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Essays in Risk Management and Asset Pricing

with High Frequency Option Panels

Yang ZHANG

Abstract

The thesis investigates the information gains from high frequency equity

option data with applications in risk management and empirical asset

pricing. Chapter 1 provides the background and motivation of the thesis

and outlines the key contributions. Chapter 2 describes the high frequency

equity option data in detail. Chapter 3 reviews the theoretical treatments

for Recovery Theorem. I derive the formulas for extracting risk neutral

central moments from option prices in Chapter 4.

In Chapter 5, I specify a perturbation theory on the recovered discount

factor, pricing kernel, and the physical probability density. In Chapter 6, a

fast and fully-identified sequential programming algorithm is built to apply

the Recovery Theorem in practice with noisy market data. I document new

empirical evidence on the recovered physical probability distributions and

empirical pricing kernels extracted from both index and single-name equity

options. Finally, I build a left tail index from the recovered physical

probability densities for the S&P 500 index options and show that the left

tail index can be used as an indicator of market downside risk.

In Chapter 7, I uniquely introduce the higher dimensional option-implied

average correlations and provide the procedures for estimating the higher

dimensional option-implied average correlations from high frequency option

data. In Chapter 8, I construct a market average correlation factor by

sorting stocks according to their risk exposures to the option-implied

average correlations. I find that (a) the market average correlation factor

largely enhances the model-fitting of existing risk-adjusted asset pricing

models. (b) the market average correlation factor yields persistent positive

risk premiums in cross-sectional stock returns that cannot be explained by

other existing risk factors and firm characteristic variables. Chapter 9

concludes the thesis.

mailto:yang.zhang2@durham.ac.uk


Contents

Contents 1

List of Tables 6

List of Figures 7

Acronyms 17

Table of Notation 17

1 Introduction 21

1.1 Overview and Background . . . . . . . . . . . . . . . . . . . . 21

1.2 Findings and Contributions . . . . . . . . . . . . . . . . . . . 27

1.2.1 Empirical Recovery and Risk Management . . . . . . . 27

1.2.2 Option-implied Average Correlations and Empirical

Asset Pricing . . . . . . . . . . . . . . . . . . . . . . . 37

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 39

2 OPRA and High Frequency Option Data Panel 41

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 The OPRA Option Data System . . . . . . . . . . . . . . . . 42

2.3 The TRTH and Option Data Structure . . . . . . . . . . . . . 45

2.4 The High Frequency Option Data Panel . . . . . . . . . . . . 48

2.4.1 The S&P 500 Index Constituents Sample . . . . . . . . 48

2.4.2 The Selected Sector Index Sample . . . . . . . . . . . . 49

2.4.3 Construct the Option Data Panel . . . . . . . . . . . . 50

1



CONTENTS

2.5 Features of the High Frequency Option Data Panel . . . . . . 52

2.6 Summary and Remarks . . . . . . . . . . . . . . . . . . . . . . 57

3 Review of Recovery Theorem 58

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 The Ross [2015] Derivation . . . . . . . . . . . . . . . . . . . . 62

3.3 The Carr and Yu [2012] Derivation . . . . . . . . . . . . . . . 65
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5.2.1 The Borovička et al. [2016] Derivation . . . . . . . . . 88

5.2.2 The Ross [2015] Recovery Theorem . . . . . . . . . . . 90

5.3 Motivating the Problem: Revisiting the Ross Recovery

Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Experiment One Direct Solution for Q . . . . . . . . . 93

5.3.2 Experiment Two Non-Negative Least Squares Solution

for Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Experiment Three My Implementation for Q . . . . . . 94

5.4 A Perturbation Theory of Recovery . . . . . . . . . . . . . . . 96

5.4.1 Continuity of Recovered Discount Factor and Pricing

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2



CONTENTS

5.4.2 Asymptotic Properties of a Parametric Recovery Theorem 98

6 Hansen-Scheinkman Factorisation and Ross Recovery from

High Frequency Option Prices via Nonlinear Programming:

The Empirical Recovery 100

6.1 Empirical Recovery . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Procedure Setup . . . . . . . . . . . . . . . . . . . . . 102

6.1.2 Recovering the State Price Matrix Using Intraday Data 103

6.1.3 Determining the Risk Neutral State Price Transition

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.4 An Empirically Identified Recovery Theorem . . . . . . 115

6.1.5 Additional Issues for Numerical Implementations . . . 117

6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 A-priori Known Number of States . . . . . . . . . . . . 120

6.2.2 A-priori Unknown Number of States . . . . . . . . . . 124

6.3 Empirical Example and Application . . . . . . . . . . . . . . . 128

6.3.1 S&P 500 Index and Apple Inc. . . . . . . . . . . . . . . 128

6.3.2 The Market Left Tail Index . . . . . . . . . . . . . . . 142

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 144

7 Higher Dimensional Option-implied Average Correlations:

Constructing the Cross Sectional Correlation Measures 146

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 The Higher Dimensional Average Correlations . . . . . . . . . 152

7.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3.1 Daily Market Capitalisation Data for S&P 500 Index

Constituents . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3.2 High Frequency Option Data Panels for S&P 500 Index

and its Constituents . . . . . . . . . . . . . . . . . . . 164

7.3.3 High Frequency Option Panels for Selected Sector Index 169

7.4 Estimate the Higher Order Risk Neutral Central Moments . . 170

7.5 Estimate the Higher Dimensional Option-implied Average

Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3



CONTENTS

7.5.1 Market Option-implied Average Correlations . . . . . . 177

7.5.2 Sectorial Option-implied Average Correlations . . . . . 180

7.6 Validity of the Market Portfolio Moments Decomposition . . . 183

7.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 188

8 The Information Content of Higher Dimensional

Option-implied Average Correlations: Measuring

Diversification Risk and Cross Sectional Asset Pricing 190

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2 Data and Variables . . . . . . . . . . . . . . . . . . . . . . . . 193

8.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.2.2 Firm-specific Control Variables . . . . . . . . . . . . . 193

8.2.3 Portfolio-based Control Variables . . . . . . . . . . . . 198

8.3 Empirical Identification of the Price of Market Correlation Risk 199

8.3.1 Measure Market Diversification Risk . . . . . . . . . . 200

8.3.2 Construct The Market Average Correlation Factor . . . 203

8.3.3 Market Average Correlation Factor and Expected Stock

Returns . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.4 Robustness Check . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.4.1 Sub-Periods . . . . . . . . . . . . . . . . . . . . . . . . 217

8.4.2 Length of the Portfolio Formation Period . . . . . . . . 219

8.4.3 Options with Longer Time to Maturity . . . . . . . . . 222

8.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 222

9 Conclusions 225

9.1 Summary and Remarks . . . . . . . . . . . . . . . . . . . . . . 225

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

10 Appendix 229

A.1 S&P 500 Index Constituents Sample List . . . . . . . . . . . . 229

A.2 Selected Sector Index Sample List . . . . . . . . . . . . . . . . 242

A.3 MATLAB Codes for Data Extraction . . . . . . . . . . . . . . 251

A.4 Proofs for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 255

A.4.1 Proof for Lemma 5.1 . . . . . . . . . . . . . . . . . . . 255

4



CONTENTS

A.4.2 Proofs for Unimodality of the State Price Transition

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

A.4.3 Proofs for Sub-stochasticity of the State Price

Transition Matrix . . . . . . . . . . . . . . . . . . . . . 269

A.4.4 Full Steps of the SQP Process on the Discount Factor

Constrain . . . . . . . . . . . . . . . . . . . . . . . . . 271

Bibliography 276

5



List of Tables

6.1 Error Bounds Analysis Tenor: 71 Days . . . . . . . . . . . . . 126

6.2 Error Bounds Percentile Analysis Tenor: 71 Days . . . . . . . 127

6.3 Sample Description . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Option Implied Pricing Kernel for SPX and AAPL . . . . . . 142

7.1 Descriptive Statistics for Option Implied Correlations . . . . . 179

7.2 Validity of the Market Portfolio Moments Decomposition . . . 185

8.1 Option-implied Average Correlations and the Market Risks . . 201

8.2 Contemporaneous Univariate-sorted Portfolios on

Option-implied Average Correlation Risk Exposure . . . . . . 205

8.3 Market Average Correlation Factor and Sectors Portfolio Returns208

8.4 Fama-MacBeth Regression Analyses on Market Average

Correlation Portfolio . . . . . . . . . . . . . . . . . . . . . . . 214

8.5 Fama-MacBeth Regression Analyses for the Pre and Post

OPRA Sub-Periods . . . . . . . . . . . . . . . . . . . . . . . . 218

8.6 Single-sorted Portfolios and Fama-MacBeth Regression

Analyses with Different Length of Portfolio Formation Period 220

A. 1 Sample Description . . . . . . . . . . . . . . . . . . . . . . . . 229

A. 2 Sector Sample Description . . . . . . . . . . . . . . . . . . . . 242

6



List of Figures

1.1 Equity Option Trading Volumes in the U.S. . . . . . . . . . . 22

1.2 The Recovery Process . . . . . . . . . . . . . . . . . . . . . . 28

1.3 The Tail Truncation Problem . . . . . . . . . . . . . . . . . . 29

1.4 Challenges in Identifying the Transition Matrix . . . . . . . . 31

1.5 Risk Neutral Density V.S. Recovered Physical Density . . . . 34

1.6 Recovered Pricing Kernel . . . . . . . . . . . . . . . . . . . . . 35

1.7 Recovered Market Left Tail Index . . . . . . . . . . . . . . . . 36

1.8 Option-implied Average Correlations . . . . . . . . . . . . . . 38

2.1 Option Trading Volumes on CBOE . . . . . . . . . . . . . . . 43

2.2 Equity Option Trading Volumes in U.S. . . . . . . . . . . . . . 45

2.3 High Frequency Option Data Sample . . . . . . . . . . . . . . 54

2.4 High Frequency Option Data Sample . . . . . . . . . . . . . . 55

2.5 High Frequency Option Data Sample . . . . . . . . . . . . . . 56

5.1 Experiments on Computing the State Transition Matrix with

Ross Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Extrapolating the Tail of the Option Implied Risk Neutral

State Price. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Simulation Test of the RT Algorithm . . . . . . . . . . . . . . 123

6.3 Under and Over Estimation of the Number of States . . . . . 125

6.4 Price Fitted for SPX on April 27, 2011 . . . . . . . . . . . . . 132

6.5 Price Fitted for AAPL on on April 27, 2011 . . . . . . . . . . 133

6.6 Implied Volatility Fitted for SPX on April 27, 2011 . . . . . . 134

7



LIST OF FIGURES

6.7 Implied Volatility for AAPL on on April 27, 2011 . . . . . . . 135

6.8 Risk Neutral Density Fitted and Recovered Physical Density

for SPX on April 27, 2011 . . . . . . . . . . . . . . . . . . . . 137

6.9 Risk Neutral Density Fitted and Recovered Physical Density

for AAPL on April 27, 2011 . . . . . . . . . . . . . . . . . . . 138

6.10 Option Implied Pricing Kernel for SPX on April 27, 2011 . . . 140

6.11 Option Implied Pricing Kernel for AAPL on April 27, 2011 . . 141

6.12 Recovered Market Left Tail Index . . . . . . . . . . . . . . . . 145

7.1 The Option-implied Average Correlation Smile Surface and

Term Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Three Dimensional Decomposition . . . . . . . . . . . . . . . . 161

7.3 High Frequency Option Data Sample . . . . . . . . . . . . . . 167

7.4 High Frequency Option Data Sample . . . . . . . . . . . . . . 168

7.5 Term Structure of Estimated Risk Neutral Second Central

Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.6 Term Structure of Estimated Risk Neutral Third Central

Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.7 Term Structure of Estimated Risk Neutral Fourth Central

Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.8 Term Structure of the Option-implied Average Correlations . . 178

7.9 Option-implied Sectorial Option-implied Average Correlations: I181

7.10 Option-implied Sectorial Option-implied Average Correlations:

II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.1 The Two Option-implied Risk Measures . . . . . . . . . . . . 227

8



Acronyms

BE book value of the equity. 194, 195

BM book to market ratio. 194, 213

BVPS book value of preferred stock. 195

CAPM Capital Asset Pricing Model. 191, 207, 216, 217

CBOE Chicago Board of Option Exchange. 42–45, 146, 148, 149, 151, 199,

200, 202, 216, 223

CKT realised co-kurtosis. 195, 213

CLASS The capital and loss assessment under stress scenarios. 228

CRRA constant relative risk aversion. 116, 117, 121, 124, 140, 141

CRSP Centre for Research in Security Prices. 164, 193, 194, 198

CSK realised co-skewness. 195, 213

ETFs exchange-traded funds. 49, 169, 213, 223

FF3 Fama-French 3-factor Model. 207, 216

FFC4 Fama-French-Carhart 4-factor Model. 204, 206, 207, 212, 216

GARCH The generalised autoregressive conditional heteroskedasticity. 228

GDP Gross Domestic Product. 228

9



Acronyms

HML book-to-market factor. 199, 207

HPI House Price Index. 228

IDIO idiosyncratic volatility. 196, 213

IEEE Institute of Electrical and Electronics Engineers. 117, 121, 158

ILLIQ illiquidity. 197, 213

ITCB investment tax credit. 195

LIQ traded liquidity factor. 199, 207, 212

MAC market average correlation factor. 203, 207, 212, 213, 216, 217, 219,

222, 223

ME market capitalisation. 194

MKT market factor. 198, 207, 213

MOM momentum. 197, 213

NMS National Market System. 41, 44, 128

OCC Option Clearing Corporation. 22, 44

OLS ordinary least squares. 184

OPRA Option Pricing Report Authority. 41, 44–48, 57, 85, 101, 116, 128,

130, 172, 202, 217, 219, 223

OTC over the counter. 116, 128

PRTKRV redemption value. 195

PSTK par value. 195

PSTKL liquidating value. 195

10



Acronyms

QE Quantitative Easing. 129

REV reversal. 197, 213

RKT realised kurtosis. 196, 213

RSK realised skewness. 196, 213

RT Recovery Theorem. 23–28, 31, 32, 58–62, 83, 86, 87, 92, 97, 100, 106,

115, 116, 123, 139, 225, 228

SEQ book value of the shareholders’ equity. 195

SHROUT total number of outstanding shares. 152, 194

SIZE the natural logarithm of market capitalisation. 194, 213

SMB stock size factor. 198, 199, 207

SPDR The Standard & Poor’s Depositary Receipts. 49, 169, 213

SQP sequencial quadratic programming. 5, 102, 110, 115, 119, 271

TRTH Thomson Reuters Tick History. 41, 46–48, 50, 57, 164, 165

TXDB deferred taxes. 195

U.S. the United States. 22, 41, 44, 45, 57, 101, 129, 198

UMD momentum factor. 199, 207

WRDS Wharton Research Data Services. 164, 198

11



Declaration

I, Yang ZHANG, hereby declare that the work on which the

thesis is based is my original work (except where

acknowledgements indicate otherwise) and that neither the

whole work nor any part of it has been, is being, or is to be

submitted for another degree in this or any other university for a

degree or a qualification.

12



Statement of Copyright

The copyright of this thesis rests with the author. No quotation

from it should be published without the author’s prior written

consent and information derived from it should be acknowledged.

13



Acknowledgements

Undertaking this PhD has been a truly life-changing experience

for me and it would not have been possible to do without the

support and guidance that I received from many people.

Firstly, I would like to express my sincere gratitude to my

primary supervisor Professor Julian Williams for all the

continuous support and encouragement he gave me during the

time of the PhD research and writing this thesis. The joy and

enthusiasm he has for his research was contagious and

motivational for me. My PhD has been an amazing experience

and I thank Julian wholeheartedly for his tremendous support

and guidance. I am blessed for having such a supervisor and

mentor who has inspired me, gave me smiles, guided me through

tough times, and always had an open ear for problems that even

unrelated to research.

My deeply thanks also goes to Professor Fabio Massacci from

University of Trento for his guidance and help. It has been a

wonderful experience to work with him. Besides my primary

supervisor, I would like to thank the rest of my supervisory

team: Dr. Dennis Philip and Professor Panayiotis Andreou for

their support. Many thanks also to my annual progress reviewer,

Dr. Damian Damianov for his insightful comments, which intent

me to widen my research from various perspectives.

Part of this thesis has been completed whilst visiting Sloan

School of Management, Massachusetts Institute of Technology

14



and Kellogg School of Management, Northwestern University. I

would like to pay special tribute to Professor Stephen Ross, who

provided valuable insights on my work relating to empirical

implementing on his Recovery Theorem when I visited him in

MIT. He will be deeply missed. A very special gratitude goes out

to Professor Viktor Todorov, Professor Torben Anderson, and

Professor Ravi Jagannathan, who gave valuable comments on the

thesis when I visited at Kellogg School of Management in

Northwestern University.

I would like to thank my fellow colleagues, Dr. Jing Nie,

Handing Sun, and Xiao Liang for the stimulating discussions, for

the sleepless nights that we work together before deadlines, and

for all the fun we have had in the last four years. My colleagues

have played a substantial role in my academic success and the

assistance they provided at critical times is greatly appreciated.

My years as a doctoral student have been joyous and I attribute

this to my wonderful friend, Yanjun Tan, thank you for listening,

offering me advice, and supporting me through this entire

process.

Last but not the least, I would like to thank my parents for

supporting me throughout my PhD journey and my life in

general. I always knew that you believed in me and wanted the

best for me. Thank you for teaching me that my job in life was

to learn, to be happy, and to know and understand myself; only

then could I know and understand others.

I would like to acknowledge the financial support I received from

the Economic and Social Research Science (ESRC) scholarship

programme by the Northern Ireland and North East Doctoral

Training Partnership (NINE DTP) in North East Doctoral

Training Centre (NEDTC) under grant NO. 1447815 through my

PhD research.

15



Dedication

With great respect, love and appreciation,

I would like to dedicate this thesis to my loving parents,

who raised me to who I am and

encourage me to go on every adventure,

especially this one.

16



Commonly Used Notation

The table below lists the general notations used throughout the thesis. A

single coherent notation is used for a specific variable unless mentioned

separately in the main text.

Symbol Description

N number of individual stocks in the market portfolio

N∗ number of independent elements in the co-moments matrices

N number of evenly spaced points in numerical integration

Si,t underlying stock i price at time t

Sm,t market portfolio m price at time t

S0 spot price

ST forward price

R log return

K option strike price
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T option maturity date

τ option time to maturity (tenor)

C(τ,K) call option price with strike K and time to maturity τ

P (τ,K) put option price with strike K and time to maturity τ

σ(τ,K) option-implied volatility with strike K and time to maturity τ

w individual stock market capitalisation weights

σ2
i variance (second moment) for stock i

s3
i skewness (third moment) for stock i

Continued on next page
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Notation

Continued from previous page

Symbol Description

k4
i kurtosis (fourth moment) for stock i

σi,j covariance between stocks i and j

si,j,k co-skewness among stocks i, j, and k

ki,j,k,l co-kurtosis among stocks i, j, k, and l

ρi,j quadratic correlation between stocks i and j

ρi,j,k cubic correlation among stocks i, j, and k

ρi,j,k,l quartic correlation among stocks i, j, k, and l

ρΣ quadratic average correlation

ρΓ cubic average correlation

ρΘ quartic average correlation

Λ symmetric multipliers

W terminal wealth

δ the discount factor

Lt numéraire portfolio

w the individual stock market capitalisation weights vector

σ standard deviation (second moment root) vector

s standard skewness (third moment root) vector

k standard kurtosis (fourth moment root) vector

τ time to maturity vector

K strike price vector

vR right Perron vector

vL left Perron vector

Σ covariance matrix

Γ co-skewness matrix

Θ co-kurtosis matrix

I identity matrix

M M-matrix

S state price matrix with elements si,j

Q state price transition matrix with elements qi,j

Continued on next page
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Notation

Continued from previous page

Symbol Description

P physical transition matrix with elements qi,j

P̃ the recovered physical transition matrix with martingale process

Φ the transition kernel matrix with elements φi,j

D the diagonal pricing kernel matrix with elements di,j

Ψ the stochastic discount factor matrix with elements ψi,j

H the positive martingale process matrix with elements hi,j

N n,n
Q set of irreducible matrices

P physical measure operator

Q risk neutral measure operator
+ maximize operator

E[·] expectation operator

⊗ Kronecker product

◦ Hadamard product operator
′ matrix transpose operator

D Drazin inverse operator

# group inverse operator

vec[·] column-wise stacking vectorise operator

mat[·] reshape matrix operator

diagk[·] kth order diagonal operator

triuk[·] kth order upper triangular operator

trilk[·] kth order lower triangular operator

[·]k kth order power operator

[·][k] kth order permuted outer product operator

U (k)(·) kth order derivative of the utility function U(·)
CRRA(γ) CRRA iso-elastic power utility function

R(·) Perron root function

V (·) Perron vector function

S (·) simple eigenvalue function

L (·) Lagrangian function

Continued on next page
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Symbol Description

H first-order derivative operator

H2 second-order derivative operator

∇ first-order partial derivative operator

∇2 second-order partial derivative operator
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Chapter 1

Introduction

... the plan of Thales of Miletus, which is a device for the business of
getting wealth, but which, though it is attributed to him because of his
wisdom, is really of universal application. Thales, so the story goes,
because of his poverty was taunted with the uselessness of philosophy;
but from his knowledge of astronomy he had observed while it was still
winter that there was going to be a large crop of olives, so he raised a
small sum of money and paid round deposits for the whole of the olive-
presses in Miletus and Chios, which he hired at a low rent as nobody
was running him up; and when the season arrived, there was a sudden
demand for a number of presses at the same time, and by letting them
out on what terms he liked he realised a large sum of money, so proving
that it is easy for philosophers to be rich if they choose, but this is not
what they care about.

Aristotle, Politics 1.1259a.1

1.1 Overview and Background

Thales of Miletus has been believed as the oldest reference to derivatives as it

has been recorded in the works of Aristotle more than 2400 years ago. It tells

a story of a poor philosopher named Thales, who designed an olive-presses

rent contract to answer the challenging question that “If you are so smart,

why ain’t you rich?” The deposit gives him the right to use the olive-presses

but not the obligation to use them. This could be called an option contract

1Aristotle, Politics 1.1259a, from Aristotle in 23 Volumes, Vol. 21, translated by H.
Rackham. Cambridge, MA, 1944.
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on the olive-presses, which is perhaps the earliest example we can find to

demonstrate the usage of derivatives.

Figure 1.1: Equity Option Trading Volumes in the U.S.
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Note. Figure 1.1 reports the equity option trading volumes (in million) traded on all option
exchanges in the U.S. from 1972 to 2017. The total daily trading volumes are plot by the
light grey area and labeled with the left axis while the number of underlying stocks issuing
options is given by the hard black line with the right axis.

With the introduction of the electronic trading platform in the mid-2000s,

the trading activities and market value of derivatives have seen a surge. As

Edward Swan pointed out: “Derivatives trading is now the world’s biggest

business, with an estimated daily turnover of over U.S. $ 2.5 trillion and an

annual growth rate of around 14 percent.”2 In particular, as shown in Figure

1.1, there are more than 3,500 single-name stocks issuing equity options and

the daily average trading volumes for equity options in the U.S. market are

more than 14 millions since 2005.3 Indeed, the increasing popularity of equity

2From Swan [2000], Building the Global Market: A 4000 Year History of Derivatives
3The trading volumes and underlying stocks data are from the Option Clearing

Corporation (OCC) Daily Market Statistic: https://www.theocc.com/webapps/historical-
volume-query.
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options suggests that equity derivatives play an important role in modern

financial markets.

Motivated by the growing popularity of equity options, the thesis focus

on investigating the information gains from high frequency equity option

panels with applications in risk management and empirical asset pricing.

Specifically, I introduce two innovative risk measures extracted from option

prices, mainly the left tail index and the higher dimensional option-implied

average correlations. Utilising a unique high frequency option dataset, the

information content of these option-implied measures are examined through

a series of empirical analyses, especially with applications in risk

management and empirical asset pricing.

Since the breakthrough work by Black and Scholes [1973] and Merton

[1973], a vast literature has been developed in option pricing.

Conventionally, options are priced under risk-neutral measures (Q) while

underlying equities are priced under physical measures (P). A long existing

cottage of literature in option pricing is to investigate the relationship

between equity options and underlying equity markets. For example, the

dynamics of the trading interactions between stock and option markets has

been largely discussed by Anthony [1988], Easley et al. [1998], and Liu and

Pan [2003] among others. Indeed, equity and equity-based index options

provide various economic benefits to spot market, though in theory under

complete market, the option market should not convey any new information

and the arrival of new information should be reflected simultaneously in

spot and option markets. In general, the thesis builds on various strands of

existing literature in option pricing and empirical asset pricing.

The first part of the thesis builds on the newly proposed Recovery

Theorem (hereafter RT), a theorem proposed by Ross [2015] on inferring

investors’ risk preference and future physical probability distributions from

the observed market option prices. It is well understood that option prices

are forward looking and contingent on investors’ belief on future returns for

the underlying equities. Traditionally, the information extracted from option

prices, such as the implied volatility, is well-known as an indicator of the

true spot volatility under risk-neutral measure. The innovative work by Ross
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[2015] challenges the conventional wisdom by proposing the RT, stating that

under mild assumptions, we can recover investors’ risk preference, which is

the pricing kernel and the physical probability distributions for underlying

equities from the risk-neutral state price extracted from observed option

prices.

The path-breaking work by Arrow [1964] and Debreu [1987] introduce

the Arrow-Debreu security, which is a contingent claim that pays $1 if the

contingent state is true or nothing vice versa and the price of the

Arrow-Debreu security is the so-called state price. Breeden and Litzenberger

[1978] show that state price can be uniquely extracted from option prices via

the risk-neutral densities, which is the second-order derivatives of the option

prices with respective to the strike prices. In order to convert the

risk-neutral probabilities into physical rational pricing probabilities, the

Radon-Nikodym derivative is extensively used. Specifically, the

Radon-Nikodym derivative states that the physical density is a combination

of the risk-neutral density and the pricing kernel, which is formed by

investors’ risk preference and discounting factor.

Initially, Ross [2015] derive the RT in a discrete Markov chain framework

with bounded state space. The Perron-Frobenius theorem is applied to recover

investors’ risk preferences and physical probabilities of the underlying equities’

future returns. A little cottage of literature has built up on generalising the

RT by loosing its initial assumptions. Carr and Yu [2012] re-derive the RT

in a continuous time framework using the Regular Sturm-Liouville theorem.

Walden [2017] looses the bound restriction and derives necessary and sufficient

conditions in an unbounded diffusion framework. More discussions on the

theoretical settings of the RT can be found in Dubynskiy and Goldstein [2013],

Liu [2014], Park [2015], Qin and Linetsky [2016], and Qin and Linetsky [2017]

among others.

A large body of literature has been developed in comparing the recovered

probability densities from the RT with the historical physical probability

densities. Borovička et al. [2016] point out that the recovered probability

distribution from RT is misspecified, as the Perron Frobenius approach

employed by Ross [2015] recovers a probability measure that reflects
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long-run pricing risk. Moreover, the stochastic discount factor process

assumed in Ross [2015] implies a unity martingale transitory component.

Ngoc-Khanh and Xia [2014] suggests that the uniqueness of the recovered

pricing kernel and the corresponding physical probability transition matrix

largely depends on the dimension of the states space.

A three-step procedure is suggested by Ross [2015] for applying the RT

in practice. The first step is to obtain the risk-neutral state price matrix

from the observed option prices. The path-independent risk-neutral transition

matrix is then derived from the state price matrix. Finally, the pricing kernel

and the physical transition density matrix are determined by employing the

Perron-Frobenius theorem. The approach for extracting the state price matrix

from observed option prices is well-understood in the literature, which can be

obtained by various parametric or non-parametric methods, see for example

Aı̈t-Sahalia and Lo [1998], Andersen and Wagener [2002], Yatchew and Härdle

[2006], Yuan [2009], and Andersen et al. [2015].

Indeed, the most challenge step in applying the RT is to determine the

risk-neutral transition density from the state price matrix. Spears [2013]

compares nine different methods for estimating the transition density matrix

under various constraints. Audrino et al. [2014] solve the ill-posed problem

in the estimation process by applying Tikhonov regularisation, see also

Backwell [2015]. Following the example given in Ross [2015], several

empirical studies attempt to test the reliability of the recovered results.

Utilising neural networks, Audrino et al. [2014] demonstrate a time-series

analysis of the implication of the recovered probability distribution in

trading strategies with S&P 500 Index option. Schneider and Trojani [2018]

recover the time series of conditional physical moments of market index

returns from a model-free projection of the pricing kernel and find that the

recovered moments predict S&P 500 returns, especially for longer horizons.

In the similar spirits of my thesis, Jensen et al. [2018] generalise the time-

homogeneous stationary model of Ross [2015] and show that the recovery is

feasible when the number of maturities with observable option prices is higher

than the number of states of the economy. A closed-form linearised solution

is provided and implemented empirically to test the predictive power of the
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recovered expected return. A detailed review of the literature related to the

RT and the various derivations of the RT are provided in Chapter 3.

An alternative literature strand the thesis built on is the spanning role of

option contracts. In a pioneering paper, Ross [1976] first demonstrates the

spanning role of derivatives such that derivatives can complete the market

and improve market efficiency. Following in the spirits of Ross [1976] and

Brown and Ross [1991], Bakshi and Madan [2000] and Carr and Madan [2001]

explicitly examine the implications of the generic spanning contracts from

two different perspectives. Specifically, Bakshi and Madan [2000] show that

it is possible to analytically price options on any arbitrary transformation of

underlying uncertainty using the characteristic function.

Alternatively, Carr and Madan [2001] explicitly demonstrate the

decomposition of an arbitrary payoff into a portfolio of risk-free assets

(bonds), risky assets (stocks), and derivatives (options written on stocks)

with the optimal positions taken in each of the assets. Built on the results of

Bakshi and Madan [2000] and Carr and Madan [2001], Bakshi et al. [2003a]

uniquely derive the non-parametric expressions for the risk-neutral variance,

skewness, and kurtosis swaps. A detailed review of the generic spanning

contracts and the derivations of the risk-neutral central moments are

provided in Chapter 4.

Finally, the thesis also relates to the vast literature on using pricing

factors extracted from option prices in explaining cross-sectional stock

returns, especially the risk-neutral moments and co-moments. Many prior

studies have carefully documented empirical evidence illustrating that the

market volatilities, skewness, and kurtosis extracted from the individual

equity options play important role in explaining and forecasting

cross-sectional stock returns, see Chang et al. [2013], Conrad et al. [2013],

and Bali et al. [2015] for the most recent examples.

In addition to the risk-neutral moments, the role of option-implied

correlations has also been seen as important pricing factors in explaining the

cross-sectional stock returns. Correlations vary through time and a growing

body of research has been motivated to investigate the role of correlations

based on historical information set, see for example Von Furstenberg et al.
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[1989] and Longin and Solnik [1995]. Longstaff et al. [2001] and De Jong

et al. [2004] provide evidence that interest rate correlations implied by cap

and swaption prices differ from realised correlations.

Option-implied correlations have been computed extensively in the foreign

exchange markets, see for example Bodurtha and Shen [1995], Campa et al.

[1998], Walter and Lopez [2000], and Mueller et al. [2016] among others. For

equities, Skintzi and Refenes [2005] proposes a method to extract correlations

from option prices of the individual underlying assets and the market index.

Driessen et al. [2009] provide a stochastic correlation model and estimate

the option-implied correlations and the correlation premium risk. Driessen

et al. [2013] provided further evidence showing that the option-implied average

correlations have remarkable predictive power for future stock market returns.

1.2 Findings and Contributions

1.2.1 Empirical Recovery and Risk Management

To begin with, Chapter 5 and Chapter 6 contribute to the literature on the

RT by building a fully-identified non-linear algorithm for applying the RT in

practice with noisy market data. The procedure for applying the RT is given

in Figure 1.2, where S represents the state price matrix, Q is the risk-neutral

state price transition matrix, δ is a scalar denoting the recovered discount

factor, D is a matrix with the pricing kernel sitting on the diagonal, and P

is the recovered physical transition matrix.
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Figure 1.2: The Recovery Process

Note. Figure 1.2 gives the step-by-step procedure for applying the RT in practice. The
S represents the state price matrix, Q is the state price transition matrix, δ is a scalar
denoting the recovered discount factor, D is a diagonal matrix with the pricing kernel
sitting on the diagonal, and P is the recovered physical transition matrix.

Theoretically, various parametric and non-parametric methods can be used

to extract the state price matrix S from the observed option prices. However,

the noisy market data makes it difficult to recover the full distribution of the

risk-neutral densities. Figure 1.3 demonstrates the (upper) tail truncation

problem. Specifically, a large portion of the right-tail mass of the risk-neutral

densities is hidden due to the asymmetric distribution of available strike prices

for call and put options traded in the market.
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Figure 1.3: The Tail Truncation Problem
The Tail Truncation Problem

The “Highest” 
traded strike

The “Hidden” 
right-tail mass

The Choice of “Cut-off”

Note. Figure 1.3 demonstrates the (upper) tail truncation problem. The continuous black
line represents the risk-neutral density, the vertical dotted line represents the highest traded
strike price, the dash line represents the best fitting parametric curve, presumed to be a
weighted mixture of up to three lognormal distributions, and the horizontal line represents
the choice of cut-off level such that avoids the state price matrix numerically equal to zero.
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To deal with the tail truncation issue, I employ a two-stage

semi-parametric curve-fitting method to extract the full distribution of the

risk-neutral densities from the noisy market data. Specifically, the market

option data is smoothed by fitting the Black-Scholes implied volatility with

a polynomial function over a continuous range of strike prices. I then utilise

the Breeden and Litzenberger [1978] method to calculate the risk-neutral

density curve non-parametrically. Finally, a mixture of two or three

log-normals provides a fit that matches the available points in the curve and

the exit trajectory of the tails from the point the coverage of the range of

strikes and intraday spot prices.

The biggest challenge for applying the RT in practice is identifying the

transition matrix from the state price matrix with a desired structure. In

order to apply the Perron-Frobenius theorem to recover the discount factor

and pricing kernel, the state price transition matrix needs to be unimodal

with the modals sitting on the diagonal and be sub-stochastic reflecting the

discounting process. As illustrated in Figure 1.4, the naive un-constrained

least square method yields a wild transition matrix with negative densities and

a simple non-negative least square approach returns a multi-modal transition

matrix violating the non-arbitrage assumption.
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Figure 1.4: Challenges in Identifying the Transition Matrix

Note. Figure 1.4 illustrates the challenge in identifying the proper transition matrix from the state price matrix. The left subplot in
the upper panel gives the state price matrix while the right one is the target state price transition matrix. The lower panel present two
failure cases on identifying the transition matrix via un-constrained least square method (left) and non-negative least square method
(right).
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In Chapter 5, I uniquely derive a perturbation theory for the Perron-

Frobenius eigenvalue and eigenfunction and the resulting discount factor and

pricing kernel. In Chapter 6, I use this insight to develop a fast non-linear

programming approach such that attained minimum formally satisfies the

desired mathematical and economical constraints (e.g. the de-facto discount

factor being smaller than unity and the unimodality of the transition matrix).

The efficiency of the optimisation algorithm is checked through simulations

with a-priori known number of states. I also examine the sensitivity of the

algorithm to a-priori unknown number of states.

Besides the perturbation theory, Chapter 6 also contributes to the RT

literature by providing new empirical evidence on the recovered physical

densities and pricing kernels from both index options and single-name equity

options. Figure 1.5 displays two examples showing the risk-neutral density

versus the recovery physical density for the S&P 500 index option and

options written on Apple Inc. (AAPL.O) separately. Consistent with the

example in Ross [2015], the recovered physical distribution exhibits

considerably thinner left tails than the nearest equivalent maturity

risk-neutral distribution for both the S&P 500 index and Apple Inc.

Figure 1.6 displays the recovered pricing kernel for different number of

states along with the theoretical pricing kernel with various risk aversion

coefficients for the CRRA iso-elastic power utility function from the S&P 500

index options and options written on AAPL. The first obvious point to note

is that for both the SPX and AAPL the shape of the kernel is (a) U-shaped

(or more precisely W-shaped) and (b) asymmetric. The shape of the kernel

converges as the number of states increases.

The U-shaped (or W-shaped) pricing kernels are neither inconsistent with

the example in Ross [2015] nor with the theoretical pricing kernel given by the

CRRA iso-elastic power utility function. Indeed, though Ross [2015] recovers

a strictly decreasing pricing kernel, the U-shaped empirical pricing kernel has

been widely documented as ‘pricing kernel puzzle’, see Brown and Jackwerth

[2004], Hens and Reichlin [2013], and Cuesdeanu [2017] among others. In

a most recent paper, Song and Xiu [2016] also find either heavily kinked or

markedly U-shaped empirical pricing kernels using historical data or parallel
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derivatives markets such as the VIX options.

Finally, utilising the time-series of recovered physical probability densities

for options written on S&P 500 Index, I build a left tail index capturing the

market downside risks. Figure 1.7 plots the left tail index from January 1,

1996 through January 31, 2015. In particular, I set the uniform state grid

to be 5 states ranging from −50% to +50% (with 0% sitting in the middle)

and the tenor grid to be 6 tenors ranging from 90 days to 540 days with

quarterly interval. The left tail index (black hard line) is then formed by the

recovered cumulative probabilities for the −50% and −25% states while the

dash and dot lines are the recovered probability densities for the −50% and

−25% separately. The grey areas highlight the financial crisis and economic

recessions periods. It can be seen that the left tail index tracks the markets

very well. The recovered probability densities provide valuable information

for risk management, especially the market downside risks.

To summarise, Chapter 5 and Chapter 6 contribute to the literature on RT

from three perspectives: First and foremost, I specified a perturbation theory

for the discount factor and pricing kernel. A fast and fully-identified sequential

quadratic programming algorithm is built to apply the RT in practice with

noisy market option prices. Secondly, I provide new empirical evidence for

applying the RT with single-name equity options. I find consistent evidence

on the recovered probability distributions with Ross [2015]. In contrast to

Ross [2015], I recover U-shaped pricing kernels, which is consistent with the

‘pricing kernel puzzle’ literature. Lastly, using the time series of the recovered

probability distributions for the S&P 500 Index, I construct a left tail index,

which can be used as an indicator for the long-run market downside risk.
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Figure 1.5: Risk Neutral Density V.S. Recovered Physical Density
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(b) AAPL
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0.01Note. Figure 1.5 plots the risk-neutral densities against the recovered physical densities
using the empirical recovery algorithm given in Chapter 6. Subplot (a) is for the S&P 500
index options with 87 days to maturity while subplot (b) is for the single-name equity option
written on AAPL with 129 days to maturity. In both subplots, the hard line represents the
recovered physical densities while the dash line is the risk-neutral densities.
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Figure 1.6: Recovered Pricing Kernel
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Note. Figure 1.6 displays the recovered pricing kernel with different number of states along
with the theoretical pricing kernel with various risk aversion coefficients for the CRRA
iso-elastic power utility function from the S&P 500 index options and options written on
AAPL stocks.
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Figure 1.7: Recovered Market Left Tail Index
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Note. Figure 1.7 plots the left tail index formed by the recovered physical probability
distributions of S&P 500 index. The dot line represents the probability that the markets
drop 50% while the dash line demonstrates the probability for market going down 25%.
The hard line is the cumulative probability that the markets drop down. The grey shaded
areas represent the financial crisis and economic crisis defined according to the NBER over
the sample period running from January 1, 1996 through January 31, 2015.
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1.2.2 Option-implied Average Correlations and

Empirical Asset Pricing

Motivated by the vast literature on the spanning role of derivatives, the

second part of the thesis focus on investigating the information content of

option-implied high moments and co-moments. Specifically, Chapter 4

contributes to the literature by uniquely deriving the explicit expressions for

the risk-neutral second, third, and fourth central moments for the expected

returns of underlying assets. The main contribution of the second part of

the thesis sits in Chapter 7 and Chapter 8. In Chapter 7, I introduce a

series of correlation analogous, namely the option-implied average quadratic,

cubic, and quartic correlations, and derive the explicit formulas for

extracting the higher dimensional option-implied average correlations from a

high frequency option dataset.

In order to specify the calculations of the higher dimensional

option-implied average correlations, I take advantage of the symmetric

structure of multi-dimensional tensors, especially for the third and fourth

moments. By carefully identifying the symmetric structure of the

multi-dimensional tensors, I derive the explicit formulas for calculating the

quadratic, cubic, and quartic option-implied average correlations in

Proposition 7.1. The risk-neutral central moments for the index and all

index components are estimated using the generic spanning contracts

derived in Proposition 4.1. Figure 1.8 presents the one-month to maturity

option-implied average correlations with the grey shaded areas representing

the financial crisis and economic crisis defined according to the NBER from

January 1, 1996 through January 31, 2015.

As shown in Figure 1.8, the quadratic, cubic, and quartic average

correlations move closely with each other. The quadratic correlation is

higher than both cubic and quartic correlations over the calm period but the

higher order correlations are much higher than the quadratic correlation

during the volatile periods. Together with the quadratic average correlation,

the higher dimensional average correlations provide a multi-dimensional

description of the correlation structure of the market portfolio, which can
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Figure 1.8: Option-implied Average Correlations
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Note. Figure 1.8 plots the one-month to maturity option-implied average correlations with
the grey shaded areas representing the financial crisis and economic crisis defined according
to the NBER over the sample period running from January 1, 1996 through January 31,
2015.

also be interpreted as a measure of the market diversification level. A higher

correlation level indicates a lower diversification in the market portfolio such

that individual stocks tend to move together towards the same direction,

especially during the volatile periods.

In Chapter 8, I examine the role of the higher dimensional

option-implied average correlations in explaining the cross-sectional stock

risk premium. I employ the two-stage Fama and MacBeth [1973]

cross-sectional regressions by regressing the excess monthly returns of S&P

500 index component stocks on the excess returns of market portfolio and

the option-implied average correlations. I further consider firm

characteristics and existing priced factors in the literature, such as the firm

size, firm value, momentum, liquidity, idiosyncratic volatility, realised

skewness, realised kurtosis, co-skewness, and co-kurtosis.
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I then uniquely form a market average correlation factor as the average

expected excess returns of three correlation-based portfolios. The

performance of the market average correlation factor is first examined by a

series of time-series regressions across 11 sector portfolios. In particular, I

find the market average correlation factor largely enhances the fitting of the

existing asset pricing models with higher adjusted R2. The relation between

the risk premium of the market average correlation factor and cross section

stock returns is further investigated via the Fama and MacBeth [1973]

methodology across the whole sample. As expected, a positive significant

risk premium has been detected and the significance is consistent when

controlling other variables such as the firm size, firm value, momentum,

liquidity, idiosyncratic volatility, realised skewness, realised kurtosis,

co-skewness, and co-kurtosis.

To summarise, Chapter 4, Chapter 7, and Chapter 8 contribute to the

literature on the spanning role of derivatives in three ways: Firstly,

Proposition 4.1 provides explicit expressions for extracting the risk-neutral

second, third, and fourth central moments from option prices. Secondly, I

introduce a set of higher dimensional option-implied average correlations,

namely quadratic, cubic, and quartic correlations. Lastly, the information

content of the option-implied average correlations is investigated through a

series of empirical analyses. I show that the correlation risk is priced in

cross-sectional stock returns and form a market average correlation factor,

which yields persistent positive risk premium.

1.3 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter 2 provides a review

of the high frequency equity option dataset used through the thesis. A

detailed survey of the derivations and extensions of the Recovery Theorem is

given in Chapter 3. In Chapter 4, I first review the derivation of the generic

spanning contract and then derive the formulas for extracting risk neutral

central moments of expected returns from option prices. I derive a

perturbation theory in Chapter 5 for the recovered discount factor and
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pricing kernel. Chapter 6 investigates the empirical implementations of

Recovery Theorem with applications in risk management. Chapter 7 derives

the estimations of the higher dimensional option-implied average

correlations. Chapter 8 examines the information content of higher

dimensional option-implied average correlations with applications in

empirical asset pricing. Chapter 9 concludes the thesis. All chapters are

self-contained and can be read independently of each other.
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OPRA and High Frequency

Option Data Panel

2.1 Overview

The empirical analyses in this thesis are based on a high frequency equity

option data panel, which sources from the Thomson Reuters Tick History

(hereafter TRTH) database. In particular, I look at the vanilla options

written on both market index and individual stocks in the United States.

Specifically, we take advantage of the introduction of the Option Pricing

Reporting Authority (hereafter OPRA) under the U.S. National Market

System (hereafter NMS), which makes it possible to collect all of the

exchange-traded equity option data from one venue rather than aggregating

data from different channels. Moreover, in order to conduct the

cross-sectional analyses, I uniquely construct a large scale equity option

panel, including all of the S&P 500 index constituents over the sample

period from January 1, 1996 through January 1, 2015.

To my knowledge, this is the most comprehensive equity option data

panel within the field of this kind of research. Indeed, the data included in

this thesis, whilst available publicly (for a fee) requires such high

computation power to extract, I believe that this is the first usage of it

outside of practitioners in high frequency option trading. Thus, I provide a
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detail description of the characteristics of the high frequency equity option

data panel, including the techniques used to extract and category the raw

data, the various filters employed to clean the noise prices in order to

construct the option data panel, and finally, I list a few data examples from

the sample, showing the unique features of the high frequency option data

compared to the daily data.

2.2 The OPRA Option Data System

Basket options such as the S&P 500 and the S&P 100 index options have

been largely used in the studies of option pricing for many decades while

single-name equity options are hardly appeared in the literature due to the

limitation of the option data on individual equity option. However, with the

emergence of computerised trading systems and the development of the

electronic trading platform, a far more viable and liquid options trading

market has been created. Both the trading volumes and number of issued

underlying stocks have largely increased. In particular, options written on

single-name equities have become the main players in the exchange-based

option markets.

I plot the time series of trading volumes for index and single-name equity

options traded on Chicago Board Options Exchange (CBOE) in Figure 2.11.

Subplot (a) reports the daily trading volumes of index and single-name equity

options on CBOE over the period October 2004 through May 2017. The

trading activities of single-name equity options have increased largely since

2006 and more than half of the total trading volumes come from single-name

equity options. Subplot (b) presents the daily trading volumes of single-name

equity options (in million) and the number of underlying stocks issuing options

on CBOE over January 1998 through May 2017. The number of underlying

stocks issued equity options has climbed from less then 500 to more than 3000

over the period from 1998 to 2017.

In addition to the CBOE, a few new players have entered the

1The trading volumes data source from the CBOE Daily Market Statistics:
http://www.cboe.com/data/current-market-statistics/cboe-daily-market-statistics.
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Figure 2.1: Option Trading Volumes on CBOE

(a) Index and Single-name Equity Option Trading Volume on CBOE
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Note. Subplot (a) reports the daily trading volumes (in million) for the index and single-
name equity options traded on CBOE over the period October 2004 through May 2017.
The dark grey areas stand for the daily trading volumes (in million) for single-name equity
options while the light grey areas represent the daily trading volumes (in million) for index
options. Subplot (b) presents the daily trading volumes of single-name equity options (in
million) and the number of underlying on CBOE over January 1998 through May 2017. The
dark grey and light grey areas plot the trading volume in millions of the single-name equity
options marked by the left axis while the black hard line plots the number of underlying
stocks issued in the option market labeled by the right axis.
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marketplace, such as the Boston Stock Exchange, International Securities

Exchange, NASDAQ OMX PHLX (the former Philadelphia Stock

Exchange), NASDAQ Stock Market, the NYSE Amex (the former American

Stock Exchange) and NYSE Arca (the former ArcaExand). Figure 2.2

reports the total daily average trading volumes of equity options (include

index and single-name equity options) traded on all of option exchanges in

the U.S. since 1972.2 Both the number of underlying stocks issuing equity

options and the total trading volumes of equity options have soared since

the early 2000s. Since 2007, more than 11 million option contracts are

traded on more than 3,500 securities every day and the growth continues.

Comparing Figure 2.1 and 2.2, it is easy to see that though CBOE is the

largest option exchange in the U.S. it only stands for around a quarter of

the U.S. equity option market.

In order to standardize the data and information system for the United

States option market, the OPRA was set up in October 2009 and became

effective on January 1, 2010. Under the OPRA national market system plan,

the trades and quotes data of all option contracts trading on the

participating exchanges is gathered and consolidated or disseminated to

approved vendors. The OPRA is claimed by the compliers to be the most

comprehensive exchange-based option dataset in the United States option

market and more than 75% of option trading is recored with the NMS.

Currently, the participating exchanges include NYSE Amex Equities

(AMEX), BATS Options (BATS), Boston Stock Exchange (BSE), Chicago

Board Options Exchange (CBOE), International Securities Exchange (ISE),

ISE Gemini, ISE Mercury, Bats EDGX Options, Miami International

Securities Exchange, NYSE Arca, Nasdaq OMX BX Options, and

Philadelphia Stock Exchange (PHLX).

The introduction of the OPRA data system provides a unique venue to

extract trades and quotes data for options written on single-name equities.

Unlike the S&P 500 and the S&P 100 index options, which are traded on

CBOE, the single-name equity options are traded on different exchanges at the

2The trading volumes data source from the OCC (Options Clearing Corporation) Daily
Market Statistics: https://www.theocc.com/webapps/historical-volume-query.
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Figure 2.2: Equity Option Trading Volumes in U.S.
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Note. Figure 2.2 reports the total daily average trading volumes (in million) of equity
options (include index and single-name equity options) traded on all of option exchanges in
the U.S. from 1972 to 2017. The total daily average trading volumes are plot by the light
grey area and labeled with the left while the number of underlying stocks issuing options
is given by the hard black line with the right axis.

same time. For example, options written on Apple, Amazon, Facebook, and

IBM are traded on CBOE as well as on AMEX. Without the OPRA system,

trades and quotes data need to be aggregated from different exchanges while

under the OPRA system all the option data are consolidated to approved

vendors. Indeed, as my data sample starts from January 1, 1996, which is

prior the OPRA system, I back the option data on single-name equity options

by aggregating the data from all available exchanges on a weighted-average

basis if needed.

2.3 The TRTH and Option Data Structure

Apart from the rich data coverage of the OPRA system, an alternative key

feature of the data used in this thesis is that I uniquely construct a high
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frequency option price panel, which sources from the TRTH tick-by-tick

option transactions and quotations. A tick is a measure of the minimum

upward or downward movement in the price of a security. A tick can also

refer to the change in the price of a security from trade to trade. A tick

represents the standard upon which the price of a security may fluctuate.

The tick provides a specific price increment, reflected in the local currency

associated with the market the security in question resides, by which the

overall price of the security can change. In particular, both transactions and

quotations are time-stamped to the nearest tick time and tick data are

converted into one-minute series using the previous-tick method. Under the

previous-tick method, the equally-spaced series of one-minute prices are

generated by the observations at the end of each one-minute interval.

On the one hand, compared to the commonly used end-of-day data, the

intraday dataset yields several advantages. First, I will have a range of spot

prices and observations for each traded strike. Second, over a given day the

range of traded strikes is likely to be more heavily populated than skimming

the trades and quotes at the end of day. Third, I use the mid-price of the best

bid and ask quotes and again this will likely yield a far greater variation in

the quoted prices, see for example Andersen et al. [2003]. On the other hand,

the high frequency data is much noisier than the end-of-day data, such as

the widely known market microstructure issue, thus a more careful cleaning

procedure is essential. Specifically, I describe the high frequency data filters

I applied in Section 2.4.3.

The trading related data is normally stored in an irregular patten with

columns representing the day, time stamp, bid price, ask price, bid and ask

volumes and some other measures of activity, such as number of traders. The

remaining information for the option contracts, such as the strike price, the

maturity date, the type of the contract (either a call or a put), are coded in

a unique Reuters Instrument Codes (hereafter RICs). Under the TRTH, the

RICs are the unique identifiers to parse the contract information efficiently

across different trading vendors. Indeed, the structure of the RICs varies

for different trading products. The RICs for the OPRA option data has the
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following structure:

[Ticker][Month][Day][Year][Strike].[ExchangeID]

such that:

• Ticker: the underlying stock ticker from the exchanges;

• Month: a letter that identifies both the expiration month and the type

of the option. Specifically, for call options the expired month from

January to December is labeled by the letter from ‘A’ to ‘I’ while for

put options the expiration month is named with letter from ‘M’ to ‘Y’.

The [Month] also provides the decimal base for the strike prices. If

[Month] is capitalized then the strike price is taken to two decimal place

and if month is lower case, then the strike is taken to one decimal place;

• Day: two digits integer for the expiration day;

• Year: two digits integer for the expiration year;

• Strike: five digits adjusted by the base determined in the [Month];

• ExchangeID: a capitalized letter identify the trading exchange.

For example,

AAPLE051709000.U

represents a CALL option contract written on the underlying stock AAPL

that expires on 2017-May-05 and the strike price is $90. Finally, U represents

the exchange identifier for the OPRA system.

For RICs based codes, working from right to left works best as the

underlying ticker can be of variable length. Hence, for each option I parse its

ticker and extract the strike price and maturity date following the rules

discussed above. The Matlab codes for extracting the option data from the

TRTH are available in Appendix A.3.
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2.4 The High Frequency Option Data Panel

The empirical analyses in this thesis are conducted based on the high

frequency option panel that features by a large cross-sectional equity spot

and option data over a long historical period. In this section, I present the

lists of the individual companies included in the data panel and the

procedure for constructing the intraday one-minute option data panel over a

daily grid.

2.4.1 The S&P 500 Index Constituents Sample

Utilizing the rich option data coverage of the OPRA option system, I uniquely

construct a high frequency option data panel, which includes the option prices

for both the S&P 500 index and all of the index constituents over the period

from January 1, 1996 through January 1, 2015. The S&P 500 index is a value-

weighted index with frequency rebalancing on an as-needed basis. The list of

the constituents of the S&P 500 index is obtained from the COMPUSTAT

data set of Standard and Poor’s. There are 973 firms in the S&P 500 index

over January 1, 1996 through January 1, 2015. Unlike the actively trading for

options written on the S&P 500 index, trading for some single-name equity

options may be quite illiquid. In fact, as documented on the TRTH, the

trading for single-name equity options prior 2005 is very thin and not all of

the index components equities have options traded on the exchange. Thus, I

limit my attention to a subset of stocks which are known to be highly traded

and liquid. I have no intention to be fully comprehensive in the sample and

am inclined to drop stocks for which option trading is too thin rather than

including them in the analyses.

