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Abstract

The solubility and compatibility of polymer mixtures is one of the crucial
limitations in the development of a large variety of plastic products such
as adhesives. Changes in solubility can change the mechanical, optical and
olfactory properties significantly. In this work, theory, simulation and exper-
iment were used to study the solubility and partitioning in polymer systems.
The recently published SAFT-y Mie equation of state was implemented into
a stand-alone program together with all algorithms for parametrising new
models and predicting phase equilibria. An analysis of the transferability
of low-molecular weight Mie potential parameters for predicting the misci-
bility of polymer mixtures and partitioning of oligomers in polymer systems
revealed the need for new models optimised for polymers. A systematic
overview and analysis of available and typical experimental polymer data
concluded that pure-component polymer-melt densities and cloud-point tem-
peratures (liquid-liquid equilibria) are the best and most practical choice for
parametrising new SAFT-vy Mie models. New polymer models were devel-
oped for a range of pure polymers, several binary mixtures and one ternary
polymer mixture. All models showed very good agreement with the experi-
mental data included in the model development. Good agreement was found
for predicted properties and conditions not included in the parametrising
process. Coarse-grained (CG) force fields were developed with the help of
the SAFT-v Mie equation of state. Excellent agreement was found for the
direct translation of Mie potentials to CG force fields for modelling prop-
erties of low-molecular weight compounds and densities of polymer melts.
Coarse-grained models for molecular dynamics (MD) simulations of polymer

phase equilibria are more challenging to develop due to greater computa-
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tional resource requirements and less perfect agreement between SAFT-v
Mie and MD force fields. The challenges were demonstrated and discussed
for a polystyrene solution and a binary mixture of polystyrene and poly-
isoprene. The synergistic power of SAFT-v Mie and MD simulations was
used for developing coarse-grained models for describing the surface of a
oligomer /polymer blend. Pure-component parameters were optimised within
SAFT-y Mie. In MD simulations, the SAFT-y Mie CG model reproduced
experimental partial-density surface profiles as a function of blend composi-
tion without the need to rescale length scales. Oligomer surface enrichment,
wetting transition and wetting layers were correctly predicted with a single

model.
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polymer

oligomer

monomer

bead

tackifier

plasticiser

cloud point
CcpC
PVT

VLE

LLE

chain-like large molecule made of a repeated single or

repeated few units
short polymer

chemical unit which is repeated in oligomers and poly-

mers

spherical unit in SAFT models and MD simulation force
fields, which can represent a single atom or a group of

atoms

an oligomer which can improve the tack of rubber-like

polymers
an oligomer which can plasticise rubber-like polymers

condition (temperature or pressure) at which a polymer
solution or mixture becomes cloudy/hazy, indicating the

onset of phase separation
cloud point curve

pressure/volume/temperature data triplets, effectively

density values at a range of temperatures and pressures
vapour—liquid equilibrium
liquid-liquid equilibrium

Xlil
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Chapter 1
Introduction

Industrial equilibrium properties of polymer systems are crucial for the devel-
opment of products made from a mixture of polymers and oligomers such as
tackifiers, plasticisers and other additives to meet specific properties and ap-
plication requirements. Also, in the process of plastic recycling, the compat-
ibility of different polymers, compatibilisers and solvents is relevant.! When
polymers are used in the analysis of organic compounds in water systems
a piece of plastic can be submerged to passively sample compounds. For
the subsequent determination of the concentration of the studied compounds
their accurate partition constant between the passive sampler and water is

necessary. >

The prediction of solubilities and partitioning of molecules between differ-
ent solvents has been of interest for a long time.? Experimental measurements
of thermophysical data on liquids and polymers, especially in slowly equili-
brating systems, are often expensive and very time consuming. Predicting
the compatibility of polymer systems of low viscosity is therefore not only at-
tractive for screening materials, but also due to the fact that computational
predictions could potentially be faster than experiments. The prediction of
partitioning is not only of scientific but also of industrial interest as the mi-
gration of solutes from a host system can change the mechanical, optical and

olfactory properties significantly.*

Examples of equilibrium properties of polymer systems are the compati-
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bility (qualitatively) of different polymers and oligomers, solubility (quantita-
tively) of one compound in another compound or mixture, and the partition
ratio (quantitatively) of one polymer between two polymer phases. A visu-

alisation is presented in Fig. 1.1.

separated

& o @

@
Kap

polymer
oligomer

mixed

Figure 1.1: Visualisation of two key properties analysed and predicted in
this work. (left) The partition coefficient, K45, is visualised as the concen-
tration ratio of a short polymer (purple curl) of two polymer phases A and B
(shaded boxes) in contact, and (right) the compatibility of a short polymer
in a single-phase matrix. Polymers can agglomerate and phase separate, or
homogeneously mix with the polymer matrix. The terms compatibility, mis-
cibility and solubility are used synonymously in this work to describe how
thermodynamically stable a mixture of polymers is.

This chapter introduces the background and terminology needed for the
remainder of the dissertation. After an introduction to the thermodynam-
ics of phase equilibria, an overview of approaches to solubility and phase
separation, as well as an overview of approaches to coarse graining, are pre-
sented. In Chap. 2, the scope and aims of this work are stated. In Chap. 3, a
separate introduction to the statistical associating fluid theory (SAFT) with
focus on the incarnations SAFT-VR Mie and SAFT-y Mie and their applica-
tion to polymer systems is given. In Chap. 4, details on our implementation
of the SAFT-VR Mie and SAFT-y Mie and additional algorithms for cal-
culating phase equilibria are presented. In Chap. 5, first we use published
SAFT-y Mie parameters to predict the miscibility and partition coefficients
of polymer mixtures. In a second step new SAFT-v Mie parameters are
developed for a range of pure and multicomponent polymer systems. In

Chap. 6, SAFT-y Mie parameters are applied in molecular dynamics simula-
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tions to predict polymer-melt densities, polymer mixture solubilities and the
surface of oligomer/polymer films. In Chap. 7, the conclusion of this work

and potential future work are described.

1.1 Thermodynamics of phase equilibria

From the partition function ) of a system, which is a description of the
accessibility of the states of a system, the Helmholtz free energy A can be

determined and consequently other thermodynamic properties obtained

A= —NkgThhQ. (1.1)

In thermodynamics it is often convenient to define ideal states and express
deviations for real systems. In terms of the Helmholtz energy, the deviation

from the ideal state is often referred to as residual property

Areal _ Aideal _i_Aresidual' (12)

Once the Helmholtz free energy A of a system is known, its derived prop-
erties can be computed by evaluating first and second derivatives. The ex-
pressions can be obtained by considering the definition of the Helmholtz free

energy
dA = —SdT — PAV + Y pu;dN;. (1.3)

Within the canonical ensemble (NVT-ensemble), in which the number
of particles N, the temperature 7' and the volume V are constant, three
properties can be obtained by considering the variation of one of the three
parameters at a time while keeping the others constant. Those three prop-

erties are the pressure P, the chemical potential u; and the entropy S
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0A
_ 1.
(M)MT " (L5)

_ (g_;) . =S (1.6)

A list of more thermodynamic properties expressed in terms of the Helmholtz

free energy can, e.g. be found in Refs 5-8 and a selection in Chap. 4.

1.1.1 Definition of ideal

Ideal behaviour of pure compounds is defined in this work as the behaviour
of an ideal gas. Ideal gas particles are without particle volume and without
interactions (apart form elastic collisions) between them. Alternatively, an

ideal system can be defined via the change in internal energy U,
8U idea
<8_T) . = (Oideal — const. (1.7)

where Cideal i the heat capacity at constant volume. The change in internal
energy is constant with respect to temperature. For a monoatomic particle,
the heat capacity is Cid*l = 2RT, for a diatomic particle Cif*? = SRT
and the heat capacity increases with more complex particle structures which
possess more translational, rotational and vibrational degrees of freedom to
store kinetic energy. For polymers, the number of degrees of freedom become
almost impossible to determine from first principle, which is why the ideal

heat capacity of polymers is typically obtained from correlated empirical

data. %10

Ideal behaviour of mixtures is defined as ideal according to Raoult’s law.
With Raoult’s law the pressure is a linear combination of its components.
Properties are proportional to the mole fraction of the components, which is a
good description for compounds of similar structure. It is worth emphasising
that ideal mixtures are always miscible due to the gain in entropy of mixing

by increasing the accessible volume for each compound.
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Excess vs Residual

Residual properties are defined as non-ideal contributions of a system of one
or more compounds, while excess properties describe non-ideal contributions
of properties upon mizing, which are differences between the pure and mixed

states.

B =B — Bideal (18)
B® =By — Bl =B = > B} (1.9)

mix

where property B for component i is B;, B® is the excess property, B is the
residual property and B« the property upon mixing. The excess and mixing
properties differ for Helmholtz free energy, Gibbs free energy and entropy as
they show non-zero ideal contributions of mixing (Bl92!). For many other

properties excess and mixing contributions are the same.

1.1.2 Phase equilibrium

The state of equilibrium of a closed system (energy transfer but no mass
transfer is possible) can be defined as having the same temperature, the
same pressure and the same chemical potential throughout the system. For

a system of k phases and m components this corresponds to®

7O — 7@ 76 — ... = k) (1.10)

p) = p@ =B = ... = p) (1.11)
k

Mgl) _ /~L§2) _ 53) — = ui ) (1.12)
k

Mg) _ ’ugz) uga) L ’ug ) (1.13)
1 2 3 k

i) =) = == ) (1.14)

p) =D = 8 — o= (k) (1.15)

The free energy of mixing AW, in a canonical ensemble for a binary
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mixture can be defined as
mix urel ure2
Anvr = Anvr — AI]DVlvlT - AIJJVQVQT (1.16)
= Ayyr — 21 AR — (1 — ap) AR (1.17)
where N = N; + N, V=V + 1, andxlzﬁ.
Mixtures are fully miscible if they show a negative energy of mixing and

a positive curvature with respect to the composition
AN <0 (1.18)

(agéﬁ;)?)w 0 e

1.2 Approaches to solubility and phase separa-
tion

This section gives a short overview of approaches and methods to determine
solubilities and phase separation properties. This overview is not meant to be
exhaustive, but starts with a few general principles and common properties
by which models can be grouped and classified, and is followed by a selec-
tion of approaches which are introduced separately. The methods that will
be introduced in this section are solubility parameters, the Flory—Huggins
theory, the universal quasichemical activity-coefficients method (UNIFAC),
COSMO-RS, the Ornstein—Zernike equation approach, molecular dynamics
simulations, dissipative particle dynamics (DPD), and equations of state.
Each model or group of models has a different approach to describe non-
ideal deviations. It varies from a pure empirical function describing the total
deviation, to a molecular-model-based expression using microscopic physical
parameters to express each type of interaction separately. Nevertheless, in-
dependent of the degree of complexity of the models, each well performing
model uses at least a few parameters that have been fitted to experimental
data. There is no pure ab initio method for determining solubilities and

polymer phase separation accurately to date.
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A simple way to divide models into two groups is to separate group-
contribution (GC) models from non-GC models. GC models offer specific
parameter sets for individual chemical functional groups and allow the pre-
diction of properties of molecules by assuming the contribution of functional
groups,/ building block to the properties are the same for each molecular
structure they are part of. Non-GC models need to be parametrised for each

system or compound and do not allow the combination of parameters.

For many model groups, both non-GC and GC versions exist. Fxam-
ples are UNIQUAC! / UNIFAC,'? SAFT-VR**!/ SAFT-v,!>1¢ Wilson'"/
ASOG, and COSMO-RS'®/ COSMOfrag. '

1.2.1 Solubility parameters

Solubility parameters provide a simple way to predict solubilities. One-
dimensional (Hildenbrand)?” and three-dimensional (Hansen)?! solubility pa-
rameters are tabulated for a large range of solvents and polymers, and can
be determined both experimentally and by computational methods (e.g.,
molecular dynamics?? and Monte Carlo simulations,?® equations of state??*
and COSMO-RS?4%). The shorter the distance between the solubility pa-
rameters in the one-dimensional (Hildebrand) or three-dimensional (Hansen)
space, the more likely it is that the corresponding compounds are miscible.
A sphere around the solubility data of a compound, such as a polymer, can
be determined in the 3-dimensional space, which includes all solvents that

are predicted to dissolve this polymer.

The current database of the Hansen solubility parameters (HSP) com-
prises experimentally determined results for 1200+ chemicals, more than
10,000 calculated parameters, and data for more than 500 polymers.? It
is the collected experience of more than 40 years of applying Hansen solu-
bility parameters, and can often be a quick and simple tool for predicting

solubilities.

The Hildebrand solubility parameter ¢ is obtained from the cohesive en-
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ergy Ec (energy to turn a liquid into a gas)?°
Ec
8 =—. 1.20
& (1.20)

The HSP divides the cohesive energy density into 3 specific contributions
6% = 0 + & + o, (1.21)

where dp, dp and oy are the dispersion, polar and hydrogen bonding solubility
parameters, respectively. The separation of the cohesive energy density into
the three components is usually performed on the basis of molar volume,
dipole moment, refractive index and critical temperature.?”

Solubility parameters describe the non-combinatorial Gibbs free energy
of mixing of compounds A and B

AGmiX ¢A¢vaix(6A - 63)27 (122)

non—comb

where ¢4 and ¢p are volume fractions and Vi, the volume of the mixture.
Solubility parameters, however, do not (at least not fully) account for the en-
tropy of mixing?” and the free-volume effects (molecular size differences). "
Therefore, the HSP are often used in combination with the Flory-Huggins

theory, 2729

which includes ideal combinatorial contributions (see next sec-
tion). Further corrections can be applied such as an approach to account
for the difference in molecular size.?” Another computational route to sol-
ubility parameters are atomistic molecular dynamics simulations, even for

polymers. 3"

Hansen notes that one of the problems with the HSP is their low accuracy
caused by obtaining the parameters as differences between large numbers. 2’
Although deviations for non-simple compounds are known, the simple empir-
ical expressions are still widely used today. One of the approaches to improve
the description is a molecular-shape dependent correction factor recently de-

rived by Hughes et al..?!
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1.2.2 Flory—Huggins theory

The Flory-Huggins (FH) approach for determining the Gibbs free energy
of mixing is a simple model designed for polymer systems, and despite its
simplicity is still in extensive use today.?"?®32736 The Gibbs free energy of

mixing of two polymers can be expressed as®°

AGmix B Sln ¢ N (1 —¢)In(1 — ¢) n X120(1 — @)
ksT vV 2N Ur ’

(1.23)

where ¢ is the volume fraction of component 1, and N; and v; are the number
of monomers and volume of a single monomer in component 4, respectively.
¢/v1 Ny corresponds to the molecular number fraction of component 1. The
volume v, is an (arbitrary) reference volume, which needs to agree with the
reference volume for which the binary interaction parameter yio has been

determined.

The first two terms in Eq. (1.23) describe combinatorial/entropic con-
tributions, while the third in principle accounts for enthalpic interactions.
As the y1o parameter is often fitted to experimental data, in practice it also
accounts for not-considered combinatorial effects and shortcomings of the en-
tropic part. The y12 parameter is a measure of antipathy between compound
1 and 2. The larger x12, the more favourable are like interactions (1-1; 2-2)

compared to unlike interactions (1-2).

The combinatorial part accounts for molecular size differences and, there-
fore, gives an important improvement over ideal descriptions for polymer

systems of different degrees of polymerisation and polymer—solvent systems.

The y12 parameters are usually determined experimentally. A popular
method is the application of the random phase approximation (RPA) to
neutron scattering profiles from homogeneous polymer mixtures.?¢ Also sol-
ubility parameters, like the Hansen solubility parameter (HSP), can be used
to obtain Y parameters. FH can be connected to solubility parameters by

the following equation

X12 = ¢1¢20, (81 — 02)%. (1.24)
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Equations (1.23) and (1.24) do not (explicitly) account for free-volume
differences. Milner et al.?® have shown that the free-volume contribution to
X12 18 typically 0.3 in units of yi2. Although it is influenced by thermal
expansion coefficients, molecular-volume differences, temperature, and other

exceptions are known,® often 0.34 is added to xi2 in Eq. (1.24) as a rule of

thumb. 273

1.2.3 UNIFAC

Activity-coefficient approaches to solubility use activity-coefficient parame-
ters as a means to describe the non-ideal behaviour, which is the correction
factors to Raoult’s law.

The universal quasichemical activity-coefficients (UNIQUAC) ! method
and its group-contribution version, the universal quasichemical functional-
group activity-coefficients (UNIFAC)'? method, are popular acitivity coef-
ficient methods. In contrast to methods such as the Flory—Huggins approach

37 or ‘surface fractions’>8

they are derived from ‘local composition fractions’
instead of ‘volume fraction’. Free energy changes are described by the local
composition and how it deviates from a random distribution. Additional
methods based on the ‘local composition’ theory are the Wilson'” and the
Non-Random Two-Liquid (NRTL)?* model.

The UNIFAC method uses tabulated surface and volume contributions
and binary interaction parameters; while the surface and volume contribu-
tions are usually derived from the van der Waals radii, the binary interaction
parameters are fitted to experimental data.

The activity coefficient of compound 4, v;, within UNIFAC is defined as
a sum of combinatorial and energetic parts, where the first arises due to size

and shape differences and the second due to energetic interaction differences®’

Iny; = InymP 4 Inres, (1.25)

As there are different versions of the UNIFAC method, there is no univer-
sal set of parameters. The versions differ, e.g., in their detailed expressions,

by how the temperature dependency is implemented, which equilibrium data
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was used for the parametrisation, and by its main application. An overview
can be found in Ref. 37.

The UNIFAC model, and especially the extended model UNIFAC-FV !2
including free-volume (FV) considerations, have been applied to polymer sys-
tems with good results, see for example Refs 28,40-42. Its success can at
least partially be attributed to the large group-contribution set of functional
groups for which parameters are available. The interaction parameters were
correlated to the largest available set of experimental thermophysical data:
the Dortmund Databank. As an activity-coefficient method, UNIFAC is lim-
ited to liquid-liquid mixtures (and liquid-vapour assuming ideal vapour) and
can not be used for volumetric properties such as densities without additional
tools. Within the framework of UNIFAC the development of additional pa-
rameters is not possible by using new experimental data, in case the available
parameter set might not perform well enough on the polymer systems of in-

terest. 38

1.2.4 COSMO-RS

The COnductor-like Screening model for Realistic Solvents (COSMO-RS) 1843
is a predictive tool, which combines quantum chemical calculations and sta-
tistical thermodynamics. Binary interaction parameters are determined from
molecular surface charges obtained from a quantum chemical calculation. By
using these quantum-chemically-obtained interaction parameters, COSMO-
RS is not limited to fields where experimental data is known, but can also
be used for systems which were not considered in its development.

To obtain the essential molecular surface charges, the quantum chemical
COSMO method** is used: An initial solute molecule structure is chosen and
its corresponding molecular surface shape determined. The electron density
of the molecular structure is calculated in a quantum chemical single-point
calculation. The electrostatic potential that arises from the electron density
and nuclear positions is mapped on the molecular surface. A solvent with
properties of a perfect conductor (infinite permittivity) is assumed to sur-

round the molecule, which screens the surface charges fully, by adapting its
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own charges (the conductor-like screening charges) to be the same magnitude
as the molecular surface’s charges but of opposite sign. In the first iteration
process, the conductor-like screening charges are included as additional ex-
ternal charges in the next quantum chemical repetition until self-consistency
is achieved. The second iteration process optimises the molecular struc-
ture, in which the atom positions are adjusted until the (local) minimum-
energy structure is obtained. For each step in the structure optimisation,
new adapted self-consistent conductor-like screening charges are calculated.

In summary, the quantum chemical aspect of the method adapts the
electron distribution and atom positions towards the lowest energy, while
the COSMO aspect follows in mirroring the negative of its surface potential
mimicking a surrounding solvent with perfect conductor properties at each
iteration.

Important parameters in the COSMO method are the choice of the quan-
tum chemical (QC) method and the choice of surface shape construction.

A characteristic profile, the so-called o-profile, is generated by plotting
the electrostatic surface charges against its size of area of occurrence on the
molecule’s surface. The beautiful colour-coded molecular surfaces and the
analytical o-profile are interesting results on their own and indicate detailed
molecular properties.

COSMO assumes a solvent environment of infinite permittivity as it al-
lows any surface charge to be compensated/screened. A simple correction
term was published in 2008%° to reduce the screened charge as a function of
the "experimental" solvent’s permittivity.

To account for more than one geometrical conformation—which is impor-
tant especially for flexible molecules—additional molecular structures and
their o-profiles are included. The calculation of the additional o-profiles and
an additional self-consistent iteration, however, increase the computational
effort significantly.

QC calculations can not be performed on whole polymer chain as they
are computationally too demanding. Instead, oligomers (trimers, tetramers,
pentamers,...) are calculated, then the terminal monomers are cut-off and the

remaining pseudo-monomer is repeated to reach the targeted chain length.



1.2. Approaches to solubility and phase separation 13

The choice of cuts in the original oligomer introduces small charge errors at
the cuts. Multiplying the pseudo-monomer also multiplies the error. Espe-
cially for polar polymers, this error is significant. COSMOlogic, the com-
pany behind COSMO-RS, advises to not to use repetitions of 100 or more,
even if cuts are made at rather non-polar bonds.*® For more information on
COSMO-RS the reader is directed to Ref. 44.

Both UNIFAC and COSMO-RS are based on the same expressions for
the combinatorial entropy*. The combinatorial parts are determined from
molecular volumes and surface areas instead of macroscopic volume frac-
tions.?® The most important difference between UNIFAC and COSMO-RS
is that the binary interactions between segment types in UNIFAC are fitted
to experimental data, while COSMO-RS derives them from surface charges

obtained in the quantum chemical calculations.

1.2.5 Ornstein—Zernike equation/ integral equation the-

ory

Integral equation theories have been used to describe mesoscopic structural
and thermodynamic properties of polymer melts.*”*® Guenza and cowork-
ers solve the Ornstein—Zernike equation using the hypernetted chain-closure
(HNC) and the reference molecular mean spherical approximation (R-MMSA)
to develop coarse-grained force fields for polymers. Polymers are modelled at
mesoscopic level as colloidal particles interacting with soft potentials. Each
polymer chain is described with one or more units, which each are larger than
the persistence length of the polymer chain. When one bead is used only, the
size is comparable to the radius of gyration of the polymer. An analytical
equation of state has been developed based on this approach.*® Results for the
volume dependency of the pressure (compressibility) for one temperature and
the intermolecular correlation function between the coarse-grained particles
were shown to be comparable to results of united-atom simulations.*® While

it is remarkable how both structural and thermodynamic properties are cap-

*Combinatorial entropy is the mole and volume-fraction-dependent ideal entropy also
used in the Flory-Huggis theory, see Sec. 1.2.2.
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tured simultaneously with this approach for polymer melts, for mixtures of
polymers only structural properties have been predicted.***° Further work
seems to be necessary to achieve agreement for thermodynamic properties

such as miscibility of polymer mixtures.

1.2.6 Molecular dynamics simulation

Molecular dynamics (MD) simulations and Monte Carlo (MC) simulations
are the two most important particle-based molecular simulation methods.
MD uses equations of motion to evolve the trajectory of particles, which
enables studying time-dependent and time-averaged properties. In MC sim-
ulations, new configurations are sampled based on random numbers and the
Boltzmann factor of the (potentially accepted) new state. Configurations in
MC simulations are changed by explicitly defined types of moves, which can
range from simple rotations to deleting and regrowing of molecular parts.

In molecular dynamics simulations, Newton’s equation of motion is solved
for particles that interact by a set of classical potentials that account for
bond stretching, bond bending, torsional restrictions, dispersion and electro-
statics. Using available atomistic force fields is usually too computationally
demanding to be applied routinely to phase equilibria in polymer systems.
Coarse-grained force fields (see next section) can speed up calculations by
reducing the number of units, sampling phase space quicker and allowing a
larger time step to progress in time faster.

The simplest and most naive approach to determine partition coefficients
from MD simulations, e.g., for an oligomer between two polymer phases,
would be direct counting of oligomer molecules in both phases in an equi-
librated system. However, if the frequency of migration of the oligomers
between the polymer phases is low at the conditions of interest, the process
of equilibration is computationally expensive. To improve the accuracy of the
predicted partition coefficient either the dynamics of the equilibrated system
need to be studied over a longer time or the size of the system needs to be
increased or both.

For low-frequency migration processes for which the direct counting method
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is not appropriate, a different migration path can be studied. Such a path
might even be non-physical. As the free energy is a state function and,
hence, free-energy differences are independent of the considered path, com-
putationally advantageous (unphysical) transitions lead to the same results.
Solutes, e.g., can be gradually "grown" into the solvent phase. For exam-
ple, Garrido et al.?* have demonstrated good agreement between predicted
and experimental octanol-water partition coefficients for a range of solvents.
One advantage of the thermodynamic integration approach is its ability to
systematically improve the predictions by reusing simulation results of lower
accuracy, which is possible because the growth process is divided in indepen-
dent simulations.

Also Monte Carlo simulations have successfully been applied to determin-
ing solubilities. The Grand Canonical Monte Carlo (GCMC) simulation tech-
nique (VT ensemble), and a modern version with polymer-tailored Monte
Carlo moves has been applied to the solubility of alkanes and oligomer in

polyethylene.*?

1.2.7 Dissipative particle dynamics

Dissipative particle dynamics (DPD) is a popular approach for mesocale sim-
ulations capturing hydrodynamic behaviour.®®* The force between particles
is a sum of three contributions.

The conservative force is softly repulsive at small interparticle distances
and linearly vanishing towards the cutoff distance (equal to the particle diam-
eter). The dissipative force (drag force) effectively introduces fluid resistance
opposite to the direction of flow. A random force sampled from a Gaussian
distribution for each particle pair is also applied.

Interactions can be derived from the Flory—Huggins theory demonstrated
by Groot and Warren.?® Recently, an alternative to deriving interaction pa-
rameters was presented by Fraaije et al.® Their methodology is based on
residual free energies of mixing, which can be obtained from other predictive

(group-contribution) methods such as COSMO-RS and UNIFAC.

In its original form, DPD is an canonical ensemble (NVT') simulation
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technique. Constant volume conditions are required to model condensed flu-
ids due to the purely repulsive interactions. Using net-attractive interactions,

57-59 4]

for example by adding a density dependent force (multibody DPD),
lows the modelling of condensed fluids naturally, and makes the modelling of
vapour-liquid equilibria and other larger density changes possible.

Larger time steps can be used in DPD compared to molecular dynamics
simulations due to the soft interactions, effectively allowing longer simulation
times.

Polymer solutions,® blends and complex fluids have been modelled with
DPD. In particular micelles, lamellar structures and other heterogeneous
fluids with microphase separations can be captured easily. The reader is

referred to an overview article® for further details.

1.2.8 Equation-of-state approaches

Equations of state (EoS) are expressions relating thermodynamic properties
such as temperature, volume, density, free energy and pressure. While sim-
pler equations of state differ by how many empirical parameters are required
and how they are combined to describe the thermodynamic phase space, more
advanced EoS methods use molecular-structure related parameters and allow
therefore the link to other methods like molecular dynamics simulations.
Van der Waals (vdW) introduced in 1873%% two empirical parameters a
and b to improve the ideal gas equation of state. The corresponding addi-
tional terms account in a simple and brilliant way for free-volume effects and

particle interactions

N2
(P-’-CLW) (V — Nb) = NRT (1.26)

A number of adjustments have been proposed to the vdW EoS leading
to improved descriptions. Examples are the Redlich-Kwong (RK), Soave—
Redlich-Kwong (SRK), Peng-Robinson (PR)?*® and Panayiotou—Vera EoS.?®

They all have in common that they can be rearranged into a polynomial that
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is third order in volume and are therefore referred to as cubic EoS. The
determination of the volume in cubic EoS is mathematically equivalent to
finding the root of a cubic function. Cubic equations of state extended by a
Wertheim-type® 8 association term are referred to as cubic-plus-association
(CPA) EoS. CPAs are still in extensive use, e.g. for high pressure systems
in the petroleum industry,*% but applications to polymer systems can be

found also.™

Parameters in equation-of-state approaches are often defined with the
help of the theory of corresponding states. It assumes that the relative be-
haviour of compounds is similar and is mainly influenced by the individual
critical temperature and pressure values. Some equations of state use the
critical temperature—pressure pair as the only or most important informa-

tion for its parametrisation.?®

An advanced equation of state based on a detailed molecular model is the
statistical association fluid theory (SAFT).™ SAFT is based on a pertur-
bation approach for describing interactions between monomers starting from
a hard-sphere fluid™™ as reference and Wertheim’s thermodynamic per-
turbation theory™ ™ for describing the formation of chains and additional
association interactions. While SAFT-v incarnations have been improved
by higher order perturbation terms to almost perfectly reproduce a range
of thermodyamic experimental data for spherical molecules, chains are de-
scribed with the first-order perturbation term (i.e., they are assumed to be
fully flexible with no bond and dihedral angle preference or restriction). This
description has been found to be a good approximation for liquid densities, 6
but for mixtures of polymers of different chain lengths where the stiffness of
chains, its surface accessibility and coiled structures are important it is not
expected to be as predictive as for more spherical molecules. Satisfactory cor-
relations and predictions from pure-component parameters have been shown
for polymer—solvent systems within SAFT-HS,% PC-SAFT®"%2 and SAFT-
VR.® See Chap. 3 for further details on SAFT in general and SAFT-VR Mie

and SAFT-y Mie in particular.
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1.3 Approaches to coarse graining

Coarse graining (CG) is the process of parametrising a model of lower res-
olution. Lower resolution is usually specified in comparison to an atomistic
model. In the context of molecular simulations, atomistic models are referred
to as full-resolution models, while models with one bead per heavy atom (re-
ferred to as united-atom resolution) or one bead per monomer are models
with typical coarse-grained resolutions. Fig. 1.2 visualises a polymer model

with different degrees of coarse graining.

60 AM@M{W‘W united atom

12 CG 1-1
6 CG 2-1
4 CG 3-1

Figure 1.2: Polymer model representations with different degrees of coarse
graining. The number of beads (left column) of a 12mer of polyisoprene
reduces from the full-resolution all-atom (top), via the united-atom resolu-
tion to even further coarse-grained models, which lump one, two or three
monomers into one coarse-grained bead.

Coarse-grained models lead to faster simulations compared to their higher-
resolution equivalent, because of three reasons: Firstly, the smaller number
of beads reduces the number of interactions to determine. Secondly, the
free-energy landscape is smoother leading to faster diffusion. Thirdly, the
interaction potentials of coarser systems are usually softer, which allows an
increase in the time step within MD simulations. Coarse-grained models

allow access to longer time scales and larger length scales.
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Coarse-grained potentials are typically developed as a temperature-inde-
pendent potential and are, therefore, state dependent.®® State dependency
describes the inability of models to accurately represent the system over a
wide range of temperature and pressure conditions. The mapping of the
position of the beads of the finer model onto the position of the beads of
the coarser model, e.g., by using the centre of mass, is clearly influenced by
temperature, i.e., kinetic energy and intramolecular restrictions of the indi-
vidual beads. An optimal choice of temperature-independent coarse-grained
potentials by including several state points in the CG potential development,

however, can reduce the state dependency.

Coarse graining is concerned with a balance between reducing the num-
ber of particles and still retaining as much molecular structure as necessary
for the properties of interest to be described accurately. While versatile and
transferable coarse-grained force fields are available at the united-atom res-
olution (e.g., TraPPE® and NERD®), the transferability of coarse-grained

force fields at the resolution of several heavy atoms per bead is often limited.

Coarse-graining methods can be divided into "bottom-up" and "top-
down" approaches. Bottom-up approaches take models of higher resolution
(usually atomistic models) as the reference for parametrising coarse-grained
models. Top-down approaches employ models of lower resolution, usually

macroscopic experimental values, to inform new models.

Coarse graining aims to integrate out unnecessary information and to only
retain those of interest. The most important criteria for good coarse-grained
descriptions are the representability of the reference model or reference ex-
perimental system and transferability to new conditions and new models by,
e.g., extending the chain length or combining beads differently than during

the parametrisation process.

For overviews and comparisons of coarse-graining methods the reader is
referred to Refs 87-92.



20 1. Introduction

1.3.1 Bottom-up

Bottom-up coarse-graining methods use finer-grained models to inform the
coarse-grained model. Typically the CG model is optimised to reproduce the

structural properties or the forces obtained from the finer model.

Iterative Boltzmann Inversion (IBI)

A common bottom up approach is the iterative Boltzann inversion (IBI).%
The coarse-grained potential V; is iteratively optimised by the inverted Boltz-
mann factor of the ratio of the property distribution function g; of the tab-

ulated interaction potential V; and the target distribution function giarges

Viyr = Vi+ kgTln ( Ji > . (1.27)
Gtarget
The distribution functions are typically radial distributions, angular distri-
butions, bond-length distributions and torsional distribution functions. This
method has also been successfully applied to polymer systems.?* " The dis-
advantage of IBI, however, is that it can be a time-consuming method,
while the obtained CG force fields are often only accurate for a narrow
pressure/temperature range.’® Moore et al. have extended IBI to multiple
thermodynamic states (MS-IBI) and have presented force fields of improved

transferability compared to a single-state IBI. %

Relative-entropy method

1190 yses the probability of configurations

The relative-entropy method by Shel
to be observed in simulations to define the fitness of coarse-grained models.
The best coarse-grained model minimises the relative entropy S, which is

a measure of the loss of information upon coarse graining

. ptarget (Z)
rel — E arge 1 ) 1.2
5 : - Prarg t(Z) N pmodel(z) ( 8)

2
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where Prarget(7) and pmodel() are the probability of configuration ¢ in the
target and model system, respectively. While similar results compared to IBI
methods can be obtained, one advantage of the relative-entropy method is the
possibility to use analytical potentials. The relative entropy is a flexible and
generalised approach to analyse and develop models. Despite the flexibility
and advantages, the relative-entropy method has so far only been applied to

a limited number of systems. 100101

Force Matching

In the force-matching approach (also referred to as multi-scale CG approach,
MS-CG) by Izvekov and Voth!'%%!9 the forces acting between the coarse-
grained particles for each simulation snapshot are optimised to best match
the forces of the finer-grained simulation. The coarse-grained interaction
potentials are spline functions, for which the coefficients are optimised by
solving a set of linear equations. Applications of the force-matching approach

have been published for several low molecular weight compounds. 341927105

1.3.2 Top-down

Top-down coarse-graining methods use mesoscopic, macroscopic or exper-
imental properties to inform the coarse-grained model. Typically the CG

model is optimised to thermodynamic experimental data.

MARTINI approach

The MARTINI force field % is a set of coarse-grained force fields at a similar
degree of coarse graining (3 or 4 heavy atoms per bead), which are sys-
tematically parametrised to match experimental partition coefficients. The
group-contribution nature of the set of beads allows the quick development
of new coarse-grained MARTINI models by mapping available beads onto
new structures of interest.’” The MARTINI methodology has mostly been
applied to biomolecular systems, 519819 byt also applications to polymers

were published. 110112
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Statistical Association Fluid Theory

The Statistical Association Fluid Theory (SAFT) offers an analytical link
between coarse-grained force fields and thermodynamic properties such as
density, pressure, solubility or liquid-liquid equilibrium compositions. The
advantage of SAF'T approaches is the speed with which the properties can
be calculated and, hence, the parametrisation can be performed. The faster
calculation of target properties for model force fields compared to molecular
simulations makes it possible to parametrise a force field not only to one state
point, but to a set of thermodynamic properties at a range of temperatures
and pressures. The range of conditions included in the parametrisation pro-
cess improves the transferability of the CG force fields significantly. &113 119
See Chap. 3 for further details on SAFT in general and SAFT-VR Mie and

SAFT-y Mie in particular.



Chapter 2
Statement of aims

The aim of this work is threefold. First, we aim to develop our own im-
plementation of the SAFT-y Mie theory together with all required solvers
and optimisers to apply and develop SAFT-y Mie models. Second, we aim
to assess the accuracy of SAFT-y Mie correlations and predictions for ther-
modynamic properties of polymer systems. Third, we aim to analyse how
well SAFT-v Mie models perform as force fields in coarse-grained molecular

dynamics simulations.

