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Abstract 
Carbon dioxide (CO2) plays a vital role in biological processes including 

photosynthesis, respiration, and multiple signalling pathways. CO2 is able to interact 

with proteins by forming carbamates on neutral amine groups. However, due to the 

labile nature of this post-translational modification, carbamates are extremely difficult 

to observe and have therefore gone under-researched. The recent development of a 

novel technique to trap carbamates on proteins has led to identification of a range of 

carbamylated proteins from Arabidopsis thaliana. This thesis describes an 

investigation into the effect of carbamylation on the activity of two such proteins. 

 

Fructose 1,6 bisphosphate aldolase (FBA1) is a metabolic enzyme that contains a 

carbamate modification on lysine 293. Activity assays conducted in the presence and 

absence of CO2 indicated that the cleavage activity of FBA1 is not affected by CO2 

concentration. Similarly, analysis of subunit conformation indicated that the proportion 

of protein present as a tetramer was not affected by increasing the CO2 

concentration. However, investigation of a mutant that cannot form a carbamate, 

FBA1-K293A, suggested that the carbamylated lysine residue may important for 

protein function. Mutating residue 293 to glutamate also produced a protein with 

reduced activity compared with the WT. It was not possible to conclude from trapping 

experiments and mass spectrometry analysis whether the carbamate modification 

may still have been present on the WT protein during earlier experiments in the 

absence of CO2. 

 

Three putative carbamates have previously been identified on the non-specific lipid 

binding protein LTP1. The lipid binding affinity of LTP1 was investigated using the 

fluorescent probe TNS. This was found to be significantly reduced in the absence of 

CO2. The mutant protein LTP1-K65A, which is unable to form one of the three 

putative carbamates identified on this protein, also had reduced binding in the 

absence of CO2. Preliminary dose response experiments indicated that this protein 

does have a lower affinity for TNS than the WT, however the effect observed in the 

absence of CO2 is likely to be due to the action of one of the other carbamates.  

 

Although the effect of carbamate modifications on the function of these two proteins 

was not fully determined in this investigation, the results suggest that the recently 
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developed carbamate trapping technique provides an effective method for identifying 

functionally relevant novel carbamates.  
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Chapter 1: Introduction 
1.1 Overview 
 

The research presented in this thesis is an investigation into the effect of 

carbon dioxide (CO2) on the function of two proteins from Arabidopsis 

thaliana. These two proteins, Fructose 1,6-bisphosphate aldolase (FBA1) and 

non-specific lipid transfer protein 1 (LTP1), are both thought to interact with 

CO2 by forming carbamates on specific lysine residues. Carbamates are post-

translational modifications that have been shown to have a regulatory function 

for certain proteins. However, due to their labile nature, very little research 

has been undertaken investigating the role of carbamates in the function of 

proteins. This project aimed to elucidate the role of carbamates in the function 

of these two proteins, with the hope that this would increase our knowledge of 

how carbamates may function more generally within biological systems.  

 

This chapter will include a general introduction to what is already known about 

the role of CO2 in biological systems and will discuss why it is important for us 

to fully understand how rising CO2 may affect plant growth. Finally, it will 

cover the process by which carbamates are able to form and which proteins 

are known to contain these post-translational modifications.  

 

 

1.2 Rising atmospheric carbon dioxide 
	

Atmospheric CO2 is rising due to deforestation and the burning of fossil fuels. 

By 2100 the concentration of CO2 in air may rise to as much as 1000 µmol 

mol-1 from pre-industrial levels of just 280 µmol mol-1.  This large increase in 

greenhouse gasses means that global temperatures will rise, precipitation will 

be more variable and extreme weather events will increase both in terms of 

frequency and severity (IPCC, 2014). All of these effects are likely to have a 

detrimental effect on crop yield across the globe. Understanding the effect of 
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this elevated CO2 on plant growth is therefore of vital importance for 

predicting the future of crop security.  

 

1.3 Carbon dioxide in biological systems 
 

CO2 is an essential substrate for photosynthesis, is produced as a by-product 

of respiration and is involved in acid-base homeostasis (Raines, 2003; 

Hetherington and Raven, 2005; Gutknecht et al. 1977). It is also known to 

play an important signalling role in many biological processes (Hetherington 

and Raven, 2005). 

 

Inorganic carbon exists in solution in a pH - dependant equilibrium. Below pH 

6.4, CO2 is the dominant form of inorganic carbon, whereas above this pH 

bicarbonate (HCO3) is more prevalent. At even higher pH values, above 10.3, 

CO3
-2 dominates. Carbonic anhydrases are important enzymes in biological 

systems including plants as they increase the rate at which these forms of 

inorganic carbon are interconverted (Moroney et al. 2001).  

 

CO2 + H2O ßà HCO3
- + H + ßà CO3

-2 + 2H+ 

 

Changes in CO2 concentration are known to regulate multiple signalling 

processes in a variety of organisms (Taylor and Cummins, 2011; Hall et al. 

2010; Sitt and Krapp, 1999). However, it is usually assumed that it is either 

the action of bicarbonate or of changing pH that has a physiologically relevant 

effect on protein function. Considerably less investigation has been done in to 

the direct effect of CO2 itself on protein function.  

 

1.3.1 Photosynthesis 
 

The role of CO2 as a substrate for photosynthesis is perhaps the most 

obvious use for this molecule in all of biological science.  The primary 

mechanism for this process of carbon fixation in plants is the Calvin Cycle 
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(Raines, 2003) (Figure 1.2). Ribulose bisphosphate carboxylase oxygenase 

(RuBisCo) is the first enzyme to act in this pathway and catalyses the 

formation of two molecules of 3-phosphoglycerate by combining CO2 and 

ribulose 1,5 bisphosphate (RuBP) (Andersson, 2008). This light-dependant 

cycle involves a total of 11 enzymes, resulting in regeneration of RuBP and 

the formation of compounds that are essential for plant growth and 

development (Raines, 2003). 

             

 
Figure 1-1: The Calvin Cycle. Rubisco initiates the cycle by catalysing carboxylation of 

RuBP to form 3-phosphoglycerate. As the cycle progresses RuBP is regenerated and 

glyceraldehyde 3-phosphate is produced, which goes on to form molecules important 

for growth.  
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1.3.2 Effect of CO2 concentration on crop yield 
 

As CO2 is a primary substrate for photosynthesis, the process necessary for 

production of sugars required for growth, it could be expected that an increase 

in atmospheric CO2 concentration would lead to an increase in carbon 

fixation, plant growth, and consequently crop yield. Early studies investigating 

impact of rising atmospheric CO2 on crop species did indeed indicate that 

elevated CO2 causes a considerable increase in yield (Kimball, 1983). 

However, these studies were conducted in controlled chambers and may not 

be representative of how plants would respond to increased CO2 in the field. 

The development of free-air CO2 enrichment (FACE) technology has allowed 

the effect of elevated CO2 to be observed in a more natural growing 

environment. This allows elevated levels of CO2 to be maintained in open 

sections of field throughout entire growing seasons. Large scale meta–

analysis of FACE experiments suggests that rising CO2 may indeed increase 

agricultural yield, as well as increasing canopy temperature and reducing 

evapotranspiration (Kimball, 2016).  

 

It is notable that C4 and C3 plants have been found to respond differently to 

rising CO2, with C4 plants generally only showing a significant increase in 

yield when water was limiting. This is likely to be due the location of the Calvin 

cycle enzyme RuBisCo. In C3 plants such as wheat, RuBisCo is in cells in 

direct contact with the atmosphere and is not saturated with CO2. However, in 

C4 plants such as maize, RuBisCo is located in bundle sheath cells in which 

localised concentrations of CO2 are more than three times higher than 

atmospheric conditions (Long et al. 2006, Kimball, 2016). Therefore 

conditions of high atmospheric CO2 such as those predicted for the end of this 

century may have a negligible effect on the yield of C4 plants, while leading to 

an increase in yield for C3 plants.  

 

However, despite these comforting predictions that elevated CO2 will increase 

crop yield, there is some controversy over the figures. Long et al. (2006) 
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argue that from their analysis, FACE experiments show less than half the 

additional yield from elevated CO2 than was expected from the results of 

chamber experiments. They also state that FACE experiments don't show any 

increase in yield for the grain crops of Sub-Saharan Africa with increasing 

CO2. As this area is likely to be one of those worst hit by the negative effects 

of climate change, the lack of any compensating increase in yield due to 

higher CO2 levels could lead to serious challenges for food security. 

Additionally, meta-analysis studies of FACE experiments have been criticised 

as they may be significantly affected by reporting bias. Statistical analysis of 

these studies by Haworth et al. (2016) suggests that yield increases may have 

been overestimated. This could suggest that yield increase due to elevated 

CO2 will not be sufficient to compensate for the detrimental effects of other 

aspects of climate change on crop survival. Additionally, research in to the 

nutrient content of plants grown under conditions of elevated CO2 suggests 

that when the yield is increased, the concentration of nutrients in crops 

decreases (Loladze, 2014). Gaining a clearer understanding of how crops will 

be affected by elevated CO2 is therefore extremely important. 

 

 

1.3.3 CO2 detection and signalling in plants 
 

Elevated CO2 has been shown to have numerous effects in plants. These 

include increasing the rate of photosynthesis, decreasing the amount of 

RuBisCo protein present in cells and decreasing plant nitrogen concentration 

(Sitt and Krapp, 1999). 

 

CO2 enters plant cells both by diffusion across the plasma membrane and via 

aquaporins such as NtAQP1. Expression of this aquaporin has been shown to 

increase both the permeability of the membrane to CO2 and the rate of 

photosynthesis, indicating a physiologically significant role in CO2 transport in 

to cells (Uehlein et al. 2003).  
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A particularly important role for CO2 in plant cell signalling is in the regulation 

of stomatal aperture (Kim et al. 2010). Stomata are pores through which the 

CO2 required for photosynthesis enters the plant. The size of the stomatal 

opening is regulated by a pair of guard cells in order to prevent excessive 

transpirational water loss (Esau, 1977). CO2 and abscisic acid (ABA) 

signalling converge in guard cells leading to stomatal closure. This complex 

signalling pathway leads to transport of ions such as K+, malate and Cl- 

across guard cell membranes, changing the osmotic potential and thus 

regulating stomatal aperture (Kim et al. 2010). Only a few mutants have been 

identified which show an altered stomatal response to CO2.  The slac1 mutant 

is completely insensitive to CO2, as well as to ABA and ozone. SLAC1 is 

therefore though to be a positive mediator of CO2-induced stomatal closure 

(Vahisalue et al. 2008). SLACK1 is a subunit of anion channels and controls 

ion homeostasis in guard cells (Kim et al. 2010, Negi et al. 2008). The SLAC1 

anion channel has been shown to be activated by bicarbonate, however the 

bicarbonate-binding proteins responsible for this activation have not been 

identified (Xue et al. 2011).  HT1 kinase is the only known negative regulator 

of CO2 induced stomatal closure, with ht1-2 mutants showing a constitutive 

CO2 response in stomatal aperture (Hashimoto, 2006) (Figure 1-2).  
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Figure 1-2: Simplified model showing convergence of CO2 and ABA signalling 

leading to stomatal closure. Here carbonic anhydrases 1 and 4, GCA2 

(Controlled by ABA 2) and the anion channel SLAC 1 are positive regulators of 

stomatal closure, while the HT1 kinase acts as a negative regulator of this 

process. 

 

Additionally, long-term exposure to high CO2 concentrations leads to a 

decrease in stomatal density, indicating a regulatory role for CO2 in stomatal 

development (Xu et al. 2016, Woodward, 1987). The HIC gene has been 

identified as a negative regulator for stomatal development. Mutants for this 

gene were shown to have increased stomatal density when the concentration 
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of CO2 was doubled (Gray et al. 2000). It is not yet known how CO2 has this 

effect on this developmental pathway.  

 

Another potentially important effect of elevated CO2 is its influence on 

nitrogen metabolism. Numerous studies have shown that the efficiency of 

nitrogen use is increased in conditions of elevated CO2. Additionally the 

concentration of nitrogen within the plant decreases when CO2 levels are 

high. Many aspects of plant growth are regulated by nitrate and nitrogen 

metabolism. Therefore CO2 may be influencing plant growth by changing 

nitrogen concentration and use efficiency (Sitt and Krapp, 1999). 

 

As these examples demonstrate, CO2 is known to be involved in multiple 

signalling pathways, which are required for various cellular processes. 

Elevated CO2 is therefore likely to have a far more complex effect than simply 

causing an increase in the rate of photosynthesis.  As such, gaining a better 

understanding of the role of CO2 in plant growth and development at the 

molecular level is of vital importance for predicting the effect that rising CO2 

levels will have on crop yield. 

