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Abstract: In this thesis we investigate the integrability properties of the regularized

long-wave (RLW) equation and modified regularized long-wave (mRLW) equation as

perturbations of the integrable Korteweg-de Vries (KdV) equation. We study various

properties of numerical mRLW three-soliton scattering and compare these with the

corresponding RLW soliton solutions. We find that the numerical mRLW solitons

behave much like integrable solitons in the sense that the only result of the three-

soliton interaction is the phase shift each soliton experiences, which is approximately

equal to the sum of pairwise phase shifts. Furthermore, we investigate the so-called

quasi-integrability properties of these RLW and mRLW simulations. Using both

analytical and numerical methods, we argue that these models possess an infinite

amount of asymptotically conserved charges, i.e., quasi-conserved charges, which are

observed in multi-soliton interactions. Finally, we also simulate numerical RLW and

mRLW solutions in the presence of additional perturbing terms. This allows us to

study soliton-radiation interactions and we find that for certain perturbations, these

interactions preserve the quasi-conservation laws to a certain extend.
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Chapter 1

Introduction

1.1 The perturbed KdV equation

The aim of this thesis is to investigate various aspects of the following nonlinear

partial differential equation (PDE)

ut + ux +
[
α

2 u
2 + ε2

α

4wxvt + uxx − ε1(uxt + uxx)
]
x

= 0 , (1.1.1)

where the subscripts x and t denote partial differentiation with respect to position and

time, the field u = u(x, t) is a real-valued function, and w and v are antiderivatives

of the u-field, defined by

u = wt = vx . (1.1.2)

Furthermore, α ∈ R is a scaling parameter, and ε1, ε2 ∈ R are perturbation paramet-

ers.

When ε1 = ε2 = 0, equation (1.1.1) reduces to the Korteweg-de Vries (KdV)

equation [19]

ut + ux +
[
α

2 u
2 + uxx

]
x

= 0 . (1.1.3)

The standard form of the KdV equation can be recovered by setting α = 6 and

letting u = −ū− 1
6 , that is,

ūt − 6ūūx + ūxxx = 0 . (1.1.4)
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One of the interesting properties of the KdV equation is that it admits analytical N -

soliton solutions for any positive integer N [14], where solitons are defined as localised

waves that scatter elastically, and preserve their shape and velocity asymptotically.

As we will discuss in more detail below, the KdV soliton solutions exist because the

model gives rise to an infinite number of conservation laws, which is closely related

to the concept of integrability.

If we set ε1 = 1 and ε2 = 0, then equation (1.1.1) reduces to

ut + ux +
[
α

2 u
2 − uxt

]
x

= 0 , (1.1.5)

which is known as the regularized long-wave (RLW) equation [2, 24]. This equation

plays an important role as a model in many areas of physics and the study of

nonlinear dispersive waves. One advantage of the RLW equation is that it has a

linear dispersion relation that is better posed than the dispersion relation for the

KdV equation; the phase velocities of RLW solitons with a large wavenumber tend

to zero, whereas KdV solitons with a large wavenumber propagate with negative

and unbounded velocities. On the other hand, this is a nonintegrable model that

admits only one-soliton solutions [6]. Furthermore, this model has only exactly three

conserved charges [23], given by

QRLW
1 = −α2

∞∫
−∞

dxu , (1.1.6)

QRLW
2 = −α

2

2

∞∫
−∞

dx
(
u2
x + u2

)
, (1.1.7)

QRLW
3 = α2

2

∞∫
−∞

dx
(
α

3 u
3 + u2

)
. (1.1.8)

These charges correspond, respectively, to the mass, momentum and Hamiltonian of

the RLW equation.

Equation (1.1.1) corresponds to the modified regularized long-wave (mRLW)

equation [15] when ε1 = ε2 = 1, that is,

ut + ux +
[
α

2 u
2 + α

4wxvt − uxt
]
x

= 0 . (1.1.9)
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The mRLW equation has similar properties as the RLW equation because they admit

the same family of single-soliton solutions with the same short wavelength properties.

However, the difference between the two models is that the mRLW equation also

admits analytic two-soliton solutions. Another difference is that no Hamiltonian

structure has been found for this system, and its only known conservation laws are

given by

QmRLW
1 =

∞∫
−∞

dx u = − 2
α
QRLW

1 ≡ Q1 , (1.1.10)

and

QmRLW
2 =

∞∫
−∞

dx wx ≡ Qε2
2 , (1.1.11)

where we have assumed that u, wx and vt vanish sufficiently fast when x→ ±∞. In

fact, note that Q1 and Qε2
2 are conserved for any ε1, ε2 ∈ R.

To sum up, we see that equation (1.1.1) can be thought of as a family of per-

turbations of the KdV equation that contains the RLW and mRLW equations as

special cases. The aim of this thesis is to investigate various aspects of integrability

and quasi-integrability related to analytical and numerical solutions of this equa-

tion. Integrability in the context of nonlinear PDEs often manifest itself in the

properties of their (soliton) solutions. These general concepts will be discussed in

the remaining part of this chapter. Furthermore, using Hirota’s method, we obtain

analytical soliton solutions of the perturbed KdV equation that are valid only for

certain values of ε1 and ε2, and we discuss some of their properties. Finally, we

introduce the (relatively new) concept of quasi-integrability.

In chapter 2, we use analytical methods to investigate the quasi-integrability

aspects of the perturbed KdV equation. We introduce Lax potentials that give rise

to a so-called ‘anomalous’ zero curvature equation. Using this curvature, we generate

quantities that are potentially quasi-conserved. In fact, for the special case of the

mRLW two-soliton solutions, we prove that the charges are indeed quasi-conserved.

To our knowledge, this is the first analytic proof of quasi-integrability in the context

of exact two-soliton solutions. In the last two sections of the chapter, we analyse
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the quasi-integrability aspects of solutions that are an expansion around some exact

KdV solution that satisfies special symmetry properties.

In chapter 3, we introduce two finite difference schemes in order to approximate

the perturbed KdV equation. The first scheme that we discuss is first-order accur-

ate in time and second-order in space, whereas the second scheme is second-order

accurate in both space and time. We compare various numerical simulations with

the corresponding analytic values to test the accuracy and stability of the schemes.

The results show that the first-order scheme is unstable. The second-order scheme,

on the other hand, appears to be stable and give reliable results.

We use the second-order scheme to simulate multi-soliton solutions governed by

the RLW and mRLW equations. These results will be discussed in chapter 4. We test

the stability of these solutions by checking for visible loss of radiation. Furthermore,

we determine the phase shift of the numerical solitons during two- and three-soliton

interactions. Finally, we test the soliton resolution conjecture for both models to

further investigate their stability properties.

In chapter 5, we investigate the numerical (multi-)soliton solutions in the presence

of perturbing terms. We investigate this for both the RLW and mRLW one-, two-

and three-soliton solutions. We check if these systems are stable or if they blow

up. Furthermore, by analysing multi-soliton interactions, we can see how the stable

soliton-like components of the initial conditions interact with the other soliton- and

radiation-like components.

For the next chapter, we numerically analyse the quasi-integrability properties

of the simulations presented in chapters 4 and 5. This is the first time, to our

knowledge, that the quasi-integrability properties of numerical three-soliton solutions

are investigated. Furthermore, we find that for certain perturbations, the interactions

between soliton-like and radiation-like components also appears to preserve quasi-

integrability.

In our final chapter, we sum up our results. Furthermore, we discuss various

aspect that we think are interesting and fruitful to research in the future. Finally,
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in the appendix, we summarise the parameters that we used for all the simulations

presented in this thesis.

1.2 Integrability

Although there is no universally accepted definition of integrability, we will refer

to a system as completely integrable if it has infinite many non-trivial conserved

quantities that are in involution with respect to each other. The KdV equation is

an example of a completely integrable model [10].

An important feature of complete integrable models is that they admit N -soliton

solutions for any positive integer N . Furthermore, for a given N -soliton solution,

the infinite amount of conservation laws prevent the creation or destruction of any

solitons and ensure that the set of outgoing solitons regain the shape and velocity

of the incoming solitons. In fact, the only result of the scattering of integrable

solitons is the phase shift each soliton experiences. Furthermore, when more than

two solitons interact with each other at the same time, the total phase shift each

soliton experiences is the sum of pairwise phase shifts [22]. This is due to the absence

of ‘many-particle’ effects.

Note that some nonintegrable models also admit (multi-)soliton solutions. How-

ever, they do not admit analytical N -soliton solutions for any positive integer N .

Numerical investigations have shown that these nonintegrable solitons are often less

stable in the sense that when they are perturbed, their amplitudes might continu-

ously increase until the system blows up, or their amplitudes might continuously

decrease while simultaneously emitting radiation. On the other hand, when integ-

rable solitons move in the presence of some small perturbation, this might cause

their amplitudes and velocities to change while emitting some radiation but, asymp-

totically, the remaining structure will move away from the radiation without blowing

up. In fact, after an integrable soliton emits its radiation, the resulting structure still

looks and behaves like a soliton, albeit with a slightly different amplitude, velocity
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and phase as the initial configuration [28, and references therein]. Strictly speaking,

the ‘soliton’ solutions of nonintegrable models are solitary waves, but they are not

solitons. However, as is common in the physics literature, solitary waves are also

referred to as solitons, and we adopt this terminology as well.

Another remarkable property of the KdV equation is that numerical and ana-

lytical investigations have shown that any localised pulse, used as initial conditions,

eventually decouples into a sum of soliton- and radiation-like structures [14, 21]. We

can think of the solitons as the stable part of the initial configuration. This property

has been observed for many integrable models, and is known as the soliton resolution

conjecture [1, 27, and references therein].1

1.2.1 Zero curvature condition

The definition of integrability, as discussed in this thesis, is closely related to the

so-called zero curvature equation. In this section, we discuss the zero curvature

equation, and we show that when this condition is satisfied, it leads to a function that

generates infinitely many conserved quantities. To this end, we consider nonlinear

PDEs in (1 + 1) dimensions, that is,

F (u, ux, ut, · · · ) = 0 , (1.2.1)

for some given function F . Let us now suppose the PDE admits two N×N matrices,

Ax = Ax(x, t, λ) and At = At(x, t, λ), which depend on the field u (and its derivatives)

and a spectral parameter λ, such that equation (1.2.1) is satisfied if, and only if,

Ftx ≡ ∂tAx − ∂xAt + [At, Ax] = 0 . (1.2.2)

This is the zero curvature equation, where Ftx denotes the curvature, and Ax and At

are known as the Lax potentials. This equation leads to an infinite amount of

conserved quantities, as we will show below.

