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Abstract: When a polymer mixture of two types of polymers having different

molecular weights are left to equilibrate, the polymer having the lower molecular

weight migrates to the free interface. This phenomenon is known as surface migration.

We present a theoretical framework to explain this phenomenon and to quantitatively

predict the amount of material that migrates to the interface. In what follows, we

provide a review of the background literature, emphasizing the phenomenology

behind such a segregation process, the different theoretical developments including

variational methods and self consistent field theory as well as the experimental

techniques that have been used to measure the amount of material leeches as a

function of parameters e.g. temperature, surface tension and the mixing parameter

(that determines whether the bulk polymeric phase is mixed or phase separated).

The main hypothesis presented in this thesis is that the elasticity of the polymer

matrix through which the low molecular weight species migrates to the free interface

is an important parameter that has not been taken into account so far. This raises



the interesting possibility of controlling surface migration by tuning matrix rigidity

by changing polymer elasticity with broad industrial applications. The structure of

the thesis is as follows:

• Chapter 1 presents the fundamental properties of Gaussian chains, the phe-

nomenology of migration and the bulk thermodynamics for polymer mixtures,

together with the surface thermodynamics of fluids;

• Chapter 2 reviews the mean field theories for surface migration (Variational

method and self consistent field theory);

• Chapter 3 introduces the elasticity as a property of the matrix and analyses

the impact of different properties for manipulating polymer nanofilms;

• Chapter 4 presents the design of experiments as a tool for the subsequent com-

parison theory-experiments, a statistical analysis and some insights from com-

putational simulations with C.U.L.G.I. (Chemistry Unified Language Graphics

Interface);

• Chapter 5 reviews the Locally Correlated Lattice Theory (LCL) for the correct

description of the bulk thermodynamics of compressible mixtures as well as

the combination LCL migration theory needed for going beyond the limitation

of Flory-Huggins and mean field theories;

• Chapter 6 reviews the content of the thesis, discussing the conclusions, some

future research perspectives and open questions;
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"La filosofia scritta in questo grandissimo libro che continuamente
ci sta aperto innanzi a gli occhi (io dico l’universo), ma non si può
intendere se prima non s’impara a intender la lingua, e conoscer
i caratteri, ne’ quali scritto. Egli scritto in lingua matematica, e
i caratteri son triangoli, cerchi, ed altre figure geometriche, senza
i quali mezzi impossibile a intenderne umanamente parola; senza
questi un aggirarsi vanamente per un oscuro laberinto."
Trad:"Philosophy is written in this very big book that is continu-
ously open in front of our eyes (I say universe), but one cannot
understand if does not understand the language, know the charac-
ters, in which it is written. It is written in mathematical language
and the characters are triangles, circles and other geometrical
figures and without them it would be impossible to understand
anything of that; without them it would be like wandering around
an obscure labyrinth."

— from Il Saggiatore by G. Galilei

"Das allgemeine vorzgliche Kennzeichen der griechischen Meister-
stcke ist endlich eine edle Einfalt, und eine stille Grüe, sowohl in
der Stellung als im Ausdrucke. So wie die Tiefe des Meers allezeit
ruhig bleibt, die Oberflche mag noch so wten, ebenso zeiget der
Ausdruck in den Figuren der Griechen bei allen Leidenschaften
eine groe und gesetzte Seele."
Trad:"The general preeminence of Greek masterpieces is, finally,
a noble simplicity, and a stillness, both in position and in expres-
sion. As the depth of the sea is always calm, the surface may still
be so, the expression shows in the figures of the Greeks, a great
and established soul in all passions."

— from Gedanken über die Nachahmung der griechischen Werke
in der Malerei und Bildhauerkunst by J.J. Winckelmann
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Chapter 1

Introduction

We describe the phenomenon of surface segregation of the low molecular weight

component of a polymer mixture to a surface that is open to atmosphere. In this

chapter we introduce some fundamental properties of random chains, describe the

phenomenology of migration and the different experimental techniques which have

been used to explore the phenomenon, e.g. IBA-Ion Beam Analysis, NR-Neutron

Reflectometry, XPS-X rays Photoemission Spectroscopy and the pendant drop for

measuring the surface energy. Finally we review the theories for bulk and surface

thermodynamics of polymer mixtures.

1.1 Polymers and random chains

Polymers are macromolecules, i.e. very large molecules made of repeated units

(monomers) arranged in a chain. The number of units, which we denote by N ,

is called the "degree of polymerization". We speak about polymers if the chain

molecules are made of more then 100 monomers, in other words, when the degree of

polymerization is greater than 100. It is easy to find natural systems with a degree of

polymerization of up to 107 − 109 (DNA and biologycal systems). Polymers exhibit

properties which are in between normal fluids and solid and they are classified in

the middle world of "soft materials". Several complex formulations are mixtures of
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such long chains molecules and it is extremely difficult to connect the macroscopic

properties of such mixtures to microscopic features of molecules that make up the

mixture. In particular, the segregation and migration to the surface of polymer

mixtures is an interesting phenomenon with varied applications in everyday life.

Binary mixture migration, which occurs when the lower molecular weight component

of a two-component polymer mixture travels to the surface, results in a phase

separation that may decrease the functionality of certain products. Many polymeric

materials such as plastics, adhesives and even chocolate [82] and food packaging

[6] are affected by this phenomenon which, despite many studies, is not yet well

understood.

In this section, we briefly review some basic concepts and physical properties of

polymer chains.

Ideal polymer chain and random walk

The simplest model to describe a polymer is the ideal chain model, where the

monomers (units) are represented by rigid rods, all of length b (the Kuhn length). If

the polymer is made of N monomers, its total length is therefore L = Nb. Each rod

is joined to the next by a perfectly flexible joint. It is assumed that the orientation

of any particular rod is independent of the orientation and location of neighbouring

rods in the chain, and in particular, two rods can occupy the same space in an ideal

chain model.

The description of the exact state of a polymer at a particular time, and how it

evolves subsequently, requires a vast number of parameters. For instance, one would

need to take into account the angles of every chemical bond. The complexity of

the task makes it impossible to provide accurate predictions on the exact state of

a polymer at any time t, but it is possible to predict average properties of a given

polymer’s shape by treating each configuration in a series of "snapshots" taken at

consecutive times as a 3-dimensional random walk.
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To describe the random walk, one considers the polymer as a chain on a cubic lattice,

where each joint sits at one of the corners of a cube centred on the previous joint

in the chain. Let the cube have sides of length 2λ. In this set up, the rods have

Kuhn length b =
√

3λ. Considering R as the vector connecting the two ends of the

polymer and rn as the random vector representing rod n, we can write:

R =
N∑
n=1

rn. (1.1.1)

We notice that the average value 〈R〉 of the vector R is zero. Indeed, although the

two ends of the polymer do not coincide, they fluctutate randomly around each other.

Since N is considered to be very large, one can use the central limit theorem, which,

given that the vectors rn are all independent of each other, yields a mean-square

distance between the ends of the chain:

〈
R2
〉

=
N∑
n=1

〈
r2
n

〉
= Nb2. (1.1.2)

We immediately notice that the size of an ideal polymer chain is proportional to
√
N , so it scales with the square root of the degree of polymerisation. It is easy

to calculate the probability distribution function of R. For a polymer with N

monomers and one end fixed at the origin, let P (R, N) be the probability of the

other end to be at position R. Let z be the coordination number of the lattice,

i.e. the number of nearest neighbour lattice sites of any particular joint. Following

Doi [29] and denoting by bi(i = 1, ..., z) the possible vectors that link a joint to its

nearest neighbours in the chain polymer, the probability of the polymer end being

at position R can be written as:

P (R, N) = 1
z

z∑
i=1

P (R − bi, N − 1). (1.1.3)

If the polymer is very long, we can expand eq. (1.1.3) into a Taylor series and in

this way, using the central limit theorem, the probability distribution function will

be:

P (N,R) =
( 3

2πNb2

) 3
2

exp
(
− 3R2

2Nb2

)
. (1.1.4)
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We immediately notice that the function is a Gaussian. Actually, random chains and

Gaussians are the core of the classic approach to Polymers, see [44, 29, 105]. We can

calculate the free energy for ideal chains by taking the logarithm of the probability

distribution, obtaining:

F (N,R) = 3R2

2Nb2kBT + F (N, 0) (1.1.5)

where F (N, 0) is the free energy of the chain with both ends at the same point.

Within this framework we speak about Gaussian chains. Polymer models are equi-

valent to the random walk model when we consider b as an effective length. Deviation

from this ideal behaviour can be analysed with scaling arguments. In our model

we are considering only short-range interactions and the system could be quite dif-

ferent with long-range interaction. For example one of the long-range effect is the

excluded volume, simply because occupying the same volume at the same time is

forbidden. Considering the Gaussian chains we can also introduce the bead-spring

model where we consider that each part of the chain is linked by a spring, with a

harmonic potential:

U = 1
2k

N∑
n=1

(Rn −Rn−1)2 (1.1.6)

where the spring constant is k = 3kBT
b2 as in Doi [29].

Deviation from Gaussian behaviour

In a real system we should consider that polymers cannot overlap. So considering

an interaction potential U(r) between polymers at a fixed distance of each other, we

can define the Mayer-f function for the overlapping probability:

f(r) = exp
(
−U(r)
kBT

)
− 1 (1.1.7)



1.2. Experiments and phenomenology of migration 5

which is zero for r→ 0 and decreases very rapidly for higher values. The excluded

volume of the system will be:

v =
∫
drf(r) (1.1.8)

with f(r) < 0 when U(r) > kBT and f(r) > 0 when U(r) < kBT .

Considering a virial expansion of the free energy density, the excluded volume will be

the coefficient of the second order. Adding also the entropic contribution we obtain

the function:

F = Fint + Fent = kBT

(
v
N2

R3 + R2

Nb2

)
(1.1.9)

and minimizing it we obtain the contribution of the self-avoiding to the dimension

of the system:

R ∼ R0N
3
5 (1.1.10)

that is different from the expression in eq.(1.1.2). In the general case the formula

for considering the excluded volume is:

R ∼ Nνb (1.1.11)

where the experimental value of ν is 0.588, very similar to the theoretical value. The

value gives us a ratio as a scaling argument, of the deviation from ideal behaviour.

Scaling will be important across our work, as we shall see in the next chapters.

1.2 Experiments and phenomenology of

migration

The pioneer study of segregation in polymer mixtures has been performed in the

early ’80s by Pan et al.[95] with the X-ray Photo Emission Spectroscopy (XPS),

analysing the X-Ray interaction with the interface of a blend of polystyrene (PS) and

poly(vynil methyl ether)PVME on an aluminium substrate heated above the critical

solution temperature. Measuring the peaks of C1s, the carbon emission spectra, they

compared the results with a model by Prigogine et al. [100], that we will study
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in more detail in Chapter 2, but without a proper fit of the experimental data.

Following that study Bhatia et al. [4] combined the XPS and the surface tension

measurements, improving the resolution of the segregation profile, but still lacking

in a perfect explanation of the subject. Both studies introduced the concentration

of migrants as a function of the distance z from the wall, defined as:

φj = Vj∑
i Vi

(1.2.1)

where Vj is the volume of a single component and ΣjVj is the total volume. In both

studies the research groups were not able to obtain high resolutions results. A big

step forward has been made by Jones and co-workers [66] with the introduction of

a new experimental technique, neutron reflectivity (NR). NR is a technique which

makes use of the reflection of electrons in the first layers of an interface. It is

particularly good for studying nanofilms (h ≤ 100nm) and in particular organic

compounds, partially transparent to X-rays, such as polymers. A few years later

Steiner et al.[118] studied not only segregation systems, but they also paid attention

to the existence of wetting, as a macroscopic layer at the polymer air interface. After

that measurement a comparison between experiments and theory was performed by

Jones’ group [66]. We can see a comparison between measurements obtained by XPS

and NR in fig.(1.1). We shall describe the fundamental thermodynamic properties

in the next sections.
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Figure 1.1: XPS results on the top [5] with experimental data
(points) and Prigogine’s model (dashed line). Fraction
of volume as function of time from NR at the bottom
[66]. We notice a significant improvement of the resolu-
tion. Figures reproduced from the papers.
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System study

z

φ1

φ∞

z = 0

φ(z)

φ∞

φ1

0 ∞z

χN

Figure 1.2: Schematic of the system .

Fig.(1.2) shows a schematic representation of the system having two components, a

large polymer matrix (red) and small molecules (black) in a box, migrating from the

bulk (z →∞) to the surface (z = 0). φ1 is the amount of migrant molecules at the

surface while φ∞ is the amount of migrant molecules in the bulk. The segregation

and wetting are driven by increasing N , the entropy, and χ, the enthalpy. The next

two sections summarise the thermodynamics of the bulk of this system and of the

additional effects present at the surface separating the bulk polymer mixture from

the atmosphere.
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1.3 Bulk properties for polymer mixtures:

Flory-Huggins theory

We describe the thermodynamics of polymer mixtures with Flory-Huggins theory,

the analog for polymer systems of the Bragg-Williams theory [10] applied to metal

alloys.

Following Rubinstein and Colby [105] we start by considering a mixture of polymers

of two different types a and b. The theory is put on a finite lattice containing n

sites, and we denote by v0 the volume of a lattice site, which corresponds to the

volume of a monomer (here, we assume that all monomers of both polymer types

have the same volume). With Na and Nb the degrees of polymerization and na, nb

the number of polymers of type a and b respectively, the volume occupied by all

polymers of each type is given by Vi = niNiv0, i = a, b, so that the total volume of

the lattice is Va + Vb and the total number of lattice sites is

n = Va + Vb
v0

. (1.3.1)

In this simplified lattice theory called the Flory-Huggins (FH) theory, one assumes

that the two polymer types mix at constant volume, so that in order to determine the

thermodynamical equilibrium of the mixture, one needs to minimize the Helmholtz

free energy of mixing per lattice site, ∆F̄mix, which is an intrinsic thermodynamic

quantity. This free energy receives a contribution from the mixing entropy of the

system, ∆S̄mix, and from the energy change on mixing, ∆Ūmix. An important

parameter in the binary system we study is φ, which is called the composition and

which controls the volume fractions φi = Vi
Va+Vb

, i = a, b of both types of polymers:

φa = φ , φb = 1− φ. (1.3.2)

This parametrisation is derived from the assumption of incompressibility we have

made, namely φa + φb = 1. With these definitions, one notes that all polymers of

type i in the mixture occupy nφi = Vi
v0

sites, and therefore, the number of states
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that a single polymer of type i can be in before mixing, Ωi, is equal to the number

of lattice sites occupied by all polymers of type i, i.e. Ωi = nφi. Furthermore, in an

homogeneous mixture of the two types of polymers, each polymer can be in Ωab = n

states. Since the entropy is generically the product of the Boltzmann constant kB

by the natural logarithm of the number of states accessible to all components of a

system, in our model the entropy change on mixing for a single polymer of type i

is given by the difference between the entropy of that polymer in the homogeneous

mixture of polymers of type a and b and the entropy of that polymer in pure state i

(before mixing):

∆Smix,i = kB(log Ωab − log Ωi) = kB log n

nφi
= −kB log φi, i = a, b. (1.3.3)

The total entropy of mixing per lattice site is therefore

∆S̄mix = 1
n

∑
i=a,b

ni∆Smix,i =
∑
i=a,b

φi
Ni

∆Smix,i =

− kB
{
φ

Na

log (φ) + 1− φ
Nb

log (1− φ)
}
. (1.3.4)

Since the degrees of polymerisation are assumed to be very large, the mixing entropy

is very small. The Helmoltz free energy per lattice site is given by

∆F̄mix = ∆Ūmix − T∆S̄mix, (1.3.5)

and we now derive ∆Ūmix, which is the energy change per lattice site on mixing. This

contribution to the free energy depends on the strength of interactions between type

a (χaa) or type b (χbb) monomers, and between type a and b (χab = χba) monomers. It

is assumed that all energies of interaction are between pairs of monomers occupying

adjacent lattice sites. The average pairwise interaction of a monomer of type i with

one neighbouring monomer (which can be of type a or b) is

Ui = χiiφi + χijφj, i 6= j and i, j ∈ {a, b} (1.3.6)
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with no summation on i and j. From these quantities, one builds the total interaction

energy of the mixture as

Uafter mix = z

2
∑
i=a,b

Uinφi (1.3.7)

where z is the coordination number of the lattice and where the factor of 1
2 com-

pensates for the double-counting of pairwise interactions. Recall that nφi is the

number of sites occupied by all polymers of type i. Using eq.(1.3.2) and eq.(1.3.6),

one obtains the total interaction energy of a mixture of two polymer types on a

lattice with n sites as

Uafter mix = zn

2
{
χaaφ

2 + 2χabφ(1− φ) + χbb(1− φ)2
}
. (1.3.8)

On the other hand, before mixing, the total energy of polymers of type i is

Uii = zn

2 χiiφi, i = a, b (1.3.9)

since there is no neighbouring site of a monomer of type i that could be of a different

type (pure state), and end-of-chain effects are neglected as the chains are very long

(Ni very large). Hence before mixing, the total interaction energy of the system is

Ubefore mix = zn

2
∑
i=a,b

χiiφi. (1.3.10)

Finally, the total interaction energy change per lattice site on mixing is given by

∆Ūmix = 1
n

(Uafter mix − Ubefore mix) = z

2φ(1− φ)(2χab − χaa − χbb). (1.3.11)

This energy can be rewritten in terms of the Flory-Huggins interaction parameter χ,

χ = z(2χab − χaa − χbb)
2kBT

(1.3.12)

which represents the mean field pairwise interaction for the surrounding polymers.

With the help of eq.(1.3.4), eq.(1.3.11), eq.(1.3.12) and eq.(1.3.2), we arrive at the

following expression for the Helmoltz free energy per lattice site eq.(1.3.5):

∆F̄mix = kBT

{
φ

Na

log (φ) + 1− φ
Nb

log (1− φ) + χφ(1− φ)
}
, (1.3.13)
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which is the Flory-Huggins equation describing the bulk properties of a mixture of

two polymer types a and b.

Free energy curves can be used to determine the most stable state for a system, i.e.

the phase or phase mixture with the lowest free energy for a given temperature T

and composition φ. As a first example, fig.(1.3) shows the function ∆F̄mix(φ)/kBT ,

with a volume equal to one, for different values of the F-H constant χ. In particular

if we consider only the energetic contribution (T = 0) for χ < 0 the mixtures are

stable, while for χ > 0 the mixtures are not stable [44]. Let us study the qualitative

Figure 1.3: F-H free energy, in units of kBT , as a function of the
composition φ for systems with same degree of polymer-
isation, but different interaction parameter χ, increasing
in the direction of the arrow (χc = 1). We notice a single
phase for χ < χc, a plateau at χ = χc and two different
phases for χ > χc.

shape of the free energy curve ∆F̄mix(φ) in the interval 0 ≤ φ ≤ 1 at different

temperatures. We first note that

∂∆F̄mix
∂φ

= kBT
{ 1
Na

log φ− 1
Nb

log (1− φ) + 1
Na

− 1
Nb

}
+ kBTχ(1− 2φ), (1.3.14)
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which shows that the slope of the curve tends to −∞ as φ tends to 0, and tends

to ∞ when φ tends to 1. This behaviour is driven by the entropic contribution

to the free energy and it implies that small amounts of type a polymers (when

φ ∼ 0) and small amounts of type b polymers (when φ ∼ 1) will always mix and

provide stable states, even if the energy interactions are less than favourable. For

intermediate compositions, there is a competition between the entropic contribution

and the interaction energy contribution, and the local stability of the two polymer

types mixture is determined by the sign of the second derivative of the free energy at

a given composition. A positive sign corresponds to an instability while a negative

sign corresponds to a stable state. One has

∂2∆F̄mix
∂φ2 = kBT

{
1

Naφ
+ 1
Nb(1− φ) − 2χ

}
. (1.3.15)

At high temperatures, the entropic contribution dominates, which results in all

compositions being stable, but as the temperature decreases, the interaction energy of

mixing increases at the expense of the entropic contribution, and the free energy curve

"bulges" at intermediate compositions, presenting a region where it becomes concave,

with a local maximum, between two values of composition, say φα and φβ, which

are determined through the construction of "common tangent". Mathematically, φα

and φβ must solve the two equations

∂∆F̄mix
∂φ

∣∣∣∣
φα

= ∂∆F̄mix
∂φ

∣∣∣∣
φβ

(1.3.16)

and

∆F̄mix(φα)−mφα = ∆F̄mix(φβ)−mφβ, (1.3.17)

using the formulas eq.(1.3.13) and eq.(1.3.14). Once the solution (φα, φβ) is found,

set m ≡ ∂∆F̄mix
∂φ

∣∣∣∣
φα

and c ≡ ∆F̄mix(φα)−mφα and the sought common tangent has

equation

t(φ) = mφ+ c. (1.3.18)

The physical significance of this common tangent will be explained later on. Note
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that the points φα and φβ are called "binodal points". At temperatures lower than a

critical temperature (or equivalently, at values of the F-H parameter χ higher than a

critical value χc), there are two other significant points on the Helmoltz free energy

curve: its points of inflection, i.e. the points with compositions φ(1)
spin and φ(2)

spin solving

the equation
∂2∆F̄mix
∂φ2 = kBT

{
1

Naφ
+ 1
Nb(1− φ) − 2χ

}
= 0. (1.3.19)

The points (φ(1)
spin,∆F̄mix(φ

(1)
spin)) and (φ(2)

spin,∆F̄mix(φ
(2)
spin)) are called the spinodal

points of the Helmoltz free energy curve at a given fixed temperature or F-H para-

meter. Plots of ∆F̄mix(φ) at various values of the F-H parameter χ are presented in

fig.(1.3) for a symmetric F-H theory (i.e. with Na = Nb ≡ N) and in fig.( 1.5) for

an asymmetric theory (dashed blue curve). In fig.(1.3), one observes that, as the

F-H parameter decreases, the two binodal points visible on the green curve merge

to one in the blue and red curves, and once they have merged, the spinodal points

disappear. A similar phenomenon is present in asymmetric F-H theories. This type

of data, i.e. the data of free energy curves as functions of the composition at various

F-H parameter values (keeping Na and Nb fixed) can be encoded in a phase diagram

where the phase boundaries are determined by the so-called spinodal and binodal

curves. But before we draw such a diagram, let us study the stability of states in an

asymmetric F-H theory for a specific Helmholtz energy curve with F-H parameter

larger than χc. In this regime, the free energy curve is given by an asymmetric

double-well curve, with qualitative features as in fig. (1.4). If we consider a mixture

of composition φ0 on that plot, its free energy is higher than the free energy of mix-

tures in phases α and β. The system will therefore attempt to reduce its free energy

through existing as a mixture of two distinct phases at compositions φα0 and φβ0 ,

where φβ0 is determined from the knowledge of φα0 by drawing a straight line parallel

to the common tangent t(φ) and through the points (φα0 , G(φα0 )) and (φβ0 , G(φβ0 ))

(magenta dots on fig. (1.4) ). Given φ0, this "phase splitting" may occur for any

composition φα0 in the range [φα, φ0[, using the common tangent rule to determine

the corresponding φβ0 . Note that the new energy curve defined as G̃(φ) = Gφ − t(φ)
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Figure 1.4: Qualitative features of the Helmoltz free energy G at
F-H parameter larger than χc and common tangent
construction.
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has local minima φα and φβ at the same energy level. This is illustrated in fig. (1.5)

for the F-H asymmetric theory. The interval [φα, φβ] bounded by the binodal points

0.0 0.2 0.4 0.6 0.8 1.0

φ

−0.10

−0.05

0.00

0.05

0.10

F
(φ

)
FH
FHCT

CT

Figure 1.5: Common tangent construction calculated numerically
for an asymmetric Flory-Huggins (FH) free energy with
Na = 1, Nb = 4 and χ = 1.7. By construction, after sub-
traction of the common tangent (CT) from the FH free
energy, the resulting function of composition (FHCT )
has two local minima at the same energy level.

is called the miscibility gap, while the interval [φ(1)
spin, φ

(2)
spin] determines the spinodal

region, which is an unstable region. Indeed, in that region the second derivative of

the free energy is negative, and the mixed state is unstable, as the tiniest fluctuations

in composition lead to phase separation. This is called "spinodal decomposition".

