient as evident from the results and may 

represent the best methods of developing a high speed purely attention based BCI speller. 

 

Moreover, research has demonstrated that there are age related differences in SSVEP based BCI 

performance (Volosyak, 2017). This has been attributed a number of factors; reduced learning 

rates, maximal performance speed and bio-physiological differences. Expanding upon the later, 

EEG requires high conductivity between the electrode and the surface of a user’s scalp. As human 

users age, the reduction of collagen in the skin attenuates the signal quality received during EEG 

data collection. This obstacle is not as exaggerated during collection of wet-EEG systems data, as 

compared to dry-EEG systems. Recently so-called semi-dry electrodes have been developed in an 

attempt to capture the benefits of the aforementioned systems while minimising the disadvantages. 

Yang et al (2016) have created sensors constructed from porous ceramic. The absorbent properties 

of the materials utilized allow researchers to load sensors with small quantities of conductive gel 
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which slowly release across the areas where electrodes contact the user’s scalp. This ensures that 

the signal instability inherent to dry-EEG systems is overcome. However it is questionable to what 

extent to the impracticalities of repeatedly applying conductive gel have been superseded. User 

discomfort would indeed be improved, however not entirely ameliorated. As mentioned previously 

the dry-mobile-EEG systems currently present the most practical format for long-term BCI 

spellers. It may be possible through the application of more powerful classification techniques as 

described herein to overcome these inherent age-related performance decreases. Nevertheless, 

long-term ecological studies are required to validate such potentialities.  

 

Conclusion 

In conclusion the results herein define a deep CNN for SSVEP based BCI with the potential for 

plug-and-play functionality. To reiterate, the aim of this study was to produce a CNN capable of 

=>70% classification accuracy on all targets occupying a dense visual array. Critically, this was 

achieved in the absence of any user specific parameter optimization. However, it is important to 

note that the application of deep CNNs for the classification of SSVEP based bio-signals is still in 

a period of infancy. In order for researchers to continue advancing these methods of analysis larger 

benchmark datasets captured at higher resolutions are required in order to provide the resulting 

networks with increased generalisability. Additionally, researchers should begin using stimulation 

patterns harnessing a larger range of the frequency spectrum to reduce user fatigue and target 

waveform data similarity. Moreover; network parameter optimization, the integration of the 

unsupervised pre-training weight initialization procedures and local response normalization layers 

are critical to enhancing network accuracy and precision.  Finally, an evaluation of SSVEPs gaze-

dependency in the context of a dense target array is crucial to establishing the applicability of such 

systems. 
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Appendix 

Appendix A 

Table 1 

8 Class Network Performance Metrics 

         

Character Index A B C D E F G H 

Frequency (Hz) 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 

Phase (radians) 0.00 1.57 3.14 4.71 0.00 1.57 3.14 4.71 

Accuracy of 

Classification 
67.74 74.19 74.19 90.32 78.12 93.75 78.12 84.37 

Average Precision 0.84 0.82 0.85 0.59 0.86 0.73 0.89 1.00 
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Appendix B 

Table 2a 

 

Table 2b 

 

Table 2c 

 

Table 2d 

 

 

 

40 Class Network Performance Metrics  

 

Character Index A B C D E F G H I J 

Frequency (Hz) 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 8.20 9.20 

Phase (radians) 0.00 1.57 3.14 4.71 0.00 1.57 3.14 4.71 0.00 1.57 

Accuracy of 

Classification 
77.42 74.19 74.19 83.87 74.19 90.32 77.42 93.55 74.19 80.65 

Average Precision 0.75 0.77 0.92 0.58 0.79 0.67 0.86 0.83 0.85 0.96 

40 Class Network Performance Metrics  

 

Character Index K L M N O P Q R S T 

Frequency 10.20 11.20 12.20 13.20 14.20 15.20 8.40 9.40 10.40 11.40 

Phase 3.14 4.71 0.00 1.57 3.14 4.71 0.00 1.57 3.14 4.71 

Accuracy of 

Classification 
77.42 87.1 90.32 87.1 77.42 83.87 83.87 80.65 90.32 93.55 

Average Precision 0.83 0.84 0.76 0.84 0.77 0.81 0.79 0.89 0.68 0.66 

40 Class Network Performance Metrics  

 

Character Index U V W X Y Z 0 1 2 3 

Frequency 12.40 13.40 14.40 15.40 8.60 9.60 10.60 11.60 12.60 13.60 

Phase 0.00 1.57 3.14 4.71 0.00 1.57 3.14 4.71 0.00 1.57 

Accuracy of 

Classification 
87.50 87.50 84.38 81.25 78.13 87.5 84.38 87.50 90.63 93.75 

Average Precision 0.82 0.90 1.00 0.87 0.89 0.78 0.57 0.90 0.97 0.91 

40 Class Network Performance Metrics  

 

Character Index 4 5 6 7 8 9 _ , . < 

Frequency 14.60 15.60 8.80 9.80 10.80 11.80 12.80 13.80 14.80 15.80 

Phase 3.14 4.71 0.00 1.57 3.14 4.71 0.00 1.57 3.14 4.71 

Accuracy of 

Classification 
78.13 84.38 78.13 78.13 78.13 81.25 84.38 78.13 81.25 81.25 

Average Precision 0.93 1.00 0.89 1.00 1.00 0.93 0.87 1.00 0.87 0.90 
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Appendix C 
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Appendix D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Neural Network architecture diagram displayed using relevant MatConvNet 

print functions.  
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