To this end, let us assume that u is periodic in x with period 2π. Next, we

1We thank A. Hone for drawing our attention to this conjecture.
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introduce the monodromy matrix T = T (t, λ), defined by

T = P exp
− 2π∫

0

dxAx

 , (1.2.3)

where P denotes the path ordering operator. Taking the derivative with respect to

time gives

∂tT = −
2π∫
0

dx P e
−

2π∫
x

dy Ax
(∂tAx)P e

−
x∫

0
dy Ax

= −
2π∫
0

dx P e
−

2π∫
x

dy Ax
(∂xAt − [At, Ax])P e

−
x∫

0
dy Ax

= −
2π∫
0

dx ∂x

P e−
2π∫
x

dy Ax
At P e

−
x∫

0
dy Ax


= −At(2π, t, λ)T (t, λ) + T (t, λ)At(0, t, λ)

= [−At(2π, t, λ), T (t, λ)] ,

(1.2.4)

where we have used the periodicity of the field u to get to the last line. Let T = T(λ)

denote the trace of the monodromy matrix, that is,

T = Tr (T ) . (1.2.5)

Note that T is not dependent on time due to the cyclicity of trace, that is,

∂tT = Tr ([−At(2π, t, λ), T (t, λ)]) = 0 . (1.2.6)

Therefore, expanding T generates infinitely many conserved charges. Note that the

zero curvature condition is not sufficient proof for complete integrability. To make

this distinction, we say a system is kinematically integrable if it can be represented

as a zero curvature condition [9].

The zero curvature condition of the KdV equation described by equation (1.1.4)

can be represented by

Ax =

 0 1

λ+ ū 0

 and At =

 ūx −4λ+ 2ū

−4λ2 − 2λū+ 2ū2 − ūxx −ūx

 (1.2.7)
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such that

Ftx =

 0 0

ūt − 6ūūx + ūxxx 0

 . (1.2.8)

It can be shown that the charges generated by Ax are in involution, and so the KdV

equation is in fact a complete integrable system [9, e.g.]. We will use the expression

for Ax in the next chapter to construct the so-called anomalous curvature equation

of the perturbed KdV equation.

1.3 Hirota integrability

As it turns out, for PDEs there is no definition of integrability that applies to

every model. Therefore, one instead often focusses on methods that lead to soliton

solutions. One technique to construct soliton solutions is known as Hirota’s method

(and we will, when it is important to stress this fact, refer to them as Hirota solutions).

In this section, we discuss Hirota’s method and how it is related to the concept of

integrability. Furthermore, we construct the N -soliton Hirota solutions of the KdV

equation, and we construct families of one- and two-soliton solutions that solve the

perturbed KdV equation for certain values of the perturbations parameters ε1 and ε2.

1.3.1 Hirota’s method

In this subsection, we briefly discuss the Hirota method for constructing N -soliton

solutions [18, e.g.]. First, let us consider a nonlinear PDE in (1 + 1) dimensions

F (u, ux, ut, · · · ) = 0 , (1.3.1)

and define Hirota’s D-operator in the following way

Dn
x f · g = (∂x1 − ∂x2)nf(x1)g(x2)|x2=x1=x , (1.3.2)

for any two functions f and g. The idea behind Hirota’s method is to write u in

terms of the so-called τ -function, τ = τ(x, t), such that the nonlinear PDE can be
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written as

P (Dx,Dt) τ · τ = 0 , (1.3.3)

where P is a polynomial in the Dx and Dt operator. This expression is known

as Hirota’s bilinear equation. Note, however, that it is not always possible find a

transformation such that the nonlinear PDE can be rewritten in Hirota’s bilinear

form.

To construct the soliton solutions, we express the τ -function as a power series in

the expansion parameter η, that is,

τ = 1 +
∞∑
n=1

ηnτn = 1 + ητ1 + η2τ2 + · · · , (1.3.4)

and choose the τi functions appropriately. When the system under consideration

admits an N -soliton solution, the series truncate in the sense that τn = 0 for n > N

so that τ is defined by a finite expansion.

It turns out that if the system under consideration admits one-soliton Hirota

solutions, then the corresponding τ -function will be of the form

τ = 1 + ηeΓ1 , (1.3.5)

where Γ1 is defined by

Γi = kix− ωit+ δi . (1.3.6)

The parameter ki denotes the wavenumber, ωi the angular frequency and δi the

arbitrary phase constant of each corresponding soliton.

Assuming that the system also admits two-soliton Hirota solutions, then the

corresponding τ -function will be of the form

τ = 1 + ηeΓ1 + ηeΓ2 + η2A12e
Γ1+Γ2 , (1.3.7)

where A12 is a constant. In fact, it turns out that the τ -function for any N -soliton

Hirota solution can be written as

τ =
∑

µi=0,1
exp

 N∑
i=1

µiΓi +
(N)∑
i<j

µiµj lnAij

 , (1.3.8)
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where the first summation is over all possible combinations of

µ1 = 0, 1; µ2 = 0, 1; . . . ; µN = 0, 1 , (1.3.9)

and∑(N)
i<j denotes the sum over all possible pairs (i, j) chosen from the set {1, 2, . . . , N}

with i < j. Furthermore, the wavenumber ki and angular frequency ωi of every soliton

in an N -soliton solution is constrained only by the dispersion relation of the form

P (ki, ωi) = 0 . (1.3.10)

It has been conjectured that Hirota’s method is related to the integrability of a

model. To understand this relationship, suppose a system can be written in Hirota

bilinear form, with the one-soliton solution given by equation (1.3.5). Furthermore,

suppose that for any positive integer N , the system admits an N -soliton solution of

the form

τ = 1 +
N∑
i=1

eΓi + finite number of higher order terms. (1.3.11)

We then say that the system is Hirota integrable. It has been observed that if a set

of equations is Hirota integrable, it also satisfies the more conventional definitions

of integrability [17]. However, no proof of this conjecture has been found so far.

Furthermore, it is often claimed that the existence of the exact one-, two- and

three-soliton Hirota solutions of a given model is a sufficient condition for the model

to be Hirota integrable [17, e.g.]. On the other hand, nonintegrable PDEs that

only possess one- and two-soliton Hirota solutions are said to be partial integrable

models [16]. (Note that this does not necessarily mean that solutions describing

three or more solitons do not exist for these models; it only shows that they cannot

be obtained using the Hirota method.) The mRLW equation is an example of a

partial integrable model, as we will discuss in more detail in subsection 1.3.3.
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1.3.2 Hirota solutions of the KdV equation

In this subsection, we construct the well-known one-, two- and three-soliton Hirota

solutions of the KdV equation [18, e.g.], with the aim to investigate the parity

properties of these solutions in the next chapter.

We find that defining the τ -function as

u = 12
α

(ln τ)xx , (1.3.12)

and substituting it into the KdV equation (see equation (1.1.3)), yields

0 = 2τ 3
x + 8τxxxτ 2

x − τx
[
6τ 2
xx + τ (2τxt + 3τxx + 5τxxxx)

]
+ τt

(
2τ 2
x − ττxx

)
+ τ [2τxxτxxx + τ (τxxt + τxxx + τxxxxx)] .

(1.3.13)

As described in the previous subsection, we make the following one-soliton ansatz

τ = 1 + ηeΓ1 . (1.3.14)

After making this ansatz, we find that the equation (1.3.13) is trivially satisfied

for the lowest order in terms of η (i.e., η0). Looking at the next order (i.e., η1),

the equation is non-trivially satisfied if ki and ωi, for i = 1, satisfy the following

dispersion relation

ωi = ki(1 + k2
i ) . (1.3.15)

Imposing these constraints implies that all the higher order terms vanish trivially,

showing that equation (1.3.14) leads to a family of exact one-soliton solutions.

As discussed in the previous subsection, we choose

τ = 1 + ηeΓ1 + ηeΓ2 + η2A12e
Γ1+Γ2 (1.3.16)

to construct the two-soliton solution. Subsequently, we find that if we impose

equation (1.3.15) on the frequencies of each soliton and define Aij, for i = 1 and

j = 2, in the following way

Aij = (ki − kj)2

(ki + kj)2 , (1.3.17)
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then the two-soliton τ -function solves the KdV equation exactly.

Loking at equation (1.3.8), the three-soliton ansatz takes the following form

τ = 1 + ηeΓ1 + ηeΓ2 + ηeΓ3 + η2A12e
Γ1+Γ2 + η2A13e

Γ1+Γ3 + η2A23e
Γ2+Γ3

+ η3A12A13A23e
Γ1+Γ2+Γ3 .

(1.3.18)

Then we find again that by imposing equations (1.3.15) and (1.3.17), this τ -function

solves the KdV equation analytically.

1.3.3 Hirota solutions of the perturbed KdV equation

In this subsection, we construct the known analytical soliton solutions of the RLW

and mRLW equation, and we also construct a new family of one-soliton solutions

that analytically solve equation (1.1.1) for any value of ε2 and ε = 1.

To construct these solutions, we introduce the following Hirota τ -function

u = −8β
α

(ln τ)xt , (1.3.19)

where β is a real parameter that will have to be determined. Note that using

equation (1.1.2), we can write

w = −8β
α

(ln τ)x + g1(x) and v = −8β
α

(ln τ)t + g2(t) , (1.3.20)

where g1(x) and g2(t) are the ‘constants’ of integration with respect to t and x,

respectively. Since u ∝ (ln τ)xt , the solution in terms of the u-field is not affected

when we scale the τ -function as τ → f1f2τ , for any function f1 = f1(x) and f2 = f2(t).