In the remainder of the miscibility gap, the mixed state is locally stable to small

fluctuations in composition, and this region is metastable. In the regions outside the

miscibility gap, the mixed states are stable, as was justified after eq.(1.3.14). Note

that, since the common-tangent construction minimizes the free energy of mixing

over some range of compositions, namely in the domain of miscibility [φα, φβ], and

since the equilibrated system over this range consists of the two phases α and β,

then these two phases, being at equilibrium, must have the same chemical potential

for each polymer type.
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We end this section by presenting the phase diagram summarising the regions of

stability, metastability and instability as the F-H parameter χ varies in the ex-

pression eq.(1.3.13) for ∆F̄mix for all possible compositions. For this, we need

to calculate the boundary curves between these different regions, wich are called

"binodal and spinodal curves". The binodal curve contains all pairs of binodal points

(φα,∆F̄mix(φα), (φβ,∆F̄mix(φβ)), each pair corresponding to the binodal points of

a Helmoltz free energy curve at fixed parameter χ. Its derivation is simpler in the

symmetric case, where it is clear that the slope of the common tangent is zero, and

hence the compositions φα and φβ correspond in this case to the local minima of the

Helmoltz free energy ∆F̄mix, which are found by solving

∂∆F̄mix
∂φ

= 0 (1.3.20)

for φ. In other words, the values φα and φβ are solutions of

kBT
{ 1
N

log φ− 1
N

log (1− φ)
}

+ kBTχ(1− 2φ) = 0 (1.3.21)

at given Na = Nb = N and F-H parameter χ. But one can also solve eq.(1.3.21) for

χ as a function of the composition φ, yielding the binodal curve for symmetric F-H

theory,

χbin(φ) = log φ− log(1− φ)
N(2φ− 1) . (1.3.22)

This curve is plotted in fig.(1.6) forN = 1 andN = 5 as a function of the composition.

The spinodal curve can easily be derived in the more general asymmetric theory by

setting eq.(1.3.15) to zero and solving for χ. This yields

χspin(φ) = 1
2

(
1

Naφ
+ 1
Nb(1− φ)

)
. (1.3.23)

The minimum of the function χspin(φ) is the critical point φc, which in turn yields the

value of the critical interaction parameter χc above which the homogeneous mixed

phase is unstable and the two type polymer mixture is phase-separated. One easily
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obtains the critical composition and the critical F-H parameter as

φc =
√
Nb√

Na +
√
Nb

(1.3.24)

χc = 1
2

(
1√
Na

+ 1√
Nb

)2

. (1.3.25)

In the symmetric case, it is sufficient to set Na = Nb = N in the above expressions

and in particular, eq. (1.3.24) and eq.(1.3.25) simplify as:

φc = 1
2 (1.3.26)

χc = 2
N
. (1.3.27)

Fig. (1.6) reproduces two phase diagrams for Na = Nb = 1 and Na = Nb = 5. The

metastable regions are in-between the binodal and the spinodal curves in each case,

while the region within the spinodal curves is unstable. The region under the binodal

curve is stable.

Finally in the very special cases of low concentrations, φ → 0, φ → 1, we can find

solutions of the F-H equation in the bulk. In particular with the first approximation

we can expand the logarithm in a power series, obtaining a mixing energy:

Fmix

kBT
=
[
φ

Na

log φ+ φ(χ− 1
Nb

) + φ2( 1
Nb

− 2χ) + φ3

6Nb

+ ...

]
(1.3.28)

which is an expression similar to a Ginzburg-Landau [53] free energy for the phase

transition of a system.

The F-H theory outlined above presents some limitations, such as the incompress-

ibility constraint (∑i φi = 1). We will see how to avoid this weakness in Chapter 5

with the Locally Correlated Lattice (LCL) theory.
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Figure 1.6: Values of the F-H constant in the binodal region for
different degrees of polymerization, as a function of the
fraction of volume φ (top), and comparison between the
different χ on the binodal, spinodal and critical cases
for a symmetric system (bottom).
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1.4 Surface Properties: Cahn’s theory of wetting

While the Flory-Huggins (FH) theory qualitatively captures the basic features of

the thermodynamics of polymer mixtures, there are limitations adapting it to real

polymers. A framework similar to FH theory has been applied to real gases that

involve a phase transition. In particular for unstable regions of the P-V curve, for

liquid-gas systems in the vicinity of a phase transition, one uses the gas equation

[103] in conjunction with a graphic method introduced by Maxwell [85] with equal

area construction. A similar approach has been introduced by Cahn [19] in the case

of wetting transitions. There are different types of wetting behaviours [43, 9] and

Figure 1.7: Sessile drop with different surface tensions for solid-
liquid, solid-vapour and liquid-vapour interfaces. Adap-
ted from Bonn et al.[9].

they can be classified depending on the balance between the surface tensions of the

different phases. In fig.(1.7) we see a schematic with a sessile drop, the contact angle

α and the surface tensions, i.e. solid-liquid (γsl), liquid-vapour (γlv) and solid-vapour

(γsv) by means of the Young-Dupré equation:

γsv = γsl + γlv cosαeq (1.4.1)

where all quantities are measured in Nm and the angle α is at equilibrium. There

are three possible wetting behaviours for the system:

• γsv < γsl + γlv corresponds to partial wetting;

• γsv = γsl + γlv corresponds to complete wetting;
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• if γsv > γsl + γlv the surface is completely dry;

as shown in fig.(1.8).

Figure 1.8: Different wetting scenarios, adapted from Bonn et al.
[9]

Considering the thermodynamics in more details, it is possible to give a quantitative

description of the wetting transition in terms of the free energy of the system.

We refer back to the schematic diagram introduced in fig. (1.2), with a semi-infinite

liquid (that will be a two-type polymer mixture later on) for z > 0 in contact with

a plane solid surface localized at z = 0). As in fig. (1.2), we denote by φ1 the

composition of the liquid at the surface, which for us will be the volume fraction of

the small migrating polymers at the surface, φ1 and by φ∞ the volume fraction of

the migrant polymers deep in the bulk (z →∞).

In this section, we summarise aspects of Cahn’s theory of wetting that will be useful

later. This material is based on [19, 43]. We make the following assumptions in

deriving the theory of wetting applied to fluid systems:

• we describe the solid/liquid interface within the framework of a continuum

theory where the liquid composition φ(z) varies smoothly as a function of the

distance z. This is a reasonable assumption if the system is studied near the

critical temperature;
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• we consider only short range forces between the liquid and the solid, which

can be described by adding a surface energy contribution Fs(φ1) to the energy

Fd(φ) produced by the distortions in the φ(z) composition profile of the system.

Although the Cahn’s construction we are summarising below allows for a

more general form of the functional Fs(φ1), we will use the following simple

polynomial form,

Fs(φ1) = −µ1φ1 −
g

2φ
2
1, (1.4.2)

where µ1 is the surface chemical potential and g measures the change in bulk

interactions due to the surface (missing neighbours).

• we simplify the distortion energy contribution by taking

Fd(φ) =
∫ zbulk

zsurf

dz L(φ, dzφ) =
∫ zbulk

zsurf

dz

∆F (φ) + k

(
dφ

dz

)2
 (1.4.3)

where zsurf = 0, zbulk = z →∞ and

∆F (φ) = ∆F̄mix(φ)−∆F̄mix(φ∞)− µ(φ− φ∞), (1.4.4)

with ∆F̄mix being the asymmetric double-well Flory-Huggins bulk free energy in

eq.(1.3.13) and µ being the chemical potential ∆F̄mix(φ) as reviewed in Section

1.3. Hence, the functional ∆F (φ) is a symmetric double-well functional, i.e. its

two minima are at the same energy level for the two equilibrium compositions

φl (liquid) and φv (vapour). The integrand L(φ, dzφ) is known as the square

gradient approximation of the free energy functional, where ∆F (φ) is a mean

field expression for the free energy and where the square gradient k
(
dφ
dz

)2
takes

into account the fluctuation at the interface with the local variation of φ. The

parameter k is taken as a positive constant. Such an approximation is valid in

the situation where only short range interactions are considered, as is the case

here.

With the assumptions listed above, the total energy per unit area of solid/liquid
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interface and unit temperature can be defined by:

F [φ, φ1]
AkBT

= Fs(φ1) + Fd(φ). (1.4.5)

The aim is now to calculate the liquid composition at the surface, φ1. This is done

by minimising F [φ, φ1]
AkBT

given by eq.(1.4.5) using the standard variational calculus.

We first minimize Fd(φ) given in eq.(1.4.3) using the Euler-Lagrange equation, i.e.

∂L
∂φ

= dz
∂L

∂(dzφ) (1.4.6)

where dz ≡ d
dz
. This yields

d∆F (φ)
dφ

= 2kd2
zφ. (1.4.7)

Integrating eq. (1.4.7) once with respect to φ, one gets

∆F (φ) = k(dzφ)2 + c, (1.4.8)

where the integration constant is fixed to the value zero by the boundary condition at

z →∞. Indeed, one assumes that deep in the bulk, the composition φ∞ is constant

as it corresponds to the other local minimum of the energy, and hence dφ
dz

∣∣∣∣
z→∞

= 0.

Since ∆F (φ∞) = 0, as can be seen immediately from eq.(1.4.4), one must have c = 0.

Inserting the solution

∆F (φ) = k(dzφ)2 (1.4.9)

in eq.(1.4.3), one gets

Fdmin = 2k
∫ ∞

0
dz(dzφ)2 = −2k

∫ φ1

φ∞
dφ dzφ ≡ Fd(φ1;φ∞) (1.4.10)

where Fdmin is Fd(φ) evaluated at the minimum obtained via the Euler-Lagrange

equation, and we have introduced the notation Fd(φ1;φ∞) to emphasize its depend-

ence on φ1 (recall that φ∞ is taken as constant). The last step is to find the minimum

of the total energy
F [φ1]
AkBT

= Fs(φ1) + Fd(φ1;φ∞) (1.4.11)
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as a functional of φ1. This gives the condition

d

dφ1

(
F [φ, φ1]
AkBT

)
= dFs(φ1)

dφ1
+ dFd(φ1;φ∞)

dφ1
= 0, (1.4.12)

where dFd(φ1;φ∞)
dφ1

= −2k(dzφ)
∣∣∣∣
φ=φ1

if one uses eq.(1.4.10), so that the condition

above becomes
dFs(φ1)
dφ1

= 2k(dzφ)
∣∣∣∣
φ=φ1

. (1.4.13)

If on the other hand, one uses eq.(1.4.9) to rewrite

Fd(φ1;φ∞) = −2k
∫ φ1

φ∞
dφ dzφ = ±

∫ φ1

φ∞
dφ
√
k∆F (φ), (1.4.14)

then the condition eq.(1.4.12) becomes

dFs(φ1)
dφ1

= −dFd(φ1;φ∞)
dφ1

= ±2 d

dφ1

∫ φ1

φ∞
dφ
√
k∆F (φ) = ±2

√
k∆F (φ1). (1.4.15)

The ambiguity in sign introduced by taking a square root can be lifted by demanding

that φ1 ≥ φ ≥ φ∞. This corresponds to choosing dFs(φ1)
dφ1

negative, which, according

to eq.(1.4.13), leads to negative (dzφ)
∣∣∣∣
φ=φ1

. Hence the boundary condition at the

surface, which determines φ1, is

dFs(φ1)
dφ1

= −2
√
k∆F (φ1). (1.4.16)

We note, for future reference, that the chosen sign yields

Fd(φ1;φ∞) = 2
∫ φ1

φ∞
dφ
√
k∆F (φ) (1.4.17)

and

dzφ = −
(

∆F (φ)
k

)1/2

, (1.4.18)

which is consistent with eq.(1.4.9). Integrating eq.(1.4.18),

−
∫ φ

φ1
dφ̃

(
k

∆F (φ̃)

)1/2

=
∫ z

0
dz̃ = z(φ) (1.4.19)

we obtain an integral expression for z(φ) which can be inverted to yield φ(z), the

concentration profile of the migrant.
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Finally, using eq.(1.4.11) and eq.(1.4.17), we write the total energy as

F [φ1]
AkBT

(1)= Fs(φ1) + 2
∫ φ1

φ∞
dφ
√
k∆F (φ)

(2)= Fs(φ∞) +
∫ φ1

φ∞
dφ

{
dFs(φ)
dφ

+ 2
√
k∆F (φ)

}
, (1.4.20)

whose minimum is the equilibrium surface free energy. In eq.(1.4.20), Fs(φ1) is

the free energy of the solid surface in contact with the liquid, which is at surface

composition φ1, and the integral contribution in the first equality (1) is the excess

free energy of the non-uniform liquid layer. On the other hand, Fs(φ∞) is the free

energy in contact with the homogeneous liquid of bulk composition φ∞, while the

integral in the second equality (2) represents the change in the total energy due to

the change in surface composition.

We now turn to Cahn’s construction, which is a graphical representation that helps

understand the nature of the wetting transitions in our system, based on the solu-

tions to the boundary equation at the surface, eq.(1.4.16). With the simplifying

assumption eq.(1.4.2), this boundary condition becomes

µ1 + gφ1 = 2
√
k∆F (φ1). (1.4.21)

A qualitative graphical solution to eq.(1.4.21) is sketched, at given temperature

T , in fig.(1.10) for positive value of µ1 and negative of g chosen so that the curves

−F ′s (φ1) = µ1+gφ1 and 2
√
k∆F (φ1) intersect in four points, but two only correspond

to stable solutions of the surface composition, labelled φ1 = φ′ and φ1 = φ′′ (typically,

g is small in this regime). At the value φ1 = φ′1, we have a dry solid in contact

with the vapour (φ∞ = φv) and at φ1 = φ′′1, we have a wet solid in contact with the

liquid (φ∞ = φ`) where the vapour composition φv and the liquid composition φ` (or

the two polymer phases as we shall see in the next chapters) are at the intersection

points of the x-axis with the bulk curve 2
√
k∆F (φ1).

One interprets the area under the curve −F ′s (φ1) as the reduction in free energy due

to the reduction in Fs(φ1) when φ1 varies, while the area under the curve 2
√
k∆F (φ1)
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represents the increase in free energy due to the inhomogeneous surface layer when

φ1 varies. The area between these two curves is interpreted as the net reduction in

free energy. In fig.1.10, two such areas are labelled Sa and Sb, and we will now give

a physical interpretation to their difference, Sb − Sa.

A wetting transition may occur every time we have a liquid film on a solid/liquid

surface. We can see the three different phases in fig.(1.9).

Figure 1.9: Surface phases for total wet, segregation and well mixed
with corresponding wetting profiles.

We define the spreading coefficient as

S = γsv − γs` − γ`v, (1.4.22)

with the energies of the different phases given by

γsv = Fd(φ
′

1;φv) + Fs(φ
′

1)

γs` = Fd(φ
′′

1 ;φ`) + Fs(φ
′′

1)

γ`v = Fd(φ`;φv),

(1.4.23)

where Fd is as in eq.(1.4.17). So, for instance,

Fd(φ′1;φv) = 2
∫ φ′1

φv

√
k∆F (φ)dφ. (1.4.24)

So the spreading coefficient becomes:

S = Fd(φ
′

1;φv)− Fd(φ
′′

1 ;φ`)− Fd(φ`;φv) + Fs(φ
′

1)− Fs(φ
′′

1) (1.4.25)
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but since φ′1 ∈ (φv, φl) and φl ∈ (φ′1, φ
′′
1) (see fig.1.10), we can rearrange the integra-

tion intervals in Fd(φ
′
1;φv)− Fd(φ

′′
1 ;φ`)− Fd(φ`;φv). We choose to rewrite

∫ φ′1

φv
−
∫ φ′′1

φ`

−
∫ φ`

φv
≡ −

∫ φint

φ′1

−
∫ φ′′1

φint
(1.4.26)

where φint corresponds to the unstable minimum near φ` (see see fig. 1.10). Then

Fd(φ
′

1;φv)− Fd(φ
′′

1 ;φ`)− Fd(φ`;φv) = −Fd(φ
′′

1 ;φint)− Fd(φint;φ
′

1). (1.4.27)

Now if one writes

− Fs(φ
′′

1) = −Fs(φint) +
∫ φ′′1

φint
(−F ′s(φ))dφ

Fs(φ′1) = Fs(φint) +
∫ φint

φ′1

(−F ′s(φ))dφ
(1.4.28)

the spreading coefficient receives a geometric interpretation:

S = {−Fd(φ
′′

1 ;φint) +
∫ φ′′1

φint
(−F ′s(φ))dφ}︸ ︷︷ ︸

Sb

+ {−Fd(φint;φ
′

1) +
∫ φint

φ′1

(−F ′s(φ))dφ}︸ ︷︷ ︸
−Sa

.

(1.4.29)

where Sa and Sb are the two (signed) areas trapped between the curves −F ′s(φ1) and

2
√
k∆F (φ1) in the two intervals (φ′1, φint) and (φint, φ′′1), as illustrated in fig.1.10. If

the temperature increases, the relative areas of Sa and Sb change and the spreading

coefficient eventually changes sign. This can be understood visually by looking at

fig.(1.11) for instance.

In particular we have the following scenario, depending on the temperature of the

system:

• T � TC where S < 0 with a partial wetting;

• T = Tw where S = 0 and we have αeq = 0 in eq.(1.4.1);

• T > Tw where S > 0 and we can speak about the wetting transition, or

complete wetting with the formation of a macroscopic layer L;

• T ∼ Tc where there is a jump from a one minimum to a distinct minimum

with a first order transition (discontinuity of the derivative of the free energy);
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Figure 1.10: Geometric interpretation of the spreading coefficient
S using Cahn’s construction with µ1 > 0 and g < 0.
S is given by the difference between the surface areas
Sb and Sa calculated as the differences in areas under
the curves −F ′s(φ1) and 2

√
k∆F (φ1) on two intervals

(φ′1, φint) and (φint, φ′′1) delimited by three compositions
that minimise the total surface free energy (φ′1 and φ′′1
are stable minima while φint is unstable).

If the slope of the surface energy function Fs is large at all temperatures, we find only

one root from the construction in fig.(1.11). We thus have the following scenario:

• T < Tw we have φ1 < φ` and S < 0, so there is partial wetting;

• T = Tw, φs = φ` exactly;

• T > Tw, φS will be higher than φ`, the interface involves a macroscopic

layer and we have complete wetting with a continuous second-order wetting
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Figure 1.11: Cahn’s construction as in eq.(1.4.16) for the free
energy as a function of the volume fraction (black
double well line) with different values of the surface
energy (blue linear function) corresponding to differ-
ent temperatures. The intersections of the bulk en-
ergy 2

√
k∆F (φ1) with the x-axis represent the vapour

phase φv (left hand side) and the liquid phase φl (right
hand side).The intersections between the bulk energy
and the derivative of the surface energy −F ′s(φ1) are
solutions of eq.(1.4.16) as φ′1 (dry state, left) and φ′′1
(wet state, right). Adapted from De Gennes [43].

transition, as we can see in fig.1.12.

There are experimental observations of a critical wetting behaviour with long range

interaction made by Ragill et al.[102] for pentane on water, where they measured a

power law divergence of (T − Tw)α with a change of sign of the Hamaker constant.

Evidences of total wetting with short range interaction have been reported by Ross

et al. [104] for a methanol alkane binary liquid where they found a second order

wetting transition.

Conclusions: In this chapter we have seen how to derive the bulk properties of

polymer mixtures, with the Flory-Huggins free energy and how the spinodal decom-

position allows to determine the stability properties of those systems. Furthermore

we described the surface thermodynamics as in Cahn’s theory of wetting, which is
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Figure 1.12: Cahn’s construction for the free energy as a function of
the volume fraction with different values of the surface
energy for a second order wetting transition as in De
Gennes [43].

not really different from a field theory for phase transitions. Cahn’s theory and

spinodal decomposition present first and second order phase transitions, depending

on where we are on the phase diagram and the balance between bulk energy and

surface energy contributions. In the next chapter we shall report on how to combine

the bulk and the surface thermodynamics of a polymer system for studying the

wetting behaviour.



Chapter 2

Surface segregation models

In this chapter we review the mean field theories for surface segregation in complex

fluids. In particular we start with Schmidt-Binder (SB) theory [112], which combines

Flory-Huggins (FH) theory and Cahn’s theory of wetting. Then we introduce the

self-consistent field theory [41] for polymer mixtures with a derivation of the theory

and a description of the numerical technique used for solving the equations. Finally

we compare the two theories.

2.1 Mean field theories for surface segregation

In the previous chapter we have seen that a first attempt to modelling wetting

behaviour in polymer systems was made by Prigogine et al. [100] for describing the

interaction layers of a polymeric film with X-rays. The model was interrogated with

Pan et al’s XPS measurements [95] but it was not possible to explain experimental

data for Polystyrene (PS)- Poly Vinyl Methyl Ether (PVME). The most successful

theories in this direction are the mean field theories and in particular the SB theory

and the self- consistent field theory (SCFT) as we shall see in the next subsections.
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2.1.1 Schmidt-Binder theory

Schmidt and Binder [112] have attempted to combine FH and Cahn’s theory for

describing bulk and surface thermodynamics, with a functional able to describe

wetting transitions in polymer mixtures. In particular they use eq.(1.3.13) in con-

junction with eq.(1.4.5) in the limit of long wavelength approximation, so small

spatial variations compared to the characteristic length of the system as a2∇2φ� 1
N
.

Furthermore, they use the Random Phase Approximation (RPA) [68] for calculating

the constant of the square gradient contribution, taking into account fluctuations at

the interface. The contribution for the interface is given by:

Fgrad
kbT

= a2

36φ(1− φ)

(
dφ

dz

)2

(2.1.1)

where Fgrad is the gradient in the system, a the Kuhn length and k = a2

36φ(1−φ) is a

function of φ derived as in the RPA approximation [68], obtained by considering

the response and correlations functions of the system. If we consider a system with

composition variation only along the z-direction, by means of the variational calculus

we can obtain a differential equation describing the concentration of polymers as a

function of z, i.e. the distance from the surface to the bulk. The functional per unit

surface is:

F [φ]
AkbT

= Fs(φ1) +
∫ zbulk

zsurf

dz

Fmix(φ)
kbT

+ k(φ)
(
dφ

dz

)2

−∆µφ
 (2.1.2)

where Fmix(φ) is the Flory Huggins energy and ∆µ the chemical potential difference

between species, that mathematically speaking is a Lagrange multiplier. The free

energy is defined in units of kbT and per unit surface. If we use the variational

calculus, we can find the minimum of the functional in eq.(2.1.2) by solving δF
δφ

= 0 ,

keeping in mind the analogy with Lagrangian Mechanics with the mapping of time

t into distance z, q into volume fraction φ and momentum ẋ into φ̇.

In this way we will obtain a first order differential equation (FODE) as in eq.(1.4.7)
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that we can transform into an integral equation:

6z
a

=
∫ φs

φ∞

dφ√
φ(1− φ)[F (φ, χ)− F (φ∞, χ)−∆µ(φ− φ∞)]

(2.1.3)

where we set kbT = 1 and V = 1 respectively and the bulk free energy is:

F (φ, χ) = φ

Na

log (φ) + 1− φ
Nb

log (1− φ) + χφ(1− φ) (2.1.4)

We solve eq.(2.1.3) numerically with the Simpson method, inverting z(φ) into φ(z).

We plot the numerical solutions in fig.(2.1), which shows segregation profiles φ(z)

that have a value φ1 at the surface, solution of the Cahn construction as in Chapter

1, and decays asymptotically to a value φ∞ in the bulk for different Na and Nb. We

observe a wetting transition in fig.(2.2), withNa = Nb and χ > χc, as also justified

by the Cahn construction, where we observe that the bottom area of intersection

is bigger than the top area. The SB theory correctly describes the behaviour
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Figure 2.1: Numerical solution of eq.(2.1.3) for different combina-
tions of the degree of polymerisation, showing different
segregation profiles for ∆µ = 0 and χ < χc.
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Figure 2.2: Macroscopic wetting layer (top) and Cahn construction
(bottom) as in fig.(1.11) for the following parameters:
Na = Nb = 10, χ = 0.32716, φ∞ = 0.05, φ1 = 0.976 and
for the surface energy µ = 1.5 and g = −0.8, where S >
0 with a wetting transition. In this case φ1 > 1 − φ∞,
so the profiles decreases first from φ1 to 1−φ∞ which is
a B-rich layer and then after 1− φ∞ we find an A-rich
macroscopic wetting layer, as reported by Schmidt et
al.[112].
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of wetting systems, both for segregation and total wetting, but suffers from some

limitations. It remains a phenomenological model which has the surface fraction φ1

as an input in the model, as solution of the Cahn construction. Hence the theory

has no predictive power for equilibrium properties. Some of those problems can be

solved using a more elaborated mean field theory, such as SCFT.