A new implementation of the SAFT-v Mie equation of state together
with algorithms for liquid-liquid equilibria for multicomponent systems and
Mie-parameter estimation will be developed. An interface to the HELD code
will be provided, to allow the calculation of multicomponent vapour-liquid
equilibria. The code and solvers will be rigorously tested and details of the

development and testing presented. See the results in Chap. 4.

A systematic and comprehensive analysis on how well the most recent
SAFT incarnation SAFT-y Mie can be applied to polymer systems will be
conducted. A literature search will be performed to assess the accessibil-
ity of experimental data for parametrising SAFT models. An overview of
the experimental data will be presented and the suitability of different data
types compared and tested. New tailored SAFT-y Mie parameters for pure-
component polymer melts, binary polymer mixtures and ternary polymer

mixtures will be parametrised. The polymer models will be examined on

23



24 2. Statement of aims

how accurately they can correlate, extrapolate and predict the experimental
reference data. See the results in Chap. 5.

The link between SAFT-vy Mie and molecular dynamics simulations will
be investigated for polymeric systems. The properties of low molecular com-
pounds, oligomeric and polymeric melts and mixtures will be simulated.
While the focus will be on homogeneous bulk properties, also the surface
of an oligomer /polymer mixture will be simulated and compared to experi-
mental surface density profiles. See the results in Chap. 6.

A more detailed introduction to the statistical associating fluid theory
(SAFT), and SAFT-y Mie in particular, is provided in Chap. 3. The chap-
ter also includes an overview and comparison of the most relevant SAFT

incarnations for polymers and MD simulations.



Chapter 3

SAFT

The statistical association fluid theory (SAFT) is a beautifully elegant com-
bination of equations of state (EoS) and radial distribution functions (RDF)
of simpler fluids. Although the underlying EoS and RDFs usually describe
simple pure components and their mixtures, the full SAFT EoS can model
gases, supercritical fluids, vapour—liquid equilibria (VLE) and liquid-liquid
equilibria (LLE), alkanes, polar compounds, hydrogen bonding compounds
such as alcohols and water, and also polymer solutions and complex mix-
tures. The numerous excellent developments and analyses of more than two
decades of SAFT history have brought accurate SAFT versions, strategies for
developing new model parameters and best uses of component characteristic
parameters. Also the limitations of the respective SAFT incarnations have

been discussed extensively. %4 66,116

This section is aimed at providing a brief introduction to SAFT, and
the SAFT-vy Mie incarnation in particular. Emphasis will be put on the
link to molecular simulations (Monte-Carlo and molecular dynamics) and

the application of SAFT to polymers.

Several aspects and background information of the SAFT EoS are not dis-
cussed in this chapter. For the derivation of the SAFT equation the reader
is referred to the original work by Wertheim,™ ™ the original SAFT publi-

1

cation,''” a heuristic derivation by Miiller and Gubbins®® and an excellent

review by Zmpitas and Gross!'® who give a pedagogical introduction to and
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the analysis of the foundation of the central SAFT equations. For an overview
of SAFT modifications and incarnations, the reader is referred to the popular
SAFT reviews from 2001% and 2002.% For all equations of the SAFT-vy Mie

incarnation, see the original publications by Lafitte and coworkers. 416

The non-associating form of the SAFT theory will be discussed in this
work, because the association terms are not required for the description of
non-polar compounds and their mixtures. For details on the association
extension, which is recommended for hydrogen-bonding compounds such as

kll?

water, the reader is referred to the original wor and the most recent

.19 comparing several newly developed equations

extension by Dufal et a
for the associating Helmholtz contribution in SAFT-VR Mie for describing

water in particular.

Providing an overview of SAFT versions is difficult. Very many SAFT
modifications have been suggested over the years and then applied to a large
range of different systems. A comparison between them can be difficult due to
the use of sometimes unsystematic names and the lack of a widely agreed set
of test cases.” While most incarnations have been applied to alkanes, where
usually excellent behaviour is found, not all SAFT versions have been applied
to polymers. A very brief introduction to the SAFT equations and history
of incarnations is given in this section. Some of the most used adjectives for
SAFT versions are explained. The focus, again, will be on SAFT versions
applied to polymers or linked to simulations. For excellent comprehensive
reviews and overviews over the range of SAFT theories and applications the
reader is referred to Refs 64-66,116

*This was also brought up and discussed in the closing session at the SAFT 2015
conference in Houston, a major international conference celebrating, in 2015, 25 years of
SAFT.
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3.1 SAFT backbone

One way of expressing the essential backbone of the non-associating version

of SAFT is the Helmholtz energy for a pure compound is

ASAFT
VT = In(pA®) — 1 4 Mylseg — (Mg — 1) 10 Goeg (Teontact )- (3.1)
where the ideal contribution is™
Aideal 3
=1 AT — 1. .2
N T n(p [AMT)]) (3.2)

Here, A is the temperature-dependent de Broglie wavelength of the molecular
particles, and p is the number density of particles. This term captures all
kinetic contributions and reduces, as expected, to the ideal gas equation for
the volume derivative P = 9A!9%° /9 = NkgT/V. The ideal contribution is
not unique to SAFT, but used for other equations of state, too. See Sec. 4.3.3
for more details.

The monomer contribution

AmOHO
NEkgT

= Mglgeg (3.3)

captures the change in Helmholtz energy due to the repulsion and attraction

of individual monomers. The energy per monomer segment age, is multiplied
by the chain length mg of the SAFT model.

The chain contribution

Achain
NksT

_(ms - 1) In gseg<0contact)- (34)

captures the change in Helmholtz energy due to the covalent bond of monomers
forming a linear chain. It relies on the value of the radial distribution function
of the monomer system at the contact distance gseg(Tcontact ), which quantifies
the likelihood of two monomers temporarily being separated by the distance

Ocontact-] The corresponding energy change In Gseg(Tcontact) 1 multiplied by

fAssuming the interaction potential of the (reference) monomer fluid is zero at the
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the number of bonds (mg — 1) of the linear chain model to obtain the en-
ergy contribution for forming a chain of length mg. Eq. (3.3) is the result of
the first-order thermodynamic perturbation theory (TPT1) using a 2-body
distribution function only. Higher order TPT, which involves many-body
distribution functions, and therefore captures also bond angles and dihe-
drals, is challenging to express in tractable analytical equations. TPT1 has
been the standard level of description for the chain forming term. The three

contributions of the SAFT expression are visualised in Fig. 3.1.

A= Aideal + Amono 4 Achain
SAFT-VR
... ® &
. . @ . ‘
* . . . © O
. . o .

% SAFT—v

Figure 3.1: Schematic illustration of the three contributions to the Helm-
holtz free energy of the non-associating form of SAFT. The first represents the
ideal contribution of a non-interacting monomeric system (using the proper
model architecture—usually chains—instead of the monomers here is only
necessary for the comparison between states at different temperatures, e.g.,
entropy, heat capacity and speed of sound, as vibrational and rotational
contributions do not cancel out in those cases), the second the monomer
interactions and the third the contribution due to the formation of bonds.
In SAFT-VR, homonuclear chains are formed. In SAFT-v, heteronuclear
chain are described by deriving averaged Mie potential parameters of all
types per chain (indicated by averaged bead size). Also in SAFT-~ the chain
contribution uses homonuclear chains, but the homonuclear chains represent
heteronuclear chains due to the averaged parameters. 1%16:120

Before SAFT was published, equations of state typically did not separate

bond length oc¢ontact- This is for example true for tangentially bonding hard spheres and
Mie potentials. For fused spheres or other interaction types the gseg(ocomact) is multiplied
by the Boltzmann factor of the potential at ocontact-
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monomer interactions and the chain forming terms. Perturbations account-
ing for dispersion and non-spherical shape (chains) were directly applied to
simple reference fluids such as the hard-sphere EoS. 12! With SAFT, the ref-
erence fluid is extended such that the molecular shape can be non-spherical,
i.e. chains of more than one monomer. Association interactions, which can
describe hydrogen bonding, can also be included in the reference fluid. SAFT
therefore provides an improved "molecular model". Perturbations and im-
provements can then be applied to the monomer interaction, chain character
and associating interaction separately if required, and the basic chain charac-
ter and associating interaction does not have to be part of the perturbations.
SAFT has become more predictive than earlier EoS and the better-defined
molecular model provides a closer connection to molecular simulations. "

SAFT incarnations mainly differ by what expressions are used for ageg
and gseg(0). This includes the expressions for the reference fluids, the type
of interaction potential and the number of perturbations included.

EoS and RDFs of the reference fluids are often polynomials fitted to re-
sults of molecular simulations.'"1?2:123 They are required as a function of
all parameters, such as density, temperature and composition, which is why
the simulation-based EoS can practically not be obtained for the full system

73,121

including all interactions and cases, but typically the hard-sphere and

122

Lennard—Jones monomer fluids*“* are used.

3.2 Molecular models

The molecular model in SAFT theories is typically a linear chain of spherical
segments. Special adjustments to effectively describe rings''* or branches!?*
have been made, but are seldom. A range of adjectives are used to classify
SAFT incarnations and the underlying molecular model. Some of the most
important adjectives will be briefly explained.

"Associating" vs "non-associating" indicates whether the SAFT equa-
tion includes an extra term for association, usually referred to as a?55°°.
"Homonuclear" vs "heteronuclear" vs "group-contribution" (GC)

indicates whether chains can be composed of only one type (homonuclear) or
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several types of monomers (heteronuclear). "Group-contribution approach"
usually refers to a methodology for heteronuclear models, for which a large
set of parameters has already been developed, which can be assembled to
form new predictive models. Heteronuclear SAFT versions do not neces-
sarily have expressions for the chain contribution of the Helmholtz energy
that use a heteronuclear model, but rather refer to the functionality that
is provided by the overall theory. For example, SAFT-yv SW!% and Mie!©
are referred to as heteronuclear models but use effective parameters (derived
from a heteronuclear model) with a homonuclear chain for the chain term
a™@insee Fig. 3.1. Effective parameters are introduced to allow fused chains
with the same model.

"Fused" vs "tangent" indicates the covalent bond type in the SAFT
model. In most SAFT incarnations, model chains have monomers tan-
gentially touching neighbouring monomers. In tangential models the bond
lengths are identical to the bead diameter (or the arithmetic mean of bead
diameters of unequal sized beads). Allowing the overlap of beads with bond
lengths shorter than the bead diameters is referred to as a fused model.

"Hard-sphere" (HS) vs "square-well" (SW) vs "variable range"
(VR) vs "Lennard—Jones" (LJ) refers to the underlying type of interac-
tion potential between beads. HS potentials are only repulsive, while SW
and LJ potentials are repulsive at short and attractive at medium distances.
Earlier SAFT versions with SW potentials provided parameters for the well-
depths (energetic) and bead diameter (size). The variable-range models also
allowed adjustment for the width of the well, which controls the range of
distances with attractive potential values.

A range of interaction potentials have been incorporated into SAFT
versions. Square-well potentials have probably been the most widely used
potential. 17:64:65,80:82,125,126 Qoyyare-well potentials were first implemented as
2-parameter potentials, i.e. with an energetic and size parameter. In the
variable-range (VR) version of the SAFT theory, a third parameter for the
width of the well is added to make the SAFT-VR SW1!%5!27 theories a 3-
parameter EoS (not counting the chain length as a parameter). Also the

Lennard-Jones (LJ) potential, 171251287131 the Mie potential,'®!* Yukawa
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(Y),125:132.133 Sutherland (S),'%° step potentials,'®* and recently also SAFT
version with the Morse potential '*> have been published. Discontinuous po-
tentials such as the SW, step and hard-sphere potentials can be applied in
Monte-Carlo (MC) simulations, which has been used to verify the respective
SAFT EoS. 36140 Continuous potentials such as the Lennard-Jones and Mie
potentials can be used in both MC and MD simulations allowing a wider
range of applications. The hard-sphere, Yukawa and Sutherland potentials
are either purely repulsive or purely attractive. Applying only one of them is
not sufficient to capture phase equilibria. They are typically applied in SAFT
theories to capture parts of another richer potential to allow the separation of
a reference and perturbation contribution. For example the hard-sphere po-

tential can be used to describe the repulsive part of square-well potentials!!”

and the Sutherland potentials the repulsive part of Mie potentials. !4

3.3 Polymers

Many SAFT versions have been applied to polymer systems. One of the com-

mon methodologies is extrapolating SAFT parameters which were fitted to

the homologous alkane series to longer alkanes and polyethylene. 16:80,83,127, 141,142

For pure polymers, usually only the melt densities as a function of temper-

ature and pressure are considered,!%®" while for longer alkanes also VLE

properties have been predicted. '*!

For mixtures involving polymers, usually not mixtures of several poly-
mers, but mixtures of a single polymer with gases and solvents have been

studied. Typical properties of interest of such systems are vapour pres-

81,126,143 83,126,144 83,124,124,127

cloud-point pressures and cloud-

81,83,126,143

sures, solubility,
point curves in composition space.
Rarely have solubility or cloud points of polymer blends been studied.

128 studied oligomer blends of 25mers, but to our

Ghonasgi and Chapman
knowledge no miscibility predictions of high-molecular-weight polymer blends
were published.

For polymers, PC-SAFT is probably the most prominent SAFT incar-

nation, which has been applied to a large range of polymer and copolymer
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Solutions'8L82J16J43

Real polymers usually show a molecular weight distribution rather than
chains of the exact same length. Rarely, the polydispersity of the polymer
is included in the model explicitly, see for example ref.85116:145 The polydis-
persity of polymers can be described explicitly by a multi-component mix-

ture of several individual pseudocomponents of different molecular weight,

f. 81

see for example ref.®! While increasing the number of (pseudo)components

make the phase equilibria calculations more expensive, several strategies were
presented to simplify and speed up calculations of polydisperse polymer sys-
tems. 147149 Jog and Chapman'*” have speeded up the calculations by rear-
ranging the SAFT-HR® algorithm to reuse terms that do not differ between
pseudocomponents. Sun et al.'*’ proposed a method to approximate the
molecular weight distribution with a Gaussian quadrature method, which re-
duces the number of components for the same accuracy significantly. Neither
method has been applied to the SAFT-VR Mie equation of state.

3.4 Molecular simulation

SAFT theories have, since the beginning, been verified againsts results of

16,128,137

MC simulations and often correlations of large sets of simulation

data have been incorporated into SAFT versions as reference fluid descrip-

73,121,150 14,117

tions or to inform perturbations.

In connection with molecular dynamics simulations, the SAFT-VR Mie

has probably been the most prominent SAFT incarnation. SAFT-VR Mie

has been used to develop molecular simulation force fields. 6114115151152 The

continuous Mie potential of the SAFT-VR Mie theory allows the direct trans-
fer of the model parameters to MD simulations. Excellent agreement be-

tween theory (SAFT) and simulation (MD) was found for carbon dioxide,®

153 54

model mixtures of crude oil,'®® alkane mixtures,'® carbon dioxide/alkane

5

mixtures, 1% organic solvents, 1°® carbon dioxide/water mixture,®” VLE and

PVT of dichlormethene, bromochlormethane and bibromomethane, *® VLE

of a range of Mie potentials,'® carbon dioxide, CF,, SFg, a refridgerant, de-

1

cane, eicosane,''® pure water,'®! and binary and ternary mixtures of water,
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carbon dioxide and alkanes. %2

However, even discontinuous square-well interaction, which are easier to
apply in MC than MD simulations, have been used to speed up the de-
velopment of continuous force fields by correlating the parameters of the
discontinuous square-well potential and the continuous Mie potential in an

intermediate step. %

3.5 SAFT-y Mie

SAFT-y Mie'® is the group-contribution and heteronuclear version of SAFT-
VR Mie.'* SAFT-v Mie and SAFT-VR Mie are part of a line of systematic
improvements of the SAFT-VR family. As part of this development higher-
order perturbations have been added and the molecular model was made
more flexible and representative. While two SAFT versions are sometimes
referred to as SAFT-VR Mie, in this work we refer to the older version as
SAFT-VR Mie 2006** and use SAFT-VR Mie for the SAFT-VR Mie 201314

version.

In the monomer contribution (see Eq. (3.3)) of SAFT-y Mie, for as, the

hard-sphere fluid is taken as the reference fluid using an empirical equations

73,121,150 £ oHS

of state The Mie potential interactions of the monomer

fluid are introduced by adding perturbation terms up to third order with the

Barker and Henderson high-temperature perturbation expansion ™

HS ai ag as

+ T + (enT)? + (s TP (3.5)

Useg = @

The third-order perturbation term was optimised to effectively account for
even higher-order terms. The third term az was added with the SAFT-VR
Mie!* version, while previous versions comprised terms up to second order.
In the chain contribution (see Eq. (3.4)) of SAFT-y Mie, the radial dis-
tribution function g™€(s) is also described with a Barker and Henderson

high-temperature expansion. The expansion is applied to the logarithm of
the RDF and evaluated up to second order (SAFT-VR Mie 2006 was evalu-
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ated up to first order)

90) = 05°(0) e (kr:T 9?5(2) ’ (k;T) ggcl;s:g)) -

The reference-fluid radial distribution function g"%, describes a hard-sphere

fluid of spheres with diameter d. The temperature-dependent effective hard-
sphere diameter d accounts for the softness of the Mie potential and is shorter

or equal to 0. The contact distance, i.e., the bond length, is still taken as o.
All SAFT-VR Mie and SAFT-y Mie equations or details on the deriva-

tions and approximations are found in the original puplications by Lafitte
et al. 2013'* and Papaioannou et al. 2014.'% The notation of this chapter

closely follows the notation of the original papers.

Mie potential

The Mie potential is a generalised Lennard—Jones potential
)\r,i j )\a,i j
) () (3.7)
Tij Tij i

Aaij

Ch = r,ij T,ij ’ 3.8
! /\r,ij - )\a,ij ()\a,ij> ( )

Mie __
Vig© = Cijei

with

where ¢;; and o;; are the well depth and the segment size, respectively. A, ;;
and A, ;; are the repulsive and attractive exponents, respectively, while A ;; =
12 and A, ;; = 6 is the Lennard—Jones potential. The influence of the four Mie
potential parameters on the shape of the potential curve, on VLE properties
and on free energies of mixing of blends are illustrated in Fig. 3.2.

For mixtures and heteronuclear compounds, additional interactions be-
tween unlike segments are required. The parameter estimations can be made
based on the like interaction parameter values following rules that are called

combining rules or mixing rules. The combining rules recommended by
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Figure 3.2: Influence of the Mie potential parameters on (top) potential
curve and (left) vapour-liquid equilibrium densities. (Right) The influence
of the dissimilarity of Mie potential parameter values in a binary blend ex-
pressed for Gibbs free energy of mixing, where Am is the difference in chain
length. The unlike interactions were obtained with the combining rules in
Equations (3.9)-(3.11) with k;;=0. Note that only the most dominant in-
fluence of each parameter is demonstrated, which is especially true for the
vapour—liquid equilibrium curve. The influence of the Mie parameters on
polymer-melt densities and polymer cloud-point temperatures is presented
in a later chapter (Fig. 5.11 and Fig. 5.20).
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Lafitte et al. 2013 are

Oii + 0

Tij 5 2 (3.9)

Aij =3 = \/()\u —3)(\j; —3), (3.10)
03035

€ = (1 - kz’j)a—g\/ﬁnfjj, (3.11)

(4]
where k;; is a correction factor to express deviations which are often needed
to reproduce experimental data. A correction factor is usually first applied

to the energetic parameter before other unlike parameters are adjusted to

further improve the model.

In SAFT-v Mie, not only heteronuclear chains are possible, but also the
notion of a group is introduced. A group has two more parameters but can
only have one type of bead. The first additional parameter is the number of
beads v in the group, which is adjustable and can be a positive non-integer
value. The second additional parameter is the shape factor Sj, which is
another attribute of a group. The shape factor scales the number of beads
per group. Since v and S, are multiplied at all occurrences in the SAFT-vy
Mie equations, they could be combined into a single parameter. However,
the typical value range shows that they are intended to separate two physical
phenomena. The S is intended to model chains with fused bonds, where
(1 — Sk) is the degree of overlap. Sy is therefore intended to be less or
equal to unity. v allows larger chemical units to be combined into one group.
Larger chemical units, which are best modelled with more than one bead and
are not expected to be applied in other compounds as a fraction alone, can
be combined into a convenient group. v is intended to be larger or equal to

unity.

The fused-chain model is not directly used in the a®®*™ term of SAFT-y

Mie, as drastic assumptions and approximations would have to be made to
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derive a practical expression. Instead, an equivalent chain length of tangen-
tially bonded spheres is used, which were shown to give comparable results to

161 Using an effective chain length of tangen-

MC simulations of fused chains.
tially bonded spheres needed for allowing fused chains loses the heteronuclear
nature of the chain model. Effective averaged Mie potentials are used instead
of accounting for each covalent bond type individually. Papaioannou et al.
2014 1'% showed that the predictions with effective homonuclear chain models
were almost indistinguishable from the predictions of the heteronuclear chain
model. See the illustrated molecular models in Fig. 3.1.

SAFT-vy Mie is equivalent to SAFT-VR Mie for compounds of only one
type of bead per chain (homonuclear) and the additional group parameters

Sj, and v are set to unity.*

3.6 Limitations and assumptions

SAFT-y Mie and SAFT-VR Mie allow a simple but powerful description of
homogeneous fluids. Starting from an accurate description of spherical par-
ticles interacting with Mie potentials, the particles are covalently bonded in
pair-wise tangential connections to form chains. The description of spherical
particles and short chains for homogeneous fluid properties is excellent. 416

For application of polymers, limitations arise due to the way the chains are
formed within TPT1.'%? Firstly, no information about bond angles, dihedrals
and overall chain flexibility is included. As a result, chains are modelled
as fully flexible, while effectively being more stretched out than expected
for polymer structures,® which at least partially coil up due to entropic
reasons. Secondly, the order of beads in chains can not be influenced, they
are effectively modelled as an average over all random combinations. As a
result, differences between random, alternating and block copolymers are not
captured in the molecular model. Thirdly, the chain model is strictly linear.
Describing large rings or branched chains either requires effective parameters

or slight adjustments to the chain expression.

Strictly speaking the product nSkNseg in SAFT-y Mie has to be equal to the chain
length n in SAFT-VR Mie.
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As a fluid theory, SAFT does not capture solids, such as vitrified or
crystallised polymers. Options to capture solids are mentioned in the next
section.

As the fluid is described as being homogeneous, no structural effects or
larger ordering is captured. Surfaces, interfaces and liquid crystal phases,
such as a nematic phases, can not be modelled with the SAFT equations
alone.

The next section introduces options to add additional terms to SAFT or

join SAFT with other theories to extend its capability.

3.7 Theories joint with SAFT

The capabilities of the SAFT theory are often extended with additional terms
or by combining theories. The desired capabilities are typically inhomoge-
neous properties, either as macroscopic properties of solids or as microscopic
structural properties of interfaces and surfaces.

Solids and solid-liquid equilibria have been described with SAFT by us-
ing a Helmholtz energy term for the solid phase.'% To account for the crys-
tallinity in semicrystalline polyethylene Paricaud et al. have employed Flory
theory.®® The solubility of gases and liquids in polymers below their glass
transition temperature has been successfully modelled with the non equilib-
rium extension of SAFT referred to as NE-SAFT. 164

Surfaces and interfaces can be described by joining SAFT with the square
gradient theory (SGT), which is also referred to as density gradient theory
(DGT) or gradient theory (GT). The surface partial-density profiles and the
depletion and enrichment of certain species at interfaces have been success-
fully described. %5167 An alternative approach to describe surfaces and inter-
faces has been shown by joining SAFT with classical density functional the-
ory (DFT).1%81% Also a combination of SAFT, fundamental measure theory
and DFT has been used to study partial-density profiles,'”17! the adsorp-

170,172 and carbon dioxide in polystyrene. '™

tion of gases on activated carbon
Also polymer surface tensions have been described with the interfacial SAFT

(iISAFT) DFT version by Dominik et al.'™
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3.8 SAFT in this work

In this work, we implement and apply the SAFT-y Mie!6 theory. In Chap. 4
the SAFT-y Mie!® EoS and its earlier homonuclear version SAFT-VR Mie !4
EoS are implemented in a stand-alone computer program. In Chap. 5, SAFT-
~ Mie parameters published by Dufal et al.,'™ making use of all heteronu-
clear, group-contribution and fused-sphere capabilities of the SAFT-y Mie
method, are applied to polymers. Additionally, new polymer models are de-
veloped with the SAFT-y Mie theory. As the models are homonuclear, the
models can also be referred to as SAFT-VR Mie models. In Chap. 6 we
use SAFT-+ Mie models as coarse-grained force fields in molecular dynamics

simulations.
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Chapter 4

Implementation and testing of a
SAFT-v Mie code

This chapter covers the technical details of our SAFT-VR Mie and SAFT-vy
Mie program. Firstly, we present an overview of the program building blocks
and what units have been chosen throughout. Secondly, the details of the
implementation of the SAFT-VR Mie core equations and the conversion to
the generalised SAFT-v Mie version are addressed. Thirdly, derived thermo-
dynamic properties beyond the Helmholtz free energy are covered. Fourthly,
optimisation algorithms are presented for obtaining pressure, vapour—liquid
equilibria (VLE), liquid-liquid equilibria (LLE) and pure-component Mie po-
tentials. Lastly, details are given for a module for generating tabulated poten-
tials which are compatible with the GROMACS simulation software.!™ 177

This chapter should be read together with a copy of references 14 and 16.
Not all definitions and equations of SAFT-+ Mie are repeated here, but the
aim is to add additional insights and information only. A consistent notation
between this work and Refs 14 and 16 is used.

4.1 Program structure and overview

The SAFT program developed in this work is made up of a set of building
blocks. The building blocks in terms of functionality are shown in Fig. 4.1.

41
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A scheme focusing on the user experience linking the main input and output
information to the building blocks is found in Fig. 4.2. The latter reveals the
Mie potential parameters as the heart of the SAFT program. The building
blocks in terms of the code structure and corresponding file structure are
summarised in Fig. 4.3. Fig. 4.3 and 4.2 also show the flow of information

from input to output files at two levels of detail.

The SAFT core implementation is fully coded in Fortran. Other program-
ming languages are used for the liquid-liquid equilibrium solver (R script)
and for the analysis and plotting scripts (python). Input and output files are
standard text files. The input file structure is designed to be similar to the
input file structure of the GROMACS package. 75177

SAFT-VR Mie
SAFT-y Mie

Fortran

Y

tabulated potentials
for GROMACS

Fortran

derived VLE
properties external HELD library
Fortran
Y
VLE parallelised
- . table of
critical properties LLE properties
only SAFT-VR Mie Fortran R Fortran
Y

OpenMP parallelised

Mie potential

Y / optimisation
analysis and plotting scripts | forren

python

Figure 4.1:  SAFT program modules in terms of functionality. Arrows
denote dependencies. Colours are used to highlight programming language,
while the name of the programming language is also given in the lower right
corner of each element. Round contours represent elements which are used
as libraries only, while square contours represent programs with integrated
libraries.
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LLE VLE
of mixutres of low-Mw
mixtures
HELD
Hamni library
tabulated
Mie potential converter Mie Maxwell VLE
for Gromacs for Gromacs potential construction of pure
simulation / \ components
SAFT core + Mie potential
derived properties optimiser

\ /

A,G)Hapa‘/aﬂnu)
Amixa mixy fImix,

Cy,Cp, ...

Figure 4.2: SAFT program functionality in terms of main input and out-
put information. The Mie potential parameters are the heart of our SAFT
program package. Arrows denote the flow of information.

4.2 Units

The units used in the SAFT implementation are mostly SI units. Devia-
tions are the units for the Mie potential parameters ¢ in nanometres and e
in Kelvin (instead of metres and Joules, respectively), which were chosen to
allow easier-to-handle numbers. The Helmholtz energy and its derivatives—
pressure, chemical potential, entropy and heat capacity—are internally han-
dled in reduced units. The units in the SAFT core and outer property shell
differ in how particle number and volume are described. An overview of the

units are presented in Tab. 4.1.

4.3 SAFT-VR Mie Helmholtz free energy

This section provides details on the development of a Fortran code of the
SAFT-VR Mie EoS published in 2013 by Lafitte and coworkers'* at the
Imperial College London research group. The code is tested against available
data published by the authors.

The Helmholtz free energy is almost fully calculated analytically. The

only exception is the numerical integration for the effective hard-sphere di-
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. . derived SAFT properties direct SAFT properties
input files module name
filename SAFT equation of state
routine names properties -
other objects numerical expressions mod_saftg.fo0
external libraries
properties prim_parameters_g
mod_properties.f90 sec_system_g
chempot, pressure, dpdV, sec_potentials_g
SAFT initialisation Cv, dpdT, dadT,... tert_parameters_g

quart_parameters_g
gamma_parameters

input  mod_input.fo0 ) helmholtz_g
. properties_pconst quadrature_g
read_inputl_g mod_properties_pconst.f90 -
interpret_inputl gibbs, gibbs_res, Cp subroutines_g
alloca_telnputig hardsphere_np_g
read_input2_g calc_sec_potentials_g
interpret_input2 stored 3 calc_sec_system
mod_stored.f90 “eort on s

calc_tert_parameter_g
stored mod_stored.f90 default, optstored maxwell calc_quart_parameter_g

allocate stored input, mod_optstored.fo0 mod_maxwell.f90
store_parameter constants p_root_eta calc_a_ideal_g
= eta_interval calc_a_mono_g

volume_interval calc_a_chain_g
subroutines mod_saftg.fo0 corresponding_volume calc_a_final_g
— pVare calc_a_final_res
allocate saft_g pressure_guess
Gauss_legendre_NR pVextremum properties - +

analytical expressions

calc_basic_properties used by almost mod_saftg_interface.f90
print stored all other routines

2nd modules energ_g

energ_g_res
energy_ideal
chempot_ideal

eta_g
occ_vol_g
Numerical
Receipes
library
NAG
library
R_interface.f90
critical !
optimise < mod_critical.fo0 X
mod_optimise.f90 run_table.fo0 pVinflection held_interface.f90
temp_critical
P- HELD — SAFT-g-Mie.so
library used by HammR
run_gromacs_input.f90 run_optimise.f90 run_critical.f90 run_held.f90 run_maxwell.f90 run_saft_eval.fo0

output files

Figure 4.3: SAFT program modules in terms of code structure. The flow
of information is highlighted with arrows. A legend for the colour coding
is depicted at the top. Fortran modules are highlighted in red (their cor-
responding file names in green), and input and output text files in blue.
The diagram shows the most important connections between elements of the
Fortran code and interfaces to libraries.
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Table 4.1:  Units used in the SAFT code for different types of properties

property example | SAFT core property shell HELD input file
particle number N [ mol mol mol
volume 1% nm? m? mol ™! m? mol ™! m? mol !
temperature T K K K K
length o nm nm - nm
mass My gmol ! gmol ! gmol ! gmol !
energy a [ ] [] [] -
€ J J - K(=J/kg)
energy derivatives P.S,u,Cy - reduced by RT" reduced by RT
pressure P - m 3 (=Pa/RT) m 3 Pa
chemical potential L - mol mol ! -
entropy S - K-t K-t -
heat capacity Cy . K-! - .

ameter. Properties beyond the Helmholtz free energy are calculated numer-
ically with a high-accuracy finite-difference method (see next section). Such
first and second derivatives are pressure, chemical potential, Gibbs energy
and entropy.

The current program version comprises the SAFT-VR Mie and the gen-
eralised SAFT-v Mie version, which is a heteronuclear group-contribution
version using Mie potentials. The SAFT-VR Mie version can be used by
setting the SAFT-v-specific parameters, which are the so-called shape factor
and the number of segments per group, equal to one and by only using one
type of Mie potentials per compound. Details on the code conversion from
SAFT-VR Mie to SAFT-y Mie are given in Section 4.4.

4.3.1 Code structure - Helmholtz energy

The code is structured with the help of Fortran subroutines and modules. A
scheme of the code structure is shown in Figure 4.4 (using a notation con-
sistent with Lafitte et al. 2013'*). The Helmholtz energies are evaluated

in 4 stages—primary, secondary, tertiary and quaternary parameters. The
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primary level uses the potential and system parameters directly provided
in the input file, the secondary level evaluates basic parameters separately
for potential and system parameters. On the tertiary and quaternary level,
parameters derived from both strands are combined. Each of the four Helm-
holtz free-energy contributions are evaluated in a separate subroutine using
the parameters from the previous four stages. The final Helmholtz free energy

is obtained by summing up the four contributions.

primary system primary potentials

Ni nom; VT w; € Tui Arii Aayii €aop_iy To—p—iey To—peiey Ma=i
secondary system | | secondary potentials

N Nseg pi ps p B Ti Ts,i dij ai; Ci; o4

tertiary parameters

quaternary parameters |

B HS S » » 8 HS _§ 8 .S
Xij K ay; Bij Ixig JIxij 3—p5K T By To- gy
helmholtz
A HS S 825 9 g - HS(d)  Kapij
i az a2 ai a Srs 1+ x4y 3p. A1.ij 9d.ij abij
MCA / \
Ye o 92,5 91,ij ko;1;2;3 Aabij
\ | 7
HS
92,ij / gd,ij(g) |
—/ Xai
Mie
) gij‘ (o) I
aldeal g™mono achain q@ssoc

Figure 4.4: Schematic structure of the Fortran code for the SAFT-VR Mie
theory. The variable notation is consistent with Ref. 14 for easy referring to
the original publication. Each box corresponds to a subroutine, and each title
(outside the boxes) indicates a separate module for variable declarations. The
order of execution is from top to bottom, while order of execution of boxes
on the same height is not important.

The minimal set of input parameters for evaluating the Helmholtz energy
is one Mie potential parameter set (well depth €;, segment diameter oy,
repulsive exponent J, ;;, attractive exponent ), ;;, shape factor S, number
of beads per group v and mass of the group w;) and four system parameters

(temperature 7', volume V', number of molecules N; and number of monomers
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m; per chain).

4.3.2 Assumptions and limitations

The non-associating version of SAFT-y Mie has been implemented for this
work. The equations for the associating Helmholtz energy contribution are
part of the implementation, but the required solver for the mass action equa-
tion is not provided. The only interactions in our implementation are there-
fore the Mie potential interaction between monomers and the impact of the
formation of chains. Additional interactions such as association or electro-

statics require an extension of the code.

4.3.3 Ideal contribution

The ideal part of the Helmholtz energy of SAFT can be derived from the
canonical partition function Q(N,V,T). The real Helmholtz free energy in

terms of the canonical partition function is:

A
a= NiT —InQ(N,V,T). (4.1)

The full partition function has translational, rotational, vibrational and elec-
tronic contributions. By following the standard textbook derivation as e.g.
found in Ref. 178 one can obtain a tractable expression (see Eq.(6.45) in Ref.
72) reinterpreted in Eq. (4.2) as a function of number of particles N, volume

V and temperature T
@ = —14 ) "z In(p; [M(T)))
N, N; 3
=1+ Z ~ (7 [A;(T)] > (4.2)

where z; is the mole fraction, p; the number density and A(T") the de Broglie

wavelength of component i in the mixture of n components.* A? is often

*The equivalent expression in Lafitte et al.'* misses brackets (Eq.(A1) therein), which
is corrected in Papaioannou et al.' in Eq.(5).
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referred to as the de Broglie volume.

For a monoatomic system, there are no rotational and vibrational con-
tributions. For non-spherical multi-atomic compounds (e.g., polymers) the
rotational and vibrational terms are not composition dependent, but only
temperature dependent. The rotational and vibrational parts, therefore,
cancel for composition and volume derivatives of the Helmholtz free energy
(chemical potential, pressure, compressibility), but need to be considered
for temperature derivatives (entropy, heat capacity, speed of sound). As
we are not concerned with differences between states of different tempera-
tures (apart from heat capacities in a later chapter where we will address the
ideal contribution again), the rotational and vibrational contributions are ne-
glected here.'™ The expression of de Broglie volume of monoatomic particles
is used in our implementation for simplicity. As intended, the vibrational
and rotational contributions are neglected, as monoatomic particles possess

no rotational and vibrational degrees of freedom.

