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Targeting a promising new herbicide mode of action: chemical and 

genetic approaches to elucidate the role of IPC synthase in plants 
 

ELIZABETH C. E. PINNEH 

Abstract 
 

Worldwide there are currently 479 recorded unique cases of herbicide resistant weeds, 

with 251 species (146 dicots and 105 monocots). According to current records, weeds 

have developed resistance to 22 of the 25 known herbicide sites of action and to 157 

different herbicides. Research into sphingolipid synthesis has revealed a potential novel 

site of action involving the non-mammalian enzyme inositol phosphorylceramide 

synthase (IPCS). Two approaches to understanding the function of the enzyme in plants 

have been employed in this study. The genetic approach, which involves the 

overexpression and knockdown of the three IPCS orthologues in Arabidopsis thaliana, 

has given insights into the global function of the enzyme in plants at a phenotypic and 

transcriptomic level. Analyses of the RNASeq data show that AtIPCS is a global negative 

regulator of plant defense, downregulating genes involved in plant defense against 

herbivory attack, nematodes, fungal and bacterial pathogens. RNASeq data in 

conjunction with phenotypic data, indicate that IPCS may play a role in floral transition 

from the vegetative phase to the reproductive phase, with the transgenic lines displaying 

an early flowering phenotype. AtIPCS transcript levels is also shown to affect plant post-

embryonic development. In parallel, high throughput screening facilitated the 

identification of chemical inhibitors of plant IPCS. Using a system of Arabidopsis 

thaliana as a model dicot and Oryza sativa as model monocot, two classes of inhibitors 

were identified and demonstrated differential activity: the phenylamidines and 

triazinones. In addition, in vivo screening of the phenylamidines demonstrated herbicidal 

activity, indicating that the necessary selectivity for herbicide development is achievable. 
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1.1 Thesis synopsis 
 

The aim of this work was to characterise the role of inositol phosphorylceramide synthase 

(IPCS) in plants, and to identify putative inhibitors of the enzyme, that can be further 

developed for use as herbicides. In Chapter 1, an introduction to the need for the 

identification of new herbicide mode of action is outlined, as is the reasoning for pursuing 

IPCS as an herbicidal target. In this chapter, sphingolipid structural variation and 

biosynthesis, in plants and mammals is reviewed and known inhibitors of IPCS 

orthologues in fungi and protozoa are examined. In addition, current understanding of the 

role of sphingolipids in relation to programmed cell death in plants is presented. In chapter 

2, bioinformatics analysis is carried out on the plant IPCSs from different plant species 

to glean information on how similar or different they are from each other, and to find out 

biological pathways they could affect by analysis of transcription factor binding sites in 

the promoter region. In that same chapter, assay parameters for the screening campaign 

were developed and validated. In chapter 3 and 4, results from the primary and secondary 

screening, as is the work done to validate AtIPCS1-3 over-expresser and RNAi transgenic 

lines in A. thaliana is shown. In chapter 5, RNASeq analysis of AtIPCS1 t-DNA mutant 

and transgenic lines over-expressing AtIPCS1, 2 and 3 are presented which reveal the role 

of plant AtIPCS. Conclusions and future work are discussed in chapter 6 and in chapter 7 

the methods and materials are covered.  
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1.2 Crop production and herbicide resistance  
 

World food production is heavily reliant on the use of herbicides and pesticides to reduce 

the detrimental effects of pests and weeds on crop yield. With global population projected 

to increase by 2 billion by the year 20501, there comes the need for increased agricultural 

production of staple crops which the global community rely on to survive. It is currently 

estimated that 12.5% of the global population are undernourished1, this could increase in 

the coming years due in part to the unfolding effects of climate change on agricultural 

output. It is also projected that by the 2080s agricultural yield in developing countries 

will decline by 9% due to high carbon emissions even when the benefit of carbon 

fertilization is taken into consideration, and on a global scale this decrease in yield will 

be 3%, with yield decrease being greatest in South East Asia and sub-Saharan Africa2  

(Figure 1-1). 

 

 A study conducted by the World Bank study forecasted 50 million more people could be 

at risk of undernourishment because of climate change by the year 20503; without 

mitigating measures to combat climate change the number of malnourished people 

globally is set to grow to 321 million within the 2050 decade and by 391 million in the 

decade of 20804, with the most affected areas being developing countries.  

 

Cereal crops are the most common food source for human consumption. According to the 

Food and Agricultural Organization of the United Nations (FAO) 2013 report 

approximately 2.3 billion tonnes of cereals are currently produced globally1; roughly 1 

billion tonnes is destined for food use, 750 million tonnes will be employed as animal 

feed, and the remaining 500 million tonnes will be processed for industrial use as seed or 

wasted1. The growth rate of world cereal production fell to 1 percent per annum in the 

1990s, down from 1.6 percent in the 1980s and almost 3 percent in the 1970s; between 

2000 and 2003, growth was almost zero due to low prices and a surplus in stock1. 
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The challenge of increasing crop yield globally is further compounded by the decrease in 

available arable land; currently 40% of arable land is used to produce staple food which 

is expected to decrease to 30% by 2025 in order to provide land for renewable resources, 

and to feed companion and farm animals5. Another challenge is combating pesticide 

resistance which encompasses all plant protection agents, including but not restricted to 

fungicides, insecticides and herbicides. Global usage of pesticides is approximately 2 

million tonnes, with 45% of this usage accounting for Europe, 25% in the US and the 

other 30% in the rest of the world6. The reliance on plant protection agents, in particular 

herbicides, which account for 47.5% of worldwide pesticide consumption6, mirrors the 

changes in farming practices from mechanical to chemical solutions for combating weeds. 

This has resulted in widespread weed resistance to herbicides with deleterious effects on 

crop yield. The control of weeds up until the end of the 20th century was primarily 

achieved by physical and mechanical removal of weeds combined with crop rotation7.  

The research conducted in World War II for biological warfare and research into 

Figure 1-1: Global map of agricultural production projected for the years 2046-20552. 
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chemicals that could control insects carrying malaria, paved way for the synthetic 

chemical industry and modern herbicides8.  

Herbicides are classified by activity, chemical family and site of action. The classification 

of herbicides by their site of action refers to the target enzyme and the subsequent effects 

on biochemical pathways as a result of inhibiting that enzyme.  There are currently 21 

known sites of action (Table 1) with some sites of action being unknown for certain 

herbicides such as Difenzoquat. 

The first herbicide discovered was in 1940 by W. G. Templeman. 2,4-

Dichlorophenoxyacetic acid (2,4-D)9 a plant hormone, was found to selectively kill 

broad-leaved weeds in the midst of cereal crops10. This was followed by the discovery and 

development of atrazine (Figure 1-2) from the triazine class of herbicides used on broadleaf 

weeds amongst maize and sugarcane9. The introduction of the herbicide glyphosate (N-

(phosphonomethyl)glycine) by Monsanto in 1974 under the trade name ‘Roundup’ 

revolutionized the use of herbicides for farming in America; this herbicide was found to be 

non-specific, killing a wide range of weeds including grasses, broadleaf weeds and woody 

plants9. The subsequent introduction of glyphosate resistant crops resulted in its widespread 

use in both crop and non-crop lands11 for over three decades. Recently, it has been found that 

there is widespread glyphosate resistance across America, a consequence of the evolution of 

glyphosate resistant weed biotypes found in rigid and Italian ryegrass, marestail, goosegrass, 

common ragweed, waterhemp and velvet leaf11. This glyphosate resistance has been found in 

the majority of soybean, cotton and corn farms and has been reported at 69% of 144 

waterhemp population sites sampled in Missouri and 64% of 500 in Iowa in the year 2011-

201212. 

Glyphosate resistance has affected crop yield and profits and has resulted in the use of 

alternative herbicides to kill resistant biotypes. The cost of using herbicides in the south  

http://www.weedscience.com/summary/Herbicide.aspx?MOAID=30
http://en.wikipedia.org/wiki/2,4-D
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Herbicide group Site of action Example of Herbicide 

ALS inhibitors Inhibits acetolactate synthase the key 

enzyme in the biosynthesis of branched 

amino acids isoleucine, leucine and valine 

Chlorsulfuron 

Photosystem II inhibitors Inhibits photosynthesis by binding to the 

QB binding site on D1 protein of 

photosystem II complex in the thylakoid 

membrane 

Atrazine 

ACCase inhibitors Inhibits acetyl CoA carboxylase which is 

involved in the de novo synthesis of fatty 

acids 

Sethoxydim 

PSI Electron Diverter  Herbicides accept electrons from 

photosystem II and are reduced to form 

herbicide radicals  

Paraquat 

Synthetic Auxins  Acts similar to endogenous auxins but the 

mechanism is not well understood; they 

acidify the cell wall by stimulating the 

activity of membrane bound ATPase 

pumps 

2,4-D 

EPSP synthase inhibitors Inhibits 5-enolpyruvylshikimate-3-

phosphate synthase resulting in depletion 

of aromatic amino acids needed in 

biosynthetic pathways involved in growth 

Glyphosate  

PSII inhibitor (Ureas and 

amides) 

Urea and amides inhibits photosynthesis 

by binding to the QB binding site on D1 

protein of photosystem II complex in the 

thylakoid membrane 

Chlorotoluron 

Microtubule inhibitors Binds to tubulin thereby inhibiting 

microtubulin polymerization at the 

assembly end 

Trifluralin 

Lipid Inhibitors 

(thiocarbamates)  

Inhibitors of several plant processes 

including biosynthesis of fatty acids, 

lipids, proteins, isoprenoids, flavanoids 

and gibberellin 

Triallate  

PPO inhibitors Inhibits Protoporphyrinogen oxidase 

involved in chlorophyll and heme 

biosynthesis 

Oxyfluorfen  

Carotenoid biosynthesis 

(unknown target)  

Targets enzymes involved in carotenoid 

biosynthesis 

Amitrole  

PSII inhibitors (Nitriles) Nitriles inhibit photosynthesis by binding 

to the QB binding site on D1 protein of 

photosystem II complex in the thylakoid 

membrane 

Bromoxynil  

Long chain fatty acid 

inhibitors 

Inhibit the synthesis of very long chain 

fatty acids (VLCFA) 

Butachlor 

Carotenoid biosynthesis 

inhibitors 

Inhibition of phytoene desaturase, an 

enzyme involved in carotenoid 

biosynthesis 

Diflufenican  

Antimicrotubule mitotic 

disrupter 

Unknown mode of action Flamprop-methyl  

HPPD inhibitors Inhibits p-Hydroxyphenylpyruvate 

dioxygenase  

Isoxaflutole 

Glutamine synthase inhibitors Inhibits glutamine synthase which 

converts ammonia and glutamate to 

glutamine.  

Glufosinate-ammonium 

Cellulose inhibitors  Inhibits enzymes involved in cell wall 

biosynthesis 

Dichlobenil 

Mitosis inhibitors inhibits cell division, microtubule 

organisation and polymerization 

Propham 

Cell elongation inhibitors  Unknown mode of action Difenzoquat  

Nucleic acid inhibitors Unknown mode of action Monosodium methanearsonate 

(MSMA) 

Table 1: Classification of herbicides based on site of action, adapted from Heap 20172 

http://www.weedscience.com/summary/MOA.aspx?MOAID=3
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=3
http://www.weedscience.com/summary/MOA.aspx?MOAID=4
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=4
http://www.weedscience.com/summary/MOA.aspx?MOAID=2
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=2
http://www.weedscience.com/summary/MOA.aspx?MOAID=7
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=7
http://www.weedscience.com/summary/MOA.aspx?MOAID=24
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=24
http://www.weedscience.com/summary/MOA.aspx?MOAID=12
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=12
http://www.weedscience.com/summary/MOA.aspx?MOAID=5
http://www.weedscience.com/summary/MOA.aspx?MOAID=5
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=5
http://www.weedscience.com/summary/MOA.aspx?MOAID=15
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=15
http://www.weedscience.com/summary/MOA.aspx?MOAID=22
http://www.weedscience.com/summary/MOA.aspx?MOAID=22
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=22
http://www.weedscience.com/summary/MOA.aspx?MOAID=8
http://www.weedscience.com/summary/Herbicide.aspx?MOAID=8
http://www.weedscience.com/summary/MOA.aspx?MOAID=11
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of America has increased from $50-$75 per hectare to about $370 per hectare as a result 

of glyphosate resistance12.  

 

 

 

 

 

 

 

 

 

Areas farming cotton have been heavily affected resulting in a shift away from growing 

cotton with a 60% and 70% decrease in area growing cotton in Tennessee and Arkansas 

respectively12. According to the International Survey of Herbicide-Resistant Weeds 

(http://www.weedscience.org), there are currently 430 unique cases of herbicide resistant 

weeds globally, with resistance to two or more herbicides found in 235 species (138 dicots 

and 97 monocots)13. It has also been recorded that weeds have evolved resistance to 22 

of the 25 known herbicide sites of action and to 154 different herbicides. Herbicide 

resistant weeds have been reported in 82 crops in 65 countries13. The Poaceae family have 

74 recorded cases of weed resistance with 21 cases reported in the Brassicaceae family to 

date. The yield of staple crops  are affected by herbicide resistant weed species; wheat is 

affected the most with 65 herbicide resistance species, followed by corn, rice and 

soybeans which have 58, 50 and 46 herbicide resistant species respectively13. Globally 

there has been a rapid increase in the number of unique resistance cases between the years 

1975-2014 and the highest recorded number of herbicide-resistant weeds are recorded in 

the US (145), followed by Australia (69), Canada (60), China (37) and France (35)13. 

Figure 1-2: Chemical structures of first generation herbicides (A) 2,4-Dichlorophenoxyacetic acid (2,4-D) 

(B) Atrazine (C) Glyphosate. 

(C) 

(B) (A) 

http://www.weedscience.org/
http://en.wikipedia.org/wiki/2,4-D
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The shift in farming methods in developing countries from mechanical removal of weeds 

to the use of herbicides means that herbicide resistance is a global problem. Countries 

such as China and Brazil now rely heavily on herbicides for weed control and are 

reporting a rapid increase in herbicide resistance cases with China currently ranked fourth 

in the world with 37 cases and Brazil ranked joint seventh with Germany on 31 cases.  

The full extent of herbicide resistance in most parts of Africa and Asia is not yet known, 

with no recorded cases in most countries on both continents. 

1.2.1 Health and environmental concern of herbicide usage 
 
 

In addition to herbicide resistance another major cause for concern in the use of herbicides 

are the health and environmental effects. The triazine herbicides have been linked to an 

increased risk of breast cancer14, and phenoxy herbicides contaminated with dioxins have 

also been linked to mortality of workers exposed to the herbicide from diseases including 

neoplasms, soft-tissue sarcoma, and non-Hodgkin's lymphoma15.  Some herbicides have 

been found to contaminate groundwater; a study carried out by Thurman and colleagues 

in the United States found that several herbicides including atrazine, alachlor and 

simazine exceeded the Environmental Protection Agency promulgated maximum 

contaminant levels for drinking water16. 

The health and environmental concerns of herbicide use combined with the growing cases 

of herbicide resistance on a global scale has led to a search for new chemically formulated 

herbicides with a specific site of action and minimal impact on the environment, animals 

and humans. The advent of research into sphingolipid synthesis has brought about a 

possible new site of action involving the non-mammalian enzyme, inositol 

phosphorylceramide synthases (IPCS). This enzyme catalyzes the transfer of 

phosphoinositol from phosphatidylinositol to the C-1 hydroxyl group of phytoceramide 

thereby generating the precursor inositol phosphorylceramide (Figure 1-3), for the 
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synthesis of the major sphingolipids in plants, glycosyl inositol phosphoceramides 

(GIPC). Exploitation of the divergence in sphingolipid biosynthesis in plants and animals 

can be used to create herbicides with minimal risks to mammals; fine-tuning of an IPCS 

inhibitor could result in the selective inhibition of monocots over dicots or vice versa, 

creating the pretext for the formation of herbicides that specifically kill certain types of 

weeds.  

 

 

 

 

 

1.3 Sphingolipids  
 
 

Sphingolipids are a class of lipids that are essential components of all eukaryotic cell 

membranes and have been found to be crucial for survival across all kingdoms. In 

mammals they have been found to be involved in embryogenesis17, differentiation18, cell 

adhesion19, and signal transduction20, 21. The model organism Saccharomyces cerevisiae 

has an abundance of sphingolipids comprising about 30% of the phospholipids found in 

the plasma membrane and these have been shown to be essential in growth regulation and 

cell integrity22-24. This class of lipids were first identified by Johann Tudichum during 

research into the effects of cholera on the brain25. The findings of his research published 

under the title ‘a treatise on the chemical constitution of the brain’ in 1884 identified 

sphingomyelin, cerebroside and sulfatide, which were isolated from fractional 

crystallization of ethanolic brain extracts26. 

Figure 1-3: IPCS catalyses the transfer of phosphoinositol to phytoceramide thereby generating inositol 

phosphoryl ceramide and the by-product diacylglycerol.  
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This class of macromolecules consists of a sugar residue, a fatty acid and an organic base 

which Tudichum named `sphingosine' after the Greek sphinx, referring to the enigmatic 

structure of sphingolipids. Sphingosine was structurally characterized as 2S,3R,4E-2-

aminooctadec-4-ene-1,3-diol in 1947 by Carter who also proposed the designation of 

lipids derived from sphingosines as sphingolipids. The basic unit of a sphingolipid is a 

sphingoid long-chain base (LCB), usually sphingosine, sphinganine 

(dihydrosphingosine) or 4-hydroxysphinganine27 and a fatty acid component linked to 

carbon-2 of the LCB via an amide bond yielding ceramide, with different groups attached 

at the 1-hydroxyl position resulting in different types of complex sphingolipids (Figure 

1-4). The presence of a phosphate group at the 1-hydroxy position of ceramide yields 

ceramide-1-phosphate, and an O-glycosidically linked glucose or galactose substituent 

results in the formation of the compounds: glucosylceramide and galactosylceramide 

(cerebroside)28. The higher glycosylated ceramide species, such as sulfatides29 are derived 

from galactosylceramide by addition of a sulphate group to the 3-position of the sugar 

residue, whilst gangliosides contain a sialic acid (mostly N-acetyl neuraminic acid) 

moiety in the carbohydrate head group30. 

 

 

 

 

 

 
 

Sphingolipid variation results from differences in the LCB moiety and the groups attached 

to the LCB component; this is seen in the variation found in hydroxylation patterns, 

Figure 1-4: General structure of a sphingolipid which consists of an LCB moiety, a fatty acid moiety and 

different groups attached to the LCB component, where R can a variety of head groups such as glucose, 

phosphate, phosphocholine, phosphoinositol or the simplest head group H to generate ceramide. 



 

 

21 | P a g e  
 

number and stereochemistry of the double bonds, chain length and the branched side 

chains. 

1.3.1 LCB Variation 
 
 

In mammals, the LCB moiety is mostly (E)-sphing-4-enine (sphingosine, d18:14), 

whereas in yeast the predominant LCB is 4-hydroxysphinganine (phytosphingosine, 

t18:0) formed by desaturation or hydroxylation of sphinganine (d18:0) at C-430. The 

predominance of 18 carbon sphingoid bases (d18:0, d18:1, and t18:0) in most mammalian 

sphingolipids is consistent with the preference of mammalian serine palmitoyltransferase 

(SPT) for saturated fatty acyl-CoAs composed of 16 carbons atoms  in length31, combined 

with the abundance of palmitoyl-CoA32. Sphingoid bases with chain lengths of 12 to 26 

carbons have been reported in human skin31 which belongs to a special class of ceramide 

containing ω-hydroxy fatty acid30.  

 

Plant sphingoid bases are composed of eight different C18-sphingoid bases derived from 

sphinganine33 (Figure 1.5).  Cis- or trans-desaturation at C-8 results in the unsaturated 

plant LCBs: (E/Z)-sphing-8-enine (d18:18), (4E,8E/Z)-sphinga-4,8-dienine (d18:24,8) and 

(8E/Z)-4-4-hydroxy-8-sphingenine (t18:18); d18:14 is absent whilst the major LCBs in 

Saccharomyces cerevisea, d18:0 and t18:0 are present in minor proportions34, 35. Other 

LCBs are present in plants as minor components36. 

 

Plants are uniquely different from animals and yeast in that the major LCBs t18:1(8E/Z) 

and d18:2 (4E/(8E/Z)) are not found in these organisms. The proportion of sphingosine 

found in different species appears to segregate along taxonomic lines, with 

the Solanacae (tomato and tobacco) having large proportions and the Fabacae (pea and 

soybean) an intermediate amount, whilst Brassicaceae (Arabidopsis) have very low to 

non-existent levels of sphingosine37. The major difference between sphingoids found in 
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plants and fungi as compared to mammals is the lack of the C4-C5 double bond which 

shows a higher pattern of hydroxylation at C4, usually with a longer acyl chain38. 

Sphingolipid variation in other species is even more complex, with nematodes having 

both iso- branched and anteiso-branched (4E,6E-d13:2)39  sphingoid bases (Figure 1-6A 

and 1-6B) . In Drosophila a sphingoid possessing a conjugated diene has been found40 

Figure 1-5: The structures and shorthand designation of the different sphingolipids found in plants, fungi 

and mammals whereby the LCB can be dihydroxy or trihydroxy; the number before the colon is the number 

of carbon atoms present in the compound and the number after the semi colon is the degree of unsaturation. 

Adapted from Pata et. al33. 
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(Figure 1-6C), whilst in aquatic organisms, unique sphingoids bearing a cyclopropane 

ring have been isolated from marine sponges (Figure1-6D)41, 42.  

 

 

 

 

 

 

 

 

1.3.2 Sphingolipid diversity in plants 
 
 

There are at least 500 (and perhaps thousands of) different molecular species of 

sphingolipids in eukaryotes33, and in Arabidopsis alone it has been reported that there are 

at least 168 different sphingolipids43, 44.  The structural variability found in plants arises 

from the diversity of the ceramide backbone and the high proportion of very long chain 

fatty acids (VLCFAs) found; whereby the fatty acid component can vary from C14-C26 

and be saturated or monounsaturated. The fatty acid component can be an α hydroxylated 

VLCFA, which is predominantly found in maize root plasma membranes45. The most 

abundant α-hydroxylated FA composed of saturated C16, C20, C22 and C24 long chains, in 

contrast there is a sparse population of ω9-monounsaturated FAs composed of C22-

26 carbon chains46. 

In plants there are four classes of sphingolipids: glycosyl inositol phosphoceramides 

(GIPCs), glycosylceramides, ceramides, and free long-chain bases ( Figure 1-7)47.  IPC 

is a precursor for the synthesis of GIPCs, but in fungi is identified as one of the 

predominant sphingolipids, which includes the two mannose-containing derivatives: 

Figure 1-6: Structural variation in sphingoid bases in different species: (A, B) Nematode (C) Drosophila 

(D) Plakortis simplex. Figure adapted from Pruett et. al42. 
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mannosyl inositolphosphorylceramide (MIPC) and mannosyl 

diinositolphosphorylceramide (M(IP)2C)48.  

  

 

 

 

 

 

 

 

 

 

 
 

The deletion of inositol phosphorylceramide (IPC) synthase which synthesizes IPC has 

been found to be lethal in Saccharomyces and Aspergillus and therefore essential for 

survival49. To date sphingomyelin, which is the major sphingolipid in animal tissues, has 

not been detected in plants. 

1.3.2.1 Glycosyl inositol phosphoceramides 
 

Glycosyl inositol phosphoceramides (GIPCs) are acidic glycosphingolipids (GSLs) and 

are the major sphingolipids in plants, accounting for 64% of total sphingolipids37. IPC is 

the precursor for the synthesis of GIPCs, which consists of a polar head group linked to 

Figure 1-7: Structures of sphingolipids found in plants: Ceramide is the precursor to the more complex 

sphingolipids glucosylceramide (GlcCer) and glycosyl inositol phosphorylceramide (GIPC). Sphingosine-

1-phosphate is a phosphorylated free LCB which has bioactive properties. 
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C-1 of an N-acyl long-chain base that is attached to a fatty acid moiety50 (Figure 1-8). 

The two GIPC core head groups, phytoglycolipid (PGL) and ceramide phosphate 

polysaccharide (CPPS), were identified by Carter et. al, and found to be attached to 

different sugars51. The oligosaccharide chains of PGL consist of glucosamine, hexuronic 

acid and inositol linked to mannose. The core head groups, phosphosphingolipid II and 

glycophosphoceramide consist of oligosaccharide chains attached to C-2 and/or to C-6 of 

myo-inositol and contain either N-acetylglucosamine or glucosamine and glucuronic acid 

with differing amounts of the additional sugars, arabinose, galactose, mannose  and 

fuctose52, 53 (Table 2).   

 

 

 

 

 

 
 

Analysis of the LCB moiety of GIPCs located in leaf and endosperm tissue in the Poaceae 

family showed that t18:1Δ8(E/Z) and t18:0 LCBs are predominant47, 54, with a high 

percentage of saturated and α hydroxylated very long fatty acid chains that are C24 or 

C25 long55; 2-hydroxylignoceric acid (h24:0) being the most common49. 

The enzyme, inositol phosphorylceramide glucuronosyltransferase (IPUT) from 

Arabidopsis when introduced into yeast has been shown to transfer glucuronic acid to 

IPC which is the first step in IPC glycosylation pathway to produce GIPCs, with the 

silencing of IPUT resulting in the accumulation of IPC (30% increase)56.  

Figure 1-8: Structure of GIPC with the components: polar head 

group, long-chain base and fatty acid moiety highlighted. 
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This class of sphingolipids have been to interact with the oligosaccharide, 

rhamnogalacturonan II (RG-II) via boron, suggesting it has a role to play in the 

dimerization of RG-II which maintains the mechanical properties of the cell wall57. 

Table 2: Core head group structure of GIPCs in different plant species. Adapted from Pata et. al 

200933 

 

 

  

In addition, GIPC has been found to be important for normal pollen development, with 

iput1 mutants found to transmit the alleles through pollen at 1-2% compared to wild 

Family Species Tissue Core head 

group 

Core head group 

structure 

Additional 

sugars 

Linaceae Linum 

usitatissimum 

Seed PGL Glucosamine-

hexuronic acid-

inositol-P-Man 

Ara, Gal, Man, 

Fuc 

CPPS Hexuronic acid-

inositol 

  

Poaceae Zea mays Seed PGL Glucosamine-

hexuronic acid-

inositol-P-Man 

Ara, Gal 

CPPS Hexuronic acid-

inositol 

  

Triticum 

aestivum 

Seed (Inositol-P, 

GlcN, Ara,Gal, 

Man) 

-   

Asteraceae Helianthus 

annus 

Seed (Inositol-P, 

GlcN, Ara,Gal, 

Man) 

-   

Carthamus 

tinctorius 

Seed CPPS Hexuronic acid-

inositol 

Ara, Gal, Fuc, 

Man 

Solanaceae Nicotiana 

tabacum 

leaf PSL-I 

 

 

N-acetylglucosamine 

(α1-4)-glucuoronic 

acid (α1-2)-myo-

inositol-1-O-P 

[Ara3Gal2] 

[Ara2Gal2] 

[Ara4Gal2] 

PSL-II Glucosamine-

glucuronic acid-

inositol-P 

[Ara3Gal] 

[Ara2or3Gal2] 

 

[Ara2Gal2Man] 

GPC N-

acetylglucosamine(α1-

4)-glucuronic acid(α1-

2)-myo-inositol-1-O-P 

 

           Man 

 Ara, Gal 

Table 2: The names of core head groups and their structures; PGL, phytoglycolipid; CPPS, ceramide 

phosphate polysaccharide; Ara, arabinose; Fuc, fucose; Gal, galactose; Man, mannose; CPPS, ceramide 

phosphate polysaccharide; GPC, glycophosphoceramide; PGL, phytoglycolipid; PSL, phosphosphingolipid.  

Adapted from Pata et. al (2009)33. 
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type56. GIPCs are not present in mammals but have been found in protozoa, plants, fungi, 

and nematodes58.   

A variant of GIPC are the glycosylphosphatidylinositol (GPI)-anchors. GPI-anchors in 

plants are linked to C-terminus of a protein via an ethanolamine phosphate linkage and a 

conserved oligosaccharide core to an inositol phospholipid moiety59. Over 200 GPI-

anchored proteins have been predicted to exist in the A. thaliana genome with functions 

including signaling, adhesion, response to stress, and cell-wall remodeling60. 

1.3.2.2 Glycosylceramides 
 
 

Glycosylceramide is a ubiquitous sphingolipid found in animals, plants and fungi (but not 

S. cerevisiae). Glycosylceramide is often referred to as cerebroside due to its structural 

similarity with a compound found in the brain known as galactosylceramide47.  GlcCers 

are a component of the plasma membrane and the tonoplast of plant cells, accounting for 

about 5-30 mol % of total lipid in the plasma membrane61, 62 and  constitute 34% of total 

sphingolipid content in plants37. Their abundance in the plant plasma and vacuolar 

membranes, combined with the ease of extraction and purification, has led to extensive 

structural characterization63. 

 

Composed of a β-glucose or β-mannose head group, GlcCers consist of α hydroxylated 

short or long fatty acid chains attached at the C1 position to a hexose sugar64. The exact 

nature of GlcCers structure varies for different plant species. GlcCers possessing 

VLCFAs are found to be predominant in the Poaceae family with a wide range of LCB 

variations; lower percentages of d18, d18:1Δ4E, d18:1Δ8E and d18:1Δ8Z LCBs are 

observed in leaf and endosperm tissues, with much higher percentages of LCBs found to 

be d18:2Δ4EΔ8E, d18:2Δ4EΔ8Z, t18:1Δ8E, t18:1Δ8E and t18:1Δ8Z64, 65. In the Brassicaceae 
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family, saturated α hydroxylated VLCFAs content in Arabidopsis are found to around 

5%, with >80% of GlcCers possessing α hydroxylated short fatty acids66. 

 

GlcCers identified in Oryza sativa endosperm and seed bran were found to be enriched 

with the cis and trans isomers of 8-sphingenine and 4,8-sphingadienine with C16-

C20 saturated hydroxyl fatty acids67, contrasted with GlcCers identified in tobacco leaves 

which were  enriched in trihydroxy long-chain bases (cis (Z) and trans (E) isomers of 4-

hydroxy-8-sphingenine) with very long-chain (C20- C26) saturated52.  The predominant 

fatty acid in both the leave and seed tissue in plants was found to be 2-hydroxypalmitic 

acid (h16:0)34, 68. Monoenoic hydroxy fatty acids, such as 2-hydroxynervonic acid (h24:1) 

are prevalent in Arabidopsis GlcCers69 and cold hardy cereals. The variation of the fatty 

acid moiety in GlcCers has been implicated in chilling tolerances of plants; 

glycosylceramides containing α-OH monounsaturated VLCFAs have been detected 

mainly in chilling-resistant plants66 and in chilling-sensitive plants, the predominant 

GlcCers are α-OH FA70. 

1.3.2.3 Ceramide 
 

Ceramides are the third class of plant sphingolipids and are formed by the N-acylation of 

an LCB and a FA. These compounds are bioactive and are known to induce apoptosis in 

animals and programmed cell death in plants71. In comparison to GIPCs and 

glycosylceramides, plant ceramides are less documented in literature47; this can be 

attributed to their lower abundance in plant membranes making up 4-10% of plant 

glycosylceramides content and 1.7% of total sphingolipid content in Arabidopsis37, 72.  

Ceramide content in Arabidopsis is estimated to be 2-7 mol% and in rice leaf stems to be 

6% 37,66. The main FA moieties of plant ceramides are usually α hydroxylated VLCFAs 

especially in Poaceae, although high proportions of non-hydroxyl FAs have also been 
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found in rice and potato67, 73.  The predominant LCB in plant ceramides are the 

trihydroxy-LCBs; the main LCB in Oryza sativa and Arabidopsis thaliana is t18:037. 

1.3.2.4 LCB 
 

The fourth class of plant sphingolipids is the free LCB.  LCBs have been shown to be 

mediators in cellular responses; a study conducted by Dharmawardhane et al. showed 

that  free LCBs such as 4-sphingenine (d18:1Δ4E), sphinganine (d18:0) and 4-

hydroxysphinganine (t18:0) modulated redox in oat mesophyll cells74. These sphingoid 

bases are known to be the most active inhibitors of protein kinase C in animal cells, inhibit 

electron transport in the transplasmalemma of the mesophyll cells in the dark, and 

stimulate redox transport in light74.  Free LCBs such as 4-sphingenine (d18:1Δ4E) regulate 

the vacuolar pyrophosphatase (V-PPase) proton pump in Chenopodium rubrum in order 

to maintain vacuolar and cellular acidity75. Work done by Brodersen et al. has shown that 

the accumulation of sphingosine in accelerated-cell-death11 Arabidopsis mutant 

(acd11), a sphingosine transfer protein, results in cell death characteristic of animal 

apoptosis76 with an elevation in ceramide-1-phosphate and phytoceramide levels77.  

Interestingly, the relative proportions of E and Z isomers of 4-hydroxy-8-sphingenines 

was found to contribute to freezing tolerance, with higher levels of the Z isomers found 

in twelve different species of chilling resistant plants70.  

1.4 Sphingolipid biosynthetic pathway  
 
 

Sphingolipids can be formed via two pathways: the de novo pathway, starting with the 

condensation of a serine with an acyl-CoA and the salvage pathway whereby ceramide 

and LCBs are released from more complex sphingolipids, followed by channelling of the 

metabolites formed into the synthetic pathway27. 
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1.4.1 The de novo pathway 
 
 

The core biosynthetic pathway of sphingolipid synthesis in plants and animals (Figure 1-

9) is complex, involving five different enzymes and with synthesis occurring in the 

endoplasmic reticulum (ER) and the Golgi apparatus. The first four enzymes in the 

biosynthetic pathway are located in the ER, whilst enzyme involved in the formation of 

complex sphingolipids are located in the Golgi apparatus, with the active site of most 

facing the cytoplasm, but some facing the lumen implying significant transbilayer and 

interbilayer movement27 involving vesicular and non-vesicular trafficking78. To date the 

known mode of transport between the ER and Golgi involves the cytoplasmic ceramide 

transport protein (CERT); this protein has a putative domain for catalysing lipid transfer, 

which enables it to specifically interact with ceramide in membranes where other complex 

sphingolipids are present79,80. 

 

Sphingolipid synthesis in plants and animals begins with the enzyme serine palmitoyl 

transferase (SPT), which was first identified in yeast and belonging to a family of 

pyridoxal 5’-phosphate-dependent a-oxoamine synthases.  SPT converts serine and fatty 

acyl CoA into 3-ketosphinganine, CoA and CO2
81.  Reduction of 3-ketosphinganine to 

dihydrosphingosine is accomplished by 3-ketosphinganine reductase (3KSR) using 

nicotinamide adenine dinucleotide phosphate (NADPH). After this reaction, there is a 

divergence in the sphingolipid biosynthetic pathway, whereby in mammals acylation of 

dihydrosphingosine by dihydroceramide synthase yields dihydroceramide27, whereas in 

plants, dihydrosphingosine is hydroxylated to form phytosphingosine.  Formation of 

varying acyl chain lengths results from the different substrate preference of 

dihydroceramide synthase isoforms. 
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In mammals it has been found that there are six genes that encode ceramide synthase, 

known as the longevity-assurance gene (LAG1-6) 82,83 which are located in the 

Figure 1-9: The biosynthetic pathway for the formation of IPC in plants and sphingomyelin in animals. 
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endoplasmic reticulum. The ceramide synthase isoforms show specific substrate 

preference in terms of the fatty acyl CoAs chain length thereby generating distinct 

ceramide acyl chains84. In plants, three ceramide synthase homologues termed LOH 

(LAG one homologue) have been identified, and like the mammalian orthologues show 

specific substrate preference, with LOH1 and 3 showing substrate specificity for 

trihydroxylated LCBs that have 20-26 carbon chains and LOH2 showing substrate 

specificity for LCB that are 16 carbon chain long and has a preference for dihydroxylated 

LCBs85. In animals insertion of a cis-4,5 double bond is achieved by dihydroceramide 

desaturase (DHCD)  thereby generating ceramide, which is a precursor of many complex 

sphingolipids found in mammals, yeasts and plants36. In animals, ceramide is converted 

to sphingomyelin in the Golgi by sphingomyelin synthase (SMS), which involves transfer 

of the phosphorylcholine head group from phosphatidylcholine to ceramide yielding 

sphingomyelin and diacylglycerol27. 

 

Also, glucosylceramide synthase (GCS) converts ceramide to glycosylceramide, a 

precursor for the formation of complex GSLs; initial addition of glucose to ceramide  

occurs in the cytoplasmic side of the cis-Golgi and additional extension of the sugar chain 

occurs in the Golgi lumen as the GSLs are transported from the cis to the trans Golgi86,87. 

IPC, which has not been identified in animals, is the precursor for the generation of 

GPICs, which are the major sphingolipids in plants, and is generated by the transfer of 

phosphoinositol to phytoceramide by IPCS.   

 

1.4.2 Salvage pathway 
 
 

To date the salvage pathway of sphingolipid synthesis has only been studied in mammals 

and is yet to be investigated in plants and yeast. The salvage pathway of long-chain 

sphingoid bases leading to the regeneration of sphingolipids has been estimated to 
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contribute 50% to 90% of sphingolipid biosynthesis88. The degradation of sphingolipids 

occurs in the acidic subcellular compartments; the late endosomes and the lysosomes89.  

 

GSL degradation by exohydrolases results in the release of monosaccharide units from 

the end of the oligosaccharide chains thereby generating ceramide89. Experiments 

conducted using astrocytes showed that the major sphingolipid in mammals, 

sphingomyelin, is converted to ceramide and phosphocholine  by acid sphingomyelinase 

(SMase) which can be stimulated in response to oxidative stress and bioactive compounds 

such as tumour necrosis factor and γ-interferon20, 90. Hydrolysis of ceramide by acid 

ceramidase forms sphingosine and free fatty acids in the lysosome20; once released from 

the lysosome, sphingosine can re-enter the de novo pathway for the regeneration of 

ceramide and sphingosine-1-phosphate (Figure 1.10), whilst long chain sphingoid bases 

are recycled in to the synthetic pathway by ceramide synthases.  

 

 

 

 

 

 

 
 
 
 

 

 

 

1.5 Programmed cell death in plants 
 
 

Programmed cell death (PCD) refers to the organised destruction of unwanted, infected 

and damaged cells91. This process is a genetically directed mechanism in response to 

Figure 1-10: Schematic of the salvage pathway for the degradation of sphingolipids in animals. 
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pathogen or abiotic stress. In addition it has a role in the maintenance of homeostasis in 

normal development such as senescence, vascular system formation and specification of 

unisexual floral organs91. The process known as apoptosis in animals, shares 

morphological characteristics with plant PCD such as condensation of nuclei, 

fragmentation of nuclear DNA, and cell shrinkage92. 