2.1.2 Self Consistent Field Theory

Self Consistent Field Theories (SCFT) is a type of Mean Field Theories (MFT)

introduced by Edwards [32] and successfully applied to many topics in Polymer

Physics [41, 117, 88]. The key idea is the description of the polymer chains as

Gaussian chains, as we have seen in Chapter 1, in an enviroment surrounded by

a mean field generated by the other polymers. In particular we have seen the

probability distribution of a freely jointed chain to be Gaussian as in eq.(1.1.4). This

kind of approximation becomes important for solving the path integrals which allows

us to derive the property of the polymer chains, as in the next section.

Derivation

We can treat polymeric systems as random walks and use a Gaussian function as

a good approximation for the probability distribution of the system. This is the

simplest model we can consider. We can use field theory for describing polymer

systems, and we will see that an analogy exists between diffusion and polymer

conformation similar to a random walk. In particular we can use self-consistent field

methods for obtaining more accurate information about the system.

Writing the partition function of the system as a functional integral of one or more

potential fields w(r):

Z =
∫
D[w] exp [−H[w]] (2.1.5)

where H[w] is the Hamiltonian of the system and it depends on the particular

interaction, polymer architecture, polydispersity etc. As a consequence the average
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value of some observable G is given by:

〈G[w]〉 = Z−1
∫
DwG[w] exp [−H[w]] (2.1.6)

Using eq.(2.1.6) we can compute all the thermodynamic observables of our system.

We can obtain the mean field minimizing the Hamiltonian of the system with respect

to the field w, i.e.:
δH[w]
δw(r)

∣∣∣
w=w∗

= 0 (2.1.7)

The field w∗ is a field that dominates the other fields and can be seen as a mean field

generated by the other surrounding chains. We notice that in this way the partition

function of the system and the average of an observable G can be written as:

Z ∼ exp (−H[w∗]) , 〈G[w]〉 ∼ G[w∗] (2.1.8)

and as a consequence the Helmholtz free energy is:

F = −1
β

logZ = −1
β
H[w∗]. (2.1.9)

This approximation is valid only at the macroscopic scale, because at the atomic

and molecular scales are present fluctuations that cannot be neglected. Furthermore

using eq.(2.1.9) and eq.(2.1.7) we can also obtain the Schmidt-Binder free energy

with the square-gradient correction to the Flory-Huggins energy by means of the

saddle point approximation or steepest descent method[41].

At this level we can define the energy of a polymer configuration rα with the chain

in the interval (l1, l2), following Matsen[51] as:

E[rα,l1,l2 ]
kbT

=
∫ l2

l1
dl
( 3

2a2N
|rα|2 + w(rα)

)
(2.1.10)

which is a functional involving Gaussian properties and mean field defined as the

difference between the chemical potential and the entropy.

We define the partition function for a polymer chain starting at l1 and finishing at
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l2 as:

q(z, l1, l2) ∝
∫
Drα exp

(
−E[rα,l1,l2 ]

kbT

)
δ(rα(0)− l1)δ(rα(l)− l2) (2.1.11)

At this point a careful reader will immediately recognise an analogy with the path

integral formulation developed by Feynman[37]. In fact a Gaussian chain in a mean

field generated by surrounding chains is like a single particle in an external field

U(z). In particular eq.(2.1.10) is the equivalent of the action S and eq.(2.1.11) is

the equivalent of a wave function. Thus we can make the following mapping:

t↔ l

m↔ 3
Na2

U(z)↔ −w(z)

S ↔ E[rα,l1,l2 ]
kbT

rα(t)↔ rα(l)

~↔ −i

Ψ(r, t)↔ q(r, l)

(2.1.12)

From Feynman[37] we know that the path integral formulation of a particle in a field

is equivalent to a time dependent Schrödinger equation:

i~
∂

∂t
Ψ(z, t) =

[
− ~2

2m
∂2

∂z2 + U(z)
]

Ψ(z, t). (2.1.13)

Now thanks to the mapping in eq.(2.1.12) we can write an equivalent equation for

a polymer chain in field, which describes the evolution of the distribution function

of the polymer. In particular following Jones [68] and Doi [30] we can obtain an

analogy between quantum mechanics and Polymer physics. In fact considering the

distribution function q(z, t) (here we set l = t) of a random walk, we can write the

evolution of the system as a diffusion equation [42]:

∂q(z, t)
∂t

= N
a2

6
∂2q(z, t)
∂z2 . (2.1.14)
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The solution of eq.(2.1.14) is a Gaussian function as in eq.(1.1.4). If our system is

affected by a spatial variation potential w(r), we can modify eq.(2.1.14) adding the

potential as:
∂q(z, t)
∂t

= N
a2

6
∂2q(z, t)
∂z2 − βw(z)q(z, t) (2.1.15)

where β = 1
kbT

and w(r) can be recognized as our mean field derived in eq.(2.1.7)

and the eq.(2.1.15) is like the Schrödinger equation in eq.(2.1.13). The diffusion

constants are R2
g = N a2

6 square radius of gyration for an ideal chain.

The introduction of the mean field of interaction causes a perturbation in the Gaus-

sian chain.

If we consider a polymer mixture of two species A and B, we know that the bulk

properties are governed by the FH free energy. If we specialise our mean field as the

energy required for placing a segment of volume v0 into its surroundings, we obtain:

wa/b(z) = µa/b(z)− kbT log (φa/b(z))
Na/b

−∆w(z) (2.1.16)

where φa/b is the fraction volume of species A/B, its logarithm is the entropy, µa/b is

the chemical potential of one of the two polymers and we had introduced ∆w(z) for

satisfying the constraint that φb(z) + φa(z) = 1, being ∆w = 1
κρ

(1− φa− φb), with ρ

density and κ compressibility. The form of the chemical potential in eq.(2.1.16) can

be obtained from the following expression where we take into account the difference

of the chemical potential of the two species:

µa/b(z) = Na/bF +Na/bφb/a

[
∂F

∂φa/b(z) −
∂F

∂φb/a(z)

]
(2.1.17)

where F is the FH free energy of the system, similar to a Legendre transformation.

We have got enough information to calculate the field in eq.(2.1.16) and obtain the

profiles of the polymers on the surface. In fact the fraction volume can be computed

as:

φa/b(z) = eβµa/b(z)

Na/b

∫ Na/b

0
dt q(z, t)q(z,Na/b − t) (2.1.18)
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We notice an analogy with the calculation of observables in quantum mechanics. In

fact q(z, t) can be related to a wave function ψ(z, t), considering that both are solu-

tions of a diffusion equation (in the Quantum Mechanics case the diffusion constant

is an imaginary number) and the observables are φ(z) and |ψ(z, t)|2 respectively. All

the equations presented about the SCFT of polymer mixtures must be solved nu-

merically, because it is not possible to solve them analytically, with the exception of

few cases , as reported by Jones[68], for a "time" independent diffusion equation. We

use two distributions, one for the polymer A and one for the polymer B, discretize

the equation and obtain a lattice solution. Repeating the calculation multiple times,

at large N we obtain a ground state dominance, hence equilibrium, updating the

mean field in eq.(2.1.16) each time with the new φ. We shall exhibit a numerical

solution in the next section.5730 Kenneth R. Shull: End-adsorbed polymer brushes 
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FiG. 6. Brush profiles for z*IR; = 1.63 and values of NjNb ranging from 
one to eight. The profiles are all closely approximated by a limiting dry 
brush form. 

w = - { a:; } 0.5. 
(19) 

The data in Table I indicate that w is equal to approximately 
2R: when is just beginning to saturate, and that w de-
creases slightly with increasing z*/R:. 

IV. INTERACTIONS BETWEEN POLYMER BRUSHES 

Interactions between two polymer brushes were studied 
by letting the initial and boundary conditions at i = Land 
i = L + 1 equal the respective initial and boundary condi-
tions at i = 1 and i = 0, as described above. The summation 
of t:.w from i = 1 to i = L gives the total interfacial free ener-
gy which is now a function of L. For large values of L this 
interfacial free energy reaches an asymptotic value which 
corresponds to the combined interfacial energies of the two 
separated polymer brushes. The difference in the interfacial 
energy from this asymptotic value as a function of L gives 
t:.r, the free energy of interaction of the two brushes per unit 
area, as a function of the plate separation d. 

Figure 9 shows the normalized t:.r as a function of 
d / R : for Na / Nb = 8 and values of z* / R : which vary from 
0.53 to 2.46. Figure 10 is a set of similar plots for 
z*/R: = 1.63 and values of Na/Nb which vary from 1 to 16. 
For Na/Nb = 1, t:.r increases monotonically with decreas-
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FIG. 7. Dry brush profiles for four different values of the normalized sur-
face excess. The symbols represent profiles calculated from the self-consis-
tent field theory. The solid lines are fits to the hyperbolic tangent form of 
Eq. (18), using the fitting parameters listed in Table I. 

TABLE I. Brush characteristics in the dry brush limit eN.INb = 8). 

z*IR; jib dyVb 
¢J1urf tPo Xoff.,et/R : wlR; 

k8 T R!k8 T 

0.01 - 3.55 0.02 om 0.02 0.25 2.50 
0.03 - 2.55 0.05 0.03 0.05 0.30 2.50 
0.09 - 1.55 0.10 0.09 0.14 0.32 2.50 
0.22 -0.55 0.26 0.22 0.33 0.43 2.48 
0.35 -0.05 0.41 0.33 0.47 0.53 2.45 
0.53 0.45 0.64 0.48 0.63 0.67 2.40 
0.77 0.95 0.98 0.64 0.79 0.87 2.35 
1.06 1.45 1.45 0.79 0.90 1.11 2.26 
1.35 1.95 2.07 0.90 0.97 1.36 2.15 
1.63 2.45 2.83 0.96 1.00 1.61 2.06 
1.87 2.95 3.71 0.98 1.00 1.86 1.93 
2.08 3.45 4.71 0.99 1.00 2.07 1.84 
2.28 3.95 5.80 1.00 1.00 2.27 1.78 
2.46 4.45 6.98 1.00 1.00 2.44 1.73 
2.63 4.95 8.25 1.00 1.00 2.61 1.69 
2.78 5.45 9.60 1.00 1.00 2.76 1.66 
2.93 5.95 11.02 1.00 1.00 2.91 1.62 
3.07 6.45 12.51 1.00 1.00 3.05 1.60 
3.21 6.95 14.07 1.00 1.00 3.18 1.58 
3.34 7.45 15.69 1.00 1.00 3.31 1.56 
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Figure 2.3: Examples of the SCFT results, similar to the square
gradient theory. Figure reproduced from Schull[116].
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2.1.3 Schull’s theory

5724 Kenneth R. Shull: End-adsorbed polymer brushes 

mentioned above, provided that the matrix molecular 
weight is at least as high as the brush molecular weight. Most 
theoretical treatments, however, have dealt with the wet 
brush case. Interest in wet brushes stems largely from the use 
of polymer brushes as stabilizing agents in colloidal systems, 
where a large amount of small molecule solvent is generally 
present. Direct experimental observations of the forces be-
tween polymer brushes in solvents have also contributed to 
interest in a more detailed theoretical understanding of the 
wet brush case,7,8 whereas detailed experimental studies of 
dry brushes have only recently been carried out.9,IO The ear-
liest theoretical treatments, due to Alexanderll and De-
Gennes,12 included much of the basic physics of the wet 
brush, but assumed an unrealistic step function profile for 
the brush. More recently Milner et al. have derived analytic 
forms for the brush profile and free energy by solving a set of 
self-consistent field (SCF) equations. 13 Their treatment is 
valid when certain simplifying assumptions can be made. 
Hirz l4 and Cosgrove et al. ls obtained wet brush profiles by 
numerical solution of the SCF equations, thereby preserving 
the basic mean field framework without making further sim-
plifying assumptions. Whitmore and Noolandi have devel-
oped a similar treatment in the context of block copolymer 
adsorption from solution. 16 These numerical results are ex-
pected to be the most accurate, although the specific solu-
tions given are valid in a very limited number of situations. 

Theoretical treatments of the dry brush case are much 
less extensive, but to a certain extent run parallel to the treat-
ments of the wet brush. Scaling theories, including a theory 
of block copolymers at the interface between immiscible ho-
mopolymers,17 describe the underlying physics but say 
nothing of the brush profiles. Semenov has developed ex-
pressions for the free energy and end distribution of dry 
brushes,18 using approximations similar to those used by 
Milner et al. More accurate, numerical solutions to the SCF 
equations have been obtained by Helfand and co-workers, 19 
and by Whitmore and Noolandi.20 These results, like the 
results of Semenov, appear in the context of a theory of mi-
crophase separation of diblock copolymers and cannot be 
applied directly to a single polymer brush in a high molecu-
lar weight matrix. 

The aim of this paper is to solve the self-consistent field 
equations numerically in order to determine more accurate-
ly the properties of dry polymer brushes. The only situations 
considered are those where the matrix molecular weight is at 
least as high as the brush molecular weight. Discussion is 
confined primarily to situations where the polymer brush is 
chemically identical to the matrix phase. The SCF equations 
are developed in Sec. II, with the emphasis being on a phys-
ical interpretation of the equations rather than on a rigorous 
statistical mechanical derivation. The results for strong ad-
sorption conditions, where the equilibrium volume fraction 
of the adsorbing species in the bulk matrix phase is very low, 
are discussed in Sec. III and the thermodynamic interactions 
between two polymer brushes are discussed in Sec. IV. Sec-
tion V is a discussion of the results from Secs. III and IV. 
This section includes a comparison to predictions from a 
simple scaling theory, and a discussion of the origins of an 
attractive interaction between polymer brushes. Section VI 

shows how these results can be extended to weak adsorption, 
where there is an appreciable concentration offree adsorbing 
chains in the bulk matrix phase, and to situations where 
there is a slight chemical difference between the polymer 
brush and the matrix phase. 

II. THEORETICAL DEVELOPMENT 
Consider a binary blend made up of polymer A and poly-

mer B adjacent to a flat, impenetrable surface. The A chain 
ends are identical and interact with the surface in the same 
manner as the units at the center of the chain. The two B 
chain ends are distinct from one another. One end is inert in 
that it is indistinguishable from a unit at the center of a B 
chain. The other end has a free energy of interaction of 
k B Tr. with the surface and a free energy of interaction of 
k B with the bulk. Use of two parameters to describe the 
end interactions is especially useful when considering blends 
of A / B diblock copolymer with A homopolymer. For dilute 
concentrations of block copolymer, is given by XabNcb' 
where X ab is the Flory interaction parameter and Ncb is the 
degree of polymerization of the B copolymer block. The sol-
ubility ofindividual block copolymer chains in theA phase is 
determined by whereas adsorption of copolymer to an 
interface is determined by the relative preference of the end 
for the surface, i.e., by - X!· 

The interfacial free energy and the polymer profiles in 
the interfacial region are determined by the self-consistent 
solution of a complete set of mean-field equations. Deriva-
tion of these equations is most transparent when placed in 
context of a lattice model as shown in Fig. 1. The only rel-
evant distance variable is the distance normal to the planar 
surface. The system is broken up into layers, with each layer 
assigned an index i representing the distance of the layer 

I I I I I 
I" 1 .1. 1 I" ,-

j segment j- segment . 
\; 7 

i.- segment j+1 

/ 
layer i-1 • layer "-layer i+1 

FIG. 1. Illustration of the derivation of the recursion relation for q(iJ), 
showing one possible conformation of a polymer chain. The probability of 
finding a chain segment of lengthj in layer i is related to the probabilities of 
finding a chain segment oflengthj - 1 in layers i-I, i, or i + 1. 
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Figure 2.4: Schematic of the lattice solution for the polymeric sys-
tem from[116].

The essence of SCFT is the description of the distribution of polymer chains as

solutions of a diffusion equation. Scheutjens et al.[111] introduced a solution method

based on a lattice. In particular polymer chains on a lattice can be described with a

matrix formalism. We consider a N -length chain as a random walk of N−1 segments

on the lattice and we can assign different weights to each of the segments.

Later on Schull [116, 115] introduced a very fast and robust method for solving a

lattice version of eq.(2.1.15). We consider a lattice of dimension N , with the jth

segment on the ith layer. Following Shull’s derivation, we consider three different

distributions, one for the polymer matrix, a second for the interacting monomers with

the surface (with a growth from bulk to surface) and a third distribution considering

the interaction between monomers and the bulk polymer matrix. If we consider

the single probabilities of having monomers on the lattice in fig.(2.4), where j is

associated to the time (monomer’s length) and i is associated to the distance from

the wall, z. Saying λ0 is the probability that a chain segment stays in the same layer,

(1 − λ0)/2 is the probability that it moves into a given adjacent layer. Depending

on the lattice type, λ0 has different values, such as 1
2 for a hexagonal lattice, 2

3 for a

cubic lattice etc.; if we say q(i, j) is our matrix-probability distribution for the chain,



2.1. Mean field theories for surface segregation 41

we shall write it as function of the distributions at the j − 1 layer as:

q(i, j) =[(1− λ0)q(i− 1, j − 1)/2 + (1− λ0)q(i+ 1, j − 1)/2+

+ λ0q(i, j − 1)] exp (−w(i)
kbT

)
(2.1.19)

If w(i)
kbT
� 1, we can Taylor expand the exponential and so eq.(2.1.19) becomes:

q(i, j)[1+w(i)
kbT

] = [(1− λ0)q(i− 1, j − 1)/2 + (1− λ0)q(i+ 1, j − 1)/2 + λ0q(i, j − 1)]

(2.1.20)

so rearranging eq.(2.1.20) and considering that i is akin z and j for the time t, we

obtain a term [q(i, j)− q(i, j − 1)]/(j − j + 1) which is a discrete first derivative in

time. Furthermore multiplying by δz2, we have a term [q(i+ 1, j − 1) + q(i+ 1, j −

1)− 2q(i, j − 1)]/δz2 which is a four points discrete second derivative in space. So

the two term together looks like:

∂q(z, t)
∂t

= (1− λ0)
2 δz2∂

2q(z, t)
∂z2 − w(z)q(z, t)

kbT
(2.1.21)

where with δz2 = a
3(1−λ0) , being a the lattice costant, is like the Edwards diffusion

equation in eq.(2.1.15). For our purposes we shall consider a simple cubic lattice

and fix λ0 = 2
3 . From eq.(2.1.19) we obtain a recursive relation:

qa,b(i, j) = [qa,b(i− 1, j − 1) + qa,b(i+ 1, j − 1) + 4qa,b(i, j − 1)] e
−βwa/b(i)

6 (2.1.22)

where the exponential gives us the thermalization of the system. We can obtain the

fraction of volumes by means of eq.(2.1.18) and using eq.(2.1.17) and eq.(2.1.16).

With the Flory-Huggins energy we can obtain the mean field and the chemical

potential of the species as:

βµa/b(i) = log φa/b(i) + φb/a(i)
(

1− Nb/a

Na/b

)
(2.1.23)

βwa/b(i) = φb/a(i)
(

1
Na/b

− 1
Nb/a

)
+ χφb/a(i)2 −∆w(i) (2.1.24)

where ∆w = 1
κρ

(1 − φa − φb) is an incompressibility parameter for conserving the

volume, κ the compressibility and ρ the density. In this way we have a set of
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coupled equations that we can solve self consistently. The entire approach and

methodology is based on solving the diffusion equation, so it needs some boundary

conditions. Considering that we are dealing with probability distributions Schull

introduced two different kinds of probabilities for dealing with the monomers. He

considered the initial condition qb2(1, 0) = e−χs for placing monomers on the surface

and qb2(i+ 1, 0) = e−χb for placing monomers in the bulk of the system. The other

initial condition is qb1(i, 0) = 1 for all the values of the monomers of the polymer

matrix. Furthermore Schull used a random initialization of the values of φ, the

chemical potential and the mean field before entering into the self-consistent loop ,

which brings to ground state and equilibrium. A schematic showing the steps of the

SCFT implementation is shown in fig.(2.5).
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Figure 2.5: Schematic of the execution of the SCFT code, with the
parameters, the initial guess for the volume fraction
and then the loop with the condition for obtaining the
profiles.
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2.2 Differences between SB and SCFT mean

field theory
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Figure 2.6: Segregation profiles calculated with SB and SCFT the-
ory with φ∞ = 0.05,φ1 = 0.95 and correspondent
Fs = −3.3,χ = 0.5, Na = 10, Nb = 100.

We have seen in the previous section how the derivation of the self-consistent field the-

ory for the polymer system is still inside the framework of the mean field description

of the system and it can be well justified and understood with the analogy between

polymers and quantum mechanics derived from Schroedinger’s equation. We will

see in this section that there are also many advantages of using SCFT in order to

obtain a quantitative comparison with SB theory. To adapt it to our situation we

change the boundary conditions for the SCFT equations (since Schull’s theory was

initially developed for polymer brushes). In particular we use:

Surface energy: Fs ⇒ qb2(1, 0) = e−fs

Bulk energy: χb → +∞⇒ qb2(i+ 1, 0) = 0

Existence condition: ⇒ qb1(i, 0) = 1,

(2.2.1)

where the main difference is a very high value of χb, which implies that the bulk

thermodynamics is governed by the FH constant and the surface one by fs, as in SB

theory.
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This approach will be used across the thesis and it allows a first comparison between

mean field theories. In fact we know that for both models it is not possible to

have exact analytical solutions and a numerical approach is needed. In particular

in fig.(2.6) we see two different profiles generated with the same values of the para-

meters. Thus so choosing a value of φ1 is equivalent to the one we obtain for a

particular value of fs in SCFT. We notice that there is a small difference in the

width and the shape of the profiles obtained by the different methods, probably

caused by a systematic underestimation of the profiles by SB, which describes them

just at the phenomenological level, without the real chemical potential difference

between species. The differences become even more pronounced for the wetting

profiles, where SB describes a sharp interface and SCFT calculates a more diffuse

one. When we try to calculate higher bulk composition, beyond the critical point

of the spinodal diagram, and profiles for very large polymers (Ni ≥ 103), there

are significant differences. Indeed SB fails totally in those cases as the quantity

in eq.(2.1.2) becomes negative and so we have imaginary solutions and only have

solutions for polymers which have an appropriate value of ∆µ for compensating the

energy loss. However, such solutions do not always correspond to physical values ,

unless we choose φ1 as solution of Cahn’s construction. SCFT works fine and it can

calculate the profiles, having ∆µ from FH implemented in the mean field.

Making a comparison between the different computational times needed to execute

the codes, on the same machine (intel core 2 duo, Majorana), we obtain τ ∼ 102s for

the Schmidt-Binder model and τ ∼ 10−1s for the self-consistent field theory, with

same parameter conditions. The SCFT method is computationally less intensive and

allows for larger system sizes and more complex free energies, to be incorporated

within its remit. Other important differences between SB and SCFT concern the use

of the surface free energy needed for placing single monomers on the surface, that

allows to control directly the final amount of material φ1 as we shall see in more

details in Chapter 3.
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Conclusions: In this chapter we described two fundamental models for calculating

the wetting profiles of a complex fluid, such as SB and SCFT, with both their

advantages and limitations. In particular we addressed the differences between the

more phenomenological SBMFT and the more coarse grained SCFT. In the next

chapter we will apply those migration models to the description of a system including

elasticity. We will analyse the bulk thermodynamics and the consequences for

migration and surface wetting. Finally we will analyse the effects of the parameters

on polymer nanofilm in depth, as well as their possible valuable contribution to

industry.



Chapter 3

Effects of elasticity

We present novel results on the migration and segregation of the low molecular

weight component polymer in a mixture where the other component is a polymer

gel. We recall the theory of elasticity for polymers and gels [105, 123] and then

we report a new free energy incorporating elasticity with the SB and SCFT mean

field theories. We calculate segregation and wetting profiles, with a comparison

between the theories and introduce a novel way for controlling the segregation in

those system by changing the matrix elasticity. The chapter is based on the papers

by J. Krawczyk et al.[74] and S. Croce et al. [25].

3.1 Flory-Huggins theory and elasticity

When the temperature of a polymer gel is far beyond the gel point, most of the

chains are connected to form macroscopic polimeric network. If the glass transition

is below the room temperature, the system is a rubber. Rubber like systems exhibit

very peculiar mechanical properties under the action of a tensile force. In particular

it is interesting to analyse the thermodynamics of rubber [105, 123].