 

 

1.4 Carbamylation 
 

An important mechanism by which CO2 may directly influence cellular 

processes is by interacting with proteins. CO2 is generally an unreactive 

molecule, however it is able to combine with amine groups under ordinary 

conditions to form carbamates. These are labile post-translational 

modifications and are thermally unstable (Hampe et al. 2003). Carbamates 

can form either on the N-terminal amine of proteins or on the side chain of 

lysine residues. Nucleophilic attack of neutral amines on CO2 leads to the 

formation of a carbamate (Figure 1-3). This reaction is in an acid-base 

equilibrium (Hampe et al. 2003). Carbamate formation was first detected over 

100 years ago, and was one of the first post-translational modifications to be 
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identified (Jorgensen and Stiles, 1917). However, due to the labile nature of 

this modification, very little research has been done in to carbamylation as a 

means of regulating protein function. 

 
 

Figure 1.3: Reversible carbamate formation on a lysine residue. Carbamates 

can only form on uncharged amines.  
 

Carbamylation may alter protein function in multiple ways. Carbamylation of 

an active site lysine creates an acidic residue, which can play a direct role in 

enzyme catalysis (Dementin et al. 2001). In other cases carbamylation can 

allow bridging of metal ions, causing conformational changes which are 

necessary for protein function (Stec, 2012). The first enzyme identified that is 

activated by carbamate formation was RuBisCo (Lorimer and Miziorko, 1980). 

In mammalian systems, the best-known functional example of carbamate 

formation is the interaction of CO2 with the N-terminal amine group of 

haemoglobin chains resulting in a change in the oxygen binding properties of 

this protein (Vandegriff et al, 1991).  

 

 

Basic conditions have been shown to favour carbamate formation, with the 

proportion of amino acid in the carbamylated form increasing with increasing 

pH (Stadie and O’Brien, 1935). This is because the amine group on lysine 
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must be in an uncharged state in order for carbamylation to occur. The pKa of 

the amine group on lysine varies with environment, averaging from 9-10 

(Abraham et al. 2009). Therefore under normal conditions within plant cells 

most amine groups will be charged and thus unable to form carbamates. 

Nevertheless, carbamates are known to form on certain proteins. This may be 

due to microenvironments within folded proteins creating conditions more 

favourable to carbamate formation (Gros and Bauer, 1987).  

 

Carbamylation may be a more common post-translational modification than is 

generally thought (Morrow et al. 1974). Recent computational models predict 

that at least 1.3% of large proteins may contain carbamylated lysine residues, 

suggesting that carbamylation may be an important general method for 

regulating protein activity (Jimenez-Morales et al. 2014).  

 

Despite the great potential for carbamylation as a regulatory mechanism, very 

little work has been done to investigate this post-translational modification. 

This is mainly due to the challenges involved in observing carbamates. They 

are labile and the carboxyl group is released in acidic conditions, making this 

modification extremely hard to detect using mass spectrometry. Proteins 

containing labile modifications are not easy to crystallize, and identification of 

particular post-translational modifications in crystal structures is difficult 

(Jimenez-morales et al. 2014). Additionally, the conditions for crystallization 

may not be physiologically relevant. Because of these difficulties, the 

development of a method for stabilising carbamates on proteins was essential 

(Linthwaite, 2017).  

 

 

1.5 Trapping carbamates 
 

The recent development of soft ionisation techniques for mass spectrometry 

have made it possible to identify carbamate formation on proteins, however it 

was not possible to locate these post translational modifications to a specific 
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amino acid as the high energy required for fragmentation results in release of 

CO2 (Terrier and Douglas, 2010). Carbamates have been successfully 

identified using mass spectrometry, however these occurred at pH values 

significantly higher than those found in biological systems so may not be 

physiologically relevant.  

 

Linthwaite (2017) developed a novel method for trapping carbamates on 

proteins by ethyl esterification with the electrophilic reagent TEO. An ethyl 

group is transferred to the CO2 molecule bound to an amine (Figure 1-4). This 

stabilises the modification and prevents release of CO2. The trapped 

carbamate is then stable and can be detected using mass spectrometry.  One 

of the major benefits of this method compared to previous work is that it 

enables trapping of carbamates to occur in solution under physiologically 

relevant pH and CO2 concentration.  

 

 

 
 
Figure 1-4: Ethyl esterification of a carbamylated lysine residue with the 

reagent TEO.  

 

The reagent TEO has a half-life of 7.4 min (King et al. 1986), allowing the pH 

of the reaction to be maintained at physiological levels. This was achieved by 

the controlled addition of NaOH using a pH stat.  

 

This technique was used to successfully trap a carbamate on the N-terminal 

amine group of haemoglobin, a protein that is already known to form a 
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carbamate (Perella and Rossi-Bernandi, 1980). It was then possible to 

observe this carbamate using mass spectrometry, demonstrating that this 

novel trapping technique provides an effective mechanism for identifying 

physiologically relevant carbamates. Linthwaite (2017) went on to use this 

method to screen the Arabidopsis leaf proteome, identifying carbamates on 

multiple proteins which were previously not known to interact with CO2. 
 

 

 

1.6 Carbamylated plant proteins 
 

1.6.1 RuBisCo 
 

The most abundant protein on earth, RuBisCo, is activated by carbamylation 

(Stec, 2012). This enzyme is found in almost all autotrophs and is essential 

for carbon fixation. It is responsible for combining CO2 with RuBP to form two 

molecules of 3-phosphoglycerate (Figure 1-1), which is then used to create 

the molecules that are the building blocks of life (Andersson, 2008). In order 

to function, RuBisCo must be activated by carbamylation of a lysine residue 

within the active site. This carbamylated lysine is distinct from the binding site 

that of the substrate CO2 (Lorimer, 1979). The carbamate is stabilised by the 

binding of Mg2+, which is essential for catalysis. This regulatory carbamate 

was initially identified using 13CO2 NMR spectroscopy studies (O’Learly et al. 

1979). However it was not possible to determine which lysine residue was 

carbamylated using this method, and the conditions required for these 

experiments were such that non-specific carbamate formation could occur.  X-

ray crystallography was used to locate this carbamate to lysine 201 (Miziorko, 

1979). The requirement for CO2 and Mg2+ to activate this enzyme allows 

RuBisCo activity to be light regulated. In the dark, Mg2+ leaves the stroma and 

the pH declines, leading to a reduction in the proportion of RuBisCo that is 

activated (Andersson, 2008). 
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1.6.2 Urease 
 

Urease is another common enzyme that is known to be carbamylated. This 

enzyme is important for nitrogen metabolism in plants and catalyses the 

hydrolysis of urea to form ammonia and carbamate (Pearson et al. 1998). 

This enzyme is carbamylated on a lysine residue in the active site, allowing 

the bridging of two nickel ions. This carbamate is vital for urease function and 

in the absence of CO2 the enzyme is inactive (Yamaguchi and Hausinger, 

1997).  

 

 

1.6.3 Putative carbamates identified by Linthwaite (2017) 
 

A novel method for trapping carbamates on proteins (described in 1.4) has 

lead to the identification of carbamates on a wide range of plant proteins 

following a screen of the Arabidopsis proteome (Linthwaite 2017).  These 

proteins include a Lipid Transfer Protein, a peroxidase, Fructose 

bisphosphate aldolase 1 (FBA1), two chloroplast RNA editing factors and 

photosystem II subunit Q. The activity of some of these proteins has 

previously been linked to inorganic carbon, for example photosystem II is only 

active in the presence of a high concentration of dissolved CO2. However, 

many of these proteins were not previously known to have any interaction with 

CO2, and the affect that most of these observed carbamates have on protein 

function is unknown. Further work is required to identify the role of 

carbamylated lysine residues in the function of these proteins. The research 

discussed in this thesis investigates the effect of CO2 on the function of two of 

these proteins.  
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1.7 Motivation for investigation 
 

Carbamylation is an important mechanism for protein regulation which may be 

much more common than previously imagined. Carbamates are known to be 

vital for the function of two of the most abundant proteins on earth, RuBisCo 

in plants and haemoglobin in mammals (Stec, 2012; Vandegriff et al. 1991).  

Additionally, carbamates have now been identified on a wide range of proteins 

from Arabidopsis (Linthwaite, 2017).  However, due to the labile nature of this 

post-translational modification, very little research has been undertaken to 

investigate the role of carbamates in protein function. 

 

Many recently identified proteins which appear to form carbamates were not 

previously known to have any connection with CO2 signalling. This project will 

investigate the role of these carbamates in the function of two such proteins: 

Fructose 1,6 bisphosphate aldolase 1 (FBA1) and Lipid transfer protein 1 

(LTP1). 

 

 

1.7.1 Project relevance 
 

Although CO2 is known to play a role in a wide range of biological processes, 

very little is known about the molecular mechanism involved. Atmospheric 

CO2 is rising at an alarming rate and the subsequent effect on plant growth 

has not yet been fully elucidated. Although it is known that an increase in CO2 

leads to an increase in the rate of photosynthesis, meta-analyses of field 

studies undertaken in conditions of high CO2 yield conflicting results about 

how much this affects overall plant growth (Kimbal, 2016; Long et al. 2006). 

Increased yield produced by conditions of elevated CO2 has been shown to 

be accompanied by a decrease in the nutrient content of crop plants, posing a 

further threat to food security (Giri et al. 2016). Additionally, CO2 is known to 

have other effects on plant cellular processes. For example, elevated CO2 has 

been shown to result in decreased water uptake and changes to nitrogen 
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metabolism (Leakey et al. 2009; Sitt and Krapp, 1999). Gaining a better 

understanding of how CO2 can affect plants at the molecular level is therefore 

of the utmost importance. This is necessary to improve predictions of how 

elevated atmospheric CO2 may influence crop security.  

 

Furthermore, in order to combat rising greenhouse gases, experts suggest we 

will need to develop efficient methods for carbon capture and storage (CCS) 

(Metz et al. 2005). Further investigation into the interaction of CO2 and plant 

proteins could increase our understanding of how CO2 regulates carbon 

fixation, perhaps allowing for development of more efficient CCS 

technologies.  

 

Carbamylation is becoming increasingly identified as a method of regulating 

proteins in other organisms as well as plants. Recent evidence suggests that 

some mammalian connexins contain carbamylation motifs and may be 

involved in measurement of the partial pressure of CO2 within the body 

(Meigh et al. 2013). Multiple bacterial enzymes have also been shown to 

require carbamate formation for proper function, including alanine racemase, 

which plays a vital role in synthesis of cell wall components (Morollo et al. 

1999). Research in to the effect of CO2 on cellular processes at the molecular 

level could also have clinical relevance, for example by increasing our 

knowledge of the mechanisms by which hypercapnia can affect the human 

body (Azzam et al. 2010). Increasing our knowledge of how CO2 can affect 

protein function in plants may therefore improve our understanding of protein 

regulation across a wide variety of biological systems. 

 

 

1.7.2 Aims and Hypotheses 
 

We hypothesise that carbamates identified by Linthwaite (2017) on the 

Arabidopsis proteins FBA1 and LTP1 are functionally relevant. We therefore 
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also hypothesise that the activity of these proteins will be altered by changes 

in CO2 concentration.  

 

The main aim of this project was to investigate the effect of CO2 on the known 

activity of these two proteins and determine whether these carbamates play a 

role in protein function. A broader aim of this project was to gain a better 

understanding of how increasing concentrations of CO2 may affect plants at 

the molecular level.  

 

Two main approaches will be implemented to achieve these goals. Firstly, the 

activity of the chosen proteins will be assessed in the presence and absence 

of CO2 using appropriate activity assays. Secondly, mutant studies will be 

employed to further elucidate the effect of carbamylated lysine residues on 

the function of FBA1 and LTP1.  
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Chapter 2: Methods 
	

2.1 Transforming cells 
 

Plasmid DNA (1 µL) was added to competent Escherichia coli (E. coli) cells 

(50 µL, various strains) and then incubated on ice for 20 min. The cells were 

then heat shocked at 42 °C for 30 s and placed immediately back on ice. After 

3 min, 1 mL LB broth was added to the cells and the solution was shaken for 

1 h at 37 °C. 800 µL of the bacterial culture was spread on to an agar plate 

containing appropriate selective antibiotics and 200 µL on to another. Plates 

were incubated overnight at 37 °C. 