 

In plants, the biosynthesis of sphingolipids has been linked to PCD. As mentioned earlier, 

ceramide induces apoptosis/programmed cell death in animals/plants72. The first 

documented evidence of ceramide involvement in PCD was by Liang et al. which showed 

that in  Arabidopsis the ceramide kinase mutant known as accelerated cell death 5 (acd5) 

accumulates lipid substrates similar to those utilized by wild type ceramide kinase,  and 

exhibited disease like symptoms and apoptotic-like cell death during pathogen attack93. 

The mutant protein ceramidase activity was demonstrated in an assay which showed that 

the proteins had high specificity for synthetic C6 and C8 ceramides. The accumulation of 

ceramide in acd5 mutant cells resulted in apoptotic like features which had regions of 

condensed chromatin in the nuclei, possessing large numbers of DNA strand breaks 

generated by endonucleolytic cleavage93. The role of ceramide as an inducer of apoptosis 

was validated by treatment of wild type protoplasts with C2 ceramide which induced 

nuclear fragmentation characteristic of apoptotic cells93. Interestingly, phosphorylated 

derivatives of ceramide were able to partially block plant PCD indicating the role of 

phosphorylated ceramides in modulating cell death in plants93.  

In tobacco (Nicotiana tabacum) , cell death was found to be induced by palmitoleic acid 

(16:1), ceramide, and potassium cyanide; exhibiting features associated with PCD, 

including cell volume decrease, loss of membrane integrity, DNA damage, nuclear and 

plastid disorganization, and chromatin condensation94. Cell volume decrease was found 

to be caused by loss of intracellular K+ channels; inhibition of K+ channel with blockers 
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such as Ba2+ and quinine have been found to prevent cell shrinkage and the subsequent 

biochemical events leading to PCD94.  

Research carried out by Wang et al. identified the Arabidopsis functional homolog of 

yeast and protozoan IPCS which enhanced RPW8 hypersensitive-like cell death95. RPW8 

is a resistance gene which confers broad-spectrum resistance to powdery mildew in 

Arabidopsis96. RPW8 triggers the hypersensitive response (HR) to restrict powdery 

mildew infection via the salicylic acid–dependent signaling pathway; loss of function of 

AtIPCS results in salicylic acid accumulation, RPW8-dependent spontaneous HR-like cell 

death (SHL) in leaf tissues, reduction in plant stature95. This study showed that T-DNA 

insertional mutants of AtIPCS in  plants unchallenged with powdery mildew, had an 

observable phenotype of chlorotic lesions and sporadic cell death, thereby revealing the 

role of IPCS as a negative regulator of PCD in plants95. 

 

1.6 IPC Synthase 
 
 

IPCS belongs to a superfamily called the ‘Sphingolipid Synthases’ which includes animal 

sphingomyelin synthase (SMS)97, protozoan IPCS98, fungal IPCS99 and plant IPCS100. 

Mutants S. cerevisiae strains defective in IPCS activity were found to accumulate 

ceramide which was accompanied by cell death, showing that IPCS is necessary for 

survival101; expression of a gene encoding AUR1 protein in these mutants was found to 

complement for the activity of IPCS101. Mutations in AUR1 have also been found to confer 

resistance to the antifungal IPCS inhibitor Aureobasidin A (AbA)101, 102, showing that 

AUR1 is fungal IPCS.   

The protozoan IPCS enzyme was identified in kinetoplastid Leishmania major by Denny 

et al. in 2006 after screening the genome database for the two conserved active site motifs 

(CGDX3SGHT and HYTXDVX3YX6FX2YH) shared by lipid phosphate phosphatase, 
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SMS and AUR198. The conserved motifs contain the HHD catalytic triad (underlined and 

bold) involved in the proposed double displacement mechanism of IPCS. This protein 

was shown to rescue an AUR1 yeast mutant98 and subsequent analyses of the genomes of 

related kinetoplastids, Trypanosoma brucei and Trypanosoma cruzi genome, revealed 

four IPCS orthologues in T. brucei and two in T. cruzi103. 

Plant IPCS was first identified in Arabidopsis thaliana by Wang et al.95 and the three 

encoded isoforms AtIPCS1-3 were shown to be AbA resistant AUR1p orthologues 

differentially expressed in various tissues104. Across species, AtIPCS1-3 and LmjIPCS 

showed the highest sequence identity (∼30 to 45%), especially in the conserved domains, 

D3 and D4 104. A Basic Local Alignment Search Tool (BLAST) search of the Oryza sativa 

(rice) genome using the AtIPCS1 protein sequence revealed three orthologues designated 

OsIPCS1-3.  

 

1.6.1 IPCS topology 
 
 

The first proposed model for IPCS topology was by Denny et al. based on based on the 

single sequence analysis of LmjIPCS98. This model proposed that IPCS consists of seven 

transmembrane helices with the catalytic site facing the lumen of the Golgi apparatus and 

lacked the conserved domain D2 present in mammals; in addition, there is an extra helix 

between TM3 and TM4 consisting of 11 residues with the inversion of TM1-3 which 

preserves the orientation of the active. Another model has been proposed by Bangs et 

al.105 based on the alignment of single sequences from three kinetoplastids species, 

suggests the presence of the D2 domain which is conserved in animal SM synthase97, and 

discounts the existence of the extra helix (Figure 1-11). There has been no experimental 

evidence for either model, although the latter model is more in keeping with data from 

mammalian systems97 
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1.6.2 Catalytic mechanism 
 
 

The double displacement model is based on lipid phosphate phosphatase (LPP) hydrolysis 

of lipid phosphates.  The domains designated D3 and D4 are similar to the C2 and C3 

domains of LPPs; both enzymes have a catalytic triad consisting of two histidine residues 

and an aspartate residue97. Hence it has been proposed that IPCS catalysis follows a 

similar mechanism to the LLPs which involve the activation of one of the histidine by 

aspartate via a charge-relay system resulting in the deprotonation of the histidine, the 

formation of an inositol phosphoryl histidine intermediate and the release of diacyl 

glycerol (DAG)99.  

Heiddler and Radding proposed an IPCS mechanism based on the catalytic model of lipid 

phosphatases, whereby ceramide C1-hydroxyl nucleophilicity is increased through 

hydrogen bonding with the histidine in D3, and the inositol phosphoryl histidine 

intermediate is  protected from hydrolysis by the increased hydrophobicity of the catalytic 

site99.  This sets up the conditions required for the nucleophilic attack on the inositol 

phosphoryl histidine intermediate by the C1-hydroxyl of ceramide leading to the transfer 

of inositol phosphate to the C1 of ceramide. Heiddler and Radding also postulate that the 

Figure 1-11: (A)Denny et al. model of L. major consisting of seven transmembrane helices and lacking 

D2 domain (B) Bang et al. model consisting of six helices and D2 domain. 
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role of domains D1 and D2 might be able to bind and stabilize ceramide, for a favourable 

positioning of the C1-hydroxyl which facilitates the transfer of inositol phosphate at the 

surface of the membrane 99.   

The catalytic phosphoinositol transfer has been proposed based on a catalytic mechanism 

of LPP activity by Sigal et al., which involves the HHD catalytic triad, arginine, lysine, 

serine and glycine residues that stabilize the transition state106. Across different 

organisms, the LPP family of phosphatase have been found to consist of three conserved 

motifs in which one motif has the nucleophilic histidine in close proximity to an arginine 

residue107. This arginine residue has been proposed to be Arg262 in LmjIPCS and found 

to be a conserved residue in all the identified orthologues of IPCs in L. major, 

Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes108. The amino acid 

residue Arg262 is hypothesised to be involved in the stabilisation of the transition state, 

with the protonation of the arginine group speculated to be affected by the protonation of 

the amino group of inhibitory sphingosines, resulting in inefficient stabilisation of the 

transition state and inhibition of IPCS activity108.  

 

 

 

 

 

 

 

 
 

Figure 1-12: (A) Proposed mechanism of action of phosphoryl transferases (B) Proposed mechanism of action 

of LmjIPCS, adapted from Sigal et al.  

(A) (B) 
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1.7 Targeting IPCS  
 
 

As mentioned earlier, sphingolipids play an essential role in maintaining the integrity of 

the plasma membrane and are also involved in a plethora of biological pathways including 

signal transduction, cellular differentiation, and embryogenesis, as a result they are 

important for survival in organisms. The divergence in the sphingolipid biosynthetic 

pathway in animals, plants, fungi and protozoa post ceramide can be exploited in the 

development of herbicides, antifungal, and antiprotozoal drugs. (Figure 1-14).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-14: Schematic of the sphingolipid biosynthetic pathway: Fungi and higher plants IPCS converts 

phytoceramide into inositol phosphoryl ceramide, whilst kinetoplastids and mammals SMS converts 

ceramide to sphingomyelin (B) Inhibition of IPCS results in a decrease in mitogenic diacylglycerol, an 

accumulation of pro-apoptotic phytoceramide and a decrease in IPC, the precursor of the major plant 

sphingolipid GIPC. 
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The absence of sphingomyelin synthase in plants and the difference in enzyme substrate, 

i.e. phytoceramide and phosphatidylinositol for plant IPCS and ceramide and 

phosphatidylcholine for SMS, create the opportunity for the development of herbicides 

that specifically target plant enzyme with minimal toxicity to animals. Work done by Bi 

et al. showed that the loss of ceramide kinase results in ceramide accumulation and the 

formation of necrotic lesions associated with PCD, indicating that the accumulation of 

ceramide could trigger PCD109. Similarly, inhibition of IPCS should result in the 

accumulation of the pro-apoptotic phytoceramide, and a decrease in the turnover of the 

mitogenic compound diacylglycerol110 (Figure 1-15) thereby initiating PCD. 

1.7.1 Anti-protozoal and anti-fungal applications  
 
 

The most common human diseases caused by kinetoplastids protozoa include human 

African trypanosomiasis (HAT), caused by Trypanosoma brucei; Chagas disease caused 

by infection with Trypanosoma cruzi, and leishmaniasis caused by  Leishmania 

species111. Half a billion people are at risk of contracting these diseases, and it is estimated 

that more than 20 million people are infected with the pathogens that cause them, with 

more than 100,000 deaths recorded per year111. Current treatment for these diseases 

involves the use of drugs which are toxic with variable efficacy, difficult administration 

Figure 1-15: Inhibition of IPCS results in a decrease in mitogenic diacylglycerol, an accumulation of pro-

apoptotic phytoceramide and a decrease in IPC, the precursor of the major plant sphingolipid GIPC. 
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and lengthy periods of treatment112. Research is currently being carried out to develop 

drugs against these diseases by the design of IPCS inhibitors.  

The focus on IPCS inhibition has also been directed towards the development of anti-

fungal drugs targeting phytopathogenic fungi which cause diseases in plants, animals and 

humans113. 

 

Saprophytic fungi from the Aspergillus genus are found worldwide in soil, food products, 

and decomposing matter114. However, the two species Aspergillus flavus and Aspergillus 

parasiticus are found to produce potent toxins (aflatoxins) on certain crops including 

oilseeds, corn, cottonseed and peanuts, which have been linked to death in humans and 

animals; in humans, inhaled aflatoxin B1 can cause inflammation and irreversible 

pulmonary interstitial fibrosis115.  

 

Four species, A. fumigatus, A. flavus, A. terreus and A. niger, are found to be the causative 

agents of fatal opportunistic infections such as invasive pulmonary aspergillosis115. 

Agricultural workers in developing countries whose eyes are injured with subsequent 

contamination by organic matter develop corneal infections by Aspergillus species116. 

Other phytopathgenic fungi species are part of the genus: Fusariu, Alternaria, 

Curvularia, Cladosporium and Alternaria; these produce toxins that affect humans and 

plant and create economic losses in agriculture and medicine.  

 

There are a limited number of antifungals currently available for the treatment of life-

threatening fungal infections117. These antifungal agents show some limitations, such as 

the significant nephrotoxicity of amphotericin B118 and emerging resistance to the 

azoles119. The development of new antifungal agents is needed in medicine and 

agriculture, so the inhibition of essential fungal IPCS, which differs from the mammalian 

SMS, is a promising approach.  
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1.7.2 Herbicide application 
 
 

A close look at herbicide weed resistance worldwide revealed that  Lolium rigidum 

remains the world’s most herbicide-resistant weed, with resistance to 11 sites of action 

and 95% of populations resistant to at least two herbicide modes of action (especially 

ACCase and ALS inhibition)120. L. rigidum affects 12 countries11, especially southern 

Australia, and is found in crop fields growing wheat, barley, and oilseed rape. Other 

weeds that have a huge effect on agronomically important crops worldwide are the 

drought tolerant weed Amaranthus palmeri which affects cotton yields in north America,  

the weed Avena fatua which competes with wheat121,  and Echinochloa crus-galli a 

noxious weed affecting a wide variety of crops including wheat, rice, and potatoes122 .  

Selectivity of herbicides for weeds over crops have been achieved in most cases because 

of differences in herbicide uptake, translocation and degradation. These differences have 

been found in some cases to be a result of structural differences between monocot and 

dicot plants. The classification of plants based on the monocot/dicot system is based on 

anatomical and developmental differences encompassing germination, root systems, leaf, 

stem, and vascular bundle architecture. The names are derived from the number of 

embryonic leaves found in the seed which is termed the cotyledon; monocots have one 

and dicots have two cotyledons. Difference in the germination process of seeds between 

the two classes refers to the location of the cotyledon below or above ground during plant 

development; monocots have the cotyledon below the ground whilst dicots have the 

cotyledon brought above the ground due to the elongation of hypocotyl123. A detailed 

look at the structural differences show that monocots have a fibrous root system which is 

shallow in depth compared to the tap root system found in dicots which possess lateral 

roots that branch out into tertiary roots, providing depth in growth124. In addition, the 

vascular architecture of the stem in dicots is arranged in the shape of a ring and the veins 
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of the leaves are reticulate125, whilst in monocots the vascular bundles of the stem are 

highly complex126 and the leaves have veins that are parallel in arrangement.  

Discovering new herbicide modes of action is essential in the management of herbicide 

resistance worldwide. The study of IPCS as a new herbicide is promising because of the 

divergence in the latter stages of the sphingolipid biosynthesis in animals and plants, 

combined with the lack of IPCS in animals which would allow for the design of 

inhibitors/herbicides that should have no detrimental effect on animals and humans. The 

classification of plants based on the dicotyledon and monocotyledon system can be 

exploited to create IPCS inhibitors that would differentially inhibit monocotyledon weeds 

over dicotyledon crops or dicotyledon weeds over monocotyledon plants. For example it 

is well known that auxinic herbicides kill dicot weeds without killing acres of monocot 

crops such as corn, wheat, and barley127. 

 

1.7.3 Inhibitors of IPCS 
 
 

To date there are five known potent inhibitors of fungal IPCS (Figure 1-16): AbA102, 

khafrefungin128, rustimicin129, pleofungin A130 and haplofungin A131 , with IC50 values of 

0.2 nM, 7nM, 20 nM, 40 µM and 1.5 µM against Saccharomyces cerevisiae.   

The T. brucei IPCS which synthesises sphingomyelin and inositol phosphoryl ceramide 

is inhibited by AbA with an IC50 of 0.42 nM132. In contrast the L. major IPCS enzyme is 

relatively insensitive to AbA. T. cruzi  IPC has been shown to be insensitive to rustmicin 

and Aba133, although IPC formation was indicated to be inhibited by AbA suggesting the 

compound is active against a different enzyme in the sphingolipid biosynthetic 

pathway133.  

Differential selectivity between dicotyledon species has been observed between 

Arabidopsis and Phaseolus. All Arabidopsis IPCS are AbA insensitive103, whereas in 
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Phaseolus vulgaris, AbA and rustmicin are found to be potent inhibitors of IPCS 

exhibiting IC50 values of 0.4–0.8 and 16–20 nM respectively100. The screening of a library 

of compounds against L. major IPCS revealed a class of inhibitors which possess a 

structural motif consisting of an electronegatively-substituted biaryl unit separated from 

a structural amine by an alkyl chain134, such as clemastine (Figure 1-17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1-16: The structures of potent inhibitors of IPCS. 

Myriocin 

Figure 1-17: Structure of clemastine. 
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1.8 Project aims 
 
 

The aim of this project was to identify and characterize IPCS orthologues from the 

agronomically important cereal crop, rice (Oryza sativa), and competing weeds, field 

poppy (Papaver rhoeas), a major persistent weed of cereal crops. However, due to lack 

of access to a weed genome to search for IPCS in Papaver rhoeas genome, Arabidopsis 

thaliana has been utilised as a model dicot weed in place of Papaver rhoeas. Mutant S. 

cerevisiae strains expressing functional plant IPCSs were formatted into an assay for the 

high throughput screening for plant IPCS inhibitors, that show selectivity for the monocot 

crop over the dicot weed (and vice versa). In tandem, transgenic lines of Arabidopsis with 

varying expression of IPCS were created and RNASeq carried out to identify 

genes/biological pathways that were altered in response to changes in IPCS expression; 

this gave an insight into the global function of IPCS in plants. 
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CHAPTER 2 
CONSTRUCTION OF PLANT IPCS COMPLEMENTED YEAST STRAINS AND 

ASSAY VALIDATION 
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2.1 Chapter synopsis  
 
 

In this chapter, bioinformatics analysis of the plant IPCS was carried out. Phylogenetic 

analyses of IPCS revealed a divide in clustering between monocots and dicots. Conserved 

domains previously identified in animal sphingomyelin synthases and protozoan IPCSs 

were also identified among the plant IPCSs. Analyses of the promoter region of the three 

IPCS isoforms in Arabidopsis thaliana (AtIPCS1-3) and Oryza sativa (OsIPCS1-3) were 

carried out to identify binding sites of transcription factors. The three IPCS isoforms in 

A. thaliana and O. sativa were cloned into an expression vector in Saccharomyces 

cerevisiae and their activities characterized. These yeast strains were formatted into an 

assay and the assay conditions were validated to screen for inhibitors of plant IPCSs.   
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2.2 Bioinformatics analysis of plant IPCS  
 

 

Identification of inhibitors that show differential selectivity for AtIPCSs over OsIPCSs 

(vice versa) is possible if there are structural differences between the orthologues which 

arise from differences in the amino acid sequence. To find out these differences, structural 

analysis of AtIPCS1-3 and OsIPCS1-3 was carried out.  

The identification of functional IPCS orthologues in Oryza sativa was achieved by a 

BLAST search of phytozyme database using the coding sequence of AtIPCS1 which 

yielded three homologues. Analyses of the coding sequence for the three isoforms found 

in Arabidopsis thaliana and Oryza sativa, showed a difference in the number and length 

of exons and introns (Figure 2-1). AtIPCS1 possesses 11 exons and 10 introns, whilst 

AtIPCS2 has 12 exons and 11 introns and AtIPCS3 possesses 11 exons and 10 introns. 

The analogous orthologues in O. sativa are approximately two times longer and are 

composed of 12 exons and 11 introns. 

 

From work done by Mina et al. looking at the differential expression of the three 

homologues of IPCS in A. thaliana, it is known that the second orthologue of IPCS is the 

most highly expressed by a log 2-fold difference per µg RNA extracted1. It is highly 

expressed in stem, flower and siliques and to an even greater extent (one log fold increase 

per µg of RNA extracted) in roots, cauline leaf, and rosette leaf2, pointing to a key role in  

these tissues. 

Figure 2-1: Schematic representation of exon and intron organisation of IPCS in O. sativa and A. thaliana; 

black line and yellow boxes indicates introns and exon respectively, with the blue boxes representing the 

5’ and 3’ UTRs. 
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2.2.1 Phylogenetic analysis 
 

With IPCS2 begin the most highly expressed isoform in A. thaliana, a phylogenetic 

analyses of the evolutionary distance of this particular isoform in different plant species, 

protozoa and fungi was carried out to gain an insight into how closely related the 

orthologues were to each other. Unsurprisingly, the result shows that the plant IPCS are 

clustered together and are independent of the protozoan and fungi IPCS (Figure 2-2). 

Interestingly, the clustering of IPCS2 in plants predominantly shows a divide between 

monocots and dicots, which is promising in the aim to identify inhibitors that show 

differential selectivity for either dicots over monocots or monocots over dicots.  

 

An examination of the phylogenetic relationship between the three isoforms in A. thaliana 

and O. sativa show that IPCS1 and IPCS2 in both plants are more closely related 

compared to each other than IPCS3. Access was given by Bayer Crop Science to the 

genome of the noxius weed Echinochloa crus-galli, known to cost billions of dollars of 

losses to rice production, but the sequence was not complete and attempts to reconstruct 

the sequence by primer walking failed. However, analyses were carried out to see how 

closely related it is to the IPCS found in O. sativa and A. thaliana (Figure 2-3). From the 

phylogenetic tree it was clear that the E. crus-galli IPCS is distantly related and form a 

cluster separate from AtIPCS1-3, OsIPCS1 and 2. Interestingly, OsIPCS3 is placed on a 

separate evolutionary branch from OsIPCS1 and 2, which indicates that it is very different 

from these two isoforms and is shown to be more closely related to EchPCS1. The reason 

for this is not immediately clear from differences in the amino acid sequence between 

OsIPCS1, 2 and 3. However, the evolutionary distance between O. sativa isoforms and 

EchIPCS1 is particularly promising, as it indicated that in the search for new herbicide 

mode of action, selective IPCS inhibitors targeting E. crus-galli over O. sativa IPCS could 

potentially be developed.   
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Figure 2-2: Phylogenetic tree generated from the amino acid sequence of IPCS from plant, protozoa and 

fungi. The evolutionary distances were calculated using the neighbourhood joining method and analysed in 

MEGA7; drawn to scale with branch lengths in the same units as those of the evolutionary distances used to 

construct the phylogenetic tree in units of the number of amino acid substitution per site.  

Figure 2-3: Phylogenetic tree constructed using IPCS amino acid sequence from A. thaliana, O. sativa and E. 

crus-galli. The evolutionary distances were calculated using the neighbourhood joining method and analysed 

in MEGA7; drawn to scale, with branch lengths in the same units as those of the evolutionary distances used 

to construct the phylogenetic tree. The unit of measurement quantifies the number of amino acid substitutions 

per site. 
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2.2.2 Prediction of transmembrane topology 
 
 

Using the  transmembrane  hidden Markov model3 (TMHMH) server, the number, 

location of the transmembrane regions and protein topology were identified for  

OsIPCS1-3, AtPCS1-3 and EchIPCS. It was found that AtIPCS1, AtIPCS2, AtIPCS3 and 

OsIPCS3 were predicted to have five transmembrane regions as opposed to six, because 

the probability of the first transmembrane region was below 0.5 so was not significant 

enough to use as a reliable indication of its presence (Figure 2-4). EchIPCS was predicted 

to have three transmembrane regions because of the low probability of the other three 

transmembrane regions (data not shown). However, OsIPCS1 and OsIPCS2 were both 

predicted to have six transmembrane regions with a probability of the prediction being 

between 0.8 and 1 (Figure 2-3). The defined transmembrane regions are also in agreement 

with the predicted transmembrane region and topology carried out using predictprotein4 

server, with an inside-inside orientation of the N and C terminal which is in agreement 

with Bang’s model and the lumenal topology of the active site in the Golgi5. 

 

From the structural analysis, it seems that there is a structural difference between the plant 

IPCS from A. thaliana, O. sativa and E. crus- gali, with AtIPCS1-3 and OsIPCS3 

predicted to have five transmembranes and an extracellular domain, whilst OsIPCS1 and 

2 have six transmembrane regions. The differences in the structural predictions 

particularly in regard to AtIPCS2 and OsIPCS2 arise due to the presence of hydrophobic 

resides such as phenylalanine (Phe16) and tyrosine (Tyr22 and Tyr33) at the N-terminus of 

AtIPCS2 in place of valine (Val16 and Val22) and leucine (Leu33) at the N-terminus of 

OsIPCS2. Additional variation in amino acid sequence at the N-terminus include the 

presence of serine (Ser9), cysteine (Cys17) and asparagine Asn30 (AtIPCS2) in place of 

alanine (Ala9), tyrosine (Tyr17) and lysine (Lys30) respectively (OsIPCS2). These 

differences affect topology prediction using TMHHM because the prediction is based on 



 

 

60 | P a g e  
 

the positive-inside rule with positively charged residues positioned in the cytosol and 

hydrophobic residues located in the transmembrane region. For AtIPCS2 the existence of 

hydrophobic residues makes it difficult for the THMMH programme to ascribe the 

location of the N-terminus and subsequently affects the topology prediction of the first 

transmembrane. Topology prediction using MEMSAT3 a program that relies on a neural 

network to determine the location of amino acid residues in a protein structure6. Utilising 

MEMSAT3, EchIPCS, AtIPCS2 and OsIPCS2 (data not shown) were predicted to be six 

transmembrane spanning proteins, however, with no experimental evidence of IPCS 

structure available at the moment, there is no way of knowing if the variation in amino 

acid sequence results in a difference in structure between the orthologues. If the structural 

differences predicted by TMHMM are correct, then the possibility of the identification of 

selective inhibitors is much more likely.  

  

Using the structural prediction of OsIPCS1 and 2 which is in agreement with Bang’s 

model7, and the identified conserved domains identified in yeast5, and human 

sphingomyelin synthase7, the transmembrane regions, domains, and catalytic triad (His, 

His and Asp) were identified from the multiple sequence alignment of plant IPCSs amino 

acid coding sequence (Figure 2-4).  

 

From the alignment, the plant IPCSs are shown to be have highly conserved regions at 

the amino acid level in the transmembrane regions and domains, however, it is clear that 

at the N-terminal, there is variation at the amino acid level with fewer amino acids 

observed to be identical but do share similar chemical properties. This difference could 

account for the observed difference in the structural prediction. EchIPCS does not align 

with the other IPCSs, and the catalytic triad is unidentified upon alignment, which is 

probably more likely to be due to the sequence being incomplete, than to a real structural 

difference at the active site.   
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Figure 2-3: TMHMM posterior probabilities for (A) OsIPCS2 and (B) AtIPCS2 showing the six 

predicted transmembranes and their topologies. 
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EchIPCS1    1 MSPFYLARSASKLVRRITSEVSVELKILSEKWRLLLAGLVFQYIHGLAARGVHYLHRPGP 

AtIPCS3     1 -MPVYVDREAPKLWRRIYSEATLEASLLAEKWKLVLAGLVFQYIHGLAAHGVHYLHRPGP 

OsIPCS3     1 MSALYLARGASKVVRRITSETSVELKILTEKWQLLLAGLVFQYIHGLAARGVHYLHRPGP 

AtIPCS1     1 -MTLYIRREASKLWRRFCSEITTEIGLLAENWKYLLAGLLCQYIHGLAARGVHYIHRPGP 

AtIPCS2     1 -MTLYIRRESSKLWKRFCSEISTEIGLLAENWKYLLAGLICQYIHGLAAKGVHYIHRPGP 

OsIPCS1     1 -MAVYIAREATKLWRKVCAEIAVELQLLFEKWRLLLAGLVFQYIHGLAARGVHYLHRPGP 

OsIPCS2     1 -MTIYIAREASKVWRKVTTETSVELSLLREKWGLLLAGIVFQYIHGLAARGVHYLHRPGP 

 

 

   

 

EchIPCS1   61 TLQDLGFMILPELGKERGYISETLFTFIFLSFVLWTFHPFILHTKRFYTVLIWRRVLAFL 

AtIPCS3    60 TLQDAGFFILPALGQDKAFFSETVFVTIFGSFILWTFHPFVSHSKKICTVLIWCRVFVYL 

OsIPCS3    61 TLQDLGFMILPELGKERGYISETLFTFIFLSFVLWTFHPFILQTKRFYTVLIWRRVLAFL 

AtIPCS1    60 TLQDSGFFVLPELGQDKGFISETVFTCVFLSFFLWTFHPFIVKSKKIYTVLIWCRVLAFL 

AtIPCS2    60 TLQDLGFFLLPELGQERSYISETVFTSVFLSFFLWTFHPFILKTKKIYTVLIWCRVLAFL 

OsIPCS1    60 LLQDLGFMALPELGQDKGYVSESVFTFIFISFLLWSFHPFIYHSKRFYTVLLWRRVLAFL 

OsIPCS2    60 LLQDLGFMALPEFGQDKGYLSESIFASIFASFVLWTFHPFIYHSKRFYTVLIWRRVLAFL 

 

 

  

 

EchIPCS1  121 CASQFLRIITFYSTQLPGPNYHCREGSPLARLPPPKNAAEVLL-DFPKGGEY-MAVVTYF 

AtIPCS3   120 AASQSLRIITFFATQLPGPNYHCREGSKLAKIPPPKNVLEVLLINFPDGVIYGCGDLIFS 

OsIPCS3   121 CASQFLRIVTFYSTQLPGPNYHCREGSALARLPHPQNVAEVLLINFPRGVIYGCGDLIFS 

AtIPCS1   120 VACQFLRVITFYSTQLPGPNYHCREGSELARLPRPHNVLEVLLLNFPRGVIYGCGDLIFS 

AtIPCS2   120 VACQFLRVITFYSTQLPGPNYHCREGSKVSRLPWPKSALEVLEIN-PHGVMYGCGDLIFS 

OsIPCS1   120 VASQFLRIITFYSTQLPGPNYHCREGSKMATLPPPHNVLEVLLINFPRGVLFGCGDLIFS 

OsIPCS2   120 VASQVLRIITFYSTQLPGPNYHCREGSKLATLPPPNNVFEVLLINFPRGVLFGCGDLIFS 

 

  

   

 

EchIPCS1  179 HPTFSLLVFVITYQKYGSIRFVKYASNGALLLQSSLLISSRKLLQCLLLLHGIRVVIFVF 

AtIPCS3   180 SHTIFTLVFVRTYQRYGTRRWIKHLAWLMAVIQSILIIASRKHYTVDIVVAWYTVNLVMF 

OsIPCS3   181 SHMIFTIVFVVTYQKYGNIRFIKMLAWCIAIAQSLLIIASRKHYSVDVVVAWYTVNLVVF 

AtIPCS1   180 SHMIFTLVFVRTYQKYGSKRFIKLLGWVIAILQSLLIIASRKHYTVDVVVAWYTVNLVVF 

AtIPCS2   179 SHMIFTLVFVRTYQKYGTKRFIKLFGWLTAIVQSLLIIASRKHYSVDVVVAWYTVNLVVF 

OsIPCS1   180 SHMIFTLVFVRTYHKYGSKRLIKILAWLMAIIQSLLIIASRKHYSVDVVVAWYTVNLVVF 

OsIPCS2   180 SHMIFTLVFVRTYHKYGSKRFVKLLAWFMAIVQSLLIIASRKHYSVDVVVAWYTVNLVVF 

 

 

EchIPCS1  239 VCGNRNLQL-------------PIDQQD-----------------------LLYNYSPVS 

AtIPCS3   240 YVDSKLPEMAERSSGPSPTPLLPLSTKD-------------SKNKSKEDHQRLLNENNVA 

OsIPCS3   241 FVDKKLTELPDRSAG--STSVLPVSIKE-------------KDSKLKEDKTRMLNGNSVD 

AtIPCS1   240 FLDKKLPELPDRT-----TALLPVISKD----------------RTKEESHKLLNGNGVD 

AtIPCS2   239 CLDKKLPELPDRT-----AVLLPVISKD----------------RTKEENHKLLNGNGVD 

OsIPCS1   240 FIDNKLPEMPDRTNG---SSLLPVTAKDKDGRTKEELHKLEKDCKMKEEFHKLLNGNTVD 

OsIPCS2   240 FVDNKLPEMPDRTNG---VPLLPLSTREKDGRLKE-----EKDSRLKEEFHKLLNGNHGD 

 

 

EchIPCS1  263 DEGQRLT--------------------------- 

AtIPCS3   287 D-----------------DH-------------- 

OsIPCS3   286 SADWRPWTQMNGKHIENGNH-----LDTETTKT- 

AtIPCS1   279 PADRRPRAQVNGK-DSNGGH-----TDNATNGT- 

AtIPCS2   278 PADWRPRAQVNGKIDSNGVH-----TDNTMNGA- 

OsIPCS1   297 STDRRQRVQMNGKHGEDINH---TLSDATPNGT- 

OsIPCS2   292 PTDRRQRAQMNGRHDEDINHAHSTLSDAAVNGGT 

D4 

TM1 

TM2 TM3 

TM4 

D2 

D1 

D3 

TM5 TM6 

Figure 2-4: Alignment of AtIPCS1-3, OsIPCS1-3 and EchIPCS with transmembrane regions and 

conserved domains highlighted; catalytic residues are also highlighted in red. 
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2.2.3 Identification of cis-elements and transcription factors 

upstream of AtIPCS promoter 
 

To get an insight into the biological processes that IPCS might be involved in, an 

investigation of the promoter region was carried out to identify cis-regulatory elements 

to which transcription factors can bind, eliciting a response in plants. The IPCS promotor 

region (1000 bp upstream of transcription initiation) was examined using PlantPAN2 to 

identify motifs and transcription factors involved in the response to biotic and abiotic 

stress (Figure 2-5). A number of WRKY transcriptional factors binding sites were 

identified in the promoter region of AtIPCS1-3, and of particular interest was WRKY4 

which is involved in plant pathogen response, having a negative effect on plant response 

to biotrophic pathogens, and a positive effect on plant resistance to necrotrophic 

pathogens8. Also identified were WRKY18 and WRKY60, which are known to enhance 

plant sensitivity to abscisic acid in relation to root development, whilst also enhancing 

sensitivity to salt and osmotic stress9.  

The binding site of the cis-regulatory elements LS5ATPR1 and LS7ATPR1 were 

identified and are well characterized positive salicylic acid-inducible elements recognized 

by TGA factors10 (Figure 2-5). Binding sites for TGA factors are frequently found in 

promoters of stress-regulated plant genes11; TGA2 and TGA3 interaction with LS7 is 

enhanced by binding with non-expresser of pathogenesis related genes protein (NPR1)12, 

13, a defence response gene associated with the induction of systematic acquired resistance 

in plant defence response to pathogen14. 

The same analysis was carried out for OsIPCS1-3 and no WRKY transcriptional factor 

binding sites were found, but the search did yield different basic region leucine zipper 

binding sites with unknown targets. Expansion of the region upstream the transcription 

start site to 1500 bp and subsequent analyses using the PlantCARE database, generated 
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several motifs which are shared between A. thaliana and O. sativa IPCSs; cis acting 

elements involved in stress and pathogen response were identified, as were cis-regulatory 

elements inducible in response to the hormones abscisic acid and gibberellin (Table 2-1) 

indicating that the modulation of plant IPCSs expression is involved in plant response to 

abiotic and biotic stress.  

 

It is clear from the analyses that the IPCS from A. thaliana and O. sativa share the same 

transcriptional binding elements, and at the amino acid level the sequence is highly 

conserved. OsIPCS1 shares 70% sequence identity and 81% similarity to AtIPCS1; 

AtIPCS1sequence identity and similarity was between 69-70% and 79-80% for OsIPCS 

 

Figure 2-5: Transcription factor binding motif sequence located 1000bp upstream of the 

transcription start site; the transcription factor binding sites highlighted are conserved in 

AtIPCS1-3; shown above is the promoter region of AtIPCS1; table of motifs can be found in 

Appendix A.  
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2 and 3 respectively. Sequence identity between OsIPCS1 and OsIPCS2 is 82% and the 

sequence similarity is 89%; for OsIPCS3 the sequence identity and similarity to OsIPCS1 

is 70% and 84% respectively. The sequences identify between AtIPCS1 and AtIPCS2 is 

86% and the similarity is 93%, whilst AtIPCS3 shares a lower sequence identity with 

AtIPCS1 of 69% and a sequence similarity of 82%.   

 

Mutagenesis studies of fungal IPC (AUR1p) have shown that a single amino acid 

mutation is enough to alter the sensitivity of the enzyme to Aureobasidin A (AbA). 

Mutation of Leu-137 to phenylalanine and His-157 to tyrosine in the AUR1 gene sequence 

resulted in AbA resistance in S. cerevisiae15. This is corroborated by a similar study 

carried out by Okado et al. which revealed the ability of AUR1 to become insensitive to 

AbA upon the mutation of Phe-158 to a tyrosine16. In addition, a mutation changing 

glycine-240 to a cysteine residue in the AUR1 homologue in Schizosaccharomyces 

pombe has been found to be responsible for the acquisition of AbA resistance in both 

fungal species17, 18. Likewise, the corresponding residue 275 in the aurA gene of 

Aspergillus nidulans, a homolog of yeast AUR1 has been found to confer a high level of  

AbA resistance19. These studies show that IPCS sensitivity to an inhibitor can be altered 

by a single change of an amino acid residue and stimulates the consideration of an 

inhibitor being selective for different orthologues of IPCS in the same plant, which could 

open up the possibility of creating a cocktail of herbicides that targets two out of the three 

orthologues, thereby reducing the likelihood of herbicide resistance. The possibility of 

selective inhibition between the very closely related IPCS isoforms is possible, and has 

been shown to be the case by the selective inhibition of  MAP Kinase p38α over p38β, 

which share a sequence identity of 75% at the amino acid level20.  

In the next section, work carried out to express AtIPCS1-3 and OsIPCS1-3 and 

characterise the activity of plant IPCS in a S. cerevisiae mutant line is presented, with the 
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aim of utilising the transgenic yeast lines in a high throughput screen for inhibitors. This 

will enable the identification of compounds which show differential selectivity for either 

IPCS from A. thaliana or O. sativa.  

Table 2-1: Identification of conserved cis-elements located upstream of the transcription 

start site of AtIPCS1-3 and OsIPCS1-3 

Motif name Sequence function 

ABRE Cis-acting element involved in abscisic acid responsiveness 

Box W1 Fungal elicitor responsive element 

MBS MYB binding site involved in drought-inducibility 

TCA element Cis-acting regulatory element involved in salicylic acid 

responsiveness 

Circadian 

(CBS) 

Cis-acting regulatory element involved in circadian control 

ARE Cis-acting regulatory element essential for anaerobic induction 

P-Box Gibberellin responsive element 

TC-rich repeats Cis-acting element involved in defence and stress responsiveness 

RY-element Cis-acting regulatory element involved in seed-specific regulation 

HSE Heat responsive elements 

 

2.3 Cloning and expression of plant IPCS to complement a mutant 

yeast strain 
 
 

To analyse the multi-transmembrane plant IPCS and format a high throughput screening 

(HTS) assay, the coding sequences were cloned into suitable expression vectors to 

complement a yeast mutant as described below. 