Options on the S&P 500 index are European style and expire on the

third Friday of the contract month while options on individual equities are

American style and usually expire on the Saturday following the third

Friday of the contract month. After excluding the index components that

are either illiquid traded nor have no options written on, my sample ends up

with 588 constituents. The list of the companies in the sample and the
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statistics of the total number of trading days, total number of price

observations, and the average number of price observations per day are

reported in Table A. 1 in Appendix A.1.

2.4.2 The Selected Sector Index Sample

In addition to the high frequency option panels with S&P 500 Index and its

constituent companies, I uniquely construct a sub dataset with Selected

Sector Index. The Standard & Poor’s Depositary Receipts (SPDR) funds

are a family of exchange-traded funds (ETFs) traded in the United States.

The Selected Sector SPDR ETFs are the unique Exchange Traded Funds

(ETFs) that divide the S&P 500 into ten index funds, namely the Energy

(XLE), Materials (XLB), Industrials (XLI), Consumer Discretionary (XLY),

Consumer Staples (XLP), Health Care (XLV), Financial (XLF), Information

Technology (XLK), Utilities (XLU), and Real Estate (XLRE). Each Selected

Sector Index is calculated using a modified ‘market capitalisation’

methodology, which ensures that each of the component stocks within a

Selected Sector Index is represented in a proportion consistent with its

percentage of the total market cap of that particular index.

Each Selected Sector SPDR is designed to, before expenses, closely track

the price performance and dividend yield of a particular Select Sector Index.

Each Fund’s portfolio is comprised principally of shares of constituent

companies included in the S&P 500. Each stock in the S&P 500 is allocated

to only one Selected Sector Index. The combined companies of the ten

Selected Sector Index represent all of the companies in the S&P 500. The

SPDR ETFs sector index are traded as stocks and can be short-sell and

optioned.3

Specifically, the options written on the Selected Sector Index are American

style and usually expire on the third Friday of the contract month. The

options written on the Selected Sector Index are introduced separately and

the options written on specific sector index are also established at different

time. In order to keep the consistent of data across all sector index, I construct

3Sources: http://www.sectorspdr.com/sectorspdr/features/about.
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a sub dataset from my high frequency option panels consisting of nine Selected

Sector Index over the sample period from November 30, 2009 to January 1,

2015.4 The list of the companies in each sector index and the holding and

weights are reported in Table A. 2 in the Appendix A.2.

2.4.3 Construct the Option Data Panel

The spot prices for both the S&P 500 index and the index components are

also obtained from the TRTH at a one-minute intraday frequency. The spot

price for the S&P 500 index is backed by the E-mini S&P 500 index futures

traded on Chicago Mercantile Exchange (CME). Following Bollerslev et al.

[2018], I roll the future contracts in every expiration months (March, June,

September, December) using the most actively traded front future contracts

by counting the number of valid trades (i.e. trades with a non-zero trading

volume) over a day. The proxy for the risk-free rate is collected from the

exchange-traded USD deposit rate from the TRTH at a one-minute intraday

basis for the sample period. I use the exchange-traded deposit rate as it gives

the most comprehensive information of the up-to-date risk-free rate proxy.

In the literature, the yields on the US Treasury coupon bills are generally

accepted as the risk-free rate of return, which are only available on specific

maturities and up to 52 weeks (1 year) time to maturity. The exchange-traded

USD deposit rates are available in 19 maturities and updates hourly, ranging

from the over-night instant rate up to 5-year long-term rate, which makes an

ideal sample for the high frequency risk-free rates.

The high frequency option data panel is constructed by matching up the

option data, spot data, and risk free rate date together with the nearest tick

time stamp for each observation. I then undertake the following steps to

generate the representative daily panels:

1. Following Andersen et al. [2003] and Andersen et al. [2015], I first apply

the following high frequency data filters:

4The Real Estate Index (XLRE) began trading on Oct 8th, 2015, which is out of my
sample period.
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• Drop any options that do not have both a bid and an ask price or

have zero bid and ask size;

• Sort the data into buckets by time to maturity and strike price;

For every time stamp and for each maturity date delete options

with prices that exhibit the following:

– Have a negative bid-ask spread;

– Have a decreasing price with moneyness;

– Have a price less than 90% of the intrinsic value;

2. Compute the natural logarithm of the strike to current spot price ratio

(the ‘log-strike’);

3. For a given time to maturity and strike bucket if there are both puts

and calls traded then sort into pairs by nearest time stamp;

4. For this step only, discard all un-paired options (i.e. puts without calls

or vice versa), then use each paired options to compute the intraday

one-minute implied dividend for the stock or index using the standard

put-call parity condition. Compute the median dividend for the asset

for the day;

5. Compute the Black-Scholes implied volatility for every option applying

the median dividend to every traded option. For individual stocks an

American option implied volatility can also be used if the put early

exercise premium is deemed to potentially be sufficiently large to bias

the implied volatility calculation;

6. For each unique time to maturity and for the put and call options collect

the implied volatilities and the ‘log strikes’ into two vectors;

7. Choose a parametric or non-parametric curve fitting model and regress

the implied volatilities onto the ‘log strikes’, to compute a model of the

smile surface;
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8. Check that the put options have a wider range of strikes than the calls

options. A second alternative is to take a weighted average of the two

smiles (one for the put and one for the call);

9. Choose a regular ‘log strikes’ grid that will be consistent across all days

in the sample and then apply an interpolation technique to generate

a set of implied volatilities for each point on this strike grid from the

irregular grid computed in the previous step;

10. Using the end-of-day spot price generate a set of strike prices from the

log-strike grid and combine these with the end of day deposit or swap

rate (depending on maturity) and the median implied dividend yield to

generate the requisite put and call prices.

For each day this yields a correctly matched pair of matrices of put and

call prices versus a regular grid of strikes. In order to generate consistent

time to maturity grid (as each maturity is a fixed time stamp), a second

regular time to maturity grid can be constructed and a two dimensional

interpolation applied. I recommend always using linear interpolation for the

time to maturity and ensure that the grid from Step 9 is sufficiently fine

grained to prevent bumps that may affect the index calculation.

2.5 Features of the High Frequency Option

Data Panel

Figures 2.3 to 2.5 provide some snapshots of my high frequency option data

panel. Each of the sub plots in Figures 2.3 to 2.5 display the intraday

bid-ask prices (z-axis) for option contracts traded at various strikes (x-axis)

and time to maturities (y-axis) for the S&P 500 index and some selected

individual companies, namely Apple Inc. (AAPL), International Business

Machines Corporation (IBM), and Boeing Company (BA). The red points

represents the call prices while the blue points give the put prices. The plots

show that my unique high frequency option data panels provide complete
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and sufficient coverage of the option prices that can be utilised to extract

the various information.

It can be observed that the option trading is very thin in the early years

even for the S&P 500 Index. Though the transaction activities for option

written on individual equities are not as rich as those on the index, we can

still observe a relative efficient coverage of price over various strikes and time

to maturities that can be easily interpolated later to get the whole surface.

Noted that the call and put prices are the raw market prices without applying

any interpolation techniques as described in the process 8 to 11.
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Figure 2.3: High Frequency Option Data Sample

(a) SPX on 20-Mar-1997

(b) SPX on 20-Oct-1999
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Figure 2.4: High Frequency Option Data Sample

(a) SPX on 27-May-2014

(b) AAPL on 24-May-2012
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Figure 2.5: High Frequency Option Data Sample

(a) IBM on 07-Apr-2014

(b) BA on 04-Feb-2013
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2.6 Summary and Remarks

The empirical analyses in this thesis are conducted based on a unique high

frequency option panel, which includes the spot and option data on S&P 500

index and all of the index constituents over the sample period from January

1, 1996 through January 1, 2015. The intraday one-minute high frequency

option data sources from the TRTH tick-by-tick feeds and standarized into

one-minute frequency under the previous tick method. The list of the index

constituents is obtained from COMPUSTAT dataset of Standard and

Poor’s. After applying necessary screenings, my sample ends up with 588

individual companies with options actively traded over the sample period.

Another feature of my high frequency option panel is that from November

30, 2009, the TRTH option market set up the OPRA system, which records

the option trading information from all of the option trading exchanges in

the U.S. market. The introduction of the OPRA data system provides a

unique venue to extract the option data for single-name equities options.
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Review of Recovery Theorem

3.1 Overview

The Recovery Theorem (hereafter RT) is about inferring market beliefs for

the real-world probability distribution describing the future financial returns

of the underlying asset from option price. The RT answers the question: Can

we recover the physical probability density and the pricing kernel separately

from the observed derivative prices. Though it is well understood that the

option prices are forward looking and encode information about investors’

belief of future returns of the underlings, inferring the physical probability

distributions from the risk neutral densities is always questioned as options

and underlying assets are priced under two different measures, namely the risk

neutral measure and physical measure. The RT states that given certainty

assumptions, we can go from risk neutral measure to physical measure and

the derivative prices convey sufficient information on the future returns of the

underlying assets as well as the time and risk preference of investors.

The path-breaking work by Arrow [1964] and Debreu [1987] introduces

the Arrow Debreu security, which states that the asset price is a combination

of investor risk aversion and probabilities used to assess risk. The Arrow-

Debreu security price is so-called state price or risk-neutral density. Typically,

the Arrow-Debreu security is not traded in the real-world market and hence

Breeden and Litzenberger [1978] indicate that the risk-neutral densities can
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be extracted from the observed market option prices. Various methods have

been suggested to extract the risk-neutral density from the option prices, for

example Aı̈t-Sahalia and Lo [1998], Yatchew and Härdle [2006], and Yuan

[2009] among others.

Traditionally, the information extracted from option prices, such as the

implied volatility, is well-known as an indicator of the market risk level. For

example, the VIX (the implied volatility of S&P 500 index options) is often

referred to as the market ‘fear index’, which gauges the market’s expectation of

stock market volatility over the next 30-day period. However, the information

extracted from option prices turns to be silent when it comes to predict the

future return of the underlying assets. The innovational work by Ross [2015]

challenges the conventional wisdom by proposing the RT, suggesting that

under mild assumptions, the pricing kernel and the real-world probability can

be recovered uniquely from the observed option price.

Initially, Ross [2015] derive the RT in a discrete Markov chain framework

with bounded state-space. The market is assumed to be complete and

non-arbitrage. Two key assumptions have been imposed to derive the

recovery: (a) There exists a representative agent with risk averse preference

and (b) The pricing kernel is transition independent, which requires a state

transition matrix that is presumed to be path independent. Armed with

these assumptions, Ross [2015] utilizes the Perron-Frobenius theorem to

recover the preferences of the representative agent and the real world

probabilities of the underlying assets’ future returns from the observed

option prices.

Several very recent papers attempt to generalize the theoretical

framework of the RT by loosing its initial assumptions. Carr and Yu [2012]

derive the unique recovery of pricing kernel and natural probability

distribution in a continuous time framework with the state prices of the

underlying assets following bounded stochastic process. Carr and Yu [2012]

map the state price dynamics using the numéraire portfolio and employ the

Sturm-Liouville theorem to determine the unique unambiguous recovery.

Walden [2017] looses the bound restriction and derives necessary and

sufficient conditions in an unbounded diffusion-type states. More discussions
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on the theoretical settings of the RT can be found in Dubynskiy and

Goldstein [2013], Liu [2014], Qin and Linetsky [2014], Park [2015], Qin and

Linetsky [2016], and Qin and Linetsky [2017] among others.

There is no surprise that a large body of literature has developed to

examine the reliability of the recovered results from both theoretical and

empirical aspects. Martin and Ross [2013] demonstrate that the stochastic

discount factor can be identified with the unconditional expected log returns

on long-maturity bonds. Borovička et al. [2016] point out that the recovered

probability distribution is misspecified, as the Perron Frobenius approach

employed by Ross [2015] recovers a probability measure that reflects

long-term pricing factor. Moreover, the stochastic discount factor process

used by Ross [2015] implies a unity martingale transitory component.

Bakshi et al. [2017] further test the restrictions on the recovery theorem

empirically use the data on 30-year Treasury bond and options written on

the 30-year Treasury bond. They show that the implicit assumption of the

recovery theorem that the martingale component of the stochastic discount

factor is identical to unity is rejected.

Ngoc-Khanh and Xia [2014] suggests that the uniqueness of the

recovered pricing kernel and the corresponding physical probability

transition matrix largely depends on the dimension of the states. In other

words, under unique respective set of market data, the recovered beliefs,

time and risk preference may be very sensitive to with the states dimensions.

In a most recent study, Jensen et al. [2018] generalise the time-homogeneous

stationary model in Ross [2015] and suggest that the recovery is feasible

when the number of maturities with observable prices is higher than the

number of states of the economy. A closed-form linearized solution has been

provided and implemented empirically, testing the predictive power of the

recovered expected return and other recovered statistics.

As Ross [2015] also provides an empirical example in the paper, there are

also several empirical studies attempting to test the RT. In general, there are

three steps to employ the RT. The first step is to obtain the state price matrix

from the observed derivative prices, however the state price matrix is assumed

to be known a-prior in Ross setting. The following step is to derive the
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state price transition matrix from the state price matrix. Finally, the pricing

kernel and the physical transition density matrix are determined by solving an

eigenvalue and eigenvector problem employing the Perron Frobenius Theorem.

The approach of extracting the state price matrix from observed option

prices is well-understood in the literature, which can be obtained by various

parametric or non-parametric methods. The most challenge stage in applying

the RT is to determine the transition density function from the state price

matrix. Spears [2013] compares nine different methods for estimating the

transition density matrix under various constraints and points out that the

instructive method of Ross [2015] is inaccurate. Audrino et al. [2014] solve the

ill-posed problem in the estimation process by applying Tikhonov method,

a standard regularisation method for ill-posed problems, see also Backwell

[2015].

The final step is simply a direct implication of the Perron Frobenius

Theorem. Most of the empirical work follows Ross [2015], only providing a

snapshot of one day date to test the RT with the market data. Within a

neural network system, Audrino et al. [2014] demonstrate a time-series

analysis of the implication of the recovered probability distribution in

trading strategies with S&P 500 Index option. Schneider and Trojani [2018]

also recover the time series of conditional physical moments of market index

returns from a model-free projection of the pricing kernel and find that the

recovered moments predict S&P 500 returns, especially for longer horizons.

Jensen et al. [2018] also provide empirical evidence on testing the predictive

power of the recovered expected returns and other recovered statistics.

This chapter aims to provide a theoretical review for the innovational

RT. I illustrate the basic properties of the RT under two current standard

treatment, first the classic derivation in discrete time by Ross [2015],

utilizing the assumptions of a representative agents asset holdings and

second, the more general framework in continuous time by Carr and Yu

[2012], taking advantage of the results of Long [1990]. This is then followed

by a recent critical interpretation by Borovička et al. [2016], suggesting the

recovered physical probability distributions are misspecified in the long term

by a positive martingale process. I conclude this chapter with a brief
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summary and remarks on the RT.

3.2 The Ross [2015] Derivation

The objective of RT is to determine the unique real world transition

probability matrix and the pricing kernel from the state price matrix

separately. Given the physical transition matrix, the physical probability

distribution can then be determined. The state price matrix is extracted

from the observed market price of derivatives (options in most cases) written

on the underlying assets. To solve for the real-world transition probability

matrix, the Perron Frobenius Theorem is applied. Ross [2015] directly

appeals to the standard Arrow-Debreu framework to map the risk neutral

contingent claim and hence determine the risk neutral state transition

matrix. By further imposing the representative agent assumption on the

pricing kernel, Ross [2015] imposes enough identifying restrictions to recover

the discount factor, the pricing kernel and the real world physical density

matrix.

Let the evolution of the spot price of an Arrow-Debreu asset be driven by

a bounded Markov chain with an M ×N state price by tenor matrix S with

columns sn denoted by:

S =


s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n

...
...

. . .
...

sm,1 sm,2 · · · sm,n

 (3.1)

where the state is indexed by M and tenor is indexed by N respectively.

There is presumed to exist a state independent state price transition matrix,

Q, such that the state price in the next state satisfies sn+1 = Qsn, where Q

62



Chapter 3

is a M ×M transition matrix such that:

Q =


q1,1 q1,2 · · · q1,m

q2,1 q2,2 · · · q2,m

...
...

. . .
...

qm,1 qm,2 · · · qm,m

 (3.2)

Note, that if we know S with precision then the risk neutral state price

transition matrix Q is uniquely determined from the given state price

matrix S, when N = M + 1. Any further columns of S offer redundant

information. Another point to note is that Q for a positive discount rate, Q

is sub-stochastic. The relationship between Q and the physical transition

matrix P, is the object of interest. Let

P =


p1,1 p1,2 · · · p1,m

p2,1 p2,2 · · · p2,m

...
...

. . .
...

pm,1 pm,2 · · · pm,m

 (3.3)

give the physical transition probabilities. Under the non-arbitrage

assumption, the risk neutral state price transition matrix QQ and the

physical transition matrix PP are related by φij = qij/pij, where φij is the

transition kernel.1 The corresponding transition kernel matrix is:

Φ =


ϕ1,1 ϕ1,2 · · · ϕ1,m

ϕ2,1 ϕ2,2 · · · ϕ2,m

...
...

. . .
...

ϕm,1 ϕm,2 · · · ϕm,m

 (3.4)

1This is in fact the discrete expression of the Radon-Nikodym derivative and the
existence of a positive kernel is equivalent to the non-arbitrage condition stated earlier.
We drop the blackboard font superscript markers to avoid notational clutterring.
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Furthermore, φij is assumed to be transition independent such that

φij = δ
h(i)

h(j)
,

where δ and h are a positive discount factor and a positive function of the

state price respectively based on a representative agent assumption. If define

the diagonal matrix

D =


h(1) 0 · · · 0

0 h(2) · · · 0
...

...
. . .

...

0 0 · · · h(M)


the transition kernel can then be written as

Φ = δD−1D.

Simple re-arrangement yields the important result that

Q = PΦ = δD−1PD. (3.5)

Solving for the physical transition matrix:

P = δ−1DQD−1, (3.6)

and hence by construction P is right stochastic, as such P1M×1 = 1M×1,

where 1M×1 = (1, 1, . . . , 1)′. Hence,

P1M×1 = (1/δ) DQD−11M×1 = 1M×1,

Rearranging yields

QD−11M×1 = δD−11M×1.

Set v = D−11M×1, then:

Qv = δv. (3.7)
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Ross [2015] demonstrates that according to the Perron-Frobenius theorem,

given an irreducible and non-negative Q, δ and v can be uniquely determined

by the largest Perron root and the corresponding eigenvector. Thus, the

discount factor δ and the pricing kernel D can be uniquely recovered from the

risk neutral state price transition matrix and hence the physical transition

matrix P.

3.3 The Carr and Yu [2012] Derivation

In contrast to the assumption on the existence of the risk-aversion

representative agent, Carr and Yu [2012] generalize the RT by taking

advantage of the diffusion properties of the numéraire portfolio introduced

by Long [1990].

Consider an economy continuous at time and state space and the

uncertainty is modelled by the probability space {Ω,F,P}, where P is the

unknown physical probability measure needs to be uniquely determined and

the corresponding risk neutral probability measure is denoted by Q. There

exist a risk-free asset such that

dS0
t = rtS

0
t dt,

with the initial condition that S0
0 = 1 and stochastic growth rate rt at time

t. There also exists n risky assets, whose spot prices Sit are semi-martingales

over a finite time interval [0, T ]. Assume that no arbitrage opportunities exist

between the risk-free asset and the n risky assets.

To map the risk neutral dynamics, Carr and Yu [2012] utilize the

numéraire portfolio, which is a strictly positive self-financing portfolio

introduced by Long [1990]. Formally, let L be the numéraire portfolio such

that: Lt = S0
t /Mt, where Mt = Sit/Lt is a local martingale under P measure.

The dynamics of the numéraire portfolio L under P measure can be derived

by Îto’s lemma:
dLt
Lt

= (rt + σ2
t )dt+ σtdB

P
t (3.8)
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where rt is the stochastic interest rate. σt denotes the lognormal volatility of

L and B is a standard Brownian motion. Long [1990] suggests that the

risk-premium of the numéraire portfolio is equal to its instantaneous

variance, which means if we can determine the volatility process of the

numéraire portfolio then the P dynamics of any contingent claim can be

determined.

Let X be the solely driver of the uncertainty of the n risky assets and be

a univariate time-homogeneous diffusion process such that:

dXt = β(Xt)dt+ α(Xt)dW
Q
t , (3.9)

where β(x) and α2(x) are the known drift function and variance rate function

respectively and W is a standard Brownian motion. Accordingly, the price of

the risk-free asset can be written as S0
t = S0(Xt, t) and the stochastic interest

rate as rt = rt(Xt, t) in terms of X.

In fact, the numéraire portfolio L plays the same role as the Arrow-Debreu

asset in Ross [2015]. Carr and Yu [2012] assume that the price of the numéraire

portfolio Lt depends only on the current value of the driver X and both the

interest rate process rt and the volatility process σt are time-homogeneous,

such that:

Lt ≡ L(Xt, t), r(x, t) ≡ r(x), σ(x, t) ≡ σ(x), (3.10)

the corresponding dynamics of L under risk neutral measure Q is:

dLt
Lt

= r(Xt)dt+ σ(Xt)dW
Q
t , (3.11)

which suggests that Lt is a time-homogeneous process under Q. Given the

assumptions in Equation (3.10), the dynamics ofX and L under the P measure

can be expressed as:

dXt = (β(Xt) + σ(Xt)α(Xt))dt+ α(Xt)dB
P
t ,

dLt
Lt

= (r(Xt) + σ2(Xt)dt) + σ(Xt)dB
P
t . (3.12)
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Applying Itô’s lemma to Lt ≡ L(Xt, t) returns σ(x) = α(x)∂/∂x lnL(x, t).

Integrating over x and rearranging yields lnL(x, t) =
∫ x

σ(y)/α(y)dy + C(t),

where C(t) is the integration constant. Define ρ(x) = e
∫ x σ(y)/α(y)dy and γ(t) =

eC(t), then the value of the numéraire portfolio L can be expressed by two

separated terms such as:

L(x, t) = ρ(x)γ(t).

Substituting this into the extended generator function and rearranging yields:

α2(x)

2
ρ′′(x) + β(x)ρ′(x)− r(x)ρ(x) = −γ

′(t)

γ(t)
ρ(x), (3.13)

which is an eigenvalue and eigenfunction problem in the form stated by the

Regular Sturm-Liouville theorem. Let G [·]be the infinitesimal generator

operator such that:

Gx ≡
∂

∂t
+
α2(x)

2

∂2

∂x2
+ β(x)

∂

∂x
.

The valuation function for the i risky asset solves the liner parabolic partial

differential equation (PDE):

G Q
x [Si(xt, t)] = r(x, t)Si(x, t),

where the extended generator G E
x has the form

G E
x =

∂

∂t
+
α2(x)

2

∂2

∂x2
+ β(x)

∂

∂x
− r(x, t).

In fact, Carr and Yu [2012] show that the solutions are the first eigenvalue

and corresponding eigenfunction of the system, denoted by (δ,Θ(x)). The real

world transition density of the model driver X can be uniquely determined

from the change of the numéraire portfolio L:

dP =
Θ(XT )

Θ(X0)
eδ̃T e−

∫ T
0 r(Xt)dtdQ. (3.14)

where δ̃ is the discount rate.
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Hence, Carr and Yu [2012] demonstrates that the real world transition

density and the pricing kernel can be separately uniquely determined from

the numéraire portfolio in a bounded continuous economy. The primary

assumption of this version of the RT is the existence of a strictly positive

numéraire portfolio as opposed to having a fully representative agents

holdings.

3.4 The Borovička, Hansen, and Scheinkman

[2016] Interpretation

Whilst Ross [2015] derives the RT in a finite-state Markov environment and

Carr and Yu [2012] demonstrates similar separability and recoverability in a

bounded continuous time setting, Borovička et al. [2016] utilizing results from

Hansen and Scheinkman [2009], argue that the recovered probability density

from applying the Perron-Frobenius theory is in fact reflecting the long-term

implications for risk pricing.

Borovička et al. [2016] demonstrate that the full identification result found

in Ross [2015] requires certain restrictive assumptions. Specifically, in the

presence of a stochastic discount factor with a martingale component the long

horizon forecasts of the density function will be miss-specified. However, both

Hansen and Scheinkman [2009] Borovička et al. [2016] stress the usefulness of

the eigensystem as a mechanism for refining our understanding of the price

formation mechanism in financial markets.

Let S := {smn : 1 ≤ m ≤M, 1 ≤ m ≤ N} the state price by tenor matrix,

such that a column sn is the vector of risk neutral state prices for a particular

tenor, with element being the risk neutral price of an asset paying a single

unit in that state for that tenor only. The finite state markov chain that

determines the transition from time index n to n + 1 is characterized by the

risk neutral state price transition matrix Q := {qij : 1 ≤ i ≤M, 1 ≤ j ≤M},
whereby sn+1 = Qsn. When S := {smn : 1 ≤ m ≤ M, 1 ≤ m ≤ N} is known

with precision, the minimum number of tenors needed for identification of Q

is N = M + 1.
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A risk free instrument pays off in every state and has current period value

of
∑M

m=1 smn) = exp(rn), where rn is the continuously discounted risk free

return for the tenor indexed by n. When exp(rn+1) > exp(rn) for all n ∈
{1, . . . , N} the Markov process described by the risk neutral transition matrix

Q is sub-stochastic, hence limκ→∞Qκ = 0M×M . The risk neutral measure is

an artificially constructed measure that is not the observed real world or

physical measure. Let P := {pij : 1 ≤ i ≤ M, 1 ≤ j ≤ M} be the physical

transition matrix of the Markov chain driving observed asset prices. Setting

δ = exp(r) to be the discount factor and approximating rn = nr the standard

neoclassical asset pricing framework posits the following ratio:

Ψ = [ψij], where ψij =
qij
pij
, (3.15)

where [ψij] is the stochastic discount factor, as such qij = ψijpij. However,

from forward looking derivatives prices we only observe qij and, as such, we

do not have sufficient information to fully recover ψij and pij.

The identification challenge is simply illustrated by considering the

dimensions of P, Q and Ψ. Q has M ×M entries and so does the stochastic

discount factor matrix Ψ, while the physical transition matrix P only have

M × (M − 1) free entrances as P is, by definition, right stochastic and with

rows summing to unity. As such, instead of having the observed physical

transition probabilities P = [pij], we could have an alternative such that

P̃ = [p̃ij], such that p̃ij = hijpij, (3.16)

where hij are elements of the positive matrix H = [hij] such that hij > 0 and∑M
j=1 hijpij = 1. As hij is obtained as a ratio of probabilities, the process

H is a positive martingale under P . For each choice of the restricted matrix

H, the state-dependent discount factors can be formed such as ψ̃ij = ψij/hij,

which gives the corresponding risk neutral transition probabilities such as:

qij = ψijpij = ψ̃ij p̃ij (3.17)

Therefore, given the flexibility in constructing the always positive martingale
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process H, the physical probabilities can be recovered from the risk neutral

state prices in a variety ways.

In order to recovered the physical transition probabilities P from the risk

neutral transition probabilities Q uniquely, Borovička et al. [2016]

demonstrate that additional restrictions on the stochastic discount factor

need to be imposed. Specifically, Borovička et al. [2016] derive the recovery

under the long-term pricing restriction using Perron-Frobenius theory, which

is an eigenfunction approach. Following the Perron-Frobenius theory, when

all of the entries of the risk neutral transition matrix Q are positive, the

largest eigenvalue of Q is positive and unique, which can be written as

δ = exp(r). The associated right eigenvector ṽ also has strictly positive

entries denoting the i entry of the eigenvector as ṽi. By construction we can

recover a probability matrix P̃ with the entries such that:

p̃ij := δ−1qij
ṽi
ṽj
. (3.18)

Since Qṽ = δṽ, thus
∑n

j=1 p̃ij = 1/δ(ṽi)
−1
∑n

j=1 qij ṽj = 1, hence P̃ is a valid

transition matrix. Thus the risk neutral transition probabilities can be written

as

qij = δ
ṽi
ṽj
p̃ij = ψ̃ij p̃ij (3.19)

Both Ross [2015] and Borovička et al. [2016] use the eigenfunction approach

stated in Equation 5.5 to construct the recovered probability distribution.

Borovička et al. [2016] show that combining Equation 5.4 together with

Equation 5.5 gives the following decomposition:

qij = δ
ṽi
ṽj

p̃ij
pij
, pij = δ

ṽi
ṽj
ψ̃ijpij (3.20)

hence the stochastic discount factor can be derived as

ψ̃ij = δ
ṽi
ṽj
hij, where hij =

p̃ij
pij

(3.21)

Hansen and Scheinkman [2009] show that the stochastic discount factor
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derived in Equation 5.7 can be used as to study long-term valuation and hij

is termed as long-term risk-neutral probability.

Borovička et al. [2016] further show that the derivation of the discount

factor in Ross [2015] is a special case of their more general derivation. Ross

[2015] assumes that the stochastic discount factor is state-independent and

can be written as

ψij = δ
ṽi
ṽj

(3.22)

and the physical transition probabilities are recovered by P̃ = [p̃ij]. It is easy

to see that Ross [2015]’s derivation Equation 3.22 is in fact a special case of

Equation 5.7 with the condition such that:

ψij = δ
ṽi
ṽj

for some vector ṽ⇐⇒ hij ≡ 1 (3.23)

which also means the recovered physical transition probabilities are in fact

P̃ = H ◦P ≡ [hijpij], where ◦ is the element by element product of identical

dimension matrices. Hence, Ross [2015] is a special case where hij = 1 and

hence there is no martingale component in the discount factor. In this special

case P̃ = P and hence the eigenfunction recovers the physical probability.

In this specific case, the risk preferences, ṽi/ṽj, are separate from the from

the time preferences, δ, and ṽi/ṽj = U ′(ci)/U
′(c(M+1)/2) is the pricing kernel

of the representative investor. Where U(·) is the at least once differentiable

utility function of the representative investor and Ci is the consumable wealth

in i state.

3.5 Summary and Remarks

The objective of the RT is to separately recover the discount factor, pricing

kernel and the real world probabilities of the future returns of the underlying

assets from the traded option prices. The original derivation by Ross [2015]

depends largely on the assumption that the existence of a representative agent

with risk averse preference, which restricts the empirical application of the

RT to index options that can proxy for an aggregated risky asset driving the
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volatility of consumption in the representative agent. However, subsequent

work by Carr and Yu [2012] has illustrated the generalization of the RT to

a broader domain of assets. Within a continuous time setting, the RT is

derived under the less restrictive assumptions on the diffusion dynamics of

a numéraire portfolio. The further interpretation of the recovered discount

factor by Borovička et al. [2016] indicate that the recovered physical transition

matrix depends on the presumed structure of the true Markov chain that

drives the asset prices.

Ross [2015] provides an example for applying the RT in practice with a

snapshot data, however, a standard algorithm for recovering is strongly

called in the empirical studies. A significant gap in the contemporary RT is

the absence of a fully-identified RT framework that provides both a solid

theoretical interpretation of the recovered results and a practical algorithm

that is easy to apply but robust to the noisy market data. Chapter 5 and

Chapter 6 address these problems by firstly introducing a full perturbation

theory for the RT and subsequently an efficient and robust non-linear

programming algorithm to permit recovery and identify the constraints

needed for full identification. In addition to the theoretical derivation, I also

demonstrate detailed empirical implications of the RT algorithm from

intraday option prices for both index options and single-name equity

options.
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Extract the Risk Neutral

Central Moments from Option

Prices

4.1 Overview

The pioneering idea that introducing options on existing assets in an uncertain

economy opens new spanning opportunities is first established by Ross [1976].

Specifically, Ross [1976] shows that any complex contracts can be spanned by

a portfolio of simple option contracts and without loss of efficiency, all options

can be written on a single portfolio assets. In a later work, Brown and Ross

[1991] derive the characterization of the generic spanning contracts based on

a Riesz space valued Riemann-Stieltjes integral and show that the Breeden

and Litzenberger [1978] pricing formula is a direct implication of the integral

representation theorem.

Following the spirits of Ross [1976] and Brown and Ross [1991], Bakshi

and Madan [2000] and Carr and Madan [2001] explicitly examine the

implications of the generic spanning contracts from two different

perspectives. In particular, Bakshi and Madan [2000] show that it is possible

to analytically price options on any arbitrary transformation of underlying

uncertainty using the characteristic function. Moreover, Bakshi and Madan
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[2000] demonstrate the implication of the characteristic function based

spanning contract valuation for pricing average-interest options, correlation

options, and discretely monitored knock-out options.

Alternatively, Carr and Madan [2001] treat the valuation of the spanning

contract from the perspective of portfolio management. Specifically, for the

first time, Carr and Madan [2001] explicitly exhibit the decomposition of an

arbitrary payoff into a portfolio of risk-free assets (bonds), risky assets

(stocks), and derivatives (options written on stocks) with the optimal

positions taken in each of the assets. Built on the results of Bakshi and

Madan [2000] and Carr and Madan [2001], Bakshi et al. [2003a] uniquely

derive the non-parametric expressions for the risk neutral variance,

skewness, and kurtosis swaps by defining the volatility, cubic, and quartic

contracts.

In this chapter, I first illustrate the detailed derivation of the

decomposition of the generic spanning contracts based on the work by Carr

and Madan [2001]. Following the spirits of Bakshi et al. [2003a], I then

uniquely derive the explicit formulas for extracting the risk neutral central

moments for expected returns from option prices, which are intensively used

in the formation of the option-implied average correlations in the next

chapter. I conclude this chapter with a brief summary and remarks on the

implications of generic spanning contracts.

4.2 Derive the Generic Spanning Contracts

The derivation of the valuation of the generic spanning contracts is based on

the decomposition of an arbitrary payoff into a portfolio of bonds, stock, and

options as given in Carr and Madan [2001]. Let (Ω,F,Ft,P) be a filtered

probability space satisfying usual conditions (e.g., Protter [2013])), where Ω

is a nonempty set, Ft(t ≥ 0) is a σ-algebra of subsets of Ω, and P denotes

the objective or physical probability measure. Given no-arbitrage assumption

in the market, there exists an equivalent risk-neutral probability measure

denoting by Q. E is the expectation operator and EQ is the corresponding

risk neutral expectation operator.

74



Chapter 4

Let S denote the price for the individual stock or the market portfolio. The

uncertainty for the individual asset and hence the market portfolio is driven

by the probability density, which is denoted by p(S) for the physical density

and q(S) for the equivalent risk neutral density. The risk-neutral expectation

at time t for any integrable claim payoff L(S) can be expressed by:

EQ
t [L(S)] =

∫ ∞
0

L(S)q(S)dS (4.1)

where EQ
t is the risk neutral expectation operator. Thus, the prices of the

European call and put options on S can be expressed as:

C(τ,K) =

∫ ∞
0

e−rf τ (S −K)+q(S)dS,

P (τ,K) =

∫ ∞
0

e−rf τ (K − S)+q(S)dS. (4.2)

where K is the strike price, rf is the risk-free rate, and τ is the time to

maturity. The maximise operator + defines the functions such that (S−K)+ ≡
max(0, S −K) and (K − S)+ ≡ max(0, K − S).

As shown in Carr and Madan [2001], the claim payoff L(S) can be spanned

by a continuum of out-of-money European call and put options, with optimal

positioning in risk-free assets (bonds) and risky underlying assets (stocks).

Specifically, for any twice-continuously differentiable claim payoff function

L(S) we have,

L(S) = L(St) + (S − St)L′(St)

+

∫ St

0

L′′(K)(K − S)+dK +

∫ ∞
St

L′′(K)(S −K)+dK (4.3)

Applying the risk-neural expectation operator on the present value of the

claim payoff, e−rf τL(S), the arbitrage-free price of the claim payoff is simply:

EQ
t [e−rf τL(S)] = e−rf τ (L(St)− StL′(St)) + L′(St)St

+

∫ ∞
St

L′′(K)C(τ,K)dK +

∫ St

0

L′′(K)P (τ,K)dK (4.4)

75



Chapter 4

which suggests that the risk-neutral expectation of the claim payoff L(S) at

time t can be spanned by holding (L(St)− StL′(St)) units bonds with risk-

free rate rf , L
′(St) units underlying assets at price St and L′′(K) units of

calls and puts. Interestingly, the derivation of Equation 4.3 is in fact a direct

consequence of the integral representation theorem. Referring to Carr and

Madan [2001], we detail the derivation for Equation 4.3 in the following.

Recall L(S) is an integrable function in terms of S, where S ∈ [0,+∞).

Assume St is a fixed point over the domain of S, so according to the

fundamental theorem of calculus the value of any unknown point over the

domain of S, L(S) can be expressed as L(St) plus the difference between the

two integrals from both sides of St, which is:

L(S) = L(St) + 1S>St

∫ S

St

L′(u)du− 1S<St

∫ St

S

L′(u)du

= L(St) + 1S>St

∫ S

St

[
L′(St) +

∫ u

St

L′′(v)dv

]
du (4.5)

− 1S<St

∫ St

S

[
L′(St)−

∫ St

u

L′′(v)dv

]
du

The Fubini’s theorem results state that double integrals can be computed

doing two one-variable integrals. For example, for R ∈ R2 → R, if f(x, y) is

continuous in R = [a, b]× [c, d], then∫ ∫
R

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy.

In our case, from Equation 4.5, R = [St, S], if we set [a, b] = [St, S], [c, d] =

[v, S], then we have:∫ S

St

∫ u

St

L′′(v)dvdu =

∫ S

St

∫ S

v

L′′(v)dudv (4.6)
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Thus we have:

L(S) = L(St) + L′(St)(S − St)

+ 1S>St

∫ S

St

∫ S

v

L′′(v)dudv + 1S<St

∫ St

S

∫ S

v

L′′(v)dudv

= L(St) + L′(St)(S − St) (4.7)

+ 1S>St

∫ S

St

L′′(v)(S − v)dv + 1S<St

∫ St

S

L′′(v)(v − S)dv

Finally, expand the domain to the whole domain of the function L(S), we

have:

L(S) = L(St) + L′(St)(S − St)

+

∫ ∞
St

L′′(v)(S − v)+dv +

∫ St

0

L′′(v)(v − S)+dv (4.8)

and simply replacing v with K gets Equation 4.3.

Carr and Madan [2001] demonstrate the implication of the

decomposition of the payoff of the spanning contracts in portfolio allocation

while Bakshi et al. [2003a] provide a non-parametric method to extract the

risk neutral moments for expected returns from option prices by defining a

series of expected return contracts. In the next section, I follow the spirits of

Bakshi et al. [2003a] to derive the risk neutral central moments of expected

returns via the spanning contracts.

4.3 Extract the Risk Neutral Central

Moments from Option Prices

The moments for expected returns can be estimated using the time-series of

the historical stock prices, which are known as the realised moments. A

strand of literature has investigated various methods for estimating the

realised moments from historical equity prices, especially using intraday high

frequency data, see Andersen et al. [2001], Barndorff-Nielsen [2002],
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Andersen et al. [2003], Neuberger [2012], and Buckle et al. [2014] among

others.

Alternatively, we can extract the risk neutral moments for expected

returns from option prices utlising the generic spanning contracts. A vast

literature has documented significant evidence that the option-implied

moments play important roles in explaining and forecasting cross section

stock expected returns. In the following, we derive the estimations of the

risk neutral central moments using the generic spanning contracts

introduced in Bakshi and Madan [2000] and Carr and Madan [2001].

The beauty of the generic spanning contract is that given any

twice-differentiable function L(·), we can replicate its risk neutral payoff by a

portfolio forming by bonds, underlying stocks and the out of money call and

put options written on the underlying stock. In the following proposition,

we derive the estimations for the second, third, and fourth risk neutral

central moments following the procedures suggested in Bakshi et al. [2003a]:

Proposition 4.1 (Risk Neutral Central Moments). Denote the central

second moment (quadratic), third moment (cubic), and fourth moment

(quartic) contracts for the expected returns for asset S as L2(S), L3(S), and

L4(S) such that:

L2(S) := (Rτ − E[R])2 ;

L3(S) := (Rτ − E[R])3 ; (4.9)

L4(S) := (Rτ − E[R])4 .

where Rτ = lnST − lnSt is the τ period log-return, where T − t = τ . The

risk neutral second, third and fourth central moments can be extracted from
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the option prices via the generic spanning contracts such that:

MQ
2 (t,K, τ, rf ) = EQ

t [e−rf τL2(S)]

= e−rf τ [(rfτ)2 + 2rfτ ]− 2rfτ

+

∫ ∞
St

2
[
1−

(
ln K

St
− rfτ

)]
K2

C(τ,K)dK (4.10)

+

∫ St

0

2
[
1 +

(
ln St

K
+ rfτ

)]
K2

P (τ,K)dK

MQ
3 (t,K, τ, rf ) = EQ

t [e−rf τL3(S)]

= e−rf τ [(rfτ)3 − 3(rfτ)2] + 3(rfτ)2

+

∫ ∞
St

6
(

ln K
St
− rfτ

)
− 3

(
ln K

St
− rfτ

)2

K2
C(τ,K)dK (4.11)

−
∫ St

0

6
(
ln St

K
+ rfτ

)
+ 3

(
ln St

K
+ rfτ

)2

K2
P (τ,K)dK

MQ
4 (t,K, τ, rf ) = EQ

t [e−rf τL4(S)]

= e−rf τ [(rfτ)4 + 4(rfτ)3]− 4(rfτ)3

+

∫ ∞
St

12
(

ln K
St
− rfτ

)2

− 4
(

ln K
St
− rfτ

)3

K2
C(τ,K)dK

(4.12)

+

∫ St

0

12
(
ln St

K
+ rfτ

)2
+ 4

(
ln St

K
+ rfτ

)3

K2
P (τ,K)dK

Proof for Proposition 4.1. The proof for Proposition 4.1 follows from the

derivation of the generic spanning contract formula in Equation 4.3 and

Equation 4.4. Under the risk-neutral measure, it is easy to see that

ST = Ste
rf τ . Thus we have E[R] = rfτ , where rf is the risk-free rate over

the period τ . The first-order derivative of the quadratic, cubic and quartic

central moment contracts with respective to S evaluating at St can be
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derived as:

L′2(St) = −2rfτ

St
;

L′3(St) =
3(rfτ)2

St
; (4.13)

L′4(St) = −4(rfτ)3

St
.

while the second-order derivative of the quadratic, cubic and quartic central

moment contracts with respective to S evaluating and K can be derived as:

L′′2(K) =
2
[
1−

(
ln K

St
− rfτ

)]
K2

;

L′′3(K) =
6
(

ln K
St
− rfτ

)
− 3

(
ln K

St
− rfτ

)2

K2
; (4.14)

L′′4(K) =
12
(

ln K
St
− rfτ

)2

− 4
(

ln K
St
− rfτ

)3

K2
.

Substituting Equation 4.13 and 4.14 back into the arbitrage-free price of the

spanning claim payoff formula in Equation 4.5 we derive the payoff of the

quadratic, cubic, and quartic contracts at time t over time to maturity τ ,

which are the risk neutral second, third, and fourth central moments for

expected returns of asset S over the period τ , which are Equations 4.10, 4.11,

and 4.12 given in Proposition 4.1.

4.4 Summary and Remarks

Inspired by the pioneering work of Ross [1976] and Brown and Ross [1991],

Bakshi and Madan [2000] and Carr and Madan [2001] exhibit the valuation

of the generic spanning contracts. In particular, the arbitrary payoff of any

second-differentiable function over a period can be spanned by the payoff of

risk-free bonds, underlying stocks, and the price of the out of money call

and put options written on the underling assets. I illustrate the derivations

of the generic spanning contract in detail referring the method proposed by
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Carr and Madan [2001]. In Proposition 4.1, by defining a series of central

moments contracts for expected returns, I uniquely derive the formulas for

extracting the risk neutral central moments for expected returns of

underlying assets using the generic spanning contracts. In Chapter 7 and

Chapter 8, utilising risk neutral central moments derived in Proposition 4.1,

I introduce a sets of high dimensional option-implied average correlation

measures and demonstrate the implication of the option-implied average

correlations in cross-section asset pricing.
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Hansen-Scheinkman

Factorisation and Ross

Recovery from High Frequency

Option Prices via Nonlinear

Programming: The

Perturbation Theory

5.1 Introduction

Recovering the physical expected forward density function of an asset from

prices observed from the asset’s associated derivatives market is one of the

foundational research problems in asset pricing. The contractual design of

derivatives, such as options, are priced under a risk-neutral measure, often

referred to as the Q measure, following the fact that a fully ‘delta-neutral’

offsetting position can be constructed by inclusion of an appropriate

derivatives position within a portfolio that contains the underlying asset. In

finance, ‘delta-neutral’ describes a portfolio of related financial securities, in

which the portfolio value remains unchanged when small changes occur in
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the value of the underlying security. As such, any valuation of the

derivatives position presumes a fully risk-free combination of the underlying

asset and derivative is achievable. Hence, any inference on the physical (or

observed) measure, usually referred to as the P measure, from forward

looking derivatives prices must account for the representative preferences of

the market participants in the underlying asset.

Recent work by Hansen and Scheinkman [2009], Ross [2015] and

Borovička et al. [2016] has established that the eigenfunction of the

risk-neutral state price transition matrix has a useful economic

interpretation, in respect to gaining a better understanding of the P measure

from derivative prices observed under the Q measure. Indeed, Ross [2015]

proposes a Recovery Theorem (henceforth RT) that posits that the

eigenfunction of a risk-neutral state price transition matrix can be used to

fully identify the discount factor, pricing kernel and physical probabilities of

assets in a finite state economy.

A more general interpretation is outlined in Borovička et al. [2016], who

follow up on preceding results in Hansen and Scheinkman [2009] by

demonstrating that whilst the eigenfunction approach generates useful

objects of interest, the recovered state price transition function may contain

a martingale component that biases longer time horizon forecasts of the

physical probability density function. Further work by Carr and Yu [2012]

extends the exact identification case of Ross [2015] to a continuous time

(with a continuum of states) setting to demonstrate that the eigenfunction

approach can be utilised with individual assets as opposed to the

representative consumption asset presumed in Hansen and Scheinkman

[2009], Ross [2015], and Borovička et al. [2016].

The contribution of this chapter is to provide a perturbation theory for

the eigenfunction analysis and embed this theory in an algorithm that can

be implemented on market data. The usefulness of the perturbation theory

is both in the theoretical treatment of recovery and for use in empirical

applications. With it we can specify the anticipated structure (subject to

theoretical predictions) on the risk-neutral state price transition matrix as a

series of restrictions within a non-linear programming problem. Indeed, this
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is the first implementation of such an algorithm which permits selective

imposition of such constraints with a fully tractable set of derivatives on the

objective and constraints. This permits specification of a recovery algorithm

on very large datasets (in this case tick by tick options data).

Hence, I fully close a gap in the literature on how to implement the Ross

[2015] and Borovička et al. [2016] style eigenfunction analysis on market

data while systematically varying the properties of the resulting state

transition matrix, discount factor and pricing kernel. Specifically, I

introduce to the existing literature the use of a new type of inverse, the

‘group’ or more generally the ‘Drazin’ inverse which provides a mathematical

platform to semi-parametrically identify the risk-neutral Markov transition

matrix, by allowing us to present an exact perturbation theory for any type

of discrete Markov chain with an irreducible state transition matrix.

In the fully identified case outlined in Ross [2015], a three-step framework

for recovering the physical (or real world) density function is proposed. First,

compute the risk-neutral state price matrix (by state by tenor) from option

market prices. Second, determine the risk-neutral state price transition matrix

from the Markov chain process. Finally, apply the Perron Frobenius theorem

to recover the objects of interest. For any interpretation of the recovered

state price density function, with or without the martingale component in

Borovička et al. [2016] the empirical steps are the same, albeit with different

interpretations on the recovered quantities.

My formulation allows the empirical researcher to impose this property

on the recovered matrix via the imposition of linear and non-linear

restrictions on the estimated risk-neutral state price transition matrix

imputed from forward looking state price densities. Hence, the martingale

property in the discount factor is only relevant when the specific

interpretation of the recovered transition matrix is that it describes the

physical evolution of assets. Under most plausible specifications for the

martingale component, Borovička et al. [2016] demonstrate that the bias

effect of the martingale component only substantiates itself at longer

forecasting horizons.

My approach is to make use of the perturbation properties of the
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eigensystem determined under the Perron Frobenius theorem. Typically

eigenfunctions of square matrices do not generally have continuous real

derivatives and those that do often do not have tractable analytic

derivatives. However, for fields of irreducible matrices the eigenfunction of

the largest eigenvalue sits in one of these cases. Indeed, not only is the first

derivative continuous, the eigenfunction is in fact smooth. Indeed, by use of

Bolzano Weierstrass theorem, I can derive two equivalent forms of the first

derivative and determine explicit forms for higher derivatives using the

group inverse and generate a full perturbation theory for the recovered

quantities.

My final contribution is in combining this analysis with the current

literature on extracting the risk-neutral density function from noisy option

data. Identifying the risk-neutral density (RND) with precision, something

that has eluded the literature since the original contribution of Breeden and

Litzenberger [1978], see for example Jackwerth and Rubinstein [1996],

Bondarenko [2003], and Jackwerth [2004] among others. Monteiro et al.

[2008] provide a new approach to estimate the RND in the space of cubic

spline functions, which ensures the positivity of the estimated RND by

posing linear inequality constrains at the spline nodes and solving a convex

quadratic or semidefinite programming problem within a numerical

optimisation system.

My approach is the first algorithm of its type that can be both employed

on intraday data and easily extrapolated to fill gaps in the coverage of tail

states for certain tenors. I illustrate the significant advantage gained from

having high frequency data in this setting. I illustrate my approach using

intraday options data directly from the option pricing reporting authority

(hereafter OPRA) feed for some sample days of S&P 500 index options and

Apple Inc., a single-name American option.

I separate the theoretical work and empirical applications into two parts.

In the reminder of this chapter: Section 5.2 presents a short review of the

Recovery Theorem. I then derive a full perturbation theory of recovery in

Section 5.4. The perturbation theory illustrates the continuity of the

derivatives of the discount factor and pricing kernel. The empirical
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applications are detailed in Chapter 6. Section 6.1 outlines an exact

algorithm focusing on the fast non-linear programming approach in

determining the risk-neutral state price matrix. A simulation analysis in

Section 6.2 illustrates the consistency of my algorithm under the Ross [2015]

assumptions. Section 6.3 is devoted to a completed empirical analysis of

applying my approach to publicly available market data sample, namely the

S&P 500 index options and the single-name equity option written on Apple

Inc stock. Section 6.4 concludes the two chapters.

5.2 Eigenfunction Analysis of Risk Neutral

State Price Transition Matrices

Analysis of the implications of arbitrage free pricing on the valuation of assets

is arguably at the foundation of financial economics. As a standard pillar of

financial economics, Arrow [1964] and Debreu [1987] introduced the concept

of an Arrow-Debreu state security, one that pays a single unit of a numéraire

only if a particular state occurs. The complete set of state securities may

then be linearly combined and re-combined into the observed set of traded

securities.

Typically, we do not observe Arrow-Debreu securities directly; however,

Breeden and Litzenberger [1978] provided the insight that the second

derivative of observed option prices as a function of their strikes should

provide the risk-neutral valuations of the Arrow-Debreu state securities.

Hansen and Scheinkman [2009] first noted that for long run asset pricing

models that an eigensystem analysis of the Markov chain reveals useful

quantities about the asset price process and the time and risk preferences of

representative agents. The innovation of Ross [2015] is in setting out the

conditions that allow full identification of the physical transition density

function and hence the market expectations of the physical densities at

different time horizons.

Follow up work by Carr and Yu [2012] derive the RT in a bounded

continuous setting and Walden [2017] who further loosens this boundary
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restriction and derives necessary and sufficient conditions for unbounded

Markovian diffusion. A useful result in Carr and Yu [2012] is that the RT

can be shown to work for individual assets, using the Long [1990] numéraire

portfolio as a solution device.

Further loosening of the original assumptions can be found in Dubynskiy

and Goldstein [2013], Liu [2014], Qin and Linetsky [2014], Schneider and

Trojani [2018], Jensen et al. [2018], Bakshi et al. [2017] and Park [2015].

Utilising a spectral theory of Markovian asset pricing models, Qin and

Linetsky [2016], extend the Ross [2015] RT from a discrete time, finite state

irreducible Markov chains to a general continuous-time Markov process with

recurrent Borel right process. Within their model setting, the uniqueness of

Hansen and Scheinkman [2009] factorisation of the Markovian stochastic

discount factor is proved and the long maturity asymptotic of the pricing

operator is also obtained.

In a pre-cursor to my main perturbation results, Ngoc-Khanh and Xia

[2014] indicates that the uniqueness and structure of the recovered kernels,

discount factors and real world probabilities are sensitive to the choice of

dimension of the states. I will show that the whilst the discount factor is highly

sensitive this can be from two sources: inherent sensitivity to perturbation

and numerical stability of the solution space.

Borovička et al. [2016] demonstrate that the full identification result found

in Ross [2015] requires certain restrictive assumptions. Specifically, in the

presence of a stochastic discount factor with a martingale component the long

horizon forecasts of the density function will be misspecified. However, both

Hansen and Scheinkman [2009] Borovička et al. [2016] stress the usefulness of

the eigensystem as a mechanism for refining our understanding of the price

formation mechanism in financial markets.

From an empirical perspective Audrino et al. [2014], Spears [2013], and

Backwell [2015] have provided some methodological steps towards a

practical implementation of the Ross [2015] three-step approach. However,

in each case there are gaps, either in data coverage or in the details of the

methodology. A key issue is the inherent difficulty in implementing the

Breeden and Litzenberger [1978] analysis on actual market data. We address
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this in two ways, first we have a two-step algorithm to smooth the traded

prices (using implied volatilities as an interpolation and smoothing device)

and then extrapolating the tails using mixtures of parametric distributions.

At this juncture it is useful to outline the current theoretical insights

in applying eigenfunction operators to the risk-neutral state price transition

matrix. To this end I adhere to the framework of Borovička et al. [2016] and

Ross [2015] for which my perturbation treatment and subsequent algorithm

development are most closely suited. For a more detailed discussion of various

theoretical treatments of the Recovery Theorem, see Chapter 3.

5.2.1 The Borovička et al. [2016] Derivation

Let S := {smn : 1 ≤ m ≤ M, 1 ≤ n ≤ N} the state price by tenor matrix,

such that a column sn is the vector of risk-neutral state price for a particular

tenor, with element being the risk-neutral price of an asset paying a single

unit in that state for that tenor only. Noted, the word ‘state’ refers to the

potential outcomes of the stock price (or the market level). Through this

chapter, I use ‘tenor’ to stand for the time to maturity of the option contract.

