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Abstract:

Effective transmission expansion planning is necessary to ensure a power system can
satisfy all demand both reliably and economically. However, at the time reinforcement
decisions are made many elements of the future power system background are uncertain,
such as demand level, type and location of installed generators, and plant availability
statistics. In the current power system planning literature, making decisions which
account for such uncertainties is usually done by considering a small set of plausible
scenarios, and the resulting limited coverage of parameter space limits confidence that

the resulting decision will be a good one with respect to the real world.

This thesis will consider a Bayesian approach to transmission expansion planning under
uncertainty, which uses statistical emulators to approximate how input affects output
of expensive simulators using a small number of training runs (evaluations from the
simulator), as well as quantifying uncertainty in the simulator output for all points at
which it has not been evaluated. In addition, expert judgement is used to formulate
probability density functions to describe the uncertainties which exist in the power
system, which can then be used alongside the emulator to estimate expected costs

under uncertainty whilst also giving credible intervals for the resulting estimate.

Further, the methodology will be expanded to consider multi-stage transmission expan-



Abstract vi

sion problems under uncertainty, where uncertainty can be reduced in various aspects of
the power system between decisions. In the existing power system planning literature,
multi-stage decisions under uncertainty are handled by considering a small number of
possible projections of the future power system, which gives a very limited coverage
of the space of all possible projections of the future power system. This thesis will
consider how emulation can be used alongside backwards induction to calculate costs
across all stages as a function of the first stage decision only, whilst also accounting
for the uncertainties which exists in the future power system. As part of this, the fu-
ture state of the power system is modelled using continuous variables which effectively

allows for an infinite number of possible projections to be considered.

Throughout this thesis, the methodology used is detailed in quite general terms, which
should allow for the methodology to be applied to problems of interest other than the

transmission expansion planning problem considered in this thesis with relative ease.
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Chapter 1

Introduction

1.1 Introduction

In life we are often confronted with a need to make decisions. Statistics can provide us
with a methodological framework for making good decisions in the face of uncertainty,

such as to maximise expected utility or minimise expected losses.

In the simplest examples, this amounts to taking an appropriately weighted average
using known probabilities of all outcomes that can occur. For example, suppose there
is a biased die with n faces indexed by ¢ = 1,...,n, with the probability of observing
face i known to be p;. If we are offered a gamble to pay a price, C, to roll the die and
receive reward r; if the die lands on face i, the expected reward of such a gamble could

be calculated as
R:zn:ripi (1.1.1)
i=1
The decision of whether or not to take the gamble can be made to maximise expected
profits, by taking the gamble if R > C', not taking the gamble if R < C and being
indifferent to taking the gamble if R = C'. This could be extended by considering the
attitude to risk of the decision maker (the person offered the gamble) and making a

decision to maximise expected utility.

Unfortunately, real world examples are rarely this simple. The most obvious difference
is that we rarely know exactly how likely each particular outcome is. Further, the

outcome itself may contain a random element, going back to the die example it could
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be that if a 6 is rolled, instead of receiving a set prize we instead receive a random prize
from some distribution. The primary factor of interest in this thesis, however, is when

it takes vast statistical calculation to calculate the profit/loss of a particular outcome.

As a general problem, consider making decisions, d, with variables, v, that can affect
the outcome of a situation, and a function f(v,d) which estimates the costs/profits
for particular values of v and d. If f(v,d) is very expensive (i.e. it takes a long time
to evaluate the function) we will not be able to evaluate it for every set of values of
v and d that we would like. The primary focus of this thesis is to develop a method
of making good decisions which adequately account for the uncertainty which exists

when working with expensive simulators, f(v,d).

In this thesis the particular application of making transmission expansion decisions
applied to Britain’s power system is considered. As a very simple overview of what will
be detailed in the coming chapters, the objective is to identify reinforcement decisions,
d, (which equate to building new power lines) which minimise the expected mean
constraint costs of a power system (detailed in Chapter , for now it suffices to think
of these as the additional costs of generating electricity due to bottlenecks in the
transmission network) plus the reinforcement costs of the decision, when uncertainty
exists in the variables which define Britain’s power system, v. In this example, f(v,d)
would be the expensive simulator which calculates total costs (mean constraint costs
plus reinforcement costs) for given values of the variables containing uncertainty, v,
and decision variables, d. The objective of the problem is to identify the values of
d which minimise the expected value of f(v,d) when accounting for the uncertainty

which exists in v.

The transmission expansion planning problem is one which is considered extensively in
the engineering literature. A full literature review will be given in Section [2.3] but an
overview is that many applications ignore the uncertainty which exists in the variables
which describe the power system background and decisions are identified based on
the best projections of the power system available, i.e. the values of variables v are
treated as if their values are known precisely. Further, the articles which do consider
uncertainty do so by considering considering a finite (and usually small) set of possible

scenarios, i.e. consider a small set of values which v could possibly take. Such a finite
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set of scenarios may give sparse coverage of the space of model inputs, and hence an
optimal decision within the model which is strongly dependent on the particular choice

of scenarios rather than the underlying uncertainty in model inputs.

Our primary goal is to overcome this limited scope of uncertainty, and present a
methodology which can be used to make decisions which account for any possible
scenario that could occur (not just a single scenario or limited finite set). In this thesis
we will present how emulation can be used as an approximation to simulation. This is
achieved by taking a small number of training runs of the simulator, f(v, d), which vary
the model input (values of v and d) to construct an alternative function, the emulator
f (v,d), which approximates how input affects output of the simulator whilst being

much faster to evaluate. Further, an estimate of the uncertainty in the approximation

for values not simulated is also given by the emulator.

In addition, expert judgement can be used to specify a probability density function
(PDF) to describe a distribution for the possible values the variables containing uncer-
tainty, v, take. This allows for a Bayesian expectation of total costs under uncertainty

to be calculated.

This methodology will then be extended further to consider making decisions over
multiple stages in time, with the uncertainty in the values of v reduced between each
decision stage based on observations made between each stage. Further, consideration
will also be given to how costs estimated and the resulting estimates of optimal deci-
sion are sensitive to many underlying assumptions made about the power system not
considered in v (such as National Grid’s assumed seasonal model for wind generation

or the assumed discount rate of future costs).

1.2 Chapter Summary

The remainder of this thesis is arranged as follows: Chapter [2]defines the constraint cost
problem (the main problem of interest in this thesis) in Section and demonstrates in
Section how the constraint costs calculated can be sensitive to many assumptions
made about the power system. Section then gives an overview of the available

literature on transmission expansion planning under uncertainty.
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Chapter [3| defines the simulator used to calculate mean annual constraint costs for
Britain’s power system using the freely available data of National Grid’s online ref-
erence [69] and shows how the mean annual constraint costs calculated for Britain’s
power system are also sensitive to many of the assumptions made by National Grid.
As the simulator used to calculate constraint costs can be expensive to evaluate for
a single set of input data, Chapter [4 shows how importance sampling can be used to
acquire an estimate of mean annual constraint costs to a given level of precision whilst

expecting to do less work in comparison to using full simulator evaluations.

Chapter [5| details how emulation can be used as part of a methodology for decision
making under uncertainty, where a set of training runs from the full simulator are
used to approximate how input affects output for values not simulated. Section [5.3
applies this methodology to a simple example, where a single reinforcement decision
is to be made whilst considering the uncertainty which exists in a single variable, and
Section [5.4] goes on to show how the decision made is sensitive to other assumptions
about the power system (such as the cost of reinforcement and the attitude to risk of

the decision maker).

Chapter [6] expands on the example of Chapter [] illustrating how the same methodol-
ogy can be used to make 2 simultaneous reinforcement decisions whilst considering the
uncertainty which exists in three variables. Further, Section [6.2] shows how a consider-
ation of the credible intervals for the estimates of expected total costs can be used to
eliminate decisions from consideration which have evidence against them being opti-
mal, which allows for a more accurate emulator model to be fitted over a smaller range
of values of the decision variables which were not eliminated. The sensitivity of the
estimated optimal decisions to various assumptions made about the power system is

again considered in Section [6.4]

An article based on the work of Chapter [f] titled “Bayesian Framework for Power Net-
work Planning Under Uncertainty” has been published in the Elsevier journal “Sus-

tainable Energy, Grids and Networks (SEGAN)” [52].

A consideration to how sensitive cost estimates and the resulting estimated optimal
reinforcement decisions are to various underlying assumptions made about the power

system is given in Chapter []] These assumptions include the underlying seasonal
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model (which affects the output of wind generation) assumed by National Grid and

the assumed future projections for installed generating capacity given by [69].

Chapter 8| gives consideration to how the emulation methodology can be used alongside
backwards induction to make multiple stage decisions, which allows for the system
to be observed between each decision and make later decisions more suited to the
observed state of the future power systems. Section[8.1|gives an overview of the existing
literature for multi-stage transmission expansion planning. A methodology for a two
stage problem is proposed in Section [8.2] which improves on the existing literature by
using continuous variables to model the future scenario observed, effectively allowing
for an infinite number of possible future scenarios. The methodology of Section [8.2] is

then applied to an example two stage decision problem in Sections [8.3] to [8.5]

This is extended further to a general M stage problem in Chapter [0l An application
of this methodology to a three stage problem is considered in Sections to [9.5]
Section then goes on to show how the estimated optimal multi-stage decisions are
sensitive to many modelling assumptions made (such as the assumed discount rate of

future costs and the assumed planning horizon considered).

It is noted that the methodology presented in Section [0.1.2] of Chapter [9] makes use
of quite a useful simplification, where the costs in stage m onwards are dependent on

the total reinforcement decisions in the previous m — 1 stages, dg,,_,, and not the

—1
individual reinforcement decisions in stages 1 to m — 1, i.e. dy,...,d,,_;. This makes
the M stage problem more tractable, as the number of variables the emulator model
is fitted over in each stage does not need to grow with the number of decision stages
considered. However, Section [0.1.3] notes how the methodology of Section [0.1.2] can be
adapted to consider problems where the costs in stage m onwards are dependent on

the individual decisions in the previous m — 1 stages (i.e. di,...,d;,—1) and not just

the total reinforcement in the previous m — 1 stages, dr,, ,.
Finally, a discussion of the work presented throughout this thesis is given in Chapter|10]

Throughout the thesis a large amount of notation is used, so a notation appendix is

given in Appendix [E] to assist the reader.



Chapter 2

Decision Making and The

Constraint Cost Problem

2.1 The Constraint Cost Problem

This thesis is concerned with decision making under uncertainty. Our primary concern
is with the constraint cost problem applied to Britain’s power system. This section
will introduce the constraint cost problem, and illustrate how constraint costs can be
calculated on a simple power system. Further, it will be shown how even in the simple
example presented the estimated mean constraint costs are highly sensitive to many

assumptions made about the power system.

2.1.1 Power Systems

This subsection gives details of how power systems are modelled for the purpose of
the examples presented in this thesis. A power system represents an interconnected
geographical region with demand for electricity that must be satisfied. This thesis
considers the power system to be made up of several zones which are interconnected via
a transmission system (power lines). Not every zone is necessarily directly connected

to every other zone.

Each zone is supposed to contain some installed generating capacity (electricity gen-

eration) and demand for generating capacity (demand for electricity). Often, installed

6
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(a) Demand symbol. (b) Generation sym-
bol.

Figure 2.1: Hlustrations of symbols used in engineering diagrams.
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(a) A simple 2 zone power system. (b) A 4 zone power system.

Figure 2.2: Illustrations of power systems as engineering diagrams.

generating capacity in a zone will not be equal to demand in a zone. For this reason,
available generating capacity can be traded between any two connected zones. How-
ever, the amount of capacity that can be traded between two zones is limited by how

much transmission capacity (transmission lines) exist between the zones.

Figure illustrates symbols used within diagrams which illustrate power systems.
In addition to these, horizontal lines are used to illustrate zones and vertical lines are

used to illustrate connections between these zones.

Figure gives illustrations of two power systems. Figure (a) is a simple 2 zone
model, where the two zones are connected to one another and each have a demand
to be satisfied. The zone at the top has 2 types of installed generators, the bottom

contains just 1 type of installed generating capacity.
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Figure (b) has 4 zones, where each zone has a demand to be satisfied. The top
zone is modelled as having 2 types of generation with the other three zones modelled as
having a single generation type. In this example not every zone is directly connected
to every other zone. The central zone is connected to each zone, but the other three
zones are only connected to this central zone. Of course, the other zones are connected
indirectly. The bottom left zone would still be able to import capacity from the bottom

right zone, but it would have to be transmitted via the central zone.

2.1.2 Constraint Costs

Constraint costs are calculated on a snapshot by snapshot basis. For the rest of this
section it will be assumed that constraint costs are being calculated for a single snapshot
in time. A power system has demand spread across its zones, all of which must be
satisfied. However, the generating capacity is not free, and not all generating capacities
are equally priced. The desire is to satisfy all demand as cheaply as possible. The ideal
situation would be to use all of the cheapest generating capacity available across the
whole power system to satisfy this demand. However, due to the installed transmission
capacity being limited we will not necessarily always be able to use all of the cheapest

capacity available to satisfy demand.

In simple terms, constraint costs are the costs that arise due to there being insuffi-
cient installed transmission capacity to utilise all of the cheapest generation capacity
available. Calculating these costs is actually quite complicated. Generating capacity
is associated with two costs: an offer price, ¢*, and a bid price, ¢~. The offer price
is the amount which a generator demands to produce an additional MW of capacity,
whereas the bid price is the amount which a generator will pay to produce 1 less MW of
capacity. The bid and offer prices are dependent on the type of generating technology
(e.g. wind, coal, gas etc), such that ¢ is the offer price of generating technology type

t and ¢, is the bid price of generating technology type t.

Initially, the system operator will seek to satisfy demand with generating capacity
with the lowest offer price. This results in an unconstrained schedule which satisfies all
demand whilst assuming there is infinite transmission capacity (i.e. as if as much as is

desired can be traded between zones). This unconstrained schedule first schedules all
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available generating capacity with the lowest offer price, then schedules the capacity

with the next lowest offer price and so on until all demand is satisfied.

Of course, when actually satisfying demand, the system operator cannot simply trade
as much as they would like between zones, as they are restricted by the installed
transmission capacity between zones. Therefore, it may be necessary to constrain off
(not use) some generating capacity from the unconstrained schedule and constrain on
(use instead) some alternative capacity so that demand is met without transmitting
more between zones than is physically allowed. In order to do this, the bid price is
received of the capacity constrained off, but the offer price must be paid of the capacity

constrained on to replace it.

Let g{ represent the amount (in MW) of generating technology t constrained on and
g¢ represent the amount (in MW) of generating technology t constrained off across the
whole system in order to satisfy demand whilst obeying transmission constraints. The
constraint costs are then calculated as

> (cfg —ca) (2.1.1)

t

In words, this is the sum of the offer prices of generating technology constrained on
minus the sum of the bid prices of generating technology constrained off across the

whole system. The constraint costs we work with are those that arise from minimising

Equation [2.1.1} whilst satisfying all demand.

The importance to consider constraint costs was highlighted in [102]. It was noted how
a local generator monopoly may be able to manipulate its bid strategy if insufficient
transmission exists in order to sell its generating capacity at a very high price. Further,
it was noted that an increase in renewable sources (which have a volatile availability)
could result in a large increase in costs occurring due to an insufficient transmission
system. Planning a transmission system to minimise Equation plus the cost of
expanding the transmission system would protect against price manipulation as far as
is economically justifiable, and will give protection against the constraint costs that

occur due to increased renewable generation capacity being built.

One thing that has been overlooked is it will not always be possible to satisfy all demand

in the system. In this thesis we concentrate on the economics of the system (minimising
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costs) whilst neglecting the security of the system (the reliability to satisfy all demand).
The way this thesis handles the fact that it may not always be possible to satisfy all
demand is to add an additional generating capacity of curtailment, which would equate
to simply not satisfying the demand. However, this capacity will generally come with

a huge offer price, making this option very unattractive.

In the next subsection it is illustrated how constraint costs are calculated on a simple
power system. Details of the linear program used to solve the constraint cost problem

for a general power system will be given later in Chapter [3|

2.2 A Simple Example to Illustrate Constraint Cost

Calculations

2.2.1 Simple Example

To illustrate how to calculate constraint costs, a very simple example will be presented
in this section. Figure illustrates a very simple representation of Britain’s power
system, which roughly divides Britain into one region of Scotland and one region of
England and Wales. In this example values for the available generating capacity and
the demand for it are simply assumed. Demand is separated into a one to nine ratio,
which is quite accurate in peak demand. The numbers for demand and generation

given are supposed to represent a peak snapshot in winter.

Generation Type | Offer Price Bid Price
Wind £0 per MW £-50 per MW
Coal £50 per MW | £25 per MW
Gas £120 per MW | £80 per MW
Curtailment £120 per MW | £120 per MW

Table 2.1: Table detailing bid and offer prices of generating capacity.

In addition to the power system illustrated in Figure values are required for the
bid and offer prices of each generating capacity, which are detailed in Table One
interesting thing to note is that under this model if wind capacity is constrained off we

would actually pay wind £50 per MW for doing nothing, highlighting the importance
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Scottish Coal Capacity Scottish Wind Capacity

Assume 6000 MW

Available Assume 2000 MW

f\_/ oY, Available

5000 MW Scottish Demand

English Gas Capacity 1000 MW Transfer Capacity Between
Assume 45000 MW England and Scotland

Available N

435000 MW English Demand

Figure 2.3: Plot to illustrate a simplified representation of Britain’s power system.
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to have sufficient transmission capacity to make use of all the cheapest generating
capacity available. This also addresses the point made by [102] of needing to have a
transmission system suitable for renewable generation, by incurring a large economic

punishment for failing to utilise available renewable (wind in this case) capacity.

As wind and coal have the lowest and second lowest offer price respectively, the uncon-
strained schedule will use all wind and coal capacity available, with the rest of demand
being met with gas generation capacity. Constraint costs will thus arise due to the fact

only 1 GW of coal capacity can be traded between Scotland and England.

In this example, 2 GW of wind capacity, 6 GW of coal capacity and 45 GW of gas
capacity is available. As wind has the lowest offer price and coal has the next lowest
offer price, the unconstrained schedule would use all 2 GW of wind capacity, all 6 GW
of coal capacity and 42 GW of gas capacity. Then, when it came to actually satisfying
demand, 2 GW of wind capacity and 3 GW of coal capacity would be used to satisfy
Scottish demand. 1 GW of coal capacity would be transferred to England and the
remainder of English demand is made up of 44 GW of gas capacity.

In this example, 2 GW of coal was constrained off (receiving £(2000 x 25) = £50, 000
from its bid price) and 2 GW of gas constrained on (costing £(2000 x 120) = £240, 000
from its offer price). This gives constraint costs for this example as £240,000 —

£50,000 = £190, 000.

The real problem is not as simple as assuming what capacity will be available. Fig-
ure illustrates a power system where the availability of all generators are random.
In practice, a binomial distribution based on these figures would be used to randomly
simulate the available generating capacities. For example, with coal generation there
are 12 units each with a 0.85 chance of being available. Therefore, a random draw from
a binomial distribution with n=12 and p=0.85 would be taken to randomly simulate
the number of units available. The available capacity can then be calculated as the
number of units available multiplied by the unit size. For example, suppose 8 available
units is randomly drawn from the binomial distribution with n=12 and p=0.85. The
available coal capacity is then calculated as 8 x 500MW=4000MW. After the availabil-
ities have been randomly drawn for all 3 generators, constraint costs will be calculated

based on these availabilities.
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Scottish Coal Capacity Scottish Wind Capacity
12 x 500 MW units Assume 2000 MW
Each unit /_\_/ always available
available with

probability 0.85.

5000 MW Scottish Demand

English Gas Capacity 1000 MW Transfer Capacity Between
108 x 500 MW units England and Scotland

Each unit available N/

with probability 0.9

45000 MW English Demand

Figure 2.4: Plot to illustrate Britain’s power system with random generator availabili-

ties.
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Note that these figures are a decent representation for coal and gas generation, but
the model for wind generation has been extremely simplified for the purpose of this

example.

Table [2.1] also gives pricing details for curtailment, which is the price that must be
paid when we are unable to satisfy all demand. Note that by design curtailment can
actually be included in the unconstrained schedule. This would mean that if there
was no further curtailment included in the constrained schedule there would not be
any constraint costs incurred for this. Whilst this may seem like a poor design, it is
actually useful for the problems considered in this thesis. This is because this thesis
considers the transmission expansion planning problem, not the generation expansion
planning problem. If curtailment is in the unconstrained schedule that means that
there is not enough generating capacity available to satisfy demand and an infinite

transmission system would not solve this problem.

As available capacity is random, this means that the realisation of constraint costs
each time the simulator is run will also be random, thus an average of many simulator
evaluations must be taken. In this simple example, an extremely accurate estimate of
the mean constraint costs of the power system can be acquired very quickly by taking
the average of millions of simulator evaluations. For the full simulator this is not
possible, and Chapter [4] considers how to get an accurate measure of mean simulator

output (mean constraint costs) using importance sampling,.

It is noted that what is referred to in this thesis as the mean constraint costs of a
power system (the long run average of constraint costs of a given power system) would
be more commonly referred to as the expected constraint costs of a power system.
However, we avoid the term expected constraint costs when referring to the long run
average of a given power system to avoid any confusion when we later considering
estimating an expected response whilst considering uncertainty in the variables which
define the power system background (as will be detailed in Section of Chapter [5)).
For example, if uncertainty is considered in the peak demand level of a power system,
an expectation of mean constraint costs under uncertainty is calculated (rather than the
expected constraint costs under uncertainty which would be more accurately referred

to as the expectation of the expected constraint costs under uncertainty).
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The mean constraint costs of the power system illustrated in Figure are £106,000 to
3 significant figures. The examples considered throughout this thesis are only concerned
with the mean constraint costs of power systems, which is the standard practice of
National Grid (and broadly the case elsewhere). Further, the full simulator, which will
be detailed in Chapter [3| does not take into account the temporal correlation between
half hour snapshots (such as if a generator is available in one snapshot that will have an
effect on its availability in the next snapshot) as is also standard practice of National
Grid. By not doing this the PDF of the annual constraint costs that arise from the
simulator would not be a good approximation to the PDF of annual constraint costs
in reality (and is not of interest in this thesis). However, the mean of the annual

constraint costs (which is of interest) is preserved.

For interest, the probability of the system being unable to satisfy all demand is 0.23%.

2.2.2 Uncertainty Analysis of the Simple Example

Even ignoring how simple the structure of the model is, values have been assumed
for all the variables of the model. Many of these variables cannot be known exactly
in reality, such as what the demand will be in any given snapshot or the availability
probability of the generators. If the assumed values are varied, it would be natural to

expect the estimate of mean constraint costs to also vary.

Model Variable Mean  Constraint | Mean  Constraint
Costs at -10% Costs at +10%

Boundary Transfer Capacity 4,115,000 497,300

Unit Size 4,106,000 107,000

Coal Availability Probability £.64,700 153,000

Gas Availability Probability 4,106,000 £.106,000

Installed Coal Generating Capacity | £61,700 £.153,000

Installed Gas Generating Capacity | £106,000 £.106,000

Scottish Demand level 152,000 63,800

English Demand level 106,000 £106,000

Table 2.2: Table detailing how mean constraint costs vary as model variables’ values
are varied.

Table |2.2| considers how estimates of mean constraint costs vary when any of the model

inputs are varied by +/-10%. As can be seen, English demand has no effect on the costs
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estimated. This is because (on the +/-10% range) England will always want to import
as much cheap coal capacity as possible. The same is true as to why gas availability
probability and installed gas generating capacity have no effect on the estimate of mean

constraint costs.

Variables relating to Scottish demand or coal generation can be seen to have a large
effect on estimated mean constraint costs. The largest of these is installed coal gener-
ating capacity, with costs rising to £153,000 when installed coal generating capacity
is 10% higher and falling to £61,700 when installed coal generating capacity is 10%
lower. These are changes of 44.3% and -41.8% respectively.

The reason that these variables have a large impact is as follows. If Scottish demand
was lower or more coal generation was installed, there would be a greater surplus of coal
capacity in Scotland which would be utilised in the unconstrained schedule. However,
there remains a 1 GW transmission capacity between England and Scotland, meaning
that, despite this surplus, this additional capacity cannot be utilised in practice and

thus mean constraint costs rise.

This indicates that, even on this relatively simple example, certain factors can have a
huge impact on the resulting cost estimates. Therefore, any uncertainty in input data
should be accurately accounted for in order to make a good decision. Conversely, it
has also been shown that not every variable has a relevant effect on costs, so we do
not need to account for every single variable (of which there are hundreds in the full

model) when modelling how input affects output when making decisions.

Figure illustrates how installed coal generating capacity, coal availability probabil-
ity and Scottish demand affect estimates of mean constraint costs over the +/- 10%
range. As can be seen, varying any of these factors affects mean constraint cost es-
timates in a linear way of almost the exact same magnitude. This linear pattern is
not surprising, because in this simple example the three factors illustrated all directly
affect the expected surplus of coal generating capacity in Scotland in a linear manner.
England would demand as much coal generating capacity as is available, and under
most circumstances gas is brought on in a one to one ratio to replace any coal capacity

that can’t be used due to transmission constraints.

It could also be interesting to compare how constraint costs vary as multiple factors are
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Estimated Mean Constraint Costs (£)

Estimated Mean Constraint Costs (£)
60000 80000 100000 120000 140000
| | | | |

Estimated Mean Constraint Costs (£)
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I | | | |

60000 80000 100000 120000 140000
L L L L L
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Installed Coal Generation Capacity (MW) Coal Availability Probability Scottish Demand (MW)

(a) Varying installed coal gen- (b) Varying coal availability (¢) Varying Scottish demand
erating capacity. probability. level.

Figure 2.5: Graphs to demonstrate how mean constraint costs vary as simulator inputs
are varied.

varied simultaneously. Illustrations of this are given in Figure where installed coal
capacity and coal availability probability are varied simultaneously for three different
demand levels. Again, it can be seen that mean constraint costs increase as Scottish
demand decreases, due to the increased probability that there will be a surplus of coal
generating capacity to export. However, all 3 plots approximately form 2 dimensional
planes, with minimal interaction between installed coal capacity and coal availability

probability.

2.2.3 Uncertainty Analysis of the Simple Example When As-

suming a Larger Cost of Curtailment

In the previous subsection there was relatively little punishment for failing to satisfy
demand, with gas and curtailment having the same offer price and thus being just as
cheap to constrain on. In reality, it is much more reasonable to assume that the cost of
failing to satisfy demand would be much greater than the cost of bringing on the most
expensive generating capacity. This is reflected in Table [2.3] where larger bid and offer

prices of £1000 per MW are assumed for curtailment.

With these new assumed bid and offer prices for curtailment, the mean constraint costs
of the power system illustrated in Figure[2.4]are £107,000, which is very slightly greater
than the £106,000 of the model which assumes a lower cost of curtailment. This is

a small rise, but what would reasonably be expected considering the probability of
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(a) 90% Scottish demand assumed. (b) 100% Scottish demand assumed.

(c) 110% Scottish demand assumed.

Figure 2.6: Graphs to demonstrate how mean constraint costs vary as installed coal
capacity and coal availability probability are varied for three demand levels.
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Generation Type | Offer Price Bid Price
Wind £0 per MW £-50 per MW
Coal £50 per MW £25 per MW
Gas £120 per MW | £80 per MW
Curtailment 1000 per MW | £1000 per MW

Table 2.3: Table detailing an alternative set of bid and offer prices of generating ca-
pacity.

curtailing any demand is low (0.23%) and some of this curtailment will be due to
insufficient generation not transmission. However, this increased cost of curtailment

does have an interesting effect on results as assumed model inputs are varied.

Model Variable Mean  Constraint | Mean  Constraint
Costs at -10% Costs at +10%

Boundary Transfer Capacity £117,000 £.98,400

Unit Size £107,000 £.109,000

Coal Availability Probability 465,700 £.155,000

Gas Availability Probability £.505,000 £.106,000

Installed Coal Generating Capacity | £62,600 £155,000

Installed Gas Generating Capacity | 473,000 £.106,000

Scottish Demand level 4,154,000 63,800

English Demand level 107,000 £.399,000

Table 2.4: Table detailing how mean constraint costs vary as model variables’ values
are varied when there is a larger cost of curtailment.

Table [2.4] shows how mean constraint costs vary as any of the assumed values of model
inputs are varied by 10%, when assuming the bid and offer prices of detailed in Ta-
ble[2.3] All estimates are at least as large as the corresponding estimates in Table [2.2]
which is to be expected as the only model difference is the increased curtailment cost

for failing to satisfy demand.

It can be seen that Scottish demand, installed coal generating capacity and coal avail-
ability probability behave very similarly to how they behaved at a low cost of curtail-
ment. This is because these three factors affect the availability of the relatively cheap
coal resource. If all other factors of the system are unchanged, unused surplus coal

capacity is usually constrained off for gas capacity.

English demand, installed gas generating capacity and gas availability probability on
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the other hand now show a huge variation as their assumed value is varied, whereas at
the lower curtailment cost they showed no variation at all. This is because gas capacity
is constrained on when there is a surplus of coal capacity in Scotland but insufficient
transmission capacity to utilise it. If all other simulator inputs take their assumed
values, there is usually enough gas capacity available to satisfy the additional capacity
demand. However, if English demand rises, or there is less gas capacity available
(through less total capacity being built or that capacity having a lower probability
of being available) then that increases the likelihood of replacing the coal capacity

constrained off with curtailment instead of gas, thus raising mean constraint costs.

It is worth noting that the largest costs in this table (from decreasing gas availability
probability by 10%) are over £500,000. This is more than triple the largest cost noted
in Table 2.2

Figure shows how costs vary with installed gas generating capacity, gas availability
probability and English demand when assuming the larger cost of curtailment. Whilst
Figure [2.5] of the previous subsection showed that the effect of installed coal generating
capacity, coal availability probability and Scottish demand to be linear at the lower cost
of curtailment, the effects of varying gas generating capacity, gas availability probability

and English demand level here are clearly non-linear

When the difference is favourable to the power system (i.e. less English demand or
gas available more often), there appears to be next to no effect on the system (as
this reduces the probability of curtailment). When the difference is unfavourable to
the power system, the rise in costs actually appears to be quite small for all factors
with a variation of 5% or less. However, beyond this we see a very sharp rise in mean

constraint costs, eventually leading to the extreme values noted in Table [2.4]
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Figure 2.7: Graphs to demonstrate how mean constraint costs vary as simulator inputs
are varied for a larger curtailment cost.
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2.3 Literature Review for Decision Making Under

Uncertainty for Power Systems

2.3.1 Decision Making Under Uncertainty

In the previous section it was illustrated how to calculate the mean constraint costs of
a power system. These costs exist because there is insufficient transmission capacity
to utilise all of the cheapest generation capacity available. In reality the situation
can be improved by expanding the transmission system (building new transmission
lines), however, there are considerable reinforcement costs involved in expanding the
transmission system. Therefore, the aim is not to eliminate constraint costs, but rather
to find an economic balance which minimises the sum of the mean constraint costs plus

the costs of reinforcement over a given period of time.

The previous section also illustrated how the assumed input can have a large effect
on the mean constraint costs of a power system. When making decisions we must
accurately account for these uncertainties and their effect on cost estimates in order to
make good decisions. This thesis is concerned with decision making under uncertainty,
particularly the transmission expansion problem. Our objective is to minimise the sum
of reinforcement costs plus the expected mean constraint costs whilst accounting for
the uncertainty that exists in many variables of the power system. Further, we aim
to improve on the pre-existing methodology from decision making under uncertainty
in the engineering literature in order to give a more complete consideration to the

uncertainty that exists within a power system.

2.3.2 Transmission Expansion Planning Overview

Transmission expansion planning (the particular application we are considering) has
been covered quite extensively in engineering literature. Historically, systems were
planned to maintain continuity of supply with any o components on outage, o com-
monly being 1; this is known as an N-a planning criterion [12, 91, 61, 55]. More

recently, a number of authors (e.g. [12} |57, 58]) have suggested that the likelihood of
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events occurring must also be considered, because it would typically be deemed unde-
sirable to make a large investment to protect against a very unlikely event, or one whose
consequences are very small. Further, in an economic setting, as will be presented in
this thesis, it would be similarly undesirable to make a decision that alleviates costs
in a handful of negligible scenarios, whilst resulting in a substantial over-investment
in any scenario that could plausibly occur. Therefore, it would be more relevant to
consider problems which not only satisfy the N-« criterion, but also make decisions to

optimise some secondary economic/welfare function.

[39] is a good introductory article which gives a brief history of transmission expansion
planning before giving a comprehensive review of a wide range (33 in total) different
potential criteria to be considered when making transmission expansion decisions. [39)
also state key market characteristics to be efficiency, competitiveness and customer
choice; and classifies each of the 33 criteria depending on their effect on these three
characteristics. Finally, an example is given which briefly considers how a subset of
these characteristics vary with various transmission expansion decisions applied to the

Pennsylvania, New Jersey and Maryland electricity market.

2.3.3 Transmission Expansion Planning to Meet Specific Cri-

teria

The majority of literature gives examples with an in depth investigation of decisions de-
pendant upon a single criterion. For example, [94] consider a criterion which minimises
the present worth of investment costs and expected outage and production costs. These
costs were calculated using a generalized Benders decomposition to solve a stochastic
non-linear mixed integer programming problem. An application was presented on a
24 bus system, which made certain projections of how the system might change over a
20 year period. For an unfamiliar reader, it is sufficient to think of buses as the zones
of Section in order to understand the literature of this section. The projections
include the rate at which gas prices grow and oil generating units come off-line. How-
ever, no results were presented to illustrate how these decisions may be sensitive to the
particular projections made, although, it was demonstrated that the decisions made

were somewhat sensitive if a linearisation was used within the model (by linearising
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power flow over lines in the stochastic non-linear mixed integer programming problem)

to improve computation time.

A novel approach using co-operative game theory is given in [19]. This approach allows
(but does not necessitate) coalitions to be formed between multiple agents (autonomous
decision makers) of the power system which gives the potential for each agent to benefit
from the decisions of others in the coalition. This in turn could reduce the number of
lines needed to expand the network. This methodology was applied to several 6 bus
systems and a 24 bus system, though the paper did not consider how uncertainties in
any of aspects of any of these systems might affect the coalitions formed or decisions

made.

A very holistic view is presented by [40], which consider making an expansion decision
when there are transmission expansion cost limits, as well as reliability criteria (system
value of loss of load) and congestion criteria (system congestion revenue which is the
difference between what customers pay and what generators take from the market) that
must be satisfied. Several expansion options are available, and performance indices are
calculated for each. However, all market stakeholders are given the ability to express
preference for each expansion option on a 5 point scale, and regulatory authorities in
turn give weights to the preferences of each stakeholder. This allows for a weighted
performance index to be calculated, which is used to identify the optimal decision to
make. Whilst the resulting plan gives a very thorough consideration to all market

participants, no uncertainties in any elements of the power system are considered.