The internal energy of the system can be written with its natural variables as:

dU = TdS − pdV + fdL (3.1.1)
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where dS is the entropy change, dV the volume change, dL the sample length change

and f is the force applied to deform this system. Using a Legendre transformation

[50, 3, 103], we can write the Helmholtz free energy in term of the internal energy

as:

F = U − TS (3.1.2)

whose differential form is:

dF = −SdT − pdV + fdL (3.1.3)

considering that T is one of the natural variables of F and it is important in rubber

systems. The force applied to deform the network can be found by differentiating F

with respect to the deformation L, as:

f =
(
∂F

∂L

)
T,V

=
(
∂U

∂L

)
T,V

− T
(
∂S

∂L

)
T,V

(3.1.4)

where ∂V/∂L ' 0 at fixed volume. We notice that for a soft material such as

rubber, the only relevant contribution is the derivative of entropy, since changes in

configurational entropy is much larger than the internal energy change, thus ∂U
∂L
' 0.

This is the opposite behaviour to crystalline and solid state systems where the

lattice deformations cause an increased internal energy, but the entropy contribution

is negligible because the system is highly ordered [105].

3.1.1 Rubber Elasticity

We can track the rubber elasticity with the deformations along different directions

of the system. In particular if Li,0 is the length along a direction before applying F ,

we can define:

Lx = λxLx0, Ly = λyLy0, Lz = λzLz0 (3.1.5)

where λi represents the percentage of deformation in the ith direction. Considering

the projections of a sphere of radius R, for the polymeric gel, we can express the

deformation along the directions x, y, z in eq.(3.1.5), and write the elastic entropy
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variation for a single component as:

S(N,R)− S(N,R0) = −3kb
2

(λ2
x − 1)R2

x + (λ2
y − 1)R2

y + (λ2
z − 1)R2

z

Nb2 (3.1.6)

where N is the degree of polymerisation and b the Kuhn length. The entropy for

the entire system is given as the sum of the elastic entropies for single chains:

Snet = −3
2
kb
Nb2

(
(λ2

x − 1)
n∑
i=1

(Rx0)2
i + (λ2

y − 1)
n∑
i=1

(Ry0)2
i + (λ2

z − 1)
n∑
i=1

(Rz0)2
i

)
.

(3.1.7)

If the system is an ideal network made of cross-linked chains, there is perfect sym-

metry along the three spatial directions and the average values of the projection

radii are: 〈
R2
x0

〉
=
〈
R2
y0

〉
=
〈
R2
z0

〉
= 1
n

n∑
i=1

(Rz0)i = Nb2

3 . (3.1.8)

thus combining eq.(3.1.8) and eq.(3.1.7) we obtain the expression for the deformation

entropy of the network:

Snet = −nkb2 (λ2
x + λ2

y + λ2
z − 3) (3.1.9)

where n is the density of cross-linked chains. We notice that for a dry system, there

are no volume changes, hence no swelling. We will use eq.(3.1.9) in the next chapters.

The absence of volume changes can be expressed in term of the deformation constants

as:

V = λxλyλzV0 , λxλyλz = 1. (3.1.10)

In this case if we want to satisfy eq.(3.1.10) for a uni-axial deformation along a fixed

spatial direction, for example z, we can write the deformation parameters as:

λz = λ , λx = λy = 1√
λ
. (3.1.11)

So the elastic entropy of the material will transform as:

Snet = −nkb2 (λ2 + 2
λ
− 3) (3.1.12)

which is the uniaxial deformation elastic energy for an ideal network.
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3.1.2 Modified Flory-Huggins theory

The Flory-Huggins theory of eq.(1.3.13) describes the thermodynamics of a system

of polymers by means of mixing entropy and enthalpy/mean field. We have seen that

for a cross linked system we have to account for an elastic-deformation energy of the

network. Thus for a proper description of the thermodynamic behaviour of oligomers

in a polymer gel we must include this energy along with the FH one. Using the

elastic entropy of eq.(3.1.12) we obtain the correct thermodynamic description for

molecules segregating in a polymer gel matrix. Considering eq.(1.3.13), in the limit

of a networked system and for the case where the degree of polymerization of the b

species is really large compared to the number Na, as Nb � Na. Thus we can neglect

the logarithmic contribution, configurational/mixing entropy of the b polymer gel

and the biggest energy contribution is the deformation energy as in eq.(3.1.12). In

our case we can write the deformation[74] as λ = R/R0, with R0 and R lengths of

the polymer before and after the deformation. The correspondent volume fractions

are φb = Vb/V and φb0 = Vb0/V . So with φb = 1 − φ and φb0 = 1 − φ∞, the final

value of λ as function of the volume fraction φ is:

λ =
(

1− φ
1− φ∞

) 1
3

. (3.1.13)

Therefore combining eq.(3.1.12) with eq.(3.1.13, the elastic/deformation energy in

units of kbT for the polymer gel is:

Sel = B

2 (1− φ∞)
( 1− φ

1− φ∞

) 2
3

+ 2
(

1− φ∞
1− φ

) 1
3

− 3
 (3.1.14)

where B is the elastic modulus of the network and n = 1−φ∞ is the number density

of chains in the network. The entropy of the system is shown in fig.(3.1). Putting

together eq.(3.1.14) with the enthalpic contribution and mixing entropy for the a
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Figure 3.1: Comparison between mixing entropy (B = 0) and uni-
axial deformation energy (B 6= 0) for cross linked sys-
tems with φ∞ = 0.05 and B = 0.05, B = 0.1 and
B = 0.5. We notice that for a large polymer (Nb > 103)
the mixing entropy becomes negligible. Increasing the
cross linking density, i.e. the elastic modulus, the uni-
axial deformation energy dominates over the mixing
entropy which justifies the adoption of the model.

polymer, eq.(1.3.13) is given by:

Ffhe
kbT

= 1
Na

φ log φ+ χφ(1− φ)+

+ B

2 (1− φ∞)
( 1− φ

1− φ∞

) 2
3

+ 2
(

1− φ∞
1− φ

) 1
3

− 3
 (3.1.15)

where we have an elastic contribution from the network, a configurational entropy

contribution for the migrating molecules and a mean field interaction between the

oligomers and the polymer matrix by means of the Flory-Huggins constant χ.
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Figure 3.2: Elastic Flory-Huggins free energy for different values of
the elastic modulus and Na = 1, χ = 2.5. The system
moves from an energy with two minima to an energy
with just one, progressively with increasing elastic mod-
ulus B, also with χ > χc, where we would expect phase
separation.
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Figure 3.3: The blue(dot-dashed) curve is the elastic Flory-Huggins
free energy for Na = 1, χ = 2.5 and B = 0.3, the
magenta (dashed) curve is the common tangent as in
eq.(1.3.18) obtained solving eq.(1.3.16) and eq.(1.3.17).
The red curve is the energy minus the common tangent
which correctly goes to zero.
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3.1.3 Bulk phase diagram

Figure 3.4: Phase diagram for the oligomer-polymer gel system with
Na = 5, φ∞ = 0.1. We notice that the binodal curve
is not affected by the elastic modulus, but the spinodal
curve is shifted upwards with increasing B. The critical
point where we have the transition between mixed and
unmixed system moves up and the system can remain in
the mixed phase, opening up a miscibility gap (inset).

The free energy in eq.(3.1.15) can be used to draw the phase diagram of oligomer-

polymer system in terms of binodal and spinodal curves demarcating regions where

the homogeneous phase is metastable and unstable respectively.As in Chapter 1 we

can calculate the derivatives of eq.(3.1.15) with respect to the volume fraction of

the oligomer φ and obtain the spinodal curve by solving ∂2Ffhe
∂φ2 = 0 for χ and the

binodal numerically, finding the minima of the free energy after common tangent

construction, i.e. with equal chemical potential in the two phases. The analytical

expressions are given in Appendix 1. The binodal and spinodal curves for different

values of the elastic modulus are shown in fig.(3.4). In FH theory binodal and
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spinodal curves touch at the critical point (χc,φc) but in the elastic system while

the binodal curve is not affected by the presence of a non zero elastic modulus, the

spinodal curve is. Beyond a critical value of B ' 0.07 the effect modifies the phase

diagram opening a gap between the spinodal and binodal curves at the critical point.

A similar effect is observed in a binary alloy system [93].

We calculate the critical value of the Flory parameter as a function of the elastic
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Figure 3.5: χc as function of the elastic modulus B for different
bulk composition φ∞. The parameter increases with
increasing the cross linking, so the point of the phase
separation moves forward, indicating that softer systems
are more susceptible to phase separation.

modulus [74]. We find that χc increases by increasing B, therefore we increase the

domain of the metastable phase by progressively moving the critical point. This

effect becomes relevant especially for applications to segregation at interfaces, where

it is possible to prevent the formation of wetting layers, as we will analyse in the

next subsection.
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3.2 Migration in a cross-linked polymer matrix

We describe the results of the elastic Schmidt-Binder theory and elastic self consistent

field theory, with the profiles of polymers in fig.(3.8) and finally a Cahn construc-

tion and the surface phase diagram, to justify the absence of wetting transition in

the elastic system as shown in fig.(3.6). We also discuss the nature of the wetting

transition observed in this system.

In particular if we consider eq.(3.1.15) and the gradient with Random Phase Approx-

imation (RPA) we obtain a modified theory for the surface migration in the system,

the elastic Schmidt-Binder theory:

F [φ]
AkbT

= Fs(φ1) +
∫ zbulk

zsurf

dz

Ffhe(φ)
kbT

+ k(φ)
(
dφ

dz

)2

−∆µφ
 . (3.2.1)

and solving again the Euler-Lagrange equation with natural boundary conditions

built on eq.(3.2.1) we obtain an ODE which can be transformed into an integral

equation. This can be solved numerically obtaining φ(z), as for the one reported in

chapter 2. We report the results obtained from the SBMFT next.

3.2.1 Surface phase diagram and Wetting

In order to determine whether or not oligomeric phase wets the surface we use

a geometric method pioneered by Cahn [19] and later De Gennes [43] and Jones

[67]. The natural boundary conditions for the polymer systems, leads to a graphical

solution of an equation involving the derivative of the surface free energy and the

bulk free energy. From the boundary conditions of the SBMFT we obtain:

− dFs
dφ1

= µ1 + gφ1 = ±a3

√√√√Fmix(φ1)− Fmix(φ∞)−∆µ(φ1 − φ∞)
φ1(1− φ1) (3.2.2)

and so we can plot the left part and the right part of eq.(3.2.2). The wetting behaviour

of the systems follows the schematic decribed in Chapter 1 in fig.(1.11). The area

between the curves is related to the spreading coefficients, connected to the energy

balance between the different phases. Increasing the matrix rigidity B, one can
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raise one of the minima in the bulk energy, preventing the formation of a first order

wetting transition as in fig.(3.6) [74]. Genzer has suggested elsewhere [48] that in

polymer mixtures we have second order wetting transitions at the low density phase,

i.e for very small values of φ∞. We see an example in the schematic of fig.(3.7). In our

system, as we increase the elastic modulus the minimum corresponding to the high

density phase becomes unstable, so it is not possible to have wetting corresponding

to the high density phase. Thus we investigated the possibility of having wetting

transition at the low density phase.
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Figure 3.6: Cahn construction showing first order wetting trans-
ition for the FH free energy, Ffh. An intersection
between

√
k(φ1)Ffh(φ1) and F ′(φ1) at three points de-

marcates areas S1 and S2, such that S1 > S2 indicates
a first-order wetting transition. A similar graphical
construction for the elastic FH free energy Ffhe with
B ∼ 0.17(over critical) shows one intersection, indicat-
ing the absence of the first order wetting transition.
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Figure 3.7: Cahn construction for second order wetting transition
at the low density phase. The red curve (dashed) is for
a non elastic system with χ = 1.7, Na = 1, Nb = 4 and
the blue one for an elastic one with same parameters
and B = 0.1, which is subcritical. The surface energy
curves (vertical lines) are obtained with SCFT, with
iterative calculations of the segregation profiles for φ1.
As can be seen the equilibrium corresponding to the low
density polymer phase for an elastic system is shifted to
lower densities in comparison to the one where elastic
effects are absent.
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3.2.2 Wetting profiles for SBMFT and SCFT

Solving eq.(3.2.1) via the Euler-Lagrange equation we obtain a non linear differential

equation which can be converted into an integral equation like in eq.(2.1.3) with the

elastic Flory-Huggins energy:

6z
a

=
∫ φs

φ∞

dφ√
φ(1− φ)[Ffhe(φ, χ)− Ffhe(φ∞, χ)−∆µ(φ− φ∞)]

. (3.2.3)

Thus solution of eq.(3.2.3) is shown in fig.(3.8) with the inset showing the solutions

of eq.(2.1.3). We notice a change in the concentration profiles with increasing elastic

modulus and the absence of the wetting profiles, predicted in normal SBMFT (inset).

In a similar way, we can include a deformation elastic energy in the SCFT model,
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Figure 3.8: Migrant concentration profiles φ(z) for the SB model in-
cluding the elasticity obtained by minimizing eq.(3.2.1)
for (χ = 0.320 and Na = 10) and increasing B. A wet-
ting transition is not observed in this model. Inset
shows concentration profiles for the SB model without
elasticity for the symmetric case Na = Nb = 10 with
increasing χ. The black solid line with a break indic-
ates the formation of a macroscopic wetting layer.For
φ1 > 1− φ∞, the profiles decreases from φ1 to 1− φ∞
which is a B-rich layer and then after 1 − φ∞ we find
an A-rich macroscopic wetting layer, as reported by
Schmidt et al.[112].

through the calculation of the chemical potential and the mean field between the

oligomers and the polymer matrix, following eq.(2.1.16) and eq.(2.1.17). Nevertheless
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since we do not have mixing entropy for the polymer gel, we do not compute this

contribution for the mean field explicitly for corresponding b species. The equilibrium

migrant concentration profiles are shown in fig.(3.9). As it is shown both the surface

fraction as well as the amount of material leeched to the surface decreases with

increasing elastic modulus.
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Figure 3.9: Migrant concentration profiles φ(z), calculated with
SCFT, for different elastic moduli B of the polymer
matrix. The amount of material flowing to the surface
decreases with increasing B. The dependence of the sur-
face fraction φ1 as a function of B for different surface
free energy Fs is shown in the inset. As expected, the
volume fraction decreases for a system with higher Fs.
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3.2.3 Surface tension

We have seen in Chapter 1 that in the framework of the SCFT we need a microscopic

surface energy fs, in units of kbT , as a penalty for placing monomers of the oligomers

on the surface. We can link the microscopic parameter to the macroscopic surface

free energy, considering the total amount of oligomers on the surface with respect

to the volume of the matrix. Following Budowski [16], we can link the microscopic

parameter fs to the difference of the surface energy between the polymer species

∆Fs as:

∆Fs = (A/V )fs (3.2.4)

where A and V are the lattice surface and volume respectively, with b = 3
√
V being

the lattice parameter and ∆Fs being:

∆Fs =
∫ φ∞

φ1
(dFs
dφ

)dφ. (3.2.5)

Following Jones and Geoghegan [68, 49] this quantity represents the difference

between the surface energies of the migrant and the polymer matrix and it can

be calculated in SI units considering the temperature of the system and the lat-

tice volume V , obtained with the volume of a single monomer. In particular the

conversion is:

∆γ = kbT

V

dFs
dφ1

(3.2.6)

where the derivative of the surface free energy is multiplied by the temperature

and divided by the lattice volume V . We notice the results for an elastic one with

different B, but same φ∞. We choose a value of the lattice parameter b = 4.64Å

and T = 298.15K, so ∆γ = 19.11×mJ/m2∆Fs. There are different starting points

for the curves, for different bulk concentration, but all of them present a saturation

approaching the value which represent the highest difference between the surface

energy of the two polymers ∆γ. In particular the black dotted curve is the derivative

of the surface free energy with the fitted values of µ and g. The polynomial form of

the surface energy is a good representaiton for small values of φ1. It does not work
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for lower bulk compositions (φ1 → φ∞) and approaching the wetting transition. This

limitation reflects the necessity to consider higher order corrections in the analytical

approximation of Fs, including high order gradients as reported by Cohen et al.[24]

at the critical wetting, and successfully measured by Bruder [13], suggesting the

possibility of having entropic corrections [12].

Increasing the elastic modulus we see an effect on the curves, mainly because with

B increasing φ1 decreases, so we are moving the curves to the left hand side of the

graph.
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Figure 3.10: Surface free energy ∆γ as function of φ1−φ∞. At bulk
composition the difference between surface energies is
zero and then goes to saturation. Increasing the elastic
modulus we increase the surface energy, meaning that
becomes less convenient moving to the surface.

Calculation for a real systems

It is interesting to reproduce some experimental data reported in the literature and

apply the ∆γ calculation to different systems. In particular we can use SCFT for

PS/PVME and correctly reproduce ∆γ(Mw) as a function of molecular weight as in

Bhatia[4].
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Figure 3.11: Difference in surface tension between Polystirene (PS)
and Poly(vynil methyl ether) (PVME) as function of
the inverse molecular weight. χ = 0.33− 0.4 as meas-
ured in [114]. We notice that the trend is similar to
the one reported by previous experimental studies as
in Bhatia[4].

3.3 Applications: Materials design

In the previous sections we have seen the effects of elasticity on the migration

of oligomers in a polymer gel. We have seen that we can characterise nanofilms,

controlling how much material goes on the surface by controlling both the bulk and

the surface thermodynamics. Those models find applications in the real world in a

number of different fields such as food industry, packaging [57] and consumer goods

[79]. In these situations our work provides a way to tune the material properties

according to the production and design needs. In particular we see how to control

surface migration by means of changing the poperties of surface, the degree of

polymerisation of the oligomers, and a gradient of elasticity as reported in Croce et

al.[25], where they study migration in polymer gels.

3.3.1 Surface characterisation

In section 3.2.1 describing the surface phase diagram we have seen that by changing

surface energy of the system one can modify the nature of the wetting transition. In

particular the surface segregation depends crucially on the elastic modulus B of the

material. When we increase or decrease the surface energy of the system, the same
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effect arises. We have seen in Chapter 2 that fS is an energetic cost for placing a

monomer on the surface. So an increase or decrease in fs results in a surface that is

less attractive for the segregating species. We see the effect of changing fs on the

profiles in fig.(3.12), where there are both the results for a normal polymer mixture

and for oligomers in a polymer gel. In both systems we alter the overall material

migrated and the surface fraction φ1. It may be possible to treat surfaces of polymer

samples optically ([92]) or mechanically ([78]), changing fs, for a better design of

those materials, obtaining more or less oligomers, depending on the application.
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Figure 3.12: Volume fraction (SCFT) as a function of z in reduced
units of Rg for Na = 10,Nb = 1000,χ = 0.22,T = 300K
with an increasing surface energy Fs without elasticity
(inset). Volume fraction as a function of z in reduced
units of Rg for Na = 1,χ = 0.22,T = 300K, B = 0.01
with an increasing surface energy Fs(bottom).
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3.3.2 Elasticity gradient

So far we have considered the elasticity of the polymer gel as a bulk thermodynamic

quantity for our system and neglecting spatial variation. To circumvent this limita-

tion in a phenomenological way, we consider a spatially varying elastic modulus:

B(z) = B0 +B1z. (3.3.1)

Naturally it does not make sense to have a B(z) negative, so we choose B1 > 0

and for simplicity B0 = 0. The concentrations profiles for migrants are shown in

fig.(3.13) where we observe a more pronounced effect of elastic gradient B1 on φ1,

compared to the earlier example of a system with homogeneus bulk modulus.

For systems described here not only does the surface fraction φ1 depends on the

elastic modulus gradient, but also the interface width ξ and the overall material on

the surface z∗ defined as:

z∗ =
∫

(φ(z)− φ∞)dz. (3.3.2)

In the inset in fig.(3.13) we notice a decreasing amount of the material on the surface,

as function of B1, as expected. Those effects introduce a link between the bulk and

surface thermodynamics. Due to the connectivity of the gel there can arise long

range elastic interaction among oligomers mediated by the gel network. Such long

range interactions have been studied in the context of adhesion and seen not to play

a major role in dictating the segregation behaviour [67]. However we believe that

such long-rage elastic interaction might play a role in this physical situation. We

will see in the next section that we can estimate the thickness ξ and compare z∗(B1)

with ξ(B1).
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Figure 3.13: Fraction volumes (SCFT) as a function of the coordin-
ate z/Rg with different values of B1 as reported in
Eq.(3.3.1). We notice not just the reduction of φ1, but
also the modulation of the shape, which may be im-
portant in the design of functional nanomaterials. The
inset shows an amount of material on the surface as
function of the elastic modulus.
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3.3.3 Length estimation

In order to analyse our results further, we consider the effects of the elasticity

gradient B1 on the thickness. In particular we have seen that in samples with a

gradient of elasticity, the width of the interface between surface and bulk phases

is influenced by changing the elastic modulus. As a further step we can calculate

the interface width as a function of the surface energy and also as a function the

elasticity modulus. As mentioned before the SCFT equations can only be solved

numerically. Nevertheless if we do not consider the time dependence in eq.(2.1.14)

we obtain a second order differential equation that as reported by Jones et al.[68]

can be solved analytically, obtaining an approximate solution for q(z) and then φ(z)

in the form of an hyperbolic tangent. We can generalise this function for fitting the

numerical solution in fig.(3.14), as:

φ(z) = A1 + A2 tanh
(
z

ξ

)
(3.3.3)

with A,B, ξ fitting parameters. The comparison is reported in Fig.(3.14) where we

notice small differences, but eq.(3.3.3) is sufficiently close to the solution. We can see

the result in Fig.(3.15), where it is evident that the interface width of the material

decreases with increasing B. Considering the similarity with a decay exponential we

can fit it to a function of the form:

ξ(B) = a1 + a2 exp a3B. (3.3.4)

3.3.4 Length of oligomers

Probably the easiest parameter someone can control experimentally is the length of

the polymer segregating at the surface. Nowadays there are different techniques [56]

which allow us to polymerise monomers with a desired chain length. This allows us

to control the material segregating in the polymer gels, as we can see in fig.(3.17).
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Figure 3.14: Comparison between an analytic approximation of the
SCFT fitted with the exact numerical solution (inset)
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Figure 3.15: Thickness of the system as a function of the Young
modulus and correspondent

Increasing the degree of polymerisation of the small molecule we modify the entropic

contribution to the bulk energy, which decreases monotonically with increasing Na.

This energy contribution becomes smaller than the interaction between the polymers

and the elastic deformation energy, so there is an entropic penalty for the chains

segregating at the surface. This lowers φ1 and the shape of the wetting profile,

because as expected longer molecules migrate less.



3.3. Applications: Materials design 69

0 5 10 15 20 25

z/Rg

0.0

0.2

0.4

0.6

0.8

1.0

φ
(z

)
0.000 0.005 0.010 0.015 0.020

B

5.0

5.5

6.0

6.5

ξ(
B

)

Figure 3.16: Segregation profiles for different values of B calculated
with SCFT. In the inset correspondent ξ(B) decreasing
with B.
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Figure 3.17: Variation of surface segregation profiles (SCFT) with
increasing degree of polymerisation for the oligomer
species, with χ = 0.22, φ∞ = 0.1 and Fs = −3.0.
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Conclusions: In this chapter we have studied the effects of elasticity and the applic-

ation to the design of polymer materials. We shall see in the next chapter how to

apply these models to experimental systems.

3.4 Appendix

3.4.1 Spinodal decomposition for elastic system

Here we introduce the equations for the spinodal curve used for the spinodal decom-

position. In particular taking the second derivative of the free energy in eq.(3.1.15)

and solving for χ, we obtain the spinodal curve:

χs = 1
2{

1
φNa

+

+B
(1− φ∞)

9

− (1− φ)− 4
3 (1− φ∞)− 2

3 + 2(1− φ)− 5
3 (1− φ∞) 1

3

}. (3.4.1)

We obtained the binodal numerically, finding the minima of eq.(3.1.15) using the

common tangent construction as in Chapter 1.

