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Abstract:
In this thesis we study aspects of transport in strongly coupled quantum systems

with broken translational symmetry. Using holographic duality, we also examine the
associated dynamical problem in asymptotically Anti-de Sitter, spatially modulated
black holes.

More precisely, in chapter 2 we consider the transport of conserved charges in
spatially inhomogeneous quantum systems with a discrete lattice symmetry. When
the DC conductivities are finite, we derive a set of generalised Einstein relations,
relating the diffusion constants of the conserved charges to the DC conductivities
and static susceptibilities. We also develop a long-wavelength expansion in order
to explicitly construct the heat and charge diffusive modes within hydrodynamics
on curved manifolds. In chapter 3 we used analogous techniques to construct the
thermoelectric diffusive quasinormal modes in a large class of black hole spacetimes
that are holographically dual to strongly coupled field theories in which spatial
translations are broken explicitly. These modes satisfy a set of constraints on the
black hole horizon, from which we find that their dispersion relations are given by
the generalised Einstein relations. In chapter 4 we define a boost incoherent current
in spontaneously modulated phases, and we show that in holographic theories, its
DC conductivity can be obtained from solving a system of horizon Stokes equations.
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Chapter 1

Introduction

Decades ago, Witten described string theory as “a piece of 21st-century physics that
fell by chance into the 20th century” [5]. Indeed, even though it began as an attempt
to provide a theory for the strong interactions by quantizing the flux lines between
quarks, it was soon revealed that it naturally incorporates gravity in its spectrum
[6]1. Since then, there has been significant progress in understanding its physical
and mathematical structure, making it the most succesful theory of quantum gravity
to date.

Now, having had a clear view of early 21st-century physics, it would be fair to say
that one of the dominant ideas has been the AdS/CFT correspondence, a conjectured
equivalence between string/M-theory in a (d+2)-dimensional asymptotically Anti-de
Sitter (AdS) spacetime and a conformal field theory (CFT) defined on its (d + 1)-
dimensional boundary2. Maldacena laid the foundations of the correspondence
in 1997 [7] and the basic entries in the holographic dictionary were subsequently
presented in [8, 9]. Heuristic ideas about holographic gravity theories, with degrees of
freedom living on their boundary, had been around for a while [10, 11], but a concrete
realisation required the mathematical structure of string theory and Maldacena’s
deep physical insight.

Holography has since flourished into an extremely fruitful subject, residing at
the intersection of high energy physics, condensed matter and quantum information
theory. A particularly intriguing aspect is the weak/strong nature of the duality,
allowing us to study strongly coupled field theories by solving classical gravitational
problems, as well as gain insights into the emergence of spacetime geometry by using
quantum information theory. This also means that holography is one of the most
powerful tools one can use in order to model strongly interacting, non-quasiparticle

1In this introduction references will be mostly given to reviews and original or highly influential
works.

2We are using the condensed matter convention in which d denotes the spatial dimensions of
the field theory.
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quantum matter in regimes where conventional techniques are not applicable. The
goal of this thesis is to study some aspects of transport, in particular the diffusion
of conserved charges, in strongly coupled systems, and the associated gravitational
description, which involves the dynamics of black holes.

The structure of the introduction is as follows. In the first section 1.1 we intro-
duce the holographic duality. We begin by discussing the origins of the AdS/CFT
correspondence and the top-down and bottom-up approaches. We then present the
basic entries in the holographic dictionary, as well as the radial Hamiltionian form-
alism for the gravity theory. We also explain how to incorporate temperature and
chemical potential in holography, and we discuss the calculation of real time Green’s
functions. In the second section 1.2 we discuss the applications of gauge/gravity
duality to condensed matter systems, usually referred to as “AdS/CMT”. After some
brief motivation, we discuss aspects of transport and hydrodynamics, and the relation
to black hole quasinormal modes. We then move on to introduce symmetry break-
ing, focussing on breaking translations. We end with a discussion of thermoelectric
conductivities and their calculations from holography.

1.1 Holography

1.1.1 AdS/CFT correspondence

Origins of the correspondence

In this subsection we will outline the original argument for AdS/CFT [7], which
will provide important intuition for more general cases as well (see also the reviews
[12–14]).

String theory originated as a quantum theory of strings propagating on some
target spacetime. The need to include fermions in the spectrum and to eliminate
a tachyonic mode led to the development of superstring theory3. Consistency of
the quantum theory implies that quantum gauge and gravitational anomalies must
cancel, and this produces five different 10−dimensional superstring theories: type
I, heterotic SO(32), heterotic E8 × E8, type IIA and type IIB. These (as well as
the unique 11−dimensional supergravity) are all connected via a complicated web
of dualities, which is considered evidence for the existence of an underlying theory,
called “M-theory”, which includes all of the above theories in different perturbative
regimes.

The massless spectrum of type IIA and type IIB superstring theories matches

3References to original works and more information on string theory can be found in the
textbooks [6, 15–18].
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exactly the spectrum of the corresponding supergravity theories. For instance, the
bosonic sector of type IIB contains a graviton G Kalb-Ramond 2−form B2 and a
dilaton Φ (in the Neveu-Schwarz (NS) sector), as well as a scalar C0, a 2−form
C2 and a 4−form C4 with self-dual 5−form F5 = ?F5 (in the Ramond-Ramond
(RR) sector). The strings can be closed or open; in the latter case their endpoints
are restricted to (p + 1)−dimensional hypersurfaces called “Dp branes”. However,
the Dp branes are more than just endpoints of strings: they are dynamical objects
(described by a worldvolume DBI action), and they are charged under the RR fields.
In the low energy limit, they are identified with the black p branes of supergravity.
Thus, in modern superstring theory, the Dp branes (along with the NS5 branes and
the M2, M5 branes and KK monopoles of M-theory) are on equal footing with the
fundamental F1 strings.

Consider now a stack of N D3-branes in type IIB string theory. As mentioned
above, two different pictures emerge for this configuration, depending on value of
the parameter4

λ ≡ 4πgsN, (1.1.1)

where gs is the string coupling constant.

• If λ � 1, the gravitational backreaction of the branes is negligible, and so
we can treat them in the probe approximation as some light objects in 10d flat
spacetime. Then, in the low energy limit ls → 0 (where ls is the string length), the
theory of open strings describing the brane dynamics reduces to 4d N = 4 SYM
with gauge group SU(N). Note that this theory possesses an exact superconformal
SU(2, 2|4) symmetry at the quantum level. λ is interpreted as the ’t Hooft coupling,
since we can identify

gs = g2
YM . (1.1.2)

Additionally, the theory of closed strings in the bulk reduces to type IIB supergravity
in the low energy limit, and these two sectors decouple.

• If λ � 1 the branes backreact on spacetime, giving rise to the following
extremal black brane geometry and self-dual 5−form

ds2 = H−1/2
(
−dt2 + dxidxi

)
+H1/2

(
dr2 + r2dΩ5

)
,

F5 = dt ∧ dx1 ∧ · · · ∧ dx4 ∧H−1 , H = 1 +
(
L

r

)4
, (1.1.3)

and the dilaton is constant. In the above r is the transverse radial coordinate, dΩ5

4Throughout this thesis we will be using units in which c = ~ = kB = 1.
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is the standard metric on S5 and

L4 = λ (ls)4 . (1.1.4)

The near horizon region r � L is AdS5×S5

ds2 = L2

r2 dr
2 + r2

L2

(
−dt2 + dxidxi

)
+ L2dΩ5 , (1.1.5)

with L being the radius of curvature of both AdS5 and S5. Now, from the point of
view of an asymptotic observer, the near horizon string dynamics is effectively low
energy due to the infinite redshift. At the same time, the local low energy excitations
are described by type IIB supergravity. Again, these two sectors decouple in the low
energy limit.

This decoupling argument led Maldacena to the remarkable conjecture that
string theory in AdS5×S5 with string coupling gs and radius of curvature L is dual
to N = 4 SYM with gauge group SU(N) and ’t Hooft coupling λ. Following
standard terminology, we will refer to the gravity theory as the “bulk theory” and
to the QFT as the “boundary theory”, since the latter can be thought of as living
on the conformal boundary of the bulk AdS spacetime.

A more mathematical statement of the duality was presented in [8, 9] as an
equality of partition functions:

Zstring [J ] = ZSYM [J ] . (1.1.6)

On the left hand we have the partition function of string theory in AdS5×S5. On
the right hand side we have the SYM partition function in the presence of sources
J coupling to gauge invariant operators O. Note that the quantization of string
theory on curved spacetime is difficult, so the string partition function is not known;
sometimes (1.1.6) is considered to be the definition of Zstring. In constrast, the SYM
partition function in the presence of sources ZSYM [J ] is a very common object in
QFT: since SYM is a Lagrangian theory, it is given by the path integral

ZSYM [J ] =
∫
DΦ exp

[
iSSYM + i

∫
JO

]
, (1.1.7)

where SSYM =
∫
LSYM [Φ] is the SYM action, and by Φ we denote the fundamental

fields of the theory. From this, we can compute correlation functions of gauge
invariant operators by differentiating with respect to the sources and then setting
them to zero.

This stringy, quantum version of the duality is usually referred to as the strong
version of the AdS/CFT correspondence. There has been a lot of evidence that it
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is true 5. However, we can also obtain various weaker limits of the duality. For
example, taking N → ∞ but keeping λ constant, we see from (1.1.1) that the
string coupling gs is small, and so the bulk theory reduces to tree-level string theory.
The large N limit in the boundary gauge theory was studied by ’t Hooft [19], who
showed that it only involves planar Feynman graphs, with the O (1/N) corrections
corresponding to higher genus graphs. On top of that, we can also vary the ’t Hooft
coupling λ. For small λ, the QFT is in its perturbative regime and from (1.1.4)
we see that the bulk side is highly curved. However, the large λ limit has been by
far the most fruitful: the bulk is weakly curved, and so the classical string theory
reduces to classical supergravity, while the boundary theory is strongly coupled.
This strong/weak nature of the AdS/CFT correspondence has been used to perform
QFT calculations at strong coupling, inaccessible by other means, by doing classical
gravity calculations in the dual theory. In this case, there is a 1− 1 correspondence
between elementary bulk supergravity fields and boundary single-trace operators
with small anomalous dimensions. This is the case which will concern us from now
on.

In this limit, after analytically continuing to Euclidean signature and using the
saddle point approximation, we can write (1.1.6) as follows:

− Ssugraon−shell [ϕ→ J ] = WCFT [J ] , (1.1.8)

where WCFT is the generating functional of connected correlation functions in the
strongly coupled CFT and the set of bulk fields ϕ obeys the Dirichlet boundary
conditions ϕ̄ on the boundary of AdS (in an appropriate sense that we will describe
below).

Top-down and bottom-up approaches

The two main approaches to the application of holographic duality are the “top-
down” and the “bottom-up”. In the former, one looks for a string/M-theory setup
involving various branes and strings, and identifies the gauge theory living on their
worldvolume. This is conjectured to be dual to quantum gravity in the near horizon
geometry, much in the spirit of Maldacena’s original argument. Apart from the
prototypical 4dN = 4 super Yang-Mills⇔ string theory in AdS5×S5 discussed above,
the most important examples of such dual pairs include 3d ABJM ⇔ AdS4×S7/Zk
[20], 2d N = (4, 4) SCFT ⇔ string theory in AdS3×S3 ×M4 [7], an infinite class of

5As a first indication, one can easily check that the symmetries of both sides match: the isometry
group of AdS5×S5 is SO(4, 2)× SO(6), identical to the bosonic subgroup of the superconformal
symmetry of the gauge theory. Similarly, the fermionic supersymmetries and superconformal
symmetries also match [7].
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4d N = 1 quiver gauge theories ⇔ string theory in AdS5×SE5 [21] and 3d N = 2
Chern-Simons quiver gauge theories ⇔ string theory in AdS4×SE7 [22] (by SEn we
denote toric Sasaki-Einstein n−manifolds).

Typically, constructions of this kind lead to geometries of the product form
AdSd+2×Mn, with Mn a n-dimensional manifold, whose volume stays finite as we
move towards the boundary of AdS, while the volume of the latter diverges. This
“internal space” is very important in AdS/CFT; for example, it has the same global
symmetries as the dual CFTd+1 and its volume is related to the central charge [23].
One can always perform a dimensional reduction onMn by decomposing all the fields
in harmonics. Then, to each field in AdS corresponds an infinite tower of modes on
Mn. All of this information is required to match the spectrum of the dual CFT6.
However, in certain cases we can set a subset of these modes to zero, thus describing
only a subsector of the CFT. In order to do this consistently, we have to show that
the (generally coupled) equations of motion do not lead to constraints on the fields
we keep turned on. The result of this “consistent truncation” is a theory in AdS
whose solution can always be uplifted to a full solution of type IIB/11d supergravity.

The advantage of such top-down constructions is that we know many details of
the dual field and so we can perform various controlled computations and non-trivial
checks of the duality. However, if we would like to use holography in order to describe
QCD or condensed matter systems at quantum critical points, we can use a more
phenomenological, bottom-up approach. In that case, we write an effective bulk
gravity theory incorporating the essential elements of the holographic dictionary that
we want the field theory to possess. This leads to bulk theories with fewer fields and
thus to greatly simplified calculations. However, we do not know the precise dual
field theory or whether it can be consistently embedded in string theory. Despite
all this, the hope is that the bottom-up model can still reveal universal properties,
robust under possible modifications which will make the dual pair well defined. This
approach, which is more generally called “gauge/gravity duality”, is what we will
have in mind in the rest of this thesis.

1.1.2 Elements of the holographic dictionary

In this subsection we are going to present the fundamental entries of the holographic
dictionary, and expand in some detail on a few of them.

• The on-shell bulk action Son−shell is identified with the generating functional
of connected correlation functions in the dual field theory W . Let us rewrite this

6In AdS5/CFT4 the matching has been done in detail, based on [24]. See also the nice explanation
of the stringy exclusion principle [25] by the “giant gravitons” [26].
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statement (1.1.8) in Lorentzian signature

iSon−shell [ϕ→ J ] = WCFT [J ] . (1.1.9)

We can obtain the 1−point function of the operator O which couples to the
source J by differentiating (1.1.9) with respect to J :

iπ∞ ≡ i
δSon−shell

δJ
= δW

δJ
≡ 〈O 〉J . (1.1.10)

• There is a 1 − 1 correspondence between bulk fields and boundary gauge
invariant operators. The map is non-trivial, and is largely based on symmetry
arguments. For example, the bulk metric gµν is dual to the stress-energy tensor of
the dual field theory T µν , a bulk U(1) gauge field Aµ is dual to a conserved U(1)
current Jµ and a bulk scalar φ is dual to a scalar operator O.

• Gauge symmetries in the bulk correspond to global symmetries on the bound-
ary7. This can be seen by performing large gauge transformations and examining
the asymptotic structure (this was known even before AdS/CFT, see [28, 29], and
the review [30] and references therein).

• A classical background is dual to a quantum state of the dual QFT. The
main examples are empty AdS (see (1.1.36) below) corresponding to the vacuum
states, and AdS black holes corresponding to thermal states [31, 32] (see for example
(1.1.37)).

• There is a UV/IR correspondence between the dual theories, in the sense
that the long distance, IR region of the bulk theory describes the short distance,
UV behavior of the field theory [33, 34]. Similarly, the deep interior of the bulk
corresponds to the IR of the boundary theory. So, it is often said that holography
geometrises the renormalization group flow of the field theory. This heuristic picture
will provide useful intuition in the following, see also footnote 11 and [35].

• Equation (1.1.10) involves bare, divergent quantities. The LHS contains the
usual UV divergencies of QFT and can be rendered finite by renormalization. The
RHS contains IR divergencies, coming from the fact that the volume of asymptotically
AdS spacetimes diverges as we move towards the boundary (see for example (1.1.11)).
There is an analogous procedure in gravity which removes the divergent terms, called
“holographic renormalization” [36].

7Note that a consistent theory of quantum gravity is not expected to have bulk global symmetries
[27].
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• The leading (“non-normalizable”) asymptotic behavior of a bulk field determ-
ines the source of the dual operator and the subleading (“normalizable”) behavior
determines the expectation value (“VEV”) of the dual operator [37] (except for
the case of alternative quantization which we mention below). Let us sketch how
this happens in the case of the metric, a scalar and a gauge field. We first choose
Fefferman-Graham coordinates in which8

ds2 = 1
ρ2

(
dρ2 + gµνdx

µdxν
)
. (1.1.11)

Then, we can solve asymptotically the equations of motion coming from the bulk
action (see (1.1.21)) obtaining the form [36]

g = g(0) + ρ2g(2) + · · ·+ ρd+1
(
g(d+1) + h(d+1) log ρ2

)
+O

(
ρd+2

)
. (1.1.12)

Only even powers of ρ appear up to order bd + 1c. We also note that the metric
diverges as ρ → 0, and so it only defines a conformal structure at the boundary.
The logarithmic term only appears for odd dimensions d. In the above series, the
equations of motion do not determine g(0) and g(d+1), whereas h(d+1) and g(n) for
2 ≤ n < d+ 1 are functions of g(0) (the subleading terms are functions of both g(0)

and g(d+1)). Of course, it makes sense that the second order equations of motion
require two boundary conditions; however, we will see later that we normally need
to impose appropriate conditions at the interior of the bulk spacetime, and this will
also determine g(d+1) in terms of g(0).

Now, we see that the holographic dictionary (1.1.9) interprets the Dirichlet bound-
ary condition g → g(0) as the field theory source coupling to the stress-energy tensor
T µν [8, 9]. Using (1.1.10) and after performing a careful holographic renormalization
analysis (which we discuss further near the end of this subsection), the 1−point
function turns out to be [36, 38]

〈Tµν 〉 = (d+ 1)gµν(d+1) +Xµν [g(n)] , (1.1.13)

with 2 ≤ n < d + 1 and Xµν being a tensor whose form depends on the spacetime
dimension.

Similarly, the asymptotic behavior of a scalar φ with mass m is:

φ = ρd+1−∆
(
φ(0) + ρ2φ(2) + · · ·+ ρ2∆−d−1φ(2∆−d−1) + . . .

)
, (1.1.14)

8Here we are using standard notation and conventions with ρ→ 0 corresponding to the boundary
and the subscripts in equations (1.1.12), (1.1.14), (1.1.17) denoting terms in the near boundary
expansion, not to be confused with the notation in chapter 3 (see (3.2.5)).
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where
m2 = ∆ (∆− d− 1) . (1.1.15)

Then, holographic renormalization leads to the 1−point function for the dual operator
O

〈O 〉 = (2∆− d− 1)φ(2∆−d−1) + contact terms . (1.1.16)

For a U(1) gauge field Aµ in the radial gauge Ar = 0 we find:

Aµ = aµ(0) + · · ·+ ρd−1aµ(1) + . . . , (1.1.17)

leading to
〈 Jµ 〉 = d− 1

e2 aµ(1) , (1.1.18)

(see below (1.1.34) for the definition of e).

• By examining the scaling behavior of the dual operator O, one can see that
∆ as defined in (1.1.15) is the scaling dimension of the dual CFT operator. The
unitarity bound in CFTs requires that ∆ ≥ (d− 1) /2, with the equality holding for
free field theories (which are not relevant in holography). Note that for (d− 1) /2 <
∆ < (d+ 1) /2 we can also choose the “alternative quantization”, in which the
source falls quicker than the VEV as we approach the boundary (1.1.14). In that
case, performing a double trace deformation will induce a flow to a CFT with the
standard quantization [39]. For (d+ 1) /2 ≤ ∆ < d + 1 the operator is relevant,
in which case the bulk field does not spoil the AdS asymptotics (1.1.14). The
marginal case is ∆ = d+ 1. From (1.1.12) and (1.1.17) one can see that the stress
tensor operator is marginal and the global U(1) current is relevant, as expected.
Deformations by relevant or marginally relevant operators trigger RG flows to new
IR fixed points. In contrast, irrelevant deformations with ∆ > d + 1 destroy the
asymptotics and the UV theory is not well defined; one needs to consider backreaction
and find a new UV fixed point. However we will not consider this case; everywhere
in the following the AdS asymptotics will correspond to CFT deformed by marginal
or relevant deformations (i.e. the “asymptotically locally AdS” in the terminology
of [40]).

We also note that from (1.1.15) we can derive the Breitenlohner-Freedman bound
for the mass m:

m2 ≥ −(d+ 1)2

4 , (1.1.19)

which was originally found by the requirement of perturbative stability [41, 42].

• Black hole quasinormal modes with normalizable conditions at the boundary
and infalling conditions at the horizon correspond to poles of the retarded Green’s
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function of the dual QFT. We will expand on this in subsection 1.2.2.

Radial Hamiltonian formulation

Let us now focus on the bulk side of the correspondence, which consists of a classical
gravitational system. We will introduce the radial Hamiltonian formulation in order
to discuss holographic renormalization in an elegant manner, and also to derive the
constraints that we mention in subsection (1.2.4) and use extensively in chapter 3.
For simplicity, we focus on the universal gravity sector, and we only briefly mention
the generalisation to gravity-matter systems. Everything that we discuss here holds
both in Euclidean and in Lorentzian signature; we will be using the latter in order
to make contact with chapter 3. This discussion is based on [43, 44] and appendix
A of [45]. For related work see [46–48].

We start by performing a radial Hamiltonian or “ADM” decomposition [49] by
using a radial coordinate r as the Hamiltonian “time”, with r →∞ corresponding to
the (conformal) boundary of the spacetime9. We foliate our background in constant
r hypersurfaces Σr, corresponding to the decomposition

ds2 =
(
N2 +NµN

µ
)
dr2 + 2Nµdrdx

µ + hµν dx
µdxν , (1.1.20)

where µ, ν, · · · = 1, . . . , d+1. N and Nµ are the lapse and shift functions respectively,
and hµν is the induced metric on Σr. The bulk action we are using is

S = 1
2κ2

∫
M
dd+2x

√
−g

(
R + d(d+ 1)

L2

)
+
∫
∂M

dd+1x
√
−h 2K . (1.1.21)

where κ2 = 8πGN with GN being the (d + 2)-dimensional Newton’s constant. For
convenience we will set 2κ2 = 1. L is the AdS radius, which we are free to set to
1, and we will do so from now on. The second term is the “Gibbons-Hawking term”
[50], which we will discuss momentarily. Under the decomposition (1.1.20), the Ricci
scalar R becomes

R = R[h] +K2 −KµνK
µν +∇Aζ

A . (1.1.22)

Here A,= 1, . . . , d+ 2, ζA is a vector with ζr = −2K/N , R[h] is the Ricci curvature
of the induced metric K ≡ hµνKµν , and Kµν is the extrinsic curvature of Σr:

Kµν = 1
2N

(
ḣµν −DµNν −DνNµ

)
, (1.1.23)

where the dot denotes derivatives with respect to r and Dµ is the covariant derivative

9Here we only use the fact that r is defined near the boundary. In chapter 3 we will be assuming
that it extends until the black hole horizon, but the results hold more generally, see the discussion
in [45]
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with respect to hµν .
Now, we note that the boundary term coming from the divergence of ζ cancels

the Gibbons-Hawking term in (1.1.21). Ignoring the total spatial derivative, the
action (1.1.21) becomes

S =
∫
dr
∫

Σr
dd+1xL ≡

∫
dr
∫

Σr
dd+1x

√
−hN

[
R[h] +K2 −KµνK

µν + d(d+ 1)
]
.

(1.1.24)

Let us denote the on-shell action as

Sreg =
∫ r

dr′
∫

Σr
dd+1xL|on−shell . (1.1.25)

This is a functional of the induced metric on Σr, since the bulk equations of motion
are satisfied. The subscript is added to emphasise that this is a regulated form of
the on-shell action; as already mentioned, Sreg will diverge in the near boundary
limit r →∞.

We can now define the canonical momentum as usual

πµν = δL
δḣµν

= −
√
−h (Kµν −Khµν) , (1.1.26)

Note that this momentum is defined for any r. The notation in (1.1.9) indicates
that π∞ is obtained after taking the boundary limit r →∞ of π (and stripping of
the appropriate powers of r, see (1.1.12), (1.1.14), (1.1.17)).

We can Legendre transform the Lagrangian density L to obtain the Hamiltonian
density

H ≡ πµν ḣµν − L = N H +NµH
µ , (1.1.27)

where

H = − (−h)−1/2
(
πµνπ

µν − 1
d
π2
)
−
√
−h (R[h] + d(d+ 1)) , (1.1.28a)

Hν =− 2
√
−hDµ

(
(−h)−1/2πµν

)
, (1.1.28b)

and π ≡ πµµ. Now, N and Nµ act as Lagrange multipliers in (1.1.27) which impose
the Hamiltonian and momentum contraints

H = 0 , (1.1.29a)
Hν = 0 , (1.1.29b)

and lead to the well-known fact that the bulk Hamiltonian vanishes in general
relativity [44]. The constraints (1.1.29) are first class and they can be imposed on
any constant-r hypersurface. Supplemented by the radial equations of motion for
the conjugate momentum, they are equivalent to the second order Euler-Lagrange
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equations of motion.
In the case of the more general Einstein-Maxwell-Dilaton (see (1.1.34) below),

one defines the canonical momenta for the scalar and the gauge field as in (1.1.26).
This leads to a generalised form of the constraints (1.1.28), (1.1.29), as well as a new
“current” constraint equivalent to the Gauss law [44]. Explicit expressions can be
found in appendix 3.B.

Finally, let us note that the momentum constraint (1.1.29b) reflects diffeomorph-
ism invariance on Σr. When evaluated at r →∞ and using (1.1.10), it leads to the
conservation of the (bare) stress tensor of the dual field theory and similarly, the
current constraint mentioned above leads to the conservation of the U(1) current
of the dual field theory. Indeed, the constraints generally lead to the (bare) field
theory Ward identities [48, 51]. In view of chapter 3, we note that in the presence
of arbitrary sources, they take the following form

∇µ〈Tµν 〉+ 〈 Jµ 〉F (0)
µν + 〈O 〉∇νφ(0) = 0 , (1.1.30a)

∇µ〈 Jµ 〉 = 0 , (1.1.30b)

where ∇µ is the covariant derivative with respect to g(0) and F (0)
µν = 2∂[µa

(0)
ν] (see also

(2.3.2)).

Holographic renormalization

The equation H = 0, which is equivalent to (1.1.29), takes the Hamilton-Jacobi form
once we express the canonical momentum in terms of Hamilton’s principal function as
in (1.1.10), since the latter can be identified with the on-shell action Sreg. Identifying
the divergent local part of the solution of the Hamiltonian constraint (1.1.29a), we
can add the corresponding local (on Σr) counterterms in order to renormalise the
action,

Sren ≡ Sreg + Sct , (1.1.31)

and we can safely take the limit r → ∞ obtaining a finite result10. For the action
(1.1.24) the counterterms were already identified by solving the equations of motion
in a near boundary expansion in [36, 38]. For instance, for pure gravity it was found

Sct =
∫

Σr
d2x
√
−h

(
2− 1

2R log r
)
, d = 1 ,

Sct =
∫

Σr
d3x
√
−h (4− 2R) , d = 2 , (1.1.32)

10One is also free to add local, finite scheme-dependent terms, but they will not concern us here.
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with the logarithmic terms appearing in odd d related to the conformal anomaly [52]
which comes from the choice of a particular representative in the conformal class of
boundary metrics. For a free probe scalar we find

Sct = d+ 1−∆
2

∫
Σr
dd+1x

√
−hφ2 , (1.1.33)

when ∆ > (d + 1)/2. There are various systematic approaches for obtaining the
counterterms for any bulk theory, for example one could solve the Hamilton-Jacobi
equation recursively by expanding in eigenfunctions of the dilatation operator [43,
53]. See also [36, 54] for more general explicit expressions.

This process of removing the infinities on the gravity side is the aforementioned
holographic renormalization. There is an analogy with the Gibbons-Hawking term,
which is introduced in order to make the variational problem on compact manifolds
with boundary well defined. Similarly, it can be shown that the holographic coun-
terterms are necessary in order to make the variational problem well defined on
asymptotically AdS manifolds [40] (and even in more general contexts [55, 56]).

There exists a direct correspondence between holographic renormalization in the
Hamiltonian formalism with renormalization in QFT, if one expresses the latter as a
Hamiltonian flow [43, 57]11. A review of this exciting topic is outside the scope of this
introduction. The main idea however is to substitute the renormalised bulk action
Sren in the divergent expressions (1.1.9), (1.1.10) and thus obtain finite, renormalised
versions of the above expressions involving the renormalised momentum π̂. After
stripping off the appropriate powers of the radial coordinate r, one arrives at the
expressions (1.1.13), (1.1.16), (1.1.18). We can similarly derive the Ward identities
(1.1.30) for the renormalised VEVs.

1.1.3 Finite temperature and real time correlators

Finite temperature and chemical potential states

Let us now discuss some details about the relevant backgrounds. We will consider a
class of bulk actions of the Einstein-Maxwell-Dilaton (EMD) form:

S =
∫
dd+2x

√
−g

(
R− V (φ)− Z(φ)

4 F 2 − 1
2 (∂φ)2

)
. (1.1.34)

11The renormalization scale logµ corresponds to the radial coordinate r (using coordinates in
which the metric takes the form ds2 = dr2 + hµνdx

µdxν). Note however that there is not a precise
relation between a radial cut-off in the bulk and a momentum cut-off in the boundary QFT, see
[58, 59].
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Here V (φ) and Z(φ) are functions of the scalar field φ, with Z(0) = constant ≡ 1/e2

and

V (φ) = −d(d+ 1)− m

2 φ
2 + . . . . (1.1.35)

with m satisfying the BF bound (1.1.19).
Supplemented by a suitable set of Dirichlet boundary conditions, one needs to

solve the equations of motion coming from (1.1.34) in order to obtain a background
spacetime, which will be dual to a quantum state of the boundary QFT. The simplest
case is empty AdS, with metric

ds2 = −r2 dt2 + 1
r2 dr

2 + r2 dxidxi , (1.1.36)

and Aµ = φ = 0. Here r is a radial coordinate going from the Poincaré horizon r = 0
to the boundary r →∞. As we already mentioned, this background corresponds to
the vacuum of the dual CFT on Rd,1.

Another important example is the Reissner-Nordström-AdS solution

ds2 = −r2f(r) dt2 + 1
r2f(r) dr

2 + r2 dxidxi ,

A = µ

[
1−

(
rH
r

)d−1
]
dt , φ = 0 ,

f(r) = 1−
(

1− µ2

r2
Hγ

2

)(
rH
r

)d+1
+ µ2

r2
Hγ

2

(
rH
r

)2d
, γ2 = 2d

d− 1e
2 , (1.1.37)

which is a solution of (1.1.34) if ∂φZ(φ)|φ=0 = 0. This is a black hole background
with a bifurcate Killing horizon at rH and an asymptotically AdS boundary at
r → ∞. From (1.1.17) and (1.1.18) we can see that this describes a CFT on flat
space, deformed by a U(1) chemical potential µ, with a charge density

〈 J t 〉 = d− 1
e2 rd−1

H µ . (1.1.38)

By rotating to imaginary time, one can compute the relevant thermodynamic
quantities [40, 60, 61], in the standard way from black hole thermodynamics (see
[62–64] and the reviews [65, 66]). Firstly, the Euclideanised version of (1.1.37) is the
usual cigar geometry ending at rH . The absence of a conical singularity in the it− r
plane determines the temperature

T = rH
4π

(
d+ 1− (d− 1)µ2

r2
Hγ

2

)
, (1.1.39)

and this means that the imaginary time is an S1 with period β ≡ 1/T . The free
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energy is given by
F = −T logZ = TSE , (1.1.40)

where SE is the Euclidean renormalised bulk on-shell action, which depends on the
whole bulk solution. From F we can obtain all the relevant thermodynamic quantities.
For example, the entropy is computed from S = (β ∂β − 1) βF , and we can show
that it is given by the horizon area [67–69]. The energy is E = −∂β (βF ). By using
Wald’s formalism, one can rigorously show that the first law of thermodynamics
dE = T dS + µ dQ holds [40].