Hence, we can ignore the integration ‘constants’ in equation (1.3.20). Armed with

this observation, it will be convenient to introduce the field q = q(x, t) that is

proportional to the antiderivative of the u-field in the following way

u = − 8
α
qxt , (1.3.21)

and so w and v can be written as

w = − 8
α
qx and v = − 8

α
qt . (1.3.22)
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Substituting the above expressions for u, w, and v into equation (1.1.1) yields a total

x-derivative of the following equation

qtt + qxt − 4q2
xt − 2ε2qxxqtt + qxxxt − ε1 (qxxtt + qxxxt) = 0 . (1.3.23)

This implies that any solution of equation (1.3.23) also solves equation (1.1.1).

Now, using equation (1.3.21), we can rewrite equation (1.3.19) as

q = β ln τ . (1.3.24)

Substituting this expression for q into equation (1.3.23) yields

0 = − τ 2
[
2βε2τttτxx + (4β − 2ε1)τ 2

xt + τt (−2ε1τxxt − (ε1 − 1)τxxx + τx)

−2ε1τxτxtt − ε1τttτxx − 3(ε1 − 1)τxtτxx − 3ε1τxτxxt + τ 2
t + 3τxτxxt

]
+ 2τ

[
(βε2 − ε1)τxxτ 2

t + (βε2 − ε1)τttτ 2
x

+ τxτt (4(β − ε1)τxt − 3(ε1 − 1)τxx)− 3(ε1 − 1)τ 2
xτxt

]
− 2τtτ 2

x [(β(ε2 + 2)− 3ε1)τt − 3(ε1 − 1)τx]

+ τ 3 (−ε1τxxtt − ε1τxxxt + τtt + τxt + τxxxt) .

(1.3.25)

Then, following the approach discussed in subsection 1.3.1, we choose the following

one-soliton ansatz

τ = 1 + ηeΓ1 , (1.3.26)

and we find that the equation (1.3.25) at the first order of η is satisfied if ki and ωi,

for i = 1, are constrained by

ωi = ki + (1− ε1)k3
i

1− ε1k2
i

. (1.3.27)

For the order corresponding to η2, it is satisfied if ki, for i = 1, satisfies

2k4
i [(ε1 − 1) k2

i − 1] [β (ε2 + 2) ((ε1 − 1) k2
i − 1) + 3]

(ε1k2
i − 1)2 = 0 . (1.3.28)

Since we only want k1 and ω1 to be constrained by the dispersion relation (see
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subsection 1.3.1), we make the following choice to satisfy the above equation

ε1 = 1 and β = 3
2 + ε2

. (1.3.29)

Imposing these constraints implies that all the higher order terms vanish trivially,

showing that equation (1.3.26) leads to a family of exact solutions. That is, the

following expression

q = 3
2 + ε2

ln
(
1 + eΓ1

)
(1.3.30)

solves equation (1.1.1) exactly, provided that ε1 = 1 and that the following dispersion

relation is satisfied

ωi = ki
1− k2

i

. (1.3.31)

Setting α = 8 for definiteness, the family of analytical one-soliton solutions can then

be written as

u = 3k1ω1

4(2 + ε2) cosh2(Γ1/2)
. (1.3.32)

Note that this class of solutions solves both the RLW equation (i.e., ε1 = 1 and ε2 = 0)

and the mRLW equation (i.e., ε1 = ε2 = 1) as special cases.

It follows from equations (1.3.31) and (1.3.32) that the amplitude, A, is given by

A = 3k1ω1

4(2 + ε2) = 3k2
1

4(2 + ε2)(1− k2
1) , (1.3.33)

and the phase velocity is

vp = ω1

k1
= 1

1− k2
1
. (1.3.34)

For definiteness, we will always impose that 0 < k1 < 1, unless stated otherwise, and

so we see that the soliton always has a positive amplitude and velocity.

For the two-soliton solutions, we use the ansatz

τ = 1 + ηeΓ1 + ηeΓ2 + η2A12e
Γ1+Γ2 . (1.3.35)

Following a similar procedure, we now find that

β = ε1 = ε2 = 1 , (1.3.36)
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with the dispersion relation expressed by equation (1.3.31) and

Aij = −(ωi − ωj)2(ki − kj)2 + (ωi − ωj)(ki − kj)− (ωi − ωj)2

(ωi + ωj)2(ki + kj)2 + (ωi + ωj)(ki + kj)− (ωi + ωj)2 . (1.3.37)

It then follows from equations (1.3.24) and (1.3.35) that

q = ln
(
1 + eΓ1 + eΓ2 + A12e

Γ1+Γ2
)

(1.3.38)

exactly solves equation (1.1.1), provided that equations (1.3.31), (1.3.36) and (1.3.37)

are satisfied. Note that equation (1.3.36) implies that equation (1.1.1) reduces to

equation (1.1.9). In other words, equation (1.3.38) is an analytical solution of the

mRLW equation.

Let us add that one can approximate the values of the conserved charges Q1

and Qε2
2 for the analytical one- and two-soliton solutions (see equations (1.3.30)

and (1.3.38)) as

Q1 = [−qt]∞x=−∞ ≈
3

2 + ε2

N∑
i=1

ωi , N = 1, 2 , (1.3.39)

and

Qε2
2 = [−qx]∞x=−∞ ≈ −

3
2 + ε2

N∑
i=1

ki , N = 1, 2 . (1.3.40)

In chapter 4 we will check if these relations also hold for numerical simulations of

equation (1.1.1).

Finally, we have also the checked three- and four-soliton ansatzes in a similar

way. We found that the expansions do not truncate. In other words, the three-

and four-soliton ansatzes do not generate analytical solutions of the perturbed KdV

equation.

Note that since the mRLW equation does not admit three-soliton Hirota solutions

but it does admit one- and two-soliton Hirota solutions, the mRLW equation is a par-

tial integrable model. Furthermore, as mentioned in section 1.2, when two integrable

solitons scatter, the only result of their interaction is the phase shift they experience.

It turns out that the two mRLW solitons expressed by equation (1.3.38) also experi-

ence a phase shift when they scatter. To determine the analytical expression of this
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shift, let us introduce two new variables

y = x− ω1

k1
t and z = x− ω2

k2
t . (1.3.41)

Let us first substitute y into Γ1 and Γ2, that is,

Γ1 = k1y + δ1 and Γ2 = k2y +
(
k2ω1 − k1ω2

k1

)
t+ δ2 . (1.3.42)

For definiteness, we let k1 > k2, and so

k2ω1 − k1ω2 > 0 . (1.3.43)

Therefore, as t→∞, q described by equation (1.3.38) can now be approximated as

follows

lim
t→∞

q(y, t) = Γ2 + ln
(
e−Γ2 + eΓ1−Γ2 + 1 + A12e

Γ1
)

≈ Γ2 + ln
(
1 + A12e

Γ1
)
,

(1.3.44)

and so

lim
t→∞

u(y, t) ≈ k1ω1e
Γ1+lnA12

(1 + eΓ1+lnA12)2 . (1.3.45)

Furthermore, it is easy to see that

lim
t→−∞

q(y, t) ≈ ln
(
1 + eΓ1

)
, (1.3.46)

and so

lim
t→−∞

u(y, t) ≈ k1ω1e
Γ1

(1 + eΓ1)2 . (1.3.47)

Repeating the same procedure with the variable z yields

lim
t→∞

u(z, t) ≈ k2ω2e
Γ2

(1 + eΓ2)2 (1.3.48)

and

lim
t→−∞

u(z, t) ≈ k2ω2e
Γ2+lnA12

(1 + eΓ2+lnA12)2 . (1.3.49)

Thus, the solitary wave corresponding to Γ1 is phase-shifted forward by lnA12 after

the collision, while the wave corresponding to Γ2 is phase-shifted in the opposite

direction by lnA12.
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1.4 Quasi-integrability

Integrable models are quite rare, and often only approximately describe physical

systems. To find more reliable models of certain nonlinear physical phenomena, one

needs to introduce extra terms to the set of integrable PDEs. This often spoils the

integrability of such a model. However, if the perturbing terms are small, the model

may give rise to dissipative solitons, i.e., soliton-like structures that scatter rather

stable, but nonelastically, with other soliton- and radiation-like structures [26, and

references therein]. In this case, the models are often described as ‘nearly integrable’.

These observations have lead to various attempts to define the concept of quasi-

integrability [11, 12, e.g.]. To introduce this concept, consider a nearly integrable

PDE in (1+1) dimensions that admits soliton-like solutions, u = u(x, t), and assume

that u→ 0 sufficiently fast as x→ ±∞. Furthermore, suppose that the underlying

integrable model, i.e., the model without the perturbation terms, can be represented

by a zero curvature equation which leads to infinitely many conserved charges Q(n).

However, in the presence of the perturbing terms, the curvature does not vanish

which leads to the so-called anomalous curvature equation. As a result, the infinite

charges Q(n) are not truly conserved. Instead, suppose that the infinite Q(n)’s in the

perturbed theory, for multi-soliton solutions, satisfy the following two equations

dQ(n)

dt
= α(n) (1.4.1)

and

lim
t→−∞

Q(n) = lim
t→∞

Q(n) , (1.4.2)

where the so-called anomalies α(n) are dependent on the solution u and its derivatives.

Note that the anomalies vanish for the integrable model and so the Q(n)’s in this

case are truly conserved charges. However, in the perturbing case, i.e., when the

anomalies do not vanish, it follows from these equations that the charges are only

conserved asymptotically. It is then said that the charges are quasi-conserved, and

the corresponding solution is said to be quasi-integrable.
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For all the models that have been studied in the context of quasi-integrability,

each anomaly is of the following form

α(n) =
∞∫
−∞

dx β(n) , (1.4.3)

where β(n) is some function dependent on u and its derivatives. Thus, it follows from

equations (1.4.1) and (1.4.2) that
∞∫
−∞

dt α(n) =
∞∫
−∞

dt
∞∫
−∞

dx β(n) = 0 . (1.4.4)

This shows that the property of quasi-integrability can potentially be explained by

parity arguments. Namely, if the β(n)’s are odd functions with respect to space-

time inversion, then equation (1.4.4) is automatically satisfied and, as a result,

equation (1.4.2) will also be satisfied. Since all the β(n)’s are dependent on the

solution u and its derivatives, attempts have been made to relate quasi-integrability

to the parity properties of multi-soliton solutions [13, e.g.].