[91] considers using investment sensitivities, defined as the ratio at which an objective
function is improved to the capital cost of investment, to make decisions. Many such
sensitivities are considered, such as the satisfying of the supply-demand curves or power
exchange deviations. To calculate the investment sensitivities, first a linear program is
used to determine the behaviour of the system operator (which seeks to minimise power
exchange deviations, non-fulfilment of network n — 1 criterion and system unserved
demand). Then, investment sensitivities are calculated using the linear program post
optimal information, dual variables and reduced costs of the system operator model.
Decisions which result from accounting for multiple investment sensitivities are then

presented for a 6 bus system and the Spanish power system.
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A cost-benefit analysis (CBA) approach can also be taken [49, |56, 50]. [50] consider
transmission expansion on a pan-European grid, with particular attention placed on
expanding the transmission system between countries. An overview is given to the main
criteria for transmission expansion planning for several European countries. The paper
then lists several benefits to consider for decision making, such as value of lost load,
social welfare (sum of generator and consumer surplus) and reduction of conventional
generation external costs (a measure of benefit to environmental sustainability). A
weighted average of these is taken for any decision considered with the investment

costs of such a decision subtracted, which is then used to identify optimal decisions.

[42] provides an example which was inspired by how transmission systems across Eu-
rope are set to change greatly in the next 20 years, due to targets relating to increased
renewable generation and reduction of fossil fuel emissions. They highlight how in-
termittent generation such as wind will greatly increase in this period, which will also
increase the importance of hydro generation. An expansion decision is made to account
for the marginal profits of reinforcements made against the marginal cost to reinforce.
These costs are calculated as a stochastic dynamic problem using the EFIs Multi-Area
Power-market simulator. Then, investment decisions are iteratively considered with
the capacity increases added or rejected based on the marginal profits of the reinforce-
ment in comparison to the system without the investment. The costs calculated do
acknowledge the variation in estimates due to the intermittent (uncertain) generation
of wind and solar. However, despite the acknowledgement that the system is set for
great changes, they do not consider the uncertainty in any aspects of the projected
2030 system. Due to the importance placed on wind in their paper it would have
been interesting to see how decisions vary if the assumed amount or location of future

installed wind capacity was varied.

2.3.4 Articles Which Consider the Sensitivity of the Decision
to Various Assumptions
The previous subsection considers a range of articles which make transmission expan-

sion decisions for power systems when considering a wide range of different criteria

that it may be desirable to optimise. However, all of these examples require a model
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of a power system, which makes many assumptions about the power system in reality.
It is therefore of interest to consider resources which demonstrate how assumptions in

the input can affect the costs estimated and decisions made as a result.

[4] is one such article, which considers minimising the sum of investment costs and
operation costs, whilst also acknowledging this sum could be weighted to the preference
of the system planner. This linear sum of costs is subject to linear constraints in
expansion and operation. A Benders decomposition is used to find an optimal solution
using costs and constraints associated with the expansion as a master problem and
the costs and constraints associated with operation as a sub-problem. The problem
was applied to a reduced version of the Spanish power system based on a 2005 horizon
from 1996. Uncertainty in demand was considered for 2 different scenarios, though it
was stated that the methodology could handle up to 10. Further, as assumptions had
to be made about installed generating capacities, results were also presented for two
different sets of installed generation possibilities. This article is an improvement on
those of the previous subsection, as it acknowledge uncertainties in the projections of
the future system, and also mentions how the farther into the future we attempt to

predict, the larger the uncertainties will be.

[49] present an example which considers increasing the capacity of one particular com-
ponent of Manitoba hydro system, with the goal of minimising the sum of the costs of
increasing the capacity of this component plus energy replacement costs (akin to our
constraint costs) related to that component. Many assumptions about the system are
made, though a small amount of the sensitivity of the decision is illustrated by con-
sidering how the optimal decision varies for two different costs of energy and 4 periods
of time considered. Expected costs were calculated probabilistically based on historic
data (such as capacity outage probabilities) and the optimum was identified simply
by calculating these expected costs for a number of expansion options and picking the

expansion which gives the smallest expectation.

[15] consider minimising the sum of construction costs, operation costs and stand-
by costs of transmission expansion decisions. Decisions resulting from applications
to two systems, a 5 bus system and a 21 bus system based on south-eastern South

Korea’s system, were presented. Further, it was demonstrated how the decisions were
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sensitive to the security level required (i.e. value of o in N-«) as well as considering
the separation of a to specify a number of generator and a number of transmission
components. Solutions were acquired through an integer programming problem which
uses a branch and bound method to identify which additional transmission lines it

would be optimal to build.

An example applied to the Western Interconnection system is considered by [65], with
decisions based on the adjusted delivered cost. The adjusted delivered cost is the
delivered cost of a resource to a load zone which considers bus-bar and transmission
(investment, operation and line losses) costs and also adjusts for key market value
factors (such as integration costs, avoided resource adequacy costs and avoided time-of-
delivery costs). These costs were calculated using the Western Renewable Energy Zone
(WREZ) generation and transmission model (GTM) which was developed by many
organizations (including Black & Veatch Corp and the Lawrence Berkeley National
Laboratory) which is a user friendly excel based tool which can be used to show how
input affects the economic attractiveness (i.e. the adjusted delivered cost) of resources
and transmission capacities. Transmission expansion decisions are presented based on
a case where 33% of future demand must be met with renewable resources. However,
transmission expansion results are also given to compare how the resulting decisions
would vary if this figure was a lower 12% or 25%, and the resulting decisions showed
huge variation. Questions are also raised about how other factors (for example: what

if the integration cost of wind was doubled) would affect cost estimates and decisions.

2.3.5 Articles Which Consider Decision Making Which Ac-

counts for Uncertainty in Input Data

The previous two subsections have considered a wide variety of existing literature which
considers a wide variety of different criteria and methods for expanding transmission
systems. However, not all consider how sensitive the decisions identified could be to
assumptions made about the power system. Even the resources which do encompass
some aspects of uncertainty have merely shown how decisions differ as certain aspects

of the system are altered. Whilst it is interesting to investigate such sensitivities, this
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is insufficient when it comes to making decisions in reality as we must settle on a single

set of decisions to be implemented in the face of uncertainty.

Few resources exist which attempt to tackle the issue of decision making under uncer-
tainty. [87] is one such resource which does, and plans to maximise generation company
and transmission company expected profits, subject to a reliability check from the in-
dependent system operator. The problem is solved using a Benders decomposition with
maximising generator and transmission company profits as the master problem and the
system operator reliability check as the sub-problem. This example accounts for the
uncertainty that exists in future load growth and outages by taking an expectation over
multiple scenarios. A scenario is defined as a possible future state of the power system,
which in the example provided relates to characteristics (generator and transmission

availabilities) of the system and load growth.

An example is then presented where decisions are made on a 6 bus system when 10
scenarios are considered. These 10 scenarios are given different weights, with the par-
ticular weights (and scenarios themselves) acquired through scenario reduction applied
to Monte Carlo simulation from 1000 possible scenarios. Additional sensitivity of the
decisions is also considered to various factors, such as the cost of imaginary units (akin
to our curtailment costs). The scenario reduction technique means that the 10 scenar-
ios give a much more dense coverage of the sample space in comparison to a random
sample of size 10, and the weights given to the scenarios also improve the estimate of
expectation. However, 10 scenarios is still a small number considering multiple factors

are varied in each scenario, suggesting the overall coverage is still quite poor.

[75] considers a transmission expansion problem which accounts for the uncertainty
that exists due to the varying availability of hydro power. The objective is to iden-
tify the decision which minimises the cost of investment, plus a weighted average of
expected costs due to load shedding across multiple scenarios. The problem is initially
formulated as a mixed integer non-linear programming problem with a disjunctive for-
mulation then used to transform the problem into a mixed integer linear programming
problem (MILP) which can be solved more easily. Constraints are repeated in the
MILP problem for each scenario considered, though it is stated the problem remains

feasible to solve through MILP techniques as the same investment decision variables
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apply to all scenarios. Two examples were presented, one of the Bolivian system which
considered 15 dispatch scenarios for hydro power; and one of the south-eastern Brazil-
ian power system, which considered only a single hydro inflow scenario. Further, both
examples broke each scenario down further into single contingency scenarios (i.e. sce-
narios with single circuit outages). This meant that a large number of total scenarios

were considered in the Bolivian power system (52 for each of the 15 dispatch scenarios).

[105] seeks to minimise expansion investment whilst maximising system reliability and
security for each of several scenarios which vary system load and additional capacity
installations. Initially, each scenario is considered separately as multi-objective op-
timization problems. These problems are then reformulated as mixed integer linear
programming problems using goal programming, which can then be solved to identify
optimal transmission reinforcements for each scenario. Then, the expansion with the
lowest adaptation cost (i.e. the cost for additional reinforcement to meet system objec-
tives if the initial scenario is incorrect) is selected. Two examples applied to a 14 bus
system are presented. The first considers 3 different scenarios of system load, whilst
the second considers six scenarios which vary system load and installed generating ca-
pacity. The load levels considered are three evenly spaced increases in load (10%, 20%
or 30%), and the second example considers a 200 MW increase in generation in one
of two buses for each of these load levels. This is equivalent to considering a three
dimensional space with 6 points (with the points forming a 3 by 2 grid within that

space), which is an extremely sparse coverage.

[97] presents an example which considers 6 different scenarios occurring on the British
power system between 2010 and 2030; and considers the decisions of generation oper-
ation as well as transmission expansion. Initially, the problem is formulated stochasti-
cally as a mixed integer linear programming problem, with the objective of minimising
the total expected costs of generation operation and investment, and transmission in-
vestment across all 6 scenarios. These 6 scenarios greatly vary the values of 6 aspects
of the future system, such as renewable targets, demand change and cost of conven-
tional generation. Whilst these 6 scenarios do represent very different states that the
future system could be in, just 6 scenarios which have a large variation in the values

of 6 factors (which have many sub-factors e.g. cost of conventional generation could
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be broken down further into cost of CCGT generation and cost of OCGT generation,
which are two forms of gas generation) gives a very sparse coverage and may be of
limited use if the scenario which occurs in reality has some aspects of one scenario and

some aspects of another.

Thought is also given to the expected value of perfect information, which is the expected
reduction in costs if the future scenario could be known exactly and serves as an
upper bound of how much should be spent to acquire better information, as well as
presenting an interesting example of how transmission decisions would vary if any
particular scenario was assumed to occur. The expected cost of ignoring uncertainty
and regret analysis are also performed, as well as considering how accounting for an

attitude to risk might affect the decisions made.

This example is particularly interesting as it considers making decisions over multiple
stages. Making decisions over multiple stages allows the decision maker to learn about
uncertainties as time progresses, and make amendments to the transmission system
accordingly. This could potentially allow for a smaller investment to be made in the
present, knowing that if an unfavourable set of circumstances occur in the future we can
expand the transmission system as appropriate, instead of having to make an overly
large investment now in case an unfavourable future scenario occurs. In this thesis we
will eventually consider multiple stage decisions in Chapters [§ and [9] and will give a

full literature review on multi-stage transmission expansion planning in Section

However, a common feature to all of these methodologies is that uncertainty is handled
by considering a finite (and usually small) set of possible scenarios. [87] does attempt
to account for this via scenario reduction, but nevertheless the end example still used
only 10 scenarios (albeit with weights attached). Particularly where the uncertainty
in planning is high dimensional, such a finite set of scenarios may give sparse coverage
of the space of model inputs, and hence an optimal decision within the model which
is strongly dependent on the particular choice of scenarios rather than the underlying
uncertainty in model inputs. Further, almost all the examples detailed (those that
do and do not consider uncertainty) consider selecting the best from a finite set of
decisions. In the remainder of this thesis a methodology will be developed to give a

more complete model for how input affects output of cost estimates, which in turn can
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be used to make better decisions under uncertainty:.



Chapter 3

Simulating Power System

Constraint Costs

This chapter gives a complete description of the simulation model used throughout the
rest of this thesis. This simulator is used as a method for estimating mean annual con-
straint costs for a given power system background, which in turn will be used to make
transmission reinforcement decisions. However, we must additionally account for how
various factors of the system background affect the output of the simulator when mak-
ing decisions. Therefore, a brief investigation of the sensitivity of the simulator output
to various input factors is also given, with particular problems of interest outlined to

be considered in the remainder of this thesis.

Sections to of this chapter will specify the simulator used in this thesis to
estimate constraint costs for a given power system. This is broken down as follows.
Section |3.1] gives some preliminary information to help an unfamiliar reader understand
some of the standard practices used when estimating constraint costs, such as breaking
a year down into snapshots and National Grid’s model of snapshot demand. Section[3.2]
then gives an overview of the notation that will be used to specify the simulator.
Section defines the linear program that can be used to calculate constraint costs
for a given system background and generator availabilities. Section specifies the
simulator used to estimate mean annual constraint costs for a given power system
background. Section then defines the random model of generator availabilities

used in the simulator. Section then gives some information about the data used

32
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to estimate constraint costs in this thesis, with further details on this data given in

Appendix [F]

3.1 Preliminary Information

3.1.1 Snapshots

In Section it was stated the simple example represented a snapshot in peak demand
in winter. In this thesis, when estimating constraint costs for a given period of time,
that period of time is first broken down into half hour snapshots (giving 17520 snapshots
per year). Data which describes the power system background for a particular half
hour (such as demand level in that snapshot, installed generating capacity in that
snapshot, model for wind availability in that snapshot, etc.) can then be used to
estimate constraint costs for that particular snapshot (as will be explained in the

remainder of this chapter).

When estimating constraint costs, snapshots are treated independently of one another
(i.e. there is no stochastic element in generator availabilities or demand level), as is
standard practice of National Grid. This means that the distribution of total constraint
costs for a given year is not a perfect representation of reality (and is not of interest in
this thesis), though the mean of the total constraint costs for the year is preserved. As
mentioned in Section [2.2.1], it is standard practice of National Grid to work with mean
annual constraint costs (and broadly the case elsewhere), rather than the distribution

of annual constraint costs.

3.1.2 Zones

The example of Section[2.2] was a simple example which used just 2 zones. The method-
ology presented will be suitable to solve a general system of SR Zones, indexed by t.
Further, the methodology will allow for constraint costs to be calculated for any po-
tential arrangement of the zones (i.e. the methodology generalises to any amount of

zones and any set of connections between the zones).



3.1. Preliminary Information 34

Figure 3.1: Graph displaying the structure of zones and boundaries of the power system
used in this thesis.
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Figure [3.1] illustrates the particular zone structure used in this thesis, which has 7 zones
with a linear pattern of connections between the zones, i.e. each zone is only connected

to the zone(s) directly north and/or south of itself.

3.1.3 Demand

Demand is not explicitly specified by stating the demand in MW in each zone in each
snapshot. Instead, a peak demand for the year is specified as 0¥, the proportion of
peak demand in snapshot 7 is specified as 07, and the proportion of demand in zone
t is specified as 0°. The demand in a particular zone in a particular snapshot for a

particular year can then be calculated as
0y =0V X0 x0" (3.1.1)

No interaction term is included between zone or snapshot, which means the ratio
of demand between snapshots is treated as if it were consistent throughout the year
(relating this back to the simple example of Section , this would mean that a ratio of
9 to 1 for English to Scottish demand would be used in each snapshot of the year). This
calculation of demand is closely based on the modelling of demand used by National

Grid.

A vector detailing the peak demand for each snapshot in a year (i.e. a vector of length
17520 which details each value of 97) is referred to in the engineering literature as a

load duration curve (LDC). Examples and more details about LDCs will be given in

Section 4.1.2

In reality, what the demand will be in a particular snapshot could be considered a
random variable. Using an LDC to specify the demand for each snapshot would seem-
ingly treat demand of a particular snapshot as a deterministic variable. However, it is
more practical to treat the LDC as a specification of the distribution for demand at a
random point in time. This in turn means that the mean of the constraint costs over

a year is preserved when using of Equation to calculate snapshot demand.

There could potentially be a problem if other factors in the power system vary with

snapshot. However, other than a seasonal effect (which will be detailed in Section
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which differentiates wind generation between winter and not-winter) for a given year
demand is the only factor of the power system considered to vary in each snapshot.
This means that if the LDC accurately describes the distribution of demand for each

season the effect of this is minimised.

3.2 Notation Definitions

In order to give a specification of the model, the following notation is first required.

Sets

T Generating technologies, indexed by t (such as wind, coal and gas from Sec-

tion

M Zones, indexed by t (or s when describing an interaction such as transferring

capacity from zone t to a general, alternative zone)

e 7 Time intervals (half hour snapshots) indexed by 7

nyz Number of elements in set Z

Parameters

It is assumed that bid and offer prices depend only on technology type, not zone. As

such our bid/offer prices have only a single subscript.

e ¢ Offer price of technology t

e ¢, Bid price of technology t

e gX' Installed capacity of generating technology t in zone t

e 07 Proportion of peak demand in time interval (snapshot) 7
e 0° Proportion of time interval demand in zone ¢

e 0¥ Peak demand level in year y
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° ﬁ”; Boundary transmission capacity between zones t and s (i.e. maximum power

flow between zones t and s)

Variables

e 1, Available capacity from technology t in zone ¢

e g% Generation level (MW) of technology t in zone t in the unconstrained schedule
(recall, from Section the unconstrained schedule is the schedule which uses
all the cheapest technology available to satisfy demand, assuming as much as

necessary can be traded between zones)

e ., Power flow from zone t to 5. Note, f, can be negative, which would represent

a positive flow from zone s to t

e gt Volume of accepted offers from technology t in zone t in the constrained

schedule

e g, Volume of accepted bids from technology t in zone v in the constrained schedule

Recall from Section that the bid price is the amount which a generator will pay
to produce 1 less MW of capacity. The offer price is the amount which a genera-
tor demands to produce an additional MW of capacity. More information about the

particular values of these variables is given in Appendix [F.3.2]

3.3 Snapshot Constraint Cost Estimation

The objective of the simulator is to estimate mean constraint costs of a given power
system over a given period of time. As mentioned in Section this is done by
breaking the year down into a series of snapshots and estimating the constraint costs
in each. This section will detail how costs are calculated for a single snapshot when
the available capacities of all generators across all zones, x,, and the demands in each

zone for that snapshot, 0, .., are given as an input.
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3.3.1 The Unconstrained Schedule

To calculate constraint costs, first an unconstrained schedule must be created. The
unconstrained schedule is an initial schedule which seeks to satisfy all demand with
the cheapest available capacity whilst acting as if an unlimited amount of generating

capacity can be traded between zones, just as in Section [2.1.2

The cheapest way to satisfy all demand is to schedule generating capacity in order
of offer price (lowest first) until the magnitude of scheduled capacity is equal to the
sum of demand across all zones. In Section this was easy to calculate, as it would
consist of all wind and coal capacity available with the remainder of the unconstrained

schedule being made up of enough gas to satisfy the remainder of demand.

The unconstrained schedule is still simple to calculate for a general power system.
The unconstrained schedule for technology t in zone t is denoted by g{,. For a fixed
snapshot, 7, generating capacity is scheduled, starting from the lowest offer price, until

all demand across all zones would be satisfied, i.e.
D 0y = ey (3.3.1)
T Tt

The generation scheduled must not be more than the available capacity, i.e.
0 < gpy < ey (3.3.2)

There is one marginal technology, t;;, whose scheduled generation is between 0 and its
availability. The scheduled output for this technology is allocated between all zones in

proportion to the available capacity z.,,.

Just as in Section [2.2] there will be a curtailment technology with very high bid and
offer prices, which means the unconstrained schedule can always be calculated (though

part of this schedule may involve curtailing demand).

3.3.2 The Constrained Schedule

The system is split into ng zones, indexed by t. Generating capacity can be transferred

between zones, but only up to the transfer capacity between the two zones, f;mt
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transfer capacity of zero would mean two zones aren’t connected (i.e. cannot directly

transfer capacity) but may transfer capacity indirectly (through intermediate zones).

As mentioned in Section [2.1.2] it will not always be possible to satisfy all demand in
the cheapest way possible (i.e. to follow the unconstrained schedule) whilst obeying
the limits of transfer capacity between zones. In this case, it is necessary to constrain
off (not use) some generating capacity and constrain on (use instead) some alternative
capacity so that demand is met without transmitting more between zones than is

physically allowed.

The constrained schedule is the cheapest way to satisfy all demand when taking into
account the transfer capacities that exist between zones. In Section it was feasible
to give a blueprint of how to calculate the constrained schedule, and resulting constraint
costs, for any possible state of the system. If there was a power flow from Scotland to
England resulting from the unconstrained schedule and this flow exceeded the transfer
capacity, then gas capacity (or curtailment if no gas was available) would be constrained
on and coal capacity would be constrained off. If there was a power flow from England
to Scotland resulting from the unconstrained schedule and the power flow exceeded the
transfer capacity, then gas capacity would be constrained off and curtailment would be

constrained on in its place.

For a more general system (with more than two zones and tens of generating technolo-
gies in each zone) it is not feasible to manually calculate the constrained schedule for
any possible state of the system. This subsection will give details of the linear program

that can be used to calculate the constraint costs of a general system.

Objective Function

The objective of the constrained schedule is to minimise the constraint costs that arise.
This is calculated by minimising the sum of the offer prices of generating technol-
ogy constrained on, ¢; g, minus the sum of the bid prices for generating technology

constrained off, ¢; g, i.e.

min > (¢ g — ¢ o) (3.3.3)

tt
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Variable Bounds

There are several constraints that must be satisfied when minimising Equation [3.3.3]
The first are the bounds of the values the variables describing the power system can

take:

0< gy <za— gy (3.3.4)
0<g,<g% (3.3.5)

— fax < for < fix (3.3.6)
0="> (g5 — 00 (3.3.7)

Tt
Equation describes the bounds for the volume of offers constrained on, gj. We
cannot constrain on negative amounts, nor can we constrain on more than the available

capacity, 7, minus what is already scheduled, g%.

Equation describes the bounds for the volume of bids constrained off, g;. We
cannot constrain off negative amounts, nor can we constrain off more than we have

scheduled, g%.

Equation describes the bounds of transfer of generating capacity (flow), s, from
zone § to t. A positive value indicates a flow from zone s to t, whereas a negative value

indicates a flow from zone t to s. The flow cannot exceed the boundary capacity, gﬁt

Equation|3.3.7/is the demand balance constraint. This equation ensures that the sum of
the volume of offers constrained on is equal to the sum of the volume of bids constrained
off. As we initially schedule enough energy to satisfy demand, this equation ensures
our final solution satisfies all demand. Again, in each snapshot there will be the
very expensive curtailment technology available, meaning this equation can always be

satisfied.

Boundary Flow and Satisfying Demand

In addition to the variable bounds of the previous sub-subsection, ng; further constraints
are required to ensure demand in each zone of the power system is satisfied. In words,

these ny equations are:
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Flow into zone - Flow out of zone 4+ Generation constrained on in zone - Generation

constrained off in zone = Demand in zone - Generation scheduled in zone

These ng equations can be written as:

S far + D (00 — 0u) = Vyre — D % (3.3.8)
t

s#tT t

Linear Program and the Calculation of Constraint Costs

Constraint costs (and the constrained schedule) can then be calculated by using a

linear program. The linear program first assumes the unconstrained schedule has been

formed as in Section [3.3.2]

A linear program is then formulated, which has the objective function defined in Equa-
tion [3.3.3] The linear program also has constraints defined in Equations to[3.3.8
Once this linear program has been solved Equation defines the constraint costs
for the snapshot. The R code of the implementation of the linear program used in this

thesis is given in Appendix [G.2]

Again, in each snapshot there will be the very expensive curtailment technology avail-
able, meaning the linear program can always be solved. In reality using this curtailment

would signify not satisfying the demand for a very high penalty cost.

3.4 Simulator Specification

The aim is to estimate the mean costs arising due to constraints over a given period of
time. This section will define how this is achieved, by first breaking the time down into
a series of snapshots. For each snapshot, available generating capacity is randomly
simulated and these availabilities are then used to estimate constraint costs via the
linear program defined in Section [3.3] As the available generating capacity is random,
the constraint costs are themselves random and therefore an average of the process is

required.
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3.4.1 Estimation of Snapshot Constraint Costs

First, consider estimating constraint costs for a fixed snapshot in time, 7. Let X,
denote a vector containing information of all available capacity (across all zones) for
the snapshot 7. Let B, denote a vector containing all information of the system
background for snapshot 7. This is a vector of fixed numbers of boundary transmission

capacities and demand.

X, and B, are then used to create the unconstrained schedule detailed in Section |3.3.1]
This is in turn used to calculate constraint costs using the linear programming problem

described in Section [3.3.2

(X, B, ) is defined to be a function which calculates constraint costs resulting from
the solution to this linear programming problem for the given information about the

power system.

This calculation required the available generating capacities for the snapshot, X .. This
is a random vector to be realised in each individual snapshot. Define h(®,) = X, to
be a function which simulates the random availabilities of generating capacity for given
information about installed generating technology in the snapshot, &.. The model of
this function will be detailed in Section [3.5] €“*(&,,B,) is then defined as a function
which randomly simulates the available capacity using h(®,) = X, and then calculates

the corresponding constraint costs for a particular snapshot.

3.4.2 Estimation of Yearly Constraint Costs

The estimation of constraint costs for an entire year requires a vector containing all
information required to estimate constraint costs across all snapshots, defined as X =
(&,8) where & = (&1, ®,,...,85) and B = (B1,B,,...,B ). Constraint costs will
be calculated for each snapshot in sequence, then summed to give constraint costs over

the entire year:

T
g(X) = Z &, B,) (3.4.1)

This easily extends to estimating costs for a number of years as

Y 7
g(X) =)D NG, ., B,,) (3.4.2)
y=171=1
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where the subscript y, 7 denotes snapshot 7 of year y.

3.4.3 Estimation of Mean Constraint Costs

Finally, it is important to consider that the output from g(X) (the estimate of constraint
costs for a given period of time) is random, as the availability of generators across that
time is random. As mentioned in Section [2.2.1] this thesis is concerned with the
mean constraint costs, as is standard practice of National Grid and broadly the case

elsewhere.

This can be handled by using a function f.(X) which takes an expectation of g(X), i.e.

fe(X) = E(9(X)) (3.4.3)

The simplest way to take this expectation would be to take an average of many rep-
etitions of g(X). As noted in Section , such an expectation is referred to as the
mean constraint costs in this thesis. However, g(X) takes approximately 3 minutes
to give one estimate for a single year, which can potentially make this an expensive
procedure if the output of g(X) has a high level of variability (the level of variability in
the estimate is highly dependent on the power system background and will be detailed
in Section [4.1.1]). Section [4.3] will demonstrate how importance sampling can be used

to greatly improve this.

Again, the use of mean constraint costs (and not working with the distribution of
constraint costs) is standard practice by National Grid which is used to account for
the fact that the simulator lacks a stochastic element (i.e. snapshots are simulated
independently of one another, so correlation of the available capacities or demand

between snapshots is ignored).

3.5 Random Simulation of Available Generating Ca-

pacity

Section indicated that the available generating capacity, X, in a snapshot must

be randomly simulated. The available capacity is randomly simulated using either
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a binomial distribution, a normal distribution or a wind distribution depending on
technology type, t. Appendix [F.3.1] gives a summary of how the random availability

model varies with technology type.

If the availability of technology t in a zone t is assumed to follow a binomial distribution
with availability probability a, installed capacity g and unit size u¢ (both in MW),

the following simulation technique is used, which is the same approach used by National

m
it
wg 7

Grid. The number of installed units are calculated as n.; = which is rounded to
an integer if necessary. A random drawing from the binomial distribution with 7,
trials and probability of success ay is simulated, with s, denoting the randomly drawn

number of successes. Then, the available capacity of technology t in zone v is calculated

St,t
Nt

as 25t x g,

If the availability of technology t in a zone v is assumed to follow a Gaussian distri-
bution with mean availability u, standard deviation oy and installed capacity g, the
following simulation technique is used. One result, g, is randomly drawn from a nor-
mal distribution with mean p and standard deviation o,, with g, being constrained
to be no greater than 1 and no less than 0 to ensure the available capacity simulated

is non-negative and the available capacity does not exceed the installed capacity. The

available capacity of technology t in zone t is then calculated as gt x ¢ .

Wind availability follows a more complicated model, which we have been given permis-
sion to use by National Gird. This is used to reflect the fact that whilst it is reasonable
to assume generator availabilities in different zones may be independent for conven-
tional generators (such as coal or gas), Britain’s weather and thus wind generation is
highly correlated. In addition, a binomial or normal distribution are poor approxima-
tions for the availability of wind generation, so an entirely separate availability model

is used.

To simulate wind availability, first a correlation matrix is specified for wind availability
between different zones as well as the correlation between onshore and offshore wind
availability within each zone, kg;. A random drawing is then taken from a multivariate
normal distribution with mean 0 and covariance matrix determined by xg. This random
drawing, wy, has 2R elements, such that the (2(v — 1) + 1)th element can be used

to calculate onshore wind availability in zone v and the 2tth element can be used
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to calculate offshore wind availability in zone t. The CDF of the standard normal
distribution is then used to transform each element of w; to a value in the range [0,1],
with wy denoting the resulting transformation. National Grid then have functions to,
which can transform a given input to an availability proportion of onshore or offshore
wind generation in zone t. Let w3, ; and w3, o be the resulting transformations of ws to
give estimates of the availability proportion of onshore and offshore wind respectively

in zone t.

The available capacity of onshore and offshore wind respectively is then calculated as
g‘f{t X W31 and g?{t . X W39 Where t, = represents onshore wind generation and
Won A2} W, i) on

tw,,, represents offshore wind generation.

There is also a seasonal effect in the availability of wind generating capacity, and the
output of 1, is dependent on whether the snapshot considered is classified as summer
or winter. National Grid classify snapshots in December, January and February as
winter snapshots and all other snapshots as summer snapshots. The effects of this

seasonal assumption will be considered in Section [7.2]

The available capacity of technology t in zone t is denoted ..

3.6 Particular Input Data

The previous sections of this chapter detail how to calculate constraint costs for given
information about a power system. This section will give information about the power

system that will be used as the basis for investigation in the remainder of this thesis.

The zone structure used in this thesis was detailed in Section where Figure 3.1
illustrated the linear structure of the zones, with the north-most zone connected only
to the 2nd north-most zone and the south-most zone connected only to the 2nd south-
most, with all other zones connected to the zone immediately north and immediately
south of them. This is an accurate representation of the zone structure used by National

Grid in calculations for Britain’s power system.

As well as the zone structure of the power system, information about the system back-

ground is required to estimate constraint costs. This includes the installed transmission
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capacity between each zone, factors relating to demand (peak demand level, LDC, re-
gional breakdown of demand), the installed generating capacities and factors relating

to these generators to simulate available capacity as in Section [3.5

For everything that follows in this thesis, data will be taken from the Electricity Scenar-
ios Illustrator (ELST) published by National Grid on their consultation and engagement
website [69]. This resource gives full details about the system background for 20 con-
secutive years. We will refer to these as year 1 to year 20 in this thesis. These years
are based on actual projections for Britain’s power system for the 20 years between
2011 and 2030. A summary of this information is given in Appendix [F] Section
will calculate mean constraint costs using this information, as well as illustrate how

the mean constraint costs vary as the values given by [69] are varied.

Throughout this thesis, variables which detail the system background (such as installed
generating capacities, generator availability probabilities, peak demand levels, etc.) will

generally be referred to as input variables of the simulator.

3.7 Variation of Mean Constraint Cost Estimates

and Uncertainties of Input Data

As mentioned in Section [2.3] this thesis investigates how to make transmission expan-
sion decisions under uncertainty. For the examples presented in this thesis, this means
making decisions to minimise the sum of the expected mean constraint costs plus the
costs of any reinforcement made when there is uncertainty in the assumed background

of the power system.

This section will give an overview to how assumptions about the power system back-
ground affect the resulting estimates of mean constraint costs. This includes inves-
tigating how mean constraint costs vary with each system background year detailed
in [69] and also how mean constraint costs vary if one particular aspect of an assumed

power system background (such as peak demand level) is varied.
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Figure 3.2: Plot to show how mean annual constraint costs vary with power system
background year.

3.7.1 Power System Background Year

Assumed Power System Backgrounds

Section stated that [69] details power system background data for 20 consecutive
years. The estimate of peak demand level and installed generating capacities are the
main differences between each of these years. This can have a large impact on the
costs estimated. [69] also gives values for the installed transmission capacities for
each boundary for each year, which includes scheduled reinforcements (increases to the

installed capacity) for years 2 to 20.

Figure illustrates how mean annual constraint costs vary with the projections made
for each year of the dataset. As can be seen, the cost estimates vary greatly with year,
with the lowest estimate coming in year 5 and their magnitude being just one fourteenth
of those in year 20. This is the simplest way to illustrate how input can have a large

impact on the output of the simulator.
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Figure 3.3: Plots to show how mean annual constraint costs vary with power system
background year as the transmission capacity of particular boundaries is raised to
infinity.

Increasing Transmission Capacity Between Zones

In the power system there are 6 connections (boundaries) between zones and the trans-
mission capacity across each of these boundaries could be increased to decrease con-
straint costs. Making 6 simultaneous decisions to optimise constraint costs is a large
task, especially when considering additional uncertainty in the power system back-
ground (as is the case for the examples that will be presented). However, just because
a boundary can be reinforced (the transmission capacity can be increased) does not
necessarily mean doing so will reduce constraint costs (as if the power flow across
a boundary never exceeds the transfer capacity, increasing the capacity across that
boundary will not affect constraint costs). Further, there are considerable costs asso-
ciated with increasing the transmission capacity of a boundary, so if the reduction in

constraint costs is small, the reinforcement would not be justified economically.

In order to get some initial information on which boundaries are most relevant to
consider for reinforcement, it is first considered how mean annual constraint costs differ
from Figure if each boundary is treated in turn as if it had infinite transmission
capacity (as much capacity as desired could be traded across that boundary). This
will give some initial insight into which boundaries will give the greatest reduction in

constraint costs if reinforced.



3.7. Variation of Mean Constraint Cost Estimates and Uncertainties of
Input Data 49

Figure|3.3|displays how mean annual constraint costs vary as the transmission capacity
of each boundary is taken to be infinity. A plot which does not take any boundary to
infinity is given as reference. As can be seen, not all boundaries have a relevant effect
on costs at all times. B4 and B9 seem to have next to no effect at all times, meaning
we are quite unconcerned with them as reinforcing them does not appear to reduce

mean annual constraint costs.

In years 5 to 9 it can be seen that B15 has the largest reduction on costs, with increasing
B15 also notably reducing costs in years 1 to 4. B8 on the other hand appears to have
little to no effect in early years, but has the largest effect on estimated cost for years

15 onwards, with a particularly large effect in years 19 and 20.

The boundaries B6 and B7a are of particular interest. This is because whilst B15 is
very relevant early and has no effect late on, and B8 has no effect in early years but is
quite relevant for late years, B6 and B7a together have non negligible effects across all
years. B6 is particularly interesting in year 5 and earlier and between years 14 and 17,

with B7a having a particularly large reduction in costs between years 6 and 13.

These boundaries make for an especially interesting example, as they are adjacent
boundaries. This means it would be reasonable to expect an interaction to exist, i.e.
to expect reinforcing both of these boundaries to result in a greater reduction in mean
constraint costs than simply the sum of their individual reductions. Figure displays
how mean annual constraint costs vary when both the B6 and B7a boundaries are taken

to infinite capacity.

This is interesting, as there is far more interaction than might have been expected.
Between the years 8 and 17, it appears that only either B6 or B7a give a substantial
reduction of mean annual constraint costs with the other having next to no effect
on costs. However, the combined effect of increasing both boundaries gives a much
greater reduction in mean annual constraint costs in comparison to just reinforcing the

one boundary that gave a cost reduction.