Holography leads to the fascinating conclusion that the black hole thermody-
namics described above can be identified with the thermodynamics of a field theory
at finite temperature and chemical potential [31]. The topology of the boundary
is S1 × Rd where the S1 has periodicity β, as we expect from thermal field theory.
Similarly, the Bekenstein-Hawking entropy is identified with the thermal entropy of
the field theory, and the Hawking-Page transition in the bulk [70] is interpreted as
a confinement-deconfinement phase transition (when the boundary is S1 × S3)[31].

Returning to the Reissner-Nordström-AdS solution (1.1.37), we can see that it
only depends on one tunable, dimensionless parameter, which we can take to be µ/T .
In the µ → 0 limit we obtain the simpler Schwarzschild-AdS black hole solution,
which describes a thermal state at temperature T (note that since the dual field
theory is a CFT at finite temperature T , every non-zero T is equivalent; in the bulk
this can be seen by rescaling the radial coordinate r). In the extremal T → 0 limit
we get a near horizon AdS2×Rd geometry

ds2 = L2
2

[
−r2 dt2 + 1

r2 dr
2 + (d− 1)2µ2

e2 dxidxi
]
, L2

2 = 1
d(d+ 1) , (1.1.41)

where L2 is the radius of curvature of AdS2. This describes an emergent “local
quantum criticality” with a scaling symmetry involving only the time coordinate.
The discovery of this phase, which was shown to capture the low energy dissipative
phenomena, was a milestone in the development of applied holography, [71, 72].
AdS2 holography has gained much attention also due to the fact that it has non-zero
entropy, violating the third law of thermodynamics. Initially this was considered a
drawback, but the recently uncovered connections to the SYK model may suggest
otherwise [73]. For T � µ, we find a Schwarzschild-AdS2×Rd spacetime, meaning
that the horizon is entirely contained within the AdS2 part of the spacetime.

Finally, we note that there is a more general class of finite temperature, finite
chemical potential geometries than what we discussed above: one can consider a
dynamic critical exponent z > 1 giving rise to the so-called “Lifshitz” geometries
[74–77] (see also [78, 79]), as well as a hyperscaling violation exponent θ [80, 81],
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with a metric of the form

ds2 =
(
r

R

)d/(2θ) (
−r2zdt2 + 1

r2 dr
2 + r2 dxidxi

)
, (1.1.42)

where R is a constant of integration. These solutions are relevant from a condensed
matter point of view, since for the general class of EMD actions (1.1.34), the above
parametrisation in terms of z and θ is believed to be a complete classification of holo-
graphic strange metals at finite charge density (preserving translational invariance)
[76, 80, 82].

Real time correlators

The main object of interest in the following will be the finite temperature 2-point
retarded Green’s functions, defined as

GAB(t; t′) = −iθ(t− t′) 〈 [OA(t),OB(t′)] 〉β , (1.1.43)

for two local operators OA and OB, where we have suppressed the spatial dependence
and the expectation value is taken in a thermal state at temperature T = 1/β. Note
that if we introduce a source for OB in the Hamiltonian,

δH(t) = δJB(t)OB(t) , (1.1.44)

then the change in the expectation values of A is given by

δ〈OA 〉(t) =
∫
dt′GAB(t; t′) δJB(t′) , (1.1.45)

to linear order in δJB. This is the “linear response” regime, which describes per-
turbations around equilibrium states caused by the addition of small sources. The
retarded Green’s functions encode crucial information about the system: the on-shell,
physical modes correspond to poles of the retarded Green’s functions. Importantly,
after Fourier transforming to momentum space, causality implies that GAB(ω) is
analytic for Imω > 0; poles on the upper half complex plane lead to perturbative
instabilities of the system.

We will give a self-contained presentation of the relevant details from linear
response theory in section 2.2. In subsection 1.2.4 we will discuss the connection to
transport which is of interest to condensed matter physicists; let us here describe
the prescription for obtaining the retarded Green’s functions from holography.

One of the main advantages of holography is that it is naturally formulated in
Lorentzian signature (1.1.9). This means that we can directly compute real time
correlation functions for strongly coupled field theories, where other techniques
fail (for example, in lattice simulations the analytical continuation of Euclidean
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correlators from the discrete set of Matsubara frequencies is usually ambiguous,
especially in the low frequency regime [83]; there is also the sign problem at finite
chemical potential [84]).

Firstly, let us notice that Wick rotating to imaginary time is very useful in making
sense of the saddle point approximation in the quantum gravity partition function
(1.1.8), as well as in the abovementioned thermodynamic considerations. Apart
from these, a Euclidean signature bulk leads to another simplification: as already
mentioned, in solving the second order bulk equations of motion, we need to impose
two “boundary” conditions. One of them is a Dirichlet condition for the source in
(1.1.12), (1.1.14), (1.1.17). By analyzing the equations of motion in the deep interior
(for example at the Poincaré or black hole horizon) in Euclidean signature we find
that one of the two independent solutions diverges, while the other remains regular,
making the choice of the regular one natural. However, in Lorentzian signature there
are various conditions that can be imposed at the horizon, all of them regular, so it
is not a priori clear which one to pick. We will return to this point momentarily.

Assuming that we choose an appropriate condition, this will determine the 1-
point function of the dual operator as a function of the source, 〈OA (JB) 〉. As usual,
in order to compute the 2-point correlation function we need to differentiate the
above relation with respect to the source and then set JB = 0. Thus, in order to
compute the retarded 2-point function, we need to solve the linearised bulk equations
of motion around a given background. GAB will then be given by [85–87]:

GAB = δ〈OA 〉
δJB

∣∣∣∣∣
δJB=0

= lim
r→∞

rα
δπ̂A
δϕB

∣∣∣∣∣
δJB=0

, (1.1.46)

where the power α is determined by requiring that the numerator gives the VEV
and the denominator the source (we should only keep the finite piece in the above
expression). For example, for scalar operators this becomes:

GAB = (2∆A − d− 1) δφA(2∆A−d−1)

δφB(0)
. (1.1.47)

Let us now return to the issue of the choice of boundary conditions at the horizon.
By examining the wave equation at the horizon one finds two possible behaviors,
infalling and outgoing:

φin ∼ e−iω vEF , vEF ≡ t+ ln (r − rH) /4πT , (1.1.48)
φout ∼ e−iω uEF , uEF ≡ t− ln (r − rH) /4πT , (1.1.49)

where vEF and uEF are the ingoing and outgoing Eddington-Finkelstein-like coordin-
ates. The original prescription [88, 89] suggested that one can extract the retarded
Green’s functions from the on-shell action at the boundary after throwing away a
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horizon term, using the infalling conditions at the horizon. This was physically mo-
tivated from the fact that modes falling into the black hole describe dissipation from
the dual field theory perspective12. Indeed, in addition to the black hole thermody-
namics, the membrane paradigm [90, 91] also supports the fact that horizons are
dissipative. Recall that the membrane paradigm suggests that we think of the black
hole stretched horizon as a physical fluid membrane with usual transport properties,
obeying the Navier-Stokes equations. These ideas provide profound connections
between thermal field theories and black hole phenomena.

The above prescription has been justified in a number of ways. [92] derived it by
using the maximally extended Schwarzschild-AdS spacetime, which [32] showed that
it is dual to a tensor product of two CFTs. They identified the second CFT as the
copy of the theory used in the Schwinger-Keldysh (S-K) formalism [93, 94]. This way
they were able to compute the various S-K correlators, and argue that the natural
infalling conditions come from the S-K contour time ordering. Additional supporting
evidence was given in the same paper, by showing that at zero temperature, infalling
conditions follow from analytic continuation of the Euclidean Green’s function. [86]
gave a similar argument for the finite temperature case.

Finally, [95, 96] gave a more general prescription for the computation of real
time correlators. The basic idea is that the RHS of (1.1.9) involves integrating over
a contour on the complex time plane in the S-K formalism. Thus, one should “fill
it in” with the bulk solution of the LHS. This leads to a bulk metric with mixed
signature. Using appropriate continuity conditions in the matching hypersurfaces,
one is in principle able to directly compute any real time correlator. It was shown
in [96] and more explicitly in [97] that this also leads to infalling conditions for the
retarded Green’s function.

Before closing this section, let us mention that higher point correlation functions
have also gathered much attention lately. More specifically, [98–100] connected out-
of-time-order 4-point correlation functions to quantum chaos in the dual field theory,
and suggested a holographic computation using shock-wave geometries. Comparisons
with field theory results in simple cases [101], interesting bounds [102] and relations
to hydrodynamics [103–108] indicate that there are still many discoveries to be made
in this exciting area.

12Similarly, the outgoing modes give the advanced Green’s function.
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1.2 Applications

1.2.1 AdS/CMT

The conventional theories for understanding most of the condensed matter phenom-
ena, including metallic transport, thermal phase transitions and superconductivity,
were developed in the last couple of centuries and have been extremely successful.
Most of them rely on the existence of some effective, weakly coupled quasiparticle
description of the system under investigation. For example, this can be the elec-
trons and phonons in metals, the Cooper pairs in superconductors or the order
parameters in phase transitions (a review of such methods is outside the scope of
this introduction; we refer the interested reader to [109–111] for more details).

However, over the past decades, there has been increasing evidence supporting the
existence of strongly coupled systems without quasiparticles [112]. For instance, such
“strange metallic” phases have been found in various compounds such as cuprates
and pnictides. The fact that these metals do not admit any quasiparticle description
can be inferred from the linear in temperature resistivity [113], violating the Mott-
Ioffe-Regel (MIR) bound [114, 115] and the Wiedemann-Franz law [116, 117], and
exhibiting non-Drude-like low frequency behavior in their DC conductivity (see
equation (1.2.8)) [109]. Thus, such strongly coupled strange metals elude description
by the conventional Fermi liquid theory.

Another curious phenomenon is high-temperature superconductivity. The normal
phase of a conventional superconductor consists of a (weakly coupled) metallic Fermi
liquid for T > Tc, where Tc is the critical temperature. The superconducting phase
appears at T < Tc and is characterised by condensation of electrons into Cooper
pairs. This mechanism is the basis of the Bardeen-Cooper-Schrieffer (BCS) theory
of superconductivity [118] and it predicts critical temperatures up to approximately
30K. However, superconducting phases with significantly higher critical temperature
have been experimentally observed [119]. Strange metals appear to constitute the
normal phase of high-Tc superconductors, and so understanding their properties is
imperative in formulating a theory of high-Tc superconductivity.

Additionally, we would like to understand quantum phase transitions (QPT)
such as metal-insulator transitions13, which are phase transitions driven by quantum
fluctuations. The standard way of characterizing continuous phase transitions is
the universal Landau-Ginzburg-Wilson theory [109]. Using an effective field theory
approach, we are instructed to identify the symmetries of the various phases. Then,
phase transitions are described by the spontaneous breaking of a subset of these

13We remind the reader that insulators are systems with vanishing DC conductivity σDC → 0
as T → 0.
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symmetries, and the relevant order parameter specifies the dynamics. At zero
temperature, QPTs take place at a value gc of a tunable parameter g. Upon taking
g → gc, the mass gap normally behaves as ∆ ∼ (g − gc)νz, while the correlation
length behaves as ξ ∼ (g − gc)−ν . The critical point is characterised by the dynamical
critical exponent z specifying the scaling of time relative to space, which we also
encountered in subsection 1.1.3. When z = 1, the scaling symmetry combines with
the Lorentz symmetry, making the description of the critical point by a CFT possible.
In addition, we expect that the quantum critical point may extend its influence to a
“quantum critical region” of the phase diagram with non-zero temperatures T > 0
[109, 119]. Such phases involve long range quantum entanglement and can be
generally modelled by emergent, strongly coupled, CFTs.

The QFT techniques for studying strongly coupled theories are limited, although
some general statements can be made with memory matrix-like arguments (see 2.2)
as well as within the framework of hydrodynamics (see the following subsection
(1.2.2) and section (2.3)). This is where holography comes into play, since it can
transform a hard QFT problem into a much easier classical gravitational problem.
See [72, 87, 120–127] for various books and reviews dedicated to the application of
holography to condensed matter systems.

We stress from the outset that holography is meant to be an effective description
of strongly coupled condensed matter systems. This addresses the concern that
in gauge/gravity duality the UV theory is usually highly symmetric (conformally
invariant, supersymmetric), as happens in AdS/CFT. However, we have already
seen ways to break such unrealistic symmetries: introducing finite temperature, or
sources for relevant operators such as chemical potentials or holographic lattices
(see subsection 1.2.3), the UV theory gets deformed, resulting in a flow to a less
symmetric IR ground state. Finally, one can also consider non-relativistic asymptot-
ics (see equation (1.1.42)). A more significant point is the fact that we require the
QFT to be in the large N limit in order for the bulk theory to be classical, which
generally suppresses quantum fluctuations. Despite the above issues, the hope is
that holography may be albe to capture universal IR properties of strongly coupled
systems [128, 129].

In view of condensed matter applications, we will focus on boundary theories
with a global U(1) symmetry. In conventional metals, this comes from the screening
of Coulomb interactions. This turns out to be useful even at strong coupling, where
we think as having already integrated out the dynamics of the electromagnetic U(1)
gauge symmetry14. From this effective point of view, it is now apparent why we

14In top-down constructions, it can be obtained as a subgroup of the R-symmetry of the boundary
theory.
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focussed on the class of EMD bulk actions (1.1.34): it allows us to obtain universal
results for strongly coupled QFTs with global U(1) symmetry, while the dilaton can
model a general scalar order parameter.

1.2.2 Hydrodynamics and black hole quasinormal modes

Transport coefficients

As already mentioned in subsection (1.1.3), holography is well suited for studying
out of equilibrium phenomena in real time. The most interesting quantities, both
from an experimental and a theoretical point of view, are the transport coefficients,
such as the conductivities, diffusion constants and viscosities. These are defined
within the regime of linear response, they depend on the microscopic QFT and they
characterise the transport of conserved charges [130, 131].

For simplicity, in this subsection we assume that our system preserves transla-
tional symmetry. Then we can Fourier transform to momentum space parametrised
by the frequency ω and the spatial momentum k. Using the fundamental relation
(1.1.45) we can derive the microscopic definition of some transport quantities and
static susceptibilities. For instance, for systems with a global U(1) symmetry, the
thermoelectric conductivities are defined by a generalisation of Ohm’s law: J i

Qi

 =
 σij Tαij

T ᾱij T κ̄ij

 Ej

ζj

 , (1.2.1)

where Qi = −T it − µJ i is the heat current, which couples to a homogeneous thermal
gradient parametrised by ζj, and J i is the U(1) current, which couples to the
homogeneous electric field Ej. By comparing with (1.1.45), we can derive Kubo’s
formula15

σij(ω) = − lim
k→0

1
iω
GJiJj(ω,k) , (1.2.2)

and similarly for the other components of the conductivity matrix (1.2.1). In the
same way we arrive at Kubo’s formula for the shear viscosity

η = lim
ω→0

1
ω

ImGT ijT ij(ω,0) . (1.2.3)

These relations capture the essence of the fluctuation-dissipation theorem [131]. A
more complete discussion (focussed on the conductivities and diffusion constants)
can be found in section 2.2.

In the zero frequency limit, the above “AC” or “optical” conductivities are called

15We are using sign conventions consistent with chapter 2, see appendix 2.A.
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DC conductivities; for example the electric DC conductivity is defined by

σijDC ≡ lim
ω→0

σij(ω) . (1.2.4)

These transport quantities are of particular interest, since they describe the response
of the system to a constant thermal or electric source. Importantly, when trans-
lations are preserved and the background charge density is non-zero ρ 6= 0, the
DC conductivities σDC , αDC , ᾱDC and κ̄DC will all diverge (as in equation (4.2.12))
[132]. This can be argued using the Ward identities, which relate the various ther-
moelectric conductivities as in equation (4.2.7), see [124, 133]. Another way to
see the divergence is by performing a boost, since this will transform the currents
leading to non-uniqueness of the conductivities16. The latter approach will play an
important role in generalising the above results to the case of spontaneously broken
translational invariance, see chapter 4. More generally, when a conserved operator
overlaps with the current operator, the corresponding DC conductivities diverge
[123]. Effectively, the conserved or nearly conserved operator forces all operators
which overlap with it to decay “coherently”, i.e. at its own time scale.

In contrast, in charge neutral systems the electric current does not overlap with
momentum, and thus we get a finite electric DC conductivity σDC (while the thermal
conductivity κ̄DC still diverges). It turns out that even in systems at finite charge
density, we can define an “incoherent” current which does not overlap with the
momentum and which has a finite conductivity [134]; this is the subject of chapter
4.

Finally, note that discrete symmetries impose constraints on the conductivities.
For instance, systems with time reversal and reflection symmetry satisfy the Onsager
relations σ = σT , κ̄ = κ̄T , αT = ᾱ [124, 131, 135].

We will discuss the conductivities further in subsection 1.2.4.

Hydrodynamics

Let us now sketch the basic ideas of hydrodynamics. This is a huge subject with
a wide variety of applications, but here we only intend to introduce its philosophy;
some explicit expressions can be found in section 2.3, see also [136–140] for complete
discussions.

Hydrodynamics is a framework to describe QFTs as they approach equilibrium.
It involves a local thermal equilibration scale τeq, after which we assume that our

16An equivalent but more heuristic argument is the following: assuming that the momentum
carriers also carry U(1) charge, by boosting the system we can generate a non-trivial electric current
without the application of external electric source; then the definition (1.2.1) implies that the DC
conductivity diverges.
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system is described by a reduced set of dynamical degrees of freedom: instead of
the full stress-tensor T µν and U(1) current operator Jµ, we consider a set of local
fields including the temperature T (x), the normalised four-velocity uµ(x) and the
chemical potential µ(x)17. Generically, all other operators will relax within τeq, but
the conservation laws of T µν and Jµ (i.e. the Ward identities (1.1.30)) imply that
they will be relevant at long wavelengths and late times. So, this effective description
is expected to hold as long as the variation of the fields is slow compared to the local
thermal equilibration length leq ∼ T .

We can then expand T µν and Jµ in gradients of the thermodynamic variables,
resulting in the so-called “constitutive relations”, see equation (2.3.3). At zero order
we get an ideal fluid, involving thermodynamic quantities such as the energy ε, the
pressure P and the charge density ρ. At first order we get dissipation, and the
coefficients in the series expansion are various transport coefficients, such as the
“quantum critical” or “incoherent” conductivity σQ (we will discuss this quantity in
more detail in subsection 1.2.4 and chapter 4), and the shear and bulk viscosities
η and ζb, as in equation (2.3.3). These constitute the only information which is
determined by the underlying QFT within the framework of hydrodynamics.

The hydrodynamic modes of the system have a dispersion relation ω(k) such
that limk→0 ω(k) = 0, or, in other words, they are “gapless”. We can obtain these
modes by going to the linear response regime of hydrodynamics, i.e. linearising
the conservation equations around equilibrium (in which case we will also refer to
the latter as the “Navier-Stokes” equations with some abuse of terminology). For
example, in the case we are considering here where translations are preserved, there
is a transverse diffusive mode, a longitudinal diffusive mode [134], and a sound mode.
Additionally, one can compute the current-current retarded Green’s functions from
hydrodynamics using the Kadanoff-Martin method, see [137, 142] and appendix 2.B.

A milestone in the development of applied holography was achieved with the
realisation that this hydrodynamic derivative expansion can also be performed in
the dual gravity theory [143–145] (see also the reviews [138, 146, 147]). Roughly,
one can take the boosted black brane bulk solution and consider making some fields
space dependent. Then, one can demand that this is a solution of the bulk equations
of motion order by order in a long-wavelength expansion, and this reproduces the
constitutive relations and Navier-Stokes equations of the boundary theory. The bulk
theory also fixes the transport coefficients up to second order [143, 145, 148, 149].
Analogous results were also obtained for superfluids [150–152]. This “fluid/gravity”
correspondence leads to a novel perspective on the membrane paradigm: we are

17In the case of a superfluid (i.e. when the U(1) is spontaneously broken), one can use the
two-component formalism [141], which also includes the superfluid density ns and the superfluid
velocity vs (which is the gradient of the Goldstone boson), subject to the Josephson condition.
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instructed to think of the physical fluid membrane as living on the boundary of the
spacetime [153–155]. See also [156–160] for more work connecting gravity and fluid
dynamics.

Let us comment in passing that even though hydrodynamics is an old and well
studied subject, its derivation as an effective theory for generic QFTs in the spirit
of Wilsonian renormalisation is still lacking. Only recently there has been some
interesting progress in this direction, see [161–164].

Finally, we can also demand the existence of an entropy current JµS such that
the second law of thermodynamics would take the form ∇µJ

µ
S ≥ 0, and this imposes

constraints on the transport coefficients (for example η, ζb ≥ 0) [152, 165, 166]. The
entropy current is quite intriguing since it is not defined in the underlying QFT,
see [167] for a holographic definition using the fluid/gravity correspondence and
[168–170] for some progress in understanding its origins from the abovementioned
hydrodynamic effective actions.

Quasinormal modes

Black hole quasinormal modes are linearized perturbations of black hole backgrounds
obeying infalling conditions at the horizon and appropriate asymptotic boundary
conditions, depending on whether the solution is asymptotically flat, dS or AdS (see
the reviews [171, 172]). They are of astrophysical interest, since they describe the
long period of damped oscillations after perturbing a black hole. In case the black
hole is dynamically unstable, there will also be exponentially growing quasinormal
modes driving the system out of the perturbative regime, see also subsection 1.2.3
and chapter 3.

The discussion in subsection 1.1.3 suggests an elegant interpretation of quasinor-
mal modes with vanishing non-normalizable boundary conditions in asymptotically
AdS black hole backgrounds. By observing equation (1.1.46), we see that if we
impose that the boundary sources δϕB(0) induced by the perturbations δϕB vanish,
then the retarded Green’s function GAB will blow up. In other words, quasinormal
modes correspond to the location of the poles of the retarded Green’s functions of
the dual field theory. This profound connection was conjectured and formulated in a
series of papers, see [89, 173–176]. One can thus argue that quasinormal modes are
the closest analogues of quasiparticles in strongly coupled holographic field theories.

Generally, it is difficult to find quasinormal modes, even though a variety of
analytic and numerical techniques have been developed [171, 173, 177, 178]. However,
in simple, relativistically invariant cases they can be found analytically, and in the
zero wavelength k → 0 limit they typically lie in the “christmas-tree” formation in
the complex ω plane [175, 177–181]. As the temperature goes to zero T → 0, these
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poles coalesce to form branch cuts.
The modes which approach the origin ω → 0 as k → 0 correspond precisely to

the modes that we can study from hydrodynamics. They are much easier to obtain,
even analytically, than the rest of the “gapped” modes. This was done in AdS5×S5

and M-theory in the early days of applied AdS/CFT [88, 89, 182, 183], and there
have been many subsequent generalisations, see for example [85, 149, 176, 184–194]
and the short reviews [195, 196]. This allowed the determination of various transport
coefficients of the strongly coupled N = 4 plasma independently of the fluid/gravity
correspondence.

Arguably the most influential result was the computation of the shear viscosity
(which was also obtained using other methods in [197, 198] and recently in [199]). It
was shown that

η

s
= 1

4π , (1.2.5)

where s is the entropy density. Remarkably, this value is very close to the experi-
mentally determined value for the quark-gluon plasma [200], in contrast to the result
at weak coupling η/s � 1, and this is considered to be one of the most successful
“predictions” of AdS/CFT for applications to QCD [201]. The fact that quantum
corrections are positive, together with the universality of (1.2.5) [202–204], led to
the famous conjecture that 1/4π is a lower bound for η/s for every fluid in nature
(the “KSS bound”) [185, 198]. However, counterexamples have been found in higher
curvature bulk theories [205–207] and in anisotropic backgrounds [208, 209]18, see
[211] for a review of the relevant developments.

1.2.3 Symmetry breaking

Most of the progress in AdS/CMT that we reviewed so far was done in models which
preserve translational symmetry. However, real-life condensed matter systems typic-
ally break translations explicitly through a background lattice structure and through
impurities or quenched disorder [110], or they break translations spontaneously by
the formation of charge or spin density waves [212, 213]. In order to obtain more
realistic transport properties such as finite DC conductivities (see subsection 1.2.4),
it is then desirable to study holographic models which break translational invariance
(while preserving only a discrete subgroup to model the periodicity of the lattice).

Recall that in QFT, symmetries of the theory can be broken either spontaneously
or explicitly. Explicit breaking takes place when we introduce sources which do
not preserve the symmetry of the theory. For example, translations are broken

18However, the interpretation of the shear viscosity is more subtle when there is anisotropy [210].
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explicitly if we introduce a space dependent source J(x) coupling to the operator
O. Spontaneous breaking takes place when a state does not preserve the symmetry
of the theory, or in other words when an operator acquires a VEV which does not
preserve the symmetry. For example, translations are broken spontaneously if the
operator O has a spatially dependent VEV 〈O(x) 〉.

Explicit breaking of translational invariance

Within the framework of holography it is conceptually simple to study explicit
breaking of translational invariance: one needs to consider a background in which
the leading boundary behavior of the fields is not homogeneous. However, this
usually involves solving second PDEs in at least two variables, so we need to rely
on numerical methods [214, 215] to construct the background. The first significant
results were obtained by [216], in which the optical conductivity was also computed
in the backreacted geometry sourced by a periodic scalar field. Various subsequent
generalisations include [217–220].

Backgrounds which break translations explicitly are called “holographic lattices”.
They have led to a rich variety of ground states, moving beyond the classification
mentioned in subsection 1.1.3. Examining the IR behavior, the lattice can be relevant
or irrelevant with respect to an IR which preserves translations. In the latter case,
the horizon restores translational symmetry and one can study transport by using
perturbative techniques, while in the former case the backreaction of the lattice
leads to novel spatially modulated ground states. By varying the lattice strength,
metal-insulator transitions have been observed in various settings [221–228].

As already mentioned, there are a few QFT techniques which allow us to study
transport in strongly coupled systems without translations. There has been progress
in the weak momentum relaxation regime, in which momentum is almost conserved,
i.e. it decays over a large timescale τR. Perturbation theory in τ−1

R , sometimes in
conjuction with the memory matrix formalism or hydrodynamics has been used over
the past few years, and connections to holographic systems have been explored [117,
132, 135, 229–237]. Alternatively, one could modify the Ward identities by adding
a “phenomenological” momentum relaxation term, as in [132, 238]. Another fruitful
approach is the introduction of disorder by taking the momentum relaxing sources
to belong in some statistical ensemble. RG flows triggered by disorder have been
studied within holography [230, 239–242], and also purely in field theory [243–245].

Spontaneous breaking of translational invariance

The mechanism for breaking translations spontaneously is the same as the one
proposed in the seminal papers [246, 247] in the case of spontaneous breaking of a
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bulk U(1) gauge symmetry19. Using a charged scalar ψ in the bulk, they showed
that the “normal” or “disordered” phase with ψ = 0 was not thermodynamically
preferred below a critical temperature Tc. Instead, a solution with a normalisable
mode for ψ (the “broken” or “ordered” phase) had lower free energy below Tc, and
so the dual scalar operator O acquired a non-zero VEV 〈O 〉, breaking the bulk U(1)
by the Higgs mechanism. Such solutions are allowed because black holes in AdS
spacetimes evade the usual no-hair theorems [248].

The construction of holographic superconductors has been extended in various
ways [249–253]. The addition of more parameters in the system, such as a double
trace deformation [254, 255] or magnetic fields [256], leads to interesting phase
diagrams.

A good indication for the existence of a broken phase at low temperatures is the
identification of an unstable perturbative mode in the near horizon region. Heurist-
ically, this instability comes from the fact that, as mentioned in subsection 1.1.3, at
low enough temperatures the near horizon region approaches the form of AdS2×Rd,
see equation (1.1.41). Let us consider for simplicity a probe neutral20 scalar ϕ with
mass m in the near horizon region. It satisfies the wave equation

[
2AdS2 −m2

eff

]
ϕ = 0 , m2

eff = m2 + k2 d(d+ 1)e2

(d− 1)2µ2 , (1.2.6)

where meff is the effective mass of ϕ which depends on the momentum k2 ≡ kiki in
Rd (if the scalar was charged, meff would also receive negative contributions from
the gauge field). It is then possible that, for some range of momenta k2, the effective
mass meff of ϕ violates the near horizon BF bound (1.1.19), i.e. m2

effL
2
2 < −1/4,

even though m satisfies the AdSd+2 BF bound. We can see that this leads to a
dynamical instability by recalling that the scaling dimension ∆IR of the IR CFT
operator O dual to ϕ is given by

∆IR = 1
2 +

√
m2
effL

2
2 + 1

4 . (1.2.7)

A violation of the AdS2 BF bound results in a complex scaling dimension ∆IR and
this leads to the low energy retarded Green’s function containing poles in the upper
half complex frequency plane [71]. This signifies a dynamical instability.

The above analysis is valid in the zero temperature limit T → 0. By raising T ,

19In the boundary theory this corresponds to breaking a global U(1), so this mechanism describes
superfluids rather than superconductors. However, this distinction will not be important in the
following.

20This will not lead to a broken U(1) gauge symmetry, but it will still describe the holographic
mechanism for the condensation of a boundary operator.
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the black hole “swallows” the near horizon instability region21. Thus, there generally
exist unstable modes with a range of momenta k, bounded by a bell-shaped curve
in the T − k plane. The maximum of this curve is expected to correspond to the
critical temperature Tc and the periodicity kc of the backreacted broken phase. From
equation (1.2.6) we can see that in this simple example kc = 0. However we could
also have mixing of various modes, in which case equation (1.2.6) generalises to a
matrix equation. The eigenvalues of the mass matrix depend on the parameters of
the theory and of the background, and by varying the latter accordingly we may be
able to get instability curves with kc 6= 0. Then, the broken phases are expected
to exhibit spontaneous spatial modulation [259–261]. Such instabilities have been
observed in various settings, including cases with magnetic fields [256, 262–277].
Usually one needs to consider bulk actions with topological Chern-Simons or theta
terms, but even the EMD action (1.1.34) contains instabilities for some forms of the
functions V (φ) and Z(φ). Note that most of these are first order phase transitions.

Before closing this subsection, it is worth noting that there is an easier way
to obtain backgrounds which break translations explicitly or spontaneously using
helical lattices [261] or the Q-lattice construction of [278] (or the slightly simpler
linear axions models [279]). Specifically, in the latter case, a bulk global U(1)
symmetry is exploited in order to break translations only in the scalar sector; the
metric and the gauge field remain homogeneous22. This leads to ODEs instead of
PDEs, which are much easier to solve numerically. Finally, let us mention that
an alternative way to break translations is by using massive gravity in the bulk
[280–284].

1.2.4 Thermoelectric conductivities

Let us now give some more details about the thermoelectric conductivities (1.2.1),
which will play an instrumental role throughout this thesis.

