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Abstract

Conventional element-based methods for crack modelling suffer from remeshing and

mesh distortion, while the cracking particle method is meshless and requires only

nodal data to discretise the problem domain so these issues are addressed. This

method uses a set of crack segments to model crack paths, and crack discontinu-

ities are obtained using the visibility criterion. It has simple implementation and is

suitable for complex crack problems, but suffers from spurious cracking results and

requires a large number of particles to maintain good accuracy. In this thesis, a mod-

ified cracking particle method has been developed for modelling fracture problems in

2D and 3D. To improve crack description quality, the orientations of crack segments

are modified to record angular changes of crack paths, e.g. in 2D, bilinear segments

replacing straight segments in the original method and in 3D, nonplanar triangular

facets instead of planar circular segments, so continuous crack paths are obtained.

An adaptivity approach is introduced to optimise the particle distribution, which

is refined to capture high stress gradients around the crack tip and is coarsened

when the crack propagates away to improve the efficiency. Based on the modified

method, a multi-cracked particle method is proposed for problems with branched

cracks or multiple cracks, where crack discontinuities at crack intersections are mod-

elled by multi-split particles rather than complex enrichment functions. Different

crack propagation criteria are discussed and a configurational-force-driven cracking

particle method has been developed, where the crack propagating angle is directly

given by the configuration force, and no decomposition of displacement and stress

fields for mixed-mode fracture is required. The modified method has been applied

to thermo-elastic crack problems, where the adaptivity approach is employed to

capture the temperature gradients around the crack tip without using enrichment

functions. Several numerical examples are used to validate the proposed methodol-

ogy.
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J J-integral

Keq Equivalent stress intensity factor

KIII Mode III stress intensity factor

KII Mode II stress intensity factor

– vi –



KI Mode I stress intensity factor

kT Thermal conductivity
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ui Displacement component

W Strain energy

w(x) Weight function
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∆a Crack increment

Vectors

t̄ External traction
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λ Lagrange multiplier
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ε Cauchy strain in Voigt notation

εT Thermal strain in Voigt notation

g Configurational force

n Normal to surface
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q Heat flux
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[σ] Cauchy stress in matrix
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I Identity matrix
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L Differential operator

Others

Γ Problem boundary
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ΓT Temperature boundary
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Γt Force boundary

Γu Displacement boundary

S+,S− Two sides of crack surfaces

Ω Problem domain

V Problem volume
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Chapter 1

Introduction

1.1 Overview

Physical phenomena in nature are usually studied by either theoretical research or exper-

imental analysis. Unlike practical experiments facing issues of high cost and enormous

damage to the environment, theoretical research is more economic and environmental,

where partial differential equations (PDEs) are developed to govern the behaviour of

natural phenomena. However, only a few PDEs with simple geometries and boundary

conditions can be solved analytically, while the majority are directly unsolvable and have

to be approximated by numerical methods. Numerical calculations are carried out only

with digital computers, and these methods can provide both effectiveness and general

applicability, which make them suitable for engineering analysis.

The whole process of a numerical method for solving PDEs is generally comprised

of four main steps [1]: mathematical model; discretisation; solution; verification and

validation. The first is to build governing equations based on theoretical principles of

mechanics, while the remaining three are the main topics of computational mechanics.

A problem domain is discretised and reassembled to build the system equations, then

boundary conditions and external loadings are imposed and a solution of the PDEs is

obtained. At the last step, numerical results are verified and compared with experimental

and theoretical results to validate the numerical method.

A large number of numerical methods have been developed for engineering analysis

generally composed of two groups, mesh-based and meshless methods. The origin of the

– 1 –
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first group can be traced back to 1940s when the main strategies of the finite element

method were proposed and built up, and till now these kinds of methods have been applied

to analysis of static linear elasticity, heat transfer, vibration, electromagnetism and fluid

dynamics [1]. However, the finite element method meets issues of mesh distortion and

volumetric locking when applied for large deformation problems with low-order elements.

In contrast, meshless methods are developed to address these issues and to get rid of

the dependence on meshes. One early attempt was made in the element-free Galerkin

method [2] in 1994, where no elements are involved in the problem discretisation. Since

then, a large number of meshless methods have been developed, e.g. the reproducing

kernel particle method and the meshless local Petrov-Galerkin method, and reviews on

these meshless methods are presented in [3–5]. In the following sections, these numerical

methods are briefly summarised and introduced.

1.2 Finite element method

The finite element method (FEM) is the most popular numerical method in solid me-

chanics and has been built into several commercial software packages, e.g. ANSYS [6],

ABAQUS [7] and LS-DYNA [8]. In the FEM, a problem domain is divided into a fi-

nite number of nonoverlapping “elements” where all vertices of the elements are termed

“nodes”. Displacements within an element are interpolated by the nodal values (as basis

functions) at all vertices of the element and the weights of nodal values are called shape

functions. For instance, the process can be carried out through Lagrange interpolation.

The stiffness of each element is reassembled to a large system equation, and then numeri-

cal results are obtained by solving this equation, which are approximated solutions to the

original PDEs.

The first use of the FEM can be traced back to efforts by Hrennikoff [9] and Courant

[10] in the 1940s, where the method was developed to carry out structural analysis in civil

engineering with triangular elements. The stiffness of a complete engineering structure

was calculated in [11], which set up elementary principles of the FEM. Then this method

was applied to plate [12] and shell [13] analysis. It was extended to three-dimensional

problems in [14] where new element types were created including tetrahedral elements.

The name “finite element” first appeared in [15], where triangular elements were used in
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plane stress analysis of elastic solids. The FEM was further extended from static linear

elastic problems to plasticity [16], structural dynamics [17] and biomechanics [18].

Despite the successes, the standard FEM faces challenges when addressing problems of

fracture, damage, penetration and large deformation. There is usually a difference between

the assembly of elements and the physical domain, especially for problems with curved

geometries. Remeshing is inevitable for fracture problems during successive analysis steps

[16, 19, 20], and this process is computationally expensive even with the most sophisti-

cated meshing algorithms. The dependence on meshing has been partially addressed in

the development of the boundary element method (BEM) [21], in which volume integrals

are converted into boundary integral equations, and elements are only used at boundaries.

Since the surface/volume ratio for a problem is usually small, the BEM is more computa-

tionally efficient than the FEM. Early work on the BEM can be found as far back as 1963

[22] with later extension to three dimensional stress analysis in [23, 24]. Now the BEM has

been widely applied in various different fields, e.g. fracture mechanics [25–27], acoustics

[28, 29] and thermoelasticity [30]. The BEM makes use of the Green’s theorem to reduce

the integration cost, but this also places restrictions on its applications, particularly any

non-linear modelling. A possible solution to this drawback is through coupling between

the BEM and nonlinear FEM as in [31].

Another advancement of the FEM occurred with the concept of isogeometric analysis

(IGA) first proposed in [32] where element shapes match physical geometries exactly. B-

spline functions, which are widely used in computer aided design, are introduced into the

basis functions of elements in the interpolation, so the profiles of engineering structures

can be exactly described by the assembly of elements. More importantly, shape functions

of elements can be highly smooth by using the B-spline functions, which is much easier

than by changing the element type in the FEM. This method can provide good accuracy

in non-linear problems, e.g. damage [33], blood flow [34] and contact treatment [35].

However, manual operation is still unavoidable in the process of building up elements to

match element shapes with the problem patterns, especially for complex geometries [36].

A recent review of the IGA is given in [37].



4 Chapter 1. Introduction

1.3 Meshless methods

Conventional numerical methods relying on meshes for the discretisation of a problem do-

main meet problems of high pre-processing time and remeshing issues. A class of meshless

methods (MMs) has been developed to address these issues and are ideal for problems

of large deformation, fracture, fragmentation and material damage as reviewed in [3–5].

Only nodal data are involved to approximate PDEs, for instance through a moving least

squares process as in [2], and therefore remeshing is avoided. Each node is assigned to a

weight function which controls the interaction with all its neighbours, and the influence

domain of the weight function (known as “support”) decides the number of neighbours.

While MMs are designed to get rid of meshes, the use of elements is necessary in some

MMs for either imposing essential boundary conditions or for integration. Therefore it is

sometimes confusing how to distinguish MMs from mesh-based methods. A possible an-

swer from the literature [38] is that a MM is defined as such if it can satisfy the following

requirement, “A predefined mesh is not necessary, at least in field variable interpolation.”

The most important features of MMs are listed below, which make MMs distinct from

conventional numerical methods like the FEM.

• Absence of mesh. No mesh generation is required at the beginning of the calculation

to determine the connectivity of nodes, so the issue of remeshing is avoided.

• Continuity of shape functions. It is easier to construct shape functions with any

desired order of continuity in MMs than in the FEM.

• Convergence. The convergence rate for error in MMs can be much higher than that

of the FEM as mentioned in [2].

• Adaptivity. Since no mesh is involved in the discretisation process, it is easy to

generate node distributions with different densities, while transition elements are

required to connect elements with different sizes in the FEM.

The standard FEM is challenged by volumetric locking for using C0 continuous shape

functions which somewhat overestimate the element stiffness and result in locking. This

issue is relieved in MMs with large supports and high-order continuous shape functions

as in [39, 40].
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1.3.1 History and classification

A large number of MMs have been developed in recent decades, as reviewed in [5]. Here

the history of MMs is introduced, and then a classification is provided according to their

individual features.

One of the earliest MMs is the smoothed partial hydrodynamics (SPH) method pro-

posed by Lucy [41] and by Gingold and Monaghan [42] in 1977. The SPH method is

based on a Lagrangian formulation where the problem domain is represented by a set of

moving particles with predefined masses and volumes. This makes it possible to model

large deformation problems without considering accuracy degradation caused by mesh

distortion. The method has been applied to a large variety of problems, e.g. shock sim-

ulation [43], fluid hydrodynamics [44, 45], impact [46] and metal forming [47]. However,

the SPH method suffers from a number of problems such as spurious boundary effects

[48] and tension instability [49]. Recent developments of the SPH method are given in

[50, 51].

Another early MM is the diffuse element method (DEM) which was proposed in 1992

in [52], and it can provide better description of displacement gradients than the FEM.

Here the FEM interpolation in elements is replaced by a local weighted least-squares

fitting to neighbourhood nodes, known as the moving least squares (MLS) approximation

[53]. While the DEM has accuracy issues due to using simplifications for the derivatives of

displacement, it provided a foundation for the later element free Galerkin method (EFGM)

[2, 54, 55]. In the EFGM, derivatives of shape functions are calculated correctly and the

MLS approximation is incorporated into a Galerkin weak form of governing equations

with Lagrange multipliers used to impose essential boundary conditions. It can provide

better convergence properties than the FEM as mentioned in [2] and has been applied

to a wide range of problems, e.g. linear and non-linear problems [56, 57], static and

dynamic fractures [58–60], thin shell analysis [61], vibration [62, 63], biomechanics [64],

electro-magnetics [65] and thermal problems [66, 67].

Other methods make the displacement approximation based on the theory of wavelets,

from which the reproducing kernel particle method (RKPM) was developed in 1995 [68].

In the RKPM, displacements are represented by a group of wavelet functions describing

the dilatation and translation of waves. While it starts from a different origin, similar
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approximations are obtained in some cases matching with the MLS approximation, more

precisely the RKPM can be seen as a continuous version of the MLS approximation. It has

been shown that the RKPM can provide effective results for large deformation [69, 70],

contact [71, 72], impact and fragment problems [73, 74].

At the same time, the hp-cloud method was developed [75], which provides easy imple-

mentation of h and p enrichment of the approximation functions. MLS approximations

are enriched by adding additional degrees of freedom to build the partition of unity (PU)

with higher order complete polynomials [76]. Compared with the EFGM and the RKPM

which have discontinuities when p-adaptivity is attempted, the approximation space in

the hp-cloud is smooth. This method was applied to the modelling of thick plates [77],

where shear locking is controlled using hp cloud approximations with high order poly-

nomial degrees and the results are the same as in the p-version FEM. The ideas in the

hp-cloud method were extended to the FEM in [78], which combined the features of the

two methods and exponential convergence was obtained. A recent development of the

hp-cloud can be found in [79] for solving the Schrödinger equation in quantum mechanics.

MMs based on a global Galerkin weak form, e.g. the EFGM and the RKPM, require

an integration over a problem domain and background cells are usually used (this is the

issue referred to above in the discussion of truly MMs). An alternative which avoids

the need for a grid for integration is the meshless local Petrov-Galerkin (MLPG) method

[80], where a local weak form is employed. A local domain is selected to coincide with

the support of weight functions, and background cells are not necessary, which makes

the MLPG method truly meshless. The MLPG method has also been extended to a

boundary integral technique in [81, 82], which is a simple and efficient alternative to the

EFGM as mentioned in [82]. The MLPG method has been applied to problems such as

acoustic analysis [83, 84], magneto-electro-elastic solids [85, 86], heat transfer [87–89], and

a recent review is presented in [90].

The MMs mentioned above work from a Galerkin weak form of PDEs, but other meth-

ods based on the strong form have also been developed, termed point collocation methods.

In this class of methods, a set of points in the problem domain are used to approximate

displacements and their derivatives, and to select a solution which can satisfy the strong

form governing equations at these collocation points. Although many related methods for
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scattered data interpolation were developed for at least five decades earlier as reviewed in

[91], the earliest applications to solve PDEs were in 1990 [92, 93]. A radial basis function

(RBF), which is continuously differentiable and is capable to represent functions with

deep gradients, was applied for spatial approximation and also for partial derivative esti-

mates. The theoretical foundation of solving PDEs with the approximation of the RBF

was established in [94], yielding the radial basis collocation method (RBCM), and the

convergence of the RBCM was discussed in [95]. Since the RBF depends only on the

distance between a pair of two points, no mesh is required in the approximation process.

The RBCM has accuracy issues on derivatives of interpolating functions at boundaries,

and one solution is using a Hermite type boundary collocation method as in [96] where

Hermite polynomials were used for all nodes on boundaries. The RBCM has been applied

to a wide range of problems, e.g. heat transfer [97, 98], fracture [99] and wave propagation

[100–102]. In addition, approximations of the MLS or the RK can also be used in the

collocation methods, as given in [103–105], and then the reproducing kernel collocation

method (RKCM) is developed. While the RBCM suffers from issues of an ill-conditioning

and fully dense system matrix, the RKCM uses locality property of the RK approximation

which yields a sparse system matrix. The stability and convergence of the RKCM was

discussed in [106], showing that the RKCM can provide algebraic convergence rate for the

global error and be as stable as the FEM. The requirement of calculating second-order

derivatives in PDEs is avoided by using a gradient RK approximation [107].

Despite the variety of names for MMs mentioned above, significant similarities can be

found. These methods are classified according to their individual origins and viewpoints

as given in Table 1.1.

1.3.2 Major issues

Despite the fact that MMs have been successfully applied in engineering analysis, some

issues remain and hinder further development of MMs: these are imposition of boundary

conditions, integration, complexity of calculating shape functions, convergence and error

control.

Most MMs do not possess both the property of high-order continuous shape functions

and satisfaction of the Kronecker delta property which means that the approximation at

a node is equal to its nodal value. In those methods lacking the Kronecker delta property,
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Table 1.1: Classification of meshless methods

Classification Method Approximation Reference

strong form

SPH smooth Kernel [41]

RBCM RBF [92, 93]

RKCM RK [103]

weak form

DEM MLS [52]

EFG MLS [2]

RKPM RK [68]

hp-clouds enriched MLS [75]

MLPG MLS [80]

essential boundary conditions cannot be imposed directly to governing equations in the

same way as in the FEM. A hybrid of MMs and the FEM is one solution, where boundaries

are described by finite elements and the inner domain is modelled by MMs, as given in

[108], but this combination brings many difficulties to the implementation. Alternatively,

a number of techniques have been developed to address this issue by either modifying the

weak form or using compliant shape functions. The former include Lagrange multipliers

[2], penalty method [109] and Nitsche’s method [110], while the latter can be achieved

by using a singular weight function [111], or an improved meshless Shepard least squares

approach [112]. A detailed description of these methods is included in Section 2 where

the detailed derivation of the governing equations is covered.

Integration is a major issue for those MMs based on a weak form and is usually carried

out using background cells or nodal integration. When Gaussian quadrature is performed

over background cells [2, 54], a large number of integration points are necessary to obtain

accurate results, and shape functions have to be evaluated at each integration point, thus

affecting the efficiency of these MMs. Nodal integration is an alternative which is simpler

and faster than complete Gaussian integration, and usually works with Voronoi cells

[113, 114]. But this approach is less accurate and stable, and can become cumbersome

for generating Voronoi cells when used for 3D problems. Other methods make use of the

influence domain of particles, which are originally used to calculate shape functions, to

evaluate all integrals and the need for a background mesh is eliminated, as in [115].
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The calculation of shape functions in MMs is generally more time-consuming than in

the FEM and this is a key computational cost. For MMs using the MLS or the RK

approximation, the inversion of a matrix is inevitable for calculating shape functions,

while in the FEM this is not required and shape functions can be obtained explicitly. In

[54], orthogonal bases were introduced in the MLS approximation so the matrix becomes

diagonal, but certain terms were omitted in the calculation of derivatives which can lead

to large errors as mentioned in [116]. Since the size of the matrix to be inverted is usually

small, e.g. 4× 4 for a 3D problem with linear basis functions, it is also possible to figure

out the explicit expression, and this was introduced to the MLS approximation in [117]

and the RKPM in [118] to speed up the calculation of meshless shape functions.

Convergence and error control are common issues in all numerical methods. Efficiency

and accuracy compete in that a finer node distribution can provide more accurate results

but also lead to higher computational cost. These issues are addressed by developing

an adaptive algorithm to handle node density so that the pre-described accuracy can be

obtained with minimal computational cost. An a posteriori error estimator was proposed

in the FEM in 1992, where exact solutions were approached by a patch recovery technique

as in [119, 120]. This method was extended to MMs in [121] and then adaptive refinement

for the EFGM was developed as in [122, 123]. A convergence study of the EFGM was

carried out in [124], showing that the EFGM with discontinuous shape functions for non-

convex domains is convergent. A later work on error control in the EFGM was presented

in [125] demonstrating that approximations of the field compete with their derivatives,

where the former require a smaller size of support while the latter show better accuracy

with larger supports. However, the number of analytical studies on this issue to date is

limited and more attention needs to be paid.

1.4 Fracture mechanics

With the development of numerical methods, a wider range of engineering problems have

been solved and in particular, it has enabled computational fracture mechanics to take

major steps forward [126]. Fracture is challenging because both non-linearity and discon-

tinuity are involved. Traditional numerical methods based on continuum solid mechanics,

e.g. the FEM, meet a dilemma when attempting to model discontinuity, and MMs are
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more versatile to handle discontinuity and hence are ideal for computational fracture mod-

elling, as mentioned in [3]. From another point of view, the study of fracture mechanics is

in demand for the analysis of engineering structures. Cracks have a great impact on the

loading capacity of materials, which therefore heavily affect the lifespan of engineering

structures, such as aircraft bodies and engine components. Therefore, the topic of com-

putational fracture mechanics is drawing more and more attention. Although this thesis

is focused on crack modelling, the theory of fracture mechanics is also important and can

promote future developments of computational fracture mechanics. Before introducing

current numerical methods for fracture modelling, the history of fracture mechanics is

firstly reviewed.

Fracture mechanics is the field of mechanics concerned with crack propagation and

fracture of materials and structures. A fracture is defined as the separation of one material

or object into two or more parts, while a crack is defined as a discontinuity without full

separation. In fracture mechanics, theories of solid mechanics are used to study the

mechanism of crack propagation and experiments are employed to characterise material

resistance to fracture.

1.4.1 Griffith’s theory

The study of cracks in engineering materials predates the birth of fracture mechanics.

Inglis [127] studied the stress field around an elliptical cavity in a plate and obtained the

analytical stress σf at the vertex,

σf = σ(1 +
2a

b
), (1.1)

where σ is the tensile loading at the upper and lower edges of the plate, a and b are the

two radiuses of the ellipse, as in Figure 1.1. If a = b and the cavity becomes circular,

the stress at the vertex becomes σf = 3σ in agreement with the analytical solution for a

circular hole in an infinite plate. To study the stress at the right vertex, b is replaced by

r which is the radius of curvature at the vertex, with r = b2/a. Then σf becomes

σf = σ(1 + 2

√
a

r
). (1.2)
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Figure 1.1: Stress at the vertex of an elliptic cavity.

From Equation (1.2), it can be seen that σf tends to increase as r decreases. If r → 0, the

cavity becomes a crack and σc ≈ ∞, a result which is independent of the crack length a

and the applied loading σ and clearly physically unreasonable. Although Inglis’ research

did not provide a qualitative explanation of the stress concentration at the crack tip, it

laid a foundation for the start of fracture mechanics.

The development of modern fracture mechanics was motivated by the work of Griffith

[128] during World War I. Griffith found two contradictory facts in his study on fail-

ure of brittle materials: The uniaxial tensile stress level leading to bulk glass fracture is

around 100MPa whereas the theoretical stress to break the atomic bonds of glass is about

10000MPa. His experiments on glass fibres showed that the decrease of fibre diameter led

to an increase of fracture stress. Thus, using the uniaxial tensile strength to predict ma-

terial failure was not applicable for all materials, although this had been used extensively

before Griffith. As suggested by Griffith, the reason was the presence of microscopic flaws

in bulk materials which affected the macroscopic mechanical behaviour. To verify this

hypothesis, Griffith carried out experiments on glass specimens each with a large artificial

crack, the results showing that the square root of the crack length a times the critical

stress at fracture σf is constant, i.e.

σf
√
a ≈ C. (1.3)

As outlined above, based on the linear elastic theory, the stress at the crack tip is
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infinite which conflicts with Equation (1.3). A thermodynamic approach was proposed by

Griffith, where it was assumed that the crack growth required an increase in the surface

energy Wsurf balanced by a reduction in the total strain energy U , i.e.

G = −∂U
∂a

=
∂Wsurf

∂a
, (1.4)

where G is a quantity known as the strain energy release rate. Using Inglis’ solution [127],

the total strain energy released is

U = −σ
2πa2

2E
, (1.5)

here the thickness of the plane is taken to be unit and E is the Young’s modulus. The

surface energy Wsurf associated with the crack is

Wsurf = 2γa, (1.6)

where γ is the surface energy density (J/m2), i.e. the energy needed to generate new

surface, and the factor 2 is set because a pair of two crack surfaces are formed. Substituting

Equations (1.5) and (1.6) back to Equation (1.4) yields

σf =

√
2Eγ

πa
, (1.7)

and the constant in Equation (1.3) is C =
√

2Eγ/π. The strain energy release rate G

can be regarded as the driving force for crack propagation: if G > 2γ, then the crack can

propagate; if G < 2γ, there is no crack propagation.

1.4.2 Stress intensity factors

Griffith’s theory provides good agreement with experiments for brittle materials (e.g.

glass), but not for ductile materials (e.g. steel). From experimental data on steel, the

surface energy is usually much higher than assumed using Griffith’s theory, although

Equation (1.3) can still be satisfied. Irwin realized that plasticity can have an important

influence on the fracture of ductile materials [129], something not considered by Griffith.

For ductile materials, a plastic zone develops around the crack tip with the increase of



1.4. Fracture mechanics 13

Mode I:
opening

Mode II:
in-plane shear

Mode III:
out-of-plane shear

x

y

z

Figure 1.2: Three modes of crack deformation.

applied loading. When a crack grows, the strained material around the crack increment

unloads. The plastic loading and unloading cycle leads to the dissipation of energy, which

then becomes heat. So an energy term for the dissipation should be added in Equation

(1.4) and the energy balance expression becomes

G = 2γ +Gp, (1.8)

where Gp is the dissipation of the plastic energy Up per unit crack surface area, Gp = ∂UP

∂a
.

The modified critical stress at the crack tip is

σf =

√
E(2γ +Gp)

πa
. (1.9)

For brittle materials, the surface energy dominates, e.g. for glass G ≈ 2γ = 2J/m2, while

for ductile materials, the plastic dissipation dominates, e.g. for steel G ≈ Gp = 1000J/m2

[129].

Irwin found a method to measure the fracture energy in a linear elastic solid [130], in

which the stress field around a crack front is asymptotic

σij =
K√
2πr

fij(θ), i, j ∈ {1, 2, 3}, (1.10)

where σij are the Cauchy stress components, r and θ are local polar coordinates centred

at the crack front and fij are dimensionless variables varying with external loadings and

problem geometries. K is the stress intensity factor (SIF) with unit Pa·m1/2. There are

three modes of deformation linked to a crack propagation as shown in Figure 1.2: mode I,

a crack opens under a pair of tensile stresses normal to the crack surface; mode II, a crack

forms by sliding due to a shear stress parallel to the crack surface and perpendicular to
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the front; mode III, a crack is formed by tearing also under a shear stress parallel to the

crack surface but parallel to the front leading to an out-of-plane deformation. All real

crack behaviours can be represented by a combination of these three modes. The three

SIFs are defined by

KI = lim
r→0

√
2πrσyy(r, 0), (1.11a)

KII = lim
r→0

√
2πrσxy(r, 0), (1.11b)

KIII = lim
r→0

√
2πrσyz(r, 0). (1.11c)

The relationship between G and the SIFs, with subscripts indicating the crack mode, is

as follows

GI = αK2
I , GII = αK2

II, GIII =
K2

III

2µ
, (1.12)

and

α =


1
E

plane strain,

1−ν2
E

plane stress,

(1.13)

where ν is the Poisson’s ratio, µ is the shear modulus and E is the Young’s modulus. The

total energy release rate is obtained by summing the three modes, as

G = GI +GII +GIII. (1.14)

1.4.3 Cohesive zone model

The cohesive zone model assumes there is a plastic zone ahead the crack tip, where

cohesive tractions are applied to resist crack opening. The method was proposed by

Dugdale (1960)[131] and Barenblatt (1962) [132] to trace the spread of plasticity from

the front of a pre-existent crack. The cohesive tractions are determined by the value of

material separation and a relation between the two is plotted as a traction-displacement

curve, and although material properties of Young’s modulus and Poisson’s ratio are not

involved, different curves can be applied according to the materials, e.g. three traction-

displacement curves were included in [133] as depicted in Figure 1.3.

In a standard traction-displacement curve, the traction is the largest at the beginning,
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Figure 1.3: Three traction-displacement curves in the cohesive zone model.

and then reduces with the increase of separation and subsequently becomes zero which

results in complete separation. The area under the curve is the energy required to sep-

arate the crack surface. The cohesive zone model maintains the continuity conditions

mathematically and eliminates the singularity around the crack tip. The method has

been applied to model cohesive crack growth in [134, 135] and to study rate-dependent

elasto-plastic behaviour for dynamic crack propagation [136]. It can provide an effective

methodology to study fracture problems in solids, as reviewed in [137, 138].

1.4.4 Fatigue fracture

Fatigue fracture is the weakening, damage and fracture of materials under repeated loading

and unloading (also called cyclic loading). The maximum nominal stress causing damage

can be much lower than the yield stress limit. Normally a fatigue fracture goes through

three stages, as shown in Figure 1.4, where a is the crack length, N the number of loading

cycles and ∆K is the range of the SIF, i.e. ∆K = Kmax−Kmin. Stage I, when the loading

is above a threshold, microscopic cracks are generated at stress concentrators, e.g. sharper

corners, persistent slip bands and interfaces. With the progress of the cyclic loading in

the second stage, microscopic cracks accumulate and grow steadily. Finally when a crack

reaches a critical size, it propagates rapidly and leads to the full fracture of the material.

For some materials such as steel and titanium, a fatigue fracture will not occur if the

stress amplitude is set below a certain value, which is called the fatigue limit.

The history of fatigue fracture can be traced back to the 1900s, when Ewing and

Humfrey [139] studied the fatigue behaviour of metals under repeated reversals of stress. It

was found that metal specimens under cyclic loadings develop slip-bands, which gradually

widen before the material fractures. A log-log relationship between the strain amplitude
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Figure 1.4: Crack growth rate with respect to the cyclic loading in the fatigue fracture.

and the number of cycles was presented in [140], also known as the S-N curves, through

which the damage process of a material can be depicted easily. A formulation (the Paris’

law) was proposed by Paris et al. in [141], by which a linear relationship between the

crack growth rate and the range of SIF in stage II can be visualized in a log-log plot,

Figure 1.4, as
da

dN
= C∆Km, (1.15)

where C and m are constants depending on materials and environments, and m is typi-

cally between 3 and 5 for metals. A fatigue fracture is usually caused by tensile loadings

but it was found that compressive loadings can also lead to fatigue cracks [142]. Dur-

ing the progress of cyclic loading, it was noticed in an experiment that a fatigue crack

can be completely or partially closed when the loading becomes zero [143], even when

full tensile loading cycles are applied. The crack closure phenomenon is due to the in-

compatibility between the remaining and permanent tensile plastic deformations during

the crack propagation. An extended cohesive law can handle crack closure [144], with

a repulsive cohesive traction defined to prevent inter-penetration. Recent studies on the

micro-structures of fatigue cracks can be found in [145–147] and a review of the fatigue

life of metal structures is given in [148].

Several rules can be used to design against the fatigue failure, as follows.

• Keep stress below the fatigue limit so fatigue fracture is limited to stage I and can

be avoided ideally.

• Plan a fixed lifetime for devices and components following a finite lifetime concept

so they can be replaced before reaching stage III and becoming fatigue failure.
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• Set up damage tolerance and replace the device with a crack exceeding the critical

length, so the stage III of a fatigue fracture is avoided.