 

 

67 | P a g e  
 

 

Saccharomyces cerevisiae pdr genes encode extrusion pumps responsible for pleiotropic 

drug resistance21. Fungi invoke resistance by the up-regulation of these genes to facilitate 

the efflux of cytotoxic drugs, thus leading to decreased drug accumulation and diminished 

concentrations22. In order to maximize the possibility of identifying IPCS inhibitors, it 

was necessary to prepare a suitable S. cerevisiae strain lacking these efflux pumps.  

 
A mutant yeast strain lacking fungal IPCS, AUR1 

(MATa his3Δ1leu2Δ0ura3Δ0 aur1::HIS3) and four genes conferring drug 

hypersensitivity (pdr1Δ::KanMX4, pdr3Δ::KanMX4, pdr16Δ::KanMX4 and 

pdr17Δ::KanMX4) were created by Prof. Michael Stark (University of Dundee). This 

strain can survive by the introduction of the pRS316-AUR1 plasmid, (Prof. Michael 

Stark), resulting in the expression AUR1 under a URA3 selectable marker. This yeast 

strain (the parental line) can be maintained on media lacking histidine and uracil.  

   

For the cloning of AtIPCS1-3, OsIPCS1-3 into the pESC-LEU expression vector at 

multiple cloning site 2, primers were designed for each IPCS insert and amplified by 

proofreading PCR from the pRS426MET plasmid. Subsequently, infusion® cloning was 

carried out, followed by transformation in D-H5α E. coli to isolate high yields of the 

purified plasmid. These plasmids were then used to transform the parental yeast strain 

using the lithium acetate/single carrier DNA/polyethylene glycol method23, 24.  

 

To obtain the yeast strains containing only the pESC-LEU vector with the IPCS of 

interest, and lacking pRS316-AUR1, the mutant strains were grown on media containing 

5-fluoroorotic acid (5-FOA). 5-FOA is an extremely useful reagent for the selection of 

ura− cells amid a population of ura+ cells; this selection is effective in studies where loss 

of URA3 is desired25. URA3 encodes for orotidine-5′-monophosphate decarboxylase 

(ODcase), an enzyme responsible for catalysing the last step in the de novo synthesis of 
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pyrimidines by the decarboxylation of orotidine monophosphate to generate uridine 

monophosphate26. In cells maintaining the pRS316-AUR1 URA3 plasmid, ODcase is 

expressed and converts 5-FOA to fluorouracil (Figure 2-6), a toxic analogue of uracil, 

resulting in cell death. This allows selection of yeast strain lacking this plasmid, a process 

termed ‘plasmid shuffle’ (Figure 2-7)25.  

 

 

 

 

 

 
 

Yeast cells without either the pRS316-AUR1 URA3 plasmid or an introduced plasmid 

encoding a complementing enzyme, have no IPCS, and so cannot synthesise essential 

sphingolipids. The plant IPCSs cloned into the pESC-LEU vector are under the influence 

of the GAL1 promoter, therefore yeast dependent on IPCS expression from these vectors 

can only grow in media/agar containing galactose (SGR-H-L). 

 

 

 

 

 

 

 

 

 
 

 

ODcase 

 
Figure 2-7:  Plasmid shuffle; transformation with pESC-LEU plant IPCS plasmid and elimination of 

pRS426-AUR1 plasmid in yeast. 

 

Figure 2-6: Conversion of 5-fluoroorotic acid to fluorouracil is used to select against yeast harbouring 

the AUR1 plasmid under the URA3 marker. 
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AtIPCS1-3 and OsIPCS1-3 complemented yeast strains were taken through two rounds 

of 5FOA selection. Using PCR, yeast colonies that grew on SGR-H-L+FOA agar were 

verified for the presence of the pESC-LEU IPCS plasmid and the absence of the pRS316 

AUR1 plasmid; these colonies were then used in subsequent experiments. It was noted 

that OsIPCS3 complemented strains had few colonies following FOA selection and 

required an extended period of incubation at 30oC (10 days) for colony formation.  

 

2.3.1 Complementation Assay  
 
 

All six complemented strains were grown on SGR-H-L agar and on glucose agar without 

histidine and leucine (SD-H-L) agar respectively. As expected, all the strains grew only 

on SGR-H-L due to the IPCS being under the influence of the galactose promoter (Figure 

2-8). This indicated that the encoded plant enzymes complemented for the absence of the 

yeast AUR1p. The parental strain can grow in glucose and galactose because AUR1, 

which is in the pRS316 plasmid is not under the influence of the GAL1 promoter.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Figure 2-8: Complementation Assay - SGR-H-L plate (left) shows that all yeast strains grew but in SD-

H-L plate (right) none of the strains grew because all plant IPCSs are under the influence of the GAL1 

promoter.   

Arabidopsis 

thaliana IPCS 
Oryza  

sativa IPCS 
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2.3.2 Diffusion Assay  
 
 

A diffusion assay is a simple and low-cost technique that has been previously used to 

characterise the selectivity and sensitivity of AUR1p to AbA26, 27. Diffusion assays 

involve embedding the yeast strain in the required media with 0.8% agarose. The inhibitor 

is then applied to the surface and diffuses through the agarose; a zone of clearance around 

the point of application is formed, where the yeasts are unable to grow. The zone of 

clearance is dictated by how active the compound is against the yeast strains.  

 

As mentioned previously, AbA is a cyclic peptide that is a well-known inhibitor of fungal 

AUR1 and is toxic against various Leishmania species28. However, the concentration of 

AbA needed to inhibit the growth of yeast strains harbouring LmjIPCS was found to be 

100 µM, which is so high that the yeast strains can be considered as insensitive to the 

compound27. The sensitivity to AbA of all six yeast strains rescued with the respective 

plant IPCSs, AtIPCS1-3 and OsIPCS1-3 were tested in a diffusion assay as was the 

sphingolipid biosynthesis inhibitor myriocin29.  Myriocin inhibits the enzyme SPT 

thereby inhibiting sphingolipid formation and hence, membrane formation, therefore 

myriocin should inhibit all strains of yeast in this experiment. The sensitivity of the 

complemented, pdr/aur1 mutant strain to AbA and myriocin was tested, with the vehicle 

dimethyl sulphoxide (DMSO) as the negative control (Figure 2-9). 

 

All plant IPCS complemented yeast strains showed a zone of clearance for myriocin (1 

mM), and, interestingly, all but OsIPCS3 showed insensitivity to AbA at a concentration 

of 100 µM (Figure 2-9) implying differential selectivity of the compound for OsIPCS3. 

The same assay carried out for LmjIPCS and AUR1 showed contrary to results from 

Denny et el. 2006, yeast strains complemented with LmjIPCS being insensitive to AbA 

at 100 µM (Figure 2-10) which indicated differential selectivity between protozoan and 
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fungal IPCS. However, it is possible that insensitivity of LmjIPCS complemented yeast 

at 100 µM might be due to a higher number of cell used in the assay. Based on the findings 

of Denny et al., LmjIPCS and OsIPCS3 are sensitive to AbA at 100 µM which indicates 

that they share a structural similarity. Analysis of the amino acid sequence shows that two 

IPCs share a percentage identity of 25% which is quite low and alignment of the two 

sequences revealed no identifiably conserved region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
 

 

 

 

 

 

 
 
 

To confirm the loss of pRS426 AUR1 and the gain of pESC-LEU IPCS, specific 

oligonucleotide primers were designed to amplify a region of about 300bp of each plant 

IPCS and 500bp from AUR1 by PCR. Two yeast colony PCR reactions were carried out 

for each yeast strain; one with the plant IPCS and the other with the AUR1 primers. The 

Figure 2-9: Diffusion assay plates for (top, left to right) AtIPCS31-3 and (bottom, left to right) OsIPCS1-

3 mutant yeast strains embedded in SGR-H-L + 0.8% agarose media. 1 mM Myriocin and 100 μM AbA 

in DMSO and the negative control DMSO, were pipetted in 1 μl, 2 μl and 3 μl aliquots onto the plates 

and left to grow at 30ºC for 5 days. 
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results demonstrated that each complemented strain contained the expected AtIPCS or 

OsIPCS orthologue in the absence of AUR1 (Figure 2-11A and Figure 211B); confirming 

that the yeast strains lacked AUR1 and were expressing the respective plant IPCS 

isoforms.  

 

 

 

 

 

 

 
 

 

  

 

 
 
 
 
 

 
 

2.3.3 Verification of AtIPCS and OsIPCS3 activity  
 
 

Following verification of the successful complementation of the plant IPCS yeast strain, 

microsomal preparation was undertaken to isolate microsomes containing AtIPCS1-3, 

OsIPCS1-3 and AUR1. To measure the activity of IPCS, the turnover of NBD-C6-

ceramide into the fluorescent product NBD-C6-IPC (Figure 2-12) was quantified by 

fluorescence scanning following high-performance thin layer chromatography (HPTLC) 

fractionation. NBD-C6-ceramide has an Rf  value of 0.96 and NBD-C6-IPC has an Rf  value 

of 0.5730. This results to a clear resolution between the substrate and the product bands 

on the TLC plate, allowing for the quantification of IPC turnover.  

AtIPCS1 AtIPCS2 

AtIPCS3 

OsIPCS1 
OsIPCS2 

AtIPCS1 AtIPCS2 

AtIPCS3 

OsIPCS1 OsIPCS2 

2 

1 

3 

Myriocin      Aba A DMSO Myriocin      Aba A DMSO 

Figure 2-10: Diffusion assay plates for (left to right) LmjIPCS and ScAUR1 mutant yeast strains 

embedded in SGR-H-L + 0.8% agarose media. 1 mM Myriocin, 100 μM Ab A in DMSO, and the 

negative control DMSO, were pipetted in 1 μl, 2 μl and 3 μl aliquots onto the plates and left to grow at 

30ºC for 5 days. 
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The activity of AtIPCS1-3 and OsIPCS1-3 were tested in the presence and absence of the 

known fungal IPCS inhibitor AbA at a concentration of 5 µM. The result demonstrated 

that AtIPCS1-3 and OsIPCS1-2 were insensitive to AbA, whilst OsIPCS3 was sensitive 

to the inhibitor (Figure 2-13 and 2-14) in agreement with the diffusion assay data (Figure 

2-9). The results for AtIPCS1-3 and AUR1 are as expected; work previously done by 

Mina et al. had shown that the three A. thaliana IPCS isoforms are insensitive to Aba1 

and  earlier work by Heidler et al, as mention in chapter 1 demonstrated that AUR1 is 

sensitive to the inhibitor15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To facilitate further analysis, the enzyme activity for each IPCS of interest was deduced 

using an NBD-C6-ceramide standard curve. It was assumed that the fluorescence of the 

Figure 2-12: Conversion of NBD-C6-ceramide to NBD-C6-IPC. 

Figure 2-11: Transformed yeast colony PCR for (A) AUR1 and AtIPCS1-3 (B) OsIPCS1-3 with 

specific primers for AUR1 (*) and each insert.  
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substrate NBD-ceramide is equal to the fluorescence of NBD-IPC, which allowed for the 

quantification of IPC turnover in a reaction and was subsequently used to deduce the 

concentration of active IPCS in the microsome mixture. Active IPCS concentration was 

quantified in ‘Unit/µl’, where one Unit is defined as the amount of enzyme required to 

catalyse the formation of 1 picomol of product in 1 minute31.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To establish the IC50 of AbA against AUR1 and OsIPCS3, it was necessary to quantify 

Figure 2-13: HPTLC assay AtIPCS1-3 in the absence and presence of AbA 

Figure 2-14: HPTLC assay OsIPCS1-3 in the absence and presence of AbA with the inhibition of 

OsIPCS3 highlighted in the red box showing the lack of IPC turnover in the presence of the compound. 

NBD-C6-
Cer 

  NBD-    
C6-IPCS  

       Origin 

AtIPCS1 AtIPCS1 AtIPCS2 AtIPCS2 AtIPCS3 AtIPCS3 

-
+AbA -AbA +AbA -AbA -AbA +AbA 

- +AbA +AbA -AbA -AbA -AbA -AbA +AbA 

NBD-C6-
Cer 

  NBD-    
C6-IPCS 

       
Origin 

AUR1 AUR1 OsIPCS1 OsIPCS1 OsIPCS2 OsIPCS2 OsIPCS3 OsIPCS3 

 

 

+AbA 



 

 

75 | P a g e  
 

the enzyme activity; the activity of the OsIPCS3 and AUR1 samples were deduced to be 

5.32 Unit/µl and 14.68 Unit/µl respectively (Table 2-2). By quantifying the enzyme 

activity, it was possible to ensure that the enzyme concentration of OsIPCS3 and AUR1 

used in the assay was the same.  

Table 2-2: IPCS activity for AUR1, AtIPCS1-3 and OsIPCS1-3 quantified 

 
 

Equivalent active enzyme concentration of AUR1 and OsIPCS3 was assayed in the 

presence of AbA at concentrations ranging from 0.05-5 nM. The IC50 of AUR1 was found 

to be 0.6 nM compared to the literature value of 0.89 nM26 and the IC50 of OsIPCS3 was 

found to be 2.62 nM. The IC50 values obtained show that there is a more than 2-fold 

difference in sensitivity to AbA between AUR1 and OsIPCS3; AUR1 is much more 

sensitive to Aureobasidin A than OsIPCS3 (Figure 2-15). 

To ensure that all complemented strains were still fully dependent on the specific plant 

IPCSs, another colony PCR experiment was carried out five months later and it was found 

that all yeast strains had retained their specific IPCS apart from yeast strains 

complemented with OsIPCS3 (Figure 2-16) which showed the presence of the fungal 

IPCS signifying reversion to dependence on the fungal orthologue. There is currently no 

known mechanism for how this type of gene reversion occurs but work done by Schiestel 

et al.32 show that reversion of a deleted gene results from the excision of plasmid 

Microsomes   Fluorescence at 473nm pmol    pmol/min (Unit) Unit/ul 

AUR1  96150 11000 183.3 14.68 

AtIPCS1  18123 1400 23.3 1.88 

AtIPCS2 38985 3200 53.3 4.28 

AtIPCS3  6902 480 8.0 0.64 

OsIPCS1  16934 1240 20.7 1.64 

OsIPCS2  16057 1200 20.0 1.6 

OsIPCS3  46541 4000 66.7 5.32 
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harbouring the dominant marker (usually HIS3) which replaces the target gene and  

integrated into the genome.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-15: IC50 graph showing the percentage turnover of IPC upon addition of different concentration 

of AbA for (A) AUR1 (B) OsIPCS3. 

(A) 

(B) 
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For successful integration into the genome, the plasmid usually has ends flanked with 

areas homologous to the target gene; when reversion occurs, this is because these ends 

are retained upon excision of the plasmid, which is repaired by sister chromatid 

conversion, resulting in the reconstruction of the wildtype gene that is fully functional. In 

this case, although OsIPCS3 is expressed in the yeast strains, the deleted AUR1 gene in 

the genome has undergone reversion, resulting in the expression of the fungal IPCS.  

 

 

 
 

 

 

 
 

 

 
 

 
 

 
 
 

2.4 Assay development  
 

Following the verification of AtIPCS1-3 and OsIPCS1-2 yeast complemented strains, an 

assay to test compounds against the different yeast strains was developed and formatted 

in a 96 well plate.  To set the assay parameters for HTS, the growth of all yeast strains 

with the IPCS of interest was monitored by optical density (OD600) at different starting 

concentrations, over 72 hours at 24-hour intervals. From the results, it was clear that yeast 

growth plateaus after 48 hours. At the highest starting concentration in some cases, there 

Size (bp) 
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AUR1 Os1 Os1* Os2* Os2 Os3* Os3 

Figure 2-16: Agarose gel (0.8%) showing bands amplified for OsIPCS1-3 with respective specific 

primers and AUR1 primers as control (* denotes PCR carried out with AUR1 primers); OsIPCS3 shows 

a product for OsIPCS3 and AUR1 primers. 
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was a decrease in the OD600, presumably, due to cell death as nutrients become a limiting 

factor. 

 

 

 
 

For an assay (e.g. HTS) the conditions must ensure a direct linear correlation between 

OD600 read out and cell number over a defined time period.  This creates well defined 
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Figure 2-17: Graphs showing the relationship between OD600 starting cell concentrations and AUR1, 

AtIPCS1-3, OsIPCS1 and 2 cell concentrations measured after 24 (blue line) and 48 hours (orange line) 

growth respectively (starting OD600 from highest to lowest corresponds to dilutions of 0, 1:3, 1:6,1:9, 1:12 

and 1:16 respectively). 
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assay parameters whereby the efficacy of a compound can be directly measured by 

monitoring yeast growth. Similar assay parameters have been applied for the testing of 

antimicrobial peptides against Leishmania33. As the results show, a consistent linear 

correlation was observed at 24 hours for 1:9 (OD600= 0.018) and 1:12 (OD600=0.006) 

dilutions (Figure 2-17). To increase the signal to noise ratio, the assay starting cell 

concentration was set at an OD600 = 0.018 corresponding to a 1:9 dilution.  

HTS usually involve the screening of compounds once or twice for the identification of 

hit compounds and requires that the assay has high sensitivity and accuracy. Due to the 

perturbations introduced in the assay resulting from human and instrumental error, assay 

measurements can contain high degrees of variation which need to be considered. For the 

identification of ‘real’ hits, it is necessary that variations are low which can be measured 

by standard deviation from the mean and by the coefficient of variation33. 

The Z’-factor34 is a quantitative assessment of the quality of the assay that can be 

calculated using the standard deviation and the mean of the positive and negative control 

(Equation 1.1). An ideal assay would have a Z’ factor value equal to 1, whilst an ‘excellent 

assay’ has a Z’ factor value < 1 and ≥ 0.5. 

 

 

 

 

To test the suitability of the assay in identifying hit compounds, Z’ factor values were 

calculated for AtIPCS1-3 and AUR1 (Table 2-3). DMSO was used as the negative control 

and cycloheximide (1 mM), a known inhibitor of cytoplasmic protein synthesis in yeast 

and other eukaryotes35 was used as the positive control in the assay. The assay was set up 

in 96 well plates, incubated with shaking over 24 hours and yeast cell viability quantified 

Z-factor = 1- (3(σp + σn)/ (|µp - µn))                                                               [Equation 1.1] 

σ is the standard deviation and µ is the mean of the positive (p) and negative (n) control 
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by measuring cell density at OD600.  

A trial of the assay’s reproducibility and hit identification was carried out by testing 15 

compounds against AtIPCS1 complemented yeast strain. The 15 compounds included 

Aba, clemastine analogues36, khafrefungin analogues and the known sphingolipid 

biosynthesis inhibitor, myriocin. Results obtained from the assay were reproducible and 

identified myriocin, khafrefungin and the khafrefungin analogues: W2345 and ND8 as 

hits (Figure 2-18, structures of compounds tested are in Appendix D). Interestingly, the 

khafrefungin analogue, W2345, has been shown to have no activity against S. cerevisiae 

(work done by Kentaro Hanada, unpublished), indicating differential selectivity for the 

plant IPCS over fungal IPCS. However, the khafrefungin analogues are not attractive as 

inhibitors of IPCS because these compounds are not easily synthesised and required 

several synthetic steps to produce the final product. In this study, the aim is to find small 

molecule inhibitors that can be easily modified for use as herbicides, so the selectivity of 

the khafrefungin analogue, W2345, although interesting was not pursued further. 

Table 2-3: Calculated Z’ factor value to validate assay 

 
 

Having established that the assay was suitable for the identification of hit compounds, 

yeast strains were grown to log phase (OD600 = 0.5-0.7) and frozen to screen the 11,440 

 

 

DMSO OD600 

average 

Cycloheximide OD600  

average 

Z' 

factor 

AtIPCS1 1.54 0.07 0.9 

AtIPCS2 1.47 0.15 0.7 

AtIPCS3 1.46 0.14 0.6 

AUR1 1.26 0.21 0.6 
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compound library for inhibitors of plant IPCSs which was carried out at Bayer Crop 

Sciences, Frankfurt Germany. 

 

 

2.5 Conclusion 
 
 

Cloning of OsIPCS1-3 and AtIPCS1-3 was achieved and complementation of plant IPCS 

yeast strains was successful for all but OsIPCS3. It was shown that plant IPCS unlike 

fungal IPCS, were insensitive to Aba. The yeast strains were formatted into an assay 

which requires quantifying the growth of the yeast strains by measuring OD600 after a 24 

hours incubation period. The assay conditions were validated for the screening of 

compounds by quantifying the Z’ factor value of an assay with DMSO as negative control 

and cycloheximide as positive control. Initial screening of a compound library consisting 

of clemastine analogues, and known inhibitors of sphingolipid biosynthesis, were tested 

on AtIPCS1 complemented yeast strains. Myriocin and khafrefungin were identified as 

hits, and more importantly the assay showed that the AtIPCS1 complemented yeast strains 

were insensitive to Aba, which supports the biochemical assay results of plant IPCSs 

being insensitive to the compound. Other identified hits were the khafrefungin analogues, 

W2345 and ND8. The activity of W2345 against AtIPCS1 complemented yeast indicates 
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Figure 2-18: Percentage cell viability of AtIPCS1 complemented yeast cells upon addition of test 

compounds and incubation for 24 hours; each compound was tested in triplicate at 10 µM. 
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differential selectivity for plant IPCS over fungal IPCS, which was a promising indication 

of the ability of the assay to identify hits which show differential selectivity. Following 

the validation of assay conditions, the screening of a library of bioactive compounds 

against the plant IPCSs and AUR1 was carried out; this is presented in the next chapter. 
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CHAPTER 3 
SCREENING FOR INHIBITORS OF PLANT IPCS 
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3.1 Chapter synopsis 
 

In this chapter, the screening strategies utilized to identify herbicidal leads or chemical 

probes are outlined, and results from the screening of a compound library of 11,440 

bioactive compounds are presented. Following the identification of hits in the primary 

screen, assay conditions for the secondary biochemical screen was carrried out. Variants 

of phosphatidyl inositol were tested  to see which gave maximal activity in terms of plant 

IPCS turnover. In addition various substrate concentration were tested to ensure the 

identification of hits was not hindered by saturation of the enzyme with substrate. From 

the secondary screen 15 compounds were found to show differential selectivity for plant 

IPCS over AUR1. In addition, compounds were identified that exhibited differential 

selectivity for AtIPCS2 over OsIPCS2. The top two compounds, showing the most 

activity against plants IPCS were tested in vivo and found to have herbicidal effects that 

point to the biological pathway targeted, affecting root development and involving PCD. 
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3.2 Approaches to screening for inhibitors 
 

In agrochemical discovery, two approaches are employed: a phenotypic chemical screen 

or a target-based chemical screen. In a phenotypic based screen also termed a forward 

chemical screen, chemicals are tested on plants in a microplate format, and bioactive 

compounds discovered by identifying an alteration in phenotype upon application of the 

compound2. Following this, compounds are selected and tested against plausible targets 

(phenotype can give an idea of mode of action) in an assay or a biochemical purification 

strategy is employed to identify targets. The second approach which is a reverse chemical 

screen (target-based chemical screen), involves the testing of a compound library against 

a specific target, with the identified hits then tested in vivo to see if the compound remains 

active which is deduced by a phenotypic alteration in planta3.  

 

The forward chemical screening approach has been utilized in numerous studies for the 

identification of bioactive compounds. For example, the screening of a library of 

compounds against A. thaliana seedlings, identified hits that either enhanced or inhibited 

gravitropic response, ascertained by the presence or absence of root reorientation. From 

the hits identified, compounds were discovered that also affected the endomembrane 

system, discovered by observation of aberrant vacuoles displaying a vesiculated 

morphology4. This phenotypic screening strategy to identify inhibitors or enhancers of 

plant development has also been used to identify auxin analogues that enhance hypocotyl 

growth5 and the compound hyperphyllin which enhances leaf formation and shoot 

meristem enlargement6. Chung-lin et al. identified compounds that interfered with A. 

thaliana response to ethylene by screening for the suppression of triple response 

phenotypic read out in response to ethylene7. Hits were subsequently validated as 

inhibitors of 1-aminocyclopropane-1-carboxylic acid synthase. The discovery of a class 

of sulfanilamide compounds able to protect wheat crops from the fungal pathogen, 
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Fusarium graminearum,  was also facilitated by an in vivo screen for the attenuation of 

dark lesion-like spots resulting from fungal infection8.  

Following the identification of a compound that has a particular effect of interest on the 

plant, the compounds are usually then either tested in cellular or enzymatic assays against 

a series of possible targets in order to facilitate the identification of the compound’s mode 

of action. The identification of small molecule inhibitors can be coupled with omics tools, 

by utilizing reverse genetics and next generation sequencing to identify changes in the 

transcriptome or metabolome which may have a corresponding phenotype; this approach 

to the identification of bioactive compounds and their targets is termed chemical 

genomics9. 

In this study, a combination of both phenotypic and target-based chemical screening has 

been utilised for the identification of IPCS inhibitors. A compound library of 11,440 

compounds, which have exhibited herbicidal or fungicidal activity in in vivo screens were 

tested against plant IPCS.   

 

3.3 Hypothetical effects of an IPCS inhibitor 
 
 

To understand the possible impacts of IPCS inhibition, a review of the ramifications of 

sphingolipid biosynthesis dysfunction is necessary. Various studies have linked the 

sphingolipid biosynthetic pathway to programmed cell death (PCD) in plants. Initial work 

carried out by Saucedo‐ García and colleagues showed that inhibition of phytoceramide 

synthase in plants treated with fumosin B results in PCD phenotypes at a cellular level, 

including interiorized and rounded chloroplasts, the disintegration of thylakoids vesicles 

and DNA fragmentation1. This cell death phenotype was found to be attenuated by pre-

treatment of plants with myriocin which targets serine palmitoyl transferase (SPT); the  

inhibition of SPT results in a decrease in 3-ketosphinganine which affects the synthesis 
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of other compounds downstream in the biosynthetic pathway. This results in a decrease 

in phytosphingosine, a substrate for phytoceramide synthase, which is inhibited by 

fumosin B (Figure 3-2). This indicated that the accumulation of the dihydroxylated long 

chain bases in the form of phytosphingosine is responsible for PCD in plants. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-2: Schematic showing the two approaches for hit identification (A) Phenotypic chemical screen 

which involves in vivo testing to identify bioactive compounds which can then be screened against a number 

of targets to find the compound’s target (B) Target-based screening which involves testing a compound 

library against a specific target to identify compounds that show activity against the target; the identified 

compound is subsequently tested in vivo to see if it results in any phenotypic alterations in planta.  
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This finding was corroborated was corroborated by Shi et al. who showed that treatment 

of A. thaliana with  the sphingoid bases, dihydrosphingosine, phytosphingosine and 

sphingosine, resulted in cell death, which was preceded by the generation of reactive 

oxygen intermediates that are linked to PCD in response in abiotic stress10. 

 

Gene silencing of the second subunit of SPT (LCB2) in Nicotiana benthamiana was 

shown to result in an approximate 50% reduction in LCB2 transcript, and induced cell 

death, with a decrease  in levels of phytosphingosine and an  increase in the levels of 

dihydro-sphingosine and sphingosine, which were also associated with  elevated SA 

levels and constitutive expression of the gene pathogenesis-related protein 1 (PR1) 

expression11, both markers of PCD. The elevation in dihydro-sphingosine levels upon 

deletion of the first SPT subunit (LCB1) is corroborated by work done by Chen et al.12 in 

Arabidopsis, and indicates control of the levels of the proapoptotic compound, 

phytoceramide, by downregulation of LCB C4 hydroxylase resulting in the build-up of 

dihydroshpingosine, and the subsequence reduction in phytosphingosine and 

phytoceramide generated; both are bioactive compounds known to trigger PCD. The 

elevation of sphingosine levels is also as a result of keeping phytoceramide levels down, 

by breaking down phytoceramide to phytosphingosine, which is achieved by ceramidase.   

 

Disruption of phytoceramide synthesis in Arabidopsis by mutation of one of 

phytoceramide synthase genes, LOH1, results in spontaneous cell death, concomitant 

with a 160-fold increase in PR1 transcription13. Similarly, RNAi suppression of LCB-C4 

hydroxylase resulted in the formation of necrotic lesions and constitutive PR1 

expression.14. Mutation of ceramide kinase, ACD5, in Arabidopsis resulted in the 

accumulation of phytoceramide, with constitutive PR1 expression, the accumulation of 

free SA and conjugate SA, and necrotic lesions15; markers associated with PCD in plants.  
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The findings of the studies outlined above, show that there is a consistent link between 

the disruption of sphingolipid synthesis, the buildup of intermediates in the biosynthetic 

pathway and the initiation of PCD. This biosynthetic pathway is clearly tightly regulated 

and inextricably linked to biological pathways/signaling involved in plant survival. 

A homozygous knockout of IPCS2 in Arabidopsis was found to lead to elevated levels of 

SA and phytoceramide, HR-like lesion formation on leaves associated with PCD, and a 

reduction in plant stature16. A working hypothesis for the iinhibition of plant IPCS 

involves an offset in the balance between the pro-apoptotic compound, phytoceramide 

(substrate of plant IPCS) and the mitogenic compound, diacylglycerol (by-product), with 

Figure 3-2: Inhibition of phytoceramide synthase I by fumosin B1 results in an increase of 

phytosphingosine with plants displaying PCD phenotypes1 which are attenuated by the inhibition of 

SPT by myriocin, leading to a decrease in 3-ketosphinganine and phytosphingosine. 
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inhibition resulting in an accumulation of the former, with a concomitant decrease in the 

latter17. In addition, it would result in the decrease of the product inositol 

phosporylceramide (IPC), which is attached to a number of oligosaccharides to generate 

GIPC, a major class of sphingolipids in plants that make up a quarter of the total lipids in 

the plasma membrane18.  

 

 GIPCs have been found to be essential for normal growth and reproduction in 

Arabidopsis; homozygous knockout mutants of IPC glucuronosyltransferase 1 (IPUT1) 

are non-viable. To study the developmental effects of reduced GIPCs in Arabidopsis, a 

pollen specific rescue construct was used to select for homozygous knockout lines of iput, 

and these were found to display phenotypes of severe reduction in growth, increased 

levels of SA and lesions characteristic of PCD19. From these studies, it can be 

hypothesised that the inhibition of IPCS would result in a decrease in the sphingolipid 

precursor, IPC resulting in a decrease in GIPC which is essential for plant development. 

In addition, the build-up of the bioactive compound phytoceramide would initiate PCD, 

making IPCS a promising herbicidal target.  

 

3.4 Primary screening  
 
 

To identify putative inhibitors of IPCS, the focused library consisting of 11,440 bioactive 

compounds was screened against AtIPCS2, OsIPCS2 and AUR1 formatted into the yeast-

based assay described in Chapter 2. The IPCS2 isoform was selected for screening due to 

its well characterised role in plant defense and PCD16, 20 and the fact that it is the most 

highly expressed orthologue being log 2-fold greater than both IPCS1 and IPCS3 in 

A.thaliana21. Screening was also carried out against the AUR1 complemented yeast strain 

as a control to filter out compounds that are generically cytotoxic to yeast cells rather than 

on target.  
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In the pharmaceutical industry the Lipinski rule of 5 is used as a gold standard for the 

selection of compounds that have orally-active drug like features22. The physico-chemical 

rules require that the compound has a molecular weight ≤ 500, clogP ≤5, no more than 5 

H-bond donors and 10 H-bond acceptors.  In the agrochemcical industry there is a need 

to have compounds that not only trigger cell death at a biochemical level but also have 

the right physico-chemical properties to penetrate the waxy cuticle and cell membranes 

of plants. Analyses of commercial herbicides and pesticides carried out by Tice, revealed  

that most have a molecular weight between 300-400 with an average of 329 for herbicides 

and 324 for insecticides23. In addition, the clogP values of herbicides were in the range 

1.2-2.4 with an average of 1.7, which means that most herbicides are hydrophobic in 

nature which is necessary for the compounds to enter the cells and reach their target. 

According to Briggs rule of three, for a compound to show activity when sprayed on 

plants, it must have a molecular weight of 300±100, clogP=3±3, melting point ≤ 300oC 

and no more than 3 H-donors24.  Based on these parameters, 50% of the compounds 

selected for screening had a molecular weight between 300-400 (Figure 3-3A), with 45% 

possessing a clogP of 3-5 (Figure 3-3B).  

In the primary screen against AtIPCS2, OsIPCS2 and AUR1, due to the configuration of 

the compound plates, the positive and negative control were repeatedly tested in the first 

row and alternated in terms of placement in these wells. At this stage, the library of 

compounds was tested in duplicate at 10 µM with the inhibition of yeast growth measured 

after 24 hours.   
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To ensure reproducibility and reduce well to well variation, the plates were sealed with 

transparent breathable membranes which eliminated the ‘edge efffect’25 seen in assays 

incubated over long periods of time. For quality control, each plate in the yeast cell assay 

was required to have a calculated Z’ factor of ≥ 0.5 in order for the assay results to be 

deemed as valid (Figure 3-4). Compounds exhibiting ≥80% inhibition (the threshold) 

were selected to be taken forward. From the 11,440 compounds screened, 1164 

compounds showed ≥ 80% inhibition of AtIPCS2, 986 compounds showed ≥80% 
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Figure 3-3: (A) Molecular weight and (B) clogP distribution of the library compounds screened. 
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inhibition of OsIPCS2, and 854 compounds had ≥80% activity against AUR1 (Figure 3-

5). The false positive hit rate was 2.6%, and these compounds were excluded leaving a 

final hit rate of 1.5%. 

 

 

 

 

 

 

 

To progress to secondary screening the compounds also had to show ≥ 50% differential 

selectivity for the plant IPCS over the yeast AUR1 orthologue. From the approximately 

1000 compounds that showed selectivity, 126 met the criteria above, 40 compounds 

showed selectivity for AUR1 over the plant IPCS (Figure 3-6) which would be of interest 

to study for use as antifungals in future work.  

Of the 126 plant selective compounds, 4 were compounds were of particular interest as 

they were known to be pro-apoptotic, and as discussed above, AtIPCS2 is associated with 

PCD. One of these compounds showed inhibition of both AtIPCS2 and OsIPCS2 in the 

yeast-based assay, whilst the other three exhibited selective inhibition of OsIPCS2. Using 

the same assay platform, dose response experiments (50 µM to 68 nM) were carried out 

in duplicate for the AtIPCS2 and OsIPCS2 hit compounds; 89 of the 105 AtIPCS2 
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Figure 3-4: Z’ factor of plates screened; cut off of 0.5 (red line) for a robust assay. Three plates fell 

below this value but were found to replicate the data in the n=2 screen and were accepted for further 

analyses. 
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inhibitors, and 35 of the 39 OsIPCS2 hits had IC50 values ≤ 10 µM (Figure 3-7 A-C). The 

four pro-apoptotic compound hits are highlighted in red in Figure 3-6B and C.   
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Figure 3-5: Plots showing percentage inhibition for compounds tested against (A) AtIPCS2 (B) OsIPCS2 (C) 

AUR1 complemented yeast strains. 
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Interestingly one of the pro-apoptotic compounds showed activity against both AtIPCS2 

and OsIPCS2 (6/12b; Figure 3-8A and B) whilst the other 3 hit only OsIPCS2. However, 

a closer inspection of the primary screen results shows that these compounds also targeted 

AtIPCS2 but fell below the inhibition threshold of ≥80% required for the compounds to 

be considered hits. Of the 4 pro-apoptotic compounds identified as hits, 3 share a common 

core and exhibit low µM activity in the assay; compound 6/12b is a dihydropyridazinone, 

compound 6/8c is an isothiazole carboxamide, and compounds 6/12a and 62/10d are 

dihydrotriazinones (Figure 3-7). For the biochemical screen, all 126 hits were carried 

forward in order to prevent the loss of active compounds.  

 

 

 

166 compounds 
showed 

differential 
selectivity 

~1000 compounds 
showed ≥80% 

inhibition 

11440 compounds 
screened 

AtIPCS2 OsIPCS2 

AUR1 
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40 

21 87 

Figure 3-6: (A) A screening pyramid showing the number of compounds selected to progress to each stage 

of the screening campaign (B) Venn diagram of the 166 hits showing the differential selectivity for 

AtICS2, OsIPCS2 and AUR1. 

(A)  (B)  

6/12b – IC50 = 3.1µM 6/8c – IC50 = 35.8µM 62/10d – IC50 = 4.5µM 6/12a – IC50 = 2.3µM  

6/12b – IC50 = 6.8µM 

Figure 3-7: Core structures of the four apoptotic inducer compounds with IC50 values – highlighted in red are 

compounds which showed activity against OsIPCS2 and in blue those showing activity against AtIPCS2 in the 

yeast-based primary assay.  
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Figure 3-8: (A) IC50 values for compounds tested against AtIPCS2. Each value is representative of the mean of two independent biological replicates. 
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Figure 3-8: (B) IC50 values for compounds tested against AtIPCS2, with known PCD inducer in red. Each value is representative of the mean with standard error 

calculated for two independent biological replicates. 
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Figure 3-7: (B) Graph showing IC50 values for compounds tested against AtIPCS2, with known PCD inducer in red  

 

0

10

20

30

40

50

60

70

IC
5

0

Compound

Figure 3-8: (C) IC50 values for compounds tested against OsIPCS2, with known PCD inducer in red. Each value is representative of the mean with standard error calculated 

for two independent biological replicates. 
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3.5 Secondary screening 
 

 A 96-well plate assay to screen for inhibitors of IPCS had already been developed within 

our group26. This assay allows for the separation of the fluorescent product IPC from the 

fluorescent substrate NBD-ceramide/NBD-phytoceramide using ion exchange 

chromatography. Assay parameters for secondary screening were first established to 

determine the initial velocity of the reaction so that the optimal concentrations of 

substrates could be chosen to ensure that the enzyme is not saturated, and the reaction not 

limited by substrate concentrations. The linear range was used in the enzyme assay to 

allow accurate quantitation.  

Following yeast microsome preparation as described, the activity of AtIPCS2 and 

OsIPCS2 in the presence and absence of exogenous phosphatidylinositol (PI, soy or 

bovine) was quantified. The result shows that there is a 330% increase in AtIPCS2 activity 

following the addition of exogenous soy PI. Bovine PI results in an increase of activity 

by about 200%, therefore unsurprisingly the Arabidopsis enzyme has a preference for the 

plant PI. However, OsIPCS2 lacks such a marked difference in activity in the presence  
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Figure 3-9: AtIPCS2 and OsIPCS2 activity assayed in the presence and absence of exogenous PI 

variants (1 mM) and NBD ceramide (4 µM). Each value is representative of the mean with standard 

error calculated for three independent biological replicates. 
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and absence of exogenous PI from either source (Figure 3-9). The reasons for this are 

unclear, it is possible that rice preferentially utilises a different PI species. 

