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ABSTRACT 

Plant development, growth and response to varying environmental conditions, 

involves a complex network of overlapping interactions between plant signalling 

hormones and gene expression, known as ‘CROSSTALK’, which controls cell 

proliferation, elongation and differentiation. Hormone response, concentrations 

and gene expression levels vary through the root tip and display patterning, 

which ultimately drives development; however, little is known about how this is 

established.  Models have been constructed to explain patterning, including a 

‘physical’ auxin flux model in a simple rectangular 2-D multicellular Arabidopsis 

root which excludes crosstalk (Grieneisen et al., 2007), and a single cell 

‘biological crosstalk’ model of multiple hormone and protein interactions in WT 

and mutants (Liu et al., 2010; Liu et al., 2013). The project goal was to combine 

these approaches by embedding the single cell biological crosstalk relationships 

into a 2-D multicellular root structure to reproduce experimentally observed 

hormone and gene expression patterning. An initial model was constructed and 

parameter values calibrated to meet fit criteria and produce a WT parameter 

set. The model proved robust to parameter variation, indicating that results did 

not rely on unique parameter value selections. Model results were compared to 

experimental data to test predictive capability and matched experimentally 

observed patterning and concentration trends for most species and mutants. A 

more realistic digital root map was then developed with additional  auxin carriers 

to allow improved comparison between model and experimental images at a 

cell-scale level. The roles of auxin influx and efflux carriers in regulating auxin 

patterning were investigated by developing a ‘Recovery Principle’, where 

pattern perturbations due to  changes in one carrier set could be recovered by 

adjustments to the other carrier set. Finally, using additional experimental data 

from the literature, the crosstalk network was revised to produce more 

representative cytokinin patterning. The model provides an explanation of 

crosstalk control of gene expression and patterning, and forms a foundation for 

future expansion of hormonal crosstalk and gene expression modelling in the 

Arabidopsis root. In summary, this project has developed predictive models to 

further explore hormone and gene expression levels and spatiotemporal pattern 

formation in the Arabidopsis thaliana root tip. 
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INTRODUCTION 

1.1   Hormonal crosstalk and patterning 

The process of plant development, growth and response to varying 

environmental conditions, involves a complex network of overlapping 

interactions between plant signalling hormones and gene expression, known as 

‘hormonal crosstalk’. The original ‘classic’ plant hormones are ethylene, 

cytokinin, auxin, abscisic acid and gibberellins; more recently identified 

hormones include brassinosteroids, strigolactones, salicylic acid, nitric oxide 

and jasmonic acid (Santner and Estelle, 2009). 

Plant hormones act to control cell proliferation, elongation and differentiation 

and can act antagonistically or synergistically depending on the context; they 

can act in a non-linear fashion depending on their concentrations, say to 

promote or inhibit root length in the case of auxin (Taiz and Zeiger, 2010) and 

cytokinin (Nishimura et al., 2004); they can also act differently in root and shoot 

development, for example cytokinins have opposite roles in the shoot and root 

meristems (Werner et al., 2003). 

Hormone concentrations in the cells are a function of multiple factors such as 

hormone biosynthesis, long and short range transport, influx and efflux by 

carrier proteins (such as the AUX1/LAX and PIN auxin carrier families 

respectively), and hormone activation, inactivation and degradation (Weyers 

and Paeterson, 2001; Del Bianco et al., 2013). Hormones and the associated 

regulatory and target genes form a network in which relevant genes regulate 

hormone activities and hormones regulate gene expression (Bargmann et al., 

2013; Chandler, 2009; Depuydt and Hardke, 2011; Vanstraelen and Benkova, 

2012). For example, auxin biosynthesis is stimulated by ethylene and inhibited 

by cytokinins (Nordstrom et al., 2004; Ruzicka et al., 2007; Stepanova et al., 

2007; Eklof et al., 1997; Swarup et al., 2007), PIN1 and PIN2 mRNA and 

protein levels are promoted by auxin and ethylene (Paciorek et al., 2005; 

Vanneste and Friml, 2009) and inhibited by cytokinin (Ruzicka et al., 2009), and 

cytokinin promotes PIN1 localisation to the lateral plasma membrane in the 

vascular tissue (Bishopp et al., 2011a). Therefore, root development is 

controlled by an intricate hormonal crosstalk network that integrates gene 
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expression, signal transduction, transport, and the metabolic conversion 

complexities associated with hormonal crosstalk activity (Liu et al., 2014). 

Hormone signalling responses and gene expression display patterning that is 

essential for regulating correct root development. Cellular patterning in the 

Arabidopsis root is coordinated in part via a localized auxin concentration 

maximum close to the quiescent centre (QC; Sabatini et al., 1999), that 

regulates the expression of specific genes such as the PLETHORA family which 

acts to define developmental regions in the root (Aida et al., 2004; Mahonen et 

al., 2014), WOX5 which is expressed in the quiescent centre and acts to 

repress differentiation of the surrounding stem cells (Sarkar et al., 2007;  

Forzani et al., 2014), and SHY2 which acts from the cytokinin pathway to inhibit 

auxin signalling and the expression of the PIN1, 3, and 7 genes as well as from 

the auxin pathway to promote cytokinin biosynthesis (Dello Ioio et al., 2008). 

This auxin gradient has been hypothesized to be sink-driven (Friml et al., 2002) 

and also computational modelling suggests that auxin efflux carrier permeability 

may be sufficient to generate the gradient in the absence of auxin biosynthesis 

in the root (Grieneisen et al., 2007; Wabnik et al., 2010; Clark et al., 2014). 

Genetic studies show that auxin biosynthesis (Ikeda et al., 2009;  Tivendale et 

al., 2014;  Zhao, 2010), the AUX1/LAX influx carriers (Band et al., 2014; Jones 

et al., 2008; Krupinski and Jonsson, 2010; Swarup et al., 2005; Swarup et al., 

2008), and the PIN auxin efflux carriers (Grieneisen et al., 2007; Krupinski and 

Jonsson, 2010; Mironova et al., 2010; Petrásek et al., 2006) all play important 

roles in the formation of auxin gradients. In addition, it has been proposed that 

auxin degradation and conjugation could play an important role in auxin 

homeostasis (Mellor et al., 2016b). Recently, it has also been demonstrated that 

growth and patterning are linked during early vascular tissue formation in 

Arabidopsis, where cell geometry and an integrated network of auxin, cytokinin, 

auxin transport and cytokinin response, all act to control cell division and pattern 

formation in vascular tissue growth and development (De Rybel et al., 2014). 

Intercellular movement of mobile transcription factors via the plasmodesmata  

also appear to be involved in the regulation of plant developmental processes 

(Helariutta et al., 2000; Drisch and Stahl, 2015; Long et al., 2015). 
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It is not fully understood how hormones interact to coordinate the growth and 

developmental processes, nevertheless genetic screens, in particular using the 

Arabidopsis thaliana plant model, have extended the knowledge of the action of 

hormonal signalling systems in the coordination of plant growth and 

development.  While certain hormone response and gene patterning is indicated 

by experimental analysis, hormone and gene pathways are interlinked, exhibit 

‘crosstalk’ and do not change independently, and little is known about how this 

gene and hormone interaction network controls patterning. 

The Arabidopsis primary root is amenable to mutant screening and has a simple 

radial structure making it a particularly useful system for examining the action of 

plant hormones in root development and growth. In root development, the root 

apical meristem is established and is ultimately the source of all root cells. It 

contains a stem cell niche (SCN) with a quiescent centre (QC) containing 4 cells 

which divide very slowly, surrounded by initial cells (or stem cells). The initials 

divide asymmetrically at an intermediate rate to both maintain the stem cell 

population and generate other faster dividing daughter cells, which eventually 

elongate and differentiate into different root cell types (Dolan et al., 1993). 

1.2   Root structure and developmental zones 

The structure of the Arabidopsis primary root tip and definition of the different 

cell files is shown in Figure 1.1. 

 
Figure 1.1:     Cell files in the Arabidopsis root tip 

Yellow – Lateral root cap; Blue – Epidermis; Light green – Cortex; Pink – Endodermis; 

Dark green -  Pericycle; Brown – vascular cells; Dark Grey – Columella root cap cells 
and columella initials; White – Quiescent centre and initials (Dolan et al., 1993) 
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The root tip can be divided into 4 developmental zones (Figure 1.2) consisting 

of the ‘root cap’ (the most distal zone), the ‘meristematic zone’ containing the 

quiescent centre and stem cells and where most cell proliferation occurs, the 

‘elongation zone’ with reduced cell proliferation and where cell elongation and 

expansion occurs, and the ‘differentiation or maturation zone’ where cells reach 

their final developmental stage. 

 

 

Figure 1.2:     Arabidopsis root structure and developmental zones 
The root cap, meristematic, elongation and differentiation/maturation zones 

(Taiz and Zeiger, 2010) 
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1.3   Auxin 

While several hormones are involved in the regulation of root development, 

auxin and cytokinin play central roles in regulating the size of the meristem and 

root growth (Ruzicka et al., 2009). The importance of the interaction between 

auxin and cytokinin in root and shoot development and the maintenance of cell 

proliferation was shown in very early experiments on cultured tobacco callus 

(Skoog and Miller, 1957) where the developmental pathway varied depending 

on the exogenous auxin to cytokinin ratio in the growth medium.  

Auxin is involved in controlling cell identity specification, cell expansion, cell 

division (Blilou et al., 2005; Sabatini et al., 1999), in the regulation of the 

transition from cell proliferation to differentiation (Ishida et al., 2010) and in the 

control of cell elongation and root growth rate (Evans et al., 1994). Auxin 

concentration gradients appear related to cell proliferation, with high auxin 

concentrations in the QC with a very low proliferation rate, intermediate 

concentration in the stem cells with intermediate proliferation rates, lower 

concentrations in the more highly proliferative meristematic zone, and the 

lowest auxin concentration correlating to cell elongation and differentiation and 

the cessation of proliferation (Garay-Arroyo et al., 2012). The relationship 

between root growth and exogenously applied auxin is non-linear, following a 

bell shaped growth response curve (Taiz and Zeiger, 2010). 

The maintenance of correct auxin concentrations in the root cells is therefore 

critical. Auxin is mainly synthesised in young leaves and the shoot apical 

meristem, with long-range transport from the shoots to the roots via the phloem 

(Swarup et al., 2001). Auxin biosynthesis also occurs locally in the root cells 

(Ljung et al., 2001) and is stimulated by ethylene and inhibited by cytokinins 

(Nordstrom et al., 2004; Ruzicka et al., 2007; Stepanova et al., 2007; Eklof et 

al., 1997; Swarup et al., 2007). Differential auxin distribution in the root cells 

depends primarily on a combination of shoot to root auxin transport, local auxin 

biosynthesis and on intercellular short-range influx and efflux transport to and 

from the cells. Auxin influx is mediated in part by passive diffusion into the cell 

but mainly by the action of plasma membrane located auxin influx carriers (the 

AUX1/LAX protein family). The organised asymmetrical placement of the auxin 

efflux carriers (the PIN protein family) directs polar transport and auxin 
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distribution through the root cells (Ruzicka et al., 2009) to create the classic 

auxin response patterning (Figure 1.3). 

 

Figure 1.3:     Auxin response gradient in Arabidopsis 4 DAG root 
Auxin response patterning, as demonstrated by expression of the auxin inducible 
reporter IAA2::GUS and blue staining, indicating a response maximum in the QC 

region and a proximally decreasing response above the QC (Grieneisen et al., 2007) 

 
 

1.4   Cytokinin (CK) 

Together with auxin, cytokinins play an important role in root growth and 

development. Auxin suppresses total cytokinin biosynthesis in the whole plant 

(Nordstrom et al., 2004). Cytokinins are synthesised in various tissues in the 

root tip including the columella cells which are located just distal of the QC, the 

endodermis of the root elongation zone, xylem precursor files, and phloem 

tissues (Miyawaki et al., 2004). While CK transport is not well understood, one 

mechanism is thought to be transport through the plant in the phloem (Bishopp 

et al., 2011b) and recently cytokinin influx importers have been identified 

(Zurcher et al., 2016). Cytokinin has been found to negatively regulate PIN1,2 

and 3 expression, positively regulate PIN7 expression, and promote PIN3 and 

PIN7 localization to the lateral plasma membranes in vascular tissues, so 

influencing auxin patterning (Ruzicka et al., 2009; Bishopp et al., 2011a). 

Up-regulation of cytokinins results in the reduction of the size of the root 

meristem and reduction in root length, and plants deficient in cytokinin 

IAA2::GUS
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biosynthesis have enlarged root meristems. Up-regulation of cytokinin does not 

affect the rate of cell proliferation in the meristematic zone which suggests that 

the decrease in size of this zone from increased cytokinin must result from 

upregulating the rate of differentiation of meristematic cells at the transition 

zone (TZ), between the meristematic and elongation zones, so affecting the 

position of the TZ (Dello Ioio et al., 2007; Werner et al., 2003). It is suggested 

that cytokinin affects root meristem size by modulating the transcription of auxin 

efflux PIN proteins, so affecting the auxin to cytokinin ratio in the root cells 

(Ruzicka et al., 2009) and that it also reduces PIN1 by redirecting it for lytic 

degradation in the vacuoles (Marhavy et al., 2011). Cytokinin induces ethylene 

biosynthesis (Chae et al., 2003) and reduces root length via an ethylene 

dependent pathway which inhibits cell elongation (Ruzicka et al., 2009).  

1.5   Ethylene (ET) 

Ethylene is synthesised in all regions of the plant including the roots and at a 

high rate in meristematic tissues (Lin et al., 2009). Both auxin and cytokinin can 

stimulate ethylene biosynthesis (Stepanova et al., 2007; Vogel et al., 1998). 

Seedlings grown in the presence of ethylene show the ‘triple response’ with a 

shortened stem and root, lateral cell expansion and the closure of the apical 

hook (Taiz and Zeiger, 2010). The ethylene signalling pathway includes 

ethylene receptors and a molecule CTR1 which, in the absence of ethylene, is 

active and inhibits downstream signalling pathways.  Upon ethylene binding to 

its receptors, CTR1 is inactivated thus releasing the inhibition of downstream 

ET signalling. 

Ethylene has multiple effects in root development; it promotes root hair 

differentiation; it inhibits cell elongation through downstream ethylene signalling,  

by upregulating auxin biosynthesis and PIN2 auxin efflux carriers in the lateral 

root cap to increase auxin in the elongation zone, so inhibiting cell growth by 

limiting the ability of the cell walls to elongate (Ruzicka et al., 2007; Swarup et 

al., 2007); it promotes QC cell division and possibly root meristem maintenance 

(Garay-Arroyo et al., 2012); and it stimulates auxin biosynthesis. 
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1.6   POLARIS (PLS) 

Another molecule which appears heavily involved in hormonal crosstalk in 

Arabidopsis root development is the short 36 amino acid peptide encoded by 

the gene POLARIS (PLS).  PLS is relatively highly expressed in root tips and is 

required for correct root growth and vascular development and correct auxin 

and cytokinin-mediated root growth responses (Casson et al., 2002). 

Experimental evidence shows that there is a link between PLS, ethylene 

signalling, auxin homeostasis and microtubule cytoskeleton dynamics (Chilley 

et al., 2006). pls mutant roots are short, with reduced cell elongation, and  are 

hyper-responsive to exogenous cytokinins  (Casson et al., 2002). Expression of 

the PLS gene of Arabidopsis is repressed by ethylene and induced by auxin, 

and influences PIN protein abundance in roots (Casson et al., 2002; Chilley et 

al., 2006; Liu et al., 2013). These and other experimental data reveal that 

interactions between PLS and PINs are important for the crosstalk between 

auxin, ethylene and cytokinin (Liu et al., 2013). pls null mutants show increased 

responsiveness to cytokinins and reduced responsiveness to auxin (Casson et 

al., 2002). PLS under-expression in null mutants (pls) results in reduced root 

growth while PLS overexpressing transgenics (PLSox) appear to oppose the 

root growth inhibitory effects of cytokinins (Casson et al., 2002). Experiments 

indicate that pls mutants show enhanced ethylene signalling by measuring the 

abundance of ethylene induced gene transcripts. Recent experiments indicate 

that PLS binds copper ions and promotes binding of the copper ions to the 

ethylene receptor ETR1 to activate the receptor, which in turn activates the 

downstream CTR1 molecule and inhibits the ethylene signalling pathway 

(Chilley et al., 2006; Mudge et al., 2017 (submitted)). ET functions to inactivate 

the ETR1 receptor and CTR1, so releasing inhibition of downstream ethylene 

signalling, by both binding and inactivating ETR1 and also by inhibiting PLS 

transcription to further reduce ETR1 and CTR1 activity. 

1.7   PIN and AUX1/LAX auxin efflux and influx transporter families 

The hormone auxin tends to be protonated in the more acidic cell wall allowing 

a degree of auxin influx into the cell by diffusion; however, in the more neutral 

cytosol, auxin tends to become de-protonated which prevents auxin efflux from 
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the cell by diffusion (Petrásek and Friml, 2009). The AUX1/LAX and PIN protein 

families act as auxin influx and efflux proteins, respectively, to enhance 

intercellular auxin transport and also direct auxin flow, facilitating the formation 

of classic auxin patterning with the auxin maximum in the QC region 

(Grieneisen et al., 2007). 

PIN proteins can be apically, basally or laterally targeted to the plasma 

membrane depending on the PIN protein, the cell type, and the developmental 

context. For example PIN1 is predominantly located to the basal face of 

vascular cells but with a weak signal in the epidermis and cortex, PIN2 is 

located to the apical faces of the lateral root cap and epidermal cells and more 

homogenously at the boundaries of the cortical cells, and PIN3 is ubiquitously 

located at all faces in the columella cells and to the inner lateral face of the 

pericycle cells in the elongation zone (Blilou et al., 2005; Friml et al., 2003; 

Muller et al., 1998). 

The AUX1/LAX protein family members act as auxin influx carriers and can also 

show polar organisation in the plasma membrane. AUX1 appears to be located 

on all cell faces but can be enriched at the proximal face of protophloem cells at 

the opposite face to PIN1, at the upper and lower faces of epidermal cells and 

with approximately symmetrical distribution in other cell types (Kleine-Vehn et 

al., 2006). It is suggested that PIN1 and AUX1 accumulate at the developing 

cell plate of dividing cells and are then targeted to the plasma membrane by 

different vesicle trafficking pathways, accounting for their enrichment at 

opposite cell faces in the same cell (Kleine-Vehn et al., 2006; Geldner et al., 

2001). The location of the PIN and AUX1/LAX proteins effectively directs auxin 

from the shoot to the root tip in the vasculature and then back towards the shoot 

in the root cap and epidermal cells, with some auxin being redirected laterally 

back towards the vasculature to maintain a ‘reverse fountain flow’ in the root tip 

(Figure 1.4) to increase accumulation of auxin in the QC (Overvoorde et al., 

2010; Wisniewska et al., 2006). 
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Figure 1.4:     Auxin ‘Reverse fountain flow’ in the root tip 
Blue arrows indicate direction of auxin transport-mediated flux from the lateral 

root cap through the epidermis and then back towards the root tip 
(Overvoorde et al., 2010) 

 
The asymmetrical location of these carrier proteins in the plasma membrane is 

thought to be based on controlled exocytosis, and then endocytosis and 

sequestering in endosomal bodies. It has been suggested that the dynamic 

recycling of these carrier proteins enables the cell to respond quickly to 

environmental changes by adjusting auxin flow and patterning (Kleine-Vehn et 

al., 2006). Increased cytosolic auxin results in increased PIN expression and a 

reduced rate of endocytosis resulting in increased PIN concentration at the 

plasma membrane (Paciorek et al., 2005). Auxin also promotes the 

phosphorylation of PIN proteins, resulting in increased activity of the PIN efflux 

carriers at the plasma membrane by unknown mechanisms (Barbosa et al., 

2014; Weller et al., 2017; Zhang et al., 2010; Zourelidou et al., 2014). Auxin 

therefore promotes its own efflux from the cell by multiple mechanisms. As 

noted previously both ethylene and cytokinin regulate PIN expression, and 

ethylene also promotes AUX1 expression (Ruzicka et al., 2007). 

The role of the influx and efflux proteins is critical in organising polar auxin 

transport and establishing auxin patterning (Grieneisen et al., 2007; Band et al., 

2014). 

http://www.cshperspectives.net/content/2/6/a001537/F1.large.jpg
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1.8   Mathematical modelling of hormonal crosstalk and patterning 

Mathematical modelling techniques have been used to analyse auxin flux and 

patterning. Multicellular and predominantly ‘physical flow’ models of directional 

auxin flux in a 2-D theoretical Arabidopsis root (Grieneisen et al., 2007; 

Mironova et al., 2012) suggest that correct PIN protein placement is necessary 

to establish correct auxin patterning. Rather than representing biological 

processes of hormone and gene interaction, these models mainly represent 

auxin synthesis in the root cells, and the physical flux of auxin from the shoot to 

the root and between cells in the root, with auxin flux being directed by 

predetermined placement of PIN proteins on selected cell faces to create the 

classic auxin patterning with a maximum in the QC. Other studies have 

suggested that auxin patterning and the location of the auxin maximum is due to 

the action of the influx carriers which effectively act to retain auxin in the cells to 

create the maxima, while the PIN proteins act to direct auxin flow (Band et al., 

2014). 

Single cell ‘biological’ models have been built to represent hormonal crosstalk 

and gene expression. One such model simulates how cytokinins can affect the 

expression of auxin responsive genes and the PIN auxin efflux carriers (Muraro 

et al., 2011). A single cell model (Liu et al., 2010; Liu et al., 2013) represents 

hormonal crosstalk and gene expression, including hormone biosynthesis and 

decay, hormone transport into and out of the cell, and interactions between the 

hormones auxin, cytokinin and ethylene and gene expression within a single 

cell. The Liu et al. (2010, 2013) models explain experimentally observed 

relationships, trends in auxin and PIN concentrations in wildtype and a variety of 

mutants, and the effects of exogenously applied hormones, but are unable to 

analyse 2-D pattern formation 

1.9   Research Aims 

The goal of this research project is to attempt to explain the formation of 

hormone signalling and gene expression patterning in the Arabidopsis root tip 

by using a Systems Biology approach to incorporate experimental data into a 

mathematical model to simulate experimentally observed patterning in a 2-D 
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virtual root. This work can be divided into 4 steps as described in each of the 

following chapters: 

 the logical first step from previous work was to embed the single cell 

biological crosstalk processes from the Liu et al. (2010, 2013) models 

into each cell of the simple rectangular multicellular root framework of the 

Grieneisen et al. (2007) auxin flow model, and also add processes for 

species flux within and between cells in the root structure. Results from 

this 2-D spatial model of hormonal crosstalk and gene expression in the 

Arabidopsis root tip could then be compared with experimentally 

observed hormone concentration and gene expression patterns 

 the second step was to replace the simple rectangular root with a much 

more realistic map, based on experimental imaging, to build a realistic 

‘wildtype’ root which could be used with the model to duplicated 

experimentally observed hormone and gene expression patterning. This 

step checks if patterning generated by the initial rectangular root was 

dependent on the rectangular root architecture. It also allows much more 

meaningful and detailed comparison between model results and 

experimental observations. 

 the third phase, using the realistic root, was to investigate the relative 

roles of the AUX1/LAX and PIN influx and efflux carriers in establishing 

patterning, using a novel recovery principle which enabled the rescue of 

pattern perturbations (due to changes in either the influx or efflux 

carriers) by adjusting the cellular distribution and concentrations of the 

other carrier family. 

 the fourth phase involved revising the network (based on additional 

experimental data from the literature) using alternative relationships 

between the auxin, cytokinin and ethylene signalling pathways, to correct 

patterning inconsistencies present in the previous models and so better 

match experimental results. 

The work in Chapters 2 to 4 and Appendix 2 is largely covered in five 

publications (Moore et al., 2015a; Moore et al., 2015b; Moore et al., 2015c ; 

Moore et al., 2017; Liu et al., 2017). 
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PATTERNING IN A SIMPLE 2-D RECTANGULAR ROOT MODEL 

2.1   Introduction 

Multiple, complex, non-linear hormonal interactions make the understanding 

and analysis of the hormone crosstalk network and consequent patterning, by 

laboratory experiments alone, extremely difficult (Band et al., 2012). A 

supplementary approach is the use of mathematical models and simulations 

based on relationships and parameters observed experimentally, where 

different theoretical relationships and parameters can be tested to see if they 

predict results that are consistent with experimental observations. Novel model 

outcomes can potentially be validated by further experiment.  

Auxin concentration is regulated by diverse interacting hormones and gene 

expression and therefore cannot change independently of the various crosstalk 

components in space and time; similarly, ethylene and cytokinin concentrations 

and expression of the associated regulatory and target genes are also 

interlinked (To et al., 2004; Shi et al., 2012). Important questions for 

understanding hormonal crosstalk in root development include how hormone 

concentrations and expression of the associated regulatory and target genes 

are mutually related, and then how patterning of both hormones and gene 

expression emerges under the action of hormonal crosstalk. 

In previous work, a hormonal crosstalk network for a single Arabidopsis cell was 

developed by iteratively combining modelling with experimental analysis (Liu et 

al., 2010; Liu et al., 2013). This work described how such a network regulates 

auxin concentration in the Arabidopsis root by controlling the relative 

contributions of auxin influx, biosynthesis and efflux, and by integrating auxin, 

ethylene and cytokinin signalling as well as PIN function. Mathematical 

modelling of auxin transport and patterning within a multicellular 2-D root 

system has also suggested that correct PIN protein placement is necessary to 

establish correct auxin patterning (Grieneisen et al., 2007; Mironova et al., 

2012).  In this project, the work of Liu et al. (2010, 2013) and Grieneisen et al. 

(2007) are combined to develop a spatiotemporal model of hormonal crosstalk 

for the Arabidopsis root tip. The model demonstrates that the level and 

patterning of auxin, PIN localization and POLARIS (PLS) gene expression in 
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Arabidopsis wildtype and mutant roots can be elucidated by the action of the 

spatiotemporal dynamics of hormonal crosstalk, which integrates auxin, 

ethylene and cytokinin signalling and the function of the auxin transporters 

AUX1 and PIN. 

The proposed 2-D spatial model combines the multi-cellular root structure from 

Grieneisen et al. (2007) with the intracellular relationships, species biosynthesis 

and decay, and hormone and gene interactions in a single cell from Liu et al. 

(2010, 2013). Additional relationships define species diffusion or permeability 

within the cytosol and cell walls and across the plasma membrane, and the 

recycling of PIN and AUX1 auxin transport proteins to and from the plasma 

membrane. A simplified schematic of the model components is shown in Figure 

2.1, consisting of the root structure, hormone flux at the root/shoot border, 

hormonal biosynthesis, crosstalk and gene expression, the recycling of the 

auxin carriers to and from the plasma membrane, and species flux within and 

between cells in the root. All of the model elements are explained in more detail 

later in this chapter, including details of the root map structure and rate 

equations. 
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Figure 2.1:     A schematic of the 2-D spatial model components 
A. Multicellular root structure map, modified from Grieneisen et al. (2007), defined by a matrix of grid 

points (GPs).  MZ, meristematic zone; EZ, elongation zone; QC, quiescent centre. 
B. Auxin flux by permeability from shoot to root in the pericycle/vascular cells and root to shoot in the 

epidermal files. Ethylene (ET) and cytokinin (CK) diffuse between shoot and root. 
C. Species diffuse between GPs within the cytosol (all species) or cell wall (hormones). Hormone flux 

across the plasma membrane (PM) by diffusion (for ET and CK) and by permeability (auxin). 
D. Simplified Liu et al. (2010, 2013) single cell hormonal and gene expression crosstalk. 
E. Dynamic recycling of PIN/AUX1 auxin carriers to the PM by exocytosis and endocytosis. 
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Having constructed the model, the next step was to set up the parameter 

values. Initial model parameters were set to the values contained in the auxin 

spatial model by Grieneisen et al. (2007) and the single cell model by Liu et al. 

(2010, 2013). Certain parameters in the single-cell hormonal crosstalk network 

were derived from the literature; for example, parameters relating to ethylene 

receptors and CTR1 were studied (Diaz and Alvarez-Buylla, 2006), and these 

values were retained in the 2-D spatial model. Some diffusion and permeability 

parameters were reset to match known published data, where available (see 

below). 

A model calibration step was then performed where the unknown parameter 

values were adjusted to produce simulation results, consistent with 

experimental data and images and meeting the following fit criteria: 1) 

endogenous average auxin concentration for the WT root is similar to 

experimental data; 2)  changes in average auxin concentration in WT, pls, pls 

etr1 double mutant, and PLSox transgenic follow experimental trends; 3) auxin 

concentration patterning in the WT root is similar to experimental observation; 

4) the auxin carrier proteins PIN and AUX1 localise predominantly to the plasma 

membrane; and 5) CK concentration patterning matches experimental results. 

The goal of model calibration was to produce a ‘wildtype’ parameter set which 

could form the basis for future model simulations and predictions. 

Once parameter calibration was complete, the model was tested for 

‘robustness’; in other words how the model responded to variation in WT 

parameter values. Given that most parameter values are unknown, it is 

important that the model is relatively insensitive to variation in the parameter 

settings, otherwise future model results become wholly dependent on certain 

unknown parameter values that can be very difficult or impossible to verify 

experimentally. While the modelling equations must be structured in specific 

forms, many different parameter sets can be fitted against the above criteria 

since the number of parameters far exceeds the number of results from 

experimental observations. If a randomly selected ‘unknown’ parameter value is 

changed, adjustments to one or more of the other parameters can generate a 

new set of WT parameters that meets the required fit criteria and makes correct 

predictions. Also, when a parameter value is reset to be consistent with new 
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additional experimental data, one or more other parameters can be 

simultaneously adjusted such the fit criteria are satisfied and the model 

reproduces experimental results. Therefore, the experimental observations can 

be reproduced using many different WT parameter sets. In this sense, the 

model developed here is robust in that it reproduces experimental observations 

and makes correct predictions with different WT parameter sets and does not 

rely on a unique set of parameter values that cannot be experimentally verified. 

After completion of parameter calibration and robustness testing, model 

predictions were compared to experimental data, which involved using ImageJ 

to derive concentration profiles from experimental images.  The comparison of 

model and experimental results gives an indication of whether the model 

provides a satisfactory explanation of hormonal crosstalk and gene expression 

interactions in a 2-D spatial context. 

2.2   Definition of the Rectangular Root Model 

2.2.1   Generalised root structure 

The Grieneisen et al. (2007) model simulated intercellular auxin flow through a 

generalised root system (Figure 2.2) based on assumptions on auxin influx from 

the shoot to the root, local auxin biosynthesis and decay, influx across the 

plasma membrane from the cell walls into the cytosol mediated by ubiquitous 

AUX1 protein concentration levels, and auxin efflux from the cells into the cell 

walls mediated by polar PIN proteins. A generalised PIN protein is represented 

in the Grieneisen et al. (2007) model with assigned (‘prescribed’) placement and 

concentration at the plasma membrane depending on the type of cell within the 

root system, as indicated in the diagrams and supported by the 4 inset cell 

images in Figure 2.2.  
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Figure 2.2:     Map of root structure and PIN protein placement 
Red rectangles – vascular cell files; Yellow – border/pericycle cell files; Blue – 
epidermal cell files; Grey – quiescent centre (QC) cells; Cyan – columella cells; PIN 
protein placement: 1 – basal and inner lateral placement in the pericycle cells; 2 – inner 
lateral and apical placement in the epidermal cells; 3 – basal placement in the vascular 
and QC cells; 4 – ubiquitous placement in the columella cells. Images show PIN 
concentrations at the plasma membrane for the different cell types; MZ and EZ - 
meristematic and elongation zones (Grieneisen et al., 2007, modified) 

 

The model root is 10 cells wide with 4 epidermal cell files, 2 border/pericycle 

files and 4 vascular files, with 3 distal tiers of columella cells (Figure 2.2). The 

root is 35 cells in length, with 3 tiers of columella cells, 12 tiers in the MZ and 20 

tiers in the EZ. Including the cell walls, which are 2 m thick, all cells are 20 m 

wide. Cells vary in length; including the cell walls, cells in the columella and MZ 

regions are 28 m long, and cells in the EZ are 64 m long. The overall root tip 

Border/pericycle cells

Epidermal cells

Vascular cells

Columella cells100 m

.

.
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is 200 m wide and 1700 m long. In the structure in Figure 2.2, the cell lengths 

change suddenly from 28 to 64m from the MZ to the EZ. The effects of a more 

gradual increase in cell length as cells enter the EZ are investigated later. 

2.2.2   Grid point representation of the root 

In the model the root is divided up into 2 x 2 m areas, each of which is 

represented by a central grid point (Figure 2.3), allowing the root to be  

modelled by a matrix of 85,000 grid points. 

 

Figure 2.3:     Grid point representation of a cell in the MZ 
Red/black dots – central grid points each representing a 2 x 2 m area of the root in the 
model root matrix; green – cell walls; yellow – cytosol; red line – plasma membrane. 

 

Each grid point (GP) can have different properties depending on its location in 

the root. For simplicity, adjacent plasma membrane (PM) and cell wall entities 

are represented by a single model GP identity containing both cell wall and 

plasma membrane properties. This single identity is referred to as either a cell 

wall or plasma membrane depending on the context and properties under 

discussion. Each GP is given a code to represent its properties (Table 2.1). 
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Table 2.1:     Grid Point Codes and Properties 

 

The properties assigned to each GP allow rules to be established governing 

such processes as species biosynthesis, decay, activation or inactivation at 

each GP, and flux between neighbouring GPs. Equations are set up to govern 

the flux between each GP and its 4 nearest neighbours (NN) located to the N, 

S, E or W (Figure 2.4). For example all species can diffuse within the cytosol 

but only hormones can cross the plasma membrane (PM) into the cell wall. 

Cytokinin (CK) and ethylene (ET) can diffuse across the PM while auxin crosses 

by permeability mediated by PIN and AUX1 carrier proteins. Once within the cell 

walls, hormones can diffuse between NN grid points. Individual equations for 

these processes are given later in Table 2.2, Table 2.3 and Table 2.4. 

 

Figure 2.4:     Example of flux between nearest neighbour (NN) grid points 
Black arrows - diffusion between NN; Red arrow – auxin cell influx mediated by 
AUX1 carrier proteins; Blue arrow – auxin cell efflux mediated by PIN carrier 
proteins. Green area – cell wall; yellow area – cytosol; red – plasma membrane. 

Grid Point 
Code 

Properties 

0 Cytosol 

1 Plasma membrane with weak background PIN permeability 

2 Plasma membrane with medium PIN permeability 

3 Plasma membrane with strong PIN permeability 

4 Cell wall at the root/shoot boundary of the vascular and border/pericycle 

cell files, including a plasma membrane with zero PIN permeability 

5 Cell wall at the shoot/root boundary of the epidermal cell files, including a 

plasma membrane with strong PIN permeability 
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2.2.3   The root map 

The root is represented by a root map containing a matrix of 100 x 850 grid 

points, each of which has a code 0-5 (Table 2.1). Each grid point is coded as a 

cytosolic point (GP code 0), or as a plasma membrane/cell wall GP with 

asymmetrical ‘polar’ PIN efflux permeability and symmetrical ‘non-polar’ AUX1 

influx permeability (GP codes 1 to 3), determined by the rate of localisation of 

the auxin carriers to the plasma membrane as described in more detail in 

section 2.2.5. The PIN efflux permeability properties result in a relatively high 

concentration  of PIN proteins (at GP code 3) in the apical PM of the epidermal 

cell files, in the basal PM of the vascular and pericycle/border files, and in the 

inner lateral PM of the pericycle/border files, and at all faces of the columella 

cells. There is a relatively medium concentration of PIN proteins (at GP code 2) 

in the inner lateral PM of the epidermal cells. The remaining PMs have a 

relatively low background concentration of PIN proteins (at GP code 1) apart 

from the shoot/root border plasma membrane/cell wall grid points. The GPs at 

the border of the pericycle and vascular cells (GP code 4) have zero PIN 

permeability such that auxin is directed into the root from the shoot while the 

GPs at the border of the epidermal cell files (GP code 5) have high PIN 

permeability to direct auxin from the root to the shoot. 

The root map is made up of 4 different cell tier components each 10 cells wide. 

 1 EZ cell tier at the root/shoot boundary (Figure 2.5) 

 19 standard EZ cell tiers (Figure 2.6) 

 12 MZ cell tiers which includes the QC region (Figure 2.7) 

 3 columella cell tiers (Figure 2.8) 
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Figure 2.5:     Grid point coding for the proximal EZ cell tier in the root map 
Cell files: E – epidermal; P – border/pericycle; V – vascular. Grid points: 0 – cytosolic 
GPs; 1,2,3,4,5 – cell wall/plasma membrane GPs with varying properties. 
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Figure 2.6:     Grid point coding for the standard EZ cell tier in the root map 
Cell files: E – epidermal; P – border/pericycle; V – vascular. Grid points: 0 – cytosolic 
GPs; 1,2,3 – cell wall/plasma membrane GPs with varying properties. 

 

 

Figure 2.7:     Grid point coding for an MZ cell tier in the root map 
Cell files: E – epidermal; P – border/pericycle; V – vascular. Grid points: 0 – cytosolic 
GPs; 1,2,3 – cell wall/plasma membrane GPs with varying properties. 
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Figure 2.8:     Grid point coding for the columella cell tiers 
Cell files: E – epidermal; P – border/pericycle; V – vascular. Grid points: 0 – cytosolic 
GPs; 1,2,3 – cell wall/plasma membrane GPs with varying properties. 

2.2.4    Biosynthesis, decay, and receptor activation/inactivation in the 
cytosol 

The single cell models (Liu et al., 2010; Liu et al., 2013) describe hormonal 

crosstalk and gene expression in a single cell. The interactions in these models 

are incorporated into all cells of the 2-D spatial root structure. All species are 

synthesised and decay at all GPs within the cytosol (or in the case of the 

receptors are activated and inactivated), except CK which is assumed to have 

tissue specific biosynthesis (Miyawaki et al., 2004) predominantly in the central 

cell files. The rate-limiting step for cytokinin biosynthesis involves a group of 

isopentenyltransferase (IPT) enzymes. While IPT genes are expressed 

throughout the root, different genes appear to display tissue-specific expression 

at different levels. In the root, IPT genes are predominantly expressed in the 

xylem precursor cells, the phloem tissue, the columella, and the endodermis of 

the elongation zone (Miyawaki et al., 2004). Therefore, in this version of the 

model, CK biosynthesis is limited to the central cell files, including the vascular 

and pericycle/border files, and the central columella files but excluding the 

epidermal files and the external columella files contiguous to the epidermal files 

(Figure 2.2). The effects of tissue specific CK biosynthesis on CK spatial 

distribution are addressed further in the section 2.5.5 on ‘Definition and 

calibration of the WT model parameter set’. 
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All species except auxin, CK, ET, PIN and AUX1 proteins are restricted to the 

cytosol with zero flux across the plasma membrane. Auxin, CK and ET can 

move across the PM into the cell walls, diffuse and decay within the walls, and 

move into adjacent cells. PIN and AUX1 proteins are synthesised and decay in 

the cytosol and are recycled by exocytosis and endocytosis to and from the 

plasma membrane, where they can also decay but where no diffusion occurs 

(as noted above the plasma membrane is incorporated into the properties of the 

cell wall GPs). PIN and AUX1 proteins cannot move between adjacent cells. 

There are 16 species in the model as listed in Table 2.2 . The rates of gene 

expression and translation, and species biosynthesis, decay, activation or 

inactivation are determined by a network of interactions between the hormones 

and gene products, as summarised in the rate equations in Table 2.3 . 

Table 2.2:     Species codes represented in the model 
Species 

code 
Description 

Auxin Auxin hormone 

ET Ethylene hormone 

CK Cytokinin hormone 

PINm PIN mRNA 

PINp  PIN protein in the cytosol or plasma membrane (included in cell wall 
properties) 

PLSm POLARIS mRNA 

PLSp POLARIS protein 

X Downstream ethylene signalling 

Ra* Active auxin receptor 

RaT Total of active plus inactive auxin receptors (a constant) 

Re* Active ethylene receptor, ETR1 

ReT Total of active plus inactive ethylene receptors (a constant) 

CTR1* Active CTR1 molecule in ethylene pathway 

CTR1T Total of active plus inactive CTR1 molecules (a constant) 

AUX1m AUX1 mRNA 

AUX1p AUX1 protein in the cytosol or plasma membrane (included in cell wall 
properties) 
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Table 2.3:     Rate Equations for hormonal crosstalk 
(Rates of species biosynthesis, decay, activation and inactivation at a GP; 
the V code for each equation is referenced in the network diagram in Figure 2.9) 

Species Rate equations and parameter values Notes 

AUXIN   

V1 

Background 
biosynthesis 

2k  

Only in the cytosol 

V2 

Variable 
biosynthesis 

])[(

][

)/][1])([(

][

2222

2

PLSpk

PLSp

kCKETkk

ETk

cbed

a



 

Only in the cytosol 

V3 

Decay 
][3 Auxink  

In the cytosol and cell 
walls 

Parameters 

k2 = 0.001 M s
-1

; k2a = 0.025 s
-1

; 

k2b=1.0 M; k2c = 0.01M; k2d = 1.0; 

k2e = 0.0 M
-1

; k3 = 0.002 s
-1

 

 

References 

Eklof et al., 1997; Liu et al., 2010; 
Ljung, 2013; Stepanova et al., 2007; 
Swarup et al., 2007; Tivendale et al., 2014; 
 Zhao, 2010 

 

Ra
*
   

V4 

Rate of 
activation 

)(][ *

4 RaRaTAuxink   

Only in the cytosol. The 
receptor switches 
between active and 
inactive with the total 
RaT remaining constant. 

V5 

Rate of 
inactivation 

*

5
Rak  

Only in the cytosol 

Parameters k4 = 1.0 M
-1 

s
-1

; k5 = 1.0 s
-1

 
 

References 
Liu et al., 2010; Ljung, 2013;  
Mockaitis and Estelle, 2008; 
Vanneste and Friml, 2009 

 

PLSm   

V6 

Rate of 
transcription 

a
k

ET

Rak

6

*

6

][
1

][



 Only in the cytosol 

V7 

Rate of 
decay 

][
7

PLSmk  
Only in the cytosol 

Parameters 
k6 = 0.03 s

-1
; k6a = 0.2 M;  k7 = 1.0 s

-1
; 

for pls null mutant k6 = 0.0 s
-1

; 
for PLSox k6 = 0.045 s

-1
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References 

Casson et al., 2002; Chilley et al., 2006; 
Liu et al., 2010; Ljung, 2013;  
Mockaitis and Estelle, 2008; 
Vanneste and Friml, 2009 

 

PLSp  
 

V8 

Rate of 
translation 

][8 PLSmk  
Only in the cytosol 

V9 

Rate of 
decay 

][
9

PLSpk  
Only in the cytosol 

Parameters k8 = 1.0 s
-1

; k9 = 1.0 s
-1

 
 

References 

Casson et al., 2002; Chilley et al., 2006; 
Liu et al., 2010; Ljung, 2013;  
Mockaitis and Estelle, 2008; 
Vanneste and Friml, 2009 

 

Re
*
  

 

V10 

Rate of 
activation 

])[Re]([Re])[( *

1010  TPLSpkk a

 

Only in the cytosol. The 
receptor switches 
between active and 
inactive with the total 
ReT remaining constant. 