Quasi-integrability is a new concept in nonlinear mathematical physics that is

still being developed, and its underlying structures are not well understood thus

far. To further investigate the concepts discussed in this section, we will devote

chapters 2 and 6 to study the analytical and numerical quasi-integrability properties

of the perturbed KdV equation.



Chapter 2

Quasi-integrability

In this chapter, we analytically investigate the quasi-integrability properties of the

perturbed KdV equation. To be specific, since equation (1.1.1) can be seen as a

perturbation of the integrable KdV equation, we use the KdV Lax potential Ax

(see equation (1.2.7)) to construct an infinite amount of potentially quasi-conserved

charges. For the analytical mRLW two-soliton solutions, we prove that these charges

are truly quasi-conserved. Furthermore, in the last two sections of this chapter, we

investigate the quasi-integrability properties of a solution that can be expressed as

an expansion around an exact KdV solution with special parity properties.

2.1 The graded sl(2) Lie algebra

In order to construct the potentially conserved charges, we first introduce the sl(2)

algebra. Namely, we will work with the following basis

T3 = 1
2σ3 and T± = 1

2(σ1 ± iσ2) , (2.1.1)

where σ1, σ2 and σ3 denote the Pauli matrices. This basis satisfies the following

commutation relations

[T3, T±] = ±T± and [T+, T−] = 2T3 . (2.1.2)
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Next, let us introduce a graded basis, depending on a spectral parameter λ, in the

following way

b2m+1 = λm (T+ + λT−) , F2m+1 = λm (T+ − λT−) and F2m = 2λmT3 , (2.1.3)

where m ∈ Z. Their commutation relations take the following form

[b2m+1, b2n+1] = 0 , (2.1.4)

[F2m+1, F2n+1] = 0 , (2.1.5)

[F2m, F2n] = 0 , (2.1.6)

[b2m+1, F2n+1] = −2F2(m+n+1) , (2.1.7)

[b2m+1, F2n] = −2F2(m+n)+1 , (2.1.8)

[F2m+1, F2n] = −2b2(m+n)+1 . (2.1.9)

Furthermore, we introduce the grading operator

d = T3 + 2λ d

dλ
, (2.1.10)

which satisfies the following commutation relations

[d, b2m+1] = (2m+ 1)b2m+1 and [d, Fm] = mFm . (2.1.11)

2.2 The anomalous curvature equation

In order to construct the anomalous curvature equation, we introduce the Lax

potentials, Ax and At, as follows

Ax = −
[
b1 −

α

12u (b−1 − F−1)
]

(2.2.1)

and

At = −
[
−4b3 − b1 + α

6 uxF0 −
α

3 uF1 + G

2 (b−1 − F−1)
]
, (2.2.2)
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where G is defined as

G = α2

18u
2 + α2

24ε2wxvt −
α

6 ε1uxt + α

6 (1− ε1)uxx + α

6 u . (2.2.3)

If we now define the function X as

X = α

6

[
α

4 ε2wxvt − ε1 (uxt + uxx)
]
, (2.2.4)

and Y as

Y = ut + ux +
[
α

2 u
2 + ε2

α

4wxvt + uxx − ε1 (uxt + uxx)
]
x
, (2.2.5)

then the curvature, Ftx, can be written as

Ftx = ∂tAx − ∂xAt + [At, Ax] = −XF0 + α

12Y (b−1 − F−1) . (2.2.6)

Assuming that the u-field solves the perturbed KdV equations such that Y = 0,

then X can be considered to be the anomaly of the zero curvature equation, and

equation (2.2.6) is therefore called the anomalous curvature equation. Note that

the anomaly X vanishes for the case of the KdV equation (i.e., ε1 = ε2 = 0) and

note that the Lax potential Ax is of the same form as the potential Ax given in

equation (1.2.7). This implies that for ε1 = ε2 = 0, the charges generated by Ax

correspond to the well-known infinite amount of conserved charges related to the

KdV equation, as we will show in the following subsection.

2.2.1 Quasi-conserved charges

To construct the potentially quasi-conserved charges of the curvature Ftx, we use

the same methods discussed in [12, e.g.]. We first gauge transform Ax and At in the

following way

ax = gAxg
−1 − (∂xg) g−1 , (2.2.7)

at = gAtg
−1 − (∂tg) g−1 , (2.2.8)
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where g ∈ SL(2) is defined as

g = exp
( ∞∑
n=1

ζnF−n

)
. (2.2.9)

By Taylor expanding, we find that ax can be expressed as

ax = Ax +
[ ∞∑
n=1

ζnF−n, Ax

]
+ 1

2!

[ ∞∑
n=1

ζnF−n,

[ ∞∑
m=1

ζmF−m, Ax

]]

−
∞∑
m=1

(∂xζm)F−m −
1
2!

[ ∞∑
n=1

ζnF−n,
∞∑
m=1

(∂xζm)F−m
]

− 1
3!

[ ∞∑
k=1

ζkF−k,

[ ∞∑
n=1

ζnF−n,
∞∑
m=1

(∂xζm)F−m
]]

+ · · · .

(2.2.10)

Using equation (2.2.1), and the algebra expressed by equations (2.1.4) to (2.1.9), we

can write ax as

ax = − b1

− 2ζ1F0

− 2ζ2F−1 + αu

12 (b−1 − F−1) + 2ζ2
1b−1 − (∂xζ1)F−1

− 2ζ3F−2 + αu

6 ζ1F−2 − (∂xζ2)F−2

− · · · ,

(2.2.11)

where, for clarity, we have collected all the terms of the same grade on separate lines.

Next, for equation (2.2.11), we recursively choose the parameters ζn+1 to kill the

components in the F−n direction. For example, the first few terms are chosen as

ζ1 = 0 , (2.2.12)

ζ2 = −αu24 −
1
2 (∂xζ1) = −αu24 , (2.2.13)

ζ3 = αu

12 ζ1 −
1
2 (∂xζ2) = α

48ux . (2.2.14)

Having chosen the parameters ζn+1 this way, we can now write ax as

ax = −b1 +
∞∑
n=0

a(−2n−1)
x b−2n−1 , (2.2.15)
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where, for example, the first few values of a(−2n−1)
x are defined by

a(−1)
x = αu

223 , (2.2.16)

a(−3)
x = α2u2

2532 , (2.2.17)

a(−5)
x = α3u3

2733 + α2uuxx
2732 , (2.2.18)

a(−7)
x = 5α4u4

21134 + α3u2uxx
2733 + α3uu2

x + α2uuxxxx
2932 . (2.2.19)

The gauge-transformed curvature ftx (under the gauge transformation expressed

by equations (2.2.7) and (2.2.8), where g is defined by equations (2.2.9) with the

parameters ζn chosen in the way described above) takes the form

ftx = ∂tax − ∂xat + [at, ax] = gFtxg−1 = −XgF0g
−1 , (2.2.20)

where we have imposed the equations of motion such that Y = 0. After Taylor

expanding and using the commutation relations, we find that we can express at in

general as

at = 4b3 + b1 +
∞∑
n=0

a
(−2n−1)
t b−2n−1 +

∞∑
n=−2

c
(−n)
t F−n , (2.2.21)

and the gauge-transformed curvature takes the general form

ftx = −X
( ∞∑
n=0

γ(−2n−1)b−2n−1 +
∞∑
n=0

ε(−n)F−n

)
, (2.2.22)

where the first non-trivial γ(−2n−1)’s are defined as

γ(−1) = 0 , (2.2.23)

γ(−3) = −∂x
[
α

233u
]
, (2.2.24)

γ(−5) = −∂x
[
α2

263u
2 + α

253uxx
]
, (2.2.25)

γ(−7) = −∂x
[

5α3

2833u
3 + 5α2

2832u
2
x + 5α2

2732uxx + α

273uxxxx
]
. (2.2.26)

Note that the commutator [ax, at] in equation (2.2.20) will not produce any terms

in the direction of the b−2n−1 basis vectors. Thus, if we now only write down the

terms of the gauge-transformed curvature in the direction of the b−2n−1 matrices,
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then we get the following relation

−Xγ(−2n−1) = ∂ta
(−2n−1)
x − ∂xa(−2n−1)

t , ∀n ∈ Z+
0 . (2.2.27)

Integrating this equation with respect to x over the entire domain yields

dQ(−2n−1)

dt
= a

(−2n−1)
t

∣∣∣∞
x=−∞

+ α(−2n−1) , (2.2.28)

where Q(−2n−1) is defined as

Q(−2n−1) =
∞∫
−∞

dx a(−2n−1)
x (2.2.29)

and α(−2n−1) is defined as

α(−2n−1) = −
∞∫
−∞

dxXγ(−2n−1) . (2.2.30)

Since all the group parameters ζn are dependent on u and its derivatives, and u→ 0

when x→ ±∞, we find that g → 1 as x→ ±∞. This implies that

lim
x→±∞

at = lim
x→±∞

At , (2.2.31)

and so it follows from equation (2.2.2) that

a
(−2n−1)
t

∣∣∣∞
x=−∞

= 0 . (2.2.32)

Hence, equation (2.2.28) becomes

dQ(−2n−1)

dt
= α(−2n−1) , (2.2.33)

and so the Q(−2n−1)’s are potentially quasi-conserved. Note that, as we mentioned at

the beginning of section 2.2, the quantities Q(−2n−1) have the same expression as the

well-known conserved charges of the KdV equation. In other words, the Q(−2n−1)’s

are truly conserved when u solves the KdV equation.