3.4.2 SCFT equations for elastic system

Using eq.(3.1.15) combined with the eq.(2.1.16) and eq.(2.1.17), the chemical poten-

tial of the B polymer becomes (in β = 1
kbT

):

β
µb
Nb

= χφ2 − 1
Na

φ+

+ B

2 (1− φ∞)
( 1− φ

1− φ∞

) 2
3

+ 2
(

1− φ∞
1− φ

) 1
3

− 3
+

+ B

3 φ
−(1− φ∞

1− φ

) 4
3

+
(

1− φ∞
1− φ

) 1
3


(3.4.2)
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and for the mean field, considering that in the elastic approach Nb → ∞, we will

not have the logarithm, so βwb = β µb
Nb
. The chemical potential for the a species is:

βµa = (1− φ) + log φ+ χNa(1− φ)2

+ B

2 (1− φ∞)Na

( 1− φ
1− φ∞

) 2
3

+
(

1− φ∞
1− φ

) 1
3

− 3
−

− B

3 Na(1− φ)
−(1− φ∞

1− φ

) 4
3

+
(

1− φ∞
1− φ

) 1
3


(3.4.3)

and so the mean field is:

βwa = (1− φ)
Na

+ χ(1− φ)2+

+ B

2 (1− φ∞)
( 1− φ

1− φ∞

) 2
3

+
(

1− φ∞
1− φ

) 1
3

− 3
−

− B

3 Na(1− φ)
−(1− φ∞

1− φ

) 4
3

+
(

1− φ∞
1− φ

) 1
3


(3.4.4)

because βwa = βµ−logφ
Na

.



Chapter 4

Simulations and Experiments

In this chapter we introduce the fundamental concepts of Design of Experiments

(DoE) and statistics in industrial modeling through correlation between variables.

We report the results obtained by applying those statistical concepts to the optimisa-

tion and the validation of the computational model used for describing the surface

segregation in the framework of self-consistent field theory (SCFT), in particular

the lattice effect. We present the results of the machine learning and how to apply

those concepts to compare theoretical results against experiments as a route towards

model validation with a R2 test. Finally we present some preliminary simulation

results obtained with Chemistry Unified Language Interface (CULGI) package. The

DoE are obtained using the softwares JMP [64] and R [101].

4.1 Design of Experiments. Latin hypercube.

In recent years, the use of statistics has become more and more important in ex-

perimental data analysis of scientific and industrial problems. For the latter some

applications have been reported by Savage [110] for managing problems such as

production, operation research, supply chain and more. In particular a useful tech-

nique for the analysis and ultimately the validation of computational models is the
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Design of Experiments (DoE), a set of statistical tools used for simulating an exper-

iment with all the necessary variables. DoE was first introduced by Fisher [38] as a

method for addressing agricultural design and optimising parameters. However over

but through the years DoE found applications in many different disciplines such as

Mathematics, Chemical Engineering [77], Logistics and other industrial problems

with needs of statistical tools [110] and even in experimental Particle Physics [14]

for the design of hadron calorimeters and photomultipliers.

Fisher proposed several principles for setting an experimental design. In particular

the three main ones are randomisation, replication and blocking, used for simple

designs, while orthogonality and full factorial for more complicated DoE where one

needs to evaluate the effects and possible interactions of several factors [1]. We

use randomisation in an experiment each time there are factors which cannot be

controlled, so by randomising the experiment we eliminate the unpredictable (white)

noise. Replication entails performing the experimental steps in a random sequence,

repeating the entire experiment or part of that running under different conditions.

Finally blocking allows to pack some experiments in different blocks with homogen-

eous conditions. The aim is to eliminate an unwanted source of variability, exploring

all the possible combinations of factors.

Computer models increasingly replace physical experiments in studies where there

is limited knowledge about the system under study. For instance in our work, the

Flory-Huggins/Self-Consistent Field Theory models have a total of seven or more

parameters whose values are not known exactly. These parameters are input variables

which must be treated as random variables for a successful statistical modeling of the

computer simulations. Latin hypercube designs, first introduced in McKay [86] and

then in Iman[63], are amongst the most popular strategies for computer experiments.

We will briefly elaborate on Latin hypercube designs below.

With the growing power of computers, more techniques become available for the

design and analysis of simulations, and the number of applications explodes: aerospace,

bioengineering and decision under uncertainty, to name a few.
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In the case of computer experiments we will analyse a particular useful design in

the next section. More recently thanks to the more powerful computational tools

developed, DoE finds applications also in the design and validation/development of

computational models and computer experiments.

Until the work of McKay [86] and Iman and Conover [62], few statistical assumptions

were made about the relationship between input variables and the output produced

by a computer code. Since then methods of statistical sampling of multidimensional

distributions for generating near-random samples of parameters have flourished, with

different types of designs used for different problems. The words "factor", "sample",

"treatment", "treatment level" and "repetition" are used generically in statistics. In

our particular setting, factors are parameters, a sample is a set of values chosen, one

for each parameter, a treatment is a computer run for a given sample to produce an

output (for us, a segregation profile), treatment levels are different samples of the

parameter values and repetition is the number of computer runs made with a fixed

sample.

We use a sampling method for generating different uncorrelated combinations of the

input parameters needed for calculating segregation profiles within SCFT, as these

are not available in the literature or easily accessible experimentally for our system.

We first fix reasonable lower and upper bounds for the parameter values relevant to

our polymer system and generate random input values within these bounds for the

parameters using the Latin hypercube sampling method.

The Latin hypercube design we use is a generalisation of the "completely randomized

design" (CRD), which is the easiest sampling method. Indeed, CRD is appropriate

in the case where the experiment depends only on one factor or parameter, call it

X1. Let this factor have L levels, that is L potential values vi, i = 1, .., L in a given

interval, and let the experiment be replicated n times per level. The total size of

the sample (i.e. the number of runs) is L × n, and there are (L×n)!
(n!)L ways to run

the experiment, all equally likely to be picked by a randomization procedure. The



4.1. Design of Experiments. Latin hypercube. 75

measured response (output) is encoded in the variables

Ykl = µ+ τk + εkl, k = 1, ..., L l = 1, ..., n (4.1.1)

where each Ykl is an observation for which the parameter X1 takes the value vk (i.e.

X1 is at level k) and for which l is the replication number within that level. µ is

the overall mean (average over all data) and represents a recurring effect for the

experiment, τk is the effect of having X1 taking the value vk, so it is estimated as

the distance from the true mean µ i.e. τk = µk − µ where µk is the average of all

data for which X1 = vk; εkl is the random error present in the lth replication of the

experiment where X1 = vk, and is taken to have a normal distribution with zero

mean. The variables Ykl are the entries of an L×n matrix, and CRD generates each

entry without considering the previously generated entries, which is not ideal for

uniform sampling of the space of input variables.

Experiments have nuisance factors, which may affect the measurement results but

are not of primary interest. To reduce experimental errors due to nuisance factors,

one uses the blocking technique, which amounts to create homogeneous blocks in

which the nuisance factors are held constant and the factor of interest (X1) is allowed

to vary. In a Latin square design, one has one primary factor of interest (X1) and

two nuisance factors (blocking variables X2, X3). The advantage of Latin squares is

that they allow to keep the nuisance factors separately, either because they cannot be

combined or because this is requested by the experiment. They also allow meaningful

experiments to run with a small number of runs, which is valuable in relation to

CPU cost. The measured response is encoded in the variables

Yklm = µ+ τk + νl + ρm + εklm (4.1.2)

which are observations for which the primary factor X1 = vk, while the blocking

factors X2 and X3 are at level l and m respectively. µ and τk are as before, and

νl and ρm denote the effects for block l and m respectively; εklm is a random error.

Table 4.1 provides an example of Latin square for 3-level factors.
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Table 4.1: Examples of Latin square design. We see all the possib-
ilities for three factors A,B,C.

A B C
B C A
C A B

A Latin hypercube design can be viewed as a d-dimensional extension of the Latin

square design. In this case, one deals with p points in d dimensions written as a

p × d matrix X where each column represents the p values a given parameter can

take and each row represents a sample, so that the entry Xmn represents the value

taken by the parameter n (1 ≤ n ≤ d) within the sample m (1 ≤ m ≤ p). The

design is constructed so that there is only one sample at each level. One advantage

of this design is that the output is dominated by a few entries of the matrix X. The

Latin hypercube design is appropriate in the case of FH/SCFT since we have seven

or more parameters to tune. An example of a (14 × 7) randomised input matrix

X is given by the first seven columns in Table 4.2, while the last column tabulates

the output φ1. In particular we generated a latin Hypercube with 104 combinations

and we used the file as an input for the computational C++ code, running on the

Durham HPC Hamilton Cluster. We will show the results in the next section.
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4.2 Machine learning for SCFT

Figure 4.1: Schematic of the unsupervised machine learning for
SCFT. The generated latin hypercube DoE data for the
seven parameters are input for the SCFT model, which
after the run produces results when φ1 > 0 (green), so
the input parameters are a good design. It does not
produce results when φ1 = 0 (red), meaning the the
input design is not a good combination.

Table 4.2: Example of some of the values of the seven input para-
meters generated with Latin hypercube DoE and results
of the unsupervised machine learning, with Fs surface
energy, χ FH constant, Na/b degree of polymerisation of
oligomers/polymer matrix, b lattice parameter, T tem-
perature, φ∞ bulk composition, φ1 surface composition
is the output.

Fs χ Na Nb b T (10−3) φ∞ φ1
-6.752952 4.89030347 93 5541 5.10414562 0.72756917 0.18557205 0
8.59225355 2.93522828 69 8502 8.31495808 0.77676288 0.7427797 0
-6.7129505 -0.7445286 3 802 26.1982757 0.51979403 0.47487981 0.996009
-5.6959883 -2.2945883 68 5722 14.0227272 0.72376137 0.9418955 0.99851
-2.5643294 -2.4672872 74 8500 1.50409716 0.36332803 0.02007565 0.96342
7.35220585 6.16573714 5 4347 39.2615285 0.33378873 0.79501792 0
-7.9953075 4.53913612 13 7901 15.5412092 0.53390981 0.69962475 0
6.56756029 -0.2883572 54 4893 31.3229601 0.03697259 0.3408168 0.340923
6.96988346 -2.9642294 98 650 34.7630064 0.72622298 0.16902618 0.16917
-1.9258433 1.52555868 31 2537 16.0642932 0.14455258 0.67003817 0.879222
-9.6384476 1.96749875 72 3200 10.9565321 0.29863388 0.31013721 0
9.78229932 6.93192046 9 7952 10.0472891 0.01420271 0.11207673 0.11209
-2.3289357 -1.8449556 80 2819 4.96875918 0.85872675 0.91332655 0.999948
-6.2460095 -1.5149429 14 5708 20.0351159 0.59983476 0.87382752 0.997565

Using the latin hypercube, we generate a uniform sampling of the different value of

the parameters we need in our code. In particular we set a maximum and a minimum

for each of the parameters and, using the software JMP, we explore uniformly the
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space of parameters. This sampling can be used as an input for unsupervised machine

learning for the FH/SCFT code. It is particularly helpful for having an idea about the

value of χ between particular polymer species with a fixed degree of polymerisation,

because is quite hard to measure the FH constant . All the parameters are inputs for

the C++ code, which runs multiple times, calculating segregation profiles at each

run with a different combination of the parameters, which is unique being generated

with a Latin Hypercube design, as in the schematic in fig.(4.1). The output, that

defines the success of the calculation, is the value of φ1, where φ1 > 0 means a

positive output,a successful run and the calculation of a segregation profile; while

φ1 = 0 an unsuccessful run. A combination of parameters, generated with JMP

and the output(φ1) is shown in tab.(4.2). We can see the results in fig.(4.2), where

φ1 = 0 corresponds to the red colour and φ1 > 0 to the green one. We notice a strong

correlation between some variables, in particular between χ and Nb, the degree of

polymerisation of the polymer matrix and the interaction constant respectively in

fig.(4.2). These results allow us to choose optimal combinations of parameters we

need for predicting the segregation behaviour of a class of systems. Furthermore

with DoE we have a window of sensibility of the model and we can understand for

which combinations of parameters the SCFT converges. We can also check if these

combinations of input parameters correspond to physically realistic values . Once

we know the degree of polymerisation of our experimental polymers, we can look for

the DoE results for the corresponding values of χ and fs for those polymers, as in

tab.(4.2) and try which one gives the best description of the experimental data, as

we shall see later on.
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Figure 4.2: Results for DoE for the different parameters of the
FH/SCFT model. Red colours corresponds to an unsuc-
cessful run (φ1 = 0) and the green one to a successful
run (φ1 > 0). We notice a strong correlation between
some variables. In particular χ and Nb (below), char-
acterising the molecular weight of the matrix and the
interaction with the constant, with χ ∼ 1/Nb.
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Lattice Dimension effect

The SCFT makes use of a discrete lattice for solving the diffusion equation with

an associated lattice parameter b, to calculate the volume fractions of migrat-

ing/segregating polymers. We choose a system with fixed values of monomers

for both migrants and polymer matrix and alter the lattice dimension, in order to

understand its effect on the key observables. In fig.(4.3) we notice that by increasing

the lattice dimension we modify the shape of the profiles, from a sharp interface to

a more diffuse one. the total amount of material remains constant as can be seen

in fig.(4.3). Given that longer chains will take a much longer time to relax, under-

standing the effect of lattice spacing is crucial when making prediction of segregation

profiles of such systems. Running the code on the desktop machine and the laptop

we have, there is a limitation for the RAM to a grid of 7×103×7×103. However we

notice that for N > 7× 103 there are no significant variations in the interface profile

on the choice of the lattice parameter. So for fitting experimental data we decided

to keep this value fixed, especially since we did not analyse polymer matrices bigger

than N > 6× 103.Bigger matrices would require a more coarse grained calculation.
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Figure 4.3: Different profiles for Na = 1, Nb = 100, χ = 10−3,
φ∞ = 0.1, Fs = −3.0 for different values of the lattice
dimension, increasing from top to bottom.
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4.3 Experiments

Segregating systems

Table 4.3: Values for SCFT for best fit with experimental data.
Bulk values are experimental values of the mixture before
measurement. After fitting raw data there are some dif-
ferences with φ∞ used in the sample preparation, which
reflects errors of the instrument and the software.

T(K) χ ∆γ(mN/m) φ∞ a(nm)
298 0.1 12-14 (6-70)% 0.48

We present a comparison between the wetting profiles calculated within the SCFT

and neutron reflectivity data [107]. In particular we report a table with the values

of all the constants referring to the system dSq/PB (deutereted Squalane in Poly-

butadiene), as recently studied by Sabattié et al. [108]. We have used the values

reported in table (4.3). We have used the values reported in table (4.3) as they

result from our previous study with the orthogonal hypercube for the SCFT model.

We already knew the values of the degree of polymerisation for dSq and PB from

the experiments. We looked for successful combination of χ and fs with Na and

Nb, as in tab.(4.2) and tested those values in our code comparing the calculated

profiles versus the experimental one. Values in tab.(4.3) were the most effective to

produce compatible profiles, as we shall discuss later with a R2 test. Furthermore

the values are compatible with some experimental values in literature. The range of

values for the surface tension is compatible with the difference between the values of

PB(44mN/m) and Sq(30mN/m). The Kuhn length is a combination between the

values for the single polymers, aPB = 5.24å for PB and aSq = 4.6å for Sq, combined

as in Schmidt [112], using an interpolating form:

a2(φ∞) = a2
Sqφ∞ + a2

PB(1− φ∞) (4.3.1)

We notice there is a good agreement between the experimental data and the theor-

etical predictions at low concentrations, with error bars within the limits of validity

of MFT.
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Figure 4.4: Experimental data (points) and theoretical SCFT cal-
culation (continuous line) for the volume fraction
of dSq on PB as a function of z, distance from
the surface in nm. Bulk composition with φ∞ =
(6%, 8%, 10%, 30%, 40%, 60%, 70%).

There is a significant discrepancy between the data and the theory for a 70% bulk

concentration of migrants. We obtain the best fit for a high composition, decreasing

a, with a mismatch between lattice parameter for SCFT and Kuhn length, as in

Shull [116]. In this way we include the effect of entropy loss for long chains, and the

end chains confined to the layers close to the surface. From eq.(1.3.24) being Na = 7

and Nb = 5185, we would expect this behaviour at φc ' 0.96. As previously reported

by Norton et al. [91], MFTs are not able to capture the flattening of the profiles close

to the surface for high bulk concentration. Thus stems from a limitation of mean

field theory, which by definition does not take into account thermal fluctuations.

In fact as reported by Sferraza et al.[113] there are capillary waves at the interface

with different wave lengths depending on the quench depth of the spinodal diagram

and, at high bulk compositions. In this case we are in the unstable region of the

phase diagram and hence the spatial variation of φ(z) is too rapid to be captured
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by an equilibrium MFT. Futhermore we might miss free volume effects as reported

by White[126]. A possible solution is to scale the profiles with the bulk correlation

length:

ξ = a

6
1√

φ∞(1− φ∞)(χspin − χ)
(4.3.2)

as in Norton, where χspin is the value of the spinodal, as in eq.(1.3.23). We can see

the results in fig.(4.5), for the high φ∞. While the incorporation of this improves

our fit, it is far from an exact match.

A possible explanation of this lies in the description of small oligomers as Gaussian

chains, within the framework of the SCFT, and because of the mechanical effects,

chain ends might present a different behaviour at high composition, with a change

of radius of gyration from the ideal value to Rg = a
√
Nb/6 as reported by Rubin-

stein[105]. This might be because strongly asymmetric binary blends of long and

very short chains, as in our case, leads to non Gaussian behaviour, with increasing

number of monomers in the long chain, having a radius of gyration:

Rg = aN
1
2
b (Nb

N2
a

)ν−0.5 (4.3.3)

with ν = 0.588, where the value for the scaling is not 1
2 anymore, but 3

5 .
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Figure 4.5: Experimental data (points) and theoretical calculation
(continuous line) for the volume fraction of dSq on PB
as a function of z, distance from the surface in nm. Bulk
composition with φ∞ = (60%, 70%) with the different
scaling.

4.4 Statistical analysis

A rigorous approach to the comparison of a model with experimental data, requires

a statistical test. In particular we can analyse the correlation between experimental

data and theory and ultimately use the R2 test [28].

4.4.1 R2 test

If we consider a variable xi, which represents our experimental data, we can define

the residual sum of squares compared to another variable xmi , which in the case of

our model is:

SSE =
∑

(xi − xmi )2. (4.4.1)

The R2 measures how the correlation between different points of the model is far

from the points of the experimental data [28]. If we define the total sum of squares,

as the distance of the experimental data from the mean, we have:

SST =
∑

(xi − xi)2. (4.4.2)
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So as a consequence the R2 is defined as:

R2 = 1− SSE

SST
(4.4.3)

When a model perfectly describes the experimental data R2 = 1, which means that

there is zero distance from the model and the data. On the other hand, if R2 ' 0

the model is not good for that set of data.

We see from table 4.4 that R2 ∼ 90% for lower values of φ∞, but R2 ' 0 for the

compositions where we have the wetting transition. This is a confirmation that MFT

is not valid close to the critical point. Nevertheless we can still make predictions on

the amount of material that blooms to the surface.

4.4.2 z∗ analysis

We need to quantify how the model correctly describes the data, and the overall

material that has migrated to the surface z∗ is helpful. We have seen in Chapter 3

that we calculate the overall surface excess material as:

z∗ =
∫

(φ(z)− φ∞)dz. (4.4.4)

Thus having just experimental data and not analytical solutions we calculated the in-

tegral numerically with the trapezoidal rule [99]. We can see the results in table(4.4).

We notice similar trends for the theory and experimental values, in particular as

we see in fig.(4.6) a discontinuity at wetting, which is the indication of a wetting

transition, as previously reported in experiments [49, 13] and theory[48]. There is a

discrepancy in the values of z∗, probably because there is roughness at the interface

and the substrate in real samples, not considered here.
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Table 4.4: Different values of overall material z∗ for the experi-
mental profiles and the corresponding SCFT profiles. R2

results showing how good the approximation with the
experimental data is.

4% 6% 8% 10% 14% 30% 40% 60% 70%
Theory 0.144 0.385 0.394 0.778 1.09 1.30 1.34 3.06 2.79
Experiments 0.127 1.01 1.48 4.09 5.78 11.9 12.1 22.9 28.5
R2 0.996 0.933 0.956 0.916 0.906 0.953 0.982 0.0170 0.0257
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Figure 4.6: z∗ as function of the bulk composition φ∞ for the SCFT
profiles and the experimental profiles of dSq/PB. We
notice a discontinuity at composition 60%, indicating a
wetting transition.
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4.5 Culgi simulations

CULGI (Chemistry Unified Language Interface)[122] is a scientific program for sim-

ulations. It has been successfully used over the years for modelling different sys-

tems[120, 58]. Culgi was developed for applications and simulations of soft matter

systems, molecules and in general for simulating the behaviour of chemical systems.

It is a particularly useful tool for different perspectives on segregation in polymer

mixtures, because it gives us a 3D description of a compressible system at equilib-

rium and with a pseudo-dynamics. The software can simulate flexible polymers by

modelling them as Gaussian chains, i.e. ideal chains, as outlined in Chapter 1, but

with an extension of FH theory to local equilibrium and non homogeneous phases,

as we shall see later. While this is an approximation and can be a limitation for a

correct description of wetting systems, we use CULGI to obtain segregation profiles

for polymer mixtures.

CULGI calculates the spatial conformations of molecules, lumped together, resulting

in relative density fields, and the change in the relative density field is predicted via

a solution of a diffusion equation. The thermal fluctuations are modelled by adding

noise to the mean field chemical potential, assuming local equilibrium. The physical

conditions for the validity of the method, as reported in the CULGI manual [122],

are summarised as:

• The concentration of the polymer should be over the overlap concentration;

• The polymer must be flexible;

• The coil must be large enough, to avoid inter penetrations between chains and

coil volume elements;

The chemical potential field is defined as a functional derivative of the free energy

as:

µI(r) = δF

δρ(r) (4.5.1)
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in a similar manner to the SCFT, with the important difference that here we have a

functional derivative.

The chemical potential can be split as:

µI(r) = −SI(r) + µm(r) (4.5.2)

where SI is the entropy field, associated with the entropy of mixing, and µm is the

mean field chemical potential given by external contributions. In particular it has

three external contributions:

µm = µP + µC + µE (4.5.3)

where µP accounts for the pair interaction, i.e. the Flory-Huggins interaction, µC

for the compressibility interaction and µE for the electrostatic interaction.

In particular we define the pair interactions between beads as [122]

µP =
∑
J

∫
V
εJ(r− r′)ρJdr

′ (4.5.4)

where εJ(r − r′) is a Gaussian function as in eq.(1.1.4) multiplied by ε0J , the pair

interaction parameter. In CULGI one can input a dimensionless χ, as in FH theory

as:

χJ = ε0J
kbTν

(4.5.5)

that coincides with the standard FH parameter, if the density is equal to unity in

eq.(4.5.4). It is also possible to use a local interaction parameter, where we do not

consider the space dependence in eq.(4.5.4).

CULGI makes use of a free energy which is a generalisation of FH. In particular the

energy is defined as:

FT = Fideal + Fnon−ideal (4.5.6)

where ideal and non-ideal contributions are given by:

βFideal = −∑i ni(1 + log φi
ni

)−
∫
V

∑
k
ρk
ν
Sk (4.5.7)

βFnon−ideal = 1
2
∫
V dr

′∑
j,k

ρj
ν
χlocalj,k ρk + 1

2
∫
V dr

′∑
j,k

ρj
ν
χj,kΩ[ρk] (4.5.8)
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where Sk is the entropic contribution as in eq.(4.5.2) and Ω[ρk] is an integral with a

Gaussian kernel as in eq.(4.5.4).

As previously pointed out the evolution of this system is predicted by a diffusion

equation, adapted to the different kind of solvers. So as opposed to a FH approach,

we can include an electrostatic interaction ( not considered here) and compressibility

effects. Running the simulation with conditions set by FH, we obtain concentrations

profiles shown in fig.(4.7). We choose directly χ while Na, Nb are chosen inverting

the relation between the molecular weight and the radius of gyration for an ideal

chain, as Ni = 6
a2R

2
g for Gaussian chains defined in a box. We use dynamic density

functional theory and equilibrium SCFT to obtain our results, as a complementary

description to the SCFT results.
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Density dynamics

The basic equation for the density dynamics is derived from the collective Rouse

equation[122]
∂ρI
∂t

= DI∇2(ρI − FT ) (4.5.9)

where FT is the density obtained from the free energy as in eq.(4.5.6), calculated

with the mean field and it may also be zero locally. We can derive the equation

following the Rouse dynamic equation[84], calculating correlation functions with

the De Gennes’ Random Phase Approximation. The DDFT method allows us to

Figure 4.7: Density Dynamics calculation for χ = 0.22, Nb/Na = 10,
φ∞ = 0.05. Green lines refer to the polymer matrix and
red ones to the migrating polymers.

simulate the system in a 3D box, analysing the behaviour of the molecules along

different spatial directions. We notice the formation of the layer is not homogeneous

and there are islands of oligomers along the surface, as reported in recent publications

with AFM measurements[108]. We notice that the 3D simulation allows to visualise

effects of lateral migration (red points) not present in the 1D model. 3D solutions

are obtained with Crank-Nicolson [122].
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Equilibrium: SCFT

The self consistent field theory in Culgi is an equilibrium version of eq.(4.5.9). In

particular it is possible to use the equilibrium condition:

µI = 0 (4.5.10)

Hence µ = SI , that defines a local equilibrium, is suitable for describing a fully

relaxed monomeric configuration. In the case of strong interacting polymers or far

from equilibrium it is possible to use the Picard method, with the Picard equation[31]:

∂ρI
∂t

= −DIµI (4.5.11)

that is an effective method, since it avoids the computation of a Laplacian operator.