V11 

Rate of 
inactivation 

][][Re*

11
ETk  

Only in the cytosol 

Parameters 

k10=0.0003 s
-1

; k10a=5.0 M
-1 

s
-1

; 

k11=4.0 M
-1 

s
-1

; 
for the etr1-1 gain-of-function mutant 

k11 = 0.025 M
-1 

s
-1

 

 

References 
Diaz and Alvarez-Buylla, 2006; 
Liu et al., 2010; Wang et al., 2002 

 

ET  
 

V12 

Rate of 
biosynthesis 

)
.])[(

.][

..])[(

..][
(

2.12.121..12.12

1212
CKkk

CK

Auxinkk

Auxin
kk

dcdb

a




 

Only in the cytosol. 
Michaelis Menten 
kinetics for the rate of 
biosynthesis regulated 
by Auxin and CK. 

V13 

Rate of 
decay 

][
13

ETk  

In the cytosol and cell 
walls 

Parameters 
k12 = 0.1 M s

-1
; k12a = 0.1M

-1 
s

-1
; 

k12b = 0.1; k12c = 0.1; k12d1 = 1.0 M
-1

; 
k12d2 = 1.0; k13 = 1.0 s

-1
 

 

References 

Liu et al., 2010; Vogel et al., 1998; 
Stepanova et al., 2007; 
Tanimoto et al., 1995 
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CTR1
*
   

V14 

Rate of 
activation 

])1[]1([][Re **

14
CTRTCTRk   

Only in the cytosol. The 
receptor switches 
between active and 
inactive with the total 
CTR1T remaining 
constant. 

V15 

Rate of 
inactivation 

]1[ *

15
CTRk  

Only in the cytosol 

Parameters k14 = 3.0 M
-1

 s
-1

; k15 = 0.085 s
-1

 
 

References 
Diaz and Alvarez-Buylla, 2006; 
Liu et al., 2010; Wang et al., 2002 

 

X   

V16 

Rate of 

pathway 
activation 

]1[ *

1616 CTRkk a  

Only in the cytosol. 
Pathway inhibition is 
regulated by active 
CTR1. 

V17 

Rate of 

pathway 
inactivation 

][17 Xk  

Only in the cytosol 

Parameters 
k16 = 0.3 M s

-1
; k16a = 1.0 s

-1
; 

k17 = 0.1 s
-1

 

 

References 
Diaz and Alvarez-Buylla, 2006; 
Liu et al., 2010 

 

CK   

V18 

Rate of 
biosynthesis 

18

18

][
1

k

Auxin

k a


 

Only in the cytosol in the 
central cell files in the 
MZ and EZ regions, 
which include the 
vascular, 
pericycle/border and 
central columella cells 
but exclude the 
epidermal cell files and 
external columella files 
contiguous to the 
epidermal files. 

V19 

Rate of 
decay 

][19 CKk  
In the cytosol and cell 
walls 

Parameters 
k18 = 0.1 M; k18a = 1.0 M s

-1
; 

k19 = 1.0 s
-1

 

 

References 
 
Liu et al., 2010; 
Nordstrom et al., 2004 
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PINm   

V20 

Rate of 
transcription ])[(])[(

][][

2020

20

AuxinkCKk

AuxinXk

cb

a


 

Only in the cytosol 

V21 

Rate of 
decay 

][21 PINmk a  

Only in the cytosol 

Parameters 
k20a = 0.8 M s

-1
; k20b = 1.0M; 

k20c = 0.3M; k21a = 1.0 s
-1

 

 

References 

Chandler, 2009; Liu et al., 2010; 
Liu et al., 2013; Nordstrom et al., 2004; 
Paciorek et al., 2005; Ruzicka et al., 2007; 
Ruzicka et al., 2009; Swarup et al., 2007; 
Vanneste and Friml, 2009 

 

PINp   

V22 

Rate of 
translation 

][22 PINmk a  
Only in the cytosol 

V23 

Rate of 
decay 

][23 PINpk a  
In the cytosol and 
plasma membrane 

Parameters k22a = 1.0 s
-1

; k23a = 0.75 s
-1

 
 

References 

Chandler, 2009; Liu et al., 2010; 
Liu et al., 2013; Nordstrom et al., 2004; 
Paciorek et al., 2005; Ruzicka et al., 2007; 
Ruzicka et al., 2009; Swarup et al., 2007; 
Vanneste and Friml, 2009 

 

AUX1m  
 

V26 

Rate of 
transcription 

][1 Xak  
Only in the cytosol. 
 

V27 

Rate of 
decay 

]1[
26

mAuxk  

Only in the cytosol 
 

Parameters 
k1a = 0.8 M s

-1
; k26=1.0s

-1
 

 

 

References Ruzicka et al., 2007; this work 
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AUX1p  
 

V28 

Rate of 
translation 

]1[27 mAuxk  

Only in the cytosol 

V29 

Rate of 
decay 

]1[
28

pAuxk  
In the cytosol and 
plasma membrane. 

Parameters k27 = 1.0 s
-1

; k28 = 1.0 s
-1

  

References This work  

2.2.5   PIN and AUX1 carrier recycling to the plasma membrane 

The basally located PIN proteins in the vascular and pericycle cell files direct 

auxin from the shoot to the root base where it is redirected laterally by the 

columella cells and then back up the root by apically located PIN proteins in 

epidermal cell files, with some auxin being directed back to the vascular cells by 

laterally placed PIN proteins in the epidermal and border/pericycle cells. This 

PIN-mediated ‘gating’ system effectively traps and concentrates auxin within the 

root tip resulting in a reverse fountain flow which establishes the classic auxin 

distribution pattern. There are several distinct PIN proteins with different 

locations in different cell types. In this current model version, these proteins are 

represented by a generic PIN, regulated by the network, with no distinction 

between the different types. 

Certain PIN proteins show asymmetrical localisation at the plasma membrane 

of some cell types. While there is also evidence for asymmetrical localisation of 

AUX1 proteins, in this model it is assumed that AUX1 proteins are located 

symmetrically in the plasma membranes of all cells, consistent with Grieneisen 

et al. (2007). The recycling of PIN and AUX1 carrier proteins to and from the 

plasma membrane is represented in this model; however, the actual mechanism 

of exocytosis and endocytosis and protein transport to and from the membrane 

is not. The rate of placement of PIN from a cytosolic grid point to a nearest 

neighbour (NN) plasma membrane GP is dependent on PIN concentration at 

the cytosolic point and the specific properties of the plasma membrane at that 

point, as defined in the root map and consistent with Grieneisen et al. (2007). 
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The PIN proteins localise to the plasma membrane at a higher rate for PMs with 

high permeability (GP code 3), at a medium rate for PMs with medium 

permeability (GP code 2), and at a lower rate at most other PMs (GP code 1). 

The PIN protein concentration at the plasma membrane for grid point type 5 (at 

the root/shoot border in the epidermal cell files where auxin is removed from the 

root) is high, whereas for GP type 4 at the root/shoot border in the pericycle and 

vascular cell files (where auxin enters the root) it is 0 (Table 2.4). 

The rate of removal of PIN proteins from the plasma membrane is proportional 

to PIN concentration at the membrane (but is not dependent on the individual 

properties of the cell face) and is inversely proportional to the concentration of 

auxin at the NN cytosolic grid point, based on experimental evidence indicating 

that PIN endocytic internalization is inhibited by auxin (Paciorek et al., 2005). In 

this way auxin promotes its own efflux from a cell by both upregulating PIN 

expression (Table 2.3: V20) and reducing the rate of endocytosis of PIN from 

the plasma membrane to the cytosol (Table 2.4: V25). 

AUX1 moves from a cytosolic GP to the NN plasma membrane GP at a rate 

proportionate to the concentration of AUX1 at the cytosolic point, and similarly 

moves from the plasma membrane back to the cytosolic point proportionate to 

the concentration at the membrane, but at a lower rate (Table 2.4). All cell faces 

have equal properties regarding the placement and removal of AUX1. 
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Table 2.4:     Rate equations for PIN and AUX1 recycling 
                    to and from the plasma membrane 

Species Rate equations and 
parameter values 

Notes 

PINp  
 

V24 

Rate of 
localisation of 
PINp to the 
plasma 
membrane 

][)(
24

PINpiik
a  

[PINpi] is the PIN concentration 
at the cytosolic GP. 
k24a(i) depends on the property 
of the NN plasma membrane GP 
as shown in the parameter 
values. 

V25 

Rate of removal 
of PINp from 
the plasma 
membrane 

)/][1(

][

250

25

b

a

kAuxin

PINpmk


 

[PINpm] is the PIN concentration 
at the plasma membrane GP. 
[Auxin]0 is the auxin 
concentration at the NN cytosolic 
GP 

Parameters 

k24a(1)=1.0 s-1; 
k24a(2) = 5.0 s-1; 
k24a(3)=20.0 s-1; 
k24a(4) = 0.0 s-1; 
k24a(5) = 20.0 s-1 
K25a = 1.0 s-1; 

k25b = 1.0 M 

 

References 

Grieneisen et al., 2007; 
Liu et al., 2013; 
Paciorek et al., 2005. 
This work. 

 

AUX1p  
 

V30 

Rate of 
localisation of 
AUX1p to the 
plasma 
membrane 

]1[29 piAuxk  

[AUX1pi] is the AUX1 
concentration at a cytosolic GP 
adjacent to a plasma membrane 
GP. 

V31 

Rate of removal 
of AUX1p from 
the plasma 
membrane 

]1[30 pmAuxk  

[AUX1pm] is the AUX1 
concentration at the plasma 
membrane GP. 

Parameters 
k29 = 10.0 s-1; 
k30 = 1.0 s-1 

 

References This work 
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2.2.6   Hormonal crosstalk and gene expression network  

The equations in Table 2.3 and Table 2.4 contain the hormonal crosstalk and 

gene expression relationships between the model species, and the regulation of 

PIN and AUX1 recycling to the plasma membrane. These relationships have 

been summarised in a crosstalk network (Figure 2.9). For the purposes of clarity 

PINpi and PINpm have been introduced in the diagram to denote PINp proteins 

in the cytosol and in the membrane respectively, even though these do not exist 

as separate species in the model. AUX1pi and AUX1pm are similarly used in 

the network diagram. 

 
Figure 2.9: Hormonal crosstalk and gene expression network (Liu et al., 2013) 

for symbols refer to Table 2.2 and for V annotations to equations in Table 2.3 and 2.4 

 

2.2.7   Flux between nearest neighbour (NN) grid points 

Species flux between NN grid points depends on the species type and the grid 

point properties. Since the model does not include structural intracellular 

resolution and vesicular transport, for modelling purposes flux is assumed to 

occur by diffusion or permeability, except for the recycling of PIN and AUX1 by 

exocytosis and endocytosis as discussed separately above. Table 2.5 defines 

flux equations for each species between each type of grid point. 

Auxin

Ra Ra*

PLSm

PLSp

Re Re*

ET

Auxin signalling module

CTR1 CTR1*

X

Ethylene signalling module

v1
v3

v2

v4

v5

v6 v7

v8
v9

v10

v11

v12 v13

v14

v15

v16 v17

CK

v18

v19

Cytokinin signalling

module

PINpm

PINm

PINpi

PIN module

v21

v24

v25

v20

v22

v23

AUX1 module

v26
v27

AUX1m

v28 AUX1pi

v30

v31

AUX1pm

v29

Auxin

cell efflux

Auxin

cell influx

Auxin shoot

to root

transport

This is included in the MSc write up.

Revised network to match model

Including the AUX1 and PIN location

to the plasma membrane but 

excluding

X impact on shoot to root transport

Since this deals with biosynthesis,

Decay etc

Include in manuscript

  mass conversion links;          positive and negative regulatory links;          auxin transport links 
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Table 2.5:     Species flux 
(between nearest neighbour (NN) grid points A to B) 

Species  A          B Flux equation Notes 

Auxin 
diffusion 

0 0 xAuxinAuxincellAuxindiff BA  /)][]([)(

 

Diffusion in the 
cytosol 

 

1 or 

2 or 

3 

1 or 

2 or 

3 

 

xAuxinAuxinwallAuxindiff BA  /)][]([)(

 

Diffusion in the 
cell wall 

 4 or 
5 

Any No diffusion from GP 4 and 5 
Border to 
cytosol 

 any 
4 or 

5 
No diffusion to GP 4 and 5 

Cytosol to 
border 

Parameters   
Auxindiff(cell) = 220m

2
 s

-1 

Auxindiff(wall) = 220m
2
 s

-1
; 

Δx = 2.0m 

 

References   Kramer et al., 2011; 
Rutschow et al., 2011; This work. 

 

Auxin 
efflux 

by 
 permeability 

0 
1,2 

or 3 betaAuxink

AuxinPINpk
BAp

x Aa

ABb

][

][][
),(

1

3

3


 

Efflux from the 
cell 
p(A,B) = 1  

 0 4 Above equation but zero flux p(A,B) = 0  

 0 5 Above equation and flux occurs 

Efflux from the 
root to the 
shoot. 
p(A,B) = 1  

Parameters   

p(A,B) is a switch determining if 
permeability can occur from A to B and is 
= 0 or 1  

 x = 2.0m(scaling constant); 

k3a = 1.0M; k3b = 0.8 m
2
 s

-1
; 

beta = 0 

Optional 
Michaelis 
Menten 
kinetics 
depending on 
the value of 
beta 

References   Kramer et al., 2011; This work  

Auxin 
influx 

by 
permeability 

1,2 

or 3 
0 

bAa

AA

kAuxink

AuxinpAUXk
BAp

x 3131

31

][

][]1[
),(

1


 

Influx into the 
cell 
p(A,B) = 1 

 4 0 

bB

Aa

kX

Auxink
BAp

x 32

32

/][1

][
),(

1


 

Influx, shoot to 
root 
p(A,B) = 1  

 5 0 Same equation as ‘4 to 0’ but zero flux 
since p(A,B) = 0 

Influx, shoot to 
root. 
p(A,B) = 0  

Parameters   

p(A,B)  is a switch determining if 
permeability can occur from A to B and is 
= 0 or 1  

 x = 2.0mscaling constant); 

Optional 
Michaelis 
Menten 
kinetics 
depending on 
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k31 = 2.0 m
2
 s

-1
; k31a = 1.0M; 

k31b = 0; k32a = 10 m
2
 s

-1
; 

k32b = 0.1M 

the value of 
k31b 

References   
Chilley et al., 2006; Kramer, 2004; 
Rutschow et al., 2014; Suttle, 1988. 
This work. 

 

ET 
diffusion 

0, 1, 

2, 3, 

4 or 

5 

0, 1, 

2, 3, 

4 or 

5 

xETETETdiff BA  /)][]([  
ET diffuses 
between all 
GPs of the 
same or 
different types 
whether in the 
cytosol or cell 
wall with the 
same diffusion 
coefficient 

Parameters   ETdiff = 600m
2
 s

-1
;  x = 2.0m  

References   This work  

CK 
diffusion 

0, 1, 

2, 3, 

4 or 

5 

0, 1, 

2, 3, 

4 or 

5 

xCKCKCKdiff BA  /)][]([  

 

 

  

CK diffuses 
between all 
GPs of the 
same or 
different types 
whether in the 
cytosol or cell 
wall with the 
same diffusion 
coefficient 

Parameters   
CKdiff = 220m

2
 s

-1
; Δx = 2.0m  

References   
Mellor and Bishopp, 2014. This work  

All other 
species 

 diffusion 

0 0 xOtherOtherOtherdiff BA  /)][]([  Diffuse within 
the cytosol 
only and do 
not cross the 
PM and enter 
the cell wall 
(for PINp and 
AUX1p 
recycling see 
Table 2.4) 

Parameters   Otherdiff = 220m
2
 s

-1
; Δx = 2.0m  

References   This work  
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2.2.8   Root/shoot boundary conditions 

From the above equations ET and CK can diffuse in both directions between 

the cytosol of the proximal cells and the shoot-root boundary cell walls, denoted 

by grid points 4 proximal to the pericycle and vascular cell files and 5 proximal 

to the epidermal cell files (Figure 2.5). 

At the shoot–root boundary, following previous work (Grieneisen et al., 2007), 

auxin influx from shoot to root occurs only in the pericycle and vascular cell 

files, from the cell wall grid point 4 into the cytosol (0) of the proximal pericycle 

and vascular cells, mediated by downstream ethylene signalling, designated X 

in the model. Auxin efflux in the opposite direction from the root vascular and 

pericycle cells to the shoot, mediated by PIN proteins, cannot occur. Auxin 

influx into the root is inhibited by downstream ethylene signalling X, based on 

experimental evidence which indicates that a relatively high ethylene signalling 

response inhibits the transport of auxin from the shoot to the root tip (Suttle, 

1988; Chilley et al., 2006). 

Auxin efflux from the root towards the shoot, from the cytosol (0) into the shoot-

root border cell wall (5), occurs only in the epidermal cells and is facilitated by 

PIN proteins. Auxin influx from the shoot to the root epidermal cells, mediated 

by AUX1 proteins, cannot occur. 

The hormone concentrations in the shoot-root border cell wall grid points are set 

at constants. Auxin concentration is set at a high level in the grid points 4 to 

encourage shoot to root flux while the auxin concentration in grid points 5 is set 

to zero to model auxin flux out of the root to the shoot from the border epidermal 

cells. The concentrations of ET and CK in the border cell wall grid points 4 and 

5 are set such that there is a smooth transition of concentration levels from the 

root to the shoot. The actual border concentration settings are discussed in 

section 2.5.6 on calibration. 

2.3   Running the model and simulation to steady state 

The model is both ‘spatial’ and ‘temporal’ since is represents a 2-D multicellular 

root and simulates changes in hormone concentrations and gene expression 

over time. At time zero all concentrations within the root are set to 0 (except the 
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fixed concentrations at the root/shoot border). As time progresses, the 

concentration levels at each grid point change due to biosynthesis, decay and 

flux to and from NN grid points, regulated by the hormonal crosstalk and gene 

expression relationships and the parameter settings. Time is advanced and new 

concentrations calculated for each species at each grid point using an iterative 

process called the Conjugative Gradient Method. This process is repeated with 

time steps of 100 secs until a steady state is reached when there is minimal 

change in any species concentration between time steps. All simulations were 

run for 20,000 secs by which time the steady state had been reached. 

2.4   Capturing data from experimental images using ImageJ 

For both initial parameter calibration and performing in-silico experiments, it is 

important to be able to compare model predictions with experimental results; 

however, many experimental results are in the form of fluorescent imaging 

rather than quantified measurements. Using ImageJ (http://imagej.nih.gov/ij) it is 

possible to measure and capture relative data from experimental images. The 

output of ImageJ is the intensity of each pixel in an experimental image. The 

relative intensity over the image shows the relative hormone response or 

protein concentration patterning across the whole (or selected part) of the 

image and this can be used, for example, to create relative response or 

concentration gradients along the longitudinal axis of the root tip which can then 

be compared to gradients predicted by the model. 

In particular, using the features of ImageJ, it is possible to define regions on an 

image, such as the vascular cell cylinder, and measure, say, relative 

concentration profiles along the selected region. Regions were defined by a 

series of consecutive rectangles which progressively diminished in size towards 

the distal end of the root tip. Data were collected from each rectangle and 

concatenated to give a relative concentration profile for the selected cell files 

derived from an original experimental image. For example, in Figure 2.10, the 

epidermal and vascular cell files have been defined by rectangles and the 

relative WT PIN2 concentration profiles for each cell file extracted using ImageJ 

and then plotted in MATLAB®. This method gives a greater number of data 

points compared with sampling at intervals, as can be seen from the PIN2 plot 

http://imagej.nih.gov/ij
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for the epidermal cells (Figure 2.10) which demonstrates the high concentration 

of PIN2 at the plasma membranes. 

 

 
 
Figure 2.10:   PIN2 profiles for epidermal and vascular cells using ImageJ 

Using rectangles to define the vascular and epidermal cell files, data for relative PIN2 
concentration are extracted from an experimental image (Liu et al., 2013) using 
ImageJ, and longitudinal concentration profiles plotted using MATLAB®  

2.5   Definition and calibration of the WT model parameter set 

While the modelling equations must be structured in specific forms to describe 

the kinetics of the processes detailed in Figure 2.9, many different parameter 

sets can be fitted against the experimental data since the number of parameters 

exceeds the number of experimental observations. By examining parameters 

randomly, when a parameter is changed and at least one or more other 

parameters are allowed to change, then it is possible to find a new set of 

parameters that meet the criteria for model fitting and also make correct 

predictions. 

2.5.1   Diffusion and permeability constants 

Initially the diffusion coefficients for all species were set at 600 m2 sec-1, 

matching the setting for auxin diffusion in Grieneisen et al. (2007).  The 

coefficient for auxin was reset to 220 m2 sec-1 to be consistent with later 

estimates (Rutschow et al., 2014). The molecular weight of CK is approximately 
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the same as auxin so the diffusion rate of CK was also set at 220 m2 sec-1.  

The diffusion coefficient of ET was left unchanged at the higher value of 600 

m2 sec-1 since ET is a gas. The diffusion coefficients for all other species in the 

cytosol were also set at 220 m2 sec-1 in the absence of additional data. 

A recent review of published auxin transfer speeds showed a wide range from 

0.33 to 5 m sec-1 and mathematical modelling confirmed that PIN efflux 

permeability rates are comparable with this transfer speed (Kramer et al., 2011). 

The constants for PIN permeability (k3a and k3b) were therefore set to give PIN 

permeability of 0.9 m sec-1, based on average PIN concentrations in the 

plasma membranes, which is well within the required range. It has been 

suggested that AUX1 influx permeability must be equal to or greater than PIN 

efflux permeability otherwise cells would be depleted of auxin (Kramer, 2004). 

Therefore the constants controlling AUX1 permeability (k31, k31a) were 

adjusted to give an average AUX1 permeability of 3.5 m sec-1, which is greater 

than the average PIN permeability. 

2.5.2   Average auxin concentration and trends in WT and mutants 

Experimental results (Chilley et al., 2006) show auxin content in fresh weight 

(FW) root samples. These were used to calculate values for WT average auxin 

concentration ranging from 0.23 to 2.3  (for water content of 100% or 10% in 

the FW root samples). The background and variable auxin biosynthesis 

parameters (k2, k2a) were adjusted to give an average auxin content in the 

model WT root tip of approximately 0.8 which falls within the required range. 

Further adjustments were made to parameters for auxin decay (k3), auxin 

transport from the shoot to root (k32a, k32b), the rate of PLS expression (k6), 

and the rate of ETR1 (or Re*) deactivation (k11) in the ethylene pathway, such 

that the average auxin root concentrations in WT, pls, the pls etr1 double 

mutant and the PLSox transgenic matched the trend of changes in experimental 

concentrations (Chilley et al., 2006). The null mutant pls was modelled by 

setting the PLS expression parameter k6 = 0. The etr1-1 mutant (an ethylene 

insensitive gain-of-function mutant, with high activation, low downstream 

ethylene signalling and low ethylene response) was only a partial knockout 
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(induced by drug treatment or Ag application) and was modelled by reducing 

the parameter (k11) controlling the rate of inactivation of Re* (active ETR1) from 

the WT value of 4.0 to the etr1 partial knockout value of 0.025 M-1 sec-1. In the 

etr1 partial knockout the level of active ETR1 is increased such that the model 

is insensitive to ET, resulting in decreased downstream ethylene signalling and 

increased shoot to root auxin influx. 

Figure 2.11 shows the experimental trend in auxin concentrations in WT, 

mutants and the PLSox transgenic for whole seedlings (Chilley et al., 2006). pls 

shows a large decrease in auxin compared to WT, the pls etr1 double mutant a 

near recovery to WT levels, and PLSox exceeds WT auxin concentration. 

Figure 2.12 gives the model results, with pls having a similar significant 

reduction in average auxin concentration, pls etr1 a slight recovery (but not as 

significant as in the experimental results) and PLSox an increase over WT 

similar to experimental results. While the magnitude of auxin changes between 

the mutants in the model does not exactly match those from experiments, the 

trends are similar. 

 

 
Figure 2.11:   Relative auxin concentrations in 10 DAG whole seedlings 
Comparison of auxin content in wild-type, pls and pls etr1-1 mutants, and the 

PLSox overexpressor in 10 DAG whole seedlings (Chilley et al., 2006) 
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Figure 2.12:   Model average auxin concentrations 

Comparison of model average auxin concentrations in wild-type, pls and pls 
etr1 mutants, and the PLSox overexpressor, showing similar qualitative trends 

to experimental results in Figure 2.11 

2.5.3   Auxin response images, concentration colour maps and profiles 

Auxin response has a canonical pattern in the Arabidopsis WT root with an 

auxin response maximum established in the QC region. As part of the 

calibration process, model auxin concentration colour maps were compared to 

experimental images. The images were scanned with ImageJ and the data 

converted into response gradients along the longitudinal axis of the root and 

compared to concentration profiles from the model. The auxin image 

(Grieneisen et al., 2007) and the ImageJ auxin response profile derived from 

the image were compared to a concentration colour map and profile from the 

WT model (Figure 2.13). 
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Figure 2.13:   Auxin experimental and model results 
The experimental image and model demonstrate similar patterning with an auxin 
maximum in the QC region and similar trends for the response and concentration 
profiles (QC, quiescent centre) 

2.5.4   PIN and AUX1 predominantly locate to the plasma membrane 

The WT images of the PIN1, PIN2 and PIN3 members of the PIN family of auxin 

carriers clearly show that PIN proteins locate predominantly to the plasma 

membranes in vascular and root cap cells, the epidermal and cortical cells, and 

the EZ vascular and columella cells respectively (Figure 2.14). Similarly the 

AUX1 and LAX2 auxin influx carriers mainly localise to the plasma membrane 

(Figure 2.15). 

M

WT auxin image (Grieneisen et al., 

2007) and the relative response profile.

WT auxin colour map and 

concentration profile from the model
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Figure 2.14:   Localisation of PIN1, PIN2, PIN3 to the plasma membrane 
(Band et al., 2014) 

 

Figure 2.15:   Localisation of AUX1 and LAX2 to the plasma membrane 
(Band et al., 2014) 
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The localisation of the auxin carrier proteins to the plasma membrane is critical 

to enable them to function in auxin influx and efflux and therefore the model 

should exhibit predominant localisation of the carrier proteins to the plasma 

membrane. Figure 2.16 shows the WT model concentration profiles for PINp 

and AUX1p with a much higher concentration of these proteins in the plasma 

membrane than the cytosol.  This is also clearly exhibited in the enlarged QC 

concentration colour maps for these proteins. 

 

 

Figure 2.16:   PIN and AUX1 localisation to the plasma membrane 
The model colour maps of the QC region and peaks at the plasma membrane 
positions in the concentration profiles indicate auxin carrier localisation to the 
plasma membrane 

 

2.5.5   CK concentration patterning and profile 

Cytokinin biosynthesis in the root is possibly tissue-specific and occurs 

predominantly in the columella cells, the endodermis of the root elongation 

zone, xylem precursor files and phloem tissues (Miyawaki et al., 2004), as 

supported by cytokinin response reporter ARR5::GUS imaging (Figure 2.17a). 

Since CK biosynthesis in the epidermal and cortical cell files appeared to 

produce a very low CK signal compared to the central cells in this image, CK 

spatial distribution was tested in two versions of the model, (1) with CK 
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biosynthesis in all cells and (2) with biosynthesis restricted to the 

pericycle/border and vascular cell files and the central columella files. The CK 

experimental image and the CK response profile derived from the image (using 

ImageJ) were then compared to the CK concentration colour map and profile 

generated by each version of the model (Figure 2.17). 

When CK biosynthesis occurred in all cells, CK patterning in the experimental 

image differed from the model colour map. However, when CK biosynthesis 

was restricted to the central cell files, there was a qualitative similarity between 

lateral patterning in the observed image and the model colour map.  The pattern 

across the root was similar, with apparent maxima occurring in approximately 

the pericycle/border cell files in both the model colour map and the experimental 

observation. This initial modelling analysis therefore suggests that CK 

biosynthesis could be predominantly restricted to the central cell files, although 

the molecular basis for this is unknown. 

The image response profile, showing the CK response gradient along the root 

axis, did not match the profiles from either model version. Experimental results 

indicate that CK concentrations decrease proximally along the root axis which is 

opposite to the gradient exhibited in both versions of the model (Figure 2.17). 

As demonstrated later, in section 2.6.7 on model robustness to parameter 

variability, the overall results do not appear to be very sensitive to variations in 

CK concentration; therefore it was felt that this discrepancy between model and 

experimental results would not detract significantly from other model results. 

The difference in longitudinal cytokinin patterning suggests that additional 

unknown regulatory factors could influence patterning along the root axis, as 

investigated later in Chapter 5. However, in this version of the model, cytokinin 

biosynthesis occurs only in the vascular and pericycle cells and the central 

columella cell files. 

Experimental data (Liu et al., 2010) gives the content of different types of 

cytokinin in 10 days after germination (DAG) WT and pls whole seedlings. 

Using the average WT cytokinin content, the CK seedling concentration was 

estimated at 0.04 M (assuming 75% of fresh weight was fluid) which is 
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consistent with model results where CK biosynthesis is restricted to the vascular 

and pericycle cell files (Figure 2.17c). 

 

 
Figure 2.17:   CK experimental and model patterning results 

(a) CK experimental image (Werner et al., 2003) and relative response profile 
(b) Model CK concentration image and profile with CK biosynthesis in all cells 
(c) Model CK concentration image and profile with CK biosynthesis in pericycle and 
vascular cells and the central columella cell files. (c) shows similarities in lateral 
patterning to the experimental image; however profile gradients from both models show 
a proximally increasing CK gradient while the experimental response gradient shows a 

proximally decreasing trend (colour bar units M). 

 

2.5.6   Border hormone concentrations 

Hormone concentrations at the root/shoot border were set to give a smooth 

transition from concentrations in the proximal root cells to the border. ET border 

concentrations in grid points 4 and 5 were set at a constant 0.1 M. Auxin was 

set at a constant 1.0M in grid points 4 at the border of the pericycle and 

vascular cells, which is slightly higher than the average root concentration of 

approximately 0.8M (representing influx from the shoot), and was set at 

0.0M at grid points 5 at the border of the epidermal cells where there was 

auxin efflux from the root to the shoot. CK concentrations were set at 0.07M in 

all border grid points 4 and 5. 
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2.5.7   Summary results for the WT parameter settings 

The process for setting the WT parameters described above, started by using 

the original parameter values in the reference papers (Grieneisen et al., 2007;  

Liu et al., 2010), with adjustments based on parameter values from the 

literature. Additional calibration adjustments were derived by comparing model 

outcomes to the experimental results for WT average auxin concentration, auxin 

concentration trends in WT and mutants, WT auxin images and concentration 

profiles, auxin carrier protein concentrations at the plasma membrane, and WT 

CK profiles and concentrations. Figure 2.18 summarizes model results for the 

preferred WT parameter set, showing the concentration colour maps and 

profiles for Auxin, ET and CK, and charts comparing the average auxin and PIN 

protein concentrations for WT, pls, etr1, pls etr1 mutants and the PLSox 

transgenic. 

 

 
 

Figure 2.18:   Summary WT model results 
Auxin, cytokinin and ethylene colour maps and concentration profiles, and WT and 

mutant average root concentrations for auxin and PIN protein (colour bar units M) 
 

2.6   Model robustness to variation in parameter values 

Most parameter values are unknown and are very difficult to confirm 

experimentally; it is therefore important that the model is not overly sensitive to 

small changes in parameter values otherwise model results would depend on 

specific parameter values that could not be verified. While the sensitivity of the 
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model was not tested for all parameter values, a variety of tests were 

performed.  

2.6.1   Auxin diffusion rates 

The auxin diffusion constants for the cytosol and cell wall were varied from 1 to 

1000 m2 sec-1 and the auxin concentration profiles and average root auxin 

concentrations compared to the WT parameter setting of 220m2 sec-1. At a 

very low diffusion constant of 1 m2 sec-1, no auxin maximum was observed in 

the QC. The auxin maximum was well established in the QC region for diffusion 

constants from 50 to 400m2 sec-1 with some minor reduction at the higher 

values. Thereafter the maximum continued to decrease as the diffusion 

constant increased to 1000 m2 sec-1 (Figure 2.19). At the very low diffusion 

constant of 1 m2 sec-1, the average auxin concentration was approximately 

0.86 M. With the constant equal to 50 m2 sec-1, the average concentration 

decreased to approximately 0.79M and did not vary significantly for higher 

auxin diffusion constants between 50 and 1000m2 sec-1 (Figure 2.20). From 

these results the model appears to be relatively insensitive to variations in the 

auxin diffusion constant from the WT parameter setting (220m2 sec-1). 

 

Figure 2.19:   Auxin concentration profiles for varied auxin diffusion 
The auxin maximum at the QC does not emerge at very low rates and starts to 

decrease at higher diffusion rates (diffusion constant varies from 1 to 
1000m2sec-1, WT = 220 m2sec-1) 
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Figure 2.20:   Average auxin concentration for varied auxin diffusion  
The average auxin concentration is higher than WT at very low diffusion rates 
but remains fairly constant over a wide range of rates around WT (diffusion 
constant from 1 to 1000m2sec-1, WT = 220 m2sec-1) 

 

2.6.2   CK diffusion rates 

CK diffusion rates in the cytosol and cell wall were varied between 1 and 

600m2 sec-1 and the results compared to the WT value of 220 m2 sec-1. 

There was minimal apparent difference in either the auxin concentration profile 

or the root average auxin concentration over this range of CK diffusion 

constants (Figure 2.21, Figure 2.22). These apparently identical results were 

tested further and it was found that at extremes of CK diffusion rates there was 

a change in the CK concentration colour image and average root concentrations 

in auxin, ET and CK. 

Figure 24:   Average auxin concentration for varied auxin diffusion constants
(from 1 to 1000 mm2sec-1, WT = 220 mm2sec-1)
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Figure 2.21:   Auxin concentration profiles for varied CK diffusion 
There was minimal change in the auxin concentration profiles over this range of 
CK diffusion constants (diffusion constant from 1 to 600m2sec-1; WT = 

220m2sec-1) 

 

 

Figure 2.22:   Average auxin concentration for varied CK diffusion 
There was minimal change in the average auxin concentration over this range 
of CK diffusion constants (diffusion constant from 1 to 600m2 sec-1; WT = 220 

m2 sec-1) 
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2.6.3   ET diffusion rates 

The constants for ET diffusion within the cytosol and cell wall were varied from 

1 to 1000m2 sec-1 compared to the WT value of 600m2 sec-1. There was 

minimal change in either the auxin concentration profile or the average root 

auxin concentration for values between 100 and 1000m2 sec-1 (Figure 2.23, 

Figure 2.24) indicating that the model is relatively insensitive to the rates of ET 

diffusion. 

 
 

Figure 2.23:   Auxin concentration profiles for varied ET diffusion  
At very low ET diffusion rates there is an increase in the auxin maximum at the 
QC, but over the remainder of the range the maximum remained relatively 
constant (diffusion constant from 1 to 1000 m2 sec-1, WT = 600 m2 sec-1) 
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Figure 2.24:   Average auxin concentration for varied ET diffusion 
At very low diffusion rates there is an increase in average auxin concentration, 
but over the remainder of the range the average remained relatively constant 
(diffusion constant from 1 to 1000 m2sec-1, WT = 600 m2sec-1) 

 

2.6.4   PIN protein diffusion rates 

PIN protein diffusion rates in the cytosol were varied from 1 to 600 m2 sec-1, 

compared to WT of 220m2 sec-1. At effectively zero diffusion (1 m2 sec-1) the 

auxin maximum was not established, while at 50 m2 sec-1 a weak maximum 

started to emerge in the QC region. From 100 to 600 m2 sec-1 the QC 

maximum progressively strengthened (Figure 2.25). This result is confirmed by 

the auxin concentration colour maps for each diffusion rate (Figure 2.26) which 

show weaker maxima at the lower rates of diffusion, with a gradual 

strengthening in the maxima as diffusion rates increase. Although this indicates 

a progressive accumulation of auxin at the QC maximum, the average auxin 

concentration in the root tip decreases gradually (Figure 2.27) as the diffusion 

rates increase, indicating a reallocation of auxin from the proximal parts of the 

root to the distal root tip. As diffusion rates increased the concentration of PIN 

proteins at the plasma membrane also increased (Figure 2.28). An enlarged 

PIN protein profile (Figure 2.29) shows the PIN protein concentration in the 
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cytosol and plasma membrane in greater detail. At very low diffusion rates        

(1 m2 sec-1) the concentration of PIN protein in the cytosol was greater than in 

the plasma membrane. As the diffusion rate increased, this balance was 

reversed with an increasing ratio of PIN protein at the plasma membrane 

compared to the cytosol. 

 

Figure 2.25:   Auxin profile for varied PIN protein diffusion  
At very low diffusion rates the auxin maximum at the QC was very weak, but 
progressively strengthened as diffusion rates increased (diffusion constant from 1 to 

600 m2 sec-1, WT = 220 m2 sec-1) 

 

Figure 2.26:   Auxin concentration maps for varied PIN diffusion 
At very low diffusion rates the auxin maximum at the QC was very weak but 
progressively strengthened as diffusion rates increased (diffusion constant from 1 to 

600 m2 sec-1, WT=220 m2 sec-1, colour bar units M) 
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Figure 2.27:   Average auxin concentration for varied PINp diffusion  
Average root auxin concentration decreases as the diffusion rate increases 
(diffusion rate from 1 to 600 m2 sec-1, WT = 220 m2 sec-1) 

 

 
 

Figure 2.28:   PINp concentration profiles for varied PINp diffusion 
At low diffusion rates PINp is concentrated mainly in the cytosol but is 
progressively reallocated to the plasma membrane as diffusion rates increase 
(diffusion constant from 1 to 600 m2 sec-1, WT = 220 m2 sec-1) 

 
 

 

Figure 31:   Average auxin concentration for varied PIN protein diffusion rates
(from 1 to 600mm2sec-1, WT = 220mm2sec-1)
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Figure 2.29:   Enlarged PINp profiles for varied PINp diffusion 
This clearly demonstrates that at low diffusion rates PINp is concentrated mainly in the 
cytosol but, as diffusion rate increase, PINp is progressively reallocated to the plasma 

membrane (diffusion constant from 1 to 600 m2 sec-1, WT = 220 m2 sec-1). 

 

2.6.5   AUX1 protein diffusion rates 

At very low diffusion rates (1 m2 sec-1), as for PIN proteins, AUX1 concentrates 

mainly in the cytosol with very low concentrations at the plasma membrane. As 

the diffusion rate increases, AUX1 is reallocated from the cytosol to the plasma 

membrane to function as an auxin influx carrier (Figure 2.30). 

The auxin concentration maximum exists even at very low diffusion rates 

(Figure 2.31), is nearly fully established at the diffusion constant of 50m sec-1 

and thereafter remains stable. In addition the average auxin concentration in the 

root tip is very stable throughout the range (not shown). This is confirmed by the 

auxin concentration colour maps (Figure 2.32) which show the existence of 

auxin maxima (of varying strengths) at all diffusion constants. 

Auxin patterning appears to be fairly insensitive to the AUX1 diffusion rates, 

even at low values, possibly indicating that the PIN protein and not AUX1 is the 

limiting factor in auxin transport through the root and for establishing auxin 

patterning. 
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Figure 2.30:   AUX1p concentration profile for varied AUX1 diffusion 
At low diffusion rates AUX1p is concentrated mainly in the cytosol but is reallocated to 

the plasma membrane as diffusion rates increase (diffusion constant from 1 to 600 m2 

sec-1; WT = 220 m2 sec-1) 
 
 
 

 

Figure 2.31:   Auxin concentration profile for varied AUX1 diffusion 
At very low diffusion rates the auxin maximum at the QC is very weak, but is quickly 

established at a diffusion rate of 50 m2 sec-1 and thereafter remains stable (diffusion 

constant from 1 to 600 m2 sec-1; WT = 220 m2 sec-1) 
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Figure 2.32:   Auxin concentration maps for varied AUX1 diffusion 

The auxin maximum exists at the QC over the full range of diffusion constants 

(diffusion constant from 1 to 600 m2 sec-1; WT = 220 m2 sec-1, colour bar units M) 

2.6.6   Auxin decay rates 

The rate of auxin decay was varied from the WT value of k3 = 0.002 sec-1. As 

expected, at higher rates the average root auxin concentration declined and at 

lower rates it increased; however, at all values tested the classic auxin pattern 

still occurred with a maximum in the QC region (Figure 2.33). 

 
 

Figure 2.33:   Auxin concentration maps for varied auxin decay 
The auxin concentration increased at lower decay rates and decreased at higher rates; 
however, the auxin maximum at the QC is evident at all decay rates (decay rates from 

0.001 to 0.004 sec-1; colour bar units M). 

Figure 36:   Auxin concentration map for varied AUX1 diffusion constants
(from 1 to 600mm2sec-1, WT = 220mm2sec-1, colour bar units in M)
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Figure 37:   Auxin concentration colour map for different auxin decay rates
(colour bar units M)
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2.6.7   Tissue specific CK biosynthesis 

As discussed earlier, in the model CK is assumed to be synthesised only in the 

central cell files to represent predominant tissue specific biosynthesis and to 

give a lateral concentration gradient similar to experimental results. 

To test the sensitivity of auxin patterning and concentrations to assumptions on 

tissue specific CK biosynthesis, a version of the model was run where CK was 

synthesised in all root cells, which resulted in increased CK concentration and a 

different CK concentration pattern in the root. When CK was synthesised in all 

root cells, CK concentration increased nearly 3-fold and the lateral CK 

distribution was very different with higher concentration in the epidermal cell 

files and lower in the vascular cells (Figure 2.34b, Figure 2.35b). In the tissue 

specific biosynthesis model the CK concentration maximum occurred in the 

pericycle cell files, similar to experimental results. 

Even with these significant changes in CK concentration and distribution in the 

root, the auxin patterns and profiles for both model versions were very similar 

(Figure 2.34a, Figure 2.35a). There was a slight decrease in the average root 

concentration of auxin when CK biosynthesis was restricted to the pericycle and 

vascular cells. 

 

Figure 2.34:   CK synthesis in central cell files (a) auxin (b) cytokinin results 
Auxin and CK average concentrations, concentration colour maps and profiles. Lateral 
CK model patterning is similar to experimental results with a maximum near the 
pericycle cell files. Auxin patterning and average concentration is similar to the model 

version where CK is synthesised in all cells, see Figure 2.35 (WT; colour bar units M). 
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Figure 2.35:   CK synthesis in all cells (a) auxin (b) cytokinin results 
Auxin and CK average concentrations, concentration colour maps and profiles. Lateral 
CK patterning differs from experimental results with a maximum in the epidermal cells. 
Auxin patterning and average concentration is similar to the model version where CK is 

synthesised in the central cell files, see Figure 2.34 (WT; colour bar units M). 

 

2.6.8   AUX1 gene expression rates 

The rate constant for AUX1 expression was varied from k1a = 0.01 to 2.5 M 

sec-1 (WT setting = 0.8 M sec-1). The level of expression of AUX1 determines 

the rate of auxin influx into the cells and therefore (together with PINp) the 

distribution of auxin between the cell walls and cytosol, and also the rate of 

transport of auxin through the root and auxin accumulation in the QC region. 

Average auxin root concentration shows a slight bell shaped response to 

increasing rates of AUX1 expression (Figure 2.36). 
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Figure 2.36:   Average auxin concentrations for varied AUX1 expression 
Shows a slight bell shaped response to variation in expression rates 

(expression rate constant k1a = 0.01 to 2.5 M sec-1; WT = 0.8 M sec-1 ) 

 

The auxin concentration profile at low rates of AUX1 expression shows that 

auxin is concentrated in the cell walls, with slightly higher cell wall auxin 

concentrations at the proximal end of the root and no auxin maximum (Figure 

2.37). As the expression rate increased an auxin maximum was established as 

auxin was released from the cell walls and accumulated in the QC region. The 

size of the auxin maximum progressively increases as auxin is removed from 

the cell walls by the action of higher concentrations of the AUX1 influx carrier. 