Furthermore, note that it follows from equations (2.2.16) and (2.2.23) that

Q(−1) = α

12

∞∫
−∞

dxu and dQ(−1)

dt
= 0 , (2.2.34)
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which implies that Q(−1) is a conserved quantity for any value of ε1 and ε2, as we

discussed in section 1.1. On the other hand, the charges Q(−2n−1) for n > 0 are

not exactly conserved. In the next two sections, we prove that the charges are in

fact quasi-conserved for the exact mRLW two-soliton solutions. Furthermore, our

numerical results strongly indicate that the charges are also quasi-conserved for the

two- and three-soliton solutions governed by the RLW equation and the mRLW

equation; this is discussed in more detail in chapter 6.

2.3 The parity argument

In this section, we discuss two different parity symmetries to analyse the quasi-

conservation properties of the charges that were introduced in the previous section.

2.3.1 The parity argument for travelling wave solutions

Let us first consider the family of travelling wave solutions u = u(x− ω
k
t+ δ) that

solves equation (1.1.1). To this end, we define the shifted space coordinate, x̄, as

follows

x̄ = x− ω

k
t+ δ . (2.3.1)

Next, let us introduce the space parity operator

P x̄ : x̄ 7→ −x̄ , (2.3.2)

and assume that u is an even function, that is,

P x̄ u = u . (2.3.3)

It follows from equation (1.1.2) that

w =
∫

dt u = −k
ω

∫
dx̄ u (2.3.4)

and

v =
∫

dxu =
∫

dx̄ u . (2.3.5)
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Since w and v are antiderivatives of the even function u, we can always choose the

‘constants’ of integration (without affecting the u-field) such that w and v are odd

functions, that is,

P x̄w = −w and P x̄ v = −v . (2.3.6)

As a result, wx and vt are even under the parity transformation

P x̄wx = wx and P x̄ vt = vt . (2.3.7)

Furthermore, it is easy to see that uxt and uxx are also even under parity

P x̄ uxt = uxt and P x̄ uxx = uxx . (2.3.8)

Combining the above ingredients, we see that the anomaly X is also even under

parity

P x̄X = X . (2.3.9)

Furthermore, the pattern of the γ(−2n−1)’s, where the first few are given in equa-

tions (2.2.23) to (2.2.26), shows that they are always odd

P x̄ γ(−2n−1) = −γ(−2n−1) , ∀n ∈ Z+
0 . (2.3.10)

Therefore, we conclude that the Xγ(−2n−1) are also odd functions and, as a result,

the α(−2n−1)’s vanish, that is,

α(−2n−1) = −
∞∫
−∞

dx̄ Xγ(−2n−1) = 0 . (2.3.11)

It follows from equation (2.2.33) that the charges expressed by equation (2.2.29) are

independent of time (i.e., they are truly conserved). Since the one-soliton solutions

constructed in subsection 1.3.3 are special cases of travelling wave solutions, their

corresponding charges are therefore also truly conserved.
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2.3.2 The parity argument for multi-soliton solutions

In this subsection, we consider the more general class of solutions u = u(x, t) that

solves equation (1.1.1). We first define the new coordinates, x̃ and t̃, relative to some

point (x∆, t∆), as follows

x̃ = x− x∆ and t̃ = t− t∆ , (2.3.12)

and we define the space-time parity operator as

P : (x̃, t̃) 7→ (−x̃,−t̃) . (2.3.13)

We will again assume that the solution is an even function under this transformation,

that is,

P u = u . (2.3.14)

Similarly as in the previous subsection, we find that w and v are odd functions

P w = −w and P v = −v . (2.3.15)

It follows that G and X are even (see equations (2.2.3) and (2.2.4)), and Y is odd

(see equation (2.2.5)), that is,

P G = G , P X = X and P Y = −Y . (2.3.16)

Next, let σ : sl(2)→ sl(2) denote the following automorphism

σ(T ) = eiπ dTe−iπ d

= T + iπ[d, T ] + (iπ)2

2 [d, [d, T ]] + (iπ)3

3! [d, [d, [d, T ]]] + · · · ,
(2.3.17)

where d is the grading operator defined in section 2.1. Using the commutation

relations described by equation (2.1.11), this leads to the expression

σ(b2n+1) = eiπ(2n+1)b2n+1 = −b2n+1 , (2.3.18)

and similarly

σ(F2n+1) = −F2n+1 and σ(F2n) = F2n . (2.3.19)
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Combing these ingredients, let Ω denote the space-time parity transformation

applied to the aforementioned automorphism, that is,

Ω = P σ . (2.3.20)

It follows from equation (2.2.6), with Y = 0, that

Ω(Ftx) = Ftx . (2.3.21)

Furthermore, suppose that we have chosen the ζn is in the way described in subsec-

tion 2.2.1 such that the first few terms are given by equations (2.2.12) to (2.2.14).

Then it follows from the pattern of ζn that

Ω(ζnF−n) = (−1)nP ζnF−n = ζnF−n , (2.3.22)

and so

Ω(g) = g and Ω(g−1) = g−1 , (2.3.23)

where g is the group element defined by equation (2.2.9). Thus, it follows from

equation (2.2.20) that

Ω(ftx) = Ω(gFtxg−1) = Ω(g)Ω(Ftx)Ω(g−1) = gFtxg−1 = ftx . (2.3.24)

Let us now focus on the first term on the right-hand side of equation (2.2.22). In

particular, it follows from equation (2.3.24) that the following expression must be

satisfied

Ω(Xγ(−2n−1)b−2n−1) != Xγ(−2n−1)b−2n−1 , ∀n ∈ Z+
0 . (2.3.25)

It then follows from the results expressed by equations (2.3.16) and (2.3.18) that

P γ(−2n−1) = −γ(−2n−1) , (2.3.26)

and so we can conclude that

P Xγ(−2n−1) = −Xγ(−2n−1) =⇒
t̃∫
−t̃

dt
x̃∫
−x̃

dxXγ(−2n−1) = 0 . (2.3.27)
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It follows from equations (2.2.30) and (2.2.33) that

Q(−2n−1)(t̃)−Q(−2n−1)(−t̃) =
t̃∫
−t̃

dt α(−2n−1) = 0 , (2.3.28)

=⇒ Q(−2n−1)(t̃) = Q(−2n−1)(−t̃) . (2.3.29)

Thus, we see that these quantities satisfy equation (1.4.2) when t̃ → ∞, and so

are, by definition, quasi-conserved. To sum up, we have shown that any solution of

equation (1.1.1) that satisfies equation (2.3.14) is a quasi-integrable solution.

2.4 Parity of the exact two-soliton mRLW

solutions

In this section, we show that the exact two-soliton mRLW solutions satisfy equa-

tion (2.3.14) and, thus, its charges Q(−2n−1) are quasi-conserved. To this end, we

introduce two new variables, z+ and z−, in the following way

z+ = 1
2(Γ1 + Γ2 + lnA12) and z− = 1

2(Γ1 − Γ2) . (2.4.1)

Then the two-soliton τ -function described by equation (1.3.35)) can be expressed as

τ = 1 + ez++z−− 1
2 lnA12 + ez+−z−− 1

2 lnA12 + e2z+

= 2ez+
(
cosh z+ + A

−1/2
12 cosh z−

)
.

(2.4.2)

Note that A12 = 0 if k1 = k2, and so the two-soliton solutions reduce to single-soliton

travelling wave solutions. Thus, we will only consider k1 6= k2 in the following

discussion. In this case, z+ and z− are linearly independent and can be considered

as independent space-time variables. In fact, by defining

k± = 1
2(k1 ± k2) , ω± = 1

2(ω1 ± ω2) and δ± = 1
2(δ1 ± δ2) , (2.4.3)



30 Chapter 2. Quasi-integrability

we can express z+ and z− in terms of x and t asz+

z−

 =

k+ −ω+

k− −ω−


x
t

+

δ+ + 1
2 lnA12

δ−

 . (2.4.4)

Using the variables x̃ and t̃ (see equation (2.3.12)), we can rewrite this equation in

the following way x̃
t̃

 =

k+ −ω+

k− −ω−


−1z+

z−

 , (2.4.5)

where x∆ and t∆ are defined as

x∆ =
ω+δ− − ω−(δ+ + 1

2 lnA12)
k+ω− − k−ω+

and t∆ =
k+δ− − k−(δ+ + 1

2 lnA12)
k+ω− − k−ω+

. (2.4.6)

Thus, we see that P described by equation (2.3.13) also acts as a symmetry operator

on (z+, z−), that is,

P : (z+, z−) 7→ (−z+,−z−) . (2.4.7)

Since ∂xz± = k± and ∂tz± = −ω±, it follows from equations (1.3.21), (1.3.24)

and (2.4.2) that

u = 8 [(k+ω+ + k−ω−) cosh z+ cosh z− − (k+ω− + k−ω+) sinh z+ sinh z−]
αA

1/2
12

(
cosh z+ + A

−1/2
12 cosh z−

)2

+
8
(
k+ω+ + A−1

12 k−ω−
)

α
(
cosh z+ + A

−1/2
12 cosh z−

)2 ,

(2.4.8)

and so we see that u obeys equation (2.3.14). Due to the result discussed in the

previous section, we can conclude that the charges defined by equation (2.2.29)

corresponding to the mRLW two-soliton solution (i.e., ε1 = ε2 = 1) are quasi-

conserved.

Note that the coordinates given in equation (2.4.6) describe the point in space-

time around which the u-field is symmetric under P. Therefore, we expect that

these coordinates represent the point in space-time that the solitons pass through

each other. This is illustrated in figure 2.1, which shows an analytical two-soliton

solution expressed by equation (1.3.38); the point where the dotted and the dashed
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Figure 2.1: The two-soliton mRLW u-field in the (x, t) plane. The dotted curve
shows the line t = t∆ and the dashed curve shows the line x = x∆, defined by the
expressions in equation (2.4.6). In other words, the point where the two lines cross
each other is the point of symmetry under the space-time parity operator P .

curve cross each other is the point (x∆, t∆).