Overall, in this subsection it has been shown how mean constraint costs vary greatly
with the system background year used. Further, which boundaries would give the most
benefit when reinforced also changes year on year. In early years, B15 alone appears to

have the largest effect, with B8 alone having the largest effect in later years. However,
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Figure 3.4: Plot to show how mean annual constraint costs vary with power system
background year when considering taking the transmission capacity of the B6 and B7a
boundaries to infinity.

the interaction between boundaries B6 and B7a seems to provide an interesting example

across all years.

Explanations for These Observations

From the data, some explanation can be offered for these results. South of the B15
boundary lies the zone which is modelled as having a small proportion of snapshot
demand (3.5%) whereas north of the B15 boundary lies a zone which has a large
proportion of snapshot demand (41%). The zone south of the B15 boundary also has a
quite a lot of high merit order generating capacity installed, such as wind and CCGT
(i.e. gas), whereas the zone North of the B15 boundary has relatively little generating
capacity installed. This means that there will often be a power flow from south to north
across the B15 boundary, and reinforcing this boundary allows for more of the cheap
capacity installed south of the B15 boundary to be used more often in the constrained

schedule.

Between the years 8 and 11, a lot of high merit order capacity, such as off-shore wind and

CCGT, are scheduled to be built in the zone immediately north of the B15 boundary.
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This means that there will be a power flow across the B15 boundary less often, leading

to the observed lack of benefit from reinforcing the B15 boundary in later years.

The reasons for the B8 boundary being more relevant in later years is less easy to
tell directly from the data, as the boundaries north and south of it have reasonably
high proportions of demand (21.1% and 18.5% of total system demand respectively)
and have quite a large amount of generating capacity installed in all years. However,
several GW of CCS (carbon capture and storage) CCGT and coal are scheduled to
be built in the zone immediately north of the B8 boundary in years 14 and 15 which

would coincide with the increased benefit from reinforcing the B8 boundary.

The reason the B6 and B7a boundaries are relevant for all 20 years is there is a lot of
high merit order capacity (especially on and off-shore wind) in the three zones north of
the B7a boundary (especially the zone directly north of the B7a boundary and the zone
north directly of the B6 boundary) across all years. Further, the sum of the demand
across all three zones is just 15.9% of the total system demand, meaning there will
often be a power flow south across these boundaries. However, power can only flow
south of the B7a boundary from north of the B6 boundary if both the B6 and B7a

boundaries are sufficiently reinforced, which explains the interaction between the two.

3.7.2 Uncertainty in The Power System Background
The Sum of Constraint Costs Across All 20 Years

In the previous subsection it was shown how mean annual constraint costs vary for
particular power system backgrounds. However, it is unreasonable to think an entire
power system background can be known precisely; there will be uncertainty in some
(or all) variables. Not every variable has a large effect on costs, and which variables
have the most relevant effect on costs may change year on year. In addition, the
relative magnitude of uncertainty in a variable will also vary with which variable is
considered. For example, it is reasonable to assume the current installed amounts of
generating capacity can be known very accurately (though there will be at least some
uncertainty in later years) though their availability probabilities will be known much

less accurately.
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(a) Peak demand level magnified by a factor  (b) Peak demand level magnified by a factor
of 0.85. of 1.15.

Figure 3.5: Graphs of how the sum of mean constraint costs across all 20 years varies
as nuclear and new nuclear availability probabilities are varied for two different levels
of peak demand.

When considering the sum of constraint costs across all 20 years, 3 variables of partic-
ular interest are peak demand level, nuclear availability probability and new nuclear
availability probability. Figure[3.5displays how mean constraint costs vary as these fac-
tors are varied. The variation of peak demand is specified as a factor of magnification.
For example, if the peak demand of a year was 10000 MW a peak demand magnifi-
cation of 1.15 would mean increasing the peak demand to 10000 MW x1.15 = 11500
MW.

The availability probabilities of different generators are the variables used when ran-
domly simulating the available generating capacity, i.e. values of a¢ in Section |3.5
In simple terms, the larger the availability probability the more likely a particular
generating unit will be available. This in turn means that larger availability proba-
bilities increase the expected available capacity of a particular generating technology.
If sufficient transmission capacity exists to utilise this generating capacity, the larger
availability probabilities will generally decrease mean constraint costs. However, if a
high merit order technology (i.e. a technology with a low offer price that would likely
be included in the unconstrained schedule such as wind or nuclear) has more capacity

available more often and the transmission is insufficient to utilise this capacity, then
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the increased availability would increase mean constraint costs. Section indicated
that this is because the constraint costs are a measure of a power system’s ability to
utilise the cheapest generating capacity available and are not a measure of the total

amount spent on generating capacity.

Figure illustrates how the peak demand level assumed has a large effect on the
mean constraint costs (up to a factor of 4). There is also an interaction between the
peak demand level and the availability probabilities. At low peak demand levels it can
be seen that the mean constrain costs generally increase as nuclear and new nuclear
availability probabilities are increased. However, at high peak demand levels it is seen
that mean constraint costs generally decrease as nuclear and new nuclear availability
probabilities are increased. The effect of nuclear and new nuclear availability on the

mean constraint costs also appears to be greater at the higher peak demand level.

The Use of Only 1 Future Year When Estimating Constraint Costs

It can be quite expensive to acquire an accurate estimate of mean constraint costs,
even when making use of the importance sampling technique which will be outlined in
Section .4.2] As a result, when estimating mean constraint costs for a period of time,
it is common practice to simply evaluate one future year and use it to extrapolate an
estimate of mean constraint costs across a longer period of time [78] 97, 66, 81]. This
thesis will initially consider transmission expansion problems where constraint costs
are extrapolated from a single future year to remain consistent with this and to make

results comparable to the existing literature.

However, the variables which the estimate of mean constraint costs is most sensitive to
vary depending on which power system background year is considered. For example,
the graphs in Figure consider varying nuclear and new nuclear availability proba-
bilities. However, no generating technology classified “new nuclear” is included in the
projections of [69] until year 9. Therefore, if any extrapolation is made from years 1 to

8 this variable would not be of interest.

Initial examples in this thesis will consider transmission expansion decisions based on

the power system backgrounds of year 1 and year 6 (presented in Chapters |5|and |§] re-
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(a) Peak demand level magnified by a factor  (b) Peak demand level magnified by a factor
of 0.85. of 1.15.

Figure 3.6: Graphs of how mean constraint costs vary in year 1 as nuclear and CCGT
availability probabilities are varied for 2 different peak demand levels.

spectively). Therefore, the following two sub-subsections consider how mean constraint

costs are sensitive to input variables in these years.

However, Figure [3.2] of Section [3.7.1] would suggest that basing estimates of future
constraint costs on a single future year may not a particularly accurate method of
estimating costs over a given period of time. Therefore, Section [7.6] will consider using
multiple future years to estimate mean constraint and present how this affects costs
estimated and the resulting decisions made. Chapter [§ will then go on to consider deci-
sion making over multiple stages, which requires mean constraint costs to be estimated

separately for each stage which requires the evaluation of multiple future years.

Constraint Costs for a Year 1 Power System Background

Figure displays how mean constraint costs vary with peak demand level, nuclear
availability probability and CCGT (gas) availability probability when using a year 1
power system background. As can be seen, the costs are dominated by the particu-
larly high mean constraint costs that can occur when peak demand is magnified by a
factor of 1.15 and CCGT availability probability is low. Mean constraint costs for all
conditions when peak demand is magnified by a factor of 0.85 seem flat and negligible

in comparison.
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(a) Peak demand level magnified by a factor  (b) Peak demand level magnified by a factor
of 0.85. of 1.15.

Figure 3.7: Graphs of how mean constraint costs vary in year 6 as nuclear and CCGT
availability probabilities are varied for 2 different peak demand levels.

This means that when it comes to decision making under uncertainty, if sufficient weight
is given to cases where peak demand is magnified by a factor of 1.15, reinforcement
decisions made could be very different to decisions which assume the projections of
to be 100% accurate. A transmission expansion planning problem based off a year 1
system background will be considered in Chapter This will be a simple initial
example to illustrate how emulators can be used to approximate simulators and make

decisions under uncertainty.

Constraint Costs for a Year 6 Power System Background

Figure considers how mean constraint costs vary with peak demand level, nuclear
availability probability and CCGT availability probability if a year 6 power system
background was assumed. Again, we see a difference in behaviour as peak demand
magnification is varied, though high peak demand assumptions do not dominate costs

in the way they do when assuming a year 1 power system background.

Further, mean constraint costs actually seem less sensitive to the values for CCGT
and nuclear availability probabilities at the higher peak demand level in comparison
to the lower peak demand level. This would mean that if a higher level of peak

demand was assumed we may expect the resulting decision to be less sensitive to the
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decision maker’s attitude to risk than if a lower peak demand level was assumed. A
transmission expansion planning problem based off a year 6 power system background
will be considered in Chapter [6] This example will be more complicated than the
example presented in Chapter [0 as it will consider making multiple simultaneous

decisions with uncertainty being considered in multiple variables.

Again, making a reinforcement decision based off a constraint cost estimate for a single
future year is quite poor, so the example will be extended in Section[7.6]to estimate con-
straint costs and make decisions using multiple future years. Further, Chapters[§ and[J
will consider decision making over multiple stages, with costs for each stage simulated

separately using different power system backgrounds.



Chapter 4

The Use of Importance Sampling to

Estimate Mean Constraint Costs

Chapter [3| defined the simulator used to estimate mean constraint costs in this thesis.
Due to the random availabilities of generating technology, the output of the simulator
each time it is run (evaluation of annual constraint costs) is itself a random variable,
and it was noted in Section that an average of many annual evaluations must
therefore be calculated. Recall, this thesis is only concerned with the calculation of
mean constraint costs for a given power system background which is the standard

practice of National Grid, and broadly the case elsewhere.

However, a single estimate of constraint costs from the simulator for a given power
system background can be quite expensive to evaluate. Further, the value of constraint
costs calculated in each simulator evaluation can vary greatly, as will be illustrated in
Section [L.1.1] This means that calculating an accurate estimate of mean constraint
costs for a fixed power system background by taking an average of many evaluations

of constraint costs for that power system can be a very expensive procedure.

Part of the methodology of Chapter |3| was to break the year down into 17520 half
hour snapshots. Some of these snapshots contain more relevant information to the
estimate of mean annual constraint costs than others (as will also be demonstrated in
this chapter). This chapter proposes a method of importance sampling which can be
used to estimate mean constraint costs for a given power system background, which

evaluates certain snapshots with a greater frequency than others. This importance
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(a) Year 1 power system background. (b) Year 6 power system background.

Figure 4.1: Boxplots to show how evaluations of constraint costs from the simulator
vary each time the simulator is run for a fixed power system background.

sample will have the same expectation as using the full simulator, but will require

fewer snapshots to be evaluated to reach a given level of accuracy in the estimate.

4.1 Variation in Constraint Costs Estimates

4.1.1 Variation in Annual Constraint Cost Estimates

Section detailed how constraint costs for a year are calculated by first breaking
the year down into 17520 snapshots, with Section going on to give details about
how the available generating capacity is randomly simulated in each snapshot. This
means that the constraint costs calculated for these randomly drawn availabilities of
generating capacities are themselves random, which in turn means the evaluation of
annual constraint costs (which is simply the sum of constraint costs from all 17520
snapshots) each time the simulator is evaluated is itself random. As mentioned, this
thesis is concerned with mean constraint costs (as is standard practice of National Grid)
and as such an average of many annual evaluations must be taken. This section gives
details of how the evaluation of annual constraint cost varies each time the simulator

is run.
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Power System Background Year 1 Year 6

Mean of Constraint Cost Evaluations £.12,600,000 | £246,000,000
Standard Deviation of Constraint Cost Evaluations | £2,780,000 | £5,740,000
Standard Deviation as a Percentage of Mean 22.1% 2.34%

Range of Constraint Cost Evaluations £.17,300,000 | £36,700,000

Table 4.1: Table giving details of simulated annual constraint costs for two power
system backgrounds.

Figure displays boxplots of how 1000 evaluations of annual constraint costs from
the full simulator vary for two fixed power system backgrounds, whilst Table details
some statistics about these simulator evaluations. Results are presented for a year 1
and year 6 power system background, with data for these power system backgrounds
being taken from National Grid’s freely available online reference [69]. As mentioned
in Section [3.7.2] these power system backgrounds are of interest for the examples
presented in Chapters [5land [6] As can be seen, there is the potential for costs to vary

greatly with each evaluation of the simulator.

For both power system backgrounds, there is considerable variation in the evaluation
of annual constraint costs each time the simulator run. For a year 6 power system
background, it is observed that costs can vary by tens of millions of pounds each time
the simulator is run. However, it should be noted that the mean of these evaluations was
£.246,000,000, so the standard deviation of the simulations is quite small in comparison
(2.34% of the mean). The boxplot also shows that there are long tails to both the right
and left.

For a year 1 power system background, the mean constraint costs are 20 times smaller
than the mean for a year 6 power system background, yet the standard deviation is
just half the size. This results in the standard deviation of the simulator evaluations
being large in comparison to the mean of the simulator evaluations (22.1%) for a year 1
power system background. This implies that if an estimate of mean annual constraint
costs is required such that the standard error of the estimate is small relative to the
mean, a lot more work is necessary to acquire such an estimate of constraint costs for a
year 1 power system background in comparison to a year 6 power system background,
and this will be demonstrated in Section [£.3.3] However, if it is required that the

value of the standard error of the estimate itself be below a given value, more work



4.1. Variation in Constraint Costs Estimates 60

will be required to acquire such an estimate for a year 6 power system background, as
will be demonstrated in Section [4.3.5] The boxplot for annual constraint costs for a
year 1 system background also shows a very long tail to the right, implying it is not
uncommon for an evaluation of annual constraint costs from the simulator to be far

greater than the mean.

4.1.2 The Load Duration Curve

Section [3.1] stated that annual constraint costs are calculated by breaking the year
down into half hour snapshots, simulating each snapshot separately and taking a sum
of the constraint costs which arise in each to acquire an estimate of constraint costs for
the entire year. It was also stated that the main differences between these snapshots
are a seasonal effect (which affects the distribution for wind generating capacity and
will be explored in greater detail in Section and the proportion of peak demand

used in that snapshot (which is of interest in this subsection).

A load duration curve (LDC) is used to specify the distribution of demand for gen-
erating capacity throughout a year. This is achieved by specifying demand in each
snapshot as a proportion of the peak demand level, which can then be used to calcu-
late the demand for the snapshot via Equation [3.1.1] These demands can then in turn

be used to simulate constraint costs as outlined in Chapter [3

Figure (a) displays the LDC used in this thesis. In this plot, it is shown how many
snapshots exceed a particular proportion of peak demand. The plot shows how a small
proportion (1906 of 17520, or 10.8%) of snapshots use a demand level which exceeds
80% of peak demand, and an even smaller amount (328 of 17520, or 1.8%) exceed 90%
of peak demand. The majority of snapshots have a demand level which is between 40%

and 80% of peak demand.

The LDC used in this thesis is also taken from [69] and is based on the observed load
duration curve from the years 2009 and 2010. This LDC will be used in the examples
presented in Chapters , |§|, and@on the advice of Paul Plumptre (formerly of National
Grid) |78]. However, Section illustrated how peak demand level has a large effect

on estimated mean constraint costs, which would imply the LDC would also have a
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Figure 4.2: Graphs to illustrate a load duration curve.

large effect. The effect of the assumed LDC on cost estimates, and resulting decisions,

will be investigated in Section [7.3]

Figure (b) is an alternative way to display the yearly demand data. This plot
shows how the mean snapshot demand for each day varies chronologically, beginning
on the 1st of December and ending on the 30th of November. Whilst the graph is
not particularly clear, there are some important patterns to be observed. First, it is
illustrated how daily snapshot demand can fluctuate quite a lot over a short period of
time. This is due to a weekly pattern in demand, where demand is greater throughout

the week in comparison to weekends.

Secondly, there is a seasonal pattern in the demand data, where demand is generally
greater in December, January, February and November in comparison to other months.
This is what may be expected for British demand, where there is a greater demand
for electricity in these colder months (for example, due to a greater need for electrical
heating). Further, even within this seasonal pattern there is an interesting relative lack

of demand over the Christmas period.
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Figure 4.3: Graphs to show how mean constraint costs vary by day for two power
system backgrounds.

4.1.3 Constraint Cost Estimation By Day

Figure (a) shows that snapshot demand level varies greatly throughout the year,
with Figure (b) going on to show this variation on a day to day basis. However, it
is important to consider what effect this variation has on mean constraint costs for a

given power system.

Figure [4.3] displays how mean constraint costs vary with day for both a year 1 and year
6 power system background from [69]. These daily means are plotted chronologically,
beginning on the 1st of December and ending on the 30th of November. Again, as gen-
erator availabilities are random there can be a great deal of variation in the constraint
costs calculated in each simulator evaluation, even for a fixed snapshot. Therefore, the

estimates given in Figure are averages of 1000 repetitions.

For a year 1 power system background it can be seen that the mean constraint costs of
a small number of days greatly exceed the mean constraint costs of the vast majority of
days. In particular, just 9 of the days (2.47% of the year) have mean constraint costs
greater than £200,000, and these 9 days account for 27.3% of the mean constraint costs
of the year. By comparison to Figure (b), it is clear that these constraint costs

correlate with demand, but in a very non-linear manner.
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Further, between March and November the daily mean constraint costs appear negli-
gible in comparison to those of December, January of February. This is partially due
to the decrease in demand over this period, which can be observed in Figure (b).
The decrease in mean constraint costs over this period is also due to the seasonal effect
mentioned in Chapter [3, where a different model is used for the availability of wind
generating capacity for winter months (December, January and February) in compari-
son to the model used for summer months (all other months). This will be considered

in greater detail in Section

Mean constraint costs estimates by day for a year 6 power system background, displayed
in Figure (b), indicate that all snapshots have a somewhat similar contribution to
the estimate of mean annual costs, especially in comparison to Figure (a). This
could contribute to explaining what was noted in Table [£.1], where the year 6 estimate
of mean annual constraint costs was relatively much more consistent than the estimate
of mean annual constraint costs in year 1. This is because when all snapshots behave
similarly with a similar contribution to the yearly estimate (as in year 6), the variations
in each snapshot can somewhat be averaged out across all 17520 snapshots. However, in
year 1, where there are less snapshots with a large contribution to the yearly estimate,

the random variation within snapshots is effectively averaged across fewer snapshots.

Figure (b) also illustrates a steep drop in mean constraint costs at the beginning
of March. Again, this is due to the seasonal model for wind generating capacity,
which uses a different model for winter months (January, February and December)
in comparison to summer months (March to November). However, unlike the year 1
power system background where mean constraint costs were negligible between March
and November, the costs between March and November for a year 6 power system
background are far from negligible, with all daily estimates of constraint costs being

greater than £316,000.
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4.2 Importance Sampling

4.2.1 Brief Overview of Applications of Importance Sampling

in the Existing Literature

The previous section demonstrated how there is a great deal of variation of constraint
costs in each simulator evaluation for a given power system background, both on an
annual and snapshot basis. Section stated that an average of many annual simu-
lator evaluations is used to acquire an estimate of mean annual constraint costs. This is
to remain consistent with National Grid methodology of working with mean constraint
costs. However, acquiring an estimate of annual constraint costs which evaluates all
17520 snapshots of the year is quite expensive. In turn, this means taking an average

of many such annual evaluations is very expensive.

Figure 4.3| shows how the mean constraint costs of a snapshot can vary greatly with
snapshot, and suggests that when estimating mean constraint costs for a year, certain
snapshots contain more relevant information to the estimate of mean annual constraint
costs than others. Therefore, when aiming to acquire an accurate estimate of mean
annual constraint costs it may be more important to have accurate estimates of costs
in certain snapshots more than others. This is the fundamental principle behind im-
portance sampling, where a careful selection of sampling density can reduce the work

necessary to achieve a given level of accuracy in an estimate |29, |6, 31}, |77].

In order to detail how importance sampling is commonly applied in the existing lit-
erature, consider a problem where the expected value of a function, f(x), of a set of

discrete random variables, x, is of interest. The expectation can be calculated as

p=>_ f(x)px) (4.2.1)
where p(x) is the probability density function of x.

However, if the function f(x) is expensive to evaluate it will not be feasible to calculate
p exactly via Equation [£.2.1] Therefore, Monte Carlo simulation is commonly used to
approximate Equation by randomly drawing values of x from the distribution of
p(x) to estimate p [104, 28| [86, 6]. If » random drawings of x are sampled from the
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distribution p(x) such that x; is the ith value sampled, an estimate of p via Monte
Carlo simulation can be acquired as

fo= 3 fx) (4.22)

i=1
However, certain values of x may be more relevant to the estimate of x4 than others.
This is particularly true when estimating the probability of a rare event occurring (i.e.
w is the probability of a rare event occurring with f(x) acting as an indicator function,
taking the value 1 if the rare event occurs for a particular value of x and 0 otherwise)
as is considered in the examples of [9, 36, (104} |96]. In such examples, sampling values
of x from the distribution p(x) will be very inefficient, as the rare event will not be
observed for the majority of values of x. In particular, [96] notes that if x corresponds
to a rare event with a probability of 107% of occurring it would require a Monte Carlo
sample size of the order of hundreds of millions to acquire an estimate of p with an

error of 10%.

Therefore, importance sampling can be applied by instead sampling values of x; from
some alternative distribution ¢(x), where ¢(x) gives more weight to values of x more
relevant to the estimate of p. If n random drawings of x are sampled from the distri-
bution ¢(x) such that x; is the ith value sampled, an estimate of p using importance
sampling can be calculated as 77} 36, (16, |96]

n

3 fx) 22 (123)

i=1 (](XZ‘)

1
,uq:ﬁ

It can be shown that such a method has the same expectation as the estimate from

Monte Carlo simulation as

" f(x)p(x) fx)p(x) N
E(fig) = Eqx) ( = (X)) =Y f(X)p(x) = By (f (%)) = ()
q(x) ~  4(x) x

(4.2.4)
When applying importance sampling to estimate the probability of a rare event it
is desirable that the alternative density, ¢(x), results in an increased probability of
the rare event occurring [104, |16, [82], with there being several potential methods of
achieving this such as exponential twisting |9, 36] or iterative schemes such as the cross-
entropy method [104, 96] or adaptive importance sampling [47]. An iterative scheme

suitable for estimating mean annual constraint costs (as considered in this thesis) via



4.2. Importance Sampling 66

importance sampling will be proposed in Section [4.4.2]

There are a wide variety of applications of importance sampling to various examples
in the existing literature. For example, [47] consider an application to fishery stock
assessment, where importance sampling is used to estimate the biomass stock of the
orange roughy (a type of fish), as well as to estimate the probability that the stock
exceeds a particular value. Further, these estimates are then used to make policy
decisions for the fisheries, with consideration also given to how the policy maker’s

attitude to risk affects the decision made.

The safety of lane change events of automated vehicles is considered in [104], where im-
portance sampling is used to estimate the probabilities of conflict, crashes and injuries
during the lane change events. A comparison is also given to show the benefit of using
importance sampling over Monte Carlo sampling without importance sampling. An
application related to power systems is presented in [96], where importance sampling
is used to estimate the loss of load probability (the probability that a power system
will not be able to satisfy all demand) and expected power not served (the expected

demand, in MW, that will not be satisfied) for a variety of power system backgrounds.

Many other applications of importance sampling to a wide variety of topics exist, in-
cluding estimating the probability of failure of the Data Communication System (DCS)
of large scale passenger rail systems [82]; predicting the yield of an integration circuit
(i.e. the probability of failure of a complex circuit) under variability due to the man-
ufacturing process [16]; biological/medical applications (such as testing for distinctive
charge clusters in proteins or identifying cancer indicators in mammograms) [68] and

path tracing using the photon map [43].

As importance sampling is not the main focus of this thesis, but rather a tool used
within the simulation process to estimate mean annual constraint costs, this section
is not intended to be taken as a full literature review, but rather a brief overview of

applications of importance sampling in the existing literature.
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4.2.2 Using Importance Sampling to Estimate Mean Annual

Constraint Costs

As noted at the beginning of Section [4.2.1] the application of importance sampling in
this thesis will consider reducing the number of snapshots which must be evaluated to

acquire an estimate of mean annual constraint costs.

In order to consider applying importance sampling to estimate mean annual constraint
costs for a given power system background, define f.,(7) as the function which ran-
domly simulates constraint costs for snapshot 7 for a given power system background.
As the simulator defined in Chapter [3| calculates an evaluation of annual constraint
costs by randomly simulating constraint costs in each snapshot, then taking a sum of

the simulated constraint costs across all snapshots, importance sampling is not applied

as described in Section [4.2.1]

Instead, an alternative method is used where a smaller number of snapshots are eval-
uated when acquiring an evaluation of annual constraint costs. This requires a vector
of snapshot weights, w, which is a vector of length .7 (i.e. of length 17520 as there are
17520 half hour snapshots in a year) where w, (the 7th element of w) is the probabil-
ity that snapshot 7 is actually simulated, with 0 < w, < 1. By randomly simulating
whether or not to simulate each snapshot based on w, an evaluation of annual con-

straint costs using importance sampling can be acquired as

> f@; ET)X(T) (4.2.5)

where X (7) is an indicator function which takes the value 1 if snapshot 7 was actually
simulated and 0 otherwise. The R-code for the simulator which uses such an importance
sampling method is given in Appendix [G.2] It is trivial to show this gives the same
expectation as simulating every snapshot, as

E < Z fC’T<T)X(7')> _ Z E(fc,T(T)X<T))

Wr Wr

T=1

_ 1%0 (E(fcn'(T) X 1)0.}7— i E(fc,T(T) X O)(l — wT)) (426)

Wr Wr

T=1

T=1

17520 Nw 17520
=y Blerlior > Blfer(r))

=1 Wr
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However, it would be possible to consider applying importance sampling as described
in Section by using an equivalent alternative method to randomly simulate annual
constraint costs where the snapshot to be simulated, 7, is modelled as a discrete random
variable with probability mass function, p(7), which describes the probability of 7

taking a particular value as

1 .
7590 for 7 in 1,2,...,17520

p(1) =
0 Otherwise

i.e. a discrete uniform distribution over the integers 1 to 17520.

Under this model, constraint costs for a year are simulated by first randomly drawing a
snapshot, 7, to be simulated from the distribution p(7), then using the function f, ,(7)
to randomly simulate constraint costs for that snapshot. As there are 17520 half hour
snapshots in a year, an estimate of annual constraint costs based on such a simulation
is

fe,7 (1) = 17520 X fer(7) (4.2.7)

By defining the simulator in this way, the importance sampling methodology described
in Section can then be applied, where the density p(7) is replaced by some al-
ternative density ¢(7). Importance sampling can then be applied by sampling values
of 7 according to the distribution of ¢(7). If n values of 7 are sampled according to
the distribution of ¢(7), such that 7; is the ith value of 7 in the sample, an estimate of
mean annual constraint costs, fi,, can be calculated as

1 & fer(m)p(ni)

fig =— ) ="~ (4.2.8)

on ; q(7:)

For given weights, w,, to apply importance sampling using Equation 4.2.5] an equivalent
alternative density, ¢(7), to apply importance sampling using Equation is

Wr

>,

q(7) (4.2.9)

Similarly, for a given specification of ¢(7), an equivalent set of weights, w,, to apply

importance sampling using Equation could be calculated as

q(7)
q*

Wy = (4.2.10)
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where ¢* is the maximum value of ¢(7) across all snapshots. This is given some further

thought in Appendix [A.1]

It is also important to consider how the selection of the weights, w,, affects the variance
of the estimate arising when using Equation to acquire an evaluation of annual

constraint costs. This is detailed in Appendix

As an overview, if y is used to represent a single evaluation of annual constraint costs
using the full simulator (i.e. evaluating each snapshot in each yearly evaluation) and y,,
is a single evaluation of annual constraint costs from Equation using importance
sampling weights w, the variance of these evaluations can be calculated as

17520

var(y) = Z var(fe.(7)) (4.2.11)

=1

and

+var(fer (7)) +

var(y,) = Z_:l (var(fm(TL)zvar(X(T))

17520

> > var(fer(7))

T=1

(E(fer(7)))*var(X (T)))

2
wr

(4.2.12)

with equality if and only if w, = 1 for all 7 (or more precisely, with equality if and
only if w, =1 for all 7 except for snapshots where E(f..(7)) = 0 with zero variance).
Naively, this would suggest that any choice of importance sampling weights other than
w, = 1 for all 7 increases the variance of the estimate. However, this is because
Equation [£.2.12] simply calculates the variance of the output of the simulator, and does
not consider the amount of work required (number of snapshots evaluated) to acquire

the estimate of constraint costs.

Therefore, when considering the optimal choice of importance sampling weights it is
more useful to consider the importance sampling methodology detailed in Section [4.2.1]
As detailed above, an application of this to the constraint cost problem considered
in this thesis would model the snapshot to be simulated, 7, as a random variable,
which can subsequently be used to evaluate annual constraint costs via Equation [£.2.7]
thus each evaluation of annual constraint costs would simulate only a single random

snapshot. Consideration to this is given in Appendix [A.T] where it is shown that an
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optimal choice of ¢(7) to minimise the variance of i, from Equation is

g(r) = fc’g(;)p ) (4.2.13)

where p is the mean of the full simulator (mean annual constraint costs). As p is an
unknown constant (it is the what is being estimated) and p(7) has a constant value

of Té% for all 7, Equation implies that an optimal alternative density, ¢(7), to
minimise the variance of the estimate of mean constraint costs is to select values of ¢(7)
in proportion to the mean constraint costs in each snapshot. This in turn implies an
optimal choice of weights, w,, (which can be calculated via Equation for given
¢(7)) when applying importance sampling using Equation [4.2.5] is to select the weights

in proportion to the mean constraint costs of the snapshot.

4.3 Initial Application of Importance Sampling to

Estimate Mean Constraint Costs

4.3.1 Selection of Weights for Importance Sampling

The previous section detailed how importance sampling can be used to reduce the ex-
pected amount of work required to acquire an evaluation of annual constraint costs,
whilst giving the same mean as when using the full simulator (i.e. evaluating each
snapshot). This section will consider the application of importance sampling to es-
timate mean constraint costs for a year 1 and year 6 power system background. As
stated in Section [3.7] these are the two power system backgrounds that will be used
for the decision problems considered in Chapters [5] and [6] respectively.

Equation [4.2.5|defines how to acquire an estimate of constraint costs for a power system,
which has the same expectation as evaluating all 17520 snapshots whilst only evaluating
a smaller subset of the snapshots. However, this equation relies on weights, w, to be
given to acquire this estimate. Whilst all selections of weights give the same mean of
costs (as was verified in Equation certain selections of weights will give a more
consistent estimate of constraint costs than others. This was considered in Section[4.2.2]

and Appendix[A.T|where it is shown that the variance of the estimate of mean constraint
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costs is minimised (when evaluating an equivalent number of snapshots) when the
importance sampling weights are proportional to the mean constraint costs in each

snapshot.

This implies that the optimal choice of weights, w, to be used for importance sampling
are proportional to the mean constraint costs of each snapshot. By defining ¢, as
the mean constraint costs in snapshot 7, with the largest value of mean constraint
costs across all snapshots defined as ®, such a selection of weights based on the mean
constraint costs in each snapshot can be calculated as

_ ¢
D

Wr

(4.3.1)

These weights could then be used in Equation to estimate mean annual constraint

costs.

However, basing the weights on the mean constraint costs of each snapshot is prob-
lematic, as this requires prior estimates of these quantities in order to calculate the
resulting importance sampling weights, w,. Further, if the mean constraint costs for
each snapshot were known accurately in advance, then mean annual constraint costs
(the value we are trying to estimate) would also be known accurately (as it is simply

the sum of the mean constraint costs in each snapshot).

Therefore, it may be worthwhile considering other criteria for importance sampling
weights, w, which do not depend on the mean constraint costs in each snapshot. Sec-
tion stated that other than a seasonal effect, the only variable which is varied
between snapshots for a given power system background was the proportion of peak
demand used in that snapshot. An alternative solution could therefore be to base
the importance sampling weights on snapshot demand level by defining ¢, as the de-
mand level of snapshot 7 and ® as the peak demand level (i.e. largest demand level
of all snapshots). Weights to be used for importance sampling based on the demand

level of each snapshot could then be calculated by using these values of ¢, and ® in

Equation [4.3.1]

However, Figure indicated that the estimate of constraint costs in a snapshot may
have a greater level of variation than the peak demand alone may have suggested.

This means that basing importance sampling weights on snapshot demand may not
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result in a great improvement in the efficiency of estimating mean annual constraint
costs for a given power system background in comparison to using the full simulator.
The remainder of this section will consider how the choice of weights for importance
sampling, w, affects the work required to acquire an estimate of mean annual constraint
costs to a given level of precision, and also compare the resulting estimates to the actual

mean of the full simulator.

4.3.2 Initial Application of Importance Sampling
Initial Application of Importance Sampling

Sections to will consider how much work (i.e. how many snapshot evalua-
tions) are required to estimate mean annual constraint costs to a given level of precision
for a year 1 and year 6 power system background. Results are given when basing the
weights for importance sampling on snapshot demand level and the mean of constraint
costs in each snapshot. For comparison, results are also given when basing the impor-
tance sampling weights on the standard deviation of constraint costs in each snapshot

or when evaluating each snapshot (i.e. not using importance sampling).

However, in Section it was noted that importance sampling methods based on
snapshot mean or snapshot standard error require prior estimates of these quantities
before importance sampling can be applied. Therefore, the results of these sections can
be considered to be a pilot study, where it is assumed these quantities can be known
accurately in advance in order to show the potential benefit of importance sampling if
appropriate weights, w, were already known accurately. For this pilot study, weights
are calculated using 1000 initial evaluations of each snapshot. In practice, it would be

very expensive and inefficient to first estimate importance sample weights using 1000

full simulator evaluations, so Sections[4.4.1}and [4.4.2| will go on to consider applications

of importance sampling which use a small number of initial full simulations to estimate

weights.

It is possible that no constraint costs are expected to occur in a given snapshot (i.e.
the mean constraint costs of a snapshot are zero), which would result in w, for the

snapshot being calculated as 0 via Equation 4.3.1, However, Equation requires
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w; to be greater than zero to apply importance sampling. Therefore, a minimum value

of w, was set to 0.001.

Metric for Work Done

Naively, to compare the different importance sampling methods, it may be considered
how many evaluations of Equation [4.2.5] are necessary to acquire an estimate of mean
annual constraint costs to a given level of precision. However, Section and Ap-
pendix indicate that this is a misleading metric as it does not account for the
amount of snapshots actually evaluated (actual work done) to acquire the estimate.
For example, 20 evaluations from importance sampling which evaluate on average 2000
snapshots actually expects to evaluate fewer snapshots than 3 simulations which eval-

uate each snapshot.

Therefore, A, a metric which accounts for the amount of snapshots actually simulated,
will be considered instead. A is a measure of how many snapshots were actually evalu-
ated in terms of the 17520 half hour snapshots in a single year. For example, suppose 3
yearly simulator runs using importance sampling are performed which evaluate 11000,
9950 and 11572 snapshots respectively. Then for these three evaluations the total work

done is
11000 + 9950 + 11572 32522

N — - — 1.856279 EFSE
17520 1750 ~ 100270 BES

The unit used for A in this thesis is equivalent full simulator evaluations (EFSE).