 

 

2.2 Large scale expression of FBA1 protein 
 

Rosetta PLysS cells were transformed with the plasmid pet14b-FBA1, 

pet14B-FBA1-K293A or pet14B-FBA1-K293E. LB broth (200 mL) containing 

ampicillin and chloramphenicol was inoculated with one plate colony of 

transformed cells and incubated at 30 °C with shaking overnight. 10 mL of 

overnight culture was added to each of 12 1 L LB preparations (also 

containing ampicillin and chloramphenicol). These cultures were incubated 

with shaking at 37 °C until the OD600 reached 0.4. 1 mL betaine was added to 

each culture. Incubation continued until the OD600 reached 0.6. Incubator 

temperature was then reduced to 17 °C for 1 h. 1 mL IPTG (20 mM) was 

added to each flask of culture to initiate protein expression and the cells were 

grown for a further 16 h at 17 °C. The cultures were harvested by 

centrifugation at 4000 g. The pellet resuspended in wash buffer (50 mM Tris, 

100 mM Nacl, 1 mM EDTA) and centrifuged again.  
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2.3 Purification of FBA1 protein 
 

Cells pellets were resuspended in binding buffer (50 mM Tris-Hcl, 100 mM 

Nacl, 10 mM imidazole). Protease inhibitor cocktail was added. Cells were 

lysed by sonication at 50 % power for 3 min. Cell lysate was centrifuged at 

50,000 g for 30 min. Following centrifugation the supernatant was incubated 

on rollers at 4 °C with 50 % Ni2+ resin. The FBA1 recombinant protein 

contains a histag at the N-terminus, allowing binding to the Ni2+ resin. After 1 

h of incubation the cell lysate was centrifuged at 700 g for 10 min and the 

supernatant discarded. Pellets containing the resin were resuspended in the 

binding buffer and transferred to a column with the flow through collected. The 

column was washed with binding buffer until no protein eluted. The sample 

was then eluted with buffer containing increasing concentrations of imidazole 

(from 50 mM to 250 mM) and each wash fraction collected and stored at -80 

°C. The column fractions were then run on an SDS-PAGE gel and the 

concentration of protein present in each sample was determined from e280 

values. 

 

 

2.4 SDS-PAGE gel 
 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

gels were used to determine the molecular weight of proteins. Protein 

samples were mixed with loading buffer (100 mM Tris-HCl pH 6.8, 200 mM 

dithiothereitol, 4 % (w/v) SDS, 0.2 % (w/v) bromophenol blue, 20 % (v/v) 

glycerol) in a 4:1 ratio and incubated at 90 °C for 10 min to allow denaturation 

to occur. Protein samples and a protein ladder (PagerulerTMPlus pre-stained) 

were loaded on to the gel. 15-20% resolving gels were used depending on the 

expected molecular weight of the protein of interest. The gel was then run in 

running buffer (25 mM Tris-HCl pH 7.5, 192 mM glycine, 0.1 % (w/v) SDS) for 

1 h at 180 V. The gel was incubated with Generon Quick Coomassie with 

rocking for two hours to stain the protein.  
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2.5 FBA1 cleavage assay 
 

All buffers were degassed and bubbled with nitrogen for 2 h before the 

reaction mixture was made up. 7 µg of purified FBA1 protein (WT, K293A or 

K293E) was added to 40 mM TBE buffer (pH 8) containing 0.2 mM B-NADH 

and 10 units of the coupling enzymes GDH/TPI. The reaction mixture was 

incubated under a nitrogen atmosphere for 20 min at 4 °C. NaHCO3 (for 

reaction with 3 mM inorganic carbon) or NaCl (for control reaction without 

inorganic carbon) dissolved in 200 mM Hepes (pH 8) was added to a final 

concentration of 3 mM. The substrate FBP (2 mM) was added and the 

reaction mixed by pipetting. Absorbance at 340 nm was measured every 30 s 

for 5 min. The observed decrease in absorbance over the course of 5 min was 

used to calculate the specific activity of the enzyme.  

 

 

2.6 Native-PAGE gels 
 

Native-PAGE gels were used to assess the molecular weight of protein in its 

native conformation. Samples of FBA1 WT and K293A protein were mixed 

with Native Sample buffer in a 2:1 ratio. Protein and a protein ladder (Native 

Mark) were loaded on to the native page gel and run for 1 h with Tris-Glycine 

buffer at 140 V. For gels with increased CO2, NaHCO3 was added to the 

running buffer to a final concentration of 1 mM. The gel was then stained to 

allow visualisation of the protein.  

 

2.6.1 polyhistidine stain 
 

Native-PAGE gels were stained with a polyhistidine stain. Before the stain 

could be applied, gels were set with 10 % acetic acid and 40 % ethanol for 1 

h. They were then incubated over night in the dark with NTA-Atto 647N. The 
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gels were washed with water and imaged using a Fujifilm FLA-3000 scanner 

with 633 nm excitation and 675 nm emission wavelengths.  

 

2.6.2 Coomassie stain 
 

Native-PAGE gels were incubated with Generon Quick Coomassie stain for 2 

h. They were then washed with water and allowed to de-stain for 2 h before 

imaging.  

 

 

2.7 One step PCR mutagenesis 
 

Forward and reverse mutagenic primers were designed including the required 

mutation at the target site. PCR mixture was made up with the components 

listed in Table 1 and PCR performed according to the conditions described in 

Table 2.  5 µL of the PCR mixture was run on an agarose gel to confirm that 

amplification had occurred. 50 µL of competent Mac1T1 cells were 

transformed with 5 µL PCR product and grown over night at 37 °C on agar 

plates containing ampicillin.  Colony PCR was then performed on seven of the 

colonies that grew on this plate to confirm the presence of the plasmid of 

interest.  

 

Table 1. PCR reaction components 

Component Amount 

5X HF buffer 5 µL 

DMSO 1 µL 

Forward primer 2 pmol 

Reverse primer 2 pmol 

2mM dNTPs 2.5 µL 

Template DNA 1 ng 

dH2O to total volume 25 µL 
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Table 2. PCR reaction conditions 

Temperature °C Time 

98  120 s 

18 cycles with the following settings: 

98 30 s 

57 30 s 

72 75 kb/s 

Final extension: 

72 10 m 

 

 

2.8 Colony PCR 
 

PCR mixture was assembled as in Table 3. Half of a bacterial colony was 

removed from an agar plate, added to the PCR mixture and mixed well. PJET 

forward primer was used with the reverse mutagenic primer and PJET reverse 

primer was used with the forward mutagenic primer. 18 cycles of PCR were 

performed with the conditions described in Table 4. 5 µL of PCR product was 

then run on an agarose gel to confirm the presence of the plasmid of interest. 

Colonies containing the plasmid were grown over night in 5 mL LB broth. The 

plasmid was purified by mini-prep and stored at -20 °C. 

 

Table 3. Colony PCR mixture components 

Component  Amount 

5x buffer  5 µL 

25mM Magnesium Chloride 1.5 µL 

Forward primer (25 pmol/µL) 1 µL  

Reverse primer (25 pmol/µL) 1 µL 

2mM dNTPs  2.5 µL 

Gotaq G2 flexi polymerase 0.3 µL 

dH2O 13.7 µL 
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Table 4. Colony PCR reaction conditions 

Temperature °C Time 

95 30 s 

55 30 s 

72 1 min/kb 

 

 

 

2.9 Agarose gel 
 

1.5 g of agarose was added to 100 mL TAE buffer and microwaved for 1 min. 

0.1 mg ethidium bromide was added and mixed with buffer. The gel was 

poured and allowed to cool. 25 µL of samples containing DNA were added to 

wells in the cooled gel. The gel was run in TAE buffer for 1 h at 120 V. DNA 

was then visualised under UV transillumination.  

 

 

2.10 Plasmid purification by mini-prep 
 

A mini-prep spin kit (QIAGEN) was used for plasmid purification. Cells were 

grown over night in 5 mL LB containing appropriate selective antibiotics. The 

culture was centrifuged at 4000 g for 5 min. The supernatant was discarded 

and the cell pellet was resuspended in 250 µL Resuspension buffer. The 

sample was transferred to a mirocentrifuge tube and 250 µL Lysis buffer was 

added. The tube was inverted 4 times to mix. 350 µL Neutralisation buffer was 

added and the sample mixed by inverting the tube 6 times. The tube was 

centrifuged at 14,000 g for 5 min and the supernatant transferred to a spin 

column. The spin column was centrifuged at 14, 000 g for 1 min. 500 µL wash 

solution was added and the column was centrifuged for 1 min at 14,000 g. 
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The flow through was discarded and the column was centrifuged once more 

for 1 min to ensure residual solution was removed. The column was moved to 

a clean microcentrifuge tube and 50 µL of dH2O added. After incubation for 2 

min the column was centrifuged for a further 2 min to collect the DNA. 

 

2.11 Test expression of LTP1 
 

BL21 and Tuner-Rosetta E.coli cells were transformed with pet14b-LTP1 and 

grown overnight on plates containing 0.4 % (w/v) glucose and appropriate 

selective antibiotics. One colony of each cell type was transferred to 5 mL LB, 

again containing 0.4 % (w/v) glucose and antibiotics, and grown overnight 

with shaking at 37 °C. 250 mL of LB (containing 0.4 % (w/v) glucose and 

antibiotics) was inoculated with 3 mL overnight culture. Cells were then 

incubated at 37 °C with shaking until the cell density reached an OD600 of 0.5. 

Protein expression was then induced with either 2 mM or 0.2 mM IPTG. The 

culture was grown for a further 3 h at 37 degrees C. 1 mL samples were taken 

before induction, after 1 h and after 3 h. These samples were centrifuged at 

6000 g for 5 min and the supernatant discarded. The cells were resuspended 

in 100 µL wash buffer (50 mM Tris, 100 mM NaCl, 1 mM EDTA, pH 7.4) and 

sonicated for 5 s at 25 % power. The samples were centrifuged once more at 

6000 g and the supernatant and pellet were separated. Both the pellet and 

supernatant from all samples were run on a SDS-PAGE gel.  

 

 

2.12 Large scale expression of LTP1 
 

Tuner-Rosetta cells were transformed with pet14B-LTP1 or pet14B-LTP1-

K65A. LB broth (250 mL) containing 0.4 % (w/v) glucose and the antibiotics 

ampicillin and chloramphenicol was inoculated with one colony of transformed 

cells and grown over night at 37 °C with shaking. These cells were then used 

to inoculate 12 1L LB preparations containing the above antibiotics and 20 

mM glucose. Cells were grown at 37 °C with shaking until they reached an 
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OD600 of 0.7. Protein expression was induced with the addition of 0.2 mM 

IPTG. The cultures were grown for a further 3 hours at 37 °C. Cells were 

harvested by centrifugation at 4000 g. The pellets were resuspended in wash 

buffer (50 mM Tris, 100 mM NaCl, 0.1 mM EDTA, pH 7.5) and centrifuged 

once more at 4000 g to wash. Supernatant was discarded and the pellets 

were stored at -80 °C.  

 

 

2.13 Refolding LTP1 protein from inclusion bodies 
 

Cell pellets were resuspended in lysis buffer (PBS containing 1 % Triton X 

100 and 350 µg/mL Lysozyme, pH 7.3) and sonicated at 20 % power for 4 

min. The cell lysate was then centrifuged at 20,000 g for 25 min at 4 °C. The 

supernatant was discarded and the pellet resuspended by sonication in PBS 

containing 1% Triton X 100 (v/v). Lysate was centrifuged again using the 

above conditions. This was repeated a further two times. In the final 

sonication step the pellet was resuspended in PBS without Triton X 100. After 

the final centrifugation, pellets were resuspended in PBS containing 6 M urea 

and incubated over night on rollers at 4 °C to resolubalise the protein. The 

lysate was then diluted 1:10 with PBS to allow refolding of the protein.  

 

 

2.14 Purification LTP1 
 

Refolded protein in PBS was centrifuged at 20,000 g for 25 min. Following 

centrifugation the supernatant was incubated on rollers with 50 % Ni2+ resin 

for 2 h. This was then centrifuged at 700 g for 10 min and the supernatant 

discarded. The resin was resuspended in binding buffer (50 mM Tris, 100 mM 

Nacl, 10 mM imidazole) and transferred to a column. The column was washed 

with binding buffer until no protein eluted. The sample was then eluted with 

buffer containing increasing concentrations of imidazole (from 50 mM to 1 M) 
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and each wash fraction collected. The column fractions were then run on a 20 

% SDS-PAGE gel. 

 

 

2.15 LTP1 TNS binding assay 
 

Measurement buffer was prepared (175 mM mannitol, 0.5 mM K2SO4, 0.5 mM 

CaCl2, 5 mM MES at pH 7). TNS dissolved in DMSO was added to the 

measurement buffer to a final concentration of 10 µM and mixed by shaking 

for 1 min. 4 µM LTP1 protein (WT or K65A) was added to the mixture and 

mixed by pipetting. The sample was transferred to a 96 well plate and 

florescence was measured (excitation wavelength 320 nm, emission 

wavelength 437 nm). This was compared to a control sample containing no 

protein. This assay was performed both on the bench at atmospheric CO2 

concentration and in the absence of CO2 in a nitrogen atmosphere cabinet 

and the results were compared.  