A (4.3)

2mmy ikg T
where h is the Planck constant and m,,; the molar weight of compound .
As expected, Eq. (4.2) reduces to the ideal gas equation when expressed in

terms of pressure

aAideal NkBT
P=— ( ) = (4.4)
ov Jnr V

)

For the implementation of the ideal Helmholtz free energy the separa-
tion of component-dependent from component-independent terms simplifies
computations and allows one to provide N and V' as logarithmic values In N
and In V| which can help improve numerical evaluations at extremely small
and large N and V. For polymeric systems, where very small mole fractions

are common, the logarithmic input can improve the stability of the returned
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a*®! values as exemplified in Eq. (4.5).

: N; 3 3 h ’
ideal __ 2
a =—-1+ % N (lnNi—ilnmi—an —§lnT—|—ln (—27k3> )

3 o\’ N, 3
=—1 ——InT—-1+In|{ — E —(lnN, — =1 ;
nV 2n +n( 27rk:B)+ : N(n i 2an)
(4.5)

The de Broglie volume here was chosen for a monoatomic particle for sim-
plicity. It was not completely dropped (or set equal to unity) to retain the
consistency of units. To accurately describe the temperature-dependent ideal
contribution of chain models, such as needed for the heat capacity of poly-
mers, all vibrational and rotational contributions have to be expressed in the
de Broglie volume. Alternatively, the ideal contributions to the heat capacity
are not obtained from the SAFT expressions but are taken from empirical
data.”'® However, for properties at constant temperature, such as for densi-
ties, pressure and phase equilibria, the de Broglie volume is not important as
long as it is used consistently for all compounds and phases. The simplest ex-
pression for the ideal Helmholtz energy (by dropping temperature-dependent
and volume- and particle-number-independent terms) accounting for volume

and concentration contributions is

ideal __ i

4.3.4 Effective hard-sphere diameter

The effective hard-sphere diameter, d;;, is a temperature-dependent parame-
ter for the monomer size and is obtained by the integration of the Boltzmann

factors of the Mie potential from the particle centre, » = 0, to the bond length
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distance, r = o.

diy = /OU” <1 — exp (—%)) dr (4.7)

Tij uMie(,r.)
=0, — exp | ——2—2 | dr 4.8
- p( - (18)

Mie(r) is the Mie potential between monomers i and j at a distance

ij
r. The diameter is used for the sphere size in the hard-sphere reference

where u

fluid (zeroth-order perturbation). The diameter d is temperature and Mie-
potential-dependent, and is therefore not a constant during a typical set of
Helmholtz energy calculations. But in calculations at constant temperature
and constant Mie potential, it is transferable across other variables such as
composition, pressure and number of components.

The function, which will be integrated to obtain d;;, is almost constant in
the integration interval, but drops sharply close to r = o (see Fig. 4.5). The
shape of the integration area approaches a rectangular shape for increasing
Mie potential parameters. Integration areas are plotted in Fig. 4.5 for three

different Mie potentials.

The fully expanded expression of the effective hard-sphere diameter:

R e I ORONE

(4.9)

helps in realising that an analytical integration is not straight forward. The
python sympy package does not find a solution to the slightly simplified

equation:
d* = /exp (=r 4 r72) dr (4.10)

The solution for the even simpler expression [ exp(r~*)dr involves the com-
plete and incomplete gamma functions hinting at the complexity of solving

the full integral.
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Figure 4.5: The effective hard-sphere diameter integral for three different
Mie potentials for €/kgT = 1.

Hence, a numerical evaluation of the integral is pursued, instead. Refs 14,
16,180 report using the Gauss—Legendre quadrature method for the numerical
evaluation of the effective hard-sphere diameter integral. In the following our
results with the Gauss-Legendre quadrature and the technical possibilities

in applying it to determine the effective hard-sphere diameter are described.

Application of NAG routines for constants and integration
We have used the NAG routine DO1ARF, '8! which offers the integration of
finite integrals with a method by Patterson'®? to a specified accuracy. The
NAG routine produces accurate integrals for repulsive potentials of mod-
erate steepness. For highly-repulsive Mie potentials, however, which have
steeper potentials than the (24-6) Mie potential (tested with o = 0.4 nm,
¢/T =~ 1), results are returned with errors up to 2% even if higher accura-
cies are requested. The NAG routine converged at its first iteration, being a
3-point Gauss—Legendre quadrature. Dividing the interval into parts, which

were then integrated by DO1IARF individually, could not prevent the early
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convergence. As the SAFT-VR Mie 2013 theory is parametrised for highly-
repulsive potentials up to A, = 100, the standard NAG routine for Gaussian
quadrature is unfit for this integration.

Application of NAG routines for constants only
To manually set the number of points used in the integration scheme, we only
partially used NAG routines for the evaluations. The Gaussian quadrature
is a two-step evaluation. First, the parameters for the requested accuracy
(number of points) are calculated, and secondly the actual evaluation of the
integral is performed. For the first task, the NAG routine DO1BCF '8! can
be used to generate the weights and abscissae for any number of points. The
actual quadrature integration was then performed with our own implementa-
tion without the help of a NAG routine. This allowed the number of points
to be set manually and to obtain better accuracy.

In Figure 4.6 the effective hard-sphere diameter results are given as a
function of the repulsiveness of the (\,—6) Mie potential for several different
numbers of points of the Gauss—Legendre algorithm. It can be seen, that
significant differences occur up to a 20-point quadrature. We can support
the results by Paricaud'®® who found a 10-point quadrature sufficient for
the (12-6) Lennard—Jones potential. However, our results are in contrast to
the recommendation of Papaioannou et al.'® who reported a 5-point Gauss—
Legendre quadrature to be sufficient.

Application of Jacobi as alternatives to Legendre
The Gauss-Legendre quadrature almost equally spaces the function evalu-
ations across the integration interval. A higher concentration of function
evaluations toward the upper integration boundary is expected to improve
the accuracy of the integration.

We have looked for other types of quadrature integration schemes, where
in particular the Gauss—Jacobi quadrature was tested. The Gauss—Jacobi
quadrature approximates functions which have singularities in the integration
interval. Gauss—Jacobi is a generalised Gauss—Legendre quadrature. We
investigated whether this scheme could better approximate the steep decrease
at the upper boundary. Slightly better accuracies are only obtained for a very

small number of conditions, overall the accuracies are improved by adjusting
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Figure 4.6: Effective hard-sphere diameter d in units of nm as a function of
repulsive exponent A, of the (\,—6) Mie potential (0 = 0.4nm, €¢/kgT = 1).
The integrals are evaluated for several different numbers of points (see legend)
of the Gauss-Legendre algorithm. More points in the integration lead to
higher accuracies.
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Figure 4.7:  Relative error of effective hard-sphere diameter d for (left)
typical parameters €/kgT = 1, A\, = 6 and (right) challenging parameters
e/kgT = 0.001, A\, = 30 as a function of the repulsive exponent A,. The
curves differ by the number of Gauss—Legendre quadrature points (integrand
function calls) used to evaluate the integral, which are printed either at the
start or end of the curve. Relative absolute errors are calculated with respect
to a 30,000-point Gauss—Legendre quadrature (|dsopo0 — d|/d30000), Which is
assumed exact in this context. The minimum error level of single and double
precision is roughly highlighted by horizontal red lines. The data shows
decreasing levels of error for increasing the number of points in the Gauss—
Legendre quadrature integration.
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the Gauss—Jacobi settings towards the values which correspond to the Gauss—
Legendre quadrature. Interesting to note is that the sensitivity of accuracy
with respect to the repulsive exponent vanishes in the Gauss—Jacobi scheme,
while the Gauss-Legendre method offers smaller errors for smaller repulsive
exponents (see Fig. 4.6). Overall no improved accuracy was found for the
Gauss—Jacobi quadrature.

Approach independent of NAG routines
The integration scheme that is currently implemented is the Gauss—Legendre
integration, for which the abscissae and weights are calculated via a Numer-
ical Recipe (NR) routine'® or read in from a file, and the integration is
performed with our implementation. Using the NR routine makes the eval-
uation of d independent of NAG libraries and in the case of reading the
abscissae and weights from a precalculated file even independent of external
libraries.

The relative error of d was analysed as a function of its parameters e,
T, XA and 0. The relative error increases with decreasing ¢/kgT ratio and
increasing Mie potential exponents A\. The relative error as a function of
number of quadrature points and A, is shown in Fig. 4.7 for a typical and
a challenging set of values for the other parameters. For obtaining relative
errors smaller than 107! (corresponding to double precision accuracy) for all
tested combinations of Mie potential parameters and temperature more than
330 quadrature points were required. Our SAFT implementation therefore
uses 330 points in the Gauss-Legendre quadrature for approximating the

effective hard-sphere diameter d.

4.3.5 Sutherland potential

We used the data for the first-order term of a Sutherland fluid" af by Lafitte et
al.** to evaluate our implementation of a3. Figure 3 therein'? is reproduced
in the right column in Fig. 4.8 which perfectly agrees with results from our

implementation given in the left column.

fThe Sutherland potential comprises a short-range hard-core part (infinite energy) and
a long-range attractive part of inverse power law.
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Figure 4.8: Sutherland potential a}* = af /e at different repulsive exponents
A. The right column of figures is taken from Ref. 14. The density, which
is plotted in reduced units as p¥ = Ny03/V is reduced by og, which is the
particle size of the Sutherland potential (not o of the Mie potential). In the
SAFT-VR Mie notation for which the Sutherland potential is used as a per-
turbation, the Sutherland particle size is the effective hard-sphere diameter
d. For consistency with the SAFT-VR Mie notation the reduced density is
pr = N3V .
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4.3.6 Monomer contribution

The monomer contribution a™°" to the Helmholtz free energy is calculated
as a sum of the hard-sphere reference fluid contribution and three perturba-
tions. The multi-component hard-sphere reference fluid is described by the
expression of Boublik!?® and Mansoori et al.'?! (BM), which is the multi-

component form of the pure-component Carnahan—Starling (CS) expression

4n — 2
grs.cs — 21— 3 (4.11)

(1 —mn)*’

where 1 = pgmd®/6 is the packing fraction of the hard-sphere fluid.!* Our
implementation of the hard-sphere expression was tested for the consistency
between pure and multi-component expressions. Our BM expression cor-
rectly agrees with the CM expression for pure-component systems for all
tested packing fractions.

In Fig. 4.9 our implementation of the perturbation terms to the hard-
sphere fluid are compared with the data by Lafitte et al.'* Agreement for all
Mie potentials is found.

The SAFT program allows the automatic generation of Figures 4.8 and
4.9 as a test routine.The results are compared with reference values to test

the SAFT core equations.

4.3.7 Chain contribution

The chain contribution a®*® to the SAFT-VR Mie Helmholtz energy uses
derivatives of the first and second perturbation terms with respect to den-

sity, ag;;j and 8(@’“6//(;””)) (see Eq.(A35) and (A36) in Ref. 14). Recent

SAFT-VR Mie!'*'™ and SAFT-y 16184 publications do not provide analytical

expressions and do not mention if their implementation employs numerical or

analytical expressions. In this section we provide analytical expressions for
these two first-order derivatives and present results for comparison against
numerical calculations (See Fig. 4.10). The analytical derivatives were pro-
duced to improve the reliability of the SAFT implementation and speed up

the code execution.



58 4. Implementation and testing of a SAFT-v Mie code
O T T T T
—1}
—92k
73 -
*@v—( _4 |
-5 86
e l] — 106
— 126
_7H— 206
— 306
78 I | | |
0.0 0.2 0.4 0.6 0.8
*
Ps
0.00
~0.05 ~0.05
~0.10 ~0.10
§ -015 * —0.15
~0.20 ~0.20
025 H __ —0.25
— 306
—0.30 L ! L L 1 I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
*
[
0.00 © 0.00 r : : ’
—oo1 | | —0.01 | 4
°
—0.02 | . —002re 1
o 30-6
*$ —-0.03 | E
& —0.03 | 1 < ° /]\
°
—0.04 | 36 |l —0.04 |
— 10-6 8-6
— 126 . °
—0.05 |- - 1 —0.05 4
20-6 A
— 306
3 _000 1 L L |
_0'060 0 0‘2 0‘4 0‘6 0‘8 10 0.0 0.2 0.4 0.6 0.8 1.0
I

Figure 4.9: Comparison of our implementation (left column) and reproduced
figures from Lafitte et al.'* (Figure 2 therein) (right column) for the first
a; = ay /e (top), second a} = ay/e* (middle) and third a} = a3/e¢* (bottom)
Barker and Henderson perturbation terms for different Mie potentials (8-
6),(12-6),(14-6),(20-6) and (30-6) at a temperature 7" = kgT'/e = 1. The

circles in the figures taken from Ref. 14 represent values determined by Monte
Carlo simulation.
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Density derivatives

The density derivatives are provided for the SAFT-VR Mie theory, but can
be easily converted to SAFT-y Mie expressions with the steps summarised

in the next section.

The first derivative of the pair-wise first-order perturbation a,;; of the
monomer term of SAFT-VR Mie a}""° with respect to the segment number
density ps used in the chain term g
aal,ij

dps

Maij [ O 0
T3 (_8 o a3 5 (psi Aaij) + o Bij(ps; )‘aﬂ'j))
(4.12)

Ar,ij d d
—Ty%i; (5—[)8(1?,@ (ps; Avij) + 8—[)83@(/&; AW)) ]

The first derivative of the quantity B;; with respect to the segment num-

ber density ps

dps B C( [(1 —G)? i (1—G)* } fy()

9 +¢) | ANG+4G+Q)]
b i A (A))

(4.13)

with
Tps n n
Go= g DD weiwady, (4.14)
i=1 j=1
and
a x x
b _ G (4.15)
dps  ps

The first derivative with respect to the segment number density ps of the
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first-order perturbation to the Sutherland potential is

ﬂ-eijd?j
D (0N = 29, ( e, ) [F(A) tp, @gﬂ (4.16)
where
1)
F(\) = W (4.17)
and

OF(\) _ oG\ [Cg‘iﬁ(k) - 2-5]

N (1 =¢GN

4.18
. 0. (4.18)

The first derivative with respect to the segment number density ps of the

pair-wise second-order perturbation of the monomer term reduced by (1+y)

aff] 1 OKMS oD
Xij 2 HS

e 2 D+ KHSZZ 4.19
dps 9™ is dps 0ps (4.19)

where

2Xa,ij . .
D =z 57 (b 15(psi 2hai5) + Bij(ps; 2Xai5))

J

- 2‘1‘())\3’;].—’_)\““ (aiij(ps; /\a,ij + /\r,ij) + Bz‘j (ps, /\;mj + Ar,ij)) (420)

2Ar 1j
+ 20557 (aY 45 (psi 20 i5) + Bij(psi 2Aei7))

0 Dy [0 g 0
8psD =xq;;" (a_psa’l,ij<:08; 2Xaij) + a—psBz'j(Ps; 2Xa.i5)

o 0
- QISZ;JHW < as i (ps; Aayij + Arij) +

0
9p. i ——Bij(ps; Aasij + Ar,ij))

dps

2)r,ij a 8
+ Tg; (8,0 a3 i (psi 2Aeii) + %sz(ps; 2>\r,z‘j)) :
(4.21)

and the quantity B;; is given by

o 1-G/2, o e+ G)
By =€ (ni =B -p 55 S ,0)  am
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and the first-order perturbation to the Sutherland potential is

S meijd;;
arj(psiA) = =2ps | 5 | (V). (4.23)

The isothermal compressibility of the hard-sphere reference fluid is
KHS — M (4.24)
E '
with

E=1+4¢ +4¢ — 4¢3 + % (4.25)

and its first derivative

4G (-G (E (-G 26 -3¢+ <;z>>)
ps PN '

(4.26)

For details and expressions of the quantities x, o, I;;(\), Ji;(A), Cij, T see

Refs 14,16.
Numerical data for the density derivatives ag;p’” and %ﬂlﬂ”)) showing
agreement between the results using the analytic expressions above and the

numerical derivatives using finite differences is shown in Fig. 4.10.

Discrepancy for RDF at bond length

To account for the chain character of molecules, the radial distribution func-
tion of the monomer fluid is evaluated at the segment-diameter distance o.
The magnitude of this contact value g™¢(c) is given as a function of density
for the Mie (12-6) and (30-6) potential in Figure 4c in Lafitte et al.'* The
figure is reprinted in this work in Fig. 4.11. Values obtained by our imple-
mentation for ¢gM€(o) agree with the reference results apart from a small
deviation at p§ = 0.2 for the steeper Mie (30-6) potential. The deviation is
highlighted in Fig. 4.11 by a (red) arrow.

A fully independent code for g™(o) has been developed within Maple
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Figure 4.10: Comparison of analytical and numerical evaluations of the first
derivatives of a; and ay with respect to number density of monomer particles
ps plotted against volume density of monomer particles p* = p,o?.

to analyse this deviation. The Maple code perfectly agrees with the results
of the Fortran code (see Fig. 4.11). The authors E. Miiller, G. Jackson and

T. Lafitte have recalculated ¢™°(o) and confirmed our results to be correct.

Their recalculated graph is shown in Fig. 4.11.

4.4 Converting SAFT-VR Mie to SAFT-y Mie

A generalised version of the SAFT-VR Mie has been published in 2014 called

SAFT-vy Mie.!'® In comparison to SAFT-VR Mie it allows a description of
chains that consist of more than one type of Mie-potential spheres (heteronu-
clear model), see Fig. 4.12. A set of identical monomers can also be combined
in a "group", which is described with two additionally parameters, that is the

number of beads in the group, and a shape factor, which scales the contribu-

tion of the group to the molecular properties. The heteronuclear description
allows the use of more detailed force fields. Another advantage is that pure-
component data can be used to parametrise unlike interactions by using a

model containing the two types of beads of interest. The parametrisation of
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Figure 4.11:  Contact value of the radial distribution function g™e(o) for
the Mie (12-6) and (30-6) potential at a temperature 7* = 1. (Top) The
results of our independent Fortran and Maple codes are overlaid in colour on
Fig.4c from Ref. 14. The deviation is highlighted with an arrow. (Bottom)
Recalculated results by Jackson et al.'® Circles represent results by Monte
Carlo simulations, see Ref.'* for further details. Results by the SAFT-VR
Mie expressions are represented by (top and bottom) continuous lines calcu-
lated by the Imperial College London group and (top) “x/+" calculated as
part of this work.
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unlike interactions based on pure-component data improves the prediction of

unlike interactions in mixtures. '

A= Aideal + Amono + Achain
SAFT-VR
.. ® &
° N .
. O °, @
. . O 5 ®

% SAFT—v

Figure 4.12: Visual representation of SAFT contributions, comparing
SAFT-VR and SAFT-y. SAFT-VR allows only one type of bead (Mie po-
tential) per chain, while SAFT-y models can be heterogeneous chains with
different bead types (Mie potentials). In the chain term, the Mie potential
types are averaged to a homogeneous description. SAFT-y models can not
capture in which order beads are in chains, but it is captured as an average
of all combinations. One exception is the SAFT-v version of McCabe and
coworkers, 126186 which they name GC-SAFT-VR. This SAFT version can
capture the order of beads by using the number of bonds separating groups.

A list of the most important changes from VR to v from a functionality

perspective:

e Units/building blocks are called "groups" in SAFT-y Mie, which in-
creases flexibility for parameter estimations and makes setting up cal-

culations easier.

e A group has two more parameters (6 in total) than the Mie potential
in SAFT-VR Mie (4 in total).

e New parameters: number of beads v per group and shape factor
Sk, the product of both gives the number of beads of the group. While

v is typically a positive integer number, Sy is typically a floating point
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number between zero and one. v values larger than one are used for
larger functional groups such as esters or when whole molecules are
captured in one group, Si values smaller than one are used for groups
overlapping with other groups to capture fused connections such as for
CH,; groups (Scu, = 0.22932) in an alkane chain compared to methane
(Scm, = 1).16

e Although 6 parameters per group are available, typically only 4 pa-
rameters are optimised. The parameters v and Sy are not indepen-
dent, only their product is. This reduces the overall available number
to 5. The A exponents are not fully independent, either. Most param-

eter estimation effortg%1416:115,151

chose A\, = 6 and only optimised A,
which reduces the overall number to 4. To summarize, the 4 remaining
parameters influence the potential well depth (€), the bead diameter

(o), the potential steepness/hardness ();) and non-sphericity (number
of beads, vSy).

e Different bead types (now group types) can be combined in a single
chain: Chains are still calculated as made of a single bead type, but
now it is the weighted average of the monomer types, which effectively

captures the heterogeneity.

While a version of a SAFT-y EoS (using square-well potentials rather
than Mie potentials) was already published in 2007, which captured chain
heterogeneity and the shape factor Sy, the SAFT-y Mie 2014 is the first
version to introduce v for groups of more than one bead. The v parameter
is effectively part of the shape factor or the number of groups in SAFT-v in
the 2007 version. All three parameters have a similar effect, they change the
number of beads per chain.

SAFT-vy Mie reduces to SAFT-VR Mie when compounds consist of only
one group type (no heterogeneity) and the product of number of groups per
chain and vS}, is used as n in SAFT-VR Mie.

The changes necessary to convert the Fortran SAFT-VR Mie code to a
SAFT-vy Mie code can be summarised as renaming and addition of new vari-

ables. Additional variables are added for the new parameters (S,v), for the
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molecule-averaged parameters (denoted by a subscript z in our implementa-
tion because the molecular fraction z is used in Ref. 16) used in the chain
contribution, and for the additional indices as groups and compounds are
differentiated (i,j and k,l). The z-averaged variables are only component i
specific, not bead pair k,[ specific, and therefore have one fewer dimension.
New adjusted copies of functions such as B and af are added to work with

arguments of fewer dimensions.

4.5 Derived properties

In this section the approach to calculate derivative properties of the Helm-
holtz energy is presented. While analytical expressions can be obtained for
at least the most part of the SAFT-VR Mie and SAFT-v Mie equation, the
complexity of the equation of state makes deriving analytical derivatives of
the Helmholtz free energy a non-trivial task. We have developed numerical
derivatives for the thermodynamic properties of interest instead. Numeri-
cal derivatives allow faster development of new derivatives and fewer addi-
tional lines of code. They offer also a more flexible implementation for future
changes to the underlying equation of state as the derivatives only change
with the set and shape of input variables, but not with other changes of the
equation of state. For most changes of the equation of state, no changes of
the numerical derivative code is needed.

A disadvantage of numerical over analytical derivatives is that extreme
conditions and extreme input parameters can lead to less accurate results
and have to be accounted for explicitly. Special considerations at extreme
conditions and close to conditions where the Helmholtz free energy can not be
evaluated will be reported in this chapter. Another disadvantage of numerical
derivatives are often the longer execution times.

Beyond pure numerical derivatives, the cheapest improvements can be
obtained by calculating the ideal contributions analytically. This improves
in particular the performance in extreme conditions. In this work all ideal
contributions are therefore calculated analytically. The equations are given

in this section.
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The derivative-property relations in this chapter are reported in normal
and reduced units (reduced by RT') as the quantities in our implementation
use these reduced units throughout.* The notation for reduced variables used
in this work is, that lower case letters represent variables reduced by RT,
upper case represent unreduced variables. We use M for chemical potential
and C' for heat capacity to be consistent in the notation, and even reduce S

and Cp by RT to be consistent in the conversion factor:

A/(RT) = a (4.27)
G/(RT) =g (4.28)
S/(RT) = s (4.29)
H/(RT)=nh (4.30)
P/(RT) =1p (4.31)
M/(RT) = p (4.32)
Cp/(RT) = cp (4.33)

All "ideal" quantities in this work are only translational kinetic ideal
contributions, which do not explicitly account for vibrational and rotational
motion. For differences between states at the same temperature the vibra-
tional and rotational contributions cancel out, so derivatives with respect to
number of particles (chemical potential) and volume (pressure) indirectly ac-
count for it. However, temperature derivatives (entropy, heat capacity) and
quantities calculated from entropies (enthalpy, heat capacity) can not readily
be compared with experimental values, but residual or changes upon mixing
should be compared (for which the vibrational and rotational contributions
vanish). See Sec. 4.3.3 and 4.5.8 for more details.

For equations of other thermodynamic quantities and similar relations
the reader is referred to the text book by Michelsen and Mollerup,” which,
unlike most other text books, expresses thermodynamic quantities in terms

of Helmholtz energies.

fOnly in the Helmholtz SAFT core, and right before the quantities are printed to
the output, they are handled in different units (see beginning of this chapter for more
information on units).
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How the thermodynamic quantities are derived from Helmholtz free en-

ergies is visualised in Fig. 4.13.
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Figure 4.13:  Overview of essential connections in the derivation of ther-
modynamic properties starting from the Helmholtz free energy A in this
chapter.

4.5.1 Method

Numerical derivatives are determined from finite-difference approximations of
the Helmholtz energy. The most inexpensive finite-difference approximation

for the first derivative of function B with respect to x at the position xg is

= . (4.34)

where h is the step size. This most inexpensive first-derivative approximation
is the 2-point finite-difference approximation. The step size is typically set
to be as small as possible to approach the exact limit of a tangent, but large
enough to avoid numerical instabilities.
In the same notation, the second derivative can be obtained from
0*B B(zg — h) —2B(z0) + B(xo + h)
2| = 2 (4.35)

o
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which requires one more evaluation of B than the first derivative in their
most inexpensive forms.

The 8-point finite-difference approximation using 8 evaluations of the
function B is the default accuracy used in our implementation for both first

and second-order derivatives. For function B, the first-order derivative is

9B 2803( — 4h) — 15z B(xo — 3h) + § B(xo — 2h) — §B(xo — h)
ox |, h

(SN

1053(370 + ?)h) B(Qfo + 4h)

h

(4.36)

This high level of accuracy is used in this work to minimise errors due to the
finite-difference approximation.

As an example, the 8-point finite-difference approximation of the residual
Helmholtz free energy with respect to volume, which is the residual pressure,

18

Pres ( A )
‘_1
5

% VO - 4h) 105A(VO - 3h) + %A(Vb B 2h) — %A(VO - h)
h
A(Vo+h) — £ A(Vo + 2h) + 5= A(Vo + 3h) — 5 A(Vo + 4h)
h

(4.37)

The coefficients for finite-difference expressions for the second-order deriva-
tive used in our implementation and for other accuracies can be found in

Fornberg. 187

4.5.2 Special adjustments

Special considerations were taken for the derivative with respect to particle
number (chemical potential). In comparison to derivatives with respect to
volume and temperature, which are typically not of interest at small values

(or even zero), the particle number of a compound N; is regularly set to small
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values and also zero for determining chemical potentials. Setting the step size
as a fraction of the value of NNV; leads to numerical instabilities at small V;.
We implemented a constant step size of 107°, instead. A constant step size
is possible due to the fact that the residual chemical potential approaches
a constant value for N; — 0. For N; < 5h the finite-difference algorithm
changes to a one-sided algorithm, only using function evaluations larger than

N; to avoid calculating non-physical conditions at N; < 0.

We parallelised the numerical derivative evaluation with OpenMP, where
all eight function evaluations were calculated on separate threads to investi-
gate the potential speed up. The performance of the parallelised routine gave
no significant speed up, which is most likely attributed to the extra initialisa-
tion and memory allocation. Numerical derivatives are therefore calculated

in serial, while parallelisation is added at a higher level, see Sec. 4.6.

4.5.3 Pressure

Pressure is not an input parameter naturally in the SAFT equations ex-
pressed in terms of Helmholtz energies. Pressure can be obtained from the

first derivative with respect to the system’s volume

) o Aideal RT
Pldeal — _ 4.
()~ 4
: 1
ideal — 4.
P 7 (4.39)
pres (24 (4.40)
oV ) nr

aares
res — 4.41
p (aV>NT (4.41)

)
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RT OA"e
P_7—< - )NT (4.42)
1 aares
= — — . 4.4
Py ( oV )N,T (4.43)

4.5.4 Gibbs free energy

Gibbs free energy can be expressed as the sum of Helmholtz energy and

product of pressure and volume (PV)

Gideal — Aideal 4+ (Pv)ideal

= Al L RT (4.44)
gideal — aideal + (pv)ideal
— g4l 1 (4.45)

Gres — AI‘ES + (Pv)res
= A™ 4 PV — (PV)

— A™ { PV _ RT (4.46)
ge=a*+pV —1 (4.47)
G=A+PV (4.48)

g=a+pV (4.49)
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4.5.5 Chemical potential

Chemical potential is the first derivative of the Helmholtz energy with respect

to particle number N;

) Aideal T N.
Mdeal — <8 ) _RT In <_’Af’> (4.50)
ON; V,I,N;; N
) 1 a(aidealN) 1 N
ideal _ = (Z\" '/ = —1 —ZA3 4.51
g = ( ON: Jyvrn,, N AV (4.51)
Ares
M;es — (8 ) (452)
ON; VTN,
1 (8(aresN) )
M;fes — . (453)
N ON; V. I,N;;

4.5.6 Entropy

Entropy is the first derivative of the Helmholtz energy with respect to tem-
perature. The equation for the ideal translational entropy is also known as
the Sackur-Tetrode equation. %1928 Remember the ideal vibrational and ro-

tational contributions are neglected at this stage, which need to be accounted

$Which can be derived with Stirling’s approximation.
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for when comparing states at different temperatures.
Sideal -~ aAideal
B or )y
5 N; Ni s
= SRT - RTzi:ﬁln <VAi>
3 Aideal
= —-RT — 4.54
ST (4.5
Sideal — _l a(aldealT)
T oT VN
5
5Ty ()
3 ldeal
= - — 4.55
5~ (4.55)
Ares
S = — 0 (4.56)
or N,V
1 [0(a™T)
= —— 4.57
T ( oT >NV o0

4.5.7 Enthalpy

Enthalpy can be expressed in terms of Helmholtz energy via the definition

of the Gibbs free energy G = H — TS

Hideal — Gideal + Tsideal
— Aideal—l—RT—l—TSideal
hideal — aideal + 1 =+ Tsideal

Htes = (Gres + T Sres
=A®+ TS5+ PV —RT
pres — qres + Taes +pv -1
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H:Aideal+Ares+PV+T(Sideal+Sres) (462)
h = aideal 4 CLres +pv 4 T(Sideal 4 8res> (463)

4.5.8 Heat capacity

Heat capacities are second-order derivative quantities with respect to tem-
perature. The ideal part can be approximated as a sum of translational,
rotational, vibrational and electronic contributions. Using this approxima-
tion, the ideal part can be calculated using statistical mechanics for simple
compounds of low molecular weight. For larger molecular weights, however,
the vibrational and rotational parts are usually not known from first prin-
ciples, but different approaches to derive Cid®@ from experimental data are
available. In this work we determine the ideal heat capacities from experi-

mental Cid¢! data. Cid°! are then obtained via

Cideal = Cigeal — R, (4.64)
. . 1
ideal — ideal —. 4.65
Cy Cp T ( )

Heat capacity data ci4°®! have been made available in a group-contribution
scheme by Joback and Reid? and Coniglio and Daridon,** so predictions for
almost any chemical structure is possible when data for the chemical moieties

is available.

The residual heat capacities can be expressed in terms of Helmholtz en-

ergies as

Tes @S a[_ 8§;S]V,N
Cres =T (8_T)pN —T (a—T (4.66)
) p,N

S =T la(ST) T la[_%]vﬂ/ _ a[a(aar;fT)]V,N
F T 0T ) & T oT or
P p,N N

| (4.67)
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o 85 82Ares
o =7 (a_T>N _ 7 ( - )m (4.68)
2/( . res 2( res
e 10(sT) _ 7 10%(aT) _ 0%(a™T)
T 0T ),y T o1 ),y o2 ),y
(4.69)

res

An alternative way of obtaining ¢}?° in terms of a"

18

res 2 res
Ol = —2RT (—‘M / RT)) — R <—8 o RT)) (4.70)
oT VN 0T? VN

aares @2ares
o= =2 - T 4.71
v ==(%0),, (%), e

Eq. (4.68) and Eq. (4.70) are equivalent. While the first uses the normal
Helmholtz energy, the latter takes the derivative of the Helmholtz energy re-

duced by temperature. The equivalence can be seen from using the following

easily-derivable relation

(2276) = (%) e (%) - (4.72)

An alternative way of obtaining C5* based on C}* is”

oP\> [oP\ !
oreszcres_T(_) (_) (4.73)
P v OT )y \OV ) 1y

18(pT))2 (ap)1
CISS — cfes <—— £ (4.74)
P v T ar )yn \OV )1y

Our implementation provides all equations mentioned in this section for
obtaining heat capacities, while the defaults are Eq. (4.68) and Eq. (4.73).

Our heat capacity implementation was validated by reproducing car-
bon dioxide and n-octane heat capacity (Cp) predictions of Avendano et
al. 2011.% This high-level property validated equations, units and numerical

performance at the same time. While the overall shape and absolute values
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of our predictions agreed very well with the predictions found in the figures in
Ref. 6, a small number of segments differ by up to a few percent. Determin-
ing the cause of these smaller differences is challenging. We expect numerical
differences of determining second order derivatives to be the cause. As we
are not concerned in this work with the accuracy of heat capacities at the

level of a few percent, these differences were not studied in further detail.

4.5.9 Property changes upon mixing

Changes upon mixing are defined as the difference between the properties of

a mixed and a demixed system

Buix = B (V, .Y N,-) —Y B(V.T,N)

— Bideal =+ Bres

mix mix
= Bist + B (4.75)
where the non-ideal change upon mixing is also called the excess quantity
B*. The excess quantities are obtained from determining the changes upon

mixing of the residual quantities.

The ideal changes upon mixing B4 for Helmholtz energy, Gibbs free

energy, and entropy only differ by a prefactor (—7"). As there is no ideal
change of enthalpy upon mixing, the excess enthalpy H** and enthalpy of
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mixing H;. are identical.

Smix — Sideal + gex

mix

Ni. (Vi ex
= RZ ~ (V) +S (4.76)

Amix — Aideal +Aex

mix

Ni. (Vi ox
= —RTZNIn (V) + A

= TS + A (4.77)

mix

Gmix — Gideal + Gex

mix

N; Vi ex
= —RTZNIn (V) +G

— _Tsidoal + ch (478)

mix

Hypie = H*. (4.79)

4.6 Optimisations and solvers

Conditions and properties, which can not be calculated via non-repetitive
calculations or derivatives as described in the previous section, but require
iterative optimisations are the topic of this section. The conditions and
properties covered in this section are the corresponding volume for a given
pressure, the vapour-liquid equilibrium of a pure compound, the liquid-liquid
equilibrium of a mixture of compounds, and the pure-component Mie poten-
tials with which a set of experimental data is best reproduced.

The SAFT theory is typically expressed in terms of Helmholtz free en-
ergies, which describe systems at a specific number of molecules N, volume
V' and temperature 7. The pressure P, however, is not an input variable.
The pressure is not determined directly, but will be set by varying V' until
the target pressure is met. While simpler equations of state (e.g. cubic EoS)
can also be solved with analytical schemes, the SAFT equations, which are
higher-order in volume, are typically solved numerically.

The conditions of the thermodynamic equilibrium between vapour and
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liquid of pure components can be determined by different means. One ap-
proach is to use the Maxwell equal-area rule (also referred to as Maxwell
construction), where the optimisation is performed in pressure-volume space.

In case of phase-separating conditions, the details of the set of equilibrated
phases is determined from searching for the compositions and set of phases
with the lowest Gibbs free energy. Volume and composition of the phases
are optimised, while the global ratio of compounds, the temperature and

pressure are kept constant.

4.6.1 Pressure solver

When the volume V' for the state of interest is given, the Helmholtz energy
A can be calculated with V' as a direct input. When the pressure P is given
instead, P can not be used directly as an input, but the corresponding V'
value has to be determined.

Mainly two approaches are available for finding the corresponding vol-
ume: Finding the root of AP(V) = P(V) — F, from the target pressure
Py using, e.g., a Newton—Raphson algorithm, or minimising the Gibbs free
energy A(V) + P,V by varying V.

We have implemented the pressure root algorithm, whose details are de-
scribed in this section. More details on minimising the Gibbs free-energy
expression can be found in the Sec. 4.6.5, where the corresponding volume is
determined at the same time as the composition of phases in equilibrium.