2.5 Parity of the exact KdV solutions

In this section, we discuss the parity properties of the one-, two- and three-soliton

solutions of the KdV equation (see subsection 1.3.2). The results will be important for

the next section where we investigate the quasi-integrability properties of perturbed

KdV solutions around some exact KdV solution that is even under P .

From equation (1.3.14) it is easy to see that the one-soliton solution is invariant

under P x̄. Let us therefore focus on the two-soliton solutions expressed by equa-

tion (1.3.16). To analyse its parity properties, we express the τ -function in terms of

the variables z+ and z− expressed by equation (2.4.1), that is,

τ = 2ez+
(
cosh z+ + A

−1/2
12 cosh z−

)
. (2.5.1)
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It follows from equation (1.3.12) that the corresponding u-field takes the form

u =
12
[
A

1/2
12 (k2

− + k2
+) cosh z− cosh z+ + k2

− cosh2 z−
]

α
(
A

1/2
12 cosh z+ + cosh z−

)2

+
12
[
k2

+A12 cosh2 z+ −
(
k− sinh z− + k+A

1/2
12 sinh z+

)2
]

α
(
A

1/2
12 cosh z+ + cosh z−

)2 ,

(2.5.2)

where k± are defined by equation (2.4.3). Thus, it follows from equation (2.4.7) that

the two-soliton solutions are even under P .

To investigate the parity properties of the three-soliton solutions, we introduce

the following variables

z
(1)
− = 1

2(−Γ1 + Γ2 + Γ3 + lnA23) , (2.5.3)

z
(2)
− = 1

2(Γ1 − Γ2 + Γ3 + lnA13) , (2.5.4)

z
(3)
− = 1

2(Γ1 + Γ2 − Γ3 + lnA12) , (2.5.5)

z
(1)
+ = z

(1)
− + z

(2)
− + z

(3)
− = 1

2(Γ1 + Γ2 + Γ3 + lnA12 + lnA13 + lnA23) . (2.5.6)

Furthermore, it will be useful to define

k(1) = −k− + 1
2k3 , ω(1) = −ω− + 1

2ω3 , ∆(1) = −δ− + 1
2(δ3 + lnA23) , (2.5.7)

k(2) = k− + 1
2k3 , ω(2) = ω− + 1

2ω3 , ∆(2) = δ− + 1
2(δ3 + lnA13) , (2.5.8)

k(3) = k+ −
1
2k3 , ω(3) = ω+ −

1
2ω3 , ∆(3) = δ+ + 1

2(−δ3 + lnA12) , (2.5.9)

so that we can write

z
(i)
− = k(i)x− ω(i)t+ ∆(i) . (2.5.10)

Then we can express equation (1.3.18) as

τ = 2ez
(1)
+ F , (2.5.11)

where the function F is defined as

F = cosh z(1)
+ + A

−1/2
12 A

−1/2
13 cosh z(1)

− + A
−1/2
12 A

−1/2
23 cosh z(2)

−

+ A
−1/2
13 A

−1/2
23 cosh z(3)

− .

(2.5.12)
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Using equation (1.3.12), we can write the τ -function corresponding to the three-

soliton solutions as

u = 12
α

(
FFxx − (Fx)2

F 2

)
, (2.5.13)

with

Fx =
(
k(1) + k(2) + k(3)

)
sinh z(1)

+ + k(1)A
−1/2
12 A

−1/2
13 sinh z(1)

−

+ k(2)A
−1/2
12 A

−1/2
23 sinh z(2)

− + k(3)A
−1/2
13 A

−1/2
23 sinh z(3)

−

(2.5.14)

and

Fxx =
(
k(1) + k(2) + k(3)

)2
cosh z(1)

+ +
(
k(1)

)2
A
−1/2
12 A

−1/2
13 cosh z(1)

−

+
(
k(2)

)2
A
−1/2
12 A

−1/2
23 cosh z(2)

− +
(
k(3)

)2
A
−1/2
13 A

−1/2
23 cosh z(3)

− .

(2.5.15)

Now, we want the space-time symmetry operator P (see equation (2.3.13)) to change

the sign of (z(1)
+ , z

(2)
+ , z

(3)
+ ). These three variables describes three straight lines in the

(x, t) plane, and so the point of symmetry is at the point where the three lines

cross each other. Combining these ingredients, we see that we need to choose the

given point (x∆, t∆) in such a way that the point of symmetry is at the origin

of the coordinate system described by (z(1)
+ , z

(2)
+ , z

(3)
+ ). To this end, we express

equation (2.5.10) as the following matrix equation
k(1) −ω(1) ∆(1)

k(2) −ω(2) ∆(2)

k(3) −ω(3) ∆(3)




x∆

t∆

1

 =


0

0

0

 . (2.5.16)

Since this is a system of homogeneous linear equations, it is non-trivially satisfied if

the determinant of the square matrix vanishes, that is,

0 =
(
∆(1) + ∆(2)

) (
k3

1k2 − k1k
3
2

)
+
(
∆(1) + ∆(3)

) (
k3

3k1 − k3k
3
1

)
+
(
∆(2) + ∆(3)

) (
k3

2k3 − k2k
3
3

)
.

(2.5.17)

If ki = kj for i 6= j, then the three-soliton solutions reduce to two-soliton solutions.

In other words, we demand that k1 6= k2 6= k3. Therefore, to satisfy equation (2.5.17),
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we impose that

∆(1) = ∆(2) = ∆(3) = 0 . (2.5.18)

This condition can be rewritten as the following matrix equation
1 −1 −1

−1 1 −1

−1 −1 1




δ1

δ2

δ3

 =


lnA23

lnA13

lnA12

 . (2.5.19)

We solve this equation by imposing the following condition on the phase constants

δi = −1
2 ln (AijAik) . (2.5.20)

As a result, equation (2.5.10) reduces to

z
(i)
− = k(i)x− ω(i)t . (2.5.21)

We now easily see that the space-time operator P acts as follows on the new coordin-

ates

P : (z(1)
− , z

(2)
− , z

(3)
− ) 7→ (−z(1)

− ,−z(2)
− ,−z(3)

− ) =⇒ P : z(1)
+ 7→ −z

(1)
+ , (2.5.22)

where the space-time point of symmetry is at x∆ = t∆ = 0, that is,

P : (x, t) 7→ (−x,−t) . (2.5.23)

Looking at equation (2.5.13) and the expressions for F , Fx and Fxx, we see that

the three-soliton solutions are even under this operator, provided the three solitons

collide at the same point in space-time.

2.6 Parity of the perturbed KdV solutions

In this section, we consider an expansion of u, which is assumed to solve the perturbed

KdV equation, around an exact solution of the KdV equation. We then assume that

the exact KdV solution is even under the space-time parity operator, and argue that

under this assumption the perturbed system seems to favour even solutions to a
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certain extent.

To simplify the expansion, we express the perturbation parameters ε1 and ε2 as

follows

ε1 = ε sin ξ and ε2 = ε cos ξ , (2.6.1)

and so equation (1.1.1) can be written as

ut + ux +
[
α

2 u
2 + uxx + ε

(
α

4wxvt cos ξ − (uxt + uxx) sin ξ
)]

x
= 0 . (2.6.2)

We expand the solution as

u =
∞∑
n=0

εnu(n) = u(0) + εu(1) + ε2u(2) + · · · , (2.6.3)

which implies that

w =
∫

dt u =
∞∑
n=0

εn
∫

dt u(n) ≡
∞∑
n=0

εnw(n) (2.6.4)

and

v =
∫

dxu =
∞∑
n=0

εn
∫

dxu(n) ≡
∞∑
n=0

εnv(n) . (2.6.5)

Collecting the terms at order ε0 gives

u
(0)
t + u(0)

x +
[
α

2
(
u(0)

)2
+ u(0)

xx

]
x

= 0 , (2.6.6)

and so we see that u(0) solves the KdV equation, as desired.

Collecting terms at the next order, we find that

u
(1)
t + u(1)

x +
[
αu(0)u(1) + u(1)

xx + α

4w
(0)
x v

(0)
t cos ξ −

(
u

(0)
xt + u(0)

xx

)
sin ξ

]
x

= 0 . (2.6.7)

Next, we decompose u, w and v into its even and odd parts in the following way

u(i,±) = 1
2(1±P)u(i) , w(i,±) = 1

2(1±P)w(i) and v(i,±) = 1
2(1±P)v(i) , (2.6.8)

where P is defined by equation (2.3.13). Using this notation, we can write the even
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part of equation (2.6.7) as

0 = ∂tu
(1,−) + ∂xu

(1,−) +
[
α
(
u(0,+)u(1,−) + u(0,−)u(1,+)

)
+ ∂2

xu
(1,−)

+ α

4
(
∂xw

(0,+)∂tv
(0,−) + ∂xw

(0,−)∂tv
(0,+)

)
cos ξ

−
(
∂x∂tu

(0,−) + ∂2
xu

(0,−)
)

sin ξ
]
x
,

(2.6.9)

and the odd part as

0 = ∂tu
(1,+) + ∂xu

(1,+) +
[
α
(
u(0,+)u(1,+) + u(0,−)u(1,−)

)
+ ∂2

xu
(1,+)

+ α

4
(
∂xw

(0,+)∂tv
(0,+) + ∂xw

(0,−)∂tv
(0,−)

)
cos ξ

−
(
∂x∂tu

(0,+) + ∂2
xu

(0,+)
)

sin ξ
]
x
.

(2.6.10)

Let us now suppose that the exact solution of the KdV equation, u(0), is even under

space-time parity operator, that is,

P u(0) = u(0) =⇒ P w(0) = −w(0) and P v(0) = −v(0) , (2.6.11)

and so

u(0,−) = 0 and w(0,+) = v(0,+) = 0 . (2.6.12)

Subsequently, equation (2.6.9) reduces to

∂tu
(1,−) + ∂xu

(1,−) +
[
αu(0,+)u(1,−) + ∂2

xu
(1,−)

]
x

= 0 , (2.6.13)

and equation (2.6.10) becomes

∂tu
(1,+) + ∂xu

(1,+) +
[
αu(0,+)u(1,+) + ∂2

xu
(1,+)

]
x

=

−
[
α

4 ∂xw
(0,−)∂tv

(0,−) cos ξ −
(
∂x∂tu

(0,+) + ∂2
xu

(0,+)
)

sin ξ
]
x
.