All of the QFT techniques outlined previously lead to the following form for the
low frequency electric conductivity [132]:

σ(ω) = σQ + ρ2

ε+ P

1
τ−1
R − i ω

+ . . . , (1.2.8)

21Note however that there are can also be unstable modes which not localised near the horizon,
see [257, 258] and the discussion in chapter 3.

22As we mentioned in footnote 7, the bulk quantum gravity theory should not have global
symmetries. However, here we are taking the classical limit in the bulk, so it is possible that the
U(1) symmetry is broken by quantum effects. In a more phenomenological spirit, we can think of
our theory as a subsector of a larger theory which does not respect this symmetry [278]. This point
will not concern us further, but we note that it is an interesting open question whether it has any
meaning in the dual boundary theory.
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where τR is the momentum relaxation rate which is larger than any other scale,
and the dots denote corrections in ω and τ−1

R . The second term has the well known
kinetic theory Drude form, leading to the Drude peak at low frequencies. In contrast,
the Drude peak is absent in “incoherent” metals, i.e. strange metals with strong
momentum relaxation.

In general, it is a hard problem in condensed matter physics to calculate the AC
conductivity in systems without quasiparticles beyond the leading order Drude form.
However, using holography, the Drude peak (1.2.8) was reproduced and corrections
were calculated in simple systems [80, 133, 134, 223, 238, 278, 285, 286]. We will
not discuss the AC conductivities further, but let us mention that historically, [287]
sparked the community’s interest by proving the remarkable result that, in the
EMD theory (1.1.34) in 4 bulk dimensions, at finite temperature, the electric AC
conductivity is independent of ω and T :

σ = 1
e2 . (1.2.9)

This comes from electromagnetic duality in the bulk, which is related to particle-
vortex duality at the boundary. Later, [288] showed that higher derivative Weyl
curvature corrections, which spoil the duality, can give particle-like peak or vortex-
like dip, depending on the sign of the coupling.

We end the introduction by discussing the calculation of the thermoelectric
DC conductivities from black hole horizons. The idea originated from [85], which
considered translationally invariant, neutral systems and showed that the parts of
the current and the source relevant to the DC calculation are not renormalised as
we move from the boundary into the bulk. Thus, the electric DC conductivity σDC
was obtained as a horizon expression. Later, [222, 224, 289] noticed that even in
the Q-lattices, the thermoelectric conductivities (which are all finite) are given by
horizon expressions. The generalisation to systems with spatial modulation in one
dimension was done in [285], and finally the general formalism was laid out in [45,
290].

Let us review the main elements of this prescription; a sketch with explicit
expressions will also be given in appendix 3.C. The setup involves the EMD action and
a general ansatz describing a static, periodic, inhomogeneous black hole background,
see figure 1.1. One then considers a perturbation with a linear in time part which
introduces an electric field Ei and a thermal gradient ζi at the boundary, where i
runs over the spatial directions. In the bulk, one can define an electric current J i

and a 1-form Qi23. Expressing them in terms of the perturbations, it can be shown

23In [291] the “bulk heat current” was obtained for general bulk theories by doing a timelike
Kaluza-Klein reduction. An alternative viewpoint is to consider it as the Noether current associated
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0
r

∞
xi

J̄ i|∞
J̄ i(0)

Figure 1.1: The setup for the holographic calculation of the DC
conductivities in an inhomogeneous black hole background with
discrete lattice symmetry. The bulk radial coordinate goes from 0
at the horizon to∞ at the AdS boundary and the spatial coordinates
xi are periodic. The boundary electric current flux J̄ i|∞ in the i-
direction is equal to the horizon electric current flux J̄ i(0) in the
i-direction, and similarly for the heat current.

that they give the electric and heat currents, J i|∞ and Qi|∞, of the dual QFT. On
the horizon they reduce to what we define as the horizon electric and heat currents,
J i(0) and Qi

(0), see (3.C.2).
We can then evaluate the constraints (1.1.28) at the black hole horizon24. The

result is a closed system of Navier-Stokes equations (3.C.1), in terms of a subsector
of the bulk perturbations evaluated on the horizon and the DC sources Ei and ζi. By
solving this system we obtain the horizon currents J i(0) , Q

i
(0), and thus the current

fluxes J̄ i(0) ≡
∮
J i(0) , Q̄

i
(0) ≡

∮
Qi

(0) (by
∮
we denote the integral over a lattice cell),

in terms of Ei and ζi. By virtue of the bulk equations of motion, it can be shown
that J̄ i(0) , Q̄

i
(0) are equal to the boundary current fluxes J̄ i|∞ , Q̄i|∞, even though

the local currents generally disagree. The fluxes are precisely what is relevant for
transport and so, from the definition (1.2.1) we can calculate the thermoelectric DC
conductivities.

The previous results for the conductivities from the horizon were then under-
stood as special cases where the Navier-Stokes equations can be solved explicitly.
From this general result one can also obtain the weak momentum relaxation res-
ults by considering a weakly curved background. This prescription was extended

with the Killing vector ∂t of the static background, within the Wald formalism [67, 68], as was
done in [199, 292].

24See also the comments in footnote 9.



1.2. Applications 31

to backgrounds with magnetic fields [293] and to higher derivative bulk theories
[291]. Also, [294] considered the thermodynamic limit, in which the periodicity of
the background is small compared to the temperature. Up to the relevant order, the
horizon is effectively pushed closer to the boundary and thus even the local horizon
and boundary currents coincide. This then reproduces the results of the fluid/gravity
correspondence.



Chapter 2

Diffusion in inhomogeneous media

This chapter is a reproduction of [1], written in collaboration with Aristomenis Donos
and Jerome Gauntlett.

In this paper we study transport of conserved charges in inhomogeneous QFTs
with a discrete lattice symmetry. In view of applications to incoherent metals, we
make no reference to the strength of momentum relaxation or the strength of the
coupling. In this case, we expect that transport is dominated by the diffusion of con-
served charges. It is well known that the Einstein relation (see (2.1.1) below), which
relates the diffusion constant to the DC conductivity and the static susceptibility
has a wide range of applicability, from Brownian motion and lattice systems [110]
to neutral homogeneous QFTs [131] and simple holographic field theories [85, 185].
In this paper we addressed the question of whether and how it can also be extended
to spatially inhomogeneous quantum systems.

In section 2.2 we consider the retarded two point functions of the charges and
the associated currents. The discrete lattice symmetry implies that the correlators
depend on a continuous and a discrete wavevector. The continuous one can be
arbitrarily small and can describe “hydrodynamic” phenomena, on scales much
larger than the lattice scale. The non-trivial discrete wavevectors are parametrically
larger, so we focus on the “zero lattice modes” of the correlators. Indeed, we find
that these quantities are precisely what is relevant to transport, and much of the
technology for spatially homogeneous systems can also be developed for this case.
We are thus able to show the existence of a set of diffusive modes associated with the
charges. The dispersion relations of these modes are related to the eigenvalues of a
specific matrix constructed from the DC conductivities and certain thermodynamic
susceptibilities, thus obtaining generalised Einstein relations. In the course of the
proof, we assumed that a quantity constructed from the retarded two point functions
(2.2.43) does not have poles at the origin of the complex frequency plane. This
technical assumption is well motivated physically, since we expect that generic QFTs
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do not contain “accidentally” long-lived modes, not coming from a conservation law.
We also assumed that the DC conductivities are finite, which means that momentum
has to relax. Indeed, in the opposite case there is only one diffusive mode [134].

In section 2.3, we illustrate these general results in the specific context of re-
lativistic hydrodynamics where translation invariance is broken using spatially in-
homogeneous and periodic deformations of the stress tensor and the conserved U(1)
currents. Equivalently, this corresponds to considering hydrodynamics on a curved
manifold, with a spatially periodic metric and chemical potential. By performing a
specific long-wavelength expansion, we are able to explicitly construct the heat and
charge diffusive modes, and obtain their dispersion relations, confirming the results
of section 2.2. We also make contact with [231] by explaining the derivation of the
“reduced” hydrodynamic formalism without conserved momentum, used in order to
obtain the generalised Einstein relations.

2.1 Introduction

Motivated by various strongly correlated states of matter seen in Nature, there has
been a significant effort devoted to obtaining a deeper theoretical understanding
of thermoelectric transport. It has long been appreciated that it is necessary to
work within a framework in which momentum is not conserved. Indeed, for a
translationally invariant system in which momentum is exactly conserved, the AC
thermal response necessarily contains a delta function at zero frequency leading to
a non-physical infinite DC thermal conductivity. Thus, one is interested in setups
in which translation symmetry is explicitly broken.

In this paper we will present some general results for thermoelectric transport in
inhomogeneous systems. More precisely, we will consider general quantum systems,
with one or more conserved currents, with a discrete, spatial lattice symmetry. This
could describe, for example, a quantum field theory in which translation invariance
has been explicitly broken by deforming the theory with operators which have a
periodic dependence on the spatial coordinates.

Of central interest are the retarded Green’s functions for the current-current
correlators GJJ(t,x; t′x′). At the level of linear response these determine how the
currents respond after perturbing the system by a current source. Time translation
invariance implies that these Green’s functions only depend on t− t′ which allows us
to Fourier transform and obtain GJJ(ω,x,x′). In a translationally invariant setting
the Green’s functions would also only depend on x′−x and a Fourier transform leads
to a correlator depending on ω and a single wave-vector k. When translations are
broken, this is no longer possible but a discrete lattice symmetry allows us to define
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an infinite discrete set of correlators G({ni})
JJ (ω,k), where {ni} are a set of integers. We

will be particularly interested in studying the correlator GJJ(ω,k) ≡ G
({0})
JJ (ω,k).

Indeed this correlator, which satisfies a simple positivity condition, captures the
transport properties of the system at late times and for wavelengths much longer
than the scale of the lattice, and thus we might call GJJ(ω,k) a ‘hydrodynamic-mode
correlator’.

By generalising similar computations presented in [131] in the translationally
invariant setting, we will show that when the thermoelectric DC conductivity is
finite, subject to some analyticity assumptions, there is necessarily a diffusion pole
in the hydrodynamic mode correlator for ω, εk→ 0. If the system has just a single
conserved current then we explain precisely when we get a dispersion relation for
the diffusion pole of the form

ω = −iε2D(k) + . . . , D(k) = [σijDCkikj]χ(0)−1 , (2.1.1)

where σijDC is the DC conductivity and χ(k) is the charge susceptibility. This is our
first Einstein relation for inhomogeneous media.

When there are additional conserved currents, there will be additional diffusion
modes when the associated DC conductivities are finite. We analyse the dispersion
relations for the diffusion modes and show how they can be obtained from the
eigenvalues of a specific ‘generalised diffusion matrix’ that is constructed from the
DC conductivities and various thermodynamic susceptibilities. We emphasise that,
generically, the dispersion relations for the diffusion modes are not of the form (2.1.1)
and hence we refer to our result concerning the dispersion relation as a ‘generalised
Einstein relation’. This feature of diffusion modes was also emphasised in [231] within
a specific hydrodynamic setting, which we will return to later.

These results concerning hydrodynamic modes of the Green’s functions are very
general. However, motivated by recent experimental progress [295–297], there has
been considerable theoretical work using hydrodynamics to study thermoelectric
transport [134, 135, 231, 233, 234, 237, 238, 298–304] and it is therefore of interest to
see how our general results on diffusion manifest themselves in this particular context.
More specifically, we will study this within the context of relativistic hydrodynamics,
describing the hydrodynamic limit of a relativistic quantum field theory.

Within this hydrodynamic framework, we first need to consider how momentum
dissipation is to be incorporated. A standard approach is to modify, by hand, the
hydrodynamic equations of motion, i.e. the Ward identities of the underlying field
theory, by a phenomenological term that incorporates momentum dissipation (e.g.
[132, 142]). An alternative and more controlled approach is to maintain the Ward
identities, which are fundamental properties of the field theory, but to consider
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the field theory to be deformed by spatially dependent sources. In this spirit,
the hydrodynamic limit of a class of field theories which have been deformed by
certain scalar operators was analysed in [234]. Subsequently, the universal class of
deformations which involve adding spatially dependent sources for the stress tensor
were studied in [300]. Since the stress tensor of the field theory couples to the
spacetime metric, the deformations studied in [300] are equivalent to studying the
hydrodynamic limit of the quantum field theory on a curved spacetime manifold.
The spacetime metric is taken to have a time-like Killing vector in order to discuss
thermal equilibrium. Then, while spatial momentum will, generically, no longer
be conserved, energy still will be. It may be possible to experimentally realise the
deformations studied in [300] in real materials, such as strained graphene [305–307].

In this paper we extend the analysis of [300] to cover relativistic quantum field
theories which have a conserved U(1) symmetry1. As in [300] we can consider
the field theory to live on a static, curved manifold. Although not necessary, it
will be convenient to take the manifold to have planar topology and with a metric
that is periodic in the spatial directions. Within the hydrodynamic framework
we will also consider deformations that are associated with spatially dependent
sources for the U(1) symmetry. This is particularly interesting since it corresponds
to allowing for spatially dependent chemical potential or, equivalently, spatially
dependent charge density. One can anticipate that our results will be useful for
understanding thermoelectric transport in real systems, such as charged puddles,
with or without strain, in graphene [308–311] as also discussed in [304].

As an application of our formalism, we show how to construct long-wavelength,
late-time hydrodynamic modes that are associated with diffusion of both energy
and electric charge. We derive the dispersion relation for these modes and explicitly
obtain the generalised Einstein relations. It is worth noting that this result is
independent of the precise transport coefficients that enter the constitutive relations
in the conserved currents. We also note that a derivation of an Einstein relation for
the diffusion of electric charge in the context of hydrodynamics with vanishing local
charge density in one spatial direction was carried out in appendix A of [299] and
this is consistent with our more general analysis here.

1While writing up this work, ref. [304] appeared which also generalises [300] to include a
conserved U(1) charge and independently derived the hydrodynamic equations (2.3.23), for the
special case of no time dependence and for curved manifolds with a unit norm timelike Killing
vector (i.e. f = 1).
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2.2 Green’s function perspective

We begin our discussion with a general quantum system with a time independent
Hamiltonian H. We assume that there is a lattice symmetry group which acts on
the d spatial coordinates via x→ x + Lj and U−1

Lj A(t,x)ULj = A(t,x + Lj), where
A(t,x) is an arbitrary local operator. We assume that the Hamiltonian is invariant
under this symmetry and hence U−1

Lj HULj = H. We will also consider the system to
be at finite temperature T .

As usual, for two local operators A(t,x), B(t,x), the retarded two point functions
are defined through

GAB(t,x; t′,x′) = −iθ(t− t′) 〈 [A(t,x), B(t′,x′)] 〉 , (2.2.1)

with 〈A(t,x) 〉 = Tr (ρA(t,x)), where ρ = e−βH/Tr(e−βH) and β = 1/T . Using the
fact that A(t,x) = eitHA(0,x)e−itH and the lattice symmetry of H, we see that the
two point functions will satisfy

GAB(t,x; t′,x′) = GAB(t− t′,x; 0,x′) , (2.2.2)
GAB(t,x + Lj; t′,x′ + Lj) = GAB(t,x; t′,x′) . (2.2.3)

The symmetry (2.2.2) allows us to define a function with three arguments through
GAB(t− t′,x,x′) ≡ GAB(t,x; t′,x′).

We next recall that if we introduce a perturbative source term in the Hamiltonian
via

δH(t) =
∫
dx δhB(t,x)B(t,x) , (2.2.4)

then at the level of linear response, the change in the expectation values of an
arbitrary operator A is given by

δ〈A 〉(t,x) =
∫
dt′dx′GAB(t− t′,x,x′)δhB(t′,x′) . (2.2.5)

We note that the source, and hence the response, need not be a periodic function of
the spatial coordinates and indeed this will be case of most interest in the following.

To proceed we Fourier transform the Green’s function on all arguments and define

GAB(ω,k,k′) ≡
∫
dtdxdx′ eiωt−ikx+ik′x′

GAB(t,x,x′) . (2.2.6)

The discrete symmetry (2.2.3) implies that we can perform a crystallographic type
of decomposition to obtain

GAB(ω,k,k′) =
∑
{nj}

G
({nj})
AB (ω,k′) δ(k− k′ − nj kjL) , (2.2.7)
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where kjL are the reciprocal lattice vectors satisfying kiL · Lj = 2πδij and {nj} are
sets of integers. To see this, we simply notice that if we define the function

GAB(ω,x,k′) ≡
∫
dtdx′ eiωt+ik′x′

GAB(t,x,x′) , (2.2.8)

then the real space lattice symmetry (2.2.3) implies the periodicity condition

GAB(ω,x + Lj,k′) = eik′Lj GAB(ω,x,k′) , (2.2.9)

and hence we can deduce that e−ik′x GBB′(ω,x,k′) is periodic as a function of x.
This lets us write it as a discrete Fourier series, expressing

GAB(ω,x,k′) = 1
(2π)d e

ik′x ∑
{nj}

einjk
j
LxG

({nj})
AB (ω,k′) , (2.2.10)

and (2.2.7) follows.
In the sequel, we will be particularly interested in the zero modes, GAB(ω,k) ≡

G
({0})
AB (ω,k). These can easily be obtained by taking average spatial integrals over a

period of periodic functions. If we define
∮
≡ (∏Li)−1 ∫ {Li}

{0} dx then we have

GAB(ω,k) ≡ G
({0})
AB (ω,k) =

∮
dx
∫
dx′GAB(ω,x,x′)eik(x′−x) . (2.2.11)

From (2.2.6) we can also write

GAB(ω,k) = (N
∏
i

Li)−1GAB(ω,k,k) , (2.2.12)

where N is the total number of spatial periods in the system.
We next examine the positivity of the spectral weight of our operators. Working

in the interaction picture, the system absorbs energy at rate

d

dt
W (t) =

∫
dx δ〈B〉(t,x) d

dt
δhB(t,x) , (2.2.13)

where a summation over B is understood. Introducing the notation

δhB(t,x) = 1
(2π)d+1

∫
dωdk δhB(ω,k) e−iωt+ikx , (2.2.14)

we can show that the total energy absorbed by the system is

∆W =− 1
(2π)2d+1

∫
dωdkdk′δh∗B(ω,k)ω[ImG]BB′(ω,k,k′)δhB′(ω,k′) , (2.2.15)

where [ImG]AB(ω,k,k′) ≡ 1
2i [GAB(ω,k,k′)−G∗BA(ω,k′,k)]. To get to the last line

we used GAB(ω,k,k′) = GAB(−ω,−k,−k′)∗ (for real frequencies and wavevectors),
which follows from the reality of GAB(t,x,x′). Since δhB(ω,k) are arbitrary we
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deduce that −ω[ImG]AB(ω,k,k′) is a positive semi-definite matrix, with matrix
indices including both the operator labels as well as the wavevectors. Since the
block diagonal elements of a positive semi-definite matrix are positive semi-definite,
using (2.2.12) we can conclude that the zero modes −ωImGAB(ω,k) are positive
semi-definite. In particular we have

−ωImGAA(ω,k) ≥ 0 , (2.2.16)

with no sum on A. The positive semi-definite aspect of −ω[ImG]AB(ω,k,k′) also
gives rise to additional conditions for the G({nj})

AB (ω,k), with {nj} 6= {0}.
To conclude this subsection we examine how the Green’s functions behave under

time reversal invariance. For simplicity we will assume that the periodic system is
invariant under time reversal. Recall that this acts on local operators according to
T A(t,x)T−1 = εAA(−t,x), where εA = ±1. Since T is an anti-unitary operator we
can deduce that GAB(t,x,x′) = εAεB GBA(t,x′,x). Thus, we have GAB(ω,k,k′) =
εAεB GBA(ω,−k′,−k) and hence

G
({nj})
AB (ω,k) = εA εB G

({nj})
BA (ω,−k− nlklL) . (2.2.17)

Returning to the linear response given in (2.2.5), after taking suitable Fourier
transforms we can write

δ〈A 〉(ω,x) = 1
(2π)2d

∫
dk

∑
{nj}

ei(k+nj kjL)xG
({nj})
AB (ω,k)δhB(ω,k) . (2.2.18)

If we consider a source which contains a single spatial Fourier mode δhB(t,x) =
eiksxδhB(t), then we have

δ〈A 〉(ω,x) = eiksx
∑
{nj}

1
(2π)d e

inj kjLxG
({nj})
AB (ω,ks)δhB(ω) ,

≡ eiksx
∑
{nj}

einjk
j
Lx δ〈A 〉({nj})(ω,k) . (2.2.19)

Notice, in particular, that the zero mode in the summation is fixed by the zero mode
of the Green’s function: δ〈A 〉({0})(ω,k) = (2π)−dGAB(ω,ks)δhB(ω).

In the next sub-sections we will take A and B to be components of conserved
currents. In this context the zero-mode correlator GAB(ω,k) captures transport of
the associated hydrodynamic modes and hence one can call it a ‘hydrodynamic-mode
correlator’.
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2.2.1 Einstein relation for a single current

We now consider the operator A to be a current density2 operator Jµ, which satisfies
a continuity equation of the form ∂µJ

µ = 0. From the definition (2.2.6) we have

−iω GJtB(ω,k,k′) + ikiGJiB(ω,k,k′) = 0 , (2.2.20)

for any operator B, whose equal time commutator with J t vanishes. Using the
crystallographic decomposition (2.2.7) in (2.2.20) we then have

−iω G({nj})
JtB (ω,k) + i

(
k + njkjL

)
i
G

({nj})
JiB (ω,k) = 0 . (2.2.21)

We now3 focus on the hydrodynamic-mode correlators with {nj} = 0, which
satisfy a positivity property discussed just above (2.2.16). Using (2.2.21) twice, we
have

−iω GJtJt(ω,k) + ikiGJiJt(ω,k) =0 ,
−iω GJtJj(ω,k) + ikiGJiJj(ω,k) =0 . (2.2.22)

We next consider the time reversal invariance conditions (2.2.17) with {nj} = 0.
Since εJt = +1 and εJi = −1, we obtain

GJiJt(ω,k) = −GJtJi(ω,−k) ,
GJiJj(ω,k) = GJjJi(ω,−k) . (2.2.23)

Combing (2.2.23) with (2.2.22) we therefore have the key result

1
iω

kikj GJiJj(ω,k) = −iω GJtJt(ω,k) . (2.2.24)

In general, taking the ω → 0 limit of the correlator GAB(ω,k) gives rise to a
static, thermodynamic susceptibility. It will be useful to write

− lim
ω→0+i0

GJtJt(ω,k) ≡ χ(k) , (2.2.25)

where χ(k) is a charge-charge susceptibility (the sign here is explained in appendix
2.A). Note that (2.2.24) implies

lim
ω→0+i0

1
ω2 kikj GJiJj(ω,k) = −χ(k) , (2.2.26)

and in particular, the longitudinal part of the current-current susceptibility vanishes,

2In this section we find it convenient to work with current vector densities. In section 2.3 we
will work with current vectors. We also note that as our analysis will focus on two-point functions
of the current, we only require that the current to be conserved at the linearised level.

3We have also presented some more general results in appendix 2.A.
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limω→0+i0 kikjGJiJj(ω,k) = 0, provided that χ(k) is finite4, which we will assume.
In order to focus on studying the response to long wavelength sources, it will be

convenient to now rescale the wave-number k by ε and write (2.2.24) in the form

1
iω

kikj GJiJj(ω, εk) = −iω
ε2 GJtJt(ω, εk) . (2.2.27)

We next note that the AC conductivity matrix is defined by taking the following
limit of the transport correlators

σij(ω) = − lim
ε→0

1
iω
GJiJj(ω, εk) . (2.2.28)

Notice from the discussion above (2.2.16) that the real part of σij(ω) is a positive
semi-definite matrix. In general, the AC conductivity is a finite quantity for ω 6= 0.
On the other hand, the DC conductivity, defined by σijDC ≡ limω→0 σ(ω), is not
necessarily finite. For example, if the system is translationally invariant or if the
breaking of translation invariance has arisen spontaneously, or more generally if
there are Goldstone modes present, generically the DC conductivity will be infinite,
or more precisely there will be a delta function on the AC conductivity at ω = 0.
By taking the limit ε→ 0 in (2.2.27) we have

kikj σij(ω) = iω lim
ε→0

1
ε2 GJtJt(ω, εk) . (2.2.29)

Thus when the DC conductivity is finite, the function GJtJt(ω, εk)/ε2 must have a
pole at ω = 0 after taking the ε→ 0 limit. Note that (2.2.25) shows that before the
limit is taken this pole is absent (provided that χ(k) is finite).

To make further progress, it is helpful to write

GJtJt(ω, εk)χ(εk)−1 = −N(ω, εk)
−iω +N(ω, εk) , (2.2.30)

where we have defined the quantity

N(ω, εk) = GJtJt(ω, εk)
1
iω

(GJtJt(ω, εk) + χ(εk)) . (2.2.31)

We can now prove thatN(ω, εk) is an analytic function of ω provided that Im(ω) 6= 0.
Firstly, any poles in the numerator GJtJt(ω, εk), which can only occur in the lower
half plane, will cancel out with those in the denominator. We thus need to check
whether or not the denominator in (2.2.31) can vanish for Im(ω) 6= 0. That this

4Note that for a superfluid one can have χ(k) diverging at k→ 0.
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cannot occur can be seen by writing

1
iω

(GJtJt(ω, εk) + χ(εk)) =
∫
C1

dω′

iπ

ImGJtJt(ω′, εk)
ω′(ω′ − ω) , (2.2.32)

where C1 is a contour that skirts just under the real axis. Then writing ω = x+ iy,
with y 6= 0, we can show that the real part of the integral is non-vanishing after
using the fact that ImGJtJt(ω′, εk)/ω′ ≤ 0, which we showed in (2.2.16). We now
return to (2.2.29), from which we deduce that, for fixed ω, as ε→ 0, we can expand

N = ε2 kikj σij(ω)
χ(0) + . . . , (2.2.33)

with the neglected terms going to zero with a higher power of ε.
We are now in a position to discuss the poles of GJtJt(ω, εk) that appear at the

‘origin’, by which we mean when both ω → 0 and ε → 0. The simplest possibility
is if N(ω, εk) does not have any poles (or branch cuts) at ω = 0. In this case, we
see that when the DC conductivity matrix is finite, GJtJt will have a single diffusion
pole with dispersion relation

ω = −iε2D(k) + . . . , D(k) = [σijDCkikj]χ(0)−1 , (2.2.34)

and the neglected terms are higher order in ε. This is our first result on Einstein
relations for inhomogeneous media.

It is important to emphasise that is not the only possibility. Indeed, as we discuss
in the next subsection, there are additional poles when there are additional conserved
currents. If, for example, we suppose that there are two conserved currents in total
then a second diffusion pole can appear in GJtJt(ω, εk). To illustrate this situation
schematically, consider the behaviour of the following function for ω, εk→ 0,

ε2
(

A

−iω + ε2a
+ B

−iω + ε2b

)
∼ ε2(A+B)
−iω + ε2

(
aA+bB
A+B − i

AB(a−b)2

(A+B)2
ε2

ω
+O( ε2

ω
)2
) .
(2.2.35)

corresponding to the function N(ω, εk) having additional singularities at ω → 0.
Another interesting situation in which additional poles will appear is in the presence
of Goldstone modes arising from broken symmetries. Additional general statements
can be made using the memory matrix formalism, generalising the discussion in
[131].

Returning now to the case in which there is just a single conserved current with
a single diffusion pole then a natural phenomenological expression for the Green’s
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function is given near the origin, (ω, εk)→ 0, by

GJtJt(ω, εk) ∼ −D(ω, εk)
−iω +D(ω, εk)χ(εk) , (2.2.36)

with D(ω, εk) ∼ ε2 kikj σij(ω)
χ(εk) . It is interesting to note that if, by contrast, we are in

the context of infinite DC conductivity with σij(ω) ∼ Kij
(
i
ω

+ π δ(ω)
)
for small ω,

where Kij is constant, then (2.2.36) gives rise to sound modes for the current density
J t, with dispersion relation ω± = ±ε

√
Kij kikj/χ(εk). The transition between

diffusion modes and sound modes was also discussed in a homogeneous hydrodynamic
setting, with a phenomenological term to relax momentum, in [238].

To conclude this subsection, we briefly note that we can carry out a similar
analysis for the higher Fourier modes of the current-current correlators. Starting
with (2.2.21), the analogue of (2.2.27) is

1
iω

(k + nrkrL)i kj G({nl})
JiAJ

j
B

(ω,k) = −iω G({nl})
JtAJ

t
B

(ω,k) , (2.2.37)

and this leads, mutatis-mutandis, to additional relations concerning the poles of
G

({nl})
JtAJ

t
B

(ω,k), which would be interesting to explore in more detail. We note however,
that for {nl} 6= 0, there is no longer a simple statement concerning the positivity of
ImG

({nl})
JtAJ

t
B

(ω,k)/ω, which was used in the above. We also point out that within a
holographic context and for a specific gravitational model, some of the G({nl})

JiAJ
j
B

(ω,k)
were calculated in [285].

2.2.2 Generalised Einstein relations for multiple currents

We now assume that we have multiple conserved currents JµA. For example, one
could have both a conserved heat current and a conserved U(1) current. Much
of the analysis that we carried out for the case of a single current goes through
straightforwardly and we obtain

1
iω

kikj GJiAJ
j
B

(ω, εk) = −iω
ε2 GJtAJ

t
B

(ω, εk) . (2.2.38)

We write the charge susceptibilities and the AC conductivity via

χAB(εk) = − lim
ω→0+i0

GJtAJ
t
B

(ω, εk) ,

σijAB(ω) = − lim
ε→0

1
iω
GJiAJ

j
B

(ω, εk) , (2.2.39)

respectively, and we now have

kikj σijAB(ω) = iω lim
ε→0

1
ε2 GJtAJ

t
B

(ω, εk) . (2.2.40)
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Generically this shows that for finite DC conductivities there will be at least as many
poles in the transport current correlators as there are currents.

Proceeding much as before we write

G(ω, εk)χ(εk)−1 = − [−iω + N(ω, εk)]−1 N(ω, εk) , (2.2.41)

where G(ω, εk)AB ≡ GJtAJ
t
B

(ω, εk) and

N(ω, εk) ≡ G(ω, εk)
[ 1
iω

(G(ω, εk) + χ(εk))
]−1

. (2.2.42)

We can again argue that N(ω, εk) can only have poles on the real ω axis. From
(2.2.40) we deduce that for fixed ω, as ε→ 0, we can expand

N(ω, εk) = ε2Σ(ω,k)χ(εk)−1 , (2.2.43)

where Σ(ω,k)AB = kikj σijAB(ω) and the neglected terms go to zero with a higher
power of ε.

If we now assume that N(ω, εk) doesn’t have any poles at ω = 0, then we can
conclude that at the origin, i.e. when both ω → 0 and ε→ 0, if the DC conductivities
are finite then the diffusion poles of the system are located at

ωA(k) = −iDA(k) ε2 + · · · , (2.2.44)

where DA(k) are the eigenvalues of what can be called the ‘generalised diffusion
matrix’ D(k) defined by

D(k) = Σ(0,k)χ(0)−1 , (2.2.45)

and the dots involve higher order corrections in ε. In particular when the DC
conductivities are finite, the number of diffusion poles is the same as the number of
conserved currents.