Pressure root algorithm Performing the optimisation in packing frac-
tion space (not volume space) has several advantages. The boundaries of the
possible solution space changes from V' € [0;00] to n € [1;0]. The packing
fraction space has a more convenient high-volume (vapour) boundary. In
addition, the low-volume (liquid) boundary of the SAFT EoS is the sphere
packing, which is more conveniently expressed in packing fraction as n = 0.74.
The interval in which the pressure root algorithm searches for the solution is
n € [0.74;0].

The root finding is performed with the Newton—Raphson algorithm (NRA),

which uses the pressure and the slope to approach the pressure root
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AP(n)

Ni+1 = 1 — Wdamp %AP e (4.80)

We define the convergence criterion in terms of pressure. Typically, the
convergence criterion for the NRA is defined in term of n, e.g. as n;y 1 — n;
below a given threshold. The sensitivity (dP/dn) varies across the possible so-
lution range. The high sensitivity for the liquid phase packing fraction means
that even a high packing fraction accuracy leads to a low pressure accuracy.
An overall increased packing fraction accuracy would be unnecessarily high
for the vapour packing fraction as it has a lower sensitivity. Instead of setting
several criteria, we define the convergence criterion in terms of pressure, as

is ensures a consistent accuracy across the whole range

<1079, (4.81)

which ensures 6 significant figures of the input pressure value.

If no convergence is found after 200 Newton—Raphson cycles, the algo-
rithm is restarted with either a new guided (when close to a solution) or a
new random guess (when 1 x 1073° < 5 < 0.74 or 7 =NaN). Random pack-
ing fractions are n € [0.05,0.65] with the current time taken as a seed for the
random number generator (random_number).

For polymers, starting with a low-volume initial guess (0.5 < n < 0.6) the
corresponding volume for the liquid phase is found reliably. For low-molecular
weight compounds or at conditions where the vapour phase becomes more
stable, considering the vapour root solutions is important.

We have implemented a routine which searches for both vapour and liquid
roots. It uses the compressibility (dP/dV') to determine if a stable solution
was found. The unstable third root has a positive compressibility. Any
optimisations, which are converged on the unstable third root are restarted
with a slightly larger (+20%) or smaller (-66%) packing fraction away from
the unstable solution (depending on which solution has not been found).

A disadvantage of the pressure root algorithm for the case of two stable
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solutions is, that it does not immediately provide information on which is the
more stable solution. A consequent Gibbs-free-energy comparison is used in

our implementation to pick the more stable lower in energy solution.

4.6.2 VLE of pure components

This section covers our algorithm for finding pure-component vapour—liquid
equilibria. Supporting our own attempts, Elliott and Lira mention that phase
equilibrium algorithms can be “tedious and difficult to automate".?® The
typical approaches are the Maxwell equal-area rule,*® van der Waals loop, %3
K-ratios, and nonlinear system of the equalities of pressures and chemical
potentials. '

The latter method, the nonlinear system of the equalities of pressures and
chemical potentials, is one of the least robust methods as it requires initial
guesses to be close to the solution. In our attempt to implement this method,
none of the randomly generated initial guesses led to a converged result.

Instead, we have implemented the Maxwell equal-area rule, as it is one
of the more robust algorithms and utilises our pressure root algorithm (see
previous section).

Maxwell equal-area rule The equal-area rule determines the pressure
at which the enclosed areas in the PV-plain are of equal size, see Fig. 4.14.
The pressure, for which the equal-area condition is satisfied, is the saturated-

liquid pressure Pi,;. The condition can be expressed as

0= [ W) - Paav, (152
Viiq
where the pressures at the volumes Vjq and Vi,, are equal to the satura-
tion pressure (P(Viq) = P(Viap) = Paat). At conditions below the critical
temperature and critical pressure, pressures can be obtained via (at least)
three different volumes. The low and high-value volumes correspond to the
liquid and vapour phase, respectively. The third (middle) volume is an un-
stable condition of positive compressibility (a slightly lower volume has a

lower pressure). A horizontal pressure line at a pressure with three volumes,
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together with the PV curve enclose two area elements. The size of the area
elements is optimised in the Maxwell construction. The PV areas are larger
at low temperatures and vanish when approaching the critical temperature.
A pronounced minimum and maximum in the PV curve are found at medium
temperature. Additional extrema appear at low temperatures. A single point
of inflection occurs at the critical temperature, while no inflection point is

found at higher temperatures.

pressure

0.0 LALL: :
0.0 Viiq ‘/crit ‘/vap

volume

Figure 4.14:  Pressure-volume curves for several temperatures with high-
lighted critical conditions. The vapour-liquid equilibrium conditions are
shown for one temperature, where the shaded areas are of equal size fol-
lowing the Maxwell equal-area method.

The changing shape of the PV curve leads to challenges in implementing
the Maxwell construction. The algorithm has to be able to neglect additional
PV roots at low temperatures and, at the same time, pick up comparably
small extrema at very similar volumes close to the critical temperature. At
lower temperatures the contrast between the pronounced minimum and the
flat and wide maximum increases.

Most of our efforts to implement a robust Maxwell algorithm was put
into optimising initial volume and pressure guesses, step sizes of sweeps and
sampling, the handling of exceptions, and improved restarting of unsuccessful

extrema and pressure searches.
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Our algorithm starts with determining the best list of temperatures to
give a smooth VLE curve, then optimises the PV area, for which the pressure

roots and the extrema are determined for each iteration:
e find 7., (P(V) curvature is zero)
e determine list of temperatures (more 7" closer to Teyt)
e start with lowest T'
e find P(V) extrema (P(V) slope is zero)

e derive a P guess for P, (slightly smaller than pressure of local maxi-

mum)
e optimise P to obtain equal PV areas (find P roots every iteration)

e print VLE results (T, P, o1, pv)

continue with next temperature.

Our phase equilibrium code was validated with pure-compound coexis-
tence curves from Avendaiio et al.''® We validated against SAFT-VR Mie

models of CO,, n-decane and eicosane.

4.6.3 Flash

A flash is the fast evaporation of an unstable liquid system. While the term
“flash algorithm" is a frequently used term for phase equilibrium solvers, it

7194 ysed to describe a

is difficult to find a precise definition. It is usually
phase equilibrium solver, which takes the global composition of a system (to-
gether with temperature, pressure or volume) as input, and determines the
composition of the separated phases. Flash algorithms can be categorised
based on whether temperature (isothermal), pressure (isobaric) or volume
(isochoric) or a combination are kept constant. The flash algorithms dis-
cussed and developed in this work are isobaric-isothermal-flash (PT-flash)

algorithms.
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A range of approaches has been applied to solve flash problems. Succes-
sive substitution, Newton’s method and Gibbs energy minimisation are three

examples.

4.6.4 VLE of mixtures (interface to the HELD algo-
rithm)

For determining vapour—liquid equilibria of mixtures, we rely on the Helm-
holtz-free-energy Lagrangian dual (HELD)!%® algorithm, which is a PT-flash
algorithm. HELD was developed by Frances Pereira and coworkers and pro-
vided as a compiled library package by the M&S group at Imperial College
London. We have implemented a set of subroutines which allow the HELD
solver to access the thermodynamic properties of our SAFT implementation,
such as Helmholtz free energy, chemical potential and pressure. The set up
was validated with binary mixture phase diagrams of both SAFT-VR Mie !4
and SAFT-y Mie models. ¥

The HELD algorithm is a multicomponent-multiphase equilibrium solver,
which was shown to work for VLE, LLE and LLLE system for compounds
ranging from gases, solvents to polymers.'®® The HELD algorithm runs
through three stages. At the first stage it performs a stability test to quickly
determine stable phases. The stability test uses the tangent plane stability
test and also a tunnelling algorithm with an exponential tunnelling function.
At the second stage (if the system was found unstable) searches for candidate
stable phases with a dual description. In the inner minimisation problem of
the dual description, the volume and composition are optimised subject to
minimising the Gibbs free energy of a single potential phase, which aims
to satisfy the mechanical stability (equal pressure) and reaching the lowest

Gibbs free energy,

Ve Ve

Ne—1
min L(x,V, \**8) = min (A(a:, V, T + PV + Z MR8 (20 xl)) ,

(4.83)
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where L is the Langrangian, N, is the number of components, (2% 7°, P%)
the initial global conditions, and A\ are the Lagrange multipliers, which

are linked to the chemical potential
Magi = pi(@, V,T%) — pn, (2, V,T7) (4.84)

where 7 runs from 1 to N, — 1.

In the outer problem of the dual description, the Langrange multipliers
are optimised subject to maximising the Lagrangian, which aims to satisfy

the thermodynamic stability of equal chemical potentials

max O(\8) (4.85)

\Lag
O(A\8) = rgin L(z, V, \#). (4.86)
The convergence criteria are set relatively loosely during the stable-phase-
finding stage. The tighter convergence criteria are applied in the third stage,

where the total Gibbs free energy of all collected stable phases is minimised

. . 0 0
min G(x,V) = min ; (A(@n, Vo, T°) + PV,.) . (4.87)

Note the sum over several phases in this stage. A convergence test is per-
formed on the converged solution to ensure equality of chemical potentials.
The equilibrium compositions of trace components are determined post-
convergence by using the chemical potential of the phase with the largest
composition for this component. The chemical potential of large composi-
tions is more accurate because of their large contribution to the Gibbs free
energy (larger sensitivity in the earlier optimisations) and therefore can be

used to improve trace compositions.

The HELD algorithm in combination with our SAFT-vy Mie code runs re-
liably for VLE calculations for low-molecular weight systems. We encounter,
however, convergence challenges for LLE of polymer systems. While a poly-

mer solution (polymer and solvent) causes some convergence challenges, a
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solution for a polymer mixture (also oligomer/polymer) was only very rarely
found. The numerical derivatives of our code and the consistency between
them are a potential complication. This is because of the typically similar
energy of competing phases in LLE compared to VLE. The comparison be-
tween more similar phases requires more precise consideration. None of the
performed tests, however, were able to narrow down the challenges we see
with polymers.

Equilibrium properties of several binary mixtures are shown in Figures 4.15
and 4.16 calculated with our SAFT-v Mie version and the HELD algorithm.
The results agree with the results of the SAFT-vy authors in Refs 14,184.
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Figure 4.15:  Vapour-phase equilibria of ethane + n-decane (left) and carbon
dioxide + n-decane (right) at two different temperatures. Red continuous
lines are taken from Ref. 14, grey and black lines are this work.

4.6.5 LLE of mixtures (HammR)

The HammR algorithm is a PT-flash algorithm designed for polymer mix-
tures. It determines the stability of liquid mixtures and provides equilibrium
compositions of phase-separated liquid (polymer) phases. HammR is set up
to automatically calculate whole LLE phase diagrams. A global optimisation

is not performed but a large range of initial starting compositions and num-
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Figure 4.16: Vapour-liquid equilibria of three binary mixtures as a function
cyclohexane mole fraction at a temperature of 335 K. Cyclohexane + n-ethyl
acetate (circles), cyclohexane + n-propyl acetate (squares) and cyclohexane
+ n-butyl acetate (triangles) are experimental values, thin and coloured lines
are SAFT-v results from Ref. 184, thicker black lines are this work. Reprinted
and adapted with permission from Dufal et al., J. Chem. Eng. Data, 2014,
59 (10), pp 3272-3288. Copyright (2014) American Chemical Society.

ber of phases are each optimised locally with the Broyden!?®~Fletcher¥7—
Goldfarb'”®-Shanno'® (BFGS) method, which is a quasi-Newton method.
The user can easily set the number of compounds and number of phases,

which are not hard-coded or restricted.

The HammR phase equilibrium solver is based on an unpublished phase
equilibrium solver by Marc Hamm and has been adjusted to work with SAFT-
~v Mie, improved for automated execution, and parallelised. HammR was

developed in collaboration with Marc Hamm.

HammR shares some functionality with HELD. Both minimise the Gibbs
free energy as G = A+ PV to determine the equilibrium conditions and im-
prove the trace compositions using the chemical potential. However, HammR
does not include a stability test and a stage for finding stable phase candi-
dates. Instead of making smart initial guesses based on the solutions of the
dual approach, HammR relies on multistart local optimisations spread across

the search space. A set of reliable starting compositions is set as default, but
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changes can be easily made in the input file.

The speed-up due to the stability test and candidate phase search, which
HELD performs unlike HammR, is expected to have a lesser impact on
LLE than on VLE, as smaller differences between phases (liquid/liquid vs
vapour/liquid) require more elaborate searches.” In cases of strong liquid im-
miscibility with almost pure equilibrium phases, larger differences between
the phases are present and a larger potential to speed up the calculations
with smarter search algorithms is expected. However, we perform most LLE
calculations at conditions where the phases are significantly mixed or are
miscible. Therefore, the stability test and candidate phase search have not

been a priority in our development.

The Gibbs free energy summed over all phases is minimised by optimising
the volume V' and composition @ of each phase simultaneously at constant

pressure Py and constant temperature 7
G* = min [A(x,,, V,,, T°) + P°V,] . (4.88)

HammR is written in R and relies on our Fortran routines (Sec. 4.3) for
the Helmholtz energies (and corresponding volume, occupied volume, ideal
properties). The interface to the Helmholtz energy and other basic SAFT
routines of our Fortran code is provided via a shared object (*.so) file, which
is loaded at the beginning of the HammR code. Available SAFT proper-
ties, among others, are the Helmholtz energy, pressure, occupied volume,

corresponding volume, residual properties, chemical potential.

Several adjustments to the minimisation of the Gibbs free energy in
Eq. (4.88) are made to improve the reliability (penalty-outside-volume bound-
aries), accuracy for polymers (logarithmic variables) and satisfy the mass-

balance constraint (relative composition).

The mass balance is satisfied by only optimising relative compositions
normalised by the compositions in an arbitrary phase. For the objective func-
tion, the absolute compositions are reconstructed using the total number of

molecules per compound N;. The compositions «,, in phase n are reformu-
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lated relative to the population in, e.g., phase 1, to give the reduced-variable
set . The number of variables is reduced by one per compound per phase,
so that the size of q 1S NeompoNphase — Neompo (1-€-; Neompo(Nphase — 1)), be-
cause with knowledge of the global composition x°, the composition of the

last phase can be reconstructed).

o mn,i

nag — ) :2,...7N ase
Qn, Ty, n ph
an'
= —= — 2 N ase 489
Nl’i’ n ) ; 4 Vph ( )
Ing,; =Inz,; —Inz,;, n=2,., Npase
=In Nn,i —In Nl,i; n = 2, ey Nphase (490)

Nn,i — Ntot,ixn,i
B exp(In g, ; — In ¢;"*)
= tot,z Zn eXp(ln qn,i - hl qlmax) )
In Ny = In Nyoy s +Inay,

with Ing;; =0 (4.91)

=InNiot; +Ingy; —Ing™ —In Z exp(ln g, ; — In ™), with Ing,
n

(4.92)

where In g™ = max,(Ing,,) is chosen to shift the logarithmic values to
avoid numerical problems. While the BFGS optimiser works in relative mole
fraction space q, the Helmholtz energy evaluations are naturally performed in
absolute mole fraction space . Variable-space converter routines are applied
for each communication.

To improve the accuracy of polymer and trace concentrations, the opti-
misations are performed on logarithmic variables (Inx,In q), which incon-
veniently changes the lower search boundaries from zero to negative infinity,
but at the same time provides higher sensitivity at low mole fractions.

Penalties are applied for volumes outside the specified liquid-volume
range expressed in packing fraction as the range n = [0.2,0.68]. The volume
penalty is applied phase wise. It avoids unphysical high packing fractions
near the close sphere packing threshold of n = 0.74 and avoids vapour phases

at low packing fractions, where we have set the threshold at n = 0.2
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Accounting for the mass-balance constraint, the logarithmic variables,
and the volume-penalty features, the objective function optimised in HammR

can be expressed as

O"= min O(lng,InV) (4.93)

Ing,In
phases
O(lng,InV) = Z Gn(lng,,,InV,)+Y(V,)]

n

phases

= Z [A(Inz,(Ing,)n, Vo, T°) + PV, + Y (V,,)] (4.94)

n

Y (Vi Viower/upper) = Ni 4+ (N — N;)(1 — ™) (¢ — 1) (4.95)
d(A + PV
b= d‘/lower/upper) <V B Viower/upper) (496)

The trace-component mole fractions are improved post-convergence us-

ing the chemical potential of the same compound in the phase where it has

best

the largest mole fraction, ;°**, which is expected to be the chemical potential

of highest accuracy. The compositions are adjusted based on the deviation
from Mbest’

best
T — Wgamp (,u

— J1;)
N, , (4.97)

€T; =

which works reliably for small compositions as the chemical potential is mono-
tonically increasing with composition in this range. A range of damping
factors wqamp = [1;0.003] is tested and the successful improvement with the
highest wyamp is used. Success is defined as a smaller variation in the chemical

potential for each compound.

Equilibria are calculated assuming liquid phases to be more stable than
vapour phases. If vapour phases are significantly more stable, HammR iter-
ations often move beyond the lower packing fraction boundary of n = 0.2,
which is reported together with a warning, that a VLE or VLLE might be

more stable at the requested conditions.

Several more technical features are implemented to improve the perfor-
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mance (parallel execution), the handling of polydisperse materials (compo-
nent/material), automation of phase diagrams (skipping of failed attempts,

loops over P, T x),

Compounds can be specified in the input as material or component
to facilitate introducing and handling of polydispersity. Several (pseudo)-
components can be combined as materials. Composition results are reported
for both components and materials in separated output files to allow easy

analysis.

Additional optimisation methods apart from the BFGS method have also
been implemented. The Nelder-Mead (simplex) and genetic optimiser
(GENOUD) " solver can conveniently be turned on and off via an input

flag.

For automatic generation of full LLE phase diagrams, automatic batch
calculations can be executed, which run over a set range of temperatures,
pressures, composition, and initial population guesses. Automatic skipping
(try-except commands) of unsuccessful optimisation attempts is implemented

to avoids unwanted program aborts.

HammR can be run in parallel. A bash script is provided in which only
the number of processors has to be adjusted to the available hardware. The
composition list is spread across the processors. Separate instances of R
are launched. As no communication between the instances is required, the
parallelisation scales perfectly with the number of available processors. The
input files for each instance are adjusted to carry the unique thread-ID,
which is picked up by HammR to find the right section of the composition
list to work on. The current set up can run in parallel on a single node with

several processors, but can not run across several nodes.

The result are saved in several different ways. Results of successful local
optimisations are saved to a separate file for each (T, P° x°) combination.
The equilibrium results (lowest G for each (7°, P°, x°)) are saved to a sum-
mary file. This summary file is generated for both component and material
level. Several python scripts are provided for automated analysis and plot-

ting.
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4.6.6 Mie potential optimisation

An optimisation routine is available to develop pure-component Mie po-
tentials. The algorithm allows the optimisation of all 4 Mie parameters
(€,0,A\r,\a) simultaneously or a selection of them. Any thermodynamic prop-
erty made available in the table module can be used in the Mie potential
optimiser as the reference property; properties ranging from density, volume,
pressure, free energy, energies of mixing and more are available. The underly-
ing solver is a Nelder-Mead?*! (downhill simplex) algorithm, which is applied
in a multistart approach. The optimisation is parallelised with OpenMP,

which fully utilises multicore hardware to speed up execution times.

The performance of SAFT models is typically expressed in reference to

experimental data as the average absolute deviation in percent (%AAD),

100w; | X7P — XPAFT

7
exp
X %

(4.98)

where Neyp, is the number of experimental reference points, w; the weight for
reference data point ¢ and X is the thermodynamic property (e.g., density,
energy or pressure) for which reference values X*P® are available and which
are predicted with the tested SAFT model, X5AFT. We use %AAD in the

Mie potential optimisation as the core of the objective function O*

e 00w,
N, exp

X?Xp o XSAFT 0
: Xe)ﬁp ( >‘ + Y(O)) , (4.99)

O" = min
0

i=1

where the parameters to be optimised are
0 = (6,0, M\, \a). (4.100)
The objective function includes a penalty Y
Y (@) =Yyouside  yA-eap, (4.101)

youtside penalises parameters outside a specified range. The penalty is quadratic
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with the distance to the closest boundary and is normalised by the size of

the acceptable value range (" — 6'°).

Nog gub _ 9. 2
J
Y(0)=>" (100@) (4.102)
j=1 J J
where Ny is the number of parameters in 6. Eq. (4.102) is expressed for pa-
rameters @ larger than the upper boundary 6"°. For determining the penalty

for parameters smaller than the lower boundary, substitute upper boundary

6" with lower boundary 6™ and vice versa in Eq. (4.102).

The second penalty Y78 ensures A, to be larger than )\,, and adds a

minimum difference of 1 to improve numerical stability
YA = 100(\, — Ay — 1)? (4.103)

YA=8P is only applied if A, — A\, < 1.

One successful approach to perform Mie optimisations and plot results
is to run (e,0) optimisations for fixed (A;,\,) values. Equally spread (A;,\,)
values are automatically generated for a chosen value range. The results can
be plotted in (A, A\,)-space with either (e,0) included as colour and size of
symbols, or quality of fit %WAAD as colour of symbols. A python script is

provided to produce these and other plots automatically.

As numerical solvers, we have tested available minimisation algorithms
from the Numerical Recipe library,'® which do not require explicit deriva-
tives, but determine necessary information from function evaluations only.
The Powell algorithm is not fit for the problem at hand, because parame-
ters are optimised in turns or based on a specified vector of parameters. As
the parameters are highly correlated and correlations differ from property
to property and change with changing parameters, optimisations were either
unsuccessful or highly specified to a type of property and area of phase space.
The amoeba solver, which is a simplex algorithm by Nelder and Mead, in-
stead, was found to be a flexible and successful optimiser, which finds the

solutions even if started not close to the solution. The amoeba solver is
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therefore applied as default.

4.7 Tabulated Mie potentials for GROMACS

To use Mie potentials as non-bonded interactions in the GROMACS 7177 soft-
ware package, the potentials have to be provided as look-up tables, which
are tabulated forces and potentials with a fine spacing of 0.002 nm.?’?> We
have implemented a routine to automatically generate GROMACS compat-
ible table files for Mie potential parameters provided in our default input
file.

GROMACS offers two alternatives to specify tabulated potentials for

which the potential UM can be expressed as

e =i [(2)" - (9)"]

= Keo" 7™ + Keo™ 1~
= Cu"™(r) + Au™(r)
=u'(r) + u®(r). (4.104)

Either 7= and r—*, or u™(r) and u®(r) are provided in the table files.
The two options differ by ¢ and €. The first option is convenient for systems
where the exponents (A, A,) are the same for many or all interactions. It
allows the reuse of the table files. However, for Mie potentials developed
with SAFT the exponents typically differ between bead types. For general
convenience and maximum automation we therefore provide the potentials
fully in the table files as u"(r) and u*(r) by setting C' = A = 1. A separate
table file is used for each interaction, which is generated automatically by
our implementation.

The look-up table is a numerical file of the potential contributions and
their first-order derivatives given in seven columns whose column order cor-
responds to r, X, —4 w'(r), —u(r), u*(r) and —u”(r). The radius r incre-
ment is 0.002nm. Values need to be given up to 1 nm larger distances than

the highest cut-off radius (rvdw,rlist,rcoulomb keywords) specified in the
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GROMACS grommp .mdp input file.
The code was tested for a Lennard-Jones potential against the internal
GROMACS-build look-up table. The initial steric energies of both simula-

tions were identical.

4.8 How algorithms are used in this work

The SAFT-v Mie algorithm with the derived properties and the pressure
solver are the basis for all other algorithms used in this work, referred to as
basic algorithms in this section.

The basic algorithms are used for testing the available Dufal 20144
group-contribution Mie potential parameter set on polymers, see Sec. 5.1.

The Maxwell construction (VLE of pure compounds) together with the
basic algorithms is used for evaluating Mie potentials obtained via the corre-
sponding state method of Mejia et al.'>% for describing like interactions, see
Sec. 5.4.1.

The external HELD library together with the basic algorithms is used for
calculating VLE of mixtures, see Chap. 6.

The HammR algorithm together with the basic algorithms is used for
predicting LLE of polymer mixtures. Some derived properties and the pres-
sure solver (written in Fortran 95) are substituted with new routines in the
HammR environment (written in R) for improved performance, see Sec. 5.5.

The Mie potential optimisation algorithm together with the basic algo-

rithms is used to develop new Mie potentials, see Sec. 5.4.2.



Chapter 5

Development of Mie potentials for

polymers

This chapter covers our strategies for developing SAFT-y Mie models for
oligomers and polymers. Firstly, we summarise strategies employed by other
groups with the SAFT equation of state. The SAFT-vy Mie parameter set by
Dufal et al.'® is applied to industrially relevant oligomer/polymer/polymer
and oligomer /polymer mixtures to test the transferability of SAFT-y Mie
parameters from low molecular to polymer weight. A semi-comprehensive
overview of experimental thermodynamic data of hydrocarbon polymers for
the development of equation of state models is presented. We discuss the
corresponding state principle as a short cut for the polymer model devel-
opment and demonstrate why heat capacities and speed of sound data are
challenging to utilise in the Mie potential parameter estimation of polymers.
Pure-component SAFT-vy Mie models for a range of polymers are presented,
which were successfully developed with liquid densities (PVT). SAFT-vy
Mie models for binary and ternary mixtures are developed based on the
pure-component models. The influence of individual unlike interaction pa-
rameters is analysed and challenges in the development of SAFT polymer

models are discussed.

Most of the SAFT-v Mie calculations in this section were performed with

our own code presented and discussed in Chap. 4. For the development of

95
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some of the unlike interactions we also employed the commercial SAFT-~
Mie implementation (gSAFT by PSE).?% If not stated otherwise, our own

SAFT implementation and solvers were applied.

5.1 Testing transferability of available param-

eters

The currently most advanced SAFT-vy Mie parameter set is the group-contri-
bution (GC) parameter set at united-atom level by Dufal and coworkers. %!
Although the Mie potential parameters were developed with data from low-
molecular weight compounds, it is straight-forward to apply them to higher
molecular weight compounds, due to their group-contribution nature. To
our knowledge, the parameters were not tested on polymers before. In this
section we explore how accuracy of polymer compatibility predictions when
Dufal’s group-contribution parameters (GC-Dufal2014) are applied at molec-
ular weights far beyond the tested range.

Our own SAFT-y Mie implementation was used for the prediction of free
energies of mixing and pseudo partition coefficients. The HELD algorithm
was added to obtain VLE and LLE properties of the low molecular weight
mixtures. The VLE and LLE properties were used as the reference to improve
some of the unfitted unlike interactions of the GC-Dufal2014 set.

5.1.1 Polymer compatibility data

Three sources of experimental compatibility data of polymer mixtures were
used in this evaluation. Qualitative experimental compatibility data (misci-
ble vs. immiscible) was used from Sabattié et al.?** and Mansfield 2> based on
differential scanning calorimetry analysis (DSC) of glass transition temper-
ature shifts. The data comprises three polymers in pairs with several differ-
ent oligomers. Quantitative experimental compatibility data was used from
Mansfield and Hamm?%® based on gel permeation chromatography (GPC)

analysis of oligomer partitioning between two polymers. Brief details of the
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relevant experiments are given below.

Experimental details

k2% comprises the

The experimental details of Mansfield and Hamm’s wor
preparation and analysis of polymer systems. An oligomer was added at a
level of 5-15% by weight to one of the triblock copolymers in a microextruder.
The oligomer loaded and a second unloaded triblock copolymer where both
pressed into approximately 150 ym thick films, before being brought in con-
tact to allow the oligomer to migrate between the polymer matrices. Four
oligomers and the two triblock copolymers styrene—isoprene—styrene block
copolymer (SIS) and styrene-hydrogenated-isoprene—styrene block copoly-
mer (ShIS)* were mixed in pairs. The oligomer/triblock-copolymer pair was
brought in contact with a styrene-butadiene—styrene block copolymer for at
least two weeks. Gel permeation chromatography was used to determine the
partitioning as the ratio of the oligomer signal integrals of both phases.

The experimental details of Mansfield’s work %> comprises the preparation
of 50:50 weight percent polymer/oligomer blends via solution blending in
tetrahydrofuran (THF) (with 250 ppm BHT') on microscope slides. The dried
mixtures were analysed in DSC experiments at rates of 20 °C/ min. Two heat
runs (to 180°C and 300°C) separated by a cool run were performed. The
second heat run was used to determine glass transition temperatures.

The experimental details of Sabattié’s DSC analysis and preparation de-
tails can be found elsewhere.?%4

Details including molecular weight, polydispersity and monomer ratio
about the polymers and oligomers of all three studies are listed in Table 5.1.
The polymers and oligomers cover a broad range of industrially relevant
hydrocarbon polymeric compounds. Unsaturated (PI, PB, PS, PM, phPMI),
saturated and hydrogenated (hPI, hPMI, phPMI, hPM), and aromatic (PS,
PM, phPMI) compounds are included. Polymers from both C4 monomer
streams (PiB, PiBB) and C9 monomer streams (PM, hPMI, phPMI) are

covered.

*ShIS and SEPS are synonyms, because hydrogenated-1,4-PI and poly(ethylene)-alt-
poly(propylene) (EP) describe identical structures.



Table 5.1:

missing information are listed. 204-206

Details and notation of oligomers and polymers. Experimentally known details and assumption about

name compound ‘ M, /g mol~! M, /M, monomer ratio Ref.
[0y : a
PI° polyisoprene 145 000" 1.1° 95%’ 31,214._111?;;? PI)DII 204-206
[0y, 1 a
hPI¢ hydrogenated polyisoprene 150 000P 1.1° 972'4602 ;ﬁﬁiﬁiﬁ I?PPII 204-206
PBe° polybutadiene 133 000° 2.1° 90% 1,4-linked®, 10% vinyl* 204-206
sq squalane 423 1.0 - 204
PiB polyisobutylene 900 - - 204
poly(isobutylene-co-1-butene) assumf d 50% isobutylene,
PiBB+fur!  with terminal furandione group 910 1.6 00%. L-butene, 206
and linker (fur) 1 furlandlonc group and
linker per chain
PS1k polystyrene 1000 "narrow" - 205
PS4 polystyrene 418° 1 - 204
PM poly(methylstyrene) 550 3.3 assumed no « methyl substitution 206
hPM hydrogenated poly(methylstyrene) 700 1.8 assumed 1&?? :étu}f;t 1501?]375 titution 205
hydrogenated 100% saturation,
hPMI . 600 1.5 assumed: 50% methylstyrene with 205,206
poly(methylstyrene-co-indene) no « methyl substitution, 50% indene
50% saturation,
. assumed: 50% methylstyrene with
phPMI partially hydrogenated 600 1.5 no a methyl sul:ilstit}iltion, 205

poly(methylstyrene-co-indene)

50% indene, equal saturation
of all potential sites

& Measured for the Mansfield Hamm data set ?° and assumed to be the same for the other two data sets. 204205

b Assumed to also be a good description for the mid block X of the SXS triblock copolymers in the context of oligomer compatibilities. The small

influence of the exact polymer weight on the compatibility of oligomer/polymer mixtures supports this assumption. Measured for the

Sabattié data set, 2’ the other two data sets2°%290 are modelled as 1 x 10% g mol 1.

¢ Also covers styrenic triblock copolymers. The styrenic blocks are neglected in the SAFT models as they are vitrified at all applied conditions.

4 PiBB+ fur is a polybutylene succinic anhydride.

¢ A styrene tetramer initiated and terminated with a hydrogen radical. The actual compound used in the DSC experiments was

fully deuterated, but is treated as only containing hdyrogen in this context as the SAFT groups were developed on hydrogen-compounds. We assume no

significant change in properties due to deuterium for the properties studied here.
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5.1.2 Polymer models based on GC parameters

SAFT-y models for the polymeric compounds in Tab. 5.1 are assembled
based on the group-contribution Mie potential parameter set by Dufal et
al. 2014.'®* The mapping of group parameters for the monomer structures
are represented in Fig. 5.1. The chosen mapping accounts for all known
experimental information about the compounds. The most important infor-
mation for the development of SAFT-v models was the molecular weight,
the monomer types and monomer ratios. For the few chemical moieties
for which no perfectly-matching group parameters are available in the pa-
rameter set (quaternary carbon >C<, the urea group, fully substituted sp?
>(C= carbon), we have chosen the closest-matching available group based on
molecular weight and chemical nature, see Fig. 5.1. In the furandione group
two ester groups were chosen for the urea moiety. To account for the uncer-
tainty of the non-perfect choice of ester groups to capture the urea moiety,
in addition to PiBB+fur (see Tab. 5.1 for details) we included a PiBB model
without linker and furandione group. The choices for the quaternary carbon
and the >C= group are further analysed for low-molecular weight compound

mixtures later in this section.

The polystyrene blocks in the triblock copolymers are vitrified (tempera-
ture below glass transition) in contrast to the rubbery polyisoprene, polybu-
tadiene and hydrogenated polyisoprene midblocks. We assume the migration
of oligomers is impossible in and out of the vitrified high-molecular-weight
polystyrene blocks, which is why the polystyrene blocks are neglected in
the SAFT-v Mie models. Oligomers of polystyrene in this work are rub-
bery (above their glass transition temperature) and are therefore explicitly
included in the SAFT-y Mie models.

All compounds are modelled as monodisperse. Unknown molecular weights
of PI, hPI and PB polymers were set to 100kgmol™!, which is in a range
where free energies of mixing of oligomer/polymer mixtures are almost inde-
pendent of the polymer weight. All calculations were performed at a tem-
perature of 298 K and a pressure of 101 325 Pa.
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006 @« Qi & @

R Y Y

cis/trans . cis/trans
- 1,4-linked -
1,4-linked hydrog. 1,4-linked polyisobutylene
polyisoprene polyisoprene polybutadiene
3,4-linked 3,4-linked vinyl
polyisoprene hydrog. polybutadiene poly(1-butene)

polyisoprene

: % : jéio
2 2 furandione furandione
squalane linker

hydrog. hydrog.
poly(methylstyrene)  polyindene

polystyrene poly(methylstyrene)  polyindene
Figure 5.1:  (Top) Colour code of groups taken from Dufal et al.'®* (Bottom)
Monomer structures of oligomers and polymers overlaid with the mapping

of groups. Cis and trans isomers are not differentiated in the GC-Dufal2014

parameter set. 84
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5.1.3 Compatibility and pseudo partition coefficient

The compatibility predictions are based on free energies of mixing of binary
blends, AG i, as a function of oligomer weight fractions, w, which we express

as

AGmix = Goyp — 2oGo — (1 — 24)G) (5.1)
M.z,

S 5.2
v Moz, + Myx, (5:2)

where indices ‘0’ and 'p’ denote oligomer and polymer, respectively, = are
mole fractions and M the molecular mass for which the number-average

molecular mass is used in case of polydisperse compounds.

Compatibility (only 1 phase present) is found for compositions with nega-
tive AGpix and positive AG ;. curvature (convex). In cases of negative cur-
vature (concave), the mixture is more stable when separated into two phases
as it lowers the overall free energy, independent of the sign of AG;. Only
those plots exhibit the relevant curvature that are plotted with consistently
normalised quantities, e.g. by normalised by total weight or total number of

molecules. Inconsistent normalisation significantly warps the graphs.

For the prediction of partition coefficients, the polymer pairs PI/PB and
hPI/PB are made available for the oligomers to partition between. Phase sep-
aration is predicted in the hPMI/PI/PB and PiBB(+fur)/PI/PB systems as
all binary pairs are incompatible. No true partition coefficient can be deter-
mined in these cases for significant oligomer concentrations larger than only
traces. To allow a consistent and easy comparison of relative compatibility
for all pairs, the difference between the free energies of mixing of the mixed
phases at constant oligomer weight fraction is computed, which we call a

pseudo partition coefficient.

We define the pseudo partition coeflicient log K, (A) of oligomer A be-
tween polymers x and y as the difference of free energies of mixing

log Ky jy(A) = — [AGZ (A) — AGY,

mix mix

(A)] /RT. (5.3)
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The pseudo partition coefficients log K/, (A) are not true partition coeffi-
cients, but rather are pseudo partition coefficients or driving forces as they
are calculated from free energies of mixing of systems not necessarily in ther-
modynamic equilibrium and potentially at unstable conditions, but at the

same weight composition.