 

In addition, to establish if the concentration of NBD-ceramide was limiting due to the 

much lower activity of OsIPCS2 microsomes, NBD-ceramide concentration was 

increased 3-fold to 12 µM. This lead to an increase in assayed OsIPCS2 activity (Figure 

3-10), particularly the response to soy PI (2-fold compared to -PI), indicating that NBD-

ceramide concentration had been limiting. In plants phytoceramide rather than ceramide 

is used as a natural substrate. To test if this is a preferred substrate, AtIPCS2 and OsIPCS2 

were assayed with 4µM NBD-phytoceramide in the presence and absence of PI (soy and 

bovine).  In the presence of NBD-phytoceramide, AtIPCS2 activity was similar when 

assayed with NBD-ceramide, although for reasons unknown, the enzyme now 

demonstrated a slight preference for bovine PI (Figure 3-11).  

 

 

 

 

 

Figure 3-10:  OsIPCS2 activity increased upon a 3-fold increase in NBD-ceramide to 12 µM and 

became more responsive to soy PI (1 mM). Each value is representative of the mean and the standard 

error calculated for three independent biological replicates. 
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In contrast, the activity of OsIPCS2 increased markedly (Figure 3-10) showing that 

phytoceramide is a better substrate for IPCS synthesis in plants. These data established 

that the optimum substrates were NBD-phytoceramide and soy PI; these were then 

utilised in all subsequent experiments. 

To determine the enzyme concentration required for the assay to achieve a high 

background to noise ratio, different amounts of AtIPCS2 (Figure 3-12) were tested in the 

96-well plate assay. Following incubation for 60 minutes, the product was quantified, and 

it was clear that an increase in enzyme concentration resulted in a likewise increase in 

IPC turnover.  

For OsIPCS2, increased quantities of microsomes were assayed to compensate for the 

relatively low activity, and a likewise increase in IPC turnover was observed which was 

associated with increasing enzyme concentration (Figure 3-13).   
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Figure 3-11: AtIPCS2 and OsIPCS2 activity assayed with NBD-phytoceramide (4 µM) in the presence and 

absence of exogenous PI (1 mM). As with the increased concentration of NBD-ceramide, the activity 

OsIPCS2 is increased when using NBD-phytoceramide (4 µM), and more responsive to soy PI. Each value 

is representative of the mean and standard error calculated for three independent biological replicates.  



 

 

104 | P a g e  
 

  

 

 

 

 

 

 

 

 

 

On the basis of these results (Figure 3-12 and 3-13), it was decided that 0.44 Unit/µl of 

AtIPCS2 and 0.07 Unit/µl of OsIPCS2 would be utilised in the secondary screen. In 

addition to producing a good level of signal, this also meant that the limited amount of 

microsomes available for screening would be sufficient.  

 

.  

 

 

 

 

 

 

Subsequently, various concentrations of soy PI (with NBD-phytoceramide at 4 µM) were 

tested to determine the amount necessary to achieve a high signal without jeopardising 

Figure 3-12:  AtIPCS2 concentration against IPC turnover. Each value is representative of the mean and 

standard error calculated for three independent biological replicates. 

 

Figure 3-13:  OsIPCS2  concentration against IPC turnover. Each value is representative of the mean and 

standard error calculated for three independent biological replicates. 
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the activity of the enzyme. AtIPCS2 activity peaks at 100 µM PI, and at higher 

concentrations there was a considerable decrease in activity (Figure 3-14). The observed 

decrease in AtIPCS2 activity resembled that seen for the Leishmania orthologue, 

LmjIPCS, which was established as being due to surface dilution kinetics27. In 

comparison, the activity profile for OsIPCS2 shows a peak in activity at 200 µM, after 

which there is a decrease in enzyme turnover (Figure 3-15).  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3-14: Soy PI concentration against AtIPCS2 IPC turnover. Each value is representative of the 

mean and standard error calculated for three independent biological replicates. 

 

Figure 3-15: Soy PI concentration against OsIPCS2 IPC turnover. Each value is representative of the 

mean and standard error calculated for three independent biological replicates. 
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Based on these findings it was decided that 100 µM PI should be assayed against varying 

concentrations of NBD-phytoceramide to identify the optimum amount of NBD-

phytoceramide for the assay (Figure 3-16). 

 

 

From this experiment carried out it was determined that 15 µM NBD-phytoceramide was 

the optimal concentration of NBD-phytoceramide, giving a high signal and being in the 

linear range. Therefore, the assay conditions were: 0.44 Unit/µl of AtIPCS2 or 0.07 

Unit/µl of OsIPCS2 100 µM soy PI and 15 µM NBD-phytoceramide, incubated at 30 °C 

for 60 minutes. 

With AUR1 used as a control in the screening it was necessary to check that the set of 

conditions defined for assaying AtIPCS2 and OsIPCS2 were suitable for this enzyme. 

Using the predetermined conditions (100 µM soy PI and 15 µM NBD-phytoceramide) 

the AUR1 reaction needed to be incubated for a maximum of 40 rather than 60 minutes 

to achieve a linear range (Figure 3-17). 

With the assay parameters validated, screening commenced with 10 µM of each of the 

126 compounds tested in duplicate. A threshold of ≥ 30% percentage inhibition was set 

to identify hits to progress to dose response testing for IC50 determination. 
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Figure 3-16: NBD-phytoceramide concentration against (A) AtIPCS2 (B) OsIPCS2 IPC turnover. Each 

value is representative of the mean and standard error calculated for three independent biological replicates. 
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Of the 126 compounds screened, 16 compounds were identified as hits; 14 were hits 

against AtIPCS2 and 6 against OsIPCS2, 5 of these inhibited both enzymes. Dose 

response analyses was carried out for these compounds in triplicate against AtICS2, 

OsIPCS2 and AUR1 to determine the IC50 for each hit against the 3 enzymes. Of the 16 

compounds tested only 2 showed activity against AUR1 at the highest concentration only 

(100 µM): compound 2 and 4. There was no activity at lower concentrations. In contrast, 

all compounds showed an inhibitory effect against the plant IPCSs.  

Of the 4 compounds with an IC50 ≤ 10 µM, 2 are phenylamidines (Compound 1 and 2) 

and the other 2 compounds are triazinone (Compound 3 and 4). These 4 compounds all 

showed selective inhibition of AtIPCS2 over OsIPCS2 in the yeast-based assay, with IC50 

values ranging from 3-5 µM for AtIPCS2 compared to 15-31 µM for OsIPCS2. The other 

three pro-apoptotic compounds (Table 3-1, structures highlighted in red) also share the 

same triazinone core but had IC50 values 15-47 µM for the plant IPCSs and showed 

differential selectivity for AtIPCS2 over OsIPCS2.  

Figure 3-17: Incubation time against AUR1 reaction rate with 100 µM PI and 15 µM NBD-phytoceramide. 

Each value is representative of the mean and standard error calculated for three independent biological 

replicates. 
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Table 3-1: IC50 determination and chemical structures of the 16 compounds identified as hits in the biochemical assay; highlighted in blue are the compounds that exhibited 

an IC50 value ≤ 10 µM, in red are the pro-apoptotic compounds and in purple is one of the proapoptotic compounds that also had an IC50 ≤ 10 µM against AtIPCS2 

Compound 

ID 

AtIPCS2 

IC50 

(µM) 

AtIPCS2 

IC50 95% 

confidence 

interval 

(µM) 

R 

square 
OsIPCS2 

IC50 (µM) 
OsIPCS2 

IC50 95% 

confidence 

interval 

(µM) 

R square Compound structure 

 

 

 

 

1 (15/10h) 

 

 

 

 

4.7 3.5 to 7.3 

 

 

 

 

0.99 13.9 to ??? 

 

 

 

 

13.9 to ??? 

 

 

 

 

0.77 

 

 

 

 

 

 

2 (113/11h) 4.0 

 

 

 

 

3.3 to 4.9 

 

 

 

 

 

0.99 

 

 

 

 

 

61.9 33.6 to ??? 

 

 

 

 

 

0.94 

 

 

 

 

 

 

 

3 (6/12b) 

 

 

 

 

 

 

8.4 

 

 

 

 

 

5.2 to 22.0 

 

 

 

 

 

 

0.94 

 

 

 

 

 

 

43.8 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

0.40 

 

 

 

 

 

 

4 (101/7h) 

 

 

 

 

 

9.8 

 

 

 

 

8.7 to 11.3 

 

 

 

 

 

0.99 

 

 

 

 

 

24.8 

 

 

 

 

 

21.5 to ??? 

 

 

 

 

 

0.98 

 

Structure redacted 

Structure redacted 

Structure redacted 

Structure redacted 
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5 (6/12a) 

 

 

 

 

 

 

 

15.1 

 

 

 

 

 

 

11.1 to 25.2 

 

 

 

 

 

 

 

0.99 

 

 

 

 

 

 

 

~ 38.6 

 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

 

0.78 

 

 

 

 

 

 

 

 

 

 

6 (7/4c) 

 

 

 

 

 

 

 

 

 

22.5 

 

 

 

 

 

 

 

 

13.6 to 98.4 

 

 

 

 

 

 

 

 

 

0.97 

 

 

 

 

 

 

 

 

 

~ 35.3 

 

 

 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

 

 

 

0.91 

 

 

 

 

 

 

 

7 (62/10d) 

 

 

 

 

 

 

30.7 

 

 

 

 

 

15.9 to 310.9 

 

 

 

 

 

 

0.98 

 

 

 

 

 

 

~ 46.6 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

0.83 

 

 

 

 

 

 

8 (101/8b) 

 

 

 

 

 

53.0 

 

 

 

 

 

25.1 to ??? 

 

 

 

 

 

0.96 

 

 

 

 

 

~ 44.2 

 

 

 

 

 

undetermined 

 

 

 

 

 

0.5 

 

Structure redacted 

Structure redacted 

Structure redacted 

Structure redacted 
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9 (121/7h) 

 

 

 

 

 

 

 

44.2 

 

 

 

 

 

 

25.9 to 69712 

 

 

 

 

 

 

 

0.96 

 

 

 

 

 

 

 

~ 37.6 

 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

 

0.91 

 

 

 

 

 

10 (120/4a) 

 

 

 

 

 

56.2 

 

 

 

 

 

35.5 to 96.8 

 

 

 

 

 

0.97 

 

 

 

 

 

~ 54633 

 

 

 

 

 

undetermined 

 

 

 

 

 

0.91 

 

 

 

 

 

 

 

 

11 (15/4d) 

 

 

 

 

 

 

 

 

59.8 

 

 

 

 

 

 

 

 

22.9 to ??? 

 

 

 

 

 

 

 

 

0.95 

 

 

 

 

 

 

 

 

~ 28.9 

 

 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

 

 

0.11 

 

 

 

 

 

 

12 (3/5g) 

 

 

 

 

 

~0.0002 

 

 

 

 

 

undetermined 

 

 

 

 

 

0.14 

 

 

 

 

 

~ 200.7 

 

 

 

 

 

undetermined 

 

 

 

 

 

0.31 

 
 

 
 

Structure redacted 

Structure redacted 

Structure redacted 

Structure redacted 
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13 (41/4a) 

 

 

 

 

 

 

53.9 

 

 

 

 

 

 

27.1 to 132.1 

 

 

 

 

 

 

0.94 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

 

14 (74/7h) 

 

 

 

 

 

 

 

16.1 

 

 

 

 

 

 

 

11.2 to 32.6 

 

 

 

 

 

 

 

0.98 

 

 

 

 

 

 

 

69.8 

 

 

 

 

 

 

 

29.61 to ??? 

 

 

 

 

 

 

 

0.97 

 

 

 

 

 

15 (66/10a) 

 

 

 

 

 

1456 

 

 

 

 

 

undetermined 

 

 

 

 

 

0.71 

 

 

 

 

 

undetermined 

 

 

 

 

 

undetermined 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

 

16 (84/7a) 

 

 

 

 

 

 

 

1251 

 

 

 

 

 

 

 

258.1 to ??? 

 

 

 

 

 

 

 

0.98 

 

 

 

 

 

 

 

~ 64027 

 

 

 

 

 

 

 

undetermined 

 

 

 

 

 

 

 

0.95 

 

Structure redacted 

Structure redacted 

Structure redacted 

Structure redacted 
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A literature search reveals that these compounds fall in to two compound classes: 1,2,4 

triazin-6-ones (compounds 3-6) and phenylamidines (compounds 1 and 2). The 1,2,4 

triazin-6-ones are fungicidal compounds which were filed for patent in 2001 by Dow 

Agrosciences28. Variants of this class have exhibited activity against the pathogenic fungi, 

L. nodorum, M. grisea, U. maydis and Z. tritici29.  The phenylamidines are active 

pesticides which were first discovered in the 1960s by Bayer for control of plant fungi30, 

with variants of these later patented for use as herbicides31.  

Structural analysis of the hits identified show that an aryl group attached to both nitrogens 

is necessary for enhanced activity against the plant IPCS; compound 8 which has an 

alkyne substituent attached to one of the nitrogens as opposed to an aryl group shows the 

lowest activity of the triazinones identified. The presence of thio or ether linker does not 

have much of an effect on plant IPCS activity and it seems that the presence of the more 

electron withdrawing fluorine attached to both aryl rings as opposed to chlorine and 

perhaps the presence of the fluorine at the meta position doubles the activity of the 

compound against AtIPCS2 (deduction made by comparing compound 3 and 5). Addition 

of a naphthalene substituent attached to sulphur as opposed to an aryl ring also seems to 

decrease activity due to sterics. Interestingly, compound 7 showed lowest activity of the 

triazinones possessing an aryl group attached to both nitrogens; the drop in activity is 

probably due to the change in configuration of all the substituents (structure has been 

flipped in compound 7) which shows that for good activity it is essential that the 

configuration of the substituents be maintained for a specific interaction between the 

electron withdrawing groups and a binding site in AtIPCS2.   

3.6 In vivo screening 
 

In vivo testing of the two compounds (compounds 1 and 2) that had IC50 values below 5 

µM was undertaken against 7 days old A. thaliana seedlings. Seedlings grown were first 
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grown on agar containing no compound and then transferred to agar containing either 

compound 1 or 2. Seedling transferred to agar containing 10 µM of compound 2 had 

purple patches associated with anthocyanine biosynthesis in plant response to stress32, 

and no lateral roots compared to seedlings grown on agar containing DMSO (Figure 3-

18A), whilst seedlings grown on agar containing 10 µM of compound 1, showed no 

obvious difference compared to wildtype (Figure 3-18B). Seedlings grown on 40 µM of 

compound 2 exhibited the same phenotypes of purple patches on leaves and no lateral 

root development. However, seedlings grown on 40 µM of compound 1, had chlorotic 

phenotype usually associated with PCD33 and no lateral root development compared to 

controls (Figure 3-18B). These results indicated that both compounds affected root 

development.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-18: From left to right, 10 days old A. thaliana seedlings transferred to agar containing (A) 10 µL 

DMSO, 10 µM and 40 µM compound 2 (B) 40 µL DMSO, 10 µM and 40 µM of compound 1. Image taken 

7 days after transfer of seedlings to agar containing the respective compounds.  

(B)  

(A)  
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Root growth was assessed by marking the root length after 4 days growth on the plates, 

then the changes in root length were measured after 3 days. No change in root length was 

observed in seedlings grown on 10 µM or 40 µM of compound 2. However, a significant 

difference was found between the primary root length of seedling grown on 10 µM of 

compound 1, compared to wildtype, with a reduction in root length by 30% (Figure 3-19) 

and seedlings grown on 40 µM of compound 1 showing no root development.  

 

 

 

 

 

.  

 

 

 

 

 
 

3.7 Conclusion 

 

The screening campaign to identify inhibitors of the plant IPCS led to the discovery of 

the phenylamidine and triazinone class of compounds as selective inhibitors of AtIPCS 

over AUR1, with the phenylamidines validated in an in vivo screen against A. thaliana 

seedlings. The phenylamidines exhibit low µM activity against AtIPCS2 in vitro causing 

chlorotic leaves, stunted development of lateral roots and primary root length in treated 

seedlings. These findings are compelling and raise the question of an interplay between 

sphingolipid biosynthesis and root development. The differential selectivity of these 

compounds for AtIPCS2 over OsIPCS2 and AUR1 in the yeast-based assay and the 
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Figure 3-19: Root length measurements of seedlings grown in DMSO and in the presence of 10 µM of 

compound 1. Each value is representative of the mean of six replicates. 
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enzyme assay, also raises the question as to how the compounds are interacting with the 

target; there is a high degree of sequence identity between AtIPCS2 and OsIPCS2 (68%), 

both sharing well conserved domains, so it would be interesting to explore how these 

compounds are able to selectively inhibit one over the other. The differential selectivity 

of the inhibitors identified for the dicot (A. thaliana) over the monocot (O. sativa) IPCS 

can be utilized to create herbicide formulations that selectively kill dicot weeds without 

harming monocot crops.   
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CHAPTER 4 
VALIDATION OF IPCS TRANSGENIC LINES FOR FUNCTIONAL GENOMIC 

ANALYSES 
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4.1 Chapter synopsis 
 
 

In this chapter, the creation and characterisation of Arabidopsis thaliana transgenic lines 

over-expressing AtIPCS1-3, and knock-down lines of AtIPCS1-3 are presented. 

Transgenic lines of 35s::GFP.AtIPCS1, 35s::GFP.AtIPCS2 and 35s::GFP.AtIPCS3 were 

also created for the analysis of protein localisation in Arabidopsis thaliana and Nicotiana 

benthamiana. These transgenic lines have been created to probe the changes in the 

transcriptome of knock-down/over-expression lines in response to a change in the 

expression of each orthologue. Also described in this chapter is the phenotypic screen of 

the transgenic lines, which identified an early flowering phenotype indicating a link 

between IPCS and vernalisation.  
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4.2 RNA interference, over-expression and localisation of AtIPCS1-3 

using gateway cloning 
 

Creating multiple expression constructs for the target gene of interest (AtIPCS1-3) using 

traditional ligase-mediated cloning is time-consuming and laborious, hence the use of 

gateway cloning. Gateway cloning exploits the bacteriophage lambda recombination 

system, bypassing the use of ligase-mediated cloning1.   

For RNA interference (RNAi) knock-down of a target of interest, double stranded RNA 

from an inverted repeat of the target sequence was expressed, resulting in post-

transcriptional gene silencing (PTGS). The classical understanding of RNAi triggered by 

the presence of an inverted repeat gene in plants involves transcription of the DNA 

sequence resulting in the formation of double stranded RNA (dsRNA). Following this, 

cleavage of dsRNA is mediated by the Dicer enzymes producing 21-25 nucleotides long 

siRNAs, which were first identified in plant lines harbouring a transgene that induced 

PTGS2. RNAi is carried out by the RNA induced silencing complex (RISC) a protein–

RNA effector complex, that utilizes the complementarity of the siRNA sequences to their 

target mRNA, resulting in degradation of the target mRNA mediated by the Argonaut 

proteins3. This leads to silencing or expression knock-down of the target.  

 

Knock-down or silencing of an IPCS gene can be achieved by the introduction of 

exogenous miRNAs designed to specifically target one of the three IPCS isoforms. The 

system utilized in this study is attractive as an alternative to the use of miRNAs, in that 

the siRNA produced from the dsRNA could potentially target the expression of one or 

more of the IPCS isoforms because of the high sequence identity shared; making it 

possible to observe the cumulative effect of differential expression of each IPCS isoform 

on plant development.  
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The Gateway ‘destination’ vectors used in this study were designed by Karimi et al.4; the 

pK7WG2 vector was used for over-expression, the pK7GWIWG2 (I) for silencing and 

the pK7FWG2 for localisation by N-terminal tagging of each IPCS orthologue with green 

fluorescent protein (GFP).   

Each IPCS orthologue (AtIPCS1-3) was cloned into the over-expression vector 

(pK7WG2), the silencing vector (pK7GWIWG2) and pK7FWG2 for GFP N-terminal 

tagging. The clones were verified as described in Materials and Methods. Subsequently, 

Agrobacterium tumefaciens (strain GV1301) mediated transformation of wild-type 

Arabidopsis (Col0) with the constructs was carried out to generate the T0 generation.  

4.2.1 AtIPCS1-3 localisation  
 

For preliminary localisation of AtIPCS1-3, the N-terminal GFP-tagged IPCSs constructs 

were used to transform Nicotiana benthamiana using agrobacterium strain GV1301 for 

transient expression of the protein. The 35s::GFP cytosolic marker was also transiently 

expressed as a control. 

  

 
 

The first attempts at the transient expression of 35s::GFP.AtIPCS2 and 35s::GFP.AtIPCS3 

failed with no fluorescence observed (Figure 4-1). However, 35s::GFP.AtIPCS1 exhibited 

high levels of expression (Figure 4-1). A closer look using confocal microscopy revealed 

Figure 4-1: From left to right, expression of 35s::GFP cytosolic marker, 35s::GFP.AtIPCS1, 

35s::GFP.AtIPCS2 and 35s::GFP.AtIPCS3 imaged 48 hours after infiltration of Nicotiana benthamiana 

with agrobacterium harbouring respective constructs for each isoform. 
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that the expression pattern was indicative of cytosolic expression (Figure 4-2). 

The cytosolic localisation of a multi-transmembrane protein such as AtIPCS1 was 

surprising given previous work by Wang et al. which had demonstrated that AtIPCS2 is 

localised to the trans Golgi network5. The results from 35s::GFP.AtIPCS1, 

35s::GFP.AtIPCS2 and 35s::GFP.AtIPCS3 transient expression suggested that the plant 

had pre-empted the expression of GFP tagged IPCS, resulting in free cytosolic GFP 

expression for the 35s::GFP.AtIPCS1 construct and no expression for 35s::GFP.AtIPCS2 

and 35s::GFP.AtIPCS3 constructs. The function of AtIPCS2 as a negative regulator of 

PCD is well characterized5; AtIPCS role in defence response could result in the silencing 

of 35s::GFP.AtIPCS expression in planta to pre-empt an incompatible reaction or could 

be due to the instability of the fusion protein.  

To ensure that the cytosolic expression of 35s::GFP.AtIPCS1 was not as a result of over-

expression due to multiple t-DNA insertions in a cell which is a consequence of high 

numbers of bacteria, the optical density of agrobacterium used to infiltrate N. 

benthamiana with the localisation constructs was reduced by 1/3.  

 

 

 

 

 

 

 

 

 

Figure 4-2: Subcellular localisation of 35s::GFP.AtIPCS1 imaged 48 hours after tobacco  

infiltration with agrobacterium harbouring 35s::GFP.AtIPCS1 expression construct. 
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This was also beneficial for testing 35s::GFP.AtIPCS1 and 2 to find out if suppression of 

expression was a result of the detection of high levels of AtIPCS transcript. 

35s::GFP.AtIPCS1, 2 and 3 were co-infiltrated respectively with RFP tagged sialyl 

transferase (ST) which is localised to the Golgi6. From the results (Figure 4-3) it was clear 

that the expression and localisation of ST RFP to the Golgi was successful, however, no 

expression could be seen for 35s::GFP.AtIPCS1-3. With the unsuccessful expression of 

35s::GFP.AtIPCS1-3 in N. benthamiana, 35s::GFP.IPCS expression was checked in A. 

thaliana transgenic lines. From the T2 generation; RNA was isolated from the 10 day old 

seedlings, and following cDNA synthesis, real-time PCR was used to quantify 

35s::GFP.AtIPCS1, 2 and 3 expression.  

 

 
 
 

 

 

Analyses were carried out using the comparative cycle threshold (Ct) method which is 

based on the fold difference in gene expression between the target and an internal standard 

gene7. In this study, the internal standard was PEX4, which encodes a ubiquitin-

conjugating enzyme-like protein involved in transporting proteins targeted to the 

peroxisome8.  

Figure 4-3: left to right, expression of the Golgi marker ST RFP, merged image of GFP tagged AtIPCS1 and 

ST RFP, merged image of GFP tagged AtIPCS2 and ST RFP, merged image of GFP tagged AtIPCS3 and ST 

RFP.  Plasmid DNA of ST RFP and 35s::GFP.AtIPCS1, 35s::GFP.AtIPCS2 and 35s::GFP.AtIPCS3 

respectively was introduced into tobacco cells by infiltration with agrobacterium and imaged with a confocal 

microscope 72 hours after infiltration. 
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Transgenic lines harbouring 35s::GFP.AtIPCS2 and 3 were lost due to a viral infection, 

however, 35s::GFP.AtIPCS1 transgenic plants were retrieved, and seeds from this line 

were grown and checked for expression of IPCS1 using real-time PCR and gene specific 

primers. As expected these transgenic lines had higher expression of AtIPCS1 compared 

to Col0 (Figure 4-4). 

However, under the confocal microscope, only low levels of fluorescence were observed, 

surrounded by dark regions that were indicative of dead cells (data not shown). These and 

the data above indicated that 35s::GFP.AtIPCS constructs were not suitable for 

localisation analyses. 

 

 

 
 

 

4.2.2 AtIPCS1-3 RNAi transgenic lines  
 
 

In a similar manner, expression levels in RNAi AtIPCS1, 2 and 3 Arabidopsis knock-

down lines were also quantified by real time PCR. To circumvent the detection of 

Figure 4-4: Relative transcript levels of AtIPCS1 in Arabidopsis transgenic lines compared to wild-type: ten-

week -old seedlings were grown on MS agar. Nomenclature of transgenic line is as follows: the first number 

identifies the IPCS isoform and the second number in brackets refers to the clonal line. Total RNA prepared 

from these seedlings and cDNA synthesised from 2 µg of total RNA, then used for transcript analysis using 

SYBR green RT-PCR. Results are an average with standard error calculated for three technical replicates in 

each clonal line. 
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accumulating IPCS mRNA in the cytoplasm destined for degradation, primers were 

designed to detect the 3’ untranslated region (UTR) so that only the detection of mRNA 

destined for translation would be quantified. 

Quantification of each IPCS isoform was probed with three specific primers pairs for each 

isoform to establish how the knock-down of one of the isoform would affect the 

expression pattern of the other (Figure 4-5). AtIPCS1 transcript levels were 57 and 77% 

relative to Col0 for At1 RNAi 5 and 6 transgenic lines respectively. Interestingly AtIPCS1 

levels were also reduced in At2 RNAi 3, At2 RNAi 4 and At3 RNAi 2 (45, 85 and 46% 

respectively); these also exhibited the expected reduction of AtIPCS2 transcript levels 

(61, 86 and 56% respectively). The transgenic lines At2 RNAi 1 and At2 RNAi 7 had 

AtIPCS2 transcript levels of 53% and 61% relative to Col0, and At3 RNAi 2 exhibiting 

AtIPCS2 levels of 56%.  

Quantification of AtIPCS3 transcripts in the transgenic lines, revealed that At2 RNAi 3 

and At3 RNAi had significantly less AtIPCS3 transcript compared to Col0 (19 and 45% 

respectively).  Of all the transgenic lines tested, At2 RNAi 3 showed reduction in the 

expression of all three IPCS isoforms. This was of particular interest, for the further 

analyses of the global effects of sphingolipid dysfunction.  

To understand the modulation of the three IPCS isoform in relation to one another, scatter 

graphs showing the transcript levels detected for one isoform plotted against the transcript 

levels detected for another isoform in the same transgenic lines were drawn with 85% 

reduction in IPCS transcript level set as the cut off value (Figure 4-6A-C).   No correlation 

was found between AtIPCS1 and AtIPCS2 expression levels, however lines that had 

shown a decrease in AtIPCS2 transcripts levels had an observable increase in AtIPCS3 

expression (Figure 4-6C – points highlighted in yellow).  
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Figure 4-5: Relative transcript levels of AtIPCS1-3 in Arabidopsis transgenic lines compared to wildtype using specific primers designed for each isoform and designed to detect 

the 3’ UTR region of each isoform. Nomenclature of transgenic line is as follows: the first number identifies the IPCS isoform and the second number refers to the clonal line 

Total RNA was extracted from ten-day-old seedlings grown on MS agar and cDNA synthesised from 2 µg of total RNA. Transcript levels were analysed using SYBR green 

RT-PCR and are the average with standard error calculated for three technical replicates in each clonal line.  
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Figure 4-6: Percentage transcript levels of AtIPCS1-3 in the transgenic lines relative to Col0 (A) AtIPCS1 vs 

AtIPCS3 levels (B) AtIPCS2 vs AtIPCS1 levels (C) AtIPCS3 vs AtIPCS2. Highlighted in red are transgenic 

lines that showed significant reduction in transcript level for both IPCS isoforms and highlighted in yellow 

are transgenic lines which showed a relationship between the differential expression of AtIPCS2 and AtIPCS3.  
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Based on the initial results, three transgenic lines were selected for each isoform of 

AtIPCS which showed a reduction in transcript levels: At1RNAi 5, At1 RNAi 6, At1 

RNAi 7, At2 RNAi 1, At2 RNAi 3, At2 RNAi 7, At3 RNAi, At3 RNAi 2 and At3 RNAi 

5. To confirm genetic stability of the reduced transcript levels of IPCS, the transgenic 

lines were grown to obtain the T3 generation and the transcript levels of AtIPCS1, 2 and 

3 quantified (Figure 4-7). 

Quantification of AtIPCS1 showed that the transgenic lines which had previously shown 

a decrease in transcripts of 57% and 77% for At1 RNAi 5 and At1 RNAi6 (Figure 4-9) 

had increased to 106% and 93% respectively. This indicated that RNAi of AtIPCS1 

transcripts was not genetically stable. In contrast, the reduction in AtIPCS2 transcripts 

proved to be genetically stable with similar levels observed for the selected transgenic 

RNAi and At3 RNAi 5 had 26% and 16% of AtIPCS3 wild-type transcript, compared to  
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Figure 4-7: Relative transcript levels of AtIPCS1, 2 and 3 in the selected Arabidopsis transgenic lines 

from the T3 generation compared to wildtype. Nomenclature of transgenic line is as follows: the first 

number identifies the IPCS isoform and the second number refers to the clonal line. Total RNA was 

extracted from ten-day-old seedlings grown on MS agar and cDNA synthesised from 2 µg of total RNA. 

Transcript levels were analysed using SYBR green RT-PCR and are the average with standard error 

calculated for three technical replicates in each clonal line.  
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lines: At2 RNAi 1 (20%), At2 RNAi 3 (69%) and At2 RNAi 7 (45%). Similarly, At3 the 

earlier qPCR result which yielded 45% and 78%. Interestingly, all lines, except At3 RNAi 

4, showed a reduction in AtIPCS2 mRNA levels, 20-69% of wild-type. 

It was observed that there was large variation between the biological duplicate results, in 

some part is owed to pipetting errors, but also to the fact that the analysed lines comprise 

of pools of different clonal lines consisting of hemizygous, homozygous and wildtype 

expression of the different isoforms of AtIPCS. To isolate a stable homozygous line, T3 

transgenic clonal lines were collected separately and a progeny test carried out. The 

progeny test is based on the knowledge that the transformed T0 generation are 

heterozygous for the introduced transgene and are kanamycin resistance9. 

 

Following self-pollination of the T1 generation, a mixture of homozygous (kanamycin 

resistant), hemizygous (kanamycin resistant) and wildtype (kanamycin sensitive) T2 

generation is formed with a segregation ratio of 3:1 for transgenic lines harbouring the 

transgene. The same pattern of antibiotic selection also occurs in the T3 generation but 

with a segregation ratio of 5:3. If the parent of the T3 generation is homozygous, all seeds 

grown on kanamycin plates will survive as all of the progeny of a homozygous parent 

would be homozygous and therefore kanamycin sensitive. In contrast parent lines that are 

hemizygous will have some progeny that are kanamycin sensitive and not viable. 

 

Of the 60 independent transgenic lines tested, 6 transgenic lines tested positive as 

homozygous lines with all seeds grown on kanamycin medium surviving. transgenic lines 

had reduced expression for at least one isoform of AtIPCS (Figure 4-8). However, RNAi 

effectively reduced transcript levels when targeted against AtIPCS2 and 3; AtIPCS1 

RNAi did not lead to a decrease in AtIPCS1 mRNA (Figure 4-8) which suggests that it 

has an essential role linked to the early developmental stages in plants.  
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4.2.3 AtIPCS1-3 overexpression transgenic lines 
 
 

Quantitation of transgenic lines over expressing AtIPCS1-3 was carried out in the same 

manner. It was found that over-expression of AtIPCS1 and AtIPCS3 was highly efficient 

with very high levels of transcript detected, hundreds of folds higher than Col0. In 

contrast, over-expressing AtIPCS2 had transcript levels only 5-7-fold higher than Col0 

(Figure 4-9A-C). 

The lower relative over-expression of AtIPCS2 in the transgenic lines, was despite the 

fact that this isoform is the most highly expressed in Arabidopsis. These data suggested 

that the level of AtIPCS2 expression is tightly regulated, which could indicate that this is 

because AtIPCS2 functions as a negative regulator of PCD5, so it is vital for plant survival 

that the expression levels are tightly regulated. Therefore, transgenic lines with higher 

levels of AtIPCS2 transcripts may not be viable, resulting in a selection pressure for lines 
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Figure 4-8: Relative transcript level of AtIPCS1, 2 and 3 n T3 homozygous Arabidopsis transgenic lines 

compared to wildtype using specific primers designed to detect the 3’ UTR in each isoform. Nomenclature 

of transgenic line is as follows: the first number identifies the IPCS isoform and the second refers to the 

clonal line Total RNA was extracted from ten-day-old seedlings grown on MS agar and cDNA synthesised 

from 2 µg of total RNA. Transcript levels were analysed using SYBR green RT-PCR and are the average 

with standard error calculated for three technical replicates in each clonal line. 
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Figure 4-9: Quantification of AtIPCS1, 2 and 3 transcripts in respective overexpression transgenic lines 

Arabidopsis compared to wildtype using specific primers designed to detect each IPCS isoform (A) AtIPCS1 

(B) AtIPCS2 (C) AtIPCS3. Nomenclature of transgenic line is as follows: the first number identifies the IPCS 

isoform and the second number in brackets refers to the clonal line. Total RNA was extracted from ten-day-

old seedlings grown on MS agar and cDNA synthesised from 2 µg of total RNA. Transcript levels were 

analysed using SYBR green RT-PCR and are the average with standard error calculated for three technical 

replicates in each clonal line. 

(B) 

(C) 

Col 0 At1 (3) At1 (5) At1 (7) At2 (2) At2 (7) At2 (9) At3 (4) At3 (5) At3 (7)

0

50

100

150

200

250

300

350

400

450

500

Tr
an

sc
ri

p
t 

le
ve

ln
o

rm
al

is
e

d
 r

e
la

ti
ve

 
to

 C
o

l0

AtIPCS1 transcript level

0

50

100

150

200

250

300

350

400

450

500

Col 0 At1 (3) At1 (5) At1 (7) At2 (2) At2 (7) At2 (9) At3 (4) At3 (5) At3 (7)

Tr
an

sc
ri

p
t 

le
ve

ls
 n

o
rm

al
is

e
d

 
re

la
ti

ve
 t

o
 C

o
l0

AtIPCS3 transcript level

0

2

4

6

8

10

12

Col 0 At1 (3) At1 (5) At1 (7) At2 (2) At2 (7) At2 (9) At3 (4) At3 (5) At3 (7)

Tr
an

sc
ri

p
t 

le
ve

ls
 n

o
rm

al
iz

e
d

 r
e

la
ti

ve
 t

o
 

C
o

l0

AtIPCS2 transcript level

(A) 



 

 

132 | P a g e  
 

with lower over-expression levels of AtIPCS2. These data also showed that the over-

expression is target specific, with the transcript levels of the other isoforms found to be 

relatively unaffected (Figure 4-9A-C).   

 

4.3 Phenotypic analysis of transgenic lines  
 
 

 Phenotypic analyses of the transgenic lines revealed no obvious phenotype at 10 days, 

however one transgenic line At3 RNAi 4 had seedlings displaying chlorotic leaves 

(Figure 4-10). When these were transferred to soil there was no growth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Work carried out by Boyes et al. outlined the principle growth stages of  Col0 from seed 

imbibition to senescence including the average period in days for each stage for plate-

based and soil-based phenotypic analysis10. Phenotypic analysis of the transgenic lines 

compared to Col0 showed that RNAi transgenic lines had earlier inflorescence emergence 

 

 

 

Figure 4-10: Phenotypic analysis of 13 days old at At3 RNAi 4 transgenic lines grown on MS agar; some 

seedlings have chlorotic leaves which are highlighted in blue circles. 
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Figure 4-11: Phenotypic analyses of transgenic lines at 31 days (A) Col0 (B) At1 RNAi 7 (4) (C) At1 over exp 7 (D) At2 RNAi 1(3) (E) At2 over exp 9 (F) At3 RNAi (2) 

(G) At3 over exp 5. 
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Figure 4-12: Phenotypic analyses of transgenic lines at 44 days (A and B) Col0 which had flowered with varying degrees in height (C) At1 RNAi 7 (4) (D) At1 over 

exp 7 (E) At2 RNAi 1(3) (F) At2 over exp 9 (G) At3 RNAi (2) (F) At3 over exp 5. 
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and flowering compared to over expressing transgenic lines and Col0. RNAi transgenic 

lines flowering was first captured at 31 days (Figure 4-11) whilst Col0 and the over-

expressors at the same time point still showed no signs of flowering. IPCS overexpressing 

lines flowered (40 days) slightly earlier than Col0 (44 days) and were found to growing 

quicker (Figure 4-12). 

This phenotype of early flowering has been shown to be a phenotype of plants grown in 

cold condition for extended periods of time and is triggered by a decrease in Flowering 

Locus C (FLC) transcript levels11. This process termed vernalisation, is not an inheritable 

trait and requires low temperatures exposure in successive generations to promote 

flowering12. In addition there is an FLC independent vernalisation pathway that promotes 

early flowering13, as does the autonomous pathway, which also controls flowering time 

in plants and requires the repression of FLC expression for early flowering14. The early 

flowering observed in RNAi transgenic lines are inheritable, implicating IPCS has a role 

to play in accelerating plant flowering time in Arabidopsis.   

  

 

Another phenotype observed in the RNAi lines were much smaller rosette leaves and 

weak stems which needed support to stand upright, compared to Col0 and over-
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Figure 4-13: Tracking the growth of transgenic lines over 52 days; RNAi lines stem emergence (31 days) 

was earlier than overexpression transgenic lines and Col0 (44 days). 
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expressing lines which had bigger rosette leaves and strong stems that were upright 

(Figure 4-12). 

 

In addition, some RNAi transgenic lines showed early onset of senescence at 44 days in 

comparison to over expressing transgenic lines and Col0 (Figure 4-12). A comparison of 

plant growth showed that the RNAi lines exhibited initial acceleration in flowering 

relative to the overexpressing lines and Col0 (Figure 4-13). However, after late 

inflorescence emergence the overexpressing lines grew at a quicker rate and surpassed 

the RNAi lines in height.  