Furthermore, we emphasise that when there is more than one conserved current,
generically, these diffusion modes do not satisfy a dispersion relation of the form
ω ∼ −iε2Σijk

ikj, with the matrix Σij a component of the DC conductivities. As a
consequence we refer to our result (2.2.44),(2.2.45) as a ‘generalised Einstein relation’.

We conclude this section by noting that the general result (2.2.44), (2.2.45)
relates thermodynamic instabilities to dynamic instabilities. Suppose that the system
has a static susceptibility matrix χ(0) with a negative eigenvalue and hence is
thermodynamically unstable. Then (2.2.45) implies that D(k) will have a negative
eigenvalue, for small k, and hence, from (2.2.44) we deduce that there will be a
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diffusion pole in the upper half plane leading to a dynamical instability5.

2.3 Diffusion in relativistic hydrodynamics

We now discuss thermoelectric transport within the context of relativistic hydro-
dynamics. As well as generalising the work of [300] to include a conserved U(1)
charge (as also studied in [304]), we will also be able to use the formalism to il-
lustrate the results of the previous section. In particular, associated with the heat
current and the U(1) current we construct two diffusion modes with dispersion re-
lations satisfying the generalised Einstein relation (2.2.44). We note that it will be
convenient to use a slightly different notation in this section, which implies that a
little care is required in directly comparing with the last section.

2.3.1 General setup

We will consider an arbitrary relativistic quantum field theory with a global U(1)
symmetry in d ≥ 2 spacetime dimensions. The field theory is defined on a static,
curved manifold, with metric gµν , and a non-zero background gauge-field, Aµ, of the
form:

ds2 = −f 2(x)dt2 + hij(x)dxidxj ,
At = at(x) . (2.3.1)

This corresponds to studying the field theory with f 2 and hij parametrising sources
for the stress tensor components T tt and T ij, respectively, and at parametrising a
source for the J t component of the conserved U(1) current. We focus on cases in
which the manifold has planar topology, with the globally defined spatial coordinates
xi parametrising Rd−1, and f , hij,at all depending periodically on xi, with period
Li.

We will study the field theory at finite temperature in the hydrodynamic limit
keeping the leading order viscous terms. In particular, we will consider temperatures6

that are much greater than the largest wave-number that appears in the background
fields in (2.3.1). The Ward identities are given by

DµT
µν = F νλJλ , DµJ

µ = 0 , (2.3.2)

where Dµ is the covariant derivative with respect to gµν and Fµν = 2∂[µAν]. For

5An explicit example of such a dynamic instability can be seen using the results of appendix
2.B.

6This temperature is the same as what is denoted as T̄0 below.
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the special case of conformal field theory, we should also impose T µµ = 0 and this
implies, amongst other things, that in (2.3.3) ζb = 0 and ε = (d− 1)P .

The hydrodynamic variables are the local temperature, T (x), the local chemical
potential, µ(x), and the fluid velocity, uµ, with uµuνgµν = −1. As in [165], the
constitutive relations are given, in the Landau frame, by7

Tµν =Pgµν + (P + ε)uµuν − 2η
(
D(µuν) + uρu(µD

ρuν) − (gµν + uµuν)
Dρu

ρ

d− 1

)
− ζb(gµν + uµuν)Dρu

ρ ,

Jµ =ρuµ + σQ

(
F µνuν − T (gµν + uµuν)Dν

(
µ

T

))
, (2.3.3)

where P is the pressure density, ε is the energy density and ρ is the U(1) charge
density. The dissipative terms in (2.3.3) are the shear viscosity, η, the bulk viscosity,
ζb and the conductivity, σQ, which should not be confused with the electrical DC
conductivity, σDC , which we discuss later. We also have the local thermodynamic
relation and first law which take the form

P + ε = sT + µρ, dP = sdT + ρdµ , (2.3.4)

where s is the entropy density. It will also be helpful to introduce the susceptibilities
cµ, ξ and χ via

ds = T−1cµ dT + ξ dµ , dρ = ξ dT + χdµ . (2.3.5)

For any vector k, the Ward identities imply

Dµ[(T µν + JµAν)kν ] = 1
2LkgµνT

µν + LkAµJµ , (2.3.6)

where Lk is the Lie derivative. Taking k = ∂t we define the heat current as

Qµ = −(T µt + AtJ
µ) , (2.3.7)

which is conserved for stationary metrics with LkAν = 0. Thus, given such back-
ground metrics and gauge fields, for time independent configurations we therefore
have ∂i(

√
−g Qi) = ∂i(

√
−g J i) = 0.

In thermal equilibrium the fluid configuration is given by

ut = −f(x) , ui = 0 , T = T0(x) , µ = µ0(x) , (2.3.8)

where T0(x) and µ0(x) are periodic functions, and from (2.3.4) we have the equilib-

7Following [165], we have set to zero two other terms in Jµ that are allowed by Lorentz invariance
but are not consistent with positivity of entropy and thermodynamics with external sources.
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rium relations

P0 + ε0 = s0T0 + µ0ρ0, ∂iP0 = s0∂iT0 + ρ0∂iµ0 . (2.3.9)

For later use, we note that we also have

∇is0 = T−1
0 cµ0∇iT0 + ξ0∇iµ0 , ∇iρ0 = ξ0∇iT0 + χ0∇iµ0 . (2.3.10)

By calculating T µν , Jµ one can show that the Ward identities are satisfied provided
that

T0 = f−1T̄0 , µ0 = f−1at , (2.3.11)

where T̄0 is constant. Note, in particular, that in thermal equilibrium the local
hydrodynamic variable T0 is not constant when f is not constant and, furthermore,
there is a factor of f that appears in the relationship between µ0 and the background
gauge field. We also note that we have set a possible integration constant to zero in
the second expression as we want µ0 to vanish when at does. Finally it will be helpful
to define the zero mode of at via µ̄0 ≡

∮
at, where we are again using the notation∮

≡ (L1 · · ·Ld)−1 ∫ {Li}
{0} dx1 · · · dxd. This allows us to write µ0 = f−1(µ̄0 + ãt(x)), with∮

ãt = 0.
The non-vanishing components of the stress tensor and current for this equilib-

rium configuration are then given by

Ttt = ε0f
2, Tij = P0hij, J t = ρ0f

−1 . (2.3.12)

In particular for the backgrounds we are considering, in thermal equilibrium both
the electric and the heat currents vanish: J i = Qi = 0. Note, since (2.3.1) provides
a source for the energy and the charge, we can immediately deduce that the charge-
current susceptibilities must vanish. The total energy and charge of the equilibrium
configuration are defined by

εtot = −
∮ √
−gT tt =

∮ √
hfε0 ,

ρtot =
∮ √
−gJ t =

∮ √
hρ0 . (2.3.13)

We can also define the total equilibrium entropy as

stot =
∮ √

hs0 . (2.3.14)

For later use, using the fact that s0 is a function of T0 and µ0, we observe that for
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suitable zero modes of the charge susceptibilities we have

∂stot

∂T̄0
=
∮ √

hf−1T−1
0 cµ0 ,

∂stot
∂µ̄0

=
∮ √

hf−1ξ0 . (2.3.15)

Similarly, we also have

∂ρtot

∂T̄0
=
∮ √

hf−1ξ0 ,
∂ρtot
∂µ̄0

=
∮ √

hf−1χ0 . (2.3.16)

2.3.2 Generalised Navier-Stokes equations

In the following we want to study the behaviour of small perturbations about the
equilibrium configuration, including the possibility of adding external, perturbat-
ive thermal gradient and electric field sources. Following [300] we will do this by
considering

ds2 = −f 2(1− 2φT ) dt2 + hijdx
idxj ,

At = at − fµ0φT + φE , (2.3.17)

along with

ut = −f(1− φT ) , ui = δui ,

T = T0 + δT , µ = µ0 + δµ . (2.3.18)

Here φT , φE, δui, δT and δµ are all functions of (t, xi). Note that these need not be
periodic functions of the spatial coordinates. For later use, we also define the spatial
components of the external sources ζi, Ei via

ζi = ∂iφT , Ei = ∂iφE . (2.3.19)

At linearised order, the perturbed stress tensor and U(1) current can then be
written as

Ttt = ε0f
2(1− 2φT ) + δε f 2 ,

Tti = −f(P0 + ε0)δui ,

Tij = (P0 + δP )hij − 2η0f
−1
(
∇(i

(
fδuj)

)
− hij

(d− 1)∇k

(
fδuk

))
− ζb0hijf−1∇k

(
fδuk

)
,

J t = ρ0f
−1(1 + φT ) + f−1δρ ,

J i = ρ0δu
i + σQ0f

−1
[
Ei −∇i (fδµ)− fµ0ζ

i + µ0T
−1
0 ∇i (fδT )

]
, (2.3.20)

where ∇i is the covariant derivative with respect to the metric hij, which is also
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used to raise and lower indices. The Ward identities (2.3.2) give

∂tδρ+∇i

(
fJ i

)
= 0 ,

f∂tδε+∇i

(
f 2(P0 + ε0)δui

)
− fJ i∇iat = 0 ,

f−1(P0 + ε0)∂tδuj − 2f−1∇i
(
η0∇(i

(
fδuj)

))
+ f−1∇j

((
2η0

(d− 1) − ζb0
)
∇k

(
fδuk

))
= −∇jδP − (δε+ δP )f−1∇jf + (P0 + ε0)ζj + ρ0(f−1Ej − µ0ζj) + f−1δρ∇jat ,

(2.3.21)

In the case when there is no U(1) charge this agrees with the expression derived
in equation (A.10) of [300]. These expressions can be further simplified. We use
(2.3.11) as well as

δP = s0δT + ρ0δµ , δε = T0δs+ µ0δρ ,

δs = T−1
0 cµ0 δT + ξ0 δµ, δρ = ξ0 δT + χ0 δµ , (2.3.22)

which we obtain from (2.3.4),(2.3.5). After also using (2.3.10) we eventually find
that we can rewrite the system (2.3.21) in the following form, which is the key result
of this section,

ξ0∂tδT + χ0∂tδµ+∇i

(
fJ i

)
= 0 ,

fcµ0∂tδT + fT0ξ0∂tδµ+∇i

(
fQi

)
= 0 ,

(P0 + ε0)∂tδuj − 2∇i
(
η0∇(i

(
fδuj)

))
+∇j

((
2η0

(d− 1) − ζb0
)
∇k

(
fδuk

))
=

ρ0 [Ej −∇j (fδµ)] + fT0s0
[
ζj − (fT0)−1∇j (fδT )

]
,

(2.3.23)

with

J i = ρ0δu
i + σQ0f

−1
[
Ei −∇i (fδµ)

]
− σQ0µ0

[
ζ i − (fT0)−1∇i (fδT )

]
,

Qi = f(P0 + ε0)δui − fµ0J
i . (2.3.24)

Notice that the first two lines in (2.3.23) are just current conservation equations for
the linearised perturbation. We emphasise that all background equilibrium quantities,
marked with a 0 subscript, are all periodic functions of the spatial coordinates. It
is interesting to note that the system of equations (2.3.23) is invariant under the
interchange

Ej ↔ −∇j (fδµ) , ζj ↔ −f−1T−1
0 ∇j (fδT ) . (2.3.25)
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Finally, for later use, we note that when the sources are set to zero, φT = φE = 0,
we have for the total charges∮ √

−gJ t =
∮ √

hρ0 +
∮ √

hδρ ,∮ √
−gQt =

∮ √
hf(ε0 − µ0ρ0) + T̄0

∮ √
hδs . (2.3.26)

2.3.3 Thermoelectric DC conductivity

We now explain how we can obtain the thermoelectric DC conductivity, generalising
[300]. We begin by considering the sources φT and φE to have space and time
dependence of the form e−iωteikix

i , where ki is an arbitrary wave number. After
solving (2.3.23) for δuj, δµ, δT one obtains the local currents J i Qi, and hence the
current fluxes J̄ i Q̄i, as functions of Ei and ζi. To obtain the thermoelectric DC
conductivity we should then take the limit ki → 0, followed by ω → 0.

By considering approximating eikixi ∼ 1 + ikix
i we are prompted8 to consider a

time-independent source of the form

φT = xiζ̄i, φE = xiĒi , (2.3.27)

where ζ̄i, Ēi are constants and hence Ei = Ēi, ζi = ζ̄i. After substituting into (2.3.32)
we obtain the system9

∇i

(
fJ i

)
= 0 , ∇i

(
fQi

)
= 0 ,

−2∇i
(
η0∇(i

(
fδuj)

))
+∇j

((
2η0

(d− 1) − ζb0
)
∇k

(
fδuk

))
=

ρ0Ēj − ρ0∇j (fδµ) + fs0T0ζ̄j − s0∇j (fδT ) .

(2.3.28)

After solving these equations we obtain the local time-independent, steady state
currents J i(x) Qi(x), periodic in the spatial coordinates, as functions of ζ̄i, Ēi. We
can now define the heat and charge current fluxes via

Q̄i ≡
∮ √
−gQi =

∮ √
hfQi , J̄ i ≡

∮ √
−gJ i =

∮ √
hfJ i , (2.3.29)

8An alternative procedure is to consider sources that are linear in time, as explained in a
holographic context in [222, 289].

9In the special case of conformal field theories, similar equations were obtained in a holographic
context in [290]. The equations differ when there is a U(1) symmetry due to a difference in the
expression for Qi in (2.3.24). The equations should agree in the hydrodynamic limit, after a possible
change of frame and/or incorporating higher order terms in the hydrodynamic expansion, and it
would be interesting to investigate this in more detail.
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and the DC conductivities are obtained from J̄ i

Q̄i

 =
 σijDC T̄0α

ij
DC

T̄0ᾱ
ij
DC T̄0κ̄

ij
DC

 Ēj

ζ̄j

 . (2.3.30)

Since we are considering backgrounds which preserve time reversal invariance the
Onsager relations imply that σDC and κ̄DC are symmetric matrices and αTDC = ᾱDC .

2.3.4 Diffusive modes

We now discuss how we can construct a perturbative diffusive solution of the system
of equations (2.3.23) that is associated with diffusion modes. Our objective will be
to extract the associated dispersion relations for these modes.

We first set the source terms in (2.3.23) to zero: Ei = ζi = 0. We will allow for
a time-dependence of the form e−iωt and consider the expansion

ω =
∞∑
α=1

εαω(α) , (2.3.31)

with ε � 1. Since we are interested in wavelengths that are much larger than the
periods, Li, of the background fields in (2.3.1), we introduce arbitrary wave numbers
ki and consider

δT = e−iωteiεkix
i
∞∑
α=0

εαδT (α)(x) , δµ = e−iωteiεkix
i
∞∑
α=0

εαδµ(α)(x) ,

δui = e−iωteiεkix
i
∞∑
α=0

εαδu
(α)
i (x) , (2.3.32)

with the functions inside the summations taken to be periodic in the xi, with period
Li.

We next note that the system of equations (2.3.23) (with Ei = ζ i = 0) admit the
simple time-independent solution with f δT , f δµ both constant and δui = 0. Indeed,
from (2.3.11) this corresponds to simply perturbing the parameters of the thermal
equilibrium configuration. The diffusive modes are constructed as a perturbation of
this time-independent solution by using the expansions (2.3.31), (2.3.32) and taking

f δT (0) = constant, f δµ(0) = constant, δu
(0)
i = 0 , (2.3.33)

as the zeroth order solution. We immediately see that the associated expansion for
J i and Qi can be written as

J i = e−iωteiεkix
i
∞∑
α=1

εαJ i(α)(x) , Qi = e−iωteiεkix
i
∞∑
α=1

εαQi(α)(x) . (2.3.34)
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At leading order in ε, the first two equations of (2.3.23) then read

−iω(1)ξ0δT
(0) − iω(1)χ0δµ

(0) +∇i

(
fJ i(1)

)
= 0 ,

−iω(1)cµ0fδT
(0) − iω(1)T0ξ0fδµ

(0) +∇i

(
fQi(1)

)
= 0 . (2.3.35)

Integrating equations (2.3.35) over a period we obtain

iω(1)
∮ √

h
(
ξ0 δT

(0) + χ0 δµ
(0)
)

= 0 ,

iω(1)
∮ √

hf
(
cµ0 δT

(0) + T0ξ0 δµ
(0)
)

= 0 . (2.3.36)

Assuming thermodynamically stable matter, the matrix of static susceptibilities,
whose components appear in (2.3.36), is positive definite and these equations can
only be satisfied by setting ω(1) = 0. The leading order system (2.3.23) then becomes

∇i

(
fJ i(1)

)
= 0 , ∇i

(
fQi(1)

)
= 0 ,

−2∇i
(
η0∇(i

(
fδu

(1)
j)

))
+∇j

((
2η0

(d− 1) − ζb0
)
∇k

(
fδuk(1)

))
=

−iρ0kjfδµ
(0) − ρ0∇j

(
fδµ(1)

)
− is0kjfδT

(0) − s0∇j

(
fδT (1)

)
. (2.3.37)

with

J i(1) = ρ0δu
i(1) + σQ0f

−1
[
−∇i

(
fδµ(1)

)]
− σQ0µ0

[
−(fT0)−1∇i

(
fδT (1)

)]
,

Qi(1) = f(P0 + ε0)δui(1) − fµ0J
i(1) . (2.3.38)

Notice that this system is equivalent to the system of equations (2.3.28) that ap-
peared for the calculation of the thermoelectric DC conductivity if we identify
Ēi ↔ −ikifδµ(0), ζ̄i ↔ −ikjT−1

0 δT (0) and note that the quantities on the right hand
sides of these expressions are indeed constant. Thus, we can express the heat current
fluxes J̄ i(1) and Q̄i(1) in terms of −ikifδµ(0), −ikjT−1

0 δT (0) using the thermoelectric
DC conductivity matrix given in (2.3.30) to get

J̄ i(1) ≡
∮ √

hfJ i(1) = −iσijDCkj fδµ(0) − iαijDCkj fδT (0) ,

Q̄i(1) ≡
∮ √

hfQi(1) = −iT̄0α
ij
DCkj fδµ

(0) − iκ̄ijDCkj fδT (0) . (2.3.39)

Continuing the expansion, we next examine the first two equations of (2.3.23) at
second order in ε to find

−iω(2)ξ0δT
(0) − iω(2)χ0δµ

(0) + ikifJ
i(1) +∇i

(
fJ i(2)

)
= 0 ,

−iω(2)cµ0fδT
(0) − iω(2)T0ξ0fδµ

(0) + ikifQ
i(1) +∇i

(
fQi(2)

)
= 0 . (2.3.40)

Integrating these two equations over a period, substituting the expression for the
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DC conductivity and using (2.3.15),(2.3.16) we now deduce

iω(2)
(
∂ρtot

∂T̄0
fδT (0) + ∂ρtot

∂µ̄0
fδµ(0)

)
− αijDCkikj fδT (0) − σijDCkikj fδµ(0) =0 ,

iω(2)T̄0

(
∂stot

∂T̄0
fδT (0) + ∂stot

∂µ̄0
fδµ(0)

)
− κ̄ijDCkikj fδT (0) − T̄0α

ij
DCkikj fδµ

(0) =0 .

(2.3.41)

Writing this in matrix form as

M

 fδT (0)

fδµ(0)

 = 0 , (2.3.42)

we have det(M) = 0. This gives rises to a quadratic equation for iω(2) which has two
solutions, iω(2)

± , which give the leading order dispersion relations for the diffusion
modes that we are after.

To write iω(2)
± in a compact way we first define the scalar quantities depending

on the DC conductivities that are quadratic in the wave numbers ki:

κ̄(k) ≡ κ̄ijDCkikj , α(k) ≡ αijDCkikj , σ(k) ≡ σijDCkikj , (2.3.43)

as well as

κ(k) ≡ κ̄(k)− α(k)2T̄0

σ(k) . (2.3.44)

Recall that κijDC ≡ κ̄ijDC − T̄0(ᾱDC · σ−1
DC · αDC)ij is the DC thermal conductivity for

zero electric current and in general κ(k) 6= κijDCk
ikj. We also define the following

susceptibilities:

X = ∂ρtot
∂µ̄0

, Ξ = ∂stot
∂µ̄0

= ∂ρtot

∂T̄0
, Cρ =

∮ √
hcµ0 −

T̄0Ξ2

X
. (2.3.45)

Note that if we consider the susceptibility cρ = T (∂s/∂T )ρ = cµ − Tξ2

χ
, in general

Cρ 6=
∮ √

hcρ0. Using these definitions, we then find that

iω
(2)
+ iω

(2)
− = κ(k)

Cρ

σ(k)
X

,

iω
(2)
+ + iω

(2)
− = κ(k)

Cρ
+ σ(k)

X
+ T̄0 (X α(k)− Ξσ(k))2

CρX2σ(k) . (2.3.46)

This is the main result of this section and it should be compared with the general
result given in (2.2.44),(2.2.45) that we obtained in the previous section.

A number of comments are in order. Firstly, for relativistic hydrodynamics
without a U(1) current, there is just a single energy diffusion mode. In this case,
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the leading order dispersion relation is given by

iω(2) = κijDCkikj

T̄0
∂stot
∂T̄0

. (2.3.47)

This result should be compared with (2.2.34). Similarly, we can also consider charge
neutral backgrounds which have Ξ = αijDC = 0 and then the equations (2.3.41)
decouple. In particular we find a charge diffusion mode with leading order dispersion
relation given by

iω(2) = σijDCkikj
∂ρtot
∂µ̄0

. (2.3.48)

Our next comment concerns perturbative lattices. By definition a perturbative
lattice is one in which the metric and gauge field deformations have a perturbatively
small amplitude. In this case the spatial momentum dissipation is weak. Using the
memory matrix formalism [117] or holography [290] we have

κ̄ijDC = 4πs0T0L
−1
ij , αijDC = 4πρ0L

−1
ij , σijDC = 4πs−1

0 ρ2
0L
−1
ij . (2.3.49)

Here the matrix Lij incorporates the leading order dissipation and Lij → 0 when
translation invariance is retained. While all of these DC conductivities are large,
κijDC and also κ in (2.3.44) are parametrically smaller as pointed out in [45, 289].
Thus, from (2.3.46) we deduce that one of the frequencies will be proportional to
L−1 while the other will be parametrically smaller.

Reduced hydrodynamics

When translations are broken, it should also be possible to construct a ‘reduced’
hydrodynamical description that just involves the conserved charges i.e. the heat
and the U(1) charge. At the level of linear response, this can be done, in principle,
by solving for δu(n)

i order by order in the equations (2.3.23), to, effectively, get a
set of linear equations for the variables δT and δµ and highly non-local in terms
of the background metric and gauge-field. We will not carry out this in any detail
here, but instead highlight some interesting features of the leading order terms that
would arise. In particular, we will be able to derive a set of reduced hydrodynamical
equations, at the level of linear response, that generalise those discussed in [231].

We begin with the on-shell expressions for the currents in the ε expansion given
in (2.3.34). Focussing on the U(1) current for the moment, we recall that at each
order

√
hfJ i(n) are periodic functions of the xi. We have seen that at leading order

they are determined by the system of linear equations given in (2.3.37), which is
equivalent to the system of equations (2.3.28) that appeared for the calculation of
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the DC conductivity if we identify Ēi ↔ −ikifδµ(0), ζ̄i ↔ −ikjT−1
0 δT (0). We can

therefore write
√
hfJ i(1) linearly in terms of fδµ(0), fδT (0) as a sum of a constant

flux, expressed in terms of the DC conductivity matrix, and a term which is co-closed
and has vanishing zero mode (a periodic magnetisation current). Thus, we can write
for the full current

√
hfJ i = e−iωteiεkix

i

ε
[
(σijDC + ∂kS

kij)(−ikj fδµ(0))

+ (αijDC + ∂kA
kij)(−ikjfδT (0)) +O(ε)

]
, (2.3.50)

where Skij = −Sikj, Akij = −Aikj and both are periodic functions of the spatial
coordinates. We can also obtain a similar expression for the heat current and we
can write both of them in the following suggestive form

√
hfJ i = −(σijDC + ∂kS

kij)∇jδµ̂− (αijDC + ∂kA
kij)∇jδT̂ + . . . ,

√
hfQi = −T̄0(αijDC + ∂kA

kij)∇jδµ̂− (κ̄ijDC + ∂kK
kij)∇jδT̂ + . . . , (2.3.51)

where δµ̂ ≡ e−iωteiεkix
i
fδµ(0), δT̂ ≡ e−iωteiεkix

i
fδT (0) and Kkij = −Kikj. In these

on-shell expressions ω is fixed as an expansion in ε in terms of ki and the background
quantities via the dispersion relations.

We next consider analogous expressions for the local charge density and heat
density. From (2.3.20) we obtain

√
hfJ t =

√
hρ0 + e−iωteiεkix

i√
h
[
ξ0δT

(0) + χ0δµ
(0) +O(ε)

]
,

√
hfQt =

√
hf(ε0 − µ0ρ0) + e−iωteiεkix

i√
hf

[
cµ0δT

(0) + T0ξ0δµ
(0) +O(ε)

]
,

(2.3.52)

where
√
hρ0 and

√
hf(ε0−µ0ρ0) are the local charge densities in equilibrium. Hence,

for the perturbation we can write

δ[
√
hfJ t] =

√
hf−1ξ0δT̂ +

√
hf−1χ0δµ̂+ . . . ,

δ[
√
hfQt] =

√
hcµ0δT̂ + T0

√
hξ0δµ̂+ . . . . (2.3.53)

At this stage, from these on-shell expressions, we now can see the leading order
structure of an off-shell reduced hydrodynamics. Specifically, if we take (2.3.53)
to be expressions for the local charge densities and (2.3.51) to be the associated
constitutive relations for the currents, the continuity equations ∇µJ

µ = ∇µQ
µ = 0

at order ε2 will lead to the same diffusive solutions that we had above with exactly the
same dispersion relations for the diffusion modes. In particular, the magnetisation
currents in (2.3.51) do not play a role in this specific calculation. It is also worth
emphasising that in this reduced hydrodynamics, the variables δT̂ , δµ̂ need not be
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periodic functions and indeed they are not in the diffusive solutions.
We can now compare these results with the hydrodynamics described in the

“Methods” section of [231], highlighting several differences. Firstly, the constitutive
relations for the local currents given in [231] were declared to be given in terms of the
DC conductivity, whereas here we have derived them from the underlying relativistic
hydrodynamics. Secondly, the possibility of the terms involving Skij, Akij, Kkij was
not considered in [231]. Finally, the expression for the local charge densities in [231]
were not of the form (2.3.53). To make a connection we note that using (2.3.15),
(2.3.16) we can rewrite (2.3.53) in the form

δ[
√
hfJ t] =

(
∂ρtot

∂T̄0
+ . . .

)
δT̂ +

(
∂ρtot
∂µ̄0

+ . . .

)
δµ̂+ . . . ,

δ[
√
hfQt] =

(
T̄0
∂stot

∂T̄0
+ . . .

)
δT̂ +

(
T̄0
∂stot
∂µ̄0

+ . . .

)
δµ̂+ . . . . (2.3.54)

where in the bracketed terms we have just written the constant zero mode part of
the relevant term. The expressions (2.3.54) are what were considered in [231]; while
the neglected higher Fourier modes will not affect the calculation of the dispersion
relations for the diffusive modes, they are the same order in the ε expansion with
the zero modes and they should be included as they will affect other calculations.

Green’s functions

Within the context of relativistic hydrodynamics, the leading order solutions for the
charge density and the currents are given in the previous subsection. It is possible to
relate these expressions to the retarded Green’s functions. At a first pass this seems
problematic as the diffusive solutions are source free solutions and yet to extract
Green’s functions we need to relate a response to a source.

This puzzle can be resolved by the following trick. We view the solutions as
having arisen after adiabatically switching on sources for the charge density in the
far past, switching them off at time t = 0 and then comparing the solutions for
t > 0 in the long wavelength limit. As this is somewhat technical we have explained
how this can be achieved, as well as presenting some results of general validity,
in appendix 2.B. For simplicity, we will carry out the analysis just for the case
when there is only a single current present, which is the heat current. Hence, for
convenience we present the perturbed part of the diffusive solution in this case here:

δ[
√
hfQt] = e−iωteiεkix

i
[√
hcµ0fδT

(0) +O(ε)
]
,

√
hfQi = e−iωteiεkix

i

ε
[
(κ̄ijDC + ∂kK

kij)(−ikj)fδT (0) +O(ε)
]
, (2.3.55)

with iω = κijDCkikj

T̄0
∂stot
∂T̄0

. We also recall that fδT (0) is constant and
√
hcµ0 is a local
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susceptibility whose constant zero mode piece is T̄0
∂stot
∂T̄0

.

2.4 Final comments

In this paper we have made a general study of the hydrodynamical diffusion modes
associated with conserved charges that arise in inhomogeneous media with a lattice
symmetry. When the DC conductivities are finite, we showed that there are diffusive
modes with dispersion relations that are determined by the DC conductivities and
certain thermodynamical susceptibilities. This constitutes a generalised Einstein
relation for inhomogeneous media. We also illustrated the general results, obtained
by an analysis of retarded Greens functions, by considering the specific context of
relativistic hydrodynamics. For simplicity, here we have focused on systems that are
invariant under time reversal. However, it should be straightforward to generalise to
the non-static case, after identifying suitably defined transport currents as in [132,
236, 291, 293, 312].

In [300], for a general conformal field theory on a curved manifold with a metric
of the form (2.3.1) with f = 1, hij = Φδij and Φ a periodic function, the relativistic
hydrodynamic equations (with vanishing U(1) fields) were solved for the local temper-
ature and heat current, at the level of linear response, after applying a DC thermal
gradient ζ̃i. In particular, it was shown that thermal backflow can occur whereby the
heat current is locally flowing in the opposite direction to the DC source. These res-
ults can be recast in terms of the diffusion results of this paper. Let ω(2) be the leading
order dispersion relation as in (2.3.47). Then, focussing on real variables, we have
leading order diffusing solutions with δT = e−ε

2ω(2)t cos(εkixi)(δT (0)+εδT (1)+O(ε2)),
and the local heat current given by δQi = e−ε

2ω(2)t sin(εkixi)ε(δQi(1) +O(ε)), where
δT (1) and δQi(1) are the local temperature and heat current obtained in [300] for a
DC thermal gradient given by ζ̃i = kiδT

(0). We can consider these solutions as hav-
ing been adiabatically prepared in an initial state at t = 0 (say) and then diffusing.
The solution shows that in each individual spatial period there is an elaborate local
structure, which includes thermal backflow, with an overall damping of the current
in time.

The existence of the same backflow current patterns that emerge in the steady
state set-up provides a non-trivial test of the validity of hydrodynamics for certain
strongly correlated systems of electrons for which backflows have been observed.
Finally, we note that the initial conditions at t = 0 that we are considering, arising
from the construction of specific long wavelength diffusion modes, might seem fine
tuned. However, as long as short wavelength modes die out faster in time, the
diffusive modes will capture the universal late time behaviour for generic initial
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conditions. For systems with light, spatially modulated modes, this will be case
provided we examine long enough wavelengths.

The general results of this paper should also manifest themselves within the
context of holography. In particular, it should be possible to obtain the Einstein
relations in terms of the DC conductivities and the thermodynamic susceptibilities.
It is now understood how, in general, the thermoelectric DC conductivity of the
boundary field theory, when finite, can be obtained in terms of data on the black
hole horizon [45, 290, 293]. Thus, providing one can obtain the susceptibilities in
terms of horizon data, one should also be able to extract the Einstein relations. This
will be explored in [2]. This line of investigation could also make contact with the
recent work on relating diffusion to a characteristic velocity extracted from the black
hole horizon, related to out of time ordered correlators [103, 104] and [105, 106, 299,
313–319].