5.1.4 Results and discussion

Free energies of mixing predictions for all oligomer/polymer pairs are plotted
in weight-normalised quantities in Fig. 5.2a. Incompatibility is found for
the majority of combinations and compositions. PiBB and hPMI oligomers
are incompatible with PB and PI, and compatible in hPI. Inclusion of the
furandione group in the PiBB-+fur model shows slight incompatibility in
hPI at high oligomer concentrations, but does not change the qualitative
compatibility in PI and PB. PM oligomers are found to be compatible with
PI and PB, while partially compatible in hPI.

The pseudo partition coefficient predictions in Fig. 5.2¢ reveal a positive
driving force for most oligomers. The only negative partition coefficient is
found for log Kypi/pe(PM). A positive pseudo partition coefficient log K, /pp
describes oligomers which are less compatible in PB than in polymer z, and
a negative log K, /pp describes oligomers less compatible in polymer x than
in PB. The large positive log K, /pp values can be attributed to the large
positive AG i, for the oligomer—PB pairs found for all oligomers apart from
the PM tackifier.

The absolute (pseudo) partition coefficient values predicted by SAFT
are significantly larger than found in the experimental studies obtained from

206 see the comparison in Tab. 5.2.

GPC experiments by Hamm and Mansfield,
The experimental values are consistently positive and between 1.44 and 6.23,
while the SAFT-y Mie predictions are roughly between —2 and +42. As
the log Kpr/pp values for PiBB and hPMI in PI/PB are based on only in-
compatible pairs, the SAFT-v Mie predictions are clearly in contrast to the
experiment. Agreement, however, with the experimental results is found

qualitatively on whether the driving force is larger in the PI/PB or h-PI/PB
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Figure 5.2: SAFT-v Mie predictions for (a,b) free energies of mixing as a
function of the oligomer weight fraction for oligomer/polymer pairs: Poly-
isoprene (left), polybutadiene (middle), hydrogenated polyisoprene (right).
(c,d) Pseudo partition coeflicients log K, /pp as a function of oligomer weight
fraction: log Kpi/pg (continuous lines) and log Kypi/pp (dotted lines). The
legend in (c) also applies to (a,b).
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system, effectively correctly capturing the effect of hydrogenation of the poly-
mer matrix. Agreement is also found on the order of all (pseudo) partition
coefficient apart from the order of hPMI/PI/PB and PM/PI/PB. The same
inversion of hPMI/PI/PB and PM/PI/PB, however, is also predicted by the
linear free-energy model (LFE),?% hence the order of all (pseudo) partition
coefficient agrees between SAFT-vy Mie and LFE without exceptions.

The SAFT model seems to capture the relative chemistry of the com-
pounds, but does not perform well on the absolute compatibility of pairs of

oligomers and polymers.

Table 5.2: Comparison between experimental partitioning,?%® linear free-
energy partitioning predictions®*® and SAFT-y Mie pseudo partitioning pre-
dictions. As quantitative agreement was not achieved, the order of partition
coefficient values for each method is given as "rank" in brackets. Rank num-
bers highlighted in green agree with experiment, while red highlights dis-
agreement with experiment. The SAFT predictions of the pseudo partition
coefficient are reported for 33% (w/w) of oligomer.

system (pseudo) partition coefficient (rank)
polymer  oligomer exp. 2% LFE2% SAFT-vy Mie SAFT -+ Mie
pair +GC-Dufal2014 +GC-Dufal2014
+k;;+CH=
PI/PB DPiBB fwr 3.42 (#2) 3.13 (12)  23.4° (12) 16.0 (//23)
PI/PB hPMI 1.49 (#5) 2.65 (#4) 13.6* (#4) 10.5 (#4)
PI/PB PM 2.11 (#4) 2.44 (#5) 1.71 (#5) 7.76 (#5)
hPI/PB  PiBB+4fur 6.23 (#1) 7.21 (#1) 24.9 (#1) 24.9 (#1)
hPI/PB hPMI 2.27 (#3) 3.03 (#:3) 17.3 (#3) 17.3 (#3-2)
hPI/PB PM 1.44 (#6) 1.98 (#6)  —2.25* (#6) 6.67 (+6)

& Predicted phase separation of the oligomer into a third phase as the oligomer is not

fully compatible with either polymer.

SAFT-v Mie predictions for the qualitative compatibility data of a range

of oligomer /polymer is compared in Tab. 5.3 with experimental results ob-

tained from the shift of glass transition temperatures in DSC measurements. 204295
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Figure 5.3:

weight fraction oligomer

oligomer /polymer blends.

weight fraction oligomer

weight fraction oligomer

SAFT-v Mie predictions for free energies of mixing for

The polymers are polyisoprene (left column),

polybutadiene (middle column) and hydrogenated polyisoprene (right col-
umn). The SAFT-y Mie group-contribution parameter set by Dufal et al.'®
2014 was used (a,c) alone and (b,d) with two improved k;; values and in-
formed choice of the (CH=) group.
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Table 5.3:

results.

ibility, and "2" phases incompatibility.

204,205 n 1"

SAFT-y Mie predictions for the number of phases in equilib-
rium for several oligomer/polymer pairs compared with experimental DSC

phase denotes compatibility, "1-2" phases partial compat-
The solubility limit for predicted

partial compatibility is given as oligomer weight percentages in brackets.

polymer oligomer experimental — SAFT-v Mie SAFT -+ Mie
+GC-Dufal2014 +GC-Dufal2014
hPI PS4 2 1-2 (5%) -2 (5%)
hPI PSik 2P 2 2
hPI squalane 12 1 1
hPI PiB 1@ 1-2 (15%) 1-2 (15%)
hPI hPM 1P 1 1
hPI hPMI 1b 1 1
hPI phPMI 1-2 b 1-2 (5%) -2 (5%)
PI PS4 1-2 2 1 -2 (2%)
PI PSik 2P 1 2
PI squalane 1 1-2 (10%) 2
PI PiB 1-22 2 2
PI hPM 17 be 2 2
PI hPMI 17 be 2 2
PI phPMI 1P 1 1-2 (40%)
PB PS4 1-2° 1 2
PB PS1k 2P 1 2
PB squalane 12 2 2
PB PiB 2 2 2
PB hPM 27 be 2 2
PB hPMI 17 be 2 2
PB phPMI 1P 1 2

a Sabattié et al. 2015204

b Mansfield 201529 Compatibility statement only for a 50/50 weight percent mixture.

¢ Experiment not conclusive

205



5.1. Testing transferability of available parameters 107

A poor agreement of the SAFT model predictions with the DSC experiments
is found as agreement is only found in 8 cases and disagreement is found in

9 cases.

SAFT-y Mie model parameter improvements

Some of the poor performance correlates with unlike interactions, which relied
on combining rules in the Dufal parameter set and were not explicitly fitted
to experimental data. The two unfitted unlike interactions with the highest
contribution in this work were identified based on the number of beads in
the compound models. The overview in Fig. 5.4 reveals the olefinic-aromatic
(aCH/CH=) and cycloaliphatic-aromatic (aCH/cCH2) interactions to be the
most important unfitted interactions for the systems in this work. Solvent
mixtures which exclusively rely on (or are dominated by) these interactions
are chosen to inform these unlike interactions. SAFT-+ Mie predictions for
these solvent mixtures were compared with experimental data to test the
performance of the combining rule and adjustments were made to the unlike
interaction parameter k;; when needed. Recall, that k;; was defined as the

correction factor to the energetic unlike interaction parameter as

€ =(1— k‘u)%\/m (5.4)
ij
and is typically the first correction factor to be invoked to adjust unlike
interactions to improve the performance of SAFT-vy Mie models.

The olefinic-aromatic interactions are tested in benzene mixtures with
ethene, propene and butadiene. The (CH2=) bead was tested therefore first
before the (CH=) was tested and adjusted. The prediction of ethene/benzene
vapour pressures as (2 CH2=)/(6 aCH) at 293 K and 313K at several com-
positions reveals the best agreement with experimental data for the com-
bining rule of (CH2=)/(aCH). Using the validated (CH2=)/(aCH) interac-
tion, the olefinic-aromatic interaction (CH=)/(aCH) is tested in models for
propene/benzene and propene/butadiene mixtures. Dew and bubble point

(start of vapour condensation and start of liquid boiling, respectively) predic-
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Figure 5.4: Extract from the GC-Dufal2014 group parameter set.'%* Green
denotes interactions fitted by Dufal and coworkers, grey highlights interac-
tions derived with combining rules, and the two red and stronger contoured
pairs are fitted in this work. The percentage of the groups for each compound
are added to visualise the relative importance of the interactions. The per-
centage is calculated based on the number of beads used for each compound
17, while the number of bead type k is calculated accounting for the shape
factor as v; yv{Sk. Only percentages equal or larger than 28% are shown for
the sake of clarity and to highlight only the most dominant groups in the
polymer models.

tions across the whole composition range were compared with experiments,
see Fig. 5.5. We found a readjusted k;; = 0.22 to give a significantly better
agreement than the combining rule for both mixtures. The combining rule
hugely overestimated the interaction strength.

The cycloalkane—aromatic interaction was tested with boiling and bubble
point temperatures of a cyclohexane/benzene mixture. The comparison in
Fig. 5.5 reveals how the azeotropic mixture is better described with k;; = 0.01
than with the combining rule.

Further testing of additional unlike interactions was attempted, but no
mixture data was found which is dominated by those interactions and did
not require parametrisation of completely new bead types. Further attempts
were made, for example, for the cyclic aromatic (aCCH and aCCH2) groups
interacting with olefinic and cycloalkane groups, and the olefinic (CH2=)
group interacting with the cycloalkane group.

For validating the replacement for the fully substituted olefinic group
(>C=), which is not part of the Dufal 2014 parameter set, the two closest-
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Figure 5.5: Vapour-liquid equilibria (VLE) of binary mixtures calcu-
lated with SAFT-v Mie using the GC-Dufal2014 parameter set.'®* The
unlike interactions are tested and adjusted. (a) ethene/benzene at T =
293.15 K and 313.15 K, k(CH2=/aCH) tested, (b) cyclohexane/benzene at
P = 101300 Pa, k(cCH2/aCH) adjusted, (c) benzene/butadiene at T =
303.15 K, k(CH=/aCH) adjusted, (d) propene/benzene at T' = 298.15 K,
k(CH=/aCH) tested, All experimental data (symbols) was retrieved from
the DETHERM database. "
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Figure 5.6:  Comparison of vapour-liquid equilibria predictions for two
SAFT-y Mie models of the isobutylene/benzene mixture at 7' = 298.15 K.
As no dedicated parameters are available for the fully substituted olefinic
group (>C=), the closest matching beads (CH=, blue) and (C, grey) of the
Dufal et al.'® parameter set are compared. All experimental data (symbols)
was retrieved from the DETHERM database. 0"



5.1. Testing transferability of available parameters 111

matching groups are tested. The weight consistent (>C<) and the chemically
similar (>CH=) group are tested for vapour pressures of an isobutylene-
benzene mixture. The chemically similar (>CH=) group gives a far better
agreement with the experimentally observed data, see Fig. 5.6.

All previous predictions were recalculated using the improved GC-Dufal-
2014 parameter set by including the two adjusted parameters k(CH=/aCH)=
0.22 and k(cCH2/aCH)= 0.01 together with the validated choice of (>CH=)
for the missing (>C=) group. The improved parameter set performs slightly
better in predicting the oligomer/polymer compatibilities. The new SAFT-
~v Mie predictions for all previously studied mixtures are presented in Ta-
bles 5.2 and 5.3. All (pseudo) partition coefficients are now correctly pos-
itive and the relative position to each other is significantly improved, as
can, for example be seen in better differentiation of the PI/PB/PiBB+fur
and hPI/PB/PiBB+fur results. The relative agreement with the LFE re-
sults has become even better. New correct predictions are found for the two
PS/PI mixtures and the PS1k/PB blend, but a worse performance for the
PB/phPMI mixture. Overall the improved parameter set gives 10 correctly
and 7 incorrectly predicted compatibilities. Worse performances were found
for the arguably most complex mixtures PB/phPMI and PI/phPMI which
are composed of several monomer types, isomers and partial hydrogenation.
In conclusion, the updated parameter set has led to a systematic improve-
ment.

Two additional trends are studied with the GC-Dufal2014 parameter set
to further evaluate the transferability to larger molecular weights. The trends
are the influence of the oligomer molecular weight and the degree of hydro-

genation of unsaturated oligomers.

Influence of oligomer molecular weight

A range of alkane chains has been modelled to study the influence of molec-
ular weight of the oligomer on the pseudo partition coefficient. Linear alkane
chains of the length of n-hexane, n-hexadecane, n-Csq, n-Cgo, n-Cia9, n-Coyg

and n-Cygg are modelled. The structures and their mapping are shown in
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Fig. 5.7a.

Predictions for the free energies of mixing in Fig. 5.7b-d overall reveal
improved compatibility for reduced molecular weights of the oligomers, which
follows the known trend caused by the increasing stabilising influence of the
ideal entropy of mixing for smaller molecular weights. While alkanes of all
modelled chain lengths are predicted to be compatible with hPI, none are
compatible with PB. In PI, the compatibility reduces from fully compatible
(n-Cg and n-Cyg), via partial compatibility to incompatibility (n-Caqo and
n‘C480)-

The pseudo partition coefficients in Fig. 5.7e reveal a high driving force for
all oligomer chain lengths. Both longer chain length of the oligomer as well
as the hydrogenation of hPI compared to PI leads to larger log K, /pp values.
The trend of increased log K, /pp values for longer chain lengths agrees with
GPC experiments.**® It is important to note again that log K, pg values have
been calculated for all pairs, even those predicted to be incompatible.

Counter-intuitively, the weight normalised energy of mixing for PB in
Fig. 5.7c is almost independent of the oligomer chain length. Even a slight
increase of AGp, with oligomer molecular weight is found, although the
entropy of mixing with larger negative contributions at smaller molecular
weights is expected to favour a mixed system. As the chains are terminated
with CHj3 groups, the relative composition of groups changes with molecular
weight. This change of composition seems to have a larger positive contribu-

tion to AGi than the entropy of mixing has a negative contribution.

Influence of oligomer hydrogenation

The influence of degree of hydrogenation (fraction of unsaturated bonds) of
the oligomer on the partition coefficient was studied by a range of of linear
C16 hydrocarbon chains. The two extreme cases are the unsaturated hexadec-
2,4,6,8,10,12,14-ene and the fully saturated n-hexadecane. The degree of
hydrogenation is modelled by substituting (CH=) with (CHz) groups in 14
steps. The mapping and structures are represented in Fig. 5.8a.

The free energies of mixing analysis in Fig. 5.8b-d shows better compati-
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Figure 5.7:  Compatibility predictions for oligomer/polymer pairs with

oligomers of varying molecular weight. (a) The oligomers differ by their num-
ber of CHy groups and correspond to different chain lengths. Free energies
of mixing as a function of the oligomer weight fraction in (b) polyisoprene,
(c) polybutadiene and (d) hydrogenated polyisoprene. (e) Pseudo partition
coefficients log K, pp as a function of oligomer weight fraction: log Kpi/pp
(continuous lines) and log Ky_pi/pp (dotted lines).



114 5. Development of Mie potentials for polymers

bility for hydrogenated Cy¢ hydrocarbon in PI and hPI, and rather unsatu-
rated Cqg hydrocarbons in PB. The best compatibilities are found for C;5 with
4 double bonds in PB, Cig with 1 double bond in PI and fully saturated Cig
in hPI. The ratio of saturated and unsaturated groups of the best-compatible
tackifiers roughly agrees with the ratios found in the respective polymers and
supports expectations.

In summary, the best compatibility is found when the fractions of olefinic
groups roughly agree between the oligomer and polymer, confirming the ex-

pectation that chemically similar compounds are more compatible.

5.1.5 Conclusion

We applied the currently most comprehensive group-contribution Mie po-
tential parameter set by Dufal et al.'® to oligomer/polymer mixtures of
molecular weights far beyond the molecular weight range it was developed
for. In summary, we find the predictions to correctly capture the relative
chemistry, but show a poor performance in predicting quantitative partition
coefficients of oligomers between two immiscible polymers, and compatibili-
ties in oligomer/polymer blends both quantitatively and qualitatively.

The order of free energy of mixing differences matches the experimentally
observed order of partition ratios with only one exception, although in many
cases incompatibility is predicted where compatibility is found experimen-
tally. In comparison with predictions of an independent LFE model,?°® the
SAFT-v Mie predictions match the order of free energy of mixing differences
of the LFE model without exceptions. Also the gaps between the predicted
values agree better with the LFE model predictions than with the exper-
imental findings. The influence of the oligomer molecular weight and the
oligomer degree of hydrogenation is correctly captured by the SAFT-vy Mie
calculations using the GC-Dufal2014 parameter set.

We were able to show a systematic improvement to the GC-Dufal2014
parameters by testing and adjusting two unlike interactions with VLE data
of low molecular weight mixtures. Predictions for both pseudo partition

coefficients and for oligomer /polymer compatibilities saw an improvement in
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Figure 5.8: Compatibility predictions for oligomer/polymer pairs with Cyg
oligomers of varying degree of hydrogenation. (a) The 15 Cjg oligomers
differ by their ratio of (CH=) to (CH,) groups and correspond to differ-
ent degrees of hydrogenation, from unsaturated (blue bead, dark blue lines)
to fully saturated (grey bead, bright green lines). Free energies of mixing
of oligomer—polymer pairs as a function of the oligomer weight fraction in
(b) polyisoprene, (c) polybutadiene and (d) hydrogenated polyisoprene. (e)
Pseudo partition coefficients log K, /pp as a function of oligomer weight frac-
tion: log Kpr/pp (continuous lines) and log Ky,_pr/pp (dotted lines).
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the agreement with experimental results.

We do not expect to see further improvements in the predictions by ac-
counting for the polydispersity of the oligomers and polymers, because in-

cluding polydispersity is expected to further reduce the compatibilities. 47

Our findings suggests the local chemistry and in particular the relative
chemistry is correctly captured with the GC-Dufal2014 parameter set ap-
plied to polymers, but not all high-molecular-weight effects are represented
correctly when the number of beads in the SAFT-y Mie model is simply
adjusted to match the polymer weight.

Molecular-weight-transferable parameter sets of older SAFT versions not
only scale the number of beads, but introduce additional fitted parameters
to also scale the energetic parameter and number of beads per monomer
unit.%%8483 The two additional parameters are estimated based on experi-
mental data available at several molecular weights. The additional experi-
mental data makes the development of these parameter sets more expensive

and prohibit the development if no data is available or can be measured.

The challenges to reproduce the experimental data in this section are at
least partially attributed to the lack of chemical information of the com-
pounds in this study. For most compounds the detailed monomer ratio was
not known. Furthermore SAFT predictions are expected to be most reli-
able when applied to situations of similar reduced properties (7'/T. and
P/Pit),%* while the reduced properties of the predictions in this section are
far lower than used during the parameter estimation due to the (experimen-
tally inaccessible) large Te and Py of polymers. In addition, approxima-
tions in the SAFT theory are less well suited to predict properties of long
chains due to the linear approximation used for the many-body distribution

function of the monomer reference fluid.!'®



5.2. Approaches to developing new SAFT-~v Mie models for polymers 117

5.2 Approaches to developing new SAFT-v Mie

models for polymers

Applying SAFT-y Mie parameters beyond the molecular weight range they
are optimised for did not lead to accurate predictions of polymer compat-
ibilities. No dedicated SAFT-y Mie parameters for polymer mixtures are
available, either. New polymer models will therefore be developed in this
work. In this section, a few approaches, best practices, important consider-
ations, ideas and aspects to developing new SAFT models are summarised.
This summary compiles a few selected insights from many groups around the
world who successfully developed models for equations of states.

Several types of experimental data in the parameter estimation help bal-
ance thermodynamic properties and improve the transferability due to more
physically relevant parameter values.'* It was shown that the inclusion of
polymer solution VLE data improves the pure-component polymer param-
eters in PC-SAFT models.'*® One of the biggest strengths of equations of
state such as SAFT-v Mie is the ability to calculate properties quickly for a
given (guessed) model. The possibility to include many state points and also
many different types of properties in the estimation of new parameters is an
important advantage. However, polymer mixture data is scarce and makes
exploiting the full potential of the SAFT-y Mie theory a challenge.

Other complementary methods can be used to inform SAFT-y Mie pa-
rameters. Miiller and coworkers speed up the parameter estimation process
by relying on the corresponding state principle. !93156:208 Methods based on
ab-initio calculations could inform SAFT models about the strength of hydro-
gen bonding, or could generate pseudoexperimental data for example with
COSMO-RS, #43 which combines quantum chemical calculations and sta-
tistical thermodynamics, for compounds that have not been experimentally
characterised. However, the molecular weight which can reliably be described
by these complementary methods is usually smaller than what could be con-
sidered a polymer.

Parameters can be extrapolated to areas where no information is avail-

able based on systematic sets of experimental data. Examples are models for
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long alkanes which are extrapolated from models of the homologous series
of shorter alkanes.!*16:89:209 Group-contribution approaches are one way of
generating new models by simply scaling the number of parameters. 17123184
Often not only the number of beads, but also other SAFT parameters are
scaled with the molecular weight.'**" However, the development of such con-
tinuous models requires a set of systematic data such as a homologous series
(monomer, dimer, trimer, tetramer, ...), which is not available for polymers

apart from the alkane series for polyethylene.

The balance of enthalpy and entropy can be improved by analysing them

210211 showed with a lattice-based equation

separately. White and Lipson
of state that the energetic part of unlike interactions mainly influences the
enthalpy of mixing, while the energetic like interactions mainly influence
the entropy of mixing. The energetic parameters strongly correlated with
the classification of lower critical-solution temperature (LCST) and upper
critical-solution temperature (UCST) mixtures. It is unclear how transfer-
able the insights are to the SAFT-y Mie equation of state as its models entail
more parameters than a lattice-based equation of state, but it could help bet-
ter assess SAFT models and guide parameter estimations where acceptable

agreement with experiment can not be found immediately.

The number of beads and number of parameters to optimise can be care-
fully chosen. The SAFT-v Mie equation of state offers more parameters than
most of its predecessors. The risk of overfitting models is especially present
when only a small set of reference data is available. Choosing A\, = 6 is one
simplification, only allowing one type of Mie potential per compound is an-
other. The step towards group-contribution parameters increases the number
of parameters drastically as the number of interactions grows proportional
to the number of bead types squared. Combining rules can be used as first
estimates for unlike interactions, but especially polymers require individual

readjustments.



5.3. Experimental reference data 119

5.3 Experimental reference data

In this section we try to give an overview of what experimental data types are
typically and easily encountered for oligomers and polymers both in scientific
literature and from commercial suppliers. We also summarise how helpful
the types are in the development of SAFT-+ Mie models and provide a semi-
exhaustive list of PV'T', Vi« and LLE experimental data for a combination

of hydrocarbon polymers.

In general, less experimental data is available for polymers than for sol-
vents and other low-molecular-weight compounds. This is at least partially
due to the larger number of possible chemical structures for polymers and
the increased difficulty to both synthesise and determine the exact chemical

structure and composition.

Even less data is available for oligomers than polymers. Two excep-
tions are polyethylene oligomers (also known as alkanes) and polystyrene
oligomers, for which the reader is best referred to Refs 212-214. Some infor-
mation is available about a range of industrial oligomeric compounds, 25216
but unfortunately not enough to easily develop a meaningful SAFT model.
One additional aspect, which complicates the development of SAFT models
for oligomers, is that monodisperse oligomers would be ideal for the model
development, but monodisperse oligomers are difficult to synthesise. Typi-
cally available oligomers are derived from oil and gas, and therefore consist
of monomer units, which often are C5 or Cy hydrocarbon units, and can have
a few repetitive units up to a number average molecular weight of roughly

3000 g/mol.

Oligomer suppliers such as EASTMAN, 25216 give cloud-point tempera-
tures of oligomers for selected solvent systems. The specific solvent mixtures
methylcyclohexane/aniline, xylene/4-hydroxy-4-methyl-2-pentanone, and a

mixture of various aliphatic mineral solvents?'6)

are chosen to cover a large
range of polarities, so usually only two cloud points are determined for an in-
dividual oligomer. As only one composition is used in the experiments, only
two data points are provided. Two equilibria data points are not sufficient to

confidently obtain a SAFT model, but can only be used as a test for SAFT
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models whose parameters where estimated from other data.

In Tab. 5.4, typical oligomer and polymer properties are listed and an
overview given whether they are typically provided by manufacturers, easily
found in the literature, easily measured and, most importantly, whether they

are helpful in the SAFT parametrisation process.



Table 5.4: Types of experimental data of oligomers and polymers. Positive answers are highlighted in green,
negative answers in red, and unclear non-binary answers in orange.

type provided by supplier? often found in literature? cheap/easily/quickly measured?  helpful in SAFT model development?
. . res, the smaller M,
molecular weight yes yes yes, via GPC VoS, THE SHIAHEr S
N : N the more important
yes, the larger
olydispersit; res, via GPC ! L°
POlydisp Y yes yes yes, via the more important
. o . res, the less unifor
molecular weight distribution no yes, via GPC v, e e ron
; the more important
LLE and cloud points®* yes yes yes
glass transition temperature yes yes yes, via DSC no
softening point yes no ring and ball experiment no
viscosity yes no yes, via rheology no
density (PVT) yes yes, various methods yes

yes, for mapping, GC-approaches
chemical composition yes and it allows the use of data
from other systems

yes, for mapping, GC-approaches

isomer ratio no yes yes, via NMR and it allows the use of data
from other systems
acid number yes no no
no, all but
VLE no small oligomers no yes
have no measurable data
heat capacity no yes yes, via DSC no, see Sec.5.4.3

no, high viscosities

BIED 9OUAISJOI [BIUSWILIOAXT] "¢'C

speed of sound no no are difficult no, see Sec.5b.4.3
SANS no no, very expensive yes
SAXS no no, expensive yes
volume of mixing no no and accuracies, see Sec. 5.5.3 yes
no, see Refs 217-219 for comparisons of
block copolymer data no yes yes

blends and their block copolymers

4!

2 Not all mixtures have cloud points or LLE at accessible conditions. Adjusting molecular weights can make cloud points accessible.
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5.3.1 Literature compilation of polymer data

A list of the best experimental data found in the course of this work is com-
piled in Tab. 5.6 accompanied by additional information in Tab. 5.5. The ta-
bles provide a semi-comprehensive list of experimental thermodynamic data
of homogeneous properties of the most common oligomeric and polymeric

hydrocarbons.

The list is aimed both at readers looking for references for polymer data
and readers interested in knowing what compounds and mixtures have not

been characterised (or not published), yet.

From the compilation of experimental polymer and polymer blend data in
Fig. 5.6, it becomes obvious that most data available is for pure polymers. For
the binary blends, data was only found for 17 out of the 45 possible blends,
although most polymer categories entail several constitutional and stereo
isomers. Completely miscible as well as completely immiscible binary pairs
can not be easily characterised with LLE and CPC data, as the properties are
inaccessible. The missing data for some of the binary blends can be explained
by this inaccessibility. However, adjusting the degree of polymerisation or
using more extreme temperatures does lead to partial miscibility eventually
and the chance to measure LLE and CPC data. Mixtures of compounds with
similar structure and higher miscibility are typically better characterised, and
the lack of experimental data we found in the course of this work is mainly
found for cases of complete immiscibility, as for most aromatic—aliphatic
blends (e.g., PS/hPI). However, as seen for PS/PE, an oligomeric pair of
PS/PE has accessible liquid-liquid transitions due to the improved miscibility
at smaller molecular weights.

Block copolymer properties are not included as they can not be properly
captured by SAFT equations of state as they are not homogeneous proper-
ties. Block copolymer properties in principle are very attractive sets of data
because they are not only available for polymer pairs of similar chemistry
(deuterated vs. hydrogenated), but also for more pronounced differences

with strong demixing tendencies such as aromatic vs. aliphatic pairs.

No recommendation for particular references is given, as the best ref-
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erence data closely depends on target details such as the molecular weight
distribution and monomer ratio. The potential details to choose one over the
other are too many that listing all of them would make our aim of providing
an overview and general reference impractical.

Special attention is reserved for the mixtures of P1B, PE, PP, hPI as they
are well characterised by collaborations from the groups around Balsara and
Lohse at Exxon Research and Engineering Company, and Krishnamoorti and

Graessley at Princeton University,?2% 226

who have developed the probably
best set of thermodynamic miscibility data of a set of hydrocarbon polymers.
For further references, beyond the few given in the table, the reader is referred
to the review article by Balsara3® for a more systematic and comprehensive

overview.
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Table 5.5: Chemical structure and synonyms of polymers for which experi-
mental data is compiled in Tab. 5.6.

polymer synonyms main repeating units
PS polystyrene
polybutadiene (PB) _
PB poly(vinylethylene) (PVE) M M
cis/trans-1,2/1,4-PB
polyisoprene(PT)

PI poly(terpen.e) M M m
terpene resin
poly(2-methyl-butadiene)
hydrogenated polyisoprene (hPT)
hPI poly (methylbutylene) M m
poly(ethylene-propylene) (PEP)

. polyisobutylene
PiB polyisobutene '»></_

polyethylene
hydrogenated 1,4-polybutadiene (hPB)

PP polypropylene J\/

hydrogenated polystyrene
hPS poly(vinyl-cyclohexane)
poly(cyclohexylethylene)
poly(methylstyrene) (mPS)
hydrogenated poly(methylstyrene)
mPM / P(Cy)

PE

polyindene
hydrogenated polyindene
poly(aromatic Cy)

poly(1-butene) (P1B)
P1B poly(ethylethylene) (PEE)

hydrogenated 1,2-polybutadiene (hPB)




Table 5.6:  Compilation of selected thermodynamic homogeneous experimental data for selected hydrocarbon
oligomers/polymers and binary blends (not block copolymers). References for densities (PV'T'), vapour—liquid equi-
libria such as boiling points (VLE), liquid-liquid equilibria such as cloud-point temperatures (LLE), glass transition
temperature (7} ), heat capacity (Cp) and small-angle neutron scattering (SANS) are listed. Polymer pairs for which
no PVT, VLE, LLE or SANS data could be found are highlighted with a light red cell background. See Tab. 5.5 for
more information on the polymer notation.

PS PB PI hPI ‘ PiB ‘ PE PP ‘ hPS ‘ mPS ‘ P1B
PV T 21215227230
PS VLE?!2
Cp, 213214231 1 214
- = Py T 23278 230,236 238
PB LILE211,230,232-235 VLE22 LLE. 214239
Op 214200
LLE DALz PV T3 PV T 213.229,236,238
PI pUT42 LLE213,244,245 VLE212
GAXS242 SANS246 T 213 Op, 213214240 213
; _g - : PV T 21T.220,221,228, 719
hPI LLE> LLE>® 251
& 0 7
. 2 PV 20222220228
PiB LLE®? VLE, 22 Op 214240
. PV T2 222,22
218,222,253
PR LE s e
Cp, 213214254 0 213
[ LLE?? . LLEZM'ZZ' PVTZM,‘ 21,222,227,228
PP SANS223 LLE?122 SANS223 Clp, 213214255 7 213
TPS LLE™T C [PvTT
P R A OT4,227,257
mPS LIE 234,257,258 LLE?234:257 Py 7(;172’10
””” PyTRL2E PVTZT -
LLE?>!22 221,223-225 224 PYT?12
P1B SAI\'5221.223 LLE . LLE SANSzZS,ZZG
SANSQQ"‘?ZG SAN8223,224

BIED 9OUAISJOI [BIUSWILIOAXT] "¢'C

gcl
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5.4 Like interactions

This section is concerned with the development of Mie potential interactions
between beads of the same type (like interactions). Like interactions are
sufficient to describe pure compounds. We discuss different means to develop
like interactions and report a range of SAFT-v Mie models developed with
density data (PVT). The impact of each Mie potential parameter on the
predicted PVT data is presented, large optimisation sets visualised, and

common considerations discussed.

5.4.1 Corresponding state principle

The corresponding state principle (CSP) can be used as a shortcut for the de-
velopment of SAFT-v Mie models. With the method by Mejia et al.,'*® who
provide parametrised explicit expressions, Mie potentials are obtained from
just three key experimental data points, without the need for an iterative
optimisation algorithm using the full SAFT-y Mie equations.

The overall VLE curve of most compounds are similar. In fact, they
almost perfectly collapse into a single master curve when scaled by a few
key features such as the critical temperature and pressure, acentric fac-
tor (measure for non-sphericity of compound) and a single absolute density
value. This correspondence between different compounds is the so-called
corresponding state principle.

In 2014 Mejia et al. have reported expressions which translate the rescal-
ing into Mie potential parameters. The method was successfully demon-
strated for a couple of example compounds. '°%2%? We have implemented the
expressions in a small python script and generated a range of Mie poten-
tials for hexane, octane and benzene. The predicted VLE are compared with
experimental VLE in Fig. 5.9 and good agreement is found. Recently, also
a web application using this corresponding state principle of Mie potentials
has been published by Ervik et al. providing direct access to Mie potential
parameters for thousands of low molecular fluids.?%°
While the method by Mejia and coworkers is limited to A\, = 6, there is

some flexibility in the choice of Mie potential exponents. As long as the van
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der Waals-like attractive value «

Aa

) ER)-GE)) e

is kept constant,!®® exponents can be varied with little change to the pre-

dicted properties. Other exponents of choice can be used, for example, as
softer potentials for coarse-grained models, which allow larger MD simula-
tion time steps and effectively reduce the simulation time. Alternative Mie
potentials for the single-bead benzene model are used in Fig. 5.10. While
Ramrattan et al.'®® showed examples with very little impact on the VLE
curve obtained from MD simulations and attributed the deviations to theo-
retical assumptions of the fluid when claiming the same « value results in the
same properties. In Fig. 5.10 we see significant changes to the VLE curve as
A; is changed from 43.97 to 22.37 (at constant o = 0.4901), and only minor
changes for the other smaller A\, exponents. This finding suggests that the
conversion of Mie(\-\,) works best at moderate exponents.

The CSP shortcut can not directly be applied to polymers due to several
reasons. Firstly, polymers do not have accessible vapour—liquid equilibria
curves and critical conditions. Secondly, developing a model for equivalent
low-Mw compounds and scaling the number of beads to meet the polymer
weight does not reliably work, as shown in the previous section. Thirdly, no
data is available for systematic dimer/trimer/tetramer series to extrapolate
polymer model parameters.

One way of using the CSP models for polymers is to combine them to
heterogeneous models. A bead for each functional unit is developed based on
a solvent molecule with the same or similar structure, all beads are connected
and multiplied to make larger molecules and polymers. This approach was
used in the recent study by Jimenéz-Serratos and coworkers?® where they de-
veloped a CG MD force field for polystyrene /hexane and polystyrene /heptane
mixtures. Polystyrene was assembled from two types of separately developed
beads. Their polystyrene model is a branched model, which can not be used
in SAFT, but was only used as an MD model. By adjusting some of the

unlike interactions in MD simulations they successfully showed both liquid—
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liquid phase separation at desired temperatures with both upper critical and
lower critical solution temperature in different and also in the same model.
Polystyrene units consist of one bead from the two-bead toluene model and
one bead from long alkane model. Successful polymer models based devel-
oped via the CSP method seem to still need trial and error for the best choice
of building blocks. Foremost, the interaction between the connected beads
might need further adjustment beyond the combining rule as polymer models

are very sensitive to small changes to the Mie parameter values.

In summary, we can confirm that the CSP method is a beautifully quick
way to get excellent models for pure compounds of low molecular weight, but
the development of polymer models requires testing to find the best low-Mw
compounds that capture the chemistry of the building blocks of the polymer
structure and further adjustments of the unlike interactions are expected to

reproduce most polymer properties.

600
550
500
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400
350
300
250 f
200

hexane (2 beads)

150 ' '
o 2 4 6 8 10 12

plmol /1

T[K]

octane (4 beads)

benzene (1 bead) |
.

hexane (3 beads) . .

Figure 5.9: VLE predictions for hexane, octane and benzene with SAFT
models obtained from the corresponding state method.'®® The number of
beads of the model indicated in the legend. Experimental data is plotted as
dotted lines. 20!
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Figure 5.10: Benzene VLE predictions of Mie potentials of constant o =
0.4901. Exponent values A, = 6,7,8,9 and 10 are chosen and A, adjusted
to match the same «. The benzene models consists of a single bead. The
model with A, = 6 was obtained via the CSP method. Experimental data is
plotted as dotted lines. 25!