Picard’s model is a fast self-consistent field solver for equilibrium, where mass can be

transferred non locally. We see the results in fig.(4.8) and fig.(4.9), respectively for

Figure 4.8: Polymer matrix(green) at equilibrium for χ = 0.22,
Nb/Na = 10, φ∞ = 0.05.

the segregating species at the surface and substrate (red), and the polymer matrix

(green). We have chosen χ to have a value which is χ > χc, i.e. point on the

phase diagram where there is phase separation. We notice a high segregation at

interfaces with air and substrate , not present in SCFT, which confirms the results
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Figure 4.9: Oligomers segregation at air interface and with the
substrate of the sammple for χ = 0.22, Nb/Na = 10,
φ∞ = 0.05. The equivalent 1D profile would be obtained
cutting the z−x plane and reporting the number of red
points as a density of states.

of the 1D SCFT in fig(4.4). Furthermore we also notice a diffusive interface with a

compenetration of surfaces, between the wetting interfaces and the matrix, which is

more realistic than a sharp one, a result non present in the 1D SCFT results. There

is an equivalent schematic in fig.(4.10) for a 1D profile for oligomers segregating at

surface and substrate and the polymer matrix in the middle.

Table 4.5: Analogies and differences between SCFT theory and
CULGI simulations.

Properties Free energy Solution method Dimension Lateral migration
SCFT FH/FHE Lattice method 1D no
CULGI FH enhanced Rouse/Crank-Nicolson 3D yes

Conclusions: In this chapter we have seen some statistical and computational tools for

comparing the MFT theories with the experimental data. Varying the parameters,

we get a good agreement between theory and experimental profiles for low bulk

composition. For higher φ∞ the agreement between theory and experiment is not

good, probably due to non Gaussian effects. It will be interesting to consider going

beyond a mean field description in an attempt to match theoretical results with
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Figure 4.10: Equivalent SCFT 1D profiles to CULGI results, with
polymer matrix(green) and the segregation for oli-
gomers (red) at surface and substrate.

experimental data. We have seen that we can obtain some missing effects , such as

lateral migration and substrate segregation, using the software CULGI, which allows

us to obtain 3D profiles and an equilibration dynamics. It is not really suitable for a

direct comparison with experiments, especially because we did not have access to the

source code, but just to the GUI and in this way it was harder to control parameters.

We have also quantified MFT limitations with the R2 test. Nevertheless it can give

us insights on the properties of the system. In the next chapter we will present the

Locally Correlated Lattice (LCL) theory developed to describe oligomers in polymer

matrices, combined with MFT theory for describing the properties of the polymer

mixtures with a richer thermodynamics, closer to the real behaviour.



Chapter 5

Locally Correlated Lattice theory

to model Surface segregation

We present the Locally Correlated Lattice (LCL) theory as derived by White et

al.[125] and their description of a free energy to understand thermodynamics be-

haviour of some bulk phases of small molecules in polymer mixtures [81]. We use

the LCL functional form of free energy in combination with mean field models of

surface migration in polymer mixtures to compute equilibrium migrant concentration

profiles. In particular we successful combine the LCL functional with SCFT that

can be used for real polymer mixtures.

5.1 Locally correlated lattice theory

The Locally Correlated Lattice theory, LCL, has been introduced recently by White

et al.[125] based on a previous work by Gugghenheim [54] for correctly describing

the behaviour of real polymer mixtures incorporating effects not captured within

FH theory. FH theory suffers from some limitations, such as the incompressibility

approximation and it cannot really describe the thermodynamics of all systems

including those having Upper Critical Solution Temperature (UCST) and Lower

Critical Solution Temperature (LCST). On the contrary LCL can describe UCST
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and LCST systems, interactions between polymers, account for excluded volume

effects and can be applied to real polymers.

Gugghenheim considered the statistics of Ni molecules occupying ri sites on a lattice

for a chain molecule (polymer) and a solvent; the number of neighbouring sites

of a molecule i occupying ri sites with coordination z is smaller and given by

qiz = riz − 2z + 2, excluding the ring polymers, studied just more recently[71]. The

frequency of occupation is given by ξi = niqi/(naqa + nbqb + nh). The interactions

among different species have a Boltzmann form given by:

exp µa − µa,0
kbT

= λa
λa,0

= Pa
Pa,0

= Na
(Na +Nb/r)

r(q−1)
r−q

(Na +Nb/q)
q(r−1)
r−q

(5.1.1)

exp µb − µb,0
kbT

= λb
λb,0

= Pb
Pb,0

= Nb
(rNa +Nb)

(q−1)
r−q

(qNa +Nb)
(r−1)
r−q

(5.1.2)

where (a, b) refers to the polymer species and the index 0 is for the activity λ (fugacity

for partial pressure) or pressure p, before mixing. The activity is proportional to

the partition function Z and therefore, taking the logarithm of Z, we have the free

energy of the system.

Gugghenheim’s model did not consider compressible binary mixtures of polymers and

the major improvement made by White and Lipatov introduces holes and an explicit

volume dependence in the theory, arriving at a functional form of the Helmoltz

free energy that can easily be used to understand segregation behaviour in real

polymers[128, 59].

Following Lipatov the LCL free energy for a binary mixture is:

FLCL
kbT

= na log φa + nb log φb + nh log φh

+naqaz2 log
(
ξa
φa

)
+ nbqbz

2 log
(
ξb
φb

)
+ nhz

2 log
(
ξh
φh

)

−naqaz2 log
[
ξa exp −εaa

kbT
+ ξb exp −εab

kbT
+ ξh

]
−nbqbz2 log

[
ξa exp −εab

kbT
+ ξb exp −εbb

kbT
+ ξh

]
(5.1.3)
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where nh = (V/ν) − naNa − nbNb, φi = niNiν/V , ξi = niqi/(naqa + nbqb + nh)

and qiz = Naz − 2Ni + 2 with i = a, b, h, but qh = nh = 1. The free energy is

a function of the independent variables (na, nb, V, T ), different from the variables

we have used in the previous chapters, in particular Flory Huggins theory. We

notice immediately the absence of a mean field (χ), because the interaction between

chains has been split in three different contributions, εaa, εbb and εab, defined by

εab = g
√
εaaεbb as a geometric mean of the self interactions. This approach allows

one to derive the thermodynamics properties of mixtures by fitting Pressure, Volume

and Temperature (PVT) data diagrams for single components (as in the next section),

with the exception of g which has different values for the UCST and LCST systems.

It has to be fitted for the mixtures in question [128]. The LCL theory introduces a

model which has the microscopic ingredients seen in the experimental systems, such

as the interaction between single polymers, degree of polymerisation, coordination

number of monomers in the lattice, microscopic volume. At the same time it allows

to include macroscopic variables, such as pressure, volume and temperature which

can be more easily measured to obtain the microscopic behaviour of real polymers.

In order to study migration, it is convenient to rewrite the free energy as a main

function of the volume fraction of the polymers a and b, thus the volume fraction

for holes φh and nh are:

φh = nh = V/ν(1− φa − φb) (5.1.4)
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Substituting eq.(5.1.4) in eq.(5.1.3) the Helmholtz free energy is given by:

FLCL
kbT

=V
ν

φa
Na

log φa + φb
Nb

log φb] + (V
ν

(1− φa − φb)) log (V
ν

(1− φa − φb))+

+ φaqaz

2Na

log ( qa
V
ν

(1− φa − φb)
) + φbqbz

2Nb

log ( qb
V
ν

(1− φa − φb)
)−

−
V
ν

(1− φa − φb)z log V
ν

(1− φa − φb)
(2(V

ν
(1− φa − φb))

− φaqaz( qaφa
(Na(Vν (1− φa − φb))

)e−εaa/kbT

+ ( 1
2Na

) qbφb
(Nb(Vν (1− φa − φb))e−εab/T + V

ν
)

− φbqbz( qbφb
(Na(Vν (1− φa − φb))

e−εab/kbT+

+ ( 1
2Nb

) qbφb
(Nb(Vν (1− φa − φb))e−εbb/T + V

ν
)
.

(5.1.5)

From eq.(5.1.3) we can derive some of the fundamental thermodynamics properties

of the system, a described in the next section.

5.1.1 Bulk phase diagrams

We can compute all the relevant thermodynamic quantities from eq.(5.1.3), such

as Gibbs free energy, pressure, chemical potential and isothermal compressibility.

In particular the latter allows us to compute the phase diagram of the system. In

particular following[127] for the a polymer, we obtain the chemical potential as

µa = ∂F
∂φa

:

µa
kbT

= log φa −Na log (V/ν(1− φa − φb)) + 1−Na

+ qaz

2 log
(

qa
Na(V/ν(1− φa − φb))

)
+ Naz

2 log (V/ν(1− φa − φb)) + z

2(Na − qa)

− qaz

2 log
(

qaφa
Na(V/ν(1− φa − φb))

e−εaa/kbT + qbφb
Nb(V/ν(1− φa − φb))

e−εab/kbT + V

ν

)

− zξa
2

Na − qa + qae
− εaa
kbT −Na

ξae
− εaa
kbT + ξbe

− εab
kbT + V

ν


− zξb

2

Na − qa + qae
− εab
kbT −Na

ξae
− εab
kbT + ξbe

− εbb
kbT + V

ν


(5.1.6)
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where ξi with i = a, b as in Section 1 and we obtain the chemical potential for the

b polymer mutatis mutandis (the a index replaced with the b one). The chemical

potential for PS/PB is given in fig.(5.1) using the parameter values given in [128],

where we notice that it is monotonically decreasing function of φa and φb.

As mentioned in the context of Flory Huggins theory we calculate the bulk phase

diagram from the chemical potential. Equating the chemical potential at two different

phases a and b, for both species, we obtain the binodal line. This expression is

equivalent to:

χbin ⇒ µa − µb = 0. (5.1.7)

We can see the binodal curve in fig.(5.2) for PS/PB and fig.(5.3) for PS/PVME,

which are UCST and LCST systems respectively. The binodal curve separates the

region of the phase diagram where a single phase is stable, as opposed to being

metastable.

We calculate the spinodal line of the phase diagram taking the derivatives of the

chemical potential with respect to the volume fraction for the different phases as:

χspin =(∂(µa − µb)
∂φi

)T,P

=(∂(µa − µb)
∂φi

)T,V − (∂(µa − µb)
∂V

)T,φi
∂P
∂φi
∂P
∂V

(5.1.8)

where for an incompressible system the second term is zero and we have an FH like

expression. We see two different diagrams in fig.(5.4) and fig.(5.5). for different

UCST and LCST behaviours for experimental systems[109]

5.2 LCL and surface segregation

The knowledge of the chemical potential is crucial for the SCFT (discussed in

chapter 3) to obtain segregation profiles. Using eq.(5.1.3) and eq.(5.1.6) we can

incorporate the expression of chemical potential and free energy obtained with LCL

theory into the migration models SBMFT and SCFT. In this way we can study the

wetting properties of more complex systems[27], using chemical potentials for real
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experimental systems.
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Figure 5.1: Chemical potential for a mixture of Polistyrene in Polib-
utadiene as function of φa and φb, for φb/a fixed at 0.01,
and with values of the interaction constants taken from
White et al. [128].
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Figure 5.2: 3D representation of the binodal surface for PS/PB as
function of φa and φb. We notice phase separation just
for φa < 0.3.
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Figure 5.3: Binodal diagram for PS/PB with φb = 0.4. We notice
that the system is UCST.
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Figure 5.4: Spinodal diagram as function of the volume fraction at
T = 360K for a binary mixture of PS/PB of the UCST
type. Data from Lipson et al.[81].
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5.2.1 SB theory
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Figure 5.6: Different profiles for the PS/PB systems for different
values of φ∞ calculated with experimental data from
White et al. [128].

We thus use eq.(5.1.3) in place of eq.(2.1.3) to combine LCL free energy functional

with SBMFT. In particular, if we use the LCL theory we can obtain migrant con-

centration profiles as shown in fig.(5.6) i.e. the volume fraction as function of depth

z/a for a fixed polymer matrix concentration. In particular we combine eq.(5.1.3)

into the eq.(2.1.2), fixing one of the volume fractions φa or φb and calculating the

distance from the surface z as function of the other volume fraction φb or φa, as

in eq.(2.1.3). With a reverse engineering process we obtain φa/b(z) and we use the

experimental parameters as in White et al. [128] to compute the final profile in

fig.(5.6). We choose φ1 as graphical solution of a Cahn construction as in Chapter

2, with eq.(5.3.4) being the bulk energy.

Considering compatibility for the system PS/PB as expected we observe very low

segregation, as shown in fig.(5.6) as expected for both low and high values of the

bulk concentration.
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5.2.2 SCFT theory
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Figure 5.7: Profiles (SCFT) for PS/PB system for different values
of Fs.

The SCFT can be combined with the LCL, in a manner similar to SBMFT. In par-

ticular we have the advantage of being able to calculate chemical potentials directly

with an explicit dependence of the volume fraction for real polymers. Following the

outline of SCFT in chapter 2, we use eq.(5.1.3) as the free energy of the system

and eq.(5.1.6) as the chemical potential, respectively as µ(φa) for the A polymer

and µ(φb) for the B polymer. Hence we use two distributions for describing the

LCL-SCFT, qa and qb for the A and B species and two mean fields wa and wb, which

we calculate from the chemical potentials as in eq.(2.1.16). We start the self con-

sistent calculation solving eq.(2.1.15) twice for each distribution and calculating the

two volume fractions using eq.(2.1.18) with (µa, wa) and (µb, wb). As a consequence

we update the values of the chemical potentials and the mean fields with the new

volume fractions. Despite the SCFT FH based, with the LCL SCFT becomes crucial

to maintain incompressibility in the system, because this condition becomes linked

to the precence of holes in the lattice, so we include ∆W as in eq.(2.1.16). We

eventually obtain the final profiles φa(z) after ground state dominance in the self
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consistent calculation.

The results are shown in fig.(5.7), where again there is a very small segregation at the

free interface for PS/PB. The physical scenario is more realistic, since the presence

of holes allows for relaxation of constituent molecules to their equilibrium state.
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5.3 Compressibility

We can calculate the pressure of the system once we know the free energy, as:

P = −
(
∂FLCL
∂V

)
T

(5.3.1)

and so for a single component, keeping the V dependence and with a finite molecular

volume, we obtain:

P

kbT
= −1

ν
log

(
V

ν
(1− φ)

)
+ z

2ν log
(

1 + φq

N
− φ

)
−

− z

2ν

(
φq

1− φ+ φq
N

)[
(φq
N

)(eεaa/kbT − 1)− 1− φ
(φq
N

)eεaa/kbT + 1− φ

] (5.3.2)

where we made the same simplifications as in eq.(5.1.4). We can see an example in

fig.(5.8) where we have different pressures as function of volume (PV diagram) and

temperature (PT diagram).

This expression is really helpful for testing some of the assumptions we made in

Chapter 3, especially the incompressibility. In the framework of the LCL we can

calculate the isothermal compressibility of the system as:

K = − 1
V

(
∂P

∂V

)−1

(5.3.3)

where after some algebra we obtain, for PS/PB:

K(T, V ) = 1

kbTV

(
− 0.340337(e235.897/T−1)
V 2(0.336817e235.897/kbT+ ν

V )2 − V
0.875

) . (5.3.4)

We can see the bulk modulus in fig.(5.9) as a function of T .

Conclusions: In this chapter we have seen that the LCL theory, which is a use-

ful theory for a correct thermodynamic description of small molecules in polymer

mixtures can be applied to study segregation phenomena in polymer mixtures. We

presented some of the results of SB-LCL and SCFT-LCL, going beyond the limit-

ations of FH theory. Finally we calculated some PVT profiles useful for deducing

polymer properties from PVT diagrams and bulk modulus for applications to gels.
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Figure 5.9: Bulk modulus as a function of the volume fraction and
the temperature, from eq.(5.3.4).



Chapter 6

Conclusions

In this thesis we have analysed the phenomenon of migration of small molecules to an

interface open to atmosphere in polymer mixtures. In particular, in the first chapter

we presented the basic theory of polymers as random Gaussian chains. Then we

saw how to analyse the bulk thermodynamic behaviour of such mixtures, by means

of Flory Huggins theory (FH), which tells us about the compatibility of different

polymers as a balance of entropy and enthalpy. We also discuss Cahn’s theory of

wetting.

We reviewed a method to combine these models to quantitatively describe surface

migration in polymer mixtures. We outlined a method for going beyond the phe-

nomenological description with the help of a Self Consistent Field Theory (SCFT).

Both theories are suitable for describing migration.

The research of methodologies for controlling migration has brought us to the de-

scription of surface segregation in gels. In Chapter 3 we saw how elasticity of a gel

network can control migration and the thermodynamics of bulk and surface. That

is a fascinating problem, which opens new perspectives, as we shall elaborate upon

below.

We have also compared the FH theory with experimental data for a validation of

SCFT. The application of Design of Experiments (DoE) allowed us to make the com-

parison and with statistical tests we quantified the validity of a mean field theory,
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such as SCFT, close to the wetting transition.

Finally in order to go beyond the limitation of FH theory, we implemented a combin-

ation of the Locally Correlated Lattice (LCL) theory with the Mean Field Theory

(MFT) for migration, enabling us to predict the segregation behaviour of some

polymer mixtures having UCST and LCST phase diagrams. Hence we would like

to compare our theoretical predictions to experiments, especially the LCL SCFT

profiles. It would be important to measure the experimental parameters of real

polymers via PVT diagrams and then the corresponding segregation profiles. We

hope that our theoretical models validated by experiments will aid to the devel-

opment of a predictive toolkit to control small migration in industrial formulation.

Our work [74] on controlling segregation of small molecules in polymer mixtures

by tuning bulk rigidity of the sample might form the basis of future experimental

studies by combining the LCL theory with the gel theory for migration. Further we

can parametrise a gel to obtain its bulk modulus as a function of molecular scale

parameters. That would allow to test the theory directly on experimental systems

relevant for technological applications. In that case the elastic contribution to the

free energy should allow volume changes, similar to a linear spring "elastic energy.

Furthermore we might want to consider gel swelling with the osmotic pressure pro-

portional to the volume fraction. The swelling of a gel and a polymer mixture is

particularly relevant for all those applications involving adsorbing polymers and its

implication on migration might be easily tested using out theoretical framework.

Last but not least one could explore the dynamics of segregation in gels, which is an

interesting area worth of exploration in its own right.

Combining different types of free energies with MFT theories, we can address and

introduce different effects in the study of a variety of systems. In particular a

very interesting problem not considered here, is crystallisation. Crystallisation for

molecules studied in soft matter research might sound unexpected, but there has

been evidence of this phenomenon since the late 50’s [34]. Eppe et al. showed an

electron micrograph of polyethylene, with a structure characterized by the presence
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of crystals. Polymer crystallisation has been reviewed for theory and experiments

by Strobl [119]. In some polymer mixtures there are islands of crystals in the matrix

and they may affect the segregation behavior. We should expect the crystals to act

as a barrier to the migrating molecules, approaching the critical temperature. A

very interesting future direction might be the combination of such a free energy with

the SCFT and SBMFT.

Finally I hope this work will help the scientific community to move a little step

forward in understanding those phenomena and that it will stimulate further studies

in this direction in order to fill in the gaps in this work, but also to encourage

experimental studies of such systems and stimulate also new theoretical research.

Maybe at some point in future it would be nice to see this tiny piece of science

applied to real products used by people in some countries of the world.



Chapter 7

Standard Operating

Procedure(SOP)-Procter&Gamble

gmbh confidential

7.1 Guide to the thesis

In this chapter there are all the codes I wrote during my PhD project. They are

divided in section, relative to the main model implemented and subsections withe

the specific problem solved.

For all the C++ codes someone can compile the source code as:

g++ name.cpp -o name

and run the program from a bash terminal as:

./name

in case of heavy computation is possible to uncomment the OMP commands for the

loop and choose the numer of threads. Using SCOREP (developed by TU DRESDEN

and JÜLICH FORSCHUNG ZENTRUM) the optimal number is between 4 and 16.

In this case someone has to compile as:
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g++ name.cpp -o name -fopenmp

I have used the python codes with the Anaconda framework and the editor Spyder.

I have used Python for generating the majority of the figures in the thesis. Opening

a source code and running it in a Python console someone can obtain the figures.

I have used the mathematica notebook for the LCL theory. The functions for

the free energy, the chemical potential, the phase diagrams and the pressure and

compressibility are defined in the file. Using the P (V, T ) function is possible to fit

PVT diagrams for obtaining the parameters of single polymers of a mixture. Using

those parameters, guessing g with DoE is it possible to calculate the phase diagrams

and with the LCL C++ code the wetting profiles relative to those systems.

7.2 Square Gradient theory codes

This code can be used for generating figures from Chapter 2:

7.2.1 Flory-Huggins

/*

* simpson.cpp

*

*

* Created by Salvatore Croce on 01/11/14.

* Copyright 2014 __Durham university-Procter&Gamble__. All rights reserved.

*

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <iostream>

#include <fstream>

#include <omp.h>
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double florhug (double phi0, double Na,

double Nb, double chi){

double florhug=(phi0*log(phi0)/Na+((double)1-phi0)*log((double)1-phi0)/Nb

+chi*phi0*((double)1-phi0));

return florhug;

}

int i,j,k;

double phi0,phi1,dphi,chi;

double mu,N,Na,Nb,z1,z0,z,a,k1,k2,k3,k4,G,phinf,T;

using namespace std;

main(){

/*________________________________*/

/*Variables*/

mu=0.0; //chemical potential

dphi=1e-3;//integration step

a=4.6; //lattice constant

/*_________________________________*/

Na=7;

Nb=5185;

phi0=0.999; //phi1 on graphics

phinf=0.63; //bulk concentration

T=300; //Temperature in Kelvin

//chi=(Na*(log(1-phinf)+1)-Nb*(log(phinf)+1)+Na*Nb*mu)/(Na*Nb*((double)1-(double)2*phinf));//Flory_Huggins parameter from Binodal

//cout<<chi<<endl;

chi=0.001;

/*-----------------------------------*/

fstream f("test.dat",ios::out);

Na=1;

Nb=10;

phi0=0.999;//phi1 in figures

phinf=0.1; //bulk concentration-phi infinity

//z0=(double)a/(double)6*dphi/sqrtl(phinf*((double)1-phinf)*(florhug( phinf, Na, Nb, chi)-florhug( phinf, Na, Nb, chi)-mu*phinf)); //first step

for(i=1;i<=1;i++){ \\loop for testing variables

z0=0.31;//initial step guess
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j=1;

phi1=phi0;

while(phi1>phinf){

z=(double)a/(double)6*dphi/sqrtl(phi1*((double)1-phi1)*(florhug(phi1, Na, Nb, chi)-florhug(phinf,Na,Nb,chi)-mu*(phi1-phinf)));

if(j%2==0){

z*=(double)2/(double)3;

}

else{

z*=(double)4/(double)3;

}

z0=z0+z;

j+=1;

f<<z0<<" "<<phi1<<endl;

phi1=phi1-dphi;

}

//mu=mu+i*0.05;

//f<<endl;

//f<<endl;

}//loop for testing bulk,mu, chi etc.

//cout<<z0<<endl;

//z1=z0+(double)a/(double)6*dphi/sqrtl(phi0*((double)1-phi0)*(florhug(phi0,Na,Nb,chi)-florhug(phinf,Na,Nb,chi)-mu*phi0)); //last step

//f<<z0-z1/(double)3<<" "<<phi0<<endl;

return 0;

}

7.2.2 Elasticity

This code generates figures from Chapter 3. It is the same of the previous one, but with Ffhe

instead of Ffh.