Precision of Estimates

Results of this section will consider how much work must be done to acquire an es-
timate of mean annual constraint costs with an accuracy of at least 1%. Suppose
¢ = (¢1,...,¢,) represents a vector of n estimates of annual constraint costs utilising
importance sampling via Equation [£.2.5] An accuracy of one percent will be defined as
when the ratio of the standard error of the estimate of annual constraint costs to the

mean of the estimate of annual constraint costs is 0.01 or less. That is, if p. = % e

n% Z:L: (Ci_Hc)2
and s. = \/ . \/ﬁl an accuracy of 1% requires ﬁ to be 0.01 or less.
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However, for a year 6 power system background it was noted that mean annual con-
straint costs are £246,000,000. Therefore, an estimate where the standard error of
the estimate is less than 1% of the mean of the estimate will expect to have a stan-
dard error of £2,460,000, which is very large in real terms. Therefore, an alternative
criterion will also be considered where the standard error of the estimate, s., must
be less than £100,000. Whilst this may still seem quite high, £100,000 will later be
defined in Section as the equivalent cost of making a very small increase of 1 MW

to transmission capacity [5} |7§].

It is also important to recall that simulations of annual constraint costs acquired from
importance sampling (and the average of many simulations) is still a random variable.
Therefore, the amount of work required to reach a given level of accuracy will not be
perfectly consistent if one were to repeat the process. For example, it could be that
one estimate of mean annual constraint costs with an accuracy of 1% is acquired after
the equivalent work of 53.24 full simulator evaluations. However, if the process was
repeated for the same power system background, an estimate with an accuracy of 1%
may take more or less work than the equivalent of 53.24 full simulator evaluations to

acquire.

Therefore, this section will perform 200 separate repetitions of how much work is
required for an accuracy of 1%. The mean amount of work required for an accuracy of
1% across these repetitions will be calculated to give an estimate of the expected work
required to reach an estimate of mean annual constraint costs with an accuracy of 1%.
Boxplots of the work required for all 200 repetitions will also be given to illustrate how
even for a fixed importance sampling technique there will be variation in the amount

of work required to acquire an estimate of given precision.

Accuracy of Estimates

As well as considering the work required to acquire an estimate of mean annual con-
straint costs, it is also important to give consideration to how the resulting estimates

of mean annual constraint costs compare to the actual mean of the full simulator. This

is considered in Section with further details being given in Appendix [A.2] which
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compare the estimates that will be acquired in Sections to to highly accurate

estimates of the simulator mean.

This is because whilst all estimates of mean annual constraint costs are unbiased (as
Equation verifies), it is possible that if too few simulator evaluations are used to
acquire an estimate of constraint costs then the resulting estimate will typically differ
quite substantially from the actual mean of the simulator. Therefore, the goal is not
necessarily to minimise the expected work required to acquire an estimate of mean
constraint costs, but to find a feasible balance between the work required to acquire an
estimate of mean constraint costs and the accuracy one could expect in the resulting

estimate.

4.3.3 Initial Application of Importance Sampling Results

Importance Sample Basis | Year 6 Results | Year 1 Results
All Snapshots 4.595 EFSE 442.1 EFSE
Snapshot Demand 4.356 EFSE 283.3 EFSE
Snapshot Standard Error | 4.197 EFSE 30.88 EFSE
Snapshot Mean 4.119 EFSE 28.29 EFSE

Table 4.2: Table showing how the amount of work done (J, in terms of equivalent full
simulator evaluations) to estimate mean annual constraint costs to an accuracy of 1%
varies with the basis used for importance sampling weights.

Table gives details of the expected value of A (i.e. expected work done expressed
as an equivalent number of full simulator evaluations) to acquire an estimate of mean
annual constraint costs with an accuracy of 1%. It can be seen that when not using
importance sampling (i.e. evaluating each snapshot) around 100 times more snapshot
evaluations are required for a year 1 power system background in comparison to a year
6 power system background. For both power system backgrounds, using importance
sampling with weights, w, based on the mean snapshot constraint costs yields the best

results.

For a year 6 system background this improvement is small, as all methods (including
evaluating all snapshots) require less than the work of 5 equivalent full simulator eval-

uations on average. For a year 1 system background, however, importance sampling
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Figure 4.4: Boxplots to illustrate the variation of work done (), in terms of equivalent
full simulator evaluations) to reach an estimate of mean annual constraint costs to an
accuracy of 1% for a variety of choices of importance sampling weights.
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has great benefits. Using importance sampling with weights based on the demand of
the snapshot decreases the expected work done to acquire an estimate of mean an-
nual constraint costs by 36%. An even greater reduction in the expected work done is
achieved by basing the importance sample weights on the standard deviation or mean
of constraint costs of the snapshots, with both methods giving reductions of over 93%,

with the weights based on snapshot mean resulting in marginally better results.

Figure helps illustrate these results, by providing boxplots of the amount work
done to reach an error of less than 1% for each of the 200 repetitions of each condi-
tion. For a year 6 power system background, displayed in Figure (a), it is again
illustrated that the use of importance sampling has little effect, with all boxplots being
quite similar. However, it is worth noting that the boxplots display shorter tails for
importance sampling methods with weights based on snapshot standard deviation or
mean of constraint costs, indicating these methods reduce the frequency of which it

takes substantially longer than average to acquire an accuracy of 1% in the estimate.

Figure (b) displays results for a year 1 power system background, which illustrates
the great benefits from using importance sampling with weights based on snapshot
standard deviation or mean. Due to the great improvement in the results, the boxplots
using these two importance sampling methods are difficult to visualise in Figure (b),
so Figure (c) was constructed to give a clear illustration of the boxplots for these

two conditions.

The boxplots of Figure also raise a point of concern. It can be seen (much more
clearly for a year 1 power system background) that there are several occurrences of
estimates with an error of less than 1% being acquired for very small values of A (i.e.
evaluating very few snapshots in total), whilst the vast majority of estimates of mean
annual constraint costs are acquired for much greater values of A (i.e. evaluating a

much greater number of snapshots in total).

To show where this problem arises, Figure illustrates how the error of the estimate
varies with work done for one repetition for an estimate of mean annual constraint
costs for a year 6 power system background which uses the mean constraint costs of
each snapshot as the basis for importance sampling weights. It can be seen that after

a small amount of work has been done, the standard error of the estimate is less than
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Figure 4.5: Plot to illustrate how error in the estimated response varies with work
done for one particular repetition of a year 6 power system background, using mean
snapshot constraint costs as the basis of importance sampling weights.

1% of the mean of the estimate. However, the error soon rises above 2%, and further

work is required before the error in the estimate drops below 1% again.

This shows how when a small amount of work has been done, if the simulations happen
to give similar estimates of annual constraint costs (even if they differ greatly from a
very accurate estimate of the simulator mean) the standard error of the sample will be
small in comparison to the mean of the sample. This could potentially give misleading
results, and further evaluations would give a more accurate estimate of mean annual
constraint costs. This implies it may be wise to impose some minimum amount of work
to be done before an estimate is accepted, to avoid misleading results from a small

sample. Further consideration to the accuracy of the estimates of mean constraint

costs is given in Section and Appendix [A.2]

Importance Sample Basis | Year 6 Results | Year 1 Results
All Snapshots 10.16 EFSE 479.9 EFSE
Snapshot Demand 10.59 EFSE 317.2 EFSE
Snapshot Standard Error | 10.09 EFSE 31.12 EFSE
Snapshot Mean 10.14 EFSE 28.82 EFSE

Table 4.3: Table showing how the amount of work done (), in terms of equivalent full
simulator evaluations) to estimate mean annual constraint costs to an accuracy of 1%

varies with the basis used for importance sampling weights, when setting a minimum
work of 10 EFSE to be done.
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Table gives details of the expected work done to reach an accuracy of 1%, when
a minimum work of 10 EFSE is set. It can be seen that all methods for estimating
constraint costs for a year 6 power system background give estimates just above 10
EFSE. This is to be expected, as Figure shows the work required is usually below
the minimum bound of 10 EFSE.

For a year 1 power system background, there is actually very little increase in expected
work done for an importance sampling method based on snapshot mean or standard
deviation, indicating that these methods are less susceptible to giving false estimates
of accuracy. However, when performing full yearly evaluations or using an importance
sampling method based on snapshot demand level, an increase in expected work of
37 and 34 equivalent full simulator evaluations respectively is noted. This indicates
that previously a lot of estimates of constraint costs may have been falsely accepted,
and when it is imposed that estimates must also have performed a certain amount of
work, as well as the standard error of the estimate being less than 1% of the mean of
the estimate, more work is required on average to acquire an estimate of mean annual

constraint costs.

4.3.4 Using a Poor Estimate of Importance Sampling Weights

Section noted that for this pilot study, it was assumed that importance sampling
weights based on the mean constraint costs or standard deviation of constraint costs in
a snapshot could be known accurately in advance, with 1000 full simulator evaluations
used to calculate such weights. However, for a general problem it may be inefficient
to take such a large number of full simulator evaluations before applying importance

sampling.

One possible solution could be to use a small number of full simulations to estimate
importance sample weights for use in subsequent simulator evaluations, as will be con-
sidered in Section [4.4] Alternatively, importance sampling weights could be calculated
based off one particular power system background, then used in all future power system
problems. For good results, this would require the weights to be somewhat similar for

all power system backgrounds.
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What has already been presented in this chapter would suggest this is not the case.
For example, Figure of Section [4.1.3] shows how the distribution of mean constraint
costs by day differs greatly between a year 1 and year 6 power system background.
Further, when the weights for the importance sample are based on the mean snapshot
constraint costs for a year 1 power system background, it is expected that 74.68 (0.427%
of the total 17520) snapshots will be used in each yearly evaluation. However, when the
weights for the importance sample are based on the mean snapshot constraint costs
for a year 6 power system background, it is expected that 5220 (29.8% of the total
17520) snapshots will be evaluated. This difference implies that the two different sets

of weights will give very different levels of consistencies in the resulting estimates.

Importance Sample Basis Year 6 Results | Year 1 Results
All Snapshots 4.595 EFSE 442.1 EFSE
Snapshot Demand 4.356 EFSE 283.3 EFSE

Snapshot Standard Error of Alternative | 9.499 EFSE 275.6 EFSE
Power System Background
Snapshot Mean of Alternative Power System | 11.93 EFSE 288.0 EFSE
Background

Table 4.4: Table showing how the amount of work done (J, in terms of equivalent full
simulator evaluations) to estimate mean annual constraint costs to an accuracy of 1%
varies with the basis used for importance sampling weights.

Table gives results of the expected work required to acquire an estimate of mean
annual constraint costs with less than 1% error when using weights calculated for a
year 6 power system background in year 1 and using weights calculated for a year 1
power system background in year 6. As the same LDC is assumed for both power
system backgrounds, results using snapshot demand as the basis of the weights are the

same as in Table [4.2

For both power system backgrounds, it is seen that using a poor selection for the
weights yields poor results. For the year 6 power system background, the expected
work required to acquire an estimate of mean annual constraint costs with an error
of less than 1% more than doubles (though still less than 12 equivalent full simulator
evaluations is expected to acquire an estimate of mean annual constraint costs). For a
year 1 power system background, when using weights calculated from a year 6 power

system background it can be seen that the expected work required increases by a factor
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Figure 4.6: Boxplots to illustrate the variation of work done (), in terms of equivalent
full simulator evaluations) to reach an estimate of mean annual constraint costs to an
accuracy of 1% for a variety of choices of importance sampling weights.

of 8.9 and 10.2 when using importance sampling weights based on snapshot mean and

snapshot standard error respectively.

This is evidence that it is insufficient to simply estimate weights for importance sam-
pling based off a single power system background and expect good results when apply-
ing them to any problem to be considered. However, it is also noted that for a year
1 system background, even using weights calculated for a year 6 power system back-
ground gave an improvement in the expected amount of work required for an estimate
of mean annual constraint costs with an error of less than 1% in comparison to eval-
uating every snapshot, though using these weights would still expect for 8.9 times as
many snapshots to be evaluated in comparison to using importance sampling weights

calculated using a year 1 system background.

Again, there is the potential that estimates could be misleading if a small number of
initial samples give similar estimates. Table |4.5] gives results when a minimum amount
of work of 10 EFSE is imposed before an estimate of mean annual constraint costs can

be accepted.
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Importance Sample Basis Year 6 Results | Year 1 Results
All Snapshots 10.16 EFSE 479.9 EFSE
Snapshot Demand 10.59 EFSE 317.2 EFSE
Snapshot Standard Error of Alternative | 10.13 EFSE 293.8 EFSE
Power System Background
Snapshot Mean of Alternative Power System | 12.11 EFSE 311.8 EFSE
Background

Table 4.5: Table showing how the amount of work done (J, in terms of equivalent full
simulator evaluations) to estimate mean annual constraint costs to an accuracy of 1%

varies with the basis used for importance sampling weights, when setting a minimum
of work of 10 EFSE to be done.

4.3.5 Estimating Mean Annual Constraint Costs with a Stan-
dard Error Less than £100,000

The previous 2 subsections considered how much work, A, was expected to acquire an
estimate of mean annual constraint costs such that the standard error of the estimate
was less than 1% of the mean of the estimate. This results in estimates of mean annual
constraint costs with a standard error which is small relative to the estimate itself.
However, Table of Section [4.1.1] shows that the mean annual constraint costs for
a year 6 power system background are £246,000,000, which in turn means that an
estimate with an error of 1% will still have a standard error of around £2,460,000,

which is far from a negligible cost in real terms.

Importance Sample Basis | Year 6 Results | Year 1 Results
All Snapshots 3534 EFSE 778.0 EFSE
Snapshot Demand 3846 EFSE 508.1 EFSE
Snapshot Standard Error | 3462 EFSE 51.25 EFSE
Snapshot Mean 3363 EFSE 45.93 EFSE

Table 4.6: Table showing how the amount of work (), in terms of equivalent full sim-
ulator evaluations) required to estimate mean annual constraint costs with a standard
error less than £100,000 varies with the basis used for importance sampling weights.

Therefore, it may be desirable to acquire an estimate with a standard error smaller
than some specified value. Table displays the expected amount of work, A, required
to estimate mean annual constraint costs such that the standard error of the estimate is

less than £100,000 and that the work of at least 10 equivalent full simulator evaluations
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has been done. As was noted, this value is selected as this is the equivalent cost of
making a very small (1 MW) increase to transmission capacity [5, 78]. Again, each of
the values in the table is the average value of A from 200 repetitions, as each yearly
simulator evaluation of constraint costs is random and therefore the amount of work

required to acquire an estimate to a given level of precision is also random.

For a year 1 power system background, results are similar to what was observed in
Section , where a large amount of work is expected (the work of 778 equivalent full
simulator evaluations) when evaluating each snapshot. This is reduced slightly to the
equivalent work of over 508 full simulator evaluations when using an importance sample
with weights based on snapshot demand. The expected work required is reduced by over
93% when using importance sampling methods based on snapshot mean or standard
error. For a year 1 system background, the values in Table 4.6 are approximately 60%

larger than those in Table for all importance sampling methods.

The similarities of results in comparison to those of Section are what may have
been expected based on Table which states that the mean annual constraint costs
for a year 1 power system background are £12,600,000. This means that in Sec-
tion [£.3.3, which considered estimating mean annual constraint costs such that that
the standard error of the estimate is less than 1% of the mean of the estimate, it is
expected that the standard error will be around £126,000. This is only 26% greater in
comparison to acquiring an estimate such that the standard error is less than £100,000,

as is considered in this subsection.

For a year 6 power system background, however, mean annual constraint costs are
much greater, at £246,000,000 as detailed in Table This means that the standard
error of an estimate with an accuracy of 1% will be around £2,460,000. Therefore, to
acquire an estimate of mean annual constraint costs such that the standard error of the
estimate is less than £100,000 requires a much greater amount of work in comparison.
This can be seen in Table [1.6] where the expected amount of work, A, required is now
greater than 3360 equivalent full simulator evaluations for any choice of importance
sample weights. This is over 750 times greater in comparison to the values of Table [£.2]
which consider how much work is expected to acquire an estimate of mean constraint

costs such that the standard error of the estimate is less than 1% of the estimate mean.
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When requiring the standard error of the estimate to be less than 1% of the mean
of the estimate, Table showed that the choice of weights for importance sampling
made very little difference to the expected work required to acquire an estimate of
mean annual constraint costs for a year 6 power system background. Table shows
that this is also the case when estimating such that the standard error of the estimate
is less than £100,000, with importance sampling using weights based on the standard
deviation or mean of snapshot constraint costs resulting in quite small decreases of
2.0% and 4.8% of the expected value of A (work done) respectively in comparison to

not using importance sampling (evaluating all snapshots).

However, using importance sampling with snapshot weights based on the demand level
of each snapshot actually increases the expected work done by 8.8%. This can be
explained by comparing Figure (b), which displays how mean daily demand varies
throughout the year, to Figure (b), which displays how the mean constraint costs
of each day vary throughout the year for a year 6 power system background. As can be
seen, it appears that the seasonal effect has a much greater effect than that of demand
on mean constraint costs. Further, throughout summer months it does not appear as if
mean daily demand and mean daily constraint costs positively correlate. This indicates
that for a year 6 power system background, using snapshot weights, w, for importance
sampling which are proportional to the demand level of each snapshot will yield poor

results.

It is noted that whilst requiring standard error of the estimate to be less than £100,000
does result in a substantial increase in the expected work required to acquire the
estimate, it would be possible to consider alternative criteria which are more strict
than requiring the standard error of the estimate to be less than 1% of the mean of the
estimate, in order to find a feasible balance between the accuracy of the estimate and
the amount of work required to acquire the estimate. For example, estimates which
require the error of the estimate to be less than 0.5%, 0.25% or 0.1% of the mean of
the estimate can be acquired with the equivalent of approximately 21, 90 or 577 full
simulator evaluations respectively, which represent more feasible balances between the

accuracy of the estimate and the work required to acquire the estimate.

Figure displays boxplots for how much work, A\, was required to acquire an estimate
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Figure 4.7: Boxplots to illustrate the variation of work done (), in terms of equivalent

full simulator evaluations) to reach an estimate of mean annual constraint costs with
an error less than £100,000 for a variety of choices of importance sampling weights.
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of mean constraint annual costs with a standard error of less than £100,000 for each
of the repetitions. For a year 1 power system background, things are very similar to
what was illustrated in Figure [4.4] where all repetitions using an importance sampling
method based on the standard deviation or mean of snapshot constraint costs required
substantially less work to acquire an estimate of mean constraint costs in comparison
to when basing the importance sample weights on demand or evaluating each snapshot.
Therefore, Figure (c) allows for a more accurate comparison of boxplots for when
importance sampling weights were based on the standard deviation of snapshot or
mean constraint costs of snapshot. As can be seen, not only is the median value of A
lower when basing the importance sample weights on the mean of each snapshot, but
the range of values of A is also smaller, indicating that the number of equivalent full
simulator evaluations required to acquire an estimate of mean annual constraint costs

with an error of less than £100,000 is also more consistent.

Figure (a), which considers boxplots for a year 6 power system background, il-
lustrates how all estimates which use importance sample weights based on snapshot
demand level resulted in a greater value of A than the highest value of A\ for any other
choice of weights considered, giving further evidence to how poor a choice of weights

this is for a year 6 power system background.

4.3.6 Accuracy of Estimates From Importance Sampling

In addition to considering how much work, A, is required to acquire an estimate of mean
annual constraint costs to a given level of precision, it is also important to consider
how accurate these estimates are in comparison to the “true” mean of the full simu-
lator. Equation of Section shows that estimates of mean constraint costs
when applying importance sampling are unbiased, i.e. they have the same expectation
as using the full simulator. Further, as many evaluations of Equation [4.2.5 are being
averaged for each repetition, and each yearly simulator evaluation is conditionally inde-
pendent and identically distributed, this means that the estimates of mean constraint
costs should form a normal distribution around the mean of the full simulator by the

central limit theorem.

However, as the output of the simulator each time the simulator is run is random,
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each estimate of mean annual constraint costs will differ from the “true” mean of the
simulator. Whilst a Bayesian approach to modelling may reject the concept of a “true”
mean of annual constraint costs of a power system in reality, the simulator itself does
have a true mean, in the sense that for each snapshot a probabilistic expectation of
constraint costs which arise from all possible permutations of generator availabilities
could theoretically be calculated, with the process repeated and a sum taken across all
snapshots. However, this calculation would be extremely expensive, and infeasible for

the resources available to us in this thesis.

An estimate of mean annual constraint costs for a given power system background
can be calculated to a high degree of accuracy by taking a very large number of full
simulations and calculating the average value of all the simulator evaluations. Table
details such estimates of mean annual constraint costs for year 1 and year 6 power
system backgrounds by calculating the average of 100,000 such full yearly evaluations
of the simulator (i.e. 1,752,000,000 snapshots evaluated in total). Error in the estimate
of mean annual constraint costs for a year 1 power system background has been reduced
to just £8,862 (0.0699% of the estimated mean) whereas error in the estimate of mean
annual constraint costs for a year 6 power system background has been reduced to just

£18,806 (0.00765% of the estimated mean).

Power System Background Year 1 Year 6
Estimate of Mean Annual Constraint Costs | £12,673,885 | £245,706,816
Standard Error of Estimate 8,862 £18,806
Standard Error as a Percentage of Mean 0.0699% 0.00765%

Table 4.7: Table detailing accurate estimates of mean annual constraint costs for a
year 1 and year 6 power system background.

Consideration will be given to how the estimates of mean annual constraint costs when
using importance sampling compare to ji; and jig, the highly accurate estimate of mean
annual constraint costs for a year 1 and year 6 power system background respectively
from Table [£.7 In this section results will be presented for a year 6 power system
background when importance sampling weights are based on the mean constraint costs
of each snapshot. Further details on the accuracy of estimated constraint costs for

other choices of importance sampling weights for both a year 1 and year 6 power
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system background are given in Appendix [A.2]

Accuracy of Estimates with a Standard Error Less Than 1% of the Mean
of the Estimate

Figure displays graphs to show how 200 estimates of mean annual constraint costs
vary for a year 6 power system background. These are the costs estimated in Sec-
tion [4.3.3] where it was required that the standard error of the estimate was less than
1% of the mean of the estimate, and that a minimum of 175200 snapshots (the equiv-
alent of 10 full simulator evaluations) had been evaluated. As noted in the previous
sub-subsection, the importance sampling weights used when acquiring these estimates

were based on the mean constraint costs of each snapshot.

Figure (a) shows a scatter plot for the final estimate of mean annual constraint
costs for each of the 200 repetitions, with a horizontal line also shown to represent
flg. As can be seen, estimates are fairly evenly scattered around f[ig with costs being

over-estimated as often as they are under-estimated.

The normal quantile plot of Figure (d) shows that the estimates approximately fol-
low a normal distribution. As mentioned, this is what should be expected by the central
limit theorem, as simulations of annual constraint costs using importance sampling via
Equation are conditionally independent and identically distributed, with an ex-
pectation equal to the expected annual constraint costs from the full simulator. There-
fore, when using multiple simulations to estimate mean annual constraint costs, the
estimates of mean annual constraint costs form a normal distribution centred around

the mean of the simulator.

Figure (b) shows the difference between the estimates of mean annual constraint
costs and fig (fig minus the estimate of mean annual constraint costs acquired from
importance sampling), with Figure (c) showing this difference as a percentage of
fig. As can be seen, all estimates lie within +/-2.21% of fig, with 99% of estimates
lying within 2% of jig and 78% lying within 1% of jig. These differences are smaller
than what may have been expected for a normal distribution with an error of 1% of fig.
The reason for this is the estimates displayed in Figure required that a minimum

level of work of the equivalent of 10 full simulator evaluations had been performed.
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Figure 4.8: Plots to compare estimates of mean annual constraint costs from impor-
tance sampling to jig for a year 6 power system background, when it is required that
the standard error of the estimate is less than 1% of the mean of the estimate.
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However, in Section it is shown how for a year 6 power system background an
estimate with an error less than 1% typically requires fewer than 10 EFSE, meaning

additional information is acquired which improves the accuracy of the estimate even

further.

Importance Mean Differ- | Mean Abso- | Mean Per- | Mean  Abso-

Sample Basis | ence lute  Differ- | centage lute Percent-
ence Difference age difference

All Snapshots | £122,000 £.1,540,000 0.0496 % 0.626%

Demand £.133,000 41,620,000 0.0540% 0.659%

Snapshot £.58,400 £1,570,000 0.0238% 0.639%

Mean

Snapshot - £39,300 £1,370,000 -0.0160% 0.564%

Standard

Deviation

Table 4.8: Table comparing estimated mean annual constraint costs from importance
sampling to [ig for a year 6 power system background, when it is required that the
standard error of the estimate is less than 1% of the mean of the estimate.

Table gives a comparison of the estimates of mean annual constraint costs from
importance sampling to fig, with consideration given to all choices of importance sam-
pling weights. As can be seen, the largest difference between jig and the average of all
200 estimates from an importance sampling condition is £133,000 (which is a difference
of just 0.054% of fig) when basing the importance sampling weights on the demand
of each snapshot. It is to be expected that the relative difference (i.e. difference as
a percentage of [ig) is small as Equation shows each estimate is unbiased so the
expectation of all estimates of mean annual constraint costs is the same as the mean

of the full simulator, which fig is a very accurate estimate of.

It is also useful to consider the mean absolute difference of the estimates from jig, to
consider how much an estimate of mean constraint costs will typically differ from the
true mean of the simulator by. Table [4.8 shows how the mean absolute difference of an
estimate from fig is between £1,370,000 and £1,620,000. As fig is over £245,000,000
such differences are still less than 0.66% of [ig. However, a difference of £1,620,000 is a
large amount of money, which is why Section considered the stricter criterion of
estimating mean annual constraint costs such that the standard error of the estimate is

less than £100,000, and the resulting cost estimates from such a method are considered
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in the next sub-subsection.

Accuracy of Estimates With a Standard Error Less Than £100,000

Graphs to illustrate how 200 estimates of mean annual constraint costs vary for a
year 6 power system background (when basing importance sampling weights on the
mean constraint costs of each snapshot) are displayed in Figure . These are the 200
estimates acquired in Section [4.3.5] where it was required that the standard error of
the estimate is less than £100,000, and that a minimum level of work of at least 10

equivalent full simulator evaluations had been performed.

A scatter plot of the 200 estimates of mean constraint costs is illustrated in Fig-
ure 4.9 (a), with a horizontal line also shown to represent jig. Figure[4.9| (b) shows the
difference between these estimates and i, with Figure (c) showing this difference
as a percentage of fig. As can be seen, the vast majority of estimates vary from [ig
by less than £200,000, which is less than 0.1% of jig (and all estimates vary from fig
by less than £300,000). Estimates appear to over-estimate costs as often as they are

under-estimated, with a fairly even scatter around jig.

These results can be contrasted with the corresponding plot of Figure[4.§ of the previous
sub-subsection, where estimates were acquired such that the standard error of the
estimate was less than 1% of the mean of the estimate, where estimates typically
differed from fig by up to 2% (an increase by a factor of 20). This is due to the mean
annual constraint costs being greater than £245,000,000 for a year 6 power system
background. Therefore, an estimate with a standard error of 1% of the mean will
expect to have a standard error of around £2,450,000, which is 24.5 times greater
than the £100,000 used for the estimates displayed in Figure [£.9] This shows how the
accuracy of estimates of mean annual constraint costs has been greatly improved by

the stricter convergence required for the estimate.

The normal quantile plot illustrated in Figure (d) shows that the estimates of mean
annual constraint costs approximately follow a normal distribution, which again is what

would be expected by the central limit theorem.

Table [4.9| gives further evidence that the resulting estimates of mean annual constraint

costs are very accurate when it is required that the standard error of the estimate is
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Figure 4.9: Plots to compare estimates of mean annual constraint costs from impor-
tance sampling to jig for a year 6 power system background, when it is required that
the standard error of the estimate is less than £100,000.
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Importance Mean Differ- | Mean Abso- | Mean  Per- | Mean Abso-

Sample Basis | ence lute  Differ- | centage lute Percent-
ence Difference age difference

All Snapshots | -£.6,900 £77,700 -0.00281 % 0.0316%

Demand £2,500 £.83,200 0.00104% 0.0339%

Snapshot -£17,300 £81,700 -0.00702% 0.0332%

Mean

Snapshot -£.14,700 £72,800 -0.00598% 0.0296%

Standard

Deviation

Table 4.9: Table comparing estimated mean annual constraint costs from importance
sampling to [ig for a year 6 power system background, when it is required that the
standard error of the estimate is less than £100,000.

less than £100,000, with the mean difference between the estimates of mean annual
constraint costs and fig being less than 0.008% for all importance sampling methods,

and the mean absolute difference being less than 0.034%.

This table contrasts greatly with Table[4.8] the equivalent table when estimating mean
annual constraint costs such that the standard error of the estimate is less than 1%
of the mean of the estimate, where the mean absolute differences are more than 18
times larger for all importance sampling methods. Again, this is due to the estimates
considered in Table having an expected error of around £2,450,000 in comparison
to the error of £100,000 of the estimates considered in Table [4.9]

However, it should also be considered that in Section it was shown that esti-
mates with a standard error less than £100,000 require over 330 times more simulator
evaluations in comparison to estimates where it is required the standard error of the
estimate is less than 1% of the estimate. This means that despite the improvement
in the accuracy of the estimates of mean annual constraint costs demonstrated in this
subsection, it is infeasible to take many such evaluations in practice for the resources
available to us in this thesis. However, for an organisation such as National Grid it

may be plausible and of benefit to perform such calculations.

For the resources available to us it would, however, still be possible to reduce the error
in the estimate for a year 6 power system background below the 1% of the mean of the

estimate considered in Section 4.3.3] For example, an estimate can be acquired where
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the standard error of the estimate is less than 0.5%, 0.25% or 0.1% of the mean of the

estimate when expecting to do the work of just 21, 90 or 577 EFSE respectively.

Further Results

This section has given some consideration to how the estimates of mean annual con-

straint costs for a year 6 power system background from Sections {4.3.3| and [4.3.5 com-

pare to the “true” mean of the full simulator when using importance sampling with
weights, w, based on the mean constraint costs of each snapshot. Further thought to
the accuracy of estimates for both a year 1 and year 6 power system background for

all choices of importance sampling weights is given in Appendix [A.2]

As a brief overview, for a year 6 power system background, results are very similar to
what has been presented in this section regardless of the choice of importance sample
weights, in that although estimates are quite accurate (almost always within 2% of
the very accurate estimate, fig) when estimating such that the standard error of the
estimate is less than 1% of the mean of the estimate, the accuracy is greatly improved
(by around a factor of 20) when using the stricter convergence criteria of requiring the

standard error of the estimate to be less than £100,000.

For a year 1 power system, however, less improvement is observed when estimating
mean constraint costs such that the standard error of the estimate is less than £100,000
in comparison to 1% of the mean. The reason for this is 1% of the mean annual
constraint costs for a year 1 power system is £126,000, so there is relatively little benefit
in reducing the standard error of the estimate to less than 4,100,000 in comparison to a
year 6 power system background, where the stricter convergence criteria would reduce

the standard error of the estimate by more than a factor of 20.

4.3.7 Why Importance Sampling Has Relatively Little Benefit

for a Year 6 Power System Background

In Sections [4.3.3| and [4.3.5|it was shown that when estimating mean annual constraint

costs for a year 1 power system background to a given level of precision, basing the
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importance sampling weights on the mean constraint costs in each snapshots can sub-
stantially reduce the amount of work required to reach a given level of precision in the
estimate. However, it was also shown that for a year 6 power system background there
was relatively little benefit from an application of importance sampling in comparison
to using full simulator evaluations, with the best results being a 4.8% reduction in
EFSE when basing importance sampling weights on the mean constraint costs of each

snapshot.

As Section4.2.2)and Appendix [A.I|showed that basing importance sampling weights on
the mean constraint costs of each snapshot minimises the variance of the resulting esti-
mate (when evaluating an equivalent number of snapshots) it may have been expected
that a greater reduction in the expected work required would have been observed for

a year 6 power system background.

However, it is important to consider that just because a certain selection of weights
minimises the variance of an estimate, it does not necessarily mean that the variance
of the estimate is substantially reduced in comparison to simply evaluating every snap-
shot. To illustrate this, 1000 further full simulator evaluations (i.e. evaluating each
snapshot) were taken. Then, these simulations were used to acquire an estimate of
how the variance varies depending on whether or not importance sampling was used.
In Section it was noted that applying importance sampling using Equation
results in an increase in the variance of evaluations of annual constraint costs for all
choices of importance sampling weights, w, as the work required to acquire an estimate
of annual constraint costs is not accounted for and instead the alternative importance
sampling methodology detailed in Section must be used to compare variance esti-

mates when an equivalent amount of work (number of snapshots) have been evaluated.

Using the alternative importance sampling method outlined in Section {.2.I Ap-
pendix states that the variance of a particular choice of importance sampling

weights can be calculated as

<fy<>§o<> —“)2] (132)

where f. 7(7) was defined in Equation as an estimate of annual constraint costs

based on a single simulation of snapshot 7; p(7) is the probability mass function used
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when treating the snapshot, 7, as if it were a random variable (defined in Section m
as m for all snapshots) and ¢(7) is the alternative density used to sample values of

T to simulate, with Equation defining an equivalent ¢(7) for given values of w, as

Wr

>, wr
The variance detailed in Equation can be estimated using the additional 1000 full

q(1) =

simulations as

1000 17520 fc,,‘ p A 2

=1 7=1 q<7—>

where f. 7;(7) is the ith simulated value of f. #(7) for snapshot 7 and i is the mean

value of f. 7 ,(7) across all 17520 snapshots and 1000 repetitions.

Year 6 Results | Year 1 Results
Estimate of variance when evaluating each | 6.37x10'7 1.31x10'7
snapshot (call this §]2)(T))

Estimate of variance when using importance | 6.02x 107 8.27x10%
sampling with weights based on snapshot
mean (call this §§(T))

q<T) 0.945 0.063

p(‘f)

Table 4.10: Table detailing how variance estimates vary depending whether or not
importance sampling is used.

Table details how the estimate of the variance from Equation varies depend-
ing on whether or not importance sampling is used (with importance sample weights
based on snapshot mean constraint costs). As can be seen, for a year 1 power system
background the variance of the estimate is reduced by 93.7% when using importance
sampling with weights based on the mean constraint costs of each snapshot in com-
parison to not using importance sampling, which is in line with the reductions of over
93% in the amount of work required to estimate to a given level of precision in Ta-
bles and [4.60| However, for a year 6 power system background, the variance estimate
is only reduced by around 5.5% when using importance sampling, which is also in line
with the reductions in expected work required to acquire an estimate to a given level

of precision previously observed.

Further evidence of this can be seen by considering Figure [4.10] (a), which illustrates
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Figure 4.10: Boxplots to illustrate the variation in simulated constraint costs for 1000
simulations for 10 snapshots for a year 1 power system background.

boxplots for 1000 simulator evaluations of constraint costs for 10 snapshots for a year
1 power system background. The snapshots chosen for illustration in Figure m (a)
are 10 equally spaced snapshots when snapshots are ranked from the lowest mean of

constraint costs to the greatest mean of constraint costs.

As can be seen, the snapshot with the greatest mean of constraint costs dominates
the graph, with the costs in the other 9 snapshots being negligible in comparison. In-
tuitively, it would therefore be expected that this snapshot is most important to the
estimate of mean annual constraint costs, and when using importance sampling this
snapshot should be sampled much more frequently than others. This is reflected in
Figure which illustrates how importance sampling weights, w, vary from small-
est weight to largest for a year 1 power system background when basing importance
sampling weights on the mean constraint costs of each snapshot. As can be seen, the
vast majority of snapshots have very little weight due to the mean of constraint costs
in these snapshots being very low, with only 520 (3.02%) of the snapshots having a
weight greater than 0.01.