5.4.2 Liquid densities (PVT) data

For polymers, unlike for smaller molecules such as solvents, vapour—liquid
equilibria data is not available, because polymers have negligible vapour
pressures and vapour phases. But liquid densities are accessible and often
measured, both as a function of temperature and pressure. Polymers are
not only lacking a measurable vapour phase, but the liquid polymer densities
show less variations with temperature and pressure than the densities of their
low-molecular weight counterparts. For sourcing the most thermodynamic
information from liquid densities for a particular polymer, densities across
large ranges of both temperatures and pressures are needed.

For the Mie potential optimisations experimental data sets are preferred
which were measured both as a function of temperature and pressure.

PV'T data is often plotted as several isobars, although it is typically
measured as isotherms because pressure differences equilibrate faster than
temperature changes. How the position and shape of density isobars is influ-

enced by changes in the four Mie potential parameters is schematically shown
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in Fig. 5.11. Most notably, ¢ shifts the whole isobars almost uniformly. In
contrast, €, A\, and A, move, rotate and spread the isobars at the same time.
While changes of A\, and A, lead to changes in the same direction, changes in
€ causes changes in p in the opposite direction.

In Fig. 5.12 details of the Mie potential optimisations for a polystyrene
oligomer are shown. The (A;,\,) space is explored by running individual
optimisations at fixed (A;,\;) values and optimising o and e. The plotted
quality of the best fit for all A exponent combinations in Fig. 5.12 forms a
landscape. Further details of the optimisation algorithm and its implemen-
tation are described in Chap. 4. The landscape reveals a single minimum
with the best model being a Mie(10.5-8.1) potential with ¢ = 508.8 K and
o = 0.4322 nm for this polystyrene data set.??® The landscape also shows
a groove of fairly good models, which is directly related to the o constant
discussed in Sec. 5.4.1. Mie potential exponents can be varied, while models
of similar quality can still be obtained.

In Fig. 5.13 details of Mie potential optimisations for a hydrogenated
polyisoprene are shown. In this case, the (€,0) space is explored by running
individual optimisations at fixed (e,0) combinations and optimising A, and
Aa- The landscape of the quality of the obtained models reveals a single
minimum. The area of fairly good models in this space is narrowly defined
for o and spans across the whole range of tested e values. The narrow ¢ range
shows that the bead size ¢ is determined to high precision, confirming the
expectation that densities foremost carry information about size. The large
range of € values that can give fairly good polymer models seems to indicate
that € does not have a big influence on the PVT predictions, but rather the
opposite is true. The € parameter has a high sensitivity, but A, and A\, can
compensate extreme € values as they influence the density isobars in a similar
way. By the same argument, there is not a second Mie potential parameter
which can compensate extreme o values which is why o is narrowly defined
for a given PV'T set.

Independent of the fact that e, A\, and A, can partially compensate each
other’s influence on densities, the sensitivity of density predictions with indi-

vidually changing Mie potential parameters by the same percentage ordered
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is
o>€> Ay > A (5.6)

As we are aiming to develop coarse-grained models, we try to use fewer
beads than the compound’s number of heavy atoms. In Fig. 5.14 optimisation
results are shown for three mappings, which are 1, 2 and 4 beads per styrene
monomer unit. Coarser models move all four Mie potential parameters to
larger values: larger bead diameters o, stronger e interactions and as can
easily be seen in Fig. 5.14 both A, and ), are increased. We want to avoid very
coarse-grained models with their very steep potentials as the MD simulations
of these Mie potential force fields are slower due to the need for smaller time
steps. A balance between coarsening and potential softening has to be struck.
We found a mapping of 2-5 heavy atoms per bead a good compromise, for
which no numerical issues in the SAFT-y Mie parameter estimation were

encountered, either.

In some cases only one isobar of densities was measured. One isobar ef-
fectively corresponds to an absolute density plus several thermal expansion
coefficients. No information about the compressibility is included. As can
be seen in Fig. 5.15, a single isobar can be captured by a wide range of
Mie potentials. Almost all combinations of A, and A\, can form models of
fairly good quality. This wide range of good models indicates the four Mie
potential parameters overfit the model to what can even be described as es-
sentially two pieces of information, absolute density and thermal expansion.
Additional isobars, either by additional measurements or by compressibility
coefficients of other very similar polymers (applied to the phPMI and PSaM
polymers in this work), are recommended. The additional information about
compressibility (slope of p(P)) and the small variation of thermal expan-
sions and compressibilities (curvature of p(7") and p(P)) justifies using four

parameters of the Mie potential in the optimisations.

With the knowledge about the order of sensitivity, and balance of coarse
graining, and need for several isobars, we have developed SAFT-v Mie mod-

els for a range of oligomers and polymers. All oligomers and polymers are
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hydrocarbons with different degrees of aromaticity and saturation. The Mie
potentials and details are tabulated and annotated in Tab. 5.7.

For a selection of polymers, several alternative Mie potentials were chosen
and reported in Tab. 5.8. Together with the quality of fit expressed as %AAD,
this table allows us to better follow some of the arguments made in this
section and gives the reader more choice in picking the most applicable model.

The excellent performance of the SAFT-v Mie potentials reproducing
large ranges of experimental densities used in their development is shown for
four example polymers in Fig. 5.16.

In summary, PV'T data was successfully used in the development of
SAFT-v Mie models for like interactions of oligomer and polymers employing

our own implementation of SAFT-y Mie and optimisation algorithms.
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Figure 5.11: Diagram visualising changes of polymer liquid densities (mass
per unit volume) caused by varying the four individual Mie potential pa-
rameters. The density data is plotted as two isobars at pressures P, and P
for which P, > P;. The bead size o parameter mainly moves densities at
all conditions equally, while €, A\, and )\, also rotate and stretch the plotted
data. The energetic parameter € causes density changes in the opposite direc-
tion compared to the influence of the A\, and A\, parameters. Only the most
prominent changes are represented in this diagram, which are not enough to
explain the very fine differences in model qualities, but to give an overview
of how to guide predicted densities by varying the Mie potential parameters
to improve the model.
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Figure 5.12: SAFT-vy Mie potential optimisations for a polystyrene model
using PVT data??® as reference (354.15-514.05 K and 1-2000 bar). Optimi-
sations were performed at fixed (\;,\,) exponents to systematically sample
the Mie potential exponent space adjusting only ¢ and o. Models which
perform better than 1%AAD are plotted in the (A;,A,) space. (Top) The
symbol colours represent the model quality with red (=1%AAD) and green
the best overall model found. (Bottom) The symbol colour represents the
energetic € parameter and the symbol size the bead size parameter o. The

best model and Mie(9-6) are highlighted and the best model’s parameter
values reported.
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Figure 5.13: SAFT-vy Mie potential optimisations for a hydrogenated poly-
isoprene (hPI) model using PVT data®®® as reference. Optimisations were
forced to sample the (e€,0) space. Reference temperatures 303-543 K and
pressures of 1 and 400 bar were used. Only models with qualities better or
equal to 1%AAD are plotted. The figure reveals a very narrow o range and
a broad € range with matching quality.
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SAFT-y Mie potential optimisations for a polystyrene model

with a bead weight of (left) 26 gmol™" (4 beads per monomer), (middle)
52gmol™! (2 beads per monomer) and (right) 104gmol™' (1 bead per
monomer) using PVT data®®® as reference data. Densities span across tem-
peratures of 303-503 K, and a pressure of 1 bar and 400 bar. The figures
reveal that SAFT models with a larger bead weight (fewer beads) require
larger values for the Mie potential exponents to achieve similar quality.
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Figure 5.15: SAFT-v Mie potential optimisations for a polystyrene model
using PVT data?®® as reference data. Densities span across temperatures of
303-503 K, and a pressure of (left) 1 bar and 400 bar, and (right) 1 bar only.
Therefore, (left) fitting to thermal expansion and compressibility, and (right)
thermal expansion.
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Liquid polymer densities compared between SAFT-vy Mie mod-
els and the experimental data used in the optimisation of the models. (a)
Polystyrene oligomer, (b) polybutadiene with 8% vinyl monomers, (c¢) hy-
drogenated poly(methylstyrene-co-indene) and (d) polyisoprene with 8% 1-
2-linked monomers. Densities are plotted as isobars from 1 bar to 2000 bar
in steps of 400 bar. (c¢) No experimental densities at pressures other than
1 bar were available, which does not complicate the fitting process, but leads
to a smaller confidence in the predictions of the high pressure densities.



Table 5.7: SAFT-y Mie parameters for pure compounds developed with PV'T data as reference. For all Mie potentials
the shape factor is Sy = 1 and the number of segments per group v, = 1, which allow the parameters to be used in
both SAFT-VR Mie and SAFT-y Mie. For the notation on the polymer name abbreviations see Tab. 5.1.

compound Tij €ij/ kg Arij Aayij mass experimental reference
nm K g/mol
Plcis 0.390753 478.933228 10.7 87 34  Ref. 238,397 kDa, cis-1,4 isomer
PI-8% 0.387503 315.826263 10.4 6.0 34 Ref. 236, 125 kDa, 8% 3,4 isomer
PI-14% 0.386637 329.685394 11.4 5.9 34 Ref. 236, 124 kDa, 24% 3,4 isomer
PI-41% 0.386773 324.176605 11.5 5.8 34  Ref. 236, 124 kDa, 41% 3,4 isomer
PI-56% 0.387518 318.187103 12.7 5.5 34 Ref. 236, 131 kDa, 56% 3,4 isomer
PB 0.357518  305.702240 8.9 6.8 27  Ref. 228 (D5314), 233 kDa, isomer ratio not reported
PB-32.3% 0.363166 480.716705 10.725371 8.722710 27  Ref. 238, 214 kDa, 32.3% vinyl
PB-9% 0.358172 277.080994 8.5 6.5 27 Ref. 228 (D0517), 200 kDa, 36% cis, 55%trans, 9% vinyl
PBecis 0.357473 282.25589 8.5 6.5 27 Ref. 228 (D0516), 200-300 kDa, cis
PB-3k 0.358062 276.224792 8.6 6.5 27  Ref. 228 (D6051), 3 kDa, isomer ratio not reported
PB-8% 0.358382 272.024628 10.0 57 27  Ref. 236, 124 kDa, 8% vinyl, 40% cis, 52% trans
PB-24% 0.358555  271.717957 8.9 6.1 27  Ref. 236, 165 kDa, 24% vinyl, 30% cis, 46% trans
PB-50% 0.363351 219.486954 7.6 5.6 27 Ref. 236, 138 kDa, 50% vinyl, 18% cis, 32% trans
PB-87% 0.367593  196.968475 7.3 53 27  Ref. 236, 127 kDa, 87% vinyl, 5% cis, 8% trans
hPI 0.398604 314.201416 12.6 55 35  Ref. 228 (D5298), 155 kDa, isomer ratio not reported
sq 0.400619 358.658112 10.2 7.6 35 Ref. 249
PiB-0.3k 0.381979 187.216980 7.2 5.2 28 Ref. 228 (D6109), 300 Da
PiB-0.3k-56g 0.473640 480.424377 10.1 8.0 56 Ref. 228 (D6109), 300 Da
PiB 0.367817 248.197296 7.7 5.6 28  Ref. 228 (D5305), 420 kDa
PiB-56g 0.463982 552.395691 10.6 8.2 56 Ref. 228 (D5305), 420 kDa
hPMI 0.473411 489.834503 15.5 4.5 62 Densities at 1 bar, Ref. 262, 600 Da
phPMI 0.455806 550.626404 12.7 7.1 60  ?Ref. 228,262, 600 Da
PSaMP 0.448646 528.594116 12.7 7.1 60  ?Ref. 228,262, 700 Da
PS-0.8k 0.432158 508.787262 10.5 8.1 52 Ref. 228 (D5022), 782 Da
PS-9k 0.432417 331.596313 19.8 4.5 52 Ref. 228 (D5037), 9 kDa

2 Densities at 1 bar obtained from Marc Hamm,?%? compressibilities of PS oligomer from Ref. 228 (D5022)
b Poly(styrene- co-a-methylstyrene) (PSaM) with M, = 700 Da and M,, /M, = 2.1
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Table 5.8: SAFT-v Mie parameters for pure compounds developed with PVT data as reference. Alternative Mie
potential parameters of similar quality are reported for the same reference data set. The quality is reported as
the average absolute deviation in percent (%AAD) with comparison to experimental densities. The size of the
experimental data set is given in brackets, with nP the being the number of pressure values and nT" the number
of temperatures. For example (nP=5nT=8) corresponds to a total of 50 densities for which the SAFT model
predictions were compared with experimental values. For all Mie potentials the shape factor is Sy = 1 and the
number of segments per group v, = 1, which allow the parameters to be used in both SAFT-VR Mie and SAFT-v
Mie. For the notation on the polymer name abbreviations see Tab. 5.1.

compound 0o €ij/kn Arij Aagj Mass  experimental reference %AAD
nm K g/mol

PB-6.8 0.357518  305.702240 8.9 6.8 27 Ref. 228 (D5314), 233 kDa  0.112 (nP=6,nT=5)

PB-6 0.358576 287.799347 9.8 6.0 27 Ref. 228 (D5314), 233 kDa  0.118 (nP=6,nT=5)

PB-5 0.362724  240.256165 10.7 5.0 27 Ref. 228 (D5314), 233 kDa  0.152 (nP=6,nT=5)

PB-4.5 0.368058 199.638885 10.7 4.5 27 Ref. 228 (D5314), 233 kDa  0.204 (nP=6,nT=5)

Sq-7.8 0.400930 367.006775 10.045913 7.849015 35 Ref. 249 0.023 (nP=5,nT=8), 0.017 (nP=2,nT=4)
Sq-7.6 0.400619 358.658112 10.2 7.6 35 Ref. 249 0.016 (nP=5,nT=8)

Sq-7 0.400662 352.990967 11.3 7.0 35 Ref. 249 0.018 (nP=5,nT=8)

sq-6 0.400762  329.130829 13.7 6.0 35 Ref. 249 0.020 (nP=5,nT=8)

sq-4.5 0.405078 237.634171 18.0 4.5 35 Ref. 249 0.027 (nP=5,nT=8)

PS-8.1 0.432158 508.787262 10.5 8.1 52 Ref. 228 (D5022), 782 Da  0.060 (nP=6,nT=9)

PS-8.03 0.432736 525.235779 11.390842 8.025436 52 Ref. 228 (D5022), 782 Da  0.124 (nP=6,nT=9), 0.118 (nP=2,nT=6)
PS-8 0.431568  505.748840 11.0 8.0 52 Ref. 228 (D5022), 782 Da  0.146 (nP=2,nT=6)

PS-6 0.433430 491.881500 18.0 6.0 52 Ref. 228 (D5022), 782 Da  0.143 (nP=2,nT=06)

PS-12-6 0.425870 357.278595 12.0 6.0 52 Ref. 228 (D5022), 782 Da  0.618 (nP=2,nT=6)

PS-9-6 0.425669 283.818207 9.0 6.0 52 Ref. 228 (D5022), 782 Da  0.975 (nP=2,nT=6)

PS-4.5 0.432417 331.596313 19.8 4.5 52 Ref. 228 (D5037), 9 kDa 0.028 (nP=6,nT=4)

PS-6 0.428823 459.267059 144 6.0 52 Ref. 228 (D5037), 9 kDa 0.036 (nP=6,nT=4)

PS-8 0.428735 503.682404 10.0 8.0 52 Ref. 228 (D5037), 9 kDa 0.032 (nP=6,nT=4)
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5.4.3 Heat capacity and speed of sound

Using heat capacities and speed of sound data for the polymer model de-
velopment is attractive due to the fact that heat capacity measurements are
common measurements, easily accessible, and speed of sound data can be
measured to very high accuracies which seems to promise polymer models of
high quality, too. Why heat capacities and speed of sound data does not live
up to these promises in the development of SAFT-vy Mie models for polymers

is demonstrated and explained in this section.

For small molecules, very good agreement with experimental results was
shown with SAFT-VR Mie 2006,'* SAFT-VR Mie!* and SAFT-y Mie%1¢
models in predicting heat capacities and speed of sound data. Using heat
capacities and speed of sound measurements in the parameter estimation was
also shown to provide complementary physical information to further guide

the model development in the case of methane.!™

Heat capacities of four oligomers were measured via differential scanning
calorimetry (DSC), see Fig. 5.17. As the absolute heat capacity values are
of interest here (not only the heat rate changes which reveal phase transi-
tions), additional runs with the empty crucible for a base line and a stan-
dard, Sapphire in our case, for calibration, were measured for each sample.
The first heat run of each sample shows significant thermal history (blue
lines Fig. 5.17). The increased heat capacities at 50 °C to 120 °C correspond
to the melting/softening of those samples solid as room temperature, while
the decreased heat capacities at around 120°C correspond to crystallisa-
tion/relaxation of the PiBB-+fur sample, which is liquid at room tempera-
ture. Several repeated measurements of the same sample were run to allow
the estimation of uncertainties. Standard deviations of .29%, .4%, .8% and
1.69% were obtained based on at least three runs, excluding the initial run
dominated by thermal history. The repeated runs all show a glass transition
at 30°C to 50°C.

One way of measuring speed of sound is via the echo method. The echoes
of two ultrasonic signals send in opposite directions are recorded. By knowing

the difference between the distances they travelled and the difference between
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Figure 5.17:  Experimental heat capacities C'p determined via differen-

tial scanning colorimetry (calibrated via triple measurements:

1. empty

crucible, 2. sapphire standard, 3. sample; heat rate 10Kmin™') for (a)
PiBB+fur (b) hPMI (c) a hydrogenated hydrocarbon resin oligomer with
M,, = 450 gmol™! and M,,/M, = 2.3 and (d) a cycloaliphatic hydrocarbon
resin with M,, = 400gmol™! and M, /M, = 1.7. The initial measurement
(blue) shows thermal history, the runs after recovering over night (red) show
some signs of recrystallisation. Several immediately repeated runs (grey)
were averaged and plotted together with the local standard deviation (black).
The total averaged standard deviation for each sample is shown below the
graphs.
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Figure 5.18:  Experimental viscosities of PiBB+fur and mixtures with

n-hexane (95% purity and dried over a silica column) determined on a
cone/plate rheometer (Discovery HR-2 hydrid rheometer TA instruments,
Peltier 60 mm 2° cone, Peltier plate steel, solvent trap cover for samples of
high solvent content) at 20 °C (water cooled) at shear rates of 0.01-100 rad s~*.
The experimental viscosities (circles) are well correlated with an analytic
function quadratic in logn with a coefficient (effective binary viscosity?6%)
of m2 = 0.001 Pas. Extrapolations for viscosities of PiBB+fur in n-octane,
n-decane and n-duodecane are shown based on viscosities of the pure com-
pounds taken from Ref. 264 (crosses). The targeted threshold viscosity of
100mPas (red line) is predicted for PiBB+fur solutions of more than 30-40%
solvent.
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the times of arrival, one can calculate the speed of sound. It was shown that

measurements can be reproduced within +0.002%.26°

Higher sample viscosi-
ties lead to larger absorption of the ultrasonic signal and eventually prohibit
the determination of speed of sounds. All materials analysed in Fig. 5.17
show larger viscosities than the threshold value of 100 mPas?% aimed for to
obtain signals of enough resolution, which roughly corresponds to the vis-
cosity of olive oil at room temperature. This threshold viscosity will most
likely not be met by any hydrocarbon polymer. Increased temperatures of
100—200 °C could lower the viscosity below the threshold for some oligomers,
but most polymers will start decomposing before the viscosity was lowered
far enough. Instead, we tested the addition of well-characterised solvents to
adjust the viscosity. In Fig. 5.18 viscosities of mixtures of PiBB-+fur with n-
hexane are presented. All PiBB-+fur mixtures with more than 35% n-hexane
by weight show viscosities below the targeted 100 mPas and are therefore ex-
pected to give echo signals of resolutions large enough for the determination
of speed of sounds. The addition of solvents can successfully be applied in

speed of sound measurements.

In Fig. 5.19, several predictions of PiBB-+fur heat capacities are com-
pared. The SAFT-y Mie method only provides residual heat capacities (see
Chap. 4 for more details)

Cp = Cigesl 4 O3, (5.7)

while the ideal heat capacities can be obtained from correlated experimental
datasets or spectroscopic vibrational mode analysis. Because the spectro-
scopic analysis for oligomers and polymers with a large number of vibrational
modes is very tedious, probably even prohibitively challenging for most poly-
mers, we will only test the performance of correlated experimental datasets.

The ideal heat capacity sets®!"

used in this work are group-contribution
approaches, which were parametrised on heat capacities of low-M,, com-
pounds. Although not developed explicitly for polymers, group-contributions
approaches allow easy scaling to larger molecular weights. The SAFT-v Mie

predictions are calculated with the GC-Dufal2014 parameter set. The pre-
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Figure 5.19: Heat capacity SAFT-v Mie predictions for PiBB+fur using the
GC-Dufal2014 parameter set'® compared with DSC measurements (black
line with standard deviation). Predicted ideal heat capacities (continuous
lines) are PiBB based on Coniglio and Daridon!" parameters (dark lines),
PiBB based on Joback? parameters (medium lines) and PiBB-+fur based
on Joback and Reis? parameters (light lines). Predicted full heat capacities
(broken lines) use the GC-Dufal2014 parameter set for the residual SAFT-
v Mie contribution. The SAFT-y models were PiBB (dashed lines) and
PiBB+fur (dotted lines). The plots reveal that the ideal heat capacities
dominate the differences seen between the models.
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dicted heat capacities are very little influenced by the SAFT-y Mie model,
but significant differences are found between the alternative ideal heat capac-
ities. Roughly 5% differences are found between heat capacities with ideal
parts based on the Joback or Coniglio set, and for choice of chemical structure
(PiBB vs PiBB+fur) for the ideal part. The heat capacities are dominated
by the ideal contribution, which delicately depends on the detailed chemical
structure and group-contribution data set. The initial good precision of heat
capacity measurements is vastly reduced when 85% of the value with high
uncertainty is deducted to give the residual heat capacity which could be
used in the parameter estimation.

Speed of sound prediction also require ideal heat capacities, and are sub-
ject to the high uncertainties for polymers, too.

In summary, the ideal heat capacities, which can not be predicted by
the SAFT-+ Mie theory prohibit the use of experimental heat capacities and
speed of sound data for the parameter estimation of polymers. Because the
structure of low-M,, compounds is exactly known and GC approaches are
optimised for them, ideal heat capacities for low-M,, compounds can be ob-
tained reliably. In contrast, polymeric structures are often not known at
molecular detail and no GC approach for polymer weights was found. Pre-
dictions of ideal heat capacities are therefore subject to large uncertainties,
which substantially diminishes the attractiveness of heat capacities and speed

of sound measurements for the SAFT-y Mie parameter estimation.

5.5 Unlike interactions

In this section, we present means for developing SAFT-+ Mie models for mix-
tures. We show strategies for estimating the unlike interactions for polymer
systems, for which the like interactions developed in the previous section are
used without further adjustments. Results for mixtures of PB/PI, PB/sq,
cisPB/sq, PB/PS and PI/phPMI/PSaM are presented. Predictions at other
temperature, pressures, compositions and other molecular weights are anal-

ysed.
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5.5.1 Combining rules

Combining rules predict binary unlike interactions based on only pure-com-
ponent information. It is very attractive to eliminate the need for mixture
data to speed up the development process of SAFT models. Mixture data, as
demonstrated for hydrocarbon polymers in Sec. 5.3, is only found in the liter-
ature for a few cases and inherently more specific than pure-component data,

as pure-component data can be utilised for all mixtures of this component.

Simple and widely-used combining rules for equations of state are the
arithmetic mean (Lorentz) for the bead size o and the geometric mean (Berth-
elot) for the energetic parameter € (in our case also scaled with the geometric
mean of the bead volume).?°” For the Mie potential exponents for a mixture,
Lafitte et al.'* have suggested taking the geometric mean of the values of the
exponent of the individual species reduced by three units. The combining

rules used in Lafitte et al.,'* as introduced in Chap.3, are
1
0ij = 5(0ii + 055) (5.8)

3 3
9:i95j

€ij = (1 — kz])o.—?) V/ €ii€5j (59)

ij

Arij =3 =(1- %‘)\/(Ar,u =3)(Arjj —3) (5.10)

Mois =3 = (1= %)/ Qi = 3)(has — 3), (5.11)

where k;; and ;; are correction factors to the combining rule. The correction
factors are set to zero (k;; = 7vi; = 0) when the combining rules are applied,

but can capture and express deviations when needed.

In principle any information about the pure components could be used
in the combining rules. Haslam et al.?" have summarised more complex
combining rules beyond the Berthelot rule for equations of state, by in-
cluding pure-component polarisability and ionisation potentials. While one
might be tempted to assume deviations to the Lorentz-Berhtelot rules to

indicate shortcomings of the theory or specific mixture effects not captured
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in the pure-component models, Haslam et al.?” showed how differences in
the pure-component bead size o, differences in the pure-component range of
attraction (width of a square-well potential, which is expected to correlate
with A, of Mie potentials) and differences in the pure-component ionisation
potential cause the Berthelot combining rule to break down. Deviations from
the Berthelot combining rule, therefore, not only signal uncaptured mixture
effects, but also how much the component’s like interactions differ. More
complex combining rules or experimental data are required to improve the
mixture predictions beyond Lorentz-Berthelot combining rules.

In practice, unlike interactions derived with Lorentz-Berthelot combining
rules can often be successful or good enough, especially for small molecular
weights, properties with large entropic contributions and mixtures of com-
pounds with similar chemistry. However, for LLE of polymer mixtures which
are very sensitive to the parameter values, experimental data is required for
reliable unlike interaction parameters.

The correction factors k;; and ~;; are usually taken as temperature and
composition independent, 151! and only a few temperature-dependent cor-
rection factors k;; have been published.'**

We are not aware of more complex combining rules which are successful
for polymer mixtures and we have not found experimental ionization poten-
tials for the polymers studied in this work. In this work, Lorentz-Berthelot
combining rules are applied and the correction factors k;; and v;; are invoked
and optimised when needed based on experimental mixture data.

The more complex combining rules, as for example discussed in Haslam
et al.,?5" however, provide general trends to assess the influence of asym-
metry, might help to pick pure-component models, recognise unreasonable
model parameters and help guess the trend of binary correction factors in
the parameter estimation of unlike interactions. One take-away message is
that any asymmetry in pure-component models seems to introduce devia-
tions from the Berthelot combining rule, which again supports the aim to
introduce as few adjustable parameters as possible. More symmetric models
such as Lennard—Jones exponents should be picked if they still reproduce the

experimental data sufficiently. To determine where the line between suffi-
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cient and insufficient lies is difficult and is influenced by many factors, but
smaller corrections factors and more predictive combining rules are expected

when models are simplified.

5.5.2 LLE and CPC

Liquid-liquid equilibria (LLE) for monodisperse mixtures and cloud-point
curves (CPC) for polydisperse mixtures are the preferred experimental infor-
mation to estimate and validate unlike interactions in this work. This is due
to several reasons. Firstly, compatibility, solubility and cloud points are the
target properties we are most interested in predicting. LLE and CPC can
therefore be used both in the parameter estimation and for validaton/testing
of the models. Secondly, unlike interactions are very sensitive to LLE and
CPC phase transition temperatures and compositions, which guarantees un-
like interactions of high precision. Thirdly, LLE and CPC are fairly easily
measured via temperature sweeps while uncertainties of several Kelvin are
often precise enough. The phase transition during the temperature sweep
can usually be determined visually.

The influence of each unlike interaction parameter on the shape of LLE
and CPC with an upper critical solution temperature is visualised in Fig. 5.20.
All parameters significantly change the critical solution temperature, hence
all can be used to qualitatively adjust the compatibility of the mixture, i.e.,
change a fully compatible into a fully incompatible system and vice versa.
However, the qualitative adjustment is typically done with the energetic €
parameter, while the other parameters are used here for the quantitative
adjustment, changing the shape of the curve. The influence of the unlike
interaction parameters on the shape of the CPC/LLE curve visualised and
discussed here, is not the change of a single parameter, but was adjusted
in combination with € to keep an almost constant critical solution tempera-
ture, so that the qualitative influence on the overall compatibility is already
cancelled out. At constant critical solution temperature, the Mie potential
exponents A, ;;, Aai; and the bead size o5 tilt the UCST plateau in a similar

way. However, while A, ;; and A, ;; can change LCST to UCST and vice versa,
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we were not able to completely invert the curve with o;;. Increased polydis-
persity broadens the UCST plateau, moving the UCST to larger oligomer
fractions. The difference in chain length (molecular weight) of the two com-
pounds determines the composition of the UCST, the larger the difference,
the larger the weight fraction of the shorter-chain compound at the UCST.

miscible

immiscible

weight fraction xl

Figure 5.20: Influence of unlike interaction parameters on the shape of CPC
(PDI > 1) and LLE (PDI = 1) with an upper critical solution temperature
(highlighted with a cross) of the binary mixture of polymer i and j. SAFT-y
Mie models with only one type of Mie potential per compound are assumed.
The influence of the chain length expressed as number of beads m; and m;,
the polydispersity (PDI) and the unlike Mie potential parameters are indi-
cated. The like interactions (i and jj) are kept unchanged. The indicated
changes to the LLE curves are such changes that remain after e was adjusted
to keep an almost constant critical solution temperature value.

Unlike interactions for the binary pairs PB/PI, PB/sq and PB/PS, and
the ternary PI/oligomer/oligomer mixture are developed and validated with
LLE and CPC data. Predictions for other properties, conditions or molecular

weights are used to assess the transferability of the models.

Some of the unlike interaction parameter estimations were performed with
gSAFT?% to explore large areas of the parameter space. All results plotted
in this section, however, were obtained with our implementation of SAFT-vy

Mie and solvers.
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PB/PI

Mixtures of polybutadiene and polyisoprene show a range of behaviours be-
cause both polymers entail several isomers, which are cis/trans isomers and
1,4/1,2 linkages., 238:211,268-272 g6 Fig. 5.5 for the notation and chemical struc-
ture representations. Chemically, PB and PI differ only by a single methyl
substitution. The chemical similarity leads to general miscibility. Immis-
cibility is only found for high-molecular-weight mixtures and some isomer
ratios. For the polybutadiene/ cis-1,4-polyisoprene mixture it was shown?"
that the fraction of 1,2-linkages (vinyl) in polybutadiene crucially influences
the compatibility, with immiscibility for low 1,2-PB fractions and miscibility

for high 1,2-PB fractions.
In this section, a SAFT-y Mie model is developed for a PB/PI mixture of

partial miscibility. The mixture of polybutadiene with almost equal fractions
of cis, trans and vinyl isomers and cis-1,4-polyisoprene shows an LCST at
50-60°C.2"™

The pure-component models were developed based on PVT data.?*® The
density at 25°C and the thermal expansion coefficient were used to obtain
the densities at 0, 25 and 100°C. The three densities were used in the Mie
parameter optimisation. Because of the missing compressibility information
(densities only at one pressure), we have not determined a new A exponent
for each compound, but used Mie(12.7-8.1) for PB as it gave the best model
in the PI parameter estimation. The parameter values are given with further
information as Plcis and PB-32.3% in Tab. 5.7.

The unlike interaction was determined based on LLE data.?”® As the
model based on combining rules predicts complete immiscibility, the k;; pa-
rameter was adjusted to represent stronger PB/PI unlike interactions. An
adjusted model with k;; = —0.004017 captures the LCST at 50-60 °C and the
miscibility of a few weight percent of each polymer in the other for 7" > 60 °C,
see Fig. 5.21. The model LLE predictions agree very well with the experi-
mental results with only adjusting a single unlike interaction parameter. Due
to the high molecular weight of the compounds (M, (PB)=93kgmol ™' and
M, (PT1)=397 kg mol™!) the unlike interaction parameter can be fitted to high
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precision.

The volume of mixing of the PB/PI blend is correctly predicted with the
SAFT-v Mie model, while no densities of the blend were used in the develop-

269 show that the negative

ment of the model, see Fig. 5.22. Kawahara et al.
volume of mixing for this polymer mixture indicates a structural effect of
changed relaxation behaviour which can not be explained by enthalpic rea-
sons. The SAFT-v Mie model seems to effectively capture the effect of the
structural effect in the energetic unlike interaction, which correctly predicts
the volumes of mixing at 25°C.

In conclusion, a SAFT-vy Mie model for the PB/PI mixture was success-
fully developed with limited density data and an LLE phase diagram. The
model is in very good agreement with the phase details of the phase diagram

and correctly predicts the volumes of mixing at 25 °C.

PB/sq

The mixture of polybutadiene and squalane (sq) studied in this section can
be described as a polymer /oligomer binary mixture, where squalane’s struc-
ture is equivalent to a hexamer of hydrogenated polyisoprene. Two types of
polybutadiene are used, poly(cis-butadiene) (cisPB) and poly( cis-butadiene-
co-trans-butadiene-co-1-2-butadiene) (PB).

One type of Mie potential per compound is developed, keeping the num-
ber of Mie potential types minimal. Exploiting the structural agreement
of the cis-PB units, which make almost 100% of cisPB and roughly 33%
of the second PB, would allow the prediction of a large range of new PB
monomer ratios, but required additional cisPB/PB interactions and more
complex models.

The experimental data applied in the parameter estimation of the pure
components and mixtures are obtained from different independent sources.
They were chosen to have matching PB isomer ratio, but the molecular weight
and polydispersity differ. The chain length was individually adjusted to the
experimental data to represent the number-average molecular weight. The

possibility in SAFT to adjust the chain length as representing the molecu-
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Figure 5.21: Phase diagram of a mixture of PB(93kgmol™') and

PI(397kgmol™'). (Left) SAFT-y Mie results (this work) of Plcis and PB-
32.3% (see Tab. 5.7) with k;; = —0.004017. (Right) Experimental®”* phase
diagram obtained from glass transition temperature 7, measurements after
the samples were annealed for two hours at the respective temperature. Two
T, (open symbol), one T, (filled symbol) and a correlation (line) are shown.
Reprinted by permission from Springer Customer Service Centre GmbH: Na-
ture, Polymer Journal, Kawahara et al., Vol. 21, No. 3, pp 221-229. Copy-
right (1989) Springer Nature.
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Figure 5.22:  Volume of mixing of a mixture of PB(208kgmol™!) and
PI(397kgmol™'). (Left) SAFT-y Mie predictions (this work) of Plcis and
PB-32.3% (see Tab. 5.7) with k;; = —0.004017. (Right) Experimental®%
volumes of mixing (symbols) and two alternative correlations of the experi-
mental data (lines) at 25°C. Reprinted by permission from Kawahara et al.,
Journal of Polymer Science, Part B, Polymer Physics, Copyright 1994 John
Wiley & Sons, Inc.

lar weight is very valuable in the development of polymer models. Although
polymers from different sources, methods and batches usually differ in molec-
ular weight, they can be used in the parameter estimation of the same Mie
potential.