2.A General results

Here we present some general results for Green’s functions involving a single con-
served current density operator Jµ satisfying the continuity equation ∂µJ

µ = 0.
We will present results for GJµJν (ω,k,k′); using the crystallographic decomposition
(2.2.7) we can easily extract analogous results for the G({nj})

JµJν (ω,k).
From (2.2.6) the current conservation condition ∂µJµ = 0 implies

−iω GJtB(ω,k,k′) + ikiGJiB(ω,k,k′) = 0 , (2.A.1)

for any operator B, whose equal time commutator with J t vanishes. From (2.A.1)
we have

−iω GJtJt(ω,k,k′) + ikiGJiJt(ω,k,k′) =0 ,
−iω GJtJj(ω,k,k′) + ikiGJiJj(ω,k,k′) =0 . (2.A.2)

We next consider the time reversal invariance conditions (2.2.17). Since εJt = +1
and εJi = −1, we obtain

GJiJt(ω,k,k′) = −GJtJi(ω,−k′,−k) ,
GJiJj(ω,k,k′) = GJjJi(ω,−k′,−k) . (2.A.3)

Combing (2.A.3) with (2.A.2) we therefore have

kik′j GJiJj(ω,k,k′) = −(iω)2GJtJt(ω,k,k′) ,
ik′j GJiJj(ω,k,k′) = (iω)GJiJt(ω,k,k′) . (2.A.4)
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Define the static susceptibility

lim
ω→0+i0

GJtJt(ω,k,k′) ≡ −χJtJt(k,k′) . (2.A.5)

We see that (2.A.2) and (2.A.4) imply

kiχJiJt(k,k′) = 0 ,
kik′jχJiJj(k,k′) = 0 . (2.A.6)

Note that the sign in (2.A.5) is fixed as follows. From (2.2.5), for a time-independent
source for the charge density δhJt(x), we have

δ〈J t〉(t,k) = 1
(2π)d

∫
dk′GJtJt(ω = 0,k,k′) δhJt(k′) . (2.A.7)

On the other hand from (2.2.4) δH = (2π)−d
∫
dkδhJt(−k)δJ t(k) and so we identify

the perturbed chemical potential, δµ(k), as δµ(k) = −δhJt(k). Since the static
susceptibility χJtJt is defined by varying the charge density with respect to the
chemical potential we get the sign as in (2.A.5).

2.B Linear response from a prepared source

We consider a perturbative deformation of the Hamiltonian as in (2.2.4), with a
prepared source that is switched off at t = 0, given by

hB(t,x) =

e
εt t+iks x δhB, t ≤ 0

0 t > 0
, (2.B.1)

with εt > 0. This source contains a single spatial Fourier mode and we will be
interested in taking the adiabatic limit εt → 0+.

The time dependent expectation value of an operator A is given by the retarded
Green’s function as in (2.2.5). Thus, at t = 0, when the sources are switched off, we
have

δ〈A〉(t = 0,x) =
∫
dt′ dx′GAB(−t′,x,x′) δhB(t′,x′) ,

=
∫
dt′ dx′GAB(t′,x,x′) e−εtt′+iksx′

δhB ,

= GAB(i εt,x,ks) δhB . (2.B.2)

In the εt → 0+ limit, after a Fourier transform, we have

δ〈A〉(t = 0,k) = −χAB(k,ks) δhB , (2.B.3)
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where χAB(k,k′) ≡ − limω→0+i0GAB(ω,k,k′). Also, after a Fourier transform of the
source (2.B.1), for any t > 0 we deduce that

δ〈A〉(t,x) = 1
2π

∫ +∞

−∞
dω

1
εt + i ω

e−iω tGAB(ω,x,ks) δhB . (2.B.4)

Taking a Laplace transform in time we get

δ〈A〉(z,x) ≡
∫ +∞

0
dt δ〈A〉(t,x) ei zt ,

= − 1
2π

∫ +∞

−∞
dω

1
ω − i εt

1
ω − z

GAB(ω,x,ks) δhB , (2.B.5)

with, necessarily, Im z > 0 in order for the integrals to converge. Performing a
contour integral on the above expression by closing it in the upper half plane and
assuming that the Green’s function vanishes fast enough for large ω, we just pick up
contributions from the poles at ω = i εt and ω = z to obtain

δ〈A〉(z,x) = − i

i εt − z
GAB(i εt,x,ks) δhB −

i

z − i εt
GAB(z,x,ks) δhB . (2.B.6)

Thus, in the εt → 0+ limit we conclude that the spatial Fourier transform is given
by (2.B.1):

δ〈A〉(z,k) = 1
i z

(GAB(z,k,ks) + χAB(k,ks)) δhB . (2.B.7)

Using (2.B.3) we now obtain the following solution to the initial value problem that
is sourced by (2.B.1) in the εt → 0+ limit:

δ〈A〉(z,k) = − 1
i z

(
GAB(z,k,ks)χ−1

BC(k,ks) + δAC
)
δ〈C〉(t = 0,k) . (2.B.8)

2.B.1 Conserved current

Let us now apply some of these results to conserved currents. For simplicity we just
consider the case of a single conserved current and assume that there is a single
diffusion pole. We will assume that the source (2.B.1) is a source just for the charge
density operator J t. In particular at t = 0 we write the source as eiksxδh(0)

Jt , with
constant δh(0)

Jt . We take the limit εt → 0 and then consider ks → 0.
From (2.B.6), the time dependence of the charge density for t > 0 is fixed by the

Laplace transformed quantity

δ〈J t〉(z,x) = eiksx
∑
{nj}

einjk
j
Lx 1
iz

[
G

({nj})
JtJt (z,ks) + χ

({nj})
JtJt (ks)

] 1
(2π)d δh

(0)
Jt , (2.B.9)

where χ({nj})
JtJt (ks) = − limω→0+i0G

({nj})
JtJt (ω,ks). It is interesting to now examine the
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zero mode of the periodic function inside the sum (see (2.2.19)):

δ〈J t〉{(0)}(z) = 1
iz

[GJtJt(z,ks) + χJtJt(ks)]
1

(2π)d δh
(0)
Jt , (2.B.10)

since we can draw some further general conclusions using the results of section
2.2.1. Indeed after considering ks → 0, and recalling the general results (2.2.30) and
(2.2.33), we have

δ〈J t〉{(0)}(z) = −1
−iz + ksiksjσij(z)χ(0)−1χ(0) 1

(2π)d δh
(0)
Jt . (2.B.11)

Taking the inverse Laplace transform and keeping just the time-dependence that is
leading order in ks, we obtain

δ〈J t〉{(0)}(t) = −e−iω(ks)tχ(0) 1
(2π)d δh

(0)
Jt . (2.B.12)

with iω(ks) = σijDCksiksjχ(0)−1.
We can now make a comparison with the diffusive solutions given in (2.3.55) that

we found within the context of relativistic hydrodynamics. Recalling that in this
appendix, and also in section 2.2, we are considering current densities, whereas in
section 2.3 we used current vectors, we therefore should compare the local current
δ[
√
hfQt(t,x)] in (2.3.55) with δ〈J t〉(t,x). Identifying the constant source 1

(2π)d δh
(0)
Jt

here with −fδT (0) (see the discussion following (2.A.7)), after comparing (2.3.55)
with (2.B.9) and the above analysis, we conclude that for these particular solutions
we have that for each {nj}, in the limit that ks → 0,

G
({nj})
JtJt (ω,ks)χ({nj})

JtJt (ks)−1 + 1→ 1
−iω + ksiksjS{nj}ij(ω)χ(0)−1 , (2.B.13)

with S{nj}ij(ω) = σijDC + O(ω), in order to get the correct time-dependence. In
particular, all of these modes of the Green’s function have the same diffusion pole
at the origin.

We next consider the spatial components of the current. Starting with (2.B.8)
and using (2.A.4) we can write

δ〈J i〉(z,k) =
[

1
(iz)2GJiJj(z,k,ks)(−iksj) + 1

iz
χJiJt(k,ks)

]
δh

(0)
Jt . (2.B.14)

After a Fourier transform on the spatial coordinates we can therefore write

δ〈J i〉(z,x) = eiksx
∑
{nj}

einjk
j
Lx
[ 1
(iz)2G

({nj})
JiJj (z,ks)(−iksj)

+ 1
iz
χ

({nj})
JiJt (ks)

] 1
(2π)d δh

(0)
Jt . (2.B.15)
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Current conservation implies that kiχJiJt(k,ks) = 0 (see (2.A.6)) but in general
χJiJt(k,ks) 6= 0. However, in the relativistic hydrodynamics in the static background
we do have χJiJt(k,ks) = 0 (see the comment below (2.3.12)). Thus, comparing
(2.B.15) with (2.3.55) we deduce that for the relativistic hydrodynamics, as ks → 0
we have

1
(iω)2G

({nj})
JiJj (ω,ks)(−iksj)→

(κ̄ijDC + ∂kK
kij)({nj})(−iksj)

−iω + ksiksjS̃{nj}ij(ω)χ(0)−1
, (2.B.16)

with S̃{nj}ij(ω) = σijDC +O(ω) in order to get the correct time-dependence.
A final comment is that if we consider (2.B.3) with χJiJt(k,ks) = 0 then we

deduce that δ〈J i〉(t = 0,x) = 0. This seems inconsistent with the t = 0 limit of the
diffusive solution arising from hydrodynamics. The resolution of this puzzle is that
when we take the limit εt → 0 it leads to a discontinuity in the current. The correct
thing to do is compare the currents for t > 0 as we did above.



Chapter 3

Diffusion for holographic lattices

This chapter is a reproduction of [2], written in collaboration with Aristomenis Donos
and Jerome Gauntlett.

Having studied thermoelectric diffusion in QFTs in chapter 2, we now turn our
attention to holographic field theories. We consider black hole spacetimes that are
holographically dual to strongly coupled field theories in which spatial translations
are broken explicitly. As in the DC conductivities prescription of [45, 290], we write
down an ansatz for a static, planar and periodic spacetime, without specifying an
exact solution (3.2.2). This implies that our results are universal within the class
of EMD theories (3.2.1), for solutions describing systems with strong momentum
relaxation.

In section 3.2 we discuss details of such backgrounds, and we also express the
thermodynamic susceptibilities in terms of horizon data. At first glance, this seems
to contradict the common belief that this is only possible in special cases, with the
susceptibilities normally involving integrals over the whole bulk. The expressions we
present involve only integrals over the horizon; however, they also involve variations
with respect to boundary data (the chemical potential µ̄). Essentially, we are just
trading knowledge of a full bulk solution with knowledge of a family of horizons.

In section 3.3 we derive the horizon constraints that a general quasinormal mode
should satisfy. We then proceed in section 3.4 to discuss how the quasinormal modes
associated with diffusion of heat and charge can be systematically constructed in
a long wavelength perturbative expansion. We show that the dispersion relation
for these modes is given in terms of the thermoelectric DC conductivity and static
susceptibilities of the dual field theory and thus we derive a generalised Einstein
relation from Einstein’s equations, as in chapter 2. It is particularly satisfying that
the dissipative part of the diffusion constants, i.e. the DC conductivities, are given
by solving a system of generalised Navier-Stokes equations on the black hole horizon,
realising in yet another instance the dissipative nature of horizons.
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Finally, as a corollary of our results we find that thermodynamic instabilities
imply specific types of dynamical instabilities of the associated black hole solutions.

3.1 Introduction

Holography provides a powerful theoretical framework for studying the properties of
strongly coupled quantum critical systems. A basic feature is that a given quantum
system in thermal equilibrium is described by a stationary black hole spacetime
with a Killing horizon and, furthermore, the entropy and conserved charges can
be universally determined by data on the black hole horizon (e.g. see [40] and
references therein). Going beyond thermal equilibrium and moving to the realm of
linear response, it has been shown that the thermoelectric DC conductivity, when
finite, is also universally determined by data on the horizon, by solving a specific
Stokes flow for an auxiliary fluid on the horizon [290] (further extensions are discussed
in [45, 291, 293, 320]).

It is natural to enquire if other properties of the dual field theory can also be
obtained from horizon data. In this paper we discuss the construction of quasi-normal
modes that are dual to the long wave-length hydrodynamic modes associated with
diffusion of heat and electric charge. In particular, we will show how the dispersion
relation for these modes can also be obtained in terms of the properties of the black
hole solutions at the horizon.

Recall that in the specific context of translationally invariant and charge neutral
systems the diffusion of electric charge was first discussed some time ago in [185].
Furthermore, again for this specific setup, an Einstein relation, relating the asso-
ciated electric diffusion constant to the finite DC conductivity and static charge
susceptibilities, was derived in [85], where it was also shown how the DC conduct-
ivity can be obtained explicitly from the horizon1. It should be noted that in this
set up the thermal DC conductivity is infinite and, correspondingly, there is no heat
diffusion mode. In this paper we will discuss the diffusion of both electric charge and
heat within the general context of charged and spatially inhomogeneous media. The
spatial inhomogeneities that we consider arise from breaking of spatial translations
explicitly, and the black holes are known as ‘holographic lattices’ [216].

In a recent paper [1] we carried out an analysis of the diffusion of conserved
charges in the context of spatially inhomogeneous media for arbitrary quantum
field theories (not necessarily holographic). Subject to the retarded current-current
correlators satisfying some general analyticity conditions, as well as assuming that

1From the universal perspective of [290], this is a special set up where the Stokes flow equations
are solved trivially.
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the thermoelectric DC conductivity is finite, the long wavelength hydrodynamical
modes associated with diffusion of charge and heat were identified and a generalised
Einstein relation was derived. In addition, the general formalism was illustrated
for thermoelectric diffusion within the context of relativistic hydrodynamics where
momentum dissipation was achieved not by modifying the conservation equations,
as is usually done, but by explicitly breaking translations by considering the system
with spatially modulated sources for the stress tensor and electric current as in [300,
304].

Given the general results presented in [1], one anticipates that it should be
possible to derive the generalised Einstein relations within the context of arbitrary
holographic lattices. Since, for this case, the DC conductivity is finite and is equal to
a horizon DC conductivity that is obtained by solving a Stokes flow on the horizon,
one can ask about the relevant charge susceptibilities. Since the conserved charges
can be evaluated at the horizon provided one knows how this data depends on
changing the temperature and the chemical potential of the black holes in thermal
equilibrium, one can also obtain horizon expressions for the susceptibilities. As we
will see, this simple observation about the susceptibilities will be sufficient to extract
the dispersion relations for the diffusive modes and hence the Einstein relation. In
slightly more detail, using a radial decomposition of the equations of motion, we will
explain how the quasi-normal diffusion modes can be systematically constructed in a
long wavelength, perturbative expansion. In general, while both the radial equations
and the constraint equations are required to carry out this construction, we will
see that an analysis of just the constraint equations on the horizon are sufficient to
extract the Einstein relation, which is the universal part of the dispersion relation
in the long wavelength expansion for the diffusive modes.

Recently there has been a particular focus on studying diffusion of heat and
charge in the context of holography. This stems, in part, from the suggestion that
diffusive processes may be a key to understanding universal aspects of transport in
incoherent metals [231]. Furthermore, it was also suggested in [231] that there might
be lower bounds on diffusion constants by analogy with bounds on shear viscosity
associated with diffusion of momentum [198]. A key idea is to write D ∼ v2τ ,
where D is suitable diffusion constant and v, τ are characteristic velocities and time
scales of the system, and it was suggested in [231] that τ should be the ‘Planckian
time scale’ τ = ~/(kBT ) [321, 322]. An interesting subsequent development was
the suggestion that v should be identified with the butterfly velocity, vB, extracted
from out of time order correlators [103, 104] and used as a measure of the onset of
quantum chaos.

While there has been a range of interesting holographic results in this direction,
including [105–107, 299, 313–319, 323–325], with an appreciation that it is the
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thermal diffusion should be related to vB, it is fair to say that within holography
a sharp global picture has yet to emerge2. Almost all of the holographic study
in this area has been in the setting of specific types of ‘homogeneous’ holographic
lattices [278, 279], which maintain a translationally invariant metric. In these cases
it is straightforward to extract vB by studying a shock wave entering the black
hole horizon [98, 102] (see also [334]). A notable exception is [299] who studied
holographic lattices in one spatial dimension, but working in a hydrodynamic, high
temperature limit of the background holographic lattice. We hope that the present
work, which illuminates universal aspects of diffusion for arbitrary spatial modulation
in holography, will be useful in further developments.

In a different direction, our derivation of the dispersion relation leads to a general
connection between thermodynamic instabilities and dynamic instabilities. Some
time ago, building on [257, 258], it was shown in a specific holographic context
with a translationally invariant horizon, that thermodynamic instability implies an
imaginary speed of sound, leading to unstable quasi-normal modes and dynamical
instability3 [339]. For general spatial modulation within holography, any sound
modes will only appear on scales much smaller than the scale of the modulation
and hence this will not be a universal channel to deduce dynamical instability from
thermodynamic instability. Instead, the diffusion modes do provide such a channel.
Specifically, in the presence of spatial modulation, we can deduce the following
result. If the heat and charge susceptibility matrix has a negative eigenvalue, then
the system is thermodynamically unstable and then the dispersion relation implies
that there is at least one mixed diffusion mode, involving heat and charge, living in
the upper half plane which will necessarily lead to a dynamical instability.

3.2 Background black hole solutions

We will consider a general class of bulk theories which couple the metric to a gauge
field Aµ, with field strength Fµν , and a scalar field φ in D spacetime dimensions,
governed by an action of the form

S =
∫
dDx
√
−g

(
R− V (φ)− Z(φ)

4 F 2 − 1
2 (∂φ)2

)
. (3.2.1)

The only constraints that we impose on the functions V (φ), Z(φ) is that the equations
of motion admit an AdSD vacuum solution with φ = Aµ = 0. We assume that in

2It is striking that a relation of the form D ∼ v2
Bτ has also appeared in a variety of other non-

holographic contexts, including [314, 326–333], with τ ∼ λ−1
L where λL is the Lyapunov exponent

[328].
3Some recent discussion of both hydrodynamic and non-hydrodynamic modes and the connection

with instabilities in a translationally invariant setting, appeared in [335–338].
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this vacuum the scalar field φ is dual to an operator with conformal dimension ∆.
We have also set 16πG = 1 for convenience.

We are interested in studying the family of static, background black hole solutions
that lie within the ansatz

ds2 = −UGdt2 + F

U
dr2 + ds2(Σd) ,

A = atdt , (3.2.2)

with ds2(Σd) = gijdx
idxj and d = D − 2. The functions G,F, at, φ and the metric

components gij are all independent of the time coordinate t and depend on (r, xi).
Note that the function U = U(r), which is redundant, is included to conveniently
deal with some aspects of the asymptotic behaviour of the solution.

Although it is possible to be more general, to simplify the presentation we will
assume that we have single black hole Killing horizon, located at r = 0, and that
the coordinates (t, r, xi) are globally defined outside the black hole all the way out
to the AdSD boundary which will be located at r → ∞. In particular, this means
that the radial foliation is globally defined up to a ‘stretched horizon’ located at
some small radial distance outside the black hole and that the topology of the black
hole horizon is Σd. Similarly, we will also assume Σd has planar topology and all
functions appearing in (3.2.2) are assumed to be periodic in the spatial directions
xi with period Li, corresponding to static, periodic deformations of the dual CFT.
It will be useful to define

∮
= (∏Li)−1 ∫ dx1 . . . dxd which allows us to extract the

zero mode of periodic functions.
Asymptotically, as r → ∞, the solutions are taken to approach AdSD with

boundary conditions that explicitly break translation invariance:

U → r2, F → 1, G→ G(∞)(x), gij(r, x)→ r2g
(∞)
ij (x),

at(r, x)→ µ(x), φ(r, x)→ r∆−d−1φ(∞)(x) . (3.2.3)

This corresponds to placing the dual CFT on a curved spacetime manifold with
metric given by ds2 = −G(∞)(x)dt2 + g

(∞)
ij (x)dxidxj, having a spatially dependent

chemical potential µ(x) and deforming by a spatially dependent source φ(∞)(x) for
the operator dual to φ. It will be convenient to separate out the zero mode of µ(x)
by defining

µ(x) ≡ µ̄+ µ̃(x) (3.2.4)

with constant µ̄ and
∮
µ̃(x) = 0.

The Killing horizon will, in general, be spatially modulated and we have the
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following expansions4 near r = 0

U (r) = r
(
4π T + U (1) r + . . .

)
, G(r, x) = 1 +G(1) (x) r + . . . ,

F (r, x) = 1 + F (1) (x) r + . . . , gij = g
(0)
ij + g

(1)
ij r + . . . ,

at(r, x) = r
(
a

(0)
t + a

(1)
t (x) r + . . .

)
, φ = φ(0)(x) + rφ(1)(x) + . . . . (3.2.5)

After a Euclidean continuation, we find that the constant T is the Hawking tem-
perature of the black hole and can be identified with the constant temperature of
the dual field theory5. We also note that we can introduce an ingoing Eddington-
Finkelstein-like coordinate

vEF ≡ t+ ln r
4πT , (3.2.6)

and that the metric is regular in the (vEF , r, xi) coordinates as r → 0.

3.2.1 Susceptibilities from the horizon

It will be important in the sequel to be able to express certain thermodynamic
susceptibilities in terms of data at the horizon. More precisely we can obtain
the susceptibilities provided that we know the horizon data as a function of the
temperature T and the zero mode of the chemical potential µ̄. We first recall that
the total entropy density of the system, s, can be expressed as

s = 4π
∮
H

√
g(0) , (3.2.7)

where the subscript H emphasises that this is an integral evaluated at the black
hole horizon. Similarly the total charge density, ρ ≡ J t, can be expressed either as
a boundary quantity or a horizon quantity via

ρ ≡
∮
∞

√
−gZ(φ)F tr =

∮
H

√
g(0)Z

(0)a
(0)
t , (3.2.8)

where the equality can be deduced from the gauge equation of motion.
Hence under a constant variation of the temperature, T → T + δT , and zero

mode of the chemical potential, µ̄→ µ̄+ δµ̄ (see (3.2.4)), we have

δs ≡T−1cµ δT + ξ δµ̄ ,

δρ ≡ ξ δT + χ δµ̄ , (3.2.9)

4We have chosen our coordinates so that possible functions G(0)(x) = F (0)(x) are set to unity.
5Since the CFT is defined on the boundary metric (3.2.3) there is also a natural notion of a

local temperature of the dual field theory given by T (x) = [G(∞)(x)]−1/2T . Also note that for the
case of CFTs we can carry out a Weyl transformation to set G(∞)(x) = 1, suitably taking into
account the possibility of a conformal anomaly.
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where the thermodynamic susceptibilities are given by6

T−1cµ = 4π
∮
H
ddx

1
2
√
g(0) (g(0))ij

∂g
(0)
ij

∂T
,

ξ = 4π
∮
H
ddx

1
2
√
g(0) (g(0))ij

∂g
(0)
ij

∂µ̄
,

=
∮
H
ddx
√
g(0)

Z(0)∂a
(0)
t

∂T
+ ∂φZ

(0) a
(0)
t

∂φ(0)

∂T
+ 1

2Z
(0) a

(0)
t (g(0))ij

∂g
(0)
ij

∂T

 ,

χ =
∮
H
ddx
√
g(0)

Z(0)∂a
(0)
t

∂µ̄
+ ∂φZ

(0) a
(0)
t

∂φ(0)

∂µ̄
+ 1

2Z
(0) a

(0)
t (g(0))ij

∂g
(0)
ij

∂µ̄

 .

(3.2.10)

The equality of the two expressions for ξ at the horizon is not obvious. However,
from a boundary perspective it is just a Maxwell relation that arises from the first
law. To see this we recall that we can calculate the renormalised, total free energy
density, wFE, from the total on-shell action after adding suitable boundary terms.
For the ensemble of interest we have s = −δwFE/δT and ρ = −δwFE/δµ̄ and the
result at the horizon follows. Note that cµ ≡ T (∂s/∂T )µ̄. Later we will also need
cρ ≡ T (∂s/∂T )ρ which can be written as

cρ ≡ cµ −
Tξ2

χ
. (3.2.11)

To see this we use ξ/χ = −(∂µ̄/∂T )ρ = (∂s/∂ρ)T , where the second equality is a
Maxwell relation.

3.3 Time dependent perturbation and the
constraints

Consider a general perturbation of the background black hole solution (3.2.2) given
by δP ≡ {δgµν , δaµ, δφ}, with all quantities functions of all of the bulk coordinates
(t, r, xi). We want to consider time-dependence of the form e−iωt. It is convenient to
write

δP (t, r, xi) = e−iω[t+S(r)]δP̂ (r, xi) , (3.3.1)

with S(r) → 0 as r → ∞ and, in order to ensure that the perturbation satisfies
ingoing boundary conditions at the black hole horizon, S(r)→ ln r

4πT + S(1) r + · · · as
r → 0.

6In section 3 of [1] these quantities were denoted by capital letters: Cµ, Ξ and X.
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With this in hand, and recalling the definition of vEF , the ingoing Eddington-
Finkelstein-like coordinate in (3.2.6), we demand that near r = 0 the perturbation
behaves as

δgtt = e−iωvEF (4πTr)
(
δg

(0)
tt (x) +O(r)

)
, δgrr = e−iωvEF

1
4πTr

(
δg(0)

rr (x) +O(r)
)
,

δgij = e−iωvEF δg
(0)
ij (x) +O(r), δgtr = e−iωvEF δg

(0)
tr (x) +O(r) ,

δgti = e−iωvEF (δg(0)
ti (x) + r δg

(1)
ti (x) +O(r2)),

δgri = e−iωvEF
1

4πTr
(
δg

(0)
ri (x) + r δg

(1)
ri (x) +O(r2)

)
, (3.3.2)

as well as

δat = e−iωvEF (δa(0)
t (x) + r δa

(1)
t (x) +O(r2)),

δar = e−iωvEF
1

4πTr
(
δa(0)

r (x) + r δa(1)
r (x) +O(r2)

)
,

δai = e−iωvEF (δa(0)
i (x) +O(r)),

δφ = e−iωvEF (δφ(0) (x) +O(r)), (3.3.3)

with

−2πT (δg(0)
tt + δg(0)

rr ) = −4πT δg(0)
rt ≡ p ,

δg
(0)
ti = δg

(0)
ri ≡ −vi,

δa(0)
r = δa

(0)
t ≡ w . (3.3.4)

There is some residual gauge invariance for the perturbation at the horizon, main-
taining the ingoing boundary conditions, which we discuss in appendix 3.A.

3.3.1 Constraints

Using a radial decomposition of the equations of motion one obtains a set of con-
straints that must be satisfied on a surface of constant r. We want to evaluate these
constraints for the perturbed solution at the black hole horizon. More precisely we
evaluate the constraints on a stretched horizon located at a small radial distance
r away from the horizon and then take the limit as r → 0. The calculations are a
generalisation of the calculations that were carried out in [45, 290]. Here we will
just state the final result but we have presented some details in appendix 3.B.

The combined set of constraints include two scalar equations and a vector equa-
tion. If we define

Qi
(0) = 4πT√g(0)v

i ,

J i(0) = √g(0)g
ij
(0)Z

(0)
(
∂jw + a

(0)
t vj + iωδa

(0)
j

)
. (3.3.5)
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then the two scalar equations are

∂iQ
i
(0) = iωT

(
2π√g(0)g

ij
(0)δg

(0)
ij

)
, (3.3.6)

and

∂iJ
i
(0) = iω

√
g(0)

[
Z(0)

(
a

(0)
t

(
δg

(0)
tt + p

4πT

)
+ δa

(1)
t −

iω

4πT
(
δa

(1)
t − δa(1)

r

))
+ Z(0)

(1
2a

(0)
t gij(0)δg

(0)
ij + 1

4πT v
i∂ia

(0)
t

)
+ ∂φZ

(0)a
(0)
t δφ(0)

]
. (3.3.7)

Finally the vector equation can be written as

− 2∇j∇(jvi) − Z(0)a
(0)
t

(
∇iw + iωδa

(0)
i

)
+∇iφ

(0)
(
vj∇jφ

(0) − iωδφ(0)
)

+ (1 + iω

4πT )∇ip = iω
(
δg

(1)
ti −

i ω

4πT (δg(1)
ti − δg

(1)
ri ) + g

(1)
il v

l − ∂iδg(0)
tt −∇kδg

(0)
ki

)
.

(3.3.8)

where the covariant derivative is with respect to the horizon metric g(0)
ij , which is also

used to raise and lower indices. One can check that these equations are consistent
with the residual gauge transformations mentioned above and are given explicitly in
appendix 3.A.

Notice that if we set the frequency ω = 0 in (3.3.6)-(3.3.8) then we precisely
recover the Stokes equations derived in [45, 290], which can be used to obtain the
DC conductivity, when finite, after setting the sources in the Stokes equations to
zero. In fact since these DC Stokes equations with sources will be used later, we
record them in appendix 3.C for reference.

Also notice that the system of equations does not form a closed set of equations
for the perturbation when ω 6= 0. In order to obtain a full solution, we also need
to use the radial equations of motion. Interestingly, however, we will show in the
next section that the constraint equations are sufficient to extract the dispersion
relation for the quasinormal diffusion modes. In appendix 3.D we discuss how the
data provided at the horizon and at the AdS boundary allows one, in principle, to
solve the full set of Einstein equations.

3.4 Constructing the bulk diffusion
perturbations

In this section we explain how one can systematically construct quasi-normal modes
that are associated with diffusion of heat and charge. We construct these source-free
modes in a long wavelength ‘hydrodynamic expansion’ that is valid for an arbitrary
background black hole solution (3.2.2). While the explicit construction of these
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modes require that one solves both the constraint equations at the horizon as well
radial equations in the bulk, it is possible to show that the leading order dispersion
relation for the diffusion modes can be expressed in terms of the static susceptibilities
as well as the ‘horizon DC conductivity’ obtained from a Stokes flow on the horizon
given in appendix 3.C. Now for holographic lattices, when translation invariance is
broken explicitly, the horizon DC conductivity is the same as the DC conductivity
of the dual field theory. Thus, our result corresponds to a derivation of an Einstein
relation.

We begin by describing a zero mode perturbation that is constructed from ther-
modynamic considerations. We start with the background ansatz (3.2.2) and then
vary the temperature T and the zero mode of the chemical potential µ̄ via T+δT and
µ̄+ δµ̄, where δT ,δµ̄ are real constants. This gives rise to a ‘thermodynamic perturb-
ation’ of the metric, gauge field and scalar field of the form δgTHµν = ∂gµν

∂T
δT + ∂gµν

∂µ̄
δµ̄,

δATH = (∂at
∂T
δT + ∂at

∂µ̄
δµ̄) dt and δφTH = ∂φ

∂T
δT + ∂φ

∂µ̄
δµ̄, respectively. By considering

the asymptotic behaviour of the background black holes, given in (3.2.3), we see that
this perturbation has no source terms for the metric and the scalar, but there is a
new source term for the gauge-field of the form δµ̄. As we are interested in source
free solutions, we will deal with this in a moment.