The finite state Markov chain that determines the transition from time index

n to n + 1 is characterised by the risk-neutral state price transition matrix

Q := {qij : 1 ≤ i ≤ M, 1 ≤ j ≤ M}, whereby sn+1 = Qsn. When S := {smn :

1 ≤ m ≤ M, 1 ≤ n ≤ N} is known with precision, the minimum number of

tenors needed for identification of Q is N = M + 1.

A risk free instrument pays off in every state and has current period value

of
∑M

m=1 smn) = exp(rn), where rn is the continuously discounted risk free

return for the tenor indexed by n. When exp(rn+1) > exp(rn) for all n ∈
{1, . . . , N} the Markov process described by the risk-neutral transition matrix

Q is sub-stochastic, hence limκ→∞Qκ = 0M×M . The risk-neutral measure is

an artificially constructed measure that is not the observed real world or

physical measure. Let P := {pij : 1 ≤ i ≤ M, 1 ≤ j ≤ M} be the physical

transition matrix of the Markov chain driving observed asset prices. Setting

δ = exp(r) to be the discount factor and approximating rn = nr the standard
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neoclassical asset pricing framework posits the following ratio:

Ψ = [ψij], where ψij =
qij
pij
, (5.1)

where [ψij] is the stochastic discount factor, as such qij = ψijpij. However,

from forward looking derivatives prices we only observe qij and, as such, we

do not have sufficient information to fully recover ψij and pij.

The identification challenge is simply illustrated by considering the

dimensions of P, Q and Ψ. Q has M ×M entries and so does the stochastic

discount factor matrix Ψ, while the physical transition matrix P only have

M × (M − 1) free entrances as P is, by definition, right stochastic and with

rows summing to unity. As such, instead of having the observed physical

transition probabilities P = [pij], we could have an alternative such that

P̃ = [p̃ij], such that p̃ij = hijpij, (5.2)

where hij are elements of the positive matrix H = [hij] such that hij > 0 and∑M
j=1 hijpij = 1. As hij is obtained as a ratio of probabilities, the process

H is a positive martingale under P . For each choice of the restricted matrix

H, the state-dependent discount factors can be formed such as ψ̃ij = ψij/hij,

which gives the corresponding risk-neutral transition probabilities such as:

qij = ψijpij = ψ̃ij p̃ij (5.3)

Therefore, given the flexibility in constructing the always positive martingale

process H, the physical probabilities can be recovered from the risk-neutral

state price in a variety ways.

In order to recovered the physical transition probabilities P from the

risk-neutral transition probabilities Q uniquely, Borovička et al. [2016]

demonstrate that additional restrictions on the stochastic discount factor

need to be imposed. Specifically, Borovička et al. [2016] derive the recovery

under the long-term pricing restriction using Perron-Frobenius theory, which

is an eigenfunction approach. Following the Perron-Frobenius theory, when

all of the entries of the risk-neutral transition matrix Q are positive, the
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largest eigenvalue of Q is positive and unique, which can be written as

δ = exp(r). The associated right eigenvector ṽ also has strictly positive

entries denoting the i entry of the eigenvector as ṽi. By construction we can

recover a probability matrix P̃ with the entries such that:

p̃ij := δ−1qij
ṽi
ṽj
. (5.4)

Since Qṽ = δṽ, thus
∑n

j=1 p̃ij = 1/δ(ṽi)
−1
∑n

j=1 qij ṽj = 1, hence P̃ is a

valid transition matrix. Thus the risk-neutral transition probabilities can be

written as

qij = δ
ṽi
ṽj
p̃ij = ψ̃ij p̃ij (5.5)

Both Ross [2015] and Borovička et al. [2016] use the eigenfunction approach

stated in Equation 5.5 to construct the recovered probability distribution.

Borovička et al. [2016] show that combining Equation 5.4 together with

Equation 5.5 gives the following decomposition:

qij = δ
ṽi
ṽj

p̃ij
pij
, pij = δ

ṽi
ṽj
ψ̃ijpij (5.6)

Hence the stochastic discount factor can be derived as

ψ̃ij = δ
ṽi
ṽj
hij, where hij =

p̃ij
pij
, (5.7)

which implies P̃ = H◦P ≡ [hijpij], where ◦ is the element by element product

of identical dimension matrices. Hansen and Scheinkman [2009] show that

the stochastic discount factor derived in Equation 5.7 can be used as to study

long-term valuation and hij is termed as long-term risk-neutral probability.

5.2.2 The Ross [2015] Recovery Theorem

If we presume that hij = 1 for all i, j ∈ {1, . . . ,M} then we obtain the full

identification result of Ross [2015], hence P̃ = P. A further benefit of this

identifying assumption is that we can interpret the time and risk preferences

separately, hence ṽi/ṽj = U ′(ci)/U
′(cj), where ci and cj is the consumption in
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state i and state j respectively of a representative agent with utility function

U(·). It is helpful to normalise the quantity ṽi and this normalisation is

usually computed as follows. Let vi be the i element of the eigenvector of the

largest root of Q then ṽi = v(M+1)/1/vi. The choice of normalisation actually

turns out to be important when computing the derivatives of ṽi and we will

illustrate this in the next section.

Setting D = diag[d] where d = [di] = 1/vi, then we have an identified

system such that:

P = δ−1DQD−1, and Q = δD−1PD (5.8)

If hij 6= 1 for all n ∈ {1, . . . , N} and does indeed describe a martingale

component in the discount factor how does this instantiate itself in the

misspecified calculation of P? The answer is that as time progresses the

martingale component in hij results in a projected density function at the n

step trending away from the expected physical density. Borovička et al.

[2016] demonstrate that even under quite benign circumstances long horizon

forecasts, without further source of information to extract the martingale

component, the recovered physical density will be substantially biased as the

effect of hij accumulates.

The focus of this chapter is exclusively on the perturbation theory

surrounding the estimation of Q and hence the derivation of P̃ and in the

following section we outline the pre-requisite perturbation theory in terms of

the quantities of interest as a continuous function of Q. I also outline

carefully the implications of hij = 1 and illustrate the implied conditions

(ergodicity and recurrence) needed to impose this property on the recovered

P̃ during the estimation of Q from noisy market data.
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5.3 Motivating the Problem: Revisiting the

Ross Recovery Calculation

The most basic issue emerging in the empirical literature on the RT is how to

compute the risk-neutral state price transition matrix from the imputed state

price matrix derived using the Breeden and Litzenberger [1978] approach? If

we look at the 11 by 12 state price matrix reported in Ross [2015], the rows

each describe a state ranging from -35% to 54% returns on the index, with the

middle row representing the 0% return and the columns are time to maturities

from one quarter to three years (hence one more column than there are rows).

The system is identified as there are eleven transitions and eleven states.

However, if we directly solve the linear algebra problem to recover the sub-

stochastic state transition matrix whereby in an unrestricted form, then we

recover a physical transition matrix with negative values. So it makes sense

to compute a restricted least squares on the basis that no element of the risk-

neutral state transition matrix is less than zero. Repeating the solution using,

for instance a Fast Non-negative Least Square (FNNLS) does yield a non-

negative matrix with all elements less than unity, however the matrix is very

far from row and column-wise unimodal and exhibits significant periodicity.

An instructive comparison of my approach is to compare my algorithm

to the figures reported in Ross [2015], at present this is the only available

comparator. The reported state transition by tenor matrix, S, [Ross, 2015,

Page 636] is as follows:

S =


0.005 0.023 0.038 0.050 0.058 0.064 0.068 0.071 0.073 0.075 0.076 0.076
0.007 0.019 0.026 0.030 0.032 0.034 0.034 0.035 0.035 0.035 0.034 0.034
0.018 0.041 0.046 0.050 0.051 0.052 0.051 0.050 0.050 0.049 0.048 0.046
0.045 0.064 0.073 0.073 0.072 0.070 0.068 0.066 0.064 0.061 0.058 0.056
0.164 0.156 0.142 0.128 0.118 0.109 0.102 0.096 0.091 0.085 0.081 0.076
0.478 0.302 0.234 0.198 0.173 0.155 0.141 0.129 0.120 0.111 0.103 0.096
0.276 0.316 0.278 0.245 0.219 0.198 0.180 0.164 0.151 0.140 0.130 0.120
0.007 0.070 0.129 0.155 0.166 0.167 0.164 0.158 0.152 0.145 0.137 0.130
0.000 0.002 0.016 0.036 0.055 0.072 0.085 0.094 0.100 0.103 0.105 0.105
0.000 0.000 0.001 0.004 0.009 0.017 0.026 0.036 0.045 0.053 0.061 0.067
0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003


setting si∈{1,...,12} to be a single column from S. To compute the linear

algebra problem I simply compute two matrices S0 = [s1, . . . , s11] and

S1 = [s2, . . . , s12].

For the prediction states S1, I compute d = vec[S1], where vec is the
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column-wise stacking vec operator. Then I compute C = vec[S0⊗ I11]i=1,...,11.

Ross [2015] on Pages 636 and 637 suggests that the corresponding state-

transition matrix is:

Q̂ =


0.6710 0.2410 0.0530 0.0050 0.0010 0.0010 0.0010 0.0010 0.0010 0 0
0.2800 0.3960 0.2450 0.0540 0.0040 0 0 0 0 0 0
0.0490 0.2240 0.3940 0.2480 0.0560 0.0040 0 0 0 0 0
0.0060 0.0440 0.2180 0.3900 0.2500 0.0570 0.0030 0 0 0 0
0.0060 0.0070 0.0410 0.2110 0.3850 0.2490 0.0540 0.0020 0 0 0
0.0050 0.0070 0.0180 0.0450 0.1640 0.4780 0.2760 0.0070 0 0 0
0.0010 0.0010 0.0010 0.0040 0.0400 0.2040 0.3820 0.2510 0.0580 0.0050 0
0.0010 0.0010 0.0010 0.0020 0.0060 0.0420 0.2040 0.3730 0.2430 0.0550 0.0040
0.0020 0.0010 0.0010 0.0020 0.0030 0.0060 0.0410 0.1950 0.3610 0.2320 0.0570
0.0010 0 0 0.0010 0.0010 0.0010 0.0030 0.0350 0.1870 0.3470 0.3130

0 0 0 0 0 0 0 0 0.0320 0.1810 0.8750


If we compute 1/2||Cx − d||2, by setting x = vec[Q̂], then we get a sum of

squared errors of 0.0487. I will now outline the difficulties in this second set

of steps, starting with a direct solution using a standard unrestricted linear

solver.

5.3.1 Experiment One Direct Solution for Q

Directly computing Q = mat[x] by exact solution of Cx = d recovers the

following matrix:

Q̂ =


1.2107 −3.0672 1.4345 2.3102 −0.2692 0.0798 −0.3001 −0.3623 −0.0771 0.0551 −2.5372
2.2855 −0.3776 −0.1824 1.5624 0.6314 −0.0973 −0.3921 −0.8059 −0.3600 −0.8784 0.9687
4.0011 −1.6151 0.4915 4.1111 0.3813 −0.0006 −0.7699 −1.6137 −0.8228 −1.3990 −1.0426
1.3433 5.0964 −2.4741 −1.3937 0.7767 −0.1248 0.2284 −0.2773 −0.1795 −0.9618 5.3256
2.6094 4.8992 −2.8871 0.3134 −0.2206 0.1627 0.3993 −0.7528 −0.4970 −1.3014 5.1380
−0.4332 2.5866 −1.3579 −1.5556 0.9438 0.2994 0.2920 0.2853 0.0711 0.0245 1.0307
1.8278 −0.6005 0.4610 2.1488 0.2424 0.3769 −0.0323 −0.7056 −0.5528 −0.6921 −0.8606
4.4198 8.7715 −3.2561 −0.2409 1.3916 −0.2693 −0.1274 −1.2000 −0.9566 −2.7279 9.6482
−0.2833 −3.0165 0.9775 0.3800 −0.0132 −0.0052 −0.0296 0.3807 0.8860 0.5299 −3.9719
−0.1691 −5.1563 1.4795 2.0574 −1.0753 0.1553 0.0686 0.1285 0.3430 1.4452 −4.9272
−1.1552 0.6654 −0.2589 −1.0936 −0.2052 0.0236 0.2679 0.4899 0.2327 0.5538 −0.6483


for which the error 1/2||Cx − d||2 is 1.0279e-31. The transition matrix

recovered through the direct solution is neither a basic Markov chain

transition matrix, as there are plenty of negative entrances hence it is not

irreducible, nor an economic meaningful state price transition matrix, as it

is obviously not unimodal.
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5.3.2 Experiment Two Non-Negative Least Squares

Solution for Q

The recovered matrix Q̂ obviously does not conform to any of our proceeding

requirements for a Markov chain transition matrix hence we can repeat this

experiment, but using non-negative least squares. This yields the matrix:

Q̂ =


0.4101 0 0.1418 0.2043 0 0.0184 0 0.0565 0.0750 0.1442 0
0.0304 0 0 0.0439 0.0344 0 0.0391 0.0649 0.0958 0 0.7539
0.0961 0.4417 0 0.2526 0.0394 0.0409 0 0.0102 0 0.0064 0

0 0 0 0 0.1275 0.0121 0.1326 0.1041 0.1220 0 0
0 0.3655 0 0.0952 0 0.1842 0.2201 0.0531 0.0318 0 0
0 0 0 0 0.1337 0.4524 0.2293 0.0657 0 0 0
0 0 0 0 0 0.3647 0.5088 0.1321 0 0 0
0 0 0.5735 0 0 0 0.2056 0.5593 0 0 0

0.0879 0 0.0456 0 0 0 0 0.1474 0.7238 0 0
0 0 0.0096 0 0 0 0 0 0.1633 0.8140 0
0 0 0 0 0 0 0 0 0 0.0501 0


which is (a) irreducible, (as every element of Q̂4 is greater than zero) and (b)

all elements are greater than zero and less than unity. However, the row and

columns exhibit considerable degrees of multi-modality.

5.3.3 Experiment Three My Implementation for Q

Deploying our algorithm, without the Perron root constraint (as Ross [2015]

finds a δ > 1), on the S matrix reported in Ross [2015] I compute the following:

Q̂ =


0.8798 0.1044 0.0047 0.0047 0.0047 0.0047 0.0037 0.0000 0.0000 0.0000 0.0000
0.3952 0.5531 0.0047 0.0047 0.0047 0.0047 0.0037 0 0.0000 0.0000 0.0000
0.2940 0.4401 0.4401 0.0047 0.0047 0.0047 0.0037 0 0.0000 0.0000 0.0000
0.1859 0.3050 0.3050 0.3077 0.0385 0.0385 0.0197 0 0.0000 0.0000 0.0000
0.0537 0.0842 0.0961 0.1162 0.2081 0.1898 0.1284 0.0078 0.0052 0.0036 0.0029
0.0252 0.0252 0.0252 0.0252 0.0252 0.4549 0.2711 0.0248 0.0248 0.0225 0.0091
0.0252 0.0252 0.0252 0.0252 0.0252 0.3383 0.5322 0.0425 0.0330 0.0225 0.0091
0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.2538 0.5568 0.2392 0.0669 0.0091
0.0000 0.0000 0 0 0 0 0 0.3026 0.4604 0.1243 0.0093
0.0000 0 0 0 0 0 0 0.0409 0.2272 0.4782 0.0093

0 0 0 0 0 0 0 0 0 0.3063 0.5180


This yields an error of 1/2||Cx−d||2 = 0.006774, one order of magnitude

lower than the error for the computed matrix in Ross [2015]. This matrix

is both column and row-wise unimodal and the corresponding δ is 1.0032

as opposed to the value of 1.018 computed in Ross [2015]. Using intraday

market data for 11 states I compute the equivalent rate to be 3.18%, which is

a factor of 0.9921, much nearer to the value expected in a standard modelling

framework.
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Figure 5.1: Experiments on Computing the State Transition Matrix with Ross Data
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Figure 5.1 reports the experiment results all together. We can see that

none of the simplest approaches yields a state price transition matrix close

to one that would be considered useful for generating forward predictions.

However, my final implementation does provide both a very similar matrix to

that reported in Ross [2015] with a lower (by an order of magnitude) squared

error in terms of the forward prediction of the state price versus those in the

state price by tenor matrix.

5.4 A Perturbation Theory of Recovery

To apply the recovery theorem to empirical data, we must understand how

perturbations from data affects the recovered value of interests. In particular,

I can show that the discount factor and pricing kernel, as obtained from the

discrete approach in Ross [2015], exhibit at least second-order continuity in the

variations of the empirically recovered values of the state price matrix. This

result is instrumental for proving the correctness of any empirical recovery

approaches based on nonlinear programming, as it makes it possible to apply

the Karush-Kuhn-Tucker condition.

In the next section I outline the mathematical and notational preliminaries

needed for this continuity theorem by briefly recapping the results from Ross

[2015] and then introduce my key theoretical result as a Recovery Continuity

Lemma.

5.4.1 Continuity of Recovered Discount Factor and

Pricing Kernel

As mentioned, to estimate the pricing kernel D = (diag[v])−1 and the discount

factor δ from empirical data, we must assess the robustness of such estimations

to small perturbations of values of Q. Hence, a desirable result is to determine

the second-order continuity δ and v with respect to the parameters qij.

To computing the state price transition matrix, we need to specify two

operators. Let N n,n
Q = {Q = (qij)|1 > qij ≥ 0} be the set of irreducible

matrices. Let the Perron root and Perron vector be defined by the following
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two operators:

R := N n,n
Q → R+, V := N n,n

Q → Rn
+,

The strictly maximal eigenvalue for the non-negative and irreducible matrix

Q is termed the Perron root and corresponding eigenvector is referred to as

the Perron vector, see Perron [1907], Frobenius [1908] and Vahrenkamp [1976]

for a summary. Let the Perron root and (right) Perron vector of Q be defined

by the following operators:

δ = R(Q), v = V (Q). (5.9)

When needed, I use the subscripts R and L to denote the left and right root

and vector, i.e. vL = VL(Q) and vR = VR(Q) are the left and right Perron

eigenvectors. It should be noted that VL(Q′) = VR(Q) and VL(Q) = VR(Q′).

Unless explicitly specified, in the sequel by V (Q) I denote the right Perron

vector.

By construction, I can derive the pricing kernel matrix D = (diag[v])−1

such that:

D = (diag[v])−1 = (diag[VR(Q)])−1, (5.10)

and the physical transition matrix P can then be derived according to

Equation (5.8) and in my operator notation is given by:

P =
1

R(Q)
(diag[VR(Q)])−1Qdiag[VR(Q)] (5.11)

Several useful results from the linear algebra literature demonstrate that

the group inverses can be used to provide a higher order perturbation theory

for both the Perron root and associated eigenvector. Combining this result

with the standard matrix quotient rules I can derive a full perturbation

theorem for the discount factor and the pricing kernel for the RT.

Lemma 5.1. C2-Continuity of Recovered Discount Factor and

Kernel.

Let IM be the M ×M identity matrix, let M be the state price transition
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matrix capturing the deviations from the uniform application of the discount

factor across all states, i.e. M = δIM −Q, and M# be the group inverse of

M.

1. The discount factor δ = R(Q) is second-order continuous for variations

of the elements of the state price matrix Q. We have the first and

second-order derivatives of the discount factor such that:[
∂δ

∂qij

]
= vec

[
(IM −MM#)′

]
, (5.12)[

∂2δ

∂2qij

]
= 2 · vec

[
(M#)′ ◦ (IM −MM#)′

]
(5.13)

where ◦ is the Hadamard element by element product and vec[·] is the

stacking operator that stacks by column.

2. The recovered pricing kernel described by the M length vector d is first-

order continuous for variations of the elements of the state price matrix

Q. We have the first-order derivative of the pricing kernel such that:[
∂dm
∂qij

]
=

V (Q)(υ̃′
c̃Vm(Q)− υ̃′

mVc̃(Q))

V 2
m(Q)

(5.14)

where c̃ = (M + 1)/2, υ̃m is the m row of the matrix formed from

M#∂Q/∂qij.

For proof of Lemma 5.1, see A.4.1 and A.4.1 in Appendix A.4. �

5.4.2 Asymptotic Properties of a Parametric Recovery

Theorem

In the sequel, I utilise ∆(·) to represent the vector/matrix collection of

first-order partial derivatives for a scalar/vector function. The Lemma 5.1 is

useful to confirm the continuity of the derivatives rather than to provides

actual analytical solutions due to the inherent computational difficulty in

computing group inverses. Indeed, in numerical calculations when the

first-order derivative of the social discount factor is needed (such as our own
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algorithm), Equation (10.1) is far from satisfactory. It is numerically more

convenient to use a linear algebra result due to Vahrenkamp [1976] to

capture the first derivative of the Perron Root as the outer product of the

associated left and right Perron eigenvectors vL and vR.[
∂δ

∂qij

]
= vec [vLv′R] (5.15)

It is also possible to use the continuity Lemma to investigate by numerical

simulations how different assumptions and probability distributions of the

actual state price matrix might impact the recovered social discount factor

and the pricing kernel. See for example Borovička et al. [2016] for a discussion

of the stochastic nature of the state price matrix.

Example 5.1 (Asymptotic Properties of a Parametric Recovery Theorem).

Suppose the state price matrix Q = P(ϑ) is determined by a function such

that: √
T(ϑ̃− ϑ̄)

d−→ N(0N,Γ)

where
√
T is a problem specific attribute, such as a sample characteristic and

Γ is an N×N positive definite matrix. The vectors ϑ̃ and ϑ̄ are a realization

and the true parameter vector respectively.

Replacing M#∂Q/∂qij with M#∂P(ϑ)/∂ϑν the asymptotic distribution of

the discount factor and pricing kernel can be computed via the Delta method.

Setting, ∆(δ) = [∂δ/∂ϑν ] and ∆(d) = [∂dm/∂ϑν ] to be the N × 1 vector of

derivatives for the discount factor and the N ×M matrix of derivatives for

the pricing kernel. Hence the asymptotic distributions of the discount factor

and pricing kernel maybe given by:

√
T(δ̃ − δ̄) d−→ N(0,∆(δ)′Γ∆(δ)) (5.16)

√
T(d̃− d̄)

d−→ N(0M ,∆(d)′Γ∆(d)). (5.17)

I take advantage of this convergence identity in Section 6.2 to conduct a

simulation on the consistency of our algorithm under relatively benign

identification conditions.
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Hansen-Scheinkman

Factorisation and Ross

Recovery from High Frequency

Option Prices via Nonlinear

Programming: The Empirical

Recovery

6.1 Empirical Recovery

From the previous chapter we can see that there are three discrete steps

to implementing the RT: Step 1 is extracting the state price from observed

option price to form the state price matrix S; Step 2 is determining the

risk-neutral state price transition matrix Q from S; Step 3 is applying the

Perron-Frobenius theorem to recover the discount factor δ, the pricing kernel

D and the physical transition matrix P.

Step 1 is the well established problem of estimating the risk-neutral density

function extracted from option prices. Step 3 is the application of the Perron-

Frobenius theorem. Step 2 is the most challenging part, in particular when
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the requirements of the Step 2 and Step 3 rely on Step 1 identifying the risk-

neutral density with precision, something that has eluded the literature since

the original contribution of Breeden and Litzenberger [1978]. My approach

to integrating Steps 2 and 3 is to presume that Step 1 yields a state price by

tenor matrix that is estimated with noise and gaps and therefore Step 2 must

be adjusted from straightforward algebra to be robust.

To deal with option prices with gaps, I utilise intraday data to provide

a wider coverage of prices and then use the Black-Scholes implied volatility

as a device that allows us to determine a continuous polynomial functional

form for the implied volatility surface and yield a curve that I can evaluate

over arbitrary points to yield the risk-neutral density. Unlike Ross [2015], I

impose the risk-free discount rate on the state price, by normalisation of the

fitted density and discounting by the current prevailing deposit rate for the

particular tenor in question. It should be emphasised that I use the Black-

Scholes implied volatility as a normalised price and that our approach is not

tied to the assumptions of the Black-Scholes model.

A major issue with any empirical analysis is that real market data, even at

the high frequency level, has lots of gaps and it is noisy. The OPRA data tapes

from the U.S. national market service, are quoted by specific maturity date

and strike prices and are rarely in a neatly comparable grid. Directly using

the market prices to recover the density function results in a tight balancing

exercise: too smooth fitting and the major features of the distribution are

lost, too coarse and the calculation of the second-order derivative is ill-defined.

Most importantly, is the issue of truncation. Without some functional form

to delineate the tail structure near date, tenors will often have major gaps

and these will need to be filled in some form to allow us to estimate the state

price transition matrix.

Given that the computation of the tails of the risk-neutral density are

approximations, relying on the sum of the states is often inaccurate. Indeed

Ross [2015] notes that the recovered “risk-free” rates are somewhat away from

quoted deposit and swap rates. This issue is discussed at length in Breeden

and Litzenberger [1978], Aı̈t-Sahalia and Lo [1998] and Figlewski [2008]. The

general approach is to normalise the state price to the risk-neutral density and
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then discount with the quoted rates and I follow this strategy. My approach

is intrinsically linked to the yield curve as I use the implied volatility as a

device to smooth the call price as a function of strike and tenor.

Step 2, estimation of the risk-neutral state price transition matrix, is the

least comprehensively discussed problem. Several preceding applications

have outlined procedures and these have included artificial neural networks,

Audrino et al. [2014] and least squares Ngoc-Khanh and Xia [2014]. In this

section, I use a constrained non-linear least square optimisation algorithm

based on the sequential quadratic programming (SQP), where I can formally

prove that the resulting minimum form satisfies the desired mathematical

and economics constraints (e.g. having a discount factor lower than unity).

I have also tried a number of other strategies for recovering the state price

matrix. These include the parametric method of Song and Xiu [2016] amongst

others. The major issue is that the approaches are designed to accurately

recover the risk-neutral density function over the precise range of strikes for

an individual tenor. My approach works also even if the range of traded

strikes is unavailable for certain tenors, as found on empirical data.

6.1.1 Procedure Setup

Consider a discrete-time economy with finite state space. The current time

is denoted by t and T is the maturity dates of the given option contracts,

where τ = T − t is time to maturity. T is the vector of available time to

maturity (tenors). For any given day, let K be the available strike prices of

the options traded during the day and S be the spot prices. I construct the

state variables using the log-returns such that R = log(K/S) and let R be

the vector of available states. S̃ is the state price matrix estimated by the

observed option prices with errors while the true empirical state price matrix

is S̄.
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6.1.2 Recovering the State Price Matrix Using

Intraday Data

In order to determine the state price transition matrix, the state price matrix

needs to be built on a uniformly specified states and tenors grid. However,

the market data is not always uniformly specified. To tackle this issue, I

first build the market realised state price matrix on a grid with states and

tenors indexed by the market data. Then, I interpolate the market realised

state price matrix on a uniform grid, which is bounded by the minimum and

maximum of the market realised grid and equally spaced.

Let SI×J be the collection of state price functions Pj(log(K/S)), where

j ∈ 1, ..., J is the index of the observed tenors. The collection of functions

Pj(log(K/S)) are parametric approximations of the numerical evaluations

of the Breeden and Litzenberger [1978] formulation extracted from market

data. My objective is to estimate the M × N state price matrix denoted

S̃ = {s̃mn : 1 ≤ m ≤M, 1 ≤ n ≤ N} from SI×J by interpolation.

I employ a modification of the non-parametric approach of Aı̈t-Sahalia

and Lo [1998] and Figlewski [2008] to determine PJ(log(K/S)). For a given

observed tenor τj let the collection of call and put prices traded over a day for

a given tenor be denoted by Cj = {Ca(Ki, St, τj)} and Pj = {Pb(Ki, St, τj)},
where {1 ≤ a ≤ Ãj} and {1 ≤ b ≤ B̃j} are the index of observed prices per

tenor over a day and {1 ≤ t ≤ T̃} is the index of intraday observations of the

spot price.

Let rj be a deposit rate with maturity close to τj quote. My first

operation is to recover the implied continuous dividend ςt for a given pair of

put and call options traded at time t, denoted by the tuple {Ca(Ki, St, τj),

Pb(Ki, St, τj)|t}.1 Once I have the implied continuous dividend I can then

compute the Black-Scholes implied volatility for the put and call options

σ̃a|[Ki/St]a and σ̃b|[Ki/St]b. Following convention I utilise the put implied

1The implied dividend is derived from the put-call parity:

ς(Ki, τj) = − 1

τj
log

(
Ca(Ki, St, τj)−Pb(Ki, St, τj) +Kie

−rjτj

S0

)
.
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volatilities to construct the smoother call prices rather than the calls

themselves, see Figlewski [2008] for commentary. I solve numerically for the

Black-Scholes implied volatility using a bisection approach in the standard

manner from the standard formulation

Ca(Ki, St, τj) = Ste
−ςτN(d1)−Ke−rτN(d2), (6.1)

Pb(Ki, St, τj) = −Ste−ςτN(−d1) +Ke−rτN(−d2), (6.2)

where

d1 =
logSt/K + (r − ς + 1

2
σ)τ

σ
√
τ

, and d2 = d1 − σ
√
τ .

For each tenor, indexed by j, I have a matched data set of implied

volatilities, intraday spot prices and a cross section of strikes {σ̃b, [Ki/St]b}j.
Several choices are now available at this juncture, for instance the

non-parametric method of Aı̈t-Sahalia and Lo [1998] is very popular.

However, for the purpose of building the set of functions in S I choose to

follow in the spirit of Figlewski [2008] and proceed in two steps. First I

smooth the implied volatilities by fitting a polynomial function to the

implied volatilities over the range {min[log(Ki/St)],max[log(Ki/St)]}j, I

then fit a weighted mixture of log-normals to the smoothed state price

imputed from over the range {min[log(Ki/St)],max[log(Ki/St)]}j.
This procedure is implemented as follows, first I estimate a V –order

polynomial for each tenor:{
σ̃b =

V∑
v=0

βvR
v
b + ξb, Rb = [log(Ki/St)]b, ξb ∼ N(0, ζ2)

}
j

.

I construct a grid with regular intervals Rg : 1 ≤ g ≤ G over the range

{min[log(Ki/St)], max[log(Ki/St)]}j of arbitrary precision, in this case I

choose G to be five thousand points. Using the estimated polynomial

coefficients β̂ I construct a smooth curve σ̃g =
∑V

v=0 β̂vR
v
g .

Setting S0 to be the median spot price from St for the day and ς0 to be

the median continuous implied dividend I build a new range of strikes

Kg = S0 exp(Rg). Hence I can build a new range of smooth call prices using
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the Black-Scholes implied volatility as a fitting device; whereby

{Cg = C̄(σ̃g, S0, Kg, rj, ς0, τj)}j. I can then apply the Breeden and

Litzenberger [1978] result to the smoothed call prices to create the following

coordinate system

{Rg, P̂j(Rg)} :=

{
log(Kg/S0),

Cg−1 + Cg+1 − 2Cg[
1
2
(Kg−1 −Kg+1)

]2
}
j

. (6.3)

If each tenor had a regular number of strikes then we could have interpolated

out the desired states, in terms of continuous return from the median spot

prices S0, and moved on to recovering the estimated state price transition

matrix Q̃. Unfortunately, in most cases we need a parametric functional form

to generate both the tails and a regular set of states.

A two-stage approach works well in this scenario. Polynomials provide a

fast fit over the data range from min[log(Ki/St)] to max[log(Ki/St)]j and

provides the overall shape and the trajectory of the tails. However,

polynomials are unreliable for extrapolating tails themselves and a

parametric representation of the distribution is required. Fitting an

integrated form of the mixture distribution directly to the call prices is: (a)

slow and (b) highly unreliable in terms of generating a reasonable results.

Hence the polynomial approach provides an effective device for computing

the central mass of the RND and the parametric distribution is useful for

fitting the tails. It is also useful to be able to use the put prices via the

implied volatility device as these tend to have a wider range of available

strikes from market data, particularly for low strikes.

Figlewski [2008] recommends using a generalised extreme value (GEV)

distribution to model the tails and a normal distribution to model the central

mass for end of day data. However, empirical testing on intraday data from

my sample indicates that a mixture of two or three log-normals provides a

fit that matches the available points in the curve and the exit trajectory of

the tails from the point the coverage of the range of strikes and intraday spot

prices stops far better than the GEV–normal combination.
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Let the mixture probability density function be given by:

F (z|θ) =
V∑
v=1

ωvFv(zh|θv), ∀z ∈ R, (6.4)

where Fv(z|θv) is the v indexed probability density function with parameter

vector θv and weighting ωv and the global parameter vector is

θ = (ω1, θ
′
1, . . . , ωV , θ

′
V )′. The parameter vector θ is estimated via:{
θ̂

∆
= arg min

θ

1

2
||P̂j(Rg)−F (Kg|θ)||2

}
j

, (6.5)

where ||.||2 is the square of the p-2 norm of a vector (hence the sum of squares),

as such, this is a second stage non-linear least squares fitting problem.

Hence, I have a two-step parametric representation of the state price

function which is collected up by SI×J = {Pj(R) := {F (S exp(R)|θ̂)}j}. To

recover the actual state price state price from the state price function, I first

specify the grid of returns corresponding to each state

RM = {Rm : minRi ≤ Ri ≤ maxRi, 1 ≤ m ≤ I, R(M+1)/2 = 0}. I then

evaluate {ψij = Pj(Ri)}j. The estimated state price for each state is then

simply computed from:

ŝmj =
ψij∑I
i=1 ψij

e−rjτj , m ∈ {1, . . . ,M}, j ∈ {1, . . . , J̃}. (6.6)

Unfortunately, we have still not quite computed S̃ = [s̃mn] as the number of

observed tenors J̃ is commonly insufficient or too irregular for the purposes of

the RT. We now need to apply one last two dimensional linear interpolation

to move from j ∈ {1, . . . , J̃} observed tenors to n ∈ {1, . . . , N} interpolated

tenors.

Let τj=A ≤ τn ≤ τj=B with tuples (τj=A, ŝmj=A), (τj=B, ŝmj=B), then the
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mn element of the the estimated state price matrix is:

s̃∗mn = ŝmj=A +
ŝmj=B − ŝmj=A
τj=B − τj=A

(τn − τj=A), (6.7)

s̃mn =
s̃∗mn∑I
i=1 s̃

∗
mn

e−rnτn , m ∈ {1, . . . , M̃}, n ∈ {1, . . . , N}, (6.8)

and as such, we finally have S̃ = [s̃mn]. The second normalisation corrects

any distortions to S̃ = [s̃mn] caused by the linear interpolation to the uniform

grid of tenors indexed by n ∈ {1, . . . , N}.

6.1.3 Determining the Risk Neutral State Price

Transition Matrix

To ensure clarity within the following discussion I specify a series of naming

conventions for a discrete time Markov chain I follow Norris [1998] for my

definitions. Let Q[A] be the probability of an event A and M be a Markov

chain, with countable state space x ∈ X. Let X0, X1, . . . be a sequence of

random variables and let Ht−1 ∩t−1
h=0{Xs = xs} be the history of events

satisfying Q[Ht−1 ∩{Xs = xs}] hence for a pair of states xa ∈ X and xb ∈ X,

then

Q[Xt+1 = xb|Ht−1 ∩{Xt = xa}] = Q[Xt+1 = xb|Xt = xa] = q(xa, xb),

which I denote by short hand as qab. The matrix of transitions between all

states in xi ∈ X, is denoted by a bold latin letter, for instance Q. For the

κ ∈ N+ forward step, the κ transition matrix is denoted Qκ ≡ [qab,κ] = Qκ.

A Irreducible – a state b is accessible from any other state a after a finite

number of κ steps, hence the probability of transitioning from a to b

at the κ step, denoted qab,κ > 0, for an integer step κ > 0. Hence a

state transition matrix Q is irreducible if for a finite κ ∈ N+, qab,k >

0,∀xa, xb ∈ X. That is the matrix Q describes a strongly connected

graph.
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B A-periodic – Let T[xa] , {t ≥ 1 : qaa,κ > 0} be the set of times when it

is possible for the chain to return to a starting position xa, the period

of M is defined as the greatest common divisor (gcd) of T[xa]. If M is

an irreducible Markov chain then gcd T[xa] = gcd T[xb], ∀{xa, xb ∈ X}.
If gcd T[x] = 1, ∀{x ∈ X} then M is termed a-periodic.

C Ergodic – For an irreducible Markov chain M, let

Q{limt→∞ t
−1
∑t−1

h=0 1Xa=x = π[x]} = 1, the quantity π[x] is the

proportion of time that M spends in state x ∈ X. If M has a unique

invariant measure π[x], then M is an ergodic Markov chain.

D Mixing – Suppose that M is an irreducible and aperiodic Markov chain,

let σ̃ be a limiting distribution.

max
{x,xa}∈X

1/2
∑
x∈X

|qxxa,t − σ̃| ≤ Ψψt,

where Ψ > 0 and ψ ∈ (0, 1) are constants. For a given pair of constants

Ψ∗ and ψ∗ the corresponding time t∗ is termed the ‘mixing’ time and

the Markov chain M is termed a ‘mixing’ Markov chain.

E Unimodality – For a Markov chain M, strong diagonal dominance is

where qaa > qab, ∀xa 6= xb ∈ X. Strict diagonal unimodality imposes

that for an arbitrary ordering of states x1 < x2 . . . , xM the following

conditions for a collection of ordered states {xa, xb, xc} ∈ X and hence

{a, b, c} ∈ {1, . . . ,M}:

qab

{
> qac, if b > a & c > b

< qac, if b < a & c < b
, and qab

{
> qcb, if b > a & c > a

< qcb, if b < a & c < a

F Sub-stochastic a Markov chain M is sub-stochastic if for the transition

matrix Q, every element of the vector [am] := a = Q1M×1, is in the

range 0 < am < 1, ∀m ∈ {1, . . . ,M}.

With the current set-up in mind, we can specify the Markov chain that

connects the actual vector of states s̄n+1 to the preceding state s̄i, via the true
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state transition time-homogenous matrix Q ∈ N n,n, such that

s̄n+1 = Q̄s̄n, ∀i ∈ {1, . . . ,M}, (6.9)

We do not observe the true state price matrix S̄, but the noisy

approximation S̃ from the preceding step. Hence, directly solving for P̄ from

S̄ is infeasible as I illustrated in Section 5.3. In fact, we could solve for Q̃

from S̃ within a constrained optimisation programming process. Through

necessity, we need to find a minimum distance between
∑

i ||̃sn+1 − Q̃s̃n||2

subject to the constraints that ensure that Q̃ describes a Markov chain with

the desired properties.

Essential Constraints on Q̃

Constraints E.1 to E.3 ensure that Q̃ describes a Markov process:

E.1 Q̃ is irreducible.

E.2 Q̃ is sub-stochastic. The progression of the sum of the risk-neutral state

price describes the equivalent discount on a risk free asset,
∑

m Q̃sn =

exp(−rn+1τn+1) ≡
∑

m sn+1.

E.3 The elements of Q̃, qij are in the domain, 0 ≤ qij < 1.

Economically Meaningful Constraints on Q̃

The following constraints are desirable in terms of the subsequent

implications for asset pricing:

D.4 Q̃ is unimodal, about the diagonal.

D.5 The largest eigenvalue of Q̃ with a non-negative eigenvector is less than

unity.

D.6 The Markov chain described by Q̃ is aperiodic (redundant if E.2 is

imposed).

Constraints E.2, E.3 and D.4 can be imposed as linear constraints, whilst E.1,

D.5 and D.6 result in a non-linear constraint for determining Q̃.
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Let S1 and S0 be the subsets of theM×N state price matrix S respectively,

such that:

S1 = [s2, . . . , sN ]; S0 = [s1, . . . , sN−1].

The basic case is when N = M + 1, thus both S1 and S0 are in size M ×M .

I now specify the vector s0 = vec[S0] and s1 = vec[S1]. Let G = [s′n ⊗
IM ]n=1,...,N−1 be the M2 ×M2 matrix of lagged states, where I is a matrix

with unity on the diagonals. Setting x = vec[Q], the vectorised optimisation

is now of the following form:2

SQP Identification of the State Price Transition Matrix

Q̂ = mat[x̂], x̂ = arg min
x

1

2
||Gx− s0||2,

s.t



Ax ≤ 02M(M−1)×1 D.4

Bx = bM×1 E.2

0M×1 ≤ x ≤ eM E.3

R(mat(x))− 1 ≤ 0 D.5

Q(mat[x]) < 0 E.1

(6.10)

The matrix A is of dimension 2M(M − 1) × M2 and imposes the row

and column-wise unimodality constraint on mat[x] and hence Q̂. e(M+1)/2

represents a null vector except for element (M + 1)/2 which is one. The

matrix B is of dimension M × M2 and imposes the summation constraint

that
∑

m sn+1 =
∑

m Q̂sn. The non-linear constraint R(mat(x)) − 1 ≤ 0

imposes (a) the existence of the Perron root of mat(x) and (b) that the root

is less than unity, hence is a valid discount factor. Finally, Q(mat[x]) < 0

imposes the irreducibility condition. I will approach the constraints in order

of complexity.

2Following the convention in non-linear programming, see Fletcher [1971], I set out the
optimisation in the following order, linear inequality constraints, linear equality constraints,
variable domains and non-linear inequality constraints.
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Imposing Unimodality – D.4, Linear Inequality Constraint

The precise form of A depends on the stacking operation of vec[·]. Following

the convention in econometrics, I assume that the vec[·] operator stacks by

column. The matrix A is constructed in two parts Ar and Ac for the rows

and column unimodality restrictions respectively. Set Aru = trimrM [IM +

diag1[−eM−1]], where diagw[·] is the operator that transforms a vector into a

matrix with the elements of the vector placed on the w upper diagonal and

trimrW[·] trims the row or collection of rows W from a matrix or a vector.

Hence Aru is of the following form:

Aru
(M−1)×M

=


1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

 . (6.11)

The matrix Ar is constructed by placing combinations of Aru and Arl on the

block diagonal. Let Arm = [trimrm,...,M−1[Aru]
′, trimr1,...,M−1[−Aru]

′]′, then

Ar is:

Ar
M(M−1)×M2

=


Ar1 0 · · · 0

0 Ar1 · · · 0
...

...
. . .

...

0 0 · · · ArM

 . (6.12)

The column-wise unimodality constraint is similar, albeit the restrictions

are now in front to back blocks. Set Acu = trimrM [IM ⊗ ec,m +

diagm[eM−1] ⊗ −ec,m], where ec,m is an M − 1 null vector with the m

element set to unity. Similarly to the row-wise restriction the I set Acm =

[trimrm,...,M−1[Acu]
′, trimr1,...,m−1[−Acu]

′]′. The blocks are then stacked one on

top of the other as follows:

Ac
M(M−1)×M2

=


Ac1

Ac2

...

AcM

 . (6.13)

111



The matrix A is then formed via vertical concatenation of the two matrices

Ar and Ac hence A = [A′r,A
′
c]
′. This leads us to my first proposition.

Proposition 6.1 (Unimodality of the State Transition Matrix). An

optimisation minx
1
2
||Gx − s0||2 that attains a minima with vector x̂ and

satisfies the constraint Ax ≤ 02M(M−1) results in an estimated state transition

matrix Q̂ = mat[x̂] that is row and column-wise unimodal.

For proof for Proposition 6.1 see A.4.2 in Appendix A.4. �

Preserving the Risk Free Discount Path – E.2, Linear Equality

Constraint

Constraint E.2 preserves the term structure of the risk free rates that yield

the cost of an asset that pays off in all states. As noted, the risk-neutral state

price transition matrix Q̂ needs to preserve the term structure of the risk-free

rate and hence the sub-stochastic Markov chain is described by a state price

matrix Ŝ with columns whose sum determines the discount factors from the

yield curve. Hence, for a sum over the j rows for a column sn, is denote
∑

j sn:∑
j
Q̂s̃n = e−Ri+1τi+1 =

∑
j
s̃n+1,∀i ∈ {1, . . . ,M}.

One can also at the i = 0 constraint, whereby s0 = e, where e is a null vector

except for the middle element (the current state) which is equal to unity. In

practice, this does not matter unless (a) the yield curve is initially very steep

and (b) the number of states is such that from time τ0 to τ1 is long enough

that the yield if sufficiently different from τ1 to τ2 to generate a substantial

error.

Let B be a matrix and b be a target vector such that the equality

constraint Bx = b. The column sum of the forward shift matrix S1 maybe

expressed by b = 1′S1, where 1 is a unit column vector of length M . The

matrix summation for the columns within the vector x = vec[Q] is given by:

B = [1′ ⊗ s′n]n∈{1,...,M}.
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Hence, a sufficient condition for the constraint
∑

j P̂s̃n =
∑

j s̃n+1, ∀i ∈
{1, . . . ,M} to hold is if Bx = b. The proof is trivial and can be shown by the

fact that for a given column n in S1, the corresponding 1×M2 row vector in

B given by 1′⊗ s′n, when matrix multiplied by the M2× 1 column vector x is

the equivalent to the double sum
∑

i

∑
j q̂ijsm=i,n, where q̂ij is the ij element

of Q̂. This leads to my second proposition3.

Proposition 6.2 (Sub-stochasticity of the State Price Transition Matrix).

An optimisation minx
1
2
||Gx − s0||2 that attains a minima with vector x̂ and

satisfies the constraint Bx = b results in an estimated state transition matrix

Q̂ = mat[x̂] that is sub-stochastic.

For proof for Proposition 6.1 see A.4.3 in Appendix A.4. �

Irreducibility – E.1, Nonlinear Inequality Constraint

If the initial construction of S̃ does not have any rows such that the elements

of 1N×1S̃
′ are numerically indistinguishable from zero then we empirically

found the resulting estimated Q̂ to be usually irreducible. However, it is

not guaranteed and it is important to check this property, especially if the

subsequent constraint on the Perron root is not imposed.

The traditional approach for irreducibility is to to test the strong

connectedness of the graph whose adjacency matrix is constructed by

replacing every element greater than 0 in Q with 1. The elements qij,κ of

the κ-power of the matrix Qκ corresponds to the connectedness of the two

elements after κ steps. Hence, if we can found some κ < ∞, such that

qij,κ > 0, ∀i, j ∈ {1, . . . ,M} then Q would be irreducible.

By itself this condition is only sufficient and not necessary. The square

matrix

(
0 1

1 0

)
is the simplest counterexample of an irreducible matrix in

which for any power κ there are always some elements that are zero. To

achieve a necessary and sufficient condition one would need to test whether

3It is important to note that the ordering of the Kronecker product, in many econometric
applications the matrices are Hermitian, hence vectorised sums are often, although not
always, symmetrical.
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(Q+IM)κ was larger than zero. However, Proposition 6.1 guarantees that the

matrix is unimodal and therefore the elements of the diagonal are always non

zero. Hence, when replacing every element greater than 0 with 1, the matrix

Q and the matrix Q+ IM would generate exactly the same adjacency matrix.

From graph theory we know that the longest path for M states is long at

most M steps and then we can set out a non-linear constraint as follows:

Q(mat[x]) = −vec[QM ] < 0M2×1, Q = mat[x], (6.14)

with the following first-order derivative:

∂Q(mat[x])

∂x′
=

d(QM−1Q)

dQ
≡ (Q′ ⊗ IM)

dQM−1

dQ
≡

M∑
j=1

(Q′)M−j ⊗Qj−1,

(6.15)

which is an M2 ×M2 matrix of gradients.

Proposition 6.3 (Irreducibility of the State Transition Matrix). An

optimisation minx
1
2
||Gx − s0||2 that attains a minima with vector x̂ and

satisfies the constraint Q(mat[x]) = vec[QM ] > 0M2×1 is a necessary

and sufficient condition for the unimodal state transition matrix Q to be

irreducible.

The proof for Proposition 6.3 follows from the preceding text. �

In practice, this number of non-linear constraints and derivatives is very

high and significantly slows down the algorithm. What I found to be

practically more effective is to run the algorithm without this constraint and

simply compute the M -th power of the estimated matrix and test whether

q̂ij,M > 0,∀i, j ∈ {1, . . . ,M}. If the test succeeds, then by Proposition 6.3 the

estimated matrix Q̂ is irreducible. In the rare cases when the test failed, then

one can re-run the algorithm by adding the irreducibility constraint.
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The Existence and Domain of the Perron Root – D.5, Nonlinear

Inequality Constraint

The RT relies on the Perron root of the risk-neutral state price transition

matrix Q being a discount factor that ensures P1 = 1. As we do not directly

observe Q, but its estimated analogue Q̂, we can utilise resulting Perron root

in the optimisation to assist in identification of the physical real world state

transition matrix P. The obvious constraint is on existence: the Perron root

is real and positive. We can go further and impose δ to be less than unity as

would be economically meaningful such that:

δ = R(mat(x)) ≤ 1, Q = mat[x], (6.16)

For this constraint to hold, we need an algorithm to compute both the actual

root and the first and the second-order derivatives of R(mat(x)) as functions

of x. The key intuition behind my successful approach is to decouple the

actual computation of the Perron’s root from the computation of a closed

form of its first-order and second-order derivatives.

For the latter two, the correctness of the SQP algorithm requires their

existence and the continuity Lemma 5.1 does precisely that: Equation 5.12

and Equation 5.13 guarantees respectively that for x = ~[Q] the first-order

derivative ∂R(mat(x))/∂x and the second-order derivative ∂2R(mat(x))/∂x2

exist and are continuos. Hence the satisfaction of the Karush-Kuhn-Tucker

condition for the SQP minimisation problem guarantees that the minimum

Q̂ also has a discount factor δ̂ ≤ 1. I provide the full steps of the of the SQP

process in the optimisation system with the constraint on the discount factor

D.5 in A.4.4 in Appendix A.4.

6.1.4 An Empirically Identified Recovery Theorem

Given the perturbation theory stated in Lemma 5.1 and the propositions

derived from the SQP process for determining the state price transition

matrix, I can finally obtained a Realised Recovery Theorem that is uniquely

identified, i.e. that the identification of the state transition matrix can be
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solved in closed-form and the derived discount factor, pricing kernel and

physical transition matrix satisfy both the constraints embedded in the

Markov process of the underlying assets and the constraints that maintain

the economically meaningful results of the Recovery Theorem.

The result below combines Ross’ Theorem 1 with the continuity Lemma 5.1

and Proposition 6.1 through Proposition 6.3.

Theorem 6.1 (An Empirical Recovery). The discount factor δ, pricing kernel

D and the physical state transition matrix P of the asset prices can be uniquely

identified from the state price by tenor matrix S through the risk-neutral

state transition matrix Q obtained by the minimisation of the optimisation

constraints in (6.10) that attains a minima which, by construction, is row-

wise and column-wise unimodal; sub-stochastic; irreducible; with a discount

factor that is less than unity and a decreasing pricing kernel.

Proof follows sequentially from the original RT and the proof of our

perturbation theorem and the steps are detailed in proceeding sections. �

In Ross [2015], a worked example of applying the RT using a snapshot

of one day data is outlined. In this case the RT is estimated on an over the

counter (hereafter OTC) dataset that has a full set of strikes for coverage and

a very regular quarterly term structure. OTC data of this type is typical in

FX options and some bond options. One interesting point is that whilst the

pricing kernel recovered from the OTC follows a CRRA kernel very precisely,

the discount factor is greater than unity, by a quite considerable amount. For

the same day, I use OPRA data and the constraint above to yield a closer fit

to the state price by tenor matrix, with a kernel that is less than unity. For

this I end up with a pricing kernel that is more-or-less ‘U-shaped’, see the

following sections for an extensive exploration.

Various alternative approaches to recovering the pricing kernel, for

instance by non-parametric regression on the cross section of asset prices

or by use of both spot and option markets commonly yield a ‘U-shaped’

kernel, a classic recent example is from Song and Xiu [2016], which has a

full parametric specification for the density function. Hence, whilst I have

a potential restriction from the main perturbation theorem for the pricing
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kernel (either parametrically or non-parametrically) I do not impose a CRRA

(decreasing parabolic) shape to it.

6.1.5 Additional Issues for Numerical Implementations

There are a number of issues that stems from the numerical implementation.

At first, the constraints on a-periodicity are useful when setting arbitrary

ranges for the states. The primary motivation stems from the issue of tail

truncation at longer maturities, leading to state price matrices S̃ which are

overly sparse. Numerical issues can occur when numerous points at the tail

effectively generate rows in S̃ that ‘close’ to zero. By ‘close’ I generally refer to

the minimum absolute differences in IEEE defined double precision arithmetic

between two numbers before they are considered identical at that precision.

On a 64bit computer this is around 2.2204e-16.
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Figure 6.1: Extrapolating the Tail of the Option Implied Risk Neutral State
Price.

The Tail Truncation Problem

Notes: This plot presents a summary of the (upper) tail truncation problem. The
continuous black line represents the risk-neutral density, computed using the Breeden and
Litzenberger [1978] approach, of a long tenor option (presumed to have widest range of
strikes). The vertical dotted line represents the highest traded strike. The dotted line
represents the best fitting parametric curve, presumed to be a weighted mixture of up to
three lognormal distributions. The exit trajectory of the risk-neutral prices at the exit point
represents the best guess for the direction and mass of the tail. From the point of view of
the Recovery Theorem it is critical to a) identify a numerical cut-off point where the tail
is not numerically equal to zero, resulting in a row of the state price matrix S̃ numerically
equal to zero. The horizontal line represents the choice of cut-off, I choose this to be the
square root of the smallest difference that distinguishes two floating point numbers, as this
permits most forms of mathematical operation to be performed without return a zero.

Figure 6.1 outlines the problem of tail truncation at longer tenors. Here,

the distribution is truncated prior to approaching the right tail, with this

also being the highest available strike. Hence, the terminal state that will be
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defined by the vertical dotted line, will still have substantial probability mass

to the right. Thus, the choice of range of states matters. Choosing upper

bounds where the dotted curve is below the lower horizontal line (presumed

to be an appropriately sized small number, for instance the square root of

the smallest double precision number, to allow for cross products in the

subsequent matrix operations).

Another issue that is hampered by numerical considerations is the direct

construction of the Hessian for the SQP. The exact SQP algorithm that solves

the non-linear programming problem outlined in (6.10) requires that both

the first and second-order derivatives be continuous and that the objective

function is convex. The first requirement is obvious from the choice of

objective function and follows from the standard linear algebra arguments.

I have carefully identified the derivatives of the constraint and the pricing

kernel. As such I have a functional form for the second-order derivatives

of the Perron Root and hence once could, in theory directly compute the

Lagrangian of the optimisation problem and solve directly using Newton’s

method. However, the exact form of the second-order derivative can only be

computed using the group inverse, as in Equation (10.13).