1.5 Numerical methods for fracture modelling

Purely theoretical studies meet dilemmas when attempting to explain fracture behaviour

in general problems, because crack propagation is highly non-linear. Computational frac-

ture modelling (i.e. approximate methods based on discretisation) provides the only

serious approach for engineering analysis. The FEM, which was originally designed for

continuum solids, has been tried for crack modelling, and crack discontinuities can be ob-

tained by generating elements to lie along existing crack faces, as in [149–151]. However,

a crack can only propagate along the interface of elements and remeshing to align element

edges with crack growth is inevitable, which is computationally expensive especially for

3D cracks [152]. New methods are required to handle both the crack discontinuity and

non-linearity for crack propagation in an efficient and effective way, which is also the

object of this thesis.

1.5.1 The extended finite element method

The extended finite element method (XFEM) was developed in the last two decades [153–

155], and is method in which cracks can propagate independently from elements. Crack

discontinuities are included by introducing discontinuous enrichment functions into the

displacement approximation, so remeshing is not required during the crack propagating

process. The XFEM can also handle holes and inclusions [156], and meshing the interface

boundaries is not required. The crack opening value can be obtained through these

enrichment functions and a cohesive law was introduced in the XFEM in [157]. Frictional

contact on two crack faces has also been considered in the XFEM, and the study of crack

propagation under compressive loadings was carried out in [158]. This method can be

improved to gain better convergence properties and more accurate description of curved

cracks by using high order enrichment functions [159] or elements [160]. The XFEM has

been applied to solve problems including crack branching and intersection [155] and non-

planar 3D crack growth [161, 162]. Recent developments and applications of the XFEM

are reviewed in [163].

In the standard FEM, the displacement u(x) is approximated and interpolated by
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Figure 1.5: Enriched elements (in grey) in the XFEM to model a crack.

surrounding nodal values ui,

uh(x) =
n∑
i

φi(x)ui, (1.16)

where n is the number of nodes, i is the index, x is the location vector, i.e. x = [x, y]

in 2D and φi(x) are interpolation functions, also known as shape functions, which can be

obtained through the Lagrangian interpolation functions. In the XFEM, elements cut by a

crack are enriched, e.g. those shadowed in Figure 1.5. Crack discontinuities are introduced

by adding discontinuous enrichment functions into the displacement approximation, as

uh(x) =
n∑
i

φi(x)ui +

n1∑
j

φj(x)H(x)bj +
nc∑
j

φj(x)
( 4∑
k=1

Rka
k
j

)
, (1.17)

where H(x) is the sign function with values +1 for nodes on one side of the crack surface

and -1 on the other side. n1 is a group of nodes belonging to elements totally cut by the

crack, while nc is the set of nodes belonging to elements containing the crack tip. bj and

akj are nodal enriched unknowns and Rk are components of the near-tip enrichments R,

as

R(r, θ) =

[√
r sin(

θ

2
),
√
r cos(

θ

2
),
√
r sin(θ) sin(

θ

2
),
√
r sin(θ) cos(

θ

2
)

]
, (1.18)

where r and θ are local polar coordinates at the crack tip. The use of singular enrichment

around a crack tip can also bring challenges for the numerical integration and can affect

the calculation stability.
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1.5.2 The phase-field method

The phase-field is a mathematical model to solve interface problems between various ma-

terials/phases [164]. The concept can be used to model cracks as interfaces of intact and

broken material, and the transition zone is described by an order parameter, called the

crack phase field. Crack propagation is handled by the phase field independently from a

domain discretisation, e.g. a finite element mesh, and the complexity of tracking crack

geometries is not required, although the calculation and the evolution of the phase field

during crack propagation brings extra computational burden. Early application of the

phase field to crack modelling can be found in [165], where mode I dynamic crack propa-

gation was investigated. A continuum field theory for crack propagation was represented

where an order parameter was introduced in the constitutive model between strain and

stress controlling the degradation of materials due to cracks, and the method can capture

crack initiation, crack branching and fracture instability. Borrowing ideas from the phase

field for solidification [164], a modification of the phase field approach for fracture was

proposed, where the momentum balance equation was included in the governing equations

and three modes of fracture were studied [166, 167]. Apart from this material damage

model, some phase field models for fracture have been developed on the basis of Grif-

fith’s theory. The surface energy of the crack has been included in the total energy and

its minimisation with respect to both displacement field and crack field is used to yield

the governing equations [168–170]. It was found that the phase field fracture approach

is a special case of the gradient damage model [171]. The phase field has been applied

to a variety of problems, e.g. ductile fracture [172], hydraulic fracture [173], fracture in

lithium-ion battery [174] and fracture in biological tissues [175]. Recent developments of

the phase field fracture approach can be seen in a review paper [176].

A brief introduction to the phase field is included here and interested readers are

referred to [170, 177]. A discontinuity Γ (crack surface) is approximated by a smeared

surface Γl. For one dimensional problems, an exponential function can be used, as in

Figure 1.6,

d(x) = e−|x|/l, (1.19)

where l is a length scale parameter determining the area of the transition zone and d(x)
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Figure 1.6: A phase field model to approximate a crack.

is the phase field: d = 1 indicating for fully broken material; d = 0 for intact material.

Equation (1.19) is the solution to the equation

d− l2d,xx(x) = 0, (1.20)

where d,xx(x) is the second derivative of d with respect to x, and then using the weak form

of this equation, Γ is approximated with Γl by integrating a Galerkin-type weak form of

Equation (1.20),

Γ ≈ Γl(d) =

∫
Ω

1

2l

(
d2 + l2d2

,x(x)
)

dΩ, (1.21)

where details can be found in [170] and d,x(x) is the first derivative of d with respect to x.

The minimization of this function in Equation (1.21) gives the regularized crack topology

in Figure 1.6. A crack surface for multi-dimensional problems can be obtained from the

extension of the 1D case in Equation (1.21),

Γl(d) =

∫
Ω

γ(d,∇d)dΩ, (1.22)

and

γ(d,∇d) =
1

2l
d2 +

l

2
(∇d)2, (1.23)

where γ(d,∇d) is the crack surface density function. In the transition zone, materials be-

come damaged using a degradation function of the phase field, e.g. a quadratic polynomial

in [170] as

h(d) = (1− d)2, (1.24)

and a very small positive value is defined where full degradation d = 1 is applied. The
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total potential energy for the brittle fracture in a smeared formulation is

Ψ =

∫
Ω

h(d)Ψ+
e + Ψ−e +Gcγ(d,∇d)dΩ, (1.25)

where Ψ+
e and Ψ−e are the strain energy due to tension and compression respectively, and

Gc is the critical surface energy dissipation per unit of crack surface. The minimisation

of Equation (1.25) leads to the governing equation of the phase field,

h,d(d)Ψ+
e +

Gc

l
(d− l2∇2d) = 0. (1.26)

This is a second order PDE specific to the phase field, which controls the evolution of

cracks. Since the phase field and the displacement field can be discretised with the same

set of nodes and elements in the FEM, the solution of Equation (1.26) can be obtained

easily as in [170, 176]. The advantages of the phase field method for crack modelling

exist in a simple algorithm for tracking crack geometries, which makes it easy to model

crack propagation and coalescence of cracks, while the disadvantages come from high

computational expense [170]. An extra PDE for the phase field is required, which increases

the total number of degrees of freedom. In addition, the method requires fine elements in

the cracked zone to ensure the accuracy of results. For instance, the element size should

be below the half width of crack l as mentioned in [177], which leads to a large number

of elements.

1.5.3 The element-free Galerkin method with level sets

The element-free Galerkin method (EFGM) [2] is a MM requiring no mesh in the problem

discretisation, which makes it promising for crack modelling since no remeshing is needed

if one is modelling crack propagation. It has been applied to solve static and dynamic

crack problems in [58–60], where the description of crack geometries is still necessary by

using either lines (2D) or surfaces (3D). The level set method, which is generally used

to describe evolving surfaces, was introduced into the EFGM to model crack geometry

in [178–180]. Since the level set method can provide accurate descriptions of surfaces,

precise results can be obtained during the crack propagation process, especially for 3D

fracture modelling [180].
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crack

φ > 0, ψ < 0 φ > 0, ψ > 0

φ < 0, ψ < 0 φ < 0, ψ > 0

Figure 1.7: Level set functions to describe a crack.

Two level set functions are used to describe a crack surface: one measures the shortest

distance normal to the crack surface and its extension, φ; the other level set ψ gives the

shortest distance parallel to the crack surface and normal to the crack front. These two

level set functions φ and ψ are signed functions as in Figure 1.7, and the crack geometries

are given as φ = 0, ψ 6 0 is the crack surface and φ = 0, ψ = 0 is the crack front. It is

assumed that φ and ψ are orthogonal to each other,

∇φ · ∇ψ = 0, (1.27)

where the gradient operator is calculated by ∇ = [ ∂
∂x
, ∂
∂y
, ∂
∂z

]. Details on the update of

level set functions for the crack propagation can be found in [181]. The level set method

has also been used in the XFEM [182, 183].

1.5.4 The numerical manifold method

The numerical manifold method (NMM) is based on the finite cover approximation where

a number of discrete blocks (covers) are used to describe continuum bodies. For fractured

bodies, those covers containing cracks are truncated and discontinuous. It can use a

unified form to handle both continuum and fractured problems in solids and can model

crack propagation without remeshing. The covers can be nonconforming to a problem

domain, so the meshing task is simplified.

In the NMM, there are three components involved to build the displacement approxi-

mation: mathematical cover, physical cover and manifold element, as in Figure 1.8. The

mathematical cover is predefined and can be of arbitrary shape, e.g. triangular or rect-

angular as in Figure 1.8 (a). Physical covers are the division of mathematical covers by

the problem domain and physical features, e.g. cracks and interfaces, and those covers
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M1
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P2 P3

E1(P1)

E2(P2)

E3(P1,P3)

E4(P2,P3) E5(P3)

Figure 1.8: Three basic components in the NMM to model a crack: (a) mathematical
cover; (b) physical cover; (c) manifold element.

partially cut by the crack are not divided. Manifold elements are defined as the intersec-

tion of several physical covers, e.g. in Figure 1.8 (c) five manifold elements are defined.

A weight function is defined over each mathematical cover Mi following

ϕi(x) = 0, x /∈ Mi,

0 6 ϕi(x) 6 1, x ∈ Mi.
(1.28)

An example of a weight function is defining it to be of value one at the centre of the

cover and linearly declining to 0 at all edges. The weight functions for all physical covers

including the location x satisfy the partition of unity, as

∑
i

ϕi(x) = 1. (1.29)

The displacement approximation uh(x) on an manifold element is

uh(x) =

np∑
i

ϕi(x)ui(x), (1.30)

where np is the number of physical covers sharing the element. The cover function u(x)

with respect to the physical cover i is defined as

ui(x) = pT(x) · ai, (1.31)

where ai is a vector of unknowns and pT(x) is a matrix of polynomial basis, e.g. a linear
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basis in 1D,

pT(x) =
[
1 x y

]
. (1.32)

For instance, the displacements of elements E3 and E4 in Figure 1.8 (c) are respectively

uh3(x) =

{1,3}∑
i

ϕi(x)ui(x), (1.33)

and

uh4(x) =

{2,3}∑
i

ϕi(x)ui(x), (1.34)

and then the discontinuity is introduced on the common edge of elements E3 and E4, as

uh3(x) 6= uh4(x). It is notable that in the NMM unknowns are associated with physical

covers not nodes, which is the major difference with the FEM.

The NMM was first reported in [184, 185], indicating both the FEM and the discon-

tinuous deformation analysis are special cases of the NMM. It has since been applied to

model crack propagation problems, but the crack has to cut a cover totally and cannot be

inside [186]. Crack tip enrichment functions were introduced in the NMM, so the crack

can be arbitrary within a cover [187]. The NMM is usually based on finite elements to

build covers and the MLS-based NMM (e.g. [188]) provides easier generation of covers

cut by cracks. A high order NMM was proposed in [189], where a nine-node triangular

mesh was used to build high-order approximations for covers. A review on the NMM can

be found from [190], showing that the FEM is a special case of the NMM when cover

functions are constant and external boundaries are conforming with manifold covers.

1.5.5 Peridynamics

Peridynamics is a MM designed for deformation problems involving discontinuities, par-

ticularly for fracture problems. In peridynamics, PDEs generally used in continuum solid

mechanics are replaced with integral equations, so the calculation of partial derivatives

can be avoided, which can simplify the handling of singularities at cracks and provide a

uniform formulation to describe the deformation with or without discontinuities.

The method was first proposed by Silling in 2000 [191], where the original bond-based

formulation of peridynamics was introduced. In this approach a “bond-force” is assumed
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Figure 1.9: Deformation in peridynamics.

between each pair of two particles in a discretisation formed of a large number of parti-

cles, each bond working like a spring (in the case of application to elasticity for instance).

When the stretch between these two particles exceeds a critical value, the bond becomes

broken irreversibly and a crack occurs. The influence domain of a particle to its surround-

ing is called horizon. The method at this stage is called the bond-based peridynamics,

and a meshfree method based on the peridynamic model was developed in [192]. The

limitation of this method is that bond-based peridynamics only considers pairwise inter-

actions between particles, so the effective Poisson’s ratio is fixed to ν = 0.25 for isotropic

linear elastic materials [191]. A state-based formulation was developed in [193], in which

general constitutive models were incorporated and materials with any Poisson’s ratio can

be considered. It has been shown that peridynamics for an elastic material can reproduce

the classical elastic model in solid mechanics, when the stretch between particles declines

to zero [194]. An introduction to the implementation of peridynamics based on a molec-

ular dynamics code can be found in [195]. If nodal integration is used, the discretised

equations of peridynamics and the SPH coincide [196]. Currently a uniform distribution of

particles is defined in peridynamics, but non-uniformly distributed particles are required

in an adaptive refinement approach to increase the computational efficiency. One attempt

was made in [197], where particles were given different sizes of influence domain, and the

interactions between particles were modified to ensure the balance of forces. Peridynam-

ics has been applied to solve a variety of problems, e.g. crystal plasticity [198], crack

branching [199] and multiscale modelling of cracks [200].

The governing equation of the bond-based peridynamics in a problem domain Ω can
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be though of as a continuum version of molecular dynamics and is given by

ρü =

∫
Ω

f(ū− u, x̄− x)dΩ + b, (1.35)

where ρ is the material density, ü is the second order derivative of displacement to time,

Ω is the problem domain, x and x̄ are the location vectors of two particles, u and ū

are the displacement vectors respectively and b is the body force vector. Function f is

the pairwise force function, which contains the constitutive relationship of materials and

should satisfy the following restriction,

f(η, ξ) + f(−η,−ξ) = 0, (1.36a)

(η + ξ)× f(η, ξ) = 0, (1.36b)

where η = ū− u and ξ = x̄− x. An example of f for a prototype micro-elastic material

is from [195],

f(η, ξ) =
c

‖ξ‖(‖η + ξ‖ − ‖ξ‖) η + ξ

‖η + ξ‖ , (1.37)

where c/‖ξ‖ is the stiffness per unit volume and ‖ · ‖ is the L2 norm of a vector, i.e.

‖[x, y]‖ =
√

(x2 + y2).

Moving to the state-based peridynamics, the response at one material point due to

external loadings depends on the collective deformation of all bonds connected to that

point. Every particle can only interact with other particles within a finite distance (hori-

zon). A force state is defined in a similar way to the stress tensor in classical continuum

mechanics, so it can handle general materials with arbitrary Poisson’s ratio. Governing

equations are built by replacing the bond force term in Equation (1.35) with the force

state term, i.e.

ρü =

∫
Ω

T(ξ)−T(−ξ)dΩ + b, (1.38)

and the force state T(ξ) is

T(ξ) = w(‖ξ‖)PK−1ξ, (1.39)

where w(‖ξ‖) is a scalar influence function, e.g. w(‖ξ‖) = e−‖ξ‖
2/d2 from [201] with d the

radius of a circular horizon. P is the first Piola-Kirchhoff stress tensor from a conventional
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Figure 1.10: A crack path approximated by a set of segments in the CPM.

constitutive model and K is a symmetric shape tensor,

K =

∫
Ω

w(‖ξ‖)ξ × ξdΩ. (1.40)

The implementation of peridynamics can be made from a molecular dynamics code as

in [195]. In peridynamics, crack behaviours are modelled by removing the force between

particles, which reduces the complexity for tracking crack patterns, and crack coalescence

and branching are natural outcomes of the method [193]. However, a fine distribution of

particles are required to get accurate results, which leads to low efficiency for calculation.

1.5.6 The cracking particle method

The cracking particle method (CPM) is a MM, where continuous crack paths are described

by a set of discontinuous segments centred at cracking particles, as in Figure 1.10. These

segments cut the supports of weight functions, which are used to define the connection

of a particle to its surrounding in MMs like the EFGM, and discontinuities at cracks are

therefore introduced. Since the locations and orientations of these discontinuous segments

are arbitrary, this method is suitable for complex fracture problems. The research work in

this thesis is based on the CPM so details of the method will be demonstrated in following

chapters and a literature review is included below.

The original CPM was proposed by Rabczuk in 2004 [202] to model 2D cracks where

problems including crack branching in a plate and fragment of a cylinder under dynamic

loadings were studied. The method was later extended to 3D cracks and to large deforma-

tion problems as in [203, 204]. Although the CPM originally used enrichments to describe
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crack surfaces which is similar to some enrichment-type methods for fracture modelling

as given in [205–208], it has been shown that extra unknowns caused by enrichments can

be removed by splitting cracking particles with divided supports as in [204]. A number of

papers have appeared recently applying the CPM to problems including dynamic fracture

[209], shear bands [210] and ductile fracture [211, 212]. In [213], a stabilized nodal inte-

gration method was introduced to the CPM, by which both computational efficiency and

stability are maintained. There are also a few publications using cracking-particle-type

methods for fracture modelling, like the use of cohesive zone element in [214] and cohesive

links in [215].

1.6 Outline of the thesis

Even though several computational methods have been developed and successfully applied

for fracture modelling in recent decades, there are still some issues remaining before further

applications in engineering analysis. Due to the properties of enrichment functions in

the XFEM, it is problematic to be applied for crack initiation, e.g. when a crack is

totally within an element in the XFEM, crack tip enrichments produce no discontinuity

in this element. Besides, the XFEM is based on the FEM and there will be issues for

large deformation problems. The approximation is obtained through the interpolation

of nodes in an element, but when the element is cut by a crack and the nodes at two

sides of the crack are far away after deformation, the interpolation between these nodes is

unreasonable. In the phase field method for fracture modelling, the solution of an extra

PDE for the phase field is required, leading to an increase of computational expense [170].

The EFGM with level sets can provide accurate description of crack geometry, but it

meets a dilemma for multiple crack problems. Each crack needs two level set functions,

so the computational cost increases with the number of cracks [179]. The NMM makes

use of finite cover approximation and is suitable for multiple crack simulation, but the

generation of covers and their truncation by cracks is still bothersome [216]. Peridynamics

defines “bonds” between particles to describe the deformation of the problem and crack

discontinuities are introduced by breaking the connection between particles. This method

is suitable for complex crack problems but the accuracy of the crack geometry is only

guaranteed by using a very fine distribution of particles which is costly. The CPM has
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shown its ability to handle multiple cracks and dynamic fracture but spurious crack results

have been found in [204, 213]. Currently a robust method for computational fracture

modelling is still needed and is the motivation of this thesis. The CPM is employed

and modified to handle complex crack problems in 2D and 3D and to address issues

of spurious cracking results, where the calculation efficiency is maintained by using an

adaptive approach and this is the goal of this thesis. The contents of each chapter are

listed as below.

Chapter 2 demonstrates basic formulations and main features of the EFGM. Although

the thesis is focused on fracture modelling, the EFGM for continuum solids is firstly

demonstrated, because the CPM is based on the EFGM by introducing crack discon-

tinuities into the displacement approximation. It starts from setting up the governing

equations of the EFGM, and then the strong form and weak form are introduced. Three

techniques of integration required in the weak form are included: nodal integration, inte-

gration with background meshes and integration over supports. Since essential boundary

conditions cannot be imposed to the weak form directly in the EFGM, four methods in-

cluding Lagrange multipliers, penalty method, Nitsche’s method and coupling with the

FEM are discussed. An example is used to demonstrate the differences between the EFGM

and the FEM.

In Chapter 3, an adaptive CPM is developed for 2D cracks. The development of

the CPM is reviewed and issues of the method are discussed. A key contribution of

this research is the use of a set of bilinear discontinuous segments centred at particle to

approximate a continuous crack path instead of straight discontinuous segments in early

CPMs. Cracking angles can be recorded by changing the orientation of those segments, so

problems of spurious crack results can be relieved. An adaptive approach is introduced to

the CPM to handle the stress gradients around the crack tip, by which particle refinements

are added automatically, and different error estimators for adaptivity are included. Several

methods to calculate SIFs are mentioned, including an contour integration and a domain

interaction integration.

Chapter 4 applies the method developed in Chapter 3 to problems with multiple crack.

Different methods to model crack branches and intersections are mentioned, which are

through enrichments in basis functions or weight functions. A multi-cracked particle
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method is developed which can achieve discontinuities at crack branches in an easier way

than through enrichments. Several example with complex crack geometries are used to

test the ability of the proposed method.

Chapter 5 contains a discussion of different crack propagation criteria. A review on the

maximum principal stress criterion, the minimum strain energy density criterion and the

maximum strain energy release rate criterion are included. The theory configurational

force for fracture modelling is presented here and its implementation in MMs is also

mentioned. A comparison between the use of propagation criteria based on the J-integral

and the configurational force is carried out and demonstrated with several crack problems.

In Chapter 6, the modified CPM is extended from 2D to 3D cracks. Conventional

methods of level sets and triangular meshes to describe 3D crack surfaces are reviewed.

The CPM in 3D is combined with triangular facets, where the cracking changes are

recorded by modifying the orientation of triangular meshes. Calculation of SIFs in 3D

is through an interaction integration method in a local coordinate system decided by

triangular meshes. Cracking angle is determined by the maximum principal stress criterion

while the crack increment length along a crack front is decided by the Paris’ law. Examples

with planar or curved 3D crack surfaces are tested and a comparison between the proposed

method and the original CPM is included.

Chapter 7 demonstrates a further development of the proposed method for modelling

thermoelastic crack problems. Governing equations of the heat flux are introduced and

the implementation of the weak form is included. Two types of cracks under thermal

loadings are mentioned: an adiabatic crack and an isothermal crack. An adaptive ap-

proach is introduced so enrichment functions can be avoided which are commonly used in

current numerical methods. Due to the effect of thermal stress, the interaction integral

method needs modification to make it compliant with the assumptions of thermal fracture

mechanics.

The thesis finishes with Chapter 8 summarizing all the research work mentioned above

and providing an outlook of future directions in terms of MMs and computational fracture

mechanics.



Chapter 2

Formulation of the element free

Galerkin method

2.1 Introduction

In this chapter, fundamental formulations of the EFGM are demonstrated before intro-

ducing the CPM, since the CPM is based on the EFGM and is specific to crack problems.

It starts from the moving least squares approximation, which is used to approximate the

displacement field with a set of nodes, while elements are not involved to discretise the

problem domain. Then the basic theory of solid mechanics is introduced, precisely the

equilibrium of solids under static or quasi-static external loadings. These equilibrium

equations are not solved directly but are converted to the weak form, which provides nu-

merical benefit of reduced order differentiation of the governing equations. Major issues

in meshless methods of integration and imposing essential boundary conditions are dis-

cussed and several approaches are provided to address these issues. Finally, an example

is used to demonstrate the difference between the FEM and the EFGM.

2.2 Moving least squares approximation

In the EFGM, a set of nodes are used to discretise the problem domain with on elements,

and the approximation between these nodes is carried out by the moving least squares

(MLS) approximation in the EFGM. The MLS approximation was first proposed in [53] for

curve and surface fitting. Then this approach was introduced to the problem discretisation

– 31 –



32 Chapter 2. Formulation of the element free Galerkin method

process as in [2, 52] without using any element, triggering the development of MMs.

Displacements are approximated by polynomial interpolation, and the displacement

approximation uh is

uh(x) = pT(x)a(x), (2.1)

where x is a vector of location (for instance x = [x, y, z]T in 3D), p(x) is a basis function,

e.g. linear basis function in 3D is p(x) = [1, x, y, z]T, and a(x) is a vector of unknown

coefficients at x. An error term is formed being the difference between unknown nodal

values and the approximation, as

J =
n∑
i

wi(x)
(
pT(xi)a(x)− ui

)2

, (2.2)

where i is the node index, n is the number of nodes with influence domain covering x, xi

is the location vector of node i, ui is the nodal value of u at x = xi and wi(x) is a weight

function. The requirements for a weight function are: non-negativity, monotonically

decreasing, continuous and differentiable. The first two requirements ensure a weight

function which will lead to stable results in the approximation and to have a localized

property, and the latter guarantees a smooth approximation with high order consistency in

basis functions. Each node is defined with an influence domain (also named as “support”)

which is normally rectangular or circular in 2D and cuboidal or spherical in 3D, and the

weight function becomes zero outside the support. There are many options for the weight

function as in [2, 58, 217, 218], e.g.

w(r) =

1− 6r2 + 8r3 − 3r4 if r ≤ 1,

0 if r > 1,

(2.3)

where r = ‖x − xi‖/r0 with r0 the radius of a circular support and w(‖x − xi‖/r0)

is written as wi(x) for short. The support size r0 is typically 2-4 times larger than the

average distance to neighbouring nodes [55]. The unknown a is determined by minimizing

the error term, i.e. ∂J/∂aj = 0 where aj is the jth component of a, then we have

a = A−1(x) ·B(x)u, (2.4)
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where

A(x) =
n∑
i

wi(x)pT(xi) · p(xi), (2.5)

B(x) = [w1(x)p(x1), w2(x)p(x2), ..., wn(x)p(xn)], (2.6)

u = [u1, u2, ..., un]T, (2.7)

where u is the displacement vector for n nodes. Substituting the above into Equation

(2.1), the displacement approximation uh(x) is obtained by a linear combination of shape

functions Φi(x) and nodal values ui as

uh(x) =
n∑
i=1

Φi(x)ui = ΦTu , (2.8)

where i is the node index with coordinate xi and n is the number of nodes with influence

domain covering x. The shape functions Φi(x) are defined by basis vectors p(xi) and

weight functions wi(x),

Φ(x) = pT(x)A−1(x)B(x). (2.9)

The partial derivatives of shape functions Φ(x) are required to solve the PDEs and can

be calculated by

∂Φ(x)

∂xj
=
∂pT(x)

∂xj
A−1(x)B(x) + pT(x)

[
∂A−1(x)

∂xj
B(x) + A−1(x)

∂B(x)

∂xj

]
. (2.10)

Note that in the diffuse element method [52], the terms containing partial variation

of A(x) and B(x) are neglected, where results are greatly detracted from the accurate

value as in [2]. If the zero-order basis function is used, i.e. p(x) = [1], the well-known

Shephard’s functions can be obtained,

Φi(x) =
wi(x)∑n
i=1wi(x)

. (2.11)

Because they use the MLS approximation, MMs can provide continuous results without

using post-processing approaches, which are required in the FEM. While the FEM is

interpolatory, MMs based on the MLS approximation are not and hence do not possess

the Kronecker delta property. Extra techniques are therefore needed to impose essential
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boundary conditions, which will be discussed in Section 2.6.

2.3 Equilibrium equation

Consider a problem domain Ω as in Figure 2.1, which is under external tractions t̄

on Γt and displacement boundary conditions ū on Γu. Here t̄ and ū are vectors, e.g.

t̄ = [t̄x, t̄y, t̄z]
T and ū = [ūx, ūy, ūz]

T in 3D, where over bars are used for constraints on

boundaries. Subscripts x, y and z are components of t̄ and ū with their corresponding

directions in the global Cartesian coordinate system and sometimes are described by x1,

x2 and x3 with subscripts 1, 2 and 3 in the tensorial form. In continuum mechanics, stress

is a physical quantity representing the internal force between neighbouring particles in a

continuous material. Choosing an arbitrary infinitesimal cube inside the body, the nine

stress components are shown in Figure 2.2, where the two subscripts indicate the face and

the direction respectively. The Cauchy stress tensor is

[σ] =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (2.12)

Due to the balance of shear stresses between neighbouring surfaces, only six stress com-

ponents are independent, i.e.

σxy = σyx, σyz = σzy, σxz = σzx. (2.13)

The stress tensor is also written in a vector format named as the Voigt notation, i.e.

σ = [σxx, σyy, σzz, σxy, σyz, σxz]
T. (2.14)

For clarity in the thesis, the tensor format is written in square bracket, e.g. [σ], while the

vector format in the Voigt notation is just bold, e.g. σ. The equilibrium equations for
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Figure 2.1: A problem domain with essential boundary conditions and external loadings.
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Figure 2.2: Stress components in an infinitesimal cube.

static problems require the force balance of the infinitesimal cube, i.e.
∂σxx
∂x

+ ∂σyx
∂y

+ ∂σzx
∂z

+ bx = 0,

∂σxy
∂x

+ ∂σyy
∂y

+ ∂σzy
∂z

+ by = 0,

∂σxz
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z

+ bz = 0,

(2.15)

where b = [bx, by, bz]
T is the body force per unit volume. A tensorial form of equilibrium

equations can be written as

∇ · [σ] + b = 0 in Ω, (2.16)
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or
∂σij
∂xj

+ bi = 0, i, j ∈ {1, 2, 3}, (2.17)

in which the subscripts x, y and z are replaced by x1, x2 and x3 respectively and ∂σij/∂xj

uses Einstein summation. The solution of equilibrium equations should satisfy both es-

sential boundary conditions and external loadings,

[σ] · n = t̄ on Γt, (2.18)

u = ū on Γu, (2.19)

where n is the outer normal of boundaries Γ, i.e. n = [nx, ny, nz]
T and u is the displace-

ment vector for one node, u = [ux, uy, uz]
T. If the stress σ uses the Voigt notation of

Equation (2.14), Equation (2.18) becomes [n]T · σ = t̄ where [n]T is written as

[n]T =


nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx

 . (2.20)

To solve the equilibrium equations, the relationship between stress σ and displacement u

should be specified. In solid mechanics, strain is defined as a geometrical measurement

representing the relative deformation between neighbouring particles in a continuous ma-

terial. Similar to the stress expression, strain in matrix is defined as

[ε] =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 , (2.21)

and strain in the Voigt notation is

ε = [εxx, εyy, εzz, γxy, γyz, γxz]
T, (2.22)

where engineering shear strains are used, γxy = 2εxy, γyz = 2εyz, γxz = 2εxz. The relation

between stress and strain is called the constitutive model, and the standard form for
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isotropic elastic materials is

εij =
1

E
[(1 + ν)σij − νσkkδij], (2.23)

where δij is the Kronecker delta function, i.e.