 

4.4 Transcript quantification of AtIPCS homozygous lines from 

European seed bank  
 

 

In an alternative approach, homozygous tDNA mutants of AtIPCS1-3 were sought from 

the European seed bank, but only mutants for AtIPCS2 (N696590) and AtIPCS3 

(N674600) were available. Transcript levels of AtIPCS1 and AtIPCS2 were quantified in 

the homozygous t-DNA mutant lines (Figure 4-14). 

  
Figure 4-14: Transcript level of AtIPCS1, 2 and 3 in homozygous t-DNA mutants AtIPCS1 and AtIPCS2. 
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The AtIPCS1 t-DNA mutant showed a significant reduction in AtIPCS1 transcripts, 

however, the AtIPCS2 t-DNA mutant exhibited high levels of AtIPCS2 mRNA. In 

AtIPCS2 t-DNA mutants, the insertion was found to be located upstream of the AtIPCS2 

promoter, so disruption of expression would be far from certain. Indeed, studies of 

multiple t-DNA mutants have shown that insertion in the intron or exon regions are more 

effective than insertions occurring in the promoter or regions upstream of the promoter15. 

In comparison, the t-DNA insert for AtIPCS1 was located in the intron sequence. Although 

this would have been spliced out, the significant reduction in AtIPCS1 transcript levels 

suggested that transcripts were produced with decreased efficiency.  

 
4.5 Conclusion  
 
 

AtIPCS1-3 RNAi and over expressing transgenic lines were created and verified by 

qPCR. Homozygous lines were verified by progeny testing for RNAi lines. Phenotypic 

analyses of the transgenic lines yielded some interesting results, implicating IPCS in plant 

development particularly with regards to the robustness of the stem. In addition, IPCS 

was found to be implicated in vernalisation as indicated by the early flowering phenotype 

in RNAi AtIPCS1-3 knock down transgenic lines, which is genetically stable and 

hereditary. The overexpressing lines also exhibited an early flowering phenotype 

compared to Col0 but was much later compared to the RNAi transgenic lines, indicating 

that reduction in AtIPCS transcripts has a more pronounced effect on the flowering time 

of plants. In generally the RNAi lines were unhealthy, with earlier onset of senescence 

and withering brown leaves when compared to over-expressers and Col0. These 

observations show that IPCS is necessary in plants development. For a deeper 

understanding of which biological pathways are affected by a change in IPCS expression, 

transcriptomic analyses were carried out, which will be discussed in the next chapter.  
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5.1 Chapter synopsis 
 
 

 In this Chapter, RNASeq was carried out on transgenic lines overexpressing each isoform 

of IPCS in Arabidopsis thaliana. Analyses of the changes in the transcriptome revealed 

the role of AtIPCS in plant defence response to biotic and abiotic stress. In addition, 

RNASeq analyses were also carried out on an AtIPCS1 t-DNA insertion mutant to 

compare changes in the transcriptome with the over-expressor lines, thereby uncovering 

the effects of the dose dependent expression of AtIPCS and the global function of IPCS 

in plants.  

 

5.2 Analyses of the transcriptome 
 
 

Following the verification of the transgenic lines (Chapter 4) RNASeq was carried out on 

10-day old over-expressor lines and 10 day old AtIPCS1 t-DNA mutant line at principal 

growth stage 1.02; the RNAi lines were not utilized for RNASeq due to the limited time 

available. Principle component analysis (PCA) was carried out to quantify the variance 

between data sets (levels of gene transcription in each plant cell) in different samples 

(technical and biological replicates).  

 

A PCA plot was created that captured the variance in the transcription patterns in each 

sample, accounting for 73% of the variance identified. From this plot, it was clear to see 

that all technical replicates of each biological sample, apart from one AtIPCS2 over-

expressor, At2-over-exp-2, clustered closely together, demonstrating that the 

transcriptomic data from the technical replicates, are similar, as expected (Figure 5-1). 

The variability in the variance between technical replicates for At2 over-exp-9 cannot be 

explained. However, a sample-to-sample heat map showing the similarities and 

dissimilarities between samples, reveals that all technical replicates of a given biological 
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sample, including At2-over-exp-9 cluster together (Figure 5-2). This showed that the 

technical replicates of At2-over-exp-9 are actually quite similar, despite the differences 

in variance revealed in the PCA plot.  

 

 

Functional characterisation of OsIPCS1-3 has been carried out, and has revealed that the 

Figure 5-1: PCA plot of variance between transcriptome of technical and biological replicates for 

AtIPCS1-3 over-expresser and AtIPCS1 t-DNA mutant transgenic lines. 

Figure 5-2:  Heat map showing sample to sample distances for technical and biological replicates. 
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expression of each IPCS isoform is modulated in response to abiotic stress (drought, cold 

and salt) to different degrees, with each isoform showing an organ specific expression 

pattern1. OsIPCS1 and OsIPCS2 were found to be upregulated in response to cold and 

drought in the roots and stem, but specifically down-regulated in the leaves in response 

to cold. OsIPCS3 expression was found to be upregulated in all tissues, in response to 

drought, cold and salt stress. 

 
To date, there has been limited functional characterisation of the three IPCS isoforms in 

A. thaliana. Work done by Wang et al, has characterised AtIPCS2 as a negative regulator 

of PCD2 in plants, but little is known about AtIPCS1 and AtIPCS3. These two homologues 

are likely redundant in function, and exhibit tissue-specific differential expression, with 

AtIPCS2 found to be highly expressed in all tissues, whilst AtIPCS1 expression is  log2 

fold ≥ 2 lower in expression in all tissues and AtIPCS3 is highly expressed in flowers, and 

stems comparable to AtIPCS2 expression levels3. AtIPCS3 shows a  log2 fold ≥ 3 lower 

expression levels than AtIPCS2 in roots, rosette leaves, cauline leaves, and siliques and 

is lower in expression in comparison to AtIPCS1 in all tissues apart from in siliques, 

flowers and stems3. The differential expression of the three isoforms, could be an 

indication of as yet unidentified, tissue specific regulatory roles and modulation of plant 

response to stimuli, based on the specific expression pattern of each isoform.  

 

RNASeq of two biological replicates for each IPCS isoform over-expressor lines was 

carried out, with Col0 as control. Genes that were identified as upregulated with a log2 

fold difference in expression in both biological replicates, compared to Col0, were carried 

forward for further analyses. It was found that 275 genes were upregulated in the AtIPCS2 

over-expressors, 70 in AtIPCS1 and 19 genes in the AtIPCS3 over-expressors; of these 15 

were found to be upregulated in response to the overexpression of all three isoforms 

(Figure 5-3A). Regarding the down regulated genes, again AtIPCS2 over expressors 



 

 

143 | P a g e  
 

transgenic lines had the highest number showing a log2 fold change ≥ 2 in expression, 

with 135 compared to 54 and 59 genes for AtIPCS1 and AtIPCS3 respectively (Figure 5-

3B). Of these, 26 genes were downregulated in all three IPCS isoforms over-expressors.  

 

The acquisition of high-throughput data from genomic and proteomic experiments, 

results in labour-intensive analyses to identify the involvement of a set of genes in a 

specific pathway. In order to achieve this, pathway analysis (also called enrichment 

analysis) is undertaken to identify the underlying biological function of these set of genes; 

this is referred to as the gene ontology4. The set of genes enriched under a specific GO 

are then compared to a set of genes associated with a specific biological pathway, and p-

values generated by comparing the observed frequency of a GO term with the frequency 

expected by chance; GO annotation with a p-value ≤ 0.05 are considered to be enriched5. 

Singular enrichment analysis was carried out to categorise the genes identified, into the 

relevant biological pathways within which they function.  

 

Figure 5-3: Venn diagrams showing the number of genes that were (A) upregulated (B) down regulated 

in the overexpression lines when compared to Col0. 

(A) (B) 



 

 

144 | P a g e  
 

5.3 Genes downregulated in response to the overexpression of AtIPCS1, 

2 and 3 
 

Analyses of genes that were downregulated and upregulated in response to the 

overexpression of AtIPCS1, 2 and 3 was carried out using agriGO 

(http://bioinfo.cau.edu.cn/agriGO/analysis.php). Genes downregulated in both AtIPCS1 

over expressors (At1-over-exp-3 and At1-over-exp-7) revealed a significant enrichment 

(p = 1.87e-12) for genes annotated with the GO term GO:0006950 response to stress, with 

43.4% (23/53) of the genes associated with this term compared to 6.14% in the 

Arabidopsis transcriptome (Table 5-1). Other GO terms with siginificant enrighment 

include response to biotic stimulus (13/53) and defence response (13/53), with response 

to salicylic acid (7/53) and jasmonic acid stimulus (5/530) also showing enrichment.  Of 

the 23 genes enriched under resposne to stress, 13 were associated with defence response 

and 9 were found to be downregulated by a log2 fold ≥ 2 in at least one biological replicate 

(highlighed in bold in Table 5-2).  

 

Of particular interest are genes that showed a dose dependent decrease associated with 

higher transcript levels of AtIPCS1 in the At1 over-exp-7 transgenic line; these genes 

included plant defensin 1.2B,  the salicylic acid inducible pathogenesis-related genes, PR1 

and PR2, and an ethylene/jasmonate responsive element plant defensin, a well 

characterized component of the defence network against pathogens6 (Figure 5-2). PR1 

and PR2, and the ethylene/jasmonate responsive element plant defensin, showed a 2-fold 

decrease in transcript levels in At1 over-exp-7 transgenic lines, compared to At1 over-

exp-3 which over expresses AtIPCS1 at a lower level. 

 

This implied that there is a link between the levels of AtIPCS1 transcript and the 

expression of these genes. The roles of PR genes are well established in the plant response 

to biotic and abiotic stress; PR2 and PR5 expression level are elevated in response to plant  

http://bioinfo.cau.edu.cn/agriGO/analysis.php
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Table 5-1: GO enrichment of genes down regulated in response to the constitutive overexpression of AtIPCS1 

 

 

GO term Description     Number in input list   Number in Background         p-value 

GO:0050896 Response to stimulus 32 4057 3.50E-18 

GO:0006950 Response to stress 23 2320 1.50E-14 

GO:0051707 Response to other organism 13 599 2.10E-12 

GO:0009607 Response to biotic stimulus 13 638 4.60E-12 

GO:0006952 Defence response 13 766 4.30E-11 

GO:0051704 Multi-organism process 13 776 5.00E-11 

GO:0009814 Defence response, incompatible interaction 7  143 1.80E-09 

GO:0009751 Response to salicylic acid stimulus 7  200 1.70E-08 

GO:0045087 Innate immune response 7  347 6.30E-07 

GO:0009628 Response to abiotic stimulus 12 1471 7.60E-07 

GO:0006955 Immune response 7  367 9.10E-07 

GO:0002376 Immune system process 7  368 9.30E-07 

GO:0009753 Response to jasmonic acid stimulus 5  215 1.50E-05 

GO:0010033 Response to organic substance 10 1342 1.60E-05 

GO:0042221 Response to chemical stimulus 12 2085 2.60E-05 

GO:0009605 Response to external stimulus 5  429 0.00035 

GO:0009266 Response to temperature stimulus 5  485 0.00062 

GO:0009416 Response to light stimulus 5  596 0.0015 

GO:0009314 Response to radiation 5  613 0.0017 

GO:0009719 Response to endogenous stimulus 6  1068 0.0038 

GO:0005618 Cell wall 6  403 2.30E-05 

GO:0030312 External encapsulating structure 6  407 2.40E-05 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0050896
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0006950
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0051707
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009607
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0006952
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0051704
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009814
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009751
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0045087
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009628
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0006955
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0002376
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009753
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0010033
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0042221
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009605
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009266
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009416
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009314
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0009719
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0005618
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=519940242&GO=GO:0030312
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Table 5-2: Genes down regulated by the constitutive overexpression of AtIPCS1, highlighted in red are genes responsive to JA signalling, in blue are genes responsive to SA 

signalling, in purple are genes responsive to SA and JA and in bold are genes with log2 fold change ≥ 2 

 

                                                                                                                                                        At1-over-exp-3                           At1-over-exp-7 

Gene ID Gene annotation Log2 fold 

change 

p-value     Log2 fold change p-value 

AT1G31580 ECS1 (CARBOXYPEPTIDASE) -1.6 1.60E-73 -1.1 3.71E-37 

AT2G24850 TAT3 (TYROSINE AMINOTRANSFERASE 3) -1.8 6.29E-17 -4.0 1.33E-53 

AT2G26020 PLANT DEFENSIN 1.2B -1.9 8.15E-18 -5.0 1.44E-66 

AT5G52310 LTI78 (LOW-TEMPERATURE-INDUCED 78) -1.1 6.25E-52 -1.5 5.40E-102 

AT2G14610 PR1 (PATHOGENESIS-RELATED GENE 1) -3.4 1.83E-172 -7.3 4.08E-238 

AT1G75040 PATHOGENESIS-RELATED GENE 5 -1.4 3.27E-22 -1.7 2.13E-33 

AT1G06160 OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF 59 -1.0 1.14E-10 -1.4 9.92E-17 

AT1G06040 STO (SALT TOLERANCE) -1.1 2.13E-28 -1.5 1.78E-49 

AT2G14560 LURP1 (LATE UPREGULATED IN RESPONSE TO HYALOPERON

OSPORA PARASITICA) 
-2.7 5.62E-112 -3.4 1.13E-162 

AT5G10140 FLC (FLOWERING LOCUS C) -1.2 2.18E-09 -1.5 4.16E-14 

AT1G19670 CLH1 (CORONATINE-INDUCED PROTEIN 1) -1.7 4.25E-75 -1.8 9.20E-91 

AT4G14400 ACD6 (ACCELERATED CELL DEATH 6) -1.7 3.11E-73 -1.5 5.03E-60 

AT5G57380 VIN3 (VERNALIZATION INSENSITIVE 3) -1.1 0.002783851 -1.1 0.001246826 

AT5G37260 RVE2 (REVEILLE 2) -1.4 2.65E-46 -1.2 1.18E-38 

AT3G57260 PATHOGENESIS-RELATED PROTEIN 2 -1.9 1.17E-30 -5.3 4.64E-102 

AT3G56400 WRKY70 -1.0 3.44E-33 -1.8 3.96E-89 

AT3G45860 RECEPTOR LIKE PROTEIN-KINASE -1.5 6.64E-09 -2.9 3.18E-24 

AT5G44420 ETHYLENE AND JASMONATE RESPONSIVE PLANT DEFENSIN -2.7 1.49E-54 -6.1 2.23E-122 

AT4G12490 AZI3, LPID TRANSFER PROTEIN (LTP) -1.3 7.93E-05 -4.6 4.17E-43 

AT4G24350 PHOSPHORYLASE FAMILY PROTEIN -1.2 8.48E-38 -1.2 1.08E-41 

AT3G25760 AOC1 (ALLENE OXIDE CYCLASE 1) -1.2 6.06E-40 -1.7 4.85E-72 

AT2G40750 WRKY54 -1.3 4.41E-14 -1.2 1.08E-13 

AT1G09080 ATP binding BIP3 -1.1 7.65E-06 -2.5 6.79E-21 
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infection with the pathogen, Erwinia amylovora7. PR1 expression is elevated in response 

to SA8, ethylene and methyl jasmonate9, and all three PR genes are upregulated in 

response to drought10. The down regulation of these PR genes (PR1, PR2 and PR5) in 

response to the constitutive overexpression of AtIPCS1 implies that AtIPCS1 is part of 

the plant defence signaling network.  

 

Interestingly, between the two AtIPCS1 over-expressors, a 3-fold difference in transcript 

levels of tyrosine amino transferase 3 (TAT3) was observed; this protein has been shown 

to increase in expression in response to wounding, and was hypothesized to have 

increased activity following pathogen attack in order to meet the high demand for 

prenylquinones that neutralize reactive oxygen species (ROS)11. Another gene that 

showed a three-fold decrease in transcript levels was the systematic acquired resistance 

(SAR) specific protein, azelaic acid induced 1 (AZI1) which interacts with DIR1 

(Defective in Induced Resistance), forming a complex that contributes to the biosynthesis 

and accumulation of glycerol-3-phosphate (G3P), a molecule necessary for the spreading 

of SAR signaling to distal tissues in plants12, 13.  

 

The results from the transcriptomic analyses of genes downregulated in response to the 

overexpression of AtIPCS1, suggested that it is a negative regulator of the plant defence 

response to pathogens. This affects both the SA and JA signaling pathways, which 

counters the well-established JA/ET and SA antagonistic relationship found in most plant 

defence response against pathogens14, 15. Studies have shown that SA signaling is usually 

instigated in response to biotrophic and hemibiotropic pathogens, whilst JA signaling is 

activated by necrotrophic pathogens, with both signaling pathways acting as 

antagonists16. However, work by Yoashioka et al. showed that crp22 (constitutive 

expresser of PR genes) mutants demonstrate a synergistic interplay between JA and SA 

signaling, with higher levels of SA, and constitutive expression of the PR genes and the 
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ethylene responsive defensin gene, PDF1.217. The downregulation of genes involved in 

SA and JA plant defence signaling in response to the constitutive overexpression of 

AtIPCS1 indicates that IPCS in plant defence against pathogens (necrotrophs, bio and 

hemibiotrophs) by utilizing both signaling networks.  

 

The WRKY transcriptional factors also have well characterized roles in plant defence18;  

WRKY 54 and 70 were shown to be downregulated in response to AtIPCS1 overexpression 

(Table 5-2), and at low levels of expression are coupled to a decrease in SA biosynthesis 

after pathogen response19. In a separate study wrky54/wrky70 double mutants have been 

shown to result in enhanced tolerance to osmotic stress20 and to function as negative 

regulators of leaf senescence21, thereby show casing their roles in plant response to biotic 

and abiotic stress. This affirms the role of AtIPCS1 as a modulator of plant response to 

stress. 

 

A decrease in gene expression of the Flowering Locus C (FLC) and vernalisation 

insensitive 3 (VIN3) genes, was also observed on AtIPCS1 overexpression. This could 

explain, in part, the phenotypic differences (early flowering) observed between the over-

expressors and Col0. The over-expressors exhibited a slightly earlier flowering (4 days) 

relative to Col0. When plants are exposed to cold, VIN3 expression is induced and forms 

a heterodimer with vernalization 5 (VRN5) which is necessary for the repression of FLC, 

and results in early flowering22; it therefore follows that a decrease in VIN3 expression, 

should result in a decrease of the repression of FLC (up regulation of FLC) leading to 

either normal or delayed flowering. This is not what was observed from the transcriptomic 

analysis. Instead, a decrease in the transcript for VIN3 and FLC was seen, which would 

suggest that there are other components which down regulate FLC, independent of VIN3. 

The down regulation of FLC combined with the slightly early flowering phenotype obser- 
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 Table 5-3: GO enrichment of genes down regulated in response to the constitutive 

overexpression of AtIPCS2 

GO term Description Number in 

input list 

 Number in 

background 

   p-value 

GO:0050896 Response to stimulus 72 4057 2.80E-34 

GO:0006950 Response to stress 46 2320 2.20E-22 

GO:0042221 Response to chemical stimulus 39 2085 5.60E-18 

GO:0010033 Response to organic substance 32 1342 1.20E-17 

GO:0051707 Response to other organisms 21 599 6.90E-15 

GO:0009607 Response to biotic stimulus 21 638 2.30E-14 

GO:0051704 Multi-organism process 22 776 9.60E-14 

GO:0006952 Defence response 21 766 6.90E-13 

GO:0009628 Response to abiotic stimulus 27 1471 2.60E-12 

GO:0009719 Response to endogenous stimulus 21 1068 2.80E-10 

GO:0009753 Response to jasmonic acid stimulus 11 215 5.70E-10 

GO:0009416 Response to light stimulus 15 596 5.10E-09 

GO:0009314 Response to radiation 15 613 7.40E-09 

GO:0048511 Rhythmic process 7  75 1.80E-08 

GO:0007623 Circadian rhythm 7  75 1.80E-08 

GO:0009751 Response to salicylic acid stimulus 9  200 6.40E-08 

GO:0009605 Response to external stimulus 12 429 6.20E-08 

GO:0009723 Response to ethylene stimulus 9  199 6.10E-08 

GO:0045087 Innate immune response 11 347 6.70E-08 

GO:0010200 Response to chitin 8  151 1.10E-07 

GO:0002376 Immune system process 11 368 1.20E-07 

GO:0006955 Immune response 11 367 1.20E-07 

GO:0009743 Response to carbohydrate stimulus 9  240 2.80E-07 

GO:0051716 Cellular response to stimulus 15 840 4.00E-07 

GO:0009725 Response to hormone stimulus 16 982 5.30E-07 

GO:0009611 Response to wounding 8  197 7.40E-07 

GO:0009617 Response to bacterium 8  247 3.80E-06 

GO:0010035 Response to inorganic substance 8  279 9.00E-06 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0050896
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0006950
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0042221
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0010033
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0051707
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009607
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0051704
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0006952
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009628
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009719
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009753
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009416
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009314
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0048511
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0007623
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009751
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009605
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009723
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0045087
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0010200
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0002376
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0006955
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009743
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0051716
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009725
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009611
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0009617
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=274201587&GO=GO:0010035
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Table 5-4: Genes down regulated by the constitutive overexpression of AtIPCS2, highlighted in red are genes responsive to JA signalling, in blue are genes responsive to SA 

signalling, in purple are genes responsive to SA and JA and in bold are genes with log2 fold change ≥ 2 

 

 

                                                                                                                                                                                                    At2-over-exp-2 At2-over-exp-9 

Gene 

ID 

Gene annotation Log2 fold 

change  

p-value Log2 fold-

change  

p-value 

AT5G47220 ERF2 (ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 2) -1.7 4.58E-25           -1.1 7.33E-15 

AT2G24850 TAT3 (TYROSINE AMINOTRANSFERASE 3) -2.6 3.03E-28           -2.3 4.60E-26 

AT1G16420 MC8 (METACASPASE 8) -1.6 3.84E-06           -1.2 0.000470364 

AT4G12480 PEARLI 1; LIPID BINDING A PUTATIVE LIPID TRANSFER PROTEIN -1.9 1.94E-31           -5.1 7.83E-172 

AT1G78290 SERINE/THREONINE PROTEIN KINASE -1.8 8.25E-47           -2.0 1.39E-54 

AT4G37990 ELI3-2 (ELICITOR-ACTIVATED GENE 3-2) -2.3 7.52E-12           -2.3 2.18E-12 

AT3G45290 MLO3 (MILDEW RESISTANCE LOCUS O 3) -1.1 5.16E-09           -1.3 7.16E-12 

AT2G26020 PDF1.2B (PLANT DEFENSIN 1.2B) -4.9 1.47E-60           -4.9 3.31E-62 

AT2G32680 RLP23 (RECEPTOR LIKE PROTEIN 23) -2.2 1.35E-13           -2.3 3.16E-15 

AT2G26560 PLA2A (PHOSPHOLIPASE A 2A) -1.4 1.57E-26           -2.6 1.57E-78 

AT2G14610 PR1 (PATHOGENESIS-RELATED GENE 1) -7.3 1.05E-206           -7.9 4.60E-217 

AT2G46830 CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) -2.0 3.12E-12           -1.1 1.04E-05 

AT1G06160 ORA59 (OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF 59) -2.5 9.89E-37           -1.8 1.67E-24 

AT3G49620 DIN11 (DARK INDUCIBLE 11) -3.2 7.04E-106           -4.1 5.37E-147 

AT1G06040 STO (SALT TOLERANCE) -1.3 2.23E-38           -1.1 8.10E-27 

AT1G48000 MYB112 (MYB DOMAIN PROTEIN 112) -2.0 1.97E-10           -1.2 5.54E-05 

AT2G14560 LURP1 (LATE UPREGULATED IN RESPONSE TO HYALOPERONOSPORA PARASITICA) -4.1 5.67E-173           -3.3 1.62E-149 

AT1G22770 GI (GIGANTEA) -2.4 6.55E-94           -2.3 8.70E-91 

AT5G10140 FLC (FLOWERING LOCUS C) -1.4 5.23E-11           -1.3 4.55E-10 

AT3G1550 ANAC055 (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 55) -1.3 2.83E-20           -1.5 4.16E-28 

AT1G76930 EXT4 (EXTENSIN 4) -1.2 1.21E-28           -3.1 3.77E-175 

AT5G44420 AN ETHYLENE- AND JASMONATE-RESPONSIVE PLANT DEFENSIN -6.0 3.77E-111           -6.1 3.17E-118 

AT2G23680 STRESS-RESPONSIVE PROTEIN -1.1 3.58E-14           -1.3 1.09E-18 

AT1G61120 TPS04 (TERPENE SYNTHASE 04) -2.6 2.43E-15           -1.7 5.55E-08 

AT1G75040 PR5 (PATHOGENESIS-RELATED GENE 5) -1.5 1.00E-25           -1.8 5.50E-34 

AT1G52890 ANAC019 (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 19) -1.2 2.90E-05           -1.5 5.04E-07 

AT3G57260 PR2 (PATHOGENESIS-RELATED GENE 2) -4.8 2.99E-86           -4.4 4.08E-87 

AT1G18330 EPR1 (EARLY-PHYTOCHROME-RESPONSIVE1) -1.6 3.85E-29           -1.9 4.62E-40 

AT1G78410 VQ MOTIF-CONTAINING PROTEIN -1.8 9.42E-08           -1.6 1.24E-06 

AT5G19880 PEROXIDASE -1.4 0.000104883           -1.0 0.004183815 
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Table 5-4 continued: Genes down regulated by the constitutive overexpression of AtIPCS2, highlighted in red are genes responsive to JA signalling, in blue are genes 

responsive to SA signalling, in purple are genes responsive to SA and JA and in bold are genes with log2 fold-change ≥ 2 

 

                                                                                                                                                                                   At2-over-exp-2  At2-over-exp 9 

Gene ID Gene annotation Log2 fold-

change  

p-value Log2 fold-

change  

p-value 

AT2G18050 HIS1-3 (HISTONE H1-3) -2.5 2.90E-96 -1.7 3.90E-55 

AT3G04720 PR4 (PATHOGENESIS-RELATED 4) -1.6 7.55E-69 -1.5 1.20E-55 

AT2G43510 TI1; SERINE-TYPE ENDOPEPTIDASE INHIBITOR -2.5 6.34E-132 -3.9 2.98E-227 

AT3G45860 RECEPTOR-LIKE PROTEIN KINASE -2.9 3.03E-22 -3.0 8.20E-25 

AT3G51660 MACROPHAGE MIGRATION INHIBITORY FACTOR FAMILY PROTEIN -1.2 1.40E-16 -1.1 6.63E-15 

AT1G71030 MYBL2 (ARABIDOPSIS MYB-LIKE 2) -1.2 1.04E-29 -1.7 4.26E-55 

AT1G57630 DISEASE RESISTANCE PROTEIN (TIR CLASS) -1.5 8.34E-09 -2.5 4.73E-18 

AT5G59780 MYB59 (MYB DOMAIN PROTEIN 59) -1.2 6.92E-29 -1.7 9.77E-56 

AT4G12490 LIPID TRANSFER PROTEIN (LTP) -2.8 8.38E-18 -4.7 1.76E-45 

AT4G23210 PROTEIN KINASE FAMILY PROTEIN ENCODES A CYSTEINE-RICH RECEPTOR-

LIKE KINASE (CRK13) 
-1.7 8.20E-24 -3.0 1.31E-52 

AT1G09080 ATP BINDING BIP3 -1.6 4.53E-10 -1.6 6.04E-11 

AT4G02520 GSTF2 (GLUTATHIONE S-TRANSFERASE PHI 2) -1.2 2.82E-06 -2.9 4.44E-28 

AT2G25000 WRKY60 -1.2 7.64E-11 -1.4 9.79E-15 

AT2G02990 RNS1 (RIBONUCLEASE 1) -1.1 1.29E-08 -1.7 1.82E-18 
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ved in the over-expressers is in line with the  current understanding of early flowering in 

plants which requires reduced FLC transcripts23. 

Analyses of genes downregulated in AtIPCS2 overexpressing lines, demonstrated a 

significant enrichment for GO terms, GO:0050896 response to stimulus (72/134), 

GO:0006950 response to stress (46/134). That response 34.3% of the genes associated 

with response to stress, which make up 6.1% of the Arabidopsis transcriptome (Table 5-

3). Other GO terms showing significant enrichment include, GO: 0042221 (response to 

chemical stimulus), GO: 0010033 (response to organic substances), and GO: 0051707 

(response to other organisms). Of the 46 genes enriched under the GO term response to 

stress, 17 genes were associated with defence response. Interestingly, genes that showed 

a dose dependent decrease associated with higher transcript levels of AtIPCS1 (plant 

defensin 1.2B, PR1, PR2, and ethylene/jasmonate responsive element plant defensin) did 

not show the same dose dependent decrease in relation to higher AtIPCS2 transcripts 

(Table 5-4) despite the 1/3 difference in AtIPCS2 transcripts between At2 over-exp-2 and 

At2 over-exp-9 (higher levels of AtIPCS2 transcripts in At2 over- exp-9). However, it is 

immediately clear that the plant defence system is more sensitive to expression levels of 

AtIPCS2 than AtIPCS1; despite relatively low levels of AtIPCS2 transcript increase (6-10 

fold) compared to AtIPCS1 transcripts (200-390 fold). The relatively low increase in 

AtIPCS2 transcript level compared to AtIPCS1 in the overexpression lines reflects 

AtIPCS2 being the most expressed IPCS in plants compared to AtIPCS1 and AtIPCS3 in 

Col0. Genes identified to be down regulated in response to AtIPCS2 overexpression, are 

comparable to the fold-change in expression of genes also observed to be down regulated 

in the transgenic line with the highest level of AtIPCS1 transcripts (At1 over exp 7). 

 

Analyses of the genes down regulated in AtIPCS2 over-expressors associated with 

defence response are higher in numbers, with some identified that were not seen in the 
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AtIPCS1 over-expressors analyses. These include, ERF2 which induces SAR via the JA 

signalling pathway resulting in resistance to F. oxysporum24; MC8,which promotes 

programmed cell death in response to stress (hydrogen peroxide and UV light), and  

MLO3 which confers resistance to powdery mildew in barley25, and is probably in part, 

responsible for the reduced susceptibility to powdery mildew of erh1/Col-gl   mutants2.  

Also downregulated was pEARL1,  which is  a cis-jasmone-inducible gene   found to be 

upregulated in response to the  enhancement of plant defence against herbivorous 

insects26; RLP23  which is down regulated in plant SAR response27, PLA2A which shows 

elevated expression in response to Botrytis cinerea and Pseudomonas syringae with 

increased susceptibility to these pathogens observed in Arabidopsis28, EXT4 which is 

upregulated in response to hydrogen peroxide and the production of superoxide anion up 

on treatment with digitonin29. TPS04 which is responsible for the synthesis of  the 

trepenoid, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and has been found to be 

produced as a by-product of activated JA signaling30. ANAC019 which is a regulator of 

JA signalling defence response31 and lines overexpressing this gene were found to have 

increase drought tolerance32, GSTF2 which exhibits elevated transcript levels when 

Arabidopsis  is inoculated with P. syringae and is inducible by SA and ethylene33, and 

CRK13 which also plays a role in plant resistance to P. syringae by the accumulation of 

SA34. Also, among this list of down regulated genes identified in AtIPCS2 over-

expressors but not AtIPCS1 over-expressers are peroxidase, TIR class of disease 

resistance proteins and PR4; which all play a role in plant defence response. From these 

analyses, it is clear that AtIPCS2 expression affects a wider network of genes involved in 

plant defence responses compared to AtIPCS1 which might be a result of its higher 

expression pattern in all tissues of Arabidopsis3.  

A dose dependent decrease was found in the transcription of genes identified in response 

to the increase in AtIPCS2 transcript levels in the transgenic lines. Interestingly 6 genes, 
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CCA1, ORA59, LURP1, MYB112, TPS04 and HIS1-3, show a log2 fold decrease in 

expression with an inverse relationship to AtIPCS2 expression. The rational as to why 

this has occurred is unclear. A higher number of genes are also identified for AtIPCS2  

over-expressors implicated in plant response to cold stress (Gigantea)35, drought stress 

(serine/threonine protein kinase and HIS1-3)36, 37, salt and osmotic stress (WRKY60)38. 

It was found that genes involved in the regulation of circadian control of light responsive 

genes were down regulated. These included CCA1 which encodes a transcription factor 

involved in the induction of the light-harvesting chlorophyll a/b  gene associated with 

photosystem II39, and EPR1 which is inducible by irradiation with red light and regulated 

by phytochrome A and B40. Overexpression of both genes is associated with delayed 

flowering, and in the case of EPR1, also results in cotyledon opening40 whilst CCA1 

overexpression results in plants with longer hypocotyls and the disruption of the circadian 

clock which affects several genes39. These genes are necessary for plant development, 

and in response to AtIPCS2 overexpression are down regulated and probably contributed 

to the slightly earlier flowering (4 days) phenotype of these lines compared to Col0. In 

addition, the cold response gene GI was down regulated. The gene product regulates 

circadian rhythm and photoperiodic flowering by upregulating the expression of 

CONSTANS and FLOWERING LOCUS T (FT) which results in early flowering41. 

 

Also, down regulated was FLOWERING LOCUS C (FLC) which is a MADS box protein 

and the regulator of flowering in the autonomous pathway42 and in response to 

vernalisation43; down regulation of FLC promotes early flowering in both cases. Floral 

transition occurs not only through vernalisation and the autonomous pathway via the 

repression of FLC, but also through the photoperiodic pathway, GA pathway and the FLC  

independent vernalisation pathway44 through a host of different intermediary genes and 

transcriptional regulators (Figure 5-4). A decrease in FLC transcript results in an early fl- 
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owering phenotype whilst plants which have delayed flowering show an increase in FLC 

transcript45, 46.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study the over-expressor lines have a phenotype of early flowering and shows a 

log2 fold ≥ 1 reduction in FLC which suggests that AtIPCS may have a role in plant 

response to vernalisation. As stated in chapter 4, the early flowering phenotype observed  

Figure 5-4: Schematic of the different pathways that trigger floral transition. The vernalisation and 

autonomous pathway rely on the repression of FLC which in turn results in the expression of FT and SOC1 

induce the expression of genes responsible for the development of floral organs. Repression of FLC by 

the expression of any of the following upstream genes: FCA, FVE, VRN1, VRN2 and VRN3 results in 

floral transition. The photoperiodic pathway and the gibberellin pathway although do not require the 

repression of FLC to induce floral transition, have genes upstream of the respective pathways that can 

induce the expression of FT and SOC1 resulting in the transition of a plants from a vegetative phase to a 

reproductive phase. The FLC independent vernalisation pathway also does not require FLC to induce 

floral transition and is believed to occur through the induction of MADS box transcription factors which 

are closely related to FLC.  
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Table 5-5: GO enrichment of genes down regulated in response to the constitutive overexpression of AtIPCS3 

 

 

GO term Description    Number in input list  Number in Background              p-value 

GO:0050896 Response to stimulus 33 4057 2.70E-17 

GO:0006950 Response to stress 24 2320 2.40E-14 

GO:0009628 Response to abiotic stimulus 15 1471 6.00E-09 

GO:0006952 Defence response 11 766 2.90E-08 

GO:0051707 Response to other organism 10 599 3.40E-08 

GO:0009607 Response to biotic stimulus 10 638 6.00E-08 

GO:0051704 Multi-organism process 10 776 3.60E-07 

GO:0009416 Response to light stimulus 8  596 4.40E-06 

GO:0009314 Response to radiation 8  613 5.40E-06 

GO:0009639 Response to red or far red light 5  210 2.20E-05 

GO:0042221 Response to chemical stimulus 12 2085 8.00E-05 

GO:0010035 Response to inorganic substance 5  279 8.30E-05 

GO:0009791 Post-embryonic development 7  705 0.00012 

GO:0009266 Response to temperature stimulus 6  485 0.00012 

GO:0009409 Response to cold 5  328 0.00017 

GO:0010033 Response to organic substance 8  1342 0.0011 

GO:0030528 Transcription regulator activity 12 2417 0.00032 

GO:0003700 Transcription factor activity 10 2173 0.0019 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0050896
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0006950
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0009628
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0006952
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0051707
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0009607
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0051704
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0009416
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0009314
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0009639
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0042221
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0010035
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0009791
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0009266
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0009409
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0010033
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0030528
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=108047795&GO=GO:0003700
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Table 5-6: Genes down regulated by the constitutive overexpression of AtIPCS3, highlighted in red are genes responsive to JA signalling, in blue are genes responsive to SA 

signalling, in purple are genes responsive to SA and JA and in bold are genes with log2 fold-change ≥ 2 

 

               At3 over-exp-4          At3 over-exp-5 

Gene ID Gene annotation Log2 fold-change             p-value  Log2 fold-change          p-value 

AT2G24850 TAT3 (TYROSINE AMINOTRANSFERASE 3) -1.8 6.10E-18 -2.3 1.65E-24 

AT1G16420 MC8 (METACASPASE 8) -1.0 0.002428624 -1.2 0.000589589 

AT1G78290 SERINE/THREONINE PROTEIN KINASE -1.0 2.73E-20 -1.3 1.51E-29 

AT2G26020 PDF1.2B (PLANT DEFENSIN 1.2B) -2.6 3.65E-30 -3.4 3.34E-40 

AT5G65080 MAF5 (MADS AFFECTING FLOWERING 5) -1.5 2.11E-07 -1.7 5.09E-08 

AT2G14610 PR1 (PATHOGENESIS-RELATED GENE 1) -4.6 1.09E-252 -4.9 2.85E-235 

AT1G06040 STO (SALT TOLERANCE) -1.0 6.04E-26 -1.5 2.41E-48 

AT4G12480 PEARLI 1; LIPID BINDING A PUTATIVE LIPID TRANSFER PROTEIN -1.2 8.99E-13 -2.0 3.20E-32 

AT1G48000 MYB112 (MYB DOMAIN PROTEIN 112) -1.2 6.45E-05 -1.7 3.23E-08 

AT2G14560 LURP1 (LATE UPREGULATED IN RESPONSE TO HYALOPERONOSPORA 

PARASITICA) 
-3.2 9.88E-155 -2.2 5.56E-82 

AT1G61120 TPS04 (TERPENE SYNTHASE 04) -1.6 4.61E-07 -1.8 6.72E-09 

AT5G10140 FLC (FLOWERING LOCUS C) -1.4 8.80E-12 -1.1 3.25E-08 

AT1G19670 CLH1 (CORONATINE-INDUCED PROTEIN 1) -1.1 1.14E-34 -1.2 2.36E-40 

AT1G22770 GI (GIGANTEA) -1.3 4.07E-33 -2.4 1.27E-94 

AT3G57260 PR2 (PATHOGENESIS-RELATED GENE 2) -2.0 2.97E-36 -2.2 8.40E-38 

AT1G78410 VQ MOTIF-CONTAINING PROTEIN -1.1 0.00072986 -1.2 0.000163912 

AT2G43510                          TI1; SERINE-TYPE ENDOPEPTIDASE INHIBITOR -1.1 2.90E-37 -1.8 9.93E-77 

AT3G45860 RECEPTOR-LIKE PROTEIN KINASE -1.5 4.12E-09 -1.7 4.81E-10 

AT5G44420 PDF1.2A (PLANT DEFENSIN 1.2A) -2.7 1.34E-55 -3.6 7.78E-78 

AT4G37990 ELI3-2 (ELICITOR-ACTIVATED GENE 3-2) -1.8 3.22E-08 -1.6 6.77E-07 

AT4G12490 LIPID TRANSFER PROTEIN (LTP) -1.9 1.32E-08 -2.6 1.46E-15 

AT2G40750 WRKY54 -1.1 5.31E-11 -1.2 1.02E-11 

AT4G02520 GSTF2 (GLUTATHIONE S-TRANSFERASE PHI 2) -1.4 3.33E-08 -1.6 3.75E-10 

AT1G18330 EPR1 (EARLY-PHYTOCHROME-RESPONSIVE1) -1.3 1.98E-23 -1.6 6.68E-30 
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is inherited, which is contrary to the current understanding of early flowering in plants. 