7.3 Self Consistent field theory codes

This code generates figures from Chapter 2 and Chapter 4
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7.3.1 Flory-Huggins

//Self consistent Field theory by Salvatore Croce

//Copyright 2015-Durham University/Procter&Gamble

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <iostream>

#include <fstream>

#include <omp.h>

int i,j,k,l,N,Nint;

double wb[7000],wa[7000],qa[7000][7000],qb2[7000][7000];

double qb1[7000][7000],chis,chib,phia[7000],phib[7000];

double chiab,Na,Nb,mub[7000];

mua[7000],dw[7000],M,T,csi,Rg,a,surface,

massimo1,eps,massimo2,eps2,V,kb;

using namespace std;

main(){

//Initial values

N=2000; //lattice dimension

kb=1.38*1e-23; //Joule\Kelvin

V=1;//1e-28;//100 Cubic Angstrom

chis=-4; //surface interaction

chib=0.0; //bulk interaction

Na=10; //Degree of polymerization PS Ma=104.15

Nb=100; //Degree of polymerization PVME Ma=58

csi=1/12; //inverse compressibility per unit surface

a=1; //lattice constant

dw[0]=csi;

M=10; //number of iterations

T=(1e-3); //Temperature

Rg=a*sqrt(Na/(double)6);

phib[0]=0.6;

phia[0]=1-phib[0];

chiab=0.01; //Flory-Huggins parameter 0.33 at 30%, 0.4 at 80%

massimo1=1;
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massimo2=1;

eps=1e-6;

Nint=1;

eps2=1e-2;

/*------------------------------*/ //Files

//fstream f("gamma_PS_Na5_PVME.dat",ios::out);

fstream fb2("test.dat",ios::out); //output profiles

srand((unsigned)time(0));

/*--------------------------------*/ //initial conditions

//f<<"#Parameters Na,Nb,chi,phinf,T="<<Na<<" "<<Nb<<" "<<chiab<<" "<<phib[0]<<" "<<T<<endl;

//#pragma omp parallel //remove comment for parallelization

//{ //remove comment for parallelization

for(l=1;l<=Nint;l++){ //cycle for increasing the interaction

for(j=1;j<=N;j++){ //length of repeated unit

qa[0][j]=0;

qb1[0][j]=0;

qb2[0][j]=0;

}

qb1[1][0]=exp(-chis); //distance from surface

#pragma omp parallel for

for(i=1;i<=N;i++){

qa[i][0]=1;

//rand()/(RAND_MAX+(double)1)-0.5;

qb2[i][0]=1;

//rand()/(RAND_MAX+(double)1)-0.5;

qb1[i+1][0]=0; //exp(-chib);

}

//qb1[N][0]=exp(-chib);

//Conditions for chemical potential and field

#pragma omp parallel for

for(j=1;j<=N;j++){

#pragma omp parallel for

for(i=1;i<=N;i++){

phia[i]=phia[i-1]+rand()/(RAND_MAX+(double)1);

phib[i]=phib[i-1]+rand()/(RAND_MAX+(double)1);
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//cout<<phia[i]<<" "<<phib[i]<<endl; //check

dw[i]=csi*(1-phia[i]-phib[i]);

//Fields for B polymer

mub[i]=T*(log(phib[i])+phia[i]*((Na-Nb)/Na)+chiab*Nb*pow(phia[i],2));

wb[i]=T*(phia[i]*(1/Nb)-1/Na+chiab*pow(phia[i],2))-dw[i];

//Fields for A polymer

mua[i]=T*(log(phia[i])+phib[i]*((Nb-Na)/Nb)+chiab*Na*pow(phib[i],2));

wa[i]=T*(phib[i]*(1/Na)-1/Nb+chiab*pow(phib[i],2))-dw[i];

//cout<<w[i]<<" "<<mu[i]<<" "<<dw[i]<<endl; //check

}

}

/*--------------------------------*/ //Recursive relations

for(k=1;k<=M;k++){

//surface=0;

#pragma omp parallel for

for(j=1;j<=N;j++){

#pragma omp parallel for

for(i=1;i<=N;i++){

qa[i][j]=(qa[i-1][j-1]+qa[i+1][j-1]

+4*qa[i][j-1])*exp(-wa[i])/(double)6;

//f<<i<<" "<<j<<" "<<qa[i-1][j-1]<<endl; //check

qb1[i][j]=(qb1[i-1][j-1]+qb1[i+1][j-1]

+4*qb1[i][j-1])*exp(-wb[i])/(double)6;

qb2[i][j]=(qb2[i-1][j-1]+qb2[i+1][j-1]

+4*qb2[i][j-1])*exp(-wb[i])/(double)6;

//cout<<qa[i][j]<<" "<<qb1[i][j]<<endl; //check

/*-----------------------*/

phia[i]=phia[i-1]+qa[i][j]*qa[N-i][j-1]

*exp(mua[i]+T*chis*V);

phib[i]=phib[i-1]+qb1[i][j]*qb2[N-i][j-1]

*exp(mub[i]+T*chis*V);

if(phia[i]>1){phia[i]=1;}

if(phib[i]>1){phib[i]=1;}

//surface+=phib[i]*i;

/*-------------------------*/
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dw[i]=csi*(1-phia[i]-phib[i]);

//Fields for B polymer

mub[i]=(log(phib[i])+phia[i]*(1-Nb/Na)+chiab*Nb*pow(phia[i],2))*T;

wb[i]=T*(phia[i]*(1/Nb-1/Na)

+chiab*pow(phia[i],2))-dw[i];

//Fields for A polymer

mua[i]=T*(log(phia[i])+phib[i]*((Nb-Na)/Nb)+chiab*Na*pow(phib[i],2));

wa[i]=T*(phib[i]*(1/Na-1/Nb)

+chiab*pow(phib[i],2))-dw[i];

//cout<<w[i]<<" "<<mu[i]<<" "<<dw[i]<<endl;

/*--------------------------*/

if(fabs(phia[i]-phia[i-1])<=eps){

massimo1=phia[i];

}

if(fabs(phib[i]-phib[i-1])<=eps){

massimo2=phib[i];

}

}

}

}

//} //remove comment for parallelization

//#pragma end parallel //remove comment for parallelization

//cout<<phib[0]<<" "<<phia[0]<<endl;

//fb2<<"#Degree of polymerization="<<Nb<<" "<<Na<<endl;

for(i=0;i<=N;i++){

//f<<j<<" "<<i<<" "<<phia[i-1]<<" "<<qb1[i][j]<<endl;

//if((1+phib[0]-(phib[i]/massimo2))<1){

//cout<<chis<<" "<<1+phib[0]-(phib[1]/massimo2)<<endl;

/*---------------------------------*/ //calculation of surface energies

//if((1+phib[0]-(phib[1]/massimo2))<1){

//f<<chis<<" "<<1+phib[0]-(phib[1]/massimo2)<<endl;}

//else{f<<chiab<<" "<<1<<endl;}

/*----------------------------------------------*/

fb2<<i/Rg<<" "<<1+phib[0]-(phib[i])<<endl;

} //loop for writiing
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//}

//}

chis+=0.1; //increase surface interaction

//Na*=2;

//Nb*=5;

//fb2<<endl;

//fb2<<endl;

}

}

7.3.2 Elasticity

This code can be used for generating figures from Chapter 3

*

* scft_elast.cpp

*

*

* Created by Salvatore Croce on 23/12/14.

* Copyright 2014 __Durham university-P&G__. All rights reserved.

*

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <iostream>

#include <fstream>

#include <omp.h>

/*-----------------------------------------------------*/

double florhug (double phi0, double Na,double phinf, double chi, double B){

double florhug=(phi0*log(phi0)/Na

+chi*phi0*((double)1-phi0))+B*((double)1-phinf)*(pow(((double)1-phi0)/((double)1-phinf),2/3)+2*pow(((double)1-phinf)/((double)1-phi0),1/3)-3)/2;

return florhug;

}

/*-------------------------------------------------------*/

//double kinda (int i,int j,)
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int i,j,k,l,N,Na,Nb,Nint;

double wb[1000],wa[1000],qa[1000][1000];

double qb2[1000][1000],qb1[1000][1000],chis,chib;

double phia[1000],phib[1000],chiab,mub[1000],mua[1000];

double dw[1000],M,T,csi,Rg,a,surface,B,eps,massimo,B1,B0,B2;

using namespace std;

main(){

//Initial values

phia[0]=0.99; //Surface concentration

phib[0]=0.01; //Bulk concentration

N=500; //lattice dimension

chis=-5.9; //surface energy

//chib=5.75; //bulk interaction

//-2*chis-log(phib[0]); //surface interaction

chiab=2.48; //Flory-huggins parameter

Na=1; //Degree of polymerization

Nb=1; //Degree of polymerization

csi=1/12; //inverse compressibility per unit surface

a=1; //lattice constant

//dw[0]=csi;

M=10; //number of iterations

T=1e-3; //Temperature

Rg=a*sqrt(Na/(double)6);

B0=140;

B1=0;

B2=0.0;

B=B0+B1*i;//phib[i]+B2*phib[i]*phib[i];

eps=1e-6;

massimo=1;

Nint=250;

/*------------------------------*/ //Files

//fstream f("surf_chis_na5_bulk005_B1.dat",ios::out);

fstream fb2("surf_chis_na1_bulk001_B140_bis.dat",ios::out); //output profiles

srand((unsigned)time(0));

fb2<<"#parameter Na,phi_nf,Fs,chi,a,B: "<<" "<<Na<<" "<<phib[0]<<" "<<chis<<" "<<chiab<<" "<<a<<" "<<B1<<endl;
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/*--------------------------------*/ //initial conditions

//#pragma omp parallel //remove comment for parallelization

//{ //remove comment for parallelization

for(l=1;l<=Nint;l++){ //cycle for increasing the interaction

for(j=1;j<=N;j++){ //length of repeated unit

qa[0][j]=0;

qb1[0][j]=0;

qb2[0][j]=0;

}

qb1[1][0]=exp(-chis); //distance from surface

#pragma omp parallel for

for(i=1;i<=N;i++){

qa[i][0]=1;

//rand()/(RAND_MAX+(double)1)-0.5;

qb2[i][0]=1;

//rand()/(RAND_MAX+(double)1)-0.5;

qb1[i+1][0]=0;

//exp(-chib);

}

//Conditions for chemical potential and field

#pragma omp parallel for

for(j=1;j<=N;j++){

#pragma omp parallel for

for(i=1;i<=N;i++){

//

//if(i<200){B=T*(B0+B1*i);}//phib[i]+B2*phib[i]*phib[i];

//

phia[i]=phia[i-1]+rand()/(RAND_MAX+(double)1);

phib[i]=phib[i-1]+rand()/(RAND_MAX+(double)1);

//cout<<phia[i]<<" "<<phib[i]<<endl; //check

dw[i]=csi*(1-phia[i]-phib[i]);

//Fields for B polymer

mub[i]=T*Nb*(chiab*pow(phia[i],2)-phia[i]/Na+B*phib[0]*(pow(phib[i]/phib[0],2/3)+2*pow(phib[0]/phib[i],1/3)-3)/2+B*phia[i]*(-pow(phib[0]/phib[i],4/3)+pow(phib[0]/phib[i],1/3))/3);
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wb[i]=T*(chiab*pow(phia[i],2)-phia[i]/Na+B*phib[0]*(pow(phib[i]/phib[0],2/3)+2*pow(phib[0]/phib[i],1/3)-3)/2+B*phia[i]*(-pow(phib[0]/phib[i],4/3)+pow(phib[0]/phib[i],1/3))/3);

//Fields for A polymer

mua[i]=T*(log(phia[i])+phib[i]+chiab*Na*pow(phib[i],2)+B*phib[0]*Na*(pow(phib[i]/phib[0],2/3)+pow(phib[0]/phib[i],1/3)-3)/2-B*Na*phib[i]*(-pow(phib[0]/phib[i],4/3)+pow(phib[0]/phib[i],1/3))/3);

wa[i]=T*(phib[i]/Na+chiab*pow(phib[i],2)+B*phib[0]*(pow(phib[i]/phib[0],2/3)+pow(phib[i]/phib[0],2/3)-3)/2-B*phib[i]*(-pow(phib[0]/phib[i],4/3)+pow(phib[0]/phib[i],1/3))/3)-dw[i];

//cout<<w[i]<<" "<<mu[i]<<" "<<dw[i]<<endl; //check

}

}

/*---------------------------------

for(i=0;i<=N;i++){

//f<<i<<" "<<phia[i-1]<<endl;

//if((1+phib[0]-phib[i]/massimo)<=1){

fb2<<i/(M*Rg)<<" "<<1+phib[0]-phib[i]/massimo<<" "<<1+phia[0]-phia[i]/phia[N]<<" "<<mub[i]<<" "<<mua[i]<<" "<<wb[i]<<" "<<wa[i]<<endl;

}

fb2<<endl;

fb2<<endl;

--------------------------------*/ //Recursive relations

for(k=1;k<=M;k++){

//while(fabs(phib[i]-phib[i-1])>0.1){

//surface=0;

#pragma omp parallel for

for(j=1;j<=N;j++){

#pragma omp parallel for

for(i=1;i<=N;i++){

//if(i<200){B=T*(B0+B1*i);}

//B=B0+B1*i+B2*phib[i]*phib[i];

qa[i][j]=(qa[i-1][j-1]+qa[i+1][j-1]+4*qa[i][j-1])*exp(-wa[i])/(double)6;

//f<<i<<" "<<j<<" "<<qa[i-1][j-1]<<endl; //check

qb1[i][j]=(qb1[i-1][j-1]+qb1[i+1][j-1]+4*qb1[i][j-1])*exp(-wb[i])/(double)6;

qb2[i][j]=(qb2[i-1][j-1]+qb2[i+1][j-1]+4*qb2[i][j-1])*exp(-wb[i])/(double)6;

//cout<<qa[i][j]<<" "<<qb1[i][j]<<endl; //check

/*-----------------------*/

phia[i]=phia[i-1]+qa[i][j]*qa[i][N-j]*exp(mua[i]+chis*T);

phib[i]=phib[i-1]+qb1[i][j]*qb2[i][N-j]*exp(mub[i]+chis*T);

//surface+=phib[i]*i;



7.3. Self Consistent field theory codes 125

/*-------------------------*/

dw[i]=csi*(1-phia[i]-phib[i]);

//Fields for B polymer

mub[i]=T*Nb*(chiab*pow(phia[i],2)-phia[i]/Na

+B*phib[0]*(pow(phib[i]/phib[0],2/3)+2*pow(phib[0]/phib[i],1/3)-3)/2

+B*phia[i]*(-pow(phib[0]/phib[i],4/3)+pow(phib[0]/phib[i],1/3))/3);

wb[i]=T*(chiab*pow(phia[i],2)-phia[i]/Na

+B*phib[0]*(pow(phib[i]/phib[0],2/3)+2*pow(phib[0]/phib[i],1/3)-3)/2+B*phia[i]*(-pow(phib[0]/phib[i],4/3)+pow(phib[0]/phib[i],1/3))/3);

//Fields for A polymer

mua[i]=T*(log(phia[i])+phib[i]+chiab*Na*pow(phib[i],2)+B*phib[0]*Na*(pow(phib[i]/phib[0],2/3)+pow(phib[0]/phib[i],1/3)-3)/2-B*Na*phib[i]*(-pow(phib[0]/phib[i],4/3)+pow(phib[0]/phib[i],1/3))/3);

wa[i]=T*(phib[i]/Na+chiab*pow(phib[i],2)+B*phib[0]*(pow(phib[i]/phib[0],2/3)+pow(phib[i]/phib[0],2/3)-3)/2-B*phib[i]*(-pow(phib[0]/phib[i],4/3)+pow(phib[0]/phib[i],1/3))/3)-dw[i];

//cout<<w[i]<<" "<<mu[i]<<" "<<dw[i]<<endl;

if(phib[i]>1){phib[i]=1;}

if(phia[i]>1){phia[i]=1;}

if(abs(phib[i]-phib[i-1])<=eps){

massimo=phib[i];

}

/*--------------------------*/

}

}

}

//} //remove comment for parallelization

//#pragma end parallel //remove comment for parallelization

//fb2<<"#B="<<B*T<<endl;

//for(i=0;i<=N;i++){

//f<<i<<" "<<phia[i-1]<<endl;

//if((1+phib[0]-phib[i]/massimo)<=1){

//fb2<<i/Rg<<" "<<1+phib[0]-phib[i]/massimo<<" "<<1+phia[0]-phia[i]/phia[N]<<" "<<mub[i]<<" "<<mua[i]<<" "<<wb[i]<<" "<<wa[i]<<" "<<(mub[i]-mua[i]*N)*i<<endl;

//fb2<<i/Rg<<" "<<1+phib[0]-phib[i]/massimo<<" "<<florhug(phib[i],Na,phib[0], chiab,B*T)<<endl;}

//cout<<"Surface="<<surface/(M*2*M*pow(N,2))<<endl;

//if((1+phib[0]-phib[1]/massimo)<1){

fb2<<chis<<" "<<1+phib[0]-phib[1]/massimo<<" "<<0.05/(phib[0]/massimo)<<endl;//}

//else{f<<chis<<" "<<1<<endl;}
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chis+=0.05;

//B0+=0.01;//increase elastic modulus

//fb2<<endl;

//fb2<<endl;

}

}

7.3.3 Lattice correlated theory

This code generates figures from Chapter 5

//Self consistent Field theory by Salvatore Croce

//Copyright Durham University

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <iostream>

#include <fstream>

#include <omp.h>

#include <new>

/*-----------------------------------------------------*/

/*--------------------------------------------------------*/

//Lipatov-White-Higgins free energy kb=1

double LWH (double Na, double Nb, double phia, double phib, double qa, double qb, double z, double epsa, double epsba, double epsb, double T){

double LWH=T*(phia*log(phia)/Na+phib*log(phib)/Nb+((double)1-phia/Na-phib/Nb)*log(1-phia/Na-phib/Nb)+phia*qa*z*log(qa/(((double)1-phia/Na-phib/Nb)*Na))/((double)2*Na)+phib*qb*z*log(qb/(((double)1-phia/Na-phib/Nb)*Nb))/((double)2*Nb)-phia*qa*z*log(qa/(((double)1-phia/Na-phib/Nb)*Na)*exp(-epsa/T)+qb/(((double)1-phia/Na-phib/Nb)*Nb)*exp(epsba/T)+(double)1)/((double)2*Na)-phib*qb*z*log(qa/(((double)1-phia/Na-phib/Nb)*Na)*exp(-epsba/T)+qb/(((double)1-phia/Na-phib/Nb)*Nb)*exp(epsb/T)+(double)1)/((double)2*Nb));

return LWH;

}

/*--------------------------------------------------------*/

//Lipatov-White-Higgins chemical potential

double LWH_chem (double T, double phia, double phib, double Na, double Nb, double qa, double qb, double z, double epsa, double epsba, double epsb){

double LWH_chem=T*(log(phia)-Na*log((double)1-phia/Na-phib/Nb)+(double)1-Na+qa*z*log(qa/(Na*((double)1-phia/Na-phib/Nb)))/(double)2+Na*z*log((double)1-phia/Na-phib/Nb)/(double)2+z*(Na-qa)/(double)2-qa*z*log(qa*phia*exp(-epsa/T)/(Na*((double)1-phia/Na-phib/Nb))+qb*phib*exp(-epsba/T)/(Na*((double)1-phia/Na-phib/Nb))+(double)1)/(double)2-(qa*phia/(Na*((double)1-phia/Na-phib/Nb)))*z*(Na-qa+(qa*phia*exp(-epsa/T)-Na)/(qa*phia*exp(-epsa/T)/(Na*((double)1-phia/Na-phib/Nb))+qb*phib*exp(-epsba/T)/(Nb*((double)1-phia/Na-phib/Nb))+(double)1))/(double)2-(qb*phib/(Nb*((double)1-phia/Na-phib/Nb)))*z*(Na-qa+(qa*phia*exp(-epsba/T)-Na)/(qa*phia*exp(-epsba/T)/(Na*((double)1-phia/Na-phib/Nb))+qb*phib*exp(-epsb/T)/(Nb*(1-phia/Na-phib/Nb))+(double)1))/(double)2);

return LWH_chem;
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}

/*--------------------------------------------------------*/

//Mean field of interaction

double meanfield(double mua, double phia, double Na, double T){

double meanfield=(mua-T*log(phia))/Na;

return meanfield;

}

/*-------------------------------------------------------*/

int i,j,k,l,N,Nint,q1,q2,v;

double wb[7000],wa[7000],qa[7000][7000],qb2[7000][7000],qb1[7000][7000],chis,chib,phia[7000],phib[7000],chiab,Na,Nb,mub[7000],

mua[7000],M,T,Rg,a,massimo1,eps,massimo2,eps2,F1,F2,mu1,mu2;

double nu,z,epsa,epsb,epsba,g,kb,x[1001][5];

using namespace std;

FILE*f1;

main(){

//Initial values

N=5000; //lattice dimension

chis=-12; //surface interaction

chib=5.75; //bulk interaction

chiab=-4.6e-2; //-2.6e-3 0.00341; //Flory-Huggins parameter \\-3.5e-5;

Na=151; //Degree of polymerization PS with nu=8

Nb=335; //Degree of polymerization PB

//csi=1/12; //inverse compressibility per unit surface

//dw[0]=csi;

M=10; //number of iterations

kb=8.31*(1e-4);

T=1.2e-3;//360; //Temperature

a=1;//phia[0]*10.5+phib[0]*1.6; //lattice constant

Rg=a*sqrt(Na/(double)6);

phib[0]=0.1;

phia[0]=1-phib[0];

massimo1=1;

massimo2=1;

eps=1e-6;

Nint=1;



7.3. Self Consistent field theory codes 128

eps2=1e-2;

//Parameters for chemical species PS/PB

g=0.996415;

epsa=2042.5/8.31;

epsb=1960.3/8.31;

epsba=g*sqrt(epsa*epsb);

z=6; //coordination number always fixed

/*------------------------------*/ //Files

//fstream f("PS_PB.dat",ios::out);

fstream fb2("test3.dat",ios::out); //output profiles

//fstream phi("phi1_simple_fluid_ter.csv",ios::out); //output phi1

srand((unsigned)time(0));

/*-------------------------------------------------------------

f1=fopen("DoE_LCL_20000_bis_100.csv","r");

fscanf(f1,"\n");

for(v=1;v<=500;v++){//Number of lines

fscanf(f1,"%lf,%lf,%lf,%lf,%lf,%lf\n",&x[v][0],&x[v][1],&x[v][2],&x[v][3],&x[v][4],&x[v][5]);

fscanf(f1,"\n");

} //end of reading file

for(v=1;v<=500;v++){//Number of lines

Na=int(x[v][0]);//1000); //Degree of polymerization

Nb=int(x[v][1]);//1000); //Degree of polymerization

ra=x[v][2]/10;

rb=(x[v][3]);

epsa=x[v][4];

epsb=x[v][5];

}

--------------------------------*/ //initial conditions

fb2<<"#Parameters Na,Nb,ra,rb,epsa,epsb="<<Na<<" "<<Nb<<" "<<epsa<<" "<<epsb<<endl;

/*--------------------------------------------------------------*/

nu=8; //mL/mol

//epsa=2042/10; //J/mol//Course grained scaling

//epsb=1960/10; //J/mol

epsba=g*sqrt(epsa*epsb); //J/mol

q1=Na-2*Na/z+2;
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q2=Nb-2*Nb/z+2;

/*--------------------------------*/ //initial conditions

//f<<"#Parameters Na,Nb,chi,phinf,T="<<Na<<" "<<Nb<<" "<<chiab<<" "<<phib[0]<<" "<<T<<endl;

//#pragma omp parallel //remove comment for parallelization

//{ //remove comment for parallelization

for(l=1;l<=Nint;l++){ //cycle for increasing the interaction

for(j=1;j<=N;j++){ //length of repeated unit

qa[0][j]=0;

qb1[0][j]=0;

qb2[0][j]=0;

}

qb1[1][0]=exp(-chis); //distance from surface

//#pragma omp parallel for

for(i=1;i<=N;i++){

qa[i][0]=1;

//rand()/(RAND_MAX+(double)1)-0.5;

qb2[i][0]=1;

//rand()/(RAND_MAX+(double)1)-0.5;

qb1[i+1][0]=0; //exp(-chib);

}

//Conditions for chemical potential and field

//#pragma omp parallel for

for(j=1;j<=N;j++){

//#pragma omp parallel for

for(i=1;i<=N;i++){

//phia[i]=phia[i-1]+rand()/(RAND_MAX+(double)1)+phia[0];