Figure [£.10] (b) illustrates boxplots for the 1000 simulations of each of the snapshots of
Figurem (a) when each of the simulations of constraint costs has been weighted using
Equation [4.2.5] (i.e. the value that would be used when estimating constraint costs if
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Figure 4.11: Plot to compare importance sampling weights for a year 1 and year 6
power system background, when basing the weights on the mean constraint costs of
each snapshot.

that particular snapshot was simulated when using importance sampling). As can be
seen, the plots for each snapshot are now much more similar to one another, with no
particular snapshot dominating. This illustrates the benefit of importance sampling
for a year 1 power system background, as snapshots less relevant to the estimate of
annual constraint costs are sampled much less frequently, with the weighted estimates
of constraint costs from Equation [4.2.5]accounting for this when the snapshot is actually

simulated.

Figure[4.12]displays the equivalent graphs to Figure[d.10|for a year 6 power system back-
ground (i.e. boxplots for 1000 simulator evaluations of constraint costs for 10 equally
spaced snapshots when snapshots are ranked from the snapshot with the lowest mean
of constraint costs to the snapshot with the greatest mean of constraint costs). As can
be seen in Figure m (a), even without an application of importance sampling the
distribution of constraint costs across all snapshots is somewhat similar, with the con-
straint costs from the snapshot with the greatest mean not dominating simulated costs
from the other snapshots, unlike what was seen for a year 1 power system background.
Further, the weighted estimates of constraint costs from these simulations displayed
in Figure [£.12) (b) do not appear to be a great improvement on Figure [£.12] (a). In
particular, it can be seen that for the snapshot with the lowest mean of constraint

costs, due to the small weight of this snapshot (0.069) several simulator evaluations
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Figure 4.12: Boxplots to illustrate the variation in simulated constraint costs for 1000
simulations for 10 snapshots for a year 6 power system background.

which gave a larger than average evaluation of constraint costs for this snapshot result

in very large weighted estimates of constraint costs.

Further evidence to this can be seen in Figure which also displays how importance
sampling weights, w, vary from smallest weight to largest for a year 6 power system
background when basing importance sampling weights on the mean constraint costs
of each snapshot. For a year 6 power system background it can be seen that whilst
only a small amount of snapshots are given weight greater than 0.8 or 0.7 (1.0% and
3.9% of snapshots respectively) the weights are much more evenly distributed amongst
snapshots in comparison to a year 1 power system background. In particular, a yearly
simulation of constraint costs which uses importance sampling would expect to evaluate
just 74.68 snapshots for a year 1 power system background (0.43% of the year) in
comparison to the 5220 that would be expected to be evaluated for a year 6 power

system background (29.80% of the year).

4.3.8 Conclusions of Pilot Investigation

This section has considered how the expected value of A (the amount of work expressed
as equivalent full simulator evaluations) required to acquire an estimate of mean annual

constraint costs to a given level of precision varies with weights, w, used when using
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importance sampling to estimate annual constraint costs. For both the year 1 and year
6 power system backgrounds, the two power system backgrounds which are of interest
for the examples which will be presented in Chapters [b] and [6], the best results were
acquired when basing the weights to be used on the mean constraint costs for each
snapshot, which is consistent with the results of Section and Appendix[A.1] For a
year 1 power system background, Table|4.3|shows how using an importance sample with
weights based on the mean constraint costs of each snapshot expected to evaluate 16.6
times less snapshots in comparison to not using importance sampling (i.e. evaluating

each snapshot in each yearly simulation).

However, for this pilot investigation 1000 full evaluations of the simulator were used to
estimate the weights used for the applications of importance sampling in this section,
and this initial work outweighs the benefits of importance sampling. Further, it was
shown in Section that it was insufficient to calculate weights for one particu-
lar power system background, then use those weights when estimating mean annual
constraint costs for other power system backgrounds. Therefore, from this initial ex-
periment it can be concluded that if the mean snapshot constraint costs could be known
accurately, applying importance sampling based on these means gives the best results.
The next section will consider how to efficiently estimate mean annual constraint costs

when the importance sampling weights are not known accurately in advance.

4.4 A General Importance Sampling Methodology

The previous section presented a pilot study to demonstrate how importance sampling
can be used to estimate mean annual constraint costs, whilst expecting to evaluate
fewer snapshots in comparison to evaluating each snapshot in each simulator evaluation.
Basing importance sample weights on the mean constraint costs of each snapshot gave
the best results, expecting to evaluate 16.6 times fewer snapshots on average to acquire
an estimate of mean annual constraint costs to a given level of precision, in comparison

to using the full simulator for a year 1 power system background.

However, for the pilot study it was assumed that the weights used for importance sam-

pling were known accurately in advance, with mean snapshot constraint costs estimated



4.4. A General Importance Sampling Methodology 101

from 1000 full simulator evaluations. This section will consider if it is possible to use a
small number of full simulator evaluations to estimate the weights used for importance
sampling to reduce the total number of snapshots evaluated when estimating mean an-
nual constraint costs for a given power system background. All results in this section
will use the mean constraint costs of each snapshot as the basis for the weights used
in importance sampling. As the importance sampling methodology of Section
requires each snapshot to have strictly positive weight, a minimum weight of 0.01 will
be given to each snapshot (i.e. each snapshot will expect to be evaluated at least once

in every 100 yearly simulations).

Further, Section noted that several references use iterative schemes within appli-
cations of importance sampling to improve results [104} (96} [47]. Therefore, Section[4.4.2]
will detail an iterative scheme suitable for the application of importance sampling when
estimating mean annual constraint costs, where a small number of initial simulations
are taken to estimate initial importance sampling weights, with these weights then

continuously updated after each subsequent simulator evaluation.

As the results of the previous section showed that there is relatively little benefit in
using importance sampling for a year 6 power system background, this section will
only present results when estimating mean annual constraint costs for a year 1 power
system background, though in omitted work the applications proposed in this section

were also applied to a year 6 power system background.

4.4.1 Using a Small Number of Initial Simulations

Table displays how the expected work, A, required to acquire an estimate of mean
annual constraint costs such that the standard error of the estimate is less than 1% of
the mean of the estimate (accuracy of 1%) varies with the initial number of snapshots
used to estimate the weights used for importance sampling. The results displayed do
not include the work done to acquire the initial simulator evaluations used to estimate
importance sample weights. As was the case throughout Section [4.3], the work required
to acquire an estimate of mean constraint costs to a given level of precision varies each
time an estimate is acquired, so the results of Table are based on the average work

required to acquire an estimate for 200 repetitions.
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Number of Initial Simulations | Expected work, A, for a Year 1 Power System
Background

Full Simulation 484.1 EFSE

10 152.7 EFSE

25 88.31 EFSE

50 67.06 EFSE

100 55.01 EFSE

Table 4.11: Table showing how the amount of work done (A, in terms of equivalent
full simulator evaluations) to estimate mean annual constraint costs to an accuracy of
1% varies with the initial number of simulations used to estimate importance sample
weights.

There appears to be great benefit in using importance sampling in comparison to
using full simulation. Using just 10 initial full simulations to estimate the importance
sampling weights requires just one third of the work in comparison to using the full
simulator on average to acquire an estimate of mean annual constraint costs with an
accuracy of 1%. Table shows further improvement when the number of initial full
simulations used to estimate importance sample weights is increased, with the use of 25

initial full simulations decreasing the expected value of A from 153 EFSE to 88 EFSE.

However, it is also observed that the benefit of using additional initial simulations
to estimate importance sample weights decreases as the number of initial simulations
increases. For example, increasing the number of initial simulations used to estimate
weights from 50 to 100 decreases the expected work required to achieve an estimate of
mean annual constraint costs with an error less than 1% from 67 EFSE to 55 EFSE (i.e.
a decrease of 12 equivalent full simulator evaluations). However, an additional 50 initial
full simulation evaluations were required to estimate the initial weights, indicating that
the total work done (i.e. the work done to calculating the weights plus the work to
estimate mean constraint costs such that the standard error of the estimate is less than
1% of the mean of the estimate) would have been less if just 50 initial simulations were

used to estimate the importance sample weights.

Figure displays boxplots to show how much variation there was in the estimate of
the work required for 1% accuracy across all 200 repetitions of each condition. This
shows clearly how the work required to achieve a 1% error in the estimate decreases

with the number of initial simulations used to estimate importance sampling weights.
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Figure 4.13: Boxplots to illustrate the variation of work done (A, in terms of equivalent
full simulator evaluations) to reach an estimate of mean annual constraint costs to an
accuracy of 1% for varying numbers of initial simulations to estimate weights.

Further, with the exception of a few outliers when using 10 initial simulations to esti-
mate weights, all estimates when using importance sampling were acquired by evalu-
ating fewer total snapshots in comparison to all estimates when not using importance
sampling. This illustrates that even when importance sampling weights are estimated
from a small number of initial full simulator evaluations, there is great benefit to using
importance sampling when estimating mean annual constraint costs for a year 1 power

system background.

4.4.2 Updating Importance Sampling Weights

The previous subsection considered the possibility of using a small number of initial full
simulator evaluations to estimate weights, w, to be used for importance sampling. For
a year 1 power system background, even using just 10 initial simulations to estimate
the weights reduced the expected number of snapshot evaluations required to estimate
mean annual constraint costs by 68.46% in comparison to not using importance sam-
pling, with further improvement noted as the number of initial simulations to estimate

weights was increased.

However, in the examples of the previous subsection the importance sampling weights

were calculated based on an initial set of full simulations, and no information from
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subsequent simulations was taken into account. The importance sampling methodology
could be greatly improved if information from each sample was taken into account when

taking the next sample, as described in the following algorithm:

1. Set a minimum value of A (i.e. work done in terms of equivalent full simulator
evaluations) before an estimate of mean annual constraint costs can be accepted
(10 EFSE for the results of this section) and set a level of error in the estimate
to be achieved (such that the standard error of the estimate is less than 1% of

the mean of the estimate for the results of this section).

2. Take an initial set of simulations from the full simulator (an appropriate size for

this initial sample will be explored in this section).

3. Note the number of times snapshot 7 was evaluated in the initial set of simulations

as N, and the mean of the evaluations in snapshot 7 as @T

4. Estimate an initial set of weights, w, to use in importance sampling via Equa-

tion based on the values of @ from these initial simulations.

5. Use the weights, w, to take N, additional simulations of annual constraint costs,
Yw, via importance sampling as outlined in Section [£.2.2] Denote the number of
times snapshot 7 was simulated in this additional sample as N, and the mean

of these additional NNV, ; evaluations as (/ET#.

6. Calculate an estimate of mean annual constraint costs as an average of the sim-
ulated annual constraint costs from importance sampling (mean of all the y,,),

and also calculate the standard error of the estimate (standard error of all the

yw)'

7. Check, have the convergence criteria of step 1 been met? If so, stop; else go to

step 8.

8. Update the mean of each snapshot such that

q; « &TNT + $T,+NT,+
T N, + N, .
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and the total number of times each snapshot has been evaluated as

N, + (N, + N..,)

9. Recalculate the importance sampling weights to be used, w, using the updated

snapshot means, QBT, via Equation m

10. Go back to Step 5.

The above algorithm means that the weights used for importance sampling, w, al-
ways take into account the maximum amount of information available. In this thesis,
estimating annual constraint costs using importance sampling via Equation is
much more expensive than updating the weights via step 8 of the above algorithm
so it is sufficient to set N, to 1, i.e. update the important sampling weights after
each yearly estimate of constraint costs. This means that if the initial sample over or
under-estimated the importance of a particular snapshot, subsequent information from
subsequent samples could be taken into account in order to improve future sampling.

Appendix gives the R code used to implement this algorithm.

It is noted that in the above algorithm the evaluations of annual constraint costs
from the initial simulations used to estimate initial importance sampling weights are
not subsequently used in the estimate of mean annual constraint costs. This is given

further thought at the end of this subsection.

Number of Initial Simulations | Expected work, A, for a Year 1 Power System
Background

Full Simulation 484.1 EFSE

10 48.21 EFSE

25 45.38 EFSE

50 45.82 EFSE

100 44.06 EFSE

Table 4.12: Table showing how the amount of work done (), in terms of equivalent
full simulator evaluations) to estimate mean annual constraint costs to an accuracy of
1% varies with the initial number of simulations used to estimate importance sample
weights when the weights are updated after each subsequent simulation.

Table shows how the expected work required to estimate mean annual constraint

costs, A, varies when using an importance sampling method which updates the weights
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Figure 4.14: Boxplots to illustrate the variation of work done (A, in terms of equivalent
full simulator evaluations) to reach an estimate of mean annual constraint costs to an
accuracy of 1% for varying amounts of initial simulations to estimate weights.

used for importance sampling after every yearly simulation (not including the work
done to acquire the initial simulator evaluations used to estimate the initial importance
sampling weights). By comparison to Table it can be seen it can be seen that
these results are great improvement in comparison to when the importance sampling
weights were not continually updated. For example, using 10 initial full simulator
evaluations to estimate the initial weights would require over 152 EFSE to estimate
mean annual constraint costs when the importance sample weights are not continually
updated, which can be reduced to just over 48 EFSE (a reduction of over 68%) when

the importance sampling weights are updated after each yearly evaluation.

The expected equivalent number of full simulator evaluations appears to decrease as the
number of initial simulations used to estimate importance sampling weights increases,
but at a very slow rate. As mentioned, using 10 initial full simulator evaluations to
estimate the initial weights expects to give an estimate of mean annual constraint costs
after the equivalent of just 48 further full simulator evaluations. However, increasing
the number of initial full simulator evaluations used to estimate initial weights to 100
expects to give an estimate of mean annual constraint costs after the equivalent of

44 further full simulator evaluations, a reduction of just 4 EFSE despite using an
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additional 90 initial full simulations. Therefore, it appears as if it is sufficient to use
a small number of initial simulations to estimate initial importance sampling weights

when allowing the weights to be updated after each subsequent yearly simulation.

The reason a small number of initial full simulator evaluations is sufficient is partially
explained by Figure (a) of Section . In this plot it is seen how a small number
of days give a much greater contribution to the estimate of annual constraint costs
than the rest of the year (in particular in Section it was noted that 2.47% of
days account for 27.3% of annual costs). Further, Figure of Section shows
that the accurate estimates of importance sampling weights based on 1000 full simu-
lator evaluations would expect to evaluate 0.42% of the 17520 snapshots in a full year.
This explains what is observed in Table [£.12] as a small number of initial simulations
can be used to identify the snapshots with the largest means of constraint costs, and
once identified these snapshots will actually be simulated more often than others when
evaluating annual constraint costs using importance sampling. Then, when applying
importance sampling these snapshots will be continually sampled, meaning very accu-
rate weights can be estimated for them very quickly. When doing extra initial work,
however, all 17520 snapshots are repeatedly sampled, meaning a substantial amount
of work is performed to accurately estimate weights for snapshots of negligible impor-

tance.

It is noted that the algorithm proposed in this subsection takes an initial set of full
simulator evaluations to estimate initial importance sampling weights, but the cor-
responding evaluations of annual constraint costs of these initial simulations are not
used when estimating mean annual constraint costs. This is part of a (perhaps overly)
cautious approach, to account for the fact that although evaluations of annual con-
straint costs obtained via importance sampling have the same mean as evaluations of
the full simulator (as is verified in Equation of Section , the variance of
the evaluations of annual constraint costs when using importance sampling may be
very different to the variance of the full simulator (especially if very few snapshots are
evaluated when using importance sampling). However, it would be possible to use the
initial simulations as part of the estimation process, and Appendix notes how to

achieve this through a minor adjustment to the R code.
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4.5 Importance Sampling Conclusions

This chapter has considered how importance sampling can be used as a method of
estimating mean annual constraint costs for a given power system, whilst evaluating
fewer snapshots in comparison to using the full simulator. Section [4.3.3] showed that
using importance sampling weights, w, based on the mean constraint costs of each
snapshot can reduce the expected number of snapshots to be evaluated to acquire an
estimate of mean annual constraint costs to a given level of precision. However, this
requires initial evaluations of the full simulator to estimate these weights. Further, Sec-
tion [£.3.4] showed that weights estimated for one particular power system background
do not generalise well to a different power system background. Section [4.4.2] showed
how this problem can be overcome by using a small number of initial full simulator
evaluations to estimate some initial weights to be used, with the weights subsequently
updated after each yearly evaluation from importance sampling to account for sub-
sequent estimations of mean constraint costs in each snapshot. For the remainder of
this thesis the algorithm proposed in Section will be used when estimating mean
constraint costs for a given power system background, using 10 initial simulations to

estimate initial importance sampling weights.

It was stated that throughout Section that a minimum weight for each snapshot
was set to 0.01. This is because Equation requires each snapshot to have a
non-zero weight in order to apply importance sampling. Further, as a small number
of initial snapshots are used to estimate initial weights it was important not to set
this value too low to avoid under-estimating the importance of a snapshot due to a
poor initial sample. A weight of 0.01 means the particular snapshot will expect to be
sampled every 1 in 100 times. Setting the value higher than this would mean a lot of
work would be spent evaluating constraint costs for snapshots where the best evidence
available suggested they were of less importance. An investigation omitted from this
thesis was carried out to verify this was an appropriate lower bound for importance

sample weight.



Chapter 5

The Use of Emulation as Part of
Decision Making Under

Uncertainty

Chapter [3|defined the simulator used to estimate constraint costs in this thesis. Further,
Section showed how details about the power system background (input variables

of the simulator) have an effect on the mean constraint costs estimated.

As discussed in Section [2.3] this thesis will provide a methodology to make transmis-
sion expansion decisions when uncertainty exists in the values of the variables which
are used to describe the power system. Further, this thesis gives a more complete
consideration to uncertainty of the simulator input variables, which improves on the
existing transmission expansion planning literature, which only handles uncertainty by

considering a small number of possible values for the input variables.

This chapter will introduce the concept of emulators, which can be used to approx-
imate simulators whilst being much less expensive to evaluate. Further, details will
be given of how the emulators can then be used alongside prior beliefs about uncer-
tainties (which quantify expert judgement about the possible values which variables
containing uncertainty may take) to make decisions which give a careful consideration
to the uncertainty which exists in the power system background. This chapter will end
with an application of the emulation methodology presented to a simple example of

transmission expansion planning under uncertainty:.

109
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5.1 Structure of the Uncertainty Problem

Section gave the specification of the simulator, f.(X), which is used to estimate
the mean constraint costs of power systems in this thesis (recall X contains all relevant
information about the power system background such as installed generating capaci-
ties, peak demand levels, etc). Recall, constraint costs are the additional operational
costs, conditional on the level of transmission network investment, which arise due to
finite network capacity restricting the ability to use the cheapest generating capacity

available.

In reality, it is possible to increase the transmission capacity between zones (build
more transmission lines) which would allow more generating capacity to be traded
between zones. This would in turn decrease the constraint costs expected to arise.
The magnitude and location of transmission reinforcements (i.e. the magnitude of
increase of transmission capacity between two specific zones) are decisions to be made.
Therefore, such decisions could be quantified as decision variables and included in X.

Increasing the transmission capacity of certain boundaries was also given consideration

in Section 3.7

It is also important to note that there are considerable costs associated with expanding
the transmission system. Therefore, decisions to expand the transmission network must
also account for the construction costs of such a reinforcement, f,(X). This means that
the goal of transmission expansion planners is not to eliminate constraint costs from
the system, but rather to find an economic balance between the mean constraint costs
expected to arise and the reinforcement costs of expanding the transmission system.
Therefore, the quantity of interest in this thesis is the total costs of the power system,
defined as the sum of the mean constraint costs plus the cost of any reinforcement

made, i.e.
fr(X) = fo(X) + fo(X) (5.1.1)

In this thesis it will initially be assumed that it costs £100,000 to increase the trans-
mission capacity between two zones by 1 MW [5, [78]. This calculation is based on the
assumption that it would cost £1000 per MW per km to reinforce, and assuming that

each boundary between zones is 100 km. Further thought is given to this figure in
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Sections [5.4.1] and [6.4.2], which additionally consider how sensitive particular decisions

about the power system are to this figure.

This thesis will present a methodology for decision making whilst accounting for the
uncertainty that exists in the input data of the simulator (i.e. decision making whilst
accounting for the uncertainty in values contained in X). Section showed how
the estimates of constraint costs from the simulator, f., are dependent on the system

background assumed for the power system, which is defined by the data contained in

X.

In total, X contains hundreds of variables which define the power system background.
As was noted, there are varying amounts of uncertainty in the true values of these
variables (for example, currently installed generating capacities can be known very
accurately whereas future peak demand levels can be known much less accurately).
Further, the effect on the estimate of mean constraint costs as the assumed value of a
variable is varied also varies with the variable considered (for example, in Section m
it was shown that the assumed level of peak demand had a large effect on the mean
constraint costs estimated, but the transfer capacity of the B9 boundary had very
little effect on the estimate of mean constraint costs). This means it is neither feasible
nor necessary to consider uncertainty in every single variable when estimating optimal

reinforcement decisions to be made for the transmission system.

It is therefore useful to think of X as (v, a,d), where v represents the inputs in which
uncertainty is modelled explicitly; a represents the inputs which are either known with
certainty or in which uncertainties are not of interest, so their values are treated as fixed
as if they are known precisely (the effect of assuming fixed values for these variables is
investigated in Chapter @; and d represents the decision variables. To link this back to
the examples presented in Section [3.7], v would represent variables which have a large
impact on the mean constraint costs estimated, such as the peak demand level and
certain generator availability probabilities. a would represent variables shown to have
little impact on the estimate of mean constraint costs, such as the B9 transmission
capacity or variables which it is reasonable to think could be known very precisely,
such as current levels of installed generating technology. d quantifies the transmission

expansions decisions which are of interest. In this thesis d will represent the amount
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(in MW) of additional transmission capacity built between two zones, which in turn
represents the amount (in MW) of additional generating capacity that can be traded

between two zones.

With this formulation, if d = (d, ...,dy,), the cost of reinforcement for a particular

power system background from Equation [5.1.1] can then be redefined as

Ng
[o(X) = f,(d) = fo(dy,....dn,) = £100,000 x > _d; (5.1.2)

5.2 Emulation

5.2.1 Fitting an Emulator

Section gave an overview for the existing literature on transmission expansion plan-
ning. It was noted that a large amount of the literature gave little thought to uncer-
tainty in the power system background when identifying optimal expansion decisions
of the power system’s transmission system. Further, the literature which did consider
uncertainty did so by considering a small number of possible states of the power sys-
tem. This thesis will overcome this by treating the variables which define the power
system as continuous variables, which would allow the variables to take any potential
value over a given range (e.g. we could model the peak demand level to be anywhere

between 62100 MW and 63600 MW) instead of a small number of possible values.

As mentioned, in the problem presented there is uncertainty in the values of the input
variables, X. However, the function fr(X) (the simulator of total costs), is far too ex-
pensive to evaluate at every set of input parameters desired. Therefore, it is necessary
to evaluate fr a small number of times for particular values of X, and approximate fr
everywhere else as carefully as possible by some alternative function, fr. fr should be
much less computationally demanding to evaluate in order to allow for efficient estima-
tion for input values not simulated. An estimate of the uncertainty that exists in the
response when approximating fr by fr is also required. The process of approximating

fr by fr is known as emulation [74, |45, 89).

Suppose there are N, variables with uncertainty of interest, labelled vy, ..., vy, and Ny

v

decision variables, d, ..., dy,. The goal is to fit a model to the output of fr (the sum
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of mean constraint costs plus reinforcement costs) based on these N, + Ny variables.
As this process assumes all other variables are considered fixed as if known, fr can be

treated as if it is a function of vy, ..., vy, and dy, ..., dy, only.

A small set of training runs of the simulator are used to construct the function fr which
approximates fr. These training runs vary the values of vy, ..., vy, , and dy, ..., dy, over

a given range. Details on how training runs are selected to give a dense coverage of

the space defined by vy, ..., vy, and dy, ..., dy, are given in Section [5.2.4]

v

Suppose yr represents the response of the simulator (fr) for the training data. For
simplicity in the following notation, also suppose x = (v,d) = (vy, ..., vy, , d1, ..., dn, ).
The emulator, fr, is usually constructed such that fr is the sum of a parametric model
plus a non-parametric smoother applied to the residuals of the parametric model [45,
89, 84, 192], i.e.

fr(x) = g(x)" B + e(x) (5.2.1)

where g(x)T 3 is the parametric portion of the emulator and e(x) is the non-parametric
smoother applied to the residuals of g(x)T3. The emulator used in this thesis will use

a polynomial regression model as the parametric portion (i.e. g¢(x)*8 from Equa-

tion [5.2.1)) of the emulator model. This can be thought of as

P Nu+Ng Ny+Ng

yT<’U1, «.UN,» d17 ceey de) = yT(X) = Bo—f—z Z 6,5711‘7;4-2 Zﬁt’id‘l’gl‘;—f-...ﬁ-é(X)
t=1 1

- t=1 =1 j#i
(5.2.2)
i.e. the dot product of a coefficient vector with the polynomial form of the predictor
variables with error term e(vy,...,vn,,ds, ..., dy,). This thesis only considers interac-
tions between equal powers of variables (e.g. the polynomial may include an interaction
between v; and dy but not between v; and d3). Values of B are estimated via least

squares regression, as will be detailed in Section [5.2.2]

Whilst this methodology applies very generally, the terms included in the polynomial

regression model should be carefully selected based on the specifics of the example

considered. This is considered in Sections [5.3.3| and |6.1.3], where both the R? value of

the polynomial regression model and a measure of the resulting emulator’s predictive

power for a second set of training data which was not used to fit the model are used
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to identify terms to be included in the model.

If the residual of the polynomial regression model, £(x*), is positive for a given set of
input values, x*, this indicates that the polynomial regression model under-estimates
the response of the simulator, yr(x), at x*. As yp(x) is modelled as a continuous
variable, £(x) is also modelled as a continuous variable. By the continuity of yr(x),
the polynomial model will also under-estimate the response for values of x close to

x*, i.e. values of ¢(x) are not independent but rather contain information about the

response of the simulator near x.

This means that the fit of the model can be improved further by using a Gaussian
process model to smooth the residuals, e(v1, ..., vn,, d1, ...,dy,). This is important as
the polynomial model will aim to give a good fit over the entire range of the variables
considered, whereas the Gaussian process model can model local behaviour much more
accurately. The idea of a Gaussian process is to smooth the residuals in order for the
model to agree with the training data and provide an accurate estimate of response
(and variance of the estimated response) for values where training data is unavailable.
In this sense, the Gaussian process model can be thought of as a smooth interpolator of
the residuals [74]. In simple terms, the idea of the Gaussian process is if a response is to
be estimated at point x,, training data closer to x, carries more relevant information
and should be given more weight when making an estimation. Further details on

Gaussian process models are given in Section [5.2.3]

In this thesis, the polynomial portion of the emulator model will be denoted by le and
the Gaussian process model fitted to the resulting residuals of the polynomial model
will be denoted by fTQ. Thus, the emulator model for given inputs is the sum of these

two, denoted fT, such that

Fr(vr,y e vny, diy ey dny) = (V1 s Ony diy ey dig) + fro (01, e U diy ey i)
(5.2.3)
That is to say fT is our emulator which approximates the simulator, and the estimated
response of the emulator is acquired by evaluating the sum of the estimated responses of
the fitted polynomial regression model and the corresponding Gaussian process model

for given input values.

After the emulator has been fitted to a set of training data, a second set of training
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data will then be simulated. The emulator model fitted to the first set of training data,
fr, will then be used to estimate a response for the output of the simulator at the
second set of training data. By comparing the estimated response of the emulator to
the value simulated the predictive power of the emulator can be assessed, as will be

demonstrated in Section [5.3.3]

5.2.2 Polynomial Regression Modelling

Section [5.2.1] mentioned that polynomial regression models are used as part of the
emulation process. Equation[5.2.2]detailed the form of the polynomial regression model.
However, in practice it is more useful to use a design matrix, Xg,, and a vector of
parameters, B, to represent this polynomial regression model. The ith row of the
design matrix details the polynomial form of the ith training run, with n training runs
acquired in total (i.e. Xy, has n rows). For example, suppose a polynomial regression
model is to be fitted to two variables which contain uncertainties of interest and one

decision variable, and the form of the polynomial regression model is

Bo + Brvr + Bavz + Bady + Badi + Bsvad,
The design matrix of such a polynomial regression model would be

2
1 V1,1 V12 d1,1 dl,l U1,2d1,1

2
1 Vo1 V22 d2,1 dQ’l U2,2d2,1

2
1 Vi1 Vi2 di,l di,l Ui,2di,1

2
1 Un,1 Un2 dn,l dml Un,an,l

where v; 1, v; 2 and d; ; are the values of the two uncertain variables and decision variable

respectively for the ¢th training run.

Equation could then be rewritten as
yr = XagpB + € (5.2.4)

where yr = (y1.7, Y215 s Ynr)* such that the ith entry of yr is the simulated response
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of the ith training run, € = (g1, €, ..., £,) " such that the ith entry of € is the residual of
the ith training run when fitting the polynomial regression model and g is the vector

of parameters of the polynomial regression model, i.e. 8 = (8, 81, ..., B5) .

The values of the parameters of the polynomial regression model in this thesis are
estimated using least squares regression. That is, values of 8 are estimated to minimise

the sum of squares of the model residuals:

B = arg min » &7 (5.2.5)
B =1
B can be calculated as
B = (X3 Xa) ' Xiyr (5.2.6)

For a polynomial regression model, the covariance matrix of these estimated parameters
is

cov(B) = (X, Xap) (5.2.7)
where o2 is the variance of the residuals in the regression model which can be estimated
as

n .2
E‘g.
02%82: i <1
n—q

(5.2.8)

where ¢ is the number of parameters in the polynomial regression model (i.e. the
length of B). For a standard polynomial regression model, it is then assumed that the
estimated model parameters are multivariate normally distributed with some unknown

true mean B and covariance matrix cov(f).

These results are used to inform our beliefs about the values of 8 used in the polynomial
portion of the emulator model, which for a given set of training data form a multivariate
normal distribution with mean ,é, as defined by Equation , and variance matrix
cov(ﬁ), as defined by Equation m

If an estimated response is required at some new set of values
Xo = (Vo 1y -os Vo.Nys Qo1 -ns dO,Nd)T, first a vector describing the polynomial terms of x,

is formed as X,p,. xgp is written as if it were a row in the design matrix of the polynomial

T

op would have the form

Xap, so for the example given at the beginning of this section x

T 2
Xop = (17 Vo,15 Vo,2, d0,17 do717 Uo,2do,1)
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An estimated response for values for these input values can then be calculated as

x, B (5.2.9)
The model parameters, B , and covariance matrix of these parameters will be calculated

in this thesis using the Im function in R.

5.2.3 Gaussian Process Modelling

As mentioned in Section [5.2.1] Gaussian process models are used when fitting an em-
ulator model, specifically to smooth the residuals of the fitted polynomial regression
model. Technically, a Gaussian process is a collection of random variables, of which any
finite subset have a joint Gaussian distribution [84, 10, 60]. For the example presented,
this means that the Gaussian process fitted will model € as a multivariate Gaussian

distribution dependent on x, as will be described in the remainder of this subsection.

[74] gives an accessible introduction to Gaussian processes models. The exemplar
model is a simple function of a single variable (specifically x + 3sin(3)), acting in place
of a complicated simulator for demonstration purposes. The function is evaluated
exactly a small number of times (training runs) and it is demonstrated how a smooth
interpolation (the Gaussian process) of these training runs acts as a good approximation
to the true function, as well as illustrating the approximation error at inputs where
the model has not been evaluated. This tutorial reference also demonstrates how
the Gaussian process model can be improved by using additional training runs, and
how the parameters of the Gaussian process itself affect the quality of the resulting

approximation.

In this thesis, Gaussian process models are used to smooth the residuals of the poly-
nomial regression model fitted in Section [5.2.2] As was noted in Section [5.2.1] this is
to account for the fact that the simulated total cost, yr(x), is a continuous variable,
and therefore £(x) (the difference between the simulated costs and the polynomial re-
gression model fitted in Section , fr,(x)) is also modelled as a continuous variable

dependent on x.
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A Gaussian process model fitted to model a response, ¢, dependent on a set of vari-
ables, x, uses a mean function, m(x), and a covariance function, k(x,x), to specify
a mean-variance relationship (i.e. expected value of response and uncertainty in that
expectation) for € based on x, as will be detailed in the remainder of this subsection.
The Gaussian process model is completely defined by its mean and covariance function,

and is denoted € ~ GP(m(x), k(x,x)).

This thesis will use the mean function

m(x) = pap (5.2.10)

and covariance function
K(x1,Xg) = o peor(x, Xg) (5.2.11)
where X{ = (L1,0,, -, T10y,  T1ds» ces T1dy, ) and Xy = (Zoys s Ton, » T2,ds» e T2 dy )

are two sets of predictor variables; o2 is a variance parameter of the Gaussian process
and cor(xy, X2) is the value of a correlation function between x; and x3. The correlation

function used in this thesis is defined as:

Ny+Ng

COl"(Xl,XQ) — e Zi:l 'Yi(zl,i—$2,i)2

(5.2.12)

where 71, ..., Yn,+n, are the hyper-parameters of the correlation function to be esti-

mated.

In practice the correlation between 2 matrices is required. Suppose X; and X, are
two matrices where each row of each matrix is a set of predictor variables. Further,
suppose that X; has I rows where x;; is the ith row of X;, and that X, has J rows
where x5 ; is the jth row of X5. The correlation matrix between these two matrices
would be a matrix K, x, with / rows and J columns, where the jth entry of the ith

row of Kx, x, is cor(xy;,Xa ;).

Defining m(x) as in Equation (i.e. a constant mean function) is a common choice
of mean function, which is a simple extension to a zero mean function, m(x) = 0,
which greatly simplifies calculations involved without the loss of generality [84, 93,
103]. Defining the correlation function as in Equation means that the fitted
correlation function is infinitely differentiable, which in turn means that the resulting

Gaussian process model will be very smooth. This is also a very common choice of
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correlation function [84, |17, 83].

For given values of the hyper-parameters of the correlation function, v1, ..., yn,+n,, &
Gaussian process model can then be used to estimate the mean and variance of the
response, €. To do so, the design matrix, X4, of the training runs is required, as well
as a vector of calculated responses, €. The ith row of X, describes the input values
used for the ith training run, and the ith entry of € is the corresponding residual of
the polynomial regression model for that training run. Note, Xy, differs from Xg, as it
simply gives the values of the training data of the N, + N, input variables of interest,

not the polynomial form of the polynomial regression model, i.e.

V11 V12 ... U1LN, d171 dLQ e dl,Nd

V21 V22 ... U2N, d271 d272 . d27Nd
Xgg =

Vi1 Vi2 Ui N, di,l di,Q e di,Nd

Una1 Un2 ... UpN, dn,l dn72 e dn,Nd

Suppose an estimated response is desired at a new set of ny data-points. A matrix X,
is created, where each row details the input values for which an estimated response
is required. Note, X, can be a single set of input values and will be treated as if it
were a matrix with a single row. The vector for estimated responses of the Gaussian
process for the input values of X, is then modelled as a normal distribution with

expectation [84, 41]
e = tipp + Kx. sy (Kxyy )~ (€ — i) (5.2.13)
with the covariance matrix of these estimates
var(e,) = ogp(Kx. x. — Kx. xoy (Kx4y.X0y) Kxuy,x.) (5.2.14)

where pp is a vector of length n (the number of observations used to fit the Gaussian

process) where each entry is pgp, i.e.