This is based on reduced FLC expression, with the levels of FLC returning to normal 

levels in subsequent generations and is reduced in plants undergoing vernalisation by 

exposure to cold temperatures43.   

 

Down regulation of GI would result in delayed flowering compared to Col0 which was 

not observed. The down regulation of these genes points to a link between IPCS 

expression and circadian control of light responsive genes which may be a result of MYB 

transcription factor binding sites, which were identified upstream of AtIPCS1, 2 and 3 

promoter in chapter 2; this class of transcription factors are known to control plant 

development and plant response to abiotic and biotic stress47.  

 

Genes down regulated in response to the overexpression of AtIPCS3 were found to be 

have a significant enrichment of GO term GO: 0050896 (response to stimulus) with 56% 

 (33/59) of genes associated with this term compared to 10.7% in the Arabidopsis 

transcriptome. Other GO terms showing significant enrichment include GO:0006950 

(response to stress), GO:0009628 (response to abiotic stimulus) and GO:0006952 

(defence response) (Table 5-5). A dose dependent down regulation of genes identified in 

response to the overexpression of AtIPCS3 was observed for TAT3, PDF 1.2B, pEARL1, 

LURP1, G1, PDF1.2A and LPT. Most of the genes identified as modulated in AtIPCS3 

over-expressors, had also been identified as responsive to AtIPCS1 and AtIPCS2 

overexpression. It is clear, that there is a clustering of specific GO terms for genes down-

regulated in AtIPCS1, 2 and 3 transgenic lines; these are mainly connected with the 

response to biotic and abiotic stress.   

 

LURP1, which is upregulated in response to plant infection with 

oomycete Hyaloperonospora parasitica and required for basal defence against this fungal 
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pathogen48, shows an inverse relationship in terms of expression, in response to AtIPCS2 

and AtIPCS3  transcript levels (Table 5-4 and Table 5-6). This is different from the 

positive relationship found between LURP1 down regulation and AtIPCS1 expression 

(Table 5-2), the reasons for this differential relationship is unclear. Analyses of genes 

down regulated in response to the expression of all three AtIPCS isoforms was also carried 

out (Figure 5-7) and revealed 26 genes, of which 14 came under the GO term: 0050896 

(response to stimulus), 7 genes under GO term: 0006950 (defence response) and 6 genes 

under GO term: 0009607 (response to biotic stress) with all genes identified under the 

GO term response to stress already identified under the GO term response to stimulus. 

Likewise, genes identified under GO term defence response were found to be also 

enriched under response to biotic stimulus.  

Most of the genes enriched under response to stress for over-expressors of the three IPCS 

isoforms were expected as they had been identified in the analysis of genes enriched under 

GO term response to stimulus (Table 5-8). However, some genes were identified that 

were not grouped under response to stimulus but had been identified in the analyses of all 

three IPCS isoform over-expressors. These includes the glutamate receptor, GLR2.7, 

which encodes a functional channel involved in the allocation of Ca2+ ions to different 

calcium sinks for adaptation to K+ and Na+ stress and for normal development in plants49, 

and BDA1 which functions downstream of the SNC2 (Suppressor of NPR1, 

Constitutive2) receptor and has been shown to be a regulator of plant immunity. Loss of 

function of BDA1 results in constitutive activated cell death and enhanced susceptibility 

to P.syringae50. HYH, a positive regulator of blue light specific induction of gene 

expression and plant development (shown to inhibit hypocotyl growth)51, and AIG1, a 

GTP binding protein identified in Arabidopsis and found to confer resistance to plants 

infected with Pseudomonas syringae pv. Maculicola strain carrying the AvrRpt2 

effector52. 
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Table 5-7: GO enrichment of genes down regulated in response to the constitutive overexpression of AtIPCS1, 2 and 3 

 

GO term Description     Number in input list Number in Background         p-value 

GO:0050896 Response to stimulus 14 4057  7.60E-08 

GO:0006952 Defence response 7  766  6.80E-07 

GO:0006950 Response to stress 10 2320  1.70E-06 

GO:0051707 Response to other organism 6  599  2.90E-06 

GO:0009607 Response to biotic stimulus 6  638  4.10E-06 

GO:0051704 Multi-organism process 6  776  1.20E-05 

GO:0009628 Response to abiotic stimulus 5  1471  0.003 

GO:0042221 Response to chemical stimulus 5  2085  0.013 

 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=399179075&GO=GO:0050896
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=399179075&GO=GO:0006952
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=399179075&GO=GO:0006950
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=399179075&GO=GO:0051707
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=399179075&GO=GO:0009607
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=399179075&GO=GO:0051704
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=399179075&GO=GO:0009628
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=399179075&GO=GO:0042221
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Table 5-8: Genes down regulated by the constitutive overexpression of AtIPCS1, 2 and 3 respectively 

 

 

 

Genes down regulated in all overexpressing IPCS transgenic lines and enriched under GO term :0050896 (Response to stimulus) 

Gene ID Gene annotation 

AT2G29120 GLR2.7 (GLUTAMATE RECEPTOR) 

AT2G14610 PR1 (PATHOGENESIS-RELATED GENE 1) 

AT5G54610 BDA1, ANKYRIN PROTEIN 

AT2G24850 TAT3 (TYROSINE AMINOTRANSFERASE 3); 

AT3G45860 RECEPTOR-LIKE PROTEIN KINASE 

AT5G44420 ETHYLENE- AND JASMONATE-RESPONSIVE PLANT DEFENSIN 

AT3G57260 PR2 (PATHOGENESIS-RELATED GENE 2) 

AT2G26020 PDF1.2B (PLANT DEFENSIN 1.2B) 

AT1G06040 STO (SALT TOLERANCE) 

AT2G14560 LURP1 (LATE UPREGULATED IN RESPONSE TO HYALOPERONOSPORA PARASITICA) 

AT5G10140 FLC (FLOWERING LOCUS C) 

AT3G17609 HYH (HY5-HOMOLOG) 

AT4G12490 LIPID TRANSFER PROTEIN (LTP) 

AT1G33960 AIG1 (AVRRPT2-INDUCED GENE 1) 

                                                Genes down regulated in all overexpressing IPCS transgenic lines and enriched under GO term: 0006950 (Defence response)  

AT5G52310 LTI78 (LOW-TEMPERATURE-INDUCED 78) 

AT5G57380 VIN3 (VERNALIZATION INSENSITIVE 3) 

AT5G37260 RVE2 (REVEILLE 2) 

AT4G24350 PHOSPHORYLASE FAMILY PROTEIN 

AT3G56400 WRKY70 

AT3G25760 AOC1 (ALLENE OXIDE CYCLASE 1) 

AT4G14400 ACD6 (ACCELERATED CELL DEATH 6) 



 

 

162 | P a g e  
 

 

The transcription factor WKRY 70, which has been shown to be capable of integrating the 

SA and JA signalling pathways in plant defence against pathogens53, was also identified 

as  downregulated in response to the overexpression of all IPCS isoforms , as was the SA 

inducible  gene ACD6 which is  a positive regulator  of  plant  defence against pathogens 

54. From these analyses, the role of AtIPCS1-3 in plant defence against pathogens has 

been established. The expression of AtIPCS1, 2 and 3 affects both the SA and JA 

signalling defence response, and so it is possible to conclude that the overexpression of 

AtIPCS isoforms, would make plants more susceptible to a wide range of pathogens.   

 

5.5 Genes upregulated in response to the overexpression of AtIPCS1, 2 

and 3 
 

 

Genes that were upregulated in response to AtIPCS1 overexpression were also analysed 

to determine other pathways affected. Significant enrichment (p = 9.10E-27) for genes 

annotated with the GO term GO:0015979 (photosynthesis), with 26.1% (18/69) of the 

genes associated with this term compared to 0.43 % in the Arabidopsis transcriptome 

(Table 5-9). Other GO terms with siginificant enrighment include lipid localization (8/69) 

and post-embryonic development (12/69). Of the 18 genes enriched under photosynthesis, 

7 were found to be downregulated by a log2 fold-change ≥ 2 (highlighed in bold in Table 

5-10). Genes upregulated and enriched under GO: 0010876 (lipid localization) and 

GO:0009791 (post-embryonic development) all show a dose dependent increase in 

expression relative to an increase in AtIPCS1 transcripts in the transgenic lines.  

 

NdhH a subunit of NDH (NADH dehydrogenase-like complex) which is responsible for 

factilitating the movement of electrons from the stroma to plastonquinone was found to 

upregulated. It has been shown that plant mutants which are unable to fold the NADhH  
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Table 5-9: GO enrichment of genes up-regulated in response to the constitutive overexpression of 

AtIPCS1 

GO term Description Number 

in input 

list 

Number 

in 

Backgro

und 

p-value 

GO:0015979 Photosynthesis 18 162 9.10E-27 

GO:0019684 Photosynthesis, light reaction 12 103 2.60E-18 

GO:0006091 Generation of precursor metabolites 

and energy 

15 285 8.40E-18 

GO:0010876 Lipid localization 8  24 8.20E-16 

GO:0009791 Post-embryonic development 12 705 6.40E-09 

GO:0044237 Cellular metabolic process 37 8722 4.10E-08 

GO:0008152 Metabolic process 41 10614 5.70E-08 

GO:0009987 Cellular process 42 11684 2.90E-07 

GO:0009737 Response to abscisic acid stimulus 8  378 5.30E-07 

GO:0009845 Seed germination 5  83 6.10E-07 

GO:0048316 Seed development 9  530 6.00E-07 

GO:0010154 Fruit development 9  557 9.00E-07 

GO:0033036 Macromolecule localization 8  462 2.30E-06 

GO:0048608 Reproductive structure development 10 978 1.20E-05 

GO:0003006 Reproductive developmental process 10 978 1.20E-05 

GO:0006869 Lipid transport 5  163 1.50E-05 

GO:0007275 Multicellular organismal development 14 2020 1.50E-05 

GO:0032501 Multicellular organismal process 14 2094 2.30E-05 

GO:0009409 Response to cold 6  328 3.40E-05 

GO:0055114 Oxidation reduction 5  203 4.00E-05 

GO:0022414 Reproductive process 10 1161 5.00E-05 

GO:0000003 Reproduction 10 1186 6.00E-05 

GO:0032502 Developmental process 14 2304 6.40E-05 

GO:0006412 Translation 11 1445 6.20E-05 

GO:0009725 Response to hormone stimulus 9  982 7.80E-05 

GO:0009719 Response to endogenous stimulus 9  1068 0.00015 

GO:0009266 Response to temperature stimulus 6  485 0.00028 

GO:0050896 Response to stimulus 18 4057 0.00028 

GO:0044085 Cellular component biogenesis 6  571 0.00065 

GO:0051179 Localization 11 1922 0.00071 

GO:0010033 Response to organic substance 9  1342 0.00076 

GO:0048856 Anatomical structure development 10 1726 0.0012 

GO:0042221 Response to chemical stimulus 10 2085 0.0045 

GO:0044249 Cellular biosynthetic process 17 4925 0.0065 

GO:0045735 Nutrient reservoir activity 10 63 1.20E-16 

GO:0005198 Structural molecule activity 11 659 3.60E-08 

GO:0003735 Structural constituent of ribosome 10 494 2.70E-08 

GO:0016651 Oxidoreductase activity, acting on 

NADH or NADPH 

5  103 1.70E-06 

GO:0046906 Tetrapyrrole binding 5  136 6.20E-06 

GO:0008289 Lipid binding 5  323 0.00034 

GO:0008324 Cation transmembrane transporter 

activity 

5  503 0.0024 
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Table 5-10: Genes upregulated by the constitutive overexpression of AtIPCS1 under GO term: 0015979 (photosynthesis) 

                                                                                                                                                                                                       At1-over-exp 3                         At1-over-exp 7 

Gene ID Gene annotation Log2 fold 

change  

         p-value Log2 fold-change              p-value 

ATCG00730 A CHLOROPLAST GENE ENCODING SUBUNIT IV OF THE CYTOCHROME B6/F COMPLEX 

PETD 

1.3 2.93E-05 1.6 1.02E-06 

ATCG01110 ENCODES THE 49KDA PLASTID NAD(P)H DEHYDROGENASE SUBUNIT H PROTEIN 

(NDhH) 
2.8 3.73E-19 4.0 4.72E-37 

ATCG01100 NADH DEHYDROGENASE ND1 NDHA 1.6 2.92E-06 2.6 2.62E-15 

ATCG00520 ENCODES A PROTEIN REQUIRED FOR PHOTOSYSTEM I ASSEMBLY AND STABILITY 1.3 0.000136246 2.0 6.06E-09 

ATCG01090 ENCODES SUBUNIT OF THE CHLOROPLAST NAD(P)H DEHYDROGENASE COMPLEX 

NDHI 
1.5 1.14E-05 2.5 1.60E-13 

ATCG00270 PSII D2 PROTEIN PSBD 1.8 5.79E-08 1.9 4.30E-09 

ATCG00680 ENCODES FOR CP47, SUBUNIT OF THE PHOTOSYSTEM II REACTION CENTER 1.0 0.000857587 1.2 0.00014644 

ATCG00710 ENCODES A 8 KD PHOSPHOPROTEIN THAT IS A COMPONENT OF THE PHOTOSYSTEM 

II 

1.1 0.000866598 1.5 1.80E-06 

ATCG00360 ENCODES A PROTEIN REQUIRED FOR PHOTOSYSTEM I ASSEMBLY AND STABILITY 1.5 6.99E-06 2.3 5.20E-12 

ATCG00300 ENCODES PSBZ, WHICH IS A SUBUNIT OF PHOTOSYSTEM II. 1.1 0.002252376 1.6 6.17E-06 

ATCG00440 ENCODES NADH DEHYDROGENASE D3 SUBUNIT OF THE CHLOROPLAST NAD(P)H 

DEHYDROGENASE COMPLEX NDHC 
1.3 0.000167954 2.0 3.59E-09 

ATCG00720 ENCODES THE CYTOCHROME B(6) SUBUNIT OF THE CYTOCHROME B6F COMPLEX 1.1 0.000543643 1.4 5.73E-06 

ATCG00340 ENCODES THE D1 SUBUNIT OF PHOTOSYSTEM I AND II REACTION CENTERS 1.2 0.000120455 1.6 1.29E-06 

ATCG00580 PSII CYTOCHROME B559 1.1 0.000365459 1.3 8.33E-05 

AT5G01600 ENCODES A FERRETIN PROTEIN THAT IS TARGETED TO THE CHLOROPLAST 1.1 1.19E-63 1.5 4.61E-116 

ATCG01060 ENCODES THE PSAC SUBUNIT OF PHOTOSYSTEM I. 1.3 5.19E-05 2.2 3.40E-12 

ATCG00540 ENCODES CYTOCHROME F APOPROTEIN 1.1 0.000430677 1.9 3.70E-09 

ATCG00280 ENCODING A CP43 SUBUNIT OF THE PHOTOSYSTEM II REACTION CENTER 1.5 2.31E-06 1.6 1.08E-06 
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subunit due to a defective chloroplast chaperonin subunit (Cpn60β4), cannot produce 

NADHh for the assembly of the NDH complex assembly with no phenotye reported as 

associated with the defect55. From the list of genes up regulated, all are subunits of 

photosynthesis systmen I and II, which should contribute to an increase in the the plant’s 

ability to efficiently convert light energy to chemical energy for plant development.  

 

For genes enriched under GO term lipid localization (Table 5-11), all apart for the seed 

storage proteins, were found to be expressed specifically in immature seeds  but it is also 

thought that these genes may be expressed in vegetative tissues during plant 

development56. Suppression of olesin 1 resulted in large oil bodies (4–10 μm2) compared 

to Col0 (1 μm2) in embryo cells and a delay in germination57, 58.  Double mutants, ole1 

ole3 and ole1 ole2, were found to have even larger oil bodies (>10 µm2) and had lower 

levels of olesin resulting in delays in germination57.  The mutant phenotype of large oil 

bodies in ole1 single mutant, was reversed by complementation with a functional 

OLESIN gene, and the delay in germination found to be reversible by cold treatment or 

by growing the seeds in the presence of sucrose58.  In addition, upon undergoing freezing 

treatment, the delay in germination for the single mutants (ole1-4) was found to increase 

with an inverse relationship to the amount of olesin produced in the oil bodies. This 

indicated that olesin levels affect seed freezing tolerance57. Storage proteins (2S albumin 

1-4) were also upregulated in response to AtIPCS1 overexpression, and are known to 

serve as nitrogen and sulphur reserves for plant germination59, 60. 

 
In addition there is a clear dose dependent relationship between the increase in AtIPCS1 

expression and the increasing upregulation of the genes which are involved in the nutrient 

reservoir and germination onset in seeds pathways. From these findings, it appears that 

AtIPCS1 is linked to the seed development pathway, with overexpression of this isofrom 
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resulting in an increase in expression of  seed specific proteins which could, theoretically, 

lead to higher rates of sucessful germination.  

 

Further analyses of upregulated genes show 12 are enriched under GO: 0009791 (post 

embryonic development) (Table 5-12), with OLESIN1-3 already identified as involved in 

seed germination. The other 9 genes upregulated include, LEA a protein known to 

accumulate during the final maturation stage of seeds termed desiccation, and in 

vegetative tissues in response to stress such as cold and drought61; CRU3, a seed storage 

protein that is phosphorylated in response to plant abscisic acid (ABA) treatment and 

found to play a role in protecting proteins needed for germination from oxidation62,  S1 

the calcium binding oil body surface protein  that facilitates the  degradation of  eicosenoic 

acid found in storage triacylglycerol in oil bodies  and affects seedling growth post 

germination63, and EPR1 which is expressed specifically in the endosperm of germinating 

seeds but with an as yet uncharacterised role in  plants, and with no phenotype detected 

in insertional mutants64. In Arabidopsis, EM6 which is expressed in all tissues in the 

embryo, has been shown to be  necessary for normal seed development, with a T-DNA 

insertional mutant exhibiting a   phenotype of  premature seed dehydration  at the distal 

end  13 days after flowering65. PER1, a peroxidase proven to have antioxidant activity by 

protection of  E.coli from cumen hydroperoxide,  with overexpression shown  to result in  

a delay in germination  in seeds under-going  osmotic stress66, indicating that the  

upregulation of the protein serves to inhibit germination in  response to stress.  

 
FER1, a ferritin protein which accumulates in response to iron, has been shown to be 

involved in pathways that affect the aging process in Arabidopsis; a knock out mutant, 

exhibits a phenotype of early senescence in leaves, a reduction in chlorophyll 

concentration and reduced photochemical efficiency in PSII 67. Conversely upregulation 



 

 

167 | P a g e  
 

of this gene should result in high photochemical efficiency of PSII and delayed aging; 

this was not observed in any of the AtIPCS over-expressors. The upregulated gene M10, 

is specifically expressed in seeds and repressed 2 hours after imbibition; it accumulates 

in response to cold stress but is repressed in response to  salt/drought stress and treatment 

with abscisic acid (ABA)68. 

 

Next, genes up regulated in response to AtIPCS2 overexpression were analysed, and a 

significant enrichment found for GO term: 0015979 (photosynthesis) with 13.3% 

(30/226) of the genes associated with this term compared to 6.14% to 0.004% in 

Arabidopsis transcriptome (Table 5-13). Other GO terms significantly enriched include 

lipid localization (17/226) and post embryonic development (12/226). For GO term 

photosynthesis 30 genes are identified from 162 involved in this pathway in Arabidopsis, 

and for the GO term lipid localization 17 genes are identified as upregulated from 24 

genes known to be involved in that process, which strongly indicated the there is a link 

between proteins involved in lipid localization and IPCS expression. Closer inspection of 

genes up regulated in response to AtIPCS2 overexpression reveals that most of those 

involved in photosynthesis (Table 5-14) that were upregulated in   response to AtIPCS1 

overexpression were also upregulated in response to AtIPCS2 expression. However, there 

were some  of these genes that were only upregulated  in AtIPCS2 over- expressing lines,  

these include: the F subunit of NDH (NDHF) which has been shown to  affect the  

expression of H subunit (NDHH) in mutants  exhibiting low transcript levels of NDHF, 

resulting in a decrease in NDH activity  quantified by a measure of chlorophyll 

florescence and with no obvious phenotype69, PSB28 in Synechocystis 6803 has been 

shown to be involved in the biogenesis of chlorophyll  binding proteins (CP47 and 

PsaA/PsaB)  by facilitating the conversion of  Mg protoporphyrin monomethyl ester to 

chlorophyll70. Insertional mutants of PSB28 have shown an accumulation of Mg protop-
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Table 5-11: Genes upregulated by the constitutive overexpression of AtIPCS1 under GO term:0010876 (lipid localization) 

 

 

 

                                                                                                                                            At1 over-exp-3                            At1 over-exp-7 

Gene ID Gene annotation Log2 fold change  p-value  Log2 fold-change          p-value 

AT5G54740 2S SEED STORAGE PROTEIN 5 5.1 3.42E-97 8.2 3.86E-259 

AT4G25140 OLEO1 (OLEOSIN 1) 3.5 4.38E-45 7.1 2.82E-192 

AT4G27140 2S SEED STORAGE PROTEIN 1 4.2 5.35E-65 8.0 1.03E-238 

AT4G27150 2S SEED STORAGE PROTEIN 2 3.8 2.16E-40 7.3 2.16E-147 

AT4G27160 2S SEED STORAGE PROTEIN 3 5.0 1.84E-81 8.5 2.51E-239 

AT5G40420 OLEO2 (OLEOSIN 2) 1.4 1.45E-07 4.6 3.63E-70 

AT4G27170 2S SEED STORAGE PROTEIN 4 2.7 1.03E-19 5.7 5.84E-88 

AT3G27660 OLEO4 (OLEOSIN 4) 2.1 1.35E-15 5.2 7.26E-100 
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Table 5-12: Genes upregulated by the constitutive overexpression of AtIPCS1 under GO term: 0009791 (post embryonic development) 

 

                                                                                                                                                                              At1 over-exp-3                At1 over-exp-7 

Gene ID Gene annotation Log2 fold 

change  

p-value Log2 fold 

change  

        p-value 

AT3G22500 LATE EMBRYOGENESIS ABUNDANT (LEA) PROTEIN ECP31 1.9 1.70E-09 4.7 8.46E-63 

AT3G27660 OLEO4 (OLEOSIN 4) 2.1 1.35E-15 5.2 7.26E-100 

AT4G28520 CRU3 (CRUCIFERIN 3) 5.8 9.91E-131 9.6 0 

AT4G25140 OLEO1 (OLEOSIN 1) 3.5 4.38E-45 7.1 2.82E-192 

AT4G26740 S1 (SEED GENE 1) 1.7 1.44E-08 5.1 8.42E-81 

AT2G27380 EPR1 2.9 3.08E-31 6.0 6.18E-135 

AT2G40170 EM6 (LATE EMBRYOGENESIS ABUNDANT 6) 1.3 1.18E-06 3.8 1.09E-51 

AT1G48130 1-CYSTEINE PEROXIREDOXIN (AtPER1) 1.4 1.87E-11 4.1 1.33E-98 

AT5G01600 FER1; FERRITIN PROTEIN 1.1 1.19E-63 1.5 4.61E-116 

AT5G40420 OLEO2 (OLEOSIN 2) 1.4 1.45E-07 4.6 3.63E-70 

AT1G03880 CRU2 (CRUCIFERIN 2) 2.4 1.77E-17 6.9 2.47E-149 

AT2G41280 M10 ENCODES A HYDROPHILIC PROTEIN SIMILAR TO LATE EMBRYOGENESIS 

ACTIVATED (LEA) 
1.3 7.58E-05 3.8 1.77E-35 
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orphyrin IX monomethyl ester, lower levels of CP47  and  PsaA/PsaB combined with 

slower photoautotrophic growth; there is currently no functional study of PSB28 that has 

been performed in Arabidopsis70.   

 

The calvin cycle enzyme, SBPASE activity in tobacco plants overexpressing the 

Arabidopsis gene was found to have a positive effect on rates of photosynthesis. This was 

associated with an up to 50% increase in the accumulation of the carbohydrates, sucrose 

and starch, and an increase in total leaf surface area and shoot biomass of up to 30%71.  

The two PQL isoforms 1 and 2 were also upregulated; work done by Yabuta et al. show 

that an insertional mutant did not display the usual increase in chlorophyll fluorescence 

upon exposure to actinic light which is associated with the activity of the NDH complex72. 

The minor light harvesting complex, LHCA6, was also upregulated. A lhca6 mutant 

showed a reduction in NDH activity in immature and mature leaves  (~60% compared to 

wildtype Arabidopsis) with no obvious phenotype73. Again, the level of upregulation of 

genes identified in response to AtIPCS2 overexpression was found to be about the same 

or in some cases exceeded the levels for the same genes in AtIPCS1 over-expressors. This 

is despite the fact that the fold change in AtIPCS1 expression was much than AtIPCS2.  

 

Under the GO term lipid localization 9 /17 genes encode for lipid transfer proteins (LPT) 

(Table 5-15); LPTs like the yeast transfer lipid Sec14, facilitate the movement of 

phospholipids between membranes and has been shown to complement sec14 mutants74. 

Some LPTs have been shown to have a role in plant defence, for example, insertional 

mutant dir-1-1 (defective in induced resistance) exhibited increase susceptibility to P. 

syringae. DIR1 is hypothesised to function as a chaperon of lipid signals during SAR75. 

The LTP, At5g05960, has been shown to be upregulated in the t-DNA mutant, nhx1 

(vacuolar Na+/H+ antiporter) in response to salt stress76. The LPT orthologues TaLPT 1 
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Table 5-13: GO enrichment of genes upregulated in response to the constitutive overexpression of 

AtIPCS2 

GO term Description Number in 

input list 

Number in 

Background 

p-value 

GO:0015979 Photosynthesis 30 162 1.70E-31 

GO:0010876 Lipid localization 17 24 1.80E-26 

GO:0006091 Generation of precursor metabolites and 

energy 

26 285 2.50E-20 

GO:0008152 Metabolic process 143 10614 2.00E-18 

GO:0019684 Photosynthesis, light reaction 17 103 1.40E-17 

GO:0019748 Secondary metabolic process 28 489 7.80E-17 

GO:0044237 Cellular metabolic process 122 8722 4.00E-16 

GO:0009987 Cellular process 143 11684 1.30E-14 

GO:0050896 Response to stimulus 70 4057 1.30E-12 

GO:0015977 Carbon fixation 8  16 3.40E-12 

GO:0009409 Response to cold 19 328 7.00E-12 

GO:0009628 Response to abiotic stimulus 38 1471 9.20E-12 

GO:0009266 Response to temperature stimulus 22 485 1.40E-11 

GO:0044262 Cellular carbohydrate metabolic process 20 417 4.90E-11 

GO:0019760 Glucosinolate metabolic process 10 62 8.70E-11 

GO:0016143 S-glycoside metabolic process 10 62 8.70E-11 

GO:0019757 Glycosinolate metabolic process 10 62 8.70E-11 

GO:0006869 Lipid transport 13 163 4.10E-10 

GO:0016137 Glycoside metabolic process 11 104 6.00E-10 

GO:0016144 S-glycoside biosynthetic process 8  41 1.80E-09 

GO:0019761 Glucosinolate biosynthetic process 8  41 1.80E-09 

GO:0019758 Glycosinolate biosynthetic process 8  41 1.80E-09 

GO:0006950 Response to stress 43 2320 8.60E-09 

GO:0016138 Glycoside biosynthetic process 9  79 1.20E-08 

GO:0006790 Sulfur metabolic process 13 220 1.20E-08 

GO:0009719 Response to endogenous stimulus 27 1068 1.80E-08 

GO:0044272 Sulfur compound biosynthetic process 10 115 2.10E-08 

GO:0009737 Response to abscisic acid stimulus 16 378 2.30E-08 

GO:0009058 Biosynthetic process 70 5118 2.90E-08 

GO:0055114 Oxidation reduction 12 203 4.50E-08 

GO:0033036 Macromolecule localization 17 462 6.00E-08 

GO:0009767 Photosynthetic electron transport chain 7  46 8.90E-08 

GO:0005975 Carbohydrate metabolic process 23 866 9.30E-08 

GO:0042221 Response to chemical stimulus 38 2085 1.10E-07 

GO:0010033 Response to organic substance 29 1342 1.40E-07 

GO:0016051 Carbohydrate biosynthetic process 13 277 1.60E-07 

GO:0009664 Plant-type cell wall organization 8  79 1.90E-07 

GO:0009725 Response to hormone stimulus 24 982 2.10E-07 

GO:0022900 Electron transport chain 8  88 4.00E-07 

GO:0034637 Cellular carbohydrate biosynthetic 

process 

10 177 9.00E-07 

GO:0034641 Cellular nitrogen compound metabolic 

process 

16 506 1.00E-06 

GO:0009813 Flavonoid biosynthetic process 7  69 1.10E-06 

GO:0009699 Phenylpropanoid biosynthetic process 9  141 1.20E-06 

GO:0042398 Cellular amino acid derivative 

biosynthetic process 

11 233 1.40E-06 

GO:0044249 Cellular biosynthetic process 63 4925 1.80E-06 
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http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0009058
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0055114
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0033036
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0009767
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0005975
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0042221
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0010033
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0016051
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0009664
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0009725
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0022900
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0034637
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0034641
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0009813
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0009699
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0042398
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=585223022&GO=GO:0044249
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Table 5-14: Genes upregulated by the constitutive overexpression of AtIPCS2 under GO term: 0015979 (photosynthesis)  

                                                                                                                                                                                         At2 over-exp-2              At2 over-exp-9 
Gene ID Gene annotation Log2 fold change  p-value Log2 fold-change           p-value 

ATCG00520 ENCODES A PROTEIN REQUIRED FOR PHOTOSYSTEM I ASSEMBLY AND STABILITY 2.4 3.56E-12 3.6 7.23E-26 

ATCG01090 ENCODES SUBUNIT OF THE CHLOROPLAST NAD(P)H DEHYDROGENASE COMPLEX NDHI 2.7 1.01E-15 4.0 4.89E-33 

ATCG00540 ENCODES CYTOCHROME F APOPROTEIN 2.2 1.72E-12 3.4 7.67E-27 

ATCG01010 CHLOROPLAST ENCODED NADH DEHYDROGENASE UNIT. NDHF 2.2 2.06E-10 3.4 7.33E-22 

ATCG00280 CHLOROPLAST GENE ENCODING A CP43 SUBUNIT OF THE PHOTOSYSTEM II REACTION 

CENTER 
1.9 2.22E-09 3.0 1.05E-20 

ATCG00680 ENCODES FOR CP47, SUBUNIT OF THE PHOTOSYSTEM II REACTION CENTER 1.5 8.93E-07 2.5 2.18E-15 

AT4G28660 PSB28 (PHOTOSYSTEM II REACTION CENTER PSB28 PROTEIN) 1.6 6.17E-59 1.2 8.53E-37 

ATCG01100 NADH DEHYDROGENASE ND1 NDHA 2.9 1.82E-18 4.0 3.49E-33 

AT3G04790 RIBOSE 5-PHOSPHATE ISOMERASE-RELATED 1.8 1.32E-101 1.3 6.95E-58 

ATCG00270 PSII D2 PROTEIN PSBD 2.4 7.28E-13 3.4 1.13E-25 

ATCG01060 ENCODES THE PSAC SUBUNIT OF PHOTOSYSTEM I 2.6 8.05E-17 3.6 2.28E-30 

AT3G55800 SBPASE (SEDOHEPTULOSE-BISPHOSPHATASE); 1.2 1.64E-100 1.0 4.49E-67 

AT4G09650 ATPD (ATP SYNTHASE DELTA-SUBUNIT GENE); 1.5 7.39E-119 1.2 3.91E-76 

ATCG00730 A CHLOROPLAST GENE ENCODING SUBUNIT IV OF THE CYTOCHROME B6 1.9 4.38E-09 2.8 6.43E-19 

ATCG01080 NADH DEHYDROGENASE ND6 NDHG 1.9 9.92E-08 3.1 5.52E-19 

ATCG00710 ENCODES A 8 KD PHOSPHOPROTEIN 1.7 5.64E-08 2.8 1.16E-17 

AT2G01590 CRR3 (CHLORORESPIRATORY REDUCTION 3) 1.2 1.06E-40 1.0 1.79E-31 

ATCG00580 PSII CYTOCHROME B559 1.8 8.75E-09 2.4 2.18E-13 

ATCG00720 ENCODES THE CYTOCHROME B(6) SUBUNIT OF THE CYTOCHROME B6F COMPLEX 1.7 7.29E-08 2.9 4.62E-20 

AT3G01440 PSB-LIKE PROTEIN 2 (PQL2) 1.8 7.06E-107 1.5 2.74E-70 

AT1G14150 PSB-LIKE PROTEIN 1 (PQL1) 1.5 3.82E-75 1.2 1.54E-44 

ATCG01110 ENCODES THE 49KDA PLASTID NAD(P)H DEHYDROGENASE SUBUNIT H PROTEIN 4.2 1.35E-40 4.7 5.23E-52 

AT1G19150 LHCA6; CHLOROPHYLL BINDING PSI TYPE II CHLOROPHYLL A/B-BINDING PROTEIN 2.0 2.50E-114 1.6 5.98E-73 

AT1G60950 FED A; 2 IRON, 2 SULFUR CLUSTER BINDING 1.6 1.03E-63 1.5 1.68E-54 

ATCG00300 ENCODES PSBZ, WHICH IS A SUBUNIT OF PHOTOSYSTEM II 1.7 8.98E-07 3.2 1.04E-19 

ATCG00440 ENCODES NADH DEHYDROGENASE D3 SUBUNIT OF THE CHLOROPLAST NAD(P)H 

DEHYDROGENASE COMPLEX NDHC 

2.7 6.65E-16 3.4 4.14E-24 

ATCG00340 ENCODES THE D1 SUBUNIT OF PHOTOSYSTEM I AND II REACTION CENTERS. PSAB 1.8 1.35E-08 2.9 4.71E-19 

ATCG00360 ENCODES A PROTEIN REQUIRED FOR PHOTOSYSTEM I ASSEMBLY AND STABILITY 2.7 1.25E-15 3.8 1.03E-29 

AT3G16250 NDF4 (NDH-DEPENDENT CYCLIC ELECTRON FLOW 1); 1.4 1.02E-79 1.1 5.91E-52 

AT3G62410 PROTEIN BINDING CP12-2 ENCODES A SMALL PEPTIDE FOUND IN THE CHLOROPLAST 

STROMA 

1.8 5.62E-79 1.4 5.57E-49 
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Table 5-15: Genes upregulated by the constitutive overexpression of AtIPCS2 under GO term: 0010876 (lipid localization) 

 

 

 

                                                                                                                                                                                              At2 over-exp-2                         At2 over-exp-9 

Gene ID Gene annotation Log2 fold change        p-value              Log2 fold-change            p-value 

AT5G59310 LTP4 (LIPID TRANSFER PROTEIN 4) 3.7 2.07E-28 1.0 0.003587715 

AT5G48490 DIR1 LIPID TRANSFER PROTEIN (LTP) 1.2 4.21E-16 1.3 4.78E-18 

AT3G08770 LTP6; LIPID BINDING PREDICTED TO ENCODE A PR (PATHOGENESIS-

RELATED) PROTEIN 
2.0 3.96E-65 1.3 4.44E-27 

AT5G40420 OLEO2 (OLEOSIN 2) 2.5 9.95E-21 2.8 5.74E-25 

AT4G25140 OLEO1 (OLEOSIN 1) 4.6 2.85E-80 5.0 1.20E-91 

AT4G27140 2S SEED STORAGE PROTEIN 1 4.3 1.28E-68 6.3 1.95E-148 

AT4G27150 2S SEED STORAGE PROTEIN 2 4.7 1.09E-61 5.4 1.89E-81 

AT4G27160 2S SEED STORAGE PROTEIN 3 4.2 4.18E-58 6.3 1.28E-129 

AT5G64080 LIPID TRANSFER PROTEIN (LTP) 1.6 1.28E-30 1.2 3.85E-18 

AT5G05960 LIPID TRANSFER PROTEIN (LTP) 1.7 4.62E-51 1.2 6.31E-26 

AT3G18280 LIPID TRANSFER PROTEIN (LTP) 1.3 7.33E-28 1.1 3.46E-19 

AT5G54740 LIPID TRANSFER PROTEIN (LTP) 5.8 1.57E-127 6.3 5.98E-153 

AT5G55410 LIPID TRANSFER PROTEIN (LTP) 2.2 4.37E-12 2.0 1.50E-09 

AT4G27170 2S SEED STORAGE PROTEIN 4 1.8 6.48E-09 3.9 2.71E-39 

AT3G27660 OLEO4 (OLEOSIN 4) 2.8 6.81E-27 2.6 5.28E-23 

AT2G37870 LIPID TRANSFER PROTEIN (LTP) 2.9 2.88E-27 1.5 4.73E-08 

AT3G01570 OLE05 (OLEOSIN 5) 1.5 8.26E-13 1.3 1.92E-08 
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Table 5-16: Genes upregulated by the constitutive overexpression of AtIPCS2 under GO term: 0009791 (post embryonic development) 

 
  

         At2-over-exp-2              At2-over-exp-9 

Gene ID                 Gene annotation  Log2 fold change     p-value Log2 fold change         p-value 

AT3G22500 ATECP31 (LATE EMBRYOGENESIS PROTEIN ECP31) 2.7 5.10E-20 2.2 6.09E-13 

AT4G24960 ATHVA22D  (HVA22-LIKE PROTEIN) 1.0 2.41E-28 1.5 1.92E-57 

AT3G27660 OLEO4 (OLEOSIN 4) 2.8 6.81E-27 2.6 5.28E-23 

AT5G56030 HSP81-2 (HEAT SHOCK PROTEIN 81-2) 1.3 6.51E-80 1.0 3.92E-53 

AT4G28520 CRU3 (CRUCIFERIN 3) 6.0 5.56E-142 7.3 9.09E-207 

AT4G25140 OLEO1 (OLEOSIN 1) 4.6 2.85E-80 5.0 1.20E-91 

AT4G26740 ATS1 (ARABIDOPSIS THALIANA SEED GENE 1) 2.5 3.28E-18 2.9 4.39E-23 

AT2G27380 ATEPR1 (EXTENSIN PROLINE-RICH 1) 2.9 4.27E-33 5.1 6.03E-100 

AT2G40170 GEA6 (LATE EMBRYOGENESIS ABUNDANT 6) 2.5 3.49E-22 1.2 2.59E-05 

AT1G48130 ATPER1 (THIOREDOXIN PEROXIDASE) 2.0 7.06E-23 2.3 2.32E-29 

AT3G20210 DELTA-VPE (CYSTEIN-TYPE ENDOPEPTIDASE) 1.2 0.000532902 1.4 8.21E-05 

AT5G40420 OLEO2 (OLEOSIN 2) 2.5 9.95E-21 2.8 5.74E-25 

AT1G03880 CRU2 (CRUCIFERIN 2) 2.8 1.65E-22 4.4 2.05E-59 

AT3G58190 LBD29 (LATERAL ORGAN BOUNDARIES-DOMAIN 29) 1.5 2.69E-06 1.7 1.20E-07 
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and 2 were found to be upregulated in response to salt and drought stress in Tritium 

aestivum77, showing that the plant LPTs expression are induced in response to biotic and 

abiotic stress. The function of most LTP are currently uncharacterized so it is not possible 

to hypothesize what the effects of the up regulation of the genes identified in response to 

AtIPCS2 overexpression, will have on plant development. Genes upregulated under GO 

term post embryonic development with a log2 fold ≥ 2 in response to AtIPCS2 transcript 

increase include CRU2, CRU3, EPR1, S1 and ECP31 (Figure 5-16). 