The gradual establishment of the auxin maximum is also illustrated by the auxin 

concentration colour maps (Figure 2.38). Both the reallocation of auxin from the 

cell wall to the cytosol and the emergence of the auxin maximum are better 

illustrated in an enlarged auxin concentration colour map of the QC region 

(Figure 2.39). 
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Figure 2.37:   Auxin concentration profiles for varied AUX1 expression 
At very low expression rates, auxin is concentrated in the cell walls, with no auxin 
maximum at the QC; as expression rates increase auxin is reallocated to the cytosol, 
and the auxin maximum and the longitudinal auxin trend progressively emerge 

(expression rate constant k1a = 0.01 to 2.5 M sec-1; WT = 0.8 M sec-1) 

 
 

 
Figure 2.38:   Auxin concentration maps for varied AUX1 expression 
At very low expression rates, there is no auxin concentration maximum at the QC; as 
expression rates increase the auxin maximum emerges and progressively increases 

(rate constant k1a = 0.01 to 2.5 M sec-1; WT = 0.8 M sec-1; colour bar units M) 

 

0 2 4
0

200

400

600

800

1000

1200

1400

1600

1800

Auxin profile

micro Molar

0 2 4

Auxin profile

micro Molar

0 2 4

Auxin profile

micro Molar

0 2 4

Auxin profile

micro Molar

0 2 4

Auxin profile

micro Molar

0 2 4

Auxin profile

micro Molar

0 2 4

Auxin profile

micro Molar

AUXIN PROFILE FOR AUX1 RATES OF EXPRESSION FROM k1a = 0.01 TO 2.5 MICROMOLAR/SEC

k1a = 0.01 k1a = 0.1 k1a = 0.2 k1a = 0.4 k1a = 0.8

WT

k1a = 1.5 k1a = 2.5
Distal

M

k1a  =  0.01               0.1                        0.2                        0.4                   0.8 (WT)              1.5                        2.5  

Distal

D
is

ta
n

c
e

 a
lo

n
g

 t
h

e
 r

o
o

t 
ti

p
 (

m
ic

ro
n

s
)

 

 

1600

1400

1200

1000

800

600

400

200

0 0

0.5

1

1.5

2

2.5

 

 

0

0.5

1

1.5

2

 

 

0

0.5

1

1.5

2

2.5

 

 

0

0.5

1

1.5

2

2.5

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

0

1

2

3

4

5

 

 

1

2

3

4

5

6

k1a = 0.01 k1a = 0.1 k1a = 0.2 k1a = 0.4 k1a = 0.8
WT

AUXIN CONCENTRATION COLOUR MAP FOR AUX1 RATES OF EXPRESSION FROM k1a = 0.01 TO 2.5 MICROMOLAR/SEC

(colour scale bar in microMolar units)

k1a = 2.5k1a = 1.5

M



78 

 

 

Figure 2.39:   Auxin QC concentration maps for varied AUX1 expression 
This enlarged image of the distal 4 cell tiers shows that at very low expression rates, 
auxin is concentrated in the cell walls with no auxin maximum at the QC; as expression 
rates increase auxin is reallocated from the cell wall to the cytosol and the auxin 

maximum emerges (rate constant k1a = 0.01 to 2.5 M sec-1; WT = 0.8 M sec-1). 

 

2.6.9   PIN gene expression rates 

The PIN proteins act as auxin efflux transporters to remove auxin from the cell. 

Depending on the location in the root they have asymmetrical localisation on the 

cell face to direct auxin flow in certain directions to create Polar Auxin Transport 

(PAT). The placement of the PIN proteins is critical for the accumulation of 

auxin in the QC and the establishment of the auxin maximum (Grieneisen et al., 

2007). 

The model was run with different levels of PIN expression to see how this 

affected the auxin maximum and to test model sensitivity to the value of the 

parameter determining PIN expression (k20a). The average auxin 

concentrations in the root gradually decline with increasing PIN expression 

rates (Figure 2.40), likely due to increased auxin efflux from the root which is 

determined by PIN concentration at the root/shoot border of epidermal cells.  

 

 

 

M

 

 

0.5

1

1.5

 

 

1

1.5

2

 

 

1

1.5

2

2.5

 

 

0.5

1

1.5

2

2.5

 

 

1

2

3

4

 

 

1

2

3

4

5

 

 

2

4

6

k1a = 0.01 k1a = 0.1 k1a = 0.2 k1a = 0.4

ENLARGED AUXIN CONCENTRATION COLOUR MAP OF THE QC REGION FOR AUX1 RATES OF EXPRESSION FROM k1a = 0.01 TO 2.5 MICROMOLAR/SEC

(colour bar units in microMolar)

k1a = 1.5 k1a = 2.5k1a = 0.8
WT

M



79 

 

 

Figure 2.40:   Average auxin concentrations for varied PIN expression 
Average root auxin concentration progressively decreases with increasing PIN 
expression rates due to increased auxin efflux from the root in the epidermal cell files 

(rate constant k20a = 0.01 to 2.5 M sec-1; WT = 0.8 M sec-1). 
 

 
At low levels of PIN expression there is a high concentration of auxin at the 

proximal cell tiers, as seen in the auxin profiles and colour maps (Figure 2.41, 

Figure 2.42), since the reduction in PIN proteins is preventing auxin transport 

down the root. The lack of PIN proteins also reduces the lateral transport of 

auxin, preventing accumulation in the QC region and the establishment of the 

auxin maximum. As the PIN expression rates increase the auxin concentration 

at the border progressively decreases, auxin is accumulated in the QC region 

and the maximum established. As the expression rate increases above the WT 

value, the auxin concentration in the cell walls increases and exceeds that in 

the cytosol. This is particularly apparent at very high levels of expression (k20a 

= 2.5 M sec-1) in Figure 2.41, where the action of the PIN efflux proteins 

exceeds that of the AUX1 influx proteins, resulting in increased cell wall auxin 

content. The auxin concentration colour map (Figure 2.42) shows the 

establishment of the auxin maximum as the PIN expression rates increase and 

then the formation of an abnormal maximum at high levels of PIN expression 

with very high auxin concentration in the cell walls in the QC region. The 

enlarged colour map of the QC region (Figure 2.43) illustrates more clearly how 

auxin is driven into the cell walls as the PIN expression rate is increased above 

Figure 45: Average auxin root concentration for varied PIN expression rates
(rate constant k20a = 0.01 to 2.5 Msec-1)

k20a = 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k20a = 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k20a = 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k20a = 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k20a = 0.8 WT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k20a = 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k20a = 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k1a=2.5,k20a=2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AVERAGE AUXIN CONCENTRATION AT PIN PROTEIN RATES OF EXPRESSION FROM k20a = 0.01 to 2.5 MICROMOLAR/SEC 

AND COMBINED PINp AND AUX1 OVEREXPRESSION (k1a & k20a = 2.5 MICROMolar)

PINp & AUX1 OE

M



80 

 

WT. This can be rescued by coincidently overexpressing the AUX1 gene (k1a & 

k20a = 2.5 M sec-1, Figure 2.43) such that increased cell influx offsets 

increased efflux, so reducing the the auxin content of the cell walls. These 

results show that auxin patterning is fairly robust for PIN expression rates in the 

region of the WT value but that patterning deteriorates as the expression rates 

deviate further from WT. 

 

Figure 2.41:   Auxin concentration profiles for varied PIN expression 
At low expression rates auxin is concentrated in the cytosol, and there is high auxin 
concentration in the proximal cell tiers, since low PIN concentration is preventing auxin 
transport down the root, and no auxin maximum occurs at the QC; as expression rates 
increase, this situation is reversed and at very high expression rates the excess 
allocation of auxin to the cell walls can be clearly seen in the region of the QC (rate 

constant k20a = 0.01 to 2.5 M sec-1; WT = 0.8 M sec-1). 
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Figure 2.42:   Auxin concentration maps for varied PIN expression 

At low expression rates there is a high auxin concentration in the proximal cell tiers, 
since low PIN concentration is preventing auxin transport down the root, with no 
apparent auxin maximum at the QC; as expression rates increase, this situation is 
reversed and at very high expression rates excess allocation of auxin to the cell walls 

can be seen in the region of the QC (rate constant k20a = 0.01 to 2.5 Msec-1; WT = 

0.8 Msec-1; colour bar units in M). 
 
 

 

 

Figure 2.43:   Auxin concentration maps at QC for varied PIN expression 
The exploded colour map of the QC shows the emergence of the auxin maximum at 
the QC as PIN expression rates increase, and also the reallocation of auxin from the 
cytosol to the cell walls at very high expression rates; very high PIN expression rates 
are rescued by increased AUX1 expression as seen in the PINp & AUX1 OE image 

(PIN expression rate constant k20a = 0.01 to 2.5 M sec-1; PIN OE k20a =2.5 M sec-1; 

AUX1 OE k1a = 2.5 M sec-1; WT k20a = 0.8 M sec-1; WT k1a = 0.8 M sec-1). 
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2.7   Comparison between experimental results and model predictions 

In previous work (section 2.5) comparisons between experimental and model 

results were used to fit the model and calibrate parameters values, and then the 

model was tested for sensitivity to parameter value variation from WT settings. 

In this section model predictions are compared with additional experimental 

results to assess how well the model explains hormonal crosstalk and gene 

expression interactions and patterning. 

2.7.1   Shoot to root auxin flux 

Experimental measurements of the shoot to root transport of auxin in 

inflorescent stem segments are shown for WT, the pls null mutant and the 

double mutant pls etr1-1 (Figure 2.44), where etr1-1 is a gain of function (high 

activation, ethylene insensitive, low downstram ethylene signalling) mutant. pls 

showed a significant decline in shoot to root transport while the double mutant 

recovered to approximately WT levels of transport. 

Relative shoot to root transport at the proximal border of the pericycle and 

vascular cell files was measured in the model (Figure 2.45) and exhibited 

similar trends although the double mutant recovered to levels slightly higher 

than WT. 

 

 
Figure 2.44:   Relative experimental shoot to root auxin transport 

(Chilley et al., 2006) 
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Figure 2.45:   Relative model shoot to root auxin transport 

With similar trends to experimental results in Figure 2.44 

2.7.2   ET concentration profile 

A relative ET response profile was derived from an experimental image (Martin-

Rejano et al., 2011) using ImageJ and compared to the ET concentration profile 

from the WT model (Figure 2.46). Both profiles showed increasing ET 

response/concentration towards the proximal end of the root. 

Figure 49:   Total shoot to root auxin transport from the model
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Figure 2.46:   ET response and model concentration profiles 
Both experimental and model profiles show proximally increasing average ET 
concentration (image from Martin-Rejano et al., 2011) 

 

2.7.3   POLARIS (PLS) expression pattern 

Gene expression patterning was also examined using an experimental image of 

PLS expression patterning and comparing this to model concentrations. The 

profiles generated from the image and from the model gave similar results with 

a PLS concentration maximum near the distal end and the concentration 

declining proximally along the root (Figure 2.47 b,c). 

As shown in the hormonal crosstalk network (Figure 2.9), the PLS gene of 

Arabidopsis, which transcribes a short mRNA encoding a 36-amino-acid peptide 

(Casson et al., 2002; Chilley et al., 2006), is important for establishing crosstalk 

between auxin, ethylene, and cytokinin. Here, both experimental analysis and 

modelling are used to further investigate control of PLS gene expression 

patterning. Experimental imaging of PLS protein accumulation in the wild-type 

root (Figure 2.47a) shows a concentration maximum near the distal region, with 

the concentration declining proximally through the MZ. This is similar to the 

expression of the PLS gene as monitored by PLS promoter-GUS analysis 
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(Casson et al., 2002; Chilley et al., 2006). The PLS concentration profile 

generated from the experimental fluorescence image (Figure 2.47b) illustrates 

this patterning graphically. The spatiotemporal modelling of hormonal crosstalk 

predicts the same trend (Figure 2.47c), indicating that the hormonal crosstalk 

network controls the patterning of PLS gene expression and protein 

accumulation. Modelling calculations reveal that the rate of PLS transcription 

reaches a maximum in the distal part of the root (Figure 2.48), resulting in the 

patterning of PLS expression (Figure 2.47). As indicated in Figure 2.47d, if PLS 

transcription is not regulated by auxin, the modelled patterning of PLS 

expression is not in agreement with experimental observation. This reflects the 

predominant role of auxin in the regulation of PLS expression. 

 

Figure 2.47:   Experimental and model PLS gene expression patterning 
(a) Image of PLS gene expression and PLS protein accumulation, (b) PLS 
protein concentration profile derived from image, (c) Model prediction of the 
PLS protein concentration profile is similar to experimental results. (d) Model 
prediction of the PLS protein concentration profile differs from experimental 
results if auxin regulation of PLS transcription is removed from the hormonal 
crosstalk network, indicating the importance of auxin in PLS regulation 
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Figure 2.48:   PLSm transcription patterning in WT 
PLSm transcription is at a maximum at the distal end of the root similar to 

experimental results, see Figure 2.47a (colour bar units M s-1) 

 

2.7.4   PIN concentration trends in WT and mutants 

The relative experimental PIN1 protein concentrations in WT, PLSox transgenic, 

and pls, etr1 (the etr1-1 mutant with gain of function, high activation, low 

downstream ethylene signalling) and pls etr1 mutants (Figure 2.49) were 

measured (Liu et al., 2013) using ImageJ to extract data from fluorescent PIN1 

protein images. The relative PIN concentrations predicted by the model (Figure 

2.50) show similar concentration trends to those observed experimentally, 

(especially when standard errors are considered), apart from etr1 which 

appeared to be relatively low in the model. A comparison between the model 

and PIN2 experimental results showed similar trends, but again with low model 

results for etr1. 
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Figure 2.49:   Relative experimental PIN in WT(c24), 35S(PLSox), pls, etr1, pls etr1 
(etr1 is the etr1-1 gain of function mutant; red bar = standard error; Liu et al., 2013) 

 

 

Figure 2.50:   Relative model PIN concentration in WT, PLSox and mutants 
Model average root concentrations in wild-type, PLSox over-expressor, and pls, 

etr1 and pls etr1 mutants, show a similar qualitative trend to experimental 
results in Figure 2.49 

 

Figure 54:   Relative model PIN protein concentration in WT and mutants
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2.7.5   PIN concentration profiles 

ImageJ was used to extract relative concentration data from experimental 

images of PIN1 and PIN2 proteins in WT, and pls, etr1 (ethylene insensitive, 

gain-of-function), pls etr1 mutants, and the PLSox overexpressor and the data 

used to plot PIN concentration profiles. These image profiles were compared to 

model profiles for the WT and mutants. 

The PIN1 images (Figure 2.51) show that PIN1 proteins localise mainly to the 

vascular cell files, with a weak signal in the epidermal and cortical tissues 

consistent with other experimental results (Blilou et al., 2005), which appears to 

be up-regulated in the pls mutant image. Relative PIN1 concentrations in the 

vascular tissue were derived from the areas defined by the central column of 

rectangles in each image, using ImageJ, plotted and then compared to profiles 

from the vascular and pericycle cell files from the model (Figure 2.52). The 

model profile is a plot of the average PIN concentration in the vascular and 

pericycle cells for each cell tier cross-section of the root rather than each grid 

point cross-section since the large difference between PIN concentrations in the 

plasma membrane and cytosol make grid point plots more difficult to read. The 

images represent a region in the model root from approximately 5 to 25 cell tiers 

from the tip (denoted by the arrow), however some images vary. PIN model 

trends are in general similar to PIN1 trends generated from the images, except 

for the pls etr1 double mutant. 

In addition, each of the model profiles shows an increase in concentration at the 

16th cell tier which is believed to be due to the sudden increase in cell length 

from 28 to 64 m at that point in the model root structure. This change in cell 

length effects the averaging since while the cell lengthens the thickness of the 

cell wall remains the same, so proportionately increasing the cytosolic area 

where PIN biosynthesis can occur. This is tested later when the model is run 

with a root structure with a gradual increase is cell length at the transition zone 

between the MZ and EZ. 
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Figure 2.51:   PIN1 images for WT, mutants and PLSox 

(Liu et al., 2013) 

 

Figure 2.52:   PIN1 concentration profiles (A) experimental and (B) model  
Experimental profile generated from the vascular cell files in Figure 2.51 using ImageJ; 
the arrow denotes the region of the model plot that corresponds to the images; model 
and experimental results are similar except for the double mutant. 
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The same process was followed for the PIN2 images (Figure 2.53). The data 

were captured from the 2 external columns of rectangles shown in the images 

and then combined; however given the location of the PIN2 proteins in the 

lateral root cap, epidermis and cortical cells, and the tapering root shape, it was 

more difficult to capture data for PIN2 than data for the PIN1 proteins in the 

central vascular region. Image and model concentration profiles were plotted 

and compared (Figure 2.54). There was a reasonable match in concentration 

trends in the WT and PLSox but not for the mutants. Possibly this is due to the 

overly simplistic structure of the root model where the region of PIN2 

expression/localization is a simple rectangle of cells consisting of the 2 exterior 

cell files of equal width extending for the full length of the root. In comparison, 

the region of PIN2 expression/localization in a real root is not a simple rectangle 

of cells but consists of the lateral root cap (which only extends to the EZ zone) 

and the epidermal and cortical cell files starting about 5 cell tiers above the QC 

region (Muller et al., 1998). 

 

Figure 2.53:   PIN2 images for WT, mutants and PLSox 
(Liu et al., 2013) 
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Figure 2.54:   PIN2 concentration profiles (A) experimental and (B) model 
Experimental profile generated from the epidermal, cortical and root cap cells in Figure 
2.53 using ImageJ; the arrow denotes the region of the model plot that corresponds to 

the images; model and experimental results are similar for WT and PLSox but not for 
the mutants. 

 

2.7.6   Auxin patterning in the aux1 mutant 

Images of auxin patterning in the WT and aux1 null mutant show a decrease in 

auxin response in the mutant (Figure 2.55) compared to the WT. The images 

were scanned using ImageJ and the resulting auxin response profiles compared 

to profiles from the model (Figure 2.56). Since additional auxin influx carriers 

exist such as LAX2 (Figure 2.15), LAX3 and ABCB, the aux1 null mutant was 

modelled with a 50% knockdown of AUX1 since LAX2, LAX3 and ABCB influx 

proteins are not represented in the model. Model auxin profiles were similar to 

experimental profile trends derived from the images, with the auxin 

concentration of the aux1 mutant being slightly lower than the WT, especially in 

the QC and columella, and both profiles then decreasing proximally along the 

root tip to reach approximately the same concentration levels. 
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Figure 2.55:   Auxin patterning in (B) WT (C) aux1 mutant 
(Swarup et al., 2001) 

 

Figure 2.56:   Auxin profiles in WT and aux1, (A) experimental (B) model 
Experimental response profiles generated from Figure 2.55 using ImageJ; 
model and experimental profile trends are similar, with aux1 concentrations 
slightly lower than in WT, especially in the QC and columella. 
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2.8   Gradual cell growth in the Transition Zone 

In the model root structure, the cells increase in length from 28 to 64 m when 

they move from the MZ into the EZ, at cell tier 16 from the distal end of the root, 

consistent with Grieneisen et al. (2007).  

An alternative version of the model was developed, incorporating a more 

realistic gradual increase in cell length as cells moved through the TZ from the 

MZ to the EZ, to investigate whether this had any effect on model patterning. 

Cortical cell lengths were shown to increase at a relatively constant rate from 28 

to 64 m over a root distance of approximately 280 m in 10 DAG plants 

(Beemster and Baskin, 1998). The lengths of the cells in the model root 

structure were increased at the same rate from 28 m at the proximal end of the 

MZ by 15% per cell tier to a length of 64 m over 7 cell tiers into the EZ. The 

length of these 7 cell tiers was 28 m, 32 m, 36 m, 42 m, 48 m, 56 m and 

64 m. The root map was changed accordingly but the total number of cell tiers 

remained at 35, which meant that the overall model root length was marginally 

reduced by 106 m. Results for the gradual growth (GG) model were very 

similar to those from the original model. The GG root model, having more 

realistic cell elongation in the TZ, was therefore used to generate additional 

data for comparison with experimental results. 

2.8.1   Auxin patterning in the gradual growth (GG) root model. 

WT auxin concentration patterning and profiles appeared unchanged by the 

gradual increase in cell length in the TZ (Figure 2.57) compared to results from 

the original model where there was a sudden change in cell length at the MZ to 

EZ boundary (Figure 2.18).  Auxin concentration profiles were also analysed for 

three different regions of the model root (epidermal, pericycle, and vascular cell 

files, extended to include the QC and columella).  Figure 2.58 shows that the 

concentration profiles for the three regions follow similar trends to the original 

model, with the auxin maximum predominantly established in the central 

vascular tissues at or close to the QC. 
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Figure 2.57:   Auxin WT colour map and profile (GG model) 
With an auxin maximum at the QC and proximally decreasing concentration profile. 

 

 

Figure 2.58:   GG Model WT auxin profiles for three different regions 

The auxin maximum is predominantly established in the central tissues at or 
close to the QC. (a) epidermal (b) pericycle (c) vascular. 

 

Figure 61:   Auxin concentration colour map and profile with GG model
(with gradual cell growth in the TZ)
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It has been shown that auxin response can be regulated by different effectors. 

Response is therefore not necessarily equivalent to auxin concentration 

(Vernoux et al., 2011; Cho et al., 2014) and results can depend on the reporter 

mechanisms used. Experimental results, using the synthetic auxin reporter DII-

VENUS, allow improved quantitative comparison between experimental images 

and modelling results (Brunoud et al., 2012). DII-VENUS is a fluorescent 

reporter expressed under the 35S promoter; it is localised to the nucleus, 

quickly degrades in the presence of auxin, and is thought to more accurately 

represent relative auxin levels than other reporters which rely on promoters that 

are activated further downstream in the auxin signalling pathway and are 

therefore subject to additional regulation (Brunoud et al., 2012; Band et al., 

2014). When combined with propidium iodide staining for cell membranes, it is 

also possible to measure the relative intensity of DII-VENUS fluorescence and 

so the relative auxin response (the inverse of DII-VENUS levels) at a cellular 

scale (Band et al., 2014). 

While modelling results are similar to auxin IAA2::GUS response (Figure 2.13), 

it was decided to also use DII-VENUS imaging to compare relative experimental 

auxin response levels to auxin concentration patterning using the GG model. 

Figure 2.59 compares auxin response (using DII-VENUS) with modelling 

results. In the meristematic zone and QC, the modelled concentration profile is 

similar to the experimental auxin response profile derived from DII-VENUS data; 

however, in the elongation zone, the modelled concentration profile is not in 

agreement with experimental DII-VENUS imaging which indicates increasing 

auxin response compared to decreasing concentrations in the model, due to an 

apparent increase in auxin response in the epidermal cells of the EZ. 



96 

 

 

Figure 2.59:   WT DII-VENUS response and model auxin profiles 
(a) Experimental image of WT DII-VENUS response, (b) relative auxin response 
profile (inverse of DII-VENUS response) derived from the experimental image, (c) 
GG model WT auxin concentration profile.  The experimental image profile 
approximately corresponds to the region in the model denoted by the arrow. Both 
profiles exhibit increased auxin in the QC region, but the experimental profile starts 
to increase at the 250 position along the root tip while the model does not. 

 

 

It was also possible to compare experimental data (Figure 1K, Band et al., 

2014) and model results on a ‘cell-type’ basis. The relative fluorescence of 

different cell types using the DII-VENUS reporter is shown in Figure 2.60. 

 

 

Figure 2.60:   Measures of DII-VENUS levels in different cell types 
Epi, epidermis; Cor, cortex; End, endodermis; Ste, stele; Col, columella; 
Init, columella initials; QC, quiescent centre; M, meristem; EZ, elongation zone 
(Figure 1K, Band et al., 2014) 
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Regions of the GG model root can be approximately mapped to the cell 

definitions used in Band et al. (2014), as follows. The model root map is 35 cells 

long with 10 cell files (Figure 2.61). The cell files are first classified into 3 ‘types’ 

which are full root-length files and so can include columella and quiescent 

centre (QC) cells. There are 4 ‘epidermal’ cell files (Type 1), 2 ‘pericycle/border’ 

files (Type 2) and 4 ‘vascular files’ (Type 3). The model root can also be divided 

into 4 ‘areas’ (Figure 2.61), the QC, the elongation and meristematic (excluding 

the QC) zones, and the columella. 

 

Figure 2.61:   The GG model root map. 
With gradual cell elongation from the MZ to the EZ 

(MZ, meristematic zone. EZ, elongation zone. QC, quiescent centre) 

 

Using combinations of ‘Area’ and ‘Type’ it was possible to define regions in the 

model root map which approximate to the cell types specified by Band et al. 

(2014). Since the root architecture in this paper was significantly more complex 

than the relatively simple structure used in the model, several approximations 

were necessary. The epidermis and cortex cells in the Band et al. (2014) paper 

were both mapped to the epidermis (Type 1) in the model, the endodermis in 

the paper was mapped to the pericycle (Type 2), the columella cells in the 

paper were mapped to the group of columella cells (included in Types 1, 2 and 

3), and there was no match in the model for the columella initials or the lateral 

root cap. Table 2.6 shows the specific mapping of the model to the Band et al. 

(2014) cells using area/cell type combinations. 

 

MZ 

EZ 
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Table 2.6:   Cell type mapping between experimental and model results 

Cell type from 
Band et al. (2014) 

Map to model cells, defined by type and area 

Model cell 

code 

Root Area Type 1, 2 or 3 

Epi M – epidermis, meristem MZ T1 Meristematic zone Type 1 

Epi EZ – epidermis, elongation 

zone 

EZ T1 Elongation zone Type 1 

Cor M – cortex, meristem MZ T1 Meristematic zone Type 1 

Cor EZ – cortex, elongation zone EZ T1 Elongation zone Type 1 

End – endodermis MZ T2 Meristematic zone Type 2 

Ste – stele MZ T3 Meristematic zone Type 3 

LRC – lateral root cap LRC No match No match 

Col – columella COL T1-3 Columella Type 1, 2 and 3 

Init – columella initials INIT No match No match 

QC – quiescent centre QC T3 QC Type 3 

The experimental DII-VENUS levels for different cell types (Figure 2.60) were 

converted into auxin response levels relative to the QC (set at 100) assuming 

an inverse relationship between auxin and DII-VENUS (Table 2.7). Average 

model auxin concentrations were calculated for corresponding regions within 

the model root map and the data scaled, with the QC again set to 100 (Table 

2.7). 
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Table 2.7:   Auxin DII-VENUS response and model data 
(relative DII-VENUS fluorescence read from Figure 2.60; relative auxin response is the 
inverse of DII-VENUS fluorescence relative to the QC which is set at 100; average 
model auxin concentration is relative to the QC which is set at 100) 

DATA DERIVED FROM 

Band et al. (2014) 
MODEL DATA 

CELL 

TYPE 

RELATIVE 

DII-VENUS 

FLUORESCENCE 

RELATIVE 

AUXIN 

RESPONSE 

(QC=100) 

CELL 

CODE 

AVERAGE MODEL 

CONCENTRATION 

(M) 

AVERAGE AUXIN 

CONCENTRATION 

(QC = 100) 

Epi M 85 6 MZ T1 0.73 21 

Epi EZ 3 166 EZ T1 0.19 6 

Cor M 85 6 MZ T1 0.73 21 

Cor EZ 10 50 EZ T1 0.19 6 

End 40 13 MZ T2 1.03 30 

Ste 20 25 MZ T3 1.47 42 

LRC 55 9 LRC No match No match 

Col 45 11 CO T1-3 2.15 62 

Init 35 14 INIT No match No match 

QC 5 100 QC T3 3.48 100 

 

The relative auxin response from Band et al. (2014) (Figure 2.62a) and the 

relative auxin concentrations from the model (Figure 2.62b) were then plotted in 

descending order of the Band et al. (2014) results, so that experimental and 

model trends could be easily compared. 
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Figure 2.62:   Auxin levels relative to QC (A) experimental (B) model. 
* and ** indicate cell types where the model auxin level is below or above the 
experimental trend (Band et al., 2014). EPI, epidermis; COR, cortex; END, endodermis; 
STE, stele; COL, columella; INIT, columella initials; QC, quiescent centre; M, meristem; 
EZ, elongation zone; NA, data not available in modelling results. 

 

The trend of the modelled auxin levels for 5 cell types (QC, stele, endodermis, 

epidermis meristem, and cortex meristem) is similar to the experimentally 

observed trend (Band et al., 2014); however, the model levels in the epidermis 

and cortex in the elongation zone (labelled * in Figure 2.62b) and the columella 

(labelled ** in Figure 2.62b) are markedly different. These discrepancies 

between modelling results and experimental observations could be explained as 

follows.  

DII-VENUS experimental levels rely on the rates of expression and decay of 

DII-VENUS.  DII-VENUS expression is under the control of the 35S promoter, 

while the rate of decay depends both on the levels of auxin and the auxin co-

receptors TIR1 and AFB1-5 (Brunoud et al., 2012). Homogenous expression of 

35S and the auxin co-receptors is therefore necessary to allow representative 

comparison of relative auxin levels using the DII-VENUS reporter. It was 

reported that DII-VENUS fluorescence was ubiquitous in tir1 afb1 afb2 afb3 

quadruple mutant roots (where DII-VENUS is not subject to auxin regulated 

decay due to the mutation of TIR1 and AFB1), and that the quadruple mutant 

was also significantly less sensitive to auxin (Brunoud et al., 2012); however, 

the co-receptors TIR1, AFB1 and AFB3 were shown to have very low relative 
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Figure 66.  Auxin levels (relative to QC).   a, derived from Fig. 1K (Band et al., 2014). b, 
modelling results. * and ** indicate the cell types where the modelled auxin level is 
below or above  the  experimental trend (Band et al., 2014). EPI, epidermis; COR, cortex; 
END, endodermis; STE, stele; COL, columella; INIT, columella initials; QC, quiescent 
centre; M, meristem; EZ, elongation zone; NA, data not available in modelling results.
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expression in the columella and lateral root cap cells (Figure S5, Brunoud et al., 

2012). This could result in a reduced rate of decay of DII-VENUS, a relatively 

high DII-VENUS response and therefore the underestimation of relative 

experimental auxin levels in these cell types, so accounting for the difference 

between the Band et al. (2014) and model results for the columella. Using a 

non-degradable reporter, mDII-VENUS, the 35S promoter was shown to have 

significantly increased expression in the transition and elongation zones of the 

epidermis and cortex (Fig S6 A,B in Brunoud et al., 2012), which again could 

result in underestimation of relative experimental auxin levels in these areas. 

The DII-VENUS data in the literature (Band et al., 2014) suggest that auxin 

responses in the epidermis and cortex elongation zone are higher than all other 

regions of the root except the QC. Therefore, by taking into account the 

possibility of increased 35S expression in these tissues, auxin responses in the 

epidermis and cortex elongation zone could possibly exceed those in the QC. 

This result is not apparent in experimental imaging using the auxin reporter 

IAA2::GUS (Figure 1.3). This discrepancy leads to a number of possibilities: (a) 

the non-degradable reporter, mDII-VENUS, does not fully reflect 35S 

expression levels in the elongation and transition zones, (b) other unknown 

factors may suppress DII-VENUS in these zones or (c) there is additional 

suppression of the IAA2::GUS reporter in the transition and elongation zones 

resulting in variable reporter sensitivity to auxin in different regions of the root. 

As noted in Band et al. (2014) the higher auxin response derived using DII-

VENUS data in the elongation zone brings into question the hypothesis that a 

gradual decrease in auxin levels from the QC maximum determines root 

developmental zones (Blilou et al., 2005; Grieneisen et al., 2007). After taking 

the above factors into account, the modelling results are in reasonably good 

agreement with experimental results derived using DII-VENUS data from Band 

et al. (2014). 

DII-VENUS expression was also used to estimate and plot relative auxin trends 

for different cell layers in the meristematic zone (Figure 2.63; from Figure 2B, 

Brunoud et al., 2012). No attempt was made to plot auxin levels in the columella 

and root cap, possibly because of the low expression levels of the auxin co-

receptors observed in these cell types, as previously discussed. 
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Figure 2.63:   Relative auxin trends in different cell types. 
QC, quiescent centre. MZ, meristematic zone. EZ, elongation zone 

(Figure 2B, Brunoud et al., 2012) 

 

Experimental and model auxin trends were compared for different cell types in 

the meristem proximal to the QC, using experimental data (Figure 2.63) and 

model data from Figure 2.58. Since the root architecture in the literature 

(Brunoud et al., 2012) is more complex than in the model,  cell types are  

approximately matched using the following table. 

Table 2.8: Matching experimental cell file data to the model 

Cell type in the literature 

(Brunoud et al., 2012) 

Corresponding model cell type 

stele vascular, meristem 

endodermis and pericycle pericycle, meristem 

cortex and epidermis epidermis, meristem 

 

 

The models results (Figure 2.58) show that vascular, pericycle and epidermal 

cells have a high, medium and low auxin level, respectively. This trend is in 

agreement with experimental observations (Figure 2.63). Therefore, auxin 

EZ     MZ
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concentration patterning generated by the model, with an auxin maximum 

established at or close to the QC, is similar to both experimental IAA2::GUS and 

DII-VENUS response patterns. 

2.8.2   Ethylene and cytokinin concentrations in the pls mutant 

The accumulated concentration of cytokinin is described in the hormonal 

crosstalk network as the balance between its biosynthesis and its removal 

(Figure 2.9), with auxin negatively regulating cytokinin biosynthesis (Nordstrom 

et al., 2004). The model predicts that, in the pls mutant, the average 

endogenous cytokinin concentration for the root is increased to c. 1.9-fold of 

that in wild-type (Figure 2.64). Experimental measurements show that different 

cytokinins have significantly different fold changes, however, the general trend 

is that endogenous cytokinin concentrations in the pls mutant are significantly 

increased, with a median fold change of 1.42 (Table 1 in Liu et al., 2010). 

Experimentally it has been shown that PLS transcription does not affect 

ethylene concentration (Chilley et al., 2006). The GG model results (Figure 

2.64) are therefore consistent with experimental observations.  

 

 

Figure 2.64:   Model cytokinin and ethylene concentrations in WT and pls. 
Model results for average CK and ET concentrations in WT and pls are consistent with 
experimental results. 
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2.8.3   AUX1 patterning 

The increased epidermal and cortical auxin response in the elongation zone 

compared to the meristematic zone indicated by DII-VENUS patterning (Figure 

2.60; Figure 2.63) was suggested to be the result of tissue specific patterning of 

AUX1, supported by AUX1-YFP imaging (Figure 2.65) which shows high AUX1 

levels in the lateral root cap, in the proximal meristematic and elongating 

epidermal cells and the elongating cortical cells. The Band et al. (2014) model 

originally assumed AUX1 patterning from the literature with AUX1 

predominantly located in the epidermal elongation zone, the lateral root cap and 

the columella (Swarup et al., 2001; Swarup et al., 2005). Using a new 

AUX1::YFP reporter they showed that AUX1 was also expressed in the 

elongating cortical cells. It was suggested that this expression pattern restricted 

flux between the outer layers and the stele, promoting increased auxin 

response in the elongating epidermal and cortical cells and shoot-ward auxin 

flux through the epidermis and cortex in the elongation zone. From their model 

results, they concluded that periclinal PIN placement had little effect on auxin 

reflux, that overall auxin distribution was not significantly affected by polar 

placement of PIN proteins and, while PIN protein polarity determined the 

direction of auxin flux, it was AUX1 levels that determined cellular auxin 

concentrations. 

The experimental image (Figure 2.65) exhibits variable AUX1 concentrations 

and trends in different parts of the root, with high AUX1 levels in the lateral root 

cap, medium levels in the columella and surrounding the QC, proximally 

increasing levels in the epidermis and cortex, and proximally decreasing levels 

in what appears to be the pericycle or specific vascular cell files. In contrast, our 

model follows the Grieneisen et al. (2007) paper which does not include a root 

cap structure and assumes ubiquitous non-polar AUX1 placement, to which is 

added promotion of AUX1 expression by ethylene signalling. Model results for 

AUX1 patterning (Figure 2.66) are in part similar to experimental imaging 

(Figure 2.65), with AUX1 levels increasing proximally in the epidermis, and 

higher AUX1 levels in the outer cell layers compared to the central cell cylinder. 

However the model does not exhibit the elevated experimental AUX1 levels in 

the columella and near the QC or the proximally declining AUX1 levels in the 
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central cylinder. In this work, AUX1 activity is positively regulated by 

downstream ethylene signalling based on experimental observation (Fig. 7B in 

Ruzicka et al., 2007). The differences between modelling and experimental 

results might indicate that, in addition to ethylene, other effectors also regulate 

AUX1 activity. Model results could possibly be enhanced by including a root cap 

structure and more realistic root geometry, allowing the investigation of tissue 

specific regulation of key components such as AUX1 on hormonal cross-talk 

and patterning. 

 

 
 

Figure 2.65:   AUX1 experimental patterning 
Localisation of AUX1 using AUX1::YFP reporter shows elevated AUX1 levels in 

the columella, lateral root cap, epidermal and cortical cells, with a proximally 
declining concentration in the central cylinder (Band et al., 2014) 
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Figure 2.66:   AUX1 model concentration profiles and image 
(a) AUX1 concentration profiles for 3 regions; epidermal region includes the 
epidermal cell files extended to include the columella, similarly the pericycle 
region includes columella cells, and the vascular region includes QC and 

columella cells (b) colour map image of a root section (colour map units M) 
 
 

2.8.4   PIN profiles in the GG root model 

The effect of the sudden change in cell length at the MZ/EZ boundary in the 

original root model can be seen in the PIN profiles (Figure 2.52B, Figure 2.54B), 

which show a sudden slight increase in PIN average cell concentrations at the 

point where cell lengths increase at the MZ/EZ boundary. Trends in PIN profiles 

for the vascular/pericycle cell files in the GG model (Figure 2.67) were 

unchanged from the previous model (except for a smoothing of the increase in 

PIN concentration observed at the MZ/EZ boundary in the original root model) 

and are in general similar to PIN1 trends generated from the images (apart from 

the pls ert1 double mutant). 

a
b
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Figure 2.67:   PIN1 concentration profiles (A) experimental (B) model  
Experimental profile generated using Figure 2.51 and ImageJ; model and experimental 
results are similar except for the double mutant; the arrow denotes the region of the 
model plot that corresponds to the images. The model profiles are similar to the 
previous model except for a smoother increase at the MZ/EZ boundary.  

 

Modelling analysis further revealed that PIN1 patterning in wild-type, mutant 

and PLSox transgenic roots reflect changes in the PIN1 transcription rate 

resulting from different contributions of auxin, ethylene and cytokinin. For 

example, modelled PIN1 patterning in the wild-type shows that the level of PIN1 

generally decreases from the proximal region to the distal region of the root; 

however, in the pls mutant, an opposite trend emerges (Figure 2.67B). Model 

calculations show that, in the pls mutant, the PIN1 transcription rate significantly 

increases at the region near the root tip (Figure 2.68). Further analysis reveals 

that, in the wild-type, the downstream component of ethylene signalling, 

designated X, is suppressed as a result of the action of PLS at the region near 

the tip (Figure 2.69), due to an increasing PLS concentration from the proximal 

to the distal end of the root, predominantly as a result of the positive regulation 
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of PLS expression by auxin (Figure 2.69; also see section 2.7.3  ‘POLARIS 

(PLS) expression pattern’). In the pls mutant, the suppression of X is relaxed 

owing to the loss of PLS function. This enhances the rate of PIN1 biosynthesis 

at the region near the tip and therefore PIN1 patterning shows an increasing 

concentration trend from the proximal to the distal region. In addition, in the pls 

mutant, auxin concentration decreases (Figure 2.12) and cytokinin 

concentration increases (Figure 2.64). As auxin positively regulates, and 

cytokinin negatively regulates PIN1 transcription, the increase in PIN1 

transcription rate at the region near the tip also reflects the relative effects of 

both auxin and cytokinin signalling. Therefore, the combined contribution of 

auxin, ethylene and cytokinin result in opposite trends in PIN1 patterning in wild-

type and pls mutant roots. This example demonstrates that spatiotemporal 

hormonal crosstalk, which describes simultaneous actions of multiple hormones 

and the associated genes, is necessary for specifying the patterning of PIN1 in 

the root. Figure 2.67 further shows that the modelled patterning trend of PIN1 

for wild-type, pls, etr1 and PLSox is similar to the corresponding experimental 

trend. However, a noticeable difference for the pls etr1 double mutant can be 

identified. This indicates the current limitation of the model for analysing this 

double mutant. 

 

Figure 2.68:   Model results for PIN transcription rate in WT and pls 
The pls mutant shows significantly increased PIN transcription in the distal root 
compared to WT. 
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Figure 2.69:   Model WT pattern of X (downstream ET signalling) and PLSp  
Exhibits the inhibition of X (downstream ET signalling) by high PLS protein 
concentration in the distal root. 

 

2.8.5   PIN and AUX1 permeability and auxin patterning 

Additional work was done using the GG model to investigate relationships 

between PIN and AUX1 permeability and WT auxin patterning. Manually 

adjusting (unknown) PIN and AUX1 permeability parameters reveals that both 

PIN and AUX1 permeability must be restricted to certain ranges in order to 

generate a model auxin concentration patterning that is similar to experimental 

IAA2::GUS response patterning. For example, if both PIN and AUX1 

permeability are low, the auxin gradient towards the distal region of the root is 

gradually smoothed out due to reduced auxin transport through the root, and if 

PIN permeability increases, an increase in AUX1 permeability is required to 

maintain similar auxin patterning to experimental data (Figure 2.70).  
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Figure 2.70:   Auxin patterning for different PIN and AUX1 permeabilities 
(a) Auxin patterning for WT PIN, AUX1 permeability (b) low PIN and AUX1 permeability 
reduces the auxin maximum (c) high PIN and low AUX1 permeability drives auxin into 
the cell wall and reduces the cytosolic maximum in the QC (d) high PIN combined with 

high AUX1 permeability rescues auxin maximum (colour bar units, M). 

 

Although the auxin gradient has been hypothesized to be sink-driven (Friml et 

al., 2002) and computational modelling has suggested that auxin efflux carrier 

permeability may be sufficient to generate the gradient (Grieneisen et al., 2007; 

Wabnik et al., 2010), recent work shows that AUX1 is also essential to create 

the auxin gradient at the root tip (Band et al., 2014). The above modelling 

results support the view that both PIN and AUX1 permeability work together to 

generate auxin patterning. If AUX1 permeability is not varied in the model such 

that it becomes a limiting factor for auxin transport, the importance of AUX1 

permeability for generating an auxin gradient cannot be revealed, as 

demonstrated in a previous study where the effects of varying AUX1 

permeability were not reported (Grieneisen et al., 2007). The combined roles of 

the auxin efflux and influx carriers in establishing auxin patterning are further 

investigated in Chapter 4. 

Fig 74

.
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2.9   Summary 

2.9.1   WT Parameter calibration matched most fit criteria 

The single cell model was embedded into a multicellular root structure to 

produce a 2-D spatial root model of hormonal crosstalk and gene expression. 

Parameters were initially set at values established in the multicellular root and 

single cell models and then calibrated either by reference to the literature (for 

certain diffusion and permeability constants) or by matching experimental 

results to fit criteria (in particular auxin concentration trends in mutants and 

auxin patterning) to produce a WT parameter set.   

For the selected WT parameter set, the model matched most fit criteria. The 

average auxin WT root concentration was similar to experimental data. 