Bep = (HGPs s HGP) (5.2.15)
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and similarly pfp is a vector of length ny (the number of points where a new estimated

response is required) where each entry is pgp.

The parameters 71, ..., Yn,+n, in Equation control how much weight is given to
each training run when estimating a response using the Gaussian process model. The
larger the values of these parameters, the faster the relative weight given to a training
runs decreases with distance from the point where an estimate is required. In simple
terms, larger values of these parameters will result in a function which is more sensitive

to the local behaviour of training runs than smaller values.

In this thesis, the Gaussian process model is fitted using the function mlegp in R. This
function identifies maximum likelihood estimates for the values of ugp and the corre-

lation function hyper-parameters, 71, ..., Yn,+n,, using numerical methods (specifically

the Nelder-Mead Simplex and the L-BFGS method).

Sections to have presented the methodology for fitting an emulator model
considered in this thesis. However, it is noted that other approaches to emulation can
be taken, such as a fully Bayesian approach (as is considered in [45, 72, |10]) or a Bayes

linear approach (as is considered in [37] 23, 98]).

5.2.4 Latin Hypercube Sampling

Section stated that a set of training runs is used to create the emulator model
which approximates the simulator. These training runs are acquired using Latin hy-

percube (LHC) sampling [76].

A hyper-rectangle (also called an n-orthotope) is the generalisation of a rectangle to a
general number of dimensions. Just as the 2 dimensional rectangle could be extended
to a cuboid by specifying a range for a third variable over a third axis, this cuboid
could be extended into even higher dimensions, for example, by specifying ny ranges

for ng variables over ng axes.

Latin hypercube sampling is a method of taking a sample of n points from a specified
hyper-rectangle. When taking the sample, each axis of the hyper-rectangle formed by
the variables of interest (i.e. vy,...,vn,,d1, ..., dy,) is divided into n intervals. A sample

of size n is then taken which varies the values of the N, + N, variables such that for
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each variable exactly one of the samples has a corresponding value in each of the n

intervals of that variable’s axis.

Figure 5.T]illustrates this process when taking an LHC sample of size 6 from 2 variables
of interest. The first variable is supposed to take a value in the range 0.95 to 1.05 and
the second in the range 0 to 1500. An LHC sample can be acquired for any given
ranges of two (or more) variables, but these particular choices mean this illustration is

an application for the example that will be detailed in Section [5.3.1

As the desired sample size is 6, Figure (a) shows how first each axis is divided into
6 intervals. Figure (b) then illustrates how the sample is taken such that exactly
one value in the sample lies in each row and column of the axes. Using the centre point

of each of these intervals is known as Lattice sampling [101].

It is not necessary for each point to lie in the centre of the grid. For example, the
LHC sample of Figure|5.1| (b) could be used to identify which interval each point of the
sample lies in. Then, a uniform sample within that interval could be taken to determine
the actual values of the sample. Such a sample is illustrated in Figure (c), where
the points lie in the same row and column as Figure (b), but the points have been

randomly sampled (from a uniform distribution) within those intervals.

The Latin hypercube sample gives the input values to be used when simulating train-
ing runs, which in turn are used to fit the emulator model. An appropriate number of

training runs must be selected and is considered in Sections [5.3.3] and [6.1.3] by consid-

ering how the predictive power of a fitted model varies with the size of the LHC sample

used.

A potential flaw of LHC sampling is that it is possible for the values of the variables
to be highly correlated, which would give a sparse coverage of the sample space. This
is illustrated in Figure 5.2 which shows a 6 point sample. This is still technically an
LHC sample as each row and column contains exactly one point, but the coverage of

the space is very poor in comparison to that of Figure (c).

As a result, there are many methods available which can reduce the pairwise correlation
between variables in an LHC sample, to give a better coverage of the sample space.
For example, [76] consider using a Cholesky decomposition to transform the sample

to reduce correlation between the variables, [11] propose two genetic algorithms to
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Figure 5.1: Plots to illustrate how to take Latin hypercube samples.
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Figure 5.2: Plot to illustrate a poor Latin hypercube sample.

improve the Latin hypercube sample and [99] detail how orthogonal sampling could be
used, which would divide the sample space into several subspaces, and take separate
LHC samples in each subspace. A very simple alternative would be to simply take
many LHC samples, calculate pair-wise correlation values between the values of the
sample and then actually simulate training runs with the LHC sample which gives the
smallest pair-wise correlation. Another common, simple alternative is to take many
LHC samples and select the sample with the maximum minimum distance between

points [74, 98, [23].

Latin hypercubes are very advantageous in comparison to grids (i.e. evenly distributed
points over a given range). First, a more dense coverage of the region sampled is
given, in the sense that a wider range of values of the variables is taken. For example,
Figure (a) illustrates a sample of size 16 when using a 4 by 4 grid to determine the
input values of training runs, whilst Figure (b) illustrates a 16 point LHC sample.
For the grid, only 4 unique values are used of each variable (repeated 4 times), whereas
for the 16 point Latin hypercube sample 16 unique values are sampled for each variable.
The problem is even worse in higher dimensions. For example, in 3 dimensions a 4 by 4
by 4 grid would would use 64 points, though each variable would consider only 4 unique
values (which would have each value repeated 16 times for other points in the sample).
However, in Latin hypercube sampling a sample of size 64 would use 64 unique values

for each variable, which should allow models to give a better fit.
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Figure 5.3: Plots to compare a Latin hypercube sample to a grid of points.

In addition, the structure of a grid can be very limiting to the sample sizes that can
be considered. For example, in 3 dimensions a 4 by 4 by 4 grid would use 64 points,
whereas a 5 by 5 by 5 grid would use 225 points. However, an LHC sample can be of
any size we desire. Further, grid sizes increase exponentially with dimension, whereas

this is not necessarily the case for LHC samples.

5.2.5 Estimation of Expected Costs Under Uncertainty

The expectation of a function of a continuous random variable is calculated as the
integral of the product of the function and the probability density function (PDF) of
the random variable. Applying this to emulation, if the PDF of the distribution of
the uncertain variables (i.e. vy, ...,vy,) was known to be p(vy, ..., vy, ), the estimate of

expected total costs under uncertainty for a given decision, d* = dj, ..., dy, is
FT(dT, ceey d]*\/d) = / fT(Ula <oy UNy dT, ceny d*Nd) X p(vl, ceey va)dvl...vaU (5216)
V1,3 UNy,

where fT(vl, s UN,, dT, d}‘vd) is the estimated response of the fitted emulator model
(i.e. the estimate of total costs from the fitted emulator model for the examples con-
sidered in this thesis) for given values of variables containing uncertainty, vy, ..., vy, ,

and decision variables, dj, ..., d},.
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In real world problems, such as the constraint cost problem presented, the PDF of the
uncertain variables is often not assessed exactly. In particular, in cases such as this,
assessment of uncertainty in the planning background relies to a large extent on expert
judgment [25, [34], and in a Bayesian formulation the prior judgment of uncertainty
should be expressed as a PDF of the variables vy, ...,vy,. The expected total costs
under uncertainty can then be estimated as in Equation , where p(vy, ..., vn,)
would represent the prior judgement of the expert expressed as a PDF. Examples of

prior beliefs for the constraint cost problem are given in Sections [5.3.1] and [6.1.3]

When making a decision it is often desirable to identify the value of the decision
variable which minimises/maximises (as appropriate) Equation [5.2.16] as an estimate

of the optimal decision to be made.

5.2.6 Credible Intervals for Cost Estimates from Emulators

As mentioned in Section [5.2.1] uncertainty exists in the fitted emulation model itself.
Recall, the polynomial portion of the model, le, has model parameters 8. Our beliefs
about the values of these parameters are modelled as a multivariate normal distribution
with mean ,3 , estimated via Equation and covariance matrix cov(ﬁ), estimated

via Equation [5.2.7]

To model the variation in the fitted emulator model, a new set of parameters, BAT,
could be randomly drawn from the multivariate normal distribution with mean ,é and
covariance matrix cov(). The estimated response of fr, (x) (the resulting polynomial
model using parameters BAT instead of 3) for given input can be calculated by replacing
B with BT in Equation , such that the estimated response of fTM(X) at x, (where
XOTp details the form of the polynomial at x, as outlined in Section is

Frir(x0) = x2 By (5.2.17)

Corresponding residuals of this randomly drawn polynomial model can then be calcu-

lated as

er(x) = yr(x) = fr(x)

The methodology of Section could then be used to fit a Gaussian process model
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to model ¢, based on x, with fTM(X) denoting this Gaussian process model.

A random variation of the emulator model could thus be the sum of the polynomial
model with a random draw of parameters and the corresponding Gaussian process

fitted to the resulting residuals such that:

fT,r(Ula .../UNv, dl, ceny de) = le,r(Ula ---UNva dl, ceny de) + fT27r(u1, -'-UNU> dl, PN de)

(5.2.18)

However, such variations in the model parameters can have a large effect on the fitted
model. Further, using fT,T instead of fr in Equation could also have a large effect
on the estimated expected total costs under uncertainty. By carefully considering how
the cost estimates vary as the model parameters are varied, credible bounds can be
formed which give a range in which we would expect the expected total costs to lie for

a given level of confidence.

To do this, consider creating a randomly drawn model, fT,T, as described above. For a
given decision, dj, ..., d} , an estimate of expected response using the randomly drawn

model can be calculated by integrating over uncertainties, as in Equation [5.2.16] as:

Z:ﬁTm(d*l‘, wndy,) = /U ) nyr(vl, o UNys Ay ey diy,) X (01, s o, )dos . do,

T (5.2.19)
By considering how FTW(d}‘, ..., dy,) varies with the randomly drawn models, credible
intervals can be formed for FT(d’{, ..,dy,). To do this, suppose a large number of
models, N,, have been randomly drawn and an a% credible interval is desired. Such
an interval could be formed by taking the lower bound as the value which IOOT_O‘% of
the Frp,(di, ..., dy,) are less than, and the upper bound as the value which wOT_O‘% of
the Z:ﬂT,T( 1, dy,) are greater than. It is convenient to label the lower and upper

bounds as Frp(dr, ..., dy,) and Fry(ds, ..., dy,) respectively.

Section [6.2 will later detail how the credible bounds of the estimates from emulation
can be used to reduce the range of values considered for the decision variables. This
in turn allows for a second, more accurate emulator model to be fitted over a smaller
range of values of the decision variables, which increases confidence in the estimates

and allows for a better decision to be made.
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5.3 Application of Emulation to a Simple Example

5.3.1 Details of the Example

This section will give an initial, simple example to illustrate how emulators can be used
to approximate how input affects output of simulators. Further, it will illustrate how
the resulting emulators can be used to make decisions which account for the uncertainty

which exists in the input to the simulator.

Section [3.7.2] stated that it is common practice to estimate constraint costs for a given
period of time using a power system background of a single future year. This example
will therefore use a single future year to estimate constraint costs, with that year
being year 1 from [69] (recall this is National Grid’s freely available online reference
which gives projections for all aspects of Britain’s power system over a 20 year period).
Section will consider how cost estimates and the resulting estimates of optimal

decisions are affected by using multiple future years to estimate constraint costs.

The initial example will consider treating just one variable of the simulator as con-
taining uncertainty (i.e. wvy,...,vy, is just a single variable, v) and making just one

decision (i.e. dy,...,dy, is just a single variable, d). The variable containing uncer-

d
tainty, v, is the peak demand level of the power system. The decision variable is the
reinforcement magnitude of the B15 boundary. Section indicated that reinforcing
the B15 boundary can greatly reduce costs in year 1, and Section [3.7.2] showed how

peak demand level has a large effect on the estimated constraint costs in year 1. This

makes these particular variables suitable for this initial investigation.

Recall from Section [3.7.2] v will not explicitly specify the peak demand level of the
power system. Instead, v will specify a magnification of the peak demand level pro-
jected by [69] (which gives equivalent results to working directly with peak demand
level). For example, if the peak demand level of a year was 10000 MW, a peak demand
magnification of 1.15 would mean increasing the peak demand level to

10000 MW x1.15 = 11500 MW. Under this model, a value of v = 1 would represent
the peak demand level projected by [69)].

The objective is therefore to form an emulator model, fT(v, d), which accurately ap-

proximates how the input values of v and d affect the output of fr(v,d) (i.e. the
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Figure 5.4: Plot to show how total costs calculated using the simulator vary with peak
demand magnification and B15 reinforcement magnitude.

simulator of total costs of the power system).

It will be assumed that the peak demand level realised can differ from the projected
peak demand level from by 5% (i.e. the peak demand could be between 95% and
105% of the projection given in [69], meaning v takes a value between 0.95 and 1.05)
and that the B15 boundary reinforcement can be between 0 and 1500 MW (i.e. d can
take a value between 0 and 1500).

5.3.2 Sensitivity of the Simulator

Figure illustrates how the simulated total costs (mean constraint costs plus rein-
forcement costs) varies with peak demand magnification and B15 reinforcement magni-
tude. It can be seen that if B15 reinforcement magnitude is low, total costs steeply rise
as peak demand magnification rises. However, as B15 reinforcement magnitude rises,
there is much less variation in total costs as peak demand magnification is varied. The
total costs simulated for high peak demand magnifications initially begin to fall as B15
reinforcement magnitude is increased (indicating that the decrease in mean constraint
costs outweighs the cost of the reinforcement), though as B15 reinforcement magnitude
is increased even further, total costs level out and even begin to rise again. This would
indicate that, for high levels of B15 reinforcement magnitude, the benefits from the

reduction in constraint costs is outweighed by the expenditure of the reinforcement.
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5.3.3 Constructing an Emulator
Selection of an Appropriate Emulator Model

Once an appropriate problem to consider has been identified (i.e. decision variables
and variables containing uncertainty of interest) an emulator must be constructed to
accurately approximate how the input values of the variables of interest affect the
output of the simulator. There are two aspects to consider: the number of training
runs used to construct the emulator model and the emulator model fitted to those

training runs.

Section indicated this thesis will use an emulator model which uses a polynomial
regression model with a Gaussian process model applied to smooth the residuals of the

resulting polynomial model.

For the problem outlined in Section Table shows how the R? value of the
polynomial portion of the emulator model varies with the polynomial model fitted and
number of training runs used to fit the emulator model. Table gives details of the

terms included in the polynomial regression portion of the emulator models considered.

For every polynomial degree it can be seen that the R? value is much greater when in-
cluding interaction terms in comparison to when not. This indicates that it is important
to include these terms in order to accurately model the output of the simulator. This
is supported by Figure which clearly shows an interaction between peak demand
magnification and B15 reinforcement magnitude. It also appears that a polynomial
with second degree terms of v and d and interactions between terms of equal degree
(polynomial 4) is sufficient, with little improvement in R? when including 3rd degree

terms of v and d (polynomials 5 and 6).

It also appears as if sample size (the number of training runs used) has little effect on
the value of R%. This is to be expected, as R? is a measure of how well a given model
fits a set of data, and not necessarily a measure of how well it predicts a response

outside of the training data.

This indicates a limitation of using R? alone as a measure of goodness of fit of the
emulator. A further limitation is the R? value gives no indication of the predictive

power of the full emulator model, fr, which also includes the Gaussian process model
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Training Run | 25 50 100 200 300
Sample Size
Polynomial 1 | 0.7547 | 0.6908 | 0.6499 | 0.6557 | 0.6380
Polynomial 2 | 0.8819 | 0.8267 | 0.7931 | 0.7865 | 0.7807
Polynomial 3 | 0.8616 | 0.8044 | 0.7558 | 0.7462 | 0.7511
Polynomial 4 | 0.9840 | 0.9671 | 0.9504 | 0.9508 | 0.9438
Polynomial 5 | 0.8715 | 0.8203 | 0.7657 | 0.7560 | 0.7606
Polynomial 6 | 0.9884 | 0.9745 | 0.9622 | 0.9631 | 0.9579

Table 5.1: Table detailing how the R? value of the polynomial portion of the fitted
emulator model varies with polynomial model fitted and sample size of training runs.

Polynomial Model Description
Model

Polynomial 1 | Sy + [B1v + [ad

Polynomial 2 | Sy + B1v + Bod + [3vd

Polynomial 3 | By + B1v + fad + Bsv? + [4d?

Polynomial 4 50 + ﬁl’U + 52d + 637}2 + 64612 + ﬁgﬂ}d + 567]2(12

Polynomial 5 | By + f1v + faod + P3v? + Bud? + Psv? + Ped®

Polynomial 6 | By + B1v + Bad + B3v? + Bad? + Bsv° + Bed® + Brvd + Bsv?d? + Byv3d®

Table 5.2: Table which describes the terms included in the polynomial portion of the
emulator model.

applied to smooth the residuals of the polynomial regression model. Therefore, a
secondary criteria must be used in order to assess the predictive power of a fitted

model for values where training data was unavailable.

As mentioned in Section [5.2.1] for this thesis this involves simulating a second set of
training data. Suppose ns is the sample size of this second set of training data, such
that yo, is the response of the ¢th simulation in this second set of training data and
X, are the values of the input variables for this second set of training data. A measure
of the predictive power of the full emulator model (both the polynomial regression
model and the Gaussian process model applied to its residuals) fitted to the first set

of training data, fT, can then be acquired as

1 2 -
P=—2> (y2i — fr(x2;))’ (5.3.1)
N2 =1
This would represent the mean squared error of estimating the response of the second

dataset from the emulator model fitted to the first dataset, and a smaller value of P
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would indicate a greater level of predictive power.

It may also be useful to normalise this value by the variance in the response of the

second sample, i.e.

N P
P = o (5.3.2)

This would represent a measure of the predictive power of the fitted emulator nor-

malised by the predictive power of the sample mean of the response of the second set

of training data. Again, smaller values of P indicate a greater level of predictive power

of fT'

Training Run | 25 20 100 200 300
Sample Size

Polynomial 1 | 3.862x10' | 2.827x 10 | 2.095x10* | 3.958x 10" | 2.522x10"?
Polynomial 2 | 2.469x10 | 1.823x10™ | 1.218x10™ | 1.235x10% | 1.280x 10"
Polynomial 3 | 3.515x10 | 2.453x10™ | 1.856x10™ | 3.401x10™ | 2.448x 103
Polynomial 4 | 2.050x10 | 8.546x10™ | 4.844x10™ | 6.252x10™2 | 5.457x 10"
Polynomial 5 | 3.417x10 | 2.435x10™ | 1.753x10™ | 3.729x 10" | 2.215x 103
Polynomial 6 | 2.094x10 | 9.284x 10" | 5.161x10™ | 7.680x10'? | 6.506x 10'?

Table 5.3: Table detailing how the value of P of the fitted model varies with model
fitted and sample size.

Training Run | 25 50 100 200 300
Sample Size

Polynomial 1 | 0.1547 | 0.1133 | 0.08391 | 0.01586 | 0.01011
Polynomial 2 | 0.09895 | 0.07307 | 0.04882 | 0.004950 | 0.005128
Polynomial 3 | 0.1409 | 0.09831 | 0.07437 | 0.01363 | 0.009809
Polynomial 4 | 0.08216 | 0.03425 | 0.01941 | 0.002505 | 0.002187
Polynomial 5 | 0.1369 | 0.09719 | 0.07026 | 0.01494 | 0.008880
Polynomial 6 | 0.08393 | 0.03720 | 0.02068 | 0.003072 | 0.002607

Table 5.4: Table detailing how the value of P of the fitted model varies with model
fitted and sample size.

Table displays how the value of P varies with the form of the polynomial portion
of the emulator model (with a Gaussian process then applied to the residuals of that
polynomial) and number of training runs used to fit the model, with Table display-
ing the same information when the value of P has been normalised by the variance in
the response in the second set of training data. All results in this table were acquired

by comparing how well the fitted models estimated the response of a second sample
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of training data of size 50. First, it is noted that the information in this table also
supports the previous observation that it is important to include the interaction terms

in the polynomial model.

For this example, it is also noted that the predictive power of the model does increase
when using 200 training runs over 25, 50 or 100 training runs, though there appears
to be little benefit in using additional training runs beyond this. Also, there does not
appear to be a benefit from using a polynomial model which includes third degree
terms of v and d over one which only includes second degree terms of v and d, with
the table even suggesting that for larger sample sizes (200 or greater) the models give

a slightly poorer fit when including these additional terms.

For this initial example, the fitted emulator model will use a polynomial which includes
second order terms of v and d and interactions between equal powers of v and d (i.e.
polynomial 4 from Table as the polynomial regression portion of the emulator, with
a Gaussian process applied to the residuals of this model as outlined in Section [5.2.1]

This emulator will be fitted using 200 training runs.

However, it is noted that it cannot therefore be assumed that 200 training runs and a
polynomial of the form of polynomial 4 from Table is appropriate to use for any
example of using an emulator to approximate a simulator to be considered. Each time a
new problem is considered (which may vary the simulator used, the variables which are
assumed to contain uncertainty and/or the decision variables considered) it is required
that an appropriate number of training runs and an appropriate polynomial portion
of the emulator model be identified. This will be demonstrated in Section [6.1.3] and
Appendices [B 1], [C.3| and [D.T], which consider fitting emulator models for the examples

of Chapters|6] [§land [9] where the number of training runs identified to be used to fit the
emulator models varies between 50 and 300, and the optimal form of the polynomial
model (i.e. how high a degree and which interactions, if any, to include) is also shown

to vary with the example considered.

Comparing the Fitted Emulator Model to the Simulator

Figure illustrates fitted emulator models (i.e. the sum of fitted polynomial regres-

sion model and a Gaussian process model applied to its residuals) when using 50, 200
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(a) 50 training runs (b) 200 training runs

(¢) 300 training runs

Figure 5.5: Plots to show how estimates of total costs from the fitted emulator models
vary with peak demand magnification and B15 reinforcement magnitude.
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or 300 initial training runs and using a polynomial of the form Polynomial 4 from
Table for the polynomial portion of the emulator model. By comparison to Fig-
ure (the equivalent plot using the simulator), it is seen that all of these models are

reasonably good approximations to the simulator.

However, it can be seen that fitting a model using just 50 training runs tends to
under-estimate costs when peak demand magnification is high and B15 reinforcement
magnitude is low, whilst over-estimating costs when peak demand magnification is low
and B15 reinforcement magnitude is high. The model which uses 200 training runs
shows a noticeable improvement over the model using 50 training runs in these two
areas, being a very good approximation to the simulator. Comparing the use of 300 to
200 initial training runs shows little difference between these two models, though the
model using 300 training runs is slightly better than the model using 200 training runs
when peak demand magnification is very high and little to no B15 reinforcement has

been made.

These results are what one would expect from Table [5.3] which show the predictive
power of an emulator model increases with number of training runs used to fit the

model up to 200 training runs, with little improvement beyond this.

Figure illustrates how cost estimates from the emulators differ from the estimates
from simulation when using 50, 200 or 300 simulations to fit the emulator model, to
support the conclusions reached about Figure[5.5] As can be seen, when using only 50
training runs the total costs are considerably under-estimated when B15 reinforcement
is low and peak demand magnification is high, and considerably over-estimated when

B15 reinforcement magnitude is high and peak demand magnification is low.

Using 200 training runs to fit the emulator model also appears to under-estimate costs
when B15 reinforcement magnitude is low and peak demand magnification is very high,
though the difference between the emulator is 10 times less in comparison to when using
only 50 training runs to fit the emulator. Using 300 training runs to fit the emulator

model decreases the difference between the emulator and simulator even further.
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(a) 50 training runs

(b) 200 training runs
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Figure 5.6: Plots to show how differences between calculations from simulation and
B15 reinforcement magnitude.

estimates from the fitted emulator models vary with peak demand magnification and
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5.3.4 Expected Total Cost Estimation Under Uncertainty

Section detailed how to estimate expected total costs under uncertainty using an
emulator. This requires an emulator model and a set of prior beliefs which describe a

probability density function for the variables containing uncertainty.

For this initial example, there is one variable containing uncertainty, the peak demand
magnification. Section 5.3.1|stated the peak demand level would be modelled as having
a value between 95% and 105% of the value projected by [69] (i.e. peak demand
magnification between 0.95 and 1.05). However, no distribution for the value taken

was specified.

For this initial example, a uniform distribution between 0.95 and 1.05 will be used
to represent prior beliefs about peak demand magnification, p(v). That is to say, for
the initial example, any value of peak demand level between 95% and 105% of the
projection given by [69] will be deemed equally likely to be observed, but any value
outside of that range will be deemed impossible to occur. This uniform distribution is
simple, but it is also consistent with the interpretation of expert judgement that will

be used when a more complicated example is presented in Section [6.1]

Figure displays how the estimate of expected total costs under uncertainty varies
with reinforcement magnitude when these prior beliefs are used in combination with
the emulator fitted using 200 training runs (the sum of the polynomial regression
model plus the Gaussian process model applied to its residuals) from Section in
Equation of Section m Figure (a) shows how the estimate of expected
total costs from the fitted emulator model varies with B15 reinforcement magnitude,
whereas Figure (b) illustrates 95% credible intervals for the estimates of expected
total costs as B15 reinforcement magnitude is varied. In Figure (b), each grey
curve represents the expected total costs estimated when using a random variation of

the fitted emulator model using the methodology outlined in Section [5.2.6]

Initially, estimates of expected total costs decrease with reinforcement magnitude as
the increased transmission capacity greatly reduces expected mean constraint costs.
However, estimates of expected total costs eventually begin to rise again. This is due
to the rate of decrease of expected mean constraint costs decreasing with each addi-

tional MW of transmission capacity, and eventually the increase in reinforcement costs
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(a) Plot of how estimated expected total costs  (b) Plot to illustrate how estimates of ex-
vary with B15 reinforcement magnitude. pected total costs vary with B15 reinforce-
ment magnitude when using random varia-
tions of the fitted emulator model, with the
resulting 95% credible bounds also illustrated.

Figure 5.7: Plot to show how estimated expected total costs vary with B15 reinforce-
ment magnitude.

is greater than the decrease in expected mean constraint costs. For high reinforce-
ment magnitudes the curve appears quite linear as the reduction in constraint costs
from further reinforcement is very small, but reinforcement costs continue to increase

linearly.

For this initial example the estimate of the optimal decision (i.e. the reinforcement
magnitude which minimises the estimate of expected total costs) would be to increase

the transfer capacity of the B15 boundary by 350 MW.

5.3.5 Diagnostic Test For Credible Bounds

Figure (b) illustrates credible bounds for the estimates of expected total costs
when integrating over uncertainty. However, it is possible that the credible intervals
illustrated are too narrow or too wide (meaning error in the estimate may have been
under or over estimated). Therefore, it is necessary to test how well credible intervals
from randomly drawing the emulator model parameters act as intervals for the value

acquired under simulation.
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(b) Comparison of credible intervals to the cal-
culation from simulation when assuming peak
demand magnification of 1.0364 and B15 re-
inforcement of 862.7 MW.

Figure 5.8: Plots to compare credible intervals for estimates of total costs from the
fitted emulator to the calculation of total costs from the simulator.

Figure (a) displays how 200 randomly drawn emulator evaluations vary when as-
suming peak demand magnification of 0.9676 and B15 reinforcement of 739.5 MW, as
well as the evaluation of total costs from the simulator. Credible intervals at the 90%,
95% and 99% level are shown for comparison, where 10%, 5% and 1% of the estimates
from randomly drawn emulator models lie outside the respective credible intervals. As
can be seen, the evaluation from the simulator lies between the credible bounds at all

3 credibility levels shown.

An equivalent plot is shown in Figure (b), which compares estimates from randomly
drawn emulator models and the calculation from the simulator for a peak demand
magnification of 1.0364 and a B15 reinforcement magnitude of 862.7 MW. For these
inputs, the simulated value is smaller than all but 4 of the 200 random draws from
the emulator, and therefore lies between lower bounds of the 95% and 99% credibility
intervals. This means that the value calculated from simulation would be contained in
the credible interval for the estimated response at the 99% level, but not the 95% and
90% level.

In order to test how well the credible intervals model the error in the estimated response,

full simulator evaluations were performed at 500 new sets of inputs, and credible bounds
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were formed for each set of inputs based on the fitted emulator model. If these credible
bounds are a good model for error in the estimation from emulation, it is expected
that 495 of the simulated values (99%) will lie between the credible bounds at the 99%
credibility level, 475 of the simulated values (95%) will lie between the credible bounds
at the 95% credibility level and 450 of the simulated values (90%) of the simulated

values will lie between the credible bounds and the 90% credibility level.

Credible Level | Expected Simulations | Observed Simulations
Falling Into  Credible | Falling Into  Credible
Intervals Intervals

99% 495 491

95% 475 470

90% 450 438

Table 5.5: Table detailing how many of the simulated values lie in the credibility
intervals of the estimate.

Table details how many evaluations of the simulator lie in the credibility intervals
for the estimates from the emulator in comparison to how many would be expected
if the credibility bounds accurately model uncertainty in the estimated response from
the emulator. As can be seen, the credibility bounds appear to be slightly too narrow,
as fewer evaluations from simulation lie within them than would be expected. For
example, at the 99% credibility level it would be expected that all but 5 simulated
values are contained within the credible intervals, but in practice 9 of the simulated

values did not lie within the credible intervals of the emulator.

The credibility intervals at the 95% and 90% levels also contain fewer simulator evalu-
ations than would be expected, with the credibility bounds at the 95% level containing
470 in comparison to the expected 475, and the the credibility bounds at the 90% level
containing 438 in comparison to the expected 450. This would suggest being slightly
cautious when using the credibility bounds of Figure (b), and acknowledging that

the variation in the estimate is slightly under-estimated.
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5.4 Sensitivity of the Estimate of Optimal Deci-

sions From Emulation

The simple example of Section has illustrated how emulation can be used to make
decisions under uncertainty when working with expensive simulators. This simple
example could be expanded by fitting the emulator over additional variables (such
an example will be presented in Chapter @ However, even without emulating over
additional variables, there are other factors/assumptions which affect the estimates of
expected total costs and the resulting decisions made. This section will illustrate how
the estimated optimal decisions from the emulator are sensitive to three factors: the
cost to reinforce, the attitude to risk of the decision maker and the prior beliefs used

to quantify uncertainty.

5.4.1 Cost to Reinforce

As noted in Section [5.1] the initial assumption is that it costs £100,000 per MW to
increase the transfer capacity between two zones (i.e. to reinforce the B15 boundary
in the example presented), which is based on the assumption that it costs £1000 per
MW per km to reinforce each boundary and assuming that each boundary between
zones is 100 km thick. Based on our interpretation of discussions with Paul Plumptre
(formerly of National Grid) [78|, this was an appropriate cost of reinforcement to
assume which is consistent with [5]. However, estimates of this cost vary, even within
the same organisation, with [70] stating an appropriate value to be £750 per MW
per km, whilst [95] state an appropriate value to be £1500 per MW per km. Such
differences can have an obvious effect on cost estimates, which may in turn have an

effect on the decision made.

Figure displays how estimated expected total costs vary with B15 reinforcement
magnitude for a variety of assumed costs to reinforce. As to be expected, the curves
are very similar for low reinforcement magnitudes (where there are less reinforcement
costs) but estimates vary greatly at higher levels of reinforcement. The reinforcement

magnitude which gives the lowest estimate of expected total costs also appears to
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Figure 5.9: Plot to show how estimated expected total costs vary with B15 reinforce-
ment magnitude and the assumed cost to reinforce.

Cost to Reinforce | Estimated Optimal B15 Reinforcement Magnitude
£500/MW /km 800 MW
£750/MW /km 490 MW
£1000/ MW /km | 350 MW
£1250/ MW /km | 270 MW
£1500/ MW /km | 220 MW

Table 5.6: Table detailing how the estimated optimal reinforcement magnitude of the
B15 boundary varies with the assumed cost to reinforce.

change with cost to reinforce assumed, indicating the decision made is sensitive to the

cost to reinforce assumed.

Table details how the estimated optimal reinforcement magnitude (i.e. the rein-
forcement magnitude which minimises estimated expected total costs under uncertainty
via Equation varies with the assumed cost to reinforce. As can be seen, the
estimated optimal decision is very sensitive to the assumed cost to reinforce, with a
decrease of 130 MW (over 37.1%) when assuming a cost of £1500 per MW per km
to reinforce (in comparison to when assuming a cost of £1000 per MW per km to
reinforce), and more than doubling to 800 MW when assuming a cost of £500 per MW

per km to reinforce.

Although it is reasonable to think that the cost of reinforcement can be known quite

accurately at the time a decision is made, if poor information is available this could have
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quite substantial consequences. For example, if the cost of reinforcement is assumed to
be £500/MW /km then the expected total costs of the optimal reinforcement decision
of 800 MW are estimated to be £108,000,000. However, if a reinforcement of 220 MW
was built (from assuming the cost of reinforcement to be £1500/MW /km) when the
actual cost of reinforcement is £500/MW /km, then the expected total costs of the
decision are estimated to be £126,000,000, a 17% increase.

Conversely, if the cost of reinforcement is assumed to be £1500/MW /km then the
expected total costs of the optimal reinforcement decision of 220 MW are estimated to
be £148,000,000. However, if an 800 MW reinforcement was built due to the cost of
reinforcement incorrectly being assumed to be £500/MW /km when the actual cost of
reinforcement is £1500/MW /km, then the expected total costs of the decision would
increase by an estimated 27% to £188,000,000.

5.4.2 Prior Beliefs

Initially, a uniform distribution between 0.95 and 1.05 was used to represent prior
beliefs about the value of peak demand magnification. Figure [3.6] of Section [3.7.2]
and Figure [5.4] of Section illustrate how high levels of peak demand can greatly

increase the costs estimated by the simulator.

The prior beliefs describe how plausible particular values of input variables (in this case
peak demand magnification) are. If these prior beliefs were changed to give more or
less weight to extreme values of these variables, this in turn could have a large impact

on the decision made.

This section will consider how estimated expected total costs and the resulting esti-
mates of optimal decision to be made would be affected if a uniform distribution to
represent beliefs about the values peak demand magnification was fitted over a smaller
or larger range. Two alternative sets of prior beliefs are considered: a narrow prior
which fits a uniform distribution over the range 0.975 to 1.025 and a wide prior which

fits a uniform distribution over the range 0.925 to 1.075 for peak demand magnification.

Figure displays how estimated expected total costs vary with reinforcement mag-

nitude and prior beliefs when assuming a cost of £1000 per MW per km to reinforce,
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Figure 5.10: Plot to show how estimated expected total costs vary with B15 reinforce-
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ment magnitude and prior beliefs.

Prior Beliefs £500/MW /km | £1000/MW /km | £1500/MW /km
Narrow Prior | 510 MW 270 MW 170 MW
Original Prior | 800 MW 350 MW 220 MW
Wide Prior 1130 MW 640 MW 330 MW

Table 5.7: Table detailing how the estimated optimal reinforcement magnitude of the
B15 boundary varies with prior beliefs and the assumed cost of reinforcement.

and Table shows how the estimated optimal decision varies with both prior beliefs
and the assumed cost to reinforce. From Figure it can be seen that the prior
beliefs about the uncertain variable do have a noticeable effect on the costs estimated.
Further, Table shows how the prior beliefs assumed also have a quite large effect on
the resulting estimates of optimal reinforcement decision, with an increase of 290 MW
(82.9%) when assuming a wider set of prior beliefs (in comparison to when assuming
the original prior) and a decrease of 80 MW (22.9%) when assuming a narrow set of

prior beliefs and a cost of £1000 per MW per km to reinforce.