δij =

0 if i 6= j,

1 if i = j.

(2.24)

Also, stresses can be written in terms of strains as

σij =
2µν

1− 2ν
δijεkk + 2µεij, (2.25)

where E and ν are Young’s modulus and Poisson’s ratio respectively, µ is the shear

modulus of the material and has the relationship with other material properties,

µ =
E

2(1 + ν)
. (2.26)

Equation (2.23) can be written in matrix form, as

σ = D · ε, (2.27)

where D is the constitutive matrix, e.g. for an isotropic linear elastic material in 3D,

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


. (2.28)

The linear elasticity theory can be converted to 2D with the assumptions of plane stress

or plane strain. The former assumes all stress components in the z direction are zero for

problems with small dimension in that direction, i.e. σzz = σyz = σxz = 0. In contrast, the
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plane strain approximation assumes all strain components to be zero in the z direction,

i.e. εzz = εyz = εxz = 0, and is suitable for problems which are thick in the z direction.

With these assumptions, the 2D constitutive matrix D can be written as

D =
Ē

1− ν̄


1 ν̄ 0

ν̄ 1 0

0 0 1−ν̄
2

 , (2.29)

where

Ē =

E plane stress,

E
1−ν2 plane strain,

ν̄ =

ν plane stress,

ν
1−ν plane strain.

(2.30)

The relation between displacement and strain follows the compatibility condition, e.g. for

small strain,

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (2.31)

Equation (2.31) can be written in tensorial form as

ε = Lu, (2.32)

where u is the displacement vector for one node and L is a differential operator, e.g. for

3D cases,

L =


∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x


T

, (2.33)

and in 2D,

L =

 ∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

T

. (2.34)

2.4 Weak form

Governing equations in Equation (2.16) are in the strong form and usually difficult to solve

in all but trivial cases. The difficulties lie in the requirement of second-order consistency

over the entire problem domain. Alternatively, the weak form of the governing equations
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is widely used in numerical methods in that only the first order consistency is required

for a second order PDE. The weak form is built on the basis of Hamilton’s principle. In

continuum mechanics, the system energy L consists of kinetic energy T , internal energy

U and external work Wf , as

L = T − U +Wf . (2.35)

For static problems, T is zero and the external work is

Wf =

∫
Ω

uTbdΩ +

∫
Γt

uTt̄dΓt. (2.36)

Assuming the material is linear elastic, the internal energy U is

U =
1

2

∫
Ω

εTσdΩ. (2.37)

The variational form of Equation (2.35) satisfies all possible states while the actual solu-

tion makes the function L a minimum, i.e. δL = 0 where δ indicates the virtual status.

The weak form of governing equations can be obtained as

∫
Γt

δuTt̄ dΓt +

∫
Ω

δuTbdΩ−
∫

Ω

δεTσdΩ = 0. (2.38)

Equation (2.38) can also be regarded as the principle of virtual work, i.e. the virtual work

by external forces and internal forces are equal.

Considering the constitutive model in Equation (2.27) and the compatibility in Equa-

tion (2.32), the weak form becomes

∫
Ω

δ(Lu)TD(Lu)dΩ =

∫
Γt

δuTt̄ dΓt +

∫
Ω

δuTbdΩ. (2.39)

The discretisation of the weak form is obtained using Equation (2.8), which yields

Ku = f, (2.40)

where

Kij =

∫
Ω

BT
i DBjdΩ, (2.41a)
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fi =

∫
Γt

Φit̄ dΓt +

∫
Ω

ΦibdΩ, (2.41b)

Bi =


Φi,x 0

0 Φi,y

Φi,y Φi,x

 . (2.41c)

Here the subscripts in the bold variable Kij do not mean the components of a matrix but

stand for the stiffness between the nodes i and j.

2.5 Integration

The weak form Equation (2.40) involves integration over the entire problem domain. In

the conventional FEM, Gaussian quadrature is used on each element and then the results

are summed together. This idea is borrowed in some meshless methods and background

meshes are used for integration. Comparing with the FEM using element vertexes as

nodes, background meshes in meshless methods can be independent of nodes. To pursue

truly meshless methods, other integration approaches have been developed, either by

nodal integration or by integration over supports, which are both introduced below.

2.5.1 Gaussian quadrature

Gaussian quadrature of a function or integral is an approximation of the definite integral

and is usually stated as a weighted summation of function values at some specified points

within the integration domain. The domain of integration is conventionally taken as [-1,1]

and arbitrary ranges can be converted to this conventional range, e.g. for a function f(x)

with integration range [a,b],

∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f(
b− a

2
x+

b+ a

2
)dx. (2.42)

The Gaussian quadrature can be written as

∫ 1

−1

f(x)dx =
n∑
i=1

wif(xi), (2.43)

where n is the number of Gauss points, i is the index, and xi and wi are the location and

weight respectively of a point i. The determination of wi and xi can be found in many
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Table 2.1: Weights and points in Gaussian quadrature.

n xi wi

2 ±0.57735 1

3
0 0.88889

±0.77460 0.55556

4
±0.33998 0.65215

±0.86114 0.34785

5

0 0.56889

±0.53847 0.47863

±0.90618 0.23693

6

±0.66121 0.36076

±0.23862 0.46791

±0.93247 0.17132

n xi wi

7

0 0.41796

±0.40585 0.38183

±0.74153 0.27971

±0.94911 0.12948

8

±0.18343 0.36268

±0.52553 0.31371

±0.79667 0.22238

±0.96029 0.10123

x

y

0

(x1, y1) (x2, y2)

(x3, y3)
(x4, y4)

ξ

η

0

(−1,−1) (1,−1)

(1, 1)(−1, 1)

Figure 2.3: Gaussian quadrature from global coordinates to local coordinates.

mathematical references e.g. [219] and the values are given directly in Table 2.1.

The extension of the Gaussian quadrature from 1D to high-order dimensions is straight-

forward. For instance, if integration is required over a quadrilateral element in 2D global

coordinates as in Figure 2.3 (a), the integration is first given over a standard element in

local coordinates, i.e.

∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη =
n∑
i

n∑
j

wiwjf(ξi, ηj), (2.44)
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where n is the order of Gaussian quadrature and wi, wj, ξi and ηj can be selected from Ta-

ble 2.1. The transformation between global coordinates and local coordinates is obtained

using the chain rule, dx

dy

 =

∂x∂ξ ∂x
∂η

∂y
∂ξ

∂y
∂η

dξ

dη

 = JT

dξ

dη

 , (2.45)

where J is the Jacobian matrix, and the scalar symbol J is the determinant of J , i.e.

J = det(J). The area of an infinitesimal element can be written as

dΩ = ‖d~x× d~y‖ = ‖(∂x
∂ξ

d~ξ +
∂x

∂η
d~η)× (

∂y

∂ξ
d~ξ +

∂y

∂η
d~η)‖ = J‖d~ξ × d~η‖. (2.46)

The integration over an arbitrary quadrilateral element is then given as

∫
Ω

f(x, y)dΩ =

∫ 1

−1

∫ 1

−1

f
(
x(ξ), y(η)

)
Jdξdη =

n∑
i

n∑
j

wiwjJf
(
x(ξi), y(ηj)

)
. (2.47)

Gauss points in global coordinates are located by ξi and ηj in local coordinates following

the mapping law between the two coordinate systems, i.e.

x =
4∑

k=1

Nk(ξ, η)xk, y =
4∑

k=1

Nk(ξ, η)yk, (2.48)

where Nk(ξ, η) are shape functions in Gaussian quadrature, i.e. for a linear quad,

N1 =
(1− ξ)(1− η)

4
, N2 =

(1 + ξ)(1− η)

4
,

N3 =
(1 + ξ)(1 + η)

4
, N4 =

(1− ξ)(1 + η)

4
.

(2.49)

The Jacobian matrix is determined as

J =

∑4
k=1

∂Nk

∂ξ
xk

∑4
k=1

∂Nk

∂ξ
yk∑4

k=1
∂Nk

∂η
xk

∑4
k=1

∂Nk

∂η
yk

 . (2.50)

2.5.2 Direct nodal integration

Nodal integration is a method for calculating a spatial integration by sampling the in-

tegrand only at nodes, which can be regarded as the order-one Gaussian quadrature,
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Figure 2.4: Voronoi cells for nodal integration.

and no background mesh is required so the resulting scheme is truly meshless. A spatial

integration can be written as

∫
Ω

f(x, y)dΩ =
n∑
i=1

qif(xi, yi), (2.51)

where i is the index of nodes and a node i has a location of (xi, yi) and weight qi is a

fraction of the total area Ω. There are several methods to choose the weight, e.g. in [113],

qi =
air

2
i∑n

i=1 air
2
i

AΩ, (2.52)

where AΩ is the integral area of Ω, ri is the support size associated with node i and ai

is the fraction of the support according to the location of node i, e.g. for interior nodes

ai = 1; for nodes at edges ai = 0.5; for nodes at corners ai = 0.25.

An alternative to define the weight qi in Equation (2.51) is through Voronoi cells

[114, 202, 220], as in Figure 2.4. The area of a Voronoi cell Ai is the weight for a node

i, i.e. qi = Ai. Since the nodal integration is like order-one Gaussian integration, it is

more efficient than higher order Gaussian quadrature but suffers however from serious

stability issues linked to rank deficiency when integration points cannot collect sufficient

information. Some stress points are added between nodes as additional quadrature points

but are not used in the problem discretisation [202].

2.5.3 Integration over supports

Except for the integration methods mentioned above, the integration can be calculated

over the support of each node rather than using background cells, which is ideal for
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Ω

Ωi

i

Figure 2.5: Computational model for integration over supports.

methods based on a local weak form such as the MLPG and can also be used for other

Galerkin MMs as in [115, 221, 222]. Dividing the intersections of supports has been

tried in [221] and applied in adaptive calculations, but these intersections form complex

geometries which are usually too complicated for practical applications. The partition of

unity quadrature is more promising where no division is required [115, 222]. An integration

for function f(x, y) over a domain Ω can be written as

∫
Ω

f(x, y)dΩ =

∫
Ω

f(x, y)H
n∑
i=1

widΩ =
n∑
i=1

∫
Ωi

f(x, y)HwidΩ, (2.53)

where n is the number of nodes, i is the index of a node i with support Ωi and weight

function wi, as in Figure 2.5, Ω ⊆ ⋃n
i=1 Ωi. All weight functions follow the partition of

unity, i.e.
∑n

i=1wi(x, y) = 1, and wi(x, y) = 0 if (x, y) /∈ Ωi. wi can be chosen to coincide

with MLS shape functions or through Shephard’s functions in Equation (2.11). H is the

function indicating whether a point is inside the domain Ω,

H(x, y) =

1 if (x, y) ∈ Ω,

0 if (x, y) /∈ Ω.

(2.54)

Overall, nodal integration and integration over supports are faster than Gauss integra-

tion and no background meshes are required, which is desired to achieve truly meshless

methods, however, the speed of these two methods comes with a sacrifice of accuracy, as
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mentioned in [114, 115]. For fracture modelling, there are high stress gradients around the

crack tip, and crack propagation is sensitive to numerical errors in the problem approxi-

mation. Therefore, Gaussian integration is used in this thesis, to guarantee the integration

accuracy for modelling crack problems.

2.6 Imposition of boundary conditions

One disadvantage of the MLS approximation is lack of the Kronecker delta property, due

to which essential boundary conditions cannot be imposed directly as in the FEM. A

number of techniques have been developed to solve this problem by modifying the weak

form [2, 54, 109, 110] or by employing shape function with the Kronecker delta property

[111, 112]. The most common approaches are Lagrange multipliers, penalty and Nitsche’s

methods.

2.6.1 Lagrange multipliers

In the Lagrange multiplier method, essential boundary conditions are incorporated into

the Hamilton Equation (2.35) with a vector of unknown Lagrange multipliers λ, i.e.

[L] = L+

∫
Γu

λT(u− ū) dΓu. (2.55)

Equation (2.55) ensure satisfaction of the displacement boundary condition, although trial

functions do not satisfy Equation (2.19). The weak form equation in Equation (2.38) is

modified to

∫
Ω

δεTσ dΩ−
∫

Γu

δλT(u− ū) dΓu −
∫

Γu

δuTλ dΓu =

∫
Ω

δuTb dΩ +

∫
Γt

δuTt̄ dΓt. (2.56)

The physical meaning of Lagrange multipliers λ is the traction along essential boundary

Γu as mentioned in [54]. The Lagrange multipliers λ are expressed by arc length s along

the boundary and shape functions Ni(s),

λ(x) =
k∑
i=1

Ni(s)λi, x ∈ Γu , (2.57)
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δλ(x) =
k∑
i=1

Ni(s)δλi, x ∈ Γu , (2.58)

where k is the total number of constraints at essential boundaries, λi are nodal values of

Lagrange multipliers and δλi are the virtual status. The determination of Ni(s) can be

through the same shape functions for displacement approximation or be constructed by

the Lagrangian interpolation,

Ni(s) =
(s− s1) · · · (s− si−1)(s− si+1) · · · (s− sk)

(si − s1) · · · (si − si−1)(si − si+1) · · · (si − sk)
. (2.59)

With Lagrange multipliers, Equation (2.40) is modified to

 K G

GT 0

u

λ

 =

 f

q

 , (2.60)

where K and f are obtained by Equation (2.41) and

Gik = −
∫

Γu

ΦiNkdΓu, (2.61a)

qk = −
∫

Γu

NkūdΓu. (2.61b)

Although the number of system unknowns increases and the system stiffness matrix is

not definite positive any more, essential boundary conditions are rigorously enforced in

the weak form equations, therefore accurate results can be achieved [2, 3]. The Lagrange

multipliers can be replaced by their physical counterpart at the outset, so that the modified

weak form results in a positive definite and sparse matrix [54]. However, the accuracy is

somewhat reduced as in [108], and more nodes are required in the approximation.

2.6.2 The penalty method

Similar to Lagrange multipliers, the Hamilton equations can also be modified by intro-

ducing a penalty factor β [109],

L = L− 1

2

∫
Γu

β(u− ū)T(u− ū) dΓu. (2.62)
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Then the weak form of Equation (2.38) becomes

∫
Ω

δεTσ dΩ +

∫
Γu

βδuT(u− ū) dΓu =

∫
Ω

δuTb dΩ +

∫
Γt

δuTt̄ dΓt. (2.63)

The discrete weak form of Equation (2.40) is changed to

(K + βKu)u = f + βfu, (2.64)

where

Ku
ij =

∫
Γu

ΦiΦjdΓu, (2.65a)

fui =

∫
Γu

ΦiūdΓu. (2.65b)

Since β is a predefined constant factor (β � 1, e.g. β = 105E in [223]), there are no

extra unknowns compared with the Lagrange multiplier method, and the system stiffness

matrix remains positive definite. However, a very large penalty factor β will lead to the

system becoming ill-conditioned, and how to define suitable values of β is still problematic

[109].

2.6.3 Nitsche’s method

Nitsche’s method is considered an improvement on the penalty method which is achieved

by adding a number of terms to the weak form of system equations rather than introducing

only one penalty term [110], i.e.

L = L− 1

2

∫
Γu

β(u− ū)T(u− ū) dΓu +

∫
Γu

tT(u− ū) dΓu , (2.66)

where t is the reaction force at the displacement boundary Γu and is obtained from the

stress field as t = [σ] · n. The governing equation of Equation (2.38) becomes∫
Ω

δεTσ dΩ−
∫

Γu

δtT(u− ū) dΓu −
∫

Γu

tTδu dΓu+∫
Γu

β(u− ū)Tδu dΓu =

∫
Ω

δuTb dΩ +

∫
Γt

δuTt̄ dΓt.

(2.67)
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The discrete weak form is

(K + βKu −Kt)u = f + βfu − f t, (2.68)

where K, Ku and fu are the same as above. Kt and f t are defined by

Kt
ij =

∫
Γu

ΦT
i [n]TDBjdΓu +

∫
Γu

BT
i D · [n]ΦjdΓu, (2.69a)

f ti =

∫
Γu

BT
i D · [n]ūdΓu. (2.69b)

Nitsche’s method combines the advantages of the Lagrange multiplier method and the

penalty method, by which a considerably smaller β can be chosen to avoid ill-conditioning,

and is therefore superior than these two methods [110].

2.6.4 Coupling with finite elements

Since the FEM possesses the Kronecker delta property, essential boundary conditions can

be imposed by the combination of finite elements and meshless approximations. This

idea was proposed in [108, 224], where a string of elements were used along the essential

boundaries, and FEM and EFGM shape functions are coupled with modified consistency

conditions, as in [224]. The merits of both the FEM and the EFGM can be used, and the

procedure has been applied to both linear and non-linear problems [225]. The advantage

of this approach is the easy imposition of essential boundary conditions due to the use of

finite elements. However, transition elements or interface elements have to be generated,

and the coupling process usually leads to a complicated code structure.

Overall, essential boundary conditions can be imposed to the weak form in the EFGM

by Lagrange multiplier method, penalty method, Nitsche’s method or coupling with the

FEM. Both penalty and Nitsche’s methods use penalty terms to constrain displacement

at essential boundaries and bring no extra unknown, but a larger penalty factor makes

the global stiffness matrix more ill-conditioned. Coupling the FEM and the EFGM has an

issue of complex code structure for the communication between the two methods, although

displacement constraints can be obtained directly by using finite elements. The Lagrange

multiplier method brings extra unknowns and leads to zero terms in the diagonal of the

stiffness matrix, but displacement constraints are rigorously ensured. Hence, the Lagrange
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f

L

Figure 2.6: 1D bar under body force.

multiplier method is used in this thesis for imposing essential boundary conditions.

2.7 Example

An example of a 1D bar is now used to demonstrate the differences between the FEM and

the EFGM. The configuration of the problem is depicted in Figure 2.6. The length of the

bar L = 1 and the section area A = 1. The left side is fixed and it is under a body force

f = 1. The material is assumed linear elastic with Young’s modulus E = 1 in compatible

units. The governing equations are

EA
d2u

dx2
+ f = 0, (2.70a)

u|x=0 = 0, σ|x=L = 0, (2.70b)

where the strain-displacement relationship ε(x) = ∂u(x)/∂x and the constitutive law

σ(x) = Eε(x) are used. The exact solutions of displacement and stress are

u(x) =
fL

EA

(
x− 0.5

x2

L

)
, (2.71a)

σ(x) =
fL

A
(1− x

L
). (2.71b)

The 1D bar is discretised initially with 11 nodes and 10 elements in both the FEM and

the EFGM. The support size in the EFGM is set as

r0 = ds l0, (2.72)

where l0 is the average distance between nodes and ds = 2.2. In the FEM, these elements

are used to build shape functions, while in the EFGM they are only used for integration.

A comparison of shape functions and derivatives between the FEM and the EFGM can

be seen in Figure 2.7. For the EFGM, both shape functions and derivatives are smooth,
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(a) (b)

(c) (d)

Figure 2.7: Comparison of shape functions between the FEM and the EFGM: (a-b) EFGM
shape functions and their derivatives; (c-d) FEM shape functions and their derivatives.

but shape functions cannot satisfy the Kronecker delta property in Equation (2.24) as

shown in Figure 2.7 (a), although the node at the left end seems not to be influenced by

other nodes. In contrast shape functions are linear in the FEM, and their derivatives are

constant within an element but discontinuous between two elements. Shape functions in

the FEM can satisfy the Kronecker delta property, as shown in Figure 2.7 (c).

Results of displacements and stresses are presented in Figure 2.8. Displacements by

both methods match with the theoretical solution in Equation (2.71). However, stresses

obtained by the FEM are inaccurate while those obtained using the EFGM are much

more accurate. Due to the derivatives of shape functions in the FEM are constant within

one element, the stresses are also constant in the element and decrease gradually along
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(a) (b)

101 102 103 104
10−6

10−5

10−4

10−3

10−2

10−1

1
1

1
1

Number of nodes

ηg

FEM
EFGM, ds=1.5
EFGM, ds=2.2
EFGM, ds=3.5
EFGM, ds=4.5

(c)

Figure 2.8: Comparison of results for the 1D bar problem between the FEM and the
EFGM: (a) displacement; (b) stress; (c) convergence rate.

the bar as in Figure 2.8 (b). A study of convergence for both methods has been carried

out, and the global error ηg is determined by the difference between the calculated stress

σh and the exact stress σ from Equation (2.71), as

ηg =
‖Eg‖
‖U‖ , (2.73a)

‖Eg‖ =

{∫
Ω

1

2E
(σh − σ)2dΩ

}1/2

, (2.73b)

‖U‖ =

{∫
Ω

σ2

2E
dΩ

}1/2

. (2.73c)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Comparison of results for the 1D bar problem for the EFGM with different
support sizes: (a-b) shape functions and derivatives for ds = 1.5; (c-d) shape functions
and derivatives for ds = 3.5; (e) displacement; (f) stress.
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As in Figure 2.8 (c), the convergence rates for the results from both methods are around

1 using linear basis functions except for the EFGM with large support (ds =3.5 and 4.5),

but the EFGM generally shows better accuracy than the FEM. For the EFGM, increasing

the support size can improve the accuracy of results, but this improvement is not effective

when the number of nodes becomes large, e.g. 104 nodes in this 1D bar problem. The

degradation of convergence rate for the EFGM with larger support size can be attributed

to the reduce of local characteristics in the problem approximation, as mentioned in [125].

Results from a study of support size in the EFGM is also included in Figure 2.9.

Three different support sizes are considered, ds = 1.5, 2.2 and 3.5, where ds is as defined

in Equation (2.72). Shape functions and their derivatives in the EFGM with different

support sizes are given in Figures 2.7 (a-b) and 2.9 (a-d). When smaller supports are

used, less nodes are involved in the MLS process at a location, and the peak values of

shape functions are larger. Displacements in all three cases are accurate compared with

the exact solutions, while for stresses, results of ds = 1.5 show oscillations especially at

boundaries, as shown in Figure 2.9 (f). The approximation with large supports (ds =

2.2 or 3.5) provides good accuracy for both displacement and stress, Figure 2.9 (e-f).

Thus, large enough supports of nodes are required to contain sufficient information in the

approximation of the FEGM, but if too large supports are applied, it will be difficult to

capture the local properties in the approximation [125]. A sound support size is within

the range 2 < ds < 4 as suggested in [55].

2.8 Summary

In this chapter, the governing equations of the EFGM for static problems are introduced,

and implementation issues including integration and imposition of boundary conditions

are discussed. The integration methods include Gaussian quadrature, nodal integration

and integration over supports. Since the EFGM makes use of the MLS approximation

to discretise the problem, essential boundary conditions cannot be imposed directly but

through Lagrange multipliers, the penalty method, Nitsche’s method or coupling with

finite elements. In an example of a 1D bar, the EFGM shows better accuracy than the

FEM because of smoother shape functions.



Chapter 3

An adaptive cracking particle

method for fracture modelling in 2D

3.1 Introduction

Since elements are not involved in the discretisation process of the EFGM, it can handle

crack propagation problems with one arrangement of nodes, while the standard FEM for

fracture modelling requires remeshing (to match element edges with crack paths). In [179,

180], the EFGM is combined with the level set method for crack problems in 2D and 3D,

however updating level set functions for crack propagation increases the computational

cost, especially for multiple cracks [181]. Based on the EFGM, the cracking particle

method (CPM) was proposed by Rabczuk et al. [202–204], where a set of discontinuous

segments centred at particles are used to approximate a crack path. The locations and

orientations of these segments are easily modified making the method suitable for problems

with complex cracks. But the method faces issues of spurious cracking [204] and the need

for a large number of particles, leading to high computational expense to achieve good

accuracy as mentioned in Section 1.5.6.

An adaptive CPM is developed in this chapter and a new type of cracking particle is

proposed, which avoids spurious crack results and incorporates an adaptivity approach to

control the number of particles. In this chapter, the development of the CPM is firstly

reviewed, and the strategy of cracking particles with bilinear discontinuous segments is

proposed, by which these segments are aligned to provide a finer crack path prediction

– 54 –
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than by the original CPM. Then the adaptivity approach is introduced which includes a

review of different error estimators and refinement strategies. After that, the J-integral

and different methods to calculate SIFs are included. Finally, some 2D crack problems

are used to demonstrate the performance of the proposed methodology.

3.2 Crack modelling by the CPM

Crack discontinuities are introduced into the CPM either by extrinsic enrichment or in-

trinsic enrichment. In the former, discontinuous terms are added in the basis functions

similar to the XFEM (Section 1.5.1), while the latter is through modifying the support

of weight functions.

3.2.1 The visibility criterion and the diffraction criterion

Before introducing the CPM, previous strategies in the EFGM for crack modelling are

firstly explained, which are also used in many other MMs. In the EFGM, for nodes

adjacent to a crack, supports are adjusted to avoid them having influence on the opposite

side of the crack, by which the displacement jump at cracks is obtained. Two methods

have been widely used: the visibility criterion [2] and the diffraction criterion [226].

The visibility criterion comes from the idea of discontinuity opaqueness. The support

of a node i is modified to the area receiving “light” from the centre, and the “shadow”

area caused by the discontinuity is excluded, as shown in Figure 3.1. An issue of this

approach is that an artificial discontinuity is introduced into the weight function so the

resulting shape function is not even C0 continuous, although convergence can still be

reached [124]. Significant errors and oscillations can occur around the crack tip especially

when large supports are used [226]. Due to the simplicity of the visibility criterion, this

approach is applied to all numerical examples in this thesis.

By contrast in the diffraction method, a small part of the support around the crack

tip is included following the law of “ray diffraction”. A more moderate truncation can

be applied and oscillations around the tip are therefore reduced. The input parameter

r = ‖x− xi‖/r0 for the weight function w(r) of the node i is modified correspondingly as

r =

(‖x− xi‖+ ‖xc − xi‖
‖x− xi‖

)γ
‖x− xi‖/r0, (3.1)
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Figure 3.1: Visibility and diffraction criterion.

where xc is the crack tip coordinate, r0 is the support size and γ is a constant which is

1 or 2 as suggested in [226]. The diffraction method provides better accuracy than the

visibility criterion, but cannot avoid high computational complexity, especially when used

for either non-planar cracks in 3D or multiple cracks in 2D and 3D.

3.2.2 A new strategy of cracking particles

A literature review of the CPM was included in Section 1.5.6. The CPM provides an

approximation of a crack path by using a set of discontinuous segments centred at parti-

cles, so updating the crack pattern is easily achieved by editing cracking particles. The

development of the method is described below.

In the original CPM proposed by Rabczuk et al. (2004) [202, 203], the discontinuity in

displacements at cracks is obtained by using discontinuous extrinsic enrichment functions.

All particles are divided into two groups, namely normal particlesN and cracking particles

Nc. The displacement in the problem domain is approximated by

uh(x) =
∑
i∈N

Φi(x)ui +
∑
j∈Nc

Ψj(x)H(x)bj, (3.2)

where H(x) is the sign function with value 1 on one side of the crack and -1 on the other

side, and bj are extra unknowns. Shape functions including the normal part Φi and the

enrichment part Ψj are evaluated by the MLS approximation but with different support

sizes, where the support sizes for calculating shape functions in the enrichments are usually

larger than for the normal part. A crack path is approximated by a group of discontinuous

segments as in Figure 3.2 (a), and the orientations of these segments control the values of

the sign function and therefore the crack discontinuity. Crack opening, described by the
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Figure 3.2: The development of the CPM.

operator [[·]], can be obtained by the enrichment functions, as

[[u(x)]] = ‖u(xS
+

)− u(xS
−

)‖ = 2
∑
j∈Nc

Ψj(x)bj, (3.3)

where S+ and S− are two opposite sides of crack paths. However, additional unknowns

bj are introduced to the variational formulation and bring extra cost to solve the weak

form equations. An alternative presented by Rabczuk et al. (2010) [204] is by splitting

cracking particles into two subparts belonging to the two sides of the crack, Figure 3.2 (b).

No additional terms are required in the displacement approximation, and crack opening is

obtained by the relative displacements of cracking particles on the two sides of the crack,

i.e.

[[u(x)]] =
∑
i∈S+

Φi(x
+)ui −

∑
i∈S−

Φi(x
−)ui (3.4)

The CPM in Figure 3.2 (a-b) suffers from spurious crack results as mentioned in [204,

213], when these crack segments do not align well especially for curved cracks. A new

strategy to define the influence domain of cracking particles is proposed in this thesis

(and as published in [227]), where bilinear segments are used instead of straight segments

to cut the support as shown in Figure 3.2 (c). The orientations of crack segments are

modified according to surrounding cracking particles, by which these segments are aligned

to continuous crack paths. The support of a given cracking particle i is split into two

sectors complying with the crack pattern, and the two segment arms are directed by angles

θi1, θ
i
2 where the angle should satisfy θ ∈ (−π, π], as

θi1 = arctan(
yi+1 − yi
xi+1 − xi

), θi2 = arctan(
yi−1 − yi
xi−1 − xi

), i ∈ Nc. (3.5)

The relationship is depicted in Figure 3.3 (here arctan should be atan2 in Matlab or
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Figure 3.3: The two segment arm directions of a cracking particle.