Numerical testing of the stability of several group inverse algorithms

suggests that as the number of states increases the level of error in the resulting

group inverse can rise substantially (after 20-30 states basically being pure

noise). In contrast, the first-order derivative of the Perron-Root evaluated

from the cross product of the left and right Perron vector, denoted vLv′R, is

numerically more robust to an increasingly large number of states. Hence, I

suggest using finite differencing to numerically approximate the second-order

derivative of the Perron root. For small numbers of states the speed difference

between implementation of the group inverse versus numerical approximation

via finite differencing (as long as the gradients are specified) is negligible.

With the functional forms of the gradients, numerical methods such as the

Broyden Fletcher Goldfarb Shanno algorithm are very quick even for large

numbers of states and the fact that the first derivatives are already identified

results in a very fast solver.
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6.2 Simulation

To test the internal consistency of my algorithm I generate simulated option

data and then fit our algorithm to a repeated trails of randomly perturbed

data. My baseline simulation presumes that hij = 1 and hence there is no

martingale component to the stochastic discount factor. I first presume that

the correct number of states is known a-priori, hence the simulation conditions

are assumed to be correctly specified. I then provide a sensitivity analysis of

my algorithm when the number of states is unknown a-priori.

6.2.1 A-priori Known Number of States

In this part, I presume that the correct number of states is known a-priori,

hence the simulation conditions are assumed to be correctly specified. I start

with a physical probability transition matrix P with 13 states. To generate

the matrix I apply the following procedure to generate a physical probability

matrix with approximately exponential decay:

1. Start with an identity matrix P̊0 = I13.

2. For each successive diagonal k ∈ {1, . . . , 12} such that P̊k +

diagκ[exp(−bκ113−κ) + a] + diag−κ[exp(−bκ113−κ) + a], where 1κ is a

unit vector of length κ.

3. I then set: P̄0 = P̊0, and P̄r1 = [p̂′rj1]1 and P̄c1 = [p̂ci1]1 are the j row

and i column respectively.

4. I then normalise the rows and columns [p̂′rj1]1 and [p̂ci1]1 and compute

sequentially p̂′rj2 = p̂′rj1(p̂′rj11)−1 and p̂cj2 = p̂cj1(p̂′cj11)−1.

5. I then repeatedly compute (3) until 1 − p̂′rjκ(p̂
′
rjκ1)−1 = 0 and 1 −

p̂′cjκ(p̂
′
cjκ1)−1 ≤ ε, where ε is the smallest floating point integer.

The above algorithm converges to an approximate doubly stochastic matrix

in less than 50 to 100 iterations depending on the parameters a and b. For

our purposes I set both to unity.
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I then specify a vector of 13 states with returns Ri = log(ST/St) ranging

from -1/2 to 1/2. I set D̄ = diag[d̄], with elements d̄ = [d̄i]. Given an

iso-elastic utility function with c(t) = 1 and ci(T ) = exp(Ri) for state i,

with constant relative risk aversion coefficient γ = 1.25, hence if u(c) =

(c1−γ − 1)/(1 − γ) for γ 6= 1 and u(c) = log(c) for γ = 1, then the kernel

simplifies to di = exp(−γRi), I denote the constant relative risk aversion

(CRRA) kernel to be CRRA(γ) = (U ′(c(T )))/(U ′(c(t))). Setting δ̄ = 0.994, I

generate Q̄ by Q̄ = δ̄D̄−1P̄D̄ and hence the simulated state price matrix by

tenor S̄ according to:

s̄n+1 = Q̄s̄n.

To generate the option prices, I interpolate a series of strikes K̄m = exp(Rm)

and risk-neutral state price S̄m from the 13 states using a cubic spline. I set

m ∈ {1, . . . , 1001} then numerically evaluate the double surface integral using

trapezoidal integration, where G (K) is −K hence:

C̄(K) =

∮ ∮
s̄mdK̄mdK̄m

G (Km)×G (Km)

, (6.17)

which is the direct inverse of the Breeden and Litzenberger [1978] procedure.

The computed normalised call prices are hence computed directly from the

simulated state price.4 I then draw the following call prices for the simulation:

Cβ(K) = C̄(K)eξβ , ξβ ∼ N(0, σ̂2), (6.18)

for β ∈ {1, . . . , 499} and compute estimates of Q̂β and subsequently P̂β,

D̂β and δ̂β using our algorithm. For speed I bypass the implied volatility

fitting step (I have one observation of C̄(Km) per K̄m) and fit the log-

4To draw the distinction that I am cumulatively integrating from ‘right to left’, as
opposed to standard convention of a line integral from left to right. The correct notation is
to denote the double integral as a surface integral over the function G (K) = −K reversing
the real lime, to denote the direction from the lower bound (upper limit on K). In general
the ‘lower limit’ should be when Km = ∞, but in practice I follow the same truncation
rule I use to extrapolate the upper tails, by truncation for tail probabilities at or below the
IEEE lowest available floating point number different from zero. In practical terms this is
a double cumulative trapezoidal integration with the strike price, call price pairs ‘flipped’
left to right.
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normal mixture directly to the call prices, to compute the risk-neutral density,

which is ∂2Ĉβ(K̄m)/∂K̄2
m. I set the simulation to that σ = 1/10, which is

approximately the error I find in the subsequent fitting of the curves to real

data after the implied volatility step.

Recall, that in my algorithm for actual market data, I compute the implied

volatility and fit a polynomial curve to the implied volatility surface, I then

compute smooth option prices from the volatilities that lie on this curve and

then impose the log-normal mixture. The intermediate step using the implied

volatilities is useful when fitting the curve against multiple options by strike.

I approximate an instructive value of σ by comparing the standard deviation

of the fitted options from the implied volatility step versus the corresponding

market quotes. Furthermore, I presume in the simulation to have a complete

range of strike prices for each tenor, a feature absent from actual data, hence

the simulation serves to illustrate the consistency of the algorithm as opposed

to the impact of potential mis-specification in the real-world implementation,

I leave this for future work.

Figure 6.2 provides a summary of the simulation results. The grey area

in each of the plots presents the 95% error bound from sorting the draws

for diag[d̂β] and for a selection of columns from the risk-neutral state price

by tenor matrix and corresponding physical price by tenor matrix computed

from Q̂β and P̂β respectively. The dotted line reports the generating kernel

and density functions.

It is striking to notice that the error bounds for the probability matrices

by tenor is markedly less than the kernel, whilst the degree of accuracy in

recovering δ̄ is very high. Proportionally the Perron root is far more tightly

identified than the correct Perron vector for a given level of noise. As to be

expected the level of accuracy drops with increasing tenor.
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Figure 6.2: Simulation Test of the RT Algorithm

Pricing Kernel Simulation, γ =1.25, δ =0.994, range of δ̂ ∈ [0.993, 0.999]
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Notes. Fig.6.2 compares the risk-neutral density with the recovered physical density

(lower six sub-figures) and plots the the option implied pricing kernel generated by our

RT algorithm for a simulated kernel and options prices.The simulation is set up with a

CRRA(γ = 1.25) kernel, a unimodal physical transition matrix P, which is right stochastic

and a true discount factor of δ = 0.994. I generate a 13 state, risk-neutral state price by

tenor matrix S. I interpolate this matrix over a range of log(K/S) from -1/2 to +1/2, with

14 quarterly tenors. I use a multiplicative variance such that E[log(Ĉ)−log(C)] = σ ≈ 10%,

which corresponds to the observed variation we find in our empirical example versus the

call options. I then draw 499 replications and recover the kernel diag[d̂], discount factor

δ̂ and physical probabilities by tenor matrix with columns [Q̂ie(n+1)/2] where eκ is a null

vector except for element κ which is set to be unity. The grey area represents the 95%

error bound from the simulation.
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6.2.2 A-priori Unknown Number of States

The simulation illustrated above is under the assumption that the number of

states is known a-priori; that is, we recover the physical densities with the

number of states implied by the state price and this is known with certainty.

However, in reality, the number of states is not known a-priori and we simply

observe a span of options prices measured at arbitrary intervals (fixed by the

strikes available in the market).

I now examine the sensitivity of my algorithm to the under or over

specification of the number of states. I assume the true number of states

that generate the state price by tenor matrix is 13 and we run the recovery

theorem algorithm with 9, 11, 15, and 17 states separately. I then compare

the 95% error bounds of each of the recovered discount factor, pricing kernel,

risk-neutral densities, and the recovered physical densities with those of the

exact identified number of states case.

Figure 6.3 compares the recovered results between under and over

specification of number of states. The upper panel plots the 95% error

bounds for the recovered pricing kernel with 11, 13, and 15 states against the

theoretical pricing kernel with a CRRA coefficient γ = 1.25. The error bound

for 11 states is much wider than that of 15 states and the exact identified 13

states. Moreover, the deviation between the pricing kernel error bounds of

the over and under identified cases and those of the exact identified case are

bigger for the negative states while for the positive states, the differences

are vanishing. The asymmetric pattern of the deviation for the pricing

kernel is consistent with the risk aversion assumption for the investors’ utility

functions. The middle and bottom panels in Figure 6.3 reports the error

bounds of the risk-neutral and recovered physical densities with three tenors

from the simulation with 11, 13, and 15 states respectively.

Unlike the pricing kernel, the sensitivity of the error bounds of the risk-

neutral densities and the recovered physical densities with under and over

identified number of states is striking. In specific, under-identifying the

number of states will lead to under-estimation of the densities in the peak but

over-estimation of the densities at the tails while over specification yields the
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Figure 6.3: Under and Over Estimation of the Number of States

(a) The Pricing Kernel

(b) The Risk-neutral and Physical Densities

Notes. Fig.6.3 reports the simulation results for under or over specification of the number

of states. The upper panel compares the error bounds of the recovered discount factor and

pricing kernel with different number of states against the true theoretical discount factor

(0.993) and pricing kernel with CRRA(γ = 1.25) respectively. The exact specification of

number of states is set to be 13 states and two separate simulation with option prices

generating with 11 states and 13 states are then computed. The 6 plots in the lower panel

report the error bounds of the risk-neutral densities and the recovered physical densities

with different tenors for under and over specification of the number of states respectively.

The black dash line represents the true value and the the grey area represents the 95%

error bound from the simulation.
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Table 6.1: Error Bounds Analysis Tenor: 71 Days

Table 6.1 reports the error bounds analysis for under and over specification of number
of states for the tenor with 71 days. Following the simulation, we set the true discount
factor be 0.993 and the theoretical pricing kernel is generated with the CRRA risk aversion
coefficient γ = 1.25. The exact number of states is assumed to be 13 and we generate the
mis-specified simulations fro number of states ranging from 9 to 17. The first panel of the
table reports the range of the recovered discount factors and the size of the error bounds for
the recovered pricing kernel, the risk-neutral densities and the recovered physical densities
based on a 95% error bound simulation with 499 replications. The size of the error for each
case is calculated by the difference between the area below the upper bound and the lower
bound and the areas are calculated using trapezoidal integration. The lower panel presents
the relative error for each number of states with respective to the error size of the exact
specification case, which is 13 states in the middle.

Size of Error Bounds

States δ̂L δ̂U Pricing Kernel Risk Neutral Den. Physical Den.
9 0.957 0.976 1.103 0.209 0.297
11 0.981 0.995 0.901 0.148 0.249
13 0.985 0.999 0.748 0.065 0.268
15 0.989 1.000 0.815 0.149 0.380
17 0.990 1.000 0.894 0.236 0.425

Relative Error

States δ̂L δ̂U Pricing Kernel Risk Neutral Den. Physical Den.
9 0.972 0.977 1.474 3.214 1.105
11 0.996 0.996 1.204 2.277 0.926
13 1.000 1.000 1.000 1.000 1.000
15 1.004 1.001 1.089 2.286 1.414
17 1.005 1.000 1.195 3.623 1.583

opposite. It is interesting to notice that for the 71 days tenor, the error bounds

of the risk-neutral densities for the three number of states only partially

overlap at the tails but deviate a lot in the middle of the distribution, which

indicates the level of sensitivity of the risk-neutral densities to the under or

over specification of states number.

Table 6.1 and 6.2 report a more comprehensive comparison of the error

bounds generating by simulations with different states number ranging from

9 states to 17 states for 71 days tenor. The upper panel in Table 6.1 lists the

size of the error bounds while the lower panel reports the relative error of the

error bounds for 9, 11, 15, and 17 states with respect to those for 13 states.

Consistent with the patterns in Figure 6.3, the error bounds for the recovered

discount factor, the pricing kernel, and the densities are increasing with under

or over identified number of states compared to the exact specification number

of states. The error bounds for the recovered physical densities are wider as
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Table 6.2: Error Bounds Percentile Analysis Tenor: 71 Days

Table 6.2 reports the error bounds percentile analysis for under and over specification of
number of states for the tenor with 71 days. Following the simulation, we set the true
discount factor be 0.993 and the theoretical pricing kernel is generated with the CRRA
risk aversion coefficient γ = 1.25. The exact number of states is assumed to be 13 and
we generate the mis-identified simulations fro number of states ranging from 9 to 17. The
three panels reports the relative error of the 0.25%, 25%, 50%, 75%, and 97.5% points
of the absolute distance between the upper and lower error bounds and the true values
with respective to that of exact identified number of states for pricing kernel, risk-neutral
densities, and recovered physical densities respectively. The 0.25% and 97.5% relative error
describe the sensitivity of mis-specification of the number of states on the left and right
tails of the distribution while the 50% ones summarise the error sensitivity for the peak of
the distribution.

Pricing Kernel
States 0.25% 25.00% 50.00% 75.00% 97.50%
9 2.538 1.384 1.089 0.840 0.727
11 1.767 1.067 1.208 0.962 0.936
13 1.000 1.000 1.000 1.000 1.000
15 1.160 1.071 0.484 1.015 1.003
17 1.429 1.202 0.548 0.983 1.081

Risk Neutral Density
States 0.25% 25.00% 50.00% 75.00% 97.50%
9 1.168 3.914 13.087 7.647 1.459
11 1.926 2.198 9.319 6.464 1.939
13 1.000 1.000 1.000 1.000 1.000
15 1.967 2.748 8.838 3.567 2.195
17 2.511 3.220 18.615 5.196 4.557

Recovered Physical Density
States 0.25% 25.00% 50.00% 75.00% 97.50%
9 1.073 2.222 1.597 2.024 2.059
11 1.537 1.559 0.796 1.369 1.927
13 1.000 1.000 1.000 1.000 1.000
15 1.682 1.510 1.309 1.166 2.172
17 3.018 1.845 2.028 1.305 4.590

both the error in the estimation of the risk-neutral densities and the pricing

kernel have featured in the recovered physical densities.

In order to examine the patterns of the error bounds in further detail,

I report the percentile analysis for the error bounds of pricing kernel, risk-

neutral densities, and the recovered physical densities for the same tenor in

Table 6.2. In specific, we calculate the relative error of each error bounds

of the mis-identified case on 0.25%, 25 %, 50%, 75%, and 97.5% percentiles

with respect to those of the exact-identified one. The recovered pricing kernel

shows more sensitivities before the 50% percentile points across all cases and

the differences tend to decrease for the positive states.

For the risk-neutral densities, the errors peak in the middle of the
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distribution at the 50% percentile points and the right tails show more

sensitivities across all cases compared to the left tails, which suggests that

the mis-specification of number of states affects the probabilities for positive

states more than that for negative states. As the recovered physical densities

are a mixture of the risk-neutral densities and the pricing kernel, the difference

between the deviations of the tails are not as significant as those of the middle

points.

6.3 Empirical Example and Application

In this section, I first provide an example for applying the Empirical Recovery

in practice with both market index and single-name stocks, mainly the S&P

500 Index and Apple Inc. I then demonstrate the empirical application of

the recovered physical probability distribution by building a market left tail

index from the options written on S&P 500 Index.

6.3.1 S&P 500 Index and Apple Inc.

To demonstrate my approach I utilise publicly available market price data,

this is in contrast to Ross [2015] who has access to a proprietary OTC

data source. My option data is from the OPRA feed and catalogued by

Thomson Reuters and SIRCA. OPRA claims that 75% of option trading is

recorded within this National Market reporting system.5 Both transactions

and quotations are time-stamped to the nearest tick time and tick data are

converted into one-minute series using the previous-tick method.6 Compared

to the commonly used end-of-day data, the intraday dataset yields several

advantages. First, I will have a range of spot prices and observations for each

traded strike. Second, over a given day the range of traded strikes is likely to

5The SEC put forward the NMS in November 2009 and set up the OPRA. Under the
National Market System plan, the trades and quotes data of all option contracts trading
on the participating exchanges are gathered and consolidated or disseminated to approved
vendors. The OPRA is claimed by the compilers to be the most comprehensive exchange-
based option dataset in the United States option market.

6Under the previous-tick method, the equally-spaced series of one-minute prices are
generated by the observations at the end of each one-minute interval.
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be more heavily populated than skimming the trades and quotes at the end

of day. Third, I use the mid-price of the best bid and ask quotes and again

this will likely yield a far greater variation in the quoted prices.

I collect one-minute intraday quotations information related to options on

S&P 500 index (SPX) and Apple Inc. (NASDAQ: AAPL.O) respectively. For

the risk free rate I utilise minute updated time matched intraday quotes for

U.S. deposit rates for maturities up to three years. The yield curves are time

matched to each quoted option in the dataset. I then match the minute put

and call option datasets together by quote-time, strike and maturity date.

The following filters are applied on the raw data. Firstly, drop the

observations with zero bids price or zero asks price. Then, I also exclude

the observations with zero number of bids or zero number of asks and zero

trading volumes. At last, I calculate the intrinsic value for each option and

kick out the observations that violate the non-arbitrage condition. For each

observation over a day, the spot price and risk free rate is matched by time

stamp. The spot price for SPX is back by the intraday changes of the S&P

500 index level and that for AAPL is matched by the intraday one-minute

quotations of AAPL.O.

For each matched put and call quote I generate a time matched implied

dividend yield and then recover the implied volatility for both put and call

options from their respective prices. For the SPX options the dividend yield

is very stable at a little over 2.20% and this value is used in that case that

either a put or a call is absent. I note that the AAPL.O options are of

the American type and I have experimented with deducting the put early

exercise premium to recover the equivalent European price, however, the

results indicate that the value of this premium is very small. I obviously

recommend that further applications to single-name American options check

the early exercise premium as this may not be uniform across all stocks7.

For application I choose April 27, 2011, the same day utilised in Ross

[2015]’s empirical examples. I also test the algorithm on three unique dates

that correspond with the United States Quantitative Easing (hereafter QE)

7See for example Dupont [2001] for a detailed discussion on the effects of early exercise
premium on extracting risk-neutral probability distributions from American option prices.
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Table 6.3: Sample Description

Assume there are m observed time points during a day. S0 is the median spot price
during the day, computing by S0 = median(Sm). K is the available strike prices extract
directly from the cleaned option price panel. τ stands for the time to maturity in days,
which is τ = T − t. R is the log-return calculated on an intraday frequency, such that
Rm = log(Km/Sm) for the m point during a day.

SPX AAPL
Sample 20100331 20110427 20110630 20141029 20100331 20110427 20110630 20141029

Calls
S0 1171.67 1348.88 1318.95 1981.56 235.69 349.76 335.22 107.01
No. of Obs 91,799 73,629 16,928 104,462 26,817 67,337 63,967 54,280
No. of K 87 84 72 112 55 79 74 98
Min. K 400 550 800 1075 15 100 100 43
Max. K 1425 1700 1800 2525 350 540 490 130
No. of τ 13 10 10 11 6 8 9 12
Min. τ 17 24 16 24 17 2 1 9
Max. τ 997 969 905 779 661 633 569 814
Min. R -108% -90% -50% -61% -276% -126% -121% -92%
Max. R 20% 23% 31% 25% 40% 44% 39% 20%
Puts
No. of Obs 85,424 69,491 14,403 126,256 17,018 49,629 51,751 56,913
No. of K 95 89 82 129 25 58 54 63
Min. K 500 550 800 1075 155 215 215 88
Max. K 1700 1800 2000 2600 350 540 520 155
No. of τ 14 10 10 11 6 8 9 12
Min. τ 1 24 16 24 17 2 1 9
Max. τ 997 969 905 779 661 633 569 814
Min. R -85% -90% -50% -61% -42% -49% -45% -20%
Max. R 38% 29% 42% 28% 40% 44% 45% 38%

timelines, which are March 31, 2010 (QE1 Ends), June 30, 2011 (QE2 Ends),

and October 29, 2014 (QE3 Ends).

Table 6.3 reports the number of observations, the available strikes range,

and the available maturities range for the samples. At a glance, we have a

fine grid of both SPX and AAPL across the sample dates. For example, for

SPX on April 27, 2011 we have up to 89 different available strikes ranging

from 550 to 1800, with a corresponding states from -90% to 29%. In terms of

the tenors, we have at least 10 tenors ranging from 24 days to 969 days (2.65

years)8.

I employ the algorithm on each of the eight samples. For brevity I only

present a full set of steps for SPX and AAPL on April 27, 2011. I then report

the recovered kernel and discount factor for the remaining days. Figures 6.4

8Ross [2015] reports results with tenors up to 3 years, as that dataset included some
Long Term Equity Anticipation Products (LEAPs), which have a longer maturities than
most commonly traded options. In general the OPRA dataset runs to around 2.5 years.
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and 6.5 plot the option prices determined from the smoothed polynomial fit

(alongside the traded prices) for SPX and AAPL respectively. Figures 6.6 and

6.7 present the Black-Scholes implied volatility with its fitted polynomial for

the SPX and AAPL individually. I also include the end-of-day transaction

data on the plots. The advantage of the intraday data is apparent in the

fitting of the polynomial curve to distribution of implied volatilities traded

throughout the day. The polynomial function of the implied volatility data

yields exceptionally closely fitting put and call prices over the range of log

moneyness log(K/S). Following convention, I use the put volatility curve to

generate the call prices used in the subsequent analysis.
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Figure 6.4: Price Fitted for SPX on April 27, 2011
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Notes. The left panel gives the Black-Scholes prices fitted for calls (C) while the right one

is for puts (P ) with a 4th order polynomial function for short, medium and long maturity

options. The dark grey ‘�’ draws the one-minute intraday market data, the black ‘∗’ is the

end-of-day data and the hard line plots the polynomial fitted function.
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Figure 6.5: Price Fitted for AAPL on on April 27, 2011
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Notes. The left panel gives the Black-Scholes prices fitted for calls (C) while the right one

is for puts (P ) with a 4th order polynomial function for short, medium and long maturity

options. The dark grey ‘�’ draws the one-minute intraday market data, the black ‘∗’ is the

end-of-day data and the hard line plots the polynomial fitted function.
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Figure 6.6: Implied Volatility Fitted for SPX on April 27, 2011
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Notes. The left panel gives the Black-Scholes implied volatility fitted from call prices

(σ(C,K)) while the right one is from put prices (σ(P,K)) with a 4th order polynomial

function for short, medium and long maturity options. The dark grey ‘�’ draws the one-

minute intraday market data, the black ‘∗’ points the end-of-day data and the hard line

plots the polynomial fitted function.
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Figure 6.7: Implied Volatility for AAPL on on April 27, 2011
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Notes. The left panel gives the Black-Scholes implied volatility fitted from call prices

(σ(C,K)) while the right one is from put prices (σ(P,K)) with a 4th order polynomial

function for short, medium and long maturity options. The dark grey ‘�’ draws the one-

minute intraday market data, the black ‘∗’ points the end-of-day data and the hard line

plots the polynomial fitted function.
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The right panels in Figures 6.8 and 6.9 plot the fitting of the risk-neutral

density functions from the analysis for SPX and AAPL separately. It is

worth noting that the extra information provided by the intraday data does

yield a risk-neutral distribution that is exceptionally close to log-normal

for each tenor (this does not mean that the driving process exhibits time-

inhomogeneous volatility, simply that the individual tenor is close to log-

normal). Notice, in Figure 6.9 the bottom right plot, that the shape of the

337 day risk-neutral density is quite distinct from the typical shape of a single

log-normal distribution. This provides a good example of the benefit to having

multiple weighted log normal distributions to capture the somewhat irregular

shape indicated by the call prices derived from the polynomial fit using the

put implied volatilities.

At this point I can execute the algorithm for imputing the risk-neutral

state price transition matrix. It is worth commenting on the choices the

econometrician has at this juncture, the most basic being the number of states.

I provide full functional forms for derivatives for the objective function (simple

least squares) and the constraints in addition to a scaleable matrix functional

form for the Hessian of the Lagrangian hence the optimisation is (a) computed

on functions that are at least continuous to order C2 and should attain the

optimal matrix very quickly despite a potentially large number of variables

that maybe required for the estimation.

However, this does not mean that the number of states can be set to any

arbitrarily high number as the finer grid will only sit over the same information

set, this is particular true for the number of tenors. Empirical observation

suggests that once the number of states exceeds three times the number of

observed tenors changing the choice of interpolation methodology to construct

the uniform state price by tenor grid begins to have a significant impact on

the recovered physical density function, size of the discount factor and shape

of the pricing kernel.

The left panels in Figure 6.8 and 6.9 illustrates the recovered physical

distribution compared to the nearest actual tenor risk-neutral distribution

(dashed lines). We can see that for short maturities, as expected, the

recovered physical distribution exhibits considerably fatter tails than the
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Figure 6.8: Risk Neutral Density Fitted and Recovered Physical Density for
SPX on April 27, 2011
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Notes. The right panel plots the state price densities against the parametric mixture

lognormal fitted density function. The state price density is calculated by Equation 6.3.

The mixture lognormal fitted density is fitted with Equation 6.4. The left panel compares

the risk-neutral density with the recovered physical density. Note, the scales on the left

sides plots are in the form of recovered density functions, hence, the integral over the range

±∞ under the curve, with respect to the horizontal scale is unity. In contrast the right

column is in the form of recovered state price, hence their sum will be exp(−riτi), where

ri is the nearest quoted deposit rate for that maturity.
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Figure 6.9: Risk Neutral Density Fitted and Recovered Physical Density for
AAPL on April 27, 2011
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Notes. The right panel plots the state price densities against the parametric mixture

lognormal fitted density function. The state price density is calculated by Equation 6.3.

The mixture lognormal fitted density is fitted with Equation 6.4. The left panel compares

the risk-neutral density with the recovered physical density. Note, the scales on the left

sides plots are in the form of recovered density functions, hence, the integral over the range

±∞ under the curve, with respect to the horizontal scale is unity. In contrast the right

column is in the form of recovered state price, hence their sum will be exp(−riτi), where

ri is the nearest quoted deposit rate for that maturity.
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nearest equivalent maturity risk-neutral distribution. For AAPL the recovered

physical distribution more-or-less converges on the risk-neutral distribution

for longer maturities. However, for the SPX the tails are consistently wider

out to 150 days.

Figures 6.10 and 6.11 present the estimated kernels for different choices in

the number of states for the SPX and AAPL respectively. The first obvious

point to note is that for both the SPX and AAPL the shape of the kernel is

(a) U-shaped and (b) somewhat asymmetric. For comparison purposes I plot

the pricing Kernels derived from a constant relative risk aversion, CRRA(γ),

iso-elastic power utility function with relative risk aversion parameter γ set to

{0.25, 0.5, 1.25} to provide an illustration of the range. Notice that for both

the SPX and AAPL on this particular day (and I find consistent evidence

across the days tested) that the shape of the kernel converges as the number

of states increases. I use 11 states as a baseline to be consistent with the

evaluation of Ross [2015]; however, I find that whilst the first six states yield

effectively the same range of values (more-or-less tracking the CRRA(0.25)

curve), there is a slight hump. In contrast, Ross [2015] recovers a strictly

decreasing kernel.

Indeed, as we shift to higher numbers of states, which is possible under

my algorithm, the shape of the kernel matches the shape found in several

previous papers, see for instance Song and Xiu [2016] for a good example,

where the kernel is recovered by combining realized volatility of spot data

with options prices on volatility indices. Further evidence on the U-shape of

the kernel (and hence the ‘pricing kernel puzzle’) is documented in Brown and

Jackwerth [2004], Hens and Reichlin [2013], and Cuesdeanu [2017] amongst

others. It is useful to note that the shape of the kernel and the discount rate

does not change at the number of states rises. This appears to be the case

for both the SPX and AAPL for my case study days.

Table 6.4 summarise the option implied pricing kernel and the annualised

discount factor for all of the eight samples in the case study. Noted with

the RT, we could separate the discount factor and the pricing kernel. The

discount factor represents time preference while the recovered pricing kernel

describes the risk-aversion preference. The positive annualised discount factor
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Figure 6.10: Option Implied Pricing Kernel for SPX on April 27, 2011
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Notes. The plot compares our option-implied pricing kernel D with the empirical constant

relative risk aversion (CRRA) pricing kernel. The option-implied kernel across different

states is given by Equation (5.9) and normalised by the states with 0% change. The utility

function of CRRA investors is presumed to be an isoelastic power utility function of the

form u(c) = (c1−γ − 1)/(1 − γ) for γ 6= 1 and log(c) for γ = 1. The kernel is defined

by CRRA(γ) = (U ′(c(T )))/(U ′(c(t))). Setting c(t) = 1 to be one present period dollar

and c(T ) = K/S to be the terminal payoff per dollar (time T wealth) of a single dollar

at time T for given state determined by K. Hence, defining R = log(K/S) the Kernel is

CRRA(γ) = exp(−γR). For visualisation and comparison purposes the intermediate points

for the 11 and 15 state kernels has been interpolated using a piece-wise cubic spline to the

21 state frequency.
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Figure 6.11: Option Implied Pricing Kernel for AAPL on April 27, 2011
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Notes. The plot compares our option-implied pricing kernel D with the empirical constant

relative risk aversion (CRRA) pricing kernel. The option-implied kernel across different

states is given by Equation (5.9) and normalised by the states with 0% change. The utility

function of CRRA investors is presumed to be an isoelastic power utility function of the

form u(c) = (c1−γ − 1)/(1 − γ) for γ 6= 1 and log(c) for γ = 1. The kernel is defined

by CRRA(γ) = (U ′(c(T )))/(U ′(c(t))). Setting c(t) = 1 to be one present period dollar

and c(T ) = K/S to be the terminal payoff per dollar (time T wealth) of a single dollar

at time T for given state determined by K. Hence, defining R = log(K/S) the Kernel is

CRRA(γ) = exp(−γR). For visualisation and comparison purposes the intermediate points

for the 11 and 15 state kernels has been interpolated using a piece-wise cubic spline to the

21 state frequency.
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indicates a δ that is less than unity, which is consistent with the non-arbitrage

conditions. In the snapshot exercise of Ross [2015], a 1.018 δ is recovered,

which gives an equivalent annualised rate to be -1.74%.

Table 6.4: Option Implied Pricing Kernel for SPX and AAPL

The option-implied pricing kernels reported are calculated on a uniformed 11-states space

with R = {−0.5 ≤ Rm ≤ 0.5}. The r is the percentage annulized discount factor that

given by r = − log(δ)/∆τ , where δ is the Perron root of the transition matrix Q as given

by Equation (6.9) and ∆τ is the uniformed time-space between two states. The option-

implied pricing kernel is calculated according to Equation (5.9) and normalised by the

states with 0% changes.

r% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50%

SPX

20100331 0.43 1.29 1.16 1.09 1.03 1.00 1.00 0.90 0.91 0.99 1.07 1.20

20110427 3.18 1.55 1.37 1.27 1.20 1.12 1.00 0.84 0.75 0.87 1.20 1.70

20110630 0.94 5.13 4.19 3.06 2.12 1.33 1.00 0.74 0.49 0.49 0.66 0.93

20141029 28.23 6.76 5.20 3.70 2.58 1.58 1.00 0.84 0.80 1.19 2.29 4.64

AAPL

20100331 0.88 1.15 1.04 0.98 0.97 0.98 1.00 1.03 1.03 1.02 1.03 1.10

20110427 0.07 1.24 1.11 1.04 1.02 1.01 1.00 0.99 0.97 0.95 0.94 0.97

20110630 1.20 1.32 1.15 1.06 1.03 1.02 1.00 0.97 0.96 0.93 0.92 0.96

20141029 7.55 1.42 1.18 1.06 1.01 0.99 1.00 1.00 1.07 1.14 1.27 1.52

6.3.2 The Market Left Tail Index

In this section, I demonstrate one of the empirical application of the recovered

‘physical’ probability densities in terms of risk management. Specifically, I

illustrate the fact that the risk neutral densities, form a lower bound on the

likelihood of a left tail outcome and we can compute a range of probabilities

from the risk neutral to the recovery theorem physical probabilities and

illustrates the robustness of the technique to misspecification in the Borovička

et al. [2016] sense.

Figure 6.8 and 6.9 illustrate a common finding that the risk neutral density

for a given time step n, denoted by the vector qn = exp(rn)Q̂ne(M+1)/1 has

larger tail probabilities than the physical density pn = P̂ne(M+1)/1. This

assumes that the martingale component H is unity for elements hij,∀i, j ∈
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{1, . . . ,m}. Without detailed knowledge of the martingale measure on the

stochastic component of the discount factor it is a matter of faith in the

assumption that P̂ne(M+1)/1 is the true probability mass function. However,

from Theorem 5.1 and from our simulation evidence we can be very confident

that qn is a noisy, but unbiased, estimate the risk neutral measure, even if

hij 6= 1,∀i, j ∈ {1, . . . ,m}, as the option market already filters this problem

for a give time step (indeed, this is the heart of the recovery debate).

It is also reasonable to presume, as Hansen and Scheinkman [2009] and

Borovička et al. [2016] that given the most plausible set of representative

preferences the stochastic trend in the martingale component, if it exists, will

exhibit a positive drift, hence decreasing the downside component of the tail.9

We can therefore make the following conjecture: let r̃ = [Ri],∀i, j ∈
{1, . . . ,m} be the column vector of returns associated with the i state, hence

r̃′Pne(M+1)/1 = rPn and r̃′ exp(rn)Qne(M+1)/1 = rQn = rn are the physical and

risk neutral expected returns. If we presume when P = H ◦ P̃ that rPn > rQn

then a series of simple observations on lower bounds can be inferred. First,

let qn,` =
∑t`

i=1 qn,i and pn,` =
∑t`

i=1 pn,i be the risk neutral and physical

cumulative probabilities from the left (downside) tail, for a given downside

return r.

By inspection we can see that if the pricing kernel is the result of a

concave (risk averse) utility function the left tail risk neutral probabilities

qn,` =
∑t`

i=1 qn,i, for t` that describes the tail of the density function, Ri ≤ r

that is given a t`, such that probability masses from t` to t` describe a ‘point

probability’ defined by qn,0 and pn,0, the tail probabilities will be ordered such

that qn,` > pn,`, that is an outcome with return lower than R` in period n

the physical tail probability will be strongly bounded by the risk neutral tail

probability, even if we cannot define the physical probability as the martingale

component is stochastically trended.

This is a very useful result as one of the major uses of this type of analysis

is to provide downside risk measures over a variety of forward time horizons,

potentially beyond those available from the option market. Figure 6.12 plots

9Indeed, this is the main example given in the quantitative illustrations in Section 5 of
Borovička et al. [2016].
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the left tail index formed by the recovered physical probability distributions of

S&P 500 index from January 1, 1996 through January 31, 2015. In particular,

I set the uniform state grid to be 5 states ranging from −50% to +50% (with

0% sitting in the middle) and the tenor grid to be 6 tenors ranging from 90

days to 540 days with quarterly interval. The left tail index (black hard line)

is then formed by the recovered cumulative probabilities for the −50% and

−25% states while the dash and dot lines are the recovered probabilities for

the −50% and −25% separately.

The grey areas highlight the financial crisis and economic recessions

periods. It can be seen that the left tail index tracks the market volatiles very

well. Thus, the recovered probability densities provide valuable information

for risk management, especially the market downside risks and the left tail

index can be seen as an ‘physical fear index’ alongside the ‘fear index’, VIX,

which is a widely used market volatility gauge under risk-neutral measure.

6.4 Concluding Remarks

Eigenfunction operations on the risk-neutral state price transition matrices

have proven a useful tool for the better understanding of asset price dynamics

and aggregate behaviour of agents within asset markets. I have specified

a perturbation theory for the discount factor pricing kernel and physical

probabilities. Using this result I have carefully constructed a sequential

quadratic programming algorithm with appropriate restrictions that allows

full identification of the discount factor, pricing kernel and physical density

function from the sub-stochastic risk-neutral state price transition matrix.

Using the continuous derivatives our estimation procedure is very fast as

I have determined all of the mathematical preliminaries needed converge to a

unique solution. In addition to the contribution to the recovery theorem

directly this is the first paper to utilise intra-day data to estimate the

risk-neutral density function and demonstrate the advantages of the extra

available information relative to end-of-day approaches. Through simulation

I demonstrate that my procedure is consistent in recovering the correct shape

of the representative agents pricing kernel and discount rate alongside the

144



Figure 6.12: Recovered Market Left Tail Index
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Note. Figure 6.12 plots the left tail index formed by the recovered physical probability
distributions of S&P 500 index. The dot line represents the probability that the markets
drop 50% while the dash line demonstrates the probability for market going down 25%.
The hard line is the cumulative probability that the markets drop down. The grey shaded
areas represent the financial crisis and economic crisis as defined according to the NBER
over the sample period running from January 1, 1996 through January 31, 2015.

primary objective the recovered physical probabilities.

I outline the procedure on actual intraday data for the S&P 500 index

over a series of days and by appealing to the results in Carr and Yu [2012] fit

the model to Apple Inc. for the equivalent days. I find supporting evidence

to the multitude of studies that use historical data or parallel derivatives

markets such as VIX options, see for example Song and Xiu [2016], to compute

the physical density function that the pricing kernel is in fact either heavily

kinked or indeed markedly U-shaped. Finally, I provide a brief example

for the application of the recovered ’physical’ probability densities in risk

management. A market left tail index is built using the recovered ’physical’

probability densities for S&P 500 Index.
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Chapter 7

Higher Dimensional

Option-implied Average

Correlations: Constructing the

Cross Sectional Correlation

Measures

7.1 Introduction

This chapter proposes a set of new pricing factors extracted from high

frequency options panels that capture quadratic and higher order moments

and co-moments. The Chicago Board Options Exchange (CBOE) currently

provides an average implied correlation index computed using the Black-

Scholes implied volatility straddle for individual constituents versus index

options. However, there is mixed evidence on the usefulness of this index as

a time series factor in a standard asset pricing framework.

My results show several key points, first that higher order average co-

dependency does not have a unit correlation across measures. Secondly, the

degree of decay in the value of the factor decreases inline with the degree

expected from a simple representative agent model where current period
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consumption is traded off against future consumption with non-zero higher

odd moments and potentially excess kurtosis and diversification is costly.

It should be emphasised that empirically comparing the advantage of the

newly constructed option-implied average correlations over the ones from the

existing studies is out of the scope of this thesis and left for future works.

Traditionally, options prices have been used to measure derivative market

traders aggregate opinion on forward variation. Many prior studies have

carefully documented empirical evidence illustrating that the higher moments

extracted from the individual equity options play important role in explaining

and forecasting cross-sectional stock returns, see Chang et al. [2013], Conrad

et al. [2013], and Bali et al. [2015] for the most recent examples. In addition

to the risk-neutral moments and co-moments, Skintzi and Refenes [2005]

proposes a method to extract the option-implied correlations from the option

prices of the individual stocks and the market index. Driessen et al. [2009]

provide a stochastic correlation model to estimate the price of the correlation

risk premium. The following work by Krishnan et al. [2009] and Driessen

et al. [2013] document significant evidence that the option-implied average

correlations have remarkable explanatory power for the variance premium.

Built on the previous studies of the option-implied moments and co-

moments, the main focus of this chapter is to construct the cross-sectional

correlation measures utilising high frequency option data panels. Specifically,

I uniquely introduce a series of analogous correlation measures, namely

the average cubic and quartic correlations, which are estimated based on

the third and fourth central moments. Together with the conventional

quadratic average correlation, the higher dimensional average correlations

provide a multi-dimensional description of the correlation structure of the

market portfolio, which can also be interpreted as a measure of the market

diversification level.

My work contributes to various strands of literature in correlation

structure and option-implied average correlations. Evidence from portfolio

management and asset allocation has shown that correlation actually varies

through time and a growing body of research has been motivated to investigate

the role of correlations based on a historical information set, see for example
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Von Furstenberg et al. [1989] and Longin and Solnik [1995]. Longstaff et al.

[2001] and De Jong et al. [2004] provide evidence that interest rate correlations

implied by cap and swaption prices differ from realised correlations.

Option-implied correlations have been computed extensively in the FX

market, using currency triangles to back out the implied correlation function

from the implied volatility surface. Bodurtha and Shen [1995], Campa et al.

[1998], and Walter and Lopez [2000], and Mueller et al. [2016] among others

have documented that these correlation surfaces do have some power in

forecasting the discount on spot exchange rates. For equities, Skintzi and

Refenes [2005] proposes an approach to extract correlations from option prices

of the individual underlying assets and the market index. Driessen et al. [2009]

provide a stochastic correlation model and intensively estimate the option-

implied correlation and the correlation premium risk using data for S&P 100

index option and the components equity options.

Using a cross-sectional approach, Krishnan et al. [2009] and Driessen et al.

[2013] provided evidence that the option-implied average correlation is a risk

factor in market volatility and the option-implied correlations have remarkable

predictive power for future stock market returns. Zhou [2013] examines the

information contents of the CBOE S&P 500 Implied Correlation Index (ICJ)

and concludes that the the current information set of ICJ changes can be used

for predicting return of the S&P 500 Index in seven to ten months.

The CBOE option-implied average correlation index is calculated from

the option-implied volatility of the index and the individual component

options, which measures the market’s systematic risk at the second moment.

To compute this index, CBOE creates a tracking basket of the 50 largest

components versus the options traded on the index and re-normalises the

tracking index presuming that the 50 largest firms contain the majority of the

weighted information on the implied volatility of the S&P 500. The individual

and index volatilities are computed using the at-the-money straddle, which is

the average of the implied volatility of the option with the nearest strike to

the equivalent maturity future.

However, there are well understood limitations to the Back-Scholes models,

the most particular being that the geometric Brownian motion (GBM) driving
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the stochastic process has a time homogenous volatility parameter. Setting

σi, i ∈ {1, . . . , N + 1} to be the Black-Scholes implied volatilities for the

individual components and the index, where we presume that the N + 1

asset is the index and the i = 0 is a pure discount bond. Average implied

correlations are computed by the ratio of the implied integrated index variance

minus the capitalisation weighted sum of constituent variances divided by the

sum of the weighted cross products (excluding the diagonal products), which

is denoted by

ρ̄ =
(σN+1 −

∑N
i=1 w

2
i σ

2
i )

(2
∑N

i=1

∑N
j=i+1wiwjσiσj)

, (7.1)

where wi represents the holding weights for the individual stock in the index

and normally is calculated based on the market capitalisation of each company

in practice.

There are some issues with the CBOE approach. For example, In

Figure 7.1 I recompute the implied correlation for the S&P 500 for a single

day on October 29, 2014 over a range of moneyness, K/S, where K is the

strike price and S is the current spot price and over time to maturities from

one month to twelve months. To do this I compute the implied volatility for

every option traded for the S&P 500 index and all of its constituents. For each

set of options I compute the average of the put and call implied volatilities

and then estimate the following third order polynomial regression

σi,j =β1 + β2Ti,j + β3T
2
i,j + β4T

3
i,j + β4 log

(
Ki,j

Si,j

)
+ β5 log

(
Ki,j

Si,j

)2

+ β6 log

(
Ki,j

Si,j

)3

+ εi,j, (7.2)

where j ∈ {1, . . . , J} is the list of all options traded and Ti,j is the time

to maturity. I then create a fixed grid over T and log(K/S) and compute

the implied correlations using the CBOE method and plot the implied

correlations.
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Figure 7.1: The Option-implied Average Correlation Smile Surface and Term
Structure
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Note. Figure 7.1 displays the option-implied average correlation smile surface (upper panel)
and the term structure of the option-implied average correlation smiles calculated based on
the Black-Scholes implied volatilities of the index and individual equity options on October
29, 2014.
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Figure 7.1 clearly shows that there is a great deal of variation in the

implied correlation over the range of strikes, with low values of K/S having a

very high correlation. Not only does the value of the implied correlation vary

across moneyness and time to maturities, but we can also see that tracking

any given point on the correlation surface can have very different correlation

dynamics. Hence deciding on which correlation to use is a very tricky decision,

if one is sticking to a Black-Scholes type framework.

In contrast to the CBOE approach, I extract the risk-neutral moments

from the option prices utilising the model-free spanning contracts proposed

by Bakshi and Madan [2000] and Carr and Madan [2001], which suggests that

the risk-neutral moments of assets expected returns can be spanned by the

integration of a series of out-of-money call and put option prices. For the

focus of this chapter, I derive the exact formulas for the second, third, and

fourth risk-neutral central moments of assets expected returns in Chapter 4.

Motivated by the evidence that the higher order moments and co-moments

are significant risk factors in cross-sectional stock returns (see for example

Driessen et al. [2009], Driessen et al. [2013], and Conrad et al. [2013] among

others), I extend the quadratic option-implied average correlation into higher

dimensional correlations estimating from the risk-neutral higher moments and

co-moments. Similar to the quadratic option-implied average correlation, the

cubic and quartic correlations provide measures of the market diversification

from higher dimensions.

Specifically, the cubic average correlation provides the average triple-wise

correlations among the individual assets while the quartic average correlation

measures the average of the quadruple-wise correlations of the portfolio. I

use the options written on the S&P 500 index as the proxy for the market

portfolio and the options written on all of the index components to extract the

risk neutral central moments and estimate the quadratic, cubic, and quartic

option-implied average correlations.

The remainder of the chapter is organised as follows: Section 7.2 details the

theoretical derivations of the higher dimensional average correlations. Section

7.3 briefly describes the high frequency option data used to construct the

higher dimensional option-implied average correlations. Section 7.4 illustrates
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the empirical procedures for estimating the risk-neutral higher order central

moments from option prices. Section 7.5 constructs the market and sectorial

higher dimensional option-implied average correlation indices utilising the

theoretical results in Section 7.2. The validity of the market portfolio moments

decomposition is investigated in Section 7.6. Section 7.7 concludes this

chapter.

7.2 The Higher Dimensional Average

Correlations

In this section, I derive the analogous higher dimensional average correlations

from the third and fourth central moments and co-moments of assets’

returns, namely the cubic and quartic average correlations. The derivations

of the higher dimensional average correlations borrow the symmetric

multidimensional tensor algebra, which largely reduces the computation for

the higher order co-moments arrays.

Consider a market with N continuously traded assets, indexing by i =

1, 2, . . . , n. The price of the ith asset at time t is denoted by Si,t, where

t = 1, 2, . . . , T . There exists an aggregated market index, which is a value-

weighted portfolio and each of the N component individual assets contribute

to the index level weighted by its market capitalisation. At a given time t,

the weights of asset i in the market portfolio is defined by:

wi,t =
Si,t × SHROUTi,t∑N
i=1 Si,t × SHROUTi,t

, 1 ≤ i ≤ N (7.3)

where SHROUTi,t represents the total number of outstanding shares for asset

i at time t. The market index is not traded and the level of the market

index is updated continuously corresponding to the price changes of the N

component assets. The level of the market index at time t is denoted by Sm,t,

where t = 1, 2, . . . , T .

Let Ri,t and Rm,t be the log-return for asset i and the market portfolio m
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at time t such that:

Rt = lnSt+1 − lnSt. (7.4)

We can express the second, third and fourth central moments of the expected

returns for asset i at time t by:

σ2
i,t = E[(Ri,t − E[Ri,t])

2],

s3
i,t = E[(Ri,t − E[Ri,t])

3], (7.5)

k4
i,t = E[(Ri,t − E[Ri,t])

4].

Accordingly, the un-normalised second, third, and fourth co-moments can be

given by:

σi,j = E[(Ri,t − E[Ri,t]) (Rj,t − E[Rj,t])],

si,j,k = E[(Ri,t − E[Ri,t]) (Rj,t − E[Rj,t]) (Rk,t − E[Rk,t])], (7.6)

ki,j,k,l = E[(Ri,t − E[Ri,t]) (Rj,t − E[Rj,t]) (Rk,t − E[Rk,t]) (Rl,t − E[Rl,t])].

where σi,j is the well-known covariance between assets i and j. Analogously,

si,j,k represents the co-skewness among assets i, j, and k, and ki,j,k,l is the

co-kurtosis among assets i, j, k, and l.

Recall that the market index Sm is a value-weighted portfolio of all

individual assets. Let wt be the (N × 1) weight vector for the N assets such

that wt := {wi,t, 1 ≤ i ≤ N}, where wi,t as defined in Equation 7.3. Denote

the covariance matrix by Σ, the co-skewness array by Γ, and the co-kurtosis

array by Θ. Thus, the second, third, and fourth central moments of the

expected return of the market portfolio at time t can be expressed by:

σ2
m,t = E

[
(Rm,t − E[Rm,t])

2] = w′tΣtwt,

s3
m,t = E

[
(Rm,t − E[Rm,t])

3] = w′tΓt(wt ⊗wt), (7.7)

k4
m,t = E

[
(Rm,t − E[Rm,t])

4] = w′tΘt(wt ⊗wt ⊗wt).
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where ⊗ is the Kronecker product operator 1 and ′ is the matrix transpose

operator.

The second order co-moment array Σ, i.e. the covariance matrix, is very

popular and widely used in asset pricing and portfolio management. But

the higher order co-moments arrays Γ and Θ are less well-understood given

the complicated multidimensional structures. In particular, when it comes to

portfolio with a large number of assets, the estimations of the elements of the

co-moments arrays become extremely complicated.2

Instead of estimating the co-moments array directly, I derive a sets of

average correlations that measure the total diversification of the portfolio from

different dimensions. In the following, I first introduce a series of correlation

analogues. Recall that the standard correlation coefficient between asset i

and j is defined as:

ρi,j =
σi,j
σiσj

, (7.8)

where σi,j is the covariance between asset i and j,and σi and σj are the

standard deviations for asset i and asset j, which is calculated as the square

root of σ2
i and σ2

j respectively. Similarly, following Buckle et al. [2014], I

formally define the higher dimensional correlation analogues as the following:

Definition 7.1 (Higher Dimensional Correlation). Let si and ki be the cubic

and quartic root of the third and fourth central moments for the expected

returns of asset i such that si = 3
√
s3
i and ki = 4

√
k4
i . Further assume that the

third central moments are well-defined and non-zero. The cubic correlation

1Let A be an (n× p) matrix and B be an (m× q) matrix, then the Kronecker product
of A and B yields an (mn× pq) matrix such that:

A⊗B =


a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB

 .

2There is a strand of literature in portfolio management investigating various methods to
simplify the estimation of higher dimensional co-moment arrays, see for example Martellini
and Ziemann [2010], Ghalanos et al. [2015], and Boudt et al. [2015] among others.
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ρi,j,k and quartic correlation ρi,j,k,l among assets i, j, k, and l are defined by:

ρi,j,k =
si,j,k
sisjsk

, ρi,j,k,l =
ki,j,k,l
kikjkkkl

, (7.9)

where si,j,k and ki,j,k,l are the third and fourth central co-moments among

assets i, j, k, l as given in Equation 7.6

Recall that the second-order covariance matrix and the quadratic

correlation matrix are symmetric about the diagonal. By construction,

the cubic and quartic correlations can also be expressed by symmetric

multidimensional arrays with ones sitting on the super diagonals. I further

define the average correlations as the arithmetic mean of the off-diagonal

correlations such that:

Definition 7.2 (Higher Dimensional Average Correlations). Let ρΣ, ρΓ and

ρΘ be the average quadratic, cubic, and quartic correlations for the off-

diagonals of the correlation arrays respectively such that:

ρΣ =
1

N2 −N

N2−N∑
i=1

ρi,j, i 6= j,

ρΓ =
1

N3 −N

N3−N∑
i=1

ρi,j,k, i 6= j 6= k,

ρΘ =
1

N4 −N

N4−N∑
i=1

ρi,j,k,l, i 6= j 6= k 6= l. (7.10)

where N is the number of assets in the portfolio.

The definition for the higher dimensional average correlations is very

straightforward. For a kth order correlation array with N assets, there

are N (super) diagonal elements and Nk − N off-diagonal elements. The

average higher dimensional correlations are given by arithmetic mean of the

off-diagonal elements in the higher dimensional correlation arrays.

With the average higher dimensional correlations, the co-moments arrays

of the portfolio expected returns can be further decomposed by the (super)

diagonal in the following Lemma:
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Lemma 7.1 (Diagonal Decomposition of Co-moment Arrays). Let x be a

N × 1 vector with entries xi, where 1 ≤ i ≤ N . Denote xk as the rth power

of the vector x and x[k] as the vector permuted outer product of the vector

x with itself. For a given portfolio with N assets, the covariance matrix

Σ, third and fourth co-moments arrays Γ and Θ can be decomposed by its

(super) diagonal with the off-diagonal average quadratic correlation ρΣ, cubic

correlation ρΓ and quartic correlation ρΘ such that:

Σ = diag2[σ2] + ρΣtriu2[σ[2]] + ρΣtril2[σ[2]]

Γ = diag3[s3] + ρΓtriu3[s[3]] + ρΓtril3[s[3]]

Θ = diag4[k4] + ρΘtriu4[k[4]] + ρΘtril4[k[4]]. (7.11)

where σ, s, and k are the (N × 1) root moments vectors for the N assets such

that

σ :=

{
σi =

√
σ2
i , 1 ≤ i ≤ N

}
,

s :=

{
si = 3

√
s3
i , 1 ≤ i ≤ N

}
, (7.12)

k :=

{
ki = 4

√
k4
i , 1 ≤ i ≤ N

}
.

and diagk[·], triuk[·], and trilk[·] are the diagonal, upper, and lower triangular

operators.

Proof for Lemma 7.1. Before proceeding the proof of the decomposition of

higher dimensional co-moment arrays, I first declare some useful operators.

Let x be a N × 1 vector with entries xi, where 1 ≤ i ≤ N . Denote xk as the

rth power of the vector x and x[k] as the vector permuted outer product of

the vector x with itself. Thus, for k = 2, 3, 4 we have:

x2 :=
{
xi = x2

i , 1 ≤ i ≤ N
}
, x[2] = xx′;

x3 :=
{
xi = x3

i , 1 ≤ i ≤ N
}
, x[3] = x′(x⊗ x); (7.13)

x4 :=
{
xi = x4

i , 1 ≤ i ≤ N
}
, x[4] = x′(x⊗ x⊗ x).
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Let xk be the rth power of the vector x, then diagk[x
k] is the k dimensional

diagonal operator that turns the N×1 vector x into a k dimensional array that

with the elements of the vector on the (super) diagonal and all other elements

being zeros. For example, for k = 2, diag2[xk] results a two dimensional N×N
array such that:

diag2[x2] =


x2

1 0 · · · 0

0 x2
2 · · · 0

...
...