The pure-component Mie potentials PB-8%, PBcis and sq were used,
whose parameters are given in Tab. 5.7. Using combining rules for all unlike
interactions the PB-8% /sq and PBcis/sq are incorrectly predicted to be com-
pletly immiscible. Adjusting k;; to increase the PB/sq interactions reveals
LCST behaviour, which can not be changed into the UCST behaviour found
experimentally by adjusting k;; alone. The other unlike interaction param-
eters A ;j, Aay; and oy, can all, at least partially, tilt cloud-point curves to
change the UCST/LCST behaviour. Adjusting o;; in addition to k;; allows
the correct slope of the cloud-point curve to be obtained, but the UCST
disappears to inaccessibly high temperatures with complete immiscibility at
high squalane concentrations across the whole accessible temperature range.
Adjusting o;; in the PB/sq mixture to give the best match with the cloud-
point temperatures also leads to large volumes of mixing which are about an

order of magnitude larger than typically found experimentally for polymer
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mixtures. Instead, we adjust A, ;; together with k;;, which correctly repro-
duces the UCST behaviour, see Fig. 5.23. In the same way, the attractive
exponent A, ;; can be optimised instead of the repulsive exponent A, ;;, but
Arij 1s chosen here as it corresponds to the physical representation of soft-
ness of the beads with repect to each other and how easily the beads can
overlap. Equivalent values for A, ;; can also become very small, far smaller
than A, ;; = 6, which is more expensive to model in molecular simulations

for which the models are also developed for.T

The predicted cloud-point curve in Fig. 5.23 is in good agreement with
the experimental data. However, the predicted plateau is flatter than found
experimentally and the UCST is shifted towards higher squalane concentra-
tions. Including polydispersity in the PB and cisPB models does not lead
to an improved description. Instead, the plateau is elongated and the UCST
shifted even further towards high squalane concentrations. The parameters,
which have the major influence on the UCST with respect to its squalane con-
centration, are the chain lengths of the models. Modelling a hypothetical PB
with a smaller molecular weight of 13.3kgmol™! instead of 133.3kgmol !
gives excellent agreement with the experimental cloud points and the ex-
pected position of the UCST, see Fig. 5.24. It is unclear if the effect of
the reduced polymer chain length could also be captured by a completely
different set of Mie potential parameters, or how much the assumptions in
the SAFT-y Mie theory play a role. It is known,'* that the SAFT-y Mie
works excellently for compounds of small molecular weight and less well with
increasing molecular weights. Another consideration, which can explain the
flat plateau, but not the shifted UCST position, is the difference between
binodal and spinodal decomposition. While we have plotted the binodal
decomposition temperatures in Fig. 5.23-5.24, it is experimentally not guar-
anteed to observe phase change at the binodal, but, supported by relatively
low viscosity and smaller tendency to phase separate, transition can appear

further towards the spinodal decomposition temperature where the tendency

fThe developers of SAFT-v Mie also adjust Ar,ij if necessary to capture mixture prop-
erties. 1°1:184 They keep the attractive exponent constant at Aa,ij = 6 for all interactions
with very few exceptions, such as carbon dioxide and water. 5151
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to phase separate increases. Generally, cloud-point measurements are ex-
pected to lie between the binodal and spinodal conditions and are therefore
expected to lead to potentially narrower curves than the predicted binodal
curves. While the binodal/spinodal differences could at least partially ex-
plain the differences between experiment and prediction in terms of wide-
ness/narrowness of the curves, the position of the critical solution condition
is independent of this consideration. The mismatch of the UCST position is
the aspect which could not be quantitatively reproduced with the SAFT-vy

model and no conclusive explanation was found.

In summary, successful PB/sq and cisPB /sq models were developed, which
capture both PV'T and cloud-point curves. Two unlike interaction param-
eters, A\, ;; and k;;, need to be adjusted to capture the UCST behaviour.
The cause of the remaining differences between experimental and predicted

cloud-point temperatures, in particular the position of the UCST, is unclear.

PB/PS

Mixture of polybutadiene (PB) and polystyrene (PS) are less compatible
than PB/PI, which can be confirmed by the lower chemical similarity due
to the PS aromaticity. PB/PS mixtures phase separate already at smaller

molecular weights than PB/PI mixtures.?*°

Experimental data for the SAFT-v Mie model development was sourced
from several independent references. For the pure compounds, we apply the
Mie potentials PS-9k and PB-3k (see Tab. 5.7), which were developed with
experimental PVT data from Zoller and Walsh 1995%?% in Sec. 5.4.2. For the

230 are used as ref-

mixture, experimental cloud-point curves by Rostami et al.
erence. The unlike interactions require two adjustable parameters to match
the UCST behaviour. Only adjusting k;; leads to models predicting closed
loop immiscibilities with the loop centre above the experimental UCST. The
closed loop behaviour at a similar position is also found when alternative
PV'T sources are used for the pure parameters, where we have in particular

tested the PBD233, PS784, PB-8%, PB-87%, PS-9k and PB-3k models (see

Tab. 5.7), which supports the need for a second adjustable unlike interac-
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Figure 5.23: Pure-component PVT of polybutadiene (M

123.6 kgmol ! 23 MSPB - = 200 kg mol ' #2%) and squalane (422gmol™!)
(top) and cloud-point temperatures of PB(133.3kgmol™)/sq and
cisPB(127.2kgmol ') /sq mixtures (bottom).
els are PB-8%, PBcis and sq (Tab. 5.7) with App_sy/sq—0.030877,
FeispB/sq—0.070205, A: pB_8%/sq—=9-3026, A cispB/sq—8.2083. The experimental

data is taken from Refs 228,236,249,273.

The SAFT-y Mie mod-
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Figure 5.24: Cloud-point curve of polybutandiene and squalane com-

pared between experimental data®™ and a SAFT-y Mie model of PB-8%
and sq (Tab. 5.7) where PB-8% is modelled with a 10x smaller molecular
weight than in Fig. 5.23. The unlike interaction parameters are adjusted to
kpb—s%/sq—0.021528, A, pp_s90/sq—9-4503.

tion parameter. The best model was obtained with kpg_s./ps_gx=0.177 and
Ar,pB—3k/PS—ok—38.0, which correctly captures the UCST behaviour and the
slope around the critical region, see Fig. 5.25. However, the predicted mix-
ture composition at the UCST deviates from the experimental observations,
i.e. the PS composition at the UCST is overpredicted. Still, it is also worth
noting that fitting across a full composition range is very tough with limited
experimental data, as with the five points for the PB/PS in this section.

Experimental LLE data of the same PB/PS mixture at higher pressure,
1000 bar, 2% allows validation of the model at another condition. The predic-
tion for 1000 bar correctly shows reduced miscibility compared to 1 bar, but
slightly overshoots the UCST, see Fig. 5.25.

In summary, a model for a PB/PS mixture was successfully developed
which captures PVT and LLE data. The model predictions for an LLE at a

higher pressure agrees well with experiment.

PI/oligomer/oligomer

A ternary mixture is described in SAFT-y Mie as three pure compounds

with three pair-wise unlike interactions. In this section a ternary model is
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Figure 5.25: Cloud-point curve of polybutandiene and polystyrene compared
between experimental data?® and a SAFT-v Mie model of PB-3k and PS-9k
(see Tab. 5.7). The unlike interaction parameters which best reproduced the
LLE at 1 bar are /{prgk/psfgk = 0.177 and >\r,PB73k/P879k = 8.0. The LLE at
1000 bar is predicted with the same SAFT-v Mie model.

developed for the mixture of polyisoprene of high molecular weight with two
oligomers, which are both polystyrene derivatives. One of the PI/oligomer
pairs is miscible at room temperature, while the other PI/oligomer pair
shows immiscibility with UCST behaviour up to high temperatures. The two
oligomers appear to be immiscible, but experimental evidence is not conclu-
sive.?%? The addition of the first oligomer to the immiscible PI/olgiomer mix-
ture improves the overall miscibility.?%* A good SAFT-y Mie model would
therefore ideally capture the effect of improved miscibility, the UCST be-
haviour and reproduce the ternary cloud-point temperatures as quantita-
tively as possible, while using a SAFT-y Mie model with only one Mie po-
tential type per compound and as few adjusted unlike interactions as nec-
essary. Compared to the binary mixtures analysed in the previous sections,
the addition of the third compound in this ternary mixture requires signifi-
cantly more computational time for the LLE calculations and the parameter

estimations, especially for the polydisperse description.
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The oligomers are polystyrene derivatives. The first oligomer is a par-
tially hydrogenated poly(methylstyrene-co-indene) (phPMI), which is, when
blended with styrene-isoprene-styrene (SIS) block copolymers, more miscible
with the polyisoprene midblock, and therefore also referred to as a midblock
tackifier (MT). The second oligomer is a poly(styrene-co-a-methylstyrene)
(PSaM), which is more miscible with the endblocks of SIS block copolymers
and, hence, referred to as an endblock tackifier (ET). See Tab. 5.7 for more
information.

The experimental reference data are shown in Fig. 5.26.%%2 For the mix-
ture, 27 cloud-point temperatures are available for samples of different com-
positions. PI/ET mixtures phase separate at room temperature at ET con-
centrations larger than 5% by weight. No phase separation for PI/MT mix-
tures was observed. MT/ET mixtures appear to phase separate into a yellow
and a colourless phase at some conditions. While the precise determina-
tion of a cloud point visually is difficult for the 9% MT/91% ET sample, it
appears to be at approximately 160 °C, which suggests a surprisingly steep
cloud-point curve for the ET/MT binary pair at low MT concentrations. 22
Liquid densities of both pure oligomers at ambient pressure for several tem-
peratures were measured.?%? Liquid densities for polyisoprene with a similar
monomer ratio were taken from Yi and Zoller. 2%

The pure-component Mie potentials where developed purely with liquid
densities as described in Sec. 5.4.2. As no compressibility information was
available for the oligomers, compressibilities from a polystyrene oligomer of
similar molecular weight measured by Zoller and Walsh?*® were included
in the parameter estimation procedure for both oligomers. The PV data
set for polyisoprene already included information about thermal expansion
and compressibility and was used without changes. The Mie potentials are
referred to as phPMI, PSaM and PI-8%. See Tab. 5.7 for more information.

We have also attempted to develop a polydisperse model for the ternary
mixture. The oligomers are modelled with three pseudocomponents each, i.e.
in total seven components for the ternary mixture. Calculations for the three

binary pairs using combining rules for all unlike interactions predict UCST
behaviour for the oligomer mixture ET/MT, but LCST behaviour for both
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PI/oligomer pairs. The shape of the experimental immiscibility area can
be captured qualitatively at room temperature for the adjusted interactions
kermvr = 0.0065, kprymr = —0.1 and kpppr = —0.006. The cloud-point
curve at room temperature is shown in Fig. 5.27. In agreement with the ex-
perimental evidence, the PI/ET and ET/MT pairs are partially miscible, the
MT /PI pair is fully miscible, and the immiscibility area spans across the ma-
jority of the composition space. While the overall shape of the immiscibility
area is captured qualitatively correct at one temperature, the temperature
dependency, i.e. the LCST behaviour of the PI/ET pair, disagrees with
the experimental observation of an UCST. The improved miscibility upon
addition of MT to the PI/ET mixture, which is observed experimentally,
is captured by the SAFT-y Mie model for most, but not all compositions.
The SAFT-+ Mie model, for example, predicts the miscible mixture of 60%
PI and 40% ET to phase separate upon addition of MT, which contradicts

experiment.

An improved polydisperse model would require the adjustment of addi-
tional unlike interactions and a more elaborate parameter estimation. The
available SAFT-vy Mie programs, however, are already pushed to their limits
with this polydisperse ternary polymer mixture. The cloud-point calculations
of this mixture of 7 pseudocomponents are computationally demanding for
our SAFT-y Mie software using the HammR algorithm. The calculations for
the results in Fig. 5.27 take about one week (i.e. about 13 min per PT-flash
calculation) on a single CPU core (i5-2400S 2.5 GHz). While this allows the
determination of the cloud-point curve for a given SAFT-y Mie model in a
production run, it is prohibitively expensive to iteratively optimise the model
parameters with automated algorithms. With our parallelised HammR algo-
rithm with optimised Intel compiler settings and using powerful processors
on the Durham high performance cluster, HammR calculations run effec-
tively 50—60 times faster (about 15s per PT-flash calculation) than running
in serial on a typical desktop machine compiled with gfortran. This speed-up
is the first crucial step towards the goal of successfully running elaborate pa-
rameter optimisations on ternary mixtures. The development of an algorithm

for automated parameter optimisations for binary and ternary mixtures was
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not attempted in the course of this work, but could be part of future work.

We have also attempted to develop a SAFT-y Mie model with reduced
complexity for faster calculations and, at the same time, aim for a better
agreement with the experimental miscibilities. All three materials are mod-
elled monodisperse for reduced complexity. Additionally, the oligomer mix-
ture ET/MT is assumed to be miscible. Unlike interaction parameters for
the PI/ET mixture are adjusted to improve upon the previously obtained
LCST behaviour which is in conflict with experiment. With kgp /vt = 0.206,
kprymr = 0.0065, kpypr = —0.01 and A, prpr = 8.0 the improved phase
diagram in Fig. 5.28 is obtained. The UCST behaviour of the PI/ET pair
is successfully obtained due to the adjusted \,. As a result, the trend of
increased overall miscibility for higher temperatures (ternary UCST) is also
captured. In addition, the improved miscibility upon adding MT is correctly
predicted for all compositions. While the trends with respect to temperature
and MT addition are correctly captured with this model, the quantitative
shape of the phase diagram still significantly deviates from the experimen-
tal results. Especially the mixture composition at the UCST is predicted
to be at ET concentrations >90%, while experimentally found at roughly
60% ET. The observation that SAFT-y Mie models show deviating mixture
compositions at the critical solution temperature for all Mie potential param-
eter values was also made for the binary models developed in the previous

sections.

Another interesting observation during the development of ternary poly-
mer mixture models was made about the shape of immiscibility areas. Possi-
bly counter to intuition, the reduced miscibility of one pair AB can increase
the miscibility of the ternary mixture ABC. Expressed in free energies of mix-
ing, the larger free energies of mixing of AB (more favourable mixing), can

increase the mixture composition area where the mixture ABC has smaller

{The commercial SAFT-y Mie software gSAFTmm?°® version from 2016 which was
kindly provided by PSE, calculates fast and reliable LLE predictions for strictly binary and
ternary mixtures which were in agreement with results from our HammR code. For polydis-
perse mixtures, however, unreliable miscibility predictions were observed with gSAFTmm.
The deviations were acknowledged by the developers. Since this work was completed a
new version of the software has been released that has been stated to address the problems.
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free energies of mixing (less favourable mixing) than the phase separated
AB+C, because AB+C has become less favourable. This simple, but pos-
sibly counter-intuitive example, demonstrates the increased complexity of
ternary systems compared to binary systems and hints at the additional in-
sights that are expected to be made when complex polymer mixtures are
studied with computational approaches such as SAFT-y Mie.

In summary, a successful SAFT-y Mie model for a ternary polymer mix-
ture was developed. The model, while not quantitatively capturing the ex-
perimental phase diagram, captures the overall phase diagram shape at room
temperature correctly and reproduces the trends for increasing temperatures
and addition of MT. We have made the first step towards automated it-
erative parameter optimisations for complex polydisperse models with our
own algorithms by speeding up the HammR calculations with a parallelised
HammR version. Similar to the findings in the previous sections, the mixture
composition at the UCST is predicted to have significantly larger oligomer

concentrations than found experimentally.

5.5.3 Volumes of mixing

It is very appealing to use volumes of mixing V., for validating and op-
timising unlike interactions in SAFT-y Mie polymer models as the same
experimental equipment used for the pure-component PV'T" data can also be
used for measuring V. A single experimental technique for the complete
characterisation of polymers and polymer mixtures for the development of
polymer SAFT-v Mie models might reduce the cost for the overall devel-
opment. The very high precision needed for valuable measurements of Vi,
and the unclear transferability of V,,;.-based SAFT models for the prediction
of polymer miscibilities unfortunately reduces the appeal and makes LLE
and CPC the data of choice. However, as Vi, are measured only for mis-
cible blends, and LLE and CPC determinations require the access to phase
transitions, Vi, data can be the best choice for highly miscible systems.
Volumes of mixing have successfully been used in the context of poly-

mer models. Vi, data of PB/PI mixture of high molecular weight was cor-
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Figure 5.26: Experimental cloud-point temperatures for the ternary mixture
of polyisoprene (PI), a partially hydrogenated poly(methylstyrene-co-indene)
(MT) and a poly(styrene-co-a-methylstyrene) (ET).?%? The cloud-point tem-
peratures are given in °C. The samples are miscible above the cloud-point
temperature (UCST behaviour). The symbol colouring from green to red cor-
relates with the cloud-point temperature values. Samples represented with
green circles (no temperature value given) were miscible at room temper-
ature. The expected cloud-point curves for room temperature (RT), 60°C
and 160 °C are added as hand-drawn lines to guide the eye. The dashed lines
indicate two alternative cloud-point curve continuations which both agree
with the inconclusive experimental evidence of the ET /MT miscibility.



5.5. Unlike interactions 165

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ET MT

Figure 5.27:  Cloud-point curve predictions at 25°C with a polydisperse
SAFT-y Mie model indicating the computational procedure for obtaining
cloud points. The composition of the coexisting phases (red sphere) are
plotted for a grid of equally-spaced initial global compositions (blue point).
Phases in equilibrium are connected by thin blue lines. The cloud-point
curve corresponds to the boundary between green (miscible/stable compo-
sitions) and red (phase separated phase) compositions. The composition
of the phases in equilibrium (red spheres) do not all collapse into a single
cloud-point curve in this figure as the system consists of 7 pseudocomponents
and the results were expressed as only 3 materials. The unlike interactions
deviate from the combining rules by kgryr = 0.0065, kpyymyr = —0.1 and
kPI/ET = —0.006.
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Figure 5.28: LLE predictions at 25°C, 40°C, 60°C and 160°C with a
monodisperse SAFT-v Mie model. The composition of the coexisting phases
(red sphere) were obtained for a range of initial global compositions (blue
point). Phases in equilibrium are connected by thin blue lines. The compo-
sitions of the phases in equilibrium correspond to the phase boundaries as all
components are modelled monodisperse. The unlike interactions deviate from
the Combining rules by kET/MT = 0206, k‘p[/MT = 00065, kPI/ET = —0.01
and A, pr/pr = 8.0. Data shown in this figure was calculated with the gSAFT

program. 2%3
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rectly predicted with a SAFT-y Mie model fitted to PVT and LLE data
in Sec. 5.5.2. In addition, Higgins et al. in 2010 successfully developed
a PS/poly(vinylmethylether) model based on Vj,;, data for an equation of
state.?3 A SAFT-vy Mie sensitivity analysis of the energetic unlike interac-
tion k;; on Vi data of oligomer and polymer mixtures showed Vi, to cap-
ture energetic differences of unlike interactions. The influence on V,;, data,
however, is significantly smaller than on LLE/CPC temperatures and even
smaller V,,;, changes are found with increasing molecular weights, sometimes
orders of magnitude smaller than the relative changes in temperature.

Volumes of mixing can carry both structural and energetic information
about polymer mixtures. If structural information are not sufficiently cap-
tured by the choice of number of beads and Mie potentials in the SAFT-y
Mie model, the energetic fitting parameter £;; might be forced to effectively
capture some of the structural information, which can result in a model with
a poor balance of entropy and enthalpy. Such a model is not expected to
correctly predict partitioning and solubilities of polymers.

Experimental methods for measuring volumes of mixing are, for example,
the density gradient column (e.g., described in ASTM D1505) and the vi-
brating tube densimeter (e.g., used by Fandifio et al.?*?). Vi, values are cal-
culated from the densities of both pure compounds and the mixture. Density
gradient columns are a long column of two liquids whose composition—and
therefore density—smoothly changes with height. Densities are determined
by the position of a sample compared to reference specimens floating in the
column. Both setting up the density gradient and changing temperature
can be time-consuming. The vibrating tube densimeter requires regularly
performed time-consuming calibration across the whole density, temperature
and pressure range it is used for.

In summary, the methods for measuring high-precision densities are ex-
pected to be more expensive and time-consuming than cloud-point temper-
ature measurements. In addition, it is unclear how reliable LLE/CPC are
predicted with unlike interactions that are obtained from V,,;.-based models
as the balance of entropy and enthalpy might not be correctly captured. For

highly miscible mixtures, however, V,,;, data might be the best experimental
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data when no LLE/CPC are accessible.

5.6 Summary and conclusion

We have tested whether available SAFT-vy Mie parameters correctly predict
solubilities and partitioning of polymer mixtures. We found the low molecu-
lar weight parameters not to be transferable to solubility and partitioning of
polymers.

We presented a semi-exhaustive set of thermodynamic experimental data
of hydrocarbon polymers and their mixtures, which can be used in the devel-
opment of polymer models, and highlighted areas that have not been charac-
terised. We developed pure-component Mie potentials for a range of polymers
based on PV'T" data. We developed mixture models for three binary and one
ternary polymer mixture based on LLE/CPC data. An overview over the
usefulness of experimental data other than PVT and LLE/CPC was given,
while heat capacities, speed of sound and volumes of mixing are discussed in
particular. Other strategies for speeding up the parameter estimation proce-
dure, such as the corresponding state principle and combining rules are also
analysed.

We find the best methodology for developing SAFT-v Mie models for
polymer mixtures to be a two-step process. Firstly, the pure-component
parameters are optimised to best reproduce PV'T" data. The larger the PV'T
data set, the more Mie potential parameters can be estimated. Secondly,
the unlike interactions are tested and adjusted with the help of LLE/CPC
mixture data, where k;; alone, or k;; and A, ;; are adjusted together to best
reproduce the phase transition temperatures.

While correct qualitative predictions have been obtained throughout with
the methodology presented above, quantitative extrapolations and predic-
tions for LLE and CPC properties are challenging within SAFT-+v Mie. We
see a systematic deviation for all polymer mixture models studied in this
work. The concentration of the lower-molecular weight compound is con-
sistently overpredicted at the critical solution condition. The available Mie

potential interactions do not include a parameter to adjust the mixture com-
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position at the critical solution temperature. No Mie potential parameter
other than the chain length (i.e., molecular weight) can significantly in-
fluence the mixture composition at the critical solution temperature. The
molecular weight is well known from experiments and when adjusted, leads
to less physical presentation for other properties. The limited set of ex-
perimental data typically encountered for polymers, however, does not jus-
tify making the model more complex by increasing the number of Mie po-
tential types. Several reasons for the deviations seen between LLE/CPC
experimental data and SAFT-y Mie predictions around the critical solu-
tion temperature are possible. First, SAFT often does not capture critical
vapour—liquid region well and often overshoots critical temperatures (larger
curvature predicted than found in experiment).'* Second, SAFT is best for
spherical monomers/dimers/trimers, and larger deviations and shortcomings
were found for longer molecules such as polymers. Third, experimental cloud-
point temperatures are not expected to exactly represent binodal separation,

but can lie between binodal and spinodal temperatures.
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Chapter 6

Application of Mie potentials in

molecular dynamics simulations

This chapter covers the application of SAFT-v Mie potentials in coarse-
grained molecular dynamics simulations. We investigate the advantages and
also challenges faced when coarse graining force fields are developed using a
top-down approach via the SAFT-y Mie EoS. Systems ranging from pure-
component solvents and polymer melts, to mixtures of solvents, oligomer/
polymer mixtures and polymer/polymer mixtures are studied. Prior to the
SAFT-vy Mie work, we present results from a generic coarse-grained model
showing the influence of oligomer length and oligomer/polymer interaction
on miscibility. Again, the main properties of interest are the bulk miscibility
and phase separation characteristics. In addition, also surface phenomena
are studied using an oligomer/polymer system showing surface enrichment

and wetting layers.

The excellent recent series of publications from the Imperial College group
centred around Prof. George Jackson and Prof. Erich Miiller "SAFT-v Force

Field for Simulation of Molecular Fluids",®!!4115:151,152.2T4 i the most com-

prehensive and systematic work published on using SAFT-vy Mie potentials

in molecular simulations. Including other publications, the list of studied sys-

115 114,115,155

alkanes, water, 1°! binary and

114,274

tems range from CO,,° refrigerants,

ternary systems'®? and hetero group models. In addition, a successful

171
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coarse-grained SAFT-vy Mie model for a polystyrene solution in hexane and
nonane showing LLE was published recently. 2"

We introduce a shorthand notation to distinguish Mie potentials used in
equations of state and in MD simulations. SAFT-y Mie potentials used with
the SAFT-v Mie equation of state (EoS) are referred to as SAFT-y Mie EoS,
and SAFT-v Mie potentials used as force fields in coarse-grained molecular
dynamics simulations are referred to as SAFT-v Mie CG. As in previous
chapters, if EoS or CG is not specified, SAFT-v Mie is used as a short form
of SAFT-y Mie EoS.

All molecular dynamics simulations in this chapter were carried out using
GROMACS 4.6.7.27276 Simulation snapshots were rendered with VMD. 277278

6.1 Converting SAFT-v Mie models into a molec-

ular force field model

SAFT-y Mie potentials translate directly to the non-bonded interactions to
be used in a molecular force field. In the simplest case of a single-bead model,
the force fields only consists of the Mie potential. For multi-bead models,
bonded potentials are added. The Mie potential parameter o is equiva-
lent to the bond length. While no bond-stretching force constant is needed
for Monte-Carlo simulations, they are required for MD simulations. In the
SAFT-y Mie EoS bonds are infinitely stiff, which is why bond constraints
such as LINCS are the closest translation. However, fairly stiff representa-
tions taken from off-the-shelf bottom-up force fields of similar resolution can
also be used and do not change typical properties at reasonable conditions. If
not stated otherwise, in this chapter we use a bond-stretching force constant
of 1.5 x 10° kJ mol~! nm~2, which was chosen to be stiff enough to represent
the constant bond lengths of SAFT models and MC simulation models, but
soft enough to not require smaller MD time steps. SAFT-y Mie models are
fully flexible without angle or dihedral constraint, which is why no angle and
torsion potentials were applied. In Sec. 6.8 we address the motivation to add

additional bonded potentials and discuss the advantageous and challenges
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for several examples.

6.2 Generic coarse-grained model system for
oligomer /polymer miscibility

A simple polymer mixture model system is presented for which the influence
of unlike interactions and molecular weight on bulk miscibilities are investi-
gated. Phase separation is demonstrated in a polymer—oligomer system using
a coarse-grained model description. A polymer made of 100 Lennard—Jones
beads and an oligomer of 5, 10 and 25 Lennard—Jones beads are used for this

study. Their structure is represented in Fig. 6.1.

(a)

polymer

Y€

additive

Figure 6.1: The polymer/oligomer model system used, comprising (a) 100
polymer chains each with 100 beads and 100 oligomer molecules of 5, 10 or
25 beads. (b) An MD snapshot from an equilibrated simulation showing a
phase separated state in a condensed polymer system.

Coarse-grained model

The simulations were performed at 500 K to ensure relatively fast equilibra-
tion times. The force field used was based on parameters of the TraPPE2?™
force field for the CH, united-atom bead, i.e. with a bond length d =

173

0.154 nm, bond angles of § = 114° with a force constant of ky/kg = 62 500 K rad >

and non-bonded Lennard-Jones interactions with ¢/kg = 46K and o =
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7.3+ 0.03nm

a=9.0nm - 7.1 £0.02 nm <

10 monomers

Figure 6.2: MD simulation methodology. Left, a low density system of
oligomers and polymers. Middle, a condensed system obtained with a rel-
ative interaction of @ = 1.0. Right, a phase separated system found after
adjusting the relative interaction to = 0.5. The box dimensions and ensem-
ble conditions for the simulations are indicated.

0.395nm. No dihedral angles were applied to increase the chain’s flexibility
further. The same like interactions (interaction between beads of the same
type) were used for both polymer and oligomers. The unlike interactions
between polymer and oligomer units was systematically varied in this study.
We define the relative interaction parameter a as € = G€ke and use val-
ues of a = 1.0, 0.85, 0.75 and 0.5. The relative interaction is therefore the

ratio of polymer—additive and polymer—polymer interactions.

Methodology

The MD simulation methodology is visualised in Fig. 6.2. Firstly, single
molecules of oligomer and polymers were simulated in short NV MD sim-
ulations leading to coiled conformations (see Fig. 6.1a). The coiled-up struc-
tures were multiplied and randomly arranged in a low-density conforma-
tion in a large simulation box to meet an oligomer number concentration of
0.11mol/mol. Secondly, the condensed phase was obtained from an NPT
ensemble MD simulation at high pressures of 100 bar. The simulation was
run for 50ns at time steps of 2fs. Thirdly, a short equilibration run of 1ns
was performed at 1bar. The resulting configuration was taken as the result

for the relative interaction of @ = 1.0. Fourthly, the relative interaction was
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adjusted and MD simulations were carried out for 50 ns.

Results

The oligomer chain length and the oligomer/polymer interaction strength
were systematically varied in this study and the impact on the bulk miscibil-
ity analysed. Both parameters influence the compatibility /phase behaviour
significantly, see Fig. 6.3. Weaker polymer—additive interactions, as well as
longer oligomers lead to stronger phase separations. The lower miscibility for
weaker unlike interactions can be explained by enthalpic arguments, while
the lower miscibility for larger oligomers can be explained by both enthalpic
and entropic contributions as the effective interaction between oligomers is
increased and the entropy of mixing is reduced.

An estimation of the phase boundary as a function of chain length m
and relative interaction a was developed. A simple hyperbolic function has
been used to describe the results, see Fig. 6.4. The prefactor of the hy-
perbolic function has been fitted to the arithmetic averages of the adjacent
mixed /phase-separated parameters for each of the three additive lengths.
The good hyperbolic fit ms = 1.89/(1 — a) suggests that the product of
(1 — a) and additive length my is constant at the phase boundary.

Conclusion

In summary, this model system of an oligomer/polymer system successfully
demonstrated the influence of oligomer chain length and oligomer/polymer
interaction strength on the bulk miscibility. The model allowed clear visual
differentiation between compatible and incompatible conditions although rel-

atively small MD simulations were performed.

6.3 Polymer-melt densities

In this section the transferability of SAFT-y Mie potentials for polymer-

melt densities across temperature, pressure and molecular weight ranges is
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10

additive length

25

A

1.0 0.85 0.75 0.5
relative interaction

Figure 6.3: MD simulation snapshots for oligomer/polymer mixtures as a
function of oligomer chain length and oligomer/polymer interaction strength.
The polymer chains are not shown for clarity. Systems were prepared with
constant number concentration and a single simplified Lennard—Jones poten-
tial as the basis for all interactions.
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Figure 6.4: Representation of miscible conditions (green) and immiscible
conditions (amber) quantitatively mapped in the oligomer-length and unlike
interaction space. A simple hyperbola function was fitted to the results as
an estimate of the phase boundary.

tested. Polystyrene density predictions are compared between SAFT-v Mie
EoS calculations and SAFT-v Mie CG simulations.

SAFT-v Mie CG model

Mie potential parameters were estimated with our parallel optimisation al-
gorithm (see Sec. 4.6.5) and are designed to reproduce experimental PV'T
data.??® The Mie potential Mie(10.5-8.1) (PS-0.8k in Tab. 5.7) was developed
to best reproduce experimental data of a polystyrene with M,, = 784 gmol .
The Mie potential Mie(9-6) (PS-9-6 in Tab. 5.8) was developed with the same
experimental data, but was chosen to have smaller Mie potential exponents.
See Sec. 5.4.2 for more details on the parameter values. The Mie potentials
are used without further adjustments. The number of beads was adjusted
to meet the target molecular weight, with the mass of a single bead set to

52 gmol !,

Methodology

The polymer chains and initial configurations were build with the Assem-

ble! program.?®® The number of chains was set to give a box of 6k 7k
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beads. The energy of the configurations was minimised with the steepest
decent algorithm for 1000 steps with an interaction cut-off of 1.5nm. The
energy-minimised boxes of low density were compressed at 500 bar with the
Berendsen barostat and at 500 K with the velocity rescale method for 2ns
to give a condensed fluid. The target pressure and temperature were then
applied in a subsequent short MD run of 1ns at otherwise unchanged condi-
tions. The boxes were stacked 2 x 2 x 2 to give a simulation size of 50k—54k
beads. The production run was performed in the NPT ensemble with the
Nosé-Hoover thermostat controlling the target temperature with a coupling
constant of 7 = 1ps and the target pressure controlled by the Parrinello-
Rahman barostat with a coupling constant of 7p = 5 ps and compressibility of
9 x 107° bar~!. The mixtures were run for 10 ns of which the first nanosecond
was discarded for the purposes of further equilibration. All MD simulations
were performed with the GROMACS suite version 4.6.7. The equations of
motion were integrated with the leap-frog algorithm with a time step of 2 fs.

Cut-off distances of 2nm for interactions and neighbour lists were used.

Results

In Fig. 6.5¢-d excellent agreement is found between SAFT-y Mie EoS cal-
culations and the coarse-grained simulations for Mie(10.5-8.1) at all tested
pressures, temperatures and molecular weights. Very good agreement is also
found for the second CG model Mie(9-6) which correctly captures the thermal
expansion coefficient (temperature dependence), but slightly underpredicts
the densities at 1bar by about 1%.

Conclusion

Polymer-melt densities of polystyrene at different pressures, temperatures
and molecular weights are compared between SAFT-v Mie EoS and SAFT-
v Mie CG simulations. Excellent agreement is found between experiment,
theory and simulation. The polymer model is this section demonstrates that
polymer CG force fields for polymer-melt densities can be developed with the
SAFT-v Mie EoS and converted to SAFT-v Mie CG force fields without the
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Polystyrene density comparison. (a) SAFT-y Mie CG model

for a polystyrene with M, = 785gmol~! as a 15mer, whose experimental
data??® was used in the development of the Mie potentials. (b) MD snapshot
of a systems with 15mers with 50k beads in total. Each chain is coloured
differently. Polystyrene densities of the (c) 15mer (M,, = 785 gmol~!) and (d)
several molecular weights compared between experiment??® (crosses), SAFT-
v Mie EoS results (lines) and SAFT-y Mie CG simulations (diamonds and
circles). Results for chains of 1, 2, 3, 7, 15, 30, 60, 120 and 240 beads are
shown. Pressure values in steps of 400 bar from 1 bar to 2000 bar are applied.
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need for further adjustments in MD. In addition, SAFT-y Mie CG models
correctly capture thermal expansion and compressibility at the same time,
which is very challenging to achieve with other coarse-graining methods such

as IBI and force matching.

6.4 Benzene/octane mixture

A coarse-grained SAFT-v Mie force field is developed in this section for a mix-
ture of nm-octane and benzene. The corresponding state principle parametri-
sation by Miiller et al.'>® is employed to study one of the fastest means of

developing SAFT-y Mie CG mixture models.

SAFT-v Mie CG model

Mie potentials were obtained with the CSP method '*% introduced in Sec. 5.4.1.

Mie potential parameters are listed in Tab. 6.1.

Table 6.1: SAFT-v Mie parameters for pure compounds used in this section.
For all Mie potentials the shape factor is S = 1 and the number of segments
per group v, = 1, which allow the parameters to be used in both SAFT-VR
Mie and SAFT-y Mie. Mie potential parameters were obtained with the CSP

method '
compound Tij €/ kB Arij  Aaj; mass  #beads
nm K g/mol
octane (oct-4b) 0.3768 255.92 12.70 6.0 28 4
benzene (benz-1b) 0.5329 686.15 43.97 6.0 78 1
benzene (benz-2b) 0.3978 349.79 13.96 6.0 39 2

Methodology

Simulations for pure-component properties were prepared by placing 500
molecules in an initial small box at low density with GROMACS scripts.
For all systems, the equations of motion were integrated with the leap-frog

algorithm with a time step of 2fs. Cut-off distances of 2nm for interactions
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and neighbour lists were used. The configurations were compressed at 100 bar
with the Berendsen barostat and simulated at 280 K with the velocity rescale
method for 2ns to give a condensed fluid; then relaxed at 1bar at otherwise
unchanged conditions. The initial box was stacked 1 x 1 x 3 and extended
three more box lengths to add vacuuum and create two vacuum/liquid inter-
faces.

Simulations for the octane/benzene mixture properties were prepared by
combining 100 molecules (with the target composition) to an initial small
box at low density, which was compressed at 500 bar and 328 K and relaxed
at 1bar as in the pure-component preparations. The relaxed configuration
of 100 molecules was stacked 6 x 6 x 6 for the 10%, 30% and 50% of benzene,
7 x 7 x 7 for 70% benzene and 8 x 8 x 8 for 90% of benzene. The cubic boxes
were extended by three box lengths to add vacuum and create two interfaces.
The final simulation boxes comprised 63k-66k beads.

The production run was performed in the NV'T ensemble with the Nosé-
Hoover thermostat controlling the target temperature. The first 20 ns were
discarded and the remaining 180ns (pure components) and 60-160ns (mix-
ture) analysed.

The pure octane systems with 6k beads at T" < 350 K were stacked again
(3 x 3 x 1 to give 15 x 15 x 30nm?®) and rerun to improve the sampling of
the vapour phase. Benzene systems with 1.5k beads at 325 K and 328 K were
stacked again (5 x 5 x 1 to give 42 x 42 x 25nm?) to improve the sampling

for the vapour pressure predictions.