(a) (b)

Figure 3.4: Comparison between the original and the modified CPM: (a) original CPM;
(b) modified CPM.

equivalent). The crack tip particle has influence on both sides of the crack path and is

not itself split.

One advantage of the proposed CPM over the original method is illustrated in Figure

3.4. In the original CPM, cracking particles are defined as each carrying a straight discon-

tinuous segment of the crack face, splitting the supports as in Figure 3.4 (a). If there is

a “bad” overlap between those segments, spurious cracking occurs. In the modified CPM

proposed for the first time here [227], this problem is solved by using bilinear segments

where the crack path can change its direction at each cracked particle. All discontinuous

segments are aligned and “good” overlaps are obtained, as shown in Figure 3.4 (b).

3.3 Adaptivity

One drawback of the original CPM is the requirement for fine node/particle arrange-

ments to obtain accurate descriptions of complex crack patterns, since the length of crack

segments is linked to nodal distances [211]. Therefore the original CPM is usually com-

putationally expensive, but this issue can be alleviated by using an adaptive approach, as

in [203, 228]. Outside the CPM, the major challenge in linear elastic fracture mechanics
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is the issue of stress singularity at a crack tip for computational fracture modelling. To

capture the high gradients of stress around the crack tip, a large number of particles or

high order basis functions (or both) are required to obtain accurate results in either the

FEM or a meshless method. But away from the crack tip, the need for particle refinement

level is much lower. The task to set up particle arrangements reasonably to obtain a given

level of accuracy is still challenging, especially for crack problems with propagation, and

an adaptive procedure is demanded to maintain efficiency.

A posteriori adaptive finite element methods, which are composed of an error estima-

tion step and a refinement to the discretisation of the problem domain, have a long history

with a comprehensive mathematical basis being available for the FEM. In this class of

adaptive approaches, there are two main categories for error estimators: recovery-based

[225, 229–231] or residual-based [220, 232, 233]. Reviews on different error estimators

can be found in [234, 235]. Methods to amend the discretisation of the problem include:

h-adaptivity, mesh refinement and adding more particles; p-adaptivity, increasing the

polynomial degree of the shape functions; hp-adaptivity, the combination of the above

two; r-adaptivity, moving particles to adjust the local density of particle distribution. All

these approaches have been developed in MMs for decades, e.g. [2, 229, 236–238], but

at present no firm mathematical basis for error estimators has been built for MMs. Re-

cent research indicates that it can be problematic if FEM-based adaptive approaches are

applied to meshless methods directly. For instance in [125], it is shown that in meshless

methods errors from discretisation and those caused by using a particular basis cannot be

decoupled, and the support size has an opposite influence on error indicators of displace-

ment and its derivatives. Error estimators specific for meshless methods are therefore still

under development.

3.3.1 Error estimator

As stated above two types error estimators are involved in the adaptive approaches,

namely residual-based and recovery-based error estimators. In the former, the error is

defined as in [220, 232, 233] by

uh(x)− u(x) =
n∑
i=1

Φi(x)ui − u(x) , (3.6)
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where uh(x) is the approximated displacement, u(x) is the exact displacement, ui is the

displacement of particle i and Φi(x) is the shape function of particle i. Expanding u(x)

through a set of Taylor series, the nodal values can be expressed as

u(xi) =
sc∑
m=0

1

m!

(
(xi − x)

∂

∂x

)m
u(x) +Rsc+1 , (3.7)

with the residual

Rsc+1 =
1

(sc + 1)!

(
(xi − x)T ∂

∂x

)sc+1

u(x̄), x̄ = (1− v)x + vxi, 0 < v < 1, (3.8)

where sc is the complete order of shape functions, e.g. for linear complete shape functions,

sc = 1. Combining the two equations above yields

uh(x)− u(x) =
n∑
i=1

(
Φi(x)− 1

)
u(x) +

sc∑
m=1

1

m!

n∑
i=1

Φi(x)

(
(xi − x)

∂

∂x

)m
u(x)

+
n∑
i=1

Φi(x)Rsc+1 =
n∑
i=1

Φi(x)Rsc+1.

(3.9)

Considering |Φ(x)| ≤ c and |xi − x| ≤ h, where c and h are bounded constants, the error

estimator in the L2 norm becomes

∥∥uh(x)− u(x)
∥∥
L2(Ω)

= chsc+1

∥∥∥∥ 1

(sc + 1)!
Dsc+1u(x)

∥∥∥∥
L2(Ω)

, (3.10)

where D = ∂
∂x

+ ∂
∂y

for 2D problems. The term Dsc+1u(x) in Equation (3.10) for a

representative nodal domain Ωj can be approximated by

Dsc+1u(x) =
1

aj

∫
Ωj

n∑
i=1

Dsc+1Φi(x)uidΩj, (3.11)

where aj is the area of Ωj and n is the number of particles affecting the location x. The

approximation error for the displacement derivatives can be obtained in a similar way

with considering the derivatives of shape functions are bounded by |∇Φ(x)| ≤ c/h, e.g.
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the first derivative error is∥∥∥∥∂uh(x)

∂x
− ∂u(x)

∂x

∥∥∥∥
L2(Ω)

= chsc
∥∥∥∥ 1

(sc + 1)!
Dsc+1u(x)

∥∥∥∥
L2(Ω)

. (3.12)

By contrast, recovery-based error estimators are computed in a convenient energy norm

depending on the difference between the exact stress σ and the calculated stress σh as in

[225, 229–231] by

‖Eg‖ =

{
1

2

∫
Ω

(σ − σh)TD−1(σ − σh)dΩ

} 1
2

, (3.13)

where D is defined in Equation (2.29). The exact stress is unknown for most problems,

and this issue is solved for MMs in [121], where a simple way to approximate the error in

meshless methods was proposed by replacing the exact stress with the “projected” stress

σp, as

‖Eg‖ ≈
∥∥Ep

g

∥∥ =

{
1

2

∫
Ω

(σp − σh)TD−1(σp − σh)dΩ

} 1
2

. (3.14)

The “projected” stress σp is evaluated by using an approximation combining stresses at

surrounding particles inside a smaller support as below

σp =
m∑
k=1

Ψk(x)σh(xk), (3.15)

where m is the number of surrounding particles and Ψk(x) is the shape function calculated

by the MLS approximation with this smaller support. The global error ηg of the problem

domain is evaluated by

ηg =
‖Eg‖
‖U‖ , (3.16)

with

‖U‖ =

{
1

2

∫
Ω

(σh)TD−1σhdΩ

}1/2

. (3.17)

When the global error is larger than the user predefined target error ηt, i.e. ηg > ηt, the

adaptivity process is applied. The local error of a cell Ωi is estimated by

‖Ei‖ =

{
1

2

∫
Ωi

(σp − σh)TD−1(σp − σh)dΩi

}1/2

. (3.18)
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To take the global error into account, the relative local error is used instead,

ηi =
‖Ei‖

‖U‖ /√ncell

, (3.19)

where ncell is the total number of background cells. In the adaptive procedure, those

background cells with large errors are refined while those with small errors are coarsened,

which is governed by the refinement and coarsening procedures respectively, and the

following rules are used ηi > Lfin to be refined ,

ηi < Lrec to be coarsened,

(3.20)

where Lfin is the refinement trigger and Lrec is for coarsening. These two parameters are

determined by a relationship with the target global error ηt as below

Lfin = 2ηt, Lrec = 0.5ηt. (3.21)

The target global error ηt is user defined and can affect the adaptivity process. A smaller ηt

allows more background cells to be refined and more particles are added, which is suitable

for problems requiring high level accuracy. Using a large ηt increases the threshold for

refinement and can improve the convergence rate of global errors for results but can lead

to issues of no cells to be refined. The range of ηt between 0.01 and 0.1 is suggested for

2D problems in this chapter.

This procedure is inexpensive since there is no need for matrix solution which is however

needed in most of other error estimation procedure as in [122, 123]. Recovery-based error

estimators are accurate, robust and in most cases can provide more accurate estimation

than residual-based methods [234] and is applied in the adaptive procedure in this thesis.

3.3.2 Refinement strategy

The refinement strategy here is based on h-adaptivity because of the complexity of p-

adaptivity. For methods employing Voronoi cells for nodal integration, refinement in

h-adaptivity is by adding particles on the edges of cells and updating the surrounding

Voronoi cells, details of which are referred to [220, 239]. Since integration cells are used in

the EFGM to integrate the domain stiffness matrix, it is convenient to build the adaptive
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Figure 3.5: The strategy of refinement and coarsening

Figure 3.6: Support size change in refinement and coarsening

procedure on dividing background cells and adding particles at vertices of grid cells. A

background cell for Gaussian quadrature is divided into four small cells with five particles

added, the same as in many references [225, 229, 231, 233]. The adaptive strategy is

depicted in Figure 3.5. For the refinement, cell 1 is divided into four small cells 1, 2,

3 and 4 with five particles added, and cell 2 is divided further into cells 2, 5, 6 and 7.

When the errors measured in four cells 2, 5, 6 and 7 are small, they are combined by the

coarsening procedure back to the “mother” cell 2 and five particles are deleted, same with

cells 1, 2, 3 and 4 to cell 1.

When the cells are divided into small cells, particle density is changed and nodal

support sizes should be modified accordingly for a good balance between accuracy and

efficiency, as illustrated in Figure 3.6. If a cell described by four particles 1, 2, 3 and 4 with
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refinement level lr is refined, five particles are added all with support size ri = r0 · 0.5lr+1.

A modification is made to the support of the four particles by ri = ri · 4
√

0.5, i=1, 2, 3

and 4. When four cells around particle 1 are all divided, its support becomes the same

as that of the added particles 5, 6, 7, 8 and 9. The coarsening is the reverse of the

refinement process, and when four small cells are combined, supports of four particles

become ri = ri/
4
√

0.5, i=1, 2, 3 and 4. The particles in the group of 5, 6, 7, 8 and 9,

which do not belong to other cells, are deleted. In the initial configuration, the problem

domain is discretised with a uniformly distributed particles with the same support r0, and

the refinement level of all background cells are lr = 0. The whole adaptivity process is

illustrated in Figure 3.7.

3.4 Calculation of SIFs

SIFs are important parameters in fracture analysis, which are used to judge whether a

crack can propagate and to determine the crack growth rate and direction. Although SIFs

are governed by the stress and strain around the crack tip, far field results from the crack

tip are usually used in methods to calculate SIFs, e.g. the J-integral, since the stress field

around the crack tip is very complex and singular.

3.4.1 The J-integral

The J-integral was proposed by Rice [240] and is a method to calculate the strain energy

release rate. The J-integral in 2D is defined as

J =

∫
Γ

(
W dx2 − Tk

∂uk
∂x1

ds

)
, k ∈ {1, 2}, (3.22)

where the path Γ is a curve surrounding the crack tip, x1 and x2 are the coordinates, s

is the arc length along Γ, strain energy density is W = 1
2
σijui,j, traction is Ti = σijnj

defined according to the outward normal n along Γ and i, j are used with the Einstein

summation, i, j ∈ {1, 2}. The terms ui,j are the derivatives of ui to xj, and nj are the

components of the vector n. The relationship between the J-integral and the SIFs is

J = α(K2
I +K2

II) , (3.23)
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Figure 3.7: The flow chart of the adaptive process

α =

(1− ν2)/E for plane strain,

1/E for plane stress,

(3.24)

with the Young’s modulus E and the Poisson’s ratio ν.

Rice [240] showed that the J-integral is zero over a closed path when the integral contour

encloses a simply connected region which contains no elastic inhomogeneity, e.g. voids and

cracks. Based on this character, it is easy to prove that the J-integral is path-independent

if the crack surfaces are traction free, as described in Appendix B.
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3.4.2 Contour integration

One way to calculate the J-integral is through a contour integral according to the defi-

nition in Equation (3.22). Normally, the integral path is calculated by following a circle

[241] or a square [242] around the crack tip as in Figure 3.8. The latter has a simpler

implementation since on each edge one differential part of the J-integral becomes zero in

the local Cartesian coordinates. The SIFs for a mixed-mode problem can be obtained by

decomposing the elastic field around the crack tip into its respective symmetric and an-

tisymmetric mode components [241]. Consider a pair of points P (x1, x2) and P ′(x1,−x2)

which are symmetric to the crack line relative to the tip. The decomposition in the elastic

field for 2D problems follows
σI

11

σI
22

σI
12


=

1

2


σ11 + σ′11

σ22 + σ′22

σ12 − σ′12


,


σII

11

σII
22

σII
12


=

1

2


σ11 − σ′11

σ22 − σ′22

σ12 − σ′12


, (3.25)


uI

1

uI
2

 =
1

2


u1 + u′1

u2 + u′2

 ,


uII

1

uII
2

 =
1

2


u1 − u′1

u2 + u′2

 , (3.26)

where dashed terms are associated with point P ′(x1,−x2). Then the J-integral is decom-

posed into two components:

Jm =

∫
Γ

(Wmn1 − Tmj umj,1) dΓ, m ∈ [I, II], j ∈ [1, 2]. (3.27)

Finally, the SIFs can be obtained by

J I = αK2
I , J

II = αK2
II . (3.28)

3.4.3 Interaction integration

SIFs can also be calculated by a domain integration, through applying the divergence

theorem and converting the contour integral into a domain form, e.g. over an area in 2D
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Figure 3.8: Integration contour and domain for the J-integral

or a volume in 3D. The domain is the area Ω enclosed by the contour Γ as shown in Figure

3.8 and is assumed under two independent equilibrium states as in [243]: real state u and

auxiliary state uaux, where the superscript “aux” indicates parameters from the auxiliary

state, the definition of which is included in Appendix C. The interaction integral I of the

two states is

I =

∫
A

(σaux
ij uj,1 + σiju

aux
j,1 − σaux

jk εjkδ1i)q,i dA, i, j ∈ {1, 2} , (3.29)

where q is a weight function, e.g. q = (1− |x1/c|)(1− |x2/c|) and the index cnotation is

used with the Einstein summation. The relationship between the SIFs and the interaction

integral is

I = 2α(KIK
aux
I +KIIK

aux
II ), (3.30)

where Kaux
I and Kaux

II are the SIFs associated with the auxiliary state. Mixed mode

KI and KII are obtained by choosing the specific auxiliary state, e.g. if Kaux
I = 1 and

Kaux
II = 0, mode I SIF is KI = I/(2α). This approach provides a general form of integral

near the crack tip and is applicable to both linear and non-linear problems [244]. Hence,

the interaction integral is used for calculating SIFs in this thesis.

3.4.4 Crack propagation

A crack propagation procedure comprises two steps: deciding the propagating angle and

advancing the crack front. For the former, a review on different crack propagation criteria

can be found in [245], where the maximum principal stress criterion was shown to maintain

both efficiency and reasonable accuracy. Following this criterion, a crack propagates

towards the direction of angle θ in a local polar coordinate system where the shear stress
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Figure 3.9: Crack propagation and new cracking particles.

σrθ becomes zero,

σrθ =
1

2πr
cos

θ

2

[1

2
KI sin(θ) +

1

2
KII(3 cos(θ)− 1)

]
= 0. (3.31)

The solution is

θ = 2 arctan
(KI −

√
K2

I + 8K2
II

4KII

)
. (3.32)

This has been covered in many references [153, 227, 245] for modelling crack propagation

in linear elastic fracture mechanics.

When the crack growth angle θ is obtained, an increment of crack extension is applied

along θ in the local polar coordinate system, as presented in Figure 3.9. The value of the

crack increment ∆a is predefined and proportional to the initial crack length a, where

∆a ∈ [0.1a, 0.5a] is used in this thesis to control the speed of crack propagation. If the

crack direction has a large change when |θ| > π/36, the crack increment length is set

to 0.5∆a. If there is a particle at the position of the new tip, that particle becomes

a cracking particle, otherwise a new cracking particle is introduced. The old crack tip

particle is split into two particles, both with two cracking branches, one inherits the angle

of the old crack tip segment and another records the propagating angular change θ. The

new crack tip is not split but defined with a cracking line directed back to the old crack

tip. Crack propagation is achieved by repeating the two steps mentioned above. Since

the new crack tip is always aligned with one cracking branch of the old tip during crack

propagating, a nearly continuous crack path can be obtained.

3.5 Update of the stiffness matrix

A large number of quadrature points are normally required to get accurate results in

meshless methods, therefore the integration of the system stiffness K is computationally

costly. The calculation of K is demanded for each adaptivity or crack propagation step,
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Figure 3.10: Influenced domain due to the adaptivity.

which makes the whole process potentially time-consuming. However, the integration over

the whole domain is not necessary for every step, because the change caused by either

adaptivity or crack propagation usually occurs in a small zone around the crack tip.

Here, a strategy to amend the stiffness matrix is proposed to reduce the cost of cal-

culating K. The integral of K is divided into two subparts, one from the influenced

subdomain Ω1 due to adaptivity or crack propagation and another from the uninfluenced

subdomain Ω2,

K =

∫
Ω1

BTDBdΩ1 +

∫
Ω2

BTDBdΩ2. (3.33)

The update of the K matrix is through modifying the contribution from Ω1, and the

integration over Ω2 is not required. Since Ω1 is usually much smaller than the problem

domain at each step of either adaptivity or crack propagation, the calculating expense

related to updating K is decreased. Two issues remain to implement this approach, which

are obtaining the influenced domain Ω1 and saving the contribution from Ω2.

The former is solved by tracking the change of the problem discretisation. After one

adaptive step, the influenced domain is obtained by summing up the supports of added

and deleted particles as in Figure 3.10, and particles with support changes are considered

in the two groups. The situation is similar for a crack propagation step and the change

is due to the generated new crack segment, which cuts the supports of some particles

around the crack tip, Figure 3.11. The area Ω1 comes from the combination of all shadow

areas and is usually with complex geometries, as shown in Figure 3.11. Alternatively, a

larger “possible” domain containing all possible areas is used, where the integration of K

is recalculated.



70 Chapter 3. An adaptive cracking particle method for fracture modelling in 2D

Figure 3.11: Influenced domain due to crack propagation.

Figure 3.12: Transfer function from local stiffness matrix to global stiffness matrix.

The storage of the system stiffness matrix K is problematic in that the size of K is

usually very large. The strategy of a local stiffness matrix [246] is therefore introduced

here, by which the contribution of each background cell to the sparse matrix K can be

stored in a local and dense matrix k with a smaller size. The storage requirement is much

reduced, and there is no need to reform a large matrix frequently. The local matrix is

achieved by integrating over each cell with Gauss quadrature. The relationship between

the local matrix k and the global stiffness K is described by a mapping function T , which

transfers the local index i to the system index v(i) with i = 1, 2, . . . n where n is the

number of particles associated with the local matrix, as in Figure 3.12. When particles

are deleted or added during either the adaptivity or crack propagation process, the vector
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Figure 3.13: The flow chart of whole analysis process.

v(i) is amended accordingly. Then the update of K is obtained by

K =

∫
Ω1

BTDBdΩ1 +
∑
i∈Ω2

T (ki) , (3.34)

where the subscript i indicates the local matrix k of cell i.

The whole analysis process is demonstrated in the flow chart of Figure 3.13. The

problem is discretised with coarse particles initially and then adaptive steps are used to

adjust nodal arrangements and to improve the accuracy. After the global error is reduced

to a lower level than the target, the next crack propagation step starts, and the particle

density is amended by another group of adaptivity steps until the maximum propagation

step (the final terminal condition) is reached.
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Figure 3.14: Half central crack under a stress field inducing mixed mode fracture: (a)
configuration; (b) initial particles.

3.6 Numerical examples

Several numerical examples of 2D crack problems are used to demonstrate the performance

of the proposed CPM. All the examples are subject to quasi-static loading, and both

static and propagating cracks are studied where the critical SIF is set a low value, e.g.

KIC = 100N/mm3/2. A linear basis function is applied to build shape functions and 4× 4

Gauss points are used for the integration over each background cell. The initial support

size is r0 = 2l0, where l0 is the average distance between particles at the start, and the

factor 2 is chosen from the range 2.0-4.0 as suggested in [55, 125]. In contrast, smaller

support size should be used for the stress projection to avoid the overestimation of stress

[121], and the value is 0.6 times of the support of particle i, i.e. r = 0.6ri is chosen.

All problems are assumed to be under plane stress conditions and with elastic material

properties unless stated otherwise. SIFs are normalised by

K ′I = KI/(σ
√
πa), K ′II = KII/(τ

√
πa), (3.35)

where a is the crack length, σ and τ are external loadings.

3.6.1 Half central crack under mixed mode loading

A half central crack under a stress field inducing mixed mode fracture is studied here.

The half central crack is of length a = 0.5w, where w is the length of a square plate,
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(a) (b) (c) (d)

Figure 3.15: Adaptive particle distributions for the half central crack in mixed mode
fracture: (a) step 2; (b) step 4; (c) step 7; (d) step 9.
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Figure 3.16: Adaptive results for the half central crack in mixed mode fracture: (a) error
estimation; (b) SIFs.

w = 100mm as depicted in Figure 3.14. This example is extracted from the problem of

an infinite plate with a central crack (length=2a) under biaxial tension σ = 100MPa and

shear τ = 100MPa, and the analytical SIFs are KI = σ
√
πa and KII = τ

√
πa. The target

error to execute adaptive steps is ηt = 0.02. The analytical stress and displacement fields

for this problem are from Westergaard [247], as

σxx =
KI√
2πr

cos(
θ

2
)[1− sin(

θ

2
) sin(

3θ

2
)]− KII√

2πr
sin(

θ

2
)[2 + cos(

θ

2
) cos(

3θ

2
)], (3.36a)

σyy =
KI√
2πr

cos(
θ

2
)[1 + sin(

θ

2
) sin(

3θ

2
)] +

KII√
2πr

sin(
θ

2
) cos(

θ

2
) cos(

3θ

2
), (3.36b)

σxy =
KI√
2πr

cos(
θ

2
) sin(

θ

2
) cos(

3θ

2
) +

KII√
2πr

cos(
θ

2
)[1− sin(

θ

2
) sin(

3θ

2
)], (3.36c)
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(a) (b)

Figure 3.17: Final displacement for the half central crack in mixed mode fracture: (a) ux;
(b) uy.

ux =
KI

2µ

√
r

2π
cos(

θ

2
)[κ− 1 + 2 sin2(

θ

2
)] +

KII

2µ

√
r

2π
sin(

θ

2
)[κ+ 1 + 2 cos2(

θ

2
)], (3.36d)

uy =
KI

2µ

√
r

2π
sin(

θ

2
)[κ+ 1− 2 cos2(

θ

2
)]− KII

2µ

√
r

2π
cos(

θ

2
)[κ− 1− 2 sin2(

θ

2
)], (3.36e)

where µ is the shear modulus and κ is a material constant, as in Equation (C.3). The

analytical stresses from Equation (3.36) are applied as external loading as

f = [σ] · n = [σxxnx + σxyny, σxynx + σyyny]
T, (3.37)

where n = [nx, ny]
T is the outer normal of each edge. The rigid body movement of the

plate is constrained by using the following essential boundary conditions,

ux = 0, uy = 0 at x = w/2, y = w/2, (3.38a)

uS
+

y + uS
−

y = 0 at x = 0, y = w/2, (3.38b)

where superscripts S+ and S− indicate the two sides of the crack the same as Equation

(3.4).

The initial particle arrangement is given in Figure 3.14 (b) and the subsequent particle

distributions during adaptive steps are shown in Figure 3.15. In Figure 3.16 (a) it is shown
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Table 3.1: Comparison between adaptivity and uniform refinement for the half central
crack in mixed mode fracture.

Adaptive Uniform refinement

Particles initial 20× 20 20× 20 60× 60 100× 100 200× 200 300× 300

Time/t0 28.539 1.000 4.755 12.890 68.773 224.550

Analytical error 0.00989 0.16039 0.09185 0.07103 0.05017 0.04095

Projected error 0.01083 0.17385 0.09886 0.07633 0.05385 0.04393

Error (KI) 0.00048 0.02895 0.01216 0.00775 0.00399 0.00262

Error (KII) 0.00029 0.02005 0.01446 0.00932 0.00481 0.00314

that projected errors calculated with the projected stresses in Equation (3.13) are similar

with the errors obtained by using analytical stresses from Equation (3.36). The SIFs of

two modes during adaptive steps can be seen in Figure 3.16 (b) and can approach the

exact values. The final deformation of two crack surfaces are in Figure 3.17, where both

ux and uy can match the analytical solution from Equation (3.36). The performance of

the adaptivity and uniform refinement is compared as in Table 3.1, from which it shows

that the adaptivity approach can provide better accuracy by using fewer particles and

therefore has a higher computational efficiency than uniform refinement, although the

adaptivity approach requires an overhead for adaptive steps to achieve the final particle

arrangement. The calculating time is normalised by time/t0 where t0 is the time for the

initial particle arrangement and t0 = 18.123s for running with Matlab on a PC (i7 4790,

16GB RAM).

3.6.2 Edge crack under tensile loading

The second example is an edge crack under tensile loading and it is pure mode I fracture,

for which there are analytical solutions [248] for validation, as

KI = σ
√
πa
[
1.122− 0.231(

a

b
) + 10.550(

a

b
)2 − 21.710(

a

b
)3 + 30.382(

a

b
)4
]
. (3.39)

The geometries of the problem is depicted in Figure 3.18 where the plate is with height

2h = 200mm, width b = 100mm and crack length a = 0.2b. A pair of uniform tensile

loadings σ = 100MPa is applied on the upper and lower edges of the plate. The material
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Figure 3.18: Configuration and initial particles of an edge crack problem under uniaxial
tensile loading.
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Figure 3.19: Adaptive results for the edge crack under uniaxial tensile loading with initial
length: (a) convergence; (b) KI.

properties are E = 74GPa and ν = 0.3. The midpoint of the right edge is fixed to

lock the rigid body movement of the plate. The target error during adaptive steps is set

to ηt = 0.05 and the maximum refinement level is 6 which allows the smallest distance

between particles 2−6r0 = r0/64, where r0 is the initial support size of particles.

Adaptive results for the edge crack problem with the initial crack length are presented

in Figure 3.19, from which it is shown that the convergence rate by the adaptivity ap-
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Figure 3.20: Crack propagation (steps 3, 6, 9, 12) and corresponding particle arrangements
for the edge crack under uniaxial tensile loading.

(a) (b) (c) (d)

Figure 3.21: Von Mises stress contours for the edge crack under uniaxial tensile loading
during crack propagation: (a) steps 3; (b) step 6; (c) step 9; (d) step 12.

proach is higher than that of uniform refinement. The calculated KI becomes close to the

theoretical solution after five adaptive steps, as in Figure 3.19 (b). Then crack propagation

is considered and this process is seen in Figure 3.20. The crack propagates horizontally

with no change of cracking angle because of the symmetry of the problem, and a “mass”

of particles generates around the crack tip and moves with the propagating crack which

is controlled by the adaptivity approach where the refinement function adds particles

around the crack tip and the coarsening function deletes particles near to old crack tips
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Figure 3.22: Comparison between calculated KI with theoretic solutions for the edge crack
under uniaxial tensile loading.

Figure 3.23: Deformation of the edge crack problem under tensile loading enlarged by 10
times



3.6. Numerical examples 79

x

y

crack

τ

w

h

(a) (b) (c) (d)

Figure 3.24: An edge crack in a plate under shear loading on the top with different particle
arrangements: (a) configuration; (b) case 1; (c) case 2; (d) case 3.

in previous steps. The number of particles is initially 94 and increases to the maximum

of 719. The von Mises stress contours of the plate during crack propagation steps are

presented in Figure 3.21, where the Von Mises stress σv is defined as

σv =
√
σ2

11 − σ11σ22 + σ2
22 + 3σ2

12 for plane stress, (3.40)

and is normalised by the external tensile loading with σv/σ. High stresses can be found

around the crack tip, and when the crack tip becomes close to the left edge, there are

also high stresses around the midpoint of the left edge. The mode I SIF KI is extracted

through the interaction integration and is compared with exact values from Equation

(3.39), as shown in Figure 3.22. Good results are achieved and particle arrangements

are adjusted automatically to maintain both efficiency and accuracy during the crack

propagation process. The deformation of the problem in the final crack propagation step

is given in Figure 3.23 where a linear crack opening shape can be found in terms of the

zoom out response.

3.6.3 Edge crack under shear loading

The third example comes from the geometry of the second problem but a shear loading is

used instead, so a pure mode II fracture at the beginning is studied here. The geometry
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(a) (b) (c) (d)

Figure 3.25: Crack propagation steps of the edge crack problem under shear loading for
case 1: (a) step 1; (b) step 4; (c) step 8; (d) step 12.
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Figure 3.26: Crack growth of an edge crack under shear loading predicted by different
initial particle arrangements: (a) case 1; (b) case 2; (c) case 3; (d) comparison.

is illustrated in Figure 3.24 and crack growth predictions by three different initial particle

arrangements are compared. Figures 3.24 (b-c) have uniform distribution but different

particle densities, while a set of non-uniform distributed particles is defined in Figure 3.24

(d). The plate has height h = 160mm, width w = 70mm, crack length a = 0.5w, material

properties E = 206.8GPa and ν = 0.25, the same as [229]. The plate is fixed at the

bottom and under a shear loading τ = 100MPa at the top, and plane strain conditions

are assumed. The target error for adaptive steps is ηt = 0.05.