. . .
...

0 0 · · · x2
N

 .

For k = 3, diag3[x3] gives a three dimensional N×N×N array with x3
i sitting

on the super-diagonal and all the other elements being zeros.

Let x[k] be the vector permuted outer product of the vector x with itself.

triuk[x
[k]] is the upper triangular operator that returns the upper triangular

part of the r dimensional array x[k]. Similarly, trilk[x
[k]] is the lower triangular

operator that returns the lower triangular part of the r dimensional array

x[k]. For example, for k = 2, triu2[xx′] and tril2[xx′] return the following 2

dimensional N ×N upper triangular and lower triangular arrays such that:

triu2[xx′] =


0 x1x2 · · · x1xN

0 0 · · · x2xN
...

...
. . .

...

0 0 · · · 0

 ; tril2[xx′] =


0 0 · · · 0

x2x1 0 · · · 0
...

...
. . .

...

xNx1 xNx2 · · · 0

 .

The proof for Lemma 7.1 then follows from the preceding text by combining

the definitions of the higher dimensional average correlations, diagonal

operator and the upper and lower triangular operators.

Substituting the decomposition results in Lemma 7.1 back into the

expressions of the central moments for the portfolio in Equation 7.7, we have:

σ2
m = w′diag2[σ2]w + ρΣw′

(
triu2[σ[2]] + tril2[σ[2]]

)
w,

s3
m = w′diag3[s3](w ⊗w) + ρΓw′

(
triu3[s[3]] + tril3[s[3]]

)
(w ⊗w), (7.14)

k4
m = w′diag4[k4](w ⊗w ⊗w) + ρΘw′

(
triu4[k[4]] + tril4[k[4]]

)
(w ⊗w ⊗w).
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The estimation is quite straightforward for the second central moment as the

covariance array is simply a two dimensional N × N matrix while dealing

with high moments can easily become algebraically cumbersome or even

intractable. However, we can simplify the estimations by identifying the

symmetric structure of the co-moments array.

For any n-dimensional random vector, its co-moments can be seen as multi-

dimensional tensors. Specifically, the covariance array Σ is a two-way tensor

with dimension N × N , the co-skewness array Γ is a three-way tensor with

dimension N ×N ×N , and the co-kurtosis array Θ is a four-way tensor with

dimension N × N × N × N . Given the super symmetric structure of the

multidimensional tensors, the derivation of the higher dimensional average

correlations becomes available.

In general, for N assets, the number of independent elements N∗ in the

covariance, third and fourth co-moments tensors can be expressed by:

N∗ =


N(N+1)

2
, out of N2 in Σ;

N(N+1)(N+2)
6

, out of N3 in Γ;

N(N+1)(N+2)(N+3)
24

, out of N4 in Θ.

(7.15)

Consider for N = 500, there are 5004 = 62, 500, 000, 000 elements in the

four-dimensional co-kurtosis matrix, but only (500× (500 + 1)× (500 + 2)×
(500+3))/24 = 2, 635, 531, 375 elements are unique and need to be computed,

which is only around 4% of 5004 and is computable using IEEE (Institute of

Electrical and Electronics Engineers) double precision convention.

According to Equation 7.14, in order to estimate the average correlations

ρΣ, ρΓ, and ρΘ we need to calculate the diagonal co-moment array, the upper

triangular co-moment array and the lower triangular co-moment array for

each moments. Noted, the average correlations ρΣ, ρΓ, and ρΘ are scalars

and we don’t need to investigate the structural arrays but the sum of the

off-diagonal elements of the co-moment arrays. As I have shown in the earlier

example, the off-diagonal elements in the co-moment tensors include many

duplicated entries. In fact, the sum of the off-diagonals can be calculated as

the product of a symmetric multiplier and the sum of the unique elements.
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Taking advantage of the symmetric structure of the multidimensional co-

moments tensors, I derive the formulas for estimating the average higher

dimensional correlations in the following proposition:

Proposition 7.1 (Estimations for Higher Dimensional Correlations). Given

the central moments for the market portfolio, σ2
m, s3

m, and k4
m and the holding

weights for each components, wi, and the standard root moments for the

assets in the portfolio, σi, si, and ki, the average quadratic correlation ρΣ,

cubic correlation ρΓ, and quartic correlation ρΘ can be estimated by:

ρΣ =
σ2
m −

∑N
i=1 w

2
i σ

2
i

Λi,j

∑N
i=1

∑N
j>iwiwjσiσj

ρΓ =
s3
m −

∑N
i=1w

3
i s

3
i

Λi,j,k

∑N
i=1

∑N
j>iwiwjwksisjsk

(7.16)

ρΘ =
k4
m −

∑N
i=1w

4
i k

4
i

Λi,j,k,l

∑N
i=1

∑N
j=i

∑N
k=j

∑N
l>iwiwjwkwlkikjkkkl

.

where Λi,j, Λi,j,k, and Λi,j,k,l are the symmetric multipliers such that:

Λi,j = 2;

Λi,j,k =

6, i 6= j 6= k,

3, any two of i, j, k are duplicated.
(7.17)

Λi,j,k,l =



24, i 6= j 6= k 6= l,

12, one pair of i, j, k, l are duplicated,

6, two pairs of i, j, k, l are duplicated,

4, any three of i, j, k, l are duplicated.

Proof for Proposition 7.1. I have demonstrated the (super) diagonal

decomposition of the co-moment arrays in Lemma 7.1, which yields the
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following summation expression of the market portfolio moments:

σ2
m =

N∑
i=1

w2
i σ

2
i + ρΣ

N∑
i=1

N∑
j=1

wiwjσiσj,

s3
m =

N∑
i=1

w3
i s

3
i + ρΓ

N∑
i=1

N∑
j=1

N∑
k=1

wiwjwksisjsk, (7.18)

k4
m =

N∑
i=1

w4
i k

4
i + ρΘ

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

wiwjwkwlkikjkkkl.

In order to estimate the sum of the off-diagonal elements in the co-

moments arrays, we take advantage of the symmetric structure of the higher

dimensional tensors to simplify the calculate by deriving the symmetric

multiplier, Λ, for each of the co-moments tensors.

The case for the N×N two-way covariance tensor is very straightforward.

When i 6= j, the off-diagonal elements are symmetric about the diagonal, i.e.

σiσj = σjσi. Thus the symmetric multiplier is simply:

Λi,j = 2, All elements are unique: i 6= j. (7.19)

The cases for the three-way cubic correlation tensor and four-way quartic

correlation tensor are more complicated. The three-way cubic correlation

tensor can be seen as a cube, see Figure 7.2.
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Figure 7.2: Three Dimensional Decomposition

The elements in the three-way cubic correlation tensor can be classified

into three groups:

1. Group 1: When all of the three elements are duplicated, i.e. i = j = k,

the co-moment elements lie on the super diagonal of the cube with unity

cubic correlation, which are the black points on the dashed line.

2. Group 2: When only two of the elements are duplicated, i.e. either i = j

or i = k or j = k, the co-moment elements lie on the planes, which are

the blue points on the dot line.

3. Group 3: when all of the three elements are unique, i.e. i 6= j 6= k, the

co-moment elements are in the three-dimensional space, which are the

red interior points.

For the off-diagonal elements (the points on the plane and interior

points), we can get the symmetric multiplier Λi,j,k by the number of different
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combinations by applying the binomial theory:

Λi,j,k =

3! = 6, all elements are unique;

3!/2! = 3, any two of the elements are duplicated.
(7.20)

Similarly, for the four-way quartic correlation tensor, we have the

symmetric multiplier Λi,j,k,l such that:

Λi,j,k,l =



4! = 24, all elements are unique;

4!/2! = 12, one of the elements are duplicated;

4!/2!/2! = 6, two of the elements are unique;

4!/3! = 4, three of the elements are duplicated.

(7.21)

Thus, the central moments of the market portfolio in Equation 7.18 can

be re-written as:

σ2
m =

N∑
i=1

w2
i σ

2
i + ρΣΛi,j

N∑
i=1

N∑
j>i

wi,twjσiσj,

s3
m =

N∑
i=1

w3
i s

3
i + ρΓΛi,j,k

N∑
i=1

N∑
j=i

N∑
k>i

wiwjwksisjsk, (7.22)

k4
m =

N∑
i=1

w4
i k

4
i + ρΘΛi,j,k,l

N∑
i=1

N∑
j=i

N∑
k=j

N∑
l>i

wiwjwkwl,tkikjkkkl.

where Λi,j, Λi,j,k, and Λi,j,k,l are the symmetric factors as given in Equation

7.19, 7.20 and 7.21. Reorganise and solve for ρΣ, ρΓ, and ρΘ we get the

formulas in Equation 7.16.

Noted the average quadratic, cubic, and quartic correlations we derived

in Proposition 7.1 are a weighted average of all pair-wise, triple-wise, and

quadruple-wise correlations of the constituents of the market portfolio, which

gives average measures of the degree of diversification in the market portfolio.

Formally, we can derive the upper and lower bounds for the cubic-correlation

and quartic-correlation from the following Corollary:
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Corollary 7.1 (A Measure for Degree of Diversification). Let the pairs

{σ2
m,min, σ

2
m,max}, {s3

m,min, s
3
m,max}, and {k4

m,min, k
4
m,max} be the upper and

lower bound of the second, third, and fourth central moments of the market

portfolio m, then the average correlations we derived in Proposition 7.1 can be

interpreted as a measure for degree of diversification of the market portfolio

m, which quantifies the difference between the minimum and maximum values

of the portfolio moments, such that:

ρΣ =
σ2
m − σ2

m,min

σ2
m,max − σ2

m,min

ρΓ =
s3
m − s3

m,min

s3
m,max − s3

m,min

(7.23)

ρΘ =
k4
m − k4

m,min

k4
m,max − k4

m,min

.

Proof for Corollary 7.1. The minimum aggregate moments for the portfolio

with N assets are achieved when the assets in the portfolio are fully diversified,

i.e. ρ = 0. Similarly, we obtain the maximum aggregate moment for the

portfolio in the case that there is no diversification, i.e. ρ = 1. Substituting

ρ = 0 and ρ = 1 into the expressions for the portfolio moments in Equation

7.16 we can obtain the lower bounds of the central moments of the market

portfolio such that:

σ2
m,min =

N∑
i=1

w2
i σ

2
i ,

s3
m,min =

N∑
i=1

w3
i s

3
i , (7.24)

k4
m,min =

N∑
i=1

w4
i k

4
i .

and the upper bounds of the central moments of the market portfolio such
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that:

σ2
m,max =

N∑
i=1

w2
i σ

2
i + Λi,j

N∑
i=1

N∑
j>i

wiwjσi;

s3
m,max =

N∑
i=1

w3
i s

3
i + Λi,j,k

N∑
i=1

N∑
j=i

N∑
k>i

wiwjwksisjsk; (7.25)

k4
m,max =

N∑
i=1

w4
i k

4
i + Λi,j,k,l

N∑
i=1

N∑
j=i

N∑
k=j

N∑
l>i

wiwjwkwlkikjkkkl.

where Λi,j, Λi,j,k, and Λi,j,k,l are the symmetric multipliers as given in Equation

7.17 in Proposition 7.1. The proof of the expressions in Equation 7.23 then

follows.

7.3 Data

7.3.1 Daily Market Capitalisation Data for S&P 500

Index Constituents

The list of S&P 500 Index constituents from January 1, 1996 to January 1,

2015 is from Compustat and the daily price and number of share outstanding

for each stocks are obtained from the Centre for Research in Security Prices

(CRSP) archived by the Wharton Research Data Services (WRDS).

7.3.2 High Frequency Option Data Panels for S&P 500

Index and its Constituents

The option data of the S&P 500 index option and the individual equity options

on all of the S&P 500 constituents are obtained from the TRTH through

January 1, 1996 to January 1, 2015. Unlike the actively trading for options

written on the S&P 500 index, trading for some single-name equity options

may be quite illiquid. In fact, as documented on the TRTH, the trading for

single-name equity options prior 2005 is very thin and not all of the index

components equities have options traded on the exchange. Thus, I limit the
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attention to a subset of stocks which are known to be highly traded and liquid.

I have no intention to be fully comprehensive in my sample and are inclined

to drop stocks for which option trading is too thin rather than including

them in the analyses. After excluding the index components that are either

illiquid traded nor have no options written on, the sample ends up with 588

constituents.3

Options on the S&P 500 index are European style and expire on the third

Friday of the contract month while options on individual equities are American

style and usually expire on the Saturday following the third Friday of the

contract month. For both the S&P 500 index option and each single-name

equity options, we extract the intraday one-minute quotes data for all available

strike prices and maturities. For each company, I then screen the option price

data according to the conventional criteria (a) drop the observations with

missing quotes, or zero bids; (b) drop the observations with zero trading

volume or zero quotes size; (c) drop the observation with option prices that

violate the put-call parity and arbitrage restrictions.

The spot prices for both the S&P 500 index and the index components are

also obtained from the TRTH at a one-minute intraday frequency. The spot

price for the S&P 500 index is backed by the S&P 500 index futures. The

proxy for the risk-free rate is collected from the exchange-traded USD deposit

rate from the TRTH at a one-minute intraday basis for the sample period.

Finally, the high frequency option data panel is constructed by matching the

option data, spot data, and risk-free rate data together with the nearest tick

time stamp for each observation.

Figure 7.4 provides a snapshot of the high frequency option data panels.

3Since 30th November, 2009, the option data on TRTH is based on the Option Price
Reporting Authority national market system. OPRA was set up in 2009 and became
effective on January 1, 2010. Under the OPRA National Market System plan, the trades
and quotes data of all option contracts trading on the participating exchanges is gathered
and consolidated or disseminated to approved vendors. The current participant exchanges
include NYSE Amex Equities (AMEX), BATS Options (BATS), Boston Stock Exchange
(BSE), Chicago Board Options Exchange (CBOE), International Securities Exchange
(ISE), NYSE Arca, and Philadelphia Stock Exchange (PHLX). In order to keep the
consistent in the data coverage, trading data before the OPRA effective dates are collected
by aggregating the data from all of the participating exchanges on a weighted-average basis
if needed.
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Each of the sub plots in Figure 7.4 displays the intraday bid-ask prices (z-axis)

for option contracts traded at various strikes (x-axis) and time to maturities

(y-axis) for the S&P 500 index and some selected individual companies,

namely Apple (AAPL), International Business Machines Corporation (IBM),

and Boeing Company (BA). The red points represents the call prices while

the blue points stand for the put prices. The plots show that the unique high

frequency option data panels provide complete and sufficient coverage of the

option prices that can be utilised to extract the various information.
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Figure 7.3: High Frequency Option Data Sample

(a) SPX on 27-May-2014

(b) AAPL on 24-May-2012
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Figure 7.4: High Frequency Option Data Sample

(a) IBM on 07-Apr-2014

(b) BA on 04-Feb-2013

168



7.3.3 High Frequency Option Panels for Selected

Sector Index

In addition to the high frequency option panels with S&P 500 Index and

its constituent companies, I construct a sub dataset with Selected Sector

Index. The Standard & Poor’s Depositary Receipts (SPDR) funds are a

family of exchange-traded funds (ETFs) traded in the United States that

divide the S&P 500 into ten index funds, namely the Energy (XLE), Materials

(XLB), Industrials (XLI), Consumer Discretionary (XLY), Consumer Staples

(XLP), Health Care (XLV), Financial (XLF), Information Technology (XLK),

Utilities (XLU), and Real Estate (XLRE).

Each Selected Sector Index is calculated using a modified ‘market

capitalisation’ methodology, which ensures that each of the component stocks

within a Selected Sector Index is represented in a proportion consistent with

its percentage of the total market capitalisation of that particular index.

Each Selected Sector SPDR is designed to closely track the price performance

and dividend yield of a particular Selected Sector Index. Each portfolio is

comprised principally of shares of constituent companies included in the S&P

500. In particular, each stock in the S&P 500 is allocated to only one Selected

Sector Index. The combined companies of the ten Selected Sector Index

represent all of the companies in the S&P 500 Index.4

The SPDR ETFs sector index are traded as stocks and can be short sold

and optioned. Specifically, the options written on the Selected Sector Index

are American style and usually expire on the third Friday of the contract

month. As the Selected Sector Index are introduced separately and the

options written on specific sector index are also established at different time.

In order to keep the consistent of data across all sector index, I construct a

sub dataset consisting of nine Selected Sector Index over the sample period

from November 30, 2009 to January 1, 2015.5

4Sources: http://www.sectorspdr.com/sectorspdr/features/about.
5I exclude the Real Estate Index (XLRE), which began trading on Oct 8th, 2015 as it

is out of the range of my sample period.
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7.4 Estimate the Higher Order Risk Neutral

Central Moments

In this section I detail the estimation procedures for the risk-neutral high

order central moments as derived in Chapter 4. In particular, I address the

key issues arising in estimating the risk-neutral moments from market option

prices using the non-parametric spanning contracts method. Finally, I provide

summary statistics and term-structure plots of the risk-neutral high order

central moments for S&P 500 Index and the single-name equity options.

The risk-neutral high order central moments of S&P 500 index and

individual stocks are estimated according to Equations 4.10, 4.11, and 4.12

proposed in Proposition 4.1 in Chapter 4. The estimation procedures are as

follows. For a given day t, let St be the spot price. Let τ = {τj, j = 1, . . . , J}
be the vector of the available time to maturities (tenors), where τ = T − t
and T is the maturity date. For a given tenor, the option prices are sorted

by the available strikes such that Ki ∈ {Kmin, Kmax}, where Kmin and Kmax

are the minimum and maximum strikes of the traded option contracts over a

given day.

A few technical issues raise in estimating the integrals in Equations 4.10,

4.11, and 4.12. First is the truncation problem as we need both out-of-money

call and put option prices over a continuous list of strike prices from 0 to

infinity, while we only have limited numbers of strike prices from the options

traded in the market. Thus, the integral domain will be truncated by the

minimum and maximum strikes available in the market, {Kmin, Kmax}.
Another issue is the discontinuity of the strike prices. The option prices

are quoted at a specific strike price pattern thus we do not have a continuous

series of strike prices. For example, for the options written on S&P 500 Index

traded in CBOE, the strike prices are set with a $5 interval. To tackle this

issue, I first calculate the Black-Scholes implied volatility for each observations

and fit the implied volatilities with a fourth-order polynomial.6 I then convert

6The single-name equity options are American style, thus the prices are embedded with
early-exercise premium. I only use the out-of-money options to estimate of the risk-neutral
central moments defined in Equation 4.10, 4.11, and 4.12, so the early-exercise premiums
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the fitted implied volatilities back to call and put prices over the fitted equal-

spaced strike prices grid, which I denote by Ĉ(τj, K̂i) and P̂ (τj, K̂i). It should

be emphasised that I use the Black-Scholes implied volatility as a normalised

price and that our approach is not tied to the assumptions of the Black-

Scholes model. Finally, I estimate the integrals using trapezoidal numerical

integration such that:

M̂Q
2 (t, τj) = e−rf,jτj [(rf,jτj)

2 + 2rf,jτj]− 2rf,jτi

+
Kmax − St

2N

N∑
i=1

[
C2(τj, K̂i) + C2(τj, K̂i+1)

]
(7.26)

+
St −Kmin

2N

N∑
i=1

[
P2(τj, K̂i) + P2(τj, K̂i+1)

]
;

M̂Q
3 (t, τj) = e−rf,jτj [(rf,jτj)

3 − 3(rf,jτj)
2] + 3(rf,jτj)

2

+
Kmax − St

2N

N∑
i=1

[
C3(τj, K̂i) + C3(τj, K̂i+1)

]
(7.27)

+
St −Kmin

2N

N∑
i=1

[
P3(τj, K̂i) + P3(τj, K̂i+1)

]
;

M̂Q
4 (t, τj) = e−rf,jτj [(rf,jτj)

4 + 4(rf,jτj)
3]− 4(rf,jτj)

3

+
Kmax − St

2N

N∑
i=1

[
C4(τj, K̂i) + C4(τj, K̂i+1)

]
(7.28)

+
St −Kmin

2N

N∑
i=1

[
P4(τj, K̂i) + P4(τj, K̂i+1)

]
.

are negligible.
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such that

C2(τj, K̂i) =
2
[
1−

(
ln K̂i

St
− rf,jτj

)]
K̂2
i

Ĉ(τj, K̂i), (7.29)

P2(τj, K̂i) =
2
[
1 +

(
ln K̂i

St
+ rf,jτj

)]
K̂2
i

P̂ (τj, K̂i);

C3(τj, K̂i) =
6
(

ln K̂i
St
− rf,jτj

)
− 3

(
ln K̂i

St
− rf,jτj

)2

K̂2
i

Ĉ(τj, K̂i), (7.30)

P3(τj, K̂i) =
6
(

ln St
K̂i

+ rf,jτj

)
+ 3

(
ln St

K̂i
+ rf,jτj

)2

K̂2
i

P̂ (τj, K̂i);

C4(τj, K̂i) =
12
(

ln K̂i
St
− rf,jτj

)2

− 4
(

ln K̂i
St
− rf,jτj

)3

K̂2
i

Ĉ(τj, K̂i), (7.31)

P4(τj, K̂i) =
12
(

ln St
K̂i

+ rf,jτj

)2

+ 4
(

ln St
K̂i

+ rf,jτj

)3

K̂2
i

P̂ (τj, K̂i).

where N is the number of evenly spaced points, in our case I set it to be 201

and rf,j is the corresponding risk free rate for the jth tenor.

Finally, I perform a linear interpolation across the tenor vector τ on each

day to get a standard tenor grid. On each day, for the index and individual

equity options, I use the intraday option price panel to obtain the daily

estimations. Noted that with the OPRA data from November 2009, I calculate

the risk-neutral central moments for the index options with tenors from 30

days up to 2 years and up to 1.5 years for the single-name equity options.

However, before the OPRA (from 1 January 1996 to 30 November 2009), due

to the data limit, I calculate the risk-neutral central moments with tenors

from 30 days up to 6 months for both the index option and the single-name

equity options. In order to maintain the consistency of time series, I report

the estimated results for the following tenors: 1 month, 3 months, and 6

months from January 1, 1996 to January 1, 2015.7

Figure 7.5, 7.6, and 7.7 plots the tenor adjusted time series of the

7The results for the other tenors for a different sample period are available on request.
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Figure 7.5: Term Structure of Estimated Risk Neutral Second Central
Moments
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Note. Figure 7.5 plots the time series of the quadratic root of the estimated risk-neutral
second central moments adjusted by the tenor, such that σQ = M̂

1/2
2 /τj for the S&P 500

index option and the single-name equity options over three different time to maturities,
namely, 1 month, 3 months, and 6 months. The black hard line is the estimated risk-
neutral second central moments for the S&P 500 index and the grey hard line and the
dash lines are the median, 5% percentile, and 95% percentile of the estimated risk-neutral
second central moments for the single-name equity options respectively.
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Figure 7.6: Term Structure of Estimated Risk Neutral Third Central Moments
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Note. Figure 7.6 plots the time series of the cubic root of the estimated third risk-neutral
central moments adjusted by the tenor such that sQ = M̂

1/3
3 /τj for the S&P 500 index option

and the single-name equity options over three different time to maturities, namely, 1 month,
3 months, and 6 months. The black hard line is the estimated risk-neutral third central
moments for the S&P 500 index and the grey hard line and the dash lines are the median,
5% percentile, and 95% percentile of the estimated risk-neutral third central moments for
the single-name equity options respectively.
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Figure 7.7: Term Structure of Estimated Risk Neutral Fourth Central
Moments
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Note. Figure 7.7 plots the time series of the quadratic root of the estimated risk-neutral
fourth central moments adjusted by the tenor such that kQ = M̂

1/4
4 /τj for the S&P 500 index

option and the single-name equity options over three different time to maturity, namely, 1
month, 3 months, and 6 months. The black hard line is the estimated risk-neutral fourth
central moments for the S&P 500 index and the grey hard line and the dash lines are
the median, 5% percentile, and 95% percentile of the estimated risk-neutral fourth central
moments for the single-name equity options respectively.
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quadratic, cubic, and quartic root of the estimated risk-neutral central

moments for the S&P 500 index option and the single-name equity options

with 1 month, 3 months, and 6 months to maturity, over January 1, 1996

to January 1, 2015. For the 588 individual equities, I form three percentile

portfolios, mainly the 5%, 50% (median), and the 95% percentile, which are

represented by the dot, hard, and dash grey lines while the black hard line

stands for the S&P 500 index option.

There are clear patterns in the time series of these moments over the

sample period across different time to maturities. The 5% and 95% percentile

moments of the single-name equity options act as the upper and lower bounds

for the index moments. Across different time to maturities, the median second

moments of the single-name equity options are always higher than the ones

of the index option, especially during the crisis period, for example, the 1998

Asian Financial Crisis, the 2000 Internet Bubble, and the most recent 2009

Global Financial Crisis.

The behaviours of the third moments between the index and individual

equity options are a bit different, for example, such that the third moment for

the index is always negative but that for the individual equity options some

time is slightly positive. Specifically, the 95% percentile of the individual

equity option third moment is positive. This pattern is consistent with the

evidence documented by Bakshi and Kapadia [2003] and Bakshi et al. [2003b]

that some individual options are positive skewed while the index option is

negative skewed. Interestingly, the upper bounds of the third moments of the

single-name equity options are largely positive skewed during the crisis period

while that of the lower bounds and the median are negative skewed, which

is consistent with the index options. Unlike the second moments, the fourth

moment of the index and the median fourth moments of the individual equity

options tend to move closely with each other during the quiet period and the

index fourth moments are more peaky during the crisis period.
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7.5 Estimate the Higher Dimensional Option-

implied Average Correlations

7.5.1 Market Option-implied Average Correlations

Let the estimated risk-neutral central moments at a given day t for τj

time to maturity for the S&P 500 index and the ith single-name equity

option are denoted by the triples {M̂Q
2 (m, t, τj), M̂

Q
3 (m, t, τj), M̂

Q
4 (m, t, τj)}

and {M̂Q
2 (i, t, τj), M̂

Q
3 (i, t, τj), M̂

Q
4 (i, t, τj)}.

The corresponding estimated quadratic, cubic, and quartic roots of the

central moments are {σ̂Q
m,t,τj , ŝ

Q
m,t,τj , k̂

Q
m,t,τj} and {σ̂Q

i,t,τj
, ŝQi,t,τj , k̂

Q
i,t,τj
}. Then

according to Equation 7.16, at a given day t, I calculate the option-implied

average higher dimensional correlations over τj time to maturity by:

ρ̂QΣ,t,τj =
M̂Q

2 (m, t, τj)−
∑N

i=1 w
2
i,tM̂

Q
2 (i, t, τj)

Λi,j

∑N
i=1

∑N
j>iwi,twj,tσ̂

Q
i,t,τj

σ̂Q
j,t,τj

ρ̂QΓ,t,τj =
M̂Q

3 (m, t, τj)−
∑N

i=1w
3
i,tM̂

Q
3 (i, t, τj)

Λi,j,k

∑N
i=1

∑N
j>iwi,twj,twk,tŝ

Q
i,t,τj

sQj,t,τjs
Q
k,t,τj

(7.32)

ρ̂QΘ,t,τj =
M̂Q

4 (m, t, τj)−
∑N

i=1w
4
i,tM̂

Q
4 (i, t, τj)

Λi,j,k,l

∑N
i=1

∑N
j=i

∑N
k=j

∑N
l>iwi,twj,twk,twl,tk

Q
i,t,τj

kQj,t,τjk
Q
k,t,τj

kQl,t,τj
.

where wi,t is the market capitalisation for company i at day t and Λi,j,

Λi,j,k, and Λi,j,k,l are the symmetric multipliers as given in Equation 7.17

in Proposition 7.1.
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Figure 7.8: Term Structure of the Option-implied Average Correlations
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Note. Figure 7.8 plots the time series of the quadratic, cubic, and quartic option-implied
average correlations estimated based on the risk-neutral central moments of the S&P 500
index and the single-name equity options as defined in Equation 7.32 from January 1, 1996
to January 1, 2015 over 1 month, 3 months, and 6 months to maturity, respectively. In
each of the sub-plots, the black hard line represents the 1-Month to maturity, the dark
grey dash line is the 3-Month to maturity, while the light grey dot line is for 6-Month to
maturity.
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Table 7.1: Descriptive Statistics for Option Implied Correlations

Table 7.1 reports the descriptive statistics for the estimated option-implied average
correlations estimated from the S&P 500 index option and its component single-name
equity options with 1 month, 3 months, and 6 months to maturity for the sample
period from January 1, 1996 to January 1, 2015, namely the average quadratic
option-implied correlations {ρ̂QΣ,1, ρ̂

Q
Σ,3, ρ̂

Q
Σ,6}, the average cubic option-implied correlations

{ρ̂QΓ,1, ρ̂
Q
Γ,3, ρ̂

Q
Γ,6}, and the average quartic option-implied correlations {ρ̂QΘ,1, ρ̂

Q
Θ,3, ρ̂

Q
Θ,6}. The

lower panel of the table gives the correlation matrix between each of the average option-
implied correlations.

ρ̂QΣ,1 ρ̂QΣ,3 ρ̂QΣ,6 ρ̂QΓ,1 ρ̂QΓ,3 ρ̂QΓ,6 ρ̂QΘ,1 ρ̂QΘ,3 ρ̂QΘ,6
Mean 0.406 0.412 0.469 0.239 0.213 0.303 0.167 0.125 0.210
Median 0.384 0.398 0.441 0.212 0.193 0.256 0.123 0.092 0.146
Max. 0.906 0.897 0.954 0.923 0.790 0.989 0.925 0.842 0.992
Min. 0.098 0.012 0.093 0.033 0.000 0.012 0.014 0.006 0.007
SD 0.126 0.116 0.127 0.138 0.107 0.158 0.143 0.110 0.180
Skewness 1.011 1.061 1.110 1.649 1.454 1.251 1.875 2.528 1.890
Kurtosis 4.136 4.548 4.081 6.615 6.005 4.360 7.011 11.496 6.438

ρ̂QΣ,1 1.000

ρ̂QΣ,3 0.869 1.000

ρ̂QΣ,6 0.757 0.870 1.000

ρ̂QΓ,1 0.580 0.545 0.413 1.000

ρ̂QΓ,3 0.597 0.737 0.611 0.605 1.000

ρ̂QΓ,6 0.603 0.733 0.843 0.445 0.681 1.000

ρ̂QΘ,1 0.689 0.609 0.498 0.754 0.547 0.444 1.000

ρ̂QΘ,3 0.618 0.787 0.679 0.550 0.772 0.639 0.669 1.000

ρ̂QΘ,6 0.574 0.720 0.841 0.443 0.552 0.859 0.533 0.748 1.000

Table 7.1 reports the descriptive statistics and the correlation matrix for

the estimated risk-neutral central moments time series. Figure 7.8 reports

the time series of the higher dimensional option-implied average correlations

estimated are based on the risk-neutral central moments of the S&P 500

index and the single-name equity options as defined in Equation 7.32 from

January 1, 1996 to January 1, 2015 for 1 month, 3 months, and 6 months

to maturities respectively. It can be observed that the three option-implied

average correlations follow a similar trend over time. In particular, the cubic

and quartic correlations move together through the time but deviate a bit

from the quadratic correlations.

Across all three tenors, the feature that the cubic and quartic average

implied correlations are more sensitive to the market crash is captured by
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the spike clusters during the 1998 Asian Financial Crisis and the 2008-2009

Global Financial Crisis. For the 1 month and 3 months to maturity average

correlation indexes, the quadratic correlations are generally larger than the

cubic and quartic correlations, while the cubic and quartic correlations

outperform the quadratic correlations occasionally during the extremely

volatile period in the 6 months to maturity case.

7.5.2 Sectorial Option-implied Average Correlations

Replacing the risk-neutral central moments for the S&P 500 index with

the SPDR EFTs Selected Sector Index and the corresponding constituent

components with the specific sector index components, I can also estimate

the sectorial option-implied average correlations by Equation 7.32. Due to

the limited data coverage of the SPDR EFTs Selected Sector Index options,

the time series for the sectorial option-implied average correlations are only

available over the post-OPRA period.

Figure 7.9 and 7.10 plot the time series of the quadratic, cubic, and

quartic option-implied average correlations estimated for the SPRD EFTs

Select Sector Index from November 30, 2009 to January 1, 2015 with one-

month to maturity. I further group the sectors into four groups. Specifically,

I put the Industrial (XLI), Material (XLB), and Energy (XLE) sectors

as the industrial-related group while the Health Care (XLV), Consumer

Discretionary (XLY), Consumer Staples (XLP) sectors as the consumer-

related group. The Financial (XLF) and Information Technology (XLK)

sectors are treated separately.
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Figure 7.9: Option-implied Sectorial Option-implied Average Correlations: I

(a) Industrial (XLI) & Material (XLB) & Energy (XLE)
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(b) Consumer Staples (XLP) & Consumer Discretionary (XLY) & Health Care (XLV)
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Note. Figure 7.9 plots the time series of the sectorial higher dimensional option-implied
average correlations from November 30, 2009 to January 1, 2015 over 1 month to maturity. I
group the sectors into two groups. Industrial (XLI), Material (XLB), and Energy (XLE) are
the industrial-related sector group and Consumer Staples (XLP), Consumer Discretionary
(XLY), and Health Care (XLV) are the consumer-related sector group. In each of the
sub-plots, the dots in the background plot the raw data while the corresponding lines
demonstrate the smoothed results over a 30-day moving-average window. The black line
represents the market-wide average correlations calculated from options written on S&P
500 index and its components while the colour lines are the sectorial correlations.
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Figure 7.10: Option-implied Sectorial Option-implied Average Correlations:
II

(a) Financial (XLF)
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(b) Information Technology (XLK)
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Note. Figure 7.10 plots the time series of the higher dimensional option-implied average
correlations for the Financial (XLF) and Information Technology (XLK) sectors from
November 30, 2009 to January 1, 2015 over 1 month to maturity, respectively. In each
of the sub-plots, the dots in the background plot the raw data while the corresponding
lines demonstrate the smoothed results over a 30-day moving-average window. The black
line represents the market-wide average correlations calculated from options written on
S&P 500 index and its components.
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In each of the subplots, the dots at the background give the raw

data while the lines at the front are the smoothed series based on a 30-

day moving average window. For each group, I also plot the market-

wide option-implied average correlations calculated from the S&P 500

index and constituent components. In general, the sectorial option-implied

average correlations are higher than the market-wide option-implied average

correlations. Across the nine industrial sectors, Financial (XLF), Energy

(XLE), Materials (XLB), and Industrials (XLI) sectors show consistent

higher average correlation, while Health Care (XLV), Consumer Discretionary

(XLY), Consumer Staples (XLP), and Information Technology (XLK) report

lower average correlations, especially the quadratic option-implied average

correlations for the Information Technology sector. Comparing the quadratic,

cubic, and quartic option-implied average correlations, the deviation between

the sectorial correlations and the market-wide correlations are increasing as

moving from second moment to fourth moments, which suggests the level

of diversification in the market-wide portfolio higher on high order moments

than the second moments.

7.6 Validity of the Market Portfolio Moments

Decomposition

Following Pollet and Wilson [2010], I investigate the validity of the

decomposition of the moments of the market portfolio. According to Corollary

7.1, the option-implied average correlation provides a measure of the degree

of the diversification of the risky assets in the market, we can further

approximate the market portfolio’s moments via the average moments and

average correlations such that:

σ2
m ≈ ρΣ × σ̄2

N , s3
m ≈ ρΓ × s̄3

N , k4
m ≈ ρΘ × k̄4

N . (7.33)

183



where σ̄2
N , s̄3

N , and k̄4
N are the value-weighted average second moments, third

moments, and fourth moments of the N risky assets in the market such that:

σ̄2
N =

N∑
i

wiσ
2
i , s̄3

N =
N∑
i

wis
3
i , k̄4

N =
N∑
i

wik
4
i . (7.34)

Table 7.2 reports the ordinary least squares (OLS) regressions of the

estimated risk-neutral moments of the S&P 500 index options over different

time to maturities on various combinations of the sample estimates of average

risk-neutral moments and option-implied average correlations from the the

single-name equity options written on the index constituents over the same

time to maturities for the whole sample time period, from January 1, 1996

through January 1, 2015. The dependent variables are the risk-neutral

moments estimated from the S&P 500 index options for 1 month, 3 months,

and 6 months to maturity.

The independent variables are the value-weighted average risk-neutral

moments, {σ̄2
N , s̄

3
N , k̄

4
N}, the option-implied average correlations, {ρ̄Σ, ρ̄Γ, ρ̄Θ},

and the product of the average risk-neutral moments and the average

correlations, {σ̄2
N × ρ̄Σ, s̄

3
N × ρ̄Γ, k̄

4
N × ρ̄Θ}.

Four regressions are estimated with these independent and dependent

variables respectively. Regression (1) and (2) regress the value-weighted

average risk-neutral moments and the option-implied average correlations on

the market risk-neutral moments separately. Regression (3) regresses the

product of the average moments and the average correlations on the index

moments while regression (4) tests the validity of a linear combination of the

average moments and average correlations to explain the portfolio moments.

All of the independent variables are significant in explaining the market

index moments variation across different time to maturities. As expected,

across different moments, the product of the value-weighted average moments

and the average correlations feature the best explanatory variable for the

variation of the market index moments with 90.7%, 72.9%, and 72.8% R2

individually for the 1 month to maturity experiments. The value-weighted

average second moments only explain 76.2% of the variation in the index
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Table 7.2: Validity of the Market Portfolio Moments Decomposition

Table 7.2 reports the regression results for the validity of the decomposition of the market
portfolio risk neutral moments as described by Equation 7.33. The market portfolio is
approximated by the S&P 500 index and the individual assets in the market are proxied by
the constituents of the S&P 500 index. Panel A, B, and C displays the estimated coefficients,
the root mean squared error (RMSE), and the adjusted R2 for the decomposition regressions
of the risk neutral moments across 1 month, 3 months, and 6 months to maturities,
respectively. For the regressions in each panel, the dependent variable is the daily risk
neutral moments estimated from the S&P 500 index options and the independent variables
are the value-weighted average risk neutral moments estimated from the options written
on the individual constituents, the option-implied average correlations, the product of the
value-weighted average risk neutral moments and the option-implied average correlations.
The sample is from January 1, 1996 to January 1, 2015 and consisted of 4751 daily
observations. The absolute value of the t-statistics is in brackets underneath, with ***
indicates the significance at 1% level, ** at 5%, and * at 10%. < 0.01% indicates the value
is less than 0.01%.

1 Month to Maturity
(1) (2) (3) (4)

Constant -0.003*** -0.007*** -0.001*** -0.008***
(32.155) (24.925) (17.203) (46.448)

σ̄2
N 0.859*** 0.756***

(96.511) (87.728)
ρ̄Σ 0.028*** 0.014***

(42.918) (32.926)
σ̄2
N × ρ̄Σ 1.410***

(140.743)
RMSE 0.004 0.006 0.003 0.003
Adjusted R2 76.2% 37.9% 90.7% 72.5%

Constant 0.001*** -0.001*** < 0.01%*** 0.002***
(10.281) (3.723) (2.548) (9.506)

s̄3N 2.689*** 2.707***
(38.668) (38.939)

ρ̄Γ -0.002*** -0.003***
(2.072) (4.532)

s̄3N × ρ̄Γ 1.490***
(26.542)

RMSE 0.004 0.007 0.003 0.005
Adjusted R2 63.9% 23.9% 72.9% 64.3%

Constant -0.002*** < 0.01% < 0.01% -0.003***
(10.196) (1.503) (1.397) (10.549)

k̄4
N 3.053*** 3.008***

(35.768) (35.091)
ρ̄Θ 0.010*** 0.006***

(7.734) (4.664)
k̄4
N × ρ̄Θ 1.361***

(26.418)
RMSE 0.004 0.008 0.003 0.004
Adjusted R2 61.2% 21.2% 72.8% 61.6%
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Table 7.2: Continued
3 Months to Maturity

(1) (2) (3) (4)
Constant -0.003*** -0.017*** 0.002*** -0.018***

(20.459) (35.627) (23.058) (85.064)
σ̄2
N 0.591*** 0.482***

(122.801) (140.735)
ρ̄Σ 0.074*** 0.044***

(65.199) (79.978)
σ̄2
N × ρ̄Σ 0.915***

(198.379)
RMSE 0.006 0.009 0.004 0.004
Adjusted R2 76.1% 47.2% 92.8% 89.8%

Constant < 0.01%*** 0.006*** -0.001*** 0.006***
(2.583) (18.978) (6.579) (22.187)

s̄3N 0.568*** 0.434***
(35.934) (27.486)

ρ̄Γ -0.043*** -0.032***
(34.051) (25.207)

s̄3N × ρ̄Γ 1.438***
(44.105)

RMSE 0.004 0.007 0.003 0.005
Adjusted R2 61.4% 29.6% 79.1% 60.7%

Constant -0.001*** -0.005*** < 0.01% -0.007***
(3.624) (11.643) (1.276) (16.508)

k̄4
N 0.359*** 0.272***

(23.631) (18.071)
ρ̄Θ 0.064*** 0.052***

(26.646) (21.714)
k̄4
N × ρ̄Θ 1.434***

(32.849)
RMSE 0.004 0.006 0.003 0.004
Adjusted R2 60.5% 33.0% 78.5% 68.6%
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Table 7.2: Continued
6 Months to Maturity

(1) (2) (3) (4)
Constant -0.005*** -0.044*** 0.005*** -0.043***

(11.178) (49.119) (20.058) (73.624)
σ̄2
N 0.626*** 0.431***

(86.410) (78.345)
ρ̄Σ 0.153*** 0.103***

(83.855) (75.830)
σ̄2
N × ρ̄Σ 0.869***

(129.499)
RMSE 0.016 0.016 0.012 0.011
Adjusted R2 61.1% 59.7% 97.9% 82.4%

Constant 0.004*** 0.016*** 0.001*** 0.021***
(5.597) (18.069) (2.440) (23.594)

s̄3N 0.744*** 0.533***
(28.995) (21.121)

ρ̄Γ -0.088*** -0.070***
(33.479) (26.578)

s̄3N × ρ̄Γ 1.766***
(45.453)

RMSE 0.004 0.007 0.004 0.004
Adjusted R2 65.0% 29.1% 70.3% 66.0%

Constant -0.007*** -0.022*** -0.005*** -0.031***
(5.791) (17.136) (5.956) (22.488)

k̄4
N 0.481*** 0.310***

(22.787) (15.515)
ρ̄Θ 0.165*** 0.145***

(36.212) (31.477)
k̄4
N × ρ̄Θ 1.661***

(48.350)
RMSE 0.004 0.008 0.003 0.004
Adjusted R2 69.9% 21.6% 73.0% 65.4%
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second moments with the R2 being 63.9% and 61.2% for the third and fourth

moments.

The average correlations alone do not act as good estimators in explaining

the market index moments either, with R2 to be 37.9%, 23.9%, and 21.2%

respectively for the second, third and fourth moments. The linear combination

of the average moments and the average correlations have done a fairly

good job, explaining roughly more than 60% of the market index moments

but still underperform the product of the average moments and the average

correlations. Not surprisingly, moving from the second moments to third and

fourth moments, the explanatory power for all of the potential independent

variables drops gradually. It can be explained by the complex structures of

the co-moments matrix in the higher dimensional and the higher dimensional

correlations are approximations of the exact correlations. As the time to

maturity increase, the explanatory power of the product of the average

moments and the average correlations and that of the average moments alone

also increase but that of the average moments decrease, which indicates that

the time-varying average correlations play an important role in the long term.

Overall, the exercise demonstrates that the moments of the market

portfolio can be decomposed into average moments and average correlations

as shown in Equation 7.33. Both the value-weighted average moments and

the option-implied average correlations play important role in explaining the

variation of the market index moments. The value-weighted average moments

dominate in the short run while in the longer time to maturity, the time-

varying average correlations show significant explanatory power.

7.7 Concluding Remarks

Motived by the growing literature on utilising the option-implied moments

and co-moments to explain the cross-sectional stock returns, I introduce a set

of ex ante measures to map the higher dimensional market average correlations

based on the higher order moments and co-moments extracted from options

written on the market index and individual components stocks. In particular,

the quadratic, cubic, and quartic option-implied average correlations are
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measures of the levels of diversification in the market portfolio from different

dimensions. The validity of the diagonal decomposition of the co-moments

tensors is demonstrated empirically by regression-based analyses, which shows

that both the value-weighted average moments and the option-implied average

correlations play significant roles in explaining the variation of the market

index moments.

The future research will obvious be exploring the information content

of the ex ante cross sectional correlation measures. In the next chapter, I

demonstrate the applications of the higher dimensional option-implied average

correlations in risk management and empirical asset pricing.

189



Chapter 8

The Information Content of

Higher Dimensional

Option-implied Average

Correlations: Measuring

Diversification Risk and Cross

Sectional Asset Pricing

8.1 Introduction

This chapter intensively investigates the information content of the higher

dimensional option-implied average correlations introduced in Chapter 7.

The empirical analyses on the higher dimensional option-implied average

correlations are based on two strands of papers. One strand lies in the

literature on correlation risks. Various literature have documented evidence

that the correlation risk is not only priced in equity market and option market

but also shows forecasting ability for the future market aggregated risks, see

for example Driessen et al. [2009], Krishnan et al. [2009], Buraschi et al. [2010],

Pollet and Wilson [2010], Markopoulou et al. [2016].
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The option-implied average correlations provide a time-varying forward

looking benchmark of the market risks, see for example Driessen et al. [2009]

and Driessen et al. [2013]. Specifically, the conventional quadratic correlation

shows the market-wide diversification level of the individual risky assets’

returns in the market, a higher quadratic correlation implies the returns of

the individual risky assets are correlated with each other. The conventional

quadratic correlation implies the tendency among the assets in the market

and the higher dimensional correlations provide the movement tendency of

the assets in the situation when the market undergoes extreme positive or

negative deviations.

Another main strand of literature is on the role of the risk-neutral

moments in explaining cross-section expected stock returns. Contrary to the

conventional CAPM intuition, recent studies by Ang et al. [2006], Chang et al.

[2013], Conrad et al. [2013] demonstrate that the risk-neutral moments risks

of either the market or the individual stocks are priced in cross sectional stock

expected returns.

Standing questions in asset pricing factor models is (a) whether

diversification risk is priced separately from the index benchmark and (b)

what is the main property of the co-dependency of asset returns that is priced

by investors? The capital asset pricing model (CAPM) and more sophisticated

asset pricing models look at co-dependency solely in terms of an individual

asset versus the factor. However, most common asset pricing models such

as the Fama and French [1993], Carhart [1997] and Pastor and Stambaugh

[2003] still do not capture all of the dependency structure between the cross

section of asset returns.

A cottage of literature has been built up regarding the pricing puzzles

that the traditional asset pricing model fails to explain in cross section

stock returns. Along with the growing popularity of the option markets,

a growing literature has been built up on investigating the relation between

the risk-neutral factors extracted from option prices and the cross section

stock returns. Unlike the factors extracted from the historical time-series,

the risk-neutral factors implied by option prices are genuinely conditional and

forward-looking. Vast studies document empirical evidence showing that both
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the market volatilities, skewness, and kurtosis extracted from the individual

equity options play important role in explaining and forecasting cross section

stock returns, see Chang et al. [2013], Conrad et al. [2013], Lopez Aliouchkin

[2015], and Bali et al. [2015] for the most recent examples.

In addition to the risk-neutral moments and co-moments, Skintzi and

Refenes [2005] proposes an approach for extracting the option-implied

correlations from the option prices of the individual stocks and the market

index. Driessen et al. [2009] provide a stochastic correlation model to estimate

the price of the correlation risk premium. The following work by Krishnan

et al. [2009] and Driessen et al. [2013] document significant evidence that

the option-implied average correlations have remarkable explanatory power

for the variance premium. Specifically, my main focus is on investigating the

relation between the option-implied average correlations and cross section

stock returns. Simple ordinary least square regression analyses indicates

that stocks with high exposure to the option-implied average correlations

yield higher expected returns. I then form quintile portfolios by sorting

individual stocks on their exposure to the option-implied average correlations

respectively.

An aggregated market average correlation factor is formed by the average

of the expected returns of the portfolios for each of the quintile portfolios. I

examine the explanatory power of the market average correlation factor by

performing a series of time-series regressions on the expected returns of the

sector portfolios. I find the market average correlation factor largely increase

the model fitting of the risk-adjusted models and maintain significance across

different sectors. The risk premium of the market average correlations is

further explored by performing the Fama and MacBeth [1973] cross-sectional

regression across all individual stocks. The market average correlation

factor reveals a significant positive risk premium after controlling other firm

characteristic factors and existing risk factors.

The remainder of this chapter is organised as follows: Section 8.2 briefly

describes the data and the construction of the independent variables. Various

empirical analyses on the option-implied average correlations are performed

in Section 8.3. I check the robustness of our empirical results in Section 8.4
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and Section 8.5 concludes this chapter.

8.2 Data and Variables

In this section I first describe the datasets used in the empirical analyses. I

then list the control variables that are proposed in prior empirical studies

related to the cross-sectional variation in stock returns and illustrate the

estimation procedures.

8.2.1 Data

The cross-sectional dataset for the empirical analyses is formed by merging

three separate data sources. The higher dimensional option-implied average

correlations are estimated as described in Section 7.3 in Chapter 7. In parallel

to the high-frequency option data panel, I obtain the cross section stock

returns and firm characteristic data for the same sample from the CRSP.

Specifically, the close price, trading volume, number of outstanding shares,

and adjusted return for each stock in my sample are stored at daily frequency.

To construct the book-to-market ratio, I get the annually accounting data for

each stock from Compustat. The Fama-French 3-factor portfolios data source

is Kenneth French’s web site at Dartmouth.1

The main focus in this chapter is to investigate the information contents

of the option-implied average correlations in explaining the cross-sectional

stock returns. To guard against some of the effects and anomalies in the prior

empirical studies, I explicitly control for the most popular existing explanatory

variables mentioned in the recent literature.

8.2.2 Firm-specific Control Variables

This part lists the firm-specific control variables calculated using firm-specific

information, which act as the idiosyncratic factors in the later cross-sectional

regressions.

1Source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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Market capitalisation – SIZE Following Bali et al. [2016], we control

the market capitalisation for stock i with the firm characteristics factor SIZE,

which is defined as the natural log of the market capitalisation such that:

SIZEi,t,τj =
1

τj

τj∑
t=1

log

(
|Si,t × SHROUTi,t|

10000

)
(8.1)

where Si,t is the stock price and SHROUTi,t represents the number of

outstanding shares for equity i at day t. τj is the jth tenor consistent with

the option data panel as defined before in days.

The data of the number of outstanding shares and the stock prices are

from the CRSP daily stock file. Because the number of shares in CRSP

is recorded in thousands of shares, the division by 1000 indicated that the

market capitalisation is in millions of dollars. The absolute values is taken

to account for the fact that CRSP reports a negative value price when the

reported value is calculated as the average of a bid and ask price. When either

the SHROUTi,t or Si,t are missing or set to zero, we take the SIZEi,t,τj to be

missing.

Book-to-Market Ratio – BM The book-to-market ratio (BM) for equity

i is defined as the book value of the equity (BE) divided by the market

capitalisation of the equity (ME),

BMi,t =
BEi,t

MEi,t

(8.2)

The book value of a company is released in the accounting data on a fiscal

year pattern, thus to ensure the book-to-market information is available prior

to the returns information, we follow Fama and French [1992] to calculate

the book-to-market ratio in June of year y as the ratio of the book value

of common equity in fiscal year y − 1 to the market value of the equity in

December of year y − 1.

Calculation of the book value of common equity is done from balance sheet

data provided by Compustat’s North America Fundamentals Annual file. The
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book value of the common equity is defined as:

BEi,t = SEQi,t + TXDBi,t + ITCBi,t − BVPSi,t (8.3)

where SEQi,t is the book value of the shareholders’ equity, which is adjusted

for tax effects by adding TXDBi,t, the deferred taxes, and ITCBi,t, the

investment tax credit to it. The book value of preferred stock (BVPSi,t) is then

subtracted to obtain the book value of the common equity BEi,t. Following

the suggestions given in Bali et al. [2016], the book value of preferred stock

(BVPSi,t) is backed by the following:

BVPSi,t =



PRTKRV, if available

PSTKL, if available and PRTKRV not available

PSTK, if available and PRTKRV, PSTKL not available

0, otherwise.

(8.4)

where PRTKRV, PSTKL, and PSTK are the redemption value, the

liquidating value, and the par value, respectively. If either the book value

of the shareholders’ equity SEQ or the deferred taxes TXDB is missing, the

book value of common equity is not calculated and the calculation of the

book-to-market ratio then fails. If investment tax credit ITCB is missing, it

is taken to be zero. In some case, the calculation of the BE can be negative

and I take these observations to be missing to avoid negative book-to-market

ratio.

Realised Co-skewness and Co-kurtosis – CSK & CKT Following Ang

et al. [2006], the ‘downside risk’ has been captured by the realised co-skewness

and co-kurtosis measures such that:

CSKi,t,τj =

1
τj

∑τj
t=1

(
Ri,t − E[Ri,τj ]

) (
Rm,t − E[Rm,τj ]

)2√
1
τj

∑τj
t=1

(
Ri,t − E[Ri,τj ]

)2
(

1
τj

∑τj
t=1

(
Rm,t − E[Rm,τj ]

)2
) (8.5)
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and

CKTi,t,τj =

1
τj

∑τj
t=1

(
Ri,t − E[Ri,τj ]

) (
Rm,t − E[Rm,τj ]

)3√
1
τj

∑τj
t=1

(
Ri,t − E[Ri,τj ]

)2
(

1
τj

∑τj
t=1

(
Rm,t − E[Rm,τj ]

)2
)3/2

(8.6)

where Ri,t and Rm,t are the ith equity and market portfolio return at day t

and E[Ri,τj ] and E[Rm,τj ] are the average return of the ith equity and market

portfolio over the period τj.