We next observe that close to the horizon the above perturbation approaches

δds2 =− δT

T

(
4πTr dt2 + dr2

4πTr

)
+
∂g(0)

ij

∂T
δT +

∂g
(0)
ij

∂µ̄
δµ̄

 dxidxj + · · · ,

δaTHt = r

∂a(0)
t

∂T
δT + ∂a

(0)
t

∂µ̄
δµ̄

+ · · · ,

δφTH = ∂φ(0)

∂T
δT + ∂φ(0)

∂µ̄
δµ̄ . (3.4.1)

Notice that this does not satisfy the regularity conditions (3.3.2)-(3.3.4) required
of a real time perturbation. To remedy this, and also to remove the extra source
term in the gauge field, we perform a time coordinate transformation t→ t+ δT

T
g(r)

with g(r) vanishing sufficiently fast as r → ∞ and g(r) = ln r/(4πT ) + g(1)r + . . .

as r → 0. We also perform the gauge transformation δART = δATH + dΛ with
Λ = −(t + g(r))δµ̄. After performing these transformations we will denote the
perturbation with a superscript RT for ‘real-time’.

At the horizon this RT perturbation approaches

δds2 = δgRTµν dx
µdxν = −δT

T

(
4πTr dt2 + dr2

4πTr

)
− 2 δT

T
dt dr

+
∂g(0)

ij

∂T
δT +

∂g
(0)
ij

∂µ̄
δµ̄

 dxidxj + · · · ,
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δaRTt = −δµ̄+ r

∂a(0)
t

∂T
δT + ∂a

(0)
t

∂µ̄
δµ̄

+ · · · ,

δaRTr = −δµ̄ (4πT r)−1 + δT

T
(4πT )−1a

(0)
t − g(1)δµ̄+ · · · ,

δφRT = ∂φ(0)

∂T
δT + ∂φ(0)

∂µ̄
δµ̄+ · · · . (3.4.2)

From this we can read off the near horizon quantities using the notation of equation
(3.3.2)-(3.3.4)

δg
RT (0)
tt = δgRT (0)

rr = δg
RT (0)
tr = −δT

T
,

δg
RT (0)
ti = 0, δg

RT (0)
ri = 0 , δg

RT (0)
ij =

∂g
(0)
ij

∂T
δT +

∂g
(0)
ij

∂µ̄
δµ̄ ,

δa
RT (0)
t = −δµ̄, δa

RT (1)
t = ∂a

(0)
t

∂T
δT + ∂a

(0)
t

∂µ̄
δµ̄ ,

δaRT (0)
r = −δµ̄, δaRT (1)

r = δT

T
a

(0)
t − 4πTg(1)δµ̄ ,

δa
RT (0)
i = 0 , δφRT (0) = ∂φ(0)

∂T
δT + ∂φ(0)

∂µ̄
δµ̄ . (3.4.3)

Notice that this perturbation has vi = 0, w = −δµ̄ and p = 4πδT which clearly
solves (3.3.6)-(3.3.8) for vanishing frequency, ω = 0.

We now introduce a small parameter ε which will be used to perturbatively
construct a real time diffusive mode. Following [1], and recalling (3.3.1), the per-
turbation is taken to be of the form

δgµν = e−iω[t+S(r)]+iεkixi
(
δgRTµν + ε δg[1]µν + ε2 δg[2]µν + · · ·

)
,

δAµ = e−iω[t+S(r)]+iεkixi
(
δARTµ + ε δA[1]µ + ε2 δA[2]µ + · · ·

)
,

δφ = e−iω[t+S(r)]+iεkixi
(
δφRT + ε δφ[1] + ε2 δφ[2] + · · ·

)
, (3.4.4)

with the corrections δg[m]µν , δA[m]µ, δφ[m], m = 1, 2, . . . being time independent,
complex functions of (r, xi) that are periodic in the spatial coordinates xi. We
demand that order by order in the expansion in ε, the corrections have near horizon
expansions analogous to (3.3.2)-(3.3.4). Specifically,

δg[m]tt = (4πTr)
(
δg

(0)
[m]tt (x) +O(r)

)
, δg[m]rr = 1

(4πTr)
(
δg

(0)
[m]rr (x) +O(r)

)
,

δg[m]ij = δg
(0)
[m]ij (x) +O(r), δg[m]tr = δg

(0)
[m]tr (x) +O(r) ,

δg[m]tj = δg
(0)
[m]tj (x) + rδg

(1)
[m]tj (x) + . . . ,

δg[m]rj = 1
(4πTr)

(
δg

(0)
[m]rj (x) + rδg

(1)
[m]rj (x) + . . .

)
,
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δA[m]t = δa
(0)
[m]t(x) + r δa

(1)
[m]t(x) + · · · ,

δA[m]r = 1
(4πTr)

(
δa

(0)
[m]r(x) + r δa

(1)
[m]r(x) + · · ·

)
,

δA[m]j = δa
(0)
[m]j(x) +O(r) , δφ[m] = δφ

(0)
[m](x) +O(r) , (3.4.5)

with the analogue of the conditions in (3.3.4) satisfied for each [m].

3.4.1 Dispersion relations for the diffusion modes

We now explain how we can obtain the dispersion relations for the perturbation,
order by order as an expansion in ε. We will first show how solving the constraint
equations (3.3.6)-(3.3.8) on the horizon, to a certain order in ε, is enough to obtain
the leading order dispersion relation for ω as a function of the wave vector ki in terms
of the horizon DC conductivity, obtained from a Stokes flow on the horizon, and
the thermodynamic susceptibilities. As already noted, the arguments in appendix
3.D ensure that the full perturbation will solve all the equations of motion. Some
additional subtleties are discussed in appendix 3.E.

From (3.4.4),(3.4.5) and the analogue of (3.3.4), the expansion at the horizon
that we consider takes the form

ω = ε ω[1] + ε2 ω[2] + · · · ,
p = eiεkix

i
(
4πδT + ε p[1] + ε2 p[2] + · · ·

)
,

vi = eiεkix
i
(
ε v[1]i + ε2 v[2]i · · ·

)
,

w = eiεkix
i
(
−δµ̄+ εw[1] + ε2w[2] + · · ·

)
,

δg
(0)
ij = eiεkix

i

∂g(0)
ij

∂T
δT +

∂g
(0)
ij

∂µ̄
δµ̄+ ε δg

(0)
[1]ij + · · ·

 ,

δφ(0) = eiεkix
i

(
∂φ(0)

∂T
δT + ∂φ(0)

∂µ̄
δµ̄+ ε δφ

(0)
[1] + · · ·

)
, (3.4.6)

where v[m]i ≡ −δg(0)
[m]ti, w[m] ≡ δa

(0)
[m]t and p[m] ≡ −4πTδg(0)

[m]rt (see (3.4.5)). At leading
order in ε, the scalar constraint equations (3.3.6) and (3.3.7) read

∇iv
i
[1] = iω[1]

2

δT gij(0)
∂g

(0)
ij

∂T
+ δµ̄ gij(0)

∂g
(0)
ij

∂µ̄

 ,

∇j

(
Z(0)

(
−i kjδµ̄+∇jw[1] + vj[1]a

(0)
t

))
=

iω[1]

1
2Z

(0)a
(0)
t gij(0)

∂g
(0)
ij

∂T
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂T
+ Z(0)∂a

(0)
t

∂T

 δT
+ iω[1]

1
2Z

(0)a
(0)
t gij(0)

∂g
(0)
ij

∂µ̄
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂µ̄
+ Z(0)∂a

(0)
t

∂µ̄

 δµ̄ . (3.4.7)
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while the vector constraint equation (3.3.8) has the form

− 2∇j∇(jv[1]i) − Z(0)a
(0)
t ∇iw[1] +∇iφ

(0)vj[1]∇jφ
(0) + iki4π δT + Z(0)a

(0)
t ikiδµ̄

+∇ip[1] − i ω[1]∇iφ
(0)
(
∂φ(0)

∂T
δT + ∂φ(0)

∂µ̄
δµ̄

)

+ i ω[1]∇k

∂g(0)
ki

∂T
δT + ∂g

(0)
ki

∂µ̄
δµ̄

 = 0 (3.4.8)

At this point we pause to comment on the structure of this system of equations,
which will have echoes at higher orders. Specifically, they are a sourced version of
the horizon Stokes flow equations which were identified in [45, 290] to calculate the
DC conductivity (see (3.C.1),(3.C.2)). In particular, the temperature gradient and
electric field in (3.C.1),(3.C.2) are given by ζ̄i = −ikiδT/T and Ēi = −ikiδµ̄ and the
source terms are parametrised by ω[1]. Following the arguments of [45, 290], as long
as the horizon does not have any Killing vectors, the unknown variables w[1], p[1]

and vi[1] are fixed up to global shifts of the horizon scalars w[1] and p[1] by constants
which we call δµ̄[1] and 4π δT[1]. We therefore see that it is not possible at this order
in perturbation theory to fix these horizon zero modes for the functions w[1] and
p[1]. However, imposing periodic boundary conditions puts strong constraints on the
sources of these equations which appear on the right hand side. On one hand, it will
be one of the significant ingredients in fixing the frequency ω order by order. On
the other hand, as we will see in appendix 3.E, the constants δµ̄[1] and 4π δT[1] will
be fixed by demanding existence of w[3] and p[3] i.e. at third order in perturbation
theory. This is the structure one encounters at each order in the ε expansion. For
bookkeeping, we will subtract the zero modes according to

w[i] = ŵ[i] + δµ̄[i], p[i] = p̂[i] + 4π δT[i] (3.4.9)

with the hatted variables having zero average over a period and are therefore uniquely
fixed after solving the system of constraints.

To proceed, we multiply by √g(0), and integrate the above equations over a
spatial period. Using the definitions of the thermodynamic susceptibilities given in
(3.2.10) we obtain two conditions which can be written in matrix form as

iω[1]

 T−1cµ ξ

ξ χ

 δT

δµ̄

 = 0 . (3.4.10)

Assuming that the matrix of susceptibilities is an invertible matrix, which is gener-
ically the case, we deduce that ω[1] = 0. For later reference, notice that we do not
assume here that the matrix is positive definite as required for thermodynamical
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stability. Thus, at this order in ε the full set of constraints (3.3.6)-(3.3.8) reduce to

∇iv
i
[1] = 0 ,

∇j

(
Z(0)

(
−i kjδµ̄+∇jw[1] + vj[1]a

(0)
t

))
= 0 ,

− 2∇j∇(jv[1]i) +∇ip[1] − Z(0)a
(0)
t ∇iw[1] + vj[1]∇jφ

(0)∇iφ
(0)

+ iki4π δT + Z(0)a
(0)
t ikiδµ̄ = 0 , (3.4.11)

which are now precisely the Stokes equations that are used in determining the DC
conductivity given in (3.C.1),(3.C.2) provided that, as above, we identify the sources
ζ̄i = −ikiδT/T and Ēi = −ikiδµ̄. These can be uniquely solved for ŵ[1], p̂[1] and v[1]

(provided that the horizon does not have Killing vectors). Thus, after integrating
over the horizon we can deduce, in particular, that

4πT i
∮ √

g(0)v
i
[1] = T ᾱijHkjδµ̄+ κ̄ijHkjδT ,

i
∮ √

g(0)Z
(0)
(
−i kjδµ̄+∇jw[1] + vj[1]a

(0)
t

)
= σijHkjδµ̄+ αijHkjδT , (3.4.12)

where σijH , α
ij
H , ᾱ

ij
H , κ̄

ij
H are the sub-matrices of the full thermoelectric horizon DC

conductivity (see (3.C.4)). When the DC conductivities of the dual field theory
are finite, as in the case of explicit breaking of translations, then these are in fact
the same as the DC conductivity of the dual field theory, which we will denote by
σij, αij, ᾱij, κ̄ij, respectively. For the time-reversal invariant backgrounds we are
considering it will be useful to recall that σ and κ̄ are symmetric matrices, while
α = ᾱT .

We now examine the constraint equations at second order in ε. The scalar
constraints (3.3.6) and (3.3.7) give

∇iv
i
[2] = iω[2]

2

δT gij(0)
∂g

(0)
ij

∂T
+ δµ̄ gij(0)

∂g
(0)
ij

∂µ̄

− ikivi[1] ,

∇j

(
Z(0)

(
i kjδµ̄[1] +∇jŵ[2] + gji(0)v[2]ja

(0)
t

))
=

− ikj
(
Z(0)

(
−i kjδµ̄+∇jŵ[1] + gji(0)v[1]ja

(0)
t

))
− i∇j

(
Z(0)kjŵ[1]

)
+ iω[2]

1
2Z

(0)a
(0)
t gij(0)

∂g
(0)
ij

∂T
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂T
+ Z(0)∂a

(0)
t

∂T

 δT
+ iω[2]

1
2Z

(0)a
(0)
t gij(0)

∂g
(0)
ij

∂µ̄
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂µ̄
+ Z(0)∂a

(0)
t

∂µ̄

 δµ̄ . (3.4.13)

and we will not explicitly write down the vector equation (3.3.8). We remind the
reader that the constants δµ̄[1] and δT[1] have not been fixed yet and will be fixed by
demanding existence of the solution at third order in the perturbative expansion, as
discussed further in appendix 3.E. Furthermore, the zero modes δµ̄[2] and 4π δT[2] of
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the functions w[2] and p[2] that we extracted according to (3.4.9) will only be fixed
by demanding existence of the solution at fourth order in the ε expansion.

Even without knowing the value of the constants δµ̄[1] and δT[1], existence of the
solution at second order will constrain the frequency ω[2] and the constants δµ̄ and
δT . Indeed, integrating the two equations (3.4.13) over a period we find that

iω[2]
(
T−1cµδT + ξ δµ̄

)
− T−1κ̄ijkikj δT − αijkikj δµ̄ =0 ,

iω[2] (ξ δT + χ δµ̄)− αijkikj δT − σijkikj δµ̄ =0 , (3.4.14)

where we used the fact that αijkikj = ᾱijkikj, for the backgrounds we are considering.
The algebraic system (3.4.14) is exactly the same as that considered in [1] (see

also [231]) and we can immediately obtain the two eigenfrequencies iω±[2] associated
with the diffusion modes. Defining

κ̄(k) ≡ κ̄ijkikj, α(k) ≡ αijkikj, σ(k) ≡ σijkikj , (3.4.15)

we obtain the generalised Einstein relation

iω+
[2] iω

−
[2] = κ(k)

cρ

σ(k)
χ

,

iω+
[2] + iω−[2] = κ(k)

cρ
+ σ(k)

χ
+ T [χα(k)− ξ σ(k)]2

cρχ2σ(k) , (3.4.16)

where cρ = cµ − Tξ2

χ
was given in (3.2.11) and we have defined

κ(k) ≡ κ̄(k)− α2(k)T
σ(k) . (3.4.17)

This is the universal result concerning the dispersion relations for the diffusive modes
associated with the conserved heat and electric currents for holographic lattices.

3.4.2 Comments

Recall that κ̄ij is the thermal DC conductivity for zero applied electric field. On the
other hand the thermal DC conductivity for zero electric current, κij, is given by
κij = κ̄ij − T (ᾱσ−1α)ij. Despite the notation, note that, in general, κ(k) 6= κijkikj.

The simplest dispersion relations occur for charge neutral background black holes
with vanishing gauge fields. In this case we have αij = ξ = 0 and hence κ̄ij = κij
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leading to the simple Einstein relations7

iω = ε2κ
ijkikj
cµ

+ . . . , iω = ε2σ
ijkikj
χ

+ . . . . (3.4.18)

In the special case of translationally invariant black holes with vanishing gauge
fields8, the electric DC conductivity of the dual field theory is still finite and there is
a corresponding charge diffusive mode as in (3.4.18). On the other hand the thermal
DC conductivity is infinite and there is no thermal diffusive mode.

To make some additional comments, we first recall some results concerning the
DC conductivity for perturbative holographic lattices for which translations are
broken weakly. Such lattices have a black hole horizon that is a perturbation about
a flat horizon, parametrised by a small number λ. In [45, 290] it was shown that the
DC conductivity has the expansion

κ̄ij = (L−1)ij4πsT +O(λ−1) , αij = ᾱij = (L−1)ij4πρ+O(λ−1) ,

σij = (L−1)ij 4πρ2

s
+O(λ−1) . (3.4.19)

where the matrix Lij is proportional to λ2 and depends on the leading order deviations
of the horizon from the translationally invariant configuration. An explicit expression
for L in terms of the spatially modulated horizon was given in [45, 290]. It was also
shown in [45, 290] that both the thermal DC conductivity at zero current flow, κij,
and the electric conductivity at zero heat current flow, σijQ=0, appear at a higher
order in the expansion. Explicitly, when ρ 6= 0 we have

σijQ=0 = 1
4πsZ

(0)gij(0)

∣∣∣∣
λ=0

+O(λ) , Tκij =
s3T 2Z(0)gij(0)

4πρ2

∣∣∣∣∣∣
λ=0

+O(λ) . (3.4.20)

Notice, in particular, Tκij = s2T 2

ρ2 σijQ=0 +O(λ). When ρ = 0 the expression for σijQ=0

is still valid but we can no longer calculate Tκij perturbatively as the leading order
piece is infinite.

Using the results (3.4.19) in (3.4.16) we obtain the dispersion relations of the
two diffusive modes:

iω+ = ρ2χ

cρρ2χ+ T (ξρ− sχ)2κ
ijkikj +O(λ) ,

= (sT )2

(sT )2χ− 2(sTρ)Tξ + ρ2Tcµ
σijQ=0kikj +O(λ) ,

7In a charge neutral holographic setting, with translations explicitly broken using scalar fields
as in [279], the first diffusive mode in (3.4.18) was numerically constructed in [238].

8This is the setting where the holographic Einstein relation for electric charge diffusion was first
discussed in [85].
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iω− = 4π(cρρ2χ+ T (ξρ− sχ)2)
cρsχ2 (L−1)ijkikj +O(λ−1) . (3.4.21)

In particular, the first diffusive mode is of order λ0, but the second is of order λ−2 and
hence appears parametrically further down the imaginary axis (while, of course, still
going to the origin when ki → 0). If we now consider the translationally invariant
case by taking λ → 0, we find that we have one diffusive mode with a dispersion
relation that satisfies an Einstein relation in terms of the finite DC conductivity κij,
or σijQ=0 (which is also valid when ρ = 0), as given in the first two lines of (3.4.21).
Such a diffusive mode was discussed in the context of hydrodynamics in [134].

We can also consider spontaneous breaking of translations with the addition of
a small explicit breaking, with dimensionless strength λ, as recently discussed for
specific helical lattices in [340]. For temperatures just below Tc one can develop
a double expansion in both λ and (1 − T/Tc)1/2, with the exponent in the latter
the expected behaviour for standard mean field phase transitions. The matrix
Lij in (3.4.19) will then also have have a double expansion. For the case that
λ >> (1− T/Tc)1/2 we can expand, schematically, L−1 ∼ λ−2[a1 + . . . ], where a1 is
a horizon quantity that can be calculated as in [45, 290] and the neglected terms
are a double expansion in (1− T/Tc)1/2/λ and λ. In particular, in this limit we see
that the DC conductivity is dominated by the explicit breaking terms, as expected.
Similarly, for λ << (1− T/Tc)1/2 we have L−1 ∼ (1− T/Tc)−1[a2 + . . . ], where the
neglected terms are an expansion in λ/(1− T/Tc)1/2 and (1− T/Tc)1/2. This result
explains a feature of the DC conductivity that was found numerically in figure 9 of
[340]. It is also worth noting that in the case that λ << (1− T/Tc)1/2 this drop in
the DC conductivity, combined with sum rules, implies that in the AC conductivity
the spectral weight will move from the Drude peak to mid frequencies, as seen in
the example of [340]. For the case of spontaneous breaking with a small explicit
breaking there will, of course, still be two diffusive modes with dispersion relations
as in (3.4.21), and both can be expanded in terms of λ and (1− T/Tc)1/2. Note that
in [340], for a specific setting of pinned helical phases, only the first diffusive mode
in (3.4.21) was discussed.

Our final comment concerns instabilities of the background black hole solutions.
In particular, the dispersion relations for the diffusive modes given in (3.4.16) allow us
to make sharp statements concerning the relation between thermodynamic instability
and dynamical instability of the holographic lattice black hole solutions. In the
simplest case, when the gauge field is zero we know that when cµ or χ is negative then
we have a thermodynamic instability. But from (3.4.18) we immediately deduce that
there is a quasinormal mode with a pole in the upper half of the complex frequency
plane and this leads to a dynamical instability of the black hole solution.
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Turning now to general black hole backgrounds with non-vanishing gauge-field,
we can write the equation for the diffusive modes in (3.4.14) asiω[2]

 1 0
0 1

−
 χ Tξ

Tξ Tcµ

−1 σ(k) Tα(k)
Tα(k) T κ̄(k)



 δµ̄

δT/T

 = 0 . (3.4.22)

Since the thermoelectric horizon DC conductivity is a positive definite matrix, we
see that a negative eigenvalue in the susceptibility matrix appearing in (3.4.22),
associated with a thermodynamic instability, will again give rise to a quasi-normal
mode in the upper half complex frequency plane and, correspondingly, a dynamical
instability for the black hole.

3.5 Final comments

In this paper we showed how the quasi-normal modes associated with heat and
charge diffusion can be constructed for holographic lattices in a long-wavelength,
perturbative expansion. In particular the construction allowed us to derive the
dispersion relation of the diffusive modes in terms of horizon DC conductivities,
obtained from solutions to a Stokes flow on the horizon, and static susceptibilities.
This constitutes a derivation of a generalised Einstein relation.

We considered a class of gravitational theories with a specific matter content, but
it is clear that the main results should apply to more general theories, including the
possibility of having more gauge fields in the bulk and hence additional conserved
charges in the dual field theory. We focussed on studying static geometries for
simplicity, but it should be possible to relax this condition utilising the holographic
understanding of transport currents presented in [291, 293]. Similarly, the extension
to higher derivative theories of gravity should also be possible using the results in
[291].

The derivation of the dispersion relations started with the identification of the
quasinormal mode at ω = ki = 0, namely (3.4.3). This was possible because this
diffusion mode is associated with conserved quantities. This was then used to
perturbatively construct the quasinormal modes in a neighbourhood of ω = ki = 0.
In particular, the analysis of the constraint equations on the stretched horizon was
sufficient to obtain the dispersion relation for the quasinormal mode. It is clear that
this procedure will work for the quasinormal modes associated with any conserved
quantity9.

9It also seems likely that if one is given a specific quasinormal mode for some (ω0, k0) 6= 0 then
it should also be possible to obtain the dispersion relation for the mode for (ω, k) close to (ω0, k0).
However, in the case, the technical effort required to obtain the specific quasinormal mode probably
allows one to construct the quasinormal mode for (ω, k) 6= (ω0, k0) and so it is not clear if this
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There has been some interesting recent discussion of the Goldstone modes that
arise from spontaneously broken translation invariance, with an emphasis on the
pinning phenomenon that occurs after adding in a small explicit breaking of trans-
lations, both within holography [340–342] and from a hydrodynamic point of view
[237, 301, 302]. In the future, we plan to report on how the methods developed in
this paper can be extended to study these modes as well as the Goldstone modes
arising in spontaneously broken internal symmetries.

3.A Residual gauge invariance

The time dependent perturbation that we introduced in section 3.3 satisfied ingoing
boundary conditions at the horizon summarised in (3.3.2)-(3.3.4). It is illuminating
to note that there are some residual gauge and coordinate transformations which
near the horizon are given by

δΛ = e−iωvEF
(
δλ(0)(xi) + r δλ(1)(xi)+,O(r2)

)
,

t→ t+ e−iωvEF
(
δT (0)(xj) +O(r)

)
,

r → r + e−iωvEF
(
rδR(0)(xj) +O(r2)

)
,

xi → xi + e−iωvEF
(
δξ(0)i(xj) + r δξ(1)i(xj) +O(r2)

)
. (3.A.1)

These are consistent with (3.3.2), (3.3.3) and induce the following transformations

δg
(0)
tt → δg

(0)
tt + 2iωδT (0) − δR(0), δg(0)

rr → δg(0)
rr + (1− 2iω

4πT )δR(0),

δg
(0)
ij → δg

(0)
ij + 2∇(iδξ

(0)
j) , δg

(0)
tr → δg

(0)
tr + iωδT (0) − iω

4πT δR
(0) ,

δg
(0)
ti → δg

(0)
ti − iωδξ

(0)
i , δg

(1)
ti → δg

(1)
ti − 4πT∂iδT (0) − iω(g(1)

ij δξ
(0)j + δξ

(1)
i ) ,

δg
(0)
ri → δg

(0)
ri − iωδξ

(0)
i , δg

(1)
ri → δg

(1)
ri + ∂iδR

(0) − iω(g(1)
ij δξ

(0)j + δξ
(1)
i ) + 4πTδξ(1)

i ,

(3.A.2)

as well as

δa
(0)
t → δa

(0)
t − iωδλ(0),

δa
(1)
t → δa

(1)
t − iωδλ(1) − iωa(0)

t δT (0) + a
(0)
t δR(0) + (∂ia(0)

t )δξ(0)i,

δa(0)
r → δa(0)

r − iωδλ(0), δa(1)
r → δa(1)

r + (4πT − iω)δλ(1) − iωa(0)
t δT (0) ,

δa
(0)
i → δa

(0)
i + ∂iδλ

(0), δφ(0) → δφ(0) + (∂iφ(0))δξ(0)i . (3.A.3)

One can check that the constraint equations given in (3.3.6)-(3.3.8) are covariant
with respect to these transformations.

observation is that significant.
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Notice that the combination δa(1)
t − iω

4πT (δa(1)
t −δa(1)

r ), appearing in the horizon con-
straint equation (3.3.7), is invariant under the gauge transformations parametrised
by δλ(1). Similarly, the combination δg(1)

ti − i ω
4πT (δg(1)

ti − δg
(1)
ri ), appearing in (3.3.8),

is invariant under the gauge transformations parametrised by δξ(1)
i . If iω 6= 4πT we

can choose δλ(1) to set δa(1)
r = 0 and δξ(1)

i to set δg(1)
ri = 0, but we have not found a

need to do this, nor fix any of the above gauge invariances10.

3.B Evaluating the constraints on the horizon

3.B.1 Constraints in the radial decomposition

We begin by briefly summarising the constraint equations that appear in a Hamilto-
nian decomposition of the equations of motion using a radial foliation, following the
presentation in appendix A of [45]. We introduce the normal vector nµ, satisfying
nµnµ = 1. The D-dimensional metric gµν induces a (D − 1)-dimensional Lorentzian
metric on the slices of constant r via hµν = gµν − nµnν . The lapse and shift vectors
are given by nµ = N(dr)µ and Nµ = hµνr

µ, respectively, where rµ = (∂r)µ. The
gauge-field components are decomposed via bµ = hµ

νAν , Φ = −NnµAµ and we
define fµν = ∂µbν − ∂νbµ.

The momenta conjugate to hµν , bµ and φ are given by

πµν = −
√
−h (Kµν −K hµν) ,

πµ =
√
−hZF µρnρ ,

πφ = −
√
−hnν∂νφ , (3.B.1)

respectively, where Kµν = 1
2Lnhµν is the extrinsic curvature. The Hamiltonian,

momentum and Gauss law constraints can then be written in the form H = Hν =
C = 0 where

H = − (−h)−1/2
(
πµνπ

µν − 1
D − 2 π

2
)
−
√
−h

(
(D−1)R− V

)
− 1

2 (−h)−1/2 Z−1hµν π
µ πν + 1

4
√
−hZfµν fρσ hµρ hνσ

− 1
2(−h)−1/2π2

φ + 1
2
√
−hhρσ∂ρφ∂σφ ,

Hν =− 2
√
−hDµ

(
(−h)−1/2πµν

)
+ hνσfσρπ

ρ

− hνσbσ
√
−hDρ

(
(−h)−1/2 πρ

)
+ hνσ∂σφπφ ,

C =
√
−hDµ

(
(−h)−1/2 πµ

)
, (3.B.2)

10We comment that a brief discussion of performing AC and DC calculations in a radial gauge,
for Q-lattice constructions, appear in section 3 of [278] and in footnote 10 of [222].
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where π = πµµ and Dµ is the covariant derivative with respect to hµν .
The full equations of motion are the above constraint equations combined with

the radial equations of motion. The latter consist of expressions for Lrhµν , Lrbµ and
Lrφ as well as Lrπµν ,Lrπµ,Lrπφ and explicit expressions can be found in appendix
A of [45]. This leads to equations that have second order radial derivatives for hµν ,
bµ and φ.

3.B.2 Evaluating constraints for the perturbation

Consider a general perturbation of the background black hole solution (3.2.2) of
the form δgµν , δaµ, δφ with all quantities functions of (t, r, xi). On the surfaces of
constant r this gives rise to a perturbed normal vector with components given by

ni = −(U/F )1/2 gijd δgrj, nt = G−1F−1/2U−1/2δgtr,

nr = (U/F )1/2
(

1− U

2F δgrr

)
. (3.B.3)

Furthermore, the corresponding shift and lapse functions are given by

N j = gijd δgri, N t = − 1
GU

δgrt ,

N = (F/U)1/2
(

1 + 1
2
U

F
δgrr

)
. (3.B.4)

The components of the extrinsic curvature Kµν take the form

Kt
t =1

2 G
−1F−1/2U−1/2

(
∂r (GU)− 1

2
U

F
∂r (GU) δgrr

)
+ 1

2 G
−2F−1/2U−3/2 ∂r (GU) δgtt

− 1
2 G

−1F−1/2U−1/2
(
∂rδgtt + ∂j(GU)N j

)
+G−1F−1/2U−1/2 ∂tδgtr ,

Ki
t =− 1

2 GF
−1/2U3/2 gijd

(
−∂r

( 1
GU

δgtj

)
+ ∂j

( 1
GU

δgrt

)
+ 1
GU

∂t δgrj

)
,

Kt
i =1

2 (U/F )1/2
(
− 1
GU

∂rδgti + δgtj
GU

gkjd ∂rgdik + ∂i

( 1
GU

δgrt

)
+ 1
GU

∂tδgri

)
,

Ki
j =1

2 (U/F )1/2
(
gikd ∂rgdkj −

U

2F g
ik
d ∂rgdkjδgrr + gikd ∂rδgkj − gild gkmd ∂rgdkjδglm

)
− 1

2(U/F )1/2
(
∇iNj +∇jN

i
)
. (3.B.5)

We now turn to the specific perturbation discussed in section 3.3. We want
to evaluate the constraints at the horizon by employing the expansions given in
(3.3.2)-(3.3.4). Expanding the extrinsic curvature near the horizon we obtain

Kt
t → e−iωvEF

1
2

(4πT )1/2

r1/2

(
eiωvEF − 1

2δg
(0)
rr −

iω

4πT δg
(0)
rr

)
,
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Ki
t → e−iωvEF

1
2

(4πT )1/2

r1/2 vi ,

Kt
i → e−iωvEF

1
2

1
(4πT )1/2

1
r1/2

(
−δg(1)

ti + ∂iδg
(0)
tr − g

(1)
il v

l + i ω

4πT (δg(1)
ti − δg

(1)
ri )

)
,

Ki
j → e−iωvEF

1
2

1
(4πT )1/2

1
r1/2

(
∇ivj +∇jv

i − iω gik(0)δg
(0)
kj

)
,

K → e−iωvEF
1
2

(4πT )1/2

r1/2

(
eiωvEF − 1

2δg
(0)
rr + 2

4πT ∇iv
i − iω

4πT
(
δg(0)

rr + gij(0)δg
(0)
ij

))
.