Adaptive particle arrangements during the crack propagation process are illustrated in

Figure 3.25, where a “mass” of particles travels with the propagating crack tip, which is

controlled by the adaptivity approach. The predicted crack growth of all three cases can
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Figure 3.27: Configuration and initial particle arrangement of a double cantilever beam.

be seen in Figure 3.26, from which it is shown that the difference of crack propagation

path through different initial particle arrangements is negligible, and the crack paths of

the three match the results in [229].

3.6.4 Double cantilever beam

The last example presented here is a double cantilever beam with a horizontal crack at

one end and loaded such that mixed mode fracture is considered, as in Figure 3.27. The

beam has height h = 10cm, length L = 3h, crack length a = h and material properties

E = 206.8GPa and ν = 0.3, the same values as in [229]. A perturbation at the crack tip

is defined to control the direction of crack propagation, ∆x = 0.76cm and dθ = 0.1. The

target error during adaptive steps is set to ηt = 0.06, and the maximum iteration step for

the adaptivity process is 6. The beam is fixed at the right and under a pair of tractions

τ = 1.75MPa at the left edge.

Crack propagation steps are shown in Figure 3.28 where the crack changes its direction

from horizontal to vertical due to the predefined perturbation, and particle arrangements

are adjusted automatically around the propagating crack tip by the adaptivity approach.

Note that since the crack path is approximated by discrete segments, which are decided

by particle densities, fine particles are required where there is a sudden change in the

direction of the crack path and these refinements will not be coarsened, as seen in Figure

3.28. The maximum number of particles is 982 while the initial number is 141. Good

agreement with the result from [229] can be seen in Figure 3.29, and the deformation of



82 Chapter 3. An adaptive cracking particle method for fracture modelling in 2D

Figure 3.28: Adaptive steps for the crack propagation process for the double cantilever
beam (steps 5, 10, 15, 20 and 25).

Figure 3.29: Comparison between crack growth prediction and previous results for the
double cantilever beam.

the double cantilever beam at the final crack propagation step is shown in Figure 3.30. A

comparison between the original and the modified CPM is demonstrated in Figure 3.31,

where there is no adaptivity in the original CPM and a fine group of particles are applied
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Figure 3.30: Deformation (enlarged by 50 times) of the double cantilever beam.

Figure 3.31: Comparison of results between new CPM and original CPM for the double
cantilever beam: (a) nodal arrangements for original CPM; (b) crack path description.

at the possible crack propagating zone. The results of the crack growth for two methods

are both close to the reference curve, while the modified CPM provides a smoother crack

path than the original CPM. The modified CPM also shows better efficiency by using

the adaptivity approach, as the maximum number of particles in the modified CPM is

982, much lower than 2479 in the original CPM. Normally, the original CPM requires the

number of particles at the level of 104 to achieve good accuracy as in [202, 211].
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3.7 Summary

An adaptive CPM has been developed in this chapter for 2D crack propagation analysis

under quasi-static loading. A continuous crack path is described by a set of discrete

segments centred at particles, so updating the crack pattern is made easy by adding

and deleting cracking particles, which makes this methodology a simpler alternative to

crack description using, for instance, the level set method and is suitable for multiple-

crack problems. These discrete segments are located by cracking particles with bilinear

segments by which the angular change of crack paths is recorded, so they do not cross each

other and therefore no spurious cracking occurs. The densities of particles are controlled

by an adaptivity approach, which adds and removes nodes/particles and adjusts support

sizes, to make the whole analysis accurate and efficient. The adaptivity approach makes

use of a recovery-based error estimator and the h-adaptive strategy to decide where and

how to refine the particle density. A novel approach is used to revise the stiffness matrix in

an efficient way and information relating to the system stiffness matrix is stored in a local

matrix at cell level. In this way, the integration of the system stiffness is only required

over the small domain which is changed by either the adaptivity or crack propagation,

while the remainder can be read from the storage directly. Since the changed domain is

usually smaller than the problem domain, the whole calculating time is much reduced.

This approach can be applied to other methods using adaptive procedures as a kind

of acceleration. SIFs are calculated by the interaction integral around the crack tip,

which is a domain quadrature type of the J-integral. Essential boundary conditions are

imposed into governing equations by Lagrange multipliers. Several numerical examples

demonstrate the performance of the proposed methodology and all show good agreement.

The feature of using discrete segments to approximate continuous crack path makes this

methodology suitable to describe nonsmooth cracks and multiple cracks, which will be

covered in the following chapter.



Chapter 4

A multiple-cracked particle method

for complex crack modelling

4.1 Introduction

Fracture behaviour in nature is usually characterised by complex crack patterns composed

of multiple and branching cracks, while conventional numerical methods are mainly fo-

cused on fracture problems involving a single crack somewhat far from these real situa-

tions. The simulation of complex cracks with multiple tips and complicated geometries

brings many challenges to current numerical methods. For instance in the XFEM, en-

richment functions are introduced into the displacement approximation to capture the

discontinuities at cracks as in Section 1.5.1 and this becomes mathematically complicated

for multiple cracks. A multiple-cracked particle method is developed here to address this

issue and is based on the CPM in Chapter 3. The particle at a crack branch point is split

into several subparticles complying with the crack patterns, and crack opening is captured

by the relative displacement of these subparticles, not through enrichment functions. A

crack with a complex geometry can therefore be decomposed and modelled by a set of

crack segments, and is then handled by the visibility criterion using a similar algorithm

for single cracks.

This chapter is focused on the modelling of multiple cracks. The issues in problems

of multiple cracks are firstly reviewed, including the modelling of multiple crack tips and

crack branches. Then the strategy of multi-split cracking particles is presented, and the

– 85 –
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implementation is included. Finally, several numerical examples are used to demonstrate

the performance of the proposed methodology for crack problems with complex geome-

tries.

4.2 Issues in the modelling of multiple cracks

When multiple crack problems (i.e. where there are more than one crack tips in a fracture

pattern) are studied, the interaction between cracks must be considered, which leads to

some issues in modelling. The issues exist in two places: when multiple crack tips become

close to each other and in the modelling of discontinuities at crack branches, as will be

discussed below.

4.2.1 Modified weight function for multiple crack tips

The visibility criterion and the diffraction criterion are two widely used methods to capture

the discontinuities at cracks in meshless methods, as mentioned in Section 3.2.1. In many

situations [59, 179, 217], they are applied for single crack problems, but their application

to multiple cracks is rare.

For the visibility criterion, the connectivity between two nodes is defined by checking

whether the straight line connecting the two nodes is sheltered by crack paths. The

algorithm for a single crack can still be applied for multiple cracks, and the difference is

that this algorithm should be executed for every crack. One example of its use in the

literature is by Rabczuk et al. [204] in the cracking particle method (Section 3.2), where

crack discontinuities are obtained by checking the visibility between particles in a set of

discontinuous segments for modelling multiple crack branches.

The situation for the diffraction criterion is more complicated, since crack tip coor-

dinates are involved to modify the supports of particles, e.g. the two cracks in Figure

4.1. The weight function w(r) for a node xi is defined by Equation (2.3) with the input

parameter r = ‖x − xi‖/r0, and the diffraction criterion for a single crack is Equation

(3.1). In [249] the diffraction criterion is modified for multiple cracks to

r = (
s1 + s2

s0
)γs0, (4.1)

where s0 = ‖x− xi‖, γ is the same as in Equation (3.1), s1 and s2 are modified distances
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Figure 4.1: Modified diffraction criterion for multiple cracks.

defined as

s1 = ‖x1
c − xi‖, (4.2a)

s2 =
n∑
j

sj2, (4.2b)

where

sj2 = ‖xj+1
c − xjc‖, j = 1, 2 . . . n− 1, (4.2c)

and

sn2 = ‖x− xnc ‖, (4.2d)

and n is the total number of cracks cutting the straight line between x and xi, and xjc is

the location of the jth crack tip. This modified version has been shown to be sufficient

to characterise multiple cracks in the influence domain of a node as in [249].

Apart from the two methods mentioned above, discontinuities of multiple cracks can

also be modelled by modifying the weight function with an intrinsic enrichment function

h(x), as in [250, 251]. The evaluation of h(x) is given in detail in [250, 251], while the

features of the method are described below. The parameter h(x) is a scalar distance

function with a range from 1 on the side of the crack containing the node xi to 0 on the

other side, and provides a smooth angular transition between the two sides around the

crack tip. This approach has been applied to the RKPM for multiple cracks and kinked

cracks [250, 251] and is also applicable to other meshless methods. The resulting weight

function of a node is modified by multiplying the enrichment functions of all cracks, as

h(x) =
n∏
i=1

hi(x), (4.3)
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where hi(x) is the enrichment function for the ith crack and n is the number of cracks.

This approach provides a simple way to handle the discontinuities associated with multiple

cracks, however the evaluation of hi(x) requires the distance to each ith crack tip, which

is not computationally cheap for multiple cracks

In addition, those methods using tip enriched basis functions have to be amended when

multiple crack tips are involved, e.g. in [252]. The enriched basis function in the EFGM

for a single crack is

pT(x) = [1, x, y,
√
r cos(

θ

2
),
√
r sin(

θ

2
),
√
r sin(

θ

2
) sin(θ),

√
r cos(

θ

2
) sin(θ)], (4.4)

where r and θ are the local polar coordinates originating at the crack tip. When there

are n crack tips in the node influence domain, the coordinates (r, θ) are chosen by the

minimum normalised distance to the crack tip, i.e. min ri/ai, i ∈ {1, 2, . . . , n}, where ri

and ai are the distance to the tip and the crack length of the ith crack respectively. This

modified approach can work well for multiple cracks with similar lengths in the domain.

4.2.2 Enrichment functions for crack branches

The XFEM, a popular method for fracture modelling, makes use of enrichment functions

in the displacement approximation to obtain the discontinuities at cracks, so that a crack

can propagate arbitrarily within elements and remeshing is not required [253]. However,

the XFEM meets a dilemma when applied to problems of multiple cracks and crack

branches.

The displacement in the XFEM for a single crack is modelled by Equation (1.17)

as mentioned in Section 1.5.1. When two or more intersecting cracks are considered

[155, 253, 254], e.g. a cross crack in Figure 4.2, the displacement becomes

uh(x) =
n∑
i

Φi(x)ui +

n1∑
i

Φi(x)H1(x)b1i +

n2∑
i

Φi(x)H2(x)b2i

+

n3∑
i

Φi(x)H3(x)b3i +

n1,2∑
i

Φi(x)J1,2(x)ci+

n1,3∑
i

Φi(x)J1,3(x)di +
nc∑
i

Φi(x)

(
4∑

k=1

Rka
k
i

)
,

(4.5)
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Figure 4.2: Enrichment functions in the XFEM for modelling crack branches.

where the subscripts of H(x) and n indicate the crack index, and n1,2 is a group of nodes

with influence domains covering the junction of cracks 1 and 2, the same as n1,3 for cracks

1 and 3. J1,2(x) and J1,3(x) are two modified Heaviside functions, where an extra value

of 0 for the crack junctions is included, as shown in Figure 4.2. b1i, b2i, b3i, ci, di and ai

are extra unknowns in the enrichment functions. With the more cracks, more terms are

included in the enrichment functions and hence the computational cost rises.

For numerical methods using the level set approach to describe crack patterns, e.g. in

the XFEM [161, 183] and the EFGM [179, 180], a crack requires two level set functions

to describe its geometry, and the problem becomes more complex as the number of cracks

increases. Although in [254] it is claimed that the numerical manifold method provides

a simpler way for the displacement approximation in problems with complex crack pat-

terns, the expense of generating physical covers in this method still impedes its further

application, as mentioned in [216].

4.3 Multiple split cracking particles

A simple approach to model multiple cracks and crack branches can be achieved via a

modified CPM [202–204, 227]. In the CPM, continuous crack paths are approximated

by a set of discontinuous segments centred at cracking particles, which reduces the cost

of tracking multiple cracks. Discontinuities at crack branches are modelled by modifying

the influence domain of particles, so that complex enrichment functions in the XFEM

mentioned above are avoided and the algorithm for a single crack can still be applied

to multiple cracks without major amendments, which is the crux of this chapter. A
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Figure 4.3: Multiple-split cracking particle for a cross crack: (a) particle at the junction;
(b) four subparticles.

Figure 4.4: Strategy to distinguish cracking particles at the same location.

multi-cracked particle method is developed here, which is based on the CPM in [227] and

material contained in previous chapters of this thesis.

Considering a cross crack as in Figure 4.2 again, the particle D at the junction in

Figure 4.3 (a) is split into four subparticles, D1, D2, D3 and D4, and the support is also

divided into four subparts, as in Figure 4.3 (b). These four subparticles are not connected

to each other, and the crack opening at this junction point is obtained by the relative

displacements of those four subparticles, i.e.

[[u(x)]] =
∑
i∈S+

Φi(x
+)ui +

∑
i∈S−

Φi(x
−)ui, (4.6)

where x+ and x− are two sets of particles located on the opposite sides of crack surfaces

S+ and S− respectively. The visibility criterion (following the algorithm in [255]) is

applied to check the connectivity between those particles. For cracking particles which

are multiply split, a simply strategy is used to distinguish between these subparticles at

the same location. Each subparticle i is given a tiny shift at the bisector direction θi of
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its sector support following the Equation (4.7), and then the standard visibility algorithm

is applied. x
′
i = xi + 0.0001ri cos(θi),

y′i = yi + 0.0001ri sin(θi),

(4.7)

where ri and (xi, yi) are the support size and the location of particle i respectively, and

(x′i, y
′
i) is the shifted location. With this strategy, four subparticles in Figure 4.3 (b) at

the same location of the original particle D are moved away in different directions, as

seen in Figure 4.4. Then it is easy to assess the visibility between particle i and D1 while

the other three subparticles are invisible to particle i. It is notable that the shift is only

applied to the visibility algorithm and the location of particles is not actually changed in

other calculations. The whole process is demonstrated in Algorithm 4.1

Algorithm 4.1 Check the visibility between particles i and j

Input: Node information of nodes i and j
Output: status: 0 – invisible; 1 – visible
status← 1
if node j is outside the support of node i then

status← 0
else

if node i is a cracking particle then
shift the location of node i by Equation (4.7)

end if
if node j is a cracking particle then

shift the location of node j by Equation (4.7)
end if
status← standard visibility criterion

end if
return status

4.4 Numerical examples

In this section, some numerical examples with multiple crack tips are studied, where

the crack branch and the propagation of multiple cracks are considered, however the

situation when many crack tips become very close is not included, since this causes issues

in calculating the J integral. A linear basis function and fourth order Gaussian quadrature

are used. The adaptivity process developed in Section 3.3 is used here, where the error

target is ηt = 0.06, and the maximum adaptive steps for one propagation step is 6.
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Figure 4.5: Two cracks in a plate with two holes: configuration and initial nodes.

Plane stress conditions and linear elastic materials are assumed for all problems with

E = 200GPa and ν = 0.3, unless stated otherwise. SIFs are calculated by the interaction

integral and in all examples are normalised as

K ′n = Kn/(σ
√
πa), n ∈ {I, II}. (4.8)

4.4.1 Two cracks in a plate with two holes

The first example includes two straight edge cracks in a plate with two holes, (see Figure

4.5), and the propagation of both two cracks are executed simultaneously. The configura-

tion of this problem is the same as in references [256, 257], where L = 20mm, h = 0.5L,

a = 0.1h, h0 = 2.85mm, R = 2mm and d = 3mm. The upper and lower edges are kept

straight and loaded by a pair of tensile forces, the magnitude of which is not mentioned

in [256]. The loading condition is approximated by fixing the bottom and shifting the

upper edge vertically by 0.02h.

Adaptive particle arrangements during the crack propagation process are shown in
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Figure 4.6: Crack propagation of two cracks and particle arrangements: steps 8, 16, 26,
34 and 39.
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Figure 4.7: Comparison between predicted crack path and previous result for the two-
crack problem.

Figure 4.8: Final deformation enlarged by 5 times for the two-crack problem.

Figure 4.6, where there are two “masses” of particles generated automatically around

each crack tip and they move with the two crack tips. The two cracks firstly travel

towards their nearest hole, then advance horizontally until they are close to each other at

the centre of the plate. Finally, the two crack tips are each attracted by the hole on their

opposite side of the plate and move towards it. The adaptivity approach controls the

particle arrangements during the crack propagation and increases the number of particles

from 279 up to 3152. The calculated crack growth is compared with previous results from

[256] and good agreement is obtained as given in Figure 4.7. The deformation of the final
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Figure 4.9: Configuration of the cross crack.
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Figure 4.10: Adaptive results for the cross crack with the initial length: (a) error estima-
tion; (b) normalised KI for tip A.

propagation step is shown in Figure 4.8. It is notable that non-uniform background cells

are used around the two holes, indicating that the adaptivity process can work well with

non-uniformly distributed particles.

4.4.2 Cross crack

In the second example, the deformation of a square plate with a cross crack loaded by

biaxial tensile loading is studied. The configuration is given in Figure 4.9 where w =

20mm, w/h = 1 and a/w = 0.1. The biaxial tensile traction is set with σ = 100MPa
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Figure 4.11: Adaptive particle arrangements for the cross crack during the crack propa-
gation: (a) initial nodes; (b) step 1; (c) step 3; (d) step 5; (e) step 7; (f) step 9.

Figure 4.12: Final deformation enlarged by 50 times of the cross crack problem at the
final propagation step.

and the plate is fixed by locking the movement of the left bottom corner. Due to the

symmetry of this problem, SIFs are nearly the same at all four crack tips and are under

mode I fracture, while mode II SIFs at four tips are zero.

The global errors during adaptive steps for the initial crack length are given in Figure
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Figure 4.13: SIF KI at the tip A for the cross crack with different lengths.

4.10 (a), with an initial particle arrangement of Figure 4.11 (a). This shows that the

adaptivity approach has a higher convergence rate than that obtained with uniform re-

finement, and a converged KI for the right crack tip (marked as the tip A) can be achieved

as in Figure 4.10 (b). Adaptive particle arrangements during the crack propagation can

be seen in Figure 4.11, where four “masses” of particles travel with the crack tips as in the

previous example, and the number of nodes ascends from 112 to 1851. The deformation of

the problem at the final propagation step is shown in Figure 4.12, where similar particle

arrangements can be seen at four cracks because of the symmetry. Results of Mode I

SIF at the tip A for different crack lengths are given in Figure 4.13, which indicates good

agreement with results from Daux et al. [155].

4.4.3 Star-shaped crack

The star-shaped crack is the third example under consideration, which is more complex

than the second example with an increase of crack tips from 4 to 6. The geometries

are w = 20mm and w/h = 1 as in Figure 4.14. The crack geometry consists of length

a/w = 0.1 at the beginning and propagates to a/w = 0.9 after eight steps. The plate is

under a biaxial tensile loading σ = 100MPa, and similar boundary conditions to the second

example are applied. For this problem, two cases are considered: firstly the six crack

branches propagate straightly without changing their direction to make a comparison with

the results from Daux et al. [155], where SIFs of this problem with different crack lengths
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Figure 4.14: Configuration of the star-shaped crack.

Figure 4.15: Adaptive steps for star-shaped crack propagation without angular change:
(a) initial particles; (b) step 1; (c) step 3; (d) step 5; (e) step 7; (f) step 9.

are calculated and there is no propagation; then in the second analysis this constraint

is removed and it is used to show that with propagation very little deviation from its

original direction can occur anyway.

This problem is discretised with the initial particles in Figure 4.15 (a). In the first case,

adaptive particle arrangements can be seen in Figure 4.15, where six groups of particles

are generated around six crack tips and move with these crack tips during the propagation.

The maximum number of particles in this calculation is 2158, which starts from 112 in the
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Figure 4.16: Validation of SIFs for the star-shaped crack: (a) KI at crack tip A; (b) KI

at crack tip B; (c) KII at crack tip B.
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Figure 4.17: Adaptive steps for star-shaped crack propagation with angular change: (a)
step 1; (b) step 3; (c) step 5; (d) step 7; (e) step 9; (f) step 10.
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(a) (b) (c)

(d) (e) (f)

Figure 4.18: Von Mises stress distribution for star-shaped crack propagation steps with
angular change: (a) step 1; (b) step 3; (c) step 5; (d) step 7; (e) step 9; (f) step 10.
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Figure 4.19: Comparison of crack path between with and without cracking angle change
for the star-shaped crack.
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initial particle arrangement. Particle arrangements are symmetric at the two horizontal

crack tips and different at the others, although the difference is small. SIFs at the crack

tips A and B are given in Figure 4.16 which match well with the results from Daux et al.

[155].

Secondly, the propagating direction is not locked and crack paths are not kept straight

during crack propagation steps. Adaptive particle arrangements for the propagation pro-

cess are presented in Figure 4.17, which shows that particle distributions are not symmet-

ric any more at the two horizontal crack tips, and the maximum particle number becomes

2606. This asymmetry comes from the imposition of boundary conditions where the left

bottom corner of the plate is fixed. The Von Mises distributions during crack propagation

steps are presented in Figure 4.18, where the Von Mises stress is normalised by Equation

(3.40) and high stress gradients can be found around six crack tips. The crack growths

of both cases are compared in Figure 4.19, where it can be seen that the propagating

direction of all crack branches are constant at the majority of steps and change a little at

the end. This can be explained from the SIFs of all crack tips in Figure 4.16, where KII

at crack tips A and B are much lower than KI, and all crack branches are dominated by

the mode I type fracture so the changes of crack directions are small.

4.4.4 Tree-shaped crack

The final problem is the most complicated where a tree-shaped crack with up to ten crack

tips is included. The configuration of the problem is in Figure 4.20 where w = 6mm,

h = w, a = b = 2c = 1mm, α = 45◦ and β = 90◦, the same as in [258]. A biaxial

tensile loading σ = 100MPa is applied at four edges of the plate, and an initial particle

arrangement is set as in Figure 4.21 (a).

Adaptive particle arrangements are shown in Figures 4.21 (b-d), and the number of

particles goes up to 848 from 262. Fine particles are generated around the four crack tips

on the left and right sides while the requirement of refinements for the other six is low.

Calculating the SIFs at four crack tips A, B, C and D marked in Figure 4.20, converged

results can be obtained after adaptive steps, Figure 4.22, where the superscripts indicate

the crack tip, and the results are consistent with the results from Ma et al. [258], although

minor differences for KII at crack tip A are found. In this calculation, KII at crack tip

A is nearly zero and its deformation is dominated by the mode I fracture. Both modes I
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Figure 4.20: Configuration of the tree-shaped crack in a square plate.

Figure 4.21: Adaptive steps for the tree-shaped crack problem: (a) initial particles; (b)
step 2; (c) step 4; (d) step 6.

and II SIFs at crack tips B and C are much smaller than at crack tips A and D, which

explains why the refinement level at crack tips B and C is much lower than at crack tips

A and D. The deformation of this problem is presented in Figure 4.23, from which it can

be seen that some cracks are opening and some are closing. There are some non-physical

results for the closing cracks as shown in Figure 4.23 (b), because the current algorithm
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Figure 4.22: Validation of calculated SIFs for the tree-shaped crack problem: (a) KA
I ; (b)

KA
II (c) KB

I ; (d) KB
II ; (e) KC

I ; (f) KC
II ; (g) KD

I ; (h) KD
II .
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Figure 4.23: Displacement enlarged by 50 times for the tree-shaped crack problem: (a)
displacement; (b) enlarged view.

Figure 4.24: Configuration of tree-shaped crack in a double cantilever beam.

does not cover contacts between two surfaces.

It is a more challenging problem for the tree-shaped crack to start from the edge, e.g. in

a double cantilever beam as in Figure 4.24. The configuration of the beam is w = 24mm

and w/h = 3, and the crack pattern is kept the same as above. The beam is fixed at the

right side and is loaded under a pair of tractions σ = 100MPa at the left edge.

Adaptive particle arrangements are presented in Figure 4.25, where fine particles are

generated automatically around all ten crack tips while no refinement occurs on the right

part of the beam. The final number of particles increases to 3359 from 283, which is

about 11 times larger than the initial number. The final deformation is illustrated in

Figure 4.26, including an enlarged view of the rectangular zone. A clear crack opening
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Figure 4.25: Adaptive steps for tree-shaped crack in a double cantilever beam: (a) initial
particles; (b) step 2; (c) step 4; (d) step 6.

Figure 4.26: Crack opening for the tree-shaped crack in a double cantilever beam enlarged
by 20 times: (a) overall deformation; (b) partial enlarged view.

can be seen at the three crack branches on the right; while for the two branched cracks,

only one part is opened; and for two single cracks small crack openings are detected.

Extracting the SIFs at crack tips A, B, C and D, converged values are obtained as given

in Figure 4.27. It can be seen that KA
I and KD

I are almost three times larger that KB
I ,

while KC
I is much smaller, which explains why the crack opening is large at crack tips A

and D and why the deformation at crack tip C is negligible. KA
II is nearly zero, and KB

II

and KD
II are much lower than KB

I and KD
I , indicating the deformations at crack tips A,
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Figure 4.27: Calculated SIFs for the tree-shaped crack in a double cantilever beam: (a)
KA

I ; (b) KA
II (c) KB

I ; (d) KB
II ; (e) KC

I ; (f) KC
II ; (g) KD

I ; (h) KD
II
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B and D are dominated by the mode I type fracture. No reference has been found till

now to the author’s knowledge so the accuracy regarding the final SIFs cannot be fully

assessed, however this example has shown the ability of the modified CPM to handle a

complex crack problem.

It is notable that the proposed methodology is able to handle the simulation of crack

coalescence, e.g. one crack propagating into and splitting another, by adding one particle

at the intersection position and subsequently splitting it according to the crack patterns.

But in this type of situation, there will be issues in the calculation of the J-integral when

two crack tips are in close proximity, which is not covered in this chapter.

4.5 Summary

A multi-split particle method is proposed for the simulation of complex cracks and mul-

tiple cracks in 2D. In this methodology, discontinuities at cracks are achieved by the

modification of the influence domain of particles, and the displacement approximation

involves no enrichment function and therefore is kept simple. The cracking particle at a

crack branch point is multiply split into several subparticles, and the influence domain

of this particle is also divided. The crack opening at the crack branch point is obtained

by the relative displacements of these subparticles. Crack geometries are described by

a set of crack segments rather than using level set functions, so the computational cost

for modelling multiple cracks is controlled. An adaptivity strategy developed in Section

3.3 is introduced here to amend the density of particle distribution, by which the cal-

culation efficiency is improved. Finally, several examples of multiple cracks including

two independent cracks, a cross crack, a star-shaped crack and a tree-shaped crack are

used to demonstrate the ability of the proposed methodology, where good agreement with

previous results has been obtained.



Chapter 5

Configurational-force-driven cracking

particle method for 2D problems

5.1 Introduction

In Chapters 3 and 4, crack propagation was determined by the maximum circumferential

stress criterion, however there are other options developed for controlling the behaviour

of crack growth. This chapter comprises a discussion and study of different criteria for

crack propagation in the numerical modelling of fracture. The problem of crack initiation

is not included, in that a new crack induces a severe topological change rarely supported

by current numerical methods.

Accurate determination of the mechanism of crack propagation in mixed-mode sit-

uations is of great importance in fracture mechanics, since the correctness of a crack

propagation criterion is directly linked to the accuracy of crack growth prediction. A

crack propagation criterion must provide answers to the following two questions: whether

a crack is going to propagate and in which direction? These two questions are checked

at each time of load step for a successive crack propagation process. Some crack prop-

agation criteria are based on the local stress and displacement field at the crack tip,

e.g. the maximum circumferential stress criterion [259] and the minimum strain energy

density criterion [260], while others follow a global approach accounting for the energy

distribution throughout the cracked part, e.g. the maximum strain energy release rate

criterion [261]. In addition, the concept of the configurational force (CF) has been used

– 108 –
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Figure 5.1: Local polar coordinate system at a crack tip.

in modelling the behaviour of brittle fracture [262–264], which is an alternative to more

traditional computational fracture mechanics based on stress intensity factors and the

J-integral. The CF is a vectorial force-like quantity conjugated to the topological change

due to crack propagation and is consistent with the crack propagating direction. This

approach requires no decomposition of the stress and displacement about the crack tip

for mixed-mode fracture, which is needed in many other methods using the J-integral

[179, 241]. The CF approach has been applied to the finite element method (FEM) to

solve crack problems including brittle cracks [263, 264], elastoplasticity [265], 3D cracks

[266] and a review of recent advances for the CF approach in elasto-plastic fracture can be

found in [267], although the application to meshless methods to date is limited. Here, a

configurational-force-driven cracking particle method (CFCPM) is developed for fracture

modelling in 2D, and a comparison with the crack modelling using a criterion based on

the conventional J-integral is carried out.

5.2 Crack propagation criteria

Micro failure and inclusions induce stress concentrations in materials under external load-

ing which can develop into large cracks and finally fractures. The angular change θ in

Figure 5.1 during a crack propagation process is determined by the local stress and dis-

placement field at the vicinity of the crack tip, and some crack propagation criteria have

been developed using measures of these quantities, e.g. the maximum circumferential

stress criterion, the minimum strain energy density criterion and the maximum strain

energy release rate criterion. In all three criteria, there is a limit for the angular change of

crack direction, θ ∈ [−70.54◦, 70.54◦] as in [245], where angular change beyond this range

is not allowed. These three criteria are now introduced in more detail.
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5.2.1 The maximum circumferential stress criterion

In the maximum circumferential stress criterion (MCSC) [259], a crack propagates when

the circumferential stress exceeds the critical stress (defined as the stress when a material

fails under external loadings), and the propagation direction is towards the location of

maximum circumferential stress. This approach is however mesh-dependent when ap-

plied to the FEM, since the number of elements connected to the crack tip affects the

approximation of stresses and displacements and therefore has a knock-on influence on

the crack growth predicted. An alternative uses the relationship between the circumfer-

ential stress and stress intensity factors as described in Section 3.4.4, so that the stress

and displacement fields of the local zone around the crack tip are used with the J-integral,

which makes the technique mesh-independent. Although the implementation of the latter

is generally more complicated, it can provide more accurate results in that this criterion

is based on the stresses away from the crack tip.