Realised Skewness and Kurtosis – RSK & RKT I construct the

realised skewness and kurtosis measures for stock i at day t over period τj

following Amaya et al. [2015] from the high frequency spot prices data as:

RSKi,t,τj =
1

τj

τj∑
t=1

√
L
∑L

l=1R
3
i,t,l(∑L

l=1R
2
i,t,l

)3/2
, (8.7)

and

RSKi,t,τj =
1

τj

τj∑
t=1

√
L
∑L

l=1R
4
i,t,l(∑L

l=1R
2
i,t,l

)2 . (8.8)

where Ri,t,l is the lth intraday return for stock i at day t and L is the total

number of the tick times over a day.

Following the convention in the literature in intraday realised volatility

(see Andersen et al. [2003]) and Amaya et al. [2015], I calculate the realised

skewness and kurtosis by resample the one-minute data into five-minute

interval. For the trading day from 9:45 A.M. to 4:00 P.M. (ET), I have

L = 75. The realised skewness and kurtosis over period τj are then calculated

as the average of the daily realised skewness and kurtosis over the period.

Idiosyncratic Volatility – IDIO As defined in Ang et al. [2006], the

idiosyncratic volatility as a risk factor for stock i is calculated by the standard

deviation of the residuals εi from the Fama-French 3-factor regression such
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that:

Ri,t − rf,t = αi + βi(Rm,t − rf,t) + ξiSMBt + ψiHMLt + εi,t (8.9)

IDIOi,t,τj =
1

τi

τj∑
t=1

√
var(εi,t) (8.10)

where Ri,t, Rm,t, ff,t are the equity return, market return, and risk-free return

and SMBt and HMLt are the Fama-French size and book-to-market factors

at given day t.

Illiquidity – ILLIQ The illiquidity measure is constructed following the

method proposed by Amihud [2002] such that the illiquidity for stock i over

a specific period τj is measured as the average daily ratio of the absolute

stock return to the dollar trading volume over the period and to reduce the

skewness we take the natural logarithm:

ILLIQi,t,τj
=

1

τj

τj∑
t=1

log

(
|Ri,t|

Volumei,t × Si,t

)
(8.11)

where Ri,t, Volumei,t, and Si,t are the return, trading volume and price for

stock i at a given day t and τj is the jth tenor consistent with the option data

panel as defined before in days.

Reversal – REV Following Jegadeesh [1990] and Lehmann [1990], I control

the short-term reversal variable at the end of each month by the return over

the month such that:

REVi,M = Ri,M (8.12)

where Ri,M is the stock return at month m.

Momentum – MOM Following Jegadeesh and Titman [1993], I further

control the intermediate-term momentum variable at the end of each month

by the compound gross returns over the past 12 months, ignoring the most
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recent month such that:

MOMi,M =
∏

M∈[M−11:M−1]

(Ri,M + 1)− 1 (8.13)

where Ri,M represents the corresponding monthly return.

8.2.3 Portfolio-based Control Variables

This part provides the market common factors that formed based on

portfolios, which are the systematic risk factors and the same across the

market.

Market Factor – MKT The market factor is simply defined as the excess

return of the market portfolio. There are two commonly used proxies for the

market portfolio in empirical asset pricing research. The first one is the value-

weighted portfolio of all U.S. based common stocks in the CRSP database.

The second one is the CRSP value-weighted portfolio, which contains all

securities in the CRSP database, but excluding American Depository Receipts

(ADRs). The main difference between the two is that the later one contains

shares of firms that are not based in the U.S., closed-end funds, and other

securities that are not common stocks. As my sample is made up by the

S&P 500 index components, I use the first proxy for the market portfolio

and the daily and monthly excess return for the market portfolio is from the

Fama-French database on WRDS.

Stock Size Factor – SMB Proposed by Fama and French [1993] for the

portfolio analyses, the stock size factor SMB (small minus big) is meant to

mimic the risk factor in returns related to firm size and constructed by the

difference between the simple average of the returns on three small stock

portfolios and the simple average of returns on the three big-stock portfolios

at each month. The size factor SMB is the difference between the returns on

small and big stock portfolios with about the same weighted-average book-

to-market equity.
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Book-to-market Factor – HML The HML (high minus low) factor is

meant to mimic the risk factor in returns related to book-to-market equity, and

is constructed by the difference between the simple average of the returns on

the two high book-to-market equity portfolios and the average of the returns

on the two low book-to-market equity portfolios. Similar to the SMB, the two

portfolios are returns on high and low book-to-market equity portfolios with

about the same weighted-average size.

Momentum Factor – UMD The UMD (up minus down) factor is

proposed by Carhart [1997] to investigate the ability of momentum to explain

the persistence in mutual fund performance documented in the previous

empirical studies. In Carhart [1997], the UMD factor is constructed as the

equal-weighted average return of stocks in the top 30% of Mom portfolio minus

that of stocks in the bottom 30% of Mom portfolio, where the Mom portfolio

is formed by sorting the stocks by momentum.

Traded Liquidity Factor – LIQ Pastor and Stambaugh [2003] find

strong empirical evidence that stock-level sensitivity to innovations in an

aggregate liquidity factor plays an important role in determining expected

stock returns. Following the same spirits of Fama and French [1993] and

Carhart [1997], Pastor and Stambaugh [2003] form a long minus short liquidity

sensitivity portfolio, commonly referred as the traded liquidity factor, which

is constructed based on a regression procedure.

8.3 Empirical Identification of the Price of

Market Correlation Risk

In this section, I demonstrate the empirical identification of the price of market

correlation risk. In particular, Section 8.3.1 investigates the relation between

the higher dimensional option-implied average correlations and the market

risks, which is proxied by the CBOE Volatility Index (VIX). The application

of the higher dimensional option-implied average correlations in explaining
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the cross section stock returns is examined in Section 8.3.2. I form a market

average correlation factor based on the option-implied average correlations.

I document significant evidence showing that the market average correlation

factor is priced via both time-series regression on portfolios and cross-sectional

regression across stocks.

8.3.1 Measure Market Diversification Risk

As shown in Corollary 7.1, the option-implied average correlation provide

a measure of the diversification level across assets in the market portfolio.

Considerable evidence has been documented over the past decades that

correlations among assets are time varying. In particular, the correlations

increase during volatile periods as diversification opportunities are least

available when they are most needed, which is consistent with the dynamics

of the estimated higher dimensional option-implied average correlations as

displayed in Figure 7.8.

The CBOE Volatility Index (VIX) has often been referred to as the

‘fear index’ or the ‘fear gauge’, which provides a measure of the markets’t

expectation of stock market volatility in the next 30 days. VIX has been

widely used as an indicator of the market risks and various trading and

portfolio management strategies have been developed around the application

of VIX. The estimated option-implied average correlation is a benchmark of

the level of the diversification level in the market, I explore the information

content of the option-implied average correlation benchmark in explaining

and forecasting the market risk index via the following regression:

VIXt+∆h = α + β1ρ̄Σt + β2ρ̄Γt + β3ρ̄Θt + εt+h (8.14)

where h is the forecasting horizon. In this case, ∆h = 0 gives the

contemporaneous regression and ∆h = 5, 22, 66 represent the one-week,

one-month, and one-quarter ahead forecasting respectively.

Table 8.1 reports the contemporaneous and predictive regression results for

the relationship between the option-implied average correlations and market

risks. Recall that the option data is obtained from two separate data sources.

200



Chapter 8

Table 8.1: Option-implied Average Correlations and the Market Risks

Table 8.1 reports the contemporaneous and predictive regression results for the relationship
between the option-implied average correlations and the market risks. The market risks
are proxied by the daily CBOE VIX data. The dependent variable is the CBOE VIX and
the independent variables are our option-implied average correlations estimated from the
second, third, and fourth central moments of the index and single-name equity options,
namely, ρ̄Σ, ρ̄Γ, and ρ̄Θ. As the CBOE VIX is estimated based on the S&P 500 index
options with 30-day to maturity, we selectively use the one month to maturity option-
implied average correlations as the independent variables. The estimated coefficients (with
absolute value of the corresponding t-statistics in brackets underneath and *** indicates
the significance at 1% level, ** at 5%, and * at 10%. < 0.01% indicates the value is less
than 0.01%), the root mean squared error (RMSE), and the adjusted R2, and the number of
observations are listed for each regression. Regression (1) is a contemporaneous regression
between the CBOE VIX and the three option-implied average correlations. Regression (2),
(3), and (4) are the predictive regressions between the CBOE VIX and the option-implied
average correlations with forecasting horizons being 5 days (one week), 22 days (one month),
and 66 days (one quarter), respectively. Panel A is for the whole sample, from January
1, 1996 to January 1, 2015. Panel B is for the pre-OPRA period, from January 1, 1996
to November 30, 2009. Panel C is for the post-OPRA period, from December 1, 2009 to
January 1, 2015.

(1) (2) (3) (4)
(VIXt) (VIXt+5) (VIXt+22) (VIXt+66)

Panel A: Whole Sample (1996.01.01-2015.01.01)

Constant 0.019*** 0.026*** 0.065*** 0.129***
(5.702) (7.495) (16.470) (28.639)

ρ̄Σ,t 0.648*** 0.621*** 0.519*** 0.348***
(66.661) (60.812) (44.589) (26.022)

ρ̄Γ,t -0.256*** -0.238*** -0.242*** -0.196***
(25.356) (22.422) (19.867) (13.808)

ρ̄Θ,t -0.052*** -0.053*** -0.032*** -0.065***
(4.615) (4.543) (2.361) (4.203)

RMSE 0.057 0.060 0.068 0.078
Adjusted R2 54.1% 49.5% 34.6% 14.6%
No. of Obs. 4751 4747 4730 4686

Panel B: Pre OPRA (1996.01.01-2009.11.30)

Constant 0.024*** 0.030*** 0.062*** 0.127***
(6.459) (7.656) (13.920) (24.240)

ρ̄Σ,t 0.719*** 0.696*** 0.606*** 0.441***
(64.978) (59.806) (45.548) (28.558)

ρ̄Γ,t -0.258*** -0.236*** -0.223*** -0.162***
(19.524) (16.935) (14.034) (8.468)

ρ̄Θ,t -0.182*** -0.191*** -0.178*** -0.243***
(12.536) (12.527) (10.175) (11.974)

RMSE 0.057 0.060 0.069 0.079
Adjusted R2 58.9% 54.5% 40.8% 21.6%
No. of Obs. 3470 3466 3449 3405

Panel C: Post OPRA (2009.12.01-2015.01.01)

Constant -0.019*** -0.008* 0.055*** 0.088***
(4.333) (1.638) (6.585) (8.442)

ρ̄Σ,t 0.530*** 0.489*** 0.337*** 0.228***
(47.850) (37.864) (15.678) (8.470)

ρ̄Γ,t -0.227*** -0.205*** -0.209*** -0.041
(14.583) (11.332) (7.003) (1.085)

ρ̄Θ,t 0.455*** 0.456*** 0.447*** 0.142**
(16.553) (14.262) (8.401) (2.165)

RMSE 0.025 0.029 0.047 0.058
Adjusted R2 84.0% 78.6% 43.6% 17.1%
No. of Obs. 1281 1277 1260 1216
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Thus, I run the regressions using data over three sample periods, mainly the

whole sample period (January 1, 1996 to January 1, 2015), the pre-OPRA

sample period (January 1, 1996 to November 30, 2009), and the post-OPRA

sample period (December 1, 2009 to January 1, 2015). I use the CBOE VIX

index to proxy the market risks. As the CBOE VIX is calculated using the

out-of-money S&P 500 index options with 30-day to maturity, I selectively

use the one month to maturity option-implied average correlations as the

independent variables.

Regression (1) shows that the option-implied average correlations can

explain up to 84.0% of the variation in the VIX contemporaneously for the

post OPRA period while the explanatory power pre the OPRA period reduces

down to 58.9% and for the whole sample to 54.1%. The predictive power of

the option-implied average correlations of the market risks is investigated

in the predictive regressions (2), (3), and (4). For the post OPRA period,

the option-implied average correlations capture 78.6%%, 43.6%%, and 17.1%

variation of the CBOE VIX for one-week (VIXt+5), one-month (VIXt+22), and

one-quarter forecasting horizon (VIXt+66), respectively. 2

The sign of the estimated coefficients for the quadratic option-implied

average correlation is positive and significant across all sample periods for

both contemporaneous and predictive regressions while that for the cubic

and quartic option-implied average correlations is mixed across different

sample period. Intuitively, the quadratic option-implied correlation is the

diversification of the second moments (the variance) of the equities in the

market and the CBOE VIX is a measure of the implied volatility. Thus,

the VIX and quadratic correlation should move in the same direction such

that during the crisis period, the market volatility increase and the level

of diversification of the second moments of the equities decreases and the

quadratic correlation increases.

2Comparing the adjusted R2 for both the contemporaneous and predictive regressions
across the whole sample, pre OPRA sample, and post OPRA, the pre OPRA period
consistently shows lower explanatory power. Part of the reason is that the data on
individual equity options before the OPRA period are very thin and source from different
exchanges, which will cause ‘error in variable’ problem in the estimations of the option-
implied average correlations.
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The quartic option-implied correlation measures the diversification of

the fourth moments of the equities in the market, which can be viewed

as the ‘volatility of volatility’, hence, when the market volatility increases,

the quartic correlation should also go up, indicating the low diversification

level during volatile period. The cubic option-implied correlation captures

the diversification of the third moments. Various studies show that people

have opposite preference for the odd moments and even moments. Risk

aversion makes investors averse to the even moments but prefer the odd

moments, hence we expect the estimated coefficients of the cubic correlation

are negative, indicating that when market risks increase the diversification of

the equities third moments in fact also increase hence the cubic correlation

drops.

As the main focus in this section is to investigate the information content

of the higher dimensional option-implied average correlations in explaining the

market risk rather forecasting the future market volatility, I do not explore

more sophisticated volatility forecasting models, such as the heterogeneous

autoregressive (HAR) model introduced by Corsi [2009]. Also, the predictive

regression results reported in Table 8.1 are in sample results and the out-

of-sample exercise for using the higher dimensional option-implied average

correlations to forecast the future market volatility is beyond the subject of

the current work.

8.3.2 Construct The Market Average Correlation

Factor

In this section, I construct a market correlation factor (MAC) from the

higher dimensional average option-implied correlations. Following Chang

et al. [2013], I form the correlation portfolios based on the individual stock’s

risk exposures to different market correlation risks. Specifically, I construct

the market average correlation portfolios in the following procedure. I first

run a time-series regression between the individual stock’s excess return and
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the option-implied average correlations controlling the market excess return:

Ri,h − rf,h = ci + βMKT
i MKTh + βρΣ

i ρΣ,h + εh,

Ri,h − rf,h = ci + βMKT
i MKTh + βρΓ

i ρΓ,h + εh, (8.15)

Ri,h − rf,h = ci + βMKT
i MKTh + βρΘ

i ρΘ,h + εh.

The coefficients are estimated at each month using rolling overlapping

regressions of the daily excess returns for each of the individual stocks over

the past year on the daily market portfolio excess returns. At the end of

each month, I sort the individual stocks into five value-weighted portfolios

according to the estimated coefficients.

Table 8.2 reports the results of the univariate portfolio analyses of the

relation between the risk exposures of the option-implied average correlation

and the stock returns. The table shows the average sorted variable value,

average value of the other variables, value-weighted excess returns (in

percent), and the Fama-French-Carhart 4 factor (FFC4) alpha (in percent)

for each of the five decile portfolios as well as for the long-short zero-cost

portfolio that is long the 5th decile portfolio (high) and short the 1st decile

portfolio (low).

A persistent pattern can be observed across all three sets of the risk

exposure for the option-implied average correlations. Specifically, portfolios

with higher risk exposure to the option-implied average correlations (i.e.

Quintile 5) are expected to have higher excess returns than those with lower

risk exposure (i.e.Quintile 1). Moreover, the Newey and West [1987] adjusted

t-statistics in the parentheses show that the excess returns are also significant

different from zero.

Apart from the quintile portfolios, I also form the long-short zero-cost

portfolios that is long the 5th decile portfolio (highest exposure) and short

the 1st decile portfolio (lowest exposure) to investigate whether there is

a cross-sectional relation exists between the risk exposure of the option-

implied average correlations and the stock excess returns. The Newey and

West [1987] adjusted t-statistics confirm that the excess returns for the

difference portfolios across all three sets of the risk exposures are significant
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Table 8.2: Contemporaneous Univariate-sorted Portfolios on Option-implied
Average Correlation Risk Exposure

Table 8.2 reports the results of the univariate portfolio analyses of the relation between the
risk exposures of the option-implied average correlation and the stock returns. Monthly
portfolios are formed by sorting all individual stocks in the sample into quintile portfolios
using decile breakpoints calculated based on the given sort variables using all individual
stocks in our sample. The monthly risk exposures of the option-implied average correlations,

β̂ρΣ , β̂ρΓ , and β̂ρΘ , are estimated based on rolling window regressions (Equation 8.15) using
daily excess returns for each of the individual stocks and the market portfolio returns over
one year period. The table shows the average sort variable value, value-weighted excess
returns (in percent per month), and the Fama-French-Carhart 4 factor (FFC4) alpha (in
percent per month) for each of the 5 decile portfolios as well as for the long-short zero-cost
portfolio that is long the 5th decile portfolio (highest exposure) and short the 1st decile
portfolio (lowest exposure). Newey and West [1987] robust t-statistics, adjusted using six
lags, testing the null hypothesis that the average portfolio excess return or the FFC4 alpha
is equal to zero, are shown in parentheses. The whole sample period is from January 1,
1996 to January 1, 2015, with 228 monthly observations for 588 individual stocks included
in the S&P 500 index over the whole sample period. Panel A is sorted by the estimated risk
exposure of the quadratic option-implied average correlation, Panel B is sorted by that of
the cubic option-implied average correlation, and Panel C is sorted by that of the quartic
option-implied average correlation.

Panel A: Sorted by βρΣ

Quintile β̂ρΣ β̂ρΓ β̂ρΘ Rp FFC4 α
1 (Low) -2.287 -1.303 -1.564 0.331 -0.482

(0.761) (2.266)
2 -0.817 -0.423 -0.492 0.738 0.135

(2.410) (1.123)
3 -0.011 -0.001 0.024 0.832 0.320

(3.161) (3.065)
4 0.758 0.430 0.550 0.924 0.412

(3.151) (3.039)
5 (High) 2.000 1.142 1.495 1.151 0.624

(2.946) (2.497)
5-1 (High-Low) 4.287 2.445 3.059 0.820 0.706

(2.001) (2.670)
Panel B: Sorted by βρΓ

1 (Low) -1.245 -2.304 -1.756 0.602 -0.124
(2.394) (2.519)

2 -0.410 -0.810 -0.596 0.799 0.222
(2.609) (1.715)

3 -0.008 0.006 0.034 0.721 0.186
(2.673) (1.814)

4 0.408 0.787 0.640 0.915 0.395
(3.103) (2.904)

5 (High) 1.020 2.071 1.695 0.839 0.280
(2.179) (2.156)

5-1 (High-Low) 2.265 4.375 3.451 0.237 0.404
(2.562) (2.928)

Panel C: Sorted by βρΘ

1 (Low) -1.500 -1.663 -2.291 0.563 -0.168
(2.367) (2.795)

2 -0.471 -0.538 -0.781 0.720 0.151
(2.497) (1.280)

3 0.026 0.051 0.055 0.885 0.356
(3.274) (1.363)

4 0.482 0.566 0.867 0.928 0.418
(3.172) (3.152)

5 (High) 1.272 1.496 2.258 0.949 0.382
(2.419) (2.669)

5-1 (High-Low) 2.772 3.159 4.548 0.386 0.550
(2.022) (2.405)

205



Chapter 8

distinguishable from zero. The last columns of Panel A, B, and C report the

Fama-French-Carhart 4 factor (FFC4) alpha of the quintile portfolios as well

as the difference portfolios.

Insignificant FFC4 alpha indicates that the excess returns of the testing

portfolio can be explained by the market, size, value and momentum factors

given in Fama and French [1993] and Carhart [1997] and vice versa. There

are occasionally slight insignificant FFC4 alphas across Panel A, B, and C

for the quintile portfolios while those for the the difference portfolios show

persistent strong significance, suggesting that the excess returns for the long-

short zero-cost portfolios based on the risk exposure of the option-implied

average correlations cannot be explained by the market, size, value, and

momentum factors.

Given the evidence shown in Table 8.2, I construct a market average

correlation factor based on the three sets of different portfolios. Specifically,

for each set of correlation risk exposure I define the high and low portfolios

as the value-weighted average excess returns for the 5th quintile portfolio and

that of the 1st quintile portfolio, denoted by the pair {HρΣ
,LρΣ
}, {HρΓ

,LρΓ
},

and {HρΘ
,LρΘ
} for the quadratic, cubic, and quartic option-implied average

correlations respectively. The excess returns for the long-short zero-cost

portfolios between the high and low correlation risk exposure portfolios are

then expressed by:

LSρΣ,h = HρΣ,h − LρΣ,h,

LSρΓ,h = HρΓ,h − LρΓ,h, (8.16)

LSρΘ,h = HρΘ,h − LρΘ,h.

Recall that in Table 7.1, the three option-implied average correlations are

highly correlated with each other. Thus, instead of constructing three

correlation portfolios respectively, I construct the market average correlation

portfolio by the average of the three long-short zero-cost portfolios such that:

MACh =
1

3
LSρΣ,h +

1

3
LSρΓ,h +

1

3
LSρΘ,h. (8.17)
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The constructed market average correlation portfolio can be used as such a

risk-adjusted factor similar to the SMB, HML, and UMD factors introduced

in Fama and French [1992] and Carhart [1997].

8.3.3 Market Average Correlation Factor and

Expected Stock Returns

In the following, I first examine the performance of the market average

correlation factor with 11 sector portfolios by running a series of time-series

regressions, including the conventional CAPM, the Fama and French [1992]

three-factor (FF3), the Fama and French [1992] and Carhart [1997] four-factor

(FFC4), and FFC4 with the Pastor and Stambaugh [2003] traded liquidity

factor (LIQ).

The 588 individual companies are grouped into 11 sectors according

to the Global Industry Classification Standard (GICS), namely Energy,

Materials, Industrials, Consumer Discretionary, Consumer Staples, Health

Care, Financial, Information Technology, Utilities, Telecommunication

Services, and Real Estate. The monthly excess returns for each sector

portfolio are formed by the value-weighted average excess returns of all the

individual stocks in the sector at each month. For each sector p, I run a sets

of time-series regressions with the market average correlation factor (MAC):

Rp,h − rf,h = αp + βMKT
p MKTh + βMAC

p MACh + βZp Zh + εp, (8.18)

where Z stands for the control portfolio factors, including the Fama and

French [1992] firm size and value factors (SMB, HML), Carhart [1997]

momentum factor (UMD), and the Pastor and Stambaugh [2003] traded

liquidity factor (LIQ).

Table 8.3 reports the results for the time-series regressions between the

expected excess returns for aa sector portfolios and the market average

correlation factor controlling market portfolio factor controlling other market

risk factors, including the market portfolio (MKT), firm size (SMB), firm value

(HML), momentum (UMD), and liquidity (LIQ). In order to examine the role
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Table 8.3: Market Average Correlation Factor and Sectors Portfolio Returns

Table 8.3 reports the estimated coefficients with the robust t-statistics (in parentheses, ***
indicates the significance at 1% level, ** at 5%, and * at 10%. < 0.01% indicates the value
is less than 0.01%), the adjusted R2 and the root of mean standard errors (RMSE) for the time
series regressions with market average correlation factor across sectors classified by the Global
Industry Classification Standard (GICS). The null hypothesis is the alphas are joint zero. Panel
A to K display the results for the CAPM (MKT), Fama-French 3 factor (MKT, SMB, HML),
Fama-French-Carhart 4 factor (MKT, SMB, HML, UMD), and Fama-French–Carhart 4 factor and
the Pastor and Stambaugh traded liquidity factor (MKT, SMB, HML, UMD, LIQ) for different
sectors, respectively. The whole sample period is from January 1, 1996 to January 1, 2015, with
228 monthly observations for 588 individual stocks included in the S&P 500 index over the whole
sample period.

Panel A: Energy
(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.568** 0.589** 0.486** 0.485* 0.437* 0.440 0.291 0.298
(2.077) (2.112) (1.793) (1.749) (1.602) (1.575) (1.077) (1.086)

MKT 0.666*** 0.683*** 0.692*** 0.707*** 0.720*** 0.734*** 0.703*** 0.716***
(11.258) (11.519) (11.540) (11.813) (11.329) (11.580) (11.299) (11.563)

MAC 0.111** 0.132*** 0.130*** 0.120**
(2.136) (2.487) (2.446) (2.307)

SMB 0.016 0.048 0.003 0.035 < 0.01% 0.031
(0.195) (0.568) (0.038) (0.411) (0.001) (0.368)

HML 0.262*** 0.269*** 0.285*** 0.290*** 0.317*** 0.324***
(2.989) (3.026) (3.191) (3.215) (3.620) (3.663)

UMD 0.070 0.068* 0.065 0.064
(1.307) (1.287) (1.241) (1.234)

LIQ 0.225*** 0.232***
(3.456) (3.556)

R2 35.93% 38.49% 38.54% 41.11% 39.01% 41.58% 42.12% 44.91%
RMSE 4.094 4.050 4.028 3.981 4.021 3.975 3.926 3.869

Panel B: Industrials
(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.490*** 0.498*** 0.367*** 0.368*** 0.436*** 0.436*** 0.453*** 0.454***
(2.836) (2.740) (2.690) (2.582) (3.259) (3.126) (3.345) (3.223)

MKT 0.945*** 0.952*** 1.017*** 1.024*** 0.978*** 0.983*** 0.980*** 0.986***
(25.298) (24.658) (33.671) (33.260) (31.394) (31.060) (31.339) (31.015)

MAC 0.040 0.048** 0.051** 0.053**
(1.167) (1.754) (1.939) (1.986)

SMB -0.132*** -0.113*** -0.114*** -0.093** -0.113*** -0.093**
(3.215) (2.585) (2.835) (2.193) (2.823) (2.178)

HML 0.440*** 0.459*** 0.407*** 0.428*** 0.403*** 0.423***
(9.964) (10.049) (9.318) (9.489) (9.170) (9.335)

UMD -0.099*** -0.101*** -0.099*** -0.100***
(3.801) (3.821) (3.773) (3.796)

LIQ -0.027 -0.030
(0.816) (0.906)

R2 73.90% 74.16% 84.08% 84.58% 85.05% 85.58% 85.09% 85.64%
RMSE 2.586 2.638 2.029 2.047 1.970 1.984 1.972 1.985
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Table 8.3: Continued
Panel C: Materials

(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.533*** 0.533*** 0.356** 0.307** 0.433*** 0.385* 0.286 0.243
(2.239) (2.130) (1.701) (1.403) (2.078) (1.775) (1.415) (1.161)

MKT 0.960*** 0.968*** 1.016*** 1.023*** 0.971*** 0.977*** 0.955*** 0.958***
(18.636) (18.215) (21.896) (21.690) (20.015) (19.830) (20.490) (20.346)

MAC 0.049 0.094** 0.098*** 0.087**
(1.053) (2.235) (2.367) (2.214)

SMB 0.041 0.095* 0.061 0.117** 0.058 0.113**
(0.650) (1.414) (0.978) (1.766) (0.967) (1.781)

HML 0.560*** 0.593*** 0.524*** 0.556*** 0.556*** 0.590***
(8.268) (8.461) (7.692) (7.933) (8.489) (8.777)

UMD -0.111*** -0.117*** -0.116*** -0.121***
(2.719) (2.841) (2.971) (3.096)

LIQ 0.226*** 0.234***
(4.636) (4.708)

R2 60.58% 60.99% 70.21% 71.14% 71.16% 72.21% 73.71% 74.87%
RMSE 3.566 3.631 3.114 3.138 3.070 3.087 2.938 2.942

Panel D: Consumer Discretionary
(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.725*** 0.748*** 0.613*** 0.607*** 0.718*** 0.712*** 0.705*** 0.696***
(4.255) (4.176) (3.908) (3.692) (4.786) (4.562) (4.632) (4.408)

MKT 0.952*** 0.947*** 0.980*** 0.978*** 0.919*** 0.916*** 0.918*** 0.914***
(25.844) (24.869) (28.183) (27.604) (26.306) (25.861) (26.142) (25.684)

MAC -0.018 0.012 0.017 0.016
(0.526) (0.367) (0.571) (0.530)

SMB 0.062* 0.072* 0.090** 0.102** 0.090** 0.102**
(1.323) (1.438) (1.999) (2.149) (1.989) (2.135)

HML 0.342*** 0.362*** 0.293*** 0.313*** 0.296*** 0.317***
(6.741) (6.879) (5.972) (6.208) (5.987) (6.239)

UMD -0.151*** -0.157*** -0.152*** -0.157***
(5.154) (5.303) (5.160) (5.313)

LIQ 0.020 0.026
(0.554) (0.695)

R2 74.72% 74.76% 79.03% 79.46% 81.26% 81.89% 81.29% 81.93%
RMSE 2.552 2.601 2.334 2.358 2.211 2.219 2.215 2.222

Panel E: Consumer Staples
(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.711*** 0.643*** 0.693*** 0.638*** 0.665*** 0.613*** 0.689*** 0.635***
(4.276) (3.799) (4.574) (4.113) (4.361) (3.924) (4.461) (4.021)

MKT 0.443*** 0.453*** 0.502*** 0.506*** 0.518*** 0.521*** 0.520*** 0.524***
(12.309) (12.593) (14.964) (15.109) (14.564) (14.685) (14.596) (14.711)

MAC 0.099*** 0.077*** 0.076*** 0.077***
(3.115) (2.591) (2.550) (2.599)

SMB -0.247*** -0.216*** -0.254*** -0.223*** -0.254*** -0.222***
(5.435) (4.538) (5.562) (4.664) (5.549) (4.648)

HML 0.139*** 0.167*** 0.152*** 0.179*** 0.147*** 0.174***
(2.847) (3.364) (3.054) (3.546) (2.930) (3.423)

UMD 0.039* 0.038 0.040* 0.038*
(1.316) (1.274) (1.343) (1.297)

LIQ -0.037 -0.036
(0.986) (0.960)

R2 40.13% 43.08% 51.45% 53.67% 51.82% 54.02% 52.04% 54.22%
RMSE 2.490 2.456 2.252 2.226 2.249 2.223 2.249 2.223
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Table 8.3: Continued
Panel F: Health Care

(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.774*** 0.725*** 0.783*** 0.757*** 0.747*** 0.724*** 0.822*** 0.801***
(4.463) (3.987) (4.646) (4.254) (4.405) (4.048) (4.857) (4.512)

MKT 0.569*** 0.569*** 0.607*** 0.604*** 0.628*** 0.623*** 0.636*** 0.633***
(15.158) (14.709) (16.249) (15.731) (15.885) (15.340) (16.295) (15.818)

MAC 0.040 0.015 0.013 0.019
(1.165) (0.442) (0.394) (0.570)

SMB -0.195*** -0.192*** -0.205*** -0.201*** -0.203*** -0.199***
(3.854) (3.527) (4.025) (3.681) (4.053) (3.704)

HML 0.034 0.046 0.051 0.061 0.035 0.043
(0.625) (0.801) (0.921) (1.052) (0.629) (0.748)

UMD 0.052* 0.048* 0.054** 0.051*
(1.565) (1.430) (1.667) (1.529)

LIQ -0.114*** -0.126***
(2.798) (2.982)

R2 50.41% 50.43% 54.20% 54.14% 54.69% 54.58% 56.24% 56.44%
RMSE 2.597 2.641 2.507 2.552 2.499 2.546 2.462 2.500

Panel G: Financials
(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.401 0.423 0.119 0.123 0.249 0.250 0.400** 0.402**
(1.313) (1.308) (0.547) (0.533) (1.183) (1.126) (1.968) (1.887)

MKT 1.092*** 1.096*** 1.224*** 1.230*** 1.149*** 1.154*** 1.166*** 1.174***
(16.558) (15.963) (25.402) (24.779) (23.444) (22.891) (24.839) (24.451)

MAC -0.013 0.020 0.027 0.038
(0.209) (0.458) (0.633) (0.945)

SMB -0.134*** -0.129** -0.100** -0.093** -0.096** -0.088*
(2.049) (1.833) (1.582) (1.363) (1.600) (1.362)

HML 0.954*** 0.969*** 0.893*** 0.909*** 0.859*** 0.873***
(13.561) (13.140) (12.984) (12.667) (13.007) (12.750)

UMD -0.187*** -0.190*** -0.182*** -0.185***
(4.555) (4.520) (4.633) (4.641)

LIQ -0.233*** -0.250***
(4.735) (4.927)

R2 54.81% 54.91% 77.56% 77.86% 79.47% 79.82% 81.35% 81.92%
RMSE 4.569 4.691 3.234 3.303 3.101 3.160 2.962 2.999

Panel H: Information Technology
(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.884*** 0.955*** 1.057*** 1.155*** 1.161*** 1.250*** 1.131*** 1.216***
(3.594) (3.697) (4.979) (5.222) (5.564) (5.755) (5.352) (5.541)

MKT 1.272*** 1.275*** 1.197*** 1.198*** 1.138*** 1.141*** 1.134*** 1.136***
(23.913) (23.223) (25.454) (25.123) (23.415) (23.126) (23.263) (22.967)

MAC -0.050 -0.077** -0.073** -0.075**
(1.033) (1.825) (1.753) (1.811)

SMB 0.053 0.032 0.080 0.059 0.079 0.058
(0.831) (0.469) (1.281) (0.892) (1.270) (0.876)

HML -0.576*** -0.606*** -0.625*** -0.651*** -0.618*** -0.643***
(8.390) (8.562) (9.167) (9.274) (9.014) (9.110)

UMD -0.149*** -0.143*** -0.150*** -0.144***
(3.656) (3.476) (3.678) (3.502)

LIQ 0.046 0.056
(0.893) (1.070)

R2 71.67% 72.23% 79.36% 80.31% 80.52% 81.38% 80.59% 81.49%
RMSE 3.683 3.750 3.158 3.172 3.074 3.092 3.076 3.091
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Table 8.3: Continued
Panel I: Telecommunication Services

(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.049 0.152 0.127 0.308 0.209 0.379 0.186 0.352
(0.165) (0.498) (0.433) (1.029) (0.712) (1.262) (0.627) (1.157)

MKT 0.658*** 0.653*** 0.686*** 0.677*** 0.639*** 0.635*** 0.637*** 0.632***
(10.296) (10.088) (10.590) (10.473) (9.360) (9.305) (9.279) (9.209)

MAC -0.129*** -0.186*** -0.183*** -0.185***
(2.257) (3.241) (3.194) (3.219)

SMB -0.266*** -0.328*** -0.244*** -0.308*** -0.245*** -0.308***
(3.026) (3.574) (2.781) (3.347) (2.782) (3.351)

HML -0.166** -0.224*** -0.205*** -0.257*** -0.200*** -0.250***
(1.758) (2.328) (2.139) (2.643) (2.072) (2.559)

UMD -0.118*** -0.106** -0.119*** -0.107**
(2.063) (1.859) (2.072) (1.871)

LIQ 0.035 0.045
(0.480) (0.616)

R2 31.93% 34.85% 34.81% 38.94% 36.03% 39.92% 36.10% 40.03%
RMSE 4.427 4.423 4.352 4.302 4.320 4.277 4.328 4.284

Panel J: Real Estate
(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 1.458*** 1.513*** 1.177*** 1.117*** 1.343*** 1.278*** 1.324*** 1.257***
(4.399) (4.321) (4.051) (3.646) (4.758) (4.306) (4.626) (4.183)

MKT 0.849*** 0.842*** 0.855*** 0.860*** 0.760*** 0.764*** 0.758*** 0.761***
(11.851) (11.320) (13.291) (13.021) (11.561) (11.332) (11.472) (11.233)

MAC -0.052 0.060 0.068 0.067
(0.791) (1.019) (1.205) (1.174)

SMB 0.454*** 0.494*** 0.497*** 0.540*** 0.497*** 0.540***
(5.204) (5.270) (5.882) (5.955) (5.866) (5.936)

HML 0.765*** 0.803*** 0.687*** 0.727*** 0.691*** 0.732***
(8.137) (8.187) (7.444) (7.584) (7.431) (7.578)

UMD -0.239*** -0.241*** -0.240*** -0.242***
(4.333) (4.288) (4.335) (4.291)

LIQ 0.028 0.034
(0.410) (0.480)

R2 38.33% 38.40% 53.67% 54.36% 57.27% 58.04% 57.30% 58.08%
RMSE 4.964 5.081 4.321 4.395 4.159 4.224 4.167 4.232

Panel K: Utilities
(1) (2) (3) (4) (5) (6) (7) (8)

Alpha 0.675*** 0.564*** 0.566*** 0.441** 0.537** 0.415** 0.439** 0.330*
(2.765) (2.263) (2.474) (1.897) (2.324) (1.771) (1.905) (1.409)

MKT 0.315*** 0.320*** 0.375*** 0.380*** 0.392*** 0.395*** 0.381*** 0.384***
(5.969) (6.051) (7.403) (7.573) (7.285) (7.420) (7.154) (7.281)

MAC 0.118*** 0.130*** 0.128*** 0.122***
(2.528) (2.907) (2.875) (2.763)

SMB -0.096* -0.070 -0.103* -0.077 -0.106* -0.080
(1.396) (0.986) (1.496) (1.081) (1.548) (1.133)

HML 0.383*** 0.410*** 0.397*** 0.422*** 0.418*** 0.442***
(5.177) (5.508) (5.257) (5.569) (5.587) (5.878)

UMD 0.042 0.038 0.039 0.036
(0.929) (0.861) (0.866) (0.809)

LIQ 0.150*** 0.141***
(2.682) (2.531)

R2 13.62% 15.78% 25.79% 29.15% 26.08% 29.40% 28.40% 31.50%
RMSE 3.653 3.618 3.401 3.334 3.402 3.336 3.356 3.294
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of the aggregated market correlation portfolio, we compare the results for each

of the conventional factor models with and without the market aggregated

market correlation portfolio separately.

At a glance, the results are quite mixed across different sectors, which

is similar to the inconsistent performance of the other portfolio factors in

the literature. In fact, across the sector portfolios, 7 out of 11 sectors show

consistent significance for the market aggregated factor controlling different

sets of market risk factors. For example, for Energy sector, the inclusion

of the market average correlation factor largely increase the model fitting of

the FFC4 and LIQ model with 2.79% increase of R2 and the estimated α

is insignificant from zero. The estimated coefficients of MAC also report a

positive relation between the excess returns for the Energy sector portfolio

and the aggregated correlation factor. However, the performance of the

aggregated correlation factor in some sectors are very poor and fails to show

any significance, such as the Financial sector in Panel G.

An interesting pair of sectors is the Consumer Discretionary (Panel D)

and Consumer Staples (Panel E). Though both sectors are composed by

companies focusing on individual consumer products, the Discretionary stock

companies provide services and products that consumers find non-essential

while Staple stocks involve products and services essential for day-to-day

living. Thus, the Consumer Discretionary sector portfolio earns a much

higher market beta than the Consumer Staples sector. Interestingly, the

market average correlation factor maintain significant and largely increases

the model-fitting of the FFC4 factor model with a 2.22% increase in R2 for

the Consumer Staples sector portfolio while performs very poorly for the

Consumer Discretionary sector portfolio.

It is not surprise that the performance of the market average correlation

factor varies across different sectors. As currently, the higher dimensional

option-implied average correlations are extracted from the S&P 500 index and

all the components stocks, however, the weights of different sectors in the are

unbalanced. Thus, the performance of the market average correlation factor

is not universe across different sectors. In fact, the mixed results inspires us

to further investigate the sector average correlations utilising the exchange-
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traded Selected Sector SPDR ETFs index and the options written on the

ETFs in the future work.3

After examining the performance of the market average correlation factor

in risk-adjusted factor pricing models across the time-series regressions, I

proceed now to further explore the relation between the risk premium of the

market average correlation factor and cross section stock returns utilising the

Fama and MacBeth [1973] methodology. Specifically, I first run the time-series

regressions between the excess expected returns for each individual stocks

and the market portfolio (MKT) and the market average correlation portfolio

(MAC) to collect the estimated factor loadings with a rolling window of one

year at monthly frequency:

Ri,h − rf,h = αi + βMKT
i MKTi,h + βMAC

i MACi,h + εi (8.19)

I then run the cross-sectional regression at each month with the estimated

factor loadings for the market factor, i.e. β̂MKT
i and β̂MAC

i , together with the

set of firm-specific characteristic factors as control variables:

E[Ri,h]− rf,h = λ0 + λMKT
h β̂MKT

i + λMAC
h β̂MAC

i + λZt Zi + εh (8.20)

where Zi represents the firm-specific idiosyncratic factors, namely, the

logarithm of firm size (SIZE), book-to-market ratio (BM), momentum

(MOM), short-term reversal (REV), idiosyncratic volatility (IDIO), realised

skewness (RSK), realised kurtosis (RKT), co-skewness (CSK), co-kurtosis

(CKT), and liquidity (ILLIQ). The details of the calculations for these

controlled variables are given in Section 8.2.2. The final estimated coefficients

are calculated by the time-series average of the periodic cross-sectional

regression coefficients and the standard errors and the associate t-statistics

are adjusted following Newey and West [1987].

Table 8.4 summarise the results of Fama and MacBeth [1973] cross-

sectional regression analyses of relation between expected stock returns and

the risk premium of the market average correlation portfolio. The univariate

3Readers who are interested in this are welcome to contact the author for further
information on the work on sectors average correlations.
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Table 8.4: Fama-MacBeth Regression Analyses on Market Average
Correlation Portfolio

Table 8.4 reports the results of Fama and MacBeth [1973] cross-sectional regression analyses
of relation between expected stock returns and the market average correlation portfolio.
Panel A presents the univariate regressions results between the expected stock returns and
the each of the independent variables and control variables. Each raw in Panel B displays
results for a different cross-sectional regression specification. The dependent variable in
all specifications is the monthly expected excess stock return. The independent variables
are indicated in the first row. The independent variables are indicated in the first row.
Following Bali et al. [2016], the firm-specific variables are winsorized at the 0.5% level.
The dependent variable, i.e. stock excess expected returns, is in percent unit. The table
presents average estimated coefficients along with the absolute value of the t-statistics (in
parentheses, *** indicates the significance at 1% level, ** at 5%, and * at 10%. < 0.01%
indicates the value is less than 0.01%), adjusted following Newey and West [1987] using six
lags, testing the null hypothesis that the average coefficient is equal to zero. The whole
sample period is from January 1, 1996 to January 1, 2015, with 228 monthly observations
for 588 individual stocks included in the S&P 500 index over the whole sample period.

Panel A: Univariate Regressions

βMKT βMAC SIZE BM MOM REV
0.433 0.201 -0.105 0.001 0.070 0.614
(6.288) (2.425) (3.381) (0.319) (2.764) (2.813)

Panel B: Multivariate Regressions

βMKT βMAC SIZE BM MOM REV
(1) 0.212*** -0.013 < 0.01% 0.055*** 0.229***

(3.486) (0.278) (0.241) (6.131) (6.890)
(2) 0.102*** -0.040 < 0.01% 0.055*** 0.226***

(2.676) (0.832) (0.003) (6.115) (6.764)
(3) 0.472*** 0.194*** -0.078*** < 0.01%

(6.824) (2.766) (2.536) (0.255)
(4) 0.496*** 0.214*** -0.061*** 0.001* 0.071***

(11.502) (4.902) (3.169) (1.312) (3.177)
(5) 0.487*** 0.223*** -0.076*** 0.001* 0.053*** 0.238***

(11.738) (5.310) (4.095) (1.480) (4.951) (6.882)
(6) 0.217*** 0.148*** 0.011 < 0.01% 0.071***

(3.887) (3.466) (0.522) (0.040) (3.766)
(7) 0.494*** 0.211*** -0.062*** 0.001* 0.071***

(11.421) (4.806) (3.228) (1.320) (3.133)
(8) 0.490*** 0.203*** -0.050*** 0.001* 0.071***

(11.376) (4.625) (2.509) (1.439) (3.193)
(9) 0.491*** 0.214*** -0.065*** 0.001* 0.072***

(11.414) (4.929) (3.395) (1.375) (3.313)
(10) 0.584*** 0.157*** -0.004 0.001 0.071***

(12.897) (3.574) (0.186) (0.991) (3.949)
(11) 0.493*** 0.214*** -0.085** 0.001* 0.071***

(11.347) (4.911) (1.750) (1.390) (3.186)
(12) 0.328*** 0.126*** -0.018 0.001 0.054*** 0.234***

(5.209) (3.056) (0.394) (0.623) (6.373) (7.184)
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Table 8.4: Continued
Panel A: Univariate Regressions

IDIO RSK RKT CSK CKT ILLIQ
0.385* -1.579** 0.015*** -0.871 -0.275*** 0.084***
(1.283) (2.257) (3.183) (1.073) (2.363) (2.770)

Panel B: Multivariate Regressions
IDIO RSK RKT CSK CKT ILLIQ

(1) -0.313*** -0.038 0.006*** 1.737*** -0.296*** -0.047
(5.349) (0.090) (2.059) (3.730) (3.278) (1.053)

(2) -0.423*** 0.066 0.005** 1.664*** -0.052 -0.066*
(4.101) (0.156) (1.751) (3.557) (0.659) (1.460)

(3)

(4)

(5)

(6) -0.312***
(4.472)

(7) -0.348
(0.805)

(8) 0.007**
(2.144)

(9) 1.035**
(2.120)

(10) -0.447***
(5.299)

(11) -0.026
(0.551)

(12) -0.230*** 0.039 0.005** 1.683*** -0.322*** -0.040
(5.203) (0.093) (1.769) (3.688) (3.648) (0.920)
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regression results in Panel A show that the market average correlation factor

earns a positive significant risk premium as expected. The significant positive

risk premium of the market average correlation factor is consistent with the

univariate portfolio sorting analyses in Table 8.2 that stocks with higher

exposure to the market correlation risk outperform the stocks with lower

exposure to the correlation risks.

The results of the multivariate regressions are summarised in Panel B.

Specifically, Regression (1) and (2) regress the market portfolio (CAPM) and

the market average correlation factor independently along with all of the

controlled variables on the excess stock returns. Regression (3) tests the joint

significance of the market average correlation factor with the three risk factors

in Fama and French [1992] (FF3) while Regression (4) further examines the

joint significance of the MAC together with the momentum factor (FFC4) as

suggested in Carhart [1997]. It can be seen that the market average correlation

factor consistently show positive significant coefficients across CAPM, FF3,

and FFC4.

Regression (5) to (11) further investigate that whether the market

average correlation can be explained by the firm-specific characteristic factors

that are well-documented in the recent literature. Again, the market

average correlation factor survives through the multivariate regressions with

independent controlling variables. Finally, the joint significance of the market

average correlation factor and all the firm-specific characteristic factors are

confirmed in Regression 12.

To summarise, I investigate the information content of the higher

dimensional option-implied average correlations via a series of empirical

analyses. Specifically, I first demonstrate the explanatory power of the higher

dimensional option-implied average correlations for the market risk, in this

case proxy by the CBOE VIX. The option-implied average correlations could

explain up to 84.0% of the variations in the VIX contemporaneously and

capture 78.6%, 43.6%, and 17.1% variations of the CBOE VIX in the one-

week, one-month, and one-quarter ahead forecasting horizons, respectively.

The implications of the higher dimensional option-implied average

correlations in empirical asset pricing are then intensively examined. In
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particular, I show that the option-implied quadratic, cubic, and quartic

average correlations are priced market factors in cross-sectional stock returns

via the Fama and MacBeth [1973] cross-sectional regressions. I then uniquely

construct the market average correlation factor (MAC) by forming the zero-

cost long-short portfolios by sorting stocks with respect to their risk exposures

to the option-implied average correlations. Through a series of time-series

regressions for different sector portfolios, I show that MAC largely increase

the model-fittings of the traditional risk-adjusted factor models, such as

the CAPM, Fama-French three-factor, and Fama-French-Carhart four-factor

models. Finally, I document significant evidence that the MAC is priced

cross-sectional via the Fama and MacBeth [1973] cross-sectional regression

after controlling other firm-specific characteristic factors.

8.4 Robustness Check

To further examine the robustness of my empirical findings, I carry out a

series of robustness checks regarding on the various procedures in the empirical

analyses.

8.4.1 Sub-Periods

The period between January 1, 1996 and January 1, 2015 in the U.S. market

is characterised by various turbulences, such as the early 2000 recession, the

2001 Bursting of dot-com bubble, and the 2007 - 2008 Global financial crisis.

As we mentioned in Section 8.2.1, our high frequency option dataset is merged

by the exchange-based option prices and the OPRA system, which is separated

by the introduction of the National Market System in November 30, 2009. In

order to verify that the results are not driven by the peculiar circumstances

in this sample period, I repeat the empirical analyses in Section 8.3 on two

sub-periods: pre OPRA & Global financial crisis period: January 1, 1996 to

November 30th, 2009, and the post OPRA & Global financial crisis period:

December 1, 2009 to January 1, 2015.

Table 8.5 reports the results of Fama and MacBeth [1973] cross-sectional
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Table 8.5: Fama-MacBeth Regression Analyses for the Pre and Post OPRA
Sub-Periods

Table 8.5 reports the results of Fama and MacBeth [1973] cross-sectional regression analyses
for the pre and post OPRA sub-periods as displayed in Table 8.4. In order to conserve
space, we only present the results obtained using the most general multivariate regression
for each analyses. I re-perform regression (12) in Table 8.4 investigating the cross-sectional
risk premium of the market average correlation factor controlling all the other firm-specific
characteristic factors. The independent variables are indicated in the first row. Independent
variables are winsorised at the 0.5% level on a monthly basis. The dependent variable, i.e.
stock excess expected returns, is in percent unit. The table presents average estimated
coefficients along with the absolute value of the t-statistics (in parentheses, *** indicates
the significance at 1% level, ** at 5%, and * at 10%. < 0.01% indicates value less than
0.01%), adjusted following Newey and West [1987] using six lags, testing the null hypothesis
that the average coefficient is equal to zero. The whole sample period is from January 1,
1996 to January 1, 2015, with 228 monthly observations for 588 individual stocks included
in the S&P 500 index over the whole sample period. The pre OPRA sample period is from
January 1, 1996 to November 30th, 2009 with 167 observations and the post OPRA sample
period is from December 1, 2009 to January 1, 2015 with 61 observations.

Market Average Correlation Portfolio and Cross Section Stock Returns

βMKT βMAC SIZE BM MOM REV
Pre OPRA 0.500*** 0.116 -0.005 0.001** 0.051*** -0.258***

(6.699) (1.178) (0.118) (1.827) (3.574) (3.311)
Post OPRA 0.305*** 0.126*** -0.115*** -0.050* 0.051*** -0.204***

(2.652) (2.993) (2.159) (1.600) (3.380) (3.998)
IDIO RSK RKT CSK CKT ILLIQ

Pre OPRA -0.266*** -0.105* 0.001 1.855*** -0.168* 0.009
(6.036) (1.501) (0.132) (3.040) (1.625) (0.224)

Post OPRA -0.151*** 1.758*** 0.017*** 0.344 -0.061 -0.053
(2.582) (4.351) (5.581) (0.981) (0.656) (0.953)
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regression analyses for the pre and post OPRA sub-periods as displayed in

Table 8.4. I re-perform regression (12) in Table 8.4 investigating the cross-

sectional risk premium of the market average correlation factor controlling

all the other firm-specific characteristic factors. Compared to the results in

Table 8.4, the constructed market average correlation factor (MAC) returns

a positive risk premium for both pre and post OPRA periods, but the pre

OPRA risk premium is not statistically significant while that for the post

OPRA period is strongly significant.

8.4.2 Length of the Portfolio Formation Period

In Section 8.3.2, I construct the monthly rebalanced market average

correlation factor by sorting the stocks with their exposures to the option-

implied average correlations estimating with over a one-year rolling window.

As the higher dimensional option-implied average correlations are time-

varying, I repeat the portfolio formation and the test procedures with

individual correlation risk exposures estimating over samples longer or

shorter than one month with rolling windows longer or shorter than one-

year respectively. With the new sets of MAC factors, I re-run the Fama

and MacBeth [1973] cross-sectional regressions in Table 8.4. I present the

univariate-sorting portfolios results and the cross-sectional regression analyses

for Equation 8.20 obtained using the risk exposures estimated every three-

month over a one-year rolling window in detail.

Table 8.6 reports the results of the robustness check for using different

length of the portfolio formation period. Specifically, Panel A reports the

results of the univariate-sorted portfolios on the risk exposures of the option-

implied average correlations estimating with three-month period over a one-

year rolling window. The stocks are sorted by their risk exposures to the

quadratic, cubic, and quartic option-implied average correlations in (I), (II),

and (III) in Panel A, respectively. Monthly excess returns (in percent) and

the Fama-French-Cahart four-factor alphas are reported with the the absolute

value of the robust t-statistics (in parentheses).

To further explore the risk premium of the constructed market average
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Table 8.6: Single-sorted Portfolios and Fama-MacBeth Regression Analyses
with Different Length of Portfolio Formation Period

Table 8.6 displays the results of the robustness check of the length of the portfolio formation
period. Panel A reports the results of the univariate-sorted portfolios on the risk exposures
of the option-implied average correlations estimating with three-month period over a one-
year rolling window. Panel B displays the the Fama and MacBeth [1973] cross-sectional
regression analyses for the market average correlation factor formed by the re-estimated
sorting portfolios in Panel A. The independent variables are indicated in the first row.
Following Bali et al. [2016], firm-specific variables are winsorized at the 0.5% level on a
monthly basis. The dependent variable, i.e. stock excess expected returns, is in percent
unit. The table presents average estimated coefficients along with the absolute value of
the t-statistics (in parentheses, *** indicates the significance at 1% level, ** at 5%, and
* at 10%. < 0.01% indicates value less than 0.01%), adjusted following Newey and West
[1987] using six lags, testing the null hypothesis that the average coefficient is equal to zero.
The whole sample period is from January 1, 1996 to January 1, 2015, with 228 monthly
observations for 588 individual stocks included in the S&P 500 index over the whole sample
period.