Experimental auxin concentration trends for WT and pls, pls etr1 mutants and 

the PLSox transgenic compared favourably to model results (Figure 2.11, 

Figure 2.12) and, although the pls etr1 double mutant in the model did not 

exhibit recovery to near WT values as observed experimentally, model results 

did show that auxin concentration in the pls etr1 double mutant was higher than 

in pls, therefore the trends are qualitatively correct. These quantitative 

differences between model and experimental auxin concentration may possibly 

be due to the fact that the experimental results were for whole seedlings and not 

for separated roots and shoots (Chilley et al., 2006), especially since additional 

data in this paper for separated WT root and shoots showed significant 

variations in root and shoot concentrations depending on the age of the plant, 

with WT root concentrations being more or less than shoot concentrations 

depending on age. Also there are 5 ethylene receptors which are not 

functionally equivalent and can act in dimers and clusters with CTR1, with 

possible crosstalk between clusters (Yoo et al., 2009; Mayerhofer et al., 2012), 

making it difficult to model the overall effect of the etr1-1 (gain-of-function, 

ethylene insensitive) mutant by just one variable in the model. 

Experimental auxin response images compared favourably with modelled 

concentration colour maps and the concentration profiles derived from the 

experimental images matched model results (Figure 2.13). 
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In the model, auxin carrier proteins PIN and AUX1 were predominantly located 

to the plasma membrane which was consistent with experimental results 

(Figure 2.16). However, AUX1 patterning only partially matched experimental 

results (Figure 2.65, Figure 2.66) possibly indicating that additional factors 

regulate AUX1 expression, as indicated by a recent paper proposing that 

cytokinin inhibits AUX1 (Street et al., 2016). 

The trend in average CK root concentration in the WT and pls mutant (Figure 

2.64) was similar to experimental results. The lateral CK concentration trends 

across the root showed interesting similarities, with CK maxima observed in the 

region of the border/pericycle cell files in both the model and the image (Figure 

2.17). These results could possibly be due to a combination of minimal CK 

biosynthesis in the epidermal/cortical cell files with suppression of CK 

biosynthesis by higher auxin concentrations towards the centre of the vascular 

cylinder.  

The CK concentration profile produced by the model did not match the 

longitudinal concentration trends in profiles derived from experimental images 

(Figure 2.17). The modelled longitudinal CK concentration profile increased with 

distance towards the proximal end of the root tip, presumably due in part to 

reduced suppression of CK biosynthesis by auxin, whereas in experimental 

images there is a decrease in the concentration with distance up the root tip. 

In this version of the model CK inhibits auxin biosynthesis and auxin inhibits CK 

biosynthesis (Nordstrom et al., 2004). However additional results (Jones et al., 

2010) seem to indicate a different relationship where CK promotes auxin 

biosynthesis in young developing tissues and CK inhibits its own biosynthesis 

through the induction of CK oxidases. 

In previous work (Liu et al., 2013), hormonal crosstalk network analysis 

revealed that both sets of experimental results (Nordstrom et al., 2004; Jones et 

al., 2010) can be incorporated into the network, leading to the same conclusions 

about other regulatory relationships of hormonal crosstalk. Later on in this work, 

CK patterning is examined in greater detail and both cases are analysed with 

similar modelling results. Therefore, the conclusions drawn from this work are 

applicable to both cases and questions surrounding CK and auxin interactions 
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do not necessarily detract from other model results. The above results do 

however suggest that there are additional regulatory factors controlling CK 

patterning (see Chapter 5) and, although auxin patterning appears to be 

relatively insensitive to the CK and auxin relationship assumptions, given the 

developmental importance of both CK and auxin, it will be essential to develop 

an experimentally based model with improved CK patterning to enhance the 

predictive capabilities of the model. 

2.9.2   The model proved robust to variations in the WT parameter values 

Model parameters were initially set to values taken from the Grieneisen et al. 

(2007) and Liu et al. (2013) models. While certain parameters for diffusion and 

permeability were adjusted to match data from the literature, most of the WT 

parameter values used in the model were unknown and difficult or impossible to 

verify experimentally. It is therefore important to test whether the model results 

are heavily dependent on specific (and unknown) parameter values. Testing 

was performed on a number of parameters to see if the model was overly 

sensitive to variation in values around the WT. The model was tested for 

changes in diffusion rates, auxin decay, and tissue specific CK biosynthesis 

which resulted in changes in CK concentration. The diffusion constants and the 

rate of expression for AUX1 and PIN were also varied to test the sensitivity of 

auxin patterning to modifications in parameter values for these auxin transport 

proteins. 

Changes to the auxin diffusion constant around the WT had minimal effect on 

average auxin concentrations and auxin patterning, except at very low diffusion 

rates when auxin transport was minimal and patterning did not occur. Changes 

to the CK and ET diffusion rates had even less impact on auxin concentrations 

and patterning than the auxin diffusion rate. 

The PIN protein diffusion rate affected the proportion of PIN proteins at the 

plasma membrane compared to the cytosol. At very low diffusion rates PIN 

proteins were predominantly localised to the cytosol, limiting auxin transport and 

preventing the formation of the auxin maximum. As the diffusion rate increased, 

PIN at the plasma membrane increased which in turn increased the rate of 

auxin efflux and the strength of the auxin maximum. The auxin maximum was 
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formed over a wide range of PIN diffusion values around the WT value. 

Similarly the localisation of AUX1 to the plasma membrane was reduced at low 

AUX1 diffusion rates; however, the formation of the auxin maximum was very 

robust to changes in the AUX1 diffusion rate indicating that the concentration of 

PIN at the plasma membrane is the limiting factor for auxin pattern formation in 

the model. This is believed to be in part a result of our assumptions on AUX1 

and PIN permeability rates, based on the literature, where AUX1 permeability is 

greater than PIN permeability. 

The coordinated rates of expression of PIN and AUX1 control auxin transport 

through the root. The relative expression of these transport proteins determines 

the proportion of auxin in the cytosol compared to the cell walls, with high 

relative PIN expression driving auxin into the cell walls and high relative AUX1 

expression retaining auxin in the cytosol. The importance of the coordinated 

activity of these transport proteins is demonstrated in the model by the rescue 

of PIN overexpression by the overexpression of AUX1. Again the model showed 

relatively robust behaviour to variation in expression rate parameter values 

around the WT. 

Given the previous discussion on CK patterning and the interactions between 

CK and auxin, it was critical to test the sensitivity of the model to changes in CK 

parameter values. Auxin patterning proved very robust to changes in 

parameters controlling CK diffusion, tissue specific biosynthesis and the 

resulting CK concentration changes. 

Auxin decay rates were also tested and auxin patterning was still maintained at 

decay rates of 50% and 200% of WT. 

In summary the results showed that the model does not rely on a specific set of 

WT parameter values and it is possible to define multiple WT parameter sets 

that meet the fit criteria and produce correct predictions. Therefore the model is 

robust since it does not depend on a unique set of parameter values that could 

not be experimentally verified. 



115 

 

2.9.3   Model sensitivity to changes in cell length 

The root structure defined by Grieneisen et al. (2007) contained a sudden 

change in cell length from 28 to 64m as cells moved from the MZ to the EZ. 

This produced a sharp change in average cell concentrations in the PIN 

concentration profiles. A more realistic version of the model root map was 

developed to simulate a gradual increase in cell length in this transition zone, 

with no effect on overall patterning apart from smoothing the profiles for 

average PIN cell concentration through the transition zone. This result could 

indicate that the model is relatively insensitive to cell size; however, more 

extensive simulations would be required to provide confirmation and this is 

effectively addressed in Chapter 3 with the introduction of a realistic root 

structure. 

2.9.4   The model explains most concentration trends and patterning 

After completion of parameter calibration, simulations were performed to test if 

the model could explain/predict additional concentration trends and patterning. 

While the model matched observed auxin patterning and profiles, and to a large 

degree the concentration trends for mutants, and also importantly the high 

concentrations of the auxin carrier proteins PIN and AUX1 at the plasma 

membrane compared to the cytosol in the WT model (matching the localisation 

of PIN and AUX1 observed in experimental images), these results could not be 

used to measure the predictive capability of the model since they were used as 

part of the initial calibration process. 

The observed trend of auxin flux from shoot to root for different mutants was 

matched by the model except that results for the double mutant pls etr1 were 

slightly high compared to WT; however, double mutants tend to be very difficult 

to model, particularly with multiple ET receptors and complex  ET signalling. 

ET and PLS experimental images were scanned and model concentration 

profiles compared very favourably with profiles derived from the images. Images 

of auxin response patterning in the WT and aux1 mutant were also scanned 

and the experimental auxin response profiles matched model concentration 

profiles. 



116 

 

Model results for PIN root concentrations for different mutants largely matched 

the concentration trends observed experimentally, especially when error bars 

are taken into account. 

PIN1 and 2 images for the WT, pls, etr1, pls etr1 mutants and the PLSox 

transgenic were scanned to test how PIN1 and 2 concentration profiles 

compared to model PIN profiles for the vascular cylinder (for PIN1) and the 

epidermal layers (for PIN2). The model profiles for PIN in the vascular cylinder 

were a reasonable match to the PIN1 profiles generated from the images; 

however, the PIN2 profiles only matched for WT and the PLSox transgenic. This 

could in part be due to the relative ease of scanning images in the vascular 

column compared to scanning external cell layers and then combining the data, 

or be due to the fact that the model only contained a single generalised PIN 

protein rather than representing different types of PIN proteins located in 

different cell types in the root. Possibly a more complex model of the PIN 

proteins and their positioning and individual regulation would give a better 

match between the model and experimental results. 
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DEVELOPMENT OF AN ANATOMICALLY REALISTIC MODEL ROOT 

3.1   Introduction 

A major challenge in plant developmental biology is understanding how 

development is coordinated by interacting hormones and genes. The regulated 

formation of auxin gradients provides a key mechanism controlling plant growth, 

tropisms and development through the provision of positional and vectorial 

information (Vanneste and Friml, 2009). Arabidopsis root development is 

coordinated via an auxin concentration maximum in the root tip (Sabatini et al., 

1999). The auxin maximum specifies the hypophysis and quiescent centre 

(QC), regulates root meristem formation, and positions the stem cell niche 

(SCN) (Sabatini et al., 1999).  An auxin minimum also defines a developmental 

window for lateral root initiation (Dubrovsky et al., 2011), while transport of 

auxin produced in a new lateral root primordia regulates lateral root emergence 

(Peret et al., 2013). Low rates of polar auxin transport balance cell 

differentiation and division to prevent meristem growth, while high polar auxin 

transport promotes cell division over differentiation (Moubayidin et al., 2010). 

These and many other studies show that understanding the quantitative 

properties of auxin patterning is essential for understanding the regulation of 

root development. 

The work so far has been based on a relatively simple rectangular root map, 

with AUX1, PIN1 and PIN2 placement consistent with Grieneisen et al.  (2007). 

The next logical step was to replace the original rectangular root map with a 

more anatomically realistic digital root map based on experimental imaging. The 

realistic root includes additional cell files and cell types, with varying cell lengths 

and widths, which more accurately represents the cell geometry of the root tip 

and, in particular, includes a lateral root cap which experiments have shown to 

be important for transporting auxin from the distal region to the elongation zone 

(Swarup et al., 2005; Band et al., 2014). Development of a realistic root map 

achieves several goals by: 

 testing if the initial model patterning results were dependent on the 

rectangular root architecture,  
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 allowing experimental data to be used to more accurately place the auxin 

influx and efflux carriers and to introduce additional carriers such as 

PIN3, PIN4, PIN7 and LAX2 and LAX3 into the auxin transport system, 

 supporting the definition of an improved wild-type root model to match 

wild-type experimental results and, 

 in particular, enabling more accurate comparison between modelled 

patterning results and experimental imaging of hormonal response, gene 

expression and protein concentrations, by cell groups, cell layers or 

tissue type. 

3.2   Realistic root cell geometry 

The digitised root structure was based on an image (Figure 3.1a) downloaded 

from www.simuplant.org (Band et al., 2014) which was originally generated from 

confocal image stacks of roots stained with propidium iodide to define root 

geometry and cell organization. Software (SurfaceProject) was developed 

(Band et al., 2014) to process the confocal image stack data to produce the 

image of a 2-D root structure, showing individual cells, cell layers and cell types 

(Figure 3.1b). 

http://www.simuplant.org/
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Figure 3.1:   (a) SimuPlant Image (b) Root structure 
2-D root structure based on confocal image data; LRC lateral root cap; S1 to S5 
columella; Col columella; CE cortical endodermis; QC quiescent centre           
(Band et al., 2014) 

 
The SimuPlant image (Figure 3.1a) was initially downloaded and then digitised 

by scanning with ImageJ and the grid point data saved as a Microsoft® Excel 

file. The scanned image produced an initial digital root map which contained 

multiple imperfections and discontinuities in the cell wall structures. To correct 

these, a series of error-checking MATLAB® programs was developed. The 

digital map was first searched for discontinuities in the cell walls which were 

corrected by interpolation from the break in a wall along points of weak ImageJ 

signal until another wall point was encountered. The revised digital map was 

searched again, using the MATLAB® program tool-kit, for abnormal groups of 

cell wall grid points (GPs) and discontinuities, which were identified and 

a b

Figure 1: (a) SimuPlant Image (Band et al., 2014) (b) Root structure (Band et al., 
2014). LRC - lateral root cap; S1 to S5 - columella; CE cortical endodermis; QC 
quiescent centre.
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removed. These processes were repeated several times since it was possible 

for the correction of one type of error to create another. The resulting file was 

formatted to highlight the cell walls to allow a visual check of the digitised root 

for remaining abnormalities or discontinuities. Finally all cytosolic GPs were 

coded to 0 and cell wall GPs to 1, with GPs outside the root set to 9 and then 

the digital map was visually checked against the 2-D root structure from Band et 

al. (2014) (Figure 3.1b). The next step was to create an individual cell wall for 

each cell. This was achieved by duplicating all cell wall GPs and then replacing 

the double wall at the exterior of the root with a single wall. The resulting root 

map was again searched for larger blocks of cell wall GPs which were each 

individually checked and corrected as necessary. The final map was visually 

checked for any wall discontinuities or abnormalities and a few manual 

adjustments made. In the resulting root map, some cell wall GPs were adjacent 

to cytosolic points, having a nearest neighbour (NN) cytosolic point to the N, S, 

E or W. Other wall GPs did not have a NN cytosolic point, especially at multiple 

cell junctions, and could therefore be considered as forming an extra-cellular 

space. Figure 3.2 compares the digital realistic root generated using the above 

procedures with the root structure from Band et al. (2014) which was generated 

from confocal image stacks. As can be seen, the final digital realistic root map is 

a good representation of the root structure generated from confocal imaging. 

The above procedures could be used to convert any scanned cell structure 

image, such as Figure 3.1a, into a digital map. 
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Figure 3.2:   (a) Digital realistic root (b) Root structure (Band et al., 2014) 
The digital realistic root is very similar to a root structure derived from confocal imaging. 

(colouring is to assist in comparison of cell layers and tissues) 

The above process resulted in a final digital root map matrix containing 374,900 

grid points defining 501 cells. Having set up the basic root map, it was then 

necessary to assign properties to the individual GPs within the map; for 

example defining auxin carrier properties to each GP at the plasma membranes 

of each cell, for each influx or efflux carrier. To facilitate this process mirror root 

maps were generated to define the properties of each auxin carrier. Given the 

need to be able to easily set up and then revise these mirror root maps, and 

given the number of GPs in the root matrix, it was necessary to develop a tool-

kit of MATLAB® programs to allow efficient (and accurate) definition and map 

revision. In addition it was important set up the GP data such that it was 

  

 

 

1000 

 

 

 

800 

 

 

 

600 

 

 

 

400 

 

 

 

200 

 

 

 

0 
              100            200           300 

a b

Comparison of (a) new digital root map (b) root structure (Band et al., 2014)



123 

 

possible to analyse subsequent model results not only for the whole root but 

also by individual cell, cell layer or group of cells. To achieve this, an additional 

‘cell-number’ map was established where each cell was allocated an individual 

number, which was assigned to each cytosolic GP within the cell. The cell 

numbers used (and available) for each cell type are summarised in Table 3.1. 

Table 3.1: Numbers assigned to each cell in the root map 
(NA – not applicable) 

 Description of cell 
type 

(Figure 3.1b) 

Total number of 
individual cells 

(right, left sides) 

Available 
number range 

for cells at 
right side of 

root 

Available 
number range 

for cells at 
left  side of 

root 

1 QC 2, NA 100-104 NA 

2 Cortical endodermal (CE) 

initials 

2, NA 105-109 NA 

3 Columella initials 4, NA 100-119 NA 

4 Columella S1 4, NA 120-129 NA 

5 Columella S2 4, NA 130-139 NA 

6 Columella S3 4, NA 140-149 NA 

7 Columella S4 4, NA 150-159 NA 

8 Columella S5 5, NA 160-169 NA 

9 Lateral Root Cap (LRC1) 12, 16 200-219 220-239 

10 LRC2 12,14 250-269 270-289 

11 LRC3 8,5 300-319 320-339 

12 LRC4 3,3 350-369 370-389 

13 Epidermis 28,31 500-549 550-599 

14 Cortex 38,41 600-649 650-699 

15 Endodermis 39,42 700-749 750-799 

16 Pericycle 23,33 800-849 850-899 

17 6 Vascular cell files    

 (a) Outer pair 21,26 900-949 950-999 

 (b) Middle pair 23,22 1000-1049 1050-1099 

 (c) Inner pair 19,16 1100-1149 1150-1199 

 TOTAL NUMBER OF 

CELLS 

501   
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In the cell-number map, the plasma membrane for each cell was divided into 4 

regions defining the apical, basal, and left and right lateral cell faces. The 

combination of cell-number and cell-face data allows MATLAB® programs to be 

used to assign auxin carrier properties by cell type, cell number and cell face 

and also enables reports to be generated on a cell level or even cell face basis, 

as shown in later results. The cytosolic GPs within each cell are assigned a 

unique number (Table 3.1) and each cell-face plasma membrane GP is 

assigned a number indicating whether it is part of the right lateral (5), basal (6), 

left lateral (7) or apical face (8). A sample of the ‘cell-number’ map showing data 

for one of the QC cells (number 100) is shown in Figure 3.3. 

 

Figure 3.3:   Example cell-number data for QC cell 100 
(100) - cytosol GP values for cell number 100; plasma membrane GP values defining 
cell faces, (5) - right lateral cell face, (6) - basal face, (7) - left lateral face and (8) - 
apical face  

 

3.3    Placement of the auxin carriers in the realistic root 

Localisation of PIN efflux (PIN1,2,3,4,7) and AUX1/LAX  influx carriers (AUX1, 

LAX2,3) at the plasma membrane (PM) is derived from experimental imaging 

and implicitly includes ABCB transporter activity. Since the ABCB family can 

reversibly redirect auxin flux (Yang and Murphy, 2009), it is assumed that ABCB 

activity can be incorporated into the basal activity of all PIN proteins and 

AUX1/LAX influx carriers. The base level (lowest) activities for both efflux and 

1071 1071 5 7 1118 1118 1118 1118 1118 1118 5 7 7 920 920 920 920

1071 1071 5 7 1118 1118 1118 1118 1118 1118 5 5 7 920 920 920 920

1071 1071 5 7 1118 1118 1118 1118 1118 1118 1118 5 7 920 920 920 920

6 6 5 7 1118 1118 1118 1118 1118 1118 1118 5 7 920 920 920 920

5 1 1 7 1118 1118 1118 1118 1118 1118 1118 5 7 920 920 920 5

5 1 1 7 6 6 6 6 6 6 6 5 7 6 6 6 5

5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 5

5 7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 5

5 7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 5

5 7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 5

5 7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 5

5 7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 5

5 7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 5

5 7 100 100 100 100 100 100 100 100 100 100 100 100 100 6 5

5 7 100 100 100 100 100 100 100 100 100 100 100 100 6 6 8

8 7 6 6 100 100 100 100 100 100 100 100 100 100 6 8 8

8 8 8 6 6 100 100 100 100 100 100 100 100 6 6 8 111

112 112 8 8 6 6 6 100 100 100 100 100 6 6 8 8 111

112 112 112 8 8 8 6 6 6 100 100 6 6 8 8 111 111

112 112 112 112 112 8 8 8 6 6 6 6 8 8 111 111 111

112 112 112 112 112 112 112 8 8 5 7 8 8 111 111 111 111

112 112 112 112 112 112 112 112 112 5 7 111 111 111 111 111 111

112 112 112 112 112 112 112 112 112 5 7 111 111 111 111 111 111
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influx carriers are non-polar and it is assumed that the lowest levels of PIN 

proteins implicitly include the efflux activities of both PIN and ABCB and 

similarly the lowest level of AUX1/LAX includes the influx activites of AUX1/LAX 

and ABCB. 

PIN (PIN1,2,3,4,7) carrier polarity definitions are  based on experimental data. 

In the cytosolic spaces, the crosstalk network controls metabolism of two efflux 

carriers (PIN1 and PIN2) and the hormones auxin, ethylene and cytokinin.  The 

network allows quantitative description of PIN1 and PIN2 regulation by the three 

hormones and enables study of the relationship between auxin, PIN1 and PIN2 

patterning. The crosstalk networks for other auxin carriers (PIN3,4,7 and AUX1, 

LAX2,3) cannot be constructed due to insufficient experimental data, as 

discussed later in sections 3.3.2 and 3.3.3, therefore the localisation and levels 

of these carriers are prescribed based on experimental imaging. 

3.3.1   PIN1 and PIN2 auxin efflux carriers 

Once the digital root map had been defined, with an individual cell wall structure 

for each cell and unique cell numbers, it was necessary to assign the levels and 

localisation of the polar PIN efflux carriers and the non-polar AUX1/LAX influx 

carriers to the PM (included in the cell wall properties). PIN1 and PIN2 carrier 

levels are regulated by the crosstalk network, in the same way as earlier work 

(Chapter 2). The network also regulates the rate that the cytosolic PIN proteins 

are cycled to and from the PM. The model does not differentiate between PIN1 

and PIN2 (apart from polarity localisation) and since they are regulated in the 

same way by the network and are essentially the same entity, for clarification 

and to distinguish them from the prescribed carriers (PIN3, PIN4 and PIN7), 

PIN1 and PIN2 are jointly referred to as PIN12 (or PINm or PINp in the 

equations). Depending on the location in the root, the plasma membrane GPs 

are assigned different properties to define the rate of transfer of the PIN12 

proteins from the cytosolic GPs to the NN plasma membrane. The PIN12 

transfer rates (low, medium or high) were based on experimental images from 

various publications. It was assumed that PIN12 are differentially expressed 

everywhere in the root tip, therefore as a default, all PIN12 transfer rates to the 

plasma membrane were initialised at a low non-polar level and then transfer 

rates at selected cell faces were reset to medium or high based on experimental 
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images. The map in Figure 3.4 summarises the transfer rate settings that define 

PIN12 polarity (Red = high, Green = medium, Blue = low). 

 

Figure 3.4:   PIN12 transfer rates to the plasma membrane 
(Red = High, Green = Medium, Blue = Low; relative axis units). 

PIN12 transfer rates in the lateral root cap cells were set at medium (Green) on 

the apical cell faces from approximately the 200 level from the distal end of the 

root (Figure 3.4) up to approximately the 325 level after which they were set to 

high (Red) on the apical cell faces (Laskowski et al., 2008). In the epidermal 

cells, the transfer rates were left at low (Blue) on all cell faces for the first 3 cells 

proximal to the QC. For the next 3 cells they were set at medium on the apical 

faces and low on the lateral and basal faces, and thereafter set at high on the 

apical face and low on the lateral and basal faces (Laskowski et al., 2008; 

Muller et al., 1998). For the cortical cell files for the first 3 cells proximal to the 

PIN12 transfer rates to the plasma membrane
(RED = High, GREEN = Medium, BLUE = Low).
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QC the transfer rates were set to low at all faces. For the next 3 cells the rates 

were set to medium on the basal face and low on the inner and outer lateral and 

apical faces. The rates were then set to high on the basal face, medium on the 

outer lateral and low on the inner lateral and apical faces through the 

meristematic zone (MZ) to approximately the 650 level. As the cells move out of 

the MZ there is a basal to apical polarity shift and the transfer rates were then 

set at high on the apical cell face, medium on the outer lateral face and low on 

the basal and inner lateral faces (Kleine-Vehn et al., 2008; Muller et al., 1998). 

The outer lateral settings in the cortical cells were based on Figure 1D from 

Kleine-Vehn et al. (2008). In the vascular cylinder and pericycle, the transfer 

rates were set to high at the basal face of all cells and high on the inner lateral 

of the pericycle cells (Friml et al., 2002), while the rates at the remaining 

vascular and pericycle cell faces were set at low. For the endodermis cells, the 

transfer rates were set at medium on the basal face and at low on the inner and 

outer lateral and apical faces (Friml et al., 2002). At the root-shoot border, the 

transfer rates are set at high for the epidermis, cortex and endodermis cells and 

zero for the pericycle and vascular cells. 

3.3.2   PIN3, PIN4 and PIN7 auxin efflux carriers 

As previously noted, PIN3, PIN4 and PIN7 efflux carrier concentration levels 

and polar localisation (Figure 3.5) are not regulated by the network but have 

prescribed concentrations at selected cell faces based on experimental imaging 

from the literature (Blilou et al., 2005), with concentration levels adjusted to 

produce WT auxin patterning. The model has 4 possible concentration levels 

(only 3 are used) for each PIN3,4,7 efflux carrier, for which concentrations are 

assigned by the user at model run time so that concentrations can be easily 

adjusted when searching for WT auxin patterning. PIN3 has non-polar 

localisation at a high level in the columella S1 and S2.  It is localised at a high 

level at the basal face and a medium level at the inner and outer lateral and 

apical faces of the vascular cells in the elongation zone (EZ). In the pericycle 

cells in the EZ, it has a high level of localisation at the inner lateral and basal 

faces, and a medium level at the outer lateral and apical faces (Figure 3.5). 

PIN3 has non-polar localisation at a low level in all other cells. PIN4 has non-

polar localisation at a medium level in the QC and initials and their immediate 
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neighbours. In the other cells in the distal meristematic zone (MZ) it is localised 

at a high level at the basal face and a medium level at the apical and inner and 

outer lateral faces. In all other cells, PIN4 has non-polar localisation at a low 

level at all cell faces (Figure 3.5). PIN7 is localised at a medium or high level at 

all cell faces in the pericycle and vascular cells in the MZ and EZ and in 

columella S1 and S2 cells. In the pericycle cells it is localised at a high level on 

the inner lateral and basal faces and a medium level at the apical and outer 

lateral faces. In the vascular cells it is localised at a high level at the inner and 

outer lateral and basal faces and a medium level on the apical face. It is 

localised in a non-polar distribution at a high level at all faces of the columella 

S1 and S2 cells. At all other cells PIN7 has non-polar low level localisation 

(Figure 3.5). At the root-shoot border, PIN3, PIN4 and PIN7 are set to zero. 

 

Figure 3.5:   PIN3, PIN4 and PIN7 level and localisation 
Relative level and localisation of prescribed auxin efflux carriers 

(Red = high, Green = medium, Blue = low; relative axis units) 
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3.3.3   AUX1, LAX2 and LAX3 auxin influx carriers 

The non-polar localisation of the auxin influx carriers AUX1, LAX2 and LAX3 

(Figure 3.6) is again based on experimental imaging (Band et al., 2014) with 

concentrations adjusted to achieve WT auxin patterning. The model allows 15 

concentration levels for AUX1, 8 levels for LAX2 and 4 levels for LAX3 (but only 

3 were used for each carrier to define WT). Specific concentrations are 

assigned to each level by the user at model run time. AUX1 is localised at a 

medium level in the lateral root cap, a medium level in the EZ and proximal MZ 

of the epidermis, and a medium level in the cortical cells in the EZ. It is localised 

at a medium level in the cortical and epidermal cells just proximal to the QC, a 

high level in the columella S1-S4, and a medium level in the columella S5. In all 

other cells AUX1 is localised at a low level. LAX2 is localised at a high level in 

the vascular and pericycle cells in the mid to distal region of the MZ, and in the 

QC and columella initials, and at zero concentration in all other cells. LAX3 is 

localised at a high level in the columella S2 and at a zero concentration in all 

other cells. At the root-shoot border, AUX1, LAX2 and LAX3 are set to zero. 

 
Figure 3.6:   AUX1, LAX2 and LAX3 levels and localisation 

(Red = high, Green = medium, Blue = low, Grey is zero concentration; relative axis units) 
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3.4   Definition of a new model for the realistic root 

The crosstalk network remains the same as in the previous work except for the 

regulation of the AUX1 auxin influx carrier and the introduction of additional 

influx carriers (LAX2, LAX3) and efflux carriers (PIN3, PIN4, PIN7). 

The regulatory relationships between auxin, ethylene, cytokinin and polar PIN1 

and PIN2 proteins were previously established by iteratively combining 

experimental measurements with modelling analysis (Liu et al., 2010; Liu et al., 

2013; in this work and as published in Moore et al., 2015a; Rowe et al., 2016). 

In the earlier work, AUX1 activity was positively regulated by downstream 

ethylene signalling based on experimental observation (Figure 7B in Ruzicka et 

al., 2007). Model results for AUX1 patterning (Figure 2.66) were in part similar 

to experimental imaging (Figure S8 in Band et al., 2014) with AUX1 levels 

increasing proximally in the epidermis, and higher AUX1 levels in the outer cell 

layers compared to the central cell cylinder. However, the model did not exhibit 

the elevated experimental AUX1 levels in the columella and near the QC, or the 

proximally declining AUX1 levels in the central cylinder. The differences 

between model and experimental results could indicate that, in addition to 

ethylene, other effectors may also regulate AUX1 activity, such as cytokinin 

inhibition of AUX1 as proposed in a recent paper (Street et al., 2016). It was 

therefore concluded that the existing crosstalk network between AUX1 and the 

three hormones (auxin, ethylene and cytokinin) cannot be fully established and 

that AUX1 patterning cannot be sufficiently predicted using the model network. 

Extensive examination of published experimental data also reveals that it is 

currently impossible to construct a network between the three hormones and 

the other auxin carriers (PIN3, PIN4, PIN7, LAX2, LAX3) due to insufficient data 

and the complexity of crosstalk between hormones and auxin carriers. For 

example, experimental and modelling analysis has suggested that spatial 

expression patterning of the influx carrier LAX3, observed in cell reshaping and 

separation necessary for lateral root emergence, is affected by expression of 

the efflux carrier PIN3 (Peret et al., 2013).  However, other modelling and 

experimental analysis suggests that the induction of PIN3 is not required to 

explain the ”all-or-nothing” expression of LAX3 in this process (Mellor et al., 



131 

 

2015). The feedback of GH3, which is an important component in the auxin-

degradation pathway, may also have a role in LAX3 expression (Mellor et al., 

2016). Furthermore, a recent study has shown that the regulation of PIN3 and 

PIN7 expression by auxin and cytokinin in root development follows different 

mechanisms (Lavenus et al., 2016; Wang et al., 2015). These examples show 

the complexity of crosstalk between auxin, its carriers and other hormones.  

Given the above, it was concluded that PIN3, PIN4, PIN7, AUX1, LAX2 and 

LAX3 level and localisation should be prescribed based on experimental data. 

In the model developed for the realistic root, the revised crosstalk network 

(Figure 3.7) controls metabolism in the cytosolic spaces of the PIN1 and PIN2 

efflux carriers but not the influx carrier AUX1, and of the hormones auxin, 

ethylene and cytokinin.  The network therefore allows quantitative description of 

PIN1 and PIN2 regulation by the three hormones and enables study of the 

relationship between auxin, PIN1 and PIN2 patterning. 

The kinetic equations and parameters used in this model version are the same 

as in the rectangular root model (see Table 2.3, Table 2.4 and Table 2.5) except 

for a few minor changes. Since AUX1 is prescribed, AUX1 biosynthesis is set to 

zero (k1a = 0 in reaction v26 in Table 2.3) so that the values for AUX1m and 

AUX1p remain at zero. AUX1 is therefore not regulated by the network, and 

AUX1p is not cycled to and from the plasma membrane. Three new variables 

are introduced (AUX1, LAX2 and LAX3) to represent the prescribed 

concentrations of these auxin influx carriers, and the auxin influx equations use 

the total AUX1, LAX2 and LAX3 concentrations to calculate auxin influx into the 

cell (Table 2.5). The regulation of PINm and PINp (Table 2.3) and PINp cycling 

to and from the plasma membrane (Table 2.4) remain unchanged. Three new 

variables (PIN3, PIN4 and PIN7) were introduced to represent the prescribed 

concentrations of the new auxin efflux carriers and these concentrations are 

added to the concentration of PINp in the equations for calculating auxin efflux 

(Table 2.5). An example of the placement of the auxin carriers PIN3 and AUX1 

in the root structure is shown in Figure 3.8. The border concentrations for auxin, 

ethylene and cytokinin are handled in the same way as in the rectangular root. 

Similar to the rectangular root model, cytokinin biosynthesis is set to zero in the 

epidermis, cortex and endodermis cell files and occurs in all other cells.
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Figure 3.7:   Hormonal crosstalk network for the realistic root 

 

Symbols: Auxin, auxin hormone; ET, ethylene; CK, cytokinin; PINm, PIN mRNA; 
PINp, PIN protein; PLSm, POLARIS mRNA; PLSp, POLARIS protein; X, 
downstream ethylene signalling; Ra*, active form of auxin receptor; Ra, inactive 
form of auxin receptor; Re*, active form of ethylene receptor ETR1; Re, inactive 
form of ethylene receptor ETR1; CTR1*, active form of CTR1; CTR1, inactive 
form of CTR1 
 

 
 

 

  mass conversion links;          positive and negative regulatory links;          auxin transport links 
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Figure 3.8:   Model root with (a) cell geometry (b) sample carrier placement 
(S2 and S3, columella tier 2 and 3 cells; COL, columella; RC, root cap). 

3.5   Results for the wildtype realistic root 

The above model and root maps were used with varying concentration levels for 

the prescribed auxin influx and efflux carriers AUX1, LAX2 and LAX3, and PIN3, 

PIN4 and PIN7 to generate a reference wildtype realistic root model for the next 

stage of the work. Details of the root map file names and the prescribed auxin 

carrier concentration settings for generating the final wildtype realistic root can 

be found in the model running instructions (Appendix 1). 

The realistic root model integrates actual cell geometries and the level and polar 

or non-polar localisation of auxin efflux and influx carriers, with a variety of 

experimental data on hormonal crosstalk. This compares to earlier work 

(Chapter 2) based on a simple rectangular root structure lacking realistic cell 

geometry, which did not have a lateral root cap or extra-cellular space and did 

not include the LAX2,3 and PIN3,4,7 auxin carriers. 
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3.5.1   Auxin patterning 

Figure 3.9 shows auxin patterning for the wildtype model root, including an 

auxin concentration map, enlarged colour map images of the elongation zone 

and quiescent centre, and the auxin concentration profile. The model 

reproduces the auxin maximum located at the quiescent centre and shows 

increased auxin concentration in the epidermis in the elongation zone compared 

to the vascular tissues, with a corresponding increase in the auxin concentration 

profile trend in this region. This matches the DII-VENUS experimental profile 

results (Figure 2.59), unlike the previous WT model for the rectangular root. 

This is in part due to the outward lateral polarity settings for PIN12 in the cortex, 

which tend to drive auxin into the epidermis in the elongation zone, together 

with the prescribed concentration settings for AUX1 in the epidermis and cortex 

which act to retain auxin in these cells compared to the vascular cylinder, 

combined with the rate of auxin biosynthesis (see 3.5.6). 

 

Figure 3.9:   Auxin patterning in the WT realistic root model 
Showing the auxin concentration map, enlarged colour map images of the EZ and QC, 
and the auxin concentration profile. The realistic root model results are a better match 
than the rectangular root model to the DII-VENUS experimental results (Figure 2.59), 
exhibiting increased auxin in the EZ epidermal cells and a proximally increasing auxin 
concentration profile in the EZ. 
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The average auxin concentrations were also plotted by cell type (Figure 3.10) 

and showed similar results to those generated previously for the rectangular 

root, where the trend for five cell types (QC, stele, endodermis, epidermis 

meristem and cortex meristem) is similar to the trend observed experimentally 

(Figure 2.62). These recent realistic root results showed similar discrepancies 

from the DII-VENUS experimental results, as discussed in section 2.8.1. 

 

 

Figure 3.10:   Auxin levels relative to QC for the WT realistic root 
(EPI, epidermis; COR, cortex; END, endodermis; STE, stele; COL, columella; INIT, 
columella initials; QC, quiescent centre; M, meristem; EZ, elongation zone) 

 

The introduction of the realistic root allowed detailed comparison between 

model results and experimental auxin response trends in selected cell files. In a 

fairly recent study using a novel R2D2 auxin reporter, the auxin response was 

imaged in selected cell files above the initials and the relative responses plotted 

(Liao et al., 2015). The auxin model concentration was plotted for the same cell 

files and exhibited similar trends (Figure 3.11). 
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Figure 3.11:   Relative auxin response and concentration trends 
(a) Relative auxin response trends in cell files above the initials (Liao et al., 2015) 
(b) Relative auxin concentration trends from the model for the same cell files. Model 
and experimental results show similar trend results. 

 

3.5.2   PIN1 and PIN2 patterning 

Similar to the rectangular root model (Figure 2.52, Figure 2.54), the WT realistic 

root model also predicts that total PIN1 and PIN2 levels generally decrease 

from the proximal to distal region of the root (Figure 3.12), consistent with 

experimental observations (Figure 1 in Liu et al., 2013; Figure 3B in Bishopp et 

al., 2011a; Figure 5 in Rowe et al., 2016). 
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Figure 3.12:   WT model PIN(1&2) concentration patterning. 
(A) Concentration colour map of PIN12 at the plasma membrane 
(B) Concentration profile for PIN12 at the plasma membrane, showing the trend of the 
average cross-sectional concentration along the root tip, and consistent with 
experimental results. 

 

3.5.3   Ethylene patterning 

Ethylene concentration patterning in the realistic root (Figure 3.13) is similar to 

the rectangular root and experimental observations (Figure 2.46) with modelled 

ethylene concentration gradually increasing proximally along the root tip. 
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Figure 3.13:   Ethylene concentration patterning in the realistic root 
Similar to the rectangular root and experimental observations with the ET concentration 
profile increasing proximally. 

 

3.5.4   Cytokinin patterning 

Cytokinin patterning in the realistic root (Figure 3.14) appears somewhat 

improved compared to the rectangular root (Figure 2.17) since there is a 

marked decrease in profile concentration in the cross-section containing the QC 

and a proximally decreasing concentration profile, both of which can be 

observed from experimental response results (Figure 2.17). These 

improvements are driven by auxin patterning since auxin inhibits cytokinin, with 

high auxin concentrations in the root cross-section containing the QC and an 

increasing auxin profile concentration in the elongation zone due to the relative 

increase in auxin in the vascular cells in the EZ (Figure 3.9).  
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Figure 3.14:   Cytokinin patterning in the realistic root 
Showing somewhat improved patterning compared to the rectangular root with 
a marked decrease in profile concentration in the cross-section containing the 
QC and a proximally decreasing concentration profile, both of which can be 
observed in experimental response results (Figure 2.17). 

3.5.5   POLARIS (PLS) patterning 

Results for PLS protein concentrations in the realistic root (Figure 3.15) were 

similar to experimental PLS expression patterning and to the rectangular root 

concentration patterning (Figure 2.47), with a higher level at the distal root tip 

which decreases proximally through the MZ. 
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Figure 3.15:   PLS protein patterning in the realistic root 

Similar to experimental PLS expression patterning and to the rectangular root 
concentration patterning, with a higher level at the distal root tip which 
decreases proximally through the MZ. 

3.5.6   Auxin biosynthesis rate patterning 

Figure 3.16 shows model predictions for auxin biosynthesis rate patterning, 

where auxin biosynthesis rates are higher towards the distal Arabidopsis root 

tip, specifically in the QC and columella. In the epidermal cells of the elongation 

zone, rates are also relatively high. These predictions for auxin biosynthesis 

rate patterning are similar to those found by experimental observations (Figure 

5 in Petersson et al., 2009). Note that the realistic root model does not include 

the region of lateral root development seen in the proximal part of the Petersson 

et al., 2009) figure and therefore modelling predictions can only be compared 

after excluding this region. 
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Figure 3.16:  Auxin biosynthesis rate pattern in the realistic root 
Predictions for auxin biosynthesis rate patterning are similar to experimental 
observations (Figure 5 in Petersson et al., 2009); EZ, elongation zone; TZ, 
transition zone; MZ, meristematic zone; QC, quiescent centre region. 

3.5.7   PIN1 and PIN2 patterning after loss of PINs 3, 4 and 7 

Figure 3.17 shows modelling predictions for combined PIN1 and PIN2 

concentration patterns after 100% loss of PIN3 or PIN4 or PIN7 and for the 

combined 100% loss of PIN3, PIN4 and PIN7. When PIN3, PIN4 or PIN7 level 

is reduced to zero, modelling results predict that the PIN1 expression domain 

extends further into the elongation zone. These predictions are similar to 

experimental observations (Figure 6 in Omelyanchuk et al., 2016). In addition, 

after reducing total PIN3,4 and 7 concentration to zero, modelling results predict 

that PIN12 concentration increases in the plasma membrane of vascular cells. 

This is similar to experimental observations for the pin3pin4pin7 triple mutant 

(Blilou et al., 2005). Modelling analysis reveals that the model is also able to 

predict changes in PIN1 profile trends for other mutants (Figure 2.52). 

These model predictions assume that, for a pin mutant, the dynamics of PIN1 

and PIN2 are regulated by hormonal crosstalk while other (non-mutated) auxin 

influx and efflux transporters remain unchanged. Also, since both PIN1 and 
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PIN2 are regulated by the same hormonal crosstalk network (Moore et al., 

2015a), and are effectively the same entity in the model, the change in PIN1 

patterning for pin2 mutant has not been studied.  

 

 

Figure 3.17:   PIN1 and 2 patterning after PIN3, 4 and 7 loss 
This figure shows percentage difference of PIN1/2 concentration from WT. From left to 
right, PIN3, PIN4, PIN7 or total PIN3,4,7 concentration is set to zero. Model predictions 
on combined PIN1 and PIN2 concentration patterns after 100% loss of PIN3 or PIN4 or 
PIN7 or after the combined 100% loss of PIN3, PIN4 and PIN7 are similar to 
experimental observation since PIN1 expression domain extends further into the EZ 
when PIN3, PIN4 or PIN7 level is reduced to zero (Omelyanchuk et al., 2016),  and 

PIN1 concentration increases in the plasma membrane of vascular cells in the 
pin3pin4pin7 triple mutant (Blilou et al., 2005). 

3.5.8   Auxin patterning with reduced apoplastic auxin diffusion 

Experimental measurement has shown that the auxin apoplastic diffusion 

constant is lower than that in water (Kramer et al., 2007). Figure 3.18 shows the 

effects on auxin patterning of reducing the auxin diffusion constant in the cell 

wall from the WT setting of 220 μm2 s-1. Interestingly, modelling results predict 

that decreasing the auxin diffusion constant in the cell wall favours auxin 

accumulation in QC. 
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Figure 3.18:   Auxin patterning with reduced auxin apoplastic diffusion rates 
Showing the percentage difference from WT cytosolic auxin concentrations for reduced 
auxin diffusion constants in the cell wall of 170, 120, 70 and 20 μm2 s-1, exhibiting an 
increasing auxin maximum at the QC (WT diffusion rate = 220 μm2 s-1). 