5.2.2 The minimum strain energy density criterion

The minimum strain energy density criterion (MSEDC) [260] assumes that high values

of strain energy (W ) prevent a crack from propagating and the crack grows towards the

direction where this energy is minimum. The so-called strain energy density factor is

defined as S = rdW/dV where V is the volume of strain energy and r is the distance to

the crack tip. W is singular at the crack tip varying with 1/r, so S remains bounded. In

this approach, a crack propagates when the minimum S falls below a designated critical

value Scr. An analytical formulation for S representing the intensity of the local energy

field from [245] is

S = r
(1 + ν

2E

)
[σ2

11 + σ2
22 + σ2

33 −
ν

1 + ν
(σ11 + σ22 + σ33)2 + 2σ2

12]. (5.1)

The angular change of the crack direction is obtained by

∂S

∂θ
= 0,

∂2S

∂2θ
≥ 0. (5.2)

This criterion is not considered a global approach since the calculation of the strain energy

density is based on local stresses. The computational accuracy for S in the FEM is linked
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to the number of elements around the crack tip, as mentioned in [245].

5.2.3 The maximum strain energy release rate criterion

The strain energy release rate G is defined in Section 1.4.1, and represents the energy

required to create new crack surfaces by one unit. The maximum strain energy release

rate criterion (MSERRC) assumes that, among all situations of virtual and kinematically

admissible crack increments, the real crack propagation is that with the maximum strain

energy release rate. The angular change of crack propagation is obtained by

∂G

∂θ
= 0,

∂2G

∂2θ
≥ 0. (5.3)

One way to calculate G is through the J-integral [240] as in Equation (3.22). Since the

J-integral is path-independent, accurate results can be obtained using an integration over

a path far from the crack tip, then this criterion becomes a global approach.

A comparison between the three criteria for fracture modelling is given by Bouchard

et al. [245] using the FEM. It is shown that the MSEDC is less accurate than the other

two criteria which are almost equivalent in terms of accuracy and efficiency. The MCSC

is the easiest to implement in the FEM but requires a fine mesh around the crack tip.

In contrast the MSERRC is the most complicated, however it provides good results and

the accuracy becomes mesh-independent. Comparison between these three criteria in

meshless methods is limited, which requires more attention by other researchers.

5.3 Configurational force

Apart from the three crack propagation criteria mentioned above, the configurational

force (CF) approach is another option where the crack propagation is determined by the

configurational force at the crack tip. Compared with the J-integral in classical fracture

mechanics in Section 3.4.1, the CF approach requires no projection of stress terms from

integration points to the integration line/surface. The advantage of the CF approach is

no requirement to decompose the stress and displacement fields for mixed-mode crack

problems, which is however required in the interaction integral approach described in

Section 3.4.3.
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5.3.1 Theoretical background to the configuration force

The classical theory of elasticity had issues with the concept of forces acting on a sin-

gularity (crack or concave corner) until the development of the CF theory by Eshelby

[268]. The CF is defined as the negative gradient of the total potential energy with re-

spect to the position of a singularity and provides a useful description of energy changes

in solids with singularities undergoing deformation. It is a fictitious force and is distinct

from the normal surface and body forces acting on a material. Similar to the equilibrium

equations in classical solid mechanics, as in Equation (2.16), the Eshelby stress Σ is also

self-equilibrating in the absence of body forces as

∇ ·Σ = 0 in Ω, (5.4)

and the Eshelby stress tensor Σ is defined as

Σ = WI −HT · [σ], (5.5)

where I is an identity matrix, H is the displacement gradient tensor, the components

of which are Hij = ∂ui/∂xj, i, j ∈ {1, 2} for 2D and W is the strain energy, as defined

in Equation (3.22). [σ] is the Cauchy stress tensor as in Equation (2.16). For a simply

connected domain with boundary Γ, the resultant CF (material force) for the Eshelby

stress along Γ must vanish considering Equation (5.4), which yields

∮
Γ

Σ · n dΓ = 0, (5.6)

where n is the outward normal to Γ and 0 is a zero vector. When a crack is considered

as in Figure 5.2, the material force Fmat is not balanced,

Fmat =

∫
Cs

Σ · n dΓ 6= 0, (5.7)

where CS is a contour from the lower crack surface to the upper crack surface as shown

in Figure 5.2. The CF g for a crack is defined by shrinking the contour to infinitesimal
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Figure 5.2: Integration path around the crack tip.

at the crack tip, as in [263, 264]

g = lim
|Cs|→0

∫
Cs

Σ · n dΓ, (5.8)

The resultant vector direction of g represents the crack propagation direction and a crack

propagates when ‖g‖ (the L2 norm of g) exceeds gc, which is defined as the critical energy

release per unit area of the crack.

5.3.2 Application to the CPM

Here the CF is now introduced to the CPM for crack modelling. Since it is difficult to

guarantee high accuracy for the approximation around the crack tip where there are high

gradients of stresses, Equation (5.8) is amended to integrate over a contour away from

the crack tip, as

∫
Cs

Σ · ndΓ =

∮
C

Σ · ndΓ−
∫
Cr2

Σ · ndΓ−
∫
Cr1

Σ · ndΓ, (5.9)

where C = Cs + Cr1 + Cr2, which is a closed contour, and Cr2 = Cr2− + Cr2+ as shown

in Figure 5.2. The first term on the right hand side (r.h.s.) of Equation (5.9) becomes

zero using Equation (5.6). Neglecting the integral over crack surfaces (as will be discussed

later), the configurational force becomes

g = −
∫
Cr1

Σ · ndΓ. (5.10)
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Alternatively, the CF can be calculated through a domain integration. The first step is

to build an integral over a closed contour and Equation (5.8) is modified to

∫
Cs

Σ · ndΓ =

∮
C

Σ · n · q(x)dΓ−
∫
Cr2

Σ · n · q(x)dΓ, (5.11)

where q(x) is a weight function defined as

q(x) =


1 on Cs

0 on Cr1

arbitrary within Ω ,

(5.12)

The first term on the r.h.s. of Equation (5.11) is transferred to a domain integration

using Green’s theorem (2D version of divergence theorem), as

∮
C

Σ · n · q(x)dΓ = −
∮
C

Σ ·m · q(x)dΓ = −
∫

Ω

∇
(
Σ · q(x)

)
dΩ, (5.13)

where m is the outward normal to Cr1 and Ω is the domain inside the contour C. When

limCs → 0 and Cr2 approaches the crack surfaces, Ω can be considered as the domain

inside Cr1. Substituting Equation (5.4) into Equation (5.13) yields

−
∫

Ω

∇
(
Σ · q(x)

)
dΩ = −

∫
Ω

Σ · ∇q(x)dΩ. (5.14)

The second term on the r.h.s. of Equation (5.11) is not involved in the calculation of the

CF by Miehe et al. [263, 264], while it is claimed that this term cannot be neglected in

[262]. A discussion on this issue, i.e. the contribution from the crack surface integration

to the CF, will be included later. Without considering the integration term over crack

surfaces, the final expression for the CF becomes

g = −
∫

Ω

Σ · ∇q(x)dΩ. (5.15)

It is notable that the integration in Equation (5.15) is path-independent so that it can

be calculated using the stress and displacement fields away from the crack tip. After a

solution of stresses and displacements is obtained by the CPM in this chapter, Equation
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(5.15) is used through a post-processing procedure and calculated using Gaussian integra-

tion over a square domain Ω centred at the crack tip, and then the resulting CF is used in

the crack propagation process. The r.h.s. of Equation (5.15) becomes the same form as

Miehe’s equation [263, 264] for the CF approach in the FEM, when the integration domain

Ω is calculated over the elements connected to the crack tip and the weight function q(x)

is replaced by the shape functions of the crack tip in these elements, i.e. q(x) = N(x).

5.3.3 Relationship with the J-integral

The J-integral is the projection of the CF in the direction of the crack extension e, as

J = e · g = − lim
|Cs|→0

∫
Cs

e ·Σ · ndΓ. (5.16)

Considering the relationship between the J-integral and the stress intensity factors (SIFs)

KI and KII in Equation (3.23), the calculated CF should satisfy

g1 = J = α(KI
2 +KII

2), (5.17a)

g2 = −2αKIKII, (5.17b)

as mentioned in [269] where g1 is the first component of g (and g2 is the second component)

and α is a constant as in Equation (3.24).

5.4 The configurational force vs the J-integral

A comparison between the CF approach and the MCSC using the J-integral for crack

modelling is now demonstrated with four crack problems in 2D. All problems are per-

formed with plane stress assumptions and linear elastic materials unless otherwise stated.

A square domain centred at the crack tip with dimensions of 2c× 2c is used to evaluate

Equation (5.15) as shown in Figure 3.8, and c is defined according to crack length a, e.g.

c = 0.01a. The weight function of q(x) is defined as

q(x) = (1− x

c
)(1− y

c
), (5.18)

where x and y are local coordinates at the crack tip, with the x-axis along the crack and

the y-axis normal to the crack. This domain is divided into 4 × 4 background cells and
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10 × 10 Gauss points are used in each cell. The evaluation of the J-integral is achieved

via the interaction integral as in Section 3.4.3. For ease of comparison, the CF and the

SIFs are normalised as

J ′ =
J

ασ2πa
, g′ =

g

ασ2πa
, (5.19a)

K ′I =
KI

σ
√
πa
, K ′II =

KII

σ
√
πa
, (5.19b)

where σ is the external loading and a is the initial crack length.

5.4.1 Half central crack

The half central crack from Section 3.6.1 is used here again, where two situations, a pure

mode I and a mixed mode fracture, are considered. The former is obtained by using the

stresses in the case of K ′I = 1, K ′II = 0 as the external loading, while in the latter K ′I = 1,

K ′II = 1. These two situations are included to check the contribution of integration from

crack surfaces to the CF, considering that the deformation of the pure mode I fracture

is symmetric and the mixed-mode fracture is not. All geometries are kept the same as

in Section 3.6.1, and the analytical stress and displacement fields in Equation (3.36) are

used. The relationship between the CF and SIFs is given in Equation (5.17). The CF

is calculated either by line integration as in Equation (5.10) or domain integration as

in Equation (5.15), while SIFs are calculated through the interaction integration. The

contribution from crack surfaces to the CF is obtained using the second term on the r.h.s.

of Equation (5.11) when the domain integration is used. Various sizes of contours and

domains are used to calculate the integrations, e.g. c/a = 0.001, 0.01, 0.1, 0.5. The error

target for the adaptivity approach is ηt = 0.02.

Table 5.1: Mode I fracture for the half central crack (exact values K ′I = 1, K ′II = 0)

Configurational force
J-integral

line integration domain integration crack surface part

c/a g′1 g′2 g′1 g′2 g′1 g′2 K ′I K ′II J ′

0.5 1.0038 0.0000 1.0017 0.0000 0.0000 0.0000 1.0011 0.0000 1.0011

0.1 0.9992 0.0000 1.0040 0.0000 0.0000 0.0000 1.0026 0.0000 1.0026

0.01 1.0025 0.0000 0.9812 0.0000 0.0000 0.0000 0.9901 0.0000 0.9901

0.001 0.9837 0.0000 0.8496 0.0000 0.0000 0.0000 0.9091 0.0000 0.9091
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Table 5.2: Mixed mode fracture for the half central crack (exact values K ′I = 1, K ′II = 1)

Configurational force
J-integral

line integration domain integration crack surface part

c/a g′1 g′2 g′1 g′2 g′1 g′2 K ′I K ′II J ′

0.5 1.9940 -1.9963 1.9994 -2.0003 0.0000 -0.0178 0.9999 1.0001 2.0001

0.1 2.0033 -2.0033 1.9987 -2.0019 0.0000 -0.0211 0.9999 0.9999 1.9995

0.01 2.0076 -2.0026 1.9910 -1.9999 0.0000 -0.1710 0.9973 0.9986 1.9918

0.001 2.0043 -1.9873 1.9883 -1.9927 0.0000 0.1256 0.9947 0.9994 1.9882

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.3: Adaptive particle arrangements for the half central crack problem: (a) mode
I; (b) mixed mode.

Adaptive particle arrangements are shown in Figure 5.3, where particle refinements

are symmetric and asymmetric in Figure 5.3 (a) and (b) respectively. Results for the two

situations are given in Tables 5.1 and 5.2, where all numerical results match the exact

values obtained by Equation (3.36). It is also clear that the integration of both the CF

and the J-integral are path-independent. The integration over a larger domain provides

better accuracy, and the domain integration generally outweighs the line integration.

From Table 5.1, the contribution from crack surfaces to the CF is zero, while for the

second case it is not zero but much smaller than the result from the domain integration

when larger domains are used. Using small domains c/a = 0.01 and 0.001, the results of
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(a) (b)

Figure 5.4: Stresses along the half central crack: (a) mode I; (b) mixed mode.
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(a) (b) (c)

Figure 5.5: Single edge crack in a slender plate under tensile loading: (a) configuration;
(b) case 1; (c) case 2.

the integration over crack surfaces appear unreasonable, and are caused by oscillations

around the crack tip (for example, see the stresses along the crack surfaces in Figure 5.4).

Even with very fine particle distributions around the crack tip, the accuracy for stresses

within r/a < 10−4 cannot be ensured, which is due to the singularity at the crack tip

in linear elastic fracture mechanics, although in the range r/a > 10−4 good results are

achieved.

5.4.2 Single edge crack under tensile loading

The second example is a single edge crack under tensile loading (Figure 5.5), and two cases

including uniformly and non-uniformly distributed particles are used as shown in Figures
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.6: Adaptive particle arrangements for the edge crack under uniaxial tension
during propagation steps=3, 6, 9, 12, 14 with different initial particle distributions: (a-e)
case 1, (f-j) case 2.

5.5 (b-c), to study the effect of particle distribution on the results. The configuration is

a = 0.1m, b = 5a, h = 10a, and the tensile loading is σ = 10MPa acting on the upper and

lower edges of the plate. The plate is under plane strain condition with shear modulus

µ = 80GPa and Poisson’s ratio ν = 0.3, and is fixed by setting the average displacements

and rotations to zero as in [270]. The analytical mode I SIF for the problem from Tada

[248] is

KI/K0 = 0.265(1− a/b)4 +
0.857 + 0.265a/b

(1− a/b)3/2
, (5.20)
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Figure 5.7: Deviations for the edge crack propagation under uniaxial tension modelled by
the configurational force: (a) angle; (b) vertical location.
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Figure 5.8: Validation of results for the edge crack under uniaxial tension during crack
propagation steps: (a) g′1; (b) K ′I.

where K0 = σ
√
πa. The error target for the adaptivity approach is ηt = 0.02.

A “mass” of particles is generated around the crack tip and travels with the crack

propagation, as shown in Figures 5.6. Due to the asymmetry of initial particle distribution

in case 2, the resulting particle refinements are asymmetric as in Figures 5.6 (f-j) and some

deviations of the crack growth are found in Figure 5.7, although there is no deviation in

the results of case 1. Calculating the mode I SIF for these crack propagation steps, results

from both cases agree well with the analytical values from Equation (5.20) as given in
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Figure 5.9: Single edge crack under shear loading: (a) configuration; (b) initial particle
distribution.

Figure 5.8, where the relationship between g′1 and J ′ in Equation (5.17) is validated.

5.4.3 Single edge crack under shear

The next example is a square plate with an edge crack, as shown in Figure 5.9, where the

crack growths predicted by the CF approach and the MCSC combined with the J-integral

are compared. The dimensions of the plate are l = 1m and a = 0.5l. The plate has a

shear modulus µ = 8.0GPa and a Poisson’s ratio ν = 0.3. The shear loading is applied

by horizontally shifting the upper edge of the plate towards the left side with u = 0.02l.

The error target for the adaptivity approach is ηt = 0.04. A geometric imperfection is

applied by slight deviation of particles around the crack tip, so that the crack propagation

is downwards.

Adaptive results for the crack propagation steps are depicted in Figure 5.10. The

crack changes its direction smoothly in Figures 5.10 (a-b) and then propagates linearly

towards the lower left corner, while there is a rapid change of the crack path in Figures

5.10 (e-f) and the refinement level at this kinking position in Figure 5.10 (h) is much

higher than in Figure 5.10 (d). The CF approach cannot model a sudden change of the

crack direction but provides a smooth transition, while the MCSC can achieve a large

kink of the crack path, similar to the results in Miehe et al. [263]. Comparing the crack

paths obtained by the two approaches in Figure 5.11, the main difference occurs a few

crack propagation steps at the beginning. For the initial crack, the deformation is pure

mode II and KI = 0 and KII 6= 0. Using the MCSC and Equation (3.32) the crack

propagation angle is θ = 70.5◦, while the CF is g1 6= 0 and g2 = 0 following Equation
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10: Adaptive particle arrangements for the edge crack under shear loading during
crack propagation steps: (a-d) steps=5, 10 ,15, 19 by configuration force; (e-h) steps=3,
6, 9, 12 by maximum circumferential stress criterion
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Figure 5.11: A comparison of crack growth predictions under shear loading between by
configurational force and by the maximum circumferential stress criterion.

(5.17) which leads to horizontal crack propagation. The initial problem is antisymmetric

and it is physically reasonable for the CF method to have horizontal crack growth for the

beginning steps, although these results indicate that the CF method may not be suitable

for modelling nonsmooth crack kinking. The final slope of two crack growths are not far
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Figure 5.12: Two cracks in a plate with two holes.

Figure 5.13: Predicted crack propagation of two cracks driven by the configurational force
and the maximum circumferential stress criterion.

from the experimental results in Erdogan and Sih [259], where a kinking angle about 70◦

was obtained (tan 70◦ ≈ 2.7).

5.4.4 Two cracks in a plate with two holes

In the final example, the CF approach combined with the CPM is applied to model

the propagation of two cracks, and the problem in Section 4.4.1 is used again. The

configuration of this problem is not changed (L = 20, h = 10, a = 1, h0 = 2.85, R = 2 and

d = 3 all with dimensions in mm. Material properties are Young’s modulus E = 200GPa

and Poisson’s ratio ν = 0.3.). The bottom of the plate is fixed, and the top edge is

moved upwards by 0.02h. The error target for the adaptivity approach is ηt = 0.06. A

domain integration with size c = 0.1mm is used to calculate the configurational force.

From Figure 5.13, the simulated crack path agrees well with both results from the

polygon scaled boundary finite element method [256] and results obtained by the CPM
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Figure 5.14: Energy release rate during crack propagation steps for the two-crack problem.

with the MCSC [227]. Equations (5.19) are used to normalise g1 and J using σ ≈ 0.02E.

Comparing g1 and J during crack propagation steps, results from the configurational force

and the J-integral show the same trend as given in Figure 5.14. The major differences

occur in steps 12-23, where crack paths by the two methods don’t match very well but

the difference is small.

5.5 Summary

This chapter includes a study of different crack propagation criteria and a methodology of

the CFCPM which can take the advantages of both the CF approach and the CPM. It is

shown that the MCSC can maintain both efficiency and accuracy and therefore surpasses

the MSEDC and the MSERRC. The CF approach is compared with the MCSC through

crack modelling based on the CPM. The advantages of the CF approach consist mainly

of no decomposition of stresses and displacements with respect to the crack path for

mixed-mode fracture problems, so it is easier to implement and faster than the MCSC.

The calculation of the CF is via either a contour integration or a domain integration, and

the results show that both methods are path-independent, where the domain integration

is generally more accurate than the contour integration. The contribution from crack

surfaces to the CF is much smaller than the contribution from domain integration and is
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affected by the error in the approximation around the crack tip. This error still exists even

with a very fine particle distribution. For crack propagation modelling, the CF approach

usually leads to smooth crack growth, while the MCSC allows a sudden change of crack

direction. Both the CF approach and the MCSC can provide a good prediction of crack

propagation as shown in the example with two cracks in Section 5.4.4.



Chapter 6

A framework for 3D cracks with the

CPM

6.1 Introduction

A crack in 3D usually has an arbitrary shape, a complex geometry and therefore brings

many difficulties to current numerical methods for fracture modelling. The standard

finite element method has been tried to use element faces to model 3D crack surfaces,

and the remeshing work is found to be more burdensome than aligning element edges

to 2D crack paths [152]. The issue of remeshing is addressed in the extended finite

element method (XFEM) [153, 155] and the group of meshless methods [2, 58], where crack

discontinuities are introduced by either discontinuous enrichment functions or modifying

influence domain of nodes (for meshless methods) so the dependence on elements for crack

modelling is removed. However, both the XFEM and these meshless methods require a

specific approach for describing 3D crack geometries, e.g. through level set functions [161,

180], triangular meshes [251, 271–273] or a hybrid of the two approaches [274]. Triangular

meshes can provide explicit crack descriptions of 3D crack patterns but cannot guarantee

smooth results, while crack modelling by level sets is more accurate, but updating level

set functions is computationally time-consuming for 3D problems [180, 181, 183]. The

numerical manifold method (NMM) [187, 258] is an alternative as described in Section

1.5.4, but its application to 3D cracks still relies on the use of triangular cells [275, 276].

Peridynamics [192] requires no specific algorithm for describing crack geometries (Section

– 126 –
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1.5.5) and the application to 3D cracks is straightforward [277], although much work is

necessary to improve its efficiency and accuracy of crack predictions. The application of

the phase field to 3D cracks is not difficult [170], but the high computational expense for

the evolution of the phase field is still problematic as mentioned in Section 1.5.2. The

cracking particle methods (CPM) has been shown its ability for crack modelling in both

2D and 3D [203, 204, 212, 278], although some early CPMs [204, 213] faced issues of

spurious crack results. A modified CPM has been proposed in Chapter 3 of this thesis

(also in [227]) which allows crack kinks and branches at particles and addresses the issues

of spurious crack results. Here, this approach is extended to 3D crack problems, where a

framework providing explicit crack description is developed.

6.2 Description of 3D crack surfaces

Describing the geometries of 3D cracks is one of the major challenges in computational

fracture mechanics, and in the literature to date is mostly achieved through either tri-

angular meshes [251, 271–273] or level sets [161, 180], where so-called “ghost” nodes are

required for capturing crack geometries in either the XFEM or the EFGM. Here, a new

approach using the modified CPM [227] is proposed, which is related to previous uses of

triangular facets but where crack surfaces are defined by cracking particles and which is

capable of handling both static and propagating cracks.

6.2.1 Issues in the modelling of 3D problems

Moving from 2D to 3D is challenging, because of both an increasing calculation burden

for one more degree of freedom per node and the increased complexity of crack shape.

A contribution to the former arises from the requirement of inverting a larger matrix

for calculating shape functions at every integration point. For instance when a linear

basis function is used, the size of the moment matrix A, required in Equation (2.9) in

the moving least squares process, is 3 × 3 for 2D problems but in 3D becomes 4 × 4, as

mentioned in [2]. For high order bases, this increase in matrix size is more obvious.

Considering the latter source of complexity, cracks in 2D are composed of lines and

crack tips are points, however 3D cracks consist of surfaces, and crack “fronts” are curves,

so it should be no surprise that aspect of the formulation becomes considerably more

complicated, e.g. the visibility criterion. For 2D problems, this criterion involves locating
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Figure 6.1: The visibility criterion: (a) 2D crack; (b) 3D crack

the intersection point E between the straight line connecting two particles C and D and a

crack path AB as shown in Figure 6.1 (a). When E is within the segment AB, particles C

and D are invisible to each other and are not influenced mutually. However, the situation

for 3D cracks is different, as presented in Figure 6.1 (b). For a crack in 3D with a curved

front, the line for checking the visibility is AB shorter than AB′. Particles C and D are

visible in that the intersection E is outside of the line AB.

The adaptivity approach in Section 3.3 for 2D cracks is also modified here to be ap-

plicable to 3D problems. The same error estimator of Equation (3.13) is used, while the

refinement strategy is different where the division of background cells is changed from a

quad-tree structure in 2D [227, 231] to an octree structure in 3D [225]. For instance, a

background cell is divided into eight subparts and 19 new particles are added, a much

larger number than the 5 new particles in 2D.

6.2.2 Cracking particles in 3D

In the original CPM for 3D crack problems [203, 204], each particle is defined with a

discontinuous circular plane in its support and the weight function is modified as shown

in Figure 6.2 (a). Using these circular planes to describe nonplanar 3D crack surfaces can

however give rise to issues of spurious cracking as mentioned in Section 3.2.2. The idea

of the modified CPM in 2D (in Chapter 3) is here extended to 3D and an approach using

nonplanar discontinuous segments is now presented as given in Figures 6.2 (b-d). Crack

surfaces are described through a set of cracking particles as before but fully represented by

a triangular mesh connecting these particles (Figure 6.3), where vertices of these triangular

elements are the cracking particles. The orientations of these discontinuous “segments”

(the triangular facets) are defined according to the locations of the cracking particles:
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Figure 6.2: The support of cracking particles in 3D: (a) the original CPM; (b-d) proposed
CPM with different segment numbers: 2, 3 and 4.

particle a
particle b

particle c

particle d

Figure 6.3: Crack surfaces presented by triangular meshes in a cube problem domain.

particle a located within a triangular element has a support as in Figure 6.2 (a); particle

b on an edge in the mesh is defined with a support in Figure 6.2 (b); supports of particles

c and d on the vertices are depicted in Figure 6.2 (c-d). The information of all triangular

facets connected to one cracking particle is recorded in a matrix. The maximum number

of facets which can be connected to any particle is limited and set to eight for the sake of

simplicity. Those particles in black in Figure 6.3 belong to the crack front particles and

are not themselves split because the crack front has influence on both sides of the crack.

For a cracking particle near to the crack front, its influence domain is fully truncated,

although the crack does not necessarily cross the entire influence domain. This is because

the cracking particle does not affect the other side of the crack, when the visibility criterion

is used to check the connectivity between particles. A pair of cracking particles sharing

the same location cannot be distinguished from each other directly, and this is addressed

by giving these cracking particles tiny shifts (e.g. 0.001 of their support sizes) to the two

sides of the crack and then applying the standard algorithm for the visibility criterion.
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This modification is only applied for checking the connectivity between particles, while the

original locations of cracking particles are used to calculate shape functions. It is notable

that the description of crack surfaces can be obtained through other shapes of meshes,

especially for cracks with simple geometries. For instance, a circular cell (the initial crack

itself) can be used to represent the penny-shaped crack and the crack propagation can be

described by a triangular mesh, as will be shown later.

For simplicity, only linear problems with a single crack in 3D are considered here, al-

though non-linear fracture problems with crack branching and crack coalescence have been

studied by the CPM in [202–204]. The proposed CPM can cover problems of branched

cracks [279], but crack branching itself, as a feature of dynamic crack propagation, is not

contained in this implementation which uses an implicit quasi-static code. Whether a

crack branches and how many branches generated are subject to the physics of the prob-

lem and are not method dependent, and an additional criterion is required to model this

phenomenon. The extension of the proposed CPM to dynamic fracture will be included

in future research work.

6.3 Crack propagation

Crack propagation in 3D is comprised of two steps, advancing the crack front and gen-

erating new crack surfaces. In the proposed method, the position of new crack front is

obtained by giving the particles on the old crack front an increment following the max-

imum circumferential stress criterion, as in Section 5.2.1, and new crack surfaces are

created by connecting the two groups of particles on the old and new crack fronts with

triangular facets.

6.3.1 Calculation of SIFs in 3D

Similar to the situation in 2D crack propagation, stress intensity factors (SIFs) at crack

fronts are used to determine the orientation of the propagation increment instead of

directly using the stresses at the crack front. After a solution for the governing equations

is obtained, SIFs are extracted via either the J-integral [240] over a contour path, or the

interaction integral [243] over a domain in 2D or 3D. For the former in 3D, the SIFs of

three modes are decomposed by using symmetric and antisymmetric stresses specific to the

crack surface as in [180, 280], but extra terms for the energy contribution from the normal
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Figure 6.4: A volume for the interaction integration at a crack front particle.

direction of the contour plane are included, which contain the derivatives of stresses [281].

These derivative terms can be avoided by using a domain integration instead, and the

interaction integral is used to calculate SIFs in this chapter. The interaction integral in

3D at one crack front particle is evaluated as

I =
1

lc

∫
V

(σaux
ij uj,1 + σiju

aux
j,1 − σaux

jk εjkδ1i)q,i dV, i, j, k ∈ {1, 2, 3} , (6.1)

and it has a relationship with SIFs as

I = 2
(1− ν2)

E
(KIK

aux
I +KIIK

aux
II ) + µKIIIK

aux
III , (6.2)

where q is a weight function e.g. q = (1 − |x|
c

)(1 − |y|
c

)(1 − |z|
lc

), c and lc are sizes of the

volume as in Figure 6.4. The superscript “aux” indicates the auxiliary state, and the

auxiliary field is predefined as in Appendix C and is used to calculate the SIFs of three

modes. For instance, if Kaux
I = 1, Kaux

II = 0 and Kaux
III = 0 then I = 2 (1−ν2)

E
KI. This

integration is evaluated under a local coordinate system originated at the crack front

particle as in Figure 6.4. Although a curvilinear coordinate system was applied in [282]

for 3D cracks with curved and non-planar surfaces, the integration here is evaluated over

a cube with a Cartesian coordinate system for the sake of simplicity, as in many other

references [161, 272, 273, 283].