Panel A: Univariate-sorted Portfolios on Option-implied Average Correlation Risk Exposure
Sorted by βρΣ

Quintile βρΣ βρΓ βρΘ Return FFC4
1 (Low) -2.034 -1.130 -1.313 0.373 -0.463

(0.926) (2.669)
2 -0.731 -0.398 -0.436 0.746 0.118

(2.480) (1.000)
3 -0.003 -0.025 0.024 0.820 0.268

(3.024) (2.468)
4 0.678 0.359 0.454 0.921 0.390

(3.120) (2.957)
5 (High) 1.779 0.978 1.228 1.107 0.596

(3.024) (2.942)
5-1 (High -Low) 3.813 2.107 2.540 0.734 1.060

(2.237) (3.313)

Sorted by βρΓ

1 (Low) -1.124 -2.051 -1.517 0.632 -0.173
(1.529) (0.853)

2 -0.372 -0.725 -0.535 0.836 0.216
(2.790) (1.811)

3 -0.007 -0.006 0.022 0.774 0.234
(2.925) (2.188)

4 0.385 0.672 0.535 0.850 0.329
(2.893) (2.496)

5 (High) 0.919 1.788 1.405 0.906 0.345
(2.428) (1.646)

5-1 (High -Low) 2.042 3.839 2.922 0.274 0.518
(2.776) (1.438)

Sorted by βρΘ

1 (Low) -1.325 -1.478 -1.945 0.586 -0.208
(1.503) (1.220)

2 -0.427 -0.481 -0.674 0.772 0.170
(2.746) (1.520)

3 0.040 0.046 0.038 0.873 0.347
(3.213) (3.006)

4 0.442 0.490 0.730 0.851 0.331
(2.934) (2.706)

5 (High) 1.120 1.270 1.905 0.905 0.318
(2.310) (1.547)

5-1 (High -Low) 2.445 2.748 3.849 0.319 0.526
(2.026) (1.658)
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Table 8.6: Continued
Panel B: Market Average Correlation Portfolio and Cross Section Stock Returns

Regressions βMKT βMAC SIZE BM MOM REV
(1) 0.417*** 0.174*** -0.061*** 0.001 0.071***

(9.612) (2.459) (2.978) (1.111) (2.532)
(2) 0.409*** 0.196*** -0.075*** 0.001 0.053*** -0.245***

(9.787) (2.868) (3.808) (1.267) (4.185) (3.709)
(3) 0.116*** 0.087* 0.012 -0.002 0.055*** -0.225***

(2.380) (1.359) (0.596) (0.168) (3.861) (3.626)
(4) 0.119*** 0.097* 0.009 -0.001 0.054*** -0.226***

(2.439) (1.505) (0.461) (0.126) (3.825) (3.667)
(5) 0.129*** 0.119** 0.022 < 0.01% 0.054*** -0.227***

(2.651) (1.841) (1.058) (0.086) (3.861) (3.748)
(6) 0.121*** 0.109** 0.019 < 0.01% 0.055*** -0.228***

(2.469) (1.683) (0.917) (0.101) (3.013) (3.784)
(7) 0.222*** 0.147*** 0.040** 0.002 0.054*** -0.237***

(3.761) (2.248) (1.830) (0.179) (3.969) (4.078)
(8) 0.219*** 0.151*** -0.030 < 0.01% 0.054*** -0.237***

(3.716) (2.304) (0.637) (0.509) (4.028) (4.092)

Regressions IDIO RSK RKT CSK CKT ILLIQ
(1)

(2)

(3) -0.373***
(4.784)

(4) -0.366*** -0.502
(4.547) (1.230)

(5) -0.353*** -0.155 0.008***
(4.159) (0.363) (2.535)

(6) -0.360*** -0.086 0.008*** 0.888**
(4.330) (0.200) (2.430) (1.929)

(7) -0.297*** -0.181 0.008*** 1.129*** -0.276***
(3.826) (0.424) (2.606) (2.433) (3.006)

(8) -0.293*** -0.205 0.009*** 1.228*** -0.279*** -0.075**
(3.717) (0.481) (2.766) (2.632) (3.049) (1.676)

221



Chapter 8

correlation factor (MAC), we re-perform the Fama and MacBeth [1973]

cross-sectional regression analyses as displayed in Table 8.4. Regression

(1) shows that the constructed market average correlation factor returns a

positive significant risk premium for the Fama-French-Carhart four-factor

risk-adjusted model. Regressions (2) to (8) re-examine the consistence of

the risk premium of the constructed market average correlation factor by

controlling different firm-specific characteristic factors. As in Table 8.4, the

constructed market average correlation factor maintain the positive significant

risk premium in most of cases.

8.4.3 Options with Longer Time to Maturity

The risk-neutral moments and co-moments extracted from options with

different time to maturities reflect investors’ expectation of risk in the stock

market over different horizons ahead. For instance, the one-month option-

implied average correlations provides a proxy of investors’ expectation over

the future month and the three-month option-implied moments and average

correlations reflect investors’ expectation of risk and the market average

correlation over the next quarter while the six-month to maturity estimations

reflect the investors’ expectation over a six-month ahead horizon.

I focus the empirical analyses on investigating the relation between the

one-month option-implied average correlations and the monthly cross section

stock returns, however, for other applications interested in the assets returns

over longer periods in the future, such as quarterly or semi-annually cross

section stock returns, the use of option-implied average correlations extracted

from options with longer maturities would be more appropriate.

8.5 Concluding Remarks

In this Chapter, I intensively investigate the information content of the higher

dimensional option-implied average correlations in explaining the market risk

and cross section stock returns. As an aggregated measure of the market

diversification level, the option-implied average correlations exhibit strong
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explanatory power for the variations in the market risks, measured by the

CBOE VIX. I also document significant evidence that the option-implied

average correlations could explain the one-week, one-month, and one-quarter

ahead CBOE VIX variations.

I then explore the role that the option-implied average correlations

play in asset pricing, especially the relation between the option-implied

average correlations and cross-sectional stock returns. Specifically, I sort the

individual stocks on their exposures for the quadratic, cubic, and quartic

option-implied average correlations individually and form zero-cost long-short

portfolios on each of the average correlation exposures. I then construct an

average correlation portfolio with the average of the excess returns of the

three long-short portfolios. Rebalancing every month, I construct a portfolio-

mimicking factor, namely the market average correlation factor (MAC).

Based on a series of time-series regressions on 11 sector portfolios, I

show that the MAC plays an important role in the risk-adjusted factor

pricing models and maintains statistically significant controlling the existing

popular portfolio-mimicking factors. The risk premium of the market average

correlation factor is further explored by a Fama and MacBeth [1973] cross-

sectional regression across all of the individual stocks.

The robustness of the findings on the higher dimensional option-implied

average correlations and the market average correlation factor is checked from

various angles. Different holding periods have been used to construct the

excess returns of the long-short correlation spread portfolios in Section 8.3.2.

I address the effects of macroeconomic news announcements by excluding

specific announcement days in the sample and re-run the cross-sectional

regressions. I also perform the analyses with a sub-sample post the OPRA

system as the out-of-sample check. As expected, no significant changes in the

findings have been detected.

The future research will lie in three strands. As I mentioned in the sector

portfolio analyses, I could build the sector-based average correlation index

using options written on the ETFs exchange-traded sector indices and on the

corresponding sector components individual equities. Another strand is to

take advantage of the various term-structure of the option-implied correlations
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to perform predictive analyses on the future stock returns. Lastly, as a proxy

of the market diversification, the option-implied average correlation measures

can also be included in various studies on the banking risk management, such

as in explaining and forecasting the financial industry systemic risk.
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Conclusions

9.1 Summary and Remarks

The thesis demonstrates the information gains from high frequency option

panels with applications in risk management and empirical asset pricing. First

and foremost, inspired by the recent developed literature on the RT, Chapter

5 and Chapter 6 investigate the empirical implementation of RT in practice

with noisy market data. In Chapter 5, I specify a perturbation theory on the

recovered discount factor, pricing kernel and he physical probability density.

Utilising the results of the perturbation theory, in Chapter 6, I identify a set

of linear and non-linear constrains that force the optimisation system to result

a transition matrix with desirable structure. A fast sequential optimisation

algorithm is built and the efficiency of the algorithm is tested and checked

through a series of simulation.

Following the theoretical development, I demonstrate the applications

of the RT in two empirical examples. On the one hand, I provide new

empirical evidence on the RT by applying the fast empirical recovery

algorithm on both S&P 500 index options and options written on individual

equities, AAPL.O. Consistent with the existing literature, the recovered

physical probability distributions show thinner left tails than the risk-neutral

probability distributions. In contrast to the example provided in Ross [2015],

I recover U-shaped empirical pricing kernels across different number of states

and tenors. Indeed, the empirical pricing kernel is known to be U-shaped
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other than strictly decreasing in the literature. On the other hand, I build a

market left tail index by aggregating the recovered physical probabilities for

S&P 500 options with states being −50% and 25% over the sample period.

The market left-tail index tracks the financial crisis and economic recessions

well through the years.

Secondly, I extend the literature in spanning contracts by deriving the

explicit formulas for extracting risk-neutral higher order central moments for

asset returns from market option prices in Chapter 4. In Chapter 7, borrowing

the algebra of symmetric multi-dimensional tensors, I uniquely introduce the

option-implied average quadratic, cubic, and quartic correlations and derive

the explicit formulas for calculating the option-implied average correlations

for portfolios with high number of stocks. Utilising the high frequency data

on S&P 500 index option and options written on all of index components, I

estimate the time series of option-implied average correlations from January

1, 1996 through January 1, 2015.

Finally, in Chapter 8, I explore the information content of higher

dimensional option-implied average correlations from two perspectives. I

first demonstrate that the option-implied average correlations have persistent

explanatory powers for both contemporaneous and future market risks. I

then show that the option-implied higher dimensional average correlations are

priced in cross section stock returns. Moreover, a market average correlation

factor is constructed by sorted stocks with respect to their individual exposure

to the option-implied average correlations. I illustrate that the market average

correlation factor largely enhance the fittings of the existing risk-adjusted

asset pricing models via time-series regressions for 11 sector-based portfolios.

A persistent positive risk premium is detected from two-stage Fama and

French [1993] cross-sectional regressions.

9.2 Future Work

Various future research can build on the current content of the thesis. A

obvious direction could be to investigate the dynamics between the two option-
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implied risk measures. Figure 9.1 plots the market left tail index against the

higher dimensional option-implied average correlations. The market left tail

index represents the probability of the downside risk while the option-implied

average correlations measure the diversification level in the market. It can

be seen from the plot that the left tail index shows lower probabilities for

downside risk when the correlations are low. Both the left tail index and

the option-implied correlations track the markets very well. Thus, potential

research can be conducted on investigating the dynamics of the interactions

of these two option-implied risk measures.

Figure 9.1: The Two Option-implied Risk Measures
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Note. Figure 9.1 plots the higher dimensional one-month to maturity option-implied
average correlations against the left tail index over the sample period running from January
1, 1996 through January 31, 2015. The left y-axis represents the correlation level with the
hard, dash, and dot grey lines representing the quadratic, cubic, and quartic option-implied
average correlations respectively. The right y-axis demonstrates the probability for the
downside risks measuring by the left tail index plotting as the black hard line.

Alternatively, both option-implied risk measures proposed in this thesis

can be used as forward-looking measures for forecasting future market risks.

For example, the option-implied average correlations for the financial sector

can be used as a measure of the systemic risk. The existing measures
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for systemic risk are mostly calculated either from accounting data for the

financial sectors (such as the CLASS model, see for example Hirtle et al.

[2016]) or based on specific time series models such as GARCH (for example

the SRISK by Brownlees and Engle [2017]). As the option-implied average

correlations are derived directly from option prices, which is forward-looking

and conditional, the financial sector correlations can be used as indicators for

future systemic risk.

Traditionally, market volatility is widely used as one of the measures

for market uncertainty, however, a vast of literature also investigates

the dynamics of the interaction between market-based indicators and the

macroeconomic variables, such as the GDP (Gross Domestic Product), the

HPI (House Price Index), and the M2, see for example Jurado et al. [2015]. As

the market-wide left tail index provides the probabilities of the downside risks

for the whole market, it can also be treated as a measure for uncertainty. Thus,

a potential direction of future work could be to investigate the forecasting

ability of the left tail index on various macroeconomic variables.

Lastly, though the dynamics of empirical pricing kernel is not the main

focus of this thesis, the RT provides an alternative method for extracting the

empirical pricing kernel to the existing literature on ‘pricing kernel puzzles’.

Future research can be conducted on investigating the information content

of the recovered empirical pricing kernel and calibrating the parameters in

various utility functions to adjust the deviation between the theoretical pricing

kernel and the empirical pricing kernel.
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Appendix

A.1 S&P 500 Index Constituents Sample List

Table A. 1: S&P 500 Index and Constituents

No. Ticker Name Total Days Total Obs. Avg. Obs

1 A Agilent Technologies Inc 4,319 63,515,389 14,706

2 AA Alcoa Inc 2,281 27,509,567 12,060

3 AAPL Apple Inc 4,702 526,224,432 111,915

4 ABBV Abbvie Inc 504 12,793,579 25,384

5 ABC Amerisourcebergen Corp 333 1,320,569 3,966

6 ABT Abbott Laboratories 2,533 38,880,995 15,350

7 ACE Ace Ltd 1,281 12,382,719 9,666

8 ACN Accenture Plc 1,006 34,707,857 34,501

9 ACS Affiliated Computer Services 47 66,074 1,406

10 ACT Actavis Plc 489 20,571,318 42,068

11 ADBE Adobe Systems Inc 3,033 48,093,625 15,857

12 ADI Analog Devices 3,491 29,635,719 8,489

13 ADM Archer-Daniels-Midland Co 3,284 46,595,877 14,189

14 ADP Automatic Data Processing 2,053 25,629,641 12,484

15 ADS Alliance Data Systems Corp 504 7,542,348 14,965

16 ADSK Autodesk Inc 4,691 61,190,986 13,044

17 ADT Adt Corp 565 12,302,067 21,774

18 AEE Ameren Corp 4,273 4,672,625 1,094

19 AEP American Electric Power Co 4,773 32,811,239 6,874

20 AES Aes Corp 4,577 13,522,753 2,955

21 AET Aetna Inc 4,773 67,022,419 14,042

22 AFL Aflac Inc 4,773 54,023,445 11,319

23 AGN Allergan Inc 4,773 38,137,327 7,990

24 AIG American International Group 4,455 95,437,214 21,422

Continued on next page
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No. Ticker Name Total Days Total Obs. Avg. Obs

25 AIV Apartment Invst & Mgmt Co 3,021 2,981,357 987

26 AIZ Assurant Inc 2,727 6,493,321 2,381

27 AKAM Akamai Technologies Inc 2,936 91,647,998 31,215

28 AKS Ak Steel Holding Corp 876 15,489,756 17,682

29 ALL Allstate Corp 4,773 49,354,190 10,340

30 ALLE Allegion Plc 273 801,468 2,936

31 ALTR Altera Corp 4,773 62,564,414 13,108

32 ALXN Alexion Pharmaceuticals Inc 1,281 27,276,919 21,293

33 AMAT Applied Materials Inc 4,773 56,594,310 11,857

34 AMD Advanced Micro Devices 4,451 33,754,429 7,584

35 AME Ametek Inc 504 705,119 1,399

36 AMG Affiliated Managers Grp Inc 252 3,119,043 12,377

37 AMGN Amgen Inc 4,773 77,947,464 16,331

38 AMP Ameriprise Financial Inc 2,329 18,547,112 7,964

39 AMT American Tower Corp 3,021 39,139,921 12,956

40 AMZN Amazon.Com Inc 3,021 243,909,237 80,738

41 AN Autonation Inc 3,020 14,007,203 4,638

42 ANF Abercrombie & Fitch -Cl A 1,452 54,621,118 37,618

43 ANR Alpha Natural Resources Inc 337 17,268,967 51,243

44 ANTM Anthem Inc 20 1,010,927 50,546

45 AON Aon Plc 1,280 8,246,561 6,443

46 APA Apache Corp 4,444 93,991,189 21,150

47 APC Anadarko Petroleum Corp 4,773 105,861,413 22,179

48 APD Air Products & Chemicals Inc 1,281 13,788,211 10,764

49 APH Amphenol Corp 3,021 10,804,980 3,577

50 APOL Apollo Education Group Inc 901 30,264,764 33,590

51 ARG Airgas Inc 3,021 10,197,042 3,375

52 ATI Allegheny Technologies Inc 3,884 49,812,338 12,825

53 AVB Avalonbay Communities Inc 3,021 20,006,767 6,623

54 AVGO Avago Technologies Ltd 252 5,378,954 21,345

55 AVP Avon Products 4,773 28,742,713 6,022

56 AVY Avery Dennison Corp 4,773 7,079,724 1,483

57 AXP American Express Co 4,773 93,660,485 19,623

58 AYE Allegheny Energy Inc 313 298,688 954

59 AZO Autozone Inc 3,033 49,364,861 16,276

60 BA Boeing Co 4,773 123,776,282 25,933

61 BAC Bank Of America Corp 4,773 87,496,880 18,332

62 BAX Baxter International Inc 4,772 65,192,108 13,661

63 BBBY Bed Bath & Beyond Inc 4,773 78,264,177 16,397

64 BBT Bb&T Corp 4,024 52,381,836 13,017

65 BBY Best Buy Co Inc 4,773 104,629,651 21,921

66 BCR Bard (C.R.) Inc 4,773 10,875,195 2,278

67 BDK Black & Decker Corp 3,563 14,839,408 4,165

68 BDX Becton Dickinson & Co 4,770 12,329,757 2,585

69 BEAM Beam Inc 1,814 5,112,881 2,819

70 BEN Franklin Resources Inc 4,772 39,242,542 8,224

71 BFB Brown-Forman -Cl B 1,281 2,346,239 1,832

72 BHI Baker Hughes Inc 4,773 105,965,217 22,201

73 BIG Big Lots Inc 1,634 9,767,736 5,978

74 BIIB Biogen Inc 870 6,350,344 7,299

75 BJS Bj Services Co 2,000 22,214,134 11,107

Continued on next page
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No. Ticker Name Total Days Total Obs. Avg. Obs

76 BK Bank Of New York Mellon Corp 4,773 61,791,554 12,946

77 BLK Blackrock Inc 1,281 26,057,585 20,342

78 BLL Ball Corp 1,281 4,399,716 3,435

79 BMC Bmc Software Inc 3,574 22,676,973 6,345

80 BMS Bemis Co Inc 4,410 3,432,573 778

81 BMY Bristol-Myers Squibb Co 4,773 73,381,221 15,374

82 BRCM Broadcom Corp 3,899 107,353,530 27,534

83 BRKB Berkshire Hathaway 1,281 30,811,334 24,053

84 BSX Boston Scientific Corp 4,773 26,988,202 5,654

85 BTU Peabody Energy Corp 1,972 85,449,132 43,331

86 BWA Borgwarner Inc 1,281 11,494,143 8,973

87 BXP Boston Properties Inc 2,685 12,653,676 4,713

88 C Citigroup Inc 4,772 151,624,776 31,774

89 CA Ca Inc 4,368 27,555,290 6,308

90 CAG Conagra Foods Inc 4,773 20,923,433 4,384

91 CAH Cardinal Health Inc 4,772 39,972,880 8,377

92 CAM Cameron International Corp 3,021 49,428,388 16,362

93 CAT Caterpillar Inc 4,773 133,047,147 27,875

94 CB Chubb Corp 4,444 28,298,081 6,368

95 CBE Cooper Industries Plc 256 157,003 613

96 CBG Cbre Group Inc 2,482 15,266,177 6,151

97 CBS Cbs Corp 2,875 48,384,573 16,829

98 CCE Coca-Cola Enterprises Inc 4,773 21,855,051 4,579

99 CCI Crown Castle Intl Corp 1,281 9,288,901 7,251

100 CCL Carnival Corp/Plc (Usa) 4,773 51,985,897 10,892

101 CEG Constellation Energy Grp Inc 3,238 6,064,898 1,873

102 CELG Celgene Corp 3,021 97,040,846 32,122

103 CEPH Cephalon Inc 735 5,082,286 6,915

104 CERN Cerner Corp 1,281 20,549,222 16,042

105 CF Cf Industries Holdings Inc 1,485 19,204,794 12,933

106 CFN Carefusion Corp 1,281 6,633,130 5,178

107 CHK Chesapeake Energy Corp 1,740 19,377,453 11,136

108 CHRW C H Robinson Worldwide Inc 2,999 34,335,134 11,449

109 CI Cigna Corp 4,730 55,246,338 11,680

110 CIEN Ciena Corp 2,053 8,086,241 3,939

111 CINF Cincinnati Financial Corp 4,064 2,478,444 610

112 CL Colgate-Palmolive Co 4,773 48,534,982 10,169

113 CLF Cliffs Natural Resources Inc 1,087 82,642,260 76,028

114 CLX Clorox Co/De 4,773 24,581,825 5,150

115 CMA Comerica Inc 3,033 30,024,254 9,899

116 CMCSA Comcast Corp 1,281 44,755,545 34,938

117 CME Cme Group Inc 2,450 58,027,725 23,685

118 CMG Chipotle Mexican Grill Inc 1,281 175,535,207 137,030

119 CMI Cummins Inc 2,784 86,492,948 31,068

120 CMS Cms Energy Corp 4,444 3,024,675 681

121 CNP Centerpoint Energy Inc 1,281 3,756,214 2,932

122 CNX Consol Energy Inc 3,020 78,899,203 26,126

123 COF Capital One Financial Corp 4,773 95,494,292 20,007

124 COG Cabot Oil & Gas Corp 3,021 30,583,415 10,124

125 COH Coach Inc 3,021 76,988,656 25,484

126 COL Rockwell Collins Inc 3,217 5,536,677 1,721
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127 COP Conocophillips 3,105 97,620,144 31,440

128 COST Costco Wholesale Corp 4,498 83,962,638 18,667

129 COV Covidien Plc 1,281 13,761,686 10,743

130 CPB Campbell Soup Co 4,444 15,839,426 3,564

131 CPWR Compuware Corp 3,270 2,698,525 825

132 CRM Salesforce.Com Inc 2,631 116,285,467 44,198

133 CSC Computer Sciences Corp 4,773 33,992,003 7,122

134 CSCO Cisco Systems Inc 4,770 80,508,030 16,878

135 CSX Csx Corp 4,773 48,142,578 10,086

136 CTAS Cintas Corp 4,771 15,950,751 3,343

137 CTL Centurylink Inc 4,772 22,362,338 4,686

138 CTSH Cognizant Tech Solutions 3,021 64,534,056 21,362

139 CTXS Citrix Systems Inc 4,663 57,983,833 12,435

140 CVC Cablevision Sys Corp -Cl A 1,281 9,877,905 7,711

141 CVG Convergys Corp 2,395 2,000,112 835

142 CVH Coventry Health Care Inc 1,071 6,382,691 5,960

143 CVS Cvs Health Corp 4,575 64,453,842 14,088

144 CVX Chevron Corp 1,281 66,392,224 51,828

145 D Dominion Resources Inc 2,284 14,455,037 6,329

146 DAL Delta Air Lines Inc 1,281 49,932,209 38,979

147 DD Du Pont (E I) De Nemours 3,518 76,341,656 21,700

148 DE Deere & Co 4,773 99,557,443 20,858

149 DELL Dell Inc 4,005 37,601,109 9,389

150 DF Dean Foods Co 1,799 6,992,245 3,887

151 DFS Discover Financial Svcs Inc 2,197 29,546,509 13,449

152 DG Dollar General Corp 1,281 20,238,780 15,799

153 DGX Quest Diagnostics Inc 3,521 24,672,719 7,007

154 DHI D R Horton Inc 3,020 47,955,601 15,879

155 DHR Danaher Corp 4,773 47,416,160 9,934

156 DIS Disney (Walt) Co 4,773 80,846,477 16,938

157 DISCA Discovery Communications Inc 1,281 4,101,592 3,202

158 DLPH Delphi Automotive Plc 776 10,496,684 13,527

159 DLTR Dollar Tree Inc 1,281 20,313,059 15,857

160 DNB Dun & Bradstreet Corp 3,021 6,969,359 2,307

161 DNR Denbury Resources Inc 1,281 12,099,282 9,445

162 DO Diamond Offshre Drilling Inc 3,021 76,941,872 25,469

163 DOV Dover Corp 1,281 7,514,922 5,866

164 DOW Dow Chemical 3,518 76,921,591 21,865

165 DPS Dr Pepper Snapple Group Inc 1,677 3,125,617 1,864

166 DRI Darden Restaurants Inc 4,551 34,838,521 7,655

167 DTE Dte Energy Co 4,773 4,531,957 949

168 DTV Directv 1,532 35,241,574 23,004

169 DUK Duke Energy Corp/Progress Energy Inc 4,773 25,207,134 5,281

170 DV Devry Education Group Inc 715 3,929,967 5,496

171 DVA Davita Healthcare Partners 3,021 10,950,825 3,625

172 DVN Devon Energy Corp 2,574 75,414,852 29,299

173 DYN Dynegy Inc 2,284 2,791,855 1,222

174 EA Electronic Arts Inc 762 31,743,385 41,658

175 EBAY Ebay Inc 3,979 104,850,257 26,351

176 ECL Ecolab Inc 4,145 8,808,605 2,125

177 ED Consolidated Edison Inc 4,773 19,701,896 4,128
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178 EFX Equifax Inc 4,773 3,450,634 723

179 EIX Edison International 4,749 19,736,124 4,156

180 EL Lauder (Estee) Cos Inc -Cl A 3,021 28,991,298 9,597

181 EMC Emc Corp/Ma 2,993 42,229,421 14,109

182 EMN Eastman Chemical Co 4,773 42,185,190 8,838

183 EMR Emerson Electric Co 4,772 56,856,389 11,915

184 EOG Eog Resources Inc 4,773 102,799,494 21,538

185 EP El Paso Corp 2,619 15,861,779 6,056

186 EQR Equity Residential 4,476 12,912,775 2,885

187 EQT Eqt Corp 3,021 11,818,568 3,912

188 ERTS Electronic Arts 523 10,580,749 20,231

189 ES Eversource Energy 486 358,451 738

190 ESRX Express Scripts Holding Co 3,021 75,851,829 25,108

191 ESS Essex Property Trust 252 1,216,569 4,828

192 ESV Ensco Plc 2,014 50,281,801 24,966

193 ETFC E Trade Financial Corp 2,018 19,008,319 9,419

194 ETN Eaton Corp Plc 3,517 52,400,931 14,899

195 ETR Entergy Corp 4,773 20,717,158 4,340

196 EW Edwards Lifesciences Corp 1,281 10,310,610 8,049

197 EXC Exelon Corp 2,076 24,707,645 11,902

198 EXPD Expeditors Intl Wash Inc 3,018 34,777,719 11,523

199 EXPE Expedia Inc 2,518 41,987,551 16,675

200 F Ford Motor Co 4,772 64,923,557 13,605

201 FAST Fastenal Co 3,018 29,587,313 9,804

202 FB Facebook Inc 653 120,806,565 185,002

203 FCX Freeport-Mcmoran Inc 4,773 134,616,749 28,204

204 FDO Family Dollar Stores 3,372 26,506,467 7,861

205 FDX Fedex Corp 4,773 93,562,826 19,603

206 FE Firstenergy Corp 1,281 12,681,246 9,899

207 FFIV F5 Networks Inc 1,281 66,055,633 51,566

208 FHN First Horizon National Corp 2,309 4,078,861 1,767

209 FII Federated Investors Inc 2,445 2,580,507 1,055

210 FIS Fidelity National Info Svcs 2,186 6,807,954 3,114

211 FISV Fiserv Inc 4,771 13,209,268 2,769

212 FITB Fifth Third Bancorp 4,773 32,780,824 6,868

213 FLIR Flir Systems Inc 3,021 10,763,367 3,563

214 FLR Fluor Corp 4,773 65,272,105 13,675

215 FLS Flowserve Corp 2,678 23,199,240 8,663

216 FMC Fmc Corp 3,020 5,789,604 1,917

217 FOSL Fossil Group Inc 1,281 23,793,517 18,574

218 FOXA Twenty-First Century Fox Inc 380 8,018,565 21,101

219 FRX Forest Laboratories -Cl A 3,419 22,172,792 6,485

220 FSLR First Solar Inc 1,999 128,268,943 64,167

221 FTI Fmc Technologies Inc 3,021 15,181,400 5,025

222 FTR Frontier Communications Corp 2,322 3,242,314 1,396

223 GAS Agl Resources Inc 1,281 466,540 364

224 GCI Gannett Co 1,281 18,266,680 14,260

225 GD General Dynamics Corp 3,880 61,124,716 15,754

226 GE General Electric Co 4,773 73,907,739 15,485

227 GENZ Genzyme Corp 2,341 30,145,292 12,877

228 GILD Gilead Sciences Inc 3,021 113,680,954 37,630
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229 GIS General Mills Inc 4,773 31,295,954 6,557

230 GLW Corning Inc 4,681 49,559,720 10,587

231 GM General Motors Co 4,392 92,866,623 21,144

232 GMCR Keurig Green Mountain Inc 252 42,979,162 170,552

233 GME Gamestop Corp 3,021 59,846,237 19,810

234 GNW Genworth Financial Inc 2,660 27,426,988 10,311

235 GOOG Google Inc 1,006 339,121,124 337,099

236 GPC Genuine Parts Co 4,772 4,838,313 1,014

237 GPS Gap Inc 4,772 58,176,618 12,191

238 GR Goodrich Corp 4,163 11,860,263 2,849

239 GRMN Garmin Ltd 1,281 25,576,769 19,966

240 GS Goldman Sachs Group Inc 3,322 117,217,684 35,285

241 GT Goodyear Tire & Rubber Co 4,264 17,070,533 4,003

242 GWW Grainger (W W) Inc 4,773 20,121,242 4,216

243 HAL Halliburton Co 4,772 122,598,095 25,691

244 HANS Hansen’S Natural 531 7,330,435 13,805

245 HAR Harman International Inds 3,021 23,268,390 7,702

246 HAS Hasbro Inc 1,281 10,928,502 8,531

247 HBAN Huntington Bancshares 4,771 6,719,810 1,408

248 HCBK Hudson City Bancorp Inc 3,018 4,040,312 1,339

249 HCN Health Care Reit Inc 2,310 9,844,636 4,262

250 HCP Hcp Inc 2,999 6,190,824 2,064

251 HD Home Depot Inc 4,773 97,064,504 20,336

252 HES Hess Corp 1,281 59,275,558 46,273

253 HIG Hartford Financial Services 3,033 44,786,748 14,766

254 HNZ Heinz (H J) Corp Ii 885 5,877,207 6,641

255 HOG Harley-Davidson Inc 2,111 50,577,239 23,959

256 HON Honeywell International Inc 4,773 78,866,454 16,523

257 HOT Starwood Hotels&Resorts Wrld 4,343 60,709,328 13,979

258 HP Helmerich & Payne 1,281 28,821,634 22,499

259 HPQ Hewlett-Packard Co 1,281 64,243,681 50,151

260 HRB Block H & R Inc 3,033 18,099,940 5,968

261 HRL Hormel Foods Corp 3,021 2,938,931 973

262 HRS Harris Corp 3,021 9,432,223 3,122

263 HSP Hospira Inc 2,823 5,804,957 2,056

264 HST Host Hotels & Resorts Inc 2,194 7,625,993 3,476

265 HSY Hershey Co 4,773 24,241,897 5,079

266 HUM Humana Inc 3,033 48,969,000 16,145

267 IBM Intl Business Machines Corp 4,751 135,207,617 28,459

268 ICE Intercontinental Exchange 2,290 48,551,205 21,201

269 IFF Intl Flavors & Fragrances 4,773 5,175,064 1,084

270 IGT Intl Game Technology 3,218 22,377,337 6,954

271 INTC Intel Corp 4,767 81,367,662 17,069

272 INTU Intuit Inc 4,773 52,530,736 11,006

273 IP Intl Paper Co 4,773 68,142,823 14,277

274 IPG Interpublic Group Of Cos 4,443 9,763,945 2,198

275 IR Ingersoll-Rand Plc 1,281 32,834,984 25,632

276 IRM Iron Mountain Inc 3,021 7,801,713 2,582

277 ISRG Intuitive Surgical Inc 2,988 147,352,910 49,315

278 ITT Itt Corp 3,236 9,660,576 2,985

279 ITW Illinois Tool Works 4,773 45,003,680 9,429
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280 IVZ Invesco Ltd 1,914 12,200,184 6,374

281 JAVA Sun Microsystems Inc 612 3,135,250 5,123

282 JBL Jabil Circuit Inc 3,463 34,418,592 9,939

283 JCI Johnson Controls Inc 4,773 42,747,334 8,956

284 JCP Penney (J C) Co 4,500 78,669,605 17,482

285 JDSU Jds Uniphase Corp 1,023 19,648,451 19,207

286 JEC Jacobs Engineering Group Inc 3,021 34,611,724 11,457

287 JNJ Johnson & Johnson 4,773 69,885,471 14,642

288 JNPR Juniper Networks Inc 2,999 61,534,392 20,518

289 JNS Janus Capital Group Inc 2,241 5,379,185 2,400

290 JOY Joy Global Inc 520 25,629,991 49,288

291 JOYG Joy Global Inc. 513 20,974,184 40,885

292 JPM Jpmorgan Chase & Co 4,652 153,618,937 33,022

293 JWN Nordstrom Inc 3,916 52,731,924 13,466

294 K Kellogg Co 2,769 18,766,730 6,777

295 KBH Kb Home 3,507 25,278,565 7,208

296 KEY Keycorp 4,773 21,033,876 4,407

297 KFT Kraft Foods 720 12,972,240 18,017

298 KG King Pharmaceuticals Inc 2,320 4,287,607 1,848

299 KIM Kimco Realty Corp 3,021 5,312,249 1,758

300 KLAC Kla-Tencor Corp 4,773 80,748,794 16,918

301 KMB Kimberly-Clark Corp 3,285 27,150,861 8,265

302 KMI Kinder Morgan Inc 2,594 15,401,881 5,938

303 KMX Carmax Inc 1,281 25,353,778 19,792

304 KO Coca-Cola Co 4,773 76,851,496 16,101

305 KORS Michael Kors Holdings Ltd 759 51,098,837 67,324

306 KR Kroger Co 3,284 20,964,973 6,384

307 KRFT Kraft Foods Group Inc 565 9,797,922 17,341

308 KSS Kohl’S Corp 4,773 67,675,822 14,179

309 KSU Kansas City Southern 1,281 14,165,655 11,058

310 L Loews Corp 2,741 4,567,262 1,666

311 LB L Brands Inc 273 8,427,001 30,868

312 LEG Leggett & Platt Inc 4,773 6,287,627 1,317

313 LEN Lennar Corp 3,021 75,564,802 25,013

314 LH Laboratory Cp Of Amer Hldgs 3,021 15,297,553 5,064

315 LIFE Life Technologies Corp 1,300 6,150,910 4,731

316 LLL L-3 Communications Hldgs Inc 3,021 31,221,717 10,335

317 LLTC Linear Technology Corp 4,773 65,764,302 13,778

318 LLY Lilly (Eli) & Co 4,773 62,219,002 13,036

319 LM Legg Mason Inc 3,021 45,911,520 15,197

320 LMT Lockheed Martin Corp 1,281 33,270,268 25,972

321 LNC Lincoln National Corp 4,773 42,407,749 8,885

322 LO Lorillard Inc 1,653 26,959,802 16,310

323 LOW Lowe’S Companies Inc 1,281 40,949,554 31,967

324 LRCX Lam Research Corp 1,281 42,543,870 33,211

325 LSI Lsi Corp 4,264 10,726,570 2,516

326 LTD L Brands 1,008 28,822,624 28,594

327 LUK Leucadia National Corp 2,741 10,860,265 3,962

328 LUV Southwest Airlines 4,772 21,382,190 4,481

329 LVLT Level 3 Communications Inc 252 8,506,096 33,754

330 LXK Lexmark Intl Inc -Cl A 3,305 37,106,935 11,228
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331 LYB Lyondellbasell Industries Nv 1,059 27,990,409 26,431

332 M Macy’S Inc 1,912 61,872,384 32,360

333 MA Mastercard Inc 2,161 156,626,422 72,479

334 MAC Macerich Co 1,281 3,032,333 2,367

335 MAR Marriott Intl Inc 4,773 40,354,797 8,455

336 MAS Masco Corp 4,773 20,417,826 4,278

337 MAT Mattel Inc 1,326 22,300,578 16,818

338 MBI Mbia Inc 3,278 17,497,835 5,338

339 MCD Mcdonald’S Corp 4,773 83,550,716 17,505

340 MCHP Microchip Technology Inc 3,021 32,288,384 10,688

341 MCK Mckesson Corp 4,773 44,966,558 9,421

342 MCO Moody’S Corp 3,581 44,791,845 12,508

343 MDLZ Mondelez International Inc 564 16,313,958 28,925

344 MDP Meredith Corp 2,908 1,769,920 609

345 MDT Medtronic Plc 4,773 69,682,725 14,599

346 MEE Massey Energy Co 743 21,903,381 29,480

347 MET Metlife Inc 3,694 79,061,045 21,403

348 MFE Mcafee Inc 550 3,400,964 6,184

349 MHFI Mcgraw Hill Financial 413 4,153,387 10,057

350 MHK Mohawk Industries Inc 1,281 11,954,254 9,332

351 MHP Mcgraw Hill Financial 869 10,118,380 11,644

352 MHS Medco Health Solutions Inc 2,171 20,799,739 9,581

353 MI Marshall & Ilsley Corp 2,367 3,020,940 1,276

354 MIL Millipore Corp 3,648 4,790,818 1,313

355 MJN Mead Johnson Nutrition Co 1,281 10,765,610 8,404

356 MKC Mccormick & Co Inc 3,021 2,419,481 801

357 MLM Martin Marietta Materials 252 3,353,467 13,307

358 MMC Marsh & Mclennan Cos 4,773 21,006,605 4,401

359 MMI Motorola Mobility Hldgs Inc 349 2,023,052 5,797

360 MMM 3M Co 3,284 70,306,652 21,409

361 MNK Mallinckrodt Plc 380 6,282,888 16,534

362 MNST Monster Beverage Corp 750 31,476,583 41,969

363 MO Altria Group Inc 3,285 43,173,251 13,143

364 MOLX Molex Inc 3,452 4,049,674 1,173

365 MON Monsanto Co 3,021 77,467,605 25,643

366 MOS Mosaic Co 1,281 60,598,430 47,306

367 MRK Merck & Co 3,285 65,779,370 20,024

368 MRO Marathon Oil Corp 4,773 72,794,320 15,251

369 MS Morgan Stanley 2,257 73,374,889 32,510

370 MSFT Microsoft Corp 4,773 116,985,094 24,510

371 MSI Motorola Solutions Inc 1,004 19,653,578 19,575

372 MTB M & T Bank Corp 3,021 17,000,446 5,627

373 MU Micron Technology Inc 4,773 81,384,044 17,051

374 MUR Murphy Oil Corp 3,021 43,192,205 14,297

375 MWD Morgan Stanley 2,167 15,633,316 7,214

376 MWV Meadwestvaco Corp 3,211 5,052,181 1,573

377 MWW Monster Worldwide Inc 784 5,678,401 7,243

378 MYL Mylan Nv 2,789 28,044,366 10,055

379 NAVI Navient Corp 170 303,513 1,785

380 NBL Noble Energy Inc 3,021 50,838,897 16,828

381 NBR Nabors Industries Ltd 2,306 50,562,416 21,926
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382 NDAQ Nasdaq Omx Group Inc 2,440 32,532,923 13,333

383 NE Noble Corp Plc 1,281 62,056,856 48,444

384 NEE Nextera Energy Inc 1,140 19,358,930 16,982

385 NEM Newmont Mining Corp 4,772 120,494,821 25,250

386 NFLX Netflix Inc 1,281 282,853,266 220,807

387 NFX Newfield Exploration Co 1,281 26,784,098 20,909

388 NI Nisource Inc 4,507 6,859,627 1,522

389 NKE Nike Inc 4,773 91,910,325 19,256

390 NLSN Nielsen Holdings Nv 984 1,175,363 1,194

391 NOC Northrop Grumman Corp 1,281 21,054,186 16,436

392 NOV National Oilwell Varco Inc 2,470 94,246,543 38,156

393 NOVL Novell Inc 3,847 3,570,509 928

394 NRG Nrg Energy Inc 1,281 18,699,119 14,597

395 NSC Norfolk Southern Corp 2,769 57,721,029 20,845

396 NSM National Semiconductor Corp 3,951 27,185,966 6,881

397 NTAP Netapp Inc 4,457 92,017,599 20,646

398 NTRS Northern Trust Corp 4,768 21,848,086 4,582

399 NU Northeast Utilities 1,281 694,583 542

400 NUE Nucor Corp 1,281 58,334,655 45,538

401 NVDA Nvidia Corp 3,883 63,024,442 16,231

402 NVLS Novellus Systems Inc 1,772 33,998,310 19,186

403 NWL Newell Rubbermaid Inc 4,443 16,979,243 3,822

404 NYT New York Times Co -Cl A 3,326 3,969,173 1,193

405 NYX Nyse Euronext 1,525 31,325,332 20,541

406 ODP Office Depot Inc 2,885 6,335,973 2,196

407 OI Owens-Illinois Inc 3,021 28,095,762 9,300

408 OKE Oneok Inc 1,281 7,000,958 5,465

409 OMC Omnicom Group 4,773 32,144,741 6,735

410 ORCL Oracle Corp 4,772 107,302,279 22,486

411 ORLY O’Reilly Automotive Inc 1,281 8,259,594 6,448

412 OXY Occidental Petroleum Corp 4,773 104,220,012 21,835

413 PAYX Paychex Inc 4,773 39,037,929 8,179

414 PBCT People’S United Finl Inc 2,187 3,214,913 1,470

415 PBG Pepsi Bottling Group Inc 2,210 1,588,023 719

416 PBI Pitney Bowes Inc 4,773 16,179,765 3,390

417 PCAR Paccar Inc 4,441 55,095,941 12,406

418 PCG Pg&E Corp 4,773 8,648,668 1,812

419 PCL Plum Creek Timber Co Inc 3,021 28,203,790 9,336

420 PCLN Priceline Group Inc 1,920 199,660,629 103,990

421 PCP Precision Castparts Corp 2,891 39,370,512 13,618

422 PCS Metropcs Communications Inc 859 5,210,240 6,065

423 PDCO Patterson Companies Inc 3,018 10,218,122 3,386

424 PEG Public Service Entrp Grp Inc 4,773 9,652,298 2,022

425 PEP Pepsico Inc 1,281 39,561,576 30,883

426 PETM Petsmart Inc 1,281 11,381,740 8,885

427 PFE Pfizer Inc 1,281 52,316,257 40,840

428 PFG Principal Financial Grp Inc 1,281 13,444,813 10,496

429 PG Procter & Gamble Co 4,773 78,182,094 16,380

430 PGR Progressive Corp-Ohio 4,773 20,132,366 4,218

431 PH Parker-Hannifin Corp 4,773 27,526,198 5,767

432 PHM Pultegroup Inc 1,281 29,613,394 23,117

Continued on next page

237



Table A. 1 – continued from previous page

No. Ticker Name Total Days Total Obs. Avg. Obs

433 PKI Perkinelmer Inc 1,281 1,335,386 1,042

434 PLD Prologis Inc 1,740 5,697,639 3,275

435 PLL Pall Corp 4,755 5,394,790 1,135

436 PM Philip Morris International 1,704 48,481,653 28,452

437 PNC Pnc Financial Svcs Group Inc 4,773 65,574,535 13,739

438 PNR Pentair Plc 1,281 2,808,964 2,193

439 PNW Pinnacle West Capital Corp 4,773 1,572,724 330

440 POM Pepco Holdings Inc 3,021 1,716,906 568

441 PPG Ppg Industries Inc 2,769 32,006,491 11,559

442 PPL Ppl Corp 2,734 9,350,108 3,420

443 PRGO Perrigo Co Plc 1,281 9,888,848 7,720

444 PRU Prudential Financial Inc 3,224 70,964,453 22,011

445 PSA Public Storage 2,589 18,077,856 6,983

446 PSX Phillips 66 672 27,776,885 41,335

447 PTV Pactiv Corp 2,771 3,090,960 1,115

448 PVH Pvh Corp 1,281 15,218,477 11,880

449 PWR Quanta Services Inc 3,021 22,149,206 7,332

450 PX Praxair Inc 4,773 23,111,176 4,842

451 PXD Pioneer Natural Resources Co 3,021 67,386,872 22,306

452 Q Qwest Communication Intl Inc 2,829 3,436,094 1,215

453 QCOM Qualcomm Inc 4,544 104,107,218 22,911

454 QEP Qep Resources Inc 1,134 5,278,315 4,655

455 QLGC Qlogic Corp 2,538 24,122,067 9,504

456 R Ryder System Inc 1,595 8,543,744 5,357

457 RAI Reynolds American Inc 2,624 29,198,708 11,128

458 RCL Royal Caribbean Cruises Ltd 252 8,071,292 32,029

459 RDC Rowan Companies Plc 4,679 47,694,582 10,193

460 REGN Regeneron Pharmaceuticals 1,278 72,878,860 57,026

461 RF Regions Financial Corp 3,189 13,828,084 4,336

462 RHI Robert Half Intl Inc 4,773 5,268,584 1,104

463 RHT Red Hat Inc 1,281 38,774,075 30,269

464 RIG Transocean Ltd 1,281 57,582,672 44,951

465 RL Ralph Lauren Corp 3,021 48,423,358 16,029

466 ROK Rockwell Automation 4,769 16,299,814 3,418

467 ROP Roper Industries Inc/De 1,281 4,785,123 3,735

468 ROST Ross Stores Inc 1,281 30,941,464 24,154

469 RRC Range Resources Corp 2,645 55,547,931 21,001

470 RRD Donnelley (R R) & Sons Co 2,132 5,491,110 2,576

471 RSG Republic Services Inc 3,021 3,540,504 1,172

472 RTN Raytheon Co 1,281 34,496,373 26,929

473 S Sprint Corp 4,300 21,089,076 4,904

474 SAI Sunamerica Inc 959 2,282,813 2,380

475 SBUX Starbucks Corp 4,773 83,598,697 17,515

476 SCG Scana Corp 2,768 1,472,447 532

477 SCHW Schwab (Charles) Corp 2,274 22,523,440 9,905

478 SE Spectra Energy Corp 2,015 17,256,152 8,564

479 SEE Sealed Air Corp 4,770 15,679,353 3,287

480 SHLD Sears Holdings Corp 697 20,479,150 29,382

481 SHW Sherwin-Williams Co 4,773 34,600,963 7,249

482 SIAL Sigma-Aldrich Corp 4,768 10,507,807 2,204

483 SII Smith International Inc 984 12,931,422 13,142
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484 SJM Smucker (Jm) Co 3,021 7,162,303 2,371

485 SLB Schlumberger Ltd 4,773 129,767,507 27,188

486 SLE Sara Lee Corp. 651 2,083,590 3,201

487 SNA Snap-On Inc 4,772 5,835,145 1,223

488 SNDK Sandisk Corp 1,281 91,454,230 71,393

489 SNI Scripps Networks Interactive 1,601 3,753,348 2,344

490 SO Southern Co 4,773 36,054,219 7,554

491 SPG Simon Property Group Inc 4,292 50,731,931 11,820

492 SPLS Staples Inc 4,773 27,434,774 5,748

493 SRCL Stericycle Inc 3,019 8,480,275 2,809

494 SRE Sempra Energy 4,149 9,458,914 2,280

495 STI Suntrust Banks Inc 4,773 50,935,653 10,672

496 STJ St Jude Medical Inc 4,545 26,527,600 5,837

497 STR Questar Corp 901 6,433,197 7,140

498 STT State Street Corp 4,773 58,659,316 12,290

499 STX Seagate Technology Plc 1,281 72,804,039 56,834

500 STZ Constellation Brands 3,021 18,454,843 6,109

501 SUN Sunoco Inc 4,211 48,456,702 11,507

502 SVU Supervalu Inc 4,101 6,860,443 1,673

503 SWK Stanley Black & Decker Inc 4,773 30,299,593 6,348

504 SWN Southwestern Energy Co 1,281 58,123,656 45,374

505 SWY Safeway Inc 4,057 29,943,630 7,381

506 SYK Stryker Corp 4,382 35,574,696 8,118

507 SYMC Symantec Corp 3,021 34,063,407 11,276

508 SYY Sysco Corp 2,704 20,064,162 7,420

509 T At&T Inc 1,281 58,945,475 46,015

510 TAP Molson Coors Brewing Co 3,484 21,162,037 6,074

511 TDC Teradata Corp 1,281 9,764,923 7,623

512 TE Teco Energy Inc 4,721 4,430,926 939

513 TEG Integrys Energy Group Inc 1,981 1,790,989 904

514 TEL Te Connectivity Ltd 1,281 3,426,678 2,675

515 TER Teradyne Inc 3,548 22,119,232 6,234

516 TGT Target Corp 3,749 86,448,250 23,059

517 THC Tenet Healthcare Corp 4,767 27,131,420 5,692

518 TIE Titanium Metals Corp 1,299 14,676,333 11,298

519 TIF Tiffany & Co 4,773 67,949,176 14,236

520 TJX Tjx Companies Inc 1,281 21,189,205 16,541

521 TLAB Tellabs Inc 4,012 13,226,175 3,297

522 TMK Torchmark Corp 4,773 5,161,156 1,081

523 TMO Thermo Fisher Scientific Inc 4,444 14,964,779 3,367

524 TRIP Tripadvisor Inc 758 42,647,493 56,263

525 TROW Price (T. Rowe) Group 4,770 20,060,257 4,206

526 TRV Travelers Cos Inc 1,978 20,662,553 10,446

527 TSCO Tractor Supply Co 1,281 11,070,053 8,642

528 TSN Tyson Foods Inc -Cl A 3,021 22,417,004 7,420

529 TSO Tesoro Corp 3,021 76,558,098 25,342

530 TSS Total System Services Inc 3,021 2,979,338 986

531 TWC Time Warner Cable Inc 1,972 19,533,934 9,906

532 TWX Time Warner Inc 4,085 53,282,409 13,043

533 TXN Texas Instruments Inc 4,773 74,487,832 15,606

534 TXT Textron Inc 4,759 40,228,669 8,453
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535 TYC Tyco International Plc 1,281 23,253,461 18,153

536 UA Under Armour Inc 1,281 58,853,171 45,943

537 UHS Universal Health Svcs Inc 1,281 3,221,775 2,515

538 UNH Unitedhealth Group Inc 4,254 68,412,694 16,082

539 UNM Unum Group 4,773 16,415,227 3,439

540 UNP Union Pacific Corp 4,773 82,911,142 17,371

541 UPS United Parcel Service Inc 3,741 63,994,237 17,106

542 URBN Urban Outfitters Inc 1,281 39,769,267 31,045

543 URI United Rentals Inc 1,281 39,169,170 30,577

544 USB U S Bancorp 4,376 71,345,602 16,304

545 UTX United Technologies Corp 4,773 91,285,927 19,125

546 V Visa Inc 1,281 71,903,040 56,130

547 VAR Varian Medical Systems Inc 3,021 12,696,687 4,203

548 VFC Vf Corp 4,444 20,748,710 4,669

549 VLO Valero Energy Corp 3,021 111,599,427 36,941

550 VMC Vulcan Materials Co 4,142 37,894,007 9,149

551 VNO Vornado Realty Trust 3,021 21,100,217 6,985

552 VRSN Verisign Inc 3,021 46,978,130 15,551

553 VRTX Vertex Pharmaceuticals Inc 1,281 39,124,413 30,542

554 VTR Ventas Inc 1,935 7,662,678 3,960

555 VZ Verizon Communications Inc 3,647 96,670,205 26,507

556 WAT Waters Corp 4,735 19,022,439 4,017

557 WDC Western Digital Corp 3,021 65,744,917 21,763

558 WEC Wisconsin Energy Corp 3,021 1,770,663 586

559 WFC Wells Fargo & Co 4,065 94,027,770 23,131

560 WFM Whole Foods Market Inc 920 60,728,536 66,009

561 WFMI Whole Foods Market 362 12,241,414 33,816

562 WFR Memc Electronic Materials Inc. 518 6,807,599 13,142

563 WHR Whirlpool Corp 4,768 77,720,185 16,300

564 WIN Windstream Holdings Inc 2,131 4,390,382 2,060

565 WLP Wellpoint Health Netwrks Inc 1,262 50,880,852 40,318

566 WM Waste Management Inc 3,826 32,415,622 8,472

567 WMB Williams Cos Inc 4,771 68,072,877 14,268

568 WMT Wal-Mart Stores Inc 4,773 86,443,694 18,111

569 WPX Wpx Energy Inc 557 2,004,637 3,599

570 WU Western Union Co 2,078 13,385,839 6,442

571 WY Weyerhaeuser Co 3,204 28,012,317 8,743

572 WYN Wyndham Worldwide Corp 2,121 20,946,288 9,876

573 WYNN Wynn Resorts Ltd 2,998 130,340,043 43,476

574 X United States Steel Corp 4,642 97,663,961 21,039

575 XEC Cimarex Energy Co 252 5,859,807 23,253

576 XEL Xcel Energy Inc 2,769 2,014,712 728

577 XL Xl Group Plc 4,415 25,391,855 5,751

578 XLNX Xilinx Inc 4,773 72,849,000 15,263

579 XOM Exxon Mobil Corp 3,772 98,886,949 26,216

580 XRAY Dentsply Internatl Inc 3,019 4,856,728 1,609

581 XRX Xerox Corp 4,773 20,404,005 4,275

582 XTO Xto Energy Inc 1,384 18,697,631 13,510

583 XYL Xylem Inc 796 1,021,658 1,283

584 YHOO Yahoo Inc 4,350 115,767,911 26,613

585 YUM Yum Brands Inc 4,333 58,046,698 13,396
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586 ZION Zions Bancorporation 4,414 34,934,046 7,914

587 ZMH Zimmer Holdings Inc 1,281 10,486,882 8,186

588 ZTS Zoetis Inc 477 7,489,223 15,701
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A.2 Selected Sector Index Sample List