 
 

3.5.9   Effects on auxin patterning of changing auxin influx levels 

The effects of varying the levels of auxin influx carriers on auxin patterning were 

also analysed (Figure 3.19). The results support the suggestion that non-polar 

AUX1/LAX carriers act to retain cellular auxin (Band et al., 2014). Specifically, 

increasing or decreasing the level of AUX1/LAX carriers affects the auxin 

concentration accordingly. These results reveal how non-polar AUX1/LAX 

quantitatively contributes to auxin patterning, in particular to the emergence of 

the auxin maximum, where reduced AUX1/LAX levels weaken the auxin 

maximum at the QC while increased levels reinforce the maximum. 
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Fig 781a1,2:    Auxin wall diffusion rate = 170
Fig 781b1,2:    Auxin wall diffusion rate = 120
Fig 781c1,2:    Auxin wall diffusion rate = 70
Fig 781d1,2:    Auxin wall diffusion rate = 20

Parameters:
k10a = 5, k12a = 0.1, k1a  = 0, k6    = 0.03,  k6a  = 0.2, k4 = 1
k2a = 0.025 k2b = 1, k2c = 0.01, k16 = 0.3, k16a = 1, k19 = 1
k11  = 4, k32b = 0.1, k3   = 0.002, k12d1 = 1,  k12a = 0.1
AUX1 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
LAX2 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
LAX3 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02
PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
c01 = 1

% range vs WT200:
781a1,2:     Cyto only   -6.9358 to 6,252%          All GP -13.3910 to 9.3667%
781b1,2:     Cyto only   -14.3893 to 14.0633%   All GP -27.9770 to 22.6456%
781c1,2:     Cyto only   - 22.0163 to 24.4972%  All GP -44.1334 to 46.4284%
781d1,2:     Cyto only   -31.9515 to 44.1798%   All GP -62.7312 to 126.3242%

Auxin max and average for each diffusion rate:
WT200  auxin max (1)  8.3893   (2)  8.3653   (3) 8.3409    avge: 0.7229
781a:     auxin max (1)  8.9126   (2)  8.8858   (3) 8.8585    avge: 0.7231
781b:     auxin max (1)  9.5658   (2)  9.5353   (3) 9.5044    avge: 0.7233
781c:     auxin max (1)  10.4329 (2) 10.3976  (3) 10.3621  avge: 0.7237 
781d:     auxin max (1)  11.8117 (2) 11.7721 (3) 11.7338  avge:  0.7281

%

Fig 781b1: Auxin % comparison to WT200 for cytosol GPs only

(auxin wall diffusion rate  = 120)                         
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Fig 781 Series: Images of % Auxin compared to WT200
Run with auxin diffusion in the wall at lower rates (vs 220 for WT)
all other settings as in WT200.
==========================================================

Fig 781a1,2:    Auxin wall diffusion rate = 170
Fig 781b1,2:    Auxin wall diffusion rate = 120
Fig 781c1,2:    Auxin wall diffusion rate = 70
Fig 781d1,2:    Auxin wall diffusion rate = 20

Parameters:
k10a = 5, k12a = 0.1, k1a  = 0, k6    = 0.03,  k6a  = 0.2, k4 = 1
k2a = 0.025 k2b = 1, k2c = 0.01, k16 = 0.3, k16a = 1, k19 = 1
k11  = 4, k32b = 0.1, k3   = 0.002, k12d1 = 1,  k12a = 0.1
AUX1 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
LAX2 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
LAX3 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02
PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
c01 = 1

% range vs WT200:
781a1,2:     Cyto only   -6.9358 to 6,252%          All GP -13.3910 to 9.3667%
781b1,2:     Cyto only   -14.3893 to 14.0633%   All GP -27.9770 to 22.6456%
781c1,2:     Cyto only   - 22.0163 to 24.4972%  All GP -44.1334 to 46.4284%
781d1,2:     Cyto only   -31.9515 to 44.1798%   All GP -62.7312 to 126.3242%

Auxin max and average for each diffusion rate:
WT200  auxin max (1)  8.3893   (2)  8.3653   (3) 8.3409    avge: 0.7229
781a:     auxin max (1)  8.9126   (2)  8.8858   (3) 8.8585    avge: 0.7231
781b:     auxin max (1)  9.5658   (2)  9.5353   (3) 9.5044    avge: 0.7233
781c:     auxin max (1)  10.4329 (2) 10.3976  (3) 10.3621  avge: 0.7237 
781d:     auxin max (1)  11.8117 (2) 11.7721 (3) 11.7338  avge:  0.7281

%

Fig 781c1: Auxin % comparison to WT200 for cytosol GPs only

(auxin wall diffusion rate  = 70)                          
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Fig 781 Series: Images of % Auxin compared to WT200
Run with auxin diffusion in the wall at lower rates (vs 220 for WT)
all other settings as in WT200.
==========================================================

Fig 781a1,2:    Auxin wall diffusion rate = 170
Fig 781b1,2:    Auxin wall diffusion rate = 120
Fig 781c1,2:    Auxin wall diffusion rate = 70
Fig 781d1,2:    Auxin wall diffusion rate = 20

Parameters:
k10a = 5, k12a = 0.1, k1a  = 0, k6    = 0.03,  k6a  = 0.2, k4 = 1
k2a = 0.025 k2b = 1, k2c = 0.01, k16 = 0.3, k16a = 1, k19 = 1
k11  = 4, k32b = 0.1, k3   = 0.002, k12d1 = 1,  k12a = 0.1
AUX1 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
LAX2 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
LAX3 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02
PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
c01 = 1

% range vs WT200:
781a1,2:     Cyto only   -6.9358 to 6,252%          All GP -13.3910 to 9.3667%
781b1,2:     Cyto only   -14.3893 to 14.0633%   All GP -27.9770 to 22.6456%
781c1,2:     Cyto only   - 22.0163 to 24.4972%  All GP -44.1334 to 46.4284%
781d1,2:     Cyto only   -31.9515 to 44.1798%   All GP -62.7312 to 126.3242%

Auxin max and average for each diffusion rate:
WT200  auxin max (1)  8.3893   (2)  8.3653   (3) 8.3409    avge: 0.7229
781a:     auxin max (1)  8.9126   (2)  8.8858   (3) 8.8585    avge: 0.7231
781b:     auxin max (1)  9.5658   (2)  9.5353   (3) 9.5044    avge: 0.7233
781c:     auxin max (1)  10.4329 (2) 10.3976  (3) 10.3621  avge: 0.7237 
781d:     auxin max (1)  11.8117 (2) 11.7721 (3) 11.7338  avge:  0.7281

%

Fig 781d1: Auxin % comparison to WT200 for cytosol GPs only
(auxin wall diffusion rate  = 20)                          
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Fig 781 Series: Images of % Auxin compared to WT200
Run with auxin diffusion in the wall at lower rates (vs 220 for WT)
all other settings as in WT200.
==========================================================

Fig 781a1,2:    Auxin wall diffusion rate = 170
Fig 781b1,2:    Auxin wall diffusion rate = 120
Fig 781c1,2:    Auxin wall diffusion rate = 70
Fig 781d1,2:    Auxin wall diffusion rate = 20

Parameters:
k10a = 5, k12a = 0.1, k1a  = 0, k6    = 0.03,  k6a  = 0.2, k4 = 1
k2a = 0.025 k2b = 1, k2c = 0.01, k16 = 0.3, k16a = 1, k19 = 1
k11  = 4, k32b = 0.1, k3   = 0.002, k12d1 = 1,  k12a = 0.1
AUX1 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
LAX2 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
LAX3 level 4 = 0,  Level 3 =  0,  Level 2  = 0,  Level 1  = 0
PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02
PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
c01 = 1

% range vs WT200:
781a1,2:     Cyto only   -6.9358 to 6,252%          All GP -13.3910 to 9.3667%
781b1,2:     Cyto only   -14.3893 to 14.0633%   All GP -27.9770 to 22.6456%
781c1,2:     Cyto only   - 22.0163 to 24.4972%  All GP -44.1334 to 46.4284%
781d1,2:     Cyto only   -31.9515 to 44.1798%   All GP -62.7312 to 126.3242%

Auxin max and average for each diffusion rate:
WT200  auxin max (1)  8.3893   (2)  8.3653   (3) 8.3409    avge: 0.7229
781a:     auxin max (1)  8.9126   (2)  8.8858   (3) 8.8585    avge: 0.7231
781b:     auxin max (1)  9.5658   (2)  9.5353   (3) 9.5044    avge: 0.7233
781c:     auxin max (1)  10.4329 (2) 10.3976  (3) 10.3621  avge: 0.7237 
781d:     auxin max (1)  11.8117 (2) 11.7721 (3) 11.7338  avge:  0.7281

%%
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Figure 3.19:   Auxin patterning with changed auxin influx levels. 
This figure shows percentage difference from WT cytosolic auxin concentrations for 
changes in the concentrations of the AUX1, LAX2 and LAX3 auxin influx carriers. From 
left to right, the AUX1, LAX2 and LAX3 carrier concentrations are all adjusted by -20%, 
-10%, +10% or +20%, respectively. Reduced AUX1/LAX levels weaken the auxin 
maximum at the QC while increased levels reinforce the maximum. 

 
 

3.6   Summary 

The realistic root model developed in this chapter integrates a root structure  

incorporating actual cell geometries, the level and polar or non-polar localisation 

of all auxin influx (AUX1, LAX2,3) and efflux carriers (PIN1,2,3,4,7), with a 

variety of experimental data on hormonal crosstalk. Since the ABCB family of 

auxin carriers can reversibly redirect auxin flux, the role of ABCB transporters 

has been incorporated into PIN and AUX1/LAX non-polar basal activity to 

simplify modelling analysis. Therefore, the current research has integrated all 

known important auxin transporters for cell to cell communication with a wide 

range of experimental data on the crosstalk between PIN1,2 and three 

hormones, auxin, ethylene and cytokinin (Liu et al., 2010; Liu et al., 2013; 

Moore et al., 2015a). 

The results for the realistic root with actual cell geometry demonstrate that 

earlier results were not dependent on using a simple rectangular root structure, 
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Fig 780c1: AUXIN % vs WT200 for 10% GAIN OF WT200 AUX1,LAX2, LAX3
cytosol GPs only
============================================================

Program vs29d

k18a = 1, k18  = 0.1
k10a = 5, k12a = 0.1, k1a  = 0, k6    = 0.03,  k6a  = 0.2, k4 = 1
k2a  = 0.025  k2b  = 1, k2c  = 0.01, k16   = 0.3,  k16a = 1, k19 = 1
k11  = 4, k32b = 0.1, k3   = 0.002, k12d1 = 1,  k12a = 0.1
AUX1 level 4 = 0,  Level 3 =  2.475,  Level 2  = 1.1,  Level 1  = 0.825
LAX2 level 4 = 0,  Level 3 =  1.925,  Level 2  = 0,  Level 1  = 0
LAX3 level 4 = 0,  Level 3 =  1.925,  Level 2  = 0,  Level 1  = 0
PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02
PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
c01 = 1

Cytosol GPs only. Range  -1.4385 to 4.0288% 
Contrast setting at '9' GPs  = -1.6

10% LOSS AUX1/LAX2,3

(CYTOSOL GPS)       
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Fig 780b1: AUXIN % vs WT200 for 10% LOSS OF WT200 AUX1,LAX2, LAX3
cytosol GPs only
============================================================

Program vs29d

k18a = 1, k18  = 0.1
k10a = 5, k12a = 0.1, k1a  = 0, k6    = 0.03,  k6a  = 0.2, k4 = 1
k2a  = 0.025  k2b  = 1, k2c  = 0.01, k16   = 0.3,  k16a = 1, k19 = 1
k11  = 4, k32b = 0.1, k3   = 0.002, k12d1 = 1,  k12a = 0.1
AUX1 level 4 = 0,  Level 3 =  2.025,  Level 2  = 0.9,  Level 1  = 0.675
LAX2 level 4 = 0,  Level 3 =  1.575,  Level 2  = 0,  Level 1  = 0
LAX3 level 4 = 0,  Level 3 =  1.575,  Level 2  = 0,  Level 1  = 0
PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02
PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
c01 = 1

Cytosol GPs only. Range  -4.5148 to 1.5641% 
Contrast setting at '9' GPs  = -4.7

Fig 780 series: Auxin % comparison to WT200 for Cytosol GPs only
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Fig 780a1: AUXIN % vs WT200 for 20% LOSS OF WT200 AUX1,LAX2, LAX3
cytosol GPs only
============================================================

Program vs29d

k18a = 1, k18  = 0.1
k10a = 5, k12a = 0.1, k1a  = 0, k6    = 0.03,  k6a  = 0.2, k4 = 1
k2a  = 0.025  k2b  = 1, k2c  = 0.01, k16   = 0.3,  k16a = 1, k19 = 1
k11  = 4, k32b = 0.1, k3   = 0.002, k12d1 = 1,  k12a = 0.1
AUX1 level 4 = 0,  Level 3 =  1.8,  Level 2  = 0.8,  Level 1  = 0.6
LAX2 level 4 = 0,  Level 3 =  1.4,  Level 2  = 0,  Level 1  = 0
LAX3 level 4 = 0,  Level 3 =  1.4,  Level 2  = 0,  Level 1  = 0
PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02
PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
c01 = 1

Cytosol GPs only. Range  -9.614 to 3.2381% 
Contrast setting at '9' GPs  = -10

20% LOSS of
AUX1, LAX2 LAX3

10% LOSS of
AUX1, LAX2 LAX3

10% GAIN of
AUX1, LAX2 LAX3

20% GAIN AUX1/LAX2,3

(CYTOSOL GPS)       
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Fig 780d1: AUXIN % vs WT200 for 20% GAIN OF WT200 AUX1,LAX2, LAX3
cytosol GPs only
============================================================

Program vs29d

k18a = 1, k18  = 0.1
k10a = 5, k12a = 0.1, k1a  = 0, k6    = 0.03,  k6a  = 0.2, k4 = 1
k2a  = 0.025  k2b  = 1, k2c  = 0.01, k16   = 0.3,  k16a = 1, k19 = 1
k11  = 4, k32b = 0.1, k3   = 0.002, k12d1 = 1,  k12a = 0.1
AUX1 level 4 = 0,  Level 3 =  2.7,  Level 2  = 1.2,  Level 1  = 0.9
LAX2 level 4 = 0,  Level 3 =  2.1,  Level 2  = 0,  Level 1  = 0
LAX3 level 4 = 0,  Level 3 =  2.1,  Level 2  = 0,  Level 1  = 0
PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02
PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06
c01 = 1

Cytosol GPs only. Range  --2.7514 to 7.6491% 
Contrast setting at '9' GPs  = -3.0

20% GAIN of
AUX1, LAX2 LAX3
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and that initial results were confirmed (and to an extent improved) by the use of 

a realistic root map with additional auxin carriers. Furthermore, as demonstrated 

in section 3.5.1 on auxin patterning, the implementation of a realistic root 

allowed increased in-depth comparison between experimental and model 

results for selected cells or regions in the root. 

Since the model integrates the properties of auxin influx and efflux transporters 

with those of auxin biosynthesis and degradation, the model is also able to 

make several predictions that are similar to experimental observations, as 

follows: 

 the model predicts (Figure 3.12) that PIN1 and PIN2 levels generally 

decrease from the proximal to distal region of the WT root. This reveals 

that PIN1 and PIN2 patterning is the result of the integrative actions of a 

hormonal crosstalk network in Arabidopsis root, 

 predictions for combined PIN1 and PIN2 concentration patterns after 

100% loss of PIN3 or PIN4 or PIN7 or for the combined 100% loss of 

PIN3, PIN4 and PIN7 (Figure 3.17) showed a proximal shift in the PIN1 

expression domain, 

 after reducing total PIN3, 4 and 7 concentration to zero,  PIN1 and PIN2 

concentration increased in the plasma membrane of vascular cells 

(Figure 3.17), 

 earlier modelling analysis revealed that the model is able to predict 

changes in PIN1 concentration profiles for other mutants (Figure 2.52), 

 since auxin biosynthesis and degradation are also processes included in 

the hormonal crosstalk network, the model is able to make predictions on 

auxin biosynthesis rate patterning (Figure 3.16) demonstrating high auxin 

biosynthesis rates towards the distal Arabidopsis root and a relative 

increase in biosynthesis in the epidermal cells of the elongation zone. 

Moreover, the model also predicts that, in the transition zone, patterning 

of auxin biosynthesis is complex. These modelling predictions reveal that 

understanding the patterning of auxin biosynthesis requires the study the 

biosynthesis, degradation and transport of auxin as an integrated 

crosstalk system, similar to that described in this work. 
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Since the model developed in this study has integrated auxin biosynthesis, 

degradation and transport, effects of any parameters relating to these 

processes can also be analysed using the model. For example, the model 

indicated that reducing the apoplastic auxin diffusion rate results in increased 

accumulation of auxin at the QC (Figure 3.18). In addition, the effects of varying 

levels of auxin influx (or efflux) carriers on auxin patterning can also be 

analysed (Figure 3.19) supporting the idea that AUX1/LAX carriers act to retain 

cellular auxin and contribute to the creation of the auxin maximum at the QC.  

The results described in Chapters 2 and 3 therefore reinforce the concept that 

experimental data can be integrated into a systems model that is able to 

reproduce and analyse key patterning characteristics and behaviour. 
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CHAPTER 4 : RECOVERY PRINCIPLE GIVES 
INSIGHTS INTO AUXIN PATTERNING 
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RECOVERY PRINCIPLE GIVES INSIGHTS INTO AUXIN PATTERNING 

4.1   Introduction 

As described in detail above, auxin gradient formation in the Arabidopsis root is 

predominantly regulated by auxin transport proteins (Zazimalova et al., 2010), 

including PIN-FORMED (PIN) proteins (Adamowski and Friml, 2015), the 

AUX1/LIKE-AUX1 (AUX1/LAX) family of influx carriers (Swarup and Peret, 

2012), and ABCB transporters (Geisler and Murphy, 2006; Cho and Cho, 2012).  

Auxin gradients are hypothesized to be sink-driven (Friml et al., 2002), and 

modelling has suggested that PIN efflux carriers can generate the gradient 

(Grieneisen et al., 2007), while other studies indicate that AUX1/LAX influx 

carriers are required for creating auxin distribution patterning at the root tip 

(Band et al., 2014; Swarup et al., 2005). Importantly, it has been suggested that 

non-polar AUX1/LAX influx carriers create tissues containing high auxin 

concentrations by auxin retention, while polar PIN carriers control directional 

auxin transport within these tissues (Band et al., 2014). Therefore both auxin 

efflux (Grieneisen et al., 2007; De Rybel et al., 2014; Xuan et al., 2016) and 

influx carriers (Band et al., 2014; Xuan et al., 2016) are considered important for 

generating auxin patterning, although their relative contributions are not clear. It 

has also been proposed that the dynamic recycling of both the influx and efflux 

carrier proteins to and from the plasma membrane enables the cell to respond 

quickly to environmental changes by adjusting auxin flow and patterning 

(Kleine-Vehn et al., 2006). 

While it is known that polar PIN carriers direct auxin movement differentially and 

non-polar AUX1/LAX carriers act to retain cellular auxin, one key question is 

how the combined transport activity of the polar PIN and non-polar AUX1/LAX 

carriers can potentially control auxin pattern formation. Important auxin carrier 

properties include their concentration and localisation.  Concentration is 

controlled by gene expression and protein turnover, and localisation by polar or 

non-polar recycling and distribution to the plasma membranes (Adamowski and 

Friml, 2015; Swarup and Peret, 2012).  A critical component of understanding 

auxin pattern formation requires investigation of how concentration and 

localisation of influx and efflux carriers could potentially work together to 
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generate pattern.  The following questions need to be addressed. First, while 

maintaining non-polar AUX1/LAX localisation but at different concentration 

levels, can auxin patterning be maintained without changing PIN polarity; and, 

while maintaining polar PIN localisation but at different levels, does auxin 

pattern maintenance require changes in AUX1/LAX localisation? Answers to 

this question will determine how influx and efflux carrier levels and localisation 

combine to control auxin pattern formation and clarify the individual roles of 

polar PIN and non-polar AUX1/LAX carriers in maintaining auxin patterning.  

Second, can auxin pattern recovery lead to auxin carrier pattern recovery? 

Answers will address the role of auxin in regulating the patterning of its own 

transporters. Third, for the same auxin pattern generated by different influx and 

efflux carrier combinations, are the influx and efflux carrier levels spatially 

correlated? Answers to the above questions will reveal how auxin patterning is 

controlled by combined influx and efflux carrier patterning. 

The realistic root model, described in Chapter 3 (with no changes to the network 

or parameters), which incorporates the activities of polar PIN and non-polar 

AUX1/LAX carriers (implicitly including the activity of the reversible ABCB 

carriers), is used to investigate the roles of the auxin influx and efflux carriers in 

auxin patterning and how they potentially can coordinate their activities for auxin 

pattern formation. The model integrates (1) a root structure with cell geometries 

derived from confocal microscopy imaging where each cell has a cytosolic 

space, plasma membrane and cell wall, and where adjacent plasma membrane 

and cell wall entities are represented by a single model identity containing both 

cell wall and plasma membrane properties and referred to as either a cell wall 

or plasma membrane depending on the context and properties under 

discussion;  (2) PIN and AUX1/LAX carrier localisation based on experimental 

imaging; (3) PIN polarity; and (4) experimental data describing hormonal 

crosstalk between efflux carriers (PIN1 and PIN2) and hormones (auxin, 

ethylene, cytokinin). The hormonal crosstalk network is a mixed-type network 

that integrates gene expression, signal transduction and metabolic conversions. 

In particular, it includes auxin biosynthesis and degradation, auxin transport 

facilitated by both influx and efflux carriers, and hormonal crosstalk regulatory 

relationships. Therefore, the network incorporates both auxin metabolism and 
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transport into an integrated system and, as demonstrated in Chapter 3, 

reproduces auxin patterning similar to experimental observations. 

To facilitate this work, a general principle was formulated for quantitative auxin 

pattern recovery after perturbation of one or other carrier types to demonstrate 

how relationships between influx and efflux carrier level and localisation 

possibly combine to quantitatively control auxin patterning and the emergence 

of specific auxin patterns. The use of this principle demonstrated that the 

relationship between influx and efflux carriers, not their individual activity, 

regulates auxin patterning.  This principle also allows relationships between 

level and localisation of influx and efflux carriers for a target auxin pattern to 

become searchable and enables auxin concentration and its influx and efflux 

carriers to be studied as an integrated system. In addition, the model makes 

various predictions that can be validated experimentally. 

4.2   Quantitative recovery of an auxin pattern: 'The Recovery Principle' 

Since the model integrates a wide range of experimental data and reproduces 

key features of auxin response patterning, it is possible to investigate how the 

combined activities of PIN and AUX1/LAX carriers can potentially control auxin 

pattern formation, provided that a general principle for quantitative auxin pattern 

recovery following perturbation of transporter activity can be developed.  Such a 

principle can reveal how specific auxin patterning can be generated by the 

relationship between influx and efflux carriers, rather than the independent 

activities of individual carrier types. 

The recovery principle is an iterative process designed to study steady-state 

patterning; it therefore requires each iteration to be computed for a sufficiently 

long simulation time for all components to reach steady state values.  

Since AUX1/LAX influx carriers at the plasma membrane direct auxin from the 

cell wall to the cytosol, an iterative recovery principle for resetting AUX1/LAX 

concentrations, to recover auxin patterning after PIN carrier perturbation, can be 

formulated as follows. At each iteration step ‘i’ (from 1 to n): 
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a) ipA ,  is the AUX1/LAX concentration at a plasma membrane GP ‘p’.           

At iteration 1, 1,pA  is equal to the AUX1/LAX initial concentration (e.g. WT), 

before any adjustments have occurred. 

b) ipAuxin ,][  is the auxin concentration at a plasma membrane GP ‘p’.         

c) icAuxin ,][  is the auxin concentration at a NN cytosolic GP ‘c’ connecting to 

the adjacent plasma membrane GP ‘p’ referenced in (b). 

d) 0,][ pAuxin   and  0,][ cAuxin   are the respective target recovery auxin 

concentrations (e.g. WT) at the plasma membrane GP ‘p’ and the NN 

cytosolic GP ‘c’, before any PIN perturbation. 

e) At iteration 1, 1,][ pAuxin  and 1,][ cAuxin  are the auxin concentrations after 

the initial PIN perturbation and before any AUX1/LAX adjustments. 

f) ,
][

][][

0,

0,,

,

p

pip

ip
Auxin

AuxinAuxin
R


                             (equation 1a) 

is the absolute relative difference of auxin concentration at the plasma 

membrane GP ‘p’ from the target recovery concentration before PIN 

perturbation. 

g) 
0,

0,,

,
][

][][

c

cic

ic
Auxin

AuxinAuxin
R


 ,                              (equation1b) 

is the absolute relative difference of auxin concentration at the NN cytosolic 

GP ‘c’ from the target recovery concentration before PIN perturbation. 

h) At iteration ‘i’ the AUX1/LAX concentration is adjusted at each plasma 

membrane GP ‘p’ using either the plasma membrane auxin concentration 

relative to the target concentration (equation 2) or the NN cytosolic auxin 

concentration relative to target (equation 3), whichever is greater. 
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,,  ,     (equation 2) 
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ip A
Auxin

Auxin
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,

0,

1,
][

][


     if    icip RR
,,  ,       (equation 3) 

Where 1, ipA  is the 'new' AUX1/LAX concentration, calculated by adjusting 

the ‘old’ AUX1/LAX concentration ( ipA , ) using the above equations. 

The recovery principle, equations 1-3, has the following biological significance.  

To recover the original target auxin pattern after initial PIN perturbation, the 

current auxin pattern at iteration ‘i’ is compared to the target pattern and then 

AUX1/LAX patterning is reset at all plasma membrane GPs in the root matrix, 

using equations 1-3. Since changing the auxin concentration at any single GP 

results in changes at all neighbouring GPs, a change at any location will change 

concentrations across the whole root. Therefore, for each iteration, AUX1/LAX 

is reset simultaneously at all root locations. The AUX1/LAX adjustments at each 

plasma membrane GP are calculated using the auxin concentration at the 

plasma membrane or NN cytosolic GP, whichever differs most from the target 

value, following equations 1-3. 

Specifically, at iteration ‘i’, if icip RR ,,  , the AUX1/LAX activity should be 

adjusted based on the  plasma membrane auxin concentration relative to target, 

using the factor 
0,

,

][

][

p

ip

Auxin

Auxin
, following equation 2.  Therefore, if say 

1
][

][

0,

,


p

ip

Auxin

Auxin
 , total AUX1/LAX concentration is increased, resulting in a 

decrease in auxin concentration at the cell wall GP which in turn results in 

increased auxin concentration at the NN cytosolic GP. Similarly, if icip RR ,,  ,  

AUX1/LAX activity should be adjusted so that auxin concentration at the 
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cytosolic GP changes towards its target value by using the factor 
ic

rc

Auxin

Auxin

,

,

][

][
 , 

following equation 3. 

Thus, after all plasma membrane GPs in the root are compared simultaneously 

to target and new AUX1/LAX concentrations calculated for each plasma 

membrane GP, a new AUX1/LAX concentration pattern is generated which in 

turn generates a new auxin pattern. The recovery process then moves to the 

next iteration when this new auxin pattern is compared to target and the 

AUX1/LAX concentration pattern again reset following the recovery principle. As 

this process is repeated, the auxin pattern gradually approaches the target 

concentration pattern until, after multiple iterations, the original target auxin 

pattern is recovered.  

Therefore, the recovery principle is a generic, biologically based, iterative 

relationship that establishes how auxin efflux and influx carriers can coordinate 

their activities to control the emergence of a specific auxin pattern. 

The recovery principle can also be used to search for the level and localisation 

of PIN efflux carriers necessary to recover AUX1/LAX perturbations, as 

summarised in section 4.8 “Quantitative recovery after AUX1/LAX changes can 

require modified PIN polarity”. 

4.3  Auxin pattern recovery after PIN3,4,7 perturbations 

Figure 4.1 presents an example of auxin pattern recovery after total PIN3, 4 and 

7 concentration is decreased by 75% of its wildtype value. After reducing total 

PIN3, 4 and 7 by 75%, the maximum deviation in auxin concentration from WT 

is ca. 80% across the whole root (Figure 4.1). Using the recovery principle to 

reset AUX1/LAX, this difference reduces to ca. 10% after 5 iterations, and after 

85 iterations it reduces to ca. 0.3%, indicating that wildtype root auxin patterning 

is fully recovered (Figure 4.1). Therefore after a 75% PIN3, 4, 7 reduction, 

wildtype auxin patterning can be rescued by resetting AUX1/LAX following the 

recovery principle. This indicates that the relationship between influx and efflux 

carriers, rather than their individual activities, is potentially one method of 

maintaining or controlling auxin homeostasis.  
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Figure 4.1:   Auxin pattern recovery after 75% PIN3,4,7 loss 
Pattern recovery after 75% decrease in total wildtype PIN3,4,7 concentrations, 
using the recovery principle over 85 iterations. (a) Progressive auxin percentage 
difference from wildtype in the whole root.  Blue curve shows the maximum 
auxin percentage difference below wildtype in the root at each iteration. Red 
curve shows the maximum auxin percentage difference above wildtype in the 
root at each iteration. Green curve shows the maximum range of the 
percentage difference from wildtype within the root, calculated by adding the 
absolute values of the blue and red curves at each iteration. (b) Colour map 
images of the percentage difference from wildtype auxin concentrations after 
the initial perturbation of 75% loss of PIN3,4,7, then after 2 recovery iterations, 
and at full recovery after 85 iterations. Symbol % is the percentage difference 
relative to corresponding wildtype value. 

-80

-40

0

40

80

120

160

1 3 5 15 25 35 45 55 65 75 85

% 

Iterations

% AUXIN CONCENTRATION COMPARISON TO WT AFTER RECOVERY

MIN % DEVIATION FROM WT

MAX % DEVIATION FROM WT

MAX % DEVIATION RANGE FROM WT

a

b
25% WT PIN347

 

 

0 300

1000

800

600

400

200

-40

-20

0

20

40

60

80

85 ITERATIONS

 

 

0 300

2 ITERATIONS

 

 

0 300



PER

295



155 

 

Five additional cases were examined for total PIN3, 4 and 7 concentrations set 

at 0%, 50%, 150%, 175% and 200% of wildtype and for all cases the recovery 

principle fully recovered a reference wildtype auxin pattern (Figure 4.2, Figure 

4.3, Figure 4.4, Figure 4.5 and Figure 4.6). Therefore, it is clear that wildtype 

auxin patterning can emerge from multiple combinations of interlinked levels 

and localisation of influx and efflux carriers. Thus, PIN and AUX1/LAX influx 

carrier combinations possibly act to control auxin pattern formation to achieve a 

target pattern. 
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Figure 4.2:   Auxin pattern recovery after 100% PIN3,4,7 loss 
Pattern recovery after 100% decrease in total wildtype PIN3,4,7 concentrations, 
using the recovery principle over 85 iterations. (a) Progressive auxin percentage 
difference from wildtype in the whole root.  Blue curve shows the maximum 
auxin percentage difference below wildtype in the root at each iteration. Red 
curve shows the maximum auxin percentage difference above wildtype in the 
root at each iteration. Green curve shows the maximum range of the 
percentage difference from wildtype within the root, calculated by adding the 
absolute values of the blue and red curves at each iteration. (b) Colour map 
images of the percentage difference from wildtype auxin concentrations after 
the initial perturbation of 100% loss of PIN3,4,7, then after 2 recovery iterations, 
and at full recovery after 85 iterations. Symbol % is the percentage difference 
relative to corresponding wildtype value. 
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Figure 4.3:   Auxin pattern recovery after 50% PIN3,4,7 loss 
Pattern recovery after 50% decrease in total wildtype PIN3,4,7 concentrations, 
using the recovery principle over 85 iterations. (a) Progressive auxin percentage 
difference from wildtype in the whole root.  Blue curve shows the maximum 
auxin percentage difference below wildtype in the root at each iteration. Red 
curve shows the maximum auxin percentage difference above wildtype in the 
root at each iteration. Green curve shows the maximum range of the 
percentage difference from wildtype within the root, calculated by adding the 
absolute values of the blue and red curves at each iteration. (b) Colour map 
images of the percentage difference from wildtype auxin concentrations after 
the initial perturbation of 50% loss of PIN3,4,7, then after 2 recovery iterations, 
and at full recovery after 85 iterations. Symbol % is the percentage difference 
relative to corresponding wildtype value. 

a

b 50% PIN347 LOSS

Distal

 

 

0 150 300

1000

800

600

400

200

2 ITERATIONS

Distal

 

 

0 150 300

85 ITERATIONS

Distal

 

 

0 150 300

-20

-10

0

10

20

30

40
PER293

%

-0.5

0.0

0.5

1.0

25 30 35 40 45 50 55 60 65 70 75 80 85

% 

Iterations



158 

 

 

Figure 4.4:   Auxin pattern recovery after 50% PIN3,4,7 gain 
Pattern recovery after 50% gain in total wildtype PIN3,4,7 concentrations, using 
the recovery principle over 85 iterations. (a) Progressive auxin percentage 
difference from wildtype in the whole root.  Blue curve shows the maximum 
auxin percentage difference below wildtype in the root at each iteration. Red 
curve shows the maximum auxin percentage difference above wildtype in the 
root at each iteration. Green curve shows the maximum range of the 
percentage difference from wildtype within the root, calculated by adding the 
absolute values of the blue and red curves at each iteration. (b) Colour map 
images of the percentage difference from wildtype auxin concentrations after 
the initial perturbation of 50% gain of PIN3,4,7, then after 2 recovery iterations, 
and at full recovery after 85 iterations. Symbol % is the percentage difference 
relative to corresponding wildtype value. 
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Figure 4.5:   Auxin pattern recovery after 75% PIN3,4,7 gain 
Pattern recovery after 75% gain in total wildtype PIN3,4,7 concentrations, using 
the recovery principle over 85 iterations. (a) Progressive auxin percentage 
difference from wildtype in the whole root.  Blue curve shows the maximum 
auxin percentage difference below wildtype in the root at each iteration. Red 
curve shows the maximum auxin percentage difference above wildtype in the 
root at each iteration. Green curve shows the maximum range of the 
percentage difference from wildtype within the root, calculated by adding the 
absolute values of the blue and red curves at each iteration. (b) Colour map 
images of the percentage difference from wildtype auxin concentrations after 
the initial perturbation of 75% gain of PIN3,4,7, then after 2 recovery iterations, 
and at full recovery after 85 iterations. Symbol % is the percentage difference 
relative to corresponding wildtype value. 
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Figure 4.6:   Auxin pattern recovery after 100% PIN3,4,7 gain 
Pattern recovery after 100% gain in total wildtype PIN3,4,7 concentrations, 
using the recovery principle over 85 iterations. (a) Progressive auxin percentage 
difference from wildtype in the whole root.  Blue curve shows the maximum 
auxin percentage difference below wildtype in the root at each iteration. Red 
curve shows the maximum auxin percentage difference above wildtype in the 
root at each iteration. Green curve shows the maximum range of the 
percentage difference from wildtype within the root, calculated by adding the 
absolute values of the blue and red curves at each iteration. (b) Colour map 
images of the percentage difference from wildtype auxin concentrations after 
the initial perturbation of 100% gain of PIN3,4,7, then after 2 recovery iterations, 
and at full recovery after 85 iterations. Symbol % is the percentage difference 
relative to corresponding wildtype value. 
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4.4  Non-uniform, polar AUX1/LAX required for recovery 

The computed AUX1/LAX carrier patterns for wildtype auxin pattern recovery 

reveal that, when PIN carriers maintain their polarity but change levels, pattern 

recovery requires non-uniform and polar distribution of AUX1/LAX. AUX1/LAX 

concentrations can vary at the same cell face and AUX1/LAX influx carrier 

polarity can also be identified.  In recovery from 75% loss of total PIN3, 4 and 7, 

regions of vascular and pericycle cells exhibit higher average AUX1/LAX levels 

at apical cell faces (Figure 4.7). This polarity can be similar or opposite to total 

PIN (total of PIN1,2,3,4,7) polarity depending on root location and the original 

perturbation (Figure 4.8). 

 

Figure 4.7:  AUX1/LAX recovery pattern after 75% PIN3,4,7 loss. 
 (a) AUX1/LAX concentration colour map for auxin pattern recovery from 75% 
loss in WT total PIN347, requires non-uniform and polar distribution of 
AUX1/LAX. (b) AUX1/LAX average cell face concentrations are ranked 1 to 4 (1 
low to 4 high) for each cell, showing polar distribution of AUX1/LAX influx 
carriers. This is calculated by averaging the data in each cell face in (a) and by 
ranking them in terms of the average values.  P: pericycle cell, V:  vascular cell. 
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Figure 4.8:  Enlarged AUX1/LAX recovery pattern after 75% PIN3,4,7 loss. 
For two enlarged regions of the root, AUX1/LAX concentration patterning 
required for auxin pattern recovery from 75% loss in WT total PIN347, 
AUX1/LAX cell face concentration ranking for recovery, and wildtype total PINp 
patterning. (a) AUX1/LAX colour map for recovery requires non-uniform and 
polar distribution of AUX1/LAX. (b) AUX1/LAX average cell face concentrations 
are ranked 1 to 4 (1 low to 4 high) for each cell and model imaging of the 
concentration rankings demonstrates polar AUX1/LAX distribution. (c) Polar 
distribution of total PINp (total PIN1,2,3,4,7) in WT (P – pericycle cell, V – 
vascular cell). 

Experimentally, in many cells AUX1/LAX appears to have non-polar distribution 

(Band et al., 2014; Peret et al., 2012); however, AUX1 polarity does exist and is 

observed in protophloem cells (Kleine-Vehn et al., 2006). In the wildtype, polar 

PIN and non-polar AUX1/LAX carriers combine to generate wildtype auxin 

patterning. When total wildtype PIN3,4,7 is perturbed, wildtype auxin pattern 

recovery requires non-uniform and polar distribution of AUX1/LAX influx 

carriers. This highlights the importance of polarity in combined PIN and 

AUX1/LAX carrier activity to generate a specific quantitative auxin pattern.  

4.5  Auxin pattern recovery leads to PIN1 and PIN2 pattern recovery 

Auxin pattern recovery also leads to quantitative recovery of PIN1 and 2 

patterning (Figure 4.9).  After reducing total PIN3,4,7 concentration, modelling 

results predict that PIN1 and 2 concentration increases in the plasma 

membrane of vascular cells (Figure 4.9). This is similar to experimental 
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observations for the pin3pin4pin7 triple mutant (Blilou et al., 2005). After auxin 

recovery, the level and patterning of both total PIN3,4,7 and AUX1/LAX differ 

from their original WT patterning; however, PIN1 and 2 levels and patterning 

return to their original values (Figure 4.9). This reflects the regulation of PIN1 

and PIN2 level and patterning by hormonal crosstalk and demonstrates the 

mutual regulation of auxin and its transporters via hormonal crosstalk. 

Therefore, the recovery principle reveals that the patterning of auxin 

concentration and of the influx and efflux carriers are interlinked. 

 

Figure 4.9:  PIN12 pattern recovery 
PINp12 pattern recovery after 75% decrease in total wildtype PIN3,4,7 
concentrations, using the recovery principle over 85 iterations. Colour map 
images of the % deviation of PINp12 from WT concentrations in the root after 
the initial perturbation of 75% loss of PIN3,4,7, then after 2 recovery iterations, 
and full recovery after 85 iterations. 

4.6  Uniform AUX1/LAX distribution changes the recovered auxin pattern 

To further explore the roles of PIN and AUX1/LAX carriers in generating auxin 

patterning, after recovery from perturbations in PIN3,4,7 the AUX1/LAX 

concentrations at the plasma membrane are averaged for each individual cell in 

the root for the six recovery cases investigated. Although averaging does not 

change the total AUX1/LAX level at the plasma membrane of any given cell, it 
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cell. After averaging, AUX1/LAX carriers have uniform non-polar cellular 

distribution, however the average varies between cells. Figure 4.10 shows that 

uniform AUX1/LAX distribution leads to changes in auxin patterning compared 

to the equivalent non-uniform AUX1/LAX distribution. This demonstrates that, 

while non-uniform polar AUX1/LAX distribution can recover wildtype auxin 

patterning, the corresponding uniform distribution cannot. Therefore, while the 

same level of AUX1/LAX influx carriers is maintained, uniform distribution 

generates a specific auxin pattern that differs from the pattern generated by 

non-uniform distribution, indicating the importance of uniform and non-uniform 

(or non-polar and polar) distribution of AUX1/LAX influx carriers in controlling 

auxin patterning. 

 

Figure 4.10:  Auxin pattern recovery by uniform and non-uniform AUX1/LAX 
Comparison of recovery from 6 different total PIN3, 4 and 7 concentrations set at 0%, 
25%, 50%, 150%, 175% and 200% of wildtype.  (a)  Maximum percentage difference of 
auxin concentration from WT after recovery by non-uniform (blue bar, left y-axis) and 
uniform (red bar, right y-axis) AUX1/LAX distribution, for the 6 cases.  (b) Colour maps 
of percentage difference of auxin concentration from WT after recovery by uniform 
AUX1/LAX distribution, for each case, none of which exhibit full recovery. Symbol % is 
the percentage difference relative to corresponding wildtype value. 

NON-UNIFORM AUX1/LAX                   UNIFORM AUX1/LAX  
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4.7  PIN and AUX1/LAX for a specific auxin pattern are not spatially 
correlated 

Six cases of wildtype auxin patterning recovery were investigated, revealing that 

multiple combinations of interlinked PIN and AUX1/LAX patterns can lead to the 

same target auxin pattern. Biologically, polar PIN carriers differentially direct 

and deplete cellular auxin, while AUX1/LAX carriers act to retain cellular auxin. 

Further insights into how PIN and AUX1/LAX carriers can combine to generate 

specific auxin patterning were gained by exploring whether multiple 

combinations of interlinked PIN and AUX1/LAX patterns for generating the 

same auxin pattern exhibit spatially proportional correlation. Any correlation 

would imply that the effect on auxin patterning of changing polar PIN activity 

can be compensated by proportionately changing AUX1/LAX activity.   

Figure 4.11 reveals the spatial complexity of relationships between influx and 

efflux carriers.  Different PIN and AUX1/LAX pattern combinations, that maintain 

the same auxin pattern, do not exhibit spatially proportional correlation. 