 

 

2.16 LTP1 TNS binding dose response curve 
 

An assay was performed as above with varying concentrations of TNS from 

0.625 µM to 160 µM. Results were plotted on a curve and the Kd of LTP1 

calculated. 

 

 

2.17 LTP1 lipid binding assay 
 

4 µM WT LTP1 was added to measurement buffer containing 10 µM TNS. 

Biological lipid (Oleoyl coA, phosphatidylcholine or phosphatidylethanolamine) 

was added to a final concentration of 18 µM and the sample was shaken for 1 

min to mix. This assay was adapted from Bogdanov et al. 2016, and 

concentrations of substrates used were the same as in this paper.  The 
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fluorescence of the sample (excitation wavelength 320 nm, emission 

wavelength 437 nm) was compared with the fluorescence of a sample with no 

added lipid and the decrease in florescence calculated. A greater decrease in 

florescence indicated a greater decrease in TNS binding to LTP1 and thus 

greater binding of the biological lipid to the protein. Biological lipids used in 

this assay were of bovine origin and are all commercially available from 

Sigma Aldrich.  

 

2.18 Carbamate trapping on FBA1 
 

FBA1 protein (WT) was dialysed overnight in to 50 mM phosphate buffer (pH 

7.4) and then concentrated to 0.5 mg/mL. 350 mg of the reagent TEO was 

measured out. A third of this was dissolved in 0.33 mL phosphate buffer (50 

mM, pH 7.4) and added to the protein. Once the pH of the mixture stabilised, 

the remaining two thirds of the reagent were added one by one in the same 

way. The reaction was incubated at room temperature with stirring for 30 min. 

A pH stat was used to slowly add 1 M NaOH to the mixture during the course 

of the reaction ensure a stable pH of 7.4 was maintained. Once the reaction 

was complete the protein sample was dialysed over night in to dH2O. An 

aliquot of this sample was digested using trypsin and analysed using mass 

spectrometry. 

 

 

2.19 Protein Digestion 
 

Protein was digested using the FASP protein digestion kit (Expedeon) and all 

materials were provided with this kit. 30 µL of trapped protein sample and 200 

µL of Urea Sample Solution were added to the spin filter provided and 

centrifuged at 14,000 g for 15 min. 200 µL of Urea Sample Solution was 

added and the sample centrifuged again. 10 µL of 10X Iodoacetamide 

Solution and 90 µL of Urea Sample solution were added to the spin filter and 

mixed by shaking for 1 min. The spin filter was then incubated in the dark for 
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20 min before centrifugation for 10 min. 100 µL of Urea Sample Solution was 

added and the spin filter centrifuged for 15 min. This step was repeated a 

further two times. 100 µL of Ammonium Bicarbonate Solution (50 mM) was 

added and the sample centrifuged for 10 min. This step was also repeated 

twice. 75 µL Digestion Solution (4 µg trypsin in 75 µL of Ammonium 

Bicarbonate Solution) was added to the sample and mixed by shaking for 1 

min. The top of the spin filter was wrapped in parafilm to prevent evaporation 

and the sample was incubated over night at 37 °C. The spin filter was then 

transferred to a new collection tube. 40 µL Ammonium Bicarbonate Solution 

was added and the spin filter was centrifuged for 10 min. This step was 

repeated once more. 50 µL Sodium Chloride Solution (0.5 M) was added and 

the sample centrifuged for 10 min. The filtrate contained the digested protein.  

 

 

2.20 ESI-MS 
 

Protein samples were prepared in an MS compatible ABC buffer and run with 

a 2 h gradient of acetonitrile from 2-80 % containing 1 % formic acid. 

 

 

2.21 Mass-spectrometry data analysis 
 

Data from ESI-MS was analysed using the GPM database X!Tandem. The 

Arabidopsis peptides present in the sample data were searched for the 

transfer of an ethyl group (MW 28.0313) and a trapped carbamate on a lysine 

residue (MW 72.0211).  
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Chapter 3: FBA1 
3.1 Overview 
 

Fructose 1,6 bisphosphate aldolases (FBAs) are ubiquitous plant enzymes 

involved in multiple metabolic processes. FBAs catalyse the reversible 

cleavage of fructose 1,6 bisphosphate (FBP) to form dehydroxyacetone-

phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). This cleavage 

reaction takes place in the cytoplasm as part of both glycolysis and 

glucogenesis (Lu et al. 2012). In the stroma of chloroplasts, FBA acts as part 

of the Calvin cycle catalysing the condensation of both FBP and 

sedoheptulose-1,7-bisphostphate (SuBP) (Fleshner et al. 1999). These 

enzymes are also thought to play a role in sugar signaling, the response to 

abiotic stresses such as drought and high salinity, and processes in plant 

development (Lu et al. 2012; Geng-Yin et al. 2017).  FBAs can be divided in 

to two classes based on their catalytic mechanism. Class I aldolases act as 

tetramers and require an active site lysine which is essential for catalysis and 

stabilizes a reaction intermediate, whereas class II aldolases form dimers and 

require the presence of a metal ion for catalytic activity (Perham, 1990).  The 

Arabidopsis genome contains eight FBA genes. FBA1 is a class I aldolase 

expressed in the shoots of Arabidopsis. The amino acid sequence for this 

enzyme contains a plastid location signal peptide indicating that it is likely to 

function within the chloroplast. The expression of this enzyme has been 

shown to be affected by various abiotic stresses indicating a potential role for 

FBA1 in stress responses (Lu et al. 2012).  

 

A previous screen of the Arabidopsis proteome identified a carbamate on the 

lysine residue at position 293 in FBA1 (Linthwaite, 2017).  Following ESI mass 

spectrometry this carbamate was confidently located using two different data 

analysis software. Its presence was confirmed using purified and active FBA1 

protein in the presence of 1 mM inorganic carbon. This results in 

approximately the same CO2 concentration as is found in Arabidopsis cells at 

physiologically relevant pH. Preliminary experiments indicated that this 
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carbamate may have an effect on the activity of this enzyme (Linthwaite, 

2017).  

 

The formation of a carbamate on FBA1 is of particular interest, not only 

because of the biological significance of this enzyme, but also because this 

enzyme plays a role in the same process as RuBisCo. RuBisCo is known to 

require activation by carbamylation to perform its role in the Calvin cycle (Stec, 

2012). The presence of a carbamate on another Calvin cycle enzyme could 

potentially indicate that carbamylation is a more common method of regulating 

the function of photosynthetic enzymes than previously thought. Additionally, 

from a more practical point of view, FBA1 is a good choice of carbamylated 

protein for further investigation as it has previously been expressed and 

purified in a soluble active form and its activity is relatively straightforward to 

assay (Linthwaite, 2017).  
	

This chapter will discuss the expression and purification of recombinant FBA1, 

assaying the activity of this protein and investigation of its subunit 

conformation.  

 

 

3.2 Expression of FBA1 
 

The amino acid sequence for WT FBA1 is shown below with the carbamylated 

lysine residue and plastid-targeting signal highlighted (Figure 3-1). A 

truncated version of this protein with the plastid-targeting signal removed has 

increased solubility and was therefore used for all experiments (Linthwaite, 

2017).  
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[MASSTATMLKASPVKSDWVKGQSLLLRQPSSVSAIRSHV

APSALTVRA]ASAYADELVKTAKTIASPGHGIMAMDESNAT

CGKRLASIGLENTEANRQAYRTLLVSAPGLGQYISGAILFE

ETLYQSTTDGKKMVDVLVEQNIVPGIKVDKGLVPLVGSYD

ESWCQGLDGLASRTAAYYQQGARFAKWRTVVSIPNGPS

ALAVKEAAWGLARYAAISQDSGLVPIVEPEIMLDGEHGIDR

TYDVAEKVWAEVFFYLAQNNVMFEGILLKPSMVTPGAEAT

DRATPEQVASYTLKLLRNRIPPAVPGIMFLSGGQSELEATL

NLNAMNQAPNPWHVSFSYARALQNTCLKTW 

 
Figure 3-1: FBA1 protein sequence. The plastid targeting sequence is 

highlighted in grey and the site of carbamate formation in red.  

 

FBA1-WT was expressed and purified according to the protocol developed by 

Linthwaite (2017) (2.1-2.3). The recombinant protein contains a polyhistidine 

tag allowing purification by nickel affinity chromatography. Wash fractions 

produced by the purification process were run on an SDS-PAGE gel to 

confirm the presence of FBA1 (Figure 3-2). This protein can be seen in all 

fractions at its predicted MW of 43 kDa. From analysis of the bands on the gel 

it was clear that the greatest concentration of FBA1 protein was present in the 

fraction eluted with 100 mM imidazole. This fraction was not very pure and 

contained a considerable amount of contaminant. The fraction eluted with 250 

mM imidazole appeared to contain pure FBA1, however this was present only 

at a low concentration. 
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Figure 3-2: SDS-PAGE gel of wash fractions collected from FBA1-WT 

purification. Fraction A was eluted with a buffer containing 50 mM imidazole, B 

with 100 mM, C with 150 mM, D with 200 mM and E with 250 mM. FBA1 can be 

seen at the predicted MW of 43 kDa.  

 

A mutant enzyme, in which the carbamylated lysine residue was mutated to 

an alanine (FBA1-K293A), was expressed and purified simultaneously 

according to the same protocol. An alanine residue was chosen to replace the 

lysine as this amino acid is inert, so should not have unwanted effects on 

protein function. 

 

 

3.3 FBA1 Cleavage activity assay 
 

It was hypothesised that the presence of a carbamate on lysine 293 of FBA1-

WT would affect the specific activity of this enzyme. Therefore it was expected 

that the specific activity of the aldolase would be higher in the presence than 

in the absence of CO2.  Additionally, it was hypothesised that the specific 
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activity of the mutant protein FBA1-K293A remain constant with changing CO2 

concentration and would be comparable with that of FBA1-WT in the absence 

of CO2.  

 

In order to test these hypotheses, an enzyme assay was developed to allow 

the cleavage activity of FBA1 to be measured.  

  

 

3.3.1 Mechanism 
 

The cleavage reaction catalysed by FBA1 (Figure 3-3) occurs as part of 

glycolysis and glucogenesis in all organisms (Lu et al. 2012). The substrate 

FBP interacts with catalytically important lysine and cysteine residues in the 

active site of the enzyme leading to the release of G3P. A histidine residue 

then interacts with the remaining chain to form DHAP. 

 

 

 

 
 

Figure 3-3: FBA1 cleavage reaction 

 

In order to assay the cleavage activity of FBA1 this reaction was coupled to 

oxidation of reduced nicotinamide adenine dinucleotide (NADH) to form NAD+ 

using the coupling enzymes α-glycerophosphate dehydrogenase (GDH) and 

triosephosphate isomerase (TPI) (Figure 3-4). NADH absorbs light at 340 nm 

whereas NAD+ does not (Dawson, 1985). Therefore a decrease in 

absorbance at 340 nm can be measured and used to calculate the rate of the 

cleavage reaction.  
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Figure 3-4: Cleavage reaction coupled to oxidation of NADH 

 

 

3.3.2 Testing activity of purified protein wash fractions 
 

In order to confirm that the purified FBA1 protein produced in 3.2 was active, 

the above cleavage assay was used to determine the activity of the FBA1 

enzyme present in each of the wash fractions produced during purification. 

WT or K293A protein from each of the wash fractions was mixed with 

appropriate buffers and the substrate FBP was added to start the reaction. A 

control sample containing the same concentrations of buffer and substrate but 

no aldolase was also prepared for comparison. The absorbance of the 

reaction mixture was read every 30 s for 20 min. The results of these 

experiments are shown in Figure 3-5. 
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Figure 3-5: Activity assay of FBA1-WT (a) and FBA1-K293A (b) wash fractions 

produced by purification compared with a control sample containing no 

aldolase protein 
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Figure 3-5 demonstrates the change in the absorbance of each sample over 

the course of the cleavage reaction. A greater decrease in absorbance 

indicates higher cleavage activity of the enzyme. Some aldolase activity was 

observed in all fractions for both the mutant and the WT enzyme when 

compared with the control which contained no aldolase protein. This indicated 

that the purified protein was active and in the correct conformation. For the 

WT protein, the highest cleavage activity was observed in the wash fraction 

eluted with 50 mM imidazole, closely followed by 100 mM imidazole (figure 3-

5). For the K293A mutant protein, the fraction eluted with 100 mM imidazole 

showed the highest activity (figure 3-6). The purest fraction (eluted with 250 

mM imidazole) showed almost negligible activity for both proteins. Due to the 

high cleavage activity observed in this fraction for both FBA1-WT and FBA1-

K293A, the 100 mM fraction was chosen for future cleavage assays.  