If the cost to reinforce was assumed to be the larger £1500 per MW per km, the
decision made is less sensitive to the prior beliefs, with an increase of 110 MW (50%)
when assuming the wide set of prior beliefs and a decrease of 50 MW (22.7%) when
assuming the narrow set of prior beliefs. When a smaller cost to reinforce is assumed,
reinforcement decreases by 290 MW (36.3%) if the narrow prior is assumed over the

original and increases by 330 MW (41.3%) if the wide prior is assumed over the original.
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Figure 5.11: Plot to show how estimated expected total costs vary with B15 reinforce-
ment magnitude and prior beliefs.

However, the prior beliefs of both of these alternatives have the same distribution
centre (at 100% of the projected peak demand level). An alternative would be to use
a set of prior beliefs which are not centred around the projected peak demand level.
Therefore, two further alternative sets of prior beliefs are considered: a low prior which
fits a uniform distribution over the range 0.95 to 1 and a high prior which fits a uniform

distribution over the range 1 to 1.05 for peak demand magnification.

Prior Beliefs | £500/MW /km | £1000/MW /km | £1500/MW /km
Low Prior 300 MW 180 MW 110 MW
Original Prior | 800 MW 350 MW 220 MW
High Prior 1130 MW 690 MW 390 MW

Table 5.8: Table detailing how the estimated optimal reinforcement magnitude of the
B15 boundary varies with prior beliefs and the assumed cost of reinforcement.

Figure displays how estimated expected total costs vary with reinforcement mag-
nitude and prior beliefs when assuming a cost of £1000 per MW per km to reinforce,
and Table [5.8shows how the estimated optimal B15 reinforcement decision varies with
both prior beliefs and assumed cost to reinforce. From Figure it can be seen that
these two alternative prior beliefs about the uncertain variable also have a noticeable
effect on the costs estimated. Further, Table indicates that these prior beliefs have

a greater effect on decision made in comparison to those considered in Table [5.7]

The largest increase in reinforcement (in comparison to when assuming the original
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prior) comes from assuming the high prior and a cost of £1000 per MW per km to
reinforce, which increases B15 reinforcement by 340 MW (97.1%). The largest decrease
in reinforcement (again, in comparison to when assuming the original prior) is 500 MW
(62.5%) which is observed when assuming the low prior and a cost of £500 per MW

per km to reinforce.

5.4.3 Attitude to Risk
Attitude to Risk: Methodology

So far, the methodology of Section has been used to estimate optimal reinforce-
ment decisions to be made by minimising Equation [5.2.16| (the estimate of expected
total costs under uncertainty) for a given emulator model, fT(V, d), and given prior

beliefs about uncertainties, p(vy, ..., vy, ).

However, it is often desirable to take an attitude to risk into account when making
planning decisions, as investors commonly place more weight on avoiding extreme neg-
ative outcomes (e.g. very large total costs) than positive benefits (e.g. lower expected
total costs). An attitude to risk can be taken into account by applying a loss function,
[, which represents the decision maker’s attitude to risk to the total cost estimates from

fT(vl, sy UN,, d1, ..., dn,) to give an estimate of the expected loss under uncertainty as

FTJ(dl,...,de) :/ l(fT(’Ul,...,UNv,dl,...,de))Xp(Ul,...,UNv)d?Jl...dUNU (541)

V1o UN,,

Optimal decisions under an attitude to risk can then be identified as those which
minimise the resulting estimate of expected loss (i.e. the values of decision variables

dy, ..., dy

_, which minimise the value of FTﬁl(dl, ey dny)).

The examples presented in this section will consider the loss function, [, to apply a

power to the total costs such that

l(fT(Ul, ...,’UNU,dl, ...,de),p) = (f~T<'l}1, ...,UNv,dl, ...,de))p (542)

where fr(vi,...,vn,,dy, ..., dy,) is the total cost estimate from the emulator and p is
the power of the loss function. p=1 represents a risk neutral attitude, 0 < p < 1

represents a risk prone attitude and 1 < p represents a risk averse attitude. In reality,
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Figure 5.12: Plot to illustrate how the loss function varies with power, p, and the value
it is applied to.

transmission expansion planners should never be risk prone due to the importance of
maintaining a reliable electricity supply in society, though this section will provide an

illustration of how a risk prone attitude affects decisions made.

The purpose of a loss function is to represent the decision maker’s preference for poten-
tial outcomes. In the example presented, this means representing the decision maker’s

preference for different values of total costs.

For example, if p is set to 2 in Equation [5.4.2] (i.e. using a square loss function) this
would penalise larger costs more than smaller ones (when the costs are greater than 1,
which all costs considered are). This is illustrated in Figure 5.12] where the value of the
loss function applied to costs increases much faster than the costs (costs are equivalent
to the loss function of Equation with p = 1) when using a square loss function.
This would encourage the decision maker to make a decision which avoids large costs

to minimise the expected square loss (even if this means increasing the expected costs).

Referring back to Figure [5.4] it can be seen that large total costs occur when peak
demand magnification is high and B15 reinforcement magnification is low. This would
mean that these large costs are penalised more severely than the low costs which arise
when peak demand magnification is low. This would encourage the decision maker to
make a larger B15 reinforcement under this attitude to risk as this avoids the large total

costs which occur when peak demand magnification is high, even though this slightly
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increases the total costs that occur when peak demand magnification is low (and in

turn increases the resulting estimate of expected total costs under uncertainty).

Alternatively, if p = 0.5, larger costs would not be punished as severely in comparison
to working directly with costs, which is again illustrated in Figure where costs
rise much more quickly than the loss function applied to the costs. As the large costs
which occur when peak demand magnification is high are less severely penalised, this

encourages the decision maker to make a smaller B15 reinforcement.

Attitude to Risk: Decisions

It would be interesting to provide a graphical comparison of how loss varies with
reinforcement decision for different attitudes to risk. However, the losses which arise
from applying a power to total costs, as is the case in Equation [5.4.2] would mean
that these attitudes operate on very different scales (for example, under a risk neutral
attitude, i.e. p = 1, costs operate on the order of 10® whilst a squared loss function, i.e.
p = 2, results in losses which operate on the magnitude of 10'). In order to provide
a graphical comparison we could apply the inverse of the loss function to the resulting

estimate of expected losses as:

N (Fra(d;, ... dy,)) =

- (/ T TR ;*Vd»Xpm,...,vmdvl...dvm) (5.4.3)
V1,--,UN,,

As the inverse of the loss function is applied after the integration, the shape (and re-

sulting minimum) of how expected losses vary with reinforcement decision is preserved.

Figure [5.13] shows how the inverted expected loss varies with reinforcement magnitude
for a variety of attitudes to risk. It is seen that the more risk averse the attitude, the
higher the curve lies and the greater the magnitude of reinforcement of the minimum
point. This indicates the more risk averse the position, the greater the estimated

optimal magnitude of reinforcement.

Table [5.9] also compares how the estimated optimal decision to be made varies with
both attitude to risk and the assumed cost to reinforce. As one would expect, the more

risk averse the decision maker becomes the greater the reinforcement magnitude of the
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Figure 5.13: Plot to show how inverted expected losses vary with B15 reinforcement
magnitude and attitude to risk.

Loss Function Power | £500/MW /km | £1000/MW /km | £1500/MW /km
% 590 MW 270 MW 170 MW
% 660 MW 290 MW 180 MW
% 710 MW 300 MW 190 MW
1 800 MW 350 MW 220 MW
2 920 MW 490 MW 300 MW
3 1000 MW 620 MW 390 MW
8 1240 MW 910 MW 690 MW

Table 5.9: Table detailing how the estimated optimal reinforcement magnitude of the
B15 boundary varies with attitude to risk and assumed cost of reinforcement.

estimated optimal decision. For example, when assuming a cost of £1000 per MW per
km to reinforce and taking the most risk averse attitude increases B15 reinforcement
magnitude by 560 MW (over 160%) whereas the most risk prone position resulted in
an 80 MW decrease in B15 reinforcement magnitude (over 22.8%) in comparison to

the estimated risk neutral optimal.

Attitude to risk is observed to be a relevant factor to decision made as the assumed cost
to reinforce is varied, with estimated optimal B15 reinforcement ranging from 170 MW
when assuming the most risk prone position to 690 MW when assuming the most risk
averse position when assuming a greater cost of £1500 per MW per km to reinforce,
whereas estimated optimal B15 reinforcement ranges from 590 MW with the most risk

prone position to 1240 MW with the most risk averse position when assuming the lower
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cost of £500 per MW per km to reinforce.

Note, in the real life applications under-reinforcing the transmission system could have
serious consequences, as this could lead to a significant chance of blackouts across the
system (or very high constraint costs, which are the more direct concern in this thesis).
As such, risk prone attitudes are extremely unrealistic for system planners. Therefore,
for all risk prone attitudes give interesting results, they will not be considered in the

further examples presented in this thesis.



Chapter 6

Emulating Over Multiple Waves as
a Method to Solve a Typical Real
World Transmission Expansion

Planning Problem

Chapter [5| gave details on statistical emulation, the method in which an expensive
function such as a simulator can be accurately approximated by a function which is
computationally much less expensive to evaluate. A simple example was then presented
in Section to illustrate an application of this methodology. In this simple example,
it was assumed that there was uncertainty in only a single variable and only a single

decision was to be made.

Section illustrated how the constructed emulator model was a very good approxi-
mation to the simulator with Sections and then showing how decisions can be

made under uncertainty using the fitted emulator as an approximation to the simulator.

However, the problem considered was very simple, considering uncertainty in only a
single variable whilst making only a single decision. This chapter will consider a more
complicated transmission expansion planning problem, where multiple simultaneous
reinforcement decisions are to be made whilst considering uncertainty in multiple sim-

ulator input variables. Further, an expert was consulted when formulating the problem

150
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in an attempt to make the problem considered be somewhat representative of a typical

problem a transmission expansion planner would consider.

For the example presented in Chapter [5] the full simulator could be approximated very
accurately by an emulator over the variations considered in the variables of interest.
However, as the problem that will be presented in this chapter fits an emulator to
approximate the simulator over a larger number of variables, the approximation is less
accurate. Therefore, additional methodology is required where the decision space can
be reduced and a second emulator fitted over this reduced decision space. As the second
emulator is fitted over a smaller range of values of the decision variables, this allows
for the emulator to more accurately approximate the simulator over that range, which
in turn allows for a better decision to be made. Sensitivities of the estimated optimal

decision to various assumptions will also be presented.

6.1 Second Emulation Example: An Application to
a Typical Real World Transmission Expansion

Planning Problem

6.1.1 Details of the Transmission Expansion Planning Prob-

lem Considered

The example of decision making under uncertainty in this chapter will consider making
two simultaneous decisions, i.e. d = (d, dy), whilst considering uncertainty in three of
the input variables of the simulator, i.e. v = (v1,vg,v3). Data for all other input to
the power system, a, will be taken from year 6 of [69] (recall, this is National Grid’s
freely available online reference), which will initially be treated as fixed, as if known
precisely. However, Chapter [7] will give consideration to how variations in a affect costs

estimated and the resulting decisions made.

The two decisions to be made are the reinforcement magnitudes (increase in trans-
mission capacity) of the B6 and B7a boundaries. Further, Figure of Section

showed that the two boundaries considered are adjacent boundaries, and Figure (3.4
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of Section showed that there is an interaction between the two when simulating
mean constraint costs. As in Chapter [}, it will initially be assumed that it costs £1000
per MW per km to reinforce each boundary [5] [78]. However, the sensitivity of costs
estimated (and the resulting decisions made) to this assumed cost of reinforcement
will be considered in Section [6.4] Initially, it will be assumed that the magnitude of
reinforcement of both boundaries (i.e. values of d; and ds) can be between 0 MW (do

nothing) and 4000 MW.

The three variables which are modelled as containing uncertainty of interest are nu-
clear availability probability, CCGT availability probability and peak demand level,
which can be considered as vy, v, and v3 respectively. Section showed that the
values assumed for these three variables can have a large impact on the resulting mean

constraint costs simulated.

When developing this example, Paul Plumptre, formerly of National Grid, was con-
sulted to help inform the prior beliefs about uncertainty and other assumptions that
will be applied to this example. The prior beliefs and assumptions used for this exam-
ple are our interpretation of what was discussed in these meetings and are not intended

in any way to directly reflect the views of Paul Plumptre or National Grid.

Our interpretation of the information discussed is that a suitable range to consider
for Nuclear availability probability is 0.55 to 0.85 and a suitable range to consider
for CCGT availability probability is 0.8 to 0.95. Further, our interpretation is that
an appropriate level of uncertainty in peak demand level is 1% for each future year
used. Therefore, we interpret this by modelling the peak demand level to be between
95% and 105% of the peak demand level given by [69] for year 6 (which is five years
ahead of year 1). Further, our interpretation of the information discussed suggests
that an appropriate set of prior beliefs about uncertainties would be to use a uniform

distribution across each range.

One further model assumption made is that boundaries which are not of interest (i.e.
B4, B8, B9 and B15) are treated as if they have infinite transmission capacity (i.e.
they will be treated as if as much generating capacity as desired can be traded across
them). This assumption is consistent with National Grid and transmission expansion

planners elsewhere.
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(a) 0.95 peak demand magnification assumed.  (b) 1.05 peak demand magnification assumed.

Figure 6.1: Plots to show how calculations of mean constraint costs from the simulator
vary with nuclear and CCGT availability probabilities.

A further note with respect to the boundaries is that the initial transmission capacity
for the B6 and B7a boundaries will be treated as if it is the transmission capacity
given by for year 1, not year 6. This assumption, in combination with the prior
beliefs outlined above, means that the problem being considered represents making a
reinforcement decision for a year 6 transmission system based on the best information

that is available in year 1.

6.1.2 Variations of Cost Estimates from Simulation

This subsection will consider how calculations of total costs from the simulator vary
with assumed values for the variables of interest (variables containing uncertainty and

decision variables).

Figure [6.1] illustrates how calculations of mean constraint costs from the simulator
vary with nuclear availability probability and CCGT availability probability. Plots are
shown for two peak demand levels and assume no B6 or B7a reinforcement was made.
Both plots appear quite linear in shape, with constraint costs being greater for the

lower peak demand level.

Figure illustrates how calculations of total costs (mean constraint costs plus re-

inforcement costs) from the simulator vary with the reinforcement magnitude of the
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(a) Nuclear availability probability of 0.55 as-  (b) Nuclear availability probability of 0.85 as-
sumed. sumed.

Figure 6.2: Plots to show how calculations of total costs from the simulator vary with
reinforcement magnitude of the B6 and B7a boundaries. These plots assume a CCGT
availability probability of 0.875 and the year 6 peak demand level projected by .

B6 and B7a boundaries. It can be seen that estimates of total costs are very high
when both reinforcement magnitudes are low, with total costs sharply declining as
reinforcement magnitude increases. Further, costs appear to be greater when nuclear
availability probability is greater, indicating that there may exist an interaction be-

tween the decision variables and the nuclear availability probability.

Figure considers how calculations of mean constraint costs (not total costs) vary
with reinforcement magnitude of the B6 and B7a boundaries. In this plot it is clear
that expanding only the B7a boundary has very little impact on reducing the constraint
costs, whereas reinforcing only the B6 boundary does result in a large reduction in
constraint costs. However, when both boundaries are reinforced, the reduction in mean
constraint costs is greater in comparison to when only the B6 boundary is reinforced,
illustrating the interaction between the B6 and B7a transfer capacities that was first

noted in Section B.7]
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Figure 6.3: Plot to show how calculations of mean constraint costs from the simulator
vary with reinforcement magnitude of the B6 and B7a boundaries. Nuclear and CCGT
availability probabilities were assumed to be 0.7 and 0.875 respectively, whilst peak
demand level was fixed at the year 6 projection from [69].

6.1.3 Constructing an Emulator Model for This Example
Fitting the Emulator Model

An emulator model must be fitted to accurately approximate how input affects output
of the simulator of total costs. Just as in Section [5.3.3] this requires an appropriate
number of training runs and an appropriate model to be fitted to these training runs
to be identified. Recall from Section [5.2.1] this thesis considers fitting emulator models
which consist of a polynomial regression model with a Gaussian process model applied

to smooth the resulting residuals from this polynomial regression model.

The form of the polynomial regression portion of the emulator model in this chapter is

Bo + v + Bave + B3vs + Bady + Bsdas + Pevs + Brvs + Bsvi + Bodi + Brods + Srividy +
Bravidy + Pradidy + Bravidi + 5150%0@ + BIGd%d% + Birvididy + ﬂlgU%d%dg

Details about the selection of an appropriate polynomial regression portion of the

emulator model are given in Appendix [B.1]

This polynomial regression model is consistent with what was illustrated in
Figures [6.1] and [6.2] of Section [6.1.2] where there was a clear interaction between the

two decision variables, a possible interaction between the decision variables and nuclear
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availability probability and no interaction between the three variables which contain

uncertainty.

Training Run Sample Size | Value of R? | Value of P | Value of P
20 0.9870 1.257x101° | 0.04418
100 0.9787 7.378x10% | 0.02594
200 0.9768 4.314x10% | 0.01517
300 0.9714 2.177x10% | 0.007652
400 0.9712 1.561x10% | 0.005488
500 0.9737 1.632x10% | 0.005736

Table 6.1: Table of how the model selection criteria vary with the number of training
runs used to fit the emulator.

Table considers how the value of R? varies with the number of training runs used
to fit the polynomial regression portion of the emulator model. Values of P and P

(defined in Equations [5.3.1] and [5.3.2] of Section respectively) are also given for

when the fitted emulator model (polynomial model plus Gaussian process applied to
its residuals) is used to estimate a response for a second set of 50 training runs which

were not used to fit the model.

For all sample sizes, the value of R? is greater than 0.97, which indicates that an
excellent fit is given, even without the inclusion of a Gaussian process model. The value
of P gradually decreases as sample size increases, though there is little improvement
in predictive power when using more than 300 training runs to construct the emulator
model, implying it would be sufficient to use 300 training runs. Further details on the

selection of the emulator model are given in Appendix and [B.2]

Comparison to the Simulator

Figure [6.4] compares how calculations of total costs from simulation (in Figure (a))
and estimates from the fitted emulator model using 300 training runs (in Figure|6.4| (b))
vary as B6 and B7a reinforcement magnitudes are varied. As can be seen, the emulator

model is quite a good approximation to the simulator, though far from perfect.

The differences between the calculations from the simulator and the estimates from

the emulator (i.e. the difference between Figure [6.4] (a) and Figure [6.4] (b)) are shown
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(a) Calculations from the simulator.

(b) Estimates from the emulator.
Figure 6.4: Plots to show how total costs vary with B6 and B7a reinforcement magni-
tude. Nuclear and CCGT availability probabilities were assumed to be 0.7 and 0.875
respectively, whilst peak demand level was fixed at the year 6 projection from (i.e.
the central values for the variables containing uncertainty).
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(a) Difference.

(b) Relative difference.
Figure 6.5: Plots to show how the difference between total cost calculations from

the simulator and estimates from the emulator vary with B6 and B7a reinforcement
magnitude. Nuclear and CCGT availability probabilities were assumed to be 0.7 and

0.875 respectively, whilst peak demand level was fixed at the year 6 projection from .
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(a) Lower bound. (b) Upper bound.

Figure 6.6: Plots to show how credible bounds of the estimates of total costs from
the emulator vary with B6 and B7a reinforcement magnitude, when assuming central
values for the variables containing uncertainty:.

in Figure [6.5] As can be seen, the difference between the two is generally relatively
small (with the vast majority of differences being less than 7% of total costs), though
a particularly large over-estimation of total costs from the emulator is noted when the
reinforcement magnitude of both the B6 and B7a boundaries is assumed to be 4000

MW (the largest reinforcement considered).

Figure displays 95% credible intervals for the estimates of total costs from the
emulator (i.e. 95% credible intervals for Figure (b)). There is a notable spike in
the upper bound and dip in the lower bound when both the B6 and B7a reinforcement
magnitudes are close to 4000 MW, with the calculations from the simulator lying some-
where in between. This shows that although the emulator considerably over-estimates
total costs in this range, when accounting for uncertainty due to the emulation approx-

imation, the credible bounds of the estimate contain the value acquired via simulation.

Of the simulated values used to construct construct Figure (a), all but 0.3% lay
within the credible bounds of Figure [6.6f This means that fewer evaluations from
simulation than the 5% that would be expected for a 95% credible interval lie outside
the credible intervals, which suggests that the credible intervals considered may over-

estimate error in the emulation approximation and be too wide.

Further thought is given to the credible intervals in Appendix B.2] and [B.3] An
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(a) Calculations from the simulator. (b) Estimates from the emulator.

Figure 6.7: Plots to show how total costs vary with B6 and B7a reinforcement magni-
tude, for reinforcement magnitudes greater than 2000 MW on both boundaries. Nuclear
and CCGT availability probabilities were assumed to be 0.7 and 0.875 respectively,
whilst peak demand level was fixed at the year 6 projection from .

overview is that in general the credible intervals over-estimate uncertainty in the em-
ulator, though too a much lesser extent than for the values used to construct Fig-
ure (a). This is partly due to the central values of nuclear availability probability,
CCGT availability probability and peak demand magnification being used to construct
Figure (a), where the emulation approximation is most accurate. When extreme
values for multiple variables are taken simultaneously the credible intervals contain a

value closer to the 95% of the simulated values that would be expected.

Figure compares calculations of total costs from simulation to estimates from the
fitted emulator model when only reinforcement magnitudes greater than 2000 MW
were considered, with Figure [6.§] illustrating the differences between the two. These
plots allow for a closer comparison of the emulator to the simulator where total costs

are lowest (i.e. close to where the optimal reinforcement decision lies).

Over this range the emulator is still a good approximation to the simulator, though
with noticeable differences between the emulator and simulator, in particular the over-
estimation of costs from the emulator when both boundaries are reinforced by 4000

MW (which is also present in Figure |6.4]).

Figure displays how estimates of mean constraint costs from the emulator vary
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(a) Difference

(b) Relative difference
Figure 6.8: Plots to show how the difference between total cost calculations from

the simulator and estimates from the emulator vary with B6 and B7a reinforcement

magnitude, for reinforcement magnitudes greater than 2000 MW on both boundaries
Nuclear and CCGT availability probabilities were assumed to be 0.7 and 0.875 respec-

tively, whilst peak demand level was fixed at the year 6 projection from

(a) 0.95 peak demand magnification assumed

(b) 1.05 peak demand magnification assumed
Figure 6.9: Plots to show how estimates of mean constraint costs from the emula-
reinforcement has been made

tor vary with nuclear and CCGT availability probabilities, assuming no B6 or B7a
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with nuclear availability probability and CCGT availability probability. These are the

emulation approximations to the graphs of Figure [6.1]

By comparing the two sets of plots it can be seen that the effect of varying nuclear avail-
ability probability and CCGT availability probability is modelled quite well. However,
costs do tend to be underestimated by the emulator, especially when peak demand

level is low and nuclear availability probability is high.

This limitation arises due to the fact that the emulator approximates the simulator
over a large range of reinforcement magnitudes, and not just when no reinforcement
was made (as was assumed for both sets of graphs). However, Figure shows how
costs everywhere are much lower when there has been even a small amount of B6
reinforcement made. Further, the approximation is weakest where 4 of the 5 variables
considered take extreme values. Therefore, even though the Gaussian process model is
used to improve the local fit of the data, most training runs will consider less extreme
values of at least one of the input variables (which will give a lower corresponding
calculation of total costs), causing costs to be under-estimated by the emulator when
all variables simultaneously take extreme values. This could be partially overcome by
extending the ranges of the variables used for training runs beyond the ranges required
for estimation (for example, the range for nuclear availability probability could be
extended from 0.55 to 0.85, to 0.5 to 0.9). However, this would result in the emulator
giving a less good approximation to the simulator in general in order to improve the

fit at the extremes.

Further thought is given to this in Appendix [B.3] where credible bounds for the esti-
mates illustrated in Figure are considered, with Appendix [B.3|going on to illustrate
how the emulation approximation to the simulator as nuclear and CCGT availability
probabilities are varied is greatly improved when even a small amount of B6 and B7a

reinforcement is considered.

Figure illustrates how estimates of total costs from the emulator vary with B6
and BT7a reinforcement magnitude. It is the emulation approximation to Figure [6.2
and further illustrates that the emulator is actually quite a good approximation to the
simulator, though far from perfect. Figures and give a further comparison

when only considering reinforcement magnitudes greater than 2000 MW. Over this
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(a) Nuclear availability probability of 0.55 as-
sumed.

(b) Nuclear availability probability of 0.85 as-
sumed.

Figure 6.10: Plots to show how estimates of total costs from the emulator vary with
the reinforcement magnitudes of the B6 and B7a boundaries. These plots assume a
by .

CCGT availability probability of 0.875 and the year 6 peak demand level projected
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(a) Nuclear availability probability of 0.55 as-
sumed.

(b) Nuclear availability probability of 0.85 as-
sumed.

Figure 6.11: Plots to show how calculations of total costs from the simulator vary
with the reinforcement magnitudes of the B6 and B7a boundaries, for reinforcement
magnitudes greater than 2000 MW on both boundaries. These plots assume a CCGT

availability probability of 0.875 and the year 6 peak demand level projected by .
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(a) Nuclear availability probability of 0.55 as-  (b) Nuclear availability probability of 0.85 as-
sumed. sumed.

Figure 6.12: Plots to show how estimated total costs from the emulator vary with the
reinforcement magnitudes of the B6 and B7a boundaries, for reinforcement magnitudes
greater than 2000 MW on both boundaries. These plots assume a CCGT availability
probability of 0.875 and the year 6 peak demand level projected by .

range the emulator is still quite a good approximation to the simulator. However,
there are some noticeable differences between the calculations from simulation and the
estimates from emulation, such as total costs being considerably over-estimated when

both B6 and B7a reinforcement magnitude are very large (close to 4000 MW).

Further, the ranges of the reinforcement considered in Figures and are where
the lowest values of total costs occur (i.e. where the optimal reinforcement decision
would lie). This means that it would be desirable for the emulator to be as accurate
as possible over this range, in order to make the best decision possible. Therefore,
an improvement in this current emulator model would be required before a reliable

decision can be made, and this will be considered further in Section [6.2]

A further comparison of Figure [6.2] to Figure [6.10]is given in Appendix [B.3.2} In par-
ticular, it is noted that when the reinforcement magnitude of both boundaries exceeds
2000 MW all calculations of total costs from the simulator are contained within the
credible bounds of the estimates from the emulator. This indicates that although the
emulator model is not give a perfect approximation to the simulator over this range,

the error in the estimate is adequately accounted for.
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(a) Plot of how estimated expected total costs

(b) Plot of how estimated expected total costs
from the emulator vary with reinforcement of
the B6 and B7a boundaries, considering rein-
forcement decisions between 0 MW and 4000
MW on each boundary.

from the emulator vary with reinforcement of
the B6 and B7a boundaries, considering re-

inforcement decisions between 2000 MW and
4000 MW on each boundary.

Figure 6.13: Plots to show how estimated expected total costs from the emulator vary
with reinforcement magnitudes of the B6 and B7a boundaries.

Estimating Expected Total Costs Under Uncertainty Using the Fitted Em-
ulator Model

Figure (a) displays how estimates of expected total costs under uncertainty (cal-
culated via Equation [5.2.16| from Section using the PDF of beliefs about the 3

uncertainties detailed in Section|6.1.1]) vary with B6 and B7a reinforcement magnitude.

The shape of the plot (i.e. very high costs when little reinforcement is made with an

interaction between the two decisions) is what would be expected based on the results
of this section (such as from Figures [6.4{ and [6.10)).

In particular, it can be seen that all decisions of 2000 MW reinforcement or more of both
boundaries result in similar, relatively low estimates of expected total costs, indicating

that the optimal decision lies somewhere in this range. Figure (b) displays the
estimates of expected total costs under uncertainty when only considering decisions of

at least 2000 MW reinforcement for both boundaries, with Figure [6.14] illustrating the
95% credible bounds for the estimate of expected total costs in that region.

Over this range it can be seen that the variation in the estimate of expected total costs

as the reinforcement magnitudes are varied is not particularly smooth. Further, over
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Figure 6.14: Plots to illustrate how credible bounds for the estimated expected total
costs vary with reinforcement magnitudes of the B6 and B7a boundaries.

this range it can be seen that the variation in the estimates of expected total costs as
the reinforcement magnitudes are varied is relatively small in comparison to the width
of the credible intervals (as will be demonstrated further in Figure of Section [6.3)).

This means it would be unwise to identify any one decision as optimal.

The quality of the emulator could be improved if the emulator was fitted to model
simulator behaviour over a smaller range of values of the input variables, which in turn

would result in narrower credible intervals for the estimated response.

6.2 Improving the Emulator Model

6.2.1 Wave Process for Decision Making

The objective is to make a reinforcement decision which minimises the expected total
costs in the system (the sum of expected mean constraint costs plus the expected costs
of reinforcement) under uncertainty. So far, this thesis has demonstrated how emulators
can be used to approximate simulators. Estimates can then be acquired for expected
total costs under uncertainty by integrating the product of the fitted emulator model

and prior beliefs about uncertainties using Equation [5.2.16] Decisions could then be
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identified to minimise Equation [5.2.16| (i.e. to minimise the estimate of expected total

costs under uncertainty).

However, Section [6.1.3|showed that whilst the emulator fitted in this chapter is a decent
approximation to the simulator it is far from perfect. Therefore, there will be error in
the estimates that arise from evaluating Equation [5.2.16] If the emulator model was
fitted over a smaller range of values for the decision variables, it would be able to fit a

more accurate model over that range.

This motivates a wave process for making decisions, where in each wave decisions which
are unlikely to be optimal (i.e. unlikely to minimise expected total costs under uncer-
tainty) are eliminated and a new, smaller range for the decision variables is identified
where the optimal decision could potentially lie. This is summarised in the following

algorithm:

1. Set an initial range of values to be considered for the decision variables.

2. Simulate training runs based on a Latin hypercube (LHC) sample using the

current limits on the decision variables.

3. Fit an emulator model to the latest simulated sample and use it to eliminate

decisions from consideration (details below).

4. Repeat until uncertainty about the optimal decision reaches an acceptable level
(such as when the range of values considered for the decision variables can be
reduced no further or when the error in the estimate of expected total costs
reaches a given level of precision). The estimated optimal decision is the decision
which minimises Equation (i.e. minimises the estimate of expected total

costs under uncertainty).

To do this, an LHC sample will be taken over a specified initial range of reinforcements
to consider. This LHC sample gives the values of input variables to be used for the
training data. Simulations are then taken using these input values to give the training
data. Then, the emulation process of Section |5.2| uses this training data to create an

emulator model of how input affects output of the simulator.
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The methodology of Section [5.2.6 is then used to estimate expected total costs and
corresponding credible intervals as the values of the decision variables are varied, such
that if Fp(dy,...,dy,) is the value of the estimate of expected total costs when in-
tegrating over uncertainty using Equation , FT7 r(dy, ...,dn,) would represent a
lower bound of that estimate and FT,U(dl, ...,dn,) would represent an upper bound for
that estimate. The values of the decision variables which give the minimum value
of FT7U(d1, ...,dy,) are then identified as df,...,d%, , with the corresponding upper
bound for the estimate of expected total cost under uncertainty when making this
decision being Fry(df, ..., djovd). For any alternative set of decisions, df, ..., d%,, such
that Frp(df,...,d%,) > Fry(df,...,d%;,) it can be said that there is evidence against
that decision being optimal, as the lower bound of the estimate is not better than the
minimum point of the upper bounds. That decision can thus be eliminated from the

decision space.

A new set of training runs is taken where the values of the decision variables are only
those not eliminated. This space will not necessarily form a hypercube, so Section [6.2.2]
will detail a method of how to take a second sample of input values for decision variables
to be used for training runs. A new emulator model is fitted to this new set of training
runs, and credible intervals are estimated for decisions which were not previously ruled
out. This allows for further poor decisions to be identified and eliminated. The pro-
cess continues iteratively until the uncertainty about the optimal decision reaches an
acceptable level (such as when the range of values considered for the decision variables
can be reduced no further or when the error in the estimate of expected total costs

reaches a given level of precision).

The use of a wave process is usually very efficient. Initially, global behaviour is mod-
elled, so an area where the optimal decision is likely to lie can be identified. Subsequent
waves can then model local behaviour much more accurately, meaning a more accurate
decision can be made. Further, a much better model (and therefore better decision)
can be obtained from several waves of a relatively small numbers of observations than

a single wave of a relatively large number of observations.

The iterative scheme proposed in this section is used to iteratively eliminate decisions

from consideration which are unlikely to be optimal. It is noted that similar iterative
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schemes are considered elsewhere in the existing literature as part of a preliminary
or alternative to model calibration, to iteratively rule out values of uncertain input
parameters (which are said to give implausible matches to observations about a system

in reality) via a technique known as history matching |7, 21}, 22, 98].

6.2.2 Sampling Training Runs Beyond the First Wave

It is noted that when eliminating decisions from consideration as outlined in Sec-
tion the remaining decision space will not necessarily form a hypercube (as will
be illustrated in Section . A poor solution to overcome this would be to extend
the region of decisions not eliminated to a hypercube when sampling input values for
training runs in the next wave. However, this would mean that the next wave would
considers a larger range of values for the decision variables than necessary, and therefore

result in a less accurate emulator model.

A more appropriate method would be one which preserves the shape of the decision

space. To achieve this, values for di,...,dy, are sampled from a uniform distribu-

4
tion, with df, ..., dy, denoting the values randomly sampled. A lower bound for the
estimated expected total costs of decisions dj, ..., d}y, are calculated using the method-
ology of Section , and with Frp(df,...,dy,) representing this lower bound. If
Frp(di,...dy,) < Fry(df,...,d3,) then the decision set dj,...,dy, would not have
been eliminated from consideration, so dj, ..., d}, can be used as a set of values for de-
cision variables for training data. If Fr(df,...,dy,) > Fru(df,...,d%, ), then di, ..., dy,
is rejected as a set of values for training data. A new sample for the values of dy, ..., dn,

is then drawn from a uniform distribution. This is repeated iteratively until a sample

of desired size is acquired.

This method of uniformly sampling points is adequate for the examples considered in
this thesis. For the emulator model fitted in Section m, Figure m (a) illustrates
decisions which would not be eliminated from consideration in a second wave using
the method of Section [6.2.1] Decisions can then be uniformly sampled from the space
enclosing this region illustrated in Figure [6.15 (b).

Figure[6.16] (a) illustrates 200 decisions uniformly sampled from the space illustrated in
Figure (b). As described in the methodology of this subsection, for each of these
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Figure 6.15: Plots to illustrate decisions considered in the second wave, and the region
uniformly sampled when acquiring input values for the decision variables for training
runs for the second wave.
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Figure 6.16: Plots to illustrate decisions sampled as potential input decisions for the
second wave, and which decisions of the sample were not rejected.
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200 decisions a lower bound for the estimate of expected total costs under uncertainty
is calculated as Frrp(dy, ..., dYy,). If Frp(dy,...,dy,) is greater than Fry(df, ..., d3;,) the
decision is rejected for use in the second wave, otherwise the decision can be used as
input for training data in the second wave. Figure m (b) illustrates which of the 200
decisions of Figure [6.16] (a) were not eliminated (i.e. suitable for use as input data in
the second wave), which shows how the shape of the region illustrated in Figure[6.15] (a)

is preserved.