Although auxin patterning is recovered, the ratio of total PIN in ‘75% PIN3,4,7 

loss’ to wildtype recovery is generally not equal to the corresponding ratio for 

AUX1/LAX. This reveals that the effects on auxin patterning of changing polar 

PIN activity are not compensated by a proportional change in AUX1/LAX 

activity. Another level of complexity is that relationships between PIN and 

AUX1/LAX for maintaining an auxin pattern depend on the absolute levels of 

these carriers. Comparing Figure 4.11(a) and Figure 4.11(b), shows that 75% 

reduction of PIN3,4,7 and 75% increase of PIN3,4,7 require different 

relationships between  PIN and AUX1/LAX to maintain the same auxin 

patterning. This complexity exists for all six cases investigated (where total 

PIN3, 4 and 7 concentrations are set at 0%, 25%, 50%, 150%, 175% and 200% 

of wildtype) (Figure 4.11, Figure 4.12, Figure 4.13). Therefore, PIN and 

AUX1/LAX patterning for maintaining an auxin pattern do not have a spatially 

proportional correlation. 
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Figure 4.11:  PIN and AUX1/LAX pattern combinations giving the same 
target auxin pattern are not correlated (example 1) 

This figure shows the RATIO OF TWO RATIOS =  RATIO1/RATIO2 where 
RATIO1 = (TOTAL PIN AFTER RECOVERY) / (TOTAL PIN IN WILDTYPE) 
RATIO2 = (TOTAL AUX1,LAX AFTER RECOVERY) / (TOTAL AUX1,LAX IN WT). 
(a) Recovery from 75% PIN347 loss. (b) Recovery from 75% PIN347 gain. Both (a) and 
(b) show the same two regions of the root, and they demonstrate that, although auxin 
patterning is recovered for both cases, the ratio of ratios is generally not unity and is 
also not constant, implying that PIN and AUX1/LAX patterns that maintain the same 
auxin pattern do not exhibit spatially proportional correlation. Comparing figures (a) and 
(b) shows that this ratio of ratios is different for 75% loss of PIN3,4,7 and for 75% gain 
of PIN3,4,7, implying that 75% loss of PIN3,4,7 and 75% gain of PIN3,4,7 require 
different relationships between  PIN and AUX1/LAX to maintain the same auxin 
patterning. 
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Figure 4.12:  PIN and AUX1/LAX pattern combinations giving the same 
target auxin pattern are not correlated (example 2) 

This figure shows the RATIO OF TWO RATIOS = RATIO1/RATIO2 where 
RATIO1 = (TOTAL PIN AFTER RECOVERY) / (TOTAL PIN IN WILDTYPE) 
RATIO2 = (TOTAL AUX1,LAX AFTER RECOVERY) / (TOTAL AUX1,LAX IN WT). 
(a) Recovery from 100% PIN347 loss. (b) Recovery from 100% PIN347 gain. Both (a) 
and (b) show the same two regions of the root, and they demonstrate that, although 
auxin patterning is recovered for both cases, the ratio of ratios is generally not unity 
and is also not constant, implying that PIN and AUX1/LAX patterns that maintain the 
same auxin pattern do not exhibit spatially proportional correlation. Comparing figures 
(a) and (b) shows that this ratio of ratios is different for 100% loss of PIN3,4,7 and for 
100% gain of PIN3,4,7, implying that 100% loss of PIN3,4,7 and 100% gain of PIN3,4,7 
require different relationships between  PIN and AUX1/LAX to maintain the same auxin 
patterning.  P: pericycle; V:  vascular. 
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Figure 4.13:  PIN and AUX1/LAX pattern combinations giving the same 
target auxin pattern are not correlated (example 3) 

This figure shows the RATIO OF TWO RATIOS = RATIO1/RATIO2 where 
RATIO1 = (TOTAL PIN AFTER RECOVERY) / (TOTAL PIN IN WILDTYPE) 
RATIO2 = (TOTAL AUX1,LAX AFTER RECOVERY) / (TOTAL AUX1,LAX IN WT). 
(a) Recovery from 50% PIN347 loss. (b) Recovery from 50% PIN347 gain. Both (a) and 
(b) show the same two regions of the root, and they demonstrate that, although auxin 
patterning is recovered for both cases, the ratio of ratios is generally not unity and is 
also not constant, implying that PIN and AUX1/LAX patterns that maintain the same 
auxin pattern do not exhibit spatially proportional correlation. Comparing figures (a) and 
(b) shows that this ratio of ratios is different for 50% loss of PIN3,4,7 and for 50% gain 
of PIN3,4,7, implying that 50% loss of PIN3,4,7 and 50% gain of PIN3,4,7 require 
different relationships between  PIN and AUX1/LAX to maintain the same auxin 
patterning.  P: pericycle; V:  vascular. 
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4.8  Quantitative recovery from AUX1/LAX changes requires modifed  PIN 
polarity 

At different PIN levels, maintaining an auxin pattern can require non-uniform 

and polar AUX1/LAX distribution (Figure 4.7). A uniform AUX1/LAX distribution 

leads to deviations from target auxin patterning (Figure 4.10), demonstrating the 

significance of polarity in PIN and AUX1/LAX carrier combinations for 

generating a specific auxin pattern.  

The recovery principle can also be used to search for the level and localisation 

of PIN required for recovery after AUX1/LAX carriers are perturbed, by 

considering the role of PIN carriers in auxin transport from the cytosol to cell 

wall. To recover auxin patterning by adjusting PIN after AUX1/LAX perturbation, 

the recovery principle requires that equations 2 and 3 are replaced by equations 

4 and 5. 
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1, ipPIN  is the searched 'new' PIN concentration, calculated by adjusting the 

'old' PIN concentration ( ipPIN , ) using the above equations. At the first iteration 

(i=1), ipPIN ,   is equal to the initial PIN concentration (e.g. WT), before any 

adjustments have occurred.  

The recovery principle shows that, at different levels of uniformly localised 

AUX1/LAX, maintenance of auxin pattern requires changes in PIN polarity 

(Figure 4.14).  
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 Figure 4.14:  PIN3,4,7 polarity after recovery from 50% AUX1/LAX gain 
compared to WT PIN3,4,7 polarity 

The polarity of PIN3,4,7 after wildtype auxin pattern recovery from a 50% gain in 
AUX1/LAX level, is different from PIN3,4,7 polarity in wildtype. (a) Colour map of total 
PIN3,4,7 after recovery to wildtype auxin patterning. (a1) Shows an enlarged view of 
this map in selected epidermal and cortical cells. (b) Colour map of the ratio of 
PIN3,4,7 after auxin pattern recovery to wildtype PIN3,4,7, therefore there are no units. 
(b1) shows an enlarged view of this map in the epidermal and cortical cells, 
corresponding to the region shown in (a1). Total PIN3,4,7 has no polarity in the 
wildtype epidermal and cortical cell files (Figure 3.5), however total PIN3,4,7 polarity 
can be observed in these cells after recovery in (a1), where there is greater PIN3,4,7 
concentrations at the apical cell faces. This is confirmed in (b1) where the 
red/brown/yellow colours indicate a consistently larger proportional increase in 
PIN3,4,7 after recovery compared to wildtype at the apical faces of these cells. This 
result shows that, in these epidermal and cortical cells, the polarity of PIN3,4,7 after 
wildtype auxin pattern recovery from a 50% gain in AUX1/LAX level, is different from 
PIN3,4,7 polarity in wildtype. C: cortical cells. E: epidermal cells. 

 

 

When AUX1/LAX levels are increased to 50% above wildtype, wildtype auxin 

patterning can be recovered, but the searched PIN3,4,7 polarity differs from 

wildtype. The searched total PIN3,4,7 localisation in epidermal cells displays 

polarity that does not exist in wildtype (Figure 4.14), indicating that the 

corresponding relationship between influx level and efflux polarity, rather than 

the individual activity of either the influx or efflux carriers, controls auxin pattern 

formation.  
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4.9  Recovery principle allows searchable relationships for influx and 
efflux carriers 

The recovery principle reveals that the same wildtype reference auxin pattern 

can emerge from multiple combinations of interlinked, but not spatially 

proportionally correlated, levels and localisation of influx and efflux carriers. This 

principle reveals novel aspects of auxin patterning control and enables the 

search for unknown PIN and AUX1/LAX carrier combinations that generate a 

known (and not necessarily wildtype) target auxin pattern (Figure 4.15). 
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Figure 4.15:  Different PIN and AUX1/LAX combinations can generate the 
same target pattern 

Recovery from a 15% gain in PIN3,4,7 and from a 30% gain in PIN3,4,7, to the same 
target auxin pattern shows that two very different combinations of interlinked PIN and 
AUX1/LAX can lead to the same auxin pattern. (a) Auxin concentration colour map for 
the target auxin pattern created by a 50% loss in PIN3,4,7. (b) The percentage 
difference of target auxin pattern from the WT. (c) Total PIN and AUX1/LAX 
percentage comparison to WT for recovery to target from a 15% gain in PIN3,4,7 for a 
selected area of the root. (d) Total PIN and AUX1/LAX percentage comparison to WT 
for recovery to target from a 30% gain in PIN3,4,7 for the same selected area of the 
root. In (c) and (d), symbol % is the percentage difference relative to corresponding 
wildtype value.  
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The recovery principle discovers two interlinked PIN and AUX1/LAX pattern 

combinations (Figure 4.15c,d) that both recover a known target auxin pattern 

(Figure 4.15a,b). Although PIN patterning in Figure 4.15c and Figure 4.15d 

differ significantly, when combined with their corresponding AUX1/LAX patterns 

they generate the same target auxin pattern. Thus, for a known target auxin 

pattern, the recovery principle can search for multiple PIN and AUX1/LAX 

pattern combinations that achieve target patterning. Therefore by using the 

recovery principle, relationships between level and localisation of influx and 

efflux carriers become searchable.  

4.10  Summary 

The model developed to this point integrates a variety of experimental data and 

makes various predictions that can be experimentally validated. Formulation of 

the recovery principle also enables the model to be used to provide further 

insights into the control of auxin patterning and gradients in Arabidopsis root. 

For reasons given above, the PIN3,4 and 7 auxin efflux carriers and the 

AUX1/LAX auxin influx carrier concentrations are prescribed and not 

established by the crosstalk network; therefore, the model  cannot ‘predict’ or 

‘explain’ how specific perturbations in one carrier set would affect the level and 

polarity of PIN3,4,and 7 or AUX1/LAX; however, since the hormonal crosstalk 

network for PIN1,2 can be established (Moore et al., 2015a), effects of the 

prescribed auxin carriers on PIN1,2 patterning can be predicted (Figure 3.17) 

and compared with experimental observations. Although it is not possible to 

‘predict’ all relationships between the influx and efflux carriers, the recovery 

principle allows us to theoretically explore how the two carrier types could 

potentially coordinate their activity to establish and maintain auxin patterning 

and the possible implications for carrier concentration levels and polarity. In 

doing so, it is possible to effectively integrate the analysis of both carrier sets 

with auxin patterning rather than investigate the activity of one or other carrier 

type in isolation. 

This work is done within the existing crosstalk network, which includes auxin 

biosynthesis and degradation mechanisms. By formulating a recovery principle, 

it reveals how the level and localisation of both influx and efflux carriers are 
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possibly interlinked with the other network processes to quantitatively control 

auxin pattern formation and how multiple combinations of levels and localisation 

of efflux and influx carriers could generate the same auxin pattern. Therefore, a 

specific auxin pattern is not necessarily uniquely determined by just a single 

efflux and influx carrier combination. 

The relationship between levels and localisation of the carriers plays a key role 

in determining a specific auxin pattern. When efflux carriers retain their original 

polarity but their levels are increased or decreased, both influx carrier level and 

polarity require simultaneous adjustment to maintain the original auxin pattern 

(Figure 4.16a). Similarly, at different levels of influx carriers with the same non-

polar localisation, both the level and polarity of efflux carriers must also be 

simultaneously changed to maintain auxin patterning. Therefore, the 

relationship between influx and efflux level and polarity rather than the separate 

activity of either influx or efflux carriers, potentially controls auxin pattern 

formation. 

Since the recovery principle shows that the same auxin pattern can possibly 

emerge from multiple combinations of interlinked, but not spatially proportionally 

correlated, levels and localisation of both influx and efflux carriers, this enables 

searchable relationships between influx and efflux activity to achieve a specific 

auxin pattern (Figure 4.16b) where, given a target auxin pattern and the 

patterning of one carrier set, then the required patterning of the other carrier set 

can be generated. In addition, a recovered auxin pattern leads to quantitative 

PIN1 and 2 pattern recovery.  Therefore, auxin concentration, and influx and 

efflux carrier patterning are all potentially interlinked into an integrated system. 
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Figure 4.16:  The recovery principle and auxin carriers and patterning 
(a) For recovery, changes in level in either the influx or efflux carriers require 
changes in both the polarity and level of the opposing carrier. (b) The recovery 
principle makes it possible to search for influx and efflux carrier combinations 
that achieve a target auxin pattern. 
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ALTERNATIVE NETWORK FOR CYTOKININ PATTERNING 

5.1   Introduction 

Cytokinin is developmentally significant as demonstrated by the role it plays in 

conjunction with auxin in defining the developmental pathway of callus cells 

(Skoog and Miller, 1957), in delay of senescence (reviewed by Zhang and 

Zhou, 2013), in the regulation of PIN auxin efflux carriers (Ruzicka et al., 2009; 

Bishopp et al., 2011a), and in determining the size of the root meristem and the 

length of the root (Dello Ioio et al., 2007; Werner et al., 2003). It has been 

demonstrated that cytokinin predominantly has tissue-specific biosynthesis 

(Miyawaki et al., 2004) and that it is transported in the phloem (Bishopp et al., 

2011b). It has also recently been shown that cytokinin transporter proteins 

(PUP14) actively import cytokinin from the apoplast into the cytoplasm for 

degradation (Zurcher et al., 2016), potentially reducing cytokinin signalling at 

the plasma membrane. 

In both rectangular and realistic root models (Chapters 2 - 4), cytokinin 

biosynthesis does not occur in the epidermis, cortex and endodermal cell files, 

and cytokinin flux occurs by diffusion. The relationships between auxin, 

cytokinin and ethylene are based on results from Nordstrom et al. (2004) which 

show that auxin inhibits cytokinin biosynthesis in the whole seedling, on 

Nordstrom et al. (2004) and Eklof et al. (1997) which demonstrate that cytokinin 

inhibits auxin, and on Stepanova et al. (2007) and Swarup et al. (2007) which 

show that auxin biosynthesis is stimulated by ethylene. However, it was also 

found that cytokinin promotes auxin biosynthesis in young developing tissue 

(Jones et al., 2010), auxin upregulates cytokinin biosynthesis through SHY2 

and IPT5 genes (Dello Ioio et al., 2008), and auxin promotes cytokinin 

biosynthesis through TM05 and LOG4 (De Rybel et al., 2014). 

In the Nordstrom et al. (2004) paper, auxin and CK biosynthesis rates were 

measured by deuterium labelling and mass spectrometry in 3 week old plants. 

Results indicated that different types of CK (iP and Z type) were predominantly 

synthesised in either the shoot (Z) or the root (iP) and that while biosynthesis of 

the Z type CK was inhibited by auxin, the biosynthesis of iP type CK was not 

inhibited and even potentially promoted by the application of auxin. Therefore 
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an alternative conclusion from this paper is that while auxin inhibits CK 

biosynthesis in the whole plant, it might not inhibit CK biosynthesis in the root 

and could even promote it. This paper also examined the effects of CK on auxin 

biosynthesis, where the application of CK inhibited auxin biosynthesis; however 

this was a delayed reaction and it was suggested that it was possibly mediated 

by plant developmental changes rather than metabolic interaction. 

Results from Jones et al. (2010), again using deuterium labelling, suggested 

that CK promotes auxin biosynthesis in young developing tissues and that CK 

promotes its own degradation through the induction of CK oxidases. They 

proposed that the apparent contradiction with Nordstrom et al. (2004) could 

have been because the Nordstrom et al. (2004) results were based on 3 week 

old whole plants while Jones et al. (2010) separated young growing tissues 

from 10 day old seedlings. 

The model results for cytokinin patterning in the rectangular and the realistic 

root both show discrepancies compared to experimental imaging results (Figure 

2.17 and Figure 3.14). Given these discrepancies, the developmental 

importance of cytokinin, and the different proposed relationships where 

cytokinin either inhibits (Nordstrom et al., 2004) or promotes (Jones et al., 2010) 

auxin biosynthesis, and where auxin either inhibits (Nordstrom et al., 2004) or 

promotes cytokinin synthesis (Dello Ioio et al., 2008), it was decided to use the 

GG model to test different relationships for mutual auxin and cytokinin 

regulation to see if these resulted in any significant changes to the patterning  

results from  previous chapters, and in particular to see if modelled cytokinin 

results, for both patterning and comparative average concentration in WT and 

pls, could simultaneously match experimental results. The cytokinin patterning 

results for the existing crosstalk network (where auxin inhibits CK and CK 

inhibits auxin biosynthesis) were compared to results from a new version of the 

GG model in which cytokinin promotes auxin biosynthesis (Jones et al., 2010) 

and auxin inhibits cytokinin biosynthesis (Nordstrom et al., 2004). A  second 

model revision was considered (but discarded) where cytokinin promotes auxin 

biosynthesis (based on Jones et al., 2010) and auxin promotes cytokinin 

biosynthesis (based on  Dello Ioio et al., 2008) since, while possibly improving 

cytokinin patterning it would have resulted in a reduction in cytokinin 
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concentration in the pls mutant given that PLS promotes auxin and auxin 

promotes cytokinin. 

Comparative results between the existing and a revised GG model (where 

cytokinin promotes auxin and auxin inhibits cytokinin) are shown for auxin 

(Figure 5.1) and cytokinin (Figure 5.2). The two models display very similar 

patterning results, with no improvement in cytokinin patterning. In addition, there 

was no significant difference between the two models in patterning and 

concentration results for all other species and mutants. 

To explore further modifications in the relationships between auxin and 

cytokinin, where say they each promote the biosynthesis of the other, while 

achieving both improved cytokinin patterning and the correct relative average 

cytokinin concentration for the pls mutant and wildtype, would however require 

additional regulatory links for cytokinin that do not exist in the current models. 

 

  

Figure 5.1:  Auxin patterning if (a) CK inhibits or (b) CK promotes auxin 
and auxin inhibits CK (using the GG model). Auxin patterning is very similar for both 
model versions, with a maximum occurring at the QC, similar average profile 
concentration levels, and a proximally decreasing concentration trend.  
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Figure 5.2:  CK patterning if (a) CK inhibits or (b) CK promotes auxin 
and auxin inhibits CK (using the GG model). CK patterning is similar in both model 
versions, with higher concentrations in the central vascular tissues, similar average 
profile concentration levels, and a proximally increasing concentration trend. 

 

Given the above results, it was decided to search the literature for additional 

mechanisms for the regulation of cytokinin and to use these relationships to 

build an alternative experimentally based crosstalk model in an attempt to 

reproduce previous model results, while improving the match between 

experimental and modelled cytokinin patterning. 
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Cytokinin concentrations are determined by the balance between biosynthesis 

and degradation. Biosynthesis is regulated by rate limiting steps involving the 

IPT group of enzymes, while irreversible cytokinin degradation occurs through 
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2006). Cytokinin signalling acts through receptors at the plasma membrane and 

the ER and then through a phospho-relay cascade to activate a set of Type-B 

ARR transcription factors that include as targets the Type-A ARRs which, while 

not transcription factors, act as inhibitors of Type-B ARRs (To et al., 2007). 
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Therefore, within this initial pathway cytokinin limits its own responses. 

Cytokinin is also self-regulated by the activity of cytokinin oxidase (CKX) where 

increased CK treatment initially increases CKX activity and then reduces it 

(Figure 4 in Chatfield and Armstrong, 1986). 

A type-B ARR of particular interest is ARR2 which appears to have unique 

properties whereby phosphorylated ARR2 is rapidly degraded by the 

proteasome while other type-Bs are not (Kim et al., 2012). Non-degradable 

ARR2 was found to increase cytokinin sensitivity in a number of developmental 

processes and to upregulate Type-A ARRs. It appears that ARR2 proteolysis is 

involved in regulating cytokinin responses in developmental processes 

mediated by cytokinin (Kim et al., 2012). Multiple ARR2 binding motifs found in 

the promoter regions of cytokinin-induced genes have led to the suggestion that 

ARR2 could act as a master regulator of cytokinin signalling responses (Hwang 

and Sheen, 2001). 

ARR2 also links the cytokinin pathway into the ethylene pathway (Hass et al., 

2004). It is found to bind the ERF1 promoter and upregulate ERF1. A stabilized 

phosphorylated (active) ARR2 showed an ethylene response in the absence of 

ethylene even in the presence of AVG, an inhibitor of ethylene biosynthesis. 

The arr2 null mutant has reduced ethylene response, which is rescued by 

expressing ARR2 under the control of the 35S promoter. There are also links in 

the other direction from the ethylene pathway into the cytokinin pathway (Hass 

et al., 2004) via ARR2. The ethylene receptor ETR1 appears to phosphorylate 

ARR2 since the ethylene sensitive etr1-7 (Cancel and Larsen, 2002) loss-of-

function mutant (low receptor activity and high downstream ethylene signalling) 

has reduced levels of phosphorylated ARR2 (Hass et al., 2004). It was 

concluded (Hass et al., 2004) that an ETR1 dependent phosphorelay regulated 

ARR2 phosphorylation and activity. An additional link between the ET and CK 

pathways is that EIN3 inhibits the commonly used cytokinin reporter ARR5 (El-

Showk et al., 2013; Shi et al., 2012). 

There are also multiple links between the cytokinin and auxin pathways. Auxin 

upregulates IPT genes through SHY2 (Dello Ioio et al., 2008; Kushwah et al., 

2011), and type-B ARRs ARR1 and ARR12 in turn promote SHY2 (Dello Ioio et 

al., 2008; El-Showk et al., 2013) which inhibits ARF in the auxin signalling 
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pathway. Auxin also promotes the transcription of AHP6, an inhibitor of the 

cytokinin signalling pathway (Bishopp et al., 2011a). 

From the above it is evident that the signalling pathways of these three 

hormones are heavily interlinked, even without considering regulation of say 

auxin transporters and the resulting effect on auxin patterning and therefore on 

the patterning of all other hormones and proteins. A schematic of these links is 

shown in Appendix 2 (Figure Ap 2.1), which while inevitably incomplete and 

likely requiring update from recent research, provides a useful reference map 

and shows the complexity of relationships between the pathways. Each link in 

the map is annotated, referring to notes with supporting references. 

As noted above, ARR2 is suggested to be a central type-B ARR within the 

cytokinin signalling pathway, with links to and from the ethylene pathway. 

Microarray analysis suggests that ARR2 promotes cytokinin oxidase expression 

and activity since cytokinin oxidase mRNA is reduced -2.9 fold in the arr2 null 

mutant and increased by +14.1 fold with stabilized activated ARR2, which 

mimics phosphorylation but cannot be degraded (supplementary tables, Hass et 

al., 2004). Therefore ETR1 ethylene receptor activity, by phosphorylating ARR2 

and increasing ARR2 activity (Hass et al., 2004), appears to be able to regulate 

cytokinin concentrations and response through ARR2 and cytokinin oxidase. As 

such, it is proposed that active ETR1 receptors (in the absence of ET) result in 

ARR2 phosphorylation and increased ARR2 activity, which in turn results in 

increased CKX activity and reduced cytokinin. In the presence of ethylene (and 

for the pls mutant), ETR1 activity is reduced which decreases ARR2 

phosphorylation and activity and so reduces CKX and increases cytokinin 

concentrations, which is consistent with the effects of the pls mutant on 

cytokinin concentrations compared to wildtype. 

This provides a potential additional link in the crosstalk network for the 

regulation of cytokinin. Based on the above experimental results, it was 

therefore decided to develop an alternative model and calibrate a new wildtype 

realistic root, where downstream ethylene signalling (X) inhibits cytokinin 

degradation (Hass et al., 2004), cytokinin promotes auxin biosynthesis (Jones 

et al., 2010) and auxin promotes cytokinin synthesis (Dello Ioio et al., 2008). 
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5.3   The revised model 

The revised model is a modified version of the model from Chapter 3 and 4, 

which used the realistic rootmap with prescribed levels and localisation of the 

auxin influx and efflux carriers PIN3, PIN4, PIN7, AUX1, LAX2 and LAX3. A 

comparison of the realistic root network and the modified network is shown in 

the following simplified schematic (Figure 5.3).  

 

Figure 5.3:  Schematic of (a) the original network (b) the revised network 
The red lines show modified or additional network links compared to the original 

network 
 

The equations were modified and the model recalibrated by adjusting certain 

parameters so that the model matched experimental patterning and 

concentration results. Changes to the realistic root model equations and data 

files are listed below. These include modifications to the auxin carrier 

concentrations, to the equations for biosynthesis and decay (Table 5.1), carrier 

cycling to and from the plasma membrane (Table 5.2), and auxin influx and 

efflux (Table 5.3), and show the reference V-numbers for the rate equations: 

 Auxin POLARIS protein 

Downstream of 

ethylene signaling, X 

Ethylene 

Cytokinin Auxin 
Shoot-Root 

Influx 

 

X inhibits CK degradation 

Auxin POLARIS protein 

Downstream of 

ethylene signaling, X 

Ethylene 

Cytokinin Auxin 
Shoot-Root 

Influx 

a

b
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 AUX1m transcription is set to zero therefore AUX1p = 0 and no cycling 

occurs to and from the plasma membrane. This change is already 

included in the realistic root model (V26 and V27). 

 New variables are introduced for the PIN3,4, and 7 and AUX1, LAX2 and 

LAX3 auxin carriers, with prescribed concentrations at the plasma 

membrane (already included in realistic root model). 

 The cell numbers at the distal end of the two epidermal cell files are 527 

and 580. For the cell numbers  524 to 526 and 578 to 579 (proximal to 

the distal epidermal cells), the apical face settings in the PIN12 map were 

changed from 1 (low) to 2 (medium) to increase auxin efflux. 

 The AUX1 prescribed concentration settings at all cell faces in columella 

S5 cells were increased from setting 2 to 3 to increase auxin influx. 

 cytokinin promotes auxin biosynthesis (V2, Table 5.1) 

 auxin promotes cytokinin biosynthesis (V18, Table 5.1) 

 cytokinin is synthesized in all cells (V18, Table 5.1) 

 X inhibits cytokinin degradation (V19, Table 5.1) 

 Auxin efflux is based on the total concentration of PIN12, PIN3, PIN4 and 

PIN7 (Table 5.3). This change is already included in realistic root model. 

 Auxin influx is based on the total concentration of AUX1, LAX2 and LAX3 

(Table 5.3). This change is already included in realistic root model. 

 The prescribed concentration settings for PIN3, PIN4, PIN7 and AUX1, 

LAX2, LAX3 were the same as for the previous realistic root model in 

Chapters 3 and 4 except for LAX2 level 3 setting which was reduced 

from 1.75 to 0.75, effectively reducing auxin influx by LAX3 

 The detailed run instructions, including the rootmap file names and 

prescribed concentration settings, can be seen in Appendix 3. Note that 

to achieve steady state the model run time was increased from 20,000 to 

30,000 secs. 
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Table 5.1:   Hormonal crosstalk rate equations for the cytokinin model 
(for species biosynthesis, decay, activation and inactivation at each grid point; 
the parameters highlighted in red have had their values changed or are new 

compared to the realistic root model) 

Species Rate equations and parameter values Notes 

AUXIN   

V1 
Background 
biosynthesis 

2k  
Only in the cytosol 

V2 
Variable 
biosynthesis 

])[(

][

)/][1])([(

]][[

2222

2

PLSpk

PLSp

kCKETkk

CKETk

cbed

a



 

Only in the cytosol 

V3 
Decay 

][3 Auxink  In the cytosol and 
cell walls 

Parameters 

k2 = 0.001 M s-1; k2a = 1.25 s-1; 

k2b=0.01 M; k2c = 0.02M; 

k2d = 1.0; k2e = 0.0 M-1; 
k3 = 0.001 s-1 

 

References 

Jones et al., 2010; Liu et al., 2010; 
Ljung, 2013; Stepanova et al., 2007; 
Swarup et al., 2007; 

Tivendale et al., 2014;  Zhao, 2010 

 

Ra
*
   

V4 
Rate of 
activation 

)(][ *

4 RaRaTAuxink   

Only in the cytosol. 
The receptor 
switches between 
active and inactive, 
with total RaT 
remaining constant. 

V5 
Rate of 
inactivation 

*

5
Rak  

Only in the cytosol 

Parameters k4 = 20.0 M-1 s-1; k5 = 1.0 s-1  

References 

Liu et al., 2010; Ljung, 2013;  
Mockaitis and Estelle, 2008; 
Vanneste and Friml, 2009 

 

PLSm   

V6 
Rate of 
transcription 

a
k

ET

Rak

6

*

6

][
1

][



 

Only in the cytosol 

V7 
Rate of decay 

][
7

PLSmk  Only in the cytosol 

Parameters 

k6 = 0.0197 s-1; k6a = 3.0 M; 
k7 = 1.0 s-1; 
for pls null mutant k6 = 0.0 s-1; 
for PLSox k6 = 0.045 s-1 

 

References 

Casson et al., 2002; Chilley et al., 2006; 
Liu et al., 2010; Ljung, 2013; 
Mockaitis and Estelle, 2008; 
Vanneste and Friml, 2009 
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PLSp   

V8 
Rate of 
translation 

][
8

PLSmk  
Only in the cytosol 

V9 
Rate of decay 

][
9

PLSpk  Only in the cytosol 

Parameters k8 = 1.0 s-1; k9 = 1.0 s-1  

References 

Casson et al., 2002; Chilley et al., 2006; 
Liu et al., 2010; Ljung, 2013; 
Mockaitis and Estelle, 2008; 
Vanneste and Friml, 2009 

 

Re
*
   

V10 
Rate of 
activation 

])[Re]([Re])[( *

1010
 TPLSpkk

a
 

Only in the cytosol. 
The receptor 
switches between 
active and inactive 
with the total ReT 
remaining constant. 

V11 
Rate of 
inactivation 

][][Re*

11
ETk  

Only in the cytosol 

Parameters 

k10=0.0003 s-1; k10a=5.0 M-1 s-1; 

k11=4.0 M-1 s-1; 

for the etr1 mutant k11 = 0.025 M-1 s-1 

 

References 
Diaz and Alvarez-Buylla, 2006; 
Liu et al., 2010; Wang et al., 2002 

 

ET   

V12 
Rate of 
biosynthesis 

)
])[(

][

])[(

][
(

2121211212

1212
CKkk

CK

Auxinkk

Auxin
kk

dcdb

a




 

Only in the cytosol. 
Michaelis Menten 
kinetics for the rate 
of  biosynthesis 
regulated by Auxin 
and CK. 

V13 
Rate of decay 

][
13

ETk  In the cytosol and 
cell walls 

Parameters 

k12 = 0.1 M s-1; k12a = 0.02M-1 s-1; 

k12b = 0.1; k12c = 0.1; k12d1 = 0.1 M-1; 
k12d2 = 1.0; k13 = 1.0 s-1 

 

References 
Liu et al., 2010; Stepanova et al., 2007; 
Tanimoto et al., 1995; Vogel et al., 1998; 

 

CTR1
*
   

V14 
Rate of 
activation 

])1[]1([][Re **

14
CTRTCTRk   

Only in the cytosol. 
The receptor 
switches between 
active and inactive, 
with the total 
CTR1T remaining 
constant. 

V15 
Rate of 
inactivation 

]1[ *

15
CTRk  

Only in the cytosol 

Parameters k14 = 3.0 M-1 s-1; k15 = 0.085 s-1  

References 
Diaz and Alvarez-Buylla, 2006; 
Liu et al., 2010; Wang et al., 2002 
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X   

V16 
Rate of 
pathway 
activation 

]1[ *

1616 CTRkk a  

Only in the cytosol. 
Pathway inhibition 
is regulated by 
active CTR1. 

V17 
Rate of 
pathway 
inactivation 

][17 Xk  

Only in the cytosol 

Parameters 
k16 = 0.3 M s-1; k16a = 1.0 s-1; 
k17 = 0.1 s-1 

 

References 
Diaz and Alvarez-Buylla, 2006; 
Liu et al., 2010 

 

CK   

V18 
Rate of 
biosynthesis 

 

18

18

][
1

k

Auxin

Auxink a



 
In the cytosol of all 
cells 

V19 
Rate of decay 

][

][

1818

1819

Xkk

CKkk

dc

e


 

 

][19 CKk  

In the cytosol of all 
cells 
 

In all cell walls 

Parameters 

k18 = 10.0 M; k18a = 0.5 M s-1; 

k18c = 1.0 M ; k18d = 10.0; 

k18e = 100.0 M; k19 = 1.0 s-1 

 

References 
Dello Ioio et al., 2008; Hass et al., 2004; 
Liu et al., 2010; 

 

PINm   

V20 
Rate of 
transcription ])[(])[(

][][

2020

20

AuxinkCKk

AuxinXk

cb

a


 

Only in the cytosol 

V21 
Rate of decay 

][21 PINmk a
 Only in the cytosol 

Parameters 
k20a = 0.8 M s-1; k20b = 1.0M; 

k20c = 0.3M; k21a = 1.0 s-1 

 

References 

Chandler, 2009; Liu et al., 2010; 
Liu et al., 2013; Nordstrom et al., 2004; 
Paciorek et al., 2005; Ruzicka et al., 2007; 
Ruzicka et al., 2009; Swarup et al., 2007; 
Vanneste and Friml, 2009 

 

PINp   

V22 
Rate of 
translation 

][22 PINmk a
 

Only in the cytosol 

V23 
Rate of decay 

][23 PINpk a
 In the cytosol and 

plasma membrane 

Parameters k22a = 1.0 s-1; k23a = 0.75 s-1  

References 

Chandler, 2009; Liu et al., 2010; 
Liu et al., 2013; Nordstrom et al., 2004; 
Paciorek et al., 2005; Ruzicka et al., 2007; 
Ruzicka et al., 2009; Swarup et al., 2007; 
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Vanneste and Friml, 2009 

AUX1m   

V26 
Rate of 
transcription 

][1 Xak  
Only in the cytosol. 
 

V27 
Rate of decay 

]1[
26

mAuxk  Only in the cytosol 
 

Parameters 
k1a = 0.0 M s-1; k26=1.0s-1 
 

AUX1m = 0 since it 
is not transcribed. 
All influx carrier  
localization and 
levels are 
prescribed by the 
user 

References Ruzicka et al., 2007; this work.  

AUX1p   

V28 
Rate of 
translation 

]1[27 mAuxk  

Only in the cytosol 
but AUX1p = 0 
since there is no 
AUX1m 
transcription. 

V29 
Rate of decay 

]1[
28

pAuxk  In the cytosol and 
plasma membrane 

Parameters k27 = 1.0 s-1; k28 = 1.0 s-1  

References This work  
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Table 5.2:  PIN12 cycling rate equations for the cytokinin model 
(PIN3, PIN4, PIN7, AUX1, LAX2 and LAX3 localization and levels are prescribed) 

Species Rate equations and 
parameter values 

Notes 

PINp   

V24 
Rate of 
localisation of 
PINp to the 
plasma 
membrane 

][)(
24

PINpiik
a  

[PINpi] is the PIN12 protein 
concentration at the 
cytosolic GP. 
k24a(i) depends on the 
property of the NN plasma 
membrane GP (i) as shown 
in the parameter values. 

V25 
Rate of removal 
of PINp from the 
plasma 
membrane 
 

)/][1(

][

250

25

b

a

kAuxin

PINpmk


 

[PINpm] is the PIN12 protein 
concentration at the plasma 
membrane GP. 
[Auxin]0 is the auxin 
concentration at the NN 
cytosolic GP. 

Parameters 

k24a(1)=1.0 s-1; 
k24a(2) = 5.0 s-1; 
k24a(3)=20.0 s-1; 
k24a(4) = 0.0 s-1; 
k24a(5) = 20.0 s-1 
K25a = 1.0 s-1; 

k25b = 1.0 M 

 

References 

Grieneisen et al., 2007; 
Liu et al., 2013; 
Paciorek et al., 2005. 
This work. 

 

AUX1p   

V30 
Rate of 
localisation of 
AUX1p to the 
plasma 
membrane 

]1[29 piAuxk  

[AUX1pi] is the AUX1 
concentration at the 
cytosolic GP; however no 
cycling occurs since AUX1p 
= 0 

V31 
Rate of removal 
of AUX1p from 
the plasma 
membrane 

]1[30 pmAuxk  

[AUX1pm] is the AUX1 
concentration at the plasma 
membrane GP; however no 
cycling occurs since AUX1p 
= 0 

Parameters k29 = 10.0 s-1; k30 = 1.0 s-1  

References This work  
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Table 5.3:   Species flux for the cytokinin model 
(between nearest neighbour, NN, grid points A to B) 

Species  A        B Flux equation Notes 

Auxin 
diffusion 

0 0 
xAuxinAuxincellAuxindiff BA  /)][]([)(

 

Diffusion in the 
cytosol 

 
1 or 
2 or 

3  

1 or 
2 or 

3  

xAuxinAuxinwallAuxindiff BA  /)][]([)(

 

Diffusion in the 
cell wall 

 
4 or 

5 
any No diffusion from GP 4 and 5 

Border to cytosol 

 any 
4 or 

5 
No diffusion to GP 4 and 5 

Cytosol to border 

Parameters   
Auxindiff(cell) = 220m

2
 s

-1 

Auxindiff(wall) = 220m
2
 s

-1
; Δx = 2.0m 

 

References   
Kramer et al., 2011; Rutschow et al., 2011; 
This work. 

 

Auxin 
efflux 

permeability 
0 

1,2 
or 3 betaAuxink

AuxinTOTALPINk
BAp

x Aa

ABb

][

][][
),(

1

3

3



 

Efflux from the 
cell. 
p(A,B) = 1 
TOTALPIN  is the 
total of PIN12, 
PIN3, PIN4, PIN7 
concentrations 

 0 4 Above equation but zero flux p(A,B) = 0  

 0 5 Above equation and flux occurs 
Efflux from the 
root to the shoot. 
p(A,B) = 1  

Parameters   

p(A,B) is a switch determining if 
permeability can occur from A to B and is = 
0 or 1  

 x = 2.0m(scaling constant); 

k3a = 1.0M; k3b = 0.8 m
2
 s

-1
; beta = 0 

Optional 
Michaelis Menten 
kinetics 
depending on the 
value of beta 

References   Kramer et al., 2011; This work  

Auxin 
influx 

permeability 

1, 2  
or 3 

0 
bAa

AA

kAuxink

AuxinAUXLAXk
BAp

x 3131

31

][

][][
),(

1



 

Influx into the 
cell. AUXLAX  is 
the total of AUX1, 
LAX2, LAX3 
concentration. 
p(A,B) = 1 

 4 0 

bB

Aa

kX

Auxink
BAp

x 32

32

/][1

][
),(

1


 

Influx, shoot to 
root 
p(A,B) = 1  

 5 0 
Same equation as 4 to 0 but zero flux since 
p(A,B) = 0  

Influx, shoot to 
root. 
p(A,B) = 0  

Parameters   

p(A,B)  is a switch determining if 
permeability can occur from A to B and is = 
0 or 1; 

 x = 2.0mscaling constant); 

k31 = 2.0 m
2
 s

-1
; k31a = 1.0M; k31b = 0; 

k32a = 10 m
2
 s

-1
; k32b = 1.0M 

Optional 
Michaelis Menten 
kinetics 
depending on the 
value of k31b 

References   
Chilley et al., 2006; Kramer, 2004; 
Rutschow et al., 2014; Suttle, 1988. 
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This work. 

ET 
diffusion 

0, 
1, 
2, 

3, 4 
or 5 

0, 
1, 
2, 

3, 4 
or 5 

xETETETdiff BA  /)][]([  

ET diffuses 
between all GP of 
the same or 
different types 
whether in the 
cytosol or cell 
wall with the 
same diffusion 
coefficient 

Parameters   ETdiff = 600m
2
 s

-1
;  x = 2.0m  

References   This work  

CK 
diffusion 

0, 
1, 
2, 

3, 4 
or 5 

0, 
1, 
2, 

3, 4 
or 5 

xCKCKCKdiff BA  /)][]([  

 
 
  

CK diffuses 
between all GP of 
the same or 
different types 
whether in the 
cytosol or cell 
wall with the 
same diffusion 
coefficient 

Parameters   CKdiff = 220m
2
 s

-1
; Δx = 2.0m  

References   Mellor and Bishopp, 2014. This work  

All other 
species 

diffusion 

0 0 xOtherOtherOtherdiff BA  /)][]([  Diffuse within the 
cytosol only and 
do not cross the 
PM and enter the 
cell wall (for 
PIN12p recycling 
see Table 5.2) 

Parameters   Otherdiff = 220m
2
 s

-1
; Δx = 2.0m  

References   This work  

 

5.4   Results for the new wildtype root 

The alternative crosstalk network model, containing experimentally based 

revised relationships between auxin, cytokinin and downstream ethylene 

signalling, was executed with the simulation time increased from 20,000 to 

30,000 secs to achieve steady state. 

Auxin patterning (Figure 5.4) is very similar to both the previous model and 

experimental imaging, with a maximum occurring in the QC region, a proximally 

diminishing concentration in the vascular cylinder, and an increase in 

concentration in the epidermal cell file in the elongation zone. Relative auxin 

concentrations in the cells files above the initials using the R2D2 reporter 
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(Figure 5.5) and relative auxin concentration in WT, pls mutant and the PLSox 

transgenic (Figure 5.6) show similar trends to experimental observations. 

Ethylene patterning (Figure 5.4) was similar to experimental observations 

(Figure 2.46), with higher levels in the columella, then declining in the 

meristematic region followed by increasing levels in the elongation zone. 

 

Figure 5.4:  Auxin and ethylene concentration colour maps 
                      showing model outcomes similar to experimental results 
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Figure 5.5:  Relative auxin response and concentration trends 
(a) Relative auxin response trends in cell files above the initials (Liao et al., 2015) 
(b) Relative auxin concentration trends from the model (RHS, right hand side) 

 
Figure 5.6:  Average auxin concentration trend 

 demonstrating similar trend to experimental results 

(Liao et al., 2015)
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Experimental data for cytokinin patterning is shown in Figure 5.7 where (a) 

shows relative cytokinin concentrations using cell sorting and mass 

spectrometry techniques (Antoniadi et al., 2015), (b) relative cytokinin response 

patterning using the ARR5::GUS reporter (Werner et al., 2003), and (c) relative 

cytokinin response using a synthetic reporter TCSn::GFP based on type-B ARR 

promoters (Zurcher et al., 2013) which is reported to be more sensitive to 

cytokinin than the ARR5 reporter. All three images show slightly different 

results; (a) represents cell concentration measurements, while (b) and (c) are 

based on reporters with different cytokinin sensitivity (and possibly varied 

sensitivity to different cytokinins) which can also potentially be differentially 

influenced by other signalling pathways which link into the cytokinin pathway. 

Nevertheless, all 3 images show high concentrations or response in the 

columella, with a proximally diminishing signal in the vascular cylinder. (a) and 

(c) suggest higher concentrations in the lateral root cap, and both the reporter 

images (b) and (c) have a low signal in the QC region, not observed in (a). 

 

 

Figure 5.7:  Experimental cytokinin concentration and response data 
(a) Cytokinin relative concentration using cell sorting and mass spectrometry (Antoniadi 
et al., 2015). (b) Cytokinin response using the ARR5::GFP reporter (Werner et al., 
2003). (c) Cytokinin response using the TCSn::GFP reporter (Zurcher et al., 2013). 
 

Zurcher et al., 2013(Werner et al., 2003)(Antoniadi et al., 2015)

ARR5::GUS TCSn::GFPa b c
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Model results for cytokinin concentration patterning were compared to 

experimental measurements using the cell sorting method, and to cytokinin 

response patterning using the more sensitive TCSn::GFP cytokinin reporter 

(Figure 5.8). Model results were very similar to experimental results with high 

cytokinin signalling in the columella and lateral root cap, a proximally 

decreasing signal in the central vascular cylinder and a lower signal between 

the vascular cylinder and the outer lateral cell files. One area of difference 

appears in the QC region where the TCSn::GFP response image (Figure 5.8c) 

gives a lower signal than both the model (Figure 5.8b) and the measured 

cytokinin concentration (Figure 5.8a). 

The model results for average cytokinin and ethylene concentrations in the 

wildtype and pls mutant (Figure 5.9) were similar to prior model results and 

experimental observation (Figure 2.64) with increased cytokinin concentrations 

but an insignificant change in ethylene concentration in the pls mutant. 

Model results for PLS protein (Figure 5.10) and auxin biosynthesis patterning 

(Figure 5.11) were similar to previous model and experimental results. 

 

Figure 5.8:  Comparison of experimental and model cytokinin patterning 
(a) Cytokinin concentration map from cell sorting and mass spectrometry (Antoniadi et 
al., 2015). (b) Model cytokinin concentration colour map. (c) Cytokinin response using 
TCSn::GFP reporter (Zurcher et al., 2013). 

TCSn::GFP
.

Fig 743-1 CK colour map
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Figure 5.9:  Relative model CK and ET concentrations in WT and pls 
Similar to experimental and previous model results. 