Table A. 2: Select Sector Index Components and Holdings

No. Ticker Company Name Index Weight

XLB Materials

1 ALB Albemarle Corp 2.13%

2 APD Air Products & Chemicals Inc 4.56%

3 AVY Avery Dennison Corp 1.31%

4 BLL Ball Corp 2.28%

5 CF CF Industries Holdings 1.23%

6 DD E. I. du Pont de Nemours and Company 12.10%

7 DOW Dow Chemical 12.33%

8 ECL Ecolab Inc 5.70%

9 EMN Eastman Chemical Co 2.10%

10 FCX Freeport-McMoRan Inc 3.18%

11 FMC FMC Corp 1.75%

12 IFF Intl Flavors & Fragrances 1.88%

13 IP Intl Paper Co 3.69%

14 LYB LyondellBasell Industries N.V. 4.49%

15 MLM Martin Marietta Materials 2.43%

16 MON Monsanto Co. 8.79%

17 MOS Mosaic Co 1.83%

18 NEM Newmont Mining Corp 3.24%

19 NUE Nucor Corp 3.38%

20 PPG PPG Industries Inc 4.69%

21 PX Praxair Inc 5.86%

22 SEE Sealed Air Corp 1.52%

23 SHW Sherwin-Williams Co 4.43%

24 VMC Vulcan Materials Co 2.79%

25 WRK WestRock Co 2.31%

XLE Energy

1 APA Apache Corp 1.54%

2 APC Anadarko Petroleum Corp 2.71%

3 BHI Baker Hughes Inc 2.00%

4 CHK Chesapeake Energy Corp 0.43%

5 COG Cabot Oil & Gas A 0.95%

6 COP ConocoPhillips 4.63%

7 CVX Chevron Corp 15.51%

8 CXO Concho Resources Inc 1.49%

9 DVN Devon Energy Corp 1.71%

10 EOG EOG Resources 4.30%

11 EQT EQT Corporation 0.88%

12 FTI TechnipFMC Ltd 1.23%

13 HAL Halliburton Co 3.32%

14 HES Hess Corp 1.02%

15 HP Helmerich & Payne Inc 0.62%

16 KMI Kinder Morgan Inc 3.17%

17 MPC Marathon Petroleum Corp. 2.03%

18 MRO Marathon Oil Corp 1.09%

19 MUR Murphy Oil Corp 0.41%
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20 NBL Noble Energy Inc 1.18%

21 NFX Newfield Exploration Co 0.61%

22 NOV National Oilwell Varco Inc 1.18%

23 OKE ONEOK Inc 0.96%

24 OXY Occidental Petroleum 3.71%

25 PSX Phillips 66 2.64%

26 PXD Pioneer Natural Resources 2.47%

27 RIG Transocean Ltd 0.44%

28 RRC Range Resources Corp 0.49%

29 SLB Schlumberger Ltd 8.26%

30 TSO Tesoro Corp 0.76%

31 VLO Valero Energy Corp 2.27%

32 WMB The Williams Companies Inc 1.91%

33 XEC Cimarex Energy Co 0.91%

34 XOM Exxon Mobil Corp 23.16%

XLF Financial

1 AFL AFLAC Inc 1.01%

2 AIG American Intl Group Inc 1.99%

3 AIZ Assurant Inc 0.18%

4 AJG Gallagher Arthur J. & Co 0.35%

5 ALL Allstate Corp 1.03%

6 AMG Affiliated Managers Grp 0.31%

7 AMP Ameriprise Financial Inc 0.69%

8 AON Aon plc 1.09%

9 AXP American Express Co 2.05%

10 BAC Bank of America Corp 8.07%

11 BBT BB&T Corp 1.24%

12 BEN Franklin Resources Inc 0.50%

13 BK The Bank of New York Mellon Corp 1.69%

14 BLK BlackRock Inc 1.61%

15 BRKB Berkshire Hathaway B 10.95%

16 C Citigroup Inc 5.74%

17 CB Chubb Limited 2.21%

18 CBOE CBOE Holdings Inc 0.26%

19 CFG Citizens Financial Group Inc 0.61%

20 CINF Cincinnati Financial Corp 0.37%

21 CMA Comerica Inc (MI) 0.41%

22 CME CME Group Inc A 1.39%

23 COF Capital One Financial 1.41%

24 DFS Discover Financial Services 0.89%

25 ETFC E*TRADE Financial Corp 0.33%

26 FITB Fifth Third Bancorp (OH) 0.65%

27 GS Goldman Sachs Group Inc 2.93%

28 HBAN Huntington Bancshares (OH) 0.49%

29 HIG Hartford Finl Services Group 0.62%

30 ICE Intercontinental Exchange Inc 1.24%

31 IVZ Invesco Ltd 0.42%

32 JPM JP Morgan Chase & Co 10.70%

33 KEY KeyCorp 0.64%

34 L Loews Corp 0.45%
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35 LNC Lincoln National Corp 0.51%

36 LUK Leucadia National Corp (NY) 0.29%

37 MCO Moody’s Corp 0.65%

38 MET Metlife Inc 1.96%

39 MMC Marsh & McLennan Companies 1.31%

40 MS Morgan Stanley 2.08%

41 MTB M&T Bank Corp 0.82%

42 NAVI Navient Corp 0.15%

43 NDAQ Nasdaq Inc 0.28%

44 NTRS Northern Trust Corp (IL) 0.64%

45 PBCT People’s United Financial Inc 0.21%

46 PFG Principal Financial Group 0.58%

47 PGR Progressive Corp 0.79%

48 PNC PNC Finl Services Group 2.00%

49 PRU Prudential Financial Inc 1.58%

50 RF Regions Financial Corp 0.60%

51 RJF Raymond James Financial Inc 0.33%

52 SCHW Schwab Charles Corp 1.67%

53 SPGI S&P Global Inc 1.17%

54 STI SunTrust Banks Inc (GA) 0.94%

55 STT State Street Corp 0.98%

56 SYF Synchrony Financial 0.89%

57 TMK Torchmark Corp 0.29%

58 TROW T Rowe Price Group Inc 0.58%

59 TRV Travelers Cos Inc 1.18%

60 UNM Unum Group 0.37%

61 USB US Bancorp 2.82%

62 WFC Wells Fargo & Co 8.60%

63 WLTW Willis Towers Watson PLC 0.58%

64 XL XL Group Ltd 0.36%

65 ZION Zions Bancorp (UT) 0.29%

XLI Industrials

1 AAL American Airlines Group Inc. 0.98%

2 ALK Alaska Air Group Inc 0.52%

3 ALLE Allegion plc 0.33%

4 AME AMETEK Inc 0.58%

5 ARNC Arconic Inc 0.54%

6 AYI Acuity Brands Inc 0.35%

7 BA Boeing Co 4.97%

8 CAT Caterpillar Inc 2.78%

9 CHRW CH Robinson Worldwide Inc 0.51%

10 CMI Cummins Inc 2.01%

11 COL Rockwell Collins 0.78%

12 CSX CSX Corporation 2.48%

13 CTAS Cintas Corp 0.61%

14 DAL Delta Air Lines 1.55%

15 DE Deere & Co 1.69%

16 DOV Dover Corp 0.71%

17 EFX Equifax Inc 1.05%

18 EMR Emerson Electric Co 1.92%
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19 ETN Eaton Corp plc 1.94%

20 EXPD Expeditors Intl of WA Inc 0.48%

21 FAST Fastenal Co 0.71%

22 FBHS Fortune Brands Home & Security Inc 0.44%

23 FDX FedEx Corp 2.43%

24 FLR Fluor Corp 0.50%

25 FLS Flowserve Corp 0.29%

26 FTV Fortive Corp 0.96%

27 GD General Dynamics 2.72%

28 GE General Electric Co 9.14%

29 GWW Grainger W.W. Inc 0.78%

30 HON Honeywell Intl Inc 4.68%

31 IR Ingersoll-Rand Plc 1.00%

32 ITW Illinois Tool Works Inc 2.05%

33 JBHT Hunt J.B. Transport Services 0.38%

34 JCI Johnson Controls International plc 1.82%

35 JEC Jacobs Engineering Group Inc 0.31%

36 KSU Kansas City Southern Inc 0.43%

37 LLL L3 Technologies, Inc 0.60%

38 LMT Lockheed Martin 3.33%

39 LUV Southwest Airlines Co 1.70%

40 MAS Masco Corp 0.56%

41 MMM 3M Co 5.49%

42 NLSN Nielsen Holdings plc 0.66%

43 NOC Northrop Grumman Corp 2.10%

44 NSC Norfolk Southern Corp 1.85%

45 PCAR PACCAR Inc 1.29%

46 PH Parker-Hannifin Corp 1.27%

47 PNR Pentair PLC 0.49%

48 PWR Quanta Services Inc 0.25%

49 R Ryder System Inc 0.34%

50 RHI Robert Half Intl Inc 0.39%

51 ROK Rockwell Automation Inc 1.22%

52 ROP Roper Technologies, Inc 1.00%

53 RSG Republic Services Inc 0.68%

54 RTN Raytheon Co 2.27%

55 SNA Snap On Inc 0.45%

56 SRCL Stericycle Inc 0.33%

57 SWK Stanley Black & Decker 0.94%

58 TDG TransDigm Group 0.53%

59 TXT Textron Inc 0.75%

60 UAL United Continental Holding Inc 0.95%

61 UNP Union Pacific Corp 4.46%

62 UPS United Parcel Service Inc B 3.53%

63 URI United Rentals Inc 0.48%

64 UTX United Technologies Corp 4.13%

65 VRSK Verisk Analytics Inc 0.58%

66 WM Waste Management Inc 1.53%

67 XYL Xylem Inc 0.43%

XLK Information Technology
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1 AAPL Apple Inc. 15.19%

2 ACN Accenture plc A 1.48%

3 ADBE Adobe Systems Inc 1.31%

4 ADI Analog Devices Inc 0.61%

5 ADP Automatic Data Processing 0.93%

6 ADS Alliance Data Systems Corp 0.30%

7 ADSK Autodesk Inc 0.35%

8 AKAM Akamai Technologies Inc 0.22%

9 AMAT Applied Materials Inc 0.85%

10 AMD Advanced Micro Devices 0.25%

11 APH Amphenol Corp A 0.44%

12 ATVI Activision Blizzard Inc 0.71%

13 AVGO Broadcom Limited 1.77%

14 CA CA Inc 0.21%

15 CRM Salesforce.com 1.14%

16 CSCO Cisco Systems Inc 3.34%

17 CSRA CSRA Inc 0.10%

18 CTL CenturyLink Inc 0.28%

19 CTSH Cognizant Tech Solutions Corp 0.72%

20 CTXS Citrix Systems Inc 0.27%

21 DXC DXC Technology Company 0.41%

22 EA Electronic Arts 0.56%

23 EBAY eBay Inc. 0.70%

24 FB Facebook Inc A 6.72%

25 FFIV F5 Networks Inc 0.19%

26 FIS Fidelity National Information 0.54%

27 FISV Fiserv Inc 0.51%

28 FLIR FLIR Systems Inc 0.11%

29 GLW Corning Inc 0.51%

30 GOOG Alphabet Inc C 4.94%

31 GOOGL Alphabet Inc A 5.07%

32 GPN Global Payments Inc 0.25%

33 HPE Hewlett Packard Enterprise Co 0.61%

34 HPQ HP Inc 0.62%

35 HRS Harris Corp 0.29%

36 IBM Intl Business Machines Corp 3.00%

37 INTC Intel Corp 3.46%

38 INTU Intuit Inc 0.58%

39 IT Gartner Inc 0.20%

40 JNPR Juniper Networks Inc 0.23%

41 KLAC KLA-Tencor Corporation 0.32%

42 LRCX Lam Research Corp 0.44%

43 LVLT Level 3 Communications 0.36%

44 MA Mastercard Inc A 2.14%

45 MCHP Microchip Technology Inc 0.34%

46 MSFT Microsoft Corp 10.18%

47 MSI Motorola Solutions Inc 0.29%

48 MU Micron Technology Inc 0.61%

49 NTAP NetApp Inc 0.24%

50 NVDA Nvidia Corp 1.21%

51 ORCL Oracle Corp 2.69%
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52 PAYX Paychex Inc 0.39%

53 PYPL PayPal Holdings Inc. 0.98%

54 QCOM QUALCOMM Inc 1.69%

55 QRVO Qorvo, Inc 0.19%

56 RHT Red Hat Inc 0.32%

57 SNPS Synopsys Inc 0.22%

58 STX Seagate Technology 0.30%

59 SWKS Skyworks Solutions Inc 0.39%

60 SYMC Symantec Corp 0.39%

61 T AT&T Inc 5.12%

62 TDC Teradata Corp 0.09%

63 TEL TE Connectivity Ltd. 0.54%

64 TSS Total System Services Inc 0.19%

65 TXN Texas Instruments Inc 1.62%

66 V Visa Inc A 3.34%

67 VRSN VeriSign Inc 0.17%

68 VZ Verizon Communications Inc 3.32%

69 WDC Western Digital Corp 0.50%

70 WU Western Union Co 0.20%

71 XLNX Xilinx Inc 0.30%

72 XRX Xerox Corp 0.13%

73 YHOO Yahoo Inc 0.83%

XLP Consumer Staples

1 ADM Archer-Daniels-Midland Co 1.49%

2 BFB Brown-Forman Corp B 0.50%

3 CAG Conagra Brands, Inc 1.02%

4 CHD Church & Dwight Co 0.67%

5 CL Colgate-Palmolive Co 3.55%

6 CLX Clorox Co 1.07%

7 COST Costco Wholesale Corp 4.04%

8 COTY Coty Inc. 0.43%

9 CPB Campbell Soup Co 0.75%

10 CVS CVS Health Corporation 4.30%

11 DPS Dr Pepper Snapple Group 1.11%

12 EL Estee Lauder Cos. A 1.14%

13 GIS General Mills Inc 1.91%

14 HRL Hormel Foods Corp 0.69%

15 HSY Hershey Foods Corp 0.93%

16 K Kellogg Co 1.11%

17 KHC The Kraft Heinz Company 2.88%

18 KMB Kimberly-Clark 2.61%

19 KO Coca-Cola Co 8.70%

20 KR Kroger Co 1.62%

21 MDLZ Mondelez International Inc 3.35%

22 MJN Mead Johnson Nutrition Co 0.95%

23 MKC McCormick & Co 0.73%

24 MNST Monster Beverage Corp New 1.13%

25 MO Altria Group Inc 6.67%

26 PEP PepsiCo Inc 4.84%

27 PG Procter & Gamble 12.16%

Continued on next page

247



Table A. 2 – continued from previous page

No. Ticker Company Name Index Weight

28 PM Philip Morris International 9.29%

29 RAI Reynolds American Inc 3.10%

30 SJM Smucker J.M. Co 0.96%

31 STZ Constellation Brands Inc A 2.22%

32 SYY Sysco Corp 1.49%

33 TAP Molson Coors Brewing Co B 1.18%

34 TSN Tyson Foods Inc A 1.23%

35 WBA Walgreens Boots Alliance Inc 3.90%

36 WFM Whole Foods Market Inc 0.56%

37 WMT Wal-Mart Stores 5.71%

XLU Utilities

1 AEE Ameren Corp 2.07%

2 AEP American Electric Power 5.15%

3 AES AES Corp 1.14%

4 AWK American Water Works Co Inc 2.15%

5 CMS CMS Energy Corp 1.99%

6 CNP Centerpoint Energy Inc 1.87%

7 D Dominion Resources Inc 7.53%

8 DTE DTE Energy Co 2.88%

9 DUK Duke Energy Corp 8.22%

10 ED Consolidated Edison Inc 3.71%

11 EIX Edison Intl 4.06%

12 ES Eversource Energy 2.89%

13 ETR Entergy Corp 2.10%

14 EXC Exelon Corp 5.14%

15 FE FirstEnergy Corp 2.16%

16 LNT Alliant Energy Corp 1.40%

17 NEE NextEra Energy Inc 9.39%

18 NI Nisource Inc 1.20%

19 NRG NRG Energy 0.91%

20 PCG PG&E Corporation 5.29%

21 PEG Public Service Enterprise Grp 3.46%

22 PNW Pinnacle West Capital (AZ) 1.47%

23 PPL PPL Corp 3.94%

24 SCG SCANA Corp 1.47%

25 SO Southern Co 7.69%

26 SRE Sempra Energy 4.24%

27 WEC WEC Energy Group Inc 2.97%

28 XEL Xcel Energy Inc 3.53%

XLV Health Care

1 A Agilent Technologies Inc 0.60%

2 ABBV AbbVie Inc. 3.67%

3 ABC AmerisourceBergen Corp 0.53%

4 ABT Abbott Laboratories 2.27%

5 AET Aetna Inc 1.63%

6 AGN Allergan plc 2.98%

7 ALXN Alexion Pharmaceuticals Inc 0.92%

8 AMGN Amgen Inc 4.23%

9 ANTM Anthem Inc 1.58%

10 BAX Baxter Intl Inc 0.92%
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11 BCR Bard C.R. Inc 0.68%

12 BDX Becton Dickinson & Co 1.42%

13 BIIB Biogen Inc 2.11%

14 BMY Bristol-Myers Squibb 3.16%

15 BSX Boston Scientific Corp 1.19%

16 CAH Cardinal Health Inc 0.91%

17 CELG Celgene Corp 3.42%

18 CERN Cerner Corp 0.61%

19 CI Cigna Corporation 1.41%

20 CNC Centene Corp 0.43%

21 COO Cooper Companies Inc 0.34%

22 DGX Quest Diagnostics 0.49%

23 DHR Danaher Corp 1.85%

24 DVA DaVita Inc 0.37%

25 ESRX Express Scripts Holding Co. 1.49%

26 EVHC Envision Healthcare Corp 0.27%

27 EW Edwards Lifesciences Corp 0.70%

28 GILD Gilead Sciences Inc 3.08%

29 HCA HCA Holdings Inc 0.90%

30 HOLX Hologic Inc 0.42%

31 HSIC Schein Henry Inc 0.47%

32 HUM Humana Inc 1.19%

33 IDXX IDEXX Laboratories Inc 0.52%

34 ILMN Illumina Inc 0.87%

35 INCY Incyte Corp 0.86%

36 ISRG Intuitive Surgical Inc 0.99%

37 JNJ Johnson & Johnson 11.99%

38 LH Lab Corp of America Hldgs 0.52%

39 LLY Lilly Eli & Co 2.94%

40 MCK McKesson Corp 1.12%

41 MDT Medtronic plc 3.91%

42 MNK Mallinckrodt plc 0.16%

43 MRK Merck & Co Inc 6.18%

44 MTD Mettler-Toledo Intl 0.44%

45 MYL Mylan NV 0.63%

46 PDCO Patterson Cos Inc 0.13%

47 PFE Pfizer Inc 7.21%

48 PKI PerkinElmer Inc 0.22%

49 PRGO Perrigo Company plc 0.34%

50 REGN Regeneron Pharmaceuticals Inc 1.02%

51 SYK Stryker Corp 1.46%

52 TMO Thermo Fisher Scientific 2.11%

53 UHS Universal Health Services B 0.39%

54 UNH Unitedhealth Group Inc 5.68%

55 VAR Varian Medical Systems Inc 0.30%

56 VRTX Vertex Pharmaceuticals Inc 1.00%

57 WAT Waters Corp 0.44%

58 XRAY Dentsply Sirona Inc. 0.50%

59 ZBH Zimmer Biomet Holdings Inc 0.87%

60 ZTS Zoetis Inc 0.92%
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XLY Consumer Discretionary

1 AAP Advance Auto Parts Inc 0.42%

2 AMZN Amazon.com Inc 14.53%

3 AN AutoNation Inc 0.10%

4 AZO AutoZone Inc 0.81%

5 BBBY Bed Bath & Beyond Inc 0.23%

6 BBY Best Buy Co Inc 0.52%

7 BWA Borgwarner Inc 0.31%

8 CBS CBS Corp B 1.04%

9 CCL Carnival Corp 0.99%

10 CHTR Charter Communications Inc A 2.88%

11 CMCSA Comcast Corp A 7.13%

12 CMG Chipotle Mexican Grill Inc. 0.53%

13 COH Coach Inc 0.45%

14 DG Dollar General Corp 0.70%

15 DHI Horton D.R. Inc 0.46%

16 DIS Walt Disney Co 6.63%

17 DISCA Discovery Communications Inc A 0.18%

18 DISCK Discovery Communications Inc C 0.25%

19 DISH DISH Network Corp A 0.58%

20 DLPH Delphi Automotive PLC 0.82%

21 DLTR Dollar Tree Inc 0.73%

22 DRI Darden Restaurants Inc 0.42%

23 EXPE Expedia 0.61%

24 F Ford Motor Co 1.77%

25 FL Foot Locker Inc 0.38%

26 FOX Twenty-First Century Fox Inc B 0.61%

27 FOXA Twenty-First Century Fox Inc A 1.33%

28 GM General Motors Company 1.87%

29 GPC Genuine Parts Co 0.54%

30 GPS Gap Inc 0.20%

31 GRMN Garmin Ltd 0.23%

32 GT Goodyear Tire & Rubber Co 0.35%

33 HAS Hasbro Inc 0.44%

34 HBI Hanesbrands Inc 0.31%

35 HD Home Depot Inc 7.21%

36 HOG Harley-Davidson Inc 0.43%

37 HRB Block H & R Inc 0.19%

38 IPG Interpublic Group Cos 0.39%

39 JWN Nordstrom Inc 0.20%

40 KMX Carmax Inc 0.43%

41 KORS Michael Kors Holdings Ltd 0.24%

42 KSS Kohl’s Corp 0.27%

43 LB L Brands Inc 0.42%

44 LEG Leggett & Platt 0.27%

45 LEN Lennar Corp A 0.42%

46 LKQ LKQ Corp 0.35%

47 LOW Lowe’s Cos Inc 2.85%

48 M Macy’s Inc 0.35%

49 MAR Marriott Intl A 1.17%

50 MAT Mattel Inc 0.35%

Continued on next page
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Table A. 2 – continued from previous page

No. Ticker Company Name Index Weight

51 MCD McDonald’s Corp 4.31%

52 MHK Mohawk Industries Inc 0.58%

53 NFLX NetFlix Inc 2.49%

54 NKE NIKE Inc B 2.94%

55 NWL Newell Brands Inc 0.89%

56 NWS News Corp B 0.06%

57 NWSA News Corp A 0.19%

58 OMC Omnicom Group 0.81%

59 ORLY O’Reilly Automotive 0.94%

60 PCLN The Priceline Group Inc 3.49%

61 PHM Pulte Group Inc 0.27%

62 PVH PVH Corp 0.33%

63 RCL Royal Caribbean Cruises Ltd 0.66%

64 RL Ralph Lauren Corp A 0.18%

65 ROST Ross Stores Inc 0.99%

66 SBUX Starbucks Corp 3.42%

67 SIG Signet Jewelers Ltd 0.19%

68 SNI Scripps Networks Interactive A 0.30%

69 SPLS Staples Inc 0.26%

70 TGNA TEGNA Inc 0.22%

71 TGT Target Corp 1.18%

72 TIF Tiffany & Co 0.40%

73 TJX TJX Cos Inc 2.00%

74 TRIP TripAdvisor Inc. A 0.19%

75 TSCO Tractor Supply Co 0.36%

76 TWX Time Warner Inc 3.07%

77 UA Under Armour Inc-C 0.14%

78 UAA Under Armour Inc A 0.15%

79 ULTA Ulta Beauty, Inc 0.66%

80 VFC VF Corp 0.72%

81 VIAB Viacom Inc B 0.64%

82 WHR Whirlpool Corp 0.50%

83 WYN Wyndham Worldwide Corp 0.36%

84 WYNN Wynn Resorts Ltd 0.37%

85 YUM Yum! Brands Inc 0.87%

A.3 MATLAB Codes for Data Extraction

This appendix lists all of the MATLAB codes I used in data processing.

clear;clc;
repository='F:\Data\ZipTrades';
addpath(pwd);
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addpath(repository);

datatype='quotes';
datatype='trades';
uname{1,1}='dubs.trth1@durham.ac.uk';
uname{2,1}='dubs.trth2@durham.ac.uk';
uname{3,1}='dubs.trth3@durham.ac.uk';

cd(repository);
dn=dir;
dn(1:2)=[];
nfiles=length(dn);
k=1;
%strip out the zip repository files from the others
for i=1:nfiles

fname=dn(i).name;
nmbytes=dn(i).bytes./1e9;
fzip=strfind(fname,'.zip');%find Repositoryfiles
if ~isempty(fzip)

repfile{k,1}=fname;
repfilesize(k,1)=nmbytes;
k=k+1;

end
end
%find multipart files and put them together
nrep=length(repfile);
for i=1:nrep

rname=repfile{i,1};
for ii=1:length(uname)

rname=strrep(rname,[uname{ii,1},'-'],'');
end
ii=strfind(rname,'-');
if length(ii)>1

FileNames{i,1}=rname(1:ii(1)-1);
FileCodes{i,1}=rname(ii(1)+1:ii(2)-1);

else
FileNames{i,1}=rname(1:ii(1)-1); %#ok<*SAGROW>
FileCodes{i,1}=rname(ii(1)+1:end-4);

end
end
for i=1:length(FileNames)

df=FileNames{i,1};
df(end-9:end)=[];
RICNames{i,1}=df;

end
[uRIC]=unique(RICNames);
for i=1:length(uRIC)

ric=uRIC{i,1};
ii=find(strcmp(ric,RICNames));
fn=repfile(ii);
fc=FileCodes(ii);
[ufc,IA,IC]=unique(fc);
jj=1;
for j=1:length(ufc)
list=find(strcmp(fc,ufc{j,1}));
for k=1:length(list)
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repfile=fn{list(k),1};
FNAMES=unzip(repfile);FNAMES=FNAMES';
for kk=1:length(FNAMES)

FLIST{jj,1}=FNAMES{kk,1};
jj=jj+1;

end
end

end
%File counter
jjj=1;
%Run the loop over the main code list.
for j=1:length(FLIST)

datfile=gunzip(char(FLIST{j,1}));
A=importdata(char(datfile));
%this is a switch block between trades and quotes.
switch lower(datatype)

case 'trades'
if ~iscell(A)

RIC=unique(A.textdata(2:end,1));
days=A.textdata(2:end,2);
times=A.textdata(2:end,3);
bt=find(strcmp(times,''));
times(bt)=[];
days(bt)=[];
GMT=A.textdata(2:end,3);
dv=datenum([char(days),repmat(' ',length(days),1),char(times)];
'dd-mmm-yyyy HH:MM:SS.FFF');
dataM(jjj).dv=dv;
dataM(jjj).RIC=RIC;
dataM(jjj).Open=A.data(:,1);
dataM(jjj).High=A.data(:,2);
dataM(jjj).Low=A.data(:,3);
dataM(jjj).Last=A.data(:,4);
dataM(jjj).Volume=A.data(:,5);
dataM(jjj).APrice=A.data(:,6);
dataM(jjj).VWAP=A.data(:,7);
dataM(jjj).NTrades=A.data(:,8);
jjj=jjj+1;
emptyfiles(j,1)=0;
disp(['Completed: ',char(datfile)]);

elseif iscell(A)
disp([num2str(j),' is empty.']);
emptyfiles(j,1)=1;

end
case 'quotes'

if ~iscell(A)
RIC=unique(A.textdata(2:end,1));
days=A.textdata(2:end,2);
times=A.textdata(2:end,3);
bt=find(strcmp(times,''));
times(bt)=[];
days(bt)=[];
GMT=A.textdata(2:end,3);
dv=datenum([char(days),repmat(' ',length(days),1),char(times)];
'dd-mmm-yyyy HH:MM:SS.FFF');
dataM(jjj).dv=dv;
dataM(jjj).RIC=RIC;
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dataM(jjj).OpenBids=A.data(:,1);
dataM(jjj).HighBids=A.data(:,2);
dataM(jjj).LowBids=A.data(:,3);
dataM(jjj).CloseBids=A.data(:,4);
dataM(jjj).NBids=A.data(:,5);
dataM(jjj).OpenAsks=A.data(:,6);
dataM(jjj).HighAsks=A.data(:,7);
dataM(jjj).LowAsks=A.data(:,8);
dataM(jjj).CloseAsks=A.data(:,9);
dataM(jjj).NAsks=A.data(:,10);
jjj=jjj+1;
emptyfiles(j,1)=0;
disp(['Completed: ',char(datfile)]);

elseif iscell(A)
disp([num2str(j),' is empty.']);
emptyfiles(j,1)=1;

end
end

end
fname=[ric,' data'];
save(fname,'dataM','-v7.3');
disp(['Completed Archiving of: ',num2str(i)])

end

function [K,T,Type,ticker] = parseTicker(RIC)
RIC = strrep(RIC,'.U','');
Strike = RIC(end-4:end);RIC(end-4:end)=[];
year = RIC(end-1:end);RIC(end-1:end)=[];
day = RIC(end-1:end);RIC(end-1:end)=[];
month = RIC(end);RIC(end)=[];
ticker = RIC;
tf = strcmp(lower(month),month);

if tf
K = str2double(Strike)/10;

else
K = str2double(Strike)/100;

end
CallMonths = 'abcdefghijkl';
mnth = strfind(CallMonths,lower(month));

if isempty(mnth)
PutMonths = 'mnopqrstuvwxy';
mnth = strfind(PutMonths,lower(month));
Type = 0;

else
Type = 1;

end
T = datenum(2000+str2double(year),mnth,str2double(day));
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A.4 Proofs for Chapter 5

A.4.1 Proof for Lemma 5.1

Before moving on, let me first declare some background definitions that will

be used in deriving the Lemma:

A M-matrix: Mn,n := {M = (qij) ∈ Rn,n|qij ≤ 0, i 6= j} ;

B Identity Matrix: In := {I = (iij) ∈ Rn,n|iij = 1, 1 ≤ i, j ≤ n} ;

C Group Inverse: Let X be a square M matrix. The index of X is the

least non-negative integer k such that rank(Xk+1) = rank(Xk). The

Drazin inverse of X is the unique matrix XD which satisfies:

Xk+1XD = Xk, XDXXD = XD, XXD = XDX

The group inverse of matrix X is the Drazin inverse of X with index

k = 0, 1, denoted by X#. Equivalently, X# satisfies all the properties

with XD.

Proof. C2-Continuity of Recovered Discount Factor. The derivatives

of the Perron root have been studied in the statistics and linear algebra to

a certain extent before. My derivation of Equation 5.12 and Equation 5.13

utilises the results Theorem 2 and Theorem 3 of Deutsch and Neumann [1985],

however, in turn these borrow heavily from Vahrenkamp [1976], Ben-Israel and

Greville [2003], Berman and Plemmons [1979] and Seneta [1973]. The use of

the group and Drazin inverse to provide the approximation of the second

derivative is from Robert [1968] and this in turn relies on an application of

Bolzano-Weirestrass theorem. The derivations for ∇P (x) and ∇2P (x) are

less well-established.
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Recall that R : Nn,n → R+ and we define x = vec[Q] and the inverse

transformation mat[x] = Q for a column-wise ‘vec’ and ‘mat’ operators

respectively. Thus, the first and the diagonal of the second-order partial

derivatives of the Perron root R(P) with respect to the the ijth entries of

P can be expressed in terms of the ∇ and ∇2 in the constraint functions as

follows

∇P (x) = vec

[
∂R(P)

∂ij

]
, and ∇2P (x) = diag

[
vec

[
∂2R(P)

∂2ij

]]

If we define M = R(Q)I−Q as a singular and irreducible M-matrix, where

I is a M × M identity matrix. Recall that δ = R(Q), then the first and

second-order derivatives of the recovered discount factor can be expressed by:

[
∂δ

∂qij

]
= vec

[
∂R(Q)

∂ij

]
= vec

[
(I−MM#)′

]
, (10.1)[

∂2δ

∂2qij

]
= vec

[
∂2R(Q)

∂2ij

]
= 2vec

[
(M#)′ ◦ (I−MM#)′

]
(10.2)

where ′ denotes a transpose of matrix, M# gives the group inverse of M and

◦ is the Hadamard product operator. I now derive Equation (10.1) and (10.2)

respectively.

Deutsch and Neumann [1985] and Vahrenkamp [1976] provide partial

results for a perturbation theorem for the first derivative R(Q) and our

derivation modifies proof of Deutsch and Neumann [1985] approach with some

additional steps to include the ‘mat’ operator and recovery theorem via the

‘vec’ operator to eliminate resorting errors inherent in these approaches, which

utilises two of intermediate steps in Vahrenkamp [1976].
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The derivation of vec
[
∂R(Q)
∂ij

]
can be proved by use of Theorem 3.1 of

Deutsch and Neumann [1985]. To derive the existence and form of the first

derivative of the discount factor, we need to determine a matrix transform of

S (Q), which is a simple eigenvalue of Q.

Consider a neighbourhood of Q ∈ Rn,n such that each F ∈ NQ has a

simple eigenvalue S (F) and such that if F ∈ NQ∩Rn,n, then S (F) = R(F).

If VR(F) be the corresponding right eigenvector of F such that:

max
1≤i≤n

|(VR(F))i| = 1.

Then VR(·) is analytic as a function of each of the n2 entries of the elements

of NQ. Thus the partial derivatives ∂VR(F)/∂ij, ∂
2VR(F)/∂ij∂kl, . . . of VR(·)

at F with respect to these entries exist and are well defined. Differentiate

both sides of the equality:

FVR(F) = R(F)VR(F) (10.3)

with respect to the ijth entry of F yields:

∂F

∂ij
VR(F) + F

∂VR(F)

∂ij
=
∂S (F)

∂ij
VR(F) + S (F)

∂Rv(F)

∂ij
. (10.4)

Now let VL(F) be a left eigenvector of F such that (VL(F))′VR(F) = 1.

Let ∂F/∂ij = Eij, where Eij is the n, n matrix whose i, j entry is 1 and

other remaining entries are 0. Then (VL(F))
′
EijVR(F) = (VL(F))i(VR(F))j.
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Premultiplying both sides of Equation (10.4) by (VL(F))′ obtain:

∂S (F)

∂ij
= (VL(F))i(VR(F))j (10.5)

Recall that M is a singular and irreducible M-matrix and M# is its group

inverse. According to Perron-Frobenius theory, there exist positive vectors vR

and vL as the right and left Perron vectors, such that MvR = 0 and v′LM = 0.

I−MM# is the projection matrix of the n×n real matrix onto the null space

of M along the range of M. Then

I−MM# = vRv′L (10.6)

Now set Q = F,

VR(Q)V ′L(Q) = I−MM# ⇒ VL(Q)VR(Q) = (I−MM#)′

The limit of (∂S (Q))/∂ij is given by

lim
t→0

S (Q + tEij)−S (Q)

t

The Bolzano-Weirestrass approach to the derivative relies on Q + tEij ∈ NQ

for small t, the limit coincides with the partial derivative of the Perron root

at Q with respect to the ijth entry, which is

lim
∂S (Q)

∂ij
→ ∂R(Q)

∂ij
≡ VL(Q)VR(Q) = (I−MM#)′
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and recall x = vec[Q], by construction we get:

[
∂δ

∂qij

]
= vec

[
∂R(Q)

∂ij

]
= vec[(I−MM#)

′
]

hence R(Q) is at least C1 continuous w.r.t Q.

In fact, (∂2R(Q))/∂2
ij is a special case of the more general second-order

partial derivative problem (∂2R(Q))/(∂ij∂lk), with i = k, j = l on diagonal

as second-order derivatives.

Let 1 ≤ i, j ≤ n and 1 ≤ k, l ≤ n, the differentiation of Equation (10.3)

on both sides with respect to the (k, l)th entry gives:

Eij
∂VR(F)

∂kl
+ Ekl

∂VR(F)

∂ij
+ F

∂2VR(F)

∂ij∂kl

=
∂2VR(F)

∂ij∂kl
VR(F) + (VL(F))i(VR(F))j

∂VR(F)

∂kl
(10.7)

+ (VL(F))k(VR(F))l
∂VR(F)

∂ij
+ S (F)

∂2VR(F)

∂ij∂kl

Premultiplying both sides of Equation (10.7) by (VL(F))′ and considering

(VL(F))′F = S (F)(VL(F))′ and (VL(F))′VR(F) = 1 yields:

∂2S (F)

∂ij∂lk

= (VL(F))i

((
∂VR(F)

∂kl

)
j

− (VR(F))i(VL(F))′
∂VR(F)

∂kl

)

+ (VR(F))k

((
∂VR(F)

∂ij

)
l

− (VR(F))l(VL(F))′
∂VR(F)

∂ij

)
(10.8)

Noted that the first-order derivative of the eigenvector at F with respect

to its elements is the main element inside the bracket in Equation (10.8). Let
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F̃ := S (F)I− F and let 1 ≤ u, v ≤ n. According to Equation (10.5),

F̃
∂VR(F)

∂uv
= EuvVR(F)− (VL(F))u(VR(F))vVR(F) (10.9)

Premultiplying Equation (10.9) by the group inverse of F̃ on both sides and

as F̃#VR(F) = 0, we get

F̃F̃#∂VR(F)

∂uv
= F̃F̃#EuvVR(F)

and we know that F̃F̃# = I− (I− F̃F̃#),

∂VR(F)

∂uv
− (I− F̃F̃#)

∂VR(F)

∂uv
= F̃#EuvVR(F) (10.10)

According to Equation (10.5), VR(F)(VL(F))′ = I − F̃F̃#. Then for the wth

components of the vectors on both sides of Equation (10.10), we have the

equality that

(
∂VR(F)

∂uv

)
v

− (VR(F))w(VL(F))
′ ∂VR(F)

∂wv
= (F̃#)wv(VR(F))v (10.11)

Substituting Equation (10.11) into Equation (10.9), obtain

∂2S (F)

∂ij∂lk
= (I− F̃F̃#)li(F̃

#)jk + (I− F̃F̃#)jk(F̃
#)li (10.12)

Lastly, let F = Q, S (F) = R(Q) and F̃ = M,

∂2R(Q)

∂ij∂kl
= (I−MM#)li(M

#)jk + (I−MM#)jk(M
#)li (10.13)
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To get (∂2R(Q))/∂2
ij, simply let k = i and l = j and use the element-wise

Hadmard product

∂2R(Q)

∂2
ij

= 2(I−MM#)ji(M
#)ji = 2(M#)′ ◦ (I−MM#)′

Reconstructing the Q into the ‘vec’ form,

[
∂2δ

∂2qij

]
= vec

[
∂2R(Q)

∂2
ij

]
= 2vec

[
(M#)′ ◦ (I−MM#)′

]
hence R(Q) is at least C2 continuous w.r.t Q.

End of proof.

Proof. C1-Continuity of the Pricing Kernel. To demonstrate the

continuity of the pricing kernel we need to first derive the first-order

derivative of the Perron vector. We follow the analysis in Deutsch and

Neumann [1985]. Different from the derivation of the Perron root, the

derivations of the first-order of the derivative of the Perron vector vary

across different normalizations. Following our notations, let δ = R(Q) and

v = V (Q) be the Perron root and Perron vector of Q and let z be an v-vector

whose entries are differentiable functions. Thus we have the normalisation of

the Perron vector such that z′V (Q) = 1. From the standard result that the

Perron root and vector are a principal eigenvalue and eigenvector we find the

standard identity:

QV (Q) = R(Q)V (Q)
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expanding the terms as a derivative we define

∂Q

∂ij
V (Q) + Q

∂V (Q)

∂ij
=
∂R(Q)

∂ij
V (Q) + R(Q)

∂V (Q)

∂ij

setting M = R(Q)I−Q, then

M
∂V (Q)

∂ij
=
∂Q

∂ij
V (Q)− ∂R(Q)

∂ij
V (Q) (10.14)

thus the first derivative of the Perron vector V (Q) is:

∂V (Q)

∂ij
= M#∂Q

∂ij
V (Q)− ∂R(Q)

∂ij
M#V (Q) + αV (Q)

= M#∂Q

∂ij
V (Q) + αV (Q) (10.15)

where α is the constant of normalisation. To determine α, premultiplying the

above equation by z′ yields:

z′
∂V (Q)

∂ij
= z′M#∂Q

∂ij
V (Q) + αz′V (Q) = z′M#∂Q

∂ij
V (Q) + α (10.16)

solving for α we get:

α = −z′M#∂Q

∂ij
V (Q)−

(
∂z

∂i

)′
V (Q) (10.17)

By definition, z′V (Q) = 1, so

(
∂z

∂ij

)′
V (Q) + z′

∂V (Q)

∂ij
= 0.
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Substituting α back into the formula for the first derivative of the Perron

vector we obtain:

∂V (Q)

∂ij
= M#∂Q

∂ij
V (Q)−

((
∂z

∂i

)′
V (Q)

)
V (Q)

−
(

z′M#∂V (Q)

∂ij
V (Q)

)
V (Q) (10.18)

Noted, the first derivative of the Perron vector will be determined by

different normalisation, which depends on the choice of z. However, in most

of cases, we can show that
(
∂z
∂i

)′
V (Q) = 0, so the formula of the first-order

derivative of the Perron vector can be further reduced to:

∂V (Q)

∂ij
= M#∂Q

∂ij
V (Q)−

(
z′M#∂Q

∂ij
V (Q)

)
V (Q) (10.19)

Note, that for each elements in the Perron vector V (Q) we can write down

the first-order derivative in the form of Equation 10.19. For simplicity, let

Υ := M#∂Q

∂ij
and υ := z′M#∂Q

∂ij
V (Q).

setting υ̃m be the m row of Υ, the ith element of the first-order derivative of

the Perron vector is:

∂Vm(Q)

∂ij
= υ̃′mV (Q)− υVm(Q) (10.20)

Recall that the pricing kernel is formed by the normalisation of the inverse of

the Perron vector of the state transition matrix about the central (current)
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state c̃ = (M + 1)/2, hence

diag[D] := {dm =
d̊m

d̊c̃
, 1 ≤ m ≤M}, diag[D] = v−1 = V (Q)−1

hence we evaluate

dm =
Vc̃(Q)

Vm(Q)
(10.21)

Thus the first-order derivative of the pricing kernel can be derived by the

quotient rule such that:

∂dm
∂ij

=
Vm (Q) ∂Vc̃(Q)

∂ij
− Vc̃ (Q) ∂Vm(Q)

∂ij

[Vm (Q)]2
(10.22)

Substituting Equation 10.20 back into Equation 10.22 we have:

∂dm
∂ij

=
Vm(Q)(υ̃′c̃V (Q)− υVc̃(Q))− Vc̃(Q)υ̃′mV (Q)− υVm(Q)

V 2
m(Q)

Simplification yields the explicit derivative for the pricing kernel:

∂dm
∂ij

=
V (Q)(υ̃′

c̃Vm(Q)− υ̃′
mVc̃(Q))

V 2
m(Q)

End of proof.

A.4.2 Proofs for Unimodality of the State Price

Transition Matrix

Proof. Unimodality of the State Price Transition Matrix.

Constraint D.4 impose the unimodality constraint in the optimisation
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system. We call a matrix unimodal if for each of its rows and columns the

entries change from increasing to decreasing in either direction at most once.

In our case, the unimodality constraint imposed on the transition matrix

Q (‘mat’[x]) is formed by row-wise and column-wise inequality conditions

separately:

1. Row constraint Ar: the rows of Q are unimodal, with the modes lying

on the main diagonal of Q;

2. Column constraint Ac: the columns of Q are unimodal, with the modes

lying on the main diagonal of Q.

I first illustrate the form of the inequality constraint for the rows. Let i

be the index of diagonal of QM×M , then we have the conditions such that:

For the diagonal elements:

qi+k,i ≥ qi+k+1,i, k = 1, . . . ,M − i,

qi−k,i ≥ qi−k−1,i, k = 1, . . . , i− 1;

For the off-diagonal elements:

qi,j ≥ {qi−1,j, qi+1,j, qi,j−1, qi,j+1}, i > j,

qi,j ≤ {qi−1,j, qi+1,j, qi,j−1, qi,j+1}, i < j.

which ensures that the largest element in each row is lying on the

diagonal, as such q1,1 ≥ {q1,2, q1,2} then q2,2 ≥ {q2,3, q2,1, q3,2, q1,2} to qi,i ≥
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{qi,i+1, qi,I−1, qi+1,i, qi−1,i} to qM,M ≥ {qM−1,M , qM,M−1}, where {1 < i <

M, 1 < j < M}. We could form the constraints for the columns with the

same rationale. Formally, the linear constraint imposing on the row and

column unimodality is in the form:

For row elements:

qi,j > qi,j+k, j > i, and k ∈ {1,M − i},

qi,j+k > qi,j j < i, and k ∈ {1, i− 1};

For column elements:

qi,j > qi+k,j, j > i, and k ∈ {1,M − i},

qi+k,j > qi,j, j < i, and k ∈ {1, i− 1}.

Recall that I utilise a ‘vec’ form that x = vec[Q] and Q = mat[x]. I introduce

A
M(M−1)×M
r and A

M(M−1)×M
c to impose the row and column uni-modality

constraints separately and the final constraint matrix A2M(M−1)×M is formed

via vertical concatenation of A
M(M−1)×M
r and A

M(M−1)×M
c as discussed in the

main text.

Thus, the first sub-set of optimisation in my main System 6.10 is:

minimize H(x) =
1

2
||Gx− s0||2

subject to U(x) = Ax− 02M(M−1)×1 ≤ 0, where 0M×1 ≤ x ≤ e

Define z1 as the vector of slack variables and the equivalent equality

266



constrained optimisation problem with the slack-variable formulation is:

minimize H(x) =
1

2
||Gx− s0||2

subject to U(x) + z1 = Ax− 02M(M−1)×1 + z1 = 0

where 0M×1 ≤ x ≤ e, z1 ≥ 0 (10.23)

We can solve the numerical solution for system (10.23) by standard

Lagrangian method. The Lagrange function for the system (10.23) is:

L1(x,λ1) = H(x)− λ′1(U(x) + z1) (10.24)

Let H represents the first-order derivative operator that returns the first-order

derivative of the Lagrange function with respective to x and λ1 respectively

and δx be the feasible step (corrections) then the optimisation for Equation

(10.24) can be re-written as:

HL1(x∗,λ∗1) = 0 (10.25)

where x∗ = x + δxx is the feasible point and λ∗1 = λ1 + δxλ1 is a stationary

point of the Lagrangian function. Let ∇ be the first-order partial derivative

operator then Equation (10.25) yields:

∇xL1 =
∂L1(x,λ1)

∂x
= ∇H(x)− λ′1∇U(x) = 0

∇λL1 =
∂L1(x,λ1)

∂λ1

= U(x) + z1 (10.26)
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The derivations of ∇H(x) is quite straightforward. As ∇H(x) is the matrix

form of the classic least squares derivative:

∇H(x) =
1

2

d||Gx− s0||2

dx

Taking out the constant, we get:

∇H(x) = −G′s0 + (G′G)x (10.27)

The unimodality constraint function U(x) is a linear function, thus ∇U(x) is

simply:

∇U(x) = A (10.28)

Substituting into Equation (10.26) yields:

∇xL1 = 0 : (G′G)x−G′s0 −Aλ1 = 0

∇λL1 = 0 : Ax− 02M(M−1)×1 + z1 = 0 (10.29)

Rearrange and we have the linear system

G′G −A

−A′ 0


 x

λ1

 = −

 G′s0

02M(M−1)×1 + z1

 (10.30)

If the inverse of the Lagrangian matrix exists, such that:

G′G −A

−A′ 0


−1

=

 L −K

−K′ U

 (10.31)
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Then we can write down the numerical solution for system (10.30)

x∗ = −LG′s0 + K(02M(M−1)×1 + z1)

λ∗1 = K′G′s0 −U(02M(M−1)×1 + z1) (10.32)

End of proof.

A.4.3 Proofs for Sub-stochasticity of the State Price

Transition Matrix

Proof. Sub-stochasticity of the State Price Transition Matrix.

Constraint E.2 states that the progression of the sum of the risk-neutral state

price describes the equivalent risk free asset, such that
∑

j Qsn ≡
∑

j sn+1,

where sn denotes the nth column summation of the state price transition

matrix S. Recall that B is a matrix and b is a target vector such that

the equality constraint Bx = b, where b denotes the column summation

of the one-period forward shift matrix, such that b = 1′sn+1 and B is the

column summation of the columns within the vector x = vec[Q] such that

B = [1′ ⊗ s′n].

Thus, the second subset of the main optimisation System 6.10 is:

minimize H(x) =
1

2
||Gx− s0||2

subject to B(x) = Bx− b (10.33)
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We have the Lagrangian function:

L2(x,λ2) = H(x)− λ′2B(x) (10.34)

and the stationary point condition yields:

∇xL2 = 0 : (G′G)x−G′s0 −Bλ2 = 0

∇λL2 = 0 : Bx− b = 0 (10.35)

Rearrange and we have the linear system

G′G −B

−B′ 0


 x

λ2

 = −

G′s0

b

 (10.36)

Let

 L −V

−V′ U

 be the inverse of the Lagrangian matrix, then the numerical

solution of system (10.36) can be derived:

x∗ = −LG′s0 + Vb

λ∗2 = V′G′s0 −Ub (10.37)

End of proof.
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A.4.4 Full Steps of the SQP Process on the Discount

Factor Constrain

Following the similar convention in the previous proofs, I provide the full

steps of the SQP process in the optimisation system with the constraint on

the discount factor D.5 as stated in Equation 6.16 here. The usage of this

approach embedded in a quadratic programming set-up has, to our knowledge,

never been attempted, hence the precise steps matter for verification purposes

as these types of optimisation problems rely heavily on the continuity of the

second derivative of the constraint.

The third sub-set of optimisation in the main System 6.10 is:

minimize H(x) =
1

2
||Gx− s0||2

subject to P (x) = R(mat(x))− 1 ≤ 0

Define z3 as the vector of slack variables and the equivalent equality

constrained optimisation problem with the slack-variable formulation is:

minimize H(x) =
1

2
||Gx− s0||2

subject to P (x) + z3 = R(mat(x))− 1 + z3 = 0, where z3 ≥ 0 (10.38)

The Lagrange function can be written as:

L3(x,λ3) = H(x)− λ′3(P (x) + z3) (10.39)

Let δx be the vectors of feasible step to arriving the feasible point, then

Equation (10.39) can be re-written as:

HL3(x + δx,λ3 + δxλ3) = 0 (10.40)
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the Taylor series expansion for Equation(10.40) about x and λ3 gives:

HL3(x + δx,λ3 + δxλ3) = HL3(x,λ3) + [H2L3]

(
δx

δxλ3

)
+ . . . (10.41)

where

H =

(
∇x

∇λ

)
, and H2 =

(
∇2
x

∇2
λ

)

∇ and ∇2 are the the first and second-order partial derivative operators, such

that,

∇xL3 =
∂L3(x,λ3)

∂x
= ∇H(x)− λ′3∇P (x)

∇2
xL3 =

∂2L3(x,λ3)

∂2x
= ∇2H(x)− λ′3∇2P (x)

∇λL3 =
∂L3(x,λ3)

∂λ3

= −(P (x) + z3)

∇2
λL3 =

∂2L3(x,λ3)

∂2λ3

= 0 (10.42)

The derivations of ∇H(x) and ∇2H(x) are quite straightforward. As ∇H(x)

is the matrix form of the classic least squares derivative:

∇H(x) =
1

2

d||Gx− s0||2

dx

Taking out the constant, we get:

∇H(x) = −G′s0 + (G′G)x and ∇2H(x) = G′G (10.43)

According to the results in Lemma 5.1, the non-linear constraint function

on Perron root P (x) are exist and at least C1 and C2 continuous w.r.t Q. We
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can now give the full expressions for Equation (10.42):

∇xL3 = −G′s0 + (G′G)x− λ3vec[(I−MM#)′]

∇2
xL3 = G′G− 2λ3vec

[
(M#)′ ◦ (I−MM#)′

]
∇λL3 = −P (x) = 1−R(mat[x])

∇2
λL3 = 0 (10.44)

Neglecting the higher order terms in Equation (10.41) and we have the

iteration [
H2L3

]( δxx
δxλ3

)
= − [HL3] (10.45)

This can be solved by the Newton’s method for the stationary point problem

to give the corrections δxx and δxλ3. Substituting the expression for H2L3

and HL3 gives the system:

(
W(k) −J(k)

−J(k)
′

0

)(
δxx

δxλ3

)
=

(
−g(k) + J(k)λ3

c(k)

)
(10.46)

where J and W are the Jacobian matrix and Hessian matrix of constraint

normals evaluated at x respectively:

J(k) = ∇xL3 = −G′s0 + (G′G)x− λ3vec[(I−MM#)′]

W(k) = ∇2
xL3 = G′G− 2λ3vec

[
(M#)′ ◦ (I−MM#)′

]
(10.47)

For the kth iteration, we compute the update λ
(k+1)
3 = λ

(k)
3 + δxλ3 and

δ
(k)
x = δxx. To determine λ

(k+1)
3 and δ

(k)
x , rearrange Equation (10.47) and we

have the following equivalent system:

(
W(k) −J(k)

−J(k)
′

0

)(
δx

λ3

)
=

(
−g(k)

c(k)

)
(10.48)
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Given λ
(k+1)
3 and δ

(k)
x , then x(k+1) is given by

x(k+1) = x(k) + δ(k)
x . (10.49)

Given a set of initial approximations x(0) and λ(0) , the iterative sequence

{x(k),λ(k)} can be generated by System (10.46) and (10.49).

To compute the root R(mat(x)), I use the algorithm in Chanchana [2007],

which is very effective from a numerical perspective both in terms of error

bounds and speed of convergence. To make the chapter self-contained I

list here the key steps of the computation, slightly adjusted to account for

numerical issues. At first I initialise the computation by setting v0 = 1 be

the start value of the tentative Perron’s vector and δ = Q · 1 be the start

value of the tentative Perron’s root. Then I repeat the following procedure:

1. Compute M = δ · IM − Q, and make sure that by construction

R(mat(Q)) ≤ δ.

2. If M is well conditioned (as we might have found the Perron root by

chance), then I execute the following computation:

(a) We then solve Mv1 = v0 for v1.

(b) Solve Mv0 = v1 for v0 where v1 is the value computed at the

previous step.

(c) Compute the lower and upper bounds for the Perron root δmin =

δ −maxi∈{1...M}(v
1
i /v

0
i ) and δmax = δ −mini∈{1...M}(v

1
i /v

0
i ).

3. Set the new value of the Perron root as the obtained upper bound δ =

δmax and repeat from step (1) until the error (δmax−δmin)/δmax is below

a desired threshold.

The Perron eigenvector vR is then be computed by dividing v1 for the sum

of its elements so that it has norm equal to one, i.e. vR = v1/
∑

i v
1
i . A

similar procedure can be used to compute the left eigenvector vL by using the

transpose of Q in the above algorithm, provided the left eigenvector is also
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scaled so that the scalar product between the two eigenvector is equal to one

(i.e. v′R · vL = 1).

At this point we only need to compute the first-order derivative and,

as I have mentioned, it is better to rely on Vahrenkamp [1976] and use

Equation 5.15. Then we return to the main algorithm the following results:

R(mat(x)) = δ, and
∂R(mat[x])

∂x′
= vec [vLv′R] ,

where


x = vec [Q]

Q · vR = rvR and v′L ·Q = rvL

v′R · 1 = 1 and v′R · vL = 1

(10.50)
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