However, if the shape of decisions considered in the second wave took the shape illus-
trated in Figure [6.17) (a), sampling from a uniform distribution of the space illustrated
in Figure (b) would be very inefficient, as the majority of decisions sampled would
lie away from the region of decisions which merit further consideration illustrated in
Figure W (a), and Fr(d, ...,dy,) can be quite expensive to evaluate. Therefore, it
would be more appropriate to sample from the region illustrated in Figure m (c).

Principle component analysis could be used to identify such regions.

Alternative, less accurate methods could also be considered to greatly increase the speed
at which decisions are sampled. For example, the regions illustrated in Figure[6.16] (a)
or Figure (a) could be parametrised in some way, which would make it much faster

to check if a randomly sampled set of decisions, (df, ..., dy,), lie in that region.

Note, as values of variables containing uncertainty (i.e. vy, ..., vy,) are not being elimi-
nated, values for these variables in training data can still be acquired via Latin hyper-

cube sampling.

6.3 Wave Process Application and Estimate of Op-

timal Decision for the Example Presented

6.3.1 Wave Process Applied to the Example

Figure [6.18] shows how credible bounds for the estimated expected total costs under
uncertainty vary with B6 reinforcement magnitude for the emulator model fitted in

Section [6.1.3] For this plot, B7a reinforcement was fixed at 2890 MW (which is what
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Figure 6.18: Plot of credible bounds for estimates of expected total costs from the
emulator model fitted in the first wave.

will later be identified as the estimated optimal reinforcement). It can be seen that

these estimated credible bounds capture the majority of the variation of the estimates.

Figure (a) shows which decisions seemed to merit further consideration in the
second wave (i.e. based on the methodology of Section there was no significant
evidence against them being optimal). This is still a quite large region, though it has

eliminated 82.7% of the decisions considered in the first wave.

A new emulator model is then fitted to a new set of training runs sampled from the
region illustrated in Figure [6.19] (a). This allows for further decisions to be eliminated
by considering the credible bounds of the resulting estimates of expected total costs
from this second emulator model, as outlined in Section . Figure m (b) displays
the reinforcement combinations that would merit further consideration in a third wave
of emulation. If sufficient resources are available, the wave process can be continued,

eliminating even more decisions.

Alternatively, after sufficient decisions have been eliminated a final decision could be
taken to minimise the estimate of expected total costs for the current wave. The reason
to make such a decision is the uncertainty in the estimate of expected total costs when
integrating over uncertainties, FT(d), will not always allow for all but a single decision
to be eliminated, but in practice it will often be necessary to identify a decision to

actually be implemented (e.g. for the transmission expansion problem considered it



6.3. Wave Process Application and Estimate of Optimal Decision for the
Example Presented 173

4000
1

4000
1

3000
Il

3000
Il

2000
Il

1000

B7a Reinforcement Magnitude (MW)
2000
Il
1000

B7a Reinforcement Magnitude (MW)

o o
T T T T T T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000
B6 Reinforcement Magnitude (MW) B6 Reinforcement Magnitude (MW)
(a) After wave 1. (b) After wave 2.

Figure 6.19: Plots to illustrate decisions not eliminated as the wave process progresses.

is necessary in practice to identify a reinforcement to actually be built). Note, this
would not be a definitive optimum, as uncertainty is always present in the model and

consequently any decision not eliminated in this wave could also potentially be optimal.

For this example, applying another wave of elimination did not result in any significant
reduction in the decision space, so an optimal decision was estimated after this third
wave. This is due to cost estimates being very flat over the range of decisions considered
in the third wave, in the sense that there is little variation in the estimates of expected
total costs as the reinforcement decision is varied, as will be demonstrated in the
following subsection. It could be noted that the 95% credible bounds were used when
performing the wave process, so using a lower credibility level (e.g. 90%) would result
in narrower bounds which would allow further decisions to be eliminated, though this

would come with an increased risk of incorrectly eliminating an optimal decision.

6.3.2 Graphical Comparison of Cost Estimates from Emula-
tion by Wave and Estimate of Optimal Reinforcement

Decision

Figure compares how estimates of expected total costs from the emulator model

vary with reinforcement decision when taking an expectation over the variables which
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Figure 6.20: Plots to show how estimated expected total costs vary with reinforcement
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contain uncertainty using Equation for the first and third wave models. Making
a decision to minimise the estimate of expected total costs under uncertainty from
the emulator fitted in the third wave would result in a decision of 3060 MW B6 rein-
forcement and a 2890 MW BTa reinforcement. As Figure [6.20] (b) and (c) show that
all decisions considered in the third wave result in similar, relatively low estimates
of expected total costs, there is little risk of making a poor decision by making such
a decision. If the decision was made based on the emulator from the first wave the
resulting decision would have been 3370 MW B6 reinforcement and 2830 MW B7a
reinforcement, which is somewhat different and would cost an additional 25,000,000

to build.

Figure [6.21] (a) and (b) compare estimates of expected total cost from the wave 1
and 3 emulator models over the range of decisions considered in the third wave, with
cost estimates from the third wave model varying much more smoothly. This is an
improvement due to the fact that the third wave model is fitted over a much smaller
range of decisions, allowing it to be much more accurate over that range. This is
demonstrated further in Figure[6.21] (c), which also illustrates how the credible intervals
are much narrower for the third wave model than the first. This indicates the increased
level of confidence within the estimate as a result of fitting the emulator model over
a smaller range of values of the decision variables. This increased confidence then
allows for more decisions to be eliminated, or if a decision is to be taken it allows for

a narrower range to be given that could possibly contain the optimal.

The power of the presented methodology of emulation through several waves is demon-
strated by the fact that a much better model is achieved by taking 3 separate waves of
300 observations, with the final one being over a much narrower range, than attempt-
ing to fit one model to a single set of 900 training runs. In this final wave, the fitted
emulator model is a very accurate approximation of the simulator, whilst being much

less expensive to evaluate.
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6.3.3 Offering Decision Support to Real Life Transmission Ex-

pansion Planners

It is noted that reinforcement decisions in practice are often discrete and “lumpy” [44,
67, 78], such as building a discrete number of transmission lines of a specified capac-
ity, meaning that reinforcement magnitudes could be modelled as discrete variables of
a specified precision (e.g. building a discrete number of 250 MW transmission lines)
rather than as (quasi) continuous variables. This means that in practice, such a precise
reinforcement decision of 3060 MW and 2890 MW (i.e. the estimated optimal rein-
forcement decision in the third wave as identified in the previous subsection) may not

be a decision the transmission system planner would consider making.

However, the results presented in this chapter can still be of use to offer decision sup-
port in such cases. This is because an application of the wave process detailed in
Section [6.2] to the example detailed in Section was used to identify a quite small
region of reinforcement decisions where the optimal reinforcement could potentially
lie, illustrated in Figure [6.19) (b). Further, a comparison of Figure [6.20] (b) to Fig-
ure [6.20] (a) shows how estimates of expected total costs are relatively flat over the
range of decisions considered in the final third wave, in the sense that there is little
variation in the estimate of expected total costs as the reinforcement decision is varied
over this range, especially in comparison to estimates of expected total costs over the
range of decisions initially considered in the first wave, where estimates of expected

total costs exceed £2 billion when little to no reinforcement is made.

This means that decision support can be offered by showing these results to the
transmission system planner and explaining how the small region illustrated in Fig-
ure m (b) represents a region of near-optimal decisions which all result in similar,
relatively low estimates of expected total costs under uncertainty. The transmission
system planner can then make an appropriate decision based on these results. For
example, if the transmission system planner considers making a reinforcement decision
in terms of making a number of discrete 250 MW additions to the power system, an
appropriate decision could therefore be to reinforce both the B6 and B7a boundaries
by 3000 MW (which would be 12 x 250 MW additions on both boundaries), which

was considered in third wave (i.e. was not eliminated from consideration using the
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methodology of Section .

A further consideration could be that the transmission system planner could have a
preference for reinforcing one boundary more than the other, for example, it may be
easier to reinforce the B6 boundary in comparison to the B7a boundary for various
reasons (such as tighter building regulations over the B7a boundary). In such cases de-
cision support could be offered by estimating optimal B6 reinforcement magnitudes for
a variety of B7a reinforcement magnitudes (e.g. estimating optimal B6 reinforcement
magnitudes for 250 MW increments of B7a reinforcement), as well as noting the esti-
mate of expected total costs of each decision. The transmission system planner could
then use these estimates to balance their preferences of minimising expected total costs

and making a smaller reinforcement of the B7a boundary.

6.4 Sensitivity of the Estimate of Optimal Decision

6.4.1 The Necessity for a New Wave Process for Each Sensi-
tivity Considered

When considering the sensitivity of the optimal decision to a factor such as the assumed
cost of reinforcement or the attitude to risk of the decision maker, it is necessary to
carry out a separate wave process for each assumption to avoid incorrectly eliminating
the optimal decision. This is illustrated in Figure [6.22] which shows how the decisions
considered in the third wave vary with the assumed cost to reinforce. As can be seen,
there is very little overlap between the three regions, implying the optimal decision
varies greatly with the assumed cost of reinforcement. Further, Figure displays
how the corresponding estimates of expected total costs in wave 3 vary as the assumed
cost to reinforce is varied. This gives further evidence to how the fitted model varies
greatly with the assumptions made and why it is necessary to carry out a separate

wave process for each scenario.

In all further results presented in this section, when varying particular assumptions an
optimal decision will be identified by performing 2 waves of elimination, then identifying

decisions to minimise the estimate of expected total costs in the third wave, just as
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Figure 6.22: Plots to show how decisions considered in the third wave vary with the
assumed cost to reinforce.
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in Section For all variations on assumptions, this was appropriate as the decision
space had been substantially reduced by this third wave and the reduction in the

decision space from any further waves was negligible, with all decisions considered in

the final wave resulting in similar, relatively low estimates of expected total costs.

6.4.2 Assumed Cost of Reinforcement

Assumed Cost of Reinforcement | Optimal B6 | Optimal B7a | Total = Cost
Reinforce- Reinforce- of Reinforce-
ment ment ment

£500/MW /km 3690 MW 3420 MW £355,500,000

£750/MW /km 3300 MW 3110 MW £480,750,000
£1000/MW /km 3060 MW 2890 MW 4.595,000,000

£1250/MW /km 2850 MW 2420 MW 658,750,000

£1500/MW /km 2580 MW 2240 MW 723,000,000

Table 6.2: Table of how estimated optimal reinforcement strategy varies with assumed
cost of reinforcement.

Table displays how the optimal decision estimated in wave 3 varies as the cost of
reinforcement is varied from the assumed £1000 per MW per km. There appears to
be a quite smooth general trend of around 100 MW reinforcement less being made on
each boundary for each additional £100 per MW per km it costs to reinforce, with
total reinforcement across both boundaries increasing by 1130 MW MW when the cost
to reinforcement is decreased to £500 per MW per km and decreasing by 1160 MW

when the cost to reinforcement is increased to £1500 per MW per km.

6.4.3 Prior Beliefs About Uncertainties

Results of this chapter have so far assumed the set of prior beliefs about uncertainties
detailed in Section However, Figures [6.1] and [6.2] illustrated how total costs are
dependent on the uncertain variables, which in turn means the estimate of expected
total costs under uncertainty is dependent on the assumed prior beliefs about these
variables. Therefore, four alternative sets of prior beliefs about uncertainties, detailed

in Table [6.3, will be considered in this section.
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Prior Beliefs | Range Consid- | Range Consid- | Range Con-
ered for Nuclear | ered for CCGT | sidered for
Availability Availability Peak  Demand
Probability Probability Magnification
Original Prior | 0.55 to 0.85 0.8 to 0.95 0.95 to 1.05

Narrow Prior

0.625 to 0.775

0.8375 to 0.9125

0.975 to 1.025

Wide Prior 0.475 to 0.925 0.7625 to 0.9875 | 0.925 to 1.075
Low Prior 0.55 to 0.7 0.8 to 0.875 0.95to 1
High Prior 0.7 to 0.85 0.875 to 0.95 1 to 1.05

Table 6.3: Table detailing the ranges considered for variables containing uncertainty
for five potential sets of prior beliefs about uncertainty. A uniform distribution is fitted
across each range to represent prior beliefs, p(v).

Prior Beliefs B6  Reinforce- | B7a Reinforce-
ment Magnitude | ment Magnitude

Original Prior | 3060 MW 2890 MW

Narrow Prior | 3050 MW 2700 MW

Wide Prior 3180 MW 2990 MW

Low Prior 3030 MW 2380 MW

High Prior 3130 MW 3020 MW

Table 6.4: Table of how the estimated optimal decision varies with prior beliefs about
uncertainties, assuming it costs £1000 per MW per km to reinforce.

Table[6.4] shows how the estimated optimal decision varies with the assumed set of prior
beliefs about uncertainties. Varying the width of the uncertainty window considered
appears to have a quite small effect on the estimate of optimal decision, with total
reinforcement decreasing by 200 MW for the narrow prior and increasing by 220 MW
for the wide prior. However, varying the centre of the uncertainty distribution appears
to have a greater effect, with total reinforcement decreasing by 540 MW when assuming

the low prior in comparison to when assuming the original prior.

6.5 Attitude to Risk

6.5.1 Applying a Loss Function

Results for this chapter have so far assumed a risk neutral attitude. A loss function

can be used to account for an attitude risk when making decisions. However, using
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Figure 6.24: Plots to illustrate risk profiles for various decisions.

a power loss function, as was considered in Equation of Section does not
give interesting results for the example of Section [6.1.1] even when large powers are
considered. For example, using a loss function which uses an 8th power loss would
result in a decision of 3090 MW B6 reinforcement and 2950 MW B7a reinforcement,

an increase of just 90 MW in comparison to a risk neutral attitude.

Reinforcement Decision | B6 Reinforce- | B7a Reinforce-
ment Magnitude | ment Magnitude

Decision 1 3060 MW 2890 MW
Decision 2 2860 MW 2690 MW
Decision 3 3260 MW 3090 MW

Table 6.5: Summary of decisions used in Figure m (b).

The reasons for this can be explained by considering Figure [6.24] which compares risk
profiles for three reinforcement decisions. The decisions, detailed in Table [6.5 are
the risk neutral optimal decision of 3060 MW B6 and 2890 MW B7a, as well as two
alternative decisions which consider either increasing or decreasing the reinforcement
of both boundaries by 200 MW in comparison to the risk neutral optimal. These

plots illustrate that when the risk neutral optimal decision is made, a loss of at least
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£.636,000,000 will occur no matter what values the variables containing uncertainty
take (the reinforcement costs alone, which are modelled deterministically, amount to

£595,000,000), with the largest costs that can occur being just 35% larger.

Further, when increasing the reinforcement magnitude beyond the risk neutral optimal,
the probability of the most extreme costs occurring (beyond £800,000,000) are not
greatly reduced (losses of up to £800,000,000 are in fact more common when making
the larger reinforcement). This shows how a large cost will occur no matter what,
and (within the model) the decision maker is quite indifferent to the relatively small

benefits of reinforcing beyond the risk neutral optimal decision.

In a real application this would mean that this particular example is insensitive to the
decision maker’s attitude to when working directly with total costs (unless a very large
power of the loss function is used), whereas the example of Section was sensitive
to the decision maker’s attitude to risk. The following subsection will illustrate how
an atypical loss function can be used to assess the relative losses in comparison to the
risk neutral expectation, resulting in the estimate of the optimal decision being more

sensitive to the decision maker’s attitude to risk.

6.5.2 Attitude to Risk: Methodology

For the methodology of accounting for an attitude to risk that will be used in this
section, first the optimal values of the decision variables under a risk neutral attitude,
d’ = df,...,d};,, are estimated, along with the resulting estimate of expected total

costs, Fr(d°). A model, fy, is then fitted such that:

fo(v,d) = fr(v,d) — Fr(d°) (6.5.1)
fb(v,d) is the relative loss when uncertain variables take values v = vy,...,vy, and
decision d = dj, ..., dy, is made in comparison to the estimated expected total costs of

the risk neutral estimated optimal decision.

Section noted that because extremely large costs (hundreds of millions) occur
regardless of the decision made, the use of a power loss function will not result in

a substantial change to the optimal decision unless a very large power is considered,
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despite the variations in costs as the uncertain variables are varied being quite large in
real terms. Working with f, allows for the relative losses as the uncertain variables are
varied when making a particular decision to be adequately assessed. A negative value
of f, indicates a smaller loss in comparison to the expected loss when a reinforcement

equal to the risk neutral optimal has been made.

For a loss function, [, which describes an attitude to risk, the expected loss of a decision

can then be calculated as:

Fru(d) = /vz (fi(v.d)) x p(v)dv (6.5.2)

The objective is to minimise Equation m (i.e. minimise the estimate of expected
loss). It is necessary to carry out a separate wave process for each attitude to risk. This
is because risk averse attitudes would consider decisions of larger magnitude than a
risk neutral attitude, so it is better to work with several models fitted more accurately
over a smaller range of values of decision variables than one model fitted less accurately

over a larger range.

The loss function applied in Equation is, for relative loss f,(v,d) and risk attitude

parameter p:

~|fo(v,d)|7 if fy(v,d) <0
(fv, )" if fylv,d) >0
This loss function is illustrated in Figure [6.25] p > 1 represents a risk averse attitude,

l(fb("? d),p) =

0 < p < 1 represents a risk prone attitude and p = 1 represents a risk neutral attitude.

In practice, real world decision makers are rarely risk prone.

Under risk averse conditions, this loss function will harshly penalise a scenario for doing
worse than the expectation of the risk neutral optimal, thus placing in the decision
process great emphasis on avoiding scenarios where extremely large losses occur. The
loss function also rewards improvement on the risk neutral optimal, however this reward

is relatively smaller than the penalty for doing worse than the risk-neutral optimum.

6.5.3 Decisions Under an Attitude to Risk

Tables and show how the estimated optimal decision to be made varies as

the assumed attitude to risk of the decision maker is varied, when assuming a cost
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Figure 6.25: Plot to illustrate the loss function as attitude to risk is varied.

of £1000 and £1500 per MW per km to reinforce respectively. Results are generally
much more sensitive to attitude to risk when assuming a cost of £1500 per MW per
km to reinforce, particularly when assuming a less severe risk averse position or only

considering the B6 boundary.

For example, taking the least risk averse position (p = 1.5) results in a total of 200
MW additional reinforcement (in comparison to the risk neutral optimal decisions)
when assuming a cost of £1000 per MW per km to reinforce, but a total additional
reinforcement of 410 MW when assuming a cost of £1500 per MW per km to reinforce.
Under the most severe risk averse position considered (p = 3) the increases to total
reinforcement were 630 MW and 850 MW in comparison to the estimated risk neutral
optimal decision when assuming a cost to reinforce of £1000 per MW per km or £1500

per MW per km respectively.

Loss Function Power | B6  Reinforce- | B7a Reinforce-
ment Magnitude | ment Magnitude

1 3060 MW 2890 MW

1.5 3120 MW 3030 MW

2 3140 MW 3190 MW

2.5 3220 MW 3230 MW

3 3160 MW 3420 MW

Table 6.6: Table of how the estimated optimal decision varies with the assumed attitude
to risk of the decision maker, assuming it costs £1000 per MW per km to reinforce.
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Loss Function Power | B6  Reinforce- | B7a  Reinforce-
ment Magnitude | ment Magnitude

1 2580 MW 2240 MW

1.5 2660 MW 2570 MW

2 2740 MW 2660 MW

2.5 2770 MW 2730 MW

3 2840 MW 2830 MW

Table 6.7: Table of how the estimated optimal decision varies with the assumed attitude
to risk of the decision maker, assuming it costs 41500 per MW per km to reinforce.

6.6 Using a Smaller Number of Training Runs

Based on the results of Section [6.1.3|and Appendix [B.1] this chapter has so far used 300
training runs to fit the emulation model in each wave. However, it would be possible
to use a smaller number of training runs to approximate the simulator (albeit less
accurately), which would still allow for decisions to be identified which have evidence
against them being optimal using the methodology of Section [6.2] This section will
consider whether it is plausible to reduce the number of training runs used in each
wave to 50 in order to reduce the computation requirements to identify a small region
where the optimal decision lies. It was verified that when using 50 training runs the

optimal form of the polynomial portion of the emulator model remains as

Bo + B1v1 + Pave + Bavs + Bady + Bsda + Bevi + Prvi + ﬁsvg + Bod? + Brod3 + Brividy +
Biov1ds + Pisdids + 5140%61% + 515”%6@ + 516d%d% + Birvididy + ﬁlSU%d%d%

6.6.1 The Wave Process Using 50 Training Runs Per Wave

Figure[6.20)illustrates the decisions considered in each wave when using 50 training runs
per wave to fit the emulator model. Of the decisions initially considered in each wave;
65.7%, 64.9% and 55.0% were eliminated in waves 1, 2 and 3 respectively. Reduction
in the decision space was negligible from further waves. As in Section[6.3] this is due to
the cost estimates being relatively flat in the final wave, with all decisions considered

resulting in similar, relatively low estimates of expected total costs.

Figures and illustrate how estimates of expected total costs from the emulator

model vary with reinforcement decision in the first and fourth wave, when using 50
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Figure 6.26: Plots to illustrate the ranges of decisions considered in each wave when

using 50 training runs in each wave to construct the emulator model.
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Figure 6.27: Plots to show how estimates of expected total costs vary with reinforce-
ment decisions and fitted emulator model, when using 50 training runs per wave to
construct the emulator.
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(a) Wave 1. (b) Wave 4.

Figure 6.28: Plots to show how estimates of expected total costs vary with reinforce-
ment decisions and fitted emulator model over the range of decisions considered in wave
4, when using 50 training runs per wave to construct the emulator.

training runs to construct the emulator model in each wave. Figure (b) shows how
all decisions considered in the fourth wave result in similar, relatively low estimates of
expected total costs. In Figure [6.28] it is shown how the fourth wave emulator model
varies much more smoothly in comparison to the emulator model fitted in the first
wave, indicating how eliminating decisions from consideration has allowed for a more

accurate model to be fitted over a smaller range of values of the decision variables.

In the fourth wave, the estimate of the optimal decision (i.e. the decision which min-
imises the estimate of expected total costs under uncertainty using Equation
is 3170 MW B6 and 2830 MW B7a reinforcement, which is somewhat different to the
3060 MW B6 and 2890 MW B7a which would be made when using the third wave
emulator model when using 300 training runs per wave (though only a 50 MW total

difference across both boundaries).

6.6.2 Comparison to Using 300 Training Runs Per Wave

In the previous subsection it was shown how 50 training runs per wave instead of 300
could be used in the emulation process. By comparing Figure to Figure[6.19|it can

be seen that decisions are eliminated at a faster rate when using 300 training runs per
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(a) 300 training runs, wave 3. (b) 50 training runs, wave 4.

Figure 6.29: Plots to compare the estimated expected total costs from the final wave
emulator models when using 50 or 300 training runs to fit the emulator model.

wave to fit the emulator model. This is to be expected, as a greater number of training
runs means a more accurate emulator model can be fitted in each wave with a greater
level of confidence in the estimates from the emulator. 2.75 times more decisions are
considered in the final wave when using 50 training runs per wave in comparison to
using 300 training runs per wave. However, 4 waves of 50 training runs requires 77.8%
fewer total training runs to be acquired across all waves in comparison to using 3 waves
of 300 training runs, indicating there is a trade-off between the amount of work done

and the amount of decisions eliminated.

This is considered further in Figure [6.29| compares the estimates of expected total costs
under uncertainty for the final wave models when using 50 or 300 training runs per wave
to fit the emulator models. It is shown that the models appear to be very similar over
the range of decisions considered by both models. This is clearer in Figure [6.30 which
plots the differences in the estimates of expected total costs between the two models.
These plots show how fitting an emulator model using 50 training runs generally under-
estimates total costs in comparison to the model fitted using 300 training runs, though

this difference is generally quite small (less than 1.5% of the total costs).

A further comparison between the two models and their respective credible bounds

is given in Figure It is again shown that estimates of expected total costs are
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(a) Difference between estimates from emula-  (b) Relative difference between estimates from
tor models fitted using 300 and 50 training emulator models fitted using 300 and 50 train-
runs in the final wave. ing runs in the final wave.

Figure 6.30: Plots of the differences in estimated expected total costs as decision is
varied when using 50 or 300 training runs per wave to fit the emulator model.
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Figure 6.31: Plot to compare estimates of expected total costs and corresponding
credible intervals for the final wave emulator models fitted using 50 and 300 training
runs. B7a reinforcement magnitude fixed at 2890 MW (the estimated optimal when
using 300 training runs).
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generally quite similar, though a greater difference is noted towards the higher and
lower limits of B6 reinforcement magnitude. Also, the credible intervals are much
narrower for the model fitted using 300 training runs. This is to be expected, as the
model was fitted over a smaller range of decisions when using a greater number of
training runs to fit the model. This indicates there is a greater level of confidence in
the estimates of expected total costs when using 300 training runs to fit the model in

comparison to 50.

However, the estimates of expected total costs from the model fitted using 50 training
runs do lie within the credible intervals for the model fitted using 300 training runs.
This would imply that the estimated expected total cost under uncertainty when using
the model fitted from 50 training runs are not significantly different to those from the

model fitted using 300 training runs.

By comparing these results to Figure m (c) it can be seen that the emulator model of
the fourth wave when using 50 training runs per wave gives a much better comparison
to the emulator model of the third wave when using 300 training runs per wave, than
the emulator model of the first wave when using 300 training runs per wave. This is
despite the fact that 100 fewer training runs are required in total to fit the fourth wave
model when using 50 training runs per wave in comparison to the first wave when using

300 training runs per wave.

6.6.3 Conclusions on Number of Training Runs Used to Fit
the Emulator Model

This section has demonstrated that when just 50 training runs are used to fit an em-
ulator in each wave, the decision space can still be greatly reduced over a number
of waves. However, using 300 training runs does allow for a greater reduction of the
decision space and the resulting credible bounds of the estimate are narrower in com-
parison to when using 50 training runs to fit the model. This would imply that there
are benefits to using a larger number of training runs to fit the emulator model, though
if it is not feasible to fit a model using 300 training runs, then progress can still be

made using only 50 training runs to fit the emulator model.



Chapter 7

Investigating the Effects of
Model /Data Assumptions for the

Example of Chapter 6

7.1 Model and Data Assumptions

Chapters [5] and [0] gave examples of how emulators can be used to approximate sim-
ulators to make decisions under uncertainty. The particular examples presented were
transmission expansion planning problems (building more power lines) to optimise con-
straint costs (costs which arise when there is insufficient installed transmission capacity
to utilise all the cheapest available generating technology) for given power systems.
These examples depended on the simulator defined in Chapter [3| which estimates the

mean constraint costs that arise for given input information about the power system.

Whilst the examples of Chapters[5|and [ do consider decision making whilst accounting
for uncertainty in certain aspects of the power system, there were many other assump-
tions that were made when defining the simulator in Chapter [3] These assumptions
include data assumed for many aspects of the power system (such as installed genera-
tors, bid/offer prices, generator availabilities, etc), with several modelling assumptions
also made (such as the use of estimation via half hour snapshots, the seasonal model

used to simulate available wind generating capacity, etc). These assumptions could

194
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have an effect on the costs estimated from the simulator, and the resulting decisions
made. This chapter will investigate how four assumptions (the seasonal model, the as-
sumed load duration curve, the installed wind generating capacity and yearly constraint

cost model) affect costs estimated and the resulting decisions made.

7.2 Assumption One - Seasonal Model

7.2.1 The Simulator Seasonal Model

Section |3.1|indicated that constraint costs for a year are simulated by breaking the year
down into half hour snapshots, simulating each snapshot independently and calculating
the sum of the constraint costs across all snapshots. There are two factors which vary
between snapshots: a seasonal effect and the demand level of the snapshot. The demand
level assumed for each snapshot was first considered in Section when considering
an application of importance sampling to improve the efficiency of estimating mean
annual constraint costs. Further consideration to the effects of the assumed demand of
each snapshot will be considered later in Section [7.3] where the effects of the assumed
load duration curve on mean constraint cost estimates and the resulting estimates of

optimal decisions is considered.

This section will consider the seasonal effect on estimates of mean constraint costs.
The seasonal effect was detailed in Section [3.5] where it is stated that a different
distribution is assumed for available wind generating capacity in summer and winter.
Aside from this, all other factors (other than the aforementioned snapshot demand

level) are consistent in each snapshot.

Section also noted that any snapshot in December, January or February was classi-
fied as a winter snapshot, and all other snapshots were classified as summer snapshots.
However, this is quite a rigid assumption, with the distribution of wind capacity chang-
ing very abruptly between 23:30 on the 28th of February and 00:00 on the 1st of March.
This effect was very clear in Figure (b) of Section [4.1.3]

In reality, the weather (and thus wind generation) will not change so abruptly and there

would not be such a clear divide between winter and summer. Sections[7.2.2] and [7.2.3]



7.2. Assumption One - Seasonal Model 196

How Costs Vary With Month, Year 1, Summer How Costs Vary With Month, Year 1, Winter
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Figure 7.1: Boxplots to show how simulations of constraint costs vary with month and
assumed seasonal model for a year 1 power system background.

will consider how the classification of months as summer or winter affects the estimates
of mean constraint costs. Section will then consider how the estimate of opti-
mal reinforcement decision is affected by assuming a particular seasonal model, with
Section going on to consider how mean constraint costs can be estimated when
accounting for the uncertainty which exists in the seasonal model, and how accounting

for such uncertainty affects the resulting estimates of optimal reinforcement decisions.

7.2.2 Graphical Illustration of the Effect of Assumed Seasonal
Model on Cost Estimates

To investigate how the assumed seasonal model affects estimates of mean constraint
costs, 100 full simulations of constraint costs for each combination of month and sea-
sonal model were evaluated for a year 1 and year 6 power system background (to
consider how constraint costs would vary for the examples presented in Chapters [5|and
Chapter |§] respectively). Comparisons between the mean and variation of these simu-
lations as seasonal model is varied can then be used to consider the effect of seasonal

model on constraint cost estimation.

Figure displays boxplots of how simulated constraint costs vary with month when
assuming a year 1 system background from [69], with Figure (a) showing how
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simulated constraint costs vary if each month uses the summer model for available
wind generating capacity and Figure (b) shows how simulated constraint costs vary
if each month uses the winter model for available wind generating capacity. The graphs
are numbered in order of calendar month, such that 1 refers to January, 2 refers to

February,...,12 refers to December.

The first thing to note is that the extremely large costs in January dominate this graph,
meaning it would be most important to model January as accurately as possible as it
is the most important month to the estimate of mean annual constraint costs. As
few would argue against classifying January as a winter month, the risk of error from

misclassifying January is minimal.

Figure also shows that constraint costs are generally greater when the winter model
is used in comparison to the summer model. This implies that if a month is incorrectly
classified as a summer month then mean constraint costs for the year will be underes-

timated, which may affect the resulting decision.

The relative importance of the months also changes depending on which seasonal model
was used. For example, when a summer model is used for all months, the largest con-
straint costs by some margin occur in January, but February and December also con-
tribute a lot more to the annual constraint costs than the other nine months. However,
when a winter model is used for all months, January still gives the greatest contribu-
tion to annual constraint cost estimates, but all other months now have a comparable
contribution to one another (with the 9 months classified as summer months having
a much greater contribution to annual constraint costs when using a winter model for
available wind generating capacity in comparison to when using a summer model).
August appears to have the largest contribution to costs (after January) when using
the winter model, despite being a month which few would argue against classifying as

a summer month.

Figure shows boxplots of how simulated constraint costs vary with month for a
year 6 power system background, with Figure (a) showing how constraint costs
vary if each month uses the summer model for available wind generating capacity and
Figure (b) shows how constraint costs vary if each month uses the winter model for

available wind generating capacity. There is clearly a large increase in costs for every
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Figure 7.2: Boxplots to show how simulations of constraint costs vary with month and
assumed seasonal model for a year 6 power system background.

month when a winter model for available wind generating capacity is assumed for that
month over assuming a summer model. This not only applies to the mean of constraint
costs, but it can also be clearly seen that there is no overlap between the spread of the

100 summer simulations and the 100 winter simulations.

One thing that is interesting to note is that the simulator as described in Chapter
classified December, January and February as winter months, and all others as summer
months. Handling snapshots in this manner results in the majority of annual constraint
costs occurring in the winter. However, Figure shows that when the same seasonal
model is applied to all months, the nine months originally classified as summer months
all have higher estimates of constraint costs than the three months classified as winter
months. As a winter model results in greater mean constraint cost estimates for each
month, if additional months were included in the winter model this would increase
the estimate of mean annual constraint costs. As the transmission system is expanded
(B6 and B7a boundaries reinforced) to reduce constraint costs this would suggest that
including additional months as winter months would increase the optimal reinforce-

ment magnitude of the transmission system expansion, and this will be investigated in

Section [7.2.4].
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Assumption One - Seasonal Model

7.2.3 Figures on the Effect of Assumed Seasonal Model on

Cost Estimates

Month Estimated Change in | Percentage Change in
Mean  Con- | Mean  Con- | Change in | Mean as a
straint Costs | straint Costs | Monthly Percentage of
Under As- | When Using | Mean ~ Con- | Mean Annual
sumed  Sea- | Alternative straint Costs | Constraint
sonal Model | Season Costs

January £.4,992,000 £290,000 5.82% 2.27%

February 1,667,000 -£534,000 -32.0% -4.17%

March £.420,000 £767,000 183% 5.99%

April £.403,000 £916,000 227% 7.15%

May £.460,000 £1,139,000 248% 8.89%

June £478,000 £1,269,000 265% 9.90%

July £521,000 £1,258,000 241% 9.82%

August £541,000 £1,501,000 278% 11.7%

September | £512,000 $.1,230,000 240% 9.60%

October £.407,000 £1,049,000 258% 8.19%

November | £458,000 £872,000 190% 6.81%

December | 41,953,000 -£617,000 -31.6% -4.81%

Table 7.1: Table detailing how mean constraint cost estimates vary with assumed

seasonal model for a year 1 power system background.

Tables and detail how mean constraint cost estimates for each month vary
with the assumed seasonal model for a year 1 and year 6 power system background
respectively. Original estimate refers to the estimate using the seasonal model assigned
by National Grid (i.e. modelling January, February and December as winter months
and all other months as summer months) with the change in the estimate indicating how
much the estimate of mean constraint costs would change if the alternative seasonal
model was used instead. KEach of these cost estimates were acquired using the 100

evaluations of the full simulator used to construct the boxplots in Section [7.2.2]

With the exception of January for a year 1 power system background, it is seen that
using a summer model instead of a winter model results in a large reduction in mean
constraint costs and using a winter model instead of a summer model results in a large
increase in mean constraint costs for all months for both power system backgrounds.

This is consistent with what was observed in Section [7.2.2
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Assumption One - Seasonal Model

Month Estimated Change in | Percentage Change in
Mean  Con- | Mean  Con- | Change in | Mean as a
straint Costs | straint Costs | Monthly Percentage of
Under As- | When Using | Mean ~ Con- | Mean Annual
sumed  Sea- | Alternative straint Costs | Constraint
sonal Model Season Costs

January £37,210,000 | -£26,370,000 | -70.9% -10.7%

February | £34,550,000 | -£24,990,000 |-72.3% -10.1%

March £11,890,000 | £29,630,000 | 249% 12.0%

April £13,910,000 | £33,240,000 | 239% 13.4%

May £15,760,000 | £35,730,000