 

Figure 5.10:  PLS protein patterning (a) experimental (b) model 
  Model results similar to experimental results and to previous model results. 
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Figure 5.11:  Auxin biosynthesis patterning (a) model (b) experimental 
The model root in (a) corresponds to the bracketed region of the experimental root (b). 

Model results are similar to experimental results and to previous model results 
 

5.5   Summary 

To make it possible to use this model to investigate detailed expression 

patterning of developmental genes regulated by hormonal crosstalk between 

auxin, ethylene and cytokinin, it is particularly important that the model can 

achieve representative cytokinin patterning while maintaining correct patterning 

of other hormones and proteins. As described above, the model was revised 

using a set of alternative relationships between auxin, cytokinin and ethylene 

signalling based on additional experimental evidence from the literature. The 

goal was to maintain the similarities between previous model and experimental 

results while improving the match between experimental and model cytokinin 

patterning. As seen from the above results (Figure 5.8), cytokinin concentration 

patterning now compares favourably with both experimental response imaging 

and concentration measurements. While generating improved patterning, the 

model results for comparative average cytokinin concentrations in WT and pls 

mutant (Figure 5.9) remain similar to experimental observations and there is 

(Petersson et al., 2009)
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minimal change in model results for all other species. With the improvement in 

cytokinin patterning, the revised model now demonstrates more complete 

pattern matching to experimental results than models developed earlier in this 

work. The patterning improvement is created by building in a relationship 

between ethylene signalling and cytokinin degradation. Experimental evidence 

points to links between ethylene signalling and components in the cytokinin 

signalling pathway such as type-B ARR2 (Hass et al., 2004) and type-A ARR5, 

7, 15 (Shi et al., 2012) response regulators, where ARR2 potentially regulates 

cytokinin oxidase (and in turn cytokinin levels), and type-A ARRs regulate the 

activity of the type-B ARRs and other cytokinin target genes. Type-A ARR 

regulation of cytokinin oxidase and cytokinin levels has also been demonstrated 

in rice (Hirose et al., 2007). 

Figure 5.8 compares the model to experimental CK patterning results. It also 

compares two different patterning results from cytokinin concentration 

measurements and from cytokinin response imaging using the synthetic 

TCSn::GFP reporter (based on type-B ARR promoters), with the two 

experimental results showing pattern differences in the QC region. Figure 5.7b 

also shows experimental CK response patterning using the reporter 

ARR5::GUS (a type-A ARR promoter), again showing variation from the other 

two experimental patterns. One reason for the differences could be that 

response imaging using reporter constructs measures hormone signalling which 

is not necessarily equivalent to hormone concentrations. Hormone signalling 

response will depend on the promoter used in the reporter construct and where 

it is positioned in the signalling pathway. The further along the pathway the 

promoter is located, the more likely it is to be influenced by signalling inputs 

from other pathways, so creating potential differences between actual hormone 

concentration and downstream response patterning. As such, imaging using 

reporter constructs is a reflection of multiple signalling inputs. In addition, 

different reporters could possibly have varied sensitivity to the different 

cytokinins which in turn do not necessarily have the same concentration 

patterning, potentially creating additional variability between response images 

generated by different reporters. 
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The difference between the two experimental results for cytokinin patterning 

(Figure 5.8) could be due to the influence of auxin and ethylene concentrations 

on cytokinin response (see Figure Ap 2.1 in Appendix 2 for the more complex 

network). Auxin inhibits the phospho-relay cascade and cytokinin response 

through AHP6 (Bishopp et al., 2011a) and, given the relatively high auxin 

concentrations in the QC, it is possible that cytokinin signalling response (both 

type-B and type-A activation) could be suppressed in this region, as seen in the 

type-B promoter based TCSn::GFP (Figure 5.8c) and the type-A promoter 

based ARR5::GUS response images (Figure 5.7b). This could explain the 

difference between ARR5::GUS and TCSn::GFP response imaging and the 

experimental CK concentration measurements and model results in the QC 

region, where both the model and experimental concentration measurements 

indicate higher relative cytokinin concentrations. Ethylene concentrations could 

also affect cytokinin response imaging in the QC region. Increased ethylene 

inactivates ETR1 and reduces ARR2 activity (a type-B ARR) and also increases 

EIN3, resulting in reduced ARR5 (a type-A ARR) which is an inhibitor of type-B 

ARRs used in the promoter construct of the TCSn::GFP reporter. So ethylene 

potentially both positively and negatively regulates type-B promoters and so 

cytokinin response through at least two pathways. 

Furthermore, it has been shown that the pls mutant is hyper-responsive to 

exogenous cytokinin application (Casson et al., 2002) which is possibly a further 

indicator of the complexity of the linkages between hormone signalling 

pathways and hormone response. Referring to the more complex network 

(Figure Ap 2.1 in Appendix 2), the pls mutant could result in increased response 

to exogenous cytokinin by at least 2 pathways. First, in the pls mutant ETR1 is 

inactivated removing downstream ET signalling inhibition and so 

downregulating ARR5, therebye reducing inhibition of the type-B ARRs which 

upregulate CK responsive genes. Second, auxin is reduced in the pls mutant, 

resulting in downregulation of AHP6 which further reduces inhibition of CK 

response. 

pls null mutants also show reduced responsiveness to auxin (Casson et al., 

2002). Again referring to the more complex network in Appendix 2, this could be 

explained by increased CK concentrations in the pls mutant resulting in the 
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upregulation of type-B ARRs and so the upregulation of SHY2, which inhibits 

the auxin signalling pathway. 

Therefore, the revised network suggests an even more complex role for the 

small PLS protein in hormone crosstalk, including auxin biosynthesis and 

signalling, ethylene response and downstream signalling, and also in the 

activation of the ETR1 receptor and the consequent effect on CK degradation 

and response. This is even further complicated by the effects of CK on PIN 

expression and PIN localisation at the plasma membrane which in turn affects 

auxin transport, concentration and patterning (Ruzicka et al., 2009; Bishopp et 

al., 2011a). 

In addition, it has been demonstrated that cytokinin is transported from the 

shoot to root in the phloem (Bishopp et al., 2011b) and more recently that 

PUP14 cytokinin influx transporters remove cytokinin from the apoplast and 

import it into the cell for degradation (Zurcher et al., 2016) which, in combination 

with local biosynthesis, degradation and diffusion could influence cytokinin 

concentration and signal patterning in the root tip. Interestingly, in a different 

context for root development analysis, it has also been shown that an additional 

component is required to position cytokinin signal patterning (Muraro et al., 

2014). 

Therefore, the combination of the analysis in this work with the information in 

the literature indicates that the patterning of cytokinin concentration, response 

and signalling requires further experimental study and a more complex model 

network to further improve model comparison with experimental results.  
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DISCUSSION 

6.1   Introduction 

Experimental information accumulated over many years indicates that, in root 

development, hormones and the associated regulatory and target genes form a 

network in which relevant genes regulate hormone activities and hormones 

regulate gene expression. Functionally important patterns of hormone 

distribution, hormone responses and gene expression are presumed to emerge 

from these interactions and, although many individual links in the crosstalk 

network have been established including complex feedback relationships, for 

example ethylene activates the biosynthesis of auxin locally in the root tip 

(Stepanova et al., 2007; Swarup et al., 2007) and both auxin and cytokinin can 

synergistically activate the biosynthesis of ethylene (Chilley et al., 2006; 

Stepanova et al., 2007), little is known about how patterning is generated. The 

importance of understanding pattern development is reinforced by numerous 

experimental analyses showing that auxin patterning, with a localized 

concentration maximum in the root tip, is pivotal for correct root development 

(Sabatini et al., 1999). 

The goal of this project was to build a 2-D spatiotemporal model of hormonal 

crosstalk to reproduce experimental patterning of auxin, cytokinin and ethylene 

hormones, gene expression, and associated regulatory and transport proteins, 

and to simultaneously reproduce observed average hormone concentration 

trends in wildtype and mutants. The work involved several phases in which the 

model was progressively developed to improve the replication of experimentally 

observed hormone and gene expression patterning and to investigate in more 

detail the roles of auxin transporters in pattern formation. 

The development of this series of integrative models, each of which combine 

experimental data with the construction of a hormonal crosstalk network, a 2-D 

spatial root structure for cell–cell interactions, and spatiotemporal modelling, 

demonstrates that the spatiotemporal dynamics of hormonal crosstalk 

establishes a causal relationship for the amount of auxin, ethylene, cytokinin, 

PIN protein and PLS protein, as well as the mechanisms for generating 

patterning in these hormones and proteins. 
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6.2   The rectangular root model 

The original rectangular root model was based on a multicellular auxin transport 

model (Grieneisen et al., 2007) and single cell crosstalk models (Liu et al., 

2010; Liu et al., 2013), where the crosstalk network from the single cell models 

was essentially embedded into each cell of the multicellular auxin transport 

model. The parameters of the model were calibrated from the literature, or by 

matching experimental results, to generate an initial wildtype parameter set. 

This initial model matched most fit criteria: the average auxin concentration was 

similar to experimental measurements, trends in auxin concentration in 

wildtype, mutants and the transgenic PLSox over-expressor were qualitatively 

correct, colour map images and profiles of auxin concentration matched 

experimental observations, and the PIN and AUX1 carriers predominantly 

located to the plasma membrane. AUX1 patterning was only a partial match to 

experimental imaging suggesting that additional factors could regulate AUX1 

expression, and, while the average cytokinin concentration in wildtype and pls 

mutant showed similar trends to experimental results, cytokinin results did not 

match experimental patterning images in this initial model; nevertheless, 

alternative network relationships between auxin and cytokinin were analysed 

and found not to significantly affect other model results. Further research was 

conducted (Chapter 5) in an attempt to improve cytokinin patterning while 

maintaining the similarity between model and experimental results for other 

species. 

The model was tested to see if it was overly sensitivity to parameter variation 

around wildtype values. Testing was performed on a number of parameters 

including diffusion, biosynthesis and decay rates, and the model proved robust 

to variation in these parameter values. The model was also tested for variation 

in the rates of diffusion and expression of the auxin carriers PIN and AUX1 

which influence auxin transport through the root. Again the model proved 

robust, with the auxin maximum forming over a wide range of values. 

The model was revised to include a more realistic graduated change in cell 

length in the transition zone (the Gradual Growth model) compared to the 
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sudden length change used in the original Grieneisen et al. (2007) model, with 

the only impact being to smooth out some of the sudden (but minor) transitions 

in the concentration profiles. 

The model matched observed auxin patterning and profiles and to a large 

degree the average concentration trends for mutants. Similarly, experimental 

results for auxin flux from shoot to root for different mutants were matched by 

the model, except that results for the double mutant pls etr1 were slightly high 

compared to WT. However, double mutant interactions are complex and tend to 

be very difficult to model especially when there are multiple non-equivalent 

ethylene receptors which can act in clusters, each of which could independently 

or as a group affect ethylene signalling, and there is also evidence of multiple 

ethylene signalling pathways (see Appendix 2). ET and PLS experimental 

imaging data compared favourably with model results as did the auxin 

concentration profiles for wildtype and the aux1 mutant. 

Experimental analysis has shown that PIN content in Arabidopsis varies in 

response to a range of hormones and that hormonal interactions determine PIN 

localization patterns (Liu et al., 2013). Auxin positively regulates levels of 

several PIN proteins in different developmental contexts (Blilou et al., 2005; 

Laskowski et al., 2006; Chapman and Estelle, 2009; Vanneste and Friml, 2009) 

by a signalling pathway regulating transcription (Woodward and Bartel, 2005), 

and by promoting accumulation at the plasma membrane (Paciorek et al., 

2005). Ethylene also up-regulates PINs (e.g. PIN2, Ruzicka et al., 2007) while 

cytokinin negatively regulates PIN1, PIN2 and PIN3, but positively regulates 

PIN7 (Ruzicka et al., 2009; Bishopp et al., 2011a). In this work, to be consistent 

with Grieneisen et al. (2007), the investigation initially concentrates on PIN1 and 

PIN2. In addition, since PIN3 (which is negatively regulated by cytokinin) and 

PIN7 (positively regulated by cytokinin) are in part localized at similar positions 

in the root (Ruzicka et al., 2009; Bishopp et al., 2011a), it may be reasonable to 

assume that the overall effects of cytokinin on both PIN3 and PIN7 have a 

reduced net effect on auxin transport. PIN concentrations are also influenced by 

other genes; for example, in the pls mutant, both PIN1 and PIN2 increase (Liu 

et al., 2013). 
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During Arabidopsis root development, both the amount and patterning of 

hormones, proteins and auxin carriers are interlinked. For example, in the wild-

type root, PIN1 concentrations generally decrease from the proximal to the 

distal region (Figure 2.67) and PLS generally increases from the proximal end 

to the distal end (Figure 2.47). However, in the pls mutant, PIN1 concentrations 

generally increase from the proximal to the distal end. In addition, in the pls 

mutant, the average auxin, ethylene and cytokinin concentration or response in 

the root is reduced, remains approximately constant, and is increased, 

respectively (Chilley et al., 2006; Liu et al., 2010), while the average PIN1 

concentration increases (Liu et al., 2013). 

Model results for PIN root concentrations for different mutants largely matched 

experimentally observed concentration trends. The predominant localization of 

the PIN and AUX1 carrier proteins to the plasma membrane was consistent with 

experimental imaging. Model PIN concentration profiles were also compared to 

PIN1 and PIN2 profiles derived from experimental images for different mutants 

and the PLSox transgenic. Model PIN profiles in the vascular cylinder compared 

favourably with the experimental PIN1 data; however, PIN2 profiles only 

matched for wildtype and PLSox possibly due to the difficulty of scanning and 

combining the data from the epidermal regions of the root images. Also the 

model only represented a single PIN protein so did not model possible 

differences in regulation of level and localization between PIN1 and PIN2. 

The work on testing model sensitivity to variation in PIN and AUX1 rates of 

expression and diffusion demonstrated the importance of coordination between 

the influx and efflux carriers in establishing patterning, as investigated in greater 

depth in Chapter 4. In order for the model root to generate auxin patterning 

similar to experimental results, the permeability of both the PIN and AUX1 auxin 

carrier proteins is important and must be limited to certain ranges. It can be 

concluded that both PIN and AUX1 proteins work together to generate auxin 

patterning similar to experimental results. It has also been suggested that AUX1 

influx must be at least equal to PIN efflux to avoid auxin depletion in the cells 

(Kramer, 2004). 

Previous modelling results have suggested that either the auxin efflux carrier 

PIN activity (Grieneisen et al., 2007; Wabnik et al., 2010) or the AUX1 activity 
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(Band et al., 2014) are essential to create the auxin gradient at the root tip. The 

importance of the coordination of the properties and regulation of the PIN and 

AUX1 auxin carrier proteins is emphasised by the model results. These suggest 

that the coordination of AUX1 and PIN processes should also include 

transcription, translation and decay, diffusion rates, concentration at the plasma 

membrane and protein recycling, to maintain the AUX1 to PIN balance and 

prevent auxin from being trapped in the cytosol or cell walls, so facilitating 

correct auxin transport and formation of the auxin maximum. 

6.3   The realistic root model 

The initial work in Chapter 2 involved combining previous studies by embedding 

a single cell crosstalk model into a simple rectangular multicellular root structure 

to try to reproduce 2-D hormone and gene expression patterning in the root tip. 

Further work would obviously be limited by continuing to compare experimental 

imaging from a ‘real’ root with model results from a simple rectangular root; 

therefore, it was necessary to produce a much more realistic digital root map 

and wildtype root structure for use with the existing model. As demonstrated, 

the final realistic digital root map was a good reproduction of published images. 

The digital realistic root map was of increased resolution containing 

approximately 375,000 pixels compared to the rectangular root with 85,000 

pixels, and  also importantly contained more identifiable and defined root 

structures and regions within the root tip, in particular the lateral root cap, to 

allow cell-scale comparison with experimental images. 

Much of the work in this phase of the project involved creating a realistic digital 

root map from published images originally derived from confocal image stacks. 

This required the development of a series of programs to take the original 

flawed data from a scanned image and then iteratively refine and correct the 

data to produce a final rootmap to match the original imaging, with each cell 

having a cytosol and cell wall, and including some extra-cellular space. 

Since the crosstalk network did not accurately reproduce AUX1 patterning, it 

was decided to prescribe the level and location of wildtype AUX1 auxin influx 

carriers based on experimental imaging. At the same time additional auxin 

carriers LAX2, LAX3, PIN3, PIN4 and PIN7, for which insufficient regulatory 



207 

 

knowledge was available to include in the network, were similarly prescribed 

based on experimental data. The reversible ABCB carriers were implicitly 

included in the non-polar base activity of other influx and efflux carriers. As 

such, all important known auxin influx and efflux carriers were included in the 

realistic root model. 

Using the same parameter value set and crosstalk relationships, the realistic 

root model reproduced all the results from the rectangular root and similarities 

to experimental observations, including additional predictions regarding the 

effects of the loss of PIN3, PIN4 and PIN7 on PIN1 and PIN2 patterning and 

predictions on auxin biosynthesis patterning that were similar to experimental 

results. This demonstrated that the original results were not dependent on the 

artificial rectangular root structure. The realistic root model also enabled more 

detailed comparison of auxin concentration trends in selected cells as 

demonstrated by the similarity between model and experimental R2D2 reporter 

results on relative auxin response trends in cell files proximal to the initials. 

Auxin patterning in the realistic root was also a better match to experimental 

patterning, showing increased auxin concentrations in the epidermal cells in the 

elongation zone, not evident in the rectangular root model, and likely due to the 

action of AUX1 to retain auxin in these cells. While there were some 

improvements in cytokinin patterning, the model still exhibited limitations in 

matching experimental results and also still relied on somewhat artificially 

limiting cytokinin biosynthesis to the central cell files instead of being fully 

controlled by the crosstalk network. 

The results further reinforce the concept that individual elements of 

experimental data can be integrated into a larger model of a biological system 

to be able to reproduce and better understand such complex characteristics as 

hormone and gene expression patterning. 

6.4   The roles of auxin influx and efflux carriers in auxin patterning 

At this stage of the project, the model integrated experimental crosstalk data 

into a realistic root map to produce patterning results that were similar in most 

cases to those observed experimentally. The next step was to use the existing 
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model to further investigate the roles of the influx and efflux carriers in 

establishing auxin patterning. 

Experimental evidence shows that the quantitative properties of auxin gradients 

are important factors in regulating Arabidopsis root development. Auxin gradient 

formation is predominantly regulated by influx and efflux carriers that play 

distinct roles in controlling cellular auxin concentrations by moving auxin into 

and out of each cell. Directional auxin movement is coordinated by the 

combined activities of polar PIN efflux proteins, and AUX1/LAX influx proteins, 

that can have both non-polar (Peret et al., 2012) and polar (Kleine-Vehn et al., 

2006) localisation depending on cell type. 

The roles of influx and efflux carriers in plant development have been the 

subject of extensive investigation. Existing research predominantly explains 

experimental observations by the activity of either the auxin influx carriers 

(Swarup et al., 2001; Swarup et al., 2005; Dharmasiri et al., 2006; Ugartechea-

Chirino et al., 2010; Peret et al., 2012; Fàbregas et al., 2015; Robert et al., 

2015), or the activity of efflux carriers (Adamowski and Friml, 2015; references 

therein), or the ABCB transporters (Geisler et al., 2005; Geisler and Murphy, 

2006; Cho et al., 2007; Cho and Cho, 2012), rather than analysing the 

integrated action of all carrier types. Although accumulated experimental 

evidence demonstrates that both auxin influx and efflux carriers have roles in 

plant development, a major obstacle for elucidating auxin patterning is the lack 

of a methodology to integrate the functions of these carriers. Previous modelling 

analysis has made efforts to study the actions of both influx and efflux carriers, 

but tends to emphasize the independent activities of either the efflux 

(Grieneisen et al., 2007) or the influx carriers (Band et al., 2014). The model 

developed in this work effectively integrates the function of all of these important 

known auxin transporters, rather than treating them as separate independent 

entities, to assist understanding of the coordinated action of the auxin carriers in 

auxin pattern formation. 

To quantitatively investigate the integrated roles of the two carrier families in 

driving auxin patterning, it was necessary to develop a process which, after 

perturbing auxin patterning by changing the distribution of one carrier type, 

could generate the adjustments required to the other carrier type to rescue the 
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original patterning. In doing so, it would then be possible to better understand 

the integrated roles of the influx and afflux carriers. 

An iterative process was developed, the ‘Recovery Principle’, where after 

adjustments to either carrier type, and consequent perturbation of auxin 

patterning, the distribution of the other carrier type was progressively adjusted 

to eventually recover the original auxin patterning before perturbation. Use of 

the recovery principle allowed the theoretical investigation of how the level and 

localisation of the influx and efflux carriers are potentially interlinked to generate 

auxin patterning. It was shown that multiple combinations of influx and efflux 

carriers could potentially generate the same auxin patterning, and that after 

pattern perturbation by changes to one carrier set, then pattern recovery relied 

on changes to both the level and localisation of the other carrier set. The 

theoretical existence of multiple combinations of influx and efflux carrier sets 

that achieve the same target auxin patterning, raises the possibility that 

perturbations in one carrier type, due to say environmental conditions or stress, 

could potentially be compensated by adjustments to the other carrier type to 

maintain auxin homeostasis. Interestingly, it has been suggested that dynamic 

recycling of auxin carrier proteins could enable the cell to adjust concentrations 

of auxin carriers at the plasma membrane to respond quickly to environmental 

changes, by adjusting auxin flow and patterning (Kleine-Vehn et al., 2006). 

The recovery principle describes a methodology which allows the quantitative 

integrated analysis of the linkage between auxin and influx and efflux carrier 

patterning (Figure 4.16a), and as such, sheds light on the integrated actions of 

influx and efflux carriers and suggests that further understanding of the roles of 

auxin carriers in auxin patterning requires the study of the relationships between 

the carriers, as well as the study of each individual carrier.  

This work also demonstrates that once auxin patterning is recovered using the 

recovery principle, PIN1 and PIN2 patterning also recovers due to the action of 

hormonal crosstalk, which suggests that auxin controls the patterning of its own 

transporters via hormonal crosstalk. Control of patterning of the other 

prescribed transporters can be elucidated in the future by conducting further 

experimental research and combining experimental data with modelling 

analysis. The design of specific experimental measurements will be critical to 
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provide the necessary data for constructing hormonal crosstalk networks for 

these transporters. 

Mechanisms for self-organizing polar auxin transport and auxin pattern 

formation (where auxin flux and/or concentration patterning determine and in 

turn are determined by auxin carrier distribution) have been the subject of 

extensive study using mathematical models. A review discussed various models 

and mechanisms (van Berkel et al., 2013) which can be divided into flux-based 

or concentration-based models.  However, they only consider the relationships 

between auxin and PIN efflux carriers. This work reveals that the relationships 

between influx and efflux level and polarity (rather than separate influx or efflux 

carrier activity) could control polar auxin transport and auxin pattern formation.  

In addition, a recent modelling study has suggested that auxin influx carriers 

can play an important role in polarising PIN carriers by affecting extracellular 

auxin concentrations (Cieslak et al., 2015), therefore future research on 

possible mechanisms for polar auxin transport should study the combined roles 

of efflux and influx carriers, focussing on how the relationship between auxin 

and polar PIN depends on the levels and localisation of the influx carriers. 

6.5   Improved cytokinin patterning 

Previous models developed in this work generated relative average cytokinin 

root concentrations in wildtype and the pls mutant that were consistent with 

experimental results; however, model cytokinin concentration patterning 

exhibited significant discrepancies from experimental observations. Trials with 

alternative experimentally based relationships between auxin and cytokinin 

failed to improve patterning but did demonstrate that other model results were 

not dependent on these alternative auxin-to-cytokinin relationships. 

Cytokinin is a developmentally significant hormone. The ratio of auxin to 

cytokinin is particularly important for balancing cell division and cell 

differentiation in the meristem, and therefore determines meristem size and 

regulates root length. For future development of this work, it was therefore 

essential that improvements were made to cytokinin patterning and that these 

were based on experimental data. As discussed in Chapter 5, additional 

literature searches revealed possible alternative experimentally based 



211 

 

relationships between auxin, cytokinin and ethylene signalling, where signalling 

from the ethylene pathway regulates cytokinin degradation and therefore 

concentration patterning. 

Model results from this proposed alternative crosstalk network produced 

cytokinin patterning which closely matched two types of experimental data, one 

using cell sorting and mass spectrometry methods to directly measure cytokinin 

concentrations in various regions of the root, and the second from cytokinin 

reporter response imaging. The revised model yielded improved representation 

of cytokinin patterning, while other results still remained consistent with 

experimental data. Nevertheless, although the revised network is based on 

experimental data, it remains to be confirmed by additional experimental work. 

Cytokinin patterning results from the revised model, while matching 

experimental concentration measurements, did not appear to fully reflect 

response imaging in the QC region. As discussed extensively in section 5.5 this 

could be due to differences between response and concentration, and possibly 

indicates that additional factors influence cytokinin patterning. To further 

improve CK patterning and comparisons between model and experimental 

results, model enhancements should include any such additional regulatory 

factors as well as the ability to generate CK response data to allow direct 

comparison between experimental response images and model response 

(rather than concentration) colour maps. 

In the previous models, cytokinin patterning was partially improved by limiting 

cytokinin biosynthesis to the central cell files and removing it from the outer cell 

files. In the revised model, this artificial limitation on cytokinin biosynthesis was 

removed so that cytokinin biosynthesis occurred in all cells, but at different rates 

that were fully regulated by the network. 

This latest model, while exhibiting significantly improved cytokinin patterning, 

does not represent two possibly important features of cytokinin transport and 

degradation noted earlier. Cytokinin has been shown to be transported in the 

phloem from the shoot to root in sufficient quantities to affect root development 

(Bishopp et al., 2011b); however, it was postulated that this long-distance 

cytokinin transport might only affect vascular development while cytokinin 

regulated development of other root tissues is driven by local biosynthesis, 
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decay and flux. Also, in a recent paper (Zurcher et al., 2016), cytokinin influx 

transporters PUP14 were identified which remove cytokinin from the apoplast 

into the cytosol where it is degraded. This implies that PUP14 transporters are 

potentially important in the regulation of cytokinin degradation. Should PUP14 

transporters exhibit distribution patterning in the root, then another level of 

complexity is added to the patterning of cytokinin degradation and therefore to 

cytokinin patterning and signalling. 

6.6   Conclusions 

This project followed an iterative process to develop representative 

experimentally-based hormone and gene expression crosstalk models to 

explain pattern formation in the Arabidopsis root tip (Figure 6.1). Experimental 

data were initially reviewed to establish model relationships; the relationships 

were defined using standard kinetic equations; where available, published 

parameter values were utilized otherwise values were calibrated by fitting model 

outcomes to experimental results; and finally model predictions were tested 

against experimental imaging and data. The initial model was then 

progressively modified (based on additional experimental information) to 

produce increasingly representative comparisons with experimental results. 

 

 

Figure 6.1:  Iterative process to build the model 
 

 

The model makes it possible to further investigate hormone and gene 

expression patterning in WT and mutants, in particular auxin pattern formation. 

Results suggest that auxin patterning is predominantly driven by directional 

auxin transport (consistent with Grieneisen et al., 2007) mediated by the 

concentration and localization of the influx and efflux carriers, since while auxin 
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patterning was fairly robust to all but extreme changes in rates of diffusion, 

biosynthesis and decay for many species, it proved more sensitive to changes 

in parameter values associated with auxin influx and efflux carriers (section 

2.6). Even changing the regulatory relationships between auxin and cytokinin or 

implementing tissue-specific cytokinin biosynthesis had little impact on auxin 

pattern formation (section 2.6). It has been proposed that auxin patterning is the 

result of PIN efflux carriers directing auxin flux through the root, while the 

AUX1/LAX influx carriers act to retain cellular auxin and create the auxin 

maxima (Band et al., 2014); however, this work indicates that the regulation of 

auxin pattern formation could be more complex. The recovery principle in 

Chapter 4 demonstrates that auxin pattern homeostasis can theoretically be 

maintained by coordinating the concentration levels and polarity of the influx 

and efflux carriers at the plasma membrane. It has also been suggested that 

modification of carrier localization (to quickly adjust auxin patterning in response 

to environmental changes) could be achieved by modifying the rates of carrier 

recycling to the plasma membrane (Kleine-Vehn et al., 2006). Such a 

mechanism for adjusting auxin patterning assumes that it is possible that both 

the level and polarity of PIN and AUX1/LAX carriers can vary in response to 

environmental change; but, although AUX1 polarity is observed in protophloem 

cells (Kleine-Vehn et al., 2006), imaging data generally suggests a more 

uniform distribution of AUX1 at the cell faces. Nevertheless, since AUX1 

permeability is thought to be greater than PIN permeability to prevent depletion 

of auxin in the cells (Kramer, 2004), minor AUX1 cellular polarity could be 

sufficient to achieve target auxin patterning, but at the same time be more 

difficult to observe experimentally. Similarly AUX1 polarity adjustments in 

response to changing environmental conditions could potentially modify auxin 

patterning through relatively small variation in AUX1 concentrations, again 

making it more difficult to experimentally observe polarity. Another interesting 

concept is that since root geometry constrains auxin directional flux it potentially 

also influences auxin accumulation and patterning, and in turn root development 

and root geometry. Therefore, influx and efflux carrier placement at the plasma 

membrane, auxin transport and accumulation, and root geometry could interact 

to determine auxin patterning and regulate root development. 
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While model results for PIN1 longitudinal concentration gradients matched 

experimental observations for WT and most mutants, PIN2 longitudinal 

patterning for the mutants did not, possibly indicating different or more complex 

regulatory pathways/factors for PIN1 and PIN2 localization and level. Similarly, 

AUX1 model patterning did not match experimental observations, suggesting 

additional regulatory factors influence AUX1 level and localisation, such as 

cytokinin (Street et al., 2016). 

Comparison of multiple (and differing) experimental cytokinin patterning results, 

with each other and with modelling results (section 5.4), reveals possible 

limitations in the use of reporters as surrogate measures for concentration 

patterning. A good example is the regulation of ARR5, which is commonly used 

as a reporter mechanism for cytokinin (Zurcher et al., 2013). ARR5 can be 

regulated by multiple pathways (see App 2.1). The Type-B ARRs are 

upregulated by cytokinin and in turn upregulate the Type-A ARRs, including 

ARR5 (El-Showk et al., 2013; Kim et al., 2012; Zurcher et al., 2013). However, 

ARR5 is downregulated by downstream ethylene signalling which is also 

regulated from the cytokinin pathway (El-Showk et al., 2013 and see section 

App 2.1). In the pls mutant, cytokinin levels increase (Table 1 in Liu et al., 

2010), so potentially upregulating ARR5; however, downstream ethylene 

signalling also increases which downregulates ARR5. Ethylene, cytokinin and 

PLS upregulate auxin biosynthesis, which in turn upregulates AHP6 which 

inhibits cytokinin signalling and ARR5 (Bishopp et al., 2011a and section App 

2.1). Reporter expression is further complicated by the fact that regulation 

pathways will very likely be non-linear, for example the bell-shaped regulation of 

cytokinin oxidase activity by cytokinin (Chatfield and Armstrong, 1986). This 

demonstrates the complexity of just some of the signalling pathways that control 

ARR5 regulation and there are likely many additional hormone linkages which 

influence ARR5 expression. The existence of cytokinin transport and influx 

carriers potentially further complicates the regulation of cytokinin concentration 

and the interpretation of experimental reporter imaging and patterning. This 

suggests the need for better understanding of the relationships between 

hormone concentrations and commonly used experimental reporters, to allow 



215 

 

improved interpretation of experimental imaging results for cytokinin and other 

hormones.  

The difference between certain experimental and model results for ethylene 

receptor mutants (particularly the double mutant pls etr1-1), for example shoot 

to root auxin transport (Figure 2.44), average auxin concentration (Figure 2.12) 

and the PIN1 concentration profile (Figure 2.52) in the double mutant, and PIN1 

concentrations in the single mutant (Figure 2.49), demonstrates the complexity of 

ethylene perception, which involves multiple receptors acting in different 

configurations and clusters (Yoo et al., 2009; Mayerhofer et al., 2012). The 

degree of receptor complexity makes it increasingly difficult to fully understand 

the regulation of downstream ethylene signalling, even before taking into 

account links to and from other signalling pathways, and is a further example of 

the intricacies of signalling pathways and multiple pathway interactions that 

have to be addressed to improve understanding of hormone pattern formation, 

gene expression and ultimately root development. 

There are areas of the model which require revision to better reproduce 

experimental results; for example, the longitudinal trend in PIN2 concentration 

profiles, results for certain etr1 mutants compared to wildtype as detailed above, 

and some features of cytokinin patterning. Model modifications could include 

long-distant cytokinin phloem transport, the influence of PUP14 patterning on 

cytokinin influx and degradation, separate networks for the regulation of PIN1 

and PIN2 levels or localization, network additions for cytokinin regulation of 

PIN1, PIN3 and PIN7 auxin carrier placement in the vasculature (Bishopp et al., 

2011a), enhanced regulation of AUX1 expression including the recently 

demonstrated inhibition of AUX1 by cytokinin (Street et al., 2016), network 

regulation of auxin carriers which currently have prescribed wildtype level and 

localization, the inclusion of additional hormones and genes, and more detailed 

downstream hormone signalling and linkages between the hormone signalling 

pathways (for example auxin inhibition of cytokinin signalling through AHP6). 

Earlier discussions on comparisons between the model and experimental 

results for cytokinin patterning (above and section 5.4) raised the issue of 

potential differences between hormone concentrations and reporter imaging, 

often necessarily used as a surrogate measurement for concentration. A useful 
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model enhancement would therefore be the inclusion of commonly used 

reporter constructs into the hormone signalling pathways so that model 

predictions for both hormone concentration and specific reporter response 

patterning could be generated and compared to experimentally observed 

response imaging and concentration measurements. This would allow more 

accurate comparison and interpretation of model and experimental results. 

Potentially, such a model could also be used to assist in the design of novel 

hormone response reporters. 

Despite the current limitations of this 2-D spatial model, the final version, 

including the latest modifications to improve cytokinin patterning, produces 

results which represent many key features of wildtype patterning for all species 

regulated by the network as well as concentration trends for WT and many 

mutants. It therefore provides an initial explanation of how hormonal crosstalk 

controls gene expression and patterning in the Arabidopsis WT and mutant 

roots. 

This research has integrated a wide range of experimental data to establish a 

data-driven mechanistic model for both elucidating the control of hormone 

patterning and gene expression and for making various predictions, all within a 

realistic root map which enables detailed comparison to experimental results for 

individual regions, cell types or cell files within the root tip. Nevertheless, the 

current model is considered a starting point since it can only analyse the 

contribution to patterning (in particular auxin patterning) of those components 

that are included in the hormonal crosstalk network. Given that hormone 

signalling is the ultimate driver of gene expression and so root development, 

future research should include the integration of other hormones, signalling 

molecules and additional developmentally relevant gene expression processes 

into the model, followed by combined modelling and experimental studies to 

clarify the contribution of each process to patterning and root development.  

Another area for model development could be the analysis of relationships 

between gene expression, hormone patterning and root growth which would 

require the inclusion of additional proteins and hormones. Recent studies have 

shown that growth and hormonal patterning can affect each other through gene 

expression, cell division, cell expansion and dilution (De Rybel et al., 2014; 
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Mahonen et al., 2014), therefore future research could investigate relationships 

between the spatiotemporal dynamics of hormonal crosstalk and growth. The 

effects of osmotic stress on root growth could also be researched by the 

addition of the hormone abscisic acid to the crosstalk network, based on 

experimental results from Rowe et al. (2016). 

The model could potentially be used to further investigate how PIN polarity is 

established and maintained in a 2-D multicellular root. If it is the case that self-

organizing PIN polarity is ultimately a function of hormone patterning and/or flux 

(as reviewed in van Berkel et al., 2013) then it could be possible to adapt the 

model such that PIN is initially set in a non-polar uniform distribution and is then 

iteratively adjusted, based on say auxin concentration or flux, to see if a final 

steady state is achieved and if the steady state PIN distribution exhibits polarity, 

levels and localisation similar to wildtype. In this proposed version of the model, 

auxin concentration gradients or flux would be factors in determining PIN 

distribution and polarity, which in turn would adjust auxin patterning until a 

steady state was established. If PIN polarity is in part established by auxin flux 

and/or patterning, then important parameters driving the model would be a 

combination of auxin influx at the shoot-root border and local auxin biosynthesis 

and decay in each cell. 

In root development, the complexity of hormonal signalling includes many 

factors. The spatiotemporal dynamics of hormonal crosstalk, which integrates 

hormonal crosstalk at a cellular level with root structure, are able to explain two 

important factors – the level and patterning of hormones/hormone response and 

gene expression. Recent modelling and experimental work (Bargmann et al., 

2013; Chickarmane et al., 2010; De Rybel et al., 2014; Hill et al., 2013) show 

that integration of regulatory networks into spatial root structures is a promising 

tool for elucidating mechanisms of development. By integrating more genes into 

the hormonal crosstalk network (Bargmann et al., 2013; De Rybel et al., 2014; 

Hill et al., 2013; Mintz-Oron et al., 2012) and enhancing the root structure to 

include further details of cell to cell communication (Chickarmane et al., 2010; 

De Rybel et al., 2014; Hill et al., 2013), it should be possible to expand the 

understanding of levels and pattern formation to include additional hormones 

and gene expression and, for example, the relationships between auxin 
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patterning and polarity, patterning of multiple efflux and influx carriers, and 

auxin metabolism (biosynthesis, degradation and conjugation).  

The current crosstalk network is relatively simple when compared to the more 

detailed network in Appendix 2, which still only contains 3 hormones. Given that 

the network complexity will increase exponentially with additional hormone 

pathways, gene expression and pathway linkages, it is evident that the only way 

to analyse such complex biological networks as integrated systems is by a 

combined experimental and modelling approach. The last phase of this work, 

involving the development of an alternative crosstalk network for cytokinin 

regulation by ethylene signalling, is a good example of the advantages of this 

approach. The use of an experimentally based model allows accepted 

relationships in complex systems to be challenged by model outcomes and then 

alternative solutions, based on experimental data, proposed and investigated. 

This approach makes it possible to explore different relationships and gain a 

deeper understanding of the dynamics of complex biological systems.  

Potentially this approach, with the tools already developed in this work, could 

also be used to investigate hormonal crosstalk and hormone and gene 

expression patterning for other regions of the Arabidopsis root and shoot. 
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APPENDIX 1:  RUNNING THE REALISTIC ROOT MODEL (WT200) 

(USER INPUTS IN RED) 
 

=====ROOT MODELLING PROGRAM vs29d WITH WT200 NETWORK===== 

 

                     Input the RUN NUMBER: WT200 

                     Input the time step and simulation time: 

                                 The time step (second)= 100 

                                 The simulation Time(s)= 20000 

 

         Input real root switch, 0 for rectangular root, 1 for real root: = 1 

 

         Input # data output sets/simulation time (recommend 1):          = 1 

         SET MAX # OF DATA DUMPS ALLOWED (to restrict file size):         = 5 

         This uses up to 300 MB of storage  Is this OK? 0 = NO, 1 = YES:  = 1 

 

         Input COMBINED PIN12347 START [ARRAY] ?     NO = 0, YES = 1:  0 

 

         For RECOVERY ITERATIONS combined auxlax array must be input 

         Input COMBINED AUX1,LAX2,3 START [ARRAY] ?  NO = 0, YES = 1:  0 

 

         AUTO RECOVERY BY AUXLAX OR PIN RE-SETS      NO = 0, YES = 1:  0 

 

         SET START AUX1 concentrations (synthesis at 0) NO = 0, YES = 1: 1 

         SET START LAX2 concentrations NO = 0, YES = 1:                  1 

         SET START LAX3 concentrations NO = 0, YES = 1:                  1 

 

         SET START PIN3 concentration? NO = 0, YES = 1:                   1 

         SET START PIN4 concentrations? NO = 0, YES = 1:                 1 

         SET START PIN7 concentrations? NO = 0, YES = 1:                 1 

 

         HORMONE FEEDING? Input 0 for NO or 1 for YES:                   0 

 

================ VALUE OF PARAMETERS =============== 

 Input START LEVEL 4 (MAX) PIN3 concentration (micro M)     0 

 Input START LEVEL 3 PIN3 concentration (micro M)                1 

 Input START LEVEL 2 PIN3 concentration (micro M)               .25 
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 Input START LEVEL 1 (MIN) PIN3 concentration (micro M)     .06 

 Input START LEVEL 4 (MAX) PIN4 concentration (micro M)     0 

 Input START LEVEL 3 PIN4 concentration (micro M)                .5 

 Input START LEVEL 2 PIN4 concentration (micro M)                .1 

 Input START LEVEL 1 (MIN) PIN4 concentration (micro M)     .02 

 Input START LEVEL 4 (MAX) PIN7 concentration (micro M)     0 

 Input START LEVEL 3 PIN7 concentration (micro M)                1 

 Input START LEVEL 2 PIN7 concentration (micro M)                .25 

 Input START LEVEL 1 (MIN) PIN7 concentrations (micro M)    .06 

  Input START LEVEL 15 (MAX) AUX1p concentration (micro M)  0 

  Input START LEVEL 14 AUX1p concentration (micro M)             0 

  Input START LEVEL 13 AUX1p concentration (micro M)             0 

  Input START LEVEL 12 AUX1p concentration (micro M)             0 

  Input START LEVEL 11 AUX1p concentration (micro M)             0 

  Input START LEVEL 10 AUX1p concentration (micro M)             0 

  Input START LEVEL 9 AUX1p concentration (micro M)               0 

  Input START LEVEL 8 AUX1p concentration (micro M)               0 

  Input START LEVEL 7 AUX1p concentration (micro M)               0 

  Input START LEVEL 6 AUX1p concentration (micro M)               0 

  Input START LEVEL 5 AUX1p concentration (micro M)               0 

  Input START LEVEL 4 AUX1p concentration (micro M)               0 

  Input START LEVEL 3 AUX1p concentration (micro M)               2.25 

  Input START LEVEL 2 AUX1p concentration (micro M)               1 

  Input START LEVEL 1 (MIN) AUX1p concentration (micro M)     .75 

  Input START LEVEL 8 (MAX) LAX2 concentration (micro M)        0 

  Input START LEVEL 7 LAX2 concentration (micro M)                   0 

  Input START LEVEL 6 LAX2 concentration (micro M)                   0 

  Input START LEVEL 5 LAX2 concentration (micro M)                   0 

  Input START LEVEL 4 LAX2 concentration (micro M)                   0 

  Input START LEVEL 3 LAX2 concentration (micro M)                   1.75 

  Input START LEVEL 2 LAX2 concentration (micro M)                   0 

  Input START LEVEL 1 (MIN) LAX2 concentration (micro M)         0 

  Input START LEVEL 4 (MAX) LAX3 concentration (micro M)        0 

  Input START LEVEL 3 LAX3 concentration (micro M)                   1.75 

  Input START LEVEL 2 LAX3 concentration (micro M)                   0 



222 

 

  Input START LEVEL 1 (MIN) LAX3 concentration (micro M)         0 

========== ROOT STRUCTURE ========== 

         DEFAULT NUMBER OF ROWS IN ROOT MAP FILE          =          1150 

         DEFAULT NUMBER OF COLS IN ROOT MAP FILE          =              326 

         USE DEFAULT ROOT MAP DIMENSIONS?    1 = YES, 0 = NO           1 

 

         Default ROOT MAP FILE is                  RR1150pin12mapvs25.txt 

         Use default?    1 = YES, 0 = NO                    1 

         INPUT SIZE OF EACH PIXEL (recommend 2 microns)?    2 

 

 REAL ROOT has been selected 

         Default CELL NO. FILE is                  rootmapcellno1150.txt 

         Use default?    1 = YES, 0 = NO:                   1 

         The MAXIMUM CELL NUMBER used is 1165 

 

 REAL ROOT has been selected 

         Default PIN3 MAP is:                      RR1150pin3mapvs26.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

 REAL ROOT has been selected 

         Default PIN4 MAP is:                      RR1150pin4mapvs25.txt 

         Use default?    1 = YES, 0 = NO:                   1 

 

 REAL ROOT has been selected 

         Default PIN7 MAP is:                      RR1150pin7mapvs25.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

 REAL ROOT has been selected 

         Default AUX1 MAP is:                      RR1150aux1mapvs10b.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

 REAL ROOT has been selected 

         Default LAX2 MAP is:                      RR1150lax2mapB.txt 

         Use default?    1 = YES, 0 = NO                    1 
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 REAL ROOT has been selected 

         Default LAX3 MAP is:                      RR1150lax3mapB.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

 Number of active Grid Points = 283816 

         ====================== START OF ITERATION # 1 out of 1  

============ 

 RUN NUMBER WT200 ITERATION #   1 out of 1 

 ROOT  MODELLING TIME IS NOW =200 

 RUN NUMBER WT200 ITERATION #   1 out of 1 

 ROOT  MODELLING TIME IS NOW =300 

 

 

Results from MATLAB® ‘Auxin profile and Image’ program, using WT200 data 

from above. 