(2.6.14)

This shows that u(1,−) satisfies a homogeneous equation and u(1,+) an inhomogeneous

equation. Now, suppose that u(1) is an even function, that is,

u(1,−) = 0 =⇒ w(1,+) = v(1,+) = 0 , (2.6.15)

then equation (2.6.13) is trivially satisfied. Next, assuming that equations (2.6.12)

and (2.6.15) are satisfied, we can repeat the same steps to determine that the even
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part of the terms corresponding to ε2 are given by

∂tu
(2,−) + ∂xu

(2,−) +
[
αu(0,+)u(2,−) + ∂2

xu
(2,−)

]
x

= 0 , (2.6.16)

and the odd part is given by

∂tu
(2,+) + ∂xu

(2,+) +
[
αu(0,+)u(2,+) + ∂2

xu
(2,+)

]
x

=

−
[
α

2
(
u(1,+)

)2
+ α

4
(
∂xw

(0,−)∂tv
(1,−) + ∂xw

(1,−)∂tv
(0,−)

)
cos ξ

−
(
∂x∂tu

(1,+) + ∂2
xu

(1,+)
)

sin ξ
]
x
.

(2.6.17)

This shows that, again, u(2,−) satisfies a homogeneous equation and u(2,+) satisfies

an inhomogeneous equation. Just as for u(1), if u(2) is an even function, that is

u(2,−) = 0 =⇒ w(2,+) = v(2,+) = 0 . (2.6.18)

then equation (2.6.16) is trivially satisfied. Continuing in the same way, it appears

that u(i,−) satisfies a homogeneous equation for all i, and u(i,+) satisfies an inhomo-

geneous equation for all i. From this, if u is even under P , then all the homogeneous

equations would be trivially satisfied, which would also imply that the solution is

quasi-integrable (see subsection 2.3.2). Of course, this analysis does not exclude the

possibility of solutions that are a combination of even and odd functions, however u

cannot be purely an odd function. In that sense, it appears that the perturbed

model favours even solutions, which would imply that it is quasi-integrable.

To numerically test this result, we must ensure that u is an even function during

the entire simulation. This means that solving this problem is more complex than

just choosing initial conditions that are even, because we have no guarantee that the

numerical solution remains even during the simulation. Unfortunately, we have not

found a way to solve this problem.





Chapter 3

Finite difference methods

In the first section of this chapter, we describe the general LU decomposition method

to solve tri-diagonal matrix equations. This algorithm will be used in the finite

difference schemes discussed in the following two sections, where we develop two

algorithms to approximate equation (1.3.23). Due to the presence of various mixed

partial derivatives, these schemes will be a combination of implicit and explicit finite

difference methods. A similar problem was encountered by J. C. Eilbeck and G. R.

McGuire when they numerically investigated the RLW equation [7]. We follow their

ideas, and modify them appropriately to solve equation (1.3.23). In addition, to test

the stability properties of these schemes, we compute the numerical time evolution

of various exact solutions constructed in subsection 1.3.3 and compare them with

their analytical values.

3.1 LU decomposition

For the algorithms we construct in the next two sections, we will have to solve a

system of linear equations of the form

AB = C , (3.1.1)

where A is an n × n tridiagonal matrix, and B and C are column vectors. Note

that A and C are known matrices, and we want to solve the equation for B. We will
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use the LU decomposition method to solve this problem, which we briefly discuss

in this section (see, for instance, the book by G. Schay for more information [25]).

To this end, we decompose a general tridiagonal matrix A into an lower and upper

triangular matrix as follows

A = LU . (3.1.2)

More specifically, let us write the general n× n tridiagonal matrix A as

A =



b1 c1 0 0 · · ·

a2 b2 c2 0

0 a3 b3 c3

... . . . . . . . . .

an−1 bn−1 cn−1

0 an bn



, (3.1.3)

and let us write L and U as

L =



1 0 0 0 · · ·

l2 1 0 0

0 l3 1 0
... . . . . . . . . .

ln−1 1 0

0 ln 1



(3.1.4)

and

U =



d1 c1 0 0 · · ·

0 d2 c2 0

0 0 d3 c3

... . . . . . . . . .

0 dn−1 cn−1

0 0 dn



. (3.1.5)

Then L and U are determined by the following recursive equations

d1 = b1 , li = ai/di−1 and di = bi − lici−1 , (3.1.6)



3.2. First-order scheme 41

where i = 2, 3, . . . , n.

Next, we substitute equation (3.1.2) into equation (3.1.1) to get

LUB = C =⇒ UB = L−1C ≡ Z . (3.1.7)

Thus, in order to determine matrix B, we see that we have to solve the following

two equations

LZ = C and UB = Z . (3.1.8)

Since L is a lower triangular matrix, the first equation can be solved for Z by using

forward-substitution. Once we have found Z, we use back-substitution to solve the

second equation for B, as required.

3.2 First-order scheme

In order to numerically solve the perturbed KdV equation, we first make the following

substitution

p = qt (3.2.1)

such that the equation (1.3.23) can be rewritten as

pt + px − 4p2
x − 2ε2qxxpt + (1− ε1)pxxx − ε1pxxt = 0 . (3.2.2)

Next, we discretise x and t in a finite set of points x0, x1, . . . , xN and t0, t1, . . . , tK ,

with the grid spacing h and the time step τ . Furthermore, we let pmi and qmi

denote the solutions p and q at the grid point (ih,mτ), where i = 0, 1, . . . , N and

m = 0, 1, . . . , K. Finally, let vmi denote any approximation to pmi and let wmi denote

any approximation to qmi .

To construct a finite difference method that is first-order in time and second-order

in space, we introduce the following finite difference operators

δ2
x v

m
i = (vmi+1 − 2vmi + vmi−1)/h2 , (3.2.3)
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Hx v
m
i = (vmi+1 − vmi−1)/2h , (3.2.4)

∆t v
m
i = (vm+1

i − vmi )/τ , (3.2.5)

and these operators act similarly on wmi . Now, using these operators on equa-

tion (3.2.2) in a straightforward manner gives the following finite difference equation

0 = ∆t v
m
i + Hx v

m
i − 4 (Hx v

m
i )2 − 2ε2 δ

2
xw

m
i ∆t v

m
i + (1− ε1) δ2

x Hx v
m
i

− ε1 δ
2
x ∆t v

m
i ,

(3.2.6)

which can be rewritten as

vm+1
i

τ
− 2ε2

(wmi+1 − 2wmi + wmi−1)vm+1
i

h2τ
− ε1

vm+1
i+1 − 2vm+1

i + vm+1
i−1

h2τ
=

vmi
τ
−
vmi+1 − vmi−1

2h +

(
vmi+1 − vmi−1

)2

h2 − 2ε2

(
wmi+1 − 2wmi + wmi−1

)
vmi

h2τ

− (1− ε1) v
m
i+2 − 2vmi+1 + 2vmi−1 − vmi−2

2h3 − ε1
vmi+1 − 2vmi + vmi−1

h2τ
,

(3.2.7)

for any i ∈ {2, 3, . . . , N − 2} and m ∈ {0, 1, . . . , K − 1}. Next we introduce the

following (N + 1)× (N + 1) tridiagonal matrix

A =



1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 −hε1 a2 −hε1 0 · · ·

0 0 −hε1 a3 −hε1

... ... . . . . . . . . .

−hε1 aN−2 −hε1 0

0 0 1 0

0 0 0 1



, (3.2.8)

where ai is defined as

ai = h3 − 2hε2
(
wmi+1 − 2wmi + wmi−1

)
+ 2hε1 . (3.2.9)
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We introduce the following N + 1 column vectors

B =



vm+1
0

vm+1
1

vm+1
2
...

vm+1
N−1

vm+1
N



and C =



c0

c1

c2

...

cN−1

cmN



, (3.2.10)

where ci, for i = 2, 3, . . . , N − 2, is defined as

ci = h3vmi −
h2τ

2
(
vmi+1 − vmi−1

)
+ hτ

(
vmi+1 − vmi−1

)2

− 2hε2
(
wmi+1 − 2wmi + wmi−1

)
vmi

− τ

2 (1− ε1)
(
vmi+2 − 2vmi+1 + 2vmi−1 − vmi−2

)
− hε1

(
vmi+1 − 2vmi + vmi−1

)
,

(3.2.11)

with the following boundary conditions

c0
m = vm+1

0 , cm1 = vm+1
1 , cmN−1 = vm+1

N−1 and cmN = vm+1
N . (3.2.12)

By multiplying both sides of equation (3.2.7) with h3τ , we can rewrite it as the

following matrix equation

AB = C , (3.2.13)

for any m ∈ {0, 1, . . . , K − 1}.

Note that the matrix A and the column vector C contain all the approximations v

and w at the time level m, whereas B contains all the approximations v at m + 1.

Thus, assuming that we know the values of v and w at the time level m = 0 for

all i (i.e., the initial condtions), and we know the values of v at m = 1 to satisfy the

boundary conditions (see equation (3.2.12)), then we can calculate all the other values

of v at m = 1 by solving equation (3.2.13) for B. (We use the LU decomposition

method, as discussed in the previous section, to determine B.) To obtain the values
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of w at m = 1, we solve equation (3.2.1) as follows

vmi = ∆tw
m
i =⇒ wm+1

i = τvmi + wmi , (3.2.14)

for all i ∈ {0, 1, 2, 3, . . . , N}.

We repeat this procedure for all time levels to determine the numerical time

evolution of the given initial configurations. For the actual soliton field u, we

choose α = 8 such that equation (1.3.21) becomes

u = −qxt = −px . (3.2.15)

Thus, we approximate u by applying the finite difference operator Hx on −p in a

straightforward manner.