//phib[i]=phib[i-1]+rand()/(RAND_MAX+(double)1)+phib[0];

phia[i]=rand()/(RAND_MAX+(double)1);

phib[i]=rand()/(RAND_MAX+(double)1);

if(phia[i]>1){phia[i]=1;}

if(phib[i]>1){phib[i]=1;}

if(phia[i]<phia[0]){phia[i]=phia[0];}

if(phib[i]<phib[0]){phib[i]=phib[0];}

//Free energy LCL

F1=LWH(Na,Nb,phia[i],phib[i],q1,q2,z,epsa,epsba,epsb,T);
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F2=LWH(Na,Nb,phia[i-1],phib[i-1],q1,q2,z,epsa,epsba,epsb,T);

//dw[i]=csi*(1-phia[i]-phib[i]);

//Fields for B polymer

mu1=LWH_chem(T,phib[i],phia[i],Na,Na,q2,q1,z,epsa,epsba,epsa);//(F1-F2)/(phib[i]-phib[i-1]);

mub[i]=mu1;

wb[i]=meanfield(mu1,phib[i],Nb,T);

//Fields for A polymer

mu2=LWH_chem(T,phia[i],phib[i],Na,Nb,q1,q2,z,epsa,epsba,epsb);//(F1-F2)/(phia[i]-phia[i-1]);

mua[i]=mu2;

wa[i]=meanfield(mu2,phia[i],Na,T);

//cout<<w[i]<<" "<<mu[i]<<" "<<dw[i]<<endl; //check

}

}

/*---------------------------------

for(i=0;i<=N;i++){

fb2<<i/Rg<<" "<<1+phib[0]-(phib[i]/massimo2)<<" "<<1+phia[0]-(phia[i]/massimo1)<<endl;

}

fb2<<endl;

fb2<<endl;

--------------------------------*/ //Recursive relations

for(k=1;k<=M;k++){

//surface=0;

//#pragma omp parallel for

for(j=1;j<=N;j++){

//#pragma omp parallel for

for(i=1;i<=N;i++){

qa[i][j]=(qa[i-1][j-1]+qa[i+1][j-1]+4*qa[i][j-1])*exp(-wa[i])/(double)6;

//f<<i<<" "<<j<<" "<<qa[i-1][j-1]<<endl; //check

qb1[i][j]=(qb1[i-1][j-1]+qb1[i+1][j-1]+4*qb1[i][j-1])*exp(-wb[i])/(double)6;

qb2[i][j]=(qb2[i-1][j-1]+qb2[i+1][j-1]+4*qb2[i][j-1])*exp(-wb[i])/(double)6;

//cout<<qa[i][j]<<" "<<qb1[i][j]<<endl; //check

/*-----------------------*/

phia[i]=phia[i-1]+qa[i][j]*qa[N-i][j-1]*exp(mua[i]+T*chis);

phib[i]=phib[i-1]+qb1[i][j]*qb2[N-i][j-1]*exp(mub[i]+T*chis);

if(phia[i]>1){phia[i]=1;}
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if(phib[i]>1){phib[i]=1;}

//surface+=phib[i]*i;

/*-------------------------*/

//Free energy LCL

F1=LWH(Na,Nb,phia[i],phib[i],q1,q2,z,epsa,epsba,epsb,T);

F2=LWH(Na,Nb,phia[i-1],phib[i-1],q1,q2,z,epsa,epsba,epsb,T);

//dw[i]=csi*(1-phia[i]-phib[i]);

//Fields for B polymer

mu1=LWH_chem(T,phib[i],phia[i],Na,Na,q2,q1,z,epsa,epsba,epsa);//(F1-F2)/(phib[i]-phib[i-1]);

mub[i]=mu1;

wb[i]=meanfield(mu1,phib[i],Nb,T);

//Fields for A polymer

mu2=LWH_chem(T,phia[i],phib[i],Na,Nb,q1,q2,z,epsa,epsba,epsb);//(F1-F2)/(phia[i]-phia[i-1]);

mua[i]=mu2;

wa[i]=meanfield(mu2,phia[i],Na,T);

//cout<<w[i]<<" "<<mu[i]<<" "<<dw[i]<<endl;

/*--------------------------*/

if(fabs(phia[i]-phia[i-1])<=eps){

massimo1=phia[i];

}

if(fabs(phib[i]-phib[i-1])<=eps){

massimo2=phib[i];

}

}

}

}

//} //remove comment for parallelization

//#pragma end parallel //remove comment for parallelization

//cout<<phib[0]<<" "<<phia[0]<<endl;

//fb2<<"#Degree of polymerization="<<Nb<<" "<<Na<<endl;

for(i=0;i<=N;i++){

//f<<j<<" "<<i<<" "<<phia[i-1]<<" "<<qb1[i][j]<<endl;

//if((1+phib[0]-(phib[i]/massimo2))<1){

//cout<<chis<<" "<<1+phib[0]-(phib[1]/massimo2)<<endl;

/*---------------------------------*///calculation of surface energies
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//if((1+phib[0]-(phib[1]/massimo2))<1){

//f<<chis<<" "<<1+phib[0]-(phib[1]/massimo2)<<endl;}

//else{f<<chiab<<" "<<1<<endl;}

/*----------------------------------------------*/

fb2<<i/Rg<<" "<<1+phib[0]-(phib[i]/massimo2)<<" "<<1+phia[0]-(phia[i]/massimo1)<<endl;}

//phi<<1+phib[0]-(phib[1]/massimo2)<<endl;

//else{

//fb2<<i/(a*Rg)<<" "<<1<<" "<<1<<" "<<mub[i]<<" "<<mua[i]<<" "<<wb[i]*N<<" "<<dw[i]<<endl;

//}

//}

//cout<<"Surface="<<surface/(M*2*M*pow(N,2))<<endl;

//chis+=1e-1; //increase surface interaction

//B+=1e-3; //increase elasticity

//temp+=1e-1;

//fb2<<endl;

// fb2<<endl;

}

}

7.4 Python codes for figures

""

Created on Mon Sep 04 17:16:14 2017

@author: Salvatore Croce

"""

import numpy as np

import matplotlib.pyplot as plt

#

#x = np.arange(-0.1, 30.0 + 0.0001, 0.0001) #if you need to plot functions

plt.rc(’text’, usetex=True) #latex fonts

plt.rc(’font’, family=’serif’)

#

#
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plt.xlabel(r’\textbf{$z/a$}’,fontsize=30)

plt.ylabel(r’\textit{$\phi(z)$}’,fontsize=30)

#

plt.ylim(0.0,1.0)

plt.xlim(0.0,270.0)

#

data = np.loadtxt(’test.dat’) #load data file

plt.plot(data[:,0],(data[:,1]), color=’red’,linestyle=’-’,label= ’$test$’,linewidth=2)

#

legend = plt.legend(loc=3, shadow=False, fontsize=10)

plt.grid(True,color=’grey’,alpha=0.07,linestyle=’:’)

plt.savefig(’test.pdf’, bbox_inches=’tight’, dpi=500)

plt.show()

7.5 Mathematica notebook

This file generates figures from Chapter 5.

(*Chemical Potential per unit temperature mu/KbT for a single polymer*)

mu[phia_, phib_, Na_, Nb_, qa_, qb_, z_, epsa_, epsb_, epsab_, T_,

nu_, V_] :=

Log[phia] - Na*Log[nu/V - phia/Na - phib/Nb] + (Na - 1) +

qa*z*Log[qa/(Na*(nu/V - phia/Na - phib/Nb))]/2 +

Na*z*Log[(nu/V - phia/Na - phib/Nb)] +

z*(Na - qa)/2 - (qa*z)*

Log[qa*phia*Exp[-epsa/T]/(Na*(nu/V - phia/Na - phib/Nb)) +

qb*phib*Exp[-epsab/T]/(Nb*(nu/V - phia/Na - phib/Nb)) + 1]/

2 - (z*qa*

phia/(Na*(nu/V - phia/Na - phib/Nb)))*(Na -

qa + (qa*Exp[-epsa/T] -

Na)/(qa*phia*Exp[-epsa/T]/(Na*(nu/V - phia/Na - phib/Nb)) +

qb*phib*Exp[-epsab/T]/(Nb*(nu/V - phia/Na - phib/Nb)) + 1))/

2 - (z*qb*

phib/(Nb*(nu/V - phia/Na - phib/Nb)))*(Na -
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qa + (qa*Exp[-epsab/T] -

Na)/(qa*phia*Exp[-epsab/T]/(Na*(nu/V - phia/Na - phib/Nb)) +

qb*phib*Exp[-epsb/T]/(Nb*(nu/V - phia/Na - phib/Nb)) + 1))/2

q[r_, za_] := r - 2*r/za + 2

(*PS for PS/PB*)

qa = q[151.31, 6];

qb = q[335.42, 6];

Plot3D[mu[phia, phib, 151.31, 335.42, qa, qb,

6, -2042.5/8.31, -1993.6/8.31, -1960.3/8.31, 360, 8, 50], {phia,

0.01, 1}, {phib, 0.01, 1}, AxesLabel -> {\[Phi]a, \[Phi]b}]

Plot[mu[phia, 0.01, 151.31, 335.42, qa, qb,

6, -2042.5/8.31, -1993.6/8.31, -1960.3/8.31, 360, 8, 200]/

1000, {phia, 0.01, 1}, AxesLabel -> {\[Phi]a, \[Mu]}]

test = MatrixForm[

Table[mu[phia, 0.01, 151.31, 335.42, qa, qb,

6, -2042.5/8.31, -1993.6/8.31, -1960.3/8.31, 360, 8, 200]/

1000, {phia, 0.00001, 1, 0.001}]];

Export["muPS.dat", test];

(*PB for PS/PB a and b index inverted*)

qa = q[151.31, 6];

qb = q[335.42, 6];

Plot3D[mu[phib, phia, 335.42, 151.31, qb, qa,

6, -1993.6/8.31, -2042.5/8.31, -1960.3/8.31, 360, 8, 50], {phia,

0.01, 1}, {phib, 0.01, 1}, AxesLabel -> {\[Phi]a, \[Phi]b}]

Plot[mu[0.01, phib, 335.42, 151.31, qb, qa,

6, -1993.6/8.31, -2042.5/8.31, -1960.3/8.31, 360, 8, 200]/

1000, {phib, 0.01, 1}, AxesLabel -> {\[Phi]b, \[Mu]}]

test = MatrixForm[

Table[mu[0.01, phib, 335.42, 151.31, qb, qa,

6, -1993.6/8.31, -2042.5/8.31, -1960.3/8.31, 360, 8, 200]/

1000, {phib, 0.00001, 1, 0.001}]];

Export["muPB.dat", test];

(*PVME for PS/PVME*)

qa = q[13652.0, 6];
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qb = q[11419.0, 6];

Plot3D[mu[phia, phib, 13652.0, 11419.0, qa, qb,

6, -2144.3/8.31, -1946/8.31, -2045.6/8.31, 394, 7.667, 120], {phia,

0.01, 1}, {phib, 0.01, 1}, AxesLabel -> {\[Phi]a, \[Phi]b}]

Plot[mu[0.01, phib, 13652.0, 11419.0, qa, qb,

6, -2144.3/8.31, -1946/8.31, -2045.6/8.31, 394, 7.667, 200]/

1000, {phib, 0.01, 1}, AxesLabel -> {\[Phi]b, \[Mu]}]

test = MatrixForm[

Table[mu[0.01, phib, 13652.0, 11419.0, qa, qb,

6, -2144.3/8.31, -1946/8.31, -2045.6/8.31, 394, 7.667, 200]/

1000, {phib, 0.00001, 1, 0.001}]];

Export["muPVME.dat", test];

Spinodal diagram:

(*Spinodal decomposition at fixed Volume*)

(*BINODAL*)

ClearAll

mu[phia_, phib_, Na_, Nb_, qa_, qb_, z_, epsa_, epsb_, epsab_, T_,

nu_, V_] :=

Log[phia] - Na*Log[nu/V - phia/Na - phib/Nb] + (Na - 1) +

qa*z*Log[qa/(Na*(nu/V - phia/Na - phib/Nb))]/2 +

Na*z*Log[(nu/V - phia/Na - phib/Nb)] +

z*(Na - qa)/2 - (qa*z)*

Log[qa*phia*Exp[-epsa/T]/(Na*(nu/V - phia/Na - phib/Nb)) +

qb*phib*Exp[-epsab/T]/(Nb*(nu/V - phia/Na - phib/Nb)) + 1]/

2 - (z*qa*

phia/(Na*(nu/V - phia/Na - phib/Nb)))*(Na -

qa + (qa*Exp[-epsa/T] -

Na)/(qa*phia*Exp[-epsa/T]/(Na*(nu/V - phia/Na - phib/Nb)) +

qb*phib*Exp[-epsab/T]/(Nb*(nu/V - phia/Na - phib/Nb)) + 1))/

2 - (z*qb*

phib/(Nb*(nu/V - phia/Na - phib/Nb)))*(Na -

qa + (qa*Exp[-epsab/T] -

Na)/(qa*phia*Exp[-epsab/T]/(Na*(nu/V - phia/Na - phib/Nb)) +

qb*phib*Exp[-epsb/T]/(Nb*(nu/V - phia/Na - phib/Nb)) + 1))/2
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q[r_, za_] := r - 2*r/za + 2

(*PS for PS/PB*)

qa = q[151.31, 6];

qb = q[335.42, 6];

Bin[phia_, phib_] =

mu[phia, phib, 151.31, 335.42, qa, qb,

6, -2042.5/8.31, -1993.6/8.31, -1960.3/8.31, 360, 8, 10] -

mu[phib, phia, 335.42, 151.31, qb, qa,

6, -1993.6/8.31, -2042.5/8.31, -1960.3/8.31, 360, 8, 10]

(*K=Solve[Bin[phia,phib]\[Equal]0,T]

Plot3D[K,{phia,0,1},{phib,0,1}]

Plot3D[Bin[phia,phib],{phia,0,1},{phib,0,1}]*)

p1 = Plot[-Bin[phia, 0.1], {phia, 0, 1}];

p2 = Plot[Bin[phia, 0.1], {phia, 0, 1}];

p3 = Plot[Bin[0.1, phib], {phib, 0, 1}];

p4 = Plot[Bin[0.3, phib], {phib, 0, 1}];

Show[p2, p1]

(*SPINODAL PS/PB UCTS*)

ClearAll@phib

D1 = D[mu[phia, phib, 151.31, 335.42, qa, qb,

6, -2042.5/8.31, -1993.6/8.31, -1960.3/8.31, 360, 8, 10], phia];

D2 = D[mu[phia, phib, 151.31, 335.42, qa, qb,

6, -2042.5/8.31, -1993.6/8.31, -1960.3/8.31, 360, 8, 10], phib];

D3 = D[mu[phib, phia, 335.42, 151.31, qb, qa,

6, -1993.6/8.31, -2042.5/8.31, -1960.3/8.31, 360, 8, 10], phia];

D4 = D[mu[phib, phia, 335.42, 151.31, qb, qa,

6, -1993.6/8.31, -2042.5/8.31, -1960.3/8.31, 360, 8, 10], phib];

Plot3D[D1 - D2 + D3 - D4, {phia, 0, 1}, {phib, 0, 1},

AxesLabel -> {\[Phi]a, \[Phi]b}]

phib = 0.55

Plot[-1/(D1 - D2 + D3 - D4), {phia, 0, 1},

AxesLabel -> {\[Phi]a, \[Chi]s}]

data = Table[x, {x, 0, 1, 0.001}];
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PSPBspin = Table[1/(D1 - D2 + D3 - D4), {phia, 0.00001, 1, 0.001}];

test = MatrixForm[

Table[(D1 - D2 + D3 - D4), {phia, 0.00001, 1, 0.001}]];

Export["PSPBspin_LCL.dat", test];

(*SPINODAL PS/PVME LCTS*)

ClearAll@phib

D1 = D[mu[phia, phib, 13652.0, 11419.0, qa, qb,

6, -2144.3/8.31, -1946/8.31, -2045.6/8.31, 394, 8, 7.5], phia];

D2 = D[mu[phia, phib, 13652.0, 11419.0, qa, qb,

6, -2144.3/8.31, -1946/8.31, -2045.6/8.31, 394, 8, 7.5], phib];

D3 = D[mu[phia, phib, 11419.0, 13652.0, qa, qb,

6, -1946/8.31, -2144.3/8.31, -2045.6/8.31, 394, 8, 7.5], phia];

D4 = D[mu[phia, phib, 11419.0, 13652.0, qa, qb,

6, -1946/8.31, -2144.3/8.31, -2045.6/8.31, 394, 8, 7.5], phib];

(*spinod[T_,phia_,phib_]:=Solve[D1-D2+D3-D4\[Equal]0,T]

Plot[spinod[T,0.4,0.6]]*)

Plot3D[1/(D1 - D2 + D3 - D4), {phia, 0, 1}, {phib, 0, 1},

AxesLabel -> {\[Phi]a, \[Phi]b}]

phib = 0.7

Plot[1/(D1 - D2 + D3 - D4 + 0.2), {phia, 0, 1},

AxesLabel -> {\[Phi]a, \[Chi]s}]

Export["PSPVMEspin_LCL.dat",

MatrixForm[

Table[1/(D1 - D2 + D3 - D4), {phia, 0.00001, 1, 0.001}]]];

Pressure and compressibility:

(*Pressure function*)

ClearAll

P[phi_, z_, N_, eps_, T_, V_, nu_,

q_] := -T*(Log[nu*(1 - phi/N)/V]/nu +

z/(2*nu)*Log[(nu^2)*(1 - phi/N)/(V^2)] -

z*(phi*q/(N - phi))/(2*

nu)*((phi*

q/(N - phi)*(Exp[eps/T] - 1))/(phi*q/(N - phi)*Exp[eps/T] +

nu/V)))
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q[r_, za_] := r - 2*r/za + 2

P[phia, z, Na, epsa, T, nu, qc]

(*PB polymer in PS*)

qpb = q[335.42, 6];

PV1 = P[0.3, 6, 335.42, 1960.3/8.31, 360, V, 8, qpb];

PV2 = P[0.3, 6, 335.42, 1960.3/8.31, T, 100, 8, qpb];

Plot[PV1, {V, 0.001, 120}, AxesLabel -> {V, P}]

Plot[PV2, {T, 0, 600}, AxesLabel -> {T, P}]

Export["Pressure_V_LCL.dat",

MatrixForm[Table[PV1, {V, 0.001, 120, 0.1}]]]

Export["Pressure_T_LCL.dat", MatrixForm[Table[PV2, {T, 0, 600, 0.1}]]]

ClearAll@V

ClearAll@T

(*Compressibility*)

P[phia, z, Na, epsa, T, nu, qc]

test = -1/D[P[phia, z, Na, epsa, T, nu, qc], V]/V

TeXForm[test]

B = (-1/D[P[phi, 6, 335.42, 1960.3/8.31, T, V, 8, qpb], V])/V;

V = 120;

phi = 0.5;

Plot3D[1000*B, {phi, 0, 1}, {T, 1, 500}]

Plot[1000*B, {T, 0.01, 500}, AxesLabel -> {T[K], Modulus[MPa]}]

Export["elastic_modulus_LCL.dat",

MatrixForm[Table[1000*B, {T, 0.01, 500, 0.1}]]];

7.6 Common tangent construction

C++ Code for the common tangent construction:

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <iostream>

#include <fstream>

#include <omp.h>
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/*----------------------------------------------------- //If you want to use normal FH you can uncomment here and comment the other one. Change variables in the loops

//Free energy of the system

double florhug (double phia, double phib, double Na,double Nb, double chi){

double florhug=phia*log(phia)/Na+chi*phia*phib+phib*log(phib)/Nb;

return florhug;

}

-------------------------------------------------------*/

//Inflection points

double inflectionA (double Na, double Nb, double chi){

double inflectionA=0.5+1/(4*Na*chi)-1/(4*Nb*chi);

return inflectionA;

}

/*-----------------------------------------------------*/

double inflectionB (double Na, double Nb, double chi){

double inflectionB=sqrt(pow((Nb-Na+2*Na*Nb*chi),2)-8*Na*pow(Nb,2)*chi)/(4*Na*Nb*chi);

return inflectionB;

}

/*-----------------------------------------------------*/

double florhug (double phi0, double Na,double phinf, double chi, double B){

double florhug=(phi0*log(phi0)/Na+chi*phi0*((double)1-phi0))+B*((double)1-phinf)*(pow(((double)1-phi0)/((double)1-phinf),(double)2/(double)3)+(double)2*pow(((double)1-phinf)/((double)1-phi0),(double)1/(double)3)-3)/(double)2;

return florhug;

}

/*-------------------------------------------------------*/

int i,j,k;

double phia,phib,chi,Na,eps,B,minima[3],phinf,Nb,inflection1,inflection2,slop[100000],locationminima[3],slopetan[100000],test1,test2,angular[2];

using namespace std;

main(){

fstream fb("common_tangent_elast_comparison.dat",ios::out); //output energy

/*----------------------------------------------------*/

//Vairables

chi=1.7; //Flory-Huggins parameter

Na=1; //Degree of polymerization

Nb=4;

phinf=0.05; //phi infinity
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B=0.1; //elastic modulus

eps=1e-5; //lattice parameter. Change for better calculation

/*---------------------------------------------------*/

//Initialization

phia=1e-12;

//Inflection points

inflection1=0.296337;//chi=1.7//0.187653;//0.189832;//chi=2.7 //0.24741;//chi=2.1//0.202342; //chi=2.5,B=0.3,phinf=0.05 //Obtained from Mathematica calculation

//----------------------------------------------------------------------------

//Free energy local slop and zeros

j=0;

test1=1;

for(i=1;i<=1e+5;i++){

//test1=florhug(phia,Na,phinf,chi,B);

slop[i]=(florhug(phia+eps,Na,phinf,chi,B)-florhug(phia,Na,phinf,chi,B))/eps; //numerical chemical potential

if(fabs(slop[i]/fabs(slop[i])-slop[i-1]/fabs(slop[i-1]))==2){

minima[j]=phia;

locationminima[j]=i;

j=j+1;

cout<<phia<<endl;

}

if((florhug(phia,Na,phinf,chi,B)<test1)&&(phia>0.6)){

test2=phia;

test1=florhug(phia+eps,Na,phinf,chi,B);

}

phia=phia+eps;

//end for loop1

}

//cout<<test2<<endl;//" "<<j<<endl;

//minima[2]=0.92;

phia=minima[0];//left minimum

phib=minima[2];//right minimum

cout<<phia<<" "<<phib<<" "<<inflection1<<endl;

while(phia<=inflection1){

i=0;

phib=minima[2];//0.87;
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//cout<<phib<<endl;

while(phib<=1){

slopetan[i]=(florhug(phia,Na,phinf,chi,B)-florhug(phib,Na,phinf,chi,B))/(phia-phib);

test1=fabs(slopetan[i]-(florhug(phia+eps,Na,phinf,chi,B)-florhug(phia,Na,phinf,chi,B))/eps);

test2=fabs(slopetan[i]-(florhug(phib+eps,Na,phinf,chi,B)-florhug(phib,Na,phinf,chi,B))/eps);

if((test1<=1e-4)&&(test2<=1e-4)){

angular[0]=phia;

angular[1]=phib;

angular[2]=slopetan[i];

cout<<phia<<" "<<phib<<endl;

}

//end second while loop

phib=phib+eps;

i++;

}

//end first while loop

phia=phia+eps;

//cout<<i<<endl;

}

//angular[2]=0.1794;

//angular[0]=0.037;

//angular[1]=0.906368;

cout<<"tangent1:y="<<angular[2]<<"x"<<florhug(angular[0],Na,phinf,chi,B)-angular[2]*angular[0]<<endl;

cout<<"tangent2:y="<<angular[2]<<"x"<<florhug(angular[1],Na,phinf,chi,B)-angular[2]*angular[1]<<endl;

cout<<florhug(angular[0],Na,phinf,chi,B)<<" "<<florhug(angular[1],Na,phinf,chi,B)<<endl;

phia=1e-12;

for(i=1;i<=1e+5;i++){

test1=florhug(phia,Na,phinf,chi,B)-florhug(angular[0],Na,phinf,chi,B)+angular[2]*angular[0]-angular[2]*phia;

fb<<phia<<" "<<test1<<" "<<florhug(phia,Na,phinf,chi,B)<<endl;

phia=phia+eps;

}

//end program

}
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