Concentrations at GP9s peripheral to the root (ACTIVE) are set to medium 

concentration to highlight the root border but not counted in the root concentration 

results  

Rootcount of GPs within the root = 281245 

Auxin results: 

Average root concentration = 0.7229 

The top 3 maximum auxin concentrations and their GP coordinates and cell numbers 

i1 =167 

j1 =  932 

max1 =8.3893 

max1cell =101 

i2 =  167 

j2 =933 

max2 = 8.3653 

max2cell =101 

i3 = 167 

j3 =934 

max3 = 8.3409 

max3cell = 101 
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APPENDIX 2:  ETHYLENE, CYTOKININ AND AUXIN CROSSTALK 

App 2.1   Annotated schematic of ethylene, cytokinin and auxin crosstalk. 

Figure Ap 2.1 shows a more detailed schematic of auxin, cytokinin, ethylene 

and gene expression crosstalk, including some downstream components of the 

pathways. Explanations of the annotations are on the pages following.  

 

Figure Ap 2.1: Schematic of Ethylene, cytokinin and auxin crosstalk 
(P, phosphorylation; X, downstream ET signalling; Y, downstream auxin signalling; 

Z, downstream CK signalling)  
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Network diagram annotations: 

1. Phospho-relays form part of the CK signalling pathway (Fig 2, El-Showk 

et al., 2013; pg 1, Hass et al., 2004) 

2. There is evidence of phospho-relays acting in the ethylene pathway 

(Hass et al., 2004; Yoo et al., 2008; Scharein et al., 2008; Bisson and 

Groth, 2010; Shakeel et al., 2013). However, it is now thought that the 

phospho-relay in Yoo is to do with ethylene biosynthesis (pg. 13, Shakeel 

et al., 2013). The proposed phospho-relay in Hass involves ETR1 kinase 

activity and AHPs activating CK signalling (see App 2.3 below for notes 

on the three proposed ethylene pathways). 

3. EIN3 binds ARR5, 7, 15 promoters and suppresses their expression (pg 

8, El-Showk et al., 2013; abstract and pg 8, Fig 6 and 9, Shi et al., 2012) 

4. Cytokinin induced phosphorylation stabilizes a  subset of Type-A ARRs 

by reducing their rate of degradation (pg 3, El-Showk et al., 2013; Kim et 

al., 2012 ; Keiber and Schaller 2014). ARR5,6,7 were stabilised with 

increased half-lives by the application of cytokinin, however ARR4 and 9 

showed no increase in half-life with cytokinin application (pg 5, To et al., 

2007). Phosphorylation is required for Type-A stabilisation (pg 5&7, To et 

al., 2007) and for ARR5 activation and function (pg 2, To et al., 2007). 

Some but not all Type-As are degraded by the proteasome (pg 1, Kurepa 

et al., 2013; abstract, To et al., 2007). Type-As negatively regulate 

signalling by interaction with other pathway components, rather than 

competing with AHPs for phosphoryls (pg 4, To et al., 2007). Certain 

Type-Bs are necessary for cytokinin application to stabilise ARR5; 

therefore some Type-Bs possibly act to up-regulate elements involved in 

ARR5 stabilisation (pg 5, To et al., 2007). 

5. Exogenous cytokinin treatment strongly stabilized the Type-A ARR5, 7,15 

proteins  (pg 9 &13, Shi et al., 2012). 

6. Phosphorylation of Type-Bs enables DNA binding and activation of their 

transactivation function (pg 3, El-Showk et al., 2013; pg 2, Kim et al., 

2012). In particular, phosphorylation of ARR2 plays an important role in 

its function (pg 4, Hass et al., 2004), and HPt proteins (histidine phospho 

transferases) possibly play a role in ETR1 initiated phosphorylation of 
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ARR2 by a two-component phospho-relay  system (pg 10, Hass et al., 

2004). Also see section App 2.3 below on ethylene signalling where 

direct interaction between ETR1 and AHPs is discussed and it is 

suggested that ETR1 (which has a kinase function) directly 

phosphorylates AHPs. 

7. Phosphorylation of Type-B’s is essential for their transactivation activity 

(Kim et al., 2012). 

8. ARR2 is temporarily activated by CK application and subsequent 

phosphorylation and then rapidly degraded (by the 26S proteasome), 

while other Type-B ARRs are not (abstract, Fig 1, pg 2,3 & 4, Kim et al., 

2012). Degradation of ARR2 is increased in constitutively phosphorylated 

forms such as ARR2D80E (pg 5, Kim et al., 2012). ARR2 degradation 

requires CK induced phosphorylation since in an ARR2 mutant (which 

prevents phosphorylation) and in CK receptor mutants, no degradation 

was observed (pg 2 & 5, Kim et al., 2012). ARR1 showed rapid 

degradation but the rate was not influenced by cytokinin application while 

ARR10,12,18 remained constant during cytokinin application (pg 2, Kim 

et al., 2012). ARR1,10,12,18 did not show electrophoretic mobility shifts 

on cytokinin application (pg 2 & 4, Fig 1, Kim et al., 2012). 

9. Since other Type-B’s (1, 10, 12, 18) showed no CK induced 

phosphorylation or CK induced degradation, ARR2 could be different in 

this property from other Type-B’s (Kim et al., 2012). 

10. ARR6 (Type A) is a direct ARR2 target and is induced within 30mins of 

CK application; however with prolonged application this induction 

decreased rapidly (Kim et al., 2012), possibly indicating ARR2-P 

degradation. 

11. ETR1 (a kinase) is an upstream regulator of ARR2 phosphorylation (pg 

4, Hass et al., 2004). An ETR1 initiated phospho-relay possibly regulates 

ARR2 activity (pg 1 & 2, Hass et al., 2004; pg 2, Kushwah et al., 2011; 

pg 3, Gupta and Rashotte, 2012; pg 13, Shi et al., 2012). Interaction 

between ETR1 and AHP phospho-transfer protein has been 

demonstrated (Scharein et al., 2008), suggesting a CTR1 independent 

pathway in ethylene signalling. See further information on ethylene 

signalling pathways in section App 2.3 below. 
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12. ARR2 binds the ERF1 promoter and up-regulates ERF1 (pg 3, Fig 2C, 

Hass et al., 2004) therefore the ethylene pathway can still be activated 

independently of CTR1 by an ETR1 initiated phospho-relay mediated by 

ARR2 (pg 10,11 Hass et al., 2004). 

13. Microarray analysis indicates that ARR2 up-regulates CK oxidase 

expression (pg 7, Hass et al., 2004). 

14. Over-expressed constitutively active ARR2 displayed the ET triple 

response in the absence of ET biosynthesis (by AVG application) (pg 4, 

Hass et al., 2004). 

15. ACC (ethylene) induced ARR5 degradation appears to be dependent on 

the 26S proteasome pathway since the ARR5 signal all but disappears 

after 12hr of ACC application  but is stabilized by simultaneous 

application of ACC and the proteasome inhibitor MG132 (pg 10 and Fig 

9B, Shi et al., 2012). ACC reduces ARR5 accumulation by both 

degradation and down-regulating transcription (Fig 9 A&B, Shi et al., 

2012), presumably through the action of EIN3. Stabilization of ARR5 by 

CK does not appear to require new protein synthesis since ARR5 

stabilization occurred with simultaneous treatment with CK and a protein 

synthesis inhibitor (Fig 3C, To et al., 2007). 

16. Type-B ARRs up-regulate Type-A expression (pg 3, El-Showk et al., 

2013; pg 3 & 4 Gupta and Rashotte, 2012). Certain Type-Bs possibly 

activate transcription of elements which are required for the stabilisation 

of Type-As by phosphorylation (pg 10, To et al., 2007). 

17. Phosphorylation of the type-A ARRs acts to stabilize them, whereas 

phosphorylation of the type-B ARRs enables them to bind to DNA and 

initiate transcription of downstream targets, including the type-A ARRs 

(Figure Ap 2.2; pg 3, El-Showk et al., 2013). 
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Figure Ap 2.2:  Cytokinin signalling pathway 
(El-Showk et al., 2013) 

 

Type-A ARRs negatively regulate cytokinin signalling by suppressing 

Type-B activity (Fig 2, El-Showk et al., 2013). This suppression possibly 

occurs by 2 mechanisms, either by competing with AHPs for 

phosphorylation or by the phosphorylated Type-A ARRs interacting with 

regulatory proteins (pg 17, Keiber and Schaller 2014; pg 4, Gupta and 

Rashotte, 2012). It was concluded that the negative regulation is by 

Type-A interaction with regulatory proteins (pg 2, To et al., 2007). 

ARR4,5,6,7,9 all negatively regulate the cytokinin response (pg 5, To et 

al., 2007). The possibility of reverse phosphorylation flux was also 

discussed (pg 9, To et al., 2007), involving AHK4 (which has kinase and 

phosphatase capability depending on whether it binds cytokinin) and 

possibly Type-A ARRs. This might explain the negative regulation of 

cytokinin signalling by Type-A ARRs; however, this is not included in the 

network diagram. 
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18. EIN3 over expression suppresses the up-regulation of ARR5 by CK (BA) 

application (Fig 6c, Shi et al., 2012). 

19. Transcription of Type-B ARRs is not induced by CK (Kakimoto, 2003; pg 

2, Gupta and Rashotte, 2012). 

20. The transactivation activity of ARR2 is reduced by ACC application in cell 

free protoplast systems but is increased by ACC application in seedlings, 

as measured by using an ERF1:GUS reporter (Fig 2C, 5D, pg 9 & 10 

discussion section, Hass et al., 2004), possibly due to  faster ARR2 

phosphorylation and degradation in cell free systems? 

21. CK signalling down-regulates the level of AHP6 transcript (Fig 4B & pg 6, 

Mahonen et al., 2006). However, CK down-regulation of AHP6 does not 

occur if auxin transport is inhibited by NPA suggesting that this response 

is mediated by auxin transport and PIN rather than directly (pg 4, 

Bishopp et al., 2011a). 

22. Excluding ARR2, CK application has little effect on the rate of Type-B 

degradation  (pg 16, Keiber and Schaller 2014). 

23. ARR1 (type-B) is shown to directly up-regulate CKX4 (pg 3, Taniguchi et 

al., 2007). CKX4 is expressed highly and specifically in the root cap (pg 

11, Werner et al., 2003). 

24. Auxin promotes transcription of AHP6 (pg 4, Bishopp et al., 2011a; Fig 3, 

El-Showk et al., 2013) which inhibits cytokinin signalling (Bishopp et al., 

2011a). 

25. Auxin mediates the degradation of SHY2, and cytokinin activated ARR1 

directly binds and up-regulates SHY2 transcription (abstract and pg 3 & 

5, Dello Ioio et al., 2008). ARR12 up-regulates SHY2 (Fig 3, El-Showk et 

al., 2013). 

26. SHY2 inhibits IPT enzymes for cytokinin synthesis (pg 5, Fig 2, Gupta 

and Rashotte, 2012; pg 5, Dello Ioio et al., 2008). 

27. SHY2 inhibits PIN expression (pg 5, Fig 2, Gupta and Rashotte, 2012 

review referencing Dello Ioio). Cytokinin activated SHY2 inhibits PIN1,3 

and 7 transcription mediated through the AHK3 cytokinin receptor and 

the Type-B ARR1 cytokinin response regulator (pg 3, 4 & Fig 2J, Dello 

Ioio et al., 2008). CK treatment inhibits PIN2 and 4 but it does not show 

significant inhibition of PIN1,3 and 7 (Fig 6B, Persinova et al., 2009). CK 
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signalling inhibits PIN1,2,3 and 4 but promotes PIN7. The responses to 

CK vary in time and dynamics and can be influenced by ET signalling, 

which promotes, to varying degrees, PIN1,2 and 4 but appears to have 

no effect on PIN3 and 7 (pg 4, Ruzicka et al., 2009). CK promotes PIN7 

expression and promotes the localisation of PIN1 and 7 to the plasma 

membrane (pg 7, Bishopp et al., 2011a; Bishopp et al., 2011b). There 

appears to be some contradictions (refer to notes 27, 29 and 41) on CK 

effects on PIN levels and these are commented upon (pg 6 in Zhang et 

al., 2011 and pg 7 in El-Showk et al., 2013). 

28. Auxin and ethylene signalling pathways (Muday et al., 2012). 

29. Cytokinin signalling mediated by ARR2 and ARR12 results in degradation 

of PIN1 by endocytic trafficking from the plasma membrane to the lytic 

vacuoles (pg 7, El-Showk et al., 2013; abstract, Marhavy et al., 2011). 

Type-A response regulators are involved in the negative regulation of 

PIN1,3 and 4 and this regulation takes place at a post-transcriptional 

level, not through SHY2 regulation of PIN expression. This data was 

derived using 0.5mm root tip samples including mainly the meristematic 

zone (pg 6, Zhang et al., 2011). There appears to be some contradictions 

(refer to notes 27, 29 and 41) on CK effects on PIN levels which are 

commented upon (pg 6 in Zhang et al., 2011 and pg 7 in El-Showk et al., 

2013). 

30. Cytokinin acts to increase ACS transcription and stability, and so 

ethylene biosynthesis (pg 7, Fig 4, El-Showk et al., 2013; pg 13, Shi et 

al., 2012). 

31. Auxin acts to increase transcription of ACS and so ethylene biosynthesis 

(pg 7, El-Showk et al., 2013; pg 6, Zhao, 2010). 

32. ctr1 null mutants show continued accumulation of EIN3 with prolonged 

ET application, suggesting the possibility of an additional ethylene 

signalling pathway through ARR2 (pg 10 &11, Hass et al., 2004; Fig 1F 

and pg 2, Guo and Ecker, 2003). Alternatively, EIN3 could continue to 

accumulate since degradation of EIN2 (and therefore EIN3) in part relies 

on the availability of active CTR1 to complex with newly synthesised 

receptors (without bound ET) to initiate EIN2 degradation (Fig 1, pg 2 & 
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4, Zhao and Guo, 2011). Also see point 35 and App 2.3 below on 

ethylene signalling pathways. 

33. Cytokinin receptors are ER localised (pg 2, El-Showk et al., 2013). 

Ethylene receptors are also ER localised (pg1, Hass et al., 2004) and the 

ligands bind tightly with a half-life of bound ethylene receptors of 10hrs 

(pg7, Chen et al., 2007). Therefore, there likely needs to be a 

mechanism to quickly down-regulate ethylene signalling in response to a 

changing environment, such as ligand-bound ethylene receptor 

degradation. Even though the ligand bound receptors are in fact largely 

inactive they need replacing with unbound receptors to enable the 

pathway to sense changes in ethylene concentrations (pg 7, Chen et al., 

2007). Note that there are potentially 2 (or 3) ethylene signalling 

pathways that are CTR1 dependent and independent (see notes 36, 37) 

that need to be balanced. Degradation of the receptor will also release 

ethylene. The half-lives of the receptors range from 30mins to 12hrs 

(pg7, Chen et al., 2007), possibly depending on receptor type. See App 

2.2 below for more ethylene receptor information. 

34. Cytokinin signalling regulates the stability and activation of type-A ARRs 

by phosphorylation. Phosphorylation of ARR5, 7 (type-As) has been 

shown to activate their negative regulatory role in cytokinin signalling (pg 

4, Gupta and Rashotte, 2012). 

35. As noted in (32), it has been suggested that there is possibly an 

additional ethylene signalling pathway which by-passes CTR1 since 

EIN3 continues to accumulate when ethylene is applied in the ctr1 null, 

demonstrating a possibly residual ethylene response in the ctr1 mutant 

(pg 2, Guo and Ecker, 2003); however this residual response might not 

involve ARR2 since, while ARR2 binds the ERF1 promoter and up-

regulates ERF1,  EIN3 is upstream of  ERF1 therefore ERF1 up-

regulation by ARR2 does not explain the accumulation of EIN3 unless 

there is a feedback loop. Also see App 2.3 below on ethylene signalling 

pathways. 

36. The proposed ethylene signalling pathway (Fig 2, Yoo et al., 2009) 

shows 2 phospho relay cascades, the one in which active CTR1 

effectively results in degradation of downstream components with no 
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ethylene signalling, and the alternative cascade for inactive CTR1, which 

stabilises downstream ethylene signalling components and activates 

ethylene signalling  but acts independently of EIN2 (Fig 2, Yoo et al., 

2009). This is disputed (pg 5, Zhao and Guo, 2011) and it is argued that 

this latter phospho-relay pathway is involved in ethylene biosynthesis 

and NOT ethylene signalling and so it is no longer thought to be part of 

the ethylene signalling pathways (see notes in App 2.2 and 2.3 below on 

ethylene receptors and 3 possible signalling pathways). 

37. Ethylene self regulates the ethylene signal by controlling the 

accumulation of EIN3. This is done by ethylene induced degradation and 

turnover of ETR2 (pg 7, Chen et al., 2007) and up-regulation of the 

transcript of the ETR2 and ERS1 receptors (pg 2 & 4, Zhao and Guo, 

2011; abstract and Fig 3, Chen et al., 2007). Note the non-linear 

response of ETR1 levels to ethylene (Fig 3, Chen et al., 2007). Chen et 

al. (2007) also conclude (pg 7), that ETR2 degradation is caused by 

conformation change due to ethylene binding not to ethylene signalling. 

However this is not necessarily the case since there is also a CTR1 

independent ethylene signalling pathway which could up-regulate 

elements required for ETR2 degradation in the ctr1 mutant; however (pg 

6, Chen et al., 2007), ETR2 degradation still occurs when protein 

synthesis was inhibited which possibly contradicts this latter explanation 

and supports degradation of ethylene bound ETR2 due to conformational 

change. EIN3 normally has a high turnover rate but is stabilised by 

ethylene application and could therefore accumulate with harmful effects. 

New ETR2 proteins may complex with CTR1 but not be immediately 

bound by ethylene (resulting in active CTR1) so promoting EIN3 

degradation (pg 4, Zhao and Guo, 2011). See also App 2.3 below on 

ethylene signalling pathways. 

38. SHY2 (a member of the Aux/IAA family of genes degraded by auxin) 

inactivates ARF auxin response transcription factors through dimerization 

(pg 1, Dello Ioio et al., 2008). 

39. When the concentration of auxin in the cell is low, the Aux/IAA 

(auxin/indole-3-acetic acid) proteins heterodimerize with the ARF (AUXIN 

RESPONSEFACTOR) transcription factors, repressing the transcription 
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of the auxin-response genes. At high auxin concentrations, auxin binds 

to the TIR1 (TRANSPORT INHIBITOR RESPONSE 1) receptor, 

stimulating the interaction of the Aux/IAAs proteins with the SCFTIR1 

ubiquitin-ligase complex (SKP1, CDC53/CULLIN, F-box), thus promoting 

their degradation by the 26S proteasome. The consequent reduction in 

levels of Aux/IAA proteins releases the ARFs from their inhibition, 

inducing the expression of auxin-responsive genes (Fig 1, Moubayidin et 

al., 2009). 

40. IPT5 is up-regulated by auxin, mediated by SHY2 (pg 5, Dello Ioio et al., 

2008). 

41. Cytokinin treatment down-regulates PIN1,2,3 and up-regulates PIN7 

expression, based on promoter::GFP reporters (pg 4 & Fig 3, Ruzicka et 

al., 2009). PIN7 is upregulated by exogenous CK (pg 14, Hwang et al., 

2012). Other results show that CK application reduces the transcript of all 

PIN1,3,7 mediated through ARR1 (Fig 2J, Dello Ioio et al., 2008). 

Consider that the Ruzicka results might be also mediated through SHY2. 

There appears to be some contradictions (refer to notes 27, 29 and 41) 

on CK effects on PIN levels which are commented upon (pg 6 in Zhang 

et al., 2011and pg 7 in El-Showk et al., 2013. 

42. Ethylene upregulates auxin biosynthesis, transcription of PIN1,2,4 and 

AUX1 after varying treatment times, but appeared to have no effect on 

PIN7 (pg 7 &10 and SI, Ruzicka et al., 2007). 

43. It may also be necessary to consider transport of cytokinin in the phloem 

(shoot to root) and xylem (Bishopp et al., 2011b), possibly with 

differential synthesis, conversion and transport of iP and Z type 

cytokinins. iP appears to be the predominant type synthesised in the root 

(pg 6, Nordstrom et al., 2004). 

44. Auxin directly up-regulates Type-A ARR7,15 transcription in early 

development in the basal cell of the hypophysis (Fig 3t, u Muller and 

Sheen, 2008). 

45. AHK cytokinin receptors are ER and plasma membrane localised and 

initiate a phospho-relay cascade (Fig 1, Hwang et al., 2012) and have 

different ligand binding affinities (pg 7, Hwang et al., 2012); AHK4 has an 
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intrinsic phosphatase activity in the absence of ligand binding (pg 7, 

Hwang et al., 2012) 

46. Plasma membrane associated cytokinin independent CKI1 (not activated 

by cytokinin) possesses constitutive kinase activity and when over-

expressed can activate the cytokinin signalling pathway (pg 5, Hwang et 

al., 2012). 

47. Aux/IAA (an auxin signalling inhibitor) transcription is promoted by 

downstream auxin signalling (pg 3, Moubayidin et al., 2009). 

48. There is a negative feedback loop which controls the level of EIN3 

(preventing harmful accumulation) and controls homeostasis in ethylene 

signalling. Ethylene signalling promotes EIN2 which promotes the 

degradation of EBF2 (&1). EBF2 (&1) promotes the degradation of EIN3. 

In fact in the ein2 mutant no EIN3 or EIL1 is detectable. Therefore 

ethylene signalling results in the accumulation of EIN3, which directly 

binds to the promoter of EBF2. The increase in EBF2 in turn increases 

the rate of degradation of EIN3 to control EIN3 accumulation (pg 4, Zhao 

and Guo, 2011). Note EBF2 has the predominant role in controlling EIN3 

in conditions of high ethylene (pg4, Zhao and Guo, 2011). 

49. Ethylene induces the expression of EBF1 and 2 enhancing the 

degradation of EIN3. So a negative feedback loop exists in the ethylene 

signalling pathway (pg 3, Yoo et al., 2009). 

50. Evidence exists for an intermediate state of the ETR1 receptor between 

on and off ethylene signalling (pg 4, Yoo et al., 2009). 

51. The primary nuclear event in ethylene signalling is the stabilisation of the 

key transcription factor EIN3, which is otherwise constantly degraded, 

(pg 4, Yoo et al., 2009) which allows a fast upregulation of ethylene 

response genes (within 1 hr). 

52. Activation of the ethylene pathway requires the accumulation of EIN3. 

This is achieved by a switch between two phospho-relay pathways, from 

the CTR1-active pathway (when ethylene is not present) which promotes 

EIN3 degradation to the CTR1-inactive pathway (when ethylene is 

present) that promotes EIN3 stability (pg 5, Yoo et al., 2009). The results 

from Yoo et al., 2009 need to be questioned since the second pathway is 
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now thought to be involved in ethylene biosynthesis and not ethylene 

signalling. See section App 2.3 below on ethylene signalling pathways. 

53. EIN2 is stabilised (by a reduction in degradation by the EIN2 targeting 

proteins ETP1/2) by ethylene application (pg 1, Zhao and Guo, 2011). 

See also section App 2.3 below on ethylene signalling pathways. 

54. Ethylene application downgrades EBF1 & 2 by degradation (or lack of 

stabilisation) but also upregulates transcription of EBF2 through EIN3, 

and to a lesser extent EBF1 (see note 48 and pg 4, Zhao and Guo, 

2011). 

55. Ethylene induces the expression of WEI2 and WEI7 which encode 

subunits of the rate limiting enzyme for the synthesis of tryptophan which 

is involved in auxin biosynthesis (pg 2, Ruzicka et al., 2007). 

56. In the absence of ethylene, CTR1 is activated and directly 

phosphorylates and inactivates EIN2 which inactivates ethylene 

signalling. When ET binds the receptors, CTR1 is inactivated, EIN2 

dephosphorylated and cleaved with the C-terminus migrating to the 

nucleus to act as a transcription factor and directly or indirectly activating 

EIN3 transcription and initiating ET downstream ethylene signalling (pg 

2, Shakeel et al., 2013). See section App 2.3 below on ethylene 

signalling. 

57. The 5 ethylene receptors are classified into 2 families and form 

homodimers (although in yeast they have been shown to form 

heterodimers) at the ER membrane which can form higher level 

heteromeric clusters (pg 3, Shakeel et al., 2013). See more information 

on ethylene receptors in section App 2.2 below. 

58. Ethylene signalling negatively regulates PLS transcription (pg 10, Chilley 

et al., 2006). 

59. PLS transcription is upregulated within 30 mins by the application of 

auxin (pg 5, Casson et al., 2002). 

60. PLS promotes auxin biosynthesis (pg 5, Fig 4B, Chilley et al., 2006). 

61. Different CKX (1-7) are expressed in different tissues at different stages 

of development (Fig 11, Werner et al., 2003; Fig 1, Werner et al., 2006) 

62. CK promotes auxin biosynthesis in the root tip (abstract, Jones et al., 

2010). 
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63. Auxin promotes PIN1,2 transcription (Blilou et al., 2005) and inhibits 

PIN1,2 endocytosis from the plasma membrane into the cytosol 

(Paciorek et al., 2005). 

64. Cytokinin inhibits AUX1 expression (Street et al., 2016). 

65. See sections App 2.2 and 2.3 below on ethylene receptors and ethylene 

signalling pathways. 

 

App 2.2   Ethylene receptor complexes 

 

1. There are 5 ET receptors belonging to 2 subfamilies (pg 1 and Fig 2, Yoo 

et al., 2009) predominantly residing in the ER 

2. Among the five Arabidopsis ethylene receptors, ETR1 and ERS1 in 

subfamily I contain highly conserved signature motifs for HK (histidine 

kinase) and have a predominant role in ethylene perception in a 

redundant manner (pg 3, Yoo et al., 2009) 

3. All of the ethylene receptors share a modular structure composed of an 

N-terminal transmembrane domain responsible for ethylene binding, a 

GAF domain involved in protein–protein interactions between different 

receptor types, and a C-terminal domain required for the interaction with 

the downstream components of the pathway (pg 1, Merchante et al., 

2013). 

4. Receptors form homo-dimers capable of binding ethylene (and hetero 

dimers in yeast) and higher order clusters of homo-dimers can form 

between receptors (Fig 1 and pg 3, Merchante et al., 2013). All 

combinations between receptor dimers are possible (pg 4, Yoo et al., 

2009). 

5. Receptors have been shown capable of forming multi-meric clusters (pg 

4, Yoo et al., 2009) 

6. The formation of heteromeric receptor clusters contributes to the broad 

range of ethylene responsiveness (abstract, Mayerhofer et al., 2012) 

7. The receptors are not functionally equivalent and act synergistically for 

full receptor activity (pg 4, Yoo et al., 2009) 
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8. The receptor dimers form a complex with CTR1 and these complexes 

form clusters, with CTR1 mediated crosstalk between receptor clusters 

(abstract, Mayerhofer et al., 2012)  

9. CTR1 is part of the ethylene receptor complexes and mediates 

convergent signalling output from multiple ethylene receptors (pg 4, Yoo 

et al., 2009) 

10. In the absence of ET, the receptors are activated and activate CTR1 

which suppresses downstream ET signalling (pg1 and Fig 2, Yoo et al., 

2009; pg 2, Mayerhofer et al., 2012) 

11. There is evidence for an intermediate state between ‘on’ and off’ for the 

receptors (pg 4, Yoo et al., 2009) 

12. A copper ion cofactor is required for high affinity binding of ET to the 

receptors (abstract, Rodriguez et al., 1999; pg 1, Mayerhofer et al., 

2012). PLS binds the copper ion and promotes receptor binding while  

RAN1 is involved in copper transport (Mudge et al., 2017 (submitted)). 

13. Two etr1 mutants are discussed in this work: 

a. etr1-1 gain-of-function mutant, with high receptor activity, a low 

sensitivity to ethylene and low downstream ethylene signalling. 

b. etr1-7 loss-of-function mutant with low receptor activity and high 

downstream ethylene signalling. 

14. Root length phenotypes (Chilley et al., 2006) show root lengths in 

ascending order approximately : 

a. ctr1 mutant 

b. pls mutant 

c. PLSox/ctr1 (PLSox results in slight rescue of ctr1) 

d. WT and pls etr1-1 double mutant 

e. PLSox and ein-2 and etr1-1 (etr1-1 is effectively insensitive to ET) 
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App 2.3   Ethylene signalling pathways 
 

App 2.3.1   The Canonical CTR1 dependent pathway: 
 

1. Without ET, the active ethylene receptors activate CTR1 (which homo-

dimerises when activated) which phosphorylates and inactivates EIN2, 

which physically interacts with the kinase domain of the receptors at the 

ER membrane (Fig 1, Merchante et al., 2013) 

2. The activated CTR1 kinase dimers engage in interactions that might 

enable crosstalk between ethylene receptor clusters (pg 3, Merchante et 

al., 2013). 

3. The exact receptor output is still unknown (pg 3, Merchante et al., 2013) 

4. With ET application, receptors are inactivated and CTR1 is inactivated 

which prevents the phosphorylation of EIN2. EIN2 is then cleaved and 

the C-terminus migrates to the nucleus to regulate transcriptional activity 

(Fig 1, Merchante et al., 2013; pg 1, Yi and Guo, 2013). 

5. Note that ein2 mutants have no observed ethylene response (pg 3, 

Merchante et al., 2013). This could imply that all ethylene signalling is 

routed through EIN2, whether CTR1 dependent or not. 

6. On ET application EIN2 accumulates (ET application inhibits the 

degradation of EIN2 by ETP1/2 F-box proteins and also downregulates 

ETP1/2). EIN2 is required for the stabilisation of the short-lived 

downstream components EIN3/EIL1 master transcription factors, which 

are targeted for degradation by EBF1/2 (also downregulated in the 

presence of ET) in the absence of ET (pg 4, Merchante et al., 2013). 

7. EIN2 and EIN3 are tightly regulated by degradation in the absence of 

ethylene (pg 4, Merchante et al., 2013) 

8. ETR1 has an autokinase activity which is suggested to be stimulated by 

ET application (pg 11, Hall et al., 2012) to facilitate the ethylene 

response. This is disputed (pg 1 & 3, Merchante et al., 2013) and ET 

application is said to inhibit the autokinase activity of the receptors and 

support the interaction of ETR1 and EIN2 (pg 5, Bisson and Groth, 

2010). 

9. The kinase activity of ETR1 could be an important link between ETR1 in 

the ethylene signalling pathway and the AHPs in the CK signalling 
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pathway. Note that (pg 1, Hass et al., 2004) it is suggested that ARR2 

transcriptional activity (in the CK pathway) is regulated by an ETR1 

initiated phospho-relay, with ARR2 effectively acting downstream of 

ETR1. 

10. RTE1 is a negative regulator of ethylene responses which co-localises at 

the ER membrane with the receptors (and also is found in the Golgi) and 

acts by specifically activating ETR1 by promoting transition from its 

inactive state (in the presence of ET) to its active state (pg 3, Merchante 

et al., 2013). 

11. PLS and CTR1 act to negatively regulate ethylene signalling and do not 

act in a simple linear pathway (Chilley et al., 2006). PLS promotes the 

binding of the copper ion to ETR1 and so the activation of ETR1 (Mudge 

et al., 2017 (submitted)). 

App 2.3.2   The CTR1 independent pathway: 

1. There is evidence of a separate (but weak) CTR1-independent ethylene 

signalling pathway which acts in the same direction as the main receptor 

signalling, and is suppressed by the application of ethylene (discussion 

section, Qui et al., 2012) as follows: 

a. ctr1 mutants show the constitutive ethylene response, but are still 

somewhat responsive to ethylene 

b. The constitutive ethylene response is stronger in multiple ethylene 

receptor mutants than in the ctr1 mutant. 

c. The constitutive ethylene response is stronger in mutants of 

EBF1/2 (which mediate EIN3/EIL1 degradation) than in ctr1 

d. The expression of the ETR1 N-terminus (etr1 1-349) could produce 

the ethylene receptor signalling output to suppress the constitutive 

ethylene response in ctr1 

e. RTE1 overexpression with the ‘ETR1 N-terminus’ (etr1 1-349 encodes the 

truncated ETR1 lacking the C-terminus) suppressed the constitutive 

ethylene response of the ctr1 mutant. Also the ETR1 N-terminus did not 

suppress the constitutive ethylene response of ctr1 in the rte1-2 loss of 

function mutant. 



240 

 

2. The above suggests that there is a CTR1-independent ethylene 

signalling pathway mediated by the N-terminal of ETR1 which also 

involves RTE1 (discussion section, Qui et al., 2012). 

3. Also RTE1 physically associates with ETR1 (discussion section, Qui et 

al., 2012). 

4. The ETR1 C-terminus may largely inhibit ETR1 N-terminus signalling in 

the full length ETR1 or block the receptor cooperation essential for N-

terminal signalling. CTR1 kinase activity could also block the inhibition by 

the ETR1 C-terminus and promote ETR1 N-terminal signalling 

(discussion section, Qui et al., 2012). 

5. Possibly PLS, like RTE1, also acts in the CTR1 independent pathway, 

since the ctr1 mutant does not fully suppress the PLSox phenotype (pg 

11, Chilley et al., 2006) 

App 2.3.3   ETR1 phospho-relay ethylene signalling pathway: 

The support for the existence of this pathway is: 

1. The ethylene receptors interact with AHP phospho-transfer proteins (pg 

11, Kakimoto et al., 2003; abstract  and discussion, Scharein et al., 2008; 

pg 10, Shakeel et al., 2013) 

2. The affiliation of ETR1 for AHPs is phospho-dependent (pg 3, Scharein 

et al., 2008; pg 10, Shakeel et al., 2013) 

3. Arabidopsis response regulator 2 (ARR2) acts as a signalling component 

functioning downstream of ETR1 in ethylene signal transduction 

(abstract, Hass et al., 2004). 

4. ETR1 is an upstream regulator of ARR2 phosphorylation (pg 4, Hass et 

al., 2004). 

The binding of ethylene stimulates the auto-phosphorylation of ETR1 (pg 11, 

Hall et al., 2012), although this remains unresolved (pg 1 & 3 Merchante et al., 

2013). Also it has been demonstrated that auto-phosphorylation of ETR1 is 

decreased by ethylene application and in turn supports ETR1 affinity for EIN2 

(pg 5, Bisson and Groth, 2010); but see additional comments on this (pg 11, 

Hall et al., 2012). 
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APPENDIX 3:   RUNNING THE IMPROVED CYTOKININ MODEL (WT743) 

 

(USER INPUTS IN RED)  

 

==ROOT MODELLING PROGRAM vs29d WITH CK MODIFICATIOND FOR WT743== 

                     Input the RUN NUMBER: WT743 

                     Input the time step and simulation time: 

                                 The time step (second)= 100 

                                 The simulation Time(secs)= 30000 

 

         Input real root switch, 0 for rectangular root, 1 for real root: = 1 

 

         Input # data output sets/simulation time (recommend 1):          = 1 

         SET MAX # OF DATA DUMPS ALLOWED (to restrict file size):         = 5 

         This uses up to 300 MB of storage  Is this OK? 0 = NO, 1 = YES:  = 1 

 

         Input COMBINED PIN12347 START [ARRAY] ?     NO = 0, YES = 1:  0 

         For RECOVERY ITERATIONS combined auxlax array must be input 

         Input COMBINED AUX1,LAX2,3 START [ARRAY] ?  NO = 0, YES = 1:  0 

         AUTO RECOVERY BY AUXLAX OR PIN RE-SETS      NO = 0, YES = 1:  0 

 

         SET START AUX1 concentration (& synthesis set=0) NO = 0, YES = 1: 1 

         SET START LAX2 concentrations NO = 0, YES = 1:                    1 

         SET START LAX3 concentration NO = 0, YES = 1:                      1 

 

         SET START PIN3 concentrations? NO = 0, YES = 1:   1 

         SET START PIN4 concentrations? NO = 0, YES = 1:   1 

         SET START PIN7 concentrations? NO = 0, YES = 1:   1 

 

         HORMONE FEEDING? Input 0 for NO or 1 for YES:                   0 

========== VALUE OF PARAMETERS ========== 

 

 Input START LEVEL 4 (MAX) PIN3 concentration (micro M)     0 

 Input START LEVEL 3 PIN3 concentration (micro M)                1 

 Input START LEVEL 2 PIN3 concentration (micro M)               .25 

 Input START LEVEL 1 (MIN) PIN3 concentration (micro M)     .06 
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 Input START LEVEL 4 (MAX) PIN4 concentration (micro M)     0 

 Input START LEVEL 3 PIN4 concentration (micro M)                .5 

 Input START LEVEL 2 PIN4 concentration (micro M)                .1 

 Input START LEVEL 1 (MIN) PIN4 concentration (micro M)     .02 

 Input START LEVEL 4 (MAX) PIN7 concentration (micro M)      0 

 Input START LEVEL 3 PIN7 concentration (micro M)                 1 

 Input START LEVEL 2 PIN7 concentration (micro M)                .25 

 Input START LEVEL 1 (MIN) PIN7 concentrations (micro M)    .06 

  Input START LEVEL 15 (MAX) AUX1p concentration (micro M)  0 

  Input START LEVEL 14 AUX1p concentration (micro M)             0 

  Input START LEVEL 13 AUX1p concentration (micro M)             0 

  Input START LEVEL 12 AUX1p concentration (micro M)             0 

  Input START LEVEL 11 AUX1p concentration (micro M)             0 

  Input START LEVEL 10 AUX1p concentration (micro M)             0 

  Input START LEVEL 9 AUX1p concentration (micro M)               0 

  Input START LEVEL 8 AUX1p concentration (micro M)               0 

  Input START LEVEL 7 AUX1p concentration (micro M)               0 

  Input START LEVEL 6 AUX1p concentration (micro M)               0 

  Input START LEVEL 5 AUX1p concentration (micro M)               0 

  Input START LEVEL 4 AUX1p concentration (micro M)               0 

  Input START LEVEL 3 AUX1p concentration (micro M)             2.25 

  Input START LEVEL 2 AUX1p concentration (micro M)               1 

  Input START LEVEL 1 (MIN) AUX1p concentration (micro M)    .75 

  Input START LEVEL 8 (MAX) LAX2 concentration (micro M)     0 

  Input START LEVEL 7 LAX2 concentration (micro M)                0 

  Input START LEVEL 6 LAX2 concentration (micro M)                0 

  Input START LEVEL 5 LAX2 concentration (micro M)                0 

  Input START LEVEL 4 LAX2 concentration (micro M)                0 

  Input START LEVEL 3 LAX2 concentration (micro M)             .75 

  Input START LEVEL 2 LAX2 concentration (micro M)                0 

  Input START LEVEL 1 (MIN) LAX2 concentration (micro M)      0 

  Input START LEVEL 4 (MAX) LAX3 concentration (micro M)     0 

  Input START LEVEL 3 LAX3 concentration (micro M)               1.75 

  Input START LEVEL 2 LAX3 concentration (micro M)                0 

  Input START LEVEL 1 (MIN) LAX3 concentration (micro M)      0 
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 Selected Parameters set in Value of Parameters for Fig: WT743 

 ============================================== 

k18a = 0.5, k18  = 10, k18c = 1, k18d  = 10,  k18e = 100 

k10a = 5, k12a = 0.02, k1a  = 0, k6    = 0,  k6a  = 3, k4 = 20 

k2a  = 1.25  k2b  = 0.01, k2c  = 0.02, k16   = 0.3,  k16a = 1, k19 = 1 

k11  = 4, k32b = 1, k3   = 0.001, k12d1 = 0.1,  k12a = 0.02 

PIN12 POLARITY: level 1   = 1; Level 2 =  5; Level 3 = 20 

CK diffusion rate  = 220 

AUX1 level 4 = 0,  Level 3 =  2.25,  Level 2  = 1,  Level 1  = 0.75 

LAX2 level 4 = 0,  Level 3 =  0.75,  Level 2  = 0,  Level 1  = 0 

LAX3 level 4 = 0,  Level 3 =  1.75,  Level 2  = 0,  Level 1  = 0 

PIN3 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06 

PIN4 level 4 = 0,  Level 3 =  0.5,  Level 2  = 0.1,  Level 1  = 0.02 

PIN7 level 4 = 0,  Level 3 =  1,  Level 2  = 0.25,  Level 1  = 0.06 

 

==========ROOT STRUCTURE ========== 

         DEFAULT NUMBER OF ROWS IN ROOT MAP FILE          =          1150 

         DEFAULT NUMBER OF COLS IN ROOT MAP FILE          =              326 

         USE DEFAULT ROOT MAP DIMENSIONS?    1 = YES, 0 = NO         1 

 

         Default ROOT MAP FILE is                  RR1150pin12mapvs26CKmods.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

         INPUT SIZE OF EACH PIXEL (recommend 2 microns)?    2 

 

 REAL ROOT has been selected 

         Default CELL NO. FILE is                  rootmapcellno1150.txt 

         Use default?    1 = YES, 0 = NO:                   1 

         The MAXIMUM CELL NO. used is 1165 

 

 REAL ROOT has been selected 

         Default PIN3 MAP is:                      RR1150pin3mapvs26.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

 REAL ROOT has been selected 

         Default PIN4 MAP is:                      RR1150pin4mapvs25.txt 
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         Use default?    1 = YES, 0 = NO:                   1 

 

 REAL ROOT has been selected 

         Default PIN7 MAP is:                      RR1150pin7mapvs25.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

 REAL ROOT has been selected 

         Default AUX1 MAP is:                      RR1150aux1mapvsCKmods2.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

 REAL ROOT has been selected 

         Default LAX2 MAP is:                      RR1150lax2mapB.txt 

         Use default?    1 = YES, 0 = NO                    1 

 

 REAL ROOT has been selected 

         Default LAX3 MAP is:                      RR1150lax3mapB.txt 

         Use default?    1 = YES, 0 = NO                    1 

 Number of active Grid Points = 283816 

 ---------------------------------------------------- 

         ===========START OF ITERATION # 1 out of 1  ========== 

 

 Selected parameters set in Model.h for Fig: WT743    c01 = 0.1;  CK border = 0.04 

 =============== 

 

 RUN NUMBER WT743 ITERATION #   1 out of 1 

 ROOT  MODELLING TIME IS NOW =200 
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