 

 

3.3.3 Assaying activity in the presence and absence of CO2 
 

In order to investigate the effect of carbamate formation on the cleavage 

activity of FBA1, both the WT and K293A proteins were assayed in the 

presence and absence of CO2 (2.5). This was achieved by the removal of 

CO2 from the reaction mixture followed by the addition of either 3 mM 

inorganic carbon in the form of NaHCO3 or 3 mM NaCl as a control. Complete 

removal of CO2 from the system presented a challenge to this investigation. 

All buffers were degassed and bubbled with nitrogen for 1 h prior to assembly 

of the reaction mixture. The reaction mixture, including the FBA1 protein, was 

incubated within a dessicator containing nitrogen gas for 30 min before the 

addition of the substrate to ensure any CO2 already bound to the protein 

dissociated. The reaction mixture was kept at 4 °C throughout this process to 

ensure the enzyme remained active. NaHCO3 was added to reintroduce CO2 

to the system. This was added immediately before the reaction was started in 

order to reduce CO2 loss by degassing. For control experiments in the 

absence of inorganic carbon, 3 mM NaCl was added instead. The assay was 
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started with the addition of 40 µM of the substrate FBP. This low 

concentration was chosen as it allows the effect of CO2 concentration on the 

Km of the enzyme to be investigated (Linthwaite, 2017).  

 

The reduction in absorbance of the reaction mixture was measured over the 

course of 5 min. This was compared to a standard curve of NADH 

absorbance to allow calculation of the amount of NAD+ (mol) produced during 

the course of the reaction. The amount of product (mol) formed during the 

cleavage reaction is known to be equal to half of the amount of NAD+ 

produced. The amount of product formed was then used to calculate the 

specific activity (the amount of product produced per min per mg total protein) 

of each enzyme under the conditions tested. The mean specific activities are 

shown in figure 3-6 below.   

 

 
Figure 3-6: Specific activity of WT and K293A FBA1 in the presence and 

absence of CO2. Mean specific activities are presented here (n = 8) and error 

bars represent the standard error.  
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No significant difference in activity was observed with the addition of CO2 for 

either the WT or the K293A mutant enzyme. However, the mutant FBA1 had 

reduced activity compared to the WT. A Shapiro-Wilk normality test indicated 

that not all data sets were normally distributed. A log(y) = y transformation 

was applied to all data. Following this transformation, all data was found to be 

normally distributed. A one-way ANOVA confirmed that there is no significant 

difference in the activity of either the WT or K293A protein with the addition or 

removal of CO2 (P > 0.005). However, the difference in specific activity 

between the WT and K293A enzyme is statistically significant (P < 0.005).  

 

One limitation of this experiment was the difficulty in ensuring all CO2 was 

successfully removed from the experimental system. It is therefore possible 

that some CO2 was still present in the samples prepared in the absence of 

inorganic carbon.  There is also the potential that even if CO2 was 

successfully removed from the reaction mixture, the carbamate may be 

particularly stable on this residue and thus not effectively removed by 

incubation of the protein under a nitrogen atmosphere. Later, mass 

spectrometry analysis of this residue indicated that this is not the case and 

this carbamate is not stable at atmospheric CO2 conditions (3.6). 

 

An additional limitation of this investigation was the presence of protein 

contaminants in the samples assayed. Because of this it is possible that there 

was a difference in the concentration of FBA1-WT and FBA1-K293A present 

in the reaction mixture. Both proteins were expressed and purified 

simultaneously under the same conditions to reduce the chances of this. 

Impurities in the samples assayed may also interfere with carbamate 

formation.  

 

The results of this investigation indicate that CO2 concentration does not 

affect the cleavage activity of FBA1. Therefore the carbamate observed on 

lysine 293 may not play a role in this aspect of protein function. However, the 

mutant protein lacking this lysine residue has lower activity than the WT. This 
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could indicate that although the carbamate is not required for the cleavage 

function of this protein, the lysine residue on which it is found may be 

important for enzyme activity. However, it is possible that the carbamate is 

particularly stable and is not removed by incubation of the protein in a CO2-

free atmosphere. If this is the case then the observed difference in specific 

activity between the WT and mutant enzyme could indeed be due to the 

presence of this carbamate.  

 

3.4 Structure 
 

In order to account for the observed difference in activity between the WT and 

K293A mutant enzymes, the structure of FBA1 must be considered. As a 

class I FBA, FBA1 is expected to act as a tetramer made up of four identical 

polypeptide chains (Perham, 1990). The subunits of this tetramer are thought 

to be joined at two different types of subunit interface (Geng-Yin et al. 2017). 

Our lysine of interest, K293, is found at one of these interfaces between 

subunits (Figure 3-7). It is solvent exposed and is conserved in FBA proteins 

across multiple plant species. It was hypothesised that this residue is required 

for quaternary structure formation.  
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Figure 3-7: Quaternary structure of FBA1 with K293 shown at the border 

between subunits (PBD ID: 4D2J) 

 

 

3.4.1 Native-PAGE gels 
 

Native-PAGE gels were used to investigate the effect of lysine 293 on the 

quaternary structure of FBA1 the protein (2.6). These gels separate active 

protein by mass, allowing the subunit composition of protein in its native state 

to be observed. The conformation of a protein may affect the rate at which it 

travels through the gel or even prevent the protein running through the gel at 

all, meaning direct measurement of protein molecular weight is not possible. 

However despite this potential limitation it is possible to gain a good 

approximation of the subunit composition of many active proteins (Wittig et al. 

2006). 

 

Active FBA1 protein was mixed with loading buffer before being loaded on to 

a native page gel. The gel was then run at 140 V to prevent overheating 

causing denaturation of the protein. The purest wash fraction of protein 



	 47	

(eluted with 250 mM imidazole) was used for these experiments to prevent 

contaminants from confusing the analysis. This fraction contained 

considerably less impurities than the fraction used for the activity assays 

detailed above.  

 

Two different types of gel stain were tested for visualisation of the protein. 

First a polyhistidine-tag stain was used. As this only binds to proteins with a 

polyhistidine-tag, it would be expected that only the FBA1 protein would be 

visible using this stain. Although FBA1 was observed in all its subunit 

conformations using this staining technique, images produced were of poor 

resolution due to limitations of the machine used for imaging. As this stain 

fluoresces and is not visible with the naked eye, it was not possible to use 

another technique to image gels stained in this manner. As the protein in this 

sample contains very little contaminant, Generon Quick Coomassie stain was 

also used to stain gels. Although this stain is not specific to purified FBA1, this 

technique produced higher resolution images in which the protein of interest 

was clearly visible. Gels stained with Coomassie were therefore used for 

quantification and analysis of protein bands. An image of one such gel can be 

seen in Figure 3-8. 

The effect of CO2 concentration on tetramer formation was also investigated. 

For practical reasons it was not possible to perform this experiment in the 

absence of CO2. Instead, the CO2 concentration of the system was increased 

by the addition of 10 mM NaHCO3 to the gel running buffer.  
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Figure 3-8: Native-PAGE gel stained with Instant Blue. The tetramer, dimer and 

monomer forms of WT and K293A FBA1 can be seen.  

 

Figure 3-8 shows a native-PAGE gel run at atmospheric CO2 concentration 

and stained with Quick Coomassie. Both the FBA1-WT and FBA1-K293A 

proteins can be seen in tetrameric, dimeric and monomeric formation. The 

proportion of WT protein found as a tetramer appears to be higher than for the 

mutant, with most of the FBA1-K293A protein present as a dimer.  

 

 

The protein bands observed on the gel were analysed using Image J and the 

relative amount of protein present in each band quantified. Only a minimal 

amount of either the WT or mutant protein was found as a monomer. The 

amount of tetramer relative to the amount of dimer present in each sample 

was calculated and the results can be seen in figure 3-9.  
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Figure 3-9: Results of Native page gel experiments. Mean values (n = 7) are 

shown here and error bars represent the standard error. 

 

These results confirm the initial observation that a higher proportion of the WT 

protein is present as a tetramer than the K293A mutant protein. A similar 

amount of tetramer and dimer are found in the WT sample. In contrast, most 

of the K293A mutant protein observed was in the dimer formation, with almost 

twice as much dimer than tetramer present in the sample. The addition of 10 

mM inorganic carbon to the experiment did not significantly affect the ratio of 

tetramer to dimer. A Shapiro-Wilke normality test indicated that all data sets 

from these experiments were normally distributed. A one-way ANOVA was 

used to compare mean values. This analysis confirmed that the difference 

between the value for tetramer/dimer for the WT and K293A protein was 

statistically significant (P < 0.005), and that there is no statistically significant 

difference for either protein with the addition of 10 mM inorganic carbon (P > 

0.005). 
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Overall, the results of this investigation indicate that lysine 293 has an 

important role in tetramer formation. As two different types of interface are 

present within the FBA1 tetramer, the dimer is still able to form normally in the 

K293A mutant, whereas tetramer formation is impaired. Increasing the 

concentration of inorganic carbon from atmospheric to 10 mM did not affect 

the proportion of protein present as a tetramer, indicating that it may not be 

the carbamate on lysine 293 which is responsible for this effect on quaternary 

structure. However, it is not possible to conclude from these results that CO2 

concentration does not affect tetramer formation, as a significant limitation of 

this experiment was that it was not possible to remove atmospheric CO2 from 

the system. If the carbamate is already stable on this residue at atmospheric 

concentrations of CO2 then this carbamate would be present on the WT 

protein for all experiments and no difference in tetramer formation could be 

expected with the addition of more inorganic carbon. Therefore it is possible 

that this carbamate is responsible for the observed difference in tetramer 

formation between the WT and K293A mutant.  

 

As FBA1 is thought to act as a tetramer within plant cells it is likely that the 

observed reduction in tetramer formation for K293A may be responsible for 

the reduced cleavage activity displayed by this mutant enzyme.  

 

 

3.5 K293E 
 

The amino acid glutamate shares properties with those of a carbamylated 

lysine and it has previously been demonstrated that this residue is able to 

perform the function of a carbamylated lysine residue under certain 

circumstances (Meigh et al. 2013). The replacement of a carbamylated lysine 

residue with glutamate may therefore lead to creation of a protein in which the 

effect of the carbamate on protein function is constitutively present. Such a 

mutant would be invaluable for further investigation of the effect of 

carbamates on protein function.  
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In order to mimic the presence of a stable carbamate modification on FBA1, a 

mutant was therefore made in which lysine 293 was mutated to a glutamate 

(FBA1-K293E). It was hypothesised that FBA1-K293E would have the same 

specific activity as the WT enzyme with the carbamate modification present.  

 

3.5.1 PCR mutagenesis 
 

The mutant K293E was made by one step PCR mutagenesis using the sense 

oligo: GTTGCGAGCTACACCCTGGAGCTGCTGCGTAACCGTATC and the 

antisense oligo:	 GATACGGTTACGCAGCAGCTCCAGGGTGTAGCTCGCAACPCR 

as primers to amplify the FBA1-WT plasmid, incorporating the K293E point 

mutation (2.7). The WT template DNA plasmid was then digested with the 

restriction enzyme Dpn1. This enzyme is only able to digest methylated 

template DNA and not the newly made mutant plasmid (Liu and Naismith, 

2008). The presence of the point mutation at position 293 was confirmed by 

DNA sequencing.  

 

3.5.2 Expression 
 

The mutant plasmid was transformed in to competent Rosetta PLysS cells. 

FBA1-K293E was the expressed and purified according to the same protocol 

used to make the WT enzyme (2.1-2.3). FBA1-WT was expressed and 

purified simultaneously to ensure comparable conditions during this process. 

Wash fractions from purification were run on SDS-PAGE gels (Figure 3-10). 

Wash fractions from purification were tested for cleavage activity and once 

again the fraction eluted with 100 mM imidazole showed the highest activity. 
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Figure 3-10: SDS-PAGE gel showing wash fractions from purification of FBA1- 

K293E (a) and FBA1-WT (b). Fraction A was eluted with a buffer containing 50 

mM imidazole, B with 100 mM, C with 150 mM, D with 200 mM and E with 250 

mM. FBA1 can be seen at the predicted MW of 43 kDa 

 

a
A	

b	
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Analysis of the SDS-PAGE gel images indicate that wash fractions contained 

a higher level of contaminant compared with FBA1 protein produced in earlier 

purifications.  