(3.B.6)

In the above we have only kept background terms at leading order O(r−1/2) since
these are the only ones that will contribute in our calculation. Furthermore, the
covariant derivative is with respect to the metric g(0)

ij , which is also used to raise and
lower indices.

We next consider the following quantity which appears in the momentum con-
straint

Wν =Dµ

(
(−h)−1/2πµν

)
= −DµK

µ
ν +DνK ,

=− (−h)−1/2 ∂µ
(√
−hKµ

ν

)
+ 1

2 ∂νhκλK
κλ + ∂νK . (3.B.7)

Expanding at the horizon we find the following individual components

Wt → e−iωvEF
(4πT )1/2

r1/2

(
−1

2∇iv
i + iω

4 g
ij
(0)δg

(0)
ij −

iω

8πT
(
2∇iv

i − iωgij(0)δg
(0)
ij

))
,

Wi →
1
2e
−iωvEF 1

(4πT )1/2
1
r1/2

[
−2∇j∇(jvi) +∇ip

′

+ iω
(
−δg(1)

ti + ∂iδg
(0)
tr − g

(1)
il v

l + i ω

4πT (δg(1)
ti − δg

(1)
ri ) +∇kδg

(0)
ki

)]
, (3.B.8)

with

p′ = −2πT (δg(0)
tt + δg(0)

rr ) + 2∇jv
j + iω

(
δg

(0)
tt − 2δg(0)

tr − gij(0)δg
(0)
ij

)
. (3.B.9)

Another quantity that enters the constraints is the momentum of the scalar field.
At leading order in r we have

πφ → −
√
g(0) e

−iωvEF
(
vi∂iφ

(0) − iωδφ(0)
)
. (3.B.10)

We next turn to the gauge field. We find

Ftr → −a(0)
t + e−iωvEF

(
−δa(1)

t + iω

4πT
(
δa

(1)
t − δa(1)

r

))
,

Fir → e−iωvEF
1

4πTr
(
∂iw + iωδa

(0)
i

)
+ e−iωvEF

1
4πT

(
∂iδa

(1)
r − 4πTδa(1)

i + iωδa
(1)
i

)
,

Fti → −e−iωvEF
(
∂iw + iωδa

(0)
i

)
− r

(
∂ia

(0)
t + e−iωvEF ∂iδa

(1)
t + iω e−iωvEF δa

(1)
i

)
,
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Fij → 2e−iωvEF ∂[iδa
(0)
j] ,

F tr → a
(0)
t + e−iωvEF

[
δa

(1)
t −

iω

4πT
(
δa

(1)
t − δa(1)

r

)
+
(
δg

(0)
tt − δg(0)

rr

)
a

(0)
t + 1

4πT g
ij
(0)vj∂ia

(0)
t

]
,

F ir → e−iωvEF gij(0)

(
∂jw + iωδa

(0)
j + vja

(0)
t

)
. (3.B.11)

and thus the associated momentum has the expansion

πi → √g(0)Z
(0)e−iωvEF gij(0)

(
∂jw + iωδa

(0)
j + vja

(0)
t

)
,

πt → √g(0)Z
(0)e−iωvEF

(
δa

(1)
t −

iω

4πT
(
δa

(1)
t − δa(1)

r

)
+ 1

4πT g
ij
(0)vj∂ia

(0)
t

)
+√g(0)Z

(0)e−iωvEF a
(0)
t

(
eiωvEF + 1

2
(
δg

(0)
tt − δg(0)

rr + gij(0)δg
(0)
ij

))
+√g(0) ∂φZ

(0)e−iωvEF a
(0)
t δφ(0) . (3.B.12)

We can now evaluate the constraints at the horizon. Expanding the Gauss law
constraint C = ∂µπ

µ = 0 gives

∇i

(
Z(0)

(
∇iw + iωgij(0)δa

(0)
j + via

(0)
t

))
= iωZ(0) 1

2a
(0)
t

(
δg

(0)
tt − δg(0)

rr + gij(0)δg
(0)
ij

)
+ iωZ(0)

(
δa

(1)
t −

iω

4πT
(
δa

(1)
t − δa(1)

r

)
+ 1

4πT v
i∂ia

(0)
t

)
+ iω ∂φZ

(0)a
(0)
t δφ(0) .

(3.B.13)

To expand the momentum constraints at the horizon, Hν = 0, we first note that

ftµπ
µ = Ftiπ

i → 0 ,
fiµπ

µ = Fitπ
t + Fijπ

j → √g(0)Z
(0)e−iωvEF a

(0)
t

(
∂iw + iωδa

(0)
i

)
, (3.B.14)

For the t component, Ht = 0, we then find
(
2∇iv

i − iωgij(0)δg
(0)
ij

) (
1 + iω

2πT

)
= 0 . (3.B.15)

Similarly for the i component Hi = 0 we get

− 2∇j∇(jvi) + iω
(
−δg(1)

ti + ∂iδg
(0)
tr − g

(1)
il v

l + i ω

4πT (δg(1)
ti − δg

(1)
ri ) +∇kδg

(0)
ki

)
+∇ip

′ − Z(0)a
(0)
t

(
∇iw + iωδa

(0)
i

)
+∇iφ

(0)
(
vj∇jφ

(0) − iωδφ(0)
)

= 0 . (3.B.16)

Finally, we consider the Hamiltonian constraint (−h)−1/2H = 0. The third and fifth
terms in (3.B.2) vanish at linearised order. The second and the sixth term is of order
O(r0). We also compute

fri → −
iωe−iωvEF

4πTr δa
(0)
i +O(r0) ,



3.C. Calculating the DC conductivity 85

frt → −
iωe−iωvEF

4πTr w +O(r0) ,

fti → Fti ,

fij → Fij , (3.B.17)

and so the fourth term is of order O(r0) as well. Finally, the first term turns out to
be of order O(r−1), leading to the constraint

2∇iv
i − iωgij(0)δg

(0)
ij = 0 , (3.B.18)

which is consistent with (3.B.15). Finally, after using (3.3.4) and (3.B.18) in (3.B.16),
we find that the latter takes the form

iω
(
−δg(1)

ti − g
(1)
il v

l + ∂i(δg(0)
tr − δg(0)

rr ) + i ω

4πT (δg(1)
ti − δg

(1)
ri ) +∇kδg

(0)
ki

)
− 2∇j∇(jvi) +∇ip− Z(0)a

(0)
t

(
∇iw + iωδa

(0)
i

)
+∇iφ

(0)
(
vj∇jφ

(0) − iωδφ(0)
)

= 0 ,
(3.B.19)

with

p = −2πT (δg(0)
tt + δg(0)

rr ) . (3.B.20)

Thus, in summary, equations (3.B.13),(3.B.18) and (3.B.19) are the constraint
equations for the perturbations on the horizon.

3.C Calculating the DC conductivity

We briefly summarise the results of [45, 290] which allows us to obtain a horizon DC
conductivity by solving a system of Stokes equations on the horizon. When the DC
conductivity of the dual field theory is finite, as in the case of explicit breaking of
translations, it is identical to the horizon DC conductivity.

By analysing a perturbation of the background black hole solutions (3.2.2) that,
crucially, incorporate DC sources, it was shown that one is led to the following
system of Stokes equations on the black hole horizon

∂iQ
i
(0) = 0 , ∂iJ

i
(0) = 0 ,

−2∇i∇(iv j) − Z(0)a
(0)
t ∇jw +∇jφ

(0)∇iφ
(0)vi +∇j p = 4πT ζ̄j + Z(0)a

(0)
t Ēj ,

(3.C.1)

where

Qi
(0) = 4πT√g(0)v

j ,
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J i(0) = √g(0)g
ij
(0)Z

(0)
(
∂jw + a

(0)
t vj + Ēj

)
. (3.C.2)

Here, the vectors Ēi,ζ̄i, which are taken to be constant, parametrise the DC electric
source and thermal gradient of the dual field theory, respectively.

After solving these Stokes equations we obtain the local currents Qi
(0), J i(0) on the

horizon as functions of the DC sources Ēi, ζ̄i. By defining the current flux densities
at the horizon via

J̄ i(0) =
∫
J i(0) , Q̄i

(0) =
∫
Qi

(0) , (3.C.3)

we can then define the horizon thermoelectric DC conductivity matrix via J̄ i(0)

Q̄i
(0)

 =
 σijH TαijH

T ᾱijH T κ̄ijH

 Ēj

ζ̄j

 . (3.C.4)

For the time reversal invariant backgrounds we are considering in this paper we have
σH , κ̄H are symmetric and αH = ᾱTH .

Furthermore, as explained in [45, 290], the current flux densities at the horizon,
defined by

J̄ i(0) =
∫
J i(0) , Q̄i

(0) =
∫
Qi

(0) , (3.C.5)

are identical to the current fluxes J̄ i, Q̄i of the dual field theory. Thus, for holographic
lattices we have the DC conductivities of the dual field theory, σ, α, ᾱ and κ̄, are
identical to the horizon conductivities σH , αH , ᾱH and κ̄H , respectively.

It is helpful for the analysis of this paper to recall from [45, 290] that as long
as the horizon does not have any Killing vectors, there is a unique solution to the
Stokes equations (3.C.1), up to undetermined constants in w and p, which do not
inhibit one solving for the DC conductivity since they do not enter the expressions
for the currents.

Finally, we emphasise that the horizon DC conductivity given in (3.C.4) should
not be confused with another notion of horizon conductivity that arises from the
constitutive relations for the auxiliary fluid on the horizon. For example, in the
expression for the electric current on the horizon given in (3.C.2), one can call
√
g(0)g

ij
(0)Z

(0) a local electric conductivity11 , but this is, in general quite distinct
from σijH as defined in (3.C.4).

11To avoid confusion, we note that in [290] the expression √g(0)g
ij
(0)Z

(0) was denoted by σijH , a
notation which we do not use here.
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3.D Counting functions of integration

The quasinormal diffusion modes are solutions to the bulk equations of motion
satisfying ingoing boundary conditions at the black hole horizon and have vanishing
source terms at the AdS boundary. In the text we focused on the constraint equations
given in section 3.3.1 as this was sufficient to extract the diffusion relation for the
modes. Here we outline how, with the time dependence given in (3.3.1), we have
specified enough data at the horizon and at the AdS boundary in order to obtain a
solution to the full equations of motion.

We begin with fluctuations of the scalar field which satisfies a second order
equation in the radial variable. At the AdS boundary, r →∞, we have two functions
of integration, depending on the spatial coordinates xi, associated with the source
terms and expectation value of the scalar operator in the dual CFT. At the black
hole horizon we demand that the perturbation is regular and this leaves us with
a single function of integration δφ(0)(x). By setting the source terms at the AdS
boundary to zero we can develop a solution in the bulk using the remaining function
at the AdS boundary and then match with the solution developed from the horizon
using δφ(0)(x) which leads, generically, to a unique solution everywhere.

We next turn to fluctuations of the gauge field. The radial component δar serves
as a Lagrange multiplier and is data which, a priori, we are free to specify. This
leaves D − 1 functions δai, δat, each of which satisfies a second order differential
equation in the radial variable, and there is also the Gauss constraint, C = 0 (see
(3.B.2)), that we impose infinitesimally close to the horizon, given in (3.3.7). At the
AdS boundary we set the D − 1 functions of integration that are associated with
possible source terms to zero, implying that we need to identify (D − 1) functions
from the horizon expansion in order to solve the second order equations of motion,
via a matching argument. With the ingoing boundary conditions (3.3.3),(3.3.4) at
the horizon, we have the functions δa(0)

t and, when ω 6= 0, δa(0)
i , δa(1)

t all appearing
in the constraint equation. If we pick δa(0)

t to be solved by the constraint equation
then we are left with precisely D − 1 functions δa(0)

i and δa
(1)
t which are fixed by

the matching. It is worth noting that in our procedure, for the leading term of the
Lagrange multiplier we must set δa(0)

r = w (see (3.3.4)), which we are free to do. In
addition, we note that δa(1)

r , the sub-leading term of the Lagrange multiplier, also
appears in (3.3.7) and can be chosen freely; in particular δa(1)

r does not affect the
in-falling conditions we have specified in (3.3.3), (3.3.4).

Finally, we discuss the metric fluctuations, which run along similar lines to the
gauge field. There are D(D+1)/2 metric functions δgµν out of which the D functions
δgrµ serve as Lagrange multipliers. The remaining D(D − 1)/2 functions, δgtt, δgti
and δgij, each satisfy differential equations which are second order in the radial
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direction. There are also D constraint equations, the Hamiltonian and momentum
constraints, H = Hν = 0 (see (3.B.2)), that we have chosen to impose on a surface
infinitesimally close to the horizon. Importantly, however, the Hamiltonian constraint
is redundant close to the horizon leaving D− 1 independent constraint equations to
satisfy near the horizon, given in (3.3.6) and (3.3.8). There are now two equivalent
ways to proceed, which we discuss in turn.

The first way is to solve the second order radial equations for δgtt, δgti and
δgij. Now with the ingoing boundary conditions (3.3.2), (3.3.4) these equations are
associated with D(D− 1)/2 + (D− 2) functions of integration on the horizon, δg(0)

tt ,
δg

(0)
ij , δg(1)

ti , and vi, all of which appear in the constraint equations when ω 6= 0 and
we are ignoring the functions associated with the Lagrange multipliers appearing at
the horizon for the moment. Close to the AdS boundary, where we fix the source
terms to zero, the second order equations give a set of D(D − 1)/2 of normalisable
modes that will be fixed along with the D(D− 1)/2 functions δg(0)

tt , δg(0)
ij , δg(1)

ti upon
matching in the bulk. The remaining D − 1 functions on the horizon, vi and p, are
then used to solve the momentum constraints Hν = 0. The issue that remains open
in this approach is the Hamiltonian constraint. One can show that in an expansion
close to the horizon this is satisfied order by order in an analytic radial expansion
provided that the remaining constraint equations and second order equations are
satisfied, along with imposing the boundary conditions (3.3.2), (3.3.3) and (3.3.4).
Away from the horizon, this is guaranteed by the fact that LrH = 0.

The second way is to solve the Hamiltonian constraint equation in the bulk
instead of the second order equation for δgtt. Indeed, one of the second order radial
equations, for example the one for δgtt, is implied by the Hamiltonian constraint.
This is because the Hamiltonian constraint contains no derivatives of the momentum
and hence only ∂rδgtt appears, along with second order spatial derivatives with
respect to xi. Thus, instead of the D(D − 1)/2 second order equations in the radial
direction, we just need to solve D(D − 1)/2 − 1 second order equations and one
first order equation. Setting the source terms to zero in these equations at the AdS
boundary, we conclude that we need to specify D(D− 1)/2− 1 + 1 free functions at
the horizon after imposing the ingoing boundary conditions and solving the D − 1
constraint equations (3.3.6),(3.3.8). If we again use the D − 1 constraint equations
to solve for vi, p, this will leave precisely D(D − 1)/2 functions δg(0)

ij , δg(0)
tt , δg

(1)
ti to

be fixed by the matching.
Concerning the Lagrange multipliers, we first note that in the above procedure

δg
(0)
rt ≡ −p/(4πT ) will be fixed. Furthermore, we must set δg(0)

ri = −vi, δg(0)
rr =

−p/(2πT )− δg(0)
tt (see (3.3.4)). In addition, we also note that the sub-leading term

δg
(1)
ri appears in (3.3.8) and can be chosen freely as part of fixing the Lagrange

multipliers. Notice that, similarly to the case of the radial component of the gauge
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field δa(1)
r , this does not spoil the in-falling conditions we have specified in (3.3.2),

(3.3.4).

3.E Fixing the zero modes of the ε expansion

We now examine the perturbation at third order in ε. It is useful to split all the
bulk fields Φ[i] according to

Φ[i] = Φ̂[i] + ∂Φb

∂T
δT[i] + ∂Φb

∂µ̄
δµ̄[i] . (3.E.1)

Here the second and third terms are the derivatives of the background solution
with respect to the temperature and the averaged chemical potential, in the gauge
described below (3.4.1); in particular at the horizon the derivatives are explicitly
given in eq. (3.4.3). The functions Φ̂[i] solve the perturbative in ε radial equations
of motion with boundary conditions on the horizon set by ŵ[i], p̂[i] and vj[i] which
are obtained from the perturbatively expanded horizon constraint equations and we
recall that ŵ[i], p̂[i] do not have a zero mode (see (3.4.9)). We stress that this doesn’t
necessarily mean that the bulk functions Φ̂ do not have a zero mode. However, when
Φ is the field δat, for example, our boundary conditions impose that ˆ(δat)[i] is equal
to ŵ[i] on the horizon and that function does not have a zero mode.

In this notation, at third order, the scalar constraint equations (3.3.6), (3.3.7)
read

∇iv
i
[3] = iω[3]

2

gij(0)
∂g

(0)
ij

∂T
δT + gij(0)

∂g
(0)
ij

∂µ̄
δµ̄


+ iω[2]

2

gij(0)
∂g

(0)
ij

∂T
δT[1] + gij(0)

∂g
(0)
ij

∂µ̄
δµ̄[1]

+ iω[2]

2 gij(0)δĝ
(0)
[1]ij − ikiv

i
[2] ,

∇j

(
Z(0)

(
i kjδµ̄[2] +∇jw[3] + vj[3]a

(0)
t

))
=

−∇j

(
Z(0)

(
i kjŵ[2] + iω[2]g

jk
(0)δâ

(0)
[1]k

))
− ikj

(
Z(0)

(
i kj(δµ̄[1] + ŵ[1]) +∇jŵ[2] + vj[2]a

(0)
t

))
+ iω[3]

1
2Z

(0)a
(0)
t gij(0)

∂g
(0)
ij

∂T
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂T
+ Z(0)∂a

(0)
t

∂T

 δT
+ iω[3]

1
2Z

(0)a
(0)
t gij(0)

∂g
(0)
ij

∂µ̄
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂µ̄
+ Z(0)∂a

(0)
t

∂µ̄

 δµ̄
+ iω[2]

1
2Z

(0)a
(0)
t gij(0)

∂g
(0)
ij

∂T
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂T
+ Z(0)∂a

(0)
t

∂T

 δT[1]

+ iω[2]

1
2Z

(0)a
(0)
t gij(0)

∂g
(0)
ij

∂µ̄
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂µ̄
+ Z(0)∂a

(0)
t

∂µ̄

 δµ̄[1]
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+ iω[2] Z
(0) 1

2a
(0)
t

(
δĝ

(0)
[1]tt − δĝ

(0)
[1]rr + gij(0)δĝ

(0)
[1]ij

)
+ iω[2] Z

(0)
(
δâ

(1)
[1]t + 1

4πT v
i
[1]∂ia

(0)
t

)
+ iω[2] ∂φZ

(0)a
(0)
t δφ̂

(0)
[1] , (3.E.2)

and we recall ω[1] = 0. We will not explicitly write out the vector constraint equation
(3.3.8) at this order, which is rather long, and in fact won’t play a role in the
following discussion. We now want to examine the global constraints implied by the
requirement that the periodic functions vi[3], ŵ[3] and p̂[3] exist. After integrating the
two equations (3.E.2) over space we obtain an inhomogeneous system of algebraic
equations involving the constants δT[1], δµ̂[1], which are, so far, undetermined, as well
as ω[3]. As we will now discuss, the parts of this system that are not homogeneous
in these variables will involve integrals of functions which are fixed at first order
in perturbation theory, as well as ω[2] which was already fixed in the main text,
following (3.4.14). As we will see, it is important to identify the implicit dependence
of these two equations on δT[1] and δµ̄[1] as well as the manifest explicit dependence.

After solving the leading order constraint equations as well as the radial equa-
tions, we know that ŵ[1], p̂[1],vi[1] and indeed all the first order functions Φ̂[1] are
proportional to the constants δT and δµ. Furthermore, the constants δT and δµ

are not independent of each other: from (3.4.14)-(3.4.16), the existence of the per-
turbation at second order imposes that for each of the two diffusive modes we must
have  δT±

δµ̄±

 = δhV± , (3.E.3)

where δh is a constant, the vector V± belongs to the kernel of the matrix

M± =
 T−1

(
i ω±[2] cµ − κ̄(k)

)
i ω±[2] ξ − α(k)

i ω±[2] ξ − α(k) i ω±[2] χ− σ(k)

 , (3.E.4)

and ω±[2] is given in (3.4.16). It is also convenient to introduce the vector V⊥± which
is orthogonal to V±. Then there is some constants δh||[1] and δh⊥[1] such that we can
write  δT[1]

δµ̄[1]

 = δh
||
[1] V± + δh⊥[1] V⊥± . (3.E.5)

We stress here that the component δh||[1] is redundant and we do not expect it to
be fixed by the equations of motion. This follows from the fact we are examining a
linearised perturbation and we should be able to freely choose δh||[1] by scaling the
whole solution by a function of ε. Multiplying the whole perturbation by e.g. 1 +α ε

would effectively shift δh||[1] → δh
||
[1] + α δh. As we will see, the constant δh||[1] does
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indeed drop out from the two algebraic equations that we obtain by integrating over
(3.E.2).

Using this notation, for the first order functions Φ̂[1], which just depend on δT ,δµ
we can write

Φ̂[1] = Φ̂[1][0] δh . (3.E.6)

For the second order functions Φ̂[2] the situation is more involved and we have

Φ̂[2] = Φ̂[2][0] δh+ Φ̂[2]T δT[1] + Φ̂[2]µ δµ̄[1] ,

= Φ̂[2][0] δh+ Φ̂[2][1] δh
||
[1] + Φ̂⊥[2][1] δh

⊥
[1] . (3.E.7)

In particular

ŵ[2] = ŵ[2][0]δh+ ŵ[2]T δT[1] + ŵ[2]µ δµ̄[1] ,

p̂[2] = p̂[2][0]δh+ p̂[2]T δT[1] + p̂[2]µ δµ̄[1] ,

vi[2] = vi[2][0]δh+ vi[2]T δT[1] + vi[2]µ δµ̄[1] . (3.E.8)

The parts of the solutions of these horizon quantities that are proportional to δh
can be found from the constraints (3.4.13) after setting δT[1] and δµ̄[1] equal to zero.
The key observation, now, is that in the constraint equations at second order (i.e.
(3.4.13) as well as the vector constraint equation), the pieces in (3.E.8) proportional
to δT[1] and δµ̄[1] are precisely the same equations that we have in the DC calculation
outlined in Appendix 3.C with Ei = −i ki δµ̄[1] and ζi = −i ki δT[1]/T . We can
therefore write

4πT i
∮ √

g(0)v
i
[2]T = κ̄ijHkj , 4πT i

∮ √
g(0)v

i
[2]µ = T ᾱijHkj ,

i
∮ √

g(0)Z
(0)
(
−i ki +∇iŵ[2]µ + vi[2]µa

(0)
t

)
= σijHkj ,

i
∮ √

g(0)Z
(0)
(
∇iŵ[2]T + vi[2]Ta

(0)
t

)
= αijHkj . (3.E.9)

With the ingredients assembled above, we now integrate equations (3.E.2) and
find that we can write them in the form

i ω[3] SV±δh+ M±
(
V± δh||[1] + V⊥± δh⊥[1]

)
+ W δh = 0 ,

⇒ i ω[3] SV±δh+ M±V⊥± δh⊥[1] + W δh = 0 , (3.E.10)

where we have defined the matrix of susceptibilities

S =
 T−1cµ ξ

ξ χ

 . (3.E.11)
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The vector Wδh is defined through the integrals of the functions that appear in
(3.E.2) with index [1] and also through the vi[2][0] part of the horizon fluid velocity,
both of which are proportional to δh. Equation (3.E.10) now fixes both ω[3] as a
function of ki and δh⊥[1] as a function of δh. In particular, this shows how the zero
modes of δT[1], δµ̄[1] are fixed at this order of perturbation theory.

It is also clear from the above analysis, that a similar structure will repeat itself
at higher orders in the perturbative expansion, fixing the zero modes of δT[i], δµ̄[i]

for i > 1. In particular, in the expression (3.E.1) we will have Φ̂[i] depending on
δT[i−1] and δµ̄[i−1] in an analogous way.



Chapter 4

Incoherent transport for phases
that spontaneously break
translations

This chapter is a reproduction of [3], written in collaboration with Aristomenis
Donos, Jerome Gauntlett and Tom Griffin.

In this paper, we generalise some comments made in subsection 1.2.4 to phases
of matter at finite charge density which spontaneously break spatial translations.
More precisely, in section 4.2, by performing a finite frequency boost we are able
to show that there is only one independent element in the conductivity matrix
(1.2.1). Indeed, σ, α, ᾱ and κ̄ are all related, as in translationally invariant systems.
We then derive expressions for the small frequency behaviour of the thermoelectric
conductivities generalising those that have been derived in a translationally invariant
context. We also identify a boost invariant incoherent current operator (without
taking a hydrodynamic limit), which decouples from the momentum and whose
conductivity is a specific finite combination of the thermoelectric conductivities.

In section 4.3 we show that, within holographic constructions, the DC conduct-
ivity for the incoherent current can be obtained from a solution to a Stokes flow for
an auxiliary fluid on the black hole horizon combined with specific thermodynamic
quantities associated with the equilibrium black hole solutions. Heuristically, this
comes from observing that the prescription of subsection 1.2.4 fails in spontaneously
modulated backgrounds due to the non-uniqueness of the bulk solution, which leads
to non-uniqueness of the boundary currents and thus to infinite DC conductivities.
In contrast, the incoherent current is boost invariant, and this leads to a finite,
unique incoherent DC conductivity in terms of horizon data.
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4.1 Introduction

Studying the thermoelectric transport properties of quantum critical states of matter
at finite charge density is a topic of great theoretical and practical importance. For
‘clean systems’, i.e. systems that are translationally invariant and hence without a
mechanism for momentum to dissipate, it is well known that the DC conductivities
are infinite. More precisely, the translation invariance implies that momentum is
conserved and this leads to the appearance of a delta function in the thermoelectric
AC conductivities at zero frequency.

For translationally invariant systems the notion of an ‘incoherent current’ was
introduced in [134], building on [286]. This was defined to be a linear combination
of the electric and heat currents that has zero overlap with the momentum operator.
Using the hydrodynamic results of [132], which implicitly assumed that the system
was not in a superfluid state, it is then easy to see that the incoherent current should
have finite DC conductivity, [σinc]DC . In first order relativistic hydrodynamics, there
is only one independent transport coefficient for both neutral systems as well as
systems at finite chemical potential. In this context, the retarded two point function
of the incoherent current operator provides a generalisation of the Kubo formula
for that transport coefficient which is appropriate for systems at finite chemical
potential. It was shown in [134] that expressions for the low frequency behaviour of
the thermoelectric conductivities can be expressed in terms of [σinc]DC and certain
thermodynamics quantities. Furthermore, it was also shown how [σinc]DC can be
calculated within a specific class of holographic models from data at the black hole
horizon.

The goal of this short paper is to generalise some of these results to phases
of relativistic systems, held at finite chemical potential with respect to an abelian
symmetry, that break translations spontaneously. Our general arguments, which are
rather simple, will not assume any hydrodynamic limit of the system. That is, for a
given temperature we will allow for phases with arbitrary spatial modulation. We
will identify a universal boost-invariant incoherent current and argue that when there
is no superfluid the low frequency behaviour of the thermoelectric conductivities can
still be expressed in terms of certain thermodynamics quantities as well as the finite
incoherent DC conductivity, [σinc]DC . Within a holographic context, describing a
strongly coupled system, we also explain how [σinc]DC can be calculated in terms of a
Stokes flow on the spatially modulated black hole horizon, supplemented with some
thermodynamic quantities of the background. This extends the results of [290] that
obtained the DC conductivities for holographic systems for which the translations
are explicitly broken.

Naturally, we will focus on the properties of spatially modulated phases that



4.2. Boost invariant incoherent current 95

are thermodynamically preferred. Such phases, which may have anisotropic spatial
modulation, necessarily satisfy the condition 〈T̄ ij〉 = pδij, where T̄ ij is the constant
zero mode part of the spatial components of the stress tensor [343, 344]. However,
since spatially modulated phases in which this condition is not satisfied have been
analysed in a holographic context in [345] we briefly comment on some of the
modified formula in appendix 4.A. In particular our general results on how to derive
the [σinc]DC within holography immediately lead to the result presented in [345] for
the specific holographic model studied there.

More generally, charge and spin density waves and their impact on the phe-
nomenology of condensed matter systems have been of central interest for a long
time e.g. [212]. Some more recent work on thermoelectric transport for phases that
spontaneously break translations has appeared in [302], which included the effects
of disorder and pinning in a hydrodynamic description, as well as in a number of
holographic studies, including [340, 346, 347] and brane probe models [276, 342]. An
interesting open topic, which is left for the future, would be to derive the effective
hydrodynamic description of the specific examples of spontaneously formed density
wave states which have already been studied within holography, along the lines of
[234].

4.2 Boost invariant incoherent current

Consider a relativistic quantum field theory at finite temperature defined on flat
spacetime. We will consider the system to be held at constant chemical potential,
µ, with respect to an abelian global symmetry. We will also allow for the possibility
for additional deformations of the Hamiltonian by a scalar operator Oφ that is
parametrised by the constant source φs. If Oφ is odd under time reversal invariance
then a non-zero φs will explicitly break time reversal invariance.

We are particularly interested in phases in which spatial translations are broken
spontaneously, but our analysis will also cover translationally invariant phases. We
will assume that the system reaches local thermodynamic equilibrium satisfying
periodic boundary conditions generated by a set of lattice vectors {Li}. Thus, the
expectation values of the stress tensor density, 〈T µν〉, the conserved abelian current
density, 〈Jµ〉, as well 〈Oφ〉 are all functions of the spatial coordinates, x, which
are taken to be cartesian coordinates, that are invariant under shifts by any of
the lattice vectors. For any such function, A(x), the zero mode is denoted by Ā,
with Ā =

∮
A ≡ 1

vol

∫ {Li}
{0} dxA(x), where the volume of a unit cell of the lattice is

vol ≡
∫ {Li}
{0} dx.

It is important to recall that the thermodynamically preferred configurations will
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necessarily satisfy certain constraints on the zero modes of these expectation values
[343, 344]. In particular, by ensuring that the free energy is minimised over the
moduli space of spontaneously generated lattices, we must have 〈T̄ ij〉 ≡ tij = pδij,
where p is the spatially averaged constant pressure density and is related to the
free energy density, w, via w = −p. Defining the total charge density ρ ≡ 〈J̄ t〉,
the total energy density ε ≡ −〈T̄ tt〉, and the total entropy density s, we also have
the fundamental thermodynamic relation Ts + ρµ = ε + p. It was also shown in
[343] that the zero mode of the heat current must vanish, 〈Q̄i〉 = 0, where we recall
that Qi ≡ −T it − µJ i. If the global U(1) symmetry is not spontaneously broken,
which will be the principle focus of this paper, by extending the arguments of [343],
we can invoke invariance under large gauge transformations with gauge parameter
Λ = xi qi to argue that 〈J̄ i〉 = 0 as well. On the other hand for a superfluid one
can have 〈Q̄i〉 = 0 with 〈J̄ i〉 6= 0 since a non-trivial external gauge field of the form
Ai = qi cannot be gauged away, being associated with a supercurrent. However, for
the thermodynamically preferred phase obtained by minimising the free energy with
respect to qi, we have once again that 〈J̄ i〉 = 0. We also note here that P(i) ≡ T̄ ti is
the time independent charge associated with the total momentum density operator
in the ith direction.