Results

Pure-component Mie potentials obtained with the corresponding state prin-
ciple (CSP) as presented in Sec. 5.4.1 are used to predict pure-component
VLE, vapour pressures, isobaric mixture VLE and isothermal mixture VLE
in Fig. 6.6 and 6.7. See Tab. 6.1 for the Mie potential parameters.

As can be seen in Fig. 6.6, the pure-component properties agree very
well with experiment. Deviations are found for the vapour pressures, which

is very slightly overpredicted by SAFT-y Mie EoS calculations and slightly



182 6. Application of Mie potentials in molecular dynamics simulations

overpredicted by SAFT-y Mie CG simulations. The melting temperature
(can not be captured by the fluid theory SAFT-y Mie) is overpredicted for
benzene by about 40 K (T}, = 279 K)?%! as can be seen by the jump in density
in Fig. 6.6b at about 320 K. The melting point of octane (experimentally at
T = 216 K)?5! was expected within the studied range, but is underpredicted
at least by 20 K.

It is interesting to point out that simulations of only 1500 molecules run
for 200 ns already give acceptable levels of precision for most VLE properties.
As expected, closer to the critical conditions the density errors increase due
to larger density fluctuations, and at lower temperatures the vapour pressure
errors rise due to lower concentrations in the vapour phase. Larger simula-
tions were performed on a few selected low temperature systems to improve
the vapour pressure predictions.

Predicted binary vapour-liquid equilibria at 1 bar show an azeotropic mix-
ture and a liquid-liquid immiscibility area when relying purely on combining
rules. A single adjusted unlike interaction parameter k;; = —0.007 gives an
excellent representation of the experimental isobaric mixture in Fig. 6.7b.
The dew (upper curve) and bubble (lower curve) points in Fig. 6.7b are not
as conveniently modelled in MD simulations because they are phase tran-
sitions at constant pressure. Vapour pressures at constant temperatures
can conveniently be obtained from canonical NVT ensemble simulations.
MD simulation results are therefore presented at constant temperature in
Fig. 6.7c. The vapour pressure results are in fair agreement with the exper-
imental data, but are overpredicted due to the poor pure benzene vapour
pressure (cf. Fig. 6.6). An alternative benzene model with 2 beads instead
of one leads to an improved description of the isothermal VLE without the
need for a correction factor for the unlike interaction, but corresponds to a

smaller degree of coarse graining.

Conclusion

The coarse-grained simulations of octane and benzene not only give good

agreement for pure-component properties, but also predict isothermal VLE
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Figure 6.6: Pure-component vapour-liquid equilibra (VLE) of n-octane and
benzene. (a) MD simulation snapshot of an octane system of 6k beads at
300K (b,c,d) pure-component VLE compositions and (e) vapour pressures
of octane and benzene are compared between experiment” (dotted lines
and circles), SAFT-y Mie EoS (continuous lines) and SAFT-y Mie CG sim-
ulations (symbols with error bars). SAFT-y Mie EoS results in (b—e) are
obtained with our Maxwell construction algorithm.
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Figure 6.7:  Vapour-liquid equilibra at (a,c) isothermal conditions of 328 K
and (b) at isobaric conditions of 1 bar for a mixture of n-octane and benzene
are compared between experiment?” (dotted lines and circles), SAFT-y Mie
EoS (continous lines) and SAFT-y Mie CG simulations (symbols with error
bars). (b) VLE results at 1 bar are shown for the predicted unlike interaction
ki;=0 and for the improved unlike interaction k;;=-0.07. (c) VLE results
are shown for a benzene model made of one bead (benz-1b, k;;=-0.07) and
two beads (benz-2b, k;;=0). Additional liquid-liquid immiscibility areas are
found for benz-1b with k;;=0 at 328 K and 1bar. The HELD'"® algorithm
together with our SAFT-+v Mie implementation was used to calculate the
SAFT-vy Mie EoS VLE and LLE data. (a) MD snapshot of the SAFT-vy Mie
CG simulation with 70% benzene at 328 K and a vapour pressure of roughly
55kPa. The snapshot shows the liquid phase and part of the vapour phase.
The whole box contains 65k beads.
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in good agreement with experiment. The solvent mixture example in this
section demonstrates how well SAFT-y Mie calculations can be used to speed
up the coarse graining of MD force fields for low molecular weight compounds.
While a correction factor is needed for benzene modelled with a single bead,
more predictive mixture results are obtained for benzene modelled with two
beads.

6.5 Polystyrene/octane mixture

In this section we combine SAFT-y Mie potentials to a heterogeneous CG
model of a polymer solution in octane and test how well the liquid-liquid
immiscibility and UCST are reproduced. The polystyrene model is branched
and can therefore not be used in the SAFT-v Mie EoS. Although model im-
provements with the help of the SAFT-y Mie EoS are desirable, branched
models are expected to represent chemical structures better than linear chains.
It is therefore of high interest to see how well assembled heterogeneous
branched polymer models perform in CG MD simulations as further im-
provements are more expensive if the predictions are not acceptable. The
example system in this section is a mixture of polystyrene and octane, which
shows UCST behaviour.

While several bottom-up coarse-grained models of polystyrene exist, 281252
a SAFT-y Mie CG model has only recently been published for a hexane and
heptane solution by Jimenez et al.?*® The authors also used the CSP method
for the pure-component Mie potentials. They adjusted two solvent/polymer
interaction parameters based on MD simulations and were able to capture
both LCST and UCST behaviour. Discussions with the author suggested
many attempts were needed. In this section we are testing how well a model

with little to no adjustments performs.

SAFT-v Mie CG model

All Mie potentials used for the octane and polystyrene force fields were ob-

tained with the CSP method,'® see Tab. 6.1 for parameter values of benz-
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1b and oct-4b. Polystyrene of M, = 1kgmol™! corresponds to 12 styrene
monomers, which are build from the octane and benzene beads. The back-
bone is modelled with 12 octane beads (oct-4b) and the phenyl side chains
with 12 benzene beads (benz-1b). See Fig. 6.8 for a SAFT-y Mie CG model
representation. Combining rules are applied to all benz-1b/oct-4b interac-

tions.

Figure 6.8: Coarse-grained models of octane (left) and polystyrene (right).
Bead of the same colour are modelled with the same Mie potentials.

Methodology

Simulations were started from a phase separated state. Conformations were
prepared by separately simulating pure-component boxes, which are then
combined and run at the targeted conditions and interactions. A global com-
position of 35% by weight of polystyrene close to the experimental UCST 22
was set for all mixtures.

The pure-component phases were prepared by combining 2413 octane
and 119 polystyrene chains separately in initial boxes at low density. The
configurations were compressed at 500 bar with the Berendsen barostat and
at 500 K with the velocity rescale method for 2ns to give a condensed fluid.
The systems were relaxed at 1bar at otherwise unchanged conditions. The
relaxed boxes were separately stacked 1 x 2 x 2, a thin layer of vacuum added
such that no chain crosses box boundaries and then joined from the shorter

box side by translating one phase’s coordinates and appending them to the
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other phase’s coordinate file. The mixture configuration comprises 50k beads
in the form of two pure condensed phases separated and surrounded by a thin
layer of vacuum.

The production run was performed in the NPT ensemble with the Nosé-
Hoover thermostat controlling the target temperature and at 1 bar controlled
by the Parrinello-Rahman barostat. The mixtures were run for at least 200 ns
of which the last 20-50 ns were used to determine the phase compositions once
the compositions converged.

The equations of motion were integrated with the leap-frog algorithm with
a time step of 2fs. Cut-off distances of 2nm for interactions and neighbour

lists were used.

Results

Using the adjusted unlike interaction parameter k;; = —0.07, which gave the
best representation of octane/benzene VLE, results in completely miscible
polystyrene/octane mixtures at 200 K to 280 K where immiscibility is found

252 Using combining rules for all unlike interactions an im-

experimentally.
miscibility area is predicted with UCST behaviour, see Fig. 6.8. While the
temperature of the critical solution condition is higher than found experimen-
tally, it is remarkable to capture the UCST in a similar temperature range.
The UCST behaviour was confirmed by simulations at 360, 400, 450 and
500 K, which revealed miscibility. While the mixture at 360 K showed large
density fluctuations, the fluctuations decrease in magnitude with larger tem-
peratures. Also worth noting, the mixture composition of the critical solution
condition appears to be similar to the experimentally observed composition.
This mixture composition was shown in Chap. 5 to be very challenging to
capture by SAFT-v Mie EoS models.

The octane/benzene VLE was better described with k;; = —0.07, while
the polystyrene/octane LLE is better described with k;; = 0. As both mod-
els use the same Mie potentials which were obtained for benzene and octane
with the corresponding state principle, the conclusion has to be that the

combined benzene and octane beads are not a perfect representation of the
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chemistry of a polystyrene solution. In particular the influence of the con-
nection between aliphatic backbone and aromatic residue on the chemistry of
each individual group might not be captured by simply connecting a benzene
and octane representation. In addition, 50% of the beads in the octane model
are terminal groups, while the polystyrene is less influenced by chain ends.

259 who

Our considerations are supported by the results of Jimenez et al.
presented a successful model based on toluene and long alkane beads, whose

unlike interaction was additionally adjusted with the help of MD simulations.
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Figure 6.9: LLE predictions from SAFT-y Mie CG simulations with a
coarse-grained model of a mixture of polystyrene and octane. (left) MD
snapshots at 260 K and 320 K. (right) LLE phase diagram comparing exper-
imental results®*? with SAFT-v Mie CG predictions.

Conclusion

A simple coarse-grained model based on SAFT-vy Mie potentials of benzene
and octane was used to predict LLE. The model captured the UCST be-
haviour correctly and predicted a critical temperature within 100 K of the
experimentally observed results. Although this deviation is unacceptable in

practical experimental terms, it is remarkable to obtain this degree of agree-
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ment with such a simple predictive SAFT-y Mie CG model which is expected
to only imperfectly capture the chemistry of the polystyrene chains. The ex-
ample in this section also highlights the fact that more care is required for

developing polymer models than for solvent models.

6.6 Surfaces of oligomer/polymer mixtures

This section describes the development of a SAFT-y Mie CG model for an
oligomer /polymer mixture. Oligomer/polymer surface concentration profiles
are compared with experimental neutron reflectometry measurements. Sur-
face properties in polymer systems are especially important for adhesive sys-
tems and at conditions where at least a part of the polymer mixture is above
their glass transition temperature. The migration of the lower-molecular
weight component can change the elasticity, tack, viscosity, smell, touch and
visual appearance of the mixture. The larger the molecular weight and the
smaller the viscosity of the components, the slower the migration process can
be. The migration and all associated property changes can takes more than
several months to finish.

The prediction of surface properties with the help of computational mod-
els could speed up the development and formulation of polymer mixtures if
the slowly evolving properties can be simulated and calculated faster and
cheaper than in experiments.

The coarse-grained MD model of polybutadiene and squalane in this sec-
tion are the first SAFT-v Mie CG polymer surface simulations we are aware
of. The model successfully captures surface enrichments, wetting transition

and bulk immiscibility of the oligomer/polymer model.

SAFT-v Mie CG model

The chain length of the MD polymer model is chosen to be ten times longer
than the oligomer chain (12 and 120 beads), see Fig. 6.10. The full experi-
mental polymer weight of MF® = 133.3kgmol~! corresponds to a model of

almost 5000 beads per chain and would lead to prohibitively long equilibra-
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tion times and a prohibitively large simulation size. The Mie potential types

are sq and PB-8%. See Tab. 5.7 for more details and parameter values.

2 2
Squalane (sq) Polybutadiene (PB)

Figure 6.10:  (top) SAFT-y Mie CG models of squalane (left, palatinate)
with 12 sq beads and polybutadiene (right, grey) with 120 PB-8% beads.
(bottom) Mapping of SAFT-y Mie beads PB-8% (grey) and sq (palatinate)
to the chemical structure of squalane and polybutadiene. Two beads per
repetitive unit are used and one Mie potential type per compound.

Methodology

The MD simulations can only model surfaces/interfaces in pairs, not just one
surface. Periodic boundary conditions help reduce the number down to just
two surfaces. We choose a longer dimension normal to the surface plain to
stabilise the two surfaces. The two surfaces are equivalent and are therefore
averaged during our analysis. The averaging requires a smart analysis which
determines the surface position, chops the layer in half, inverts one of them
and aligns the surfaces before averaging.

The production runs were performed at higher temperatures of 450K to
further speed up the migration process. Slightly reduced cut-off distances of
1.5nm and a larger time step of 5fs were used to reduce the computational

costs per simulated time unit.
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The methodology of MD simulations and density profile analysis is sche-
matically visualised in Fig. 6.11. Randomly generated vapour mixture con-
figurations of the target composition of 10% to 90% oligomer by weight were
prepared. The initial box size ranged from 6372 (40%) to 7032 (10%) beads.
The cubic box was compressed at 500 bar and 450 K for 1ns and relaxed
at 450 K and 1bar for 1ns using the Berendsen thermostat and Berendsen
barostat in the NPT ensemble.

The equilibrated cubic box was stacked 1 x 1 x 4 to give a system size of
25.5k—28.1k beads depending on the composition. A larger system size with
40% oligomer stacked 1 x 2 x 4 with over 102k beads was analysed to study
the influence of finite size effects. The full size equilibration/migration runs
were carried out for at least 1.4ps with the Nosé-Hoover thermostat in the
NV'T ensemble.

The equations of motion were solved using the leap-frog integrator with
a time step of 5fs applying the LINCS constraint algorithm on all bonds.
Cut-off distances of 1.5nm for interactions and neighbour lists were used. If
not stated otherwise simulations were carried out at a temperature of 450 K
using the Nosé-Hoover thermostat.

Density profiles were obtained with the GROMACS tools, which were

further aligned and normalised in a subsequent python script.

Results

Oligomer surface concentration profiles are calculated for oligomer/polymer
films as a function of unlike interaction and as a function of global mixture

composition.

Interaction strength

The oligomer /polymer unlike interaction is systematically varied to simulate
oligomer /polymer mixtures of different chemistry and test which surface phe-
nomena are captured by the SAFT-v Mie CG model. The oligomer surface
profiles in Fig. 6.12 show different degrees of oligomer surface enrichment.

Models with favourable unlike interactions (k;; = —0.01) show a small surface
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Figure 6.11: Process for generating surface density profiles of polymer mix-
tures. A polybutadiene coarse-grained model (grey) and a squalane model
(palatinate) comprised of 12 beads were multiplied and equilibrated in a mi-
crocanonical (NPT) simulation in a box of 6k-7k beads. The equilibrated
unit was stacked up four times and two surfaces created by adding vac-
uum. The process was carried out for different concentrations and interac-
tion strengths. The last part of the simulation was analysed by averaging
the density across the z,y plane. As both surfaces are equivalent, they were
combined and averaged.
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enrichment, and models with less favourable unlike interactions (k;; = 0.005)
show a larger surface enrichment which corresponds to an almost continuous
monolayer of oligomers on the surface. Models with even less favourable un-
like interactions (k;; > 0.005) show bulk phase separation, which results in
the formation of layers in the bulk facilitated by the periodic boundaries and
the limited box size. Results with bulk layering are not shown as they are
metastable conformations which are challenging to equilibrate in MD simula-
tions. The less favourable the unlike interactions, the more metastable bulk
layers appear.

Larger box sizes with 102k beads (instead of 25k) allow the study of less
favourable systems as droplets are formed instead of layers. The diffusion of
an oligomer droplet from the bulk to the surface was observed in Fig. 6.13,
which merged with the surface and resulted in a thick oligomer surface layer.
While the droplet was formed within 80 ns when started from a homogeneous
mixture, the droplet slowly reduced in size over 700ns due to migration of
individual oligomer chains, before it merged with the surface. A process
which took 100 ns to complete. The thick oligomer surface layer is referred
to as wetting layer. The wetting layer is a continuous surface layer thicker
than one molecule.

Almost identical surface concentration profiles are obtained in Fig. 6.13d
for k;; = —0.01 and k;; = 0 for the 25k and 102k bead systems, whose
surface area differs by a factor of four. The agreement suggests that the
surface areas of the 25k bead systems are large enough for studying oligomer

surface enrichment and negligible finite-size effects are present.

Oligomer concentration

Sets of different global mixture composition are modelled for two different
unlike interaction strength, i.e. k;; = —0.01 and k;; = 0. While the mixtures
with k;; = —0.01 are miscible at all concentrations they show small oligomer
surface enrichment in Fig. 6.14a thinner than a wetting layer. Mixtures with
k;; = 0 show surface enrichment at low oligomer compositions and wetting

layers at high compositions. The wetting transition occurs between 40% and
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Figure 6.12: (top) Coarse-grained MD snapshot of the

squalane /polybutadiene mixture with 40% oligomer by weight after
1.5ps with k;; = 0 showing oligomer surface enrichment. Oligomer beads
are coloured palatinate, polymer beads are grey. (bottom) Density profiles
for several unlike interaction strengths k;;. k;; values are given in the legend.
Oligomer (continuous lines) and polymer (dashed line) density profiles
are obtained from SAFT-y Mie CG simulations. All mixtures have 40%
oligomer by weight.
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Figure 6.13: Larger oligomer /polymer simulations with 102k beads at 40%
oligomer by weight. (a) Miscible condition with kpg/sq = 0 show surface
enrichment of the oligomer and (b) immiscible conditions with k;; = 0.02
started from a mixed phase first forms a droplet of squalane in the bulk within
less than 100ns, (c) but takes approximately 900 ns before the droplet has
completely merged with the (left) surface layer. (d) Density surface profiles
for oligomer and polymer mixtures for k;; = —0.01, 0 and 0.02. Profiles
for k;; = —0.01 and O are also shown for the smaller simulations sizes of
25k beads (cf. Fig. 6.12). The profiles k;; = 0.02 were not obtained from
averaging both surfaces, but only one surface (left in (b,c)) as the droplet
caused the surfaces to be asymmetric.
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60% oligomer, see Fig. 6.14.

The oligomer concentration profiles are compared in Fig. 6.14c with ex-
perimental profiles of a mixture of deuterated squalane and polybutadiene
measured with neutron reflectometry.?™ Good agreement is found between
experiment and simulation. The simulations capture surface enrichment,
wetting transitions and wetting layers. While the agreement is not quan-
titative, the steepness of the profiles are matched at several conditions. It
is important to emphasize that the length scales of the simulation results
were not adjusted. The agreement is remarkable when considering that the
model parameters are only based on liquid densities and the unlike interac-
tion predicted with combining rules. The predictive power of the combining
rule might also be influenced by fortunate values picked for the polymer chain
length and temperature of 450 K which were deviated from experimental con-
ditions to facilitate the CG MD simulations. More favourable interactions
with correction factors k;; < 0 are expected for simulations at experimental
conditions.

The migration of oligomer chains is significantly faster than the migra-
tion of the polymer chains. Conditions which require the migration of the
polymer chains to reach equilibrium conditions take longer than 1ps (eg.
80% at k;; = 0 in Fig 6.14b). Conditions, which only require the oligomer
to migrate (miscible conditions, with only surface enrichment), equilibrate

within a couple of 100 ns.

Conclusion

SAFT-y Mie CG simulations of oligomer/polymer surfaces were presented,
which are—to the best of our knowledge—the first of their kind. Small
oligomer surface enrichment was found for small oligomer bulk concentrations
or favourable oligomer /polymer interactions (small &;;). Wetting layers were
found for high oligomer bulk concentrations and unfavourable oligomer /-
polymer interactions (high k;;). Good agreement with experimental squalane
surface concentration profiles is seen. The agreement is in particular remark-

able due to the simplicity of the model and the agreement of the length scales.
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(a) SAFT-y Mie CG with k;; = —0.01
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(b) SAFT-y Mie CG with k;; =0
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(c) SAFT-y Mie CG with k;; = 0 and experimental neutron reflectometry
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Figure 6.14: Oligomer (continuous lines) and polymer (dotted lines) density
profiles in a thin oligomer/polymer film as a function of global oligomer con-
centration. (a) SAFT-y Mie CG results for k;; = —0.01 and (b) SAFT-vy Mie
CG results for k;; = 0. (c) Squalane surface concentration profiles obtained
from neutron reflectometry®™ (bold red lines) are compared with SAFT-y
Mie CG results (thin blue lines) with k;; = 0. All profiles were shifted to
align for the left surface. Overall SAFT-vy Mie CG film thickness varies due
to differences in composition and total number of beads. Experimental film
thicknesses are significantly larger than in the MD simulations.
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The presented SAFT-y Mie CG simulations successfully capture surface en-

richment, a wetting transition and wetting layers within a single model.

6.7 Polymer/polymer mixtures

This section describes the development of a SAFT-y Mie CG model for a
polymer /polymer mixture. We successfully show models with miscible and
immiscible equilibrium states. We also demonstrate that models close to the
phase boundary and close to the critical solution condition are challenging

to simulate even for polymer models with relatively short chain lengths.

SAFT-y Mie CG model

We have chosen to build the polymer mixture model based on polyisoprene
and polystyrene data as their mixtures already show immiscible conditions
at relatively low molecular weights.?*! Both polymer models were developed
with large sets of polymer-melt densities, as presented in Chap. 5.4.2. The
Mie potential types are referred to as PI-8% and PS-0.8k. Parameter values
and more details can be found in Tab. 5.7. For simplicity we have chosen
symmetric models with chain lengths of 25 and 40 beads per chain. The
models map 2 beads per isoprene and styrene unit. No angle or dihedral

potentials were applied.

Methodology

Randomly generated vapour mixture configurations of a 50/50 mixture by
weight of polyisoprene chains and polystyrene chains were prepared. The
initial box sizes contained 6300 (25 bead chains) and 6720 (40 bead chains)
beads. The cubic boxes were compressed at 500 bar and 450 K for 1 ns and re-
laxed at 450 K and 1 bar for 1 ns using the Berendsen thermostat and Berend-
sen barostat in the NPT ensemble.

The equilibrated cubic box was stacked 1 x 1 x 3,1 x2 x4 and 2 x 3 x4
to give system sizes of 20k, 54k and 161k beads, respectively. The full size
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equilibration /migration runs were carried out with the Nosé-Hoover thermo-
stat at 450 K and the Parrinello-Rahman barostat at 1bar. The equations
of motion were solved using the leap-frog integrator with a time step of 5fs
applying the LINCS constraint algorithm on all bonds. Cut-off distances of

2nm for interactions and neighbour lists were used.

Results

The mixture of chains with 25 beads is predicted to be partially miscible
(10-20%w solubility limit) by the SAFT-v Mie EoS using combining rules
for the unlike interactions (k;; = 0). In the SAFT-y Mie CG simulations
with the same model, a single homogeneous phase is observed. Changing the
unlike interactions to describe less favourable polymer/polymer interactions
leads to partial miscibility with £;; = 0.01 and complete immiscibility with
kij = 0.1, see Fib. 6.15.

The mixture of chains with 40 beads is predicted to be completely im-
miscible (< 3%w solubility limit) by the SAFT-y Mie EoS with k;; = 0.
However, only a single homogeneous phase is observed in SAFT-y Mie CG
simulations, see Fig. 6.16. Also running larger simulations with up to 161k
beads does not reveal two stable phases. While snapshots, as in Fig. 6.16,
hint at immiscibility, they do not show phase separation, but the peak of
large density fluctuations. The wave length of the fluctuations increases
with the simulation size. The density fluctuations indicate conditions close
to the critical conditions. As for the 25-bead-mixture, readjusted unlike in-
teractions within MD simulations are necessary to reproduce both qualitative
compatibility and quantitative solubility limits found with the SAFT-v Mie
EoS.

Conclusion

The simulations in this section demonstrate some of the challenges faced with
SAFT-v Mie CG models for polymer/polymer mixtures. At least k;; needs to
be rescaled for a successful transfer of a SAFT-+v Mie EoS to a SAFT-y Mie

CG model to obtain similar solubility predictions. The rescaling requires it-
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k’pl/ps - 001 kPI/PS = 01

Figure 6.15: Symmetric mixtures of polyisoprene and polystyrene with 25
beads per chain with 50k beads in total. Only polyisoprene beads are shown.
The simulations box’s third dimension is as long as the shorter of the other
two. Unlike interaction parameter were set to (left) kpyps = 0, (middle)
kpips = 0.01 and (right) kpi/ps = 0.1; snapshots were taken after 425ns,
260ns and 25 ns, respectively.
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Figure 6.16: Symmetric mixture of polyisoprene and polystyrene with 40
beads per chain with unlike interactions obtained from combining rules only
kpi/ps = 0. Only polyisoprene beads are shown. The size of the simulation
is changed to compare visibility of density fluctuations and possible phase
boundaries. Although large density differences can be seen, they are strongly
fluctuating such that pair correlation functions do not allow differentiation
of compatible and (partially) incompatible conditions. Boxes comprise 161k,
54k and 20k beads from left to right.
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erative MD simulations. Polymer/polymer simulations are expensive due to
the slow equilibration, poor sampling and the need for large simulation sizes.
Phase transition and conditions close to the critical solution temperature,
which are of special interest experimentally, are especially challenging. Fur-
ther coarse graining within MD simulations, or other methods such as DPD
simulations could help speed up simulations of polymer/polymer mixtures.

The degree of coarse graining was chosen to best reproduce polymer-melt
densities both as a function of temperature and pressure (thermal expansion
and compressibility) for the best thermodynamic representation and trans-
ferability. With SAFT-y Mie this choice allows lumping together 2-5 heavy
atoms per bead, which significantly reduces the number of beads compared
to united-atom force fields (1 bead per heavy atom). A stronger coarse
graining with fewer beads would result in Mie potentials which reproduce
pure-component data less well, but would allow further speed up.

A method with a coarser description and faster diffusion is Dissipative
Particle Dynamics (DPD). A coarser and softer DPD model could be pa-
rametrised based on fitting to initial SAFT-y Mie potentials. For example
see bottom-up coarse-grained DPD models of n-pentane.?832%* DPD simu-
lations are faster because the potential at the bead cores are finite, which
allows beads and chains to overlap and penetrate each over, and therefore
allows chains to cross. In MD simulations with infinite potential values at the
bead cores, overlap and chain crosses are negligible. DPD and MD-DPD are
promising methods for simulating more challenging polymer/polymer mix-

tures.

6.8 Angles and dihedrals for SAFT-y Mie CG
force fields

The SAFT-v Mie EoS 20136 does not include restrictions on angles and di-
hedrals. Bonded potentials such as angle and dihedral potentials for MD force
fields can therefore not be developed with the SAFT-v Mie EoS alone. This

limitation is based on the fact that only the first-order term of Wertheim’s
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thermodynamic perturbation theory (Wertheim’s TPT1) is included. Future
versions of SAFT might include 3-body and 4-body interactions which allow
for restricted angles and dihedrals. However, a derivation of the correspond-
ing equations, and a simplified version which can be added to the existing
SAFT equations, has so far not been achieved due to the complex nature of
the equations that arise.

Angle and dihedral potentials for SAFT-v Mie CG models are of in-
terest to improve upon the predicted structural properties. For polymers,
certainly angle potentials and possibly dihedral potentials should be added.
The potentials are effectively changing the chain flexibility and are therefore
expected to improve the description of the radius of gyration, which quanti-
fies the chain’s state between completely stretched and completely collapsed.
The radius of gyration influences both bulk miscibility as well as surface
layers.

With increasing chain length of SAFT-vy Mie models, i.e. a larger devia-
tion from the spherical shape, the importance of intramolecular interactions
such as angle potentials increases. So far, without a direct link between an-
gle potentials and the SAFT-v Mie FEoS, mainly two approaches are used to
account for the missing intramolecular restrictions.

Firstly, the nonbonding Mie potential parameters are rescaled to best
reproduce the properties in MD simulations, effectively accouting for all dif-
ferences between the SAFT-y Mie EoS and MD simulations. Rescaled Mie
potentials were shown to perform excellently for the VLE properties of ben-
zene'' and alkanes.!'® Also in this chapter, the pointed-out improvements
for mixture properties by adjusting k;; correspond to the same approach.

Secondly, additional angle and dihedral potentials, which were indepen-
dently obtained from other methods, are added to the SAFT-y Mie CG
models. The potential can for example be generated with MD simulations
with other (higher-resolution) force fields. The potentials are obtained by
analysing and Boltzmann inverting the angle distributions for the target
mapping. Similarly obtained angles were successfully added to SAFT-y Mie
CG models. 2% In this work, we have applied angle and dihedral poten-

tials obtained from TraPPE-UA?2®:2% gingle molecule reference stochastic
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dynamic simulations. We found no significant influence on the VLE prop-
erties at 300 K for the n-octane model in Sec. 6.4, which is supported by
simulations on Lennard-Jones chains?®” and references therein. However,
for the mixture of PS and octane® in Sec. 6.5 the added angle and dihedral
potentials led to the freezing and vitrification of polystyrene and octane at
300-350 K. This occurs approximately 100 K higher than the experimental
melting temperature of octane. The drastically reduced diffusion led to in-
accessible equilibrium states. Reduced diffusion coefficients were also found
in other polymer MD simulation studies.?®

Angles and dihedral potentials are crucially important for liquid crystals.
In liquid crystals, the structural flexibility, rigidity and shape influences the
orientation and stacking properties of molecules. In additional work (not

)07 we have developed a successful SAFT-y Mie CG model

part of this thesis
with additional angle and dihedral potentials for a chromonic liquid crystal
whose stacking behaviour crucially depends on the rigidity of the molecule’s

core.

6.9 Summary and Conclusions

In this chapter, SAFT-y Mie CG models are presented for solvent mix-
tures, polymer melts, polymer solutions, oligomer /polymer surfaces and poly-
mer/polymer mixtures. Deviations between the results obtained from SAFT-
~v Mie EoS calculations and SAFT-v Mie CG simulations seem to increase
with molecular weight. Larger deviations are found for miscibility predictions
than for melt densities. While further SAFT-v Mie CG model adjustments
within MD simulations are required for matching solubilities such as LLE,
excellent agreement was found for melt densities and surface profiles with
little or no readjusting.

Compatibilities at conditions close to phase transitions or critical solution
conditions are especially challenging to simulate in MD simulations. Coarser

methods such as DPD simulations could be reparametrised based on Mie

*Boltzmann inversion was performed with the VOTCA package '°%1%° on stochastic

dynamic simulation trajectories of single molecules of n-octane and PS in vacuum.
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potentials. Chemical potentials are a target property which can easily be
simulated in DPD simulations via particle insertion. DPD interactions would
be tuned to reproduce the chemical potentials obtained from SAFT models.
Due to a coarser and more abstract representation, the DPD simulations are
significantly faster than MD simulations and could be a promising avenue for
developing polymer/polymer models for solubilities and phase separation.
The simulations in this chapter confirm the types of properties SAFT
methods and MD simulations are best at. SAFT EoS are best at phase
equilibria, phase separation and other macroscopic equilibrium properties,
but can not be used for structural, non-equilibrium and other heteroge-
neous properties without the help of additional methods and theories (see
Chap. 3.7). In contrast, MD simulations are limited in describing phase sep-
aration and macroscopic properties, but are an excellent method for surfaces
and "structured fluids". Within MD excellent coarse-grained polymer mod-

els have been developed for polymer types discussed in this chapter, which

are long alkanes48’99’110’289’290 PL93,281,2917293 PB294 and PS‘34796,97,281,2957298
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Chapter 7
Conclusion and future work

In this thesis, theory, simulations and experiments were used to study the
solubility and partitioning of polymer systems. Oligomers and polymers
show complex behaviours such as coils and entanglements, and have, hence,
been challenging systems to model computationally. The impact of enthalpic
contributions to phase equilibria becomes more important, the larger the
molecular weight. Small chemical and structural differences between typical
hydrocarbon polymer types already drastically influences the miscibility and
partitioning behaviour. Polymer systems also remain challenging to charac-
terise experimentally, as for example, low viscosities and slow diffusion pro-
cesses lead to property changes of mixtures even after several days or weeks.
The aim of this work was to analyse the predictive capabilities of the SAFT-~
Mie theory and MD simulations to determine the solubility and partitioning

in polymer systems, potentially faster than via experimental measurements.

In Chap. 4, one of the most sophisticated SAFT versions, SAFT-v Mie 6
EoS, was implemented into a stand-alone program. Special care was taken
with comparisons with the data of the authors of the original publications pre-
sented to ensure the highest precision and accuracy for the basic Helmholtz
energies obtained from the SAFT-y Mie theory. Simple numerical derivatives
were added and dedicated numerical optimisation algorithms and solver de-
veloped to give access to thermodynamic properties such as pressure, chem-

ical potential and phase equilibria. Most relevant to the later applications,
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a multicomponent, multiphase equilibrium solver (HammR) was developed
for the calculation of polymer phase equilibria. Also an optimisation rou-
tine for estimating new pure-component SAFT-vy Mie model parameters was
developed and extensively applied in later chapters.

Potential future work extending the efforts of Chap. 4 would be an opti-
misation routine for the automated estimation of binary interaction param-
eters. The HammR routine, which is so far limited to liquid phases, could
be extended to vapour phases, to allow the calculation of VLE and VLLE
properties, which would allow the description of polymer solutions of higher
vapour pressure.

In Chap. 5, polymer models within the SAFT-v Mie EoS were studied.
The SAFT-y Mie group-contribution parameter set'®* originally developed
for low-molecular weight compounds was tested on polymer miscibilities and
partition coefficients. As only trends and not quantitative miscibility re-
sults were matched with experimental findings, we developed new dedicated
SAFT-y Mie polymer models. A semi-comprehensive overview of experi-
mental thermodynamic data of hydrocarbon polymers and their mixtures
was compiled. A large range of SAFT-vy Mie models was developed for poly-
mer melts and polymer blends, even including a ternary mixture. Excellent
agreement was achieved for reproducing polymer-melt densities, very good
agreement was found for reproducing polymer cloud-point curves, and good
agreement was found for predicting cloud-point curves and other thermody-
namic properties for new molecular weights and new conditions. A system-
atic deviation in reproducing and predicting cloud-point curves was observed
which seems to be connected to the molecular weight of the model and also,
does not appear to be influenced by any of the other Mie potential parame-
ters.

Potential future work extending the efforts of Chap. 5 would be devel-
oping SAFT-y Mie EoS models with parameters as a function of molecular
weight, similar to the models developed in Refs 80,127. Synthesising and
characterising a set polymers of different molecular weight but of the same
polymer type, would be hugely beneficial. The systematic deviation found

for cloud-point curves, which is connected to the molecular weight, could be
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further analysed by testing if a universal scaling factor for the SAFT chain
length can systematically improve cloud-point predictions. A physical repre-
sentation of this scaling factor could be the compensation for the unphysically
extended chain conformation in the SAFT theory (TPT1 versions). A scaling
factor could effectively capture the coiling of polymer chains found experi-
mentally. The idea is similar to the effect of the shape factor in SAFT-vy Mie.
The shape factor, however, was not enough to mitigate the deviations found
for the polymers in this work.

In Chap. 6, coarse-grained force fields based on SAFT-v Mie EoS mod-
els were studied in molecular dynamics simulations. Excellent agreement
was found for the direct translation of Mie potentials to CG force fields
for modelling properties of low-molecular weight compounds and densities
of polymer melts. Only a single unlike interaction parameter required ad-
justment within MD simulations to obtain excellent SAFT-y Mie CG force
fields. The complementary power of SAFT and molecular simulation was
demonstrated by modelling surfaces of an oligomer/polymer system. First,
pure-component parameters were optimised within the SAFT-v Mie EoS.
Second, simple model adjustments were made within MD to reduce the com-
putational demand. The SAFT-y Mie CG model reproduced experimental
partial-density surface profiles as a function of blend composition without the
need to rescale length scales. Oligomer surface enrichment, wetting transition
and wetting layers were correctly predicted with a single model.

Potential future work extending the efforts of Chap. 6 would be to em-
ploy mesoscale DPD simulations for modelling polymer phase equilibria in
the bulk of larger molecular weight. DPD models could be parametrised
to reproduce chemical potentials obtained from the SAFT-y Mie EoS. The
larger time and length scales, which can be modelled in DPD models, would
allow researchers to study more complex heterogeneous phase equilibria and

structural properties.
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