 

 

3.5.3 Cleavage assays 
 

It was hypothesised that FBA1-K293E would have the same specific activity 

as FBA1-WT in the presence of CO2. In order to test this hypothesis, cleavage 

assays in the absence of CO2 with the addition of 3 mM NaHCO3 or NaCl 

were performed as above for both the WT and K293E proteins (2.5). The 

specific activities of the WT and mutant enzymes were calculated and are 

shown in figure 3-11. 

 

 
Figure 3-11: Specific activity of WT and K293E FBA1 in the absence of CO2 and 
with the addition of 3 mM inorganic carbon. Mean values are shown here (n = 
8) and error bars represent the standard error. 
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As in previous experiments, no significant difference in activity was observed 

for either enzyme with the addition of 3 mM inorganic carbon. However, the 

K293E mutant consistently showed reduced activity compared with the WT. 

These results were confirmed with statistical analysis. All data was found to 

be normally distributed using a Shapiro-Wilk normality test. A one-way 

ANOVA verified that there is no significant difference between the specific 

activity of the enzyme with and without CO2 for either the WT or the mutant (P 

> 0.005). The difference in activity between the WT and K293E is statistically 

significant (P < 0.005). 

 

The specific activity of the WT FBA1 calculated here is considerably lower 

than in earlier experiments. This may be due to less efficient expression of the 

aldolase. The protein samples produced following purification contained a 

high proportion of contaminants compared with in earlier assays. This could 

possibly be due to circumstantial differences in the purification process. 

However, since the WT and K293E protein used in these assays were 

expressed and purified simultaneously, assay data produced using these 

proteins is still comparable. 

 

These results indicate that FBA1-K293E does not have the same activity as 

the WT protein with lysine 293 carbamylated. Instead, the K293E mutant has 

significantly lower activity than the WT under both CO2 concentration 

conditions tested. There are potentially three main reasons why this result 

may have been observed. Firstly, it is possible that due to the specific 

structure of this protein, the glutamate residue at position 293 of FBA1-K293E 

is not able to successfully mimic the properties of a carbamylated lysine 

residue within this particular protein environment. Secondly, a major limitation 

of this investigation is the difficulty in producing pure active aldolase protein. 

Due to the high level of protein contaminant present in each sample it is not 

possible to verify whether the concentration of WT and mutant FBA1 added to 

assays was the same. This difference in activity could be due to a difference 

in concentration of active enzyme. Finally, it could be that the presence of the 
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lysine residue of interest itself rather than the carbamate modification is 

important for the activity of the protein. This lysine could contribute to protein 

function either by promoting tetramer formation or by another unknown 

mechanism. If this were the case, replacing it with another residue would 

decrease the activity of the protein as is observed here.  

 

Taken together, the results of these investigations suggest that either the 

K293E mutation may not be able to accurately mimic the carbamylated lysine 

residue, or this lysine residue itself rather than the carbamate modification 

may be important for enzyme activity. This mutant protein is therefore not 

effective for investigating the effect of carbamate formation on the function of 

FBA1. It would be interesting to analyse the subunit composition of FBA1-

K293E to determine whether this mutant is present as a tetramer. However, 

due to time constraints this was not investigated in this project.  

 

 

3.6 Trapping FBA1 at atmospheric CO2 
 

Earlier investigations indicated that the cleavage activity of FBA1 is not 

affected by the removal of CO2 from the experimental system. It was therefore 

hypothesized that the carbamate previously observed on lysine 293 may be 

stable on the protein even in the absence of atmospheric CO2. 

 

Linthwaite (2017) effectively demonstrated that a carbamate is able to form on 

FBA1 on this at a CO2 concentration of 73.5 µM. This is approximately the 

concentration of CO2 found within plant cells and is thus physiologically 

relevant (Portis et al. 1986). However, as carbamate formation was not 

investigated with any lower concentrations of CO2, it is possible that this 

carbamate may be extremely stable on this lysine residue and not easily 

removed. If this is the case it could explain why no change in FBA1 activity 

was observed with the addition or removal of CO2 in earlier experiments.  
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Additionally, limitations with the equipment may have prevented complete 

removal of CO2 from the system during cleavage assays. It was therefore 

important to determine whether this carbamate is found on FBA1 at 

atmospheric CO2 concentrations. In order to test this a trapping experiment 

was performed as described by Linthwaite (2017), however without the 

addition of any inorganic carbon.  

 

FBA1 WT protein was concentrated to 1 mg/mL by spin filtration. The trapping 

reagent TEO reacts quickly with amines, therefore the protein was dialysed in 

to phosphate buffer which does not contain any amines before the trapping 

reaction was performed. The reagent was added to the protein under 

atmospheric CO2 conditions and a stable pH of 7.4 was maintained 

throughout the reaction using a pH stat. After the reaction was complete, 

precipitated protein was visible in the sample. TEO causes the addition of 

ethyl groups to many residues within the protein leading to precipitation 

(Linthwaite, 2017). This can therefore be used as an indication of whether the 

reaction has been successful. Following trapping, the protein was dialysed in 

to water and digested with trypsin. ESI-MS was performed and the resultant 

data analysed using the database GPM-X!Tandem.  
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Figure 3-12: Mass spectrometry data generated using GPM X!Tandem showing 

the FBA1 peptide containing lysine 293 

 

The peptide containing lysine 293 was identified in this data (Figure 3-12). 

The peptide was ethylated, indicating a successful reaction with the reagent 

TEO. However, no carbamate was found on lysine 293. In earlier work by 

Linthwaite (2017), the peptide was not cleaved directly following lysine 293 as 

the carbamate prevented protein cleavage at this site. In the data presented 

here there is no missed cleavage site as lysine 293 is found at the end of the 

peptide, indicating that the carbamate is not present. Due to the low quality of 

this data few b ions are present. However this peptide has a convincing 

confidence score of – 3.2 indicating that it is likely to have been correctly 

identified. 
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The main limitation with this experiment is that although this peptide was 

found without the carbamate modification, it is still possible that other peptides 

containing a carbamylated lysine 293 were present in the sample but were not 

detected. Therefore, although this data confirms that the carbamate on this 

residue is not completely stable under these CO2 conditions, it cannot be 

inferred that this carbamate does not form at all. Additionally, there was not 

time to perform the trapping experiment in the presence of additional CO2, so 

the presence of the carbamate identified in this manner by Linthwaite et al. 

2017 could not be confirmed. Moreover, this trapping experiment was not 

performed on full-length FBA1 due to the difficulties in expressing and 

purifying this protein (Linthwaite et al. 2017).  

 

The absence of carbamate on lysine 293 under these conditions indicates that 

this carbamate is not stable at atmospheric CO2 concentrations. It is therefore 

likely that the carbamate was successfully removed by incubation under a 

nitrogen atmosphere in cleavage experiments described earlier, and this 

carbamate may not have been present in the protein run on native page gels 

without the addition inorganic carbon.  

 

 

3.7 Discussion and conclusions 
 

FBA1 was previously shown to form a carbamate on lysine 293 at 

physiologically relevant CO2 concentrations (Linthwaite, 2017). As another 

Calvin cycle enzyme, RuBisCo, is known to be activated by carbamylation 

(Stec, 2012), it was hypothesised that the carbamate on present FBA1 may 

have a role in regulating the catalytic function of this protein. However, the 

results of the experiments described in this chapter suggest that the 

concentration of CO2 does not affect the cleavage activity of this enzyme. 

When the cleavage activity of FBA1-WT was assayed in the absence of CO2 

and with the addition of at 3 mM inorganic carbon, no significant difference in 

specific activity was observed. Similarly, analysis of subunit conformation 
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using native page gels indicated that increasing the concentration of CO2 

does not increase the amount of FBA1 found as an active tetramer. An 

experiment to trap the carbamate modification on this protein suggested that 

the carbamate is not stable under atmospheric CO2 conditions. It is therefore 

likely that this carbamate was not present in samples in the absence of 

additional CO2 in earlier experiments.  

 

Somewhat surprisingly, although the presence and absence of the carbamate 

on lysine 293 did not appear to alter protein function, mutating this residue 

was shown to cause a significant reduction in aldolase activity. Replacing this 

residue with either an alanine (to mimic this lysine residue without a 

carbamate) or a glutamate (to mimic the lysine with an attached carbamate) 

resulted in a significant reduction in cleavage activity compared with the WT 

enzyme. Additionally, FBA1-K293A appears to be deficient in tetramer 

formation, which may be responsible for this observed reduction in specific 

activity. Therefore this lysine residue appears to be important for quaternary 

structure formation and efficient cleavage activity. However, the results of the 

above experiments suggest that the carbamate identified on this residue may 

not be required for these functions. 

 

Although the investigations described in this chapter were unable to identify a 

function for the carbamate modification on FBA1, this carbamate may still be 

functionally relevant. Sequence comparison reveals that the lysine residue 

found at position 293 of FBA1 is conserved across FBA proteins in multiple 

plant species. Linthwaite (2017) also identified a carbamate on the 

corresponding lysine residue of Arabidopsis FBA2. The conserved nature of 

this carbamylated lysine residue suggests that it may be required for some 

aspect of protein function. FBAs are also known to catalyse the condensation 

of DHAP and G3P to form FPB (Fleshner et al. 1999) and it is therefore still 

possible that this carbamate might play a role in this reaction. Additionally, 

within the cellular environment this carbamate may affect the interaction of 

FBA1 with other molecules such as those involved in regulation of this 
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enzyme. Investigation in to the effect of CO2 on the condensation activity of 

FBA1 as well as its interaction with other molecules may further elucidate the 

function of the carbamate modification observed on this protein.  

 

Chapter 4: Lipid Transfer Protein 1 
 

4.1 Overview 
	
Non-specific lipid transfer proteins (LTPs) are small cationic proteins found in 

all higher plants and are characterised by their ability to bind and transport 

lipids (Bogdanove et al. 2016). They can be subdivided in to two large protein 

families: LTP1s which have a molecular weight of ~9 kDa and LTP2s are 

slightly smaller with a molecular weight of ~7 kDa (Carvalo and Gomes, 

2008). Many plant species possess a large number of LTP isoforms and these 

have been shown to have diversity of structure and lipid binding affinity 

(Guerbette et al. 1999). These proteins all contain eight conserved cysteine 

residues, which form four disulphide bridges necessary for protein function. 

They contain a hydrophobic internal lipid-binding cavity which has flexible 

volume, allowing non-specific binding of many different lipids (Carvalo and 

Gomes, 2008). LTPs were first identified for their ability to transfer lipids 

between membranes in vitro in a non-specific manner. Because of this they 

were initially predicted to play a role in intracellular lipid trafficking (Kader, 

1997). However, these proteins contain an N-terminal signal peptide 

sequence targeting them for secretion and thus are unlikely to be found within 

the cell (Carvalo and Gomes, 2007). Additionally, immunolocalisation 

experiments suggest that LTPs are located at the cell wall (Thoma et al. 

1993). Therefore despite their ability to transport lipids between membranes, it 

is unlikely that LTPs play a role in lipid trafficking within the cell. 

 

The actual function of LTPs has not been fully elucidated, with proposed 

functions including roles in somatic embryogenesis, cuticle deposition, 
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defence against pathogens and response to abiotic stresses (Salcedo et al. 

2007). LTPs have been shown to bind specifically to elicitin receptors in the 

plasma membrane (Buhot et al. 2001). These receptors detect elicitins 

released by phytopathogens and initiate a defensive response to infection. 

When bound to jasmonic acid, a tobacco LTP was shown to have a 

significantly increased interaction with elicitin receptors compared with LTP 

alone, and treatment of plants with LTP-jasmonic acid complex increased 

resistance to phytopathogen infection (Buhot et al. 2004). This provides 

evidence for a role for LTPs in cell signalling and defence against pathogens. 

Additionally, expression of different LTPs is differentially enhanced by 

exposure to pathogens, as well as by abiotic stresses such as drought, 

salinity and cold (Jung et al. 2003). The large amount of duplication and 

diversification seen within the LTP gene family is also characteristic of 

proteins involved in defence mechanisms (Bogdanove et al. 2016). 

 

The Arabidopsis LTP family contains at least 15 genes (Arondel et al. 2000). 

One of these, LTP1, was identified in the screen of the Arabidopsis leaf 

proteome and found to contain carbamates on multiple lysine residues. There 

was a convincing confidence score for the presence of a carbamate on 

lysines 65 and 115. A third putative carbamate was identified on lysine 98, 

however the data for this peptide was of poor quality so this is less certain 

(Linthwaite 2017, unpublished data). LTP1 is known to be expressed in the 

epidermal cells of the leaves and stem, as well as in the flower and the 

protoderm of the embryo. This expression pattern is consistent with a 

potential role for this protein in both defence against pathogens and cuticle 

deposition (Thoma et al. 1994).  