 

For the AtIPCS3 over-expressor there was a significant enrichment of upregulated genes 

associated with the GO term, GO: 0010876 (lipid localization) with 36.8% (7/19) of the 

genes associated with this term compared to 0.06% in the Arabidopsis transcriptome 

(Table 5-17). Other GO terms with siginificant enrighment include macromolcule 

localisation (7/19), lipid transport (5/7) and post embryonic development (5/19). Genes 

enriched under GO terms macromolecule localisation and lipid transport were also 

identified under the lipid localization GO term. Genes enriched under lipid localization 

and post-embryonic development that were upregulated in response to AtIPCS3 

overexpression, had already been identified in the responses to AtIPCS1 and 2 

overexpression. For the sake of completion the fold change in expression of these genes 

is shown in Table 5-18 and Table 5-19, with genes up-regulated by  log2 fold-change ≥ 2 

highlighed in bold. All genes identified showed a dose dependent increase in expression 

associated with higher transcript levels of AtIPCS3 in At1 over-exp-7 compared to At1 

over-exp-3.  

 
Analyses of genes upregulated in response to increases in AtIPCS1, 2 and 3 expressions 

showed an expected significant enrichment for lipid localization as with 46.7% (7/15) of 

the genes associated with this term compared to 6.14% in the Arabidopsis transcriptome 
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(Table 5-20). These genes include 2S seed storgage protein 1-4, OLESIN 1 and  OLESIN 

4. This showed that genes enriched under lipid localization, and found to be involved in 

the early stage plant development (embyronic), are conserved with respect to the response 

to AtIPCS1, 2 and 3 overexpression indicating that modulation of AtIPCS expression is 

likely to be vital for survival, with a decrease in the genes identified likely to lead to non-

viable seeds.  

 

Following the analysis of the overexpressing transgenic lines, the transcriptome of the 

At1 t-DNA mutant was also analysed to find out to what extent the decrease in AtIPCS1 

expression relative to Col0, would have on the pathways already identified as affected by 

AtIPCS expression.   

 

5.6 Genes downregulated in response to AtIPCS1 homozygous knock 

down 
 
 

Genes down regulated in response to the decrease in AtIPCS1 expression were found to 

be significantly enriched for genes annotated with the GO term GO: 0050896 (response 

to stimulus), with 40.3% (52/129) of the genes associated with this term compared to 

6.14% in the Arabidopsis transcriptome (Table 5-21). Other GO terms with siginificant 

enrichment include secondary metabolic process  (21/129) and response to stress 

(34/129). For comparison with At1 over-expressors, genes  annotated under the GO term 

response to stress were analysed. Of the 34 genes, 17 were associated with defence 

response and 8 down regulated by a log2 fold change ≥ 2 (highlighed in bold in Table 5-

22). Some  genes that were downregulated in response to AtIPCS1 overexpression were 

also found to be down regulated in response to knockdown of AtIPCS1 expresssion. These 

included,  MC8, WRKY 54, PR5, WRKY 70, VQ containg motif protein 10, and ATP  

binding  BIP3. 
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Table 5-17: GO enrichment of genes upregulated in response to the constitutive overexpression of AtIPCS3 

 

GO term Description  Number in input list Number in Background         p-value 

GO:0010876 Lipid localization 7  24 6.00E-18 

GO:0033036 Macromolecule localization 7  462 1.90E-09 

GO:0006869 Lipid transport 5  163 1.80E-08 

GO:0051179 Localization 7  1922 2.60E-05 

GO:0009791 Post-embryonic development 5  705 2.20E-05 

GO:0032502 Developmental process 7  2304 8.30E-05 

GO:0007275 Multicellular organismal development 6  2020 0.00035 

GO:0032501 Multicellular organismal process 6  2094 0.00042 

GO:0006810 Transport 5  1846 0.0018 

GO:0051234 Establishment of localization 5  1851 0.0019 

GO:0050896 Response to stimulus 7  4057 0.0026 

GO:0045735 Nutrient reservoir activity 9  63 1.80E-20 

GO:0008289 Lipid binding 5  323 5.00E-07 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0010876
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0033036
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0006869
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0051179
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0009791
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0032502
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0007275
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0032501
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0006810
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0051234
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0050896
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0045735
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=345933005&GO=GO:0008289


 

 

178 | P a g e  
 

Table 5-18: Genes upregulated by the constitutive overexpression of AtIPCS3 under GO term: 0010876 (lipid localization) 

 

                                                                                                                                                                                          At3 over-exp-4     At3 over-exp-5 

Gene ID Gene annotation Log2 fold change  p-value Log2 fold-change  p-value 

AT5G54740 PROTEASE INHIBITOR/SEED STORAGE/LIPID TRANSFER PROTEIN (LTP) 3.9 4.20E-57 7.7 9.99E-230 

AT4G25140 ENCODES OLEOSIN1 2.5 1.01E-21 6.1 3.11E-141 

AT4G27140 2S SEED STORAGE PROTEIN 1 3.0 4.86E-32 7.2 6.10E-193 

AT4G27150 2S SEED STORAGE PROTEIN 2 2.3 8.24E-16 6.4 7.03E-115 

AT4G27160 2S SEED STORAGE PROTEIN 3 3.6 4.03E-43 7.3 2.59E-176 

AT4G27170 2S SEED STORAGE PROTEIN 4 1.8 6.80E-09 4.9 9.93E-64 

AT3G27660 OLEO4 (OLEOSIN 4) 1.1 8.65E-05 4.0 2.28E-58 
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Table 5-19: Genes upregulated by the constitutive overexpression of AtIPCS3 under GO term: 0009791 (post embryonic development) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                At3 over-exp-4                   At3 over-exp-5 

Gene ID Gene annotation     Log2 fold change  p-value Log2 fold-change         p-value 

AT4G28520 CRU3 (CRUCIFERIN 3) 4.2 6.51E-67 8.3 2.55E-271 

AT4G25140 OLEO1 (OLEOSIN 1) 2.5 1.01E-21 6.1 3.11E-141 

AT2G27380 ATEPR1 1.5 4.85E-09 5.6 8.36E-120 

AT3G27660 OLEO4 (OLEOSIN 4) 1.1 8.65E-05 4.0 2.28E-58 

AT1G03880 CRU2 (CRUCIFERIN 2) 1.9 1.19E-10 5.5 6.22E-96 
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Table 5-20: GO enrichment of genes upregulated in response to the constitutive overexpression of AtIPCS1, 2 and 3 

 

GO term Description Number in input list           Number in Background            p-value 

GO:0010876 Lipid localization 7    24 7.70E-19 

GO:0033036 Macromolecule localization 7    462 2.60E-10 

GO:0006869 Lipid transport 5  163 4.70E-09 

GO:0051179 Localization 7  1922 4.00E-06 

GO:0009791 Post-embryonic development 5  705 5.90E-06 

GO:0007275 Multicellular organismal development 6  2020 7.80E-05 

GO:0032501 Multicellular organismal process 6  2094 9.50E-05 

GO:0032502 Developmental process 6  2304 0.00016 

GO:0051234 Establishment of localization 5  1851 0.00056 

GO:0050896 Response to stimulus 7  4057 0.00049 

GO:0006810 Transport 5  1846 0.00056 

GO:0045735 Nutrient reservoir activity 9  63 9.80E-22 

GO:0008289 Lipid binding 5  323 1.30E-07 

 

 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0010876
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0033036
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0006869
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0051179
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0009791
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0007275
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0032501
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0032502
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0051234
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0050896
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0006810
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0045735
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=285485813&GO=GO:0008289
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The down regulation of these genes seems to be a basal response to any alteration in the 

expression of AtIPCS1  as the level of down  regulation of these genes is  never  > 2 in 

the knock-down and the over-expressor lines. Other genes which had already been 

identified as down regulated in response to overexpression of either AtIPCS2 or AtIPCS3 

included, MC8, RNS1, TPS04 and VQ motif containing  protein  10. Again these genes 

had a log2 fold-change > 2 (apart from TPS04 down regulation in At2 over exp 2 which 

had a log2 fold-change of 2.6) indicating a basal response to an alteration in AtIPCS 

expression.  It is  worth noting that  none of the genes identified as enriched under the GO 

term response to stress were linked to cold, drough and salt stress. These had been 

previously identified as down regulated in response to AtIPCS overexpression. 

 

NIMIN1, a defence related gene, found to be down regulated by a log2 fold-change of 3.2 

in At1 t-DNA mutant line, encodes a protein that interacts with NPR1, a regulator of 

SARs in plants. Treatment of plants with SAR inducing compounds, SA and  2,6-

dichloroisonicotinic acid, resulted in  transient expression of NIMIN, suggesting that is a 

sensitive and selective inducible target for specific SAR  signals78. It has also been 

suggested that the transient expression and accumulation of NIMIN1 indicates it is a 

regulator of late-SAR response by controlling the expression of PR179. The down 

regulation of this gene in response to the decreased AtIPCS1 which was not identified in 

any of the IPCS over-expressors, indicated that the plant was even more sensitive to 

decreases AtIPCS1 than it was to increased expression. Any further induction of SAR is 

effectively switched off, thereby further supporting role of AtIPCS as a negative regulator 

of plant defence response. Another gene down regulated by a log2 fold-change > 2, and 

unidentified as responding to overexpression of AtIPCS, was LOX2. This gene has been 

shown to be necessary for JA accumulation in the plant response to wounding80; its down 
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regulation indicated that the t-DNA mutant lacks the ability to induce the accumulation 

of JA  and the associated stress response.  

 

The camalexin biosynthesis enzyme, (CYP71A13) and flavin dependent monooxygenase 

(FMO1) were also down regulated in response to AtIPCS1 knock-down. Previous studies 

have  shown them both to be upregulated in plants infected with Golovinomyces orontii81. 

FMO1 is also a well characterized positive regulator of the programmed cell death 

effectors EDS1 (Enhanced disease susceptibility 1) and PADA4 (phytoalexin deficient 4) 

which regulate the accumulation of SA and are necessary for basal resistance to 

pathogens82.  PADA4 is also identified as down regulated (-1.1 fold) in this study, as are 

three TIR class of  R (resistance) proteins which recognize a diverse set of pathogen 

effectors and are associated with the second line of plant defence against pathogens 

termed effector triggered immunity (ETI)83. Also downregulated are MYB28 and MYB 

29 encoding positive regulators of methionine-derived glucosinolates84, which are 

upregulated in response to herbivore attack. Glucosinolates are broken down by 

thioglucosidases, releasing toxic compounds such as nitriles and isothiocynates which are 

toxic to nematodes85. In addition, VSP2 a well characterized storage protein which has 

acid phosphatase activity, was also down regulated. VSP2 expression has been shown to 

be enhanced in response to plant defence against the herbivory insect, Sponoptera 

littoralis86. 

The DIR genes which are responsible for the biosynthesis of lignin, have been shown in 

Physcomitrella patens to be induced upon inoculation with B. cinerea in order to reinforce 

the cell wall as a pathogen defence87.  The DIR proteins DIR7 and DIR 21, which have 

been identified in this study as down regulated in response to AtIPCS1 knock-down, have 

not been characterized in relation to plant response to stress in Arabidopsis. However, 

based on the expression of the DIR proteins identified in P. patens, it is probable that the 
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Table 5-21: GO enrichment of genes  upregulated in response to the knock-down in expression of 

AtIPCS1 in the t-DNA insertion mutant 

GO term Description Number 

in input 

list 

Number in 

Background 

p-value 

GO:0050896 Response to stimulus 52 4057 4.10E-18 

GO:0019748 Secondary metabolic process 21 489 6.50E-17 

GO:0009987 Cellular process 82 11684 2.80E-14 

GO:0006950 Response to stress 34 2320 3.60E-13 

GO:0065007 Biological regulation 44 4188 4.20E-12 

GO:0009607 Response to biotic stimulus 17 638 1.10E-10 

GO:0050794 Regulation of cellular process 37 3375 1.20E-10 

GO:0016137 Glycoside metabolic process 9  104 2.00E-10 

GO:0009753 Response to jasmonic acid stimulus 11 215 3.80E-10 

GO:0051707 Response to other organism 16 599 3.70E-10 

GO:0016138 Glycoside biosynthetic process 8  79 6.80E-10 

GO:0050789 Regulation of biological process 37 3697 1.50E-09 

GO:0006952 Defence response 17 766 1.60E-09 

GO:0051704 Multi-organism process 17 776 1.90E-09 

GO:0044249 Cellular biosynthetic process 42 4925 9.50E-09 

GO:0009058 Biosynthetic process 43 5118 9.10E-09 

GO:0034637 Cellular carbohydrate biosynthetic process 9  177 1.70E-08 

GO:0042221 Response to chemical stimulus 25 2085 4.30E-08 

GO:0009751 Response to salicylic acid stimulus 9  200 4.60E-08 

GO:0016051 Carbohydrate biosynthetic process 10 277 5.90E-08 

GO:0019760 Glucosinolate metabolic process 6  62 1.30E-07 

GO:0016143 S-glycoside metabolic process 6  62 1.30E-07 

GO:0019757 Glycosinolate metabolic process 6  62 1.30E-07 

GO:0042398 Cellular amino acid derivative biosynthetic 

process 

9  233 1.60E-07 

GO:0031347 Regulation of defence response 6  66 1.80E-07 

GO:0006575 Cellular amino acid derivative metabolic 

process 

10 315 1.90E-07 

GO:0019438 Aromatic compound biosynthetic process 9  237 1.80E-07 

GO:0044272 Sulfur compound biosynthetic process 7  115 2.20E-07 

GO:0009698 Phenylpropanoid metabolic process 8  175 2.30E-07 

GO:0044262 Cellular carbohydrate metabolic process 11 417 2.70E-07 

GO:0051726 Regulation of cell cycle 7  127 4.10E-07 

GO:0009828 Plant-type cell wall loosening 5  40 4.60E-07 

GO:0016144 S-glycoside biosynthetic process 5  41 5.20E-07 

GO:0019761 Glucosinolate biosynthetic process 5  41 5.20E-07 

GO:0019758 Glycosinolate biosynthetic process 5  41 5.20E-07 

GO:0042440 Pigment metabolic process 7  134 5.80E-07 

GO:0080134 Regulation of response to stress 6  83 6.40E-07 

GO:0009699 Phenylpropanoid biosynthetic process 7  141 8.10E-07 

GO:0010033 Response to organic substance 18 1342 8.90E-07 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0050896
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0019748
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0009987
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0006950
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0065007
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0009607
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0050794
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0016137
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0009753
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0051707
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0016138
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0050789
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0006952
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0051704
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0044249
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0009058
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0034637
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0042221
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0009751
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0016051
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0019760
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0016143
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0019757
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0042398
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0031347
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0006575
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=840907089&GO=GO:0019438
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Table 5-22: Genes upregulated by the decrease in AtIPCS1 expression under GO term: 0006950 (response to stress) 

 

                                                                                                                                                                                                                                                                               At1 tDNA mutant  

Gene ID Gene annotation Log2 fold-change                    p-value 

AT1G17600 DISEASE RESISTANCE PROTEIN (TIR-NBS-LRR CLASS) -1.2 4.95E-06 

AT1G16420 MC8 (METACASPASE 8) -1.6 3.10E-06 

AT2G33380 RD20 (RESPONSIVE TO DESSICATION 20) -1.2 1.77E-05 

AT3G13650 DIR7 -1.1 1.69E-06 

AT2G30770 CYP71A13 -2.1 3.61E-10 

AT2G40750 WRKY54 -2.2 8.75E-31 

AT3G52430 PAD4 (PHYTOALEXIN DEFICIENT 4) -1.1 6.69E-16 

AT1G65870 DIR21 -1.4 9.42E-05 

AT1G75040 PR5 (PATHOGENESIS-RELATED GENE 5) -2.4 1.80E-47 

AT1G72920 DISEASE RESISTANCE PROTEIN (TIR-NBS CLASS), -1.1 1.30E-05 

AT2G02990 RNS1 (RIBONUCLEASE 1) -1.1 2.41E-09 

AT1G61120 TPS04 (TERPENE SYNTHASE 04) -2.9 3.77E-19 

AT1G19670 ATCLH1 (ARABIDOPSIS THALIANA CORONATINE-INDUCED PROTEIN 1) -1.7 1.14E-78 

AT2G41240 BHLH100 (BASIC HELIX-LOOP-HELIX PROTEIN 100) -3.3 1.22E-44 

AT5G07690 ATMYB29 (ARABIDOPSIS THALIANA MYB DOMAIN PROTEIN 29) -2.1 1.56E-13 

AT1G47890 ATRLP7 (RECEPTOR LIKE PROTEIN 7) -1.1 2.42E-05 

AT2G35380 PEROXIDASE 20 (PER20) -1.2 3.51E-18 

AT5G24770 VSP2 (VEGETATIVE STORAGE PROTEIN 2) -1.3 2.86E-13 

AT1G65060 4-COUMARATE:COA LIGASE (4CL) -1.1 3.64E-06 

AT3G45140 LOX2 (LIPOXYGENASE 2) -1.7 5.15E-51 

AT4G17090 CT-BMY (CHLOROPLAST BETA-AMYLASE) -2.6 1.23E-243 

AT1G78410 VQ MOTIF-CONTAINING PROTEIN 10 -1.3 4.87E-05 

AT3G56400 WRKY70 -1.6 6.27E-68 

AT1G02450 NIMIN1 (NIM1-INTERACTING 1) -3.2 1.019475205 

AT1G18710 ATMYB47 (MYB DOMAIN PROTEIN 47) -1.7 1.07E-19 

AT1G19250 FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE 1) -1.6 3.19E-10 

AT2G41480 PEROXIDASE 25 -1.7 1.39E-20 

AT3G22840 ELIP1 (EARLY LIGHT-INDUCABLE PROTEIN) -1.0 0.002586795 

AT1G57630 DISEASE RESISTANCE PROTEIN (TIR CLASS) -1.1 1.44E-05 

AT1G68740 PHO1 -1.2 2.25E-09 

AT1G55210 DISEASE RESISTANCE RESPONSE -1.8 3.05E-45 

AT5G61420 MYB28 (MYB DOMAIN PROTEIN 28) -2.1 2.52E-64 
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DIR proteins are involved in the plant defence response to pathogens in Arabidopsis and 

AtIPCS functions as a negative regulator. These data showed that diverse components of 

the plant defence machinery, regulating the response to pathogens, are down regulated in 

response to changes in AtIPCS expression.  

 

In relation to abiotic stress, two genes were notably down regulated in response to 

AtIPCS1 knock-down: CT-BMY and BHLH10. CT-BMY encodes a beta amylase found in 

the chloroplast and induced in response to cold stress. In Arabidopsis, knock-down of  

CT-BMY was found to lead to reduced photosynthetic efficiency, suggesting that its 

accumulation might serve to increase plant freezing tolerance by the breakdown of 

glucans resulting in the accumulation of maltose and other oligosaccharides which act as 

protective solutes in response to stress88. These sugars act as ‘compatible solutes’ for the 

continued function of macromolecules such as proteins and enzymes when plants are 

exposed to freezing temperatures by aiding water retention in cells89, thereby reducing 

the risk of cell lysis when the osmotic flow favours the movement of water molecules 

into the cell.  BHLH100 was downregulated by log2 fold-change of 3.3 in the insertion 

mutant; overexpression of the basic-helix-helix-loop has been shown to increase plant 

tolerance to high zinc (Zn) and nickel (Ni)90. This suggested that AtIPCS1 expression 

levels may affect plant metal homeostasis by acting as a negative regulator of response to 

metal stress. 

 

5.7 Genes upregulated in response to a decrease in AtIPCS1 expression 
 

Analyses of genes upregulated in response to the decrease in AtIPCS1 expression found 

them to be significantly enriched under the GO terms photosynthesis and lipid localisation 

(Table 5-23, 5-24 and 5-25). Further examination of genes upregulated under the GO term 
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Table 5-23: GO enrichment of genes  upregulated in response to the knock down in expression of 

AtIPCS1 tDNA insert muntant 

GO term Description Number 

in input 

list 

Number in 

Background 

   p-value 

GO:0050896 Response to stimulus 95 4057 1.60E-36 

GO:0010033 Response to organic substance 59 1342 3.60E-35 

GO:0042221 Response to chemical stimulus 70 2085 5.40E-35 

GO:0009719 Response to endogenous stimulus 47 1068 7.90E-28 

GO:0009725 Response to hormone stimulus 44 982 2.50E-26 

GO:0015979 Photosynthesis 20 162 2.90E-20 

GO:0009628 Response to abiotic stimulus 38 1471 4.70E-15 

GO:0006950 Response to stress 45 2320 2.30E-13 

GO:0019684 Photosynthesis, light reaction 12 103 2.20E-12 

GO:0070887 Cellular response to chemical stimulus 20 452 2.70E-12 

GO:0010876 Lipid localization 8  24 7.20E-12 

GO:0009743 Response to carbohydrate stimulus 15 240 1.60E-11 

GO:0009873 Ethylene mediated signaling pathway 10 74 4.20E-11 

GO:0009266 Response to temperature stimulus 19 485 7.10E-11 

GO:0009755 Hormone-mediated signaling pathway 16 321 8.30E-11 

GO:0032870 Cellular response to hormone stimulus 16 321 8.30E-11 

GO:0006091 Generation of precursor metabolites and 

energy 

15 285 1.60E-10 

GO:0000160 Two-component signal transduction 

system (phosphor-relay) 

10 92 2.90E-10 

GO:0009987 Cellular process 107 11684 1.40E-09 

GO:0010200 Response to chitin 11 151 2.00E-09 

GO:0009733 Response to auxin stimulus 15 360 3.40E-09 

GO:0009642 Response to light intensity 9  90 4.60E-09 

GO:0044237 Cellular metabolic process 86 8722 7.40E-09 

GO:0007242 Intracellular signaling cascade 19 659 9.30E-09 

GO:0051716 Cellular response to stimulus 21 840 1.70E-08 

GO:0009723 Response to ethylene stimulus 11 199 2.90E-08 

GO:0009605 Response to external stimulus 15 429 3.20E-08 

GO:0009416 Response to light stimulus 17 596 6.70E-08 

GO:0009646 Response to absence of light 5  16 9.30E-08 

GO:0009314 Response to radiation 17 613 9.90E-08 

GO:0032774 RNA biosynthetic process 22 1040 1.30E-07 

GO:0006351 Transcription, DNA-dependent 22 1039 1.30E-07 

GO:0009611 Response to wounding 10 197 2.70E-07 

GO:0009968 Negative regulation of signal transduction 6  43 3.10E-07 

GO:0009737 Response to abscisic acid stimulus 13 378 3.30E-07 

GO:0009409 Response to cold 12 328 5.00E-07 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=625449977&GO=GO:0050896
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http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=625449977&GO=GO:0044237
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=625449977&GO=GO:0007242
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Table 5-24: Genes upregulated by the decrease in expression of AtIPCS1 under GO term: 0015979 (photosynthesis) 

 

                                                                                                                                                                                                                                                   At1 tDNA mutant  

Gene ID                                       Gene annotation                                                                                        Log2 fold-change 
 

 p-value 

ATCG00730 SUBUNIT IV OF THE CYTOCHROME B6/F COMPLEX PETD 1.4 1.23E-05 

AT1G29920 CAB2 (CHLOROPHYLL A/B-BINDING PROTEIN 2) 1.2 3.18E-12 

ATCG00580 PSII CYTOCHROME B559 1.3 8.64E-05 

ATCG01100 NADH DEHYDROGENASE ND1 NDHA 1.2 0.000267999 

ATCG00520 PHOTOSYSTEM I ASSEMBLY PROTEIN YCF4 1.1 0.001040999 

ATCG01090 SUBUNIT OF THE CHLOROPLAST NAD(P)H DEHYDROGENASE COMPLEX NDHI 1.1 0.001370433 

ATCG00270 PSII D2 PROTEIN PSBD; 1.5 2.44E-06 

ATCG00680 CP47, SUBUNIT OF THE PHOTOSYSTEM II REACTION CENTER 1.2   

ATCG00710 PHOTOSYSTEM II REACTION CENTER PROTEIN H 1.2 0.000212549 

ATCG00360 PHOTOSYSTEM I ASSEMBLY PROTEIN YCF3 1.1 0.001002877 

ATCG00300 PSBZ, WHICH IS A SUBUNIT OF PHOTOSYSTEM II 1.1 0.002217157 

ATCG00440 NAD(P)H-QUINONE OXIDOREDUCTASE SUBUNIT 3 1.0 0.002233798 

ATCG00540 CYTOCHROME F APOPROTEIN 1.1 0.000424669 

ATCG00340 ENCODES THE D1 SUBUNIT OF PHOTOSYSTEM I AND II REACTION CENTERS. 

PSAB 

1.4 1.44E-05 

ATCG01110 NAD(P)H-QUINONE OXIDOREDUCTASE SUBUNIT H 1.9 6.32E-10 

AT5G01600 ATFER1 1.1 1.09E-67 

ATCG01060 PSAC SUBUNIT OF PHOTOSYSTEM I 1.4 1.56E-05 

ATCG00720 CYTOCHROME B(6) SUBUNIT OF THE CYTOCHROME B6F COMPLEX 1.2 9.76E-05 

ATCG00280 CP43 SUBUNIT OF THE PHOTOSYSTEM II REACTION CENTER 1.4 8.36E-06 

AT1G27730 STZ (SALT TOLERANCE ZINC FINGER) 1.2 4.52E-17 
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Table 5-25: Genes upregulated by the decrease in expression of AtIPCS1 under GO term: 0010876 (lipid localization) 

  

 
                                                                                                                                                                                                               At1 tDNA mutant  

Gene ID                         Gene annotation                                Log2 fold-change  p-value 

AT5G40420 OLEO2 (OLEOSIN 2) 1.3 3.97E-06 

AT4G25140 OLEO1 (OLEOSIN 1) 2.1 4.96E-15 

AT4G27150 2S SEED STORAGE PROTEIN 2 1.6 1.52E-07 

AT3G01570 OLE05 (OLEOSIN 5) 1.3 4.17E-09 

AT5G54740 2S SEED STORAGE PROTEIN 5 3.6 6.33E-48 

AT4G24230 ACBP3 (ACYL-COA-BINDING DOMAIN 3) 1.3 6.87E-101 

AT3G27660 OLEO4 (OLEOSIN 4) 1.3 5.59E-06 

AT4G27160 2S SEED STORAGE PROTEIN 3 1.1 0.000254456 
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photosynthesis found the same genes observed as up-regulated in response to the 

overexpression of AtIPCS1, 2 and 3. Only one gene, STZ, was identified that had not been 

found in the overexpressing transgenic lines. STZ has a function in plant response to 

abiotic stress (Table 5-24) and have  been shown to enhance tolerance to heat, salinity 

and osmotic stress in transgenic over-expressors and RNAi knock-downs91. Therefore, 

the downregulation of STZ in response to AtIPCS1 indicates that AtIPCS affects the plant 

response to abiotic stress in a way that is advantageous for plant survival.   

 

Genes up regulated under the GO enrichment term, lipid localization were found to 

encode the lipid transfer proteins and lipid storage proteins already identified as 

upregulated in response to AtIPCS overexpression. The only genes upregulated in 

response to overexpression of AtIPCS1, 2 and 3, but not upregulated on AtIPCS1 knock-

down were, 2S seed storage protein 1 and 4.  These data indicated that AtIPCS acts as a 

positive and negative regulator of lipid content in plants.  

 

5.8 Conclusion 
 

In this Chapter, the role of AtIPCS as a negative regulator of plant defence response 

against pathogens was indicated. The overexpression of each isoform resulted in the down 

regulation of genes involved in both JA and SA plant defence signalling, and these 

responded in a dose dependent manner to changes in the expression of each isoform. The 

PR genes are of particular interest because they are well characterized plant defence 

signals. In this study, it was found that overexpression of AtIPCS1 and AtIPCS3 down 

regulated these genes in a dose dependent manner. AtIPCS2 did not show the same 

response; what was observed instead, was a heightened response resulting in an increase 

in the down regulation of these genes compared to over-expressors of AtIPCS1 and 

AtIPCS3. The down regulation of these genes was also found to have reached a peak; the 



 

 

190 | P a g e  
 

same level of down regulation was observed for both At2 over-expressor transgenic lines, 

despite the differences in AtIPCS2 transcript levels.  

 

In addition, the overexpression of AtIPCS2 levels affected more genes in the defence 

response pathway that the other isoforms. From these data, it was clear that AtIPCS2 is 

one of the principle regulators of plant defence response against pathogens, and that the 

other two isoforms have similar roles but perhaps as rheostats. The knock-down in 

AtIPCS1 expression was also found to affect the plant defence pathway, resulting in the 

down regulation of the disease resistance TIR class of proteins, DIR proteins, WRKY 70 

and PADA. Interestingly, only PR5 (out of all the other PR genes: PR1, PR2 and PR4) 

was down regulated in response to AtIPCS1 transcript decrease. In contrast, PR1 and PR2 

in particular were found to show a heightened level of response to the overexpression of 

AtIPCS, especially AtIPCS2. This indicated whilst PR1 and PR2 are specifically induced 

in response to an increase in AtIPCS expression, PR5 is induced as a basal response to 

any change in expression.  

 

AtIPCS has a prominent role as a regulator of plant defence signalling, affecting not only 

pathways involved in response to fungal and bacterial pathogens, but also pathways 

involved in defence against parasites and herbivores. This showed that AtIPCS is part of 

a network of plant defence genes that transcends different defence pathways. This is 

probably because any change in the levels of phytoceramide, acts as an indiscriminate 

pro-apoptotic signal that mobilizes all defence networks in the push for plant survival.  

 

AtIPCS levels also affect the plant response to abiotic stress; overexpression of AtIPCS1, 

2 and 3, and knockdown of AtIPCS1 resulted in the down regulation of genes involved in 

the response to salt, drought and cold stress. This is in alignment with the identification 

of transcription factor binding sites for genes involved in response to abiotic stress 
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upstream of the AtIPCS1, 2 and 3 promotors (Chapter 2). The down regulation of these 

genes could result in plants that are tolerant to cold, salt and osmotic stress.  

 

Similarly, in response to the overexpression of AtIPCS1, 2 and 3, and knock-down of 

AtIPCS1, genes involved in photosynthesis and lipid localisation were upregulated. The 

link between IPCS expression and photosynthesis is unclear and could be an indirect 

effect. In relation to lipid localisation, the genes upregulated are those that have been 

identified as expressed specifically in seeds. The level of upregulation for these genes 

was similar in response to the overexpression of each isoform of AtIPCS. This indicated 

that the three isoforms have the same level of regulation of genes involved in lipid 

localization in seeds, and function to increase lipid content in seeds to ensure they reach 

maturity and germinate. 

 

In conclusion, the RNASeq analyses have shown that changes in AtIPCS expression is a 

focal point for the induction of the plant defence response to biotic and abiotic stress, with 

other effects on plant photosynthesis efficiency and lipid content. 
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6.1 Conclusion 
 
 

In this study two approaches have been utilised to understand the role of IPCSs in plants: 

a chemical approach involving the screen for inhibitors of AtIPCS2 and OsIPCS2 

combined with a genetic approach involving the analyses of transcriptome changes in 

response to the over expression and the knock down in expression of AtIPCS.  

Inhibitors of IPCS2 were identified which showed inhibitory activity at low µM, and 

exhibited herbicidal phenotypes associated with stress (purple patches) and PCD 

(chlorotic leaves) in an in vivo screen. The phenylamidine and triazinone classes of 

compounds have both been shown to be inhibitors of AtIPCS2 and OsIPCS2, but showed 

differential selectivity for AtIPCS2. Both were found to have little or no effect on AUR1, 

the yeast orthologue.   

 

The identification of these two classes of compounds was interesting, in that the 

triazinone are known antifungals and the phenylamidines have herbicidal activity. These 

data also indicated that AtIPCS2 could be both a herbicidal and antifungal target. The use 

of the phenylamidines as herbicides is quite promising in that they show obvious 

phenotypes of stress resulting from the application of the compounds on wildtype plants. 

The two phenylamidines tested show phenotypes associated with oxidative stress and 

PCD which result in the inhibition of plant growth. In the case of seedlings treated with 

compound 1, the PCD phenotype leads to the eventual death of the plant. Further studies 

will need to be conducted determine if the in vivo results can be replicated in mature 

plants, and whether constant contact between the compound and the plant is necessary to 

observe the phenotypes reported in this study.  

The ability of AtIPCS2 inhibitors to also have fungicidal effects can be explained by its 

role as a negative regulator of plant defence against pathogens as discovered from the 
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RNASeq transcriptomic analyses. Arabidopsis transgenic lines over-expressing AtIPCS1, 

2 and 3, showed a marked decrease in the expression of genes involved in plant defence; 

this was heightened in response to AtIPCS2 overexpression. The knock-down of AtIPCS1 

in a t-DNA insertion line mutant line also resulted in a decrease in genes associated with 

plant defence, however this did not include the PR genes. PR1, PR2 and PR5 were highly 

downregulated in AtIPCS1, 2 and 3 over-expressing plants and are well characterised as 

markers of SAR in plants. These results indicated the prominent role of AtIPCS1, 2 and 

3 as negative regulators of plant defence. Perhaps these plant defence genes would be 

upregulated in a homozygous knockout of AtIPCS2, resulting in a less constrained 

response to pathogen attack and heightened resistance.   

 

Another finding of this work was the observation of an early flowering phenotype in 

AtIPCS RNAi knock-down and over-expressers lines; this resembles the phenotype 

previously linked to vernalization in plants1, 2. Combined with RNASeq data which 

identified the downregulation of several genes involved in abiotic stress in plants over 

expressing AtIPCS, there was a strong indication that the enzyme is also involved in 

abiotic stress response. As such manipulation of expression could increase plant stress 

tolerance, this demands further investigation.  

 

In summary, this study has identified inhibitors of plant IPCS that have in vivo activity 

and may be tractable for further development towards herbicidal compounds. These 

compounds show differential selectivity for the dicot IPCS in A. thaliana, over the 

monocot IPCS in O. sativa; this indicated that inhibitors selective for a weed versus crop 

IPCS could be identified. In parallel, transcriptomic analyses of RNASeq analyses 

revealed that AtIPCS1, 2 and 3 are involved in the response to abiotic and biotic stress, 

with a prominent role as a negative regulator of the plant defence network. AtIPCS1, 2 
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and 3 also seems to have a role in enhancing plant stress tolerance, which could 

potentially be exploited in plant breeding strategies to create stress tolerant crops, increase 

yields and meet the challenge of increasing global agricultural output to sustain the 

projected 2-3 billion population increase by the year 2050.  

 

6.2 Future work 
 
 

Although these compounds do inhibit AtIPCS2 still remains a chance that they also affect 

other targets. To test that these compounds are on target, a dose response assay should be 

carried out against Arabidopsis AtIPCS2 over-expressers, knock-downs and wildtype. 

Theoretically, compounds targeting AtIPCS2 should be less effective against the over-

expressers, due to excess target, and more effective against knock-downs for the opposite 

reason. These identified inhibitors could also be tested against IPCS from crop and weed 

species to see if the observed differential selectivity is maintained.  

 

RNASeq could also be used to analyses of wildtype plants and plants with AtIPCS2 

deleted or knocked-down, treated with the identified inhibitors. If the compounds are 

completely on target, an absence of AtIPCS2 would preclude changes due to the inhibitor. 

The homozygous RNAi lines created in this study could also be used in transcriptomic 

analyses to see if the changes observed in the AtIPCS1 t-DNA mutant also occur in 

response to the knock-down.  

 

Work done by Owen et al. showed that the activity of triazinone possessing an R2 

haloalkyl group is enhanced against the ascomycetes, Leptosphaeria nodorum, 

Magnaporthe grisea and Zymoseptoria tritici3. Further activity enhancement was 

achieved by the replacement of the haloalkyl group with a benzyl or alkyl group. These 

triazinone derivatives are quite different from the triazinone identified as inhibitors of 
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AtIPCS2, in that they lack the thio linker and possess two benzyl groups that have 

halogens attached to them. Therefore, it is possible that these could be selective for plant 

over fungal IPCS. Different derivatives of triazinone may be able to protect plants from 

fungal infection by direct inhibition of pathogenic fungi IPCS, by inhibition of the plant 

IPCS, or by both. Inhibition of a negative regulator of PCD result in an enhanced plant 

defence response able to stop fungal growth. This latter effect, has been indicated by the 

previously observed, slightly lower susceptibility of AtIPCS2 knockout plants to powdery 

mildew4.  