The local Cartesian coordinate system for a particle on the crack front is built using
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Figure 6.5: Local coordinates at crack fronts in 3D.

the geometries of the triangular facets as shown in Figure 6.5, as

~x =

∑m
i
~li∑m

i li
, ~y =

∑n
i Ai~ni∑n
i Ai

, ~z = ~x× ~y, (6.3)

where ~x and ~z are the extension and tangent vectors of the crack front respectively, and ~y

is the normal of the crack surface. li are the lengths of lines connected to the particle and

~li are the vectors. Ai are the areas of triangular facets connected to the particle and ~ni

are the normals. m and n are the number of lines and triangular elements connected to

the particle respectively. ~x and ~y obtained by Equation (6.3) are mostly not orthogonal,

and in that case the projection of ~y on ~x needs to be removed and ~y is renormalised.

6.3.2 Advancing the crack front

Two parameters are involved to advance the crack front within the current algorithm,

namely increment angle and length. The crack propagating angle can be determined by

one of the three crack propagation criteria, including the maximum circumferential stress

criterion, the minimum strain energy density criterion and the maximum strain energy

release rate criterion as discussed in Section 5.2. Comparisons of all three criteria are given

in [245] for 2D cracks and in [284] for 3D cracks. Here it is assumed that the deformation

of mode III fracture does not affect the propagation angle, for simplicity [273]. The

increment angle θc is determined by the maximum circumferential stress criterion and is

defined with respect to the x axis within the xy plane under the local coordinate system

in Figure 6.5, as in Equation (3.32).

The magnitudes of increments along the crack front are set following the Paris’ law.
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Figure 6.6: Crack propagation steps in 3D with new crack surfaces described by triangular
facets.

Although the Paris’ law is originally used for fatigue fracture as mentioned in Section 1.4.4,

it is used here for 3D cracks under a quasi-static loading, since it provides a relationship

between the crack incremental length and the SIF at the crack front, e.g. examples in

[180, 273]. For mixed-mode fracture in 3D, the SIF K in Equation (1.15) is replaced with

the “equivalent” SIF measuring the magnitude of all SIFs of three modes , as

K2
eq =

(
KI cos3 θc

2
− 3KII cos2 θc

2
sin

θc
2

)2

+
E

(1− ν2)2µ
K2

III. (6.4)

The particle on the crack front with the maximum Keq is defined with a given incremental

length ∆amax, then the other particle i on the crack front is defined with

∆ai = ∆amax

(
∆Keq

∆Kmax
eq

)m
. (6.5)

After both the incremental lengths and angles along the crack front are obtained, the

locations of the new crack front can be easily determined. Looping over all particles on

the crack front, a particle i is given an increment which yields the location of the new

crack front, as

xnew
i = xi + ∆aiQ

−1 · [cos(θc), sin(θc), 0]T, (6.6)

where xi and xnew
i are positions of the crack front before and after crack propagation

respectively, and Q is the rotation matrix from the global coordinates to the local coor-

dinates. If no particle is located at xnew
i , a new particle is created, otherwise the existing
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particle at xnew
i becomes cracked. For crack propagation step 1 to 2 as shown in Figure

6.6, for instance, particles C and D on the new crack front are determined by Equa-

tion (6.6) from particles A and B on the old crack front respectively. The new crack

surface, the quadrangle ACDB, can be nonplanar and is decomposed into three planar

triangular facets, where the particle E is the midpoint of the segment CD. The particle

E is not propagated in the current algorithm for simplicity, although crack propagation

can be executed for the particle E when the crack front segments cannot provide good

approximation of curvature. The strategy here is similar to Duflot (2006) [273], and the

differences exist in division of the supports of particles in the proposed method while these

triangular cells were only used for describing the crack geometries in [273]. The two steps

are duplicated to make successive crack propagation steps, and the adaptivity method

mentioned above is executed for every crack propagation step so that the particle density

around the crack front is adjusted to improve the efficiency. The whole process of crack

propagation is demonstrated in Algorithm 6.1.

Algorithm 6.1 Crack propagation for a 3D crack

1: Achieve SIFs of all front particles by Equations (6.1, 6.2)

2: Determine incremental angle θc by Equation (3.32)

3: Calculate equivalent SIF by Equation (6.4)

4: Find the maximum Keq

5: for i=1:nc % loop over all crack front particles

6: Set incremental magnitude ∆ai by Equation (6.5)

7: Obtain the position of new crack front by Equation (6.6)

8: if there is no particle at the new position then

9: Create new cracking particle

10: else

11: The particle at the new position becomes cracked

12: end if

13: end for

14: Update the information of old front particles

15: Create new triangular meshes connecting old and new front particles
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6.4 Numerical examples

The performance of the proposed methodology for modelling 3D cracks is demonstrated

using the following three numerical examples. The first is a penny-shaped crack located

inside a cube under uniaxial tensile loading, and the theoretical solution of which is used

to check the accuracy of the calculation. The second example is obtained by giving the

crack a rotation but keeping the same boundary conditions as the first example, which

produces a mixed mode crack problem, and additionally crack propagation is considered.

The final example contains a lens-shaped crack, which is used to test the abilities of the

proposed method for modelling curved crack surfaces. A cube domain with side length

2w = 200mm is used in all three examples and is initially discretised with a regular

distribution of 15 × 15 × 15 particles from which adaptive refinement proceeds. The

integration over the cube is performed using 14× 14× 14 cells each with 4× 4× 4 Gauss

points, and the surface integration for external loadings is calculated by using 14×14 cells

with 8 × 8 Gauss points for each. Based on the conservation of momentum, the average

movement and rotation of the cube are all zero, as

∫
V

uxdV = 0,

∫
V

uydV = 0,

∫
V

uzdV = 0, (6.7)

∫
V

∂ux
∂y
− ∂uy

∂x
dV = 0,

∫
V

∂ux
∂z
− ∂uz

∂x
dV = 0,

∫
V

∂uy
∂z
− ∂uz

∂y
dV = 0, (6.8)

and Lagrange multipliers are used to impose these displacement boundary conditions.

This approach has been applied to 2D crack problems [270] for the imposition of essential

boundary conditions and is applicable for both symmetric and asymmetric problems. It

leads to exactly symmetric results for Example 1 and provides simpler implementation of

displacement boundaries for Examples 2 and 3 than by fixing some parts of the cube in

[180]. It is not a burden for calculating these integrations in that they are obtained when

the system stiffness matrix is assembled, and requires only six Lagrange multipliers for

3D problems. For crack propagation in 3D, the constant in Equation (6.5) is defined as

m = 3.32 for all three examples, taking the value from [273]. The error in SIFs for all
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Figure 6.7: A penny-shaped crack in a cube, subjected to uniaxial tensile loading.

particles at the crack front is measured by

eKn =

∑nc

k=1 |Kk
n −K0

n|
ncK0

n

, n ∈ {I, II, III} (6.9)

where nc is the number of particles at the crack front, k is the index, Kn are calculated

SIFs and K0
n are the exact values.

6.4.1 Penny-shaped crack

The deformation of the penny-shaped crack under uniaxial tensile loading is mode I

fracture. The configuration is shown in Figure 6.7, where the crack has a radius a = w/10

and linear elastic material properties are applied with Young’s modulus E = 100GPa and

Poisson’s ratio ν = 0.3. The external loading is σ = 100MPa at both the upper and lower

faces of the cube. An adaptivity approach is used to control particle densities around the

crack front with the target global error ηt = 0.008. For this crack problem with a simple

shape, a circular cell (the penny-shaped crack itself) is used directly instead of triangular

facets for checking the connectivity between particles. A theoretical solution for both

crack opening shapes and mode I SIF KI is given by Tada [248], as

u =
4(1− ν2)

πE
σ
√
a2 − r2, (6.10a)

KI =
2

π
σ
√
πa. (6.10b)

For the sake of results analysis, KI is normalised to K ′I = KI

2σ

√
π/a.
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(a) (b) (c) (d)

(e) (f)

Figure 6.8: Adaptive steps of particle arrangements for the penny-shaped crack problem:
(a) xy view for step 1; (b) xz view for step 1; (c) xy view for step 3; (d) xz view for step
3; (e) xy view for step 5; (f) xz view for step 5.
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Figure 6.9: Results of the adaptivity in the penny-shaped crack problem: (a) convergence
rate; (b) error in KI.

Particle arrangements and densities are adjusted by the adaptivity approach mentioned

above, as given in Figure 6.8, where the refinement occurs mainly around the crack front.

From Figure 6.9, the convergence rate of error reduction by adaptive steps is higher
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(a) (b)

Figure 6.10: Deformation enlarged by 200 times of the penny-shaped crack under uniaxial
tensile (unit mm): (a) xy view; (b) xz view.

(a) (b)

Figure 6.11: Validation of the results for the penny-shaped crack problem: (a) crack
opening shape; (b) normalised KI

than the result by uniform refinement, and more accurate SIFs are obtained through

the adaptive approach using the same number of particles. It is also shown that using

uniform refinement for 3D crack problems is impractical in that the size of crack is much

smaller than the cube. Figure 6.10 shows the final deformation of the crack, where an

elliptical crack opening shape for the xz view is obvious as shown in Figure 6.10 (b). The

crack opening magnitude and mode I SIF for particles at the crack front are obtained
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Figure 6.12: An inclined penny-shaped crack under uniaxial tensile loading.

and given in Figure 6.11, where θ is defined as the angle from the x axis and within

the xy plane as depicted in Figure 6.7 and r is the distance to the centre of the crack.

Figure 6.11 (a) depicts the displacements obtained by the proposed method for cracking

particles at four different directions from the centre of the circle which match well with

the analytical solution in Equation (6.10). Although a uniform distribution of particles is

used initially to model the crack with a curved front, the adaptivity approach can adjust

particle densities around the crack front and maintains the accuracy of the calculation.

SIFs from the calculation also agree with analytical results from Equation (6.10), as shown

in Figure 6.11 (b).

6.4.2 Inclined penny-shaped crack

A mixed-mode fracture is studied by giving the penny-shaped crack in the first example

a rotation and keeping the other aspects, as given in Figure 6.12, where the crack has a

larger radius a = w/5 and the rotation angle is β = π/6 from the x axis within the xz

plane. The same material properties and boundary conditions as the first example are

used, and Equation (6.8) is still applicable although the problem is not symmetric to the

xy plane at the centre of the cube. Here the crack is represented by a circular cell which

is the penny-shaped crack itself, while new crack surfaces after crack propagation are

described by a triangular mesh. The target error for the adaptivity approach is defined

a little higher to ηt = 0.02, because it is hard to ensure high accuracy after the crack

propagates to a complex shape.

For the initial crack, the deformation under uniaxial tensile loading is given in Figure
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(a)
(b)

(c) (d)

Figure 6.13: Deformation (unit mm) enlarged by 200 times of an inclined penny-shaped
crack under uniaxial tension: (a) xyz view; (b) xy view; (c) yz view; (d) xz view.

6.13, where a small rotation of the crack relative to the original location is found. SIFs

along the crack front are obtained and compared with analytical results from Tada [248]

as in Equations (6.11 a-c), and good agreement is achieved as shown in Figure 6.14, where

θ is defined the same as the first example.

KI = 2σ cos2 β

√
a

π
, (6.11a)

KII = − 4σ

2− ν sin β cos β

√
a

π
cos θ, (6.11b)
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Figure 6.14: SIFs along the crack front for the inclined penny-shaped crack problem.

(a)
(b)

(c) (d)

Figure 6.15: Crack propagation (unit mm) of the incline penny-shaped crack under uni-
axial tension: (a) xyz view; (b) xy view; (c) yz view; (d) xz view.

KIII = −4(1− ν)σ

2− ν sin β cos β

√
a

π
sin θ. (6.11c)

It is also shown that the adaptivity approach can ensure the accuracy along a curved crack
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Figure 6.16: A lens-shaped crack in a cube under hydrostatic tensile loading.

front for mixed-mode fracture problems using a regular distribution of particles. There

are, however, two deviations in the numerical results noticeably at θ = 0 and θ = π. This

is explained by the fact that Equations (6.11) are predictions for a crack in an infinite

volume while here the cube size is finite and SIFs are affected by boundary effects, similar

results of which can be found in [180, 251]. Both Figure 6.13 and Figure 6.14 show that

the deformation of fracture at θ = 0 is predominantly mode I and II where KIII = 0, while

it is predominantly mode I and III at θ = π/2 where KII = 0. After crack propagation,

new crack surfaces are generated and described by a triangular mesh, as shown in Figure

6.15. There are two “kinks” in the crack shape at θ = π/2 and θ = 3π/2 caused by mode

III fracture, which is consistent with the deformation pattern.

6.4.3 Lens-shaped crack

The final example is a lens-shaped crack in a cube as shown in Figure 6.16, where a

comparison between the original CPM and the proposed method for modelling nonplanar

cracks is demonstrated. The configuration of the crack consists of r = w/5, β = π/4, and

linear elastic material properties are applied (E = 68.9GPa and ν = 0.22), taking the

values from [282]. The target global error for the adaptivity is ηt = 0.008. The cube is

under tensile loading σ = 100MPa at all six faces. Three modes SIFs are calculated and

normalised as

K ′n =
Kn

2σ

√
π

r sin β
, n ∈ {I, II, III}, (6.12)

and then the results are compared with the reference values K ′I = 0.874, K ′II = 0.225 and

K ′III = 0 from [282].
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(a) (b)

(c)

Figure 6.17: Comparison of crack surface description between the original CPM and the
proposed CPM for the lens-shaped crack: (a) original CPM; (b) proposed CPM; (c) slice
view at y = 100 (mm).

Some refinements of particles are predefined around the crack in the initial particle

arrangement because it has a more complex shape than previous two examples. In the

original CPM, the crack is represented by a set of planar discontinuous segments as shown

in Figure 6.17 (a), while the new method makes use of a triangular mesh to model the

crack, seen in Figure 6.17 (b). The difference between the two methods is illustrated in

Figure 6.17 (c) using a “slice” view at y = 100mm, which shows that crack modelling

by the original CPM is discontinuous while the proposed method provides a continuous

path. This discontinuity leads to issues of implementation in the original CPM, as some

integration points are isolated by the discontinuous segments. It is necessary to shift these

points away from the crack to make them visible to surrounding particles, which is not

necessary in the proposed method. The convergence rates of global error are included in
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Figure 6.18: Comparison of results between the original CPM and the proposed CPM for
the lens-shaped crack: (a) global error; (b) FI at dashed line; (c) FII at dashed line.

Figure 6.18 (a), which shows that the proposed method can provide results with lower

errors than the original CPM, but the difference decreases when fine particle arrangements

are used. The degradation in the convergence of global error is because the triangular cells

for approximating the lens-shaped crack are not changed during the adaptivity process,

and this part of error remains when using more Gauss points. It follows that the proposed

method provides better accuracy in the calculation of SIFs as shown in Figures 6.18 (b-

c), although similar results are obtained for KI by the two methods using coarse particle

arrangements which are not capable of detecting the difference in crack description of the

two methods. The crack deformation predicted by the proposed CPM is given in Figure

6.19 with a slice view at y = 100mm in Figure 6.19 (c) to show the features of the crack

opening. The SIFs of three modes along the crack front are obtained by the proposed

method as shown in Figure 6.20, showing good agreement with the reference values. When
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(a)

(b) (c)

Figure 6.19: Deformation multiplied by 50 times of the lens-shaped crack under quadratic
tensile loading: (a) xy view; (b) xz view; (c) slice view at y = 100 (unit mm).

Figure 6.20: Validation of calculated SIFs along the crack front of the lens-shaped crack.
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fine particle arrangements are used around the crack front, both the original CPM and

the proposed method can provide results with a good accuracy. The advantage of the

proposed method is the capacity to align the crack segments so that a better description

of crack patterns is achieved, especially for modelling cracks with high curvatures.

6.5 Summary

An adaptive CPM for 3D fracture modelling has been proposed, which provides an ex-

plicit description for 3D crack propagation. The methodology makes use of triangular

facets as discontinuous segments, which are located by particles, to represent 3D crack

surfaces. Particles on crack surfaces are assumed to be cracking and are split into two

parts. Influence domains of these particles are divided by the discontinuous segments,

and discontinuities at cracks are obtained by using the visibility criterion. The geometry

of new crack surfaces during crack propagation steps is described through a triangular

mesh which is built from the original crack front. The triangular mesh is nonplanar

and can record the angular change of the crack geometry by adjusting the orientations

of these discontinuous segments. For particles inside a triangular facet, their influence

domains are divided equally the same way as the original CPM, while for others on the

edges of triangular facets, the supports are divided by nonplanar segments. An adaptiv-

ity approach for 3D problems has been introduced to the method to capture the stress

gradients at the crack front. The original and the modified CPMs are compared using the

lens-shaped crack problem, and the proposed methodology provides a higher convergence

rate in global error with more accurate results of SIFs.
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Thermo-elastic fracture by an

adaptive CPM without enrichments

7.1 Introduction

The study of thermo-elastic fracture mechanics is of great importance in the design of

structures under thermal loadings, including aerospace components, turbines and nuclear

vessels. When heat flow travels across a crack, thermal gradients are set up in the neigh-

bourhood of the crack tip, as are thermal stresses [285]. The thermal stress concentration

generated around the crack tip can lead to crack propagation and sudden failure of ma-

terials. For a crack in a thermoelastic solid, Sih [285] found that the local character of

thermal stresses at the crack tip is of the same nature as mechanical stresses, and therefore

Williams’ expansions [286] for the asymptotic crack tip displacement field are applicable

for temperature enrichment. In steady heat flux, crack surfaces can be considered to be

fully insulated or perfectively conductive, for instance in [287, 288], which is one feature

of thermal fracture mechanics and distinct from purely mechanical situations. A partial

insulation crack model has been developed in [289, 290], where the cracked zone is con-

sidered to contain a medium capable of conducting heat, e.g. air inside the crack opening

domain acting as a thermal conduction medium. The partial insulation coefficient con-

cerned has a nonlinear relationship to the applied mechanical loading and heat flux [290].

During recent decades, cracking under steady thermal loading has been studied using

conventional numerical methods, and much of the development is similar to the devel-

– 147 –
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opment of non-thermal computational fracture. Examples of early numerical analysis of

thermal fracture mechanics used the finite element method (FEM) as in [291, 292], where

discontinuities of both temperature and displacement at cracks are modelled by element

interfaces, so the issue of remeshing during crack propagation remains [293]. The bound-

ary element method (BEM) is an alternative as in [294] for instance, but meets dilemmas

for modelling thermal nonlinearity [295]. Crack tip enrichment functions in mechanical

situations are also suitable to capture the thermal stress singularity at the crack tip, and

have been introduced into the extended finite element method (XFEM) [288, 296, 297],

the element free Galerkin method (EFGM) [298–301] and the numerical manifold method

(NMM) [302, 303] for modelling thermoelastic fracture. These methods have been used for

solving thermal fracture problems including dynamics cracks [297], ductile cracks [304],

interface cracks at bimaterial bodies [298] and fatigue fracture in railway brake discs [305].

Using high order crack tip enrichments in the XFEM, the benefit in accuracy for ther-

moelastic problems is greater than for purely mechanical elastic problems, as mentioned

in [296]. However, these enrichment functions bring extra unknowns leading to higher

computational expense and make the global stiffness matrix ill-conditioned, as mentioned

earlier in this thesis (e.g. Section 4.2). Apart from using extrinsic enrichments, intrinsic

enrichments can be used in meshless methods to avoid these extra unknowns, which is

the purpose of this chapter.

Here, an adaptive cracking particle method (CPM) for crack problems under thermal

and mechanical loading is developed for 2D only for simplicity, which is based on the

algorithm in Chapter 3. Temperature discontinuities at cracks are modelled by modifying

the influence domain of particles and using the visibility criterion, and thermal stress

singularities at the crack tip are captured by the adaptivity approach which is used to

adjust the particle distribution, therefore extra unknowns from enrichment functions are

avoided. Since the CPM is meshless, the adaptive approach is implemented easily, and

transition elements in the FEM for elements with different sizes are not necessary (as

mentioned in Section 1.3). Using crack segments to approximate crack paths, this method

is capable of modelling multiple crack propagation under thermal loadings.
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7.2 Governing equations

For linear thermo-elastic materials with small displacements, the equilibrium of the heat

flux can be stated as

∇ · q +Q = 0, (7.1)

where Q is the heat source and q is the heat flux obtained from the gradient of temperature

T as

qT = −kT∇T, (7.2)

where kT is the thermal conductivity. The temperature field in a body should satisfy the

above and the following boundary conditions

T = T̄ on ΓT , n · q = q̄ on Γq, (7.3)

where T̄ is the constraint at temperature boundary ΓT , q̄ is the external thermal loading

at heat flux boundary Γq and n is the normal of the boundary contour. A material is

deformed by temperature change due to thermal expansion, and the thermal strain vector

εT in 2D using Voigt notation is

εT = αT (T − T0)[1, 1, 0]T, (7.4)

where T0 is the reference temperature before thermal loading and αT is the coefficient of

thermal expansion. Mechanical equilibrium in Equation (2.16) should also be satisfied

in thermo-elastic problems, and the constitutive model in Equation (2.27) is modified by

excluding thermal strains from engineering strains, as

σ = D · (ε− εT ). (7.5)

Equations (2.16, 7.1) are therefore the governing equations for the thermo-elastic be-

haviour of homogeneous materials, and boundary conditions are in Equations (2.18-2.19,

7.3). Each particle is associated with three degrees of freedom for 2D problems, i.e.

{ux, uy, T}, and a global stiffness matrix is assembled to get a solution for the coupled

Equations (2.16, 7.1) as in [297, 299]. Mechanical and thermal governing equations can
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be considered to be uncoupled as in [298, 306] with assuming infinite propagation speed

for heat wave. In this approach, a solution for temperature distribution is obtained from

Equation (7.1), and then the weak form of Equation (2.16) is solved to obtain the dis-

placement and stress fields.

7.3 Review of enrichment functions for cracks under

thermal loadings

Two types of cracks in steady heat flux are considered in thermoelastic solids, namely

adiabatic crack and isothermal crack, where partially insulation crack is not included

which brings thermal nonlinearity. The two cases result in different enrichment functions,

which are applied according to the boundary conditions of the problem. These enrichment

functions have been widely used in numerical methods including the XFEM and the

EFGM to model the temperature and stress gradients near to a crack tip.

7.3.1 Adiabatic cracks

In an adiabatic crack, both temperature and displacement fields are discontinuous at the

crack surface. In the temperature approximation, a node at one side of the crack has no

influence on the other side. The heat flux is singular at the crack tip with the singularity

1/
√
r as in [285], and is similar to the situations in mechanical loadings, where r is the

distance to the crack tip. The leading terms of the asymptotic expansion for temperature

and heat flux near to the adiabatic crack tip are given in references [288, 307] as

T = −KT

kT

√
2r

π
sin

θ

2
, (7.6a)

q =
KT√
2πr

[sin
θ

2
, cos

θ

2
]T, (7.6b)

where KT is the thermal stress intensity factor and θ is the angle to the crack extension

defined the same as in Equation (1.18).

To capture the thermal stress singularity at the crack tip, enrichment functions are

used in either basis functions or the temperature/displacement approximation, which

are similar to the enrichments in mechanical situations in Section 3.2. In the intrinsic

enrichment approach, the basis function for temperature field is enriched using Equation
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(4.4) as in [298] for instance. Considering the singularity of temperature in Equation

(7.6a), a partially enriched basis function in [288] can be used alternatively to approximate

the temperature field in 2D, as

p(x) = [1, x, y,
√
r sin

θ

2
]T, (7.7)

and the displacement field is approximated using the fully enriched basis function in Equa-

tion (4.4). In addition, extrinsic enrichment functions have also been considered in both

the EFGM and the XFEM for crack problems under thermal loadings in [288, 300, 301].

Enriched terms accounting for the discontinuities at cracks are added to the displace-

ment approximation as in Equation (1.17). Similarly the trial function for temperature

is enriched to

T h(x) =
n∑
i=1

Φi(x)Ti +

n1∑
i=1

Φi(x)H(x)bi +
nc∑
i=1

Φi(x)
( 4∑
k=1

Rka
k
i

)
, (7.8)

where shape function Φi(x) is used for both displacement and temperature fields, Ti is the

temperature of ith particle, and H(x), Rk, a
k
i and bi are as defined in Equation (1.17). The

crack-tip enrichments in Rk can be reduced to one term of
√
r sin θ

2
in the XFEM [288],

due to the local character of temperature in Equation (7.6a). Extrinsic enrichment brings

extra unknowns to the approximation and therefore increases the calculation expense, and

these unknowns can make the global stiffness matrix ill-conditioned, which is the major

difference to intrinsic enrichment.

7.3.2 Isothermal cracks

In the case of the isothermal crack, a crack surface is perfectly thermal conductive and is

maintained at a specific temperature. Although the crack still blocks the heat flux, the

difference with the adiabatic crack is from the angular variation of temperature field. The

leading terms of the asymptotic expansion near to an isothermal crack tip [288] become

T = −KT

kT

√
2r

π
cos

θ

2
, (7.9a)

q =
KT√
2πr

[cos
θ

2
, sin

θ

2
]T. (7.9b)
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The crack surface has the same temperature and is a thermal essential boundary which

is imposed on the weak form by Lagrange multipliers or the penalty approach in ways

mentioned earlier in the thesis (Section 2.6). Nodes are required at the crack surface

for the imposition of thermal essential boundary conditions. For modelling the thermal

stress singularity at the isothermal crack tip, the basis function for displacement field is

fully enriched with Equation (4.4) in [298], while the temperature field is given a partly

enriched basis function in 2D as

p(x) = [1, x, y,
√
r cos

θ

2
]T. (7.10)

For extrinsic enrichment, the sign function H(x) is not applicable, since the temperature

on the crack surface is continuous (but not the heat flux). Hence the enrichment function

should be continuous across the crack surface but with a discontinuous derivative, have

the maximum value along the crack surface and become zero away from the crack. For

instance, these properties can be delivered using the normal level set function to replace

H(x) in the XFEM, as

Λ(x) =

n1∑
i=1

Φi(x)|φi| − |φ(x)|, (7.11)

where φ(x) is the level set function describing the distance to the crack surface, Φi(x) is

the shape function and n1 is the number of nodes in an element, more details of which

are given in reference [181].

Overall, the two types of cracks lead to different temperature distributions, so different

enrichment functions are used. It has been shown by Duflot [288] that when enrichments

of both type of cracks are contained in the discretisation and one type crack is chosen for

boundary condition, the degrees of freedom associated with the other are set to zero by the

Galerkin process. For instance if the isothermal condition is considered, the contribution

from both crack surfaces of the adiabatic crack tip enrichments to the penalty term

vanishes by symmetry.
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7.4 Crack modelling by the CPM without enrich-

ments

For the computational solution of crack problems under thermal loading, enrichment func-

tions have been widely used in the XFEM and the EFGM. Although these enrichments

provide solutions for modelling crack discontinuities, they also bring many issues, includ-

ing extra unknowns, ill-conditioned stiffness matrices and an increasing order of basis

functions, as stated earlier in the thesis. In addition, these enrichment functions require

the coordinates of r and θ defining the relative location to the crack tip and their cal-

culation becomes complex for multiple cracks or 3D cracks. Here the CPM developed in

previous chapters is applied to this kind of problem. Discontinuities at cracks are obtained

by using the visibility criterion for modifying the influence domain of particles so enrich-

ment functions are not necessary, and the stress and temperature gradients around the

crack tip are captured by the adaptivity approach. The proposed method is advantageous

for modelling multiple cracks under thermal loading without using enrichment functions.

Only the adiabatic crack is considered for simplicity, since there is little difference in the

visibility criterion process for modelling crack discontinuity between the adiabatic and

isothermal situations.

7.4.1 Weak form for mechanical and thermal governing equa-

tions

Similar to the development for mechanical equilibrium in Section 2.4, the weak form for

the thermal equilibrium equation becomes

∫
Ω

δ(∇T )TqdΩ +

∫
Ω

δTQdΩ−
∫

Ω

δT q̄dΩ = 0, (7.12)

where δ indicates the virtual state. Lagrange multipliers λ are used to impose the tem-

perature boundary conditions, and the weak form becomes

∫
Ω

δ(∇T )TqdΩ +

∫
Ω

δTQdΩ−
∫

Ω

δT q̄dΩ +

∫
Ω

δλ(T − T̄ )dΩ +

∫
Ω

δTλdΩ = 0. (7.13)
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The discrete version of the weak form as in [298] is

K̂T Ĝ

Ĝ
T

0




T

λ̂

 =


f̂

q̂

 , (7.14)

where

K̂ij =

∫
Ω

Φi,x

Φi,y


T kT 0

0 kT


Φi,x

Φi,y

 dΩ, (7.15a)

f̂i =

∫
Γq

Φiq̄dΓq +

∫
Ω

ΦiQdΩ, (7.15b)

Ĝik = −
∫

Γu

ΦiNkdΓT , (7.15c)

q̂k = −
∫

Γu

NkT̄dΓT . (7.15d)

and the hat indicates this to be for the thermal equilibrium distinct from the corresponding

term in the mechanical governing equations. To take the contribution from thermal strains

on the stress equilibrium equations into account, Equation (2.41b) is modified to

fi =

∫
ΓT

Φit̄ dΓT +

∫
Ω

ΦibdΩ +

∫
Ω

BT
i DεTdΩ. (7.16)

Here mechanical and thermal governing equations are considered to be uncoupled, and

the temperature and displacement fields are approximated using the same set of particles

for problem discretisation. The stiffness matrices for temperature and displacement can

be assembled in one loop, and shape functions and their derivatives are calculated for only

one time at each Gauss point, so the computational expense for the temperature field is

not high. The whole process is demonstrated in Algorithm 7.1.