 

The presence of carbamate modifications on Arabidposis LTP1 indicate that 

CO2 concentration may influence the activity of this protein. LTP1 was 

selected for further investigation in to the effect of carbamate formation on the 

function of proteins for various reasons. Two of the three carbamates 

potentially present on this protein were confidently identified by mass 
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spectrometry data analysis software. Additionally, homologous proteins from 

other plant species have previously been successfully expressed and purified 

and assaying the lipid binding activity of LTPs is relatively straightforward 

(Bogdanove et al. 2016).  

 

This chapter will cover expression and purification of Arabidopsis LTP1 and 

the use of the fluorescent probe TNS to investigate the effect of CO2 on the 

lipid binding activity of this protein. It will also examine the effect of CO2 on the 

activity of a mutant LTP1 in which lysine 65 has been mutated to an alanine 

residue and discuss further experiments which may help fully elucidate the 

effect of carbamate formation on the function of this protein. 
	
	

4.2 Expression 
 

The amino acid sequence for Arabidopsis LTP1 is shown below with the 

lysines containing putative carbamates highlighted (Figure 4-1). 

 
MAGVMKLACLLLACMIVAGPITSNAALSCGSVNSNLAACIGYVLQGGVI
PPACCSGVKNLNSIAKTTPDRQQACNCIQGAARALGSGLNAGRAAGIPK
ACGVNIPYKISTSTNCKTVR 
 
Figure 4-1: Amino acid sequence of LTP1. Lysines 65 and 115, which are 

thought to be carbamylated, are highlighted in red. Lysine 98 which may also 

be carbamylated is highlighted in purple. Residues highlighted in blue are 

involved in lipid binding.  

 
 

4.2.1 Test expression 
 

The E.coli strain Tuner Rosetta was investigated for the expression of 

recombinant LTP1. The LTP1 (Figure 4-1) with an attached polyhistidine tag 

was purchased from Genscript in the plasmid vector pET14b. Tuner Rosetta 

cells were transformed with this plasmid and a small-scale test expression 

was performed (2.11). Expression of LTP1 was induced with either 0.2 mM or 
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2 mM IPTG and samples were taken before induction, 1 h after induction and 

3 h after induction. Cell lysate from each sample was centrifuged to pellet any 

insoluble protein and the resultant supernatant and pellet were run on SDS-

PAGE gels.  

 

 

Successfully expressed LTP1 was shown to be present in the pellet from 

samples 1 h and 3 h after induction, induced with either 2 mM or 0.2 mM 

IPTG. Some protein was also observed at the correct molecular weight for 

LTP1 in the pellet of the un-induced samples, suggesting a degree of leaky 

expression. No LTP1 was observed in the supernatant of any of the samples. 

This indicates that LTP1 is likely to be found in insoluble protein aggregates 

called inclusion bodies, which form due to misfolding of proteins during 

expression in bacteria (Koppito, 2000). This protein therefore needed to be 

solubilised and refolded correctly following expression. Analysis of the SDS-

PAGE gel indicated that most protein was located in the pellet 3 h after 

induction with 0.2 mM IPTG. Therefore these conditions were used for large-

scale expression of LTP1.	 

 

4.2.2 Large-scale expression 
 

Large-scale expression of LTP1 was carried out to produce enough protein to 

assay binding activity (2.12). Following expression, LTP1 is found in an 

insoluble form within inclusion bodies. Therefore solubilisation and refolding of 

this protein were required before purification was possible. Inclusion bodies 

were washed with a series of centrifugation and sonication steps. They were 

then resuspended in 6 M urea and incubated over night to solubilise the 

aggregated protein. The protein was refolded by diluting the solution with PBS 

in a ratio of 1: 10 and incubating for 30 min. 

 

The polyhistidine tag present on the refolded LTP1 allowed purification by 

nickel affinity chromatography. This protein was found to have high affinity for 
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the nickel resin. Elution buffers containing concentrations of imidazole from 50 

mM to 1 M were required to elute all the protein from the resin. Wash fractions 

produced by this purification process were run on an SDS-PAGE gel and the 

results can be seen in Figure 4-2.  

 
Figure 4-2: SDS page gel of wash fractions produced by purification of LTP1-

WT. Protein in lane A was eluted with 50 mM imidazole, lane B with 100 mM, 

lane C with 200 mM, lane D with 400 mM and lane E with 1 M. LTP1 can be seen 

between the 15 kDa and 10 kDA protein markers.  

 

LTP1 can clearly be seen on the SDS-PAGE gel at its expected molecular 

weight of 12 kDa. This protein is very pure in all fractions with very little 

contamination visible. The fraction eluted with 50 mM imidazole contains very 

little protein, again indicating that LTP1 has a particularly high affinity for the 

nickel resin. All fractions were combined for further experiments. Although 

correct refolding of this protein could not be confirmed, later experiments 

indicated that an active form of this protein was present in samples.  
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4.3 Assaying lipid binding of WT LTP1 
 
 
 LTPs are characterised by their ability to bind and transport lipids (Carvalo 

and Gomes, 2007). It was therefore hypothesised that if the carbamates 

identified on LTP1 are functionally relevant, it is likely that they may play a 

role in lipid binding. A lipid-binding assay was developed to investigate the 

effect of these carbamates on the lipid binding affinity of this protein.  

 

The florescent probe 6-(p-Toluidino)-2-naphthalenesulfonic acid (TNS) 

fluoresces only when bound to hydrophobic lipid binding pockets of proteins. 

TNS is known to bind competitively to the lipid-binding pocket of LTPs and 

has previously been used successfully to measure the lipid binding affinity of 

a pea LTP1 (Bogdanov et al. 2016). These studies measured displacement of 

TNS by biological lipids to determine the affinity of the protein for specific 

lipids. However, as binding of TNS to LTP1 may also be affected by the 

concentration of CO2, we have simplified this assay by directly measuring the 

binding of the probe to the protein. The fluorescence of TNS was then used to 

estimate the lipid binding capability of the Arabidopsis LTP1 under different 

conditions. 

 

 

4.3.1 TNS dose response curves 
 

Changes in the binding affinity of LTP1 for the fluorescent probe TNS will be 

easier to observe when assays are performed using a concentration of TNS 

which is close to the dissociation constant (Kd) for this interaction. The Kd is 

the concentration of TNS at which half of the total molecules of LTP1 protein 

are associated with the probe (Bisswanger, 2008).  
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In order to determine the Kd for the interaction of TNS with LTP1, a dose 

response curve was produced (2.16). Increasing concentrations of TNS from 

0.625 µM to 160 µM were combined with LTP1 in measurement buffer and 

the fluorescence measured. Fluorescence was then plotted against TNS 

concentration (Figure 4-3).  

 

Figure 4-3: Dose response curve showing change in fluorescence with 

increasing TNS concentration.	

	
From the dose response curve produced (Figure 4-3) it can be seen that 

maximum fluorescence, when all the protein is bound to TNS, is occurs with 

approximately 50 µM TNS. The fluorescence is at half the maximum value 

when around 8.7 µM of TNS is present, indicating that this is the Kd for this 

interaction.  
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4.3.2 Assaying lipid binding activity with and without CO2 
 

In order to investigate whether the carbamates identified on LTP1 contribute 

to lipid binding activity, the ability of this protein to bind TNS was measured 

both in the presence and absence of CO2.  

 

The assay developed above is simple and quick to perform and can therefore 

be assembled easily within a nitrogen atmosphere chamber. This allows for 

more efficient and thorough removal of CO2 than was possible for earlier 

experiments with FBA1. The measurement buffer for this assay was 

degassed before being taken in to the chamber and the protein samples and 

TNS probe were purged for 3 min prior to being taken in to the nitrogen 

atmosphere. 

 

The assay was assembled both inside the nitrogen atmosphere cabinet in the 

absence of CO2 and on the bench at atmospheric CO2 concentrations. TNS 

and LTP1 were combined in measurement buffer and mixed well. A control 

sample containing TNS and measurement buffer but no protein was also 

prepared. Fluorescence of all samples was measured. For the assay in the 

absence of CO2, samples had to be removed from the nitrogen atmosphere 

cabinet before fluorescence could be measured. This was done to prevent 

atmospheric CO2 affecting TNS binding during measurement, however it was 

not possible to ensure that the protein did not interact at all with CO2. The 

fluorescence of the control samples (background fluorescence) were taken 

away from the values produced for samples containing LTP1. The results of 

these assays are presented in Figure 4-5.		
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Figure 4-5: Fluorescence of TNS bound to LTP1 in the absence of CO2 and at 

atmospheric CO2 concentrations. Mean values (n = 8) are presented here and 

error bars represent the standard error. 

 
Figure 4-5 shows that in the absence of CO2, fluorescence was 58 % lower 

than when the assay was performed at atmospheric [CO2]. This indicates a 

corresponding reduction in binding of TNS to LTP1 when CO2 was absent. All 

data from these experiments was analysed using a Shapiro-Wilk normality 

test and found to be normally distributed. An unpaired T-test indicated that the 

difference in fluorescence between the assays with and without CO2 is 

statistically significant (P < 0.0001).  

 

Limitations of this experiment include difficulties in removing CO2 from the 

system. Although the TNS and protein were purged before being added to 

assays, it was not feasible to ensure that all CO2 was removed from these. 

Additionally, the samples prepared in the absence of CO2 had to be measured 

under atmospheric conditions. It is therefore possible that some inorganic 

carbon was present in these samples when measurement took place. A 

further limitation of this experimental set up is that it was not possible to 
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remove only CO2 from the system as the nitrogen atmosphere cabinet lacks 

other components also found in air. For this reason it is not possible to discern 

whether the observed effect is due only to the absence of CO2.  

 

However, assuming that the observed effect is due to the presence or 

absence of CO2, these results suggest that LTP1 requires CO2 for efficient 

TNS binding. It is therefore likely that one or more of the carbamates 

observed on this protein increase the affinity of the protein for lipids. It should 

be noted that TNS is not a biological lipid and therefore it can only be inferred 

that this effect would also occur for binding of LTP1 to biologically relevant 

lipids. Additionally, from this data alone it is not possible to identify which 

carbamylated lysine residues play a role in lipid binding. In order to determine 

which carbamates are responsible for this, the binding activity of mutants 

lacking these carbamylated lysine residues must be assayed.  

 
	

4.4 Assaying lipid binding activity of the mutant LTP1-K65A 
 

The presence of CO2 at atmospheric concentrations appears to increase the 

lipid binding activity of LTP1, compared with the protein in the absence of 

CO2. However, from the results of the experiments performed so far it is not 

possible to determine which carbamates are responsible for this difference. In 

order to determine the effect of an individual carbamate on the lipid binding 

activity of this protein, a mutant was made in which lysine 65 was mutated to 

an alanine. This residue was chosen for investigation as this carbamate was 

identified with the best confidence score by Linthwaite (2017). An alanine 

residue was selected to replace the lysine as this is an inert residue and is 

therefore unlikely to have unwanted effects on the chemical properties of the 

protein.   
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4.4.1 Expression 
 

The plasmid pET14b-LTP1-K65A was purchased from Genscript and 

transformed in to Tuner Rosetta E. coli cells. This mutant was expressed, 

refolded and purified in the same manner as the WT protein (2.12-2.14). 

Samples from wash fractions produced in the purification process were run on 

an SDS-PAGE gel (Figure 4-6).  

 
Figure 4-6: SDS-PAGE gel showing wash fractions from purification of LTP1-

K65A. Protein in lane A was eluted with 50 mM imidazole, lane B with 100 mM, 

lane C with 200 mM, lane D with 400 mM and lane E with 1 M. LTP1 can be seen 

between the 15 kDa and 10 kDA protein markers. 

 
 

This SDS-PAGE gel (Figure 4-6) indicated that LTP1-K65A was present in all 

fractions at the predicted molecular weight of 12 kDa. Significantly less protein 

is present in the fraction eluted with 50 mM imidazole than in other fractions. 
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All fractions contain relatively pure protein with very little contaminant visible 

in any of the lanes. This gel closely resembles the SDS-PAGE gel produced 

following purification of the WT protein (figure 4-2) indicating a similar level of 

success in expressing and purifying both proteins.  

 

4.4.2 Assaying lipid binding activity of K65A in the presence and absence of 
CO2 
 

The affinity of the LTP1-K65A mutant protein for the fluorescent probe TNS 

was investigated in the presence and absence of CO2. It was hypothesised 

that the carbamate located on lysine 65 of the LTP1-WT is responsible for the 

increase in TNS binding activity observed at atmospheric CO2 concentrations 

compared with the absence of CO2. If this is the case, changes in CO2 

concentration should have no effect on the binding ability of the K65A mutant 

protein.  