 

To further test this hypothesis, IPCS from different ascomycetes species would need to 

be isolated, purified and assayed against the identified triazinone to see if the fungal IPCS 

is also inhibited if compounds selective for the AtIPCS2 could be identified, a pathogen 

assay could also be designed to test the susceptibility of Arabidopsis to infection on 

triazinone treatment. The susceptibility of AtIPCS2 knock-out or knock-down could be 

similarly analysed.  

 

If AtIPCS2 acts as a prophylactic to fungal infection, these experiments should show a 

reduction in fungal mass on chemical inhibition, genetic knock-out/knock-down of 

AtIPCS2.  In addition, AtIPCS2 over-expressor lines could also be assayed to see if the 

increase in expression has the opposite effect, making plants more susceptible to fungal 

infection. My results show an overall decrease in the expression of plant defense genes, 

on overexpression of AtIPCS1, 2 and 3, suggesting that this would be the case.  

 

Similar to the proposal above, regarding the further analyses of plants treated with the 

identified compounds, RNASeq could be utilized to identify if genes associated with plant 

defense are upregulated to higher degree in AtIPCS2 knockout/down or compound treated 

Arabidopsis during infection. Work done by Weeda et al. using this method identified the 
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role of melatonin in plant defense by treating plants with low (100 pM) and high (1 mM) 

concentrations and then comparing the genes upregulated in response to both treatments5. 

This experimental approach when applied to the study of AtIPCS2 inhibition, would serve 

to further probe the hypothesized prophylactic effect of AtIPCS2 inhibition in fungal 

infection by upregulation of plant defense genes.  

 

One of the intriguing findings from this study was that an increase in the expression of 

AtIPCS1, 2 and 3 resulted in the upregulation of genes involved in the photosynthetic 

pathway. To test if this has an effect on the plants’ ability to photosynthesize, the 

photosynthetic efficiency of PSII could be quantified by measuring the florescence of 

chlorophyll6. In addition, plant biomass could also be measured to see if there is an 

increase, correlated with AtIPCS1, 2 and 3 overexpression and upregulation of genes 

involved in the photosynthetic pathway.  

 

The lipid storage and lipid transfer proteins were also upregulated in response to AtIPCS1-

3 overexpression. To probe the effects of this on plant lipid content, lipidomic 

experiments could be performed; it would also be of interest to investigate how the 

sphingolipid and long chain base (LCB) content is altered in response to the 

overexpression and knock-down of AtIPCS1, 2 and 3. Finally, the over-expressor lines 

could also be subjected to abiotic stress such as cold, salinity and drought to find out if 

they have higher stress tolerance compared to Col-0 and if there is a link between higher 

levels of AtIPCS1, 2 and 3 expression, and an increase in stress tolerance. The 

experiments outlined could confirm the tractability of IPCS inhibition in crop protection, 

which would be advantageous to increase crop yields. 
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CHAPTER 7 
MATERIALS AND METHODS 
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7.1 Experimental section 
 

7.1.1 Materials 
 
 

Forward and reverse primers for the cloning of AtIPCS1-3 and OsIPCS1-3 into the pESC-

LEU plasmid and the cloning of AtIPCS1-3 in to the pENTR/D-TOPO vector were 

purchased from Sigma; Quick-Load 1kb DNA ladder (NO4685, Dorset, UK) and Gel 

Loading Dye Blue (6X) (B70215, Massachusetts, USA) were purchased from BioLabs; 

alamarBlueR (DAL1025, Loughborough, UK) was purchased from Invitrogen; PCR high 

fidelity Master Mix kit (F531S, Loughborough, UK) was purchased from 

Thermoscientific; QIAprep DNA Miniprep kit was purchased from Qiagen (27104, 

Manchester, UK); High capacity cDNA reverse transcription kit were purchased from 

Thermoscientific (00539510, Loughborough, UK); Go-taq qPCR Master mix was 

purchased from promega (A600A, Southampton, UK); Reliaprep RNA tissue miniprep 

system was purchased from promega (Z6112, Southampton, UK); . In-Fusion® HD 

Cloning Kit with Cloning Enhancer was purchased from Clontech (638909, Saint-

Germain-en-Laye, France); complete® EDTA-free Protease Inhibitor Cocktail Tablets 

were purchased from Roche Applied Science (05892791001, Sussex, UK). D (+) 

raffinose (RAF02, Norfolk, UK); Complete Supplement Mix (CSM) drop-out: -His –Leu 

–Trp –Ura (DCS1389, Norfolk, UK); yeast nitrogen base low fluorescence without amino 

acids, riboflavin (CYN6510, Norfolk, UK); D (+) galactose (GAL03, Norfolk, UK) and 

5-FOA (5FOA01, Norfolk, UK) were purchased from Formedium; leucine (L8912), uracil 

(U0750), tryptophan (T0254), D (+) glucose (G8270), ammonium sulphate (A5132), tris 

base (tris hydroxymethyl amino methane) (252859), myriocin from Mycelia sterilia 

(M1177), L-α phosphatidylinositol ammonium salt from soybean (P0639),  L-α 

phosphatidylinositol ammonium salt from bovine liver (P5766), cycloheximide (C7698), 

dimethyl sulfoxide (D8418), potassium formate (294454), potassium phosphate 
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monobasic (P9791), potassium phosphate dibasic (P3786), agar for plant cell culture 

(P9791), rifampicin (R3501)  and ampicillin (A1593) were all purchased from Sigma 

Aldrich (Norfolk, UK); N-Hexanoyl NBD-phytoceramide (1628, Cambridge, UK) was 

purchased from Universal Biologicals; Aureobasidin A was purchased from AureoGen 

(Kalamazoo, USA); NBD-C6-ceramide (N1154, Dorset, UK) was purchased from 

Invitrogen; AG4-X4 resin (140-4341, Hertfordshire, UK) was purchased from BioRad; 

Molecular Biology Agarose Electrophoresis Grade (MB1200), kanamycin (K0126), 

spectinomycin (S0188) and timentin (T0190) were purchased from Melford (Suffolk, 

UK); Murashige and Skoog medium (M0222, Haarlem, Netherlands) was purchased from 

Duchefa Biochemie; bacto-Agar (214010, Surrey, UK) was purchased from Becton 

Dickinson and Company. Peat plugs were purchased from Jiffy Products (3825451, 

Kristiansand, Norway); ethidium bromide solution (46067, Buchs, Switzerland) was 

purchased from Fluka BioChemika; LoBind tubes for microsome work were purchased 

from Eppendorf (10708704, Loughborough, UK). The acid-washed glass beads 425-600 

μm (G8772), glycerol (G5516), sucrose (S0389), polyethylene glycol 3350 (1546547), 

MgCl2 (M2670), lithium acetate (517992), were all purchased from Sigma Aldrich 

(Dorset, UK). Yeast strains, lacking drug efflux pumps (pdr1Δ::KanMX4 

pdr3Δ::KanMX4 pdr16Δ::KanMX4 pdr17Δ::KanMX4) were provided by Prof. Stark, 

University of Dundee: MSY-23-3C (Parent Strain), MSY-23-3C-1A (pESC-Leu-

LmjIPCS), MSY-23-3C-3A (pESC-Leu-AUR1), and MSY-23-3C-6A (pESC-Leu-

OsIPCS1). 
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7.1.2 Instruments and Equipment  
 

Centrifugation steps were carried out using Beckman Coulter centrifuges or 

ultracentrifuges. Eppendorf tubes were spun down using a Sigma 1-14 microfuge. 

Eppendorf contents were dried using an Eppendorf Vacuum Concentrator 5301 from 

Brinkmann. Disruption of cells was performed using an IKA® Vortex Genius 3. For 

protein and cell quantification carried out using BOECO S-30 spectrophotometer. 

Quantitative PCR was carried out using the applied Biosystems 7300 machine. For the 

enzyme assay, the filtration step was carried out using multiscreen® solvient filter plates 

purchased from Millipore and OptiPlate-96 F black plates used for reading the 

fluorescence of NBD-IPCS from Perkin Elmer. V-shaped and flat bottom 96 well plates 

were purchased from Sigma Aldrich.  HPTLC plates were from Merck and were analysed 

using a Fuji FLA−3000 plate reader and AIDA Image Analyser® software (version 3.52). 

The localisation experiments of 35s::GFP.AtIPCS1-3 were performed with the Leica 

Stereo Fluor M165FC and Leica SP5 CLSM FLIM FCCS microscopes. Details of the 

buffers and solutions used are given in Table 7-1 and details of media composition is 

given in Table 7-2. 
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7.2 Table 7-1: Buffer composition 

Buffers Final 

concentration 

Volume/Weight Stock solution 

Sodium chloride-Tris-

EDTA (STE) buffer  

25 mM 1.25 ml Tris/HCl (1 M) 

250 mM 12.5 ml Sucrose (1 M) 

1 mM 100 ul EDTA (0.5 M) 

  1 tab Complete® Protease 

Inhibitor Cocktail 

  50 ml Water 

Storage buffer 50 mM 2.5 ml Tris/HCl (1 M) 

10 w/v 6.25 ml Glycerol (80 % w/v) 

5 mM 0.25 ml MgCl2 (1M) 

  1 tab Complete® Protease 

Inhibitor Cocktail 

  50 ml Water 

Tris/EDTA/BSA buffer  250 mM 12.5 ml Tris/HCl (1 M) 

25 mM 2.5 ml EDTA (0.5 M) 

15 mg/mL 750 mg Free fatty-acid BSA 

  50 ml Water 

TE buffer    100 ml 1 M Tris/HCl (pH7.5) 

  20 ml 500 Mm EDTA (pH8) 

  880 ml Ultrapure water 

PEG 3350 (50%)    100 mg PEG 3350 

  200 ml Ultrapure water 

TE/Li Acetate    5 ml 1 M Li Acetate  

  5 ml 10x TE buffer 
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  50 ml Ultrapure water 

PEG/Li Acetate    5 ml 1 M Li Acetate  

  5 ml 10x TE buffer 

  50 ml 50% PEG 3350 

 

 

7.3 Table 7-2: Media composition 

 

Growth media Volume/Weight Stock 

Lysogeny broth  25 g Miller's LB broth 

20 g Bacto agar 

1 ml Ampicillin (100 mg/ml) 

1 L Distilled water 

Murashige and Skoog 

(0.8% w/v) agar    

(pH 5.6)  

4.4 g MS medium with vitamins 

8 g Plant tissue agar 

1L Distilled water 

SD-H-L agar  20 g Glucose  

1.93 g Yeast Nitrogen base without amino 

acids and without ammonium sulphate  

5 g Ammonium Sulphate 

15 g Bacto agar 

580 mg Amino acid drop out supplement -His-

Leu-Ura-Ttp 

20 mg Uracil 

40 mg Tryptophan 

1 L Distilled water 
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SGR-H-L media  1 g Galactose 

10 g Raffinose penhydrate 

1.93 g Yeast Nitrogen base without amino 

acids and without ammonium sulphate 

5 g Ammonium Sulphate 

580 mg Amino acid drop out supplement -His-

Leu-Ura-Tryp 

20 mg Uracil 

40 mg Tryptophan 

1 L Distilled water 

Phosphate buffer 

(0.25 mM, pH 7) 

13.1g                                 

26.8g 

1L 

 KH2PO4 

 K2HPO4 

 Ultrapure water 

 
 

SGR-H-L + FOA 

agar  

1 g Galactose 

10 g Raffinose penhydrate 

1.93 g Yeast Nitrogen base without amino 

acids and without ammonium 

sulphate 

5 g Ammonium Sulphate 

15 g Bacto agar 

1 g 5-Fluoroortoic acid monohydrate 

580 mg Amino acid drop out supplement -

His-Leu-Ura-Ttp 

20 mg Uracil 

40 mg Tryptophan 

1 L Distilled water 
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7.4 Biological Procedures  

 

All of the following biological procedures were carried out under sterile conditions unless 

stated otherwise. Plant were gown under 150–200 μmol m-1 s−1 lightening at 20°C and 

under a 16h photoperiod. 

 

7.4.1 DNA extraction from bacteria  
 
 
The QIAprep Spin Miniprep Kit was used to extract DNA from bacterial cultures by 

following manufacturer’s instructions.  

 

7.4.2 RNA extraction from plant 
 
 

The ReliaPrepTM RNA tissue miniprep system kit was used to extract RNA from 1mg of 

plant material by following manufacturer’s instructions.  

 

7.4.3 cDNA synthesis 
 

The RNA concentrations were quantified using nanodrop and all samples diluted to 2µg 

in 10µl total volume. To the RNA mixture was added 10µl of Master mix of:  

 

Component Volume per reaction (µl) 

10x RT buffer 2 

25x dNTP Mix (100 mM)  0.8 

10x RT Random Primers 2 

Nuclease-free water  4.2 

MultiscribeTM Reverse transcriptase  1 
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The mixture was mixed and spun down briefly, then placed in thermal cycler using the 

program below: 

 
Step 1  Step 2  Step 3   Step 4  

Temperature (oC) 25 37 85 4 

Time (secs) 160 7200 5 ∞ 

 
 

7.4.4 Quantitative reverse-transcription real-time PCR 
 

 
cDNA samples were diluted (1:50) and 5ul of the diluted sample was added to 10µl of 

the real-time PCR master mix, which consisted of: 

Component Volume per reaction (µl) 

2x SYBR mix (ROX) 7.5 

Forward primer (5µM) 0.9 

Reverse primer (5µM) 0.9 

Nuclease-free water  0.7 

 

Real-time PCR reaction was carried out using the following program:  

 

 
 
 

Temperature (oC) Time (seconds) Number of cycles 

50 120 1 

95 600 1 

95 15 40 

60 60 1 
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7.4.5 Polymerase chain reaction protocol  
 
 

The PCR mixture was prepared using 2x phusion HF master mix (10 µL) and (1 µL) of 

the forward and reverse primers with plasmid DNA (10 ng); final volume was adjusted 

to 20 µL using distilled water. The PCR reaction was run on a PCR machine under the 

conditions described below. The DNA was stored at -20ºC. 

 
 

7.4.6 T4 ligase cloning 
 

Agarose gel electrophoresis was used to quantify DNA concentration and for the DNA 

moles calculated. The molar ratio of insert to vector in the reaction was 1:3. T4 ligase 

cloning reaction was set up as follows: 

Cycle step Temperature (oC) Time (seconds) Number of cycles 

Initial denaturation 98 30 1 

Denaturation 98 10 30 

Annealing 56 30 

Extension 72 100 

Final extension 72 600 1 

  4 hold 

  Component Volume per reaction (µl) 

T4 ligase enzyme 0.5 

T4 ligase buffer 1.5 

Vector X µl (~ 30ng) 

Insert Y µl to give 1:3 molar ratio 

Nuclease-free water  20-X-Y 
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The reaction mixture was incubated at 25oC for one hour; 5 µl of the reaction mixture 

was subsequently used for bacterial transformation.  AtIPCS1-3 were cloned into 

pENTR/D-TOPO vector using T4-ligase cloning method. 

 

7.4.7 Gateway cloning 
 
 

Creating multiple expression vector constructs for the target gene of interest (AtIPCS1-3) 

using traditional ligase-mediated cloning is time-consuming and laborious, hence the use 

of gateway cloning. Gateway cloning exploits the bacteriophage lambda recombination 

system, bypassing the use of ligase-mediated cloning1.  PCR amplification of the target 

sequence followed by T4 ligase cloning into the pENTR/D-TOPO ‘entry vector’ creates 

a plasmid that has the target DNA sequences flanked by attL recombination sequences. 

The attL sequence recombines with the attR sites using the LR clonase reaction mix 

which transfers the target sequence into a desired ‘destination vector’ (Figure 7-1). This 

destination vector usually carries the chloramphenicol resistance gene (CmR) and a ccdB 

gene which is lethal to most strains of Escherichia coli. the (ccdB) as a result it is possible 

to negatively select for the vector possessing the recombinant sites upon transformation 

of E. coli cells. This selection is combined with positive selection for an antibiotic 

resistance marker thereby making certain that only colonies harboring the ‘expression 

vector’ are selected.  
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Cloning into the destination vector pK7WG2, carried out via Gateway LR clonase 

mediated cloning. The following components were added to a PCR tube: 

 

Reaction was incubated at 25oC for 1 hour and 4ul of mixture used for transformation. 

 

7.4.8 In-Fusion cloning   
 
 

Agarose gel electrophoresis was used to quantify the insert and plasmid DNA. Using the 

commercial Infusion cloning kit, the linearized vector was mixed with the insert DNA 

(1:3 ratios) and 5× In-Fusion HD enzyme premix (2 μl) added with the final volume 

Component Volume per reaction (µl) 

Entry clone (50-150 ng/reaction) 1-7 

Destination vector (150 ng/µl) 1 

TE buffer, pH 8  to a volume of 8 µl 

LR ClonaseTM ll enzyme mix 2 

Figure 7-1: Overview of Gateway cloning (1) the target of interest is amplified by PCR  (2) PCR products are mixed 

with the linearized pENTR/D-TOPO vector and ligation mediated by T4 ligase (3) Recombination between attL and 

attR sites is mediated by LR clonase with the target sequence recombined into a destination vector of choice (4) 

Resulting expression vector containing the target gene. 
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adjusted to 10 μl with distilled water. The mixture was then incubated at 50 °C for 15 

mins and then used immediately for the transformation of E. coli.  

 

7.5 Yeast culture  

 

The S. cerevisiae strains lacking the drug efflux genes pdr1Δ::KanMX4, 

pdr3Δ::KanMX4, pdr16Δ::KanMX4 and pdr17Δ::KanMX4 which had been stored at -

80oC in 80% were inoculated onto SGR-H-L agar and incubated at 30 °C for 3 days, then 

stored at 4oC. This was then used to inoculate SGR-H-L media (5 ml) which was 

incubated at 30 °C with 180 rpm shaking.  

 

7.5.1 Frozen stocks  
 

400 μl of 80% glycerol was mixed with 800 μl of yeast culture grown in SGR-H-L 

media and stored at -80ºC.  

 

7.5.2 Yeast transformation  
 

Cells grown overnight in SGR-H-U media at 30oC were harvested by centrifugation 

(1,000 ×g for 5 minutes at room temperature). The supernatant was discarded, and the 

cells were resuspended in sterile 1x TE buffer (5 ml). The cells were spun down again 

(1,000 × g for 5 minutes at room temperature) and the supernatant discarded. The cell 

pellets were then resuspended in freshly prepared, sterile 1 × TE/LiAc buffer (1 ml) to 

form the competent yeast cells.  

 

Purified plasmid (1 μg) and competent yeast cells (OD600 = 0.6-0.8, 0.1 ml) was added to 

Herring testes carrier DNA (10 μl) which had previously been boiled at 95 °C for 10 

minutes; and mixed thoroughly. Freshly prepared, sterile PEG/LiAc (0.6 ml) was added 

and the mixture thoroughly mixed, followed by incubation with shaking at 30 °C for 30 
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minutes. After which DMSO (70 μl) was added and mixed by gentle swirling. The 

competent yeast cells then underwent heat shocked at 42 °C for 15 minutes followed by 

chilling on ice for 2 minutes. The cells were spun down (14 000 rpm for 5 seconds at 

room temperature), the supernatant discarded. The cell pellets were resuspended in 1× TE 

buffer (0.2 ml) and the cells were plated onto SGR-H-L-U agar plates and incubated at 

30 °C for 5 days.  

 

7.5.3 Plasmid shuffle  
 
 

SGR –H –L medium (0.1%:1%) was inoculated with yeast strains and incubated with 

shaking at 30 °C overnight and 200 μl plated onto SGR –H –L +5FOA agar medium 

(0.1% galactose: 1% Raffinose) which was incubated for 4 days at 30 °C.  

 

7.5.4 Yeast culture scale-up  
 
 

Plasmid-shuffled yeast cultures were propagated in SGR –H –L medium (0.1% galactose: 

1% Raffinose). Liquid medium (5 ml) was inoculated and incubated overnight at 30 °C 

until OD600 had reached ≥ 0.8. Fresh medium (250 ml) was added and the culture 

incubated at 30 °C until OD600 had reached ≥ 0.8. The culture was then diluted into fresh 

medium (1L) and incubated at 30 °C overnight until OD600 =0.8-1.0.  

 

7.5.5 Preparation of crude microsomal membranes  
 
 

The yeast cells were harvested by centrifugation (4,000 × g for 10 minutes at 4 °C) and 

resuspended in cold PBS (20 ml per litre). The cell suspension was then transferred into 

50 mL falcon tubes (no more than 20 ml to each falcon tube) and the cells were pelleted 

by centrifugation (4000 rpm for 10 mins at 4oC). The centrifuge bottles were washed with 

5 mL per litre of PBS and the washing transferred to falcon tubes and spun down (4 000 
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rpm for 10 mins at 4oC) supernatant from both centrifugation steps were discarded. The 

cell pellets were weighed and pre-chilled glass acid-washed glass beads (425-600 μm) to 

disrupt the cells were added (mass equal to 1.5 x mass of the pellet) and STE buffer was 

also added (volume in ml equal to the mass of the pellet in g). The cells were disrupted 

using pre-chilled, acid-washed glass beads (mass equal to 1.5x wet cell mass) for 30 

cycles of 1 minute on the vortex machine, followed by 1 minute rest on ice. This mixture 

was then spun down (5 000 rpm for 15 minutes at 4 °C) and the supernatant was stored. 

STE buffer was added to cell pellets (volume in ml equal to 0.5x mass of wet cell mass) 

and the cell disruption cycle repeated for a further 20 cycles, followed by centrifugation 

(5500 rpm for 15 minutes at 4°C). Supernatant was transferred to ultracentrifuge tubes 

which were balanced to within 10 mg of each other using STE buffer and spun down 

(12500 rpm for 30 mins at 4oC); the supernatant was transferred to new ultracentrifuge 

tubes and spun down again (32 000 rpm for 90 mins at 4oC). Pellets were resuspended in 

the minimum amount of storage buffer and stored at -80oC. The protein content for each 

pellet and the supernatant was determined by Bradford assay2.  

 

7.5.6 Diffusion assay  
 
 

Agarose was added to SGR –H –L medium (0.8%, 200 mL) and sterilised. To 15 mL of 

agarose SGR-H-L medium, OD600 = 2 of liquid yeast culture were added, which was then 

mixed by gentle inversion. This was poured into a square plate and left to set. 

Aureobasidin A, myriocin and DMSO were each spotted onto the agarose surface in 

aliquots of 1 μl, 2 μl and 3 μl; the plate was then incubated at 30 °C for 3 days.  
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7.5.7 High performance thin layer chromatography (HPTLC) assay  
 
 

Phosphatidyl inositol solution (50 mM) was dried in a rotavapor and a predetermined 

Unit/µl of active IPCS added. Tris/EDTA/BSA buffer (20 µl) was added and the volume 

adjusted to 48 μl with distilled water. This mixture was then incubated at 30 °C for 30 

minutes, after which NBD-C6-ceramide (200 µM) was added and then incubated at 30 

°C for 60 minutes. The reaction was then quenched with 150 μL of 

chloroform:methanol:water mixture (10:10:3). The mixture was spun down (14 000 rpm 

for 5 minutes at room temperature) and the aqueous layer was extracted. Upon the 

addition of chloroform (50 µl), the aqueous layer was re-extracted and the organic extracts 

were combined and solvent dried in the rotavapor at 30 °C for 15 minutes. The pellets 

were resuspended in 20 μl of chloroform:methanol:water mixture (10:10:3). On the 

HPTLC plate 5μL of the resuspended pellet was loaded and this was run using the solvent 

system chloroform: methanol: 0.25% (w/v) aqueous KCl mixture (55:45:10). NBD-IPC 

turnover was quantified and analysed on a TLC reader. 

 

7.6 Experiments for high throughput screen 

 

7.6.1 Frozen stocks for screening  
 
 

Yeast strains were grown to an OD600 of 0.5-0.7 and then spun down at 1000 rpm. The 

pellets were resuspended in a one to one mixture of SGR-H-L media and 20% glycerol, 

then frozen and stored at -80oC.  

 

7.6.2 Primary screen, cellular assay 
 
 

Cells were thawed on ice and diluted with SGR-H-L media (1:20) to obtain cells in the 

lag phase of growth with a starting OD600 of 0.06 corresponding to 0.5 x 107 cell per ml. 
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The yeast cell culture was aliquoted (198 µl) into 96-well plates using the Biomek FXp 

automated workstation with DMSO (2ul) and cycloheximide (2ul, 0.01 mM) dispensed 

into eight wells in the first column of the 96 well plates; the dispension of DMSO and 

cycloheximide was alternated between a row of wells. Following this, these compound 

(10 µM) were aliquoted into the remaining wells. Plates were sealed with a breathable 

membrane and incubated at 30oC for 24 hours After 24 hours the OD600 reading was 

obtained. Readings were carried out in duplicate for each strain and percentage inhibition 

calculated with this formula: 

I (%) =
ΔOD600nm(NC – Compound) x 100

𝛥OD600nm (NC – PC)
 

Where NC is the average of the negative control (DMSO) and PC is the average of the 

positive control (cycloheximide) 

For dose response, hit compounds were diluted (1:3) to obtain a range of concentrations 

from 68nM-50µM. Frozen yeast strains were thawed on ice and diluted with SGR-H-L 

media (1:20) and aliquoted into 96 well plates, then sealed with a breathable membrane 

and incubated for 24 hours at 30oC. Cell density was measured at OD600. IC50 values were 

determined using Graphpad Prism. 

 

7.6.3 Secondary screen, enzyme assay 
 

 

Filter plate wells are coated with AG4-X4 resin (10% w/v in ethanol) and prepared 

according to the protocol described by Mina et al3.  For a 96 well plate assay set up, a 

mixture consisting of dried soy phosphoinositol solution (200 µM), NBD phytoceramide 

(30 µM) and phosphate buffer (pH7, 71 mM) was prepared. A second mixture made up 

of AtIPCS2 microsomes (0.44 Unit/µl), OsIPCS2 microsomes (0.07 Unit/µl) and AUR1 

microsomes (0.18 Unit/µl) respectively, were prepared with the addition of storage buffer 
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and phosphate buffer (pH7, 71 mM). The mixture consisting of PI and NBD-

phytoceramide was combined with the microsome mix to get a final volume of 40 µl 

aliquoted into a v-shaped 96-well plate. The hit compounds were assayed at 10 µM in 

duplicate. Mixture was incubated for 60 mins at 30oC and quenched with 200 µl of HPLC 

grade methanol. IPC was eluted from the resin using 4x 50 µl potassium formate solution 

(1 M) in methanol and fluorescence quantified at λEx 480 and λEm 540. Compounds 

showing an average of ≥ 30% inhibition were taken on to the next stage for IC50 

determination. For IC50 determination compounds were diluted (1:3) to obtain compound 

concentrations ranging from 68 nM-100 µM, and screening carried out in triplicate for 

each hit. IC50 was determined using GraphPad Prism.  

 

7.7 Method for plant-based experiments 

 

7.7.1 Agrobacterium transformation 

 

Competent cells of agrobacterium strains GV3101 (for localisation experiments in 

tobacco) and C58C1 (for agrobacterium mediated plant transformation) were transformed 

with 1 µl of expression vectors (pK7FWG2, pK7WG2 and pK7GWIWG2 (I) 

respectively) harbouring AtIPCS1-3. Cell were heat shocked for 5 mins at 37oC and 1 ml 

of lysogeny broth (LB) added and then incubated at 28oC for 3 hours at 140 rpm. 

Transformants were plated on LB (100 µg/µl Rifampicin and 100 µg/µl Spectinomycin) 

and incubated for 3 days at 28oC. 

 

7.7.2 Agrobacterium mediated plant transformation 

 

Following transformation of agrobacterium strain C58C1 with binary constructs, 

agrobacterium cells were cultured overnight in Lb (10 ml, 100 µg/µl Rifampicin and 100 

µg/µl Spectinomycin) and then scaled up for growth in 200ml LB to use for plant 
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transformation. Wildtype A .thaliana plants were transformed using the floral dipping 

method4.  

 

7.7.3 Plant growth conditions 
 
 

Arabidopsis thaliana plants were grown on 0.8% Murashige and Skoog (MS) agar and 

transferred on to peat plugs after 10 days. Plants were grown at 20°C under 16h day/8 h 

night photoperiod. 

7.7.4 Plant transformants selection 

Transformed plants were grown to maturity, and the seeds collected. Selection of positive 

transformants was carried out on MS agar (50 µg/µl Timentin and 50 µg/µl Kanamycin) 

which were incubated for 6 days. 

 

7.7.5 Tobacco infiltration 

 

Agrobacterium GV1310 strain harbouring GFP::AtIPCS1-3 and ST RFP Golgi marker 

respectively were grown in Lb media (100 µg/µl Rifampicin and 100 µg/µl 

Spectinomycin). GV1310 agrobacterium strain harbouring a vector encoding a p35S 

cytosolic GFP marker was also grown in Lb media (100 µg/µl Rifampicin and 100 µg/µl 

Kanamycin) overnight at 28oC. cell density at OD600 was quantified and diluted to an 

OD600 = 0.1 for GFP::AtIPCS1-3 and ST RFP, OD600 = 0.3 for p35S cytosolic GFP marker 

with a solution of MgCl2 (10 mM). Nicotiana benthamiana was co-infiltrated with 

agrobacterium harbouring vectors encoding ST RFP and GFP::AtIPCS1-3 respectively. 

N. benthamiana was also infiltrated with agrobacterium encoding the p35S GFP 

cytosolic marker separately. After 48 hours, plants were viewed using the Leica Stereo 

Fluor M165FC and Leica SP5 CLSM FLIM FCCS microscopes.  
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7.7.6 In-vivo screening  
 
 

A. thaliana seedling were grown for 10 days on 0.8% MS agar and then transferred to 

1.2% MS agar containing compounds at a final concentration of 10 µM and 40 µM. 

 

7.8 Bioinformatics analysis 

 

Opening reading frames that encode for IPCS homologues in different plant species were 

identified by running BLAST search of AtIPCS1 nucleotide coding sequence against each 

species genome using the phytozyme database 

(https://phytozome.jgi.doe.gov/pz/portal.html). Multiple amino acid sequence alignments 

of AtIPCS1-3, OsIPC1-3 and EnchIPCS was carried out using ClaustalW5 and shading 

done using Boxshade. Phylogenetic tree was constructed using MEGA 7.06 based on the 

unweighted pair group method with arithmetic mean (UPGMA) and the evolutionary 

distances calculated using the maximum composite likelihood method7. Transmembrane 

topology was predicted using the transmembrane hidden Markov model (TMHMH) 

server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/)8. Conserved motifs in the 

promoter region, 1-1.5 kb upstream of the initiation codon were identified using 

PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)9 and 

PlantPAN 2.0 (http://plantpan2.itps.ncku.edu.tw/)10 .  

 

7.9 Materials preparation for RNASeq experiment 

 

For RNASeq experiment, Col-0 and over-expressors of AtIPCS1, 2 and 3 were grown for 

10 days and flash frozen in nitrogen. RNA extraction was carried out using the Plant 

RNeasy kit from Qiagen according to manufacturer’s protocol, and the integrity of the 

RNA determined by running the samples on an Agilent 2100 Bioanalyzer to obtain a RIN 

https://phytozome.jgi.doe.gov/pz/portal.html
http://www.cbs.dtu.dk/services/TMHMM/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://plantpan2.itps.ncku.edu.tw/


 

 

225 | P a g e  
 

score. The RIN score was determined by measuring the ratio of 28S to 18S rRNA in the 

RNA sample, with a 1:2 ratio of 18S:28S being ideal for a RIN score of 1011. Following 

DNAse treatment, quality control of the samples were carried out using the Agilent 2100 

Bioanalyzer before proceeding to sample preparation for RNASeq experiment.  

7.9.1 RNASeq Experiment 
 
 

Single end libraries for RNASeq were generated from DNAse treated total RNA using 

Illumina Truseq stranded mRNA sample preparation kit and instruction manual. Briefly, 

mRNAs were fragmented and purified for use as template for the synthesis of double 

stranded cDNA. End repair of the double stranded cDNA was carried out and the 3’ end 

adenylated. Sample specific indexing adapters were ligated to the ends of double stranded 

cDNA samples and amplified by PCR, then purified. Samples were normalized, pooled 

and then sequenced using Nextseq500 instrument to obtain 150 base pair single reads.  

 

7.9.2 RNASeq analysis 
 
 

The RNA sequence in Fastq format12 were filtered and trimmed (sliding window 4:15 and 

50 bp minimum) to remove low quality reads using Trimomatic13. Reads were aligned to 

the Arabidopsis genome (Arabidopsis Araport 2017) using STAR14. The sequence 

alignment files were sorted by name15 for HTSeq-count and indexed using SAMtools15. 

Files were then converted to BAM files and number of read mapped onto a genes 

calculated using HTSeq package16.Gene counts were normalized and compared sample 

by sample using DESeq217 from Bioconductor18 in R19. Principle component analyses of 

the normalized counts was done in R using the DESeq package. Differential expression 

between over-expressors and Col-0 was determined using the DESeq package with a Log2 

fold-change output. GO term enrichment was performed for analysis of genes upregulated 

and downregulated in both biological replicates of each AtIPCS isoform over-expressor 
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using the agriGO analysis tool (http://bioinfo.cau.edu.cn/agriGO/analysis.php) with the 

default settings20.  
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APPENDIX A – Transcription factor binding site motif sequence  
 

Transcription factor Motif sequence 

LS5ATPR1 TCTACGTCAC 

LS7ATPR1  ACGTCATAGA 

MYB1LEPR GTTAGTT  

WRKY 4 TTGACCT 

WRKY 18 TTGACCT 

WRKY 60 TTGACCT 

TGA 1  TGACG 
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APPENDIX B – pESC-LEU vector map 
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APPENDIX C – vector maps of expression plasmids used for plant 

genetic work 
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APPENDIX D – Structure of compounds tested against AtIPCS1 

complemented yeast strains 
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APPENDIX E – Primer sequences  
 
 

Primers for infusion cloning of AtIPCS 1,2, and 3 into pESC-LEU vector:  

AtIPCS1 FP: CTCACTATAGGGCCCGGGATGACGCTTTATATTCGCCGC 

AtIPCS1 RP: TCCATGTCGACGCCCGGGTCATGTGCCATTAGTAGCATT 

AtIPCS2 FP: CTCACTATAGGGCCCGGGATGACACTTTATATTCGTCGT 

AtIPCS2 RP: TCCATGTCGACGCCCGGGTCACGCGCCATTCATTGTGTT 

AtIPCS3 FP: CTCACTATAGGGCCCATGCCGGTTTACGTTGATCGC 

AtIPCS3 FP:  TCCATGTCGACGCCCGGGTCAATGATCATCTGCTACATT 

OsIPCS1 FP: CTCACTATAGGGCCCGGGATGGCGGTTTACATCGCTCG 

OsIPCS1 RP: TCCATGTCGACGCCCGGGTCATGTGCCATTGGGAGTGGC 

OsIPCS2 FP: CTCACTATAGGGCCCGGGATGACGATTTACATAGCGCGG 

OsIPCS2 RP: TCCATGTCGACGCCCGGGTCATGTACCACCATTGACAGC 

OsIPCS3 FP: CTCACTATAGGGCCCGGGATGTCGGCCTTGTACCTTGCT 

OsIPCS3 RP: TCCATGTCGACGCCCGGGTCATGTTTTTGTTGTTTCGGT 

 

Internal primers for validation of IPCS expression in yeast mutants by colony 

PCR: 

 
AtIPCS1 FP:  GGTTCTGAGCTTGCCAGG  

AtIPCS1 RP: TGCCGTTGTTCGATCAGG  

AtIPCS2 FP: CCTAACTATCACTGCCGT 

AtIPCS2 RP: GAGCAACACAGCAGTCCG 

AtIPCS3 FP: CGAGAAGGCTCCAAGCTC 

AtIPCS3 RP: GGTCCACTAGAACGTTCT 

OsIPCS1 FP: TCTTGCTTGGCTGATGGC  

OsIPCS1 RP: GTGGTTGATGTCCTCGCC  

OsIPCS2 FP: GCTTCTTGCTTGGTTCAT 

OsIPCS2 RP: GGCGTGATTGATGTCTTC 

OsIPCS3 FP:  GGTGCGGTGACTTGATAT 

OsIPCS3 RP: CAATGTGCTTCCCATTCA 

AUR1 FP: GGTCCACCAACTGTTTTGC 

AUR1 RP: CTCAATTGAAGTGTATGACC 
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Primers for AtIPCS 1,2, and 3 cloning into pENTR/D-TOPO:  

AtIPCS1-NotI-F: GCGCGCGGCCGCCACAATGACGCTTTATATTCGCCGCG     

AtIPCS1-AscI-R: GCGCGGCGCGCCTCATGTGCCATTAGTAGCATTATCAGTGTG 

AtIPCS2-NotI-F: GCGCGCGGCCGCCACAATGACACTTTATATTCGTCGTGAATCTTCCAAG 

AtIPCS2-AscI-R: GCGCGGCGCGCCTCACGCGCCATTCATTGTGTTATC    

AtIPCS3-NotI-F: GCGCGCGGCCGCCACAATGCCGGTTTACGTTGATCGC    

AtIPCS3-AscI-R: GCGCGGCGCGCCTCAATGATCATCTGCTACATTGTTCTCGTTT 

 

Primers to quantify AtIPCS 1,2, and 3 transcripts in the overexpression transgenic 

lines using real-time PCR: 

 

AtIPCS1_F: TGCGTCCCGTAAACATTACA 

AtIPCS1_R: ACACCGTTCCCATTCAAGAG 

AtIPCS2_F: TACCAGATCGGACTGCTGTG 

AtIPCS2_F: GTGAACTCCGTTGCTGTCAA 

AtIPCS3_F: CTGGGCCGAATTATCATTGT 

AtIPCS3_R: CCTTCGTGTGCCGTATCTTT 

 

Primers to quantify AtIPCS 1,2, and 3 transcripts in the RNAi transgenic lines using 

real-time PCR: 

 

AtIPCS1_F: TGGTTGTCTTCTTCCTCGAC 

AtIPCS1_R: GAGCAGAGATCTCATGTGCC 

AtIPCS2_F: TGGTGGTGTTCTGTCTAGAC 

AtIPCS2_F: GATCTTTTCACGCGCCATTC 

AtIPCS3_F: GCATGGTATACTGTGAACCT 

AtIPCS3_R: GGTGATCGGAGACATAAG 
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APPENDIX F – RNA quality control for RNASeq experiment 
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