7.4.2 Interaction integration for cracks under thermal loadings

The thermal stress intensity factors are calculated by the interaction integral [243], which

is obtained from the J-integral and has been introduced in Section 3.4.3. For cracks under
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Algorithm 7.1 Solve the temperature and displacement field

1: for i=1:ng % Loop over each Gauss point

2: Find all particles connected to the Gauss point i

3: Calculate shape functions

4: Assemble global stiffness matrix for the displacement field using Equation (2.61)

5: Assemble global stiffness matrix for the temperature field using Equation (7.15)

6: end for

7: Solve the temperature field using Equation (7.14)

8: Use the solution of temperatures as input, obtain the displacement field using Equa-

tions (2.60)

thermal loadings, the domain form of the J-integral can be found from [308], as

J =

∫
A

(
(σijuj,1 −Wδ1i)q,i + qᾱTσkkT,1

)
dA, i, j, k ∈ {1, 2}, (7.17)

and

ᾱT =

αT plane stress,

(1 + ν)αT plane strain,

(7.18)

where W is the strain energy, q is a weight function as defined in Equation (3.29) and

the index notation is used with the Einstein summation. Comparing with the interaction

integration in mechanical situations in Section 3.4.3, the difference for thermal situations

is the inclusion of thermal terms as in [243, 296, 298]. The real state (as state 1) contains

σij, εij, ui, Ti, while the temperature in the auxiliary state (as state 2) is zero where the

same auxiliary field of σaux
ij , εaux

ij , uaux
i is used as in Appendix C. The superposition of the

two states for the J-integral is equal to the sum of the two states,

J (1+2) = J (1) + J (2) + I(1,2), (7.19)

where the superscripts (1) and (2) represent the terms from state 1 and state 2 respectively.

I(1,2) is the interaction integral between the two states, as

I(1,2) =

∫
A

(
(σ

(1)
ij u

(2)
j,1 + σ

(2)
ij u

(1)
j,1 −W (1,2)δ1i)q,i + qᾱTσ

(2)
kk T

(1)
,1

)
dA, i, j, k ∈ {1, 2}, (7.20)
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and W (1,2) is the interaction strain energy density between the two states, where

W (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij . (7.21)

Considering the relationship between the SIFs and the interaction integral in Equation

(3.30), the SIFs for a crack under mixed-mode loading are obtained by applying the

specific auxiliary state, as in Section 3.4.3.

7.5 Numerical examples

Four numerical examples are presented in this section to demonstrate the performance of

the proposed method. The first is an inclined crack under thermal loading, where mixed-

mode fracture is considered. The second example contains a curved crack to test the

abilities of the proposed method for cracks with complex geometries. Crack propagation

is included in the third example, where the behaviour of a crack in a cruciform shaped

plate under mechanical and thermal loadings are compared. The final example is extended

from the third with one more crack, which is used to explore the performance of the

proposed method for multiple cracks. Unless stated otherwise, all examples are under

plane strain assumptions with linear elastic material properties, Young’s modulus E =

200GPa, Poisson’s ratio ν = 0.3, thermal conductivity kT = 100W/(m◦C) and coefficient

of thermal expansion αT = 10−5◦C−1, all of which are used to normalise the results,

and the reference environment temperature is zero. For all examples, a circular influence

domain is used for every particle, and the size is ds = 2.2. Rigid body translation and

rotation are fixed as in [270] by setting

∫
Ω

uxdΩ = 0,

∫
Ω

uydΩ = 0,

∫
Ω

∂ux
∂y
− ∂uy

∂x
dΩ = 0, (7.22)

where ux and uy are horizontal and vertical displacements respectively. These boundary

conditions are imposed on the weak form by Lagrange multipliers with only three extra

unknowns. Temperature and thermal stress gradients are captured by the adaptivity

approach developed in Section 3.3, which is purely based on the elasticity equations, and

Equation (7.5) is used to take the thermal effect into account.
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Figure 7.1: An inclined central crack under thermal loading: (a) configuration; (b) initial
particle arrangement, with blue points for cracking particle.

(a) (b)

(c) (d)

Figure 7.2: Adaptive particle arrangements for the inclined central crack (in blue, β = 30◦)
under thermal loading: (a) step 1; (b) step 2; (c) step 4; (d) step 7.

7.5.1 Inclined central crack

An inclined central crack is considered in a rectangular plate as shown in Figure 7.1.

The configuration of this problem consists of w = 0.1m, h = 0.5w, a = 0.3w. The top

of the plate is at a high temperature T̄ = 100◦C, while the bottom is loaded by a low

temperature −T̄ . The heat flux at the two sides of the plate is zero. The problem is

initially discretised by 21 × 41 particles with 41 particles in blue along the crack as in

Figure 7.1 (b).
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Figure 7.3: Adaptive results for the inclined central crack under thermal loading: (a)
convergence rate for error; (b) SIFs.
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Figure 7.4: Thermal results of the inclined central crack: (a) temperature profile (◦C);
(b) heat flux.
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Figure 7.5: Normalised stress intensity factors for various crack inclinations.
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Table 7.1: Validation of calculated SIFs for the inclined crack under thermal loading

CPM HXFEM [296] XFEM [288] BEM [294]

θ K ′I K ′II K ′I K ′II K ′I K ′II K ′I K ′II

0◦ 0.00000 0.05532 0.00000 0.05471 0.00000 0.05460 0.00000 0.05400

30◦ 0.00664 0.04894 0.00670 0.04873 0.00680 0.04890 0.00640 0.04800

60◦ 0.00561 0.03200 0.00544 0.03209 0.00540 0.03220 0.00490 0.03200

The target error for the adaptivity approach is ηt = 0.06, and adaptive particle ar-

rangements are given in Figure 7.2, where particle refinement is executed automatically

around the two crack tips. Figures 7.3 illustrates the results during the adaptive steps,

where it is shown that the convergence rate of error for the adaptivity approach is much

higher than that for uniform refinement, and results for the SIFs converge to the reference

values during adaptive steps. The SIFs at one crack tip are normalised by

K ′n =
Kn

αT T̄E
· h

w
√

2w
, n ∈ {I, II}. (7.23)

and in Table 7.1 are compared with the results from other methods, including the XFEM

from Duflot [288], the XFEM with high order enrichment functions (marked as HXFEM)

from Zamani et al. [296] and the BEM from Prasad et al. [294]. The proposed method

gives results with the same level of accuracy as using enrichment functions, and with

adaptivity the maximum number of particles here is 1744 versus 1891 rectangular elements

in the HXFEM [296], and 7000 triangular elements in the XFEM [288]. Figures 7.4 (a-

b) illustrate the temperature distribution and heat flux in the problem domain. The

calculated SIFs for the crack with various inclinations are presented in Figure 7.5 and

good agreement with the results from [288] is achieved.

7.5.2 Curved central crack

The second example comprises an arc-shaped crack in a square domain as shown in Figure

7.6, the configuration of which consists of w = 0.2m, 2a = 0.1w, β = π/4. The plate is

under a constant and upward heat flux q̄ = 104W/m2, where the bottom of the plate is at

high temperature and the top is at low temperature. There is an analytical solution for
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(a) (b)

Figure 7.6: A curved crack under constant heat flux: (a) configuration; (b) initial particle
arrangement where cracking particles are in blue.

(a) (b)

(c) (d)

Figure 7.7: Adaptive particle arrangements for the curved crack problem: (a) step 2; (b)
step 4; (c) step 6; (d) step 8.
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Table 7.2: Normalised SIFs for a curved crack under thermal loading

CPM HXFEM [296] Analytical [309]

θ K ′I K ′II K ′I K ′II K ′I K ′II

30◦ 0.71745 0.79217 0.73962 0.82085 0.71904 0.80793

45◦ 0.96103 0.58276 0.97630 0.57770 0.97338 0.59995

60◦ 1.12586 0.34761 1.13546 0.33238 1.13750 0.35363

this problem from Chen and Hasebe [309] when this problem is considered in an infinite

plate, as

KI =
3 + cos β

4

(
sin

β

2
+

4(1− cos β)

(3− cos β) cos β
cos

β

2

)Eαq̄
kT

a
√
πa, (7.24a)

KII =
3 + cos β

4

(
cos

β

2
− 4(1− cos β)

(3− cos β) sin β
sin

β

2

)Eαq̄
kT

a
√
πa. (7.24b)

For the sake of data analysis, the SIFs are normalised as

K ′n =
Kn

αq̄E
· kT
a
√
πa
, n ∈ {I, II}. (7.25)

Since the ratio between the size of the crack and the plate is 2a/w = 1/10, the boundaries

of this finite domain are far from the crack and the analytical solutions are applicable

to this problem. The plate is initially discretised with 61 × 61 particles, from which the

adaptivity approach proceeds. The curvature of the crack is modelled by 40 straight

segments connecting cracking particles, which are in blue in Figure 7.6 (b).

The adaptivity approach uses a target error of ηt = 0.12 and adaptive particle distri-

butions are shown in Figure 7.7. The local zone containing the crack is refined and two

“masses” of particles are generated around the two crack tips. Particle refinement is also

executed at both the top and bottom where the heat flux boundary condition is applied.

The results of temperature profile and heat flux distribution are given in Figure 7.8, where

it is shown that the crack disturbs the temperature profile at the centre of the plate and

the heat flux travels encircling the crack surface. SIFs are calculated and compared with

the results from Zamani et al. [296] using the HXFEM in Table 7.2. The same level of

accuracy is obtained by the proposed method with 8391 particles compared with more

than 104 nodes in the HXFEM [296]. For the curved crack with various curvatures, the
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(a) (b)

Figure 7.8: Thermal results for the curved crack problem: (a) temperature profile (◦C);
(b) heat flux.
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Figure 7.9: Normalised stress intensity factors for the curved crack with various values of
the half arc angle.

proposed method delivers accurate SIFs compared to the analytical solution from Equa-

tion (7.24), as given in Figure 7.9. It has also been shown that, even with uniformly

distributed particles, the proposed method is capable to capture the stress gradients at

the crack tip of a curved crack.
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Figure 7.10: A crack in a cruciform shaped plate: (a) configuration; (b) initial particle
arrangement (cracking particles are in blue).
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Figure 7.11: Adaptive particle arrangements of crack propagation steps for the cruciform
shaped plate problem: (a-f) step=5, 10, 15, 20, 25, 30.
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Figure 7.12: Comparison of crack growth in the cruciform shaped plate between under
thermal loading and force loading.

7.5.3 Crack propagation in a cruciform shaped plate

Crack propagation under thermal loading is considered in the third example. The crack

is located at the bottom-right corner of a cruciform shaped plate as shown in Figure 7.10

and the configuration is comprised of L = 0.1m, a = 0.2L and β = 3π/4. The cruciform

shaped plate is constrained in displacement at the bottom and both left and right sides.

Two loading situations are considered: case 1, thermal loading with T̄ 6= 0, t̄ = 0; case 2,

mechanical loading with T̄ = 0, t̄ 6= 0. The crack propagation direction is determined by

the maximum circumferential stress criterion and the crack increment is set as a/8.

The adaptivity approach is defined with target error ηt = 0.04 and starts from the initial

particle arrangement shown in Figure 7.10 (b). Adaptive particle arrangements during

the crack propagation for case 1 are given in Figure 7.11, where particle distribution is

refined at the three corners of the cruciform shaped plate and the crack tip. The crack

propagates upward and then turns right after 15 propagation steps. The crack growth

predicted by the proposed method is compared with the results from Duflot [288] using

the XFEM, where good agreement is found and similar accuracy is obtained for case 2 as

shown in Figure 7.12. Comparing the crack growth in the two cases, the crack propagates

right under thermal loading while the mechanical loading leads the crack propagation

to the left. The SIFs during crack propagation steps in two cases are calculated, which

match well with the results from Prasad et al. [310] as shown in Figure 7.13. Thermal
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Figure 7.13: normalised SIFs during crack propagation for the cruciform shaped plate
problem: (a) thermal loading; (b) force loading.
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Figure 7.14: Thermal results for the final crack propagation step in the cruciform shaped
plate: (a) temperature profile (◦C); (b) heat flux.

results including temperature profile and heat flux for the final crack propagation step

are given in Figure 7.14.

7.5.4 Two cracks in a cruciform shaped plate

The fourth example comes from the third problem with one extra crack in consideration

as shown in Figure 7.15, and other aspects including displacement boundary conditions

and material properties are not changed. There are also two loading conditions involved,

which are thermal loading and mechanical loading, and the difference is in case 1 where

the top and bottom sides of the plate are loaded by a low temperature T̄ .
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Figure 7.15: Two cracks in a cruciform shaped plate: (a) configuration; (b) initial particle
arrangement.
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Figure 7.16: Adaptive particle arrangements for the two cracks in a cruciform shaped
plate: (a-f) step=5, 10, 15, 20, 25, 30.

Adaptive particle distributions for the propagation of two cracks in case 1 are given in

Figure 7.16, where again there are two “masses” of particles generated around the two
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Figure 7.17: Propagation of two cracks in the cruciform shaped plate under thermal
loading and force loading.
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Figure 7.18: Thermal results at the final propagation step for two cracks in the cruciform
shaped plate: (a) temperature profile (◦C); (b) heat flux.

crack tips which travel with the two crack tips during the crack propagation process. The

crack on the right propagates straight upwards towards the upper-right corner, while the

left crack descends and turns right after 20 propagation steps. The crack growths for both

cases are given in Figure 7.17, where it is shown that the two cracks propagate vertically

under the thermal loading here while the mechanical loading leads to horizontal crack

propagation. The temperature profile and heat flux at the final propagation step for the

two cracks are presented in Figure 7.18, where it is shown there is of great influence from
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the two cracks on both temperature distribution and heat flux direction. No analytical

solution has been found yet and this example is used here to test the ability of the proposed

methodology for modelling multiple crack propagation.

7.6 Summary

An adaptive CPM for modelling thermo-elastic fracture in 2D has been developed in this

chapter, where enrichment functions, which have been widely used in traditional numerical

methods including the XFEM and the EFGM, are not required. The discontinuities of

temperature and displacement at a crack are modelled by the CPM using the visibility

criterion, and stress gradients are captured using a high density of particles around the

crack tip, which is controlled by an adaptivity approach. The mixed-mode stress intensity

factors under thermal loadings are calculated by the interaction integral and the proposed

method can provide results of accuracy at the same level as the XFEM with high order

enrichments and uses much fewer particles than the number in the standard XFEM. The

proposed methodology has shown its potential to handle the crack propagation of multiple

cracks under thermal loading.



Chapter 8

Conclusions and future directions

8.1 Main conclusions

Computational fracture modelling is of great importance in the study of material fail-

ure and lifespan analysis of engineering structures. The difficulties of this topic exist in

modelling crack discontinuities, high stress gradients around the crack tip and non-linear

behaviour of crack propagation, all of which challenge the traditional element-based nu-

merical methods via issues of remeshing, mesh distortion and volumetric locking. This

thesis considerably develops a meshless method to arrive at a framework for modelling

cracks and crack propagation in 2D and 3D. In the first two chapters, the development,

classification and features of meshless methods are demonstrated, and since in meshless

methods only node data are required in the problem discretisation, the issues mentioned

above in element-based methods can be avoided. Due to the use of high order contin-

uous shape functions, meshless methods show better accuracy of stress predictions than

the standard FEM. Several numerical methods have been developed for crack modelling,

and crack discontinuities are modelled by either enrichment functions or modifying the

influence domain of nodes using the visibility criterion (for meshless methods). However,

enrichment functions bring extra unknowns which can lead to an ill-conditioned global

stiffness matrix. For both approaches mentioned above, a method to describe crack paths

is required, for instance by level sets, but updating level set functions is computationally

time-consuming. The methods using enrichments or level sets meet dilemmas when used

for multiple cracks, since each crack requires a set of enrichments or level sets and com-
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putational cost then balloons with the number of cracks. The cracking particle method

(CPM) uses a set of crack segments to approximate crack paths, which has a simple im-

plementation and is therefore suitable for modelling multiple cracks. This simplification

in crack description however also brings issues of spurious cracking results and a large

number of particles are required to get accurate results. It is here that this thesis starts.

The main achievements in this thesis are as follows:

• A modified CPM using bilinear discontinuous segments has been developed for de-

scribing crack patterns and influence domains of cracking particles are modified to

sector shapes which record the angular change of crack path. Crack segments are

aligned well to provide a smooth crack path and the issue of spurious cracking results

in the original CPM is addressed.

• An adaptivity approach has been introduced into the CPM, by which particle dis-

tribution density is adjusted to capture the stress gradients around a crack tip. A

coarsening scheme is included in the adaptivity approach to reduce particle distribu-

tion density when the crack tip propagates away for improving calculation efficiency.

• A multi-cracked particle method has been proposed to model branched cracks. A

crack with a complex geometry or multiple cracks can be approximated by a set

of discontinuous segments, and crack discontinuities are achieved by the visibility

criterion rather than using complex enrichment functions.

• Different crack propagation criteria are discussed, and a configurational-force-driven

CPM has been presented for modelling crack propagation. Crack propagation di-

rection is directly determined by the configurational force, where there is no need

to decompose the displacement and stress fields with respect to the crack surface

for mixed-mode crack problems.

• A framework for explicitly describing 3D crack surfaces and crack propagation has

been developed using the CPM. A set of triangular facets connecting cracking parti-

cles is used to represent crack surfaces, and spherical influence domains of particles

are divided by nonplanar crack segments, which provide continuous crack surface

approximation and again prevent spurious cracking results.
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• The adaptive CPM has been applied to crack problems under thermal loadings with-

out using enrichment functions. Temperature discontinuities at cracks are modelled

by the CPM, and temperature gradients are handled by the adaptivity approach.

This method can provide results with the same level of accuracy with the standard

XFEM using enrichments and less number of particle is needed.

8.2 Future directions

The research work in this thesis can be extended to the following directions:

• A fast integration technique is desired for assembling the global stiffness matrices,

since this integration process spends the most calculation time in meshless meth-

ods. Gaussian quadrature is currently performed over background cells which makes

the proposed method not truly meshfree, although there is no need for the back-

ground integration grid to conform to domain boundaries. Alternatives are nodal

integration [113, 114] or integration over supports [115, 222].

• The collocation methods [99, 106] could also be considered, where the strong form of

governing equations are solved directly and no integration process is required. The

main concern for collocation methods is the requirement of calculating second-order

derivatives of shape functions and the accuracy of results.

• Efficient calculation of shape functions is in demand for meshless methods. Unlike

the standard FEM which uses explicit and simple shape functions, meshless meth-

ods make use of the MLS or the RK approximation to build shape functions with

matrix inversion involved (albeit of small matrices). It has been shown that explicit

matrix inversion expressions [117, 118] can be used to speed up the calculation of

shape functions. The advantages of other methods, including the natural neighbour

radial point interpolation method [311] or the virtual element method [312] could

be investigated for the problem approximation.

• How to define the optimized support size is problem-dependent and requires further

study to make it applicable for various materials and problems. It has been shown

in [125] that support size affects the accuracy of displacements and their derivatives,

where the former requires a smaller support but the latter is more accurate with
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a larger support. A technique has been developed by Rosolen et al. [313] to pro-

vide optimum support size by introducing support size into the maximum entropy

approximation [314].

• The proposed method in this thesis uses a quasi-static code and could be extended

to model problems of dynamic fracture. Early applications of the CPM to model

dynamic fracture can be found in [202, 209, 315], and it would be interesting to see

the performance of the modified CPM proposed in this thesis for crack problems

under dynamic loadings.

• Cohesive zone model could also introduced into the proposed method, since crack

opening is obtained easily by the relative displacement of cracking particles on the

two sides of crack surfaces. Different traction-displacement curves in [133, 134, 136]

could be considered for modelling crack growth and the crack closure effect could

be studied as in [316].

• Crack initiation, junction and coalescence are features of fracture in real engineer-

ing problems and nature but still challenge current numerical methods because they

bring severe topology changes. These issues have been approached using extrinsic

enrichment functions in the XFEM [155] and the EFGM [207], but complex enrich-

ment functions are used which brings difficulties in modelling multiple cracks. The

proposed method in this thesis makes use of intrinsic enrichment to model crack

discontinuities rather than using complex enrichment functions and is suitable for

modelling crack coalescence. Crack initiation is difficult to model in the XFEM

when the crack initiation is inside one element, but this is not an issue in meshless

methods and it follows the loss of hyperbolicity criterion [317].

• Parallel computing could be used to accelerate the meshless simulations although

the focus in this thesis has been on accuracy rather than efficiency. It divides

the computation of large problems into small parts and solves them at the same

time, which therefore makes use of the full power of high-performance computer

clusters. This technique has been widely used in the FEM [318], but its application

to meshless methods is limited, one example can be found in Ullah et al. [319].
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• Shape functions in the current CPM are obtained by the MLS approximation, which

do not possess the Kronecker delta property. Therefore, Lagrange multipliers are

required to impose essential boundary conditions into the weak form of governing

equations, which can lead to an ill-conditioned system stiffness matrix, as mentioned

in Section 2.6.1. This issue can be addressed by using the maximum entropy ap-

proach [314, 320, 321], which provides weak Kronecker delta property at boundaries,

so essential boundary conditions can be imposed directly.

• There are sharp corners at the joints of crack segments in the current CPM, which

can lead to artificial stress concentrations. Methods to improve the smoothness of

the crack path are needed, and one possible solution is through spline functions for

describing crack geometries borrowing ideas from the IGA [32, 322].



Appendix A

Implementation of the moving least

squares approximation

A function for calculating shape functions in the EFGM by the MLS approximation is

included here for 2D problems, which is implemented in Matlab. The implementation

of the EFGM can also be found in [55].

function [ phi , dphix , dphiy ]=MLS SF( gpos , v )

% Input : gpos − l o c a t i o n o f node ;

% v − the l i s t o f nodes wi th suppor t c o v e r i n g gpos

% Output : ph i − shape f u n c t i o n s ;

% dphix , dphiy − f i r s t d e r i v a t i v e s o f shape f u n c t i o n s

% Globa l v a r i a b l e s : x − c o o r d i n a t e s o f a l l nodes

% suppor t − suppor t s i z e s o f a l l nodes

global x support ;

L=length ( v ) ;

phi=zeros (1 ,L ) ; dphix=phi ; dphiy=phi ;

r=zeros (1 ,L ) ; drdx=r ;

p=[ ones (1 ,L ) ; x (v , 1 : 2 ) ’ ] ;

r=r e a l s q r t ( ( x (v ,1) ’− gpos (1 ) ) . ˆ2+( x (v ,2) ’− gpos ( 2 ) ) . ˆ 2 ) . / support (1 , v ) ;

% weigh t f u n c t i o n us ing the 4 th order s p l i n e

w=zeros (1 ,L ) ; dwdr=w;

w=1−6∗r .ˆ2+8∗ r .ˆ3−3∗ r . ˆ 4 ;
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b=[w;w;w] . ∗ p ;

aa =([w;w;w] . ∗ p)∗p ’ ;

pg =[1.0 d0 ; gpos ( 1 ) ; gpos ( 2 ) ] ;

phi=pg ’ / aa∗b ;

% d e r i v a t i v e s o f shape f u n c t i o n s

drdx=(gpos (1)−x (v , 1 ) ’ ) . / r . / support (1 , v ) . / support (1 , v ) ;

drdy=(gpos (2)−x (v , 2 ) ’ ) . / r . / support (1 , v ) . / support (1 , v ) ;

dwdr=−12∗r+24∗ r .ˆ2−12∗ r . ˆ 3 ;

dwdx=dwdr .∗ drdx ;

dwdy=dwdr .∗ drdy ;

daax =([dwdx ; dwdx ; dwdx ] . ∗ p)∗p ’ ;

daay =([dwdy ; dwdy ; dwdy ] . ∗ p)∗p ’ ;

dbx=[dwdx ; dwdx ; dwdx ] . ∗ p ;

dby=[dwdy ; dwdy ; dwdy ] . ∗ p ;

gama=pg ’ / aa ;

dgamax =[0 ,1 ,0 ]/ aa−gama∗daax/aa ;

dgamay =[0 ,0 ,1 ]/ aa−gama∗daay/aa ;

dphix=dgamax∗b+gama∗dbx ;

dphiy=dgamay∗b+gama∗dby ;



Appendix B

Path independence of J-integral

Here a proof for path independence of the J-integral is presented. The J-integral in

Equation (3.22) is rewritten as

J =

∫
Γ

(Wδ1j − σjk
∂uk
∂x1

)njdΓ, j, k ∈ {1, 2} (B.1)

Using Green’s theorem (the 2D divergence theorem), the J-integral becomes

J =

∫
A

∂

xj
(Wδ1j − σjk

∂uk
∂x1

)dA =

∫
A

(
∂W

x1

− ∂σjk
∂xj

∂uk
∂x1

− σjk
∂2uk
∂x1∂xj

)dA, (B.2)

where A is the domain surrounded by the contour Γ. Considering the stress equilibrium

equation in Equation (2.17) with no body force, i.e. ∂σjk/∂xj = 0 and the compatibility

condition in Equation (2.31), we have

σjk
∂εjk
∂x1

=
1

2
(σjk

∂2uk
∂x1∂xj

+ σjk
∂2uj
∂x1∂xk

). (B.3)

The balance of angular momentum yields σjk = σkj, then

σjk
∂εjk
∂x1

=
1

2
(σjk

∂2uk
∂x1∂xj

+ σkj
∂2uj
∂x1∂xk

) = σjk
∂2uk
∂x1∂xj

. (B.4)

Hence, the J-integral becomes

J =

∫
A

(
∂W

∂x1

− σjk
∂εjk
∂x1

)dA. (B.5)

– 176 –



177

Γ1

Γ2

Γ+
3

Γ−
3

x1

x2

Figure B.1: Integration paths around a crack in 2D.

Using the chain rule of differentiation and considering the relationship between stress and

stored energy function, we have

σjk
∂εjk
∂x1

=
∂W

∂εjk

∂εjk
∂x1

=
∂W

∂x1

. (B.6)

Substituting Equation (B.6) to Equation (B.5), it is concluded that J = 0 for an arbitrary

contour enclosing a simply connected domain. Considering a contour Γ = Γ1+Γ2+Γ+
3 +Γ−3 ,

which encloses a simply connected region, as given in Figure B.1, the J-integral over this

contour is zero, hence

J =

∫
Γ1+Γ2+Γ+

3 +Γ−
3

(Wδ1j − σjk
∂uk
∂x1

)njdΓ = 0. (B.7)

Since the paths of Γ+
3 and Γ−3 are parallel to the x1 axis, one component of the normal

to these crack surfaces is n1 = 0. These crack surfaces are assumed traction free, i.e.

σjknj = 0, therefore

∫
Γ1+Γ2

(Wδ1j − σjk
∂uk
∂x1

)njdΓ = −
∫

Γ−
3 +Γ+

3

(Wn1 − σjk
∂uk
∂x1

)njdΓ = 0. (B.8)

If the integration over a counter-clockwise path is defined with a positive sign, we have

∫
Γ1

(Wδ1j − σjk
∂uk
∂x1

)njdΓ =

∫
−Γ2

(Wδ1j − σjk
∂uk
∂x1

)njdΓ. (B.9)

Finally, it is proven that the J-integral is path-independent.
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Auxiliary field in the interaction

integral

The interaction integral, which is the superimposition of the real state and the auxiliary

state, provides a general method to compute mixed mode SIFs through a domain integral.

The auxiliary stresses field in 3D are

σaux
11 = 1√

2πr

[
Kaux

I cos θ
2
(1− sin θ

2
sin 3θ

2
)−Kaux

II sin θ
2
(2 + cos θ

2
cos 3θ

2
)
]
,

σaux
22 = 1√

2πr

[
Kaux

I cos θ
2
(1 + sin θ

2
sin 3θ

2
) +Kaux

II sin θ
2

cos θ
2

cos 3θ
2

]
,

σaux
12 = 1√

2πr

[
Kaux

I sin θ
2

cos θ
2

cos 3θ
2

+Kaux
II cos θ

2
(1− sin θ

2
sin 3θ

2
)
]
,

σaux
23 =

Kaux
III

2πr
cos θ

2
,

σaux
13 = −Kaux

III

2πr
sin θ

2
,

σaux
33 = ν(σaux

11 + σaux
22 ),

(C.1)

where r is the distance to the crack front point, θ is the angle to the local x1 axis as in

Figure 3.8, and the associated auxiliary displacements are
uaux

1 = 1
2µ

√
r

2π

[
Kaux

I cos θ
2
(κ− 1 + 2 sin2 θ

2
) +Kaux

II sin θ
2
(κ+ 1 + 2 cos2 θ

2
)
]
,

uaux
2 = 1

2µ

√
r

2π

[
Kaux

I sin θ
2
(κ+ 1− 2 cos2 θ

2
)−Kaux

II cos θ
2
(κ− 1− 2sin2 θ

2
)
]
,

uaux
3 = 1

µ

√
r

2π
Kaux

III sin θ
2
,

(C.2)
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where µ is the shear modulus and κ is a material constant, as

κ =

3− 4ν plane strain,

(3− ν)/(1 + ν) plane stress.

(C.3)

The auxiliary strains areε
aux
11 =

∂uaux1

∂x1
, εaux

22 =
∂uaux2

∂x2
, εaux

12 = 1
2
(
∂uaux2

∂x1
+

∂uaux1

∂x2
),

εaux
13 = 1

2

∂uaux3

∂x1
, εaux

23 = 1
2

∂uaux3

∂x2
, εaux

33 = 0.

(C.4)

For 2D cases, the auxiliary field can be obtained by the equations above but setting all

items regarding to the x3 direction to zero, i.e.σ
aux
23 = σaux

23 = σaux
23 = 0, uaux

3 = 0,

εaux
23 = εaux

23 = εaux
23 = 0.

(C.5)
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