 

This assay was performed both inside a nitrogen atmosphere cabinet and on 

the bench at atmospheric CO2 concentrations, in the same manner as for the 

WT protein (2.15). Control samples containing TNS but no protein were also 

assembled under both conditions. The limitations of this were the same as for 

assays with LTP1-WT. The mean fluorescence intensity was calculated and 

the background fluorescence (mean fluorescence of control samples) was 

taken away from this value. The results of these assays are shown in Figure 

4-7. 
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Figure	 4-7:	 Fluorescence of TNS bound to LTP1-K65A in the absence of CO2 

and at atmospheric CO2 concentrations. Mean values (n = 8) are presented here 

and error bars represent the standard error	

	
Figure 4-7 clearly shows that the measured fluorescence was lower in the 

absence of CO2 than at atmospheric CO2 concentrations, with fluorescence in 

absence of CO2 at 60 % of the fluorescence measured at atmospheric CO2. 

This indicates that TNS binding to LTP1 was reduced in the absence of CO2. 

The data obtained from these assays did not pass a Shapiro-Wilke normality 

test, indicating that it is not normally distributed. A parametric statistical test 

such as an ANOVA was therefore not appropriate to analyse this data. A 

Mann-Whitney U test was used instead, and showed that the difference in 

fluorescence observed between the two conditions is statistically significant (P 

< 0.05).  

 

Due to the K65A mutation, no carbamate is present on residue 65 of this 

protein at any concentration of CO2. However, a significant difference in 
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binding activity is still observed between the two conditions tested here. The 

observed difference in fluorescence for the mutant protein (60 %) is 

comparable to that observed for the WT protein (58 %) and falls within the 

standard error for the LTP1-WT results. This suggests that the carbamate 

observed on lysine 65 of the WT LTP1 is not responsible for increasing the 

affinity of this protein for TNS in the presence of CO2. 

 

 

4.4.3 Dose response curve 
 

The results of the above experiment indicate that the K65A mutation does not 

affect the affinity of LTP1 for TNS. In order to confirm this, a dose response 

curve for binding of LTP1-K65A to TNS was produced. It was hypothesized 

that the Kd for this interaction would be the same as the carbamate on K65A 

of LP1-WT does not appear to increase the affinity of the protein for the lipid 

probe, the Kd for the interaction of TNS and the mutant protein will be the 

same as for the WT.  

 

LTP1-K65A protein was combined with increasing concentrations of TNS and 

the fluorescence measured (2.16). The results of these assays are presented 

in Figure 4-8.  
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Figure 4-8: Dose response curve for LTP1-K65A and LTP1-WT showing change 

in fluorescence with increasing TNS concentration. 

 

Figure 4-8 shows dose response curves for both the K65A mutant protein and 

the WT. It appears from this figure that slightly higher concentrations of TNS 

are required for the mutant to reach maximum binding than the WT. The 

fluorescence of the LTP1-K65A assays reached half its maximum value when 

the concentration of TNS was 11.7 µM. This suggests that the Kd for the 

interaction of LTP1-K65A and TNS is higher than that of the WT protein and 

probe. This mutant protein may therefore have a lower binding affinity for the 

probe than the WT. However, due to time constraints this assay was only 

repeated twice. It is therefore not possible to determine from this data alone 

whether this difference in Kd is significant. 
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4.5 Binding of LTP1 to biologically relevant lipids 
 

All lipid-binding experiments discussed so far have taken advantage of the 

ability of LTP1 to bind TNS to measure lipid binding affinity. However, this 

fluorescent probe is artificially made and is not present naturally in plants. It 

was therefore important to assess the ability of purified LTP1 to bind 

physiologically relevant lipids. The lipids phosphatidylethanolamine (PE), 

phosphatidylcholine (PC) and oleoyl coA (OC) were chosen for preliminary 

investigations as they were readily available and are all present in plant cells. 

PE and PC are phospholipids found as part of the lipid bilayer (Vance et al. 

2012). OC is a fatty acid found in both animal and plant oils (Young, 2002). 

 

LTP1-WT protein was combined with TNS and the lipid of interest in 

measurement buffer. A control sample containing protein and TNS but no 

biological lipid was also prepared and the fluorescence of all samples was 

measured. When a lipid binds to LTP1 it will displace TNS, resulting in a 

decrease in fluorescence (Bogdanove et al. 2016). Therefore a lower 

fluorescence reading indicates that LTP1 has greater affinity for that particular 

lipid.  The results of this investigation are shown in Figure 4-9, with 

fluorescence expressed as a percentage of the value measured in the 

absence of biological lipid.  
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Figure 4-9: Fluorescence of assays with biological lipid present, expressed as 

a percentage of the fluorescence measured for the no-lipid control. Mean 

values are presented here (n = 3) and error bars represent the standard error.  

 

All the biological lipids tested here resulted in a decrease in fluorescence, 

indicating that all are able to bind to LTP1. Oleoyl coA showed the greatest 

reduction in fluorescence, measuring at only 21 % of the fluorescence of the 

no-lipid control. The protein also showed considerable affinity for 

Phosphatidylethanolamine, with fluorescence reduced to 31 % of the control. 

When phosphatidylcholine was tested, fluorescence decreased to 78 % of the 

control value. This indicates that LTP1 does bind to this lipid, however with 

considerably lower affinity than to the others tested.  

 

The results of these preliminary investigations in to binding of LTP1 to 
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biologically relevant lipids indicate that the purified protein is able to bind 

multiple plant lipids with varying degrees of affinity. Due to time constraints on 

this project no other lipids were tested in this manner, however it would be 

interesting to explore binding of LTP1 to a range of different potential 

interactors. Additionally, it would be interesting to investigate the effect of CO2 

concentration on binding of LTP1 to biologically relevant lipids to confirm that 

the presence of CO2 enhances binding to naturally occurring plant lipids as 

well as to the fluorescent probe TNS.  

 

 

4.5 Discussion and Conclusion 
 

Purified LTP1 protein was able to bind to the probe TNS, stimulating 

production of fluorescence and allowing measurement of binding activity. In 

the absence of CO2, the ability of LTP1-WT to bind TNS was significantly 

reduced, indicating a role for CO2 in lipid binding. Three putative carbamates 

have previously been identified on lysine residues in this protein (Linthwaite 

2017). One or more of these carbamates may be responsible for increasing 

lipid-binding affinity in the presence of CO2. The mutant protein LTP1-K65A, 

which lacks one of these carbamylated lysine residues, showed the same 

reduction in TNS binding in the absence of CO2 as the WT protein. This 

suggests that the carbamate observed on lysine 65 on LTP1-WT is not 

required to increase the TNS-binding affinity of this protein. This carbamate 

may still play a role in another aspect of protein activity, for example it may be 

involved in the interaction of LTP1 with other proteins or even with more 

biologically relevant lipids than TNS. A small difference between Kd for the 

interaction of LTP1-WT and LTP1-K65A with TNS was demonstrated, 

however not enough data was obtained to determine if this difference was 

statistically significant. However, as the binding affinity of LTP1-K65A was 

also reduced in the absence of CO2, it is likely that one or both of the other 

carbamates identified (on lysines 98 and 115) may instead be responsible for 

the observed increase in binding to TNS in the presence of atmospheric CO2. 
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Creating mutants which do not contain these lysine residues could further 

elucidate the role of these carbamates in the lipid binding activity of LTP1.  

 

The screen conducted by Linthwaite (2017) that originally identified the 

carbamates present on LTP1 was conducted at a higher concentration of CO2 

than the assays performed here. Consequently it is possible that not all the 

observed carbamates are able to form at atmospheric CO2 concentrations. If 

this is indeed the case, it may be that the carbamate on lysine 65 of LTP1-WT 

was not present at all during the assays discussed here. Therefore, it would 

be interesting to trap carbamates on purified LTP1-WT both in the absence of 

CO2 and atmospheric concentrations to investigate which, if any, of these 

carbamates are present under these conditions. If these carbamates are 

present at this concentration of CO2 it implies that their role in protein function 

is not regulatory, as they would always be present at the CO2 concentration 

found in plant cells. Instead they may be a necessary part of the structure of 

this protein in vivo.  

 

The fluorescent probe TNS was used in all experiments described here to 

assess lipid binding activity of LTP1. However, as discussed above, this probe 

is not naturally occurring and therefore may not accurately represent binding 

of biological lipids to this protein. For this reason, the ability of LTP1 to bind to 

various naturally occurring plant lipids was investigated. LTP1 was able to 

bind to all the lipids tested with varying degrees of affinity, indicating that this 

purified protein has biologically relevant activity. Due to the time scale of this 

project, the effect of CO2 on this binding was not investigated, however it 

would be extremely interesting to investigate whether the results achieved 

with TNS could be replicated with these plant lipids.  

 

Additionally, LTPs may also interact with molecules other than lipids. For 

example, they have been shown to bind specifically to elicitin receptors in the 

plasma membrane, potentially playing a role in the defence against 

phytopathogens (Buhot et al. 2001). Therefore the carbamates present on 
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LTP1, such as the carbamate on lysine 65 which does not appear to affect 

lipid binding, may be involved in other aspects of protein function. Further 

work on this protein could explore the interaction of this particular LTP with 

elicitin receptors and investigate whether this is affected by CO2 

concentration.  

 

In conclusion, preliminary investigations indicate that the lipid binding activity 

of LTP1 is increased by the presence of CO2. Mutant studies demonstrate 

that this increase in lipid binding affinity is unlikely to be due to the putative 

carbamate present on lysine 65 of the WT protein. Further studies are 

required to investigate whether this effect is due to the presence of 

carbamates on lysines 98 or 115 and to fully elucidate the role of CO2 in the 

function of this protein.  
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Chapter 5: Conclusions and Future Work 
	
This thesis set out to examine the effect of carbamylated lysine residues on 

the function of two proteins from Arabidopsis thaliana.  

 

The metabolic enzyme FBA1 was known to contain a carbamate modification 

on the lysine residue at position 293. However, no significant difference in the 

specific activity of this enzyme was observed with the addition or removal of 

CO2. Additionally, the ability of FBA1-WT to form a tetramer was not affected 

by increasing the concentration of CO2. Nevertheless, the mutant protein 

FBA1-K293A, which is unable to form a carbamate, had reduced activity 

compared with the WT and showed impaired tetramer formation. Another 

mutant, K293E, was found to be unable to mimic the effect of the 

carbamylated lysine residue. A carbamate trapping experiment confirmed that 

the carbamate on FBA1-WT is not stable at atmospheric CO2 concentrations. 

However, the carbamate may still have been present on some peptides in the 

sample. Therefore further mass spectrometry analysis is required to 

determine whether this modification was likely to have been successfully 

removed for assays in the absence of CO2. Overall, these results suggest that 

while lysine 293 is important for tetramer formation and thus efficient cleavage 

activity, the carbamate modification is not required for this. Further 

investigation is required to determine whether this carbamate does play role in 

protein function.  

 

The non-specific lipid binding protein LTP1 contains three putative 

carbamylation sites. The ability of this protein to bind to the fluorescent probe 

TNS was shown to be significantly reduced in the absence of CO2. This effect 

was also demonstrated for the mutant protein LTP1-K65A, which cannot form 

a carbamate on lysine 65. Therefore it is likely that the carbamate on lysine 65 

is not responsible for the observed effect of CO2 on the ability of the protein to 
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bind TNS. Further mutant studies are required to determine the effect of the 

other observed carbamates on the function of LTP1. Additionally, further 

investigation is required to find out whether this effect can be replicated using 

biologically relevant lipids.   

 

Although it was not possible in the time scale of this project to fully elucidate 

the role of carbamates in the function of these two proteins, the investigations 

described in this thesis have demonstrated that carbamate modifications 

identified on Arabidopsis proteins by Linthwaite (2017) may be functionally 

relevant. Therefore the carbamate trapping technique developed by 

Linthwaite (2017) provides an effective mechanism for identifying novel 

targets of CO2 signalling.   

 

The proteins discussed in this thesis were only two from a wide range of 

Arabidopsis proteins that were found to contain carbamate modifications. The 

methods developed in this project for assaying protein activity in the absence 

of CO2 could be used in future experiments to determine the effect of 

carbamates on the function of other such proteins. In addition, in vivo mutant 

studies could be conducted to examine the physiological effect of these 

carbamylated proteins on plant growth and development.  

 

The development of a novel technique to identify carbamate modifications on 

proteins under physiologically relevant conditions has provided us with an 

invaluable new resource for investigating the biological effect of CO2 

(Linthwaite, 2017). Further proteomic screens could be performed using this 

method to identify carbamylated proteins in a variety of organisms and cell 

types. There is huge potential for this technique to be used to greatly increase 

out understanding of how carbamates contribute to protein function as well as 

identifying new proteins involved in CO2 signalling.  
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