3.2.1 Stability properties

In this subsection, we test this scheme with h = 0.1 and τ = 0.001. First, we run it

with various exact one-soliton solutions as initial conditions (see equation (1.3.30)).

The green curve in figure 3.1 shows the time evolution of such a simulation with

ε2 = 1. And, for comparison, the red curve shows the corresponding analytical

values. Figure 3.1a shows the start of the simulation at t = 0, and since the initial

conditions of the numerical simulation are the same as the analytical values, the two

curves lie exactly on top of each other. Figures 3.1b and 3.1c show the numerical

(a) t = 0 (b) t = 20 (c) t = 40

Figure 3.1: An analytical and numerical mRLW one-soliton solution u(x, t) at dif-
ferent points in time. The dotted line shows the spatial trajectory of the numerical
soliton’s amplitude.
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approximation at t = 20 and t = 40, respectively. We see that the amplitude of

the numerical soliton increases over time. This is illustrated by the dotted curve in

the figures, which shows how the amplitude of the numerical soliton changes as it

propagates to the right.1

We have also tested this scheme with equation (1.3.38) as initial conditions. The

results of such a simulation are presented in figure 3.2. The green curve represents

the numerical solution, and the red curve shows the corresponding analytical values.

Just as in the previous test, we see that the amplitudes of the numerical solitons

are continuously increasing (except for when the solitons are interacting with each

other), as shown by the dotted curves in figure 3.2. Note, however, that the amplitude

corresponding to the larger soliton increases more rapidly than the amplitude of the

1We have obtained the amplitude of the numerical soliton at some fixed t = ti by finding the
three highest points of the soliton, and assume they fit a polynomial of degree 2. Using the three
highest points of the soliton, we then calculate the coefficients of the polynomial. Next, by taking
the derivative of this polynomial and setting it equal to zero, we find the amplitude and its location
at t = ti. We repeat this procedure for all time levels to determine how the amplitude changes
during the simulation.
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Figure 3.2: An analytical and numerical mRLW two-soliton solution u(x, t) at dif-
ferent points in time. The dotted lines show the amplitudes’ spatial trajectories of
the two numerical solitons.
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smaller soliton in the same amount of time. This is probably because the solution

in the region of the smaller soliton changes less rapidly, and so the finite difference

operators (see equations (3.2.3) to (3.2.5)) are better behaved in this region.

From the above two experiments it is clear the numerical solutions will eventually

blow up if we run this simulation long enough, which indicates that this scheme is

unstable for the chosen h and τ . We have also tried various other values of h and τ ,

and observed very similar behaviour in the sense that the amplitude of the numerical

solitons increase as time progresses. We have also tested the one-soliton simulation

with other values of ε2, and we saw similar stability properties.

Finally, note that figures 3.1 and 3.2 show that the numerical solitons have moved

further to the right than the corresponding analytical solutions in the same amount

of time. Thus, we see that as the amplitude increases, the velocity of the soliton

increases as well. This is consistent with equations (1.3.33) and (1.3.34).

3.3 Second-order scheme

The accuracy of the first-order scheme can be improved by using the central difference

operator for time (instead of the forward difference operator used in the previous

section), that is,

Ht vi
m = (vm+1

i − vm−1
i )/2τ . (3.3.1)

We will now follow the same method as we did in the previous section. Thus, the

finite difference equation now becomes

0 = Ht v
m
i + Hx v

m
i − 4 (Hx v

m
i )2 − 2ε2 δ

2
xw

m
i Ht v

m
i + (1− ε1) δ2

x Hx v
m
i

− ε1 δ
2
x Ht v

m
i .

(3.3.2)
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After making the substitutions, we find that this can be rewritten as

vm+1
i

2τ − ε2
(wmi+1 − 2wmi + wmi−1)vm+1

i

h2τ
− ε1

vm+1
i+1 − 2vm+1

i + vm+1
i−1

2h2τ
=

vm−1
i

2τ −
vmi+1 − vmi−1

2h +

(
vmi+1 − vmi−1

)2

h2 − ε2

(
wmi+1 − 2wmi + wmi−1

)
vm−1
i

h2τ

− (1− ε1) v
m
i+2 − 2vmi+1 + 2vmi−1 − vmi−2

2h3 − ε1
vm−1
i+1 − 2vm−1

i + vm−1
i−1

2h2τ
,

(3.3.3)

for any i ∈ {2, 3, . . . , N − 2} and m ∈ {1, 2, . . . , K − 1}. Now, we define the

tridiagonal matrix A by

A =



1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 −hε1
2 a2 −hε1

2 0 · · ·

0 0 −hε1
2 a3 −hε1

2
... ... . . . . . . . . .

−hε1
2 aN−2 −hε1

2 0

0 0 1 0

0 0 0 1



, (3.3.4)

with ai defined as

ai = h3

2 − hε2
(
wmi+1 − 2wmi + wmi−1

)
+ hε1 . (3.3.5)

Just as we did in the previous section, we introduce the following N + 1 column

vectors

B =



vm+1
0

vm+1
1

vm+1
2
...

vm+1
N−1

vm+1
N



and C =



c0

c1

c2

...

cN−1

cmN



, (3.3.6)



48 Chapter 3. Finite difference methods

where ci, for i = 2, 3, . . . , N − 2, is now defined as

ci = h3

2 v
m−1
i − h2τ

2
(
vmi+1 − vmi−1

)
+ hτ

(
vmi+1 − vmi−1

)2

− hε2
(
wmi+1 − 2wmi + wmi−1

)
vm−1
i

− τ

2 (1− ε1)
(
vmi+2 − 2vmi+1 + 2vmi−1 − vmi−2

)
− hε1

2
(
vm−1
i+1 − 2vm−1

i + vm−1
i−1

)
,

(3.3.7)

and we have the same boundary conditions as in the previous section

c0
m = vm+1

0 , cm1 = vm+1
1 , cmN−1 = vm+1

N−1 and cmN = vm+1
N . (3.3.8)

By multiplying both sides of equation (3.2.7) with h3τ , we can rewrite it as the

matrix equation

AB = C , (3.3.9)

for any m ∈ {1, 2, . . . , K − 1}.

Since we are using a central difference time operator, we need the initial conditions

for w and v at the first two time levels (i.e., at m = 0 and m = 1). We can then,

assuming we know the boundary conditions, determine v at m = 2 by solving

equation (3.3.9) using the LU decomposition method. To solve equation (3.2.1), we

again use the central difference time operator, that is,

vmi = Htw
m
i =⇒ wm+1

i = 2τvmi + wm−1
i , (3.3.10)

for all i ∈ {0, 1, 2, 3, . . . , N}. Thus, we can obtain w and v for each grid point by

repeating this procedure for all time levels. Just as in the previous section, we

choose α = 8 to obtain the actual soliton field u (see equation (3.2.15)).

Finally, note that if we had substituted the finite difference operators directly into

the perturbed KdV equation without first making the substitution expressed by equa-

tion (3.2.1), then the 4q2
xt term would have yielded a term (−wm+1

i+1 w
m+1
i−1 )/(2h2τ 2);

and since this term contains two unknowns, (i.e., wm+1
i+1 and wm+1

i−1 ), we would not

have been able to solve for it. Moreover, for very similar reasons, we cannot use the

well-known Crank-Nicolson method to numerically solve equation (1.3.23).
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3.3.1 Stability properties

Just as in the previous section, we test this scheme by using the analytical Hirota

solutions constructed in subsection 1.3.3 as initial conditions, with h = 0.01 and

τ = 0.001. First, we investigate the family of one-soliton solutions. The green

curve in figure 3.3 represent such a one-soliton simulation with ε2 = 1, and the red

curve shows the corresponding analytical values. The simulation starts at t = 0 (see

figure 3.3a), and since we use the analytical expression as initial conditions, the two

curves lie exactly on top of each other. Figures 3.3b and 3.3b show the solutions at

t = 20 and t = 40, and now we see that the amplitude of the numerical solution is

stable. In fact, the numerical solution approximates the exact values so close that it

is hard to distinguish between the green and the red curve. Therefore, we have added

an inset in figure 3.3c to show the solitons at a smaller scale. We see that the shape

and velocity of the numerical solutions approximates the analytical values indeed

very closely. We have also performed this one-soliton test with other values of ε2 6= 1.

These numerical solutions behaved in very similar way as for ε2 = 1 in the sense

that the numerical solutions are a very good approximation to the corresponding

analytical values.

Furthermore, we have repeated this test with the class of mRLW two-soliton

solutions (see equation (1.3.38)) as initial conditions. Figure 3.4 shows the time

evolution of such a simulation. Just as for the one-soliton simulations, we see

(a) t = 0 (b) t = 20
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(c) t = 40

Figure 3.3: An analytical and numerical mRLW one-soliton solution u(x, t) at dif-
ferent points in time. The dotted line shows the spatial trajectory of the numerical
soliton’s amplitude.
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Figure 3.4: An analytical and numerical mRLW two-soliton solution u(x, t) at dif-
ferent points in time. The dotted lines show the amplitudes’ spatial trajectories of
the two numerical solitons.

that the numerical solution stays very close to the exact values of equation (1.3.38).

Figure 3.4f shows an inset of the region near the largest soliton at a much smaller scale.

Similar to the one-soliton test, we see the soliton’s shape and velocity are almost

the same. Upon zooming in on the smallest soliton, we saw that the discrepancy

between the analytical and numerical solutions was even smaller. This is probably

because the finite difference operator behave slightly better in the region of the

smaller soliton.

From these results, we conclude that this second-order finite difference scheme

approximates equation (1.3.23) very well for h = 0.1 and τ = 0.001. We have also

tried other values of h and τ , but we believe this particular choice is a good balance

between accuracy and efficiency, and hence all the numerical simulations presented

in the next chapters will be produced using this second-order scheme with h = 0.1

and τ = 0.001.



Chapter 4

RLW and mRLW simulations

As discussed in subsection 1.3.3, we found