We now deduce some simple facts about the two-point functions for the current-
current retarded Green’s functions. These can be obtained from Ward identities,
generalising [124], but we find it illuminating to obtain them by generating a time-
dependent perturbation via the coordinate transformation

xi → xi + λe−iωt ξi , (4.2.1)

where λ is a small parameter and ξi is a constant vector. Notice that for small ω this
is a translation combined with a Galilean boost. By taking the Lie derivative with
respect to the vector kµ = (0, λe−iωt ξi), we easily determine how various quantities
transform. The transformed metric is ds2 = −dt2 + δijdx

idxj − 2iω λe−iωt ξidxidt
and the perturbation δgti = −iω λe−iωt ξi parametrises a source for the operator
T ti in the action. Equivalently, it generates1 a spatially independent source in the
Hamiltonian associated with the operator −T it = Qi + µJ i and with parameter
+iωλe−iωtξi.

The coordinate transformation also modifies the stress tensor and current dens-
ities and we find

δT tt =λe−iωt
(
ξk∂kT

t
t + iωξiT

i
t

)
, δT ti = λe−iωtξk∂kT

t
i ,

1It also can be viewed as generating a source in the Hamiltonian for the operator T ti with
parameter +iωλe−iωtξi.
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δT it =λe−iωt
(
ξk∂kT

i
t + iω

[
ξi T tt − ξjT ij

])
,

δT ij =λe−iωt
(
ξk∂kT

i
j + iωξiT tj

)
, δOφ = λe−iωt ξk∂kOφ ,

δJ t =λe−iωt ξk∂kJ t , δJ i = λe−iωt
(
ξk∂kJ

i + iωξiJ t
)
. (4.2.2)

Focussing now on the zero modes we have

δT̄ tt =λe−iωtiωξiT̄ it , δT̄ ti = 0 ,
δT̄ it =λe−iωtiω

[
ξi T̄ tt − ξjT̄ ij

]
, δT̄ ij = λe−iωtiωξiT̄ tj ,

δJ̄ t =0 , δJ̄ i = λe−iωtiωJ̄ t ξi , δŌφ = 0 . (4.2.3)

In particular, we notice from the first line that while the Hamiltonian has changed,
the total momentum density operator is unchanged δP(i) ≡ δT̄ ti = 0 (and it is worth
highlighting that δT̄ it 6= 0).

From these expressions we can immediately read off the one-point function re-
sponses of the system to the source for the operator Qi + µJ i, with parameter
+iωλe−iωtξi. For example, we have

δ〈T̄ it〉 =− λe−iωtiωξi(ε+ p) , δ〈J̄ i〉 = λe−iωtiωρ ξi . (4.2.4)

Hence, we can immediately deduce, in particular, that

GJi(Qj+µJj)(ω,0) = ρ δij , G(Qi+µJi)(Qj+µJj)(ω,0) = (ε+ p)δij . (4.2.5)

Here we are using the notation for the retarded Green’s functions discussed in [1],
with GAB(ω,k) determining the zero mode linear response of an operator A to the
application of a source for the operator B parametrised by a single Fourier mode
labelled by (ω,k).

We can obtain further information using Onsager’s relations, which relate Green’s
functions in a given background to those in a background with time-reversed sources.
In the set-ups we are considering the only possible source that breaks time reversal
invariance is the scalar source φs in the particular case when the operator O is odd
under time-reversal. Thus, for example, we have in generalGJiQj(ω,0) = G′QjJi(ω,0),
where the prime denotes the background with the opposite sign for φs. Now, suppose
that we consider the time reversed background and then carry out exactly the
same transformations as above. We then deduce the results (4.2.5) for the primed
Green’s functions, i.e. in the time reversed background, with exactly the same right
hand sides (since they are inert under time-reversal): G′Ji(Qj+µJj)(ω,0) = ρ δij and
G′(Qi+µJi)(Qj+µJj)(ω,0) = (ε+ p)δij. Using Onsager’s relations on these expressions,
and that they are explicitly symmetric in i and j, we can deduce that for the Green’s
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functions in the original background, in addition to (4.2.5) we also have

G(Qi+µJi)Jj(ω,0) =ρ δij . (4.2.6)

As a corollary, we also have, in the original background, GJiQj(ω,0) = GQiJj(ω,0).
After multiplying (4.2.5), (4.2.6) by i/ω we then deduce the following relations

for the thermoelectric AC conductivity

µσij(ω) + Tαij(ω) =iρ
ω
δij ,

µT ᾱij(ω) + T κ̄ij(ω) =iTs
ω

δij , (4.2.7)

and we also have αij(ω) = ᾱij(ω). The pole at ω = 0 is associated with a delta
function via the Kramers-Krönig relations, and is due to conservation of momentum
(since any breaking of translations is assumed to be spontaneous). In the case that
there is no scalar source associated with breaking of time reversal invariance, then
we also have that σij(ω), αij(ω) = ᾱij(ω) and κ̄ij(ω) are all symmetric matrices.

We now define the incoherent current operator

J iinc ≡ (ε+ p)J i + ρT it = TsJ i − ρQi . (4.2.8)

For the backgrounds we are considering we have J̄ iinc = TsJ̄ i, which is zero both
when the U(1) symmetry is not spontaneously broken and also for superfluids in the
thermodynamically preferred phase. We also notice that δJ̄ iinc = 0, showing that
J̄ iinc is an invariant quantity under the finite frequency boosts (4.2.1). From (4.2.5)
and (4.2.6) we have

GJiinc(Qj+µJj)(ω,0) = G(Qi+µJi)Jjinc
(ω,0) = 0 . (4.2.9)

Furthermore, defining the incoherent conductivity via σijinc(ω) ≡ i
ω
GJiincJ

j
inc

(ω) we
have

σijinc(ω) = (Ts)2σij(ω)− 2(Ts)ρTαij(ω) + ρ2T κ̄ij(ω) . (4.2.10)

At this juncture we now assume that the U(1) is unbroken (i.e. no superfluid).
In this case since σijinc(ω) is a boost invariant quantity then we expect it to be a
finite quantity at ω = 0. Continuing now with this assumption it is convenient to
define [σijinc]DC ≡ σijinc(ω = 0) and also

σij0 ≡
1

(ε+ p)2 [σijinc]DC . (4.2.11)

As we have already seen there are poles in the thermoelectric conductivity
matrices, and hence associated delta functions which we suppress for the moment.
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If we now assume that the analytic structure of the Green’s functions is such that
we can write σ(ω)→ i

ω
x+ y, as ω → 0, where x, y are constant matrices, then using

(4.2.7) to get expressions for α and κ̄ as ω → 0, as well as demanding that the pole
is absent in σinc(ω) we immediately deduce that we can write, as ω → 0,

σij(ω)→
(
πδ(ω) + i

ω

)
ρ2

ε+ p
δij + σij0 ,

T ᾱij = Tαij(ω)→
(
πδ(ω) + i

ω

)
ρTs

ε+ p
δij − µσij0 ,

T κ̄ij(ω)→
(
πδ(ω) + i

ω

) (Ts)2

ε+ p
δij + µ2σij0 , (4.2.12)

and here we have included the delta functions. This is our first main result.
Some simple corollaries now follow. We first recall that the electrical conductivity

at zero total heat current can be expressed as σQ̄=0(ω) ≡ σ(ω)− Tα(ω)κ̄(ω)−1ᾱ(ω),
while the thermal conductivity at zero total electric current is given by κ(ω) ≡
κ̄(ω)− T ᾱ(ω)σ(ω)−1α(ω). From (4.2.12) we deduce that σQ̄=0(ω) and also κ(ω), if
ρ 6= 0, are both finite as ω → 0 with

σij
Q̄=0(ω)→ (ε+ p)2

(Ts)2 σij0 , κij(ω)→ (ε+ p)2

ρ2 σij0 . (4.2.13)

Furthermore, since αij(ω) = ᾱij(ω), we can write

σijinc(ω) = (Ts)2σij
Q̄=0(ω) + [Tακ̄−1α(Ts− ρα−1κ̄)2]ij(ω) , (4.2.14)

and we note that the second term vanishes as ω → 0.

4.3 Holography

Within holography, phases with spontaneously broken translations are described
by black holes with planar horizons with a metric, gauge field and scalar which,
generically, all depend periodically on all of the spatial directions. Such horizons
also arise for “holographic lattices”, i.e. black hole solutions which are dual to
field theories that have been deformed by operators which explicitly break spatial
translations.

In both cases, following [290], we briefly summarise how one can obtain the ther-
moelectric conductivity of the black hole horizon. To simplify the discussion we only
consider background configurations that have vanishing magnetisation currents and
moreover time-reversal invariance is not broken, either explicitly or spontaneously2.

2More general discussions, including a careful treatment of transport currents, can be found in
[293, 320].
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We will also assume we are not in a superfluid phase.
One first applies a suitable DC perturbation to the full black hole solution that

is linear in the time coordinate and parametrised by DC sources Ei and ζi, which
are taken to be constant throughout the bulk spacetime. It can then be shown
that on the black hole horizon a subset of the perturbation must satisfy a Stokes
flow for an auxiliary fluid, with sources Ei and ζi. Solving these Stokes equations
gives local currents on the horizon, Qi

H and J iH , which depend periodically on the
spatial coordinates. Determining the zero modes of these currents, denoted by Q̄i

H

and J̄ iH , and relating them to Ei and ζi we then obtain, by definition, the horizon
DC conductivities σijH , α

ij
H , ᾱ

ij
H and κ̄ijH . In the absence of Killing vectors on the

black hole horizon geometry, these will be uniquely defined and finite quantities.
Since we are assuming that the background is time-reversal invariant, σijH and κ̄ijH
are symmetric matrices and also αijH = ᾱjiH .

In the case of holographic lattices, i.e. when the translations have been explicitly
broken, all DC conductivities of the dual field theory will be finite and σijH , α

ij
H ,

ᾱijH , κ̄
ij
H are equal to the associated DC conductivities σijDC , α

ij
DC , ᾱ

ij
DC , κ̄

ij
DC of the

dual field theory [290]. This result follows after showing that the zero modes of the
currents on the horizon, Q̄i

H and J̄ iH , which are finite, are equal to the zero modes
of the currents at the holographic boundary.

Turning to the case that translations have been broken spontaneously, the DC
conductivities of the dual field theory contain infinities due to the presence of Gold-
stone modes. Thus, σijH , α

ij
H , ᾱ

ij
H , κ̄

ij
H , which are finite, are certainly not equal to the

σijDC , α
ij
DC , ᾱ

ij
DC , κ̄

ij
DC , the DC conductivities of the dual field theory. However, since

the zero modes of the currents on the horizon Q̄i
H and J̄ iH , are finite and, moreover,

they are still equal to the zero modes of the currents at the holographic boundary,
this seems paradoxical. The simple resolution is that the full linearised perturbation
about the black hole solution, with sources parametrised by Ei and ζi and regular
at the black hole horizon, is no longer unique in the bulk spacetime. Indeed, when
translations are broken spontaneously, by carrying out a coordinate transformation
of the bulk solution, we can generate additional time dependent solutions that are
regular at the horizon and without additional sources at the AdS boundary, as we
explain in more detail in appendix 4.B.

Nevertheless, in the case that translations are broken spontaneously we know
that there is a finite DC conductivity, namely [σinc]ijDC ≡ σijinc(ω → 0), and this
quantity can be obtained from a Stokes flow on the horizon. One applies a DC
perturbation in which we source the incoherent current, J iinc, but not the current
Qi + µJ i, and this is achieved3 by taking ζi = − ρ

Ts
Ei. Solving the Stokes flow on

3This can by seen by writing J̃A = MABJB, where J̃A = (J inc, Q + µJ), JA = (J i, Qi) and
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the horizon with this source, one obtains a local incoherent current on the horizon,
whose zero mode is also the zero mode of the incoherent current in the boundary
theory, J̄inc. Since we have J̄ iinc =

(
(Ts)2σijH − Tsρ[TαijH + T ᾱijH ] + ρ2T κ̄ijH

)
Ej/(Ts)

we deduce that when translations are broken spontaneously4 [σinc]ijDC is given by

[σinc]ijDC = (Ts)2σijH − Tsρ[TαijH + T ᾱijH ] + ρ2T κ̄ijH . (4.3.1)

In particular, we deduce that the DC conductivity for the incoherent current of the
field theory can be expressed in terms of the horizon DC conductivities, obtained from
the solution to the Stokes flow on the horizon, combined with specific thermodynamic
quantities of the equilibrium black hole solutions, which also can be obtained from
the horizon. This is the second main result of this paper.

We repeat that, in general, the individual horizon conductivities on the right
hand side of (4.3.1) are not the same as those of the boundary field theory. In
particular, despite that fact that from (4.2.14) we have [σinc]ijDC = (Ts)2σij

Q̄=0(ω → 0)
we do not have, in general, σij

Q̄=0(ω → 0) = σij
Q̄H=0, where σQ̄H=0 ≡ σH − TαH κ̄−1

H ᾱH

is the horizon DC conductivity for vanishing zero mode of the horizon heat current.
To further clarify this point, it is illuminating to now consider the black hole

horizon to be a small perturbation about a flat planar space, parametrised by a small
number λ. It was shown in [45, 290] that the horizon conductivities σijH , α

ij
H , ᾱ

ij
H , κ̄

ij
H

are of order λ−2 but σQ̄H=0 is of order λ0, with order λ corrections. As we explain
in appendix 4.C, by extending the results of [45, 290] we can actually deduce that

[σinc]ijDC = (Ts)2σij
Q̄H=0(λ) +O(λ2) , (4.3.2)

and [σinc]ijDC 6= (Ts)2σij
Q̄H=0(λ), in general. If we let Tc be the temperature for the

phase transition that spontaneously breaks translations, then for temperatures just
below Tc the horizon will be a small deformation away from flat space, parametrised5

by λ ∼ (1 − T/Tc)1/2. Since, by direct calculation as in footnote 4, the value of
[σinc]DC for the translation invariant background for temperatures above Tc is the

deducing that the corresponding transformed sources are s̃ = (MT )−1s in order that JT s = J̃T s̃.
Furthermore, if we set ζi = − ρ

TsEi we have s̃ = (E/(Ts), 0).
4In the case of translationally invariant backgrounds, the horizon has Killing vectors and there

is not a unique solution to the Stokes equations on the horizon. Specifically, we can have vi
proportional to a Killing vector on the horizon, with p, w constant, in the notation of [45, 290].
However, this ambiguity drops out of the incoherent current on the horizon, J iHinc ≡ (Ts)J iH−ρQiH ,
which in this setting is constant. Furthermore, applying sources with ζi = − ρ

TsEi and writing
J iHinc = [σinc]ijDCEj/(Ts) we can obtain an expression for [σinc]ijDC . For example, for the general
class of models considered in [45, 290], we get [σinc]ijDC = (Ts)2√g0g

ij
0 Z0. This gives an alternative

approach to obtaining [σinc]ijDC than that discussed in [134].
5Here we are assuming that the phase transition has mean field exponents, with the expectation

value of the order parameter proportional to (1− T/Tc)1/2. This implies that the horizon can be
expanded in the same parameter about flat space.
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same as (Ts)2σQ̄H=0(λ→ 0), we see that [σinc]DC is continuous as the temperature
is lowered.

We can also consider λ to parametrise a small explicit breaking of translations
added to a system that spontaneously breaks translations. In this case, all of the
individual thermoelectric conductivity matrices of the dual field theory are finite and
equal to the horizon quantities. In this case it will only be near T = Tc in which the
horizon is a small deformation about flat space and then one can expand in either λ
or (1− T/Tc)1/2.

4.A Non-thermodynamically preferred phases

If we consider the system in thermal equilibrium, but do not assume that we have
minimised the action with respect to the size and shape of the spontaneously formed
lattice, as in [345], then the formulas in the text are modified slightly. It is helpful
to introduce the symmetric matrix mij defined by

mij ≡ (ε− µρ) δij + tij , (4.A.1)

so that for the thermodynamically preferred branches we have mij = Tsδij.
Equations (4.2.5),(4.2.6) get modified to

GJi(Qj+µJj)(ω,0) = G(Qi+µJi)Jj(ω,0) = ρ δij ,

G(Qi+µJi)(Qj+µJj)(ω,0) = [m+ µρ]ij . (4.A.2)

This implies that (4.2.7) should be changed to

µσij(ω) + Tαij(ω) =iρ
ω
δij ,

µT ᾱij(ω) + T κ̄ij(ω) = i

ω
mij , (4.A.3)

and αij(ω) = ᾱij(ω). The definition of the incoherent current operator is modified
to

J iinc ≡ [mJ ]i − ρQi . (4.A.4)

From (4.A.2) we have

GJiinc(Qj+µJj)(ω,0) = G(Qi+µJi)Jjinc
(ω,0) = 0 , (4.A.5)

and the incoherent conductivity, σijinc(ω) ≡ i
ω
GJiincJ

j
inc

(ω), is given by

σijinc(ω) = [mσ(ω)m]ij − ρ[Tα(ω)m+mTα(ω)]ij + ρ2T κ̄ij(ω) . (4.A.6)
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Writing σ(ω) → i
ω
x + y, as ω → 0, where x, y are constant matrices, as in the

text, we deduce that

σij(ω)→
(
πδ(ω) + i

ω

)
ρ2[(m+ µρ)−1]ij + σij0 ,

T ᾱij = Tαij(ω)→
(
πδ(ω) + i

ω

)
ρ[m(m+ µρ)−1]ij − µσij0 ,

T κ̄ij(ω)→
(
πδ(ω) + i

ω

)
[m2(m+ µρ)−1]ij + µ2σij0 , (4.A.7)

where

σij0 ≡ [(m+ µρ)−1[σinc]DC(m+ µρ)−1]ij , (4.A.8)

and [σinc]ijDC = σijinc(ω = 0).
In the holographic setting, in order to get [σinc]ijDC we can solve the Stokes flow

on the horizon with the following constraint on the sources: ζi = −ρ(m−1E)i. This
leads to

[σinc]ijDC = [mσHm]ij − ρT [ᾱHm+mαH ]ij + ρ2T κ̄ijH . (4.A.9)

Once again we can obtain [σinc]ijDC from horizon data supplemented with thermo-
dynamic properties of the background. It is worth noting that here, in contrast to
(4.3.1), not all of the thermodynamic quantities can be obtained directly from the
horizon.

The above formulae simplify somewhat for the special case of spatially isotropic
phases in which all of the horizon conductivities are proportional to the identity
matrix and furthermore tij = tδij, so that mij = (Ts+ w + t)δij. In this setting we
have

σ(ω)→
(
πδ(ω) + i

ω

)
ρ2

ε+ t
+ σ0 ,

T ᾱ = Tα(ω)→
(
πδ(ω) + i

ω

)
ρ(Ts+ w + t)

ε+ t
− µσ0 ,

T κ̄(ω)→
(
πδ(ω) + i

ω

) (Ts+ w + t)2

ε+ t
+ µ2σ0 , (4.A.10)

where

σ0 = 1
(ε+ t)2 [σinc]DC . (4.A.11)

In the holographic setting, for this special case, we can write

[σinc]DC = (Ts+ w + t)2σQ̄H=0 + Tα2κ̄−1(Ts+ w + t− ρα−1κ̄)2 . (4.A.12)

For the special case of an isotropic Q-lattice with d spatial dimensions we can be
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more explicit and this will allow us to recover the result of [345] for [σinc]DC who
used a different approach. Using the same notation as in section 4.1 of [45] the
breaking of translations is specified by a matrix Dij, which for an isotropic lattice
can be written as Dij ≡ Dδij. Substituting the results of [45] into (4.A.12) then
easily gives

[σinc]DC = (Ts+ w + t)2( s4π )(d−2)/dZH + 4πρ2(w + t)2

sD
. (4.A.13)

Combining this with (4.A.11) and setting d = 2, we obtain equation (74) of [345]
after identifying w + t with −2K in their notation.

4.B Bulk non-uniqueness

We consider a holographic theory describing a relativistic quantum field theory at
finite temperature defined on flat spacetime. The system is held at constant chemical
potential, µ, with respect to an abelian global symmetry and we will also allow for
the possibility for additional deformations of the Hamiltonian by an uncharged scalar
operator Oφ that is parameterised by the constant φs.

We consider the following bulk coordinate transformations

xi → xi − ui(t+ S(r)) , t→ t− vixi , (4.B.1)

as well as a gauge transformation with parameter Λ = µwix
i, where ui, vi and wi

are all constant vectors. Here S(r) is a function of the holographic radial coordinate
such that S(r) = ln r

4πT + ... near the horizon, located at r → 0, and S(r) → 0 as
one approaches the AdS boundary located at r →∞. This transformation adds the
following boundary sources:

δgti = vi − δijuj, δAi = µ(wi − vi) . (4.B.2)

In particular, setting vi = δiju
j and wi = vi gives a source free transformation that is

regular at the black hole horizon. This means that, demanding a given set of sources
on the AdS boundary combined with regularity at the black hole horizon, does not
lead to a unique solution to the bulk equations of motion.

If we take the parameters to be infinitesimal perturbations we also deduce the
following transformations on the currents in the boundary field theory:

δ〈J i〉 =− tuk∂k〈J i〉+ ui〈J t〉 ,

δ〈T it〉 =− tuk∂k〈T it〉+ ui〈T tt〉 − uj〈T ij〉 . (4.B.3)
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If we consider the zero modes we have

δ〈J̄ i〉 =uiρ ,
δ〈T̄ it〉 =− uj(εδij + tikδjk) , (4.B.4)

and also δ〈Q̄i〉 = −δ〈T̄ it〉 − µδ〈J̄ i〉 = ujmikδjk.6 We see that both 〈J̄ i〉 and 〈Q̄i〉 are
changed by this transformation (when ρ 6= 0). In particular, this means that the DC
thermoelectric conductivity matrix is not well defined (when ρ 6= 0). Note, however,
that δ〈J̄ iinc〉 = 0.

This non-uniqueness of bulk solutions (and of the currents 〈J̄ i〉 and 〈Q̄i〉) means
that we must be careful when calculating the DC conductivities. A solution to the
perturbed equations parametrised by Ei, ζi may be found for which the DC current
response is finite everywhere (including at the horizon and at the boundary), but
when this is not the unique solution for the current, the associated DC conductivity
will not be well-defined. The conclusion is that when calculating DC conductivities,
it is important to first establish that the associated current response is uniquely
defined.

4.C Perturbative Lattice

We follow the analysis and notation of [45, 290] which focussed on Einstein-Maxwell-
dilaton theory with Lagrangian density L = R− V (φ)− 1

4Z(φ)F 2− 1
2(∂φ)2. For the

black holes of interest, which preserve time reversal invariance, we assume that at
the black hole horizon we can expand about a flat geometry using a perturbative
parameter λ:

g(0)ij = g δij + λh
(1)
ij + · · · , Z(0)a

(0)
t = a+ λ a(1) + · · · ,

φ(0) = ψ(0) + λψ(1) + · · · , Z(0) = z(0) + λ z(1) + · · · , (4.C.1)

with a, z(0), ψ(0) and g being constant and the sub-leading terms are functions of,
generically, all of the spatial coordinates xi and they respect the lattice symmetry.
We can calculate the entropy density s =

∮
sH and the charge density ρ =

∮
ρH on

the horizon using

sH ≡ 4π√g(0) = 4πgd/2(1 + λ
h(1)

2g + · · · ),

ρH ≡
√
g(0)Z

(0)a
(0)
t = agd/2(1 + λ(h

(1)

2g + a(1)

a
) + · · · ) , (4.C.2)

6Note that on the thermodynamically preferred branch we have δ〈J̄ i〉 = uiρ, δ〈T̄ it〉 = −ui(ε+p)
and δQ̄i = uiTs
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where h(1) = δijh
(1)
ij and d is the number of spatial dimensions. We thus7 have

s = 4πgd/2 +O(λ) and ρ = agd/2 +O(λ).
As shown in [45, 290], we can solve the horizon constraint equations perturbatively

in λ using the following expansion:

vi = 1
λ2 v

i
(0) + 1

λ
vi(1) + vi(2) + · · · , w = 1

λ
w(1) + w(2) + · · · ,

p = 1
λ
p(1) + p(2) + · · · , (4.C.3)

where vi(0) is constant. In [45, 290], this then yields a solution for the horizon DC
thermoelectric conductivities σijH , α

ij
H , ᾱ

ij
H and κ̄ijH , which all have leading order

behaviour of order 1/λ2.
We can now make some additional observations. We can calculate the zero modes

of the electric and heat current as follows.

J̄ i(0) ≡
∮ √

g(0)Z
(0)(a(0)

t vi + gij(0)(∂jw + Ej)) =
∮
ρHv

i +O(λ0) ,

=
∮
ρH( 1

λ2 v
i
(0) + 1

λ
vi(1)) +O(λ0) = ( 1

λ2 ρv
i
(0) + 1

λ
ρv̄i(1)) +O(λ0) ,

= ρv̄i +O(λ0) . (4.C.4)

Similarly,

Q̄i
(0) ≡ 4πT

∮ √
g(0)v

i ,

= Tsv̄i +O(λ0) . (4.C.5)

We thus have ρQ̄i
(0) = sT J̄ i(0) + O(λ0), which means that ρT (κ̄ijHζj + ᾱijHEj) =

sT (σijHEj + TαijHζj) +O(λ0). Since this holds for arbitrary Ej and ζj, we must have:

σijH = ρ

s
ᾱijH +O(λ0) ,

αijH = ρ

sT
κ̄ijH +O(λ0) . (4.C.6)

The Onsager relations for this time-reversal invariant background imply that αijH =
ᾱjiH , σ

ij
H = σjiH and κ̄ijH = κ̄jiH , and so:

σijH = ρ2

s2T
κ̄ijH +O(λ0) ,

αijH = ᾱijH +O(λ0) = ρ

sT
κ̄ijH +O(λ0) . (4.C.7)

7Note that if preferred, one could absorb the zero modes of all the sub-leading terms in (4.C.1)
into the leading terms, g, a, etc. and then s and ρ could be expressed in terms of the resummed,
constant, leading terms plus corrections that would be of order O(λ2) (since, as we see from (4.C.2),
the O(λ) pieces would vanish when integrated over the spatial coordinates).
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We can use this to confirm that

σQ̄H=0 ≡ σH − TαH κ̄−1
H ᾱH = O(λ0) ,

κH ≡ κ̄H − T ᾱHσ−1
H αH = O(λ0) . (4.C.8)

Furthermore, using (4.C.7) we find

ρᾱ−1
H κ̄H = sT +O(λ2) , ρκ̄Hα

−1
H = sT +O(λ2) . (4.C.9)

Now, from (4.3.1) we can write the DC conductivity for the incoherent current
as

[σinc]DC = (Ts)2σQ̄H=0 + 1
2TαH κ̄

−1
H ᾱH(Ts− ρᾱ−1

H κ̄H)2

+ 1
2T (Ts− ρκ̄Hα−1

H )2αH κ̄
−1
H ᾱH

+ 1
2Tρ

2(ᾱH − αH)ᾱ−1
H κ̄H −

1
2Tρ

2κ̄Hα
−1
H (ᾱH − αH) . (4.C.10)

The above results then allow us to conclude that

[σinc]DC = (Ts)2σQ̄H=0(λ) +O(λ2) . (4.C.11)

Note that we don’t expect that (4.C.6) will continue to hold for higher orders in λ
(it arises from the very special form of the last line in (4.C.4) and (4.C.5)). Thus, in
general, [σinc]DC 6= (Ts)2σQ̄H=0 .



Chapter 5

Outlook

The work presented in this thesis is only a small step towards a better understanding
of transport at strong coupling and the relation to black hole dynamics. There are
still various outstanding questions to be answered and interesting challenges to be
met; here we will briefly discuss a selection of them.

The robustness and universality of the techniques of chapters 2 and 3 suggest that
they can also be useful in studying systems with spontaneously broken translations
or spontaneously broken global symmetries. In particular, it is possible that the
formalism presented in chapter 2 can also generalise the results of [131] to the case of
superfluids. Additionally, the techniques developed in chapter 3 can contribute in the
clarification of the low energy excitations in holographic superfluids, which include
second sound [348, 349]. In more complicated models of holographic superfluidity
there are Goldstone bosons with exotic, diffusion type dispersion relations [350].

The breaking of spacetime symmetries is much less understood; for example,
even the counting of the massless Goldstone bosons is not yet clear [351–353]. An
intriguing prospect, currently under investigation, is the construction of Goldstone
modes corresponding to spontaneously broken translational symmetry. According
to the intuition gained, we expect that the near horizon region will encode the
dissipative aspects of these modes, while the thermodynamic aspects will be related
to the elasticity of the lattice [110, 341, 354]. Other avenues to explore would be the
incorporation of magnetisation as well as higher derivative effects, which could in
principle modify the generalised Einstein relations (but see [318]).

The above work can also be useful in the quest for universal bounds on diffusion
[231]. In section 3.1 we discussed the growing evidence in favour of the saturation
of this bound for the thermal diffusivity and the butterfly velocity in holographic
theories. Specifically, in the homogeneous, momentum relaxing models considered in
[106], it was crucial that both the thermal conductivity and the specific heat could
be expressed in terms of the metric in the near horizon region. The calculation
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of the butterfly velocity also involves only the near horizon region. The explicit
construction of the diffusive modes presented in chapter 3 will hopefully shed some
light in these exciting connections. It could also prove to be useful in rigorous proofs
of bounds on diffusion.

Apart from dissipative transport, the near horizon region can also capture sig-
nificant aspects of QPTs [221]. Even more generally, it would be very interesting
to explore the structure of the phase diagrams of holographic theories [355–358].
In order to make progress in this direction, it is necessary to construct various
branches of black hole solutions and study their thermodynamic and dynamical
properties, so that one can examine holographic phase transitions. This will lead to
improved understanding of the phase diagrams of a wide range of physical systems
at finite temperature or finite charge density, from strongly coupled quantum matter
and high-Tc superconductors to QCD. On a related note, the construction of such
backreacted black hole solutions can reveal interesting RG flows and novel ground
states. There is a rich structure even in neutral, translationally invariant cases [359,
360]; the addition of spatial modulation may give rise to exotic phenomena, such as
“Boomerang” flows [325, 361].

Moreover, it is worth mentioning that holography allows us to move beyond the
regime of linear response and study far from equilibrium dynamical evolution of
quantum systems; for instance, black hole formation as described by the Vaidya-
AdS geometry is supposed to capture the essential features of thermalization after
a quantum quench, see [4, 362–366] among numerous other works. Generalising to
global inhomogeneous quenches [367, 368] would also be particularly exciting, in
view of applications to relativistic heavy ion collisions.

Finally, recall that a characteristic of quantum matter is long-range quantum
entanglement. It is intriguing that even though the calculation of entanglement
entropy in many-body quantum systems and QFTs is generally hard, holography
geometrises this quantity in a very elegant manner [362, 369]. This has led to a
widespread use of entanglement entropy as a probe for thermalization, as well as
an order parameter of quantum phase transitions [370]. There are indications that
the spread of entanglement in out of equilibrium systems is related to the spread of
chaos [371, 372]; it would be very interesting to investigate further such potentially
profound connections.

We conclude this thesis by reiterating that even though an experimental realiza-
tion of a holographic system has yet to be discovered, holography is arguably one of
the most powerful tool at our disposal for gaining useful insights into strongly cor-
related quantum systems. The fruitful interaction between fundamental physics and
condensed matter theory will undoubtedly help us to further unravel the mysteries
of Nature, from quantum matter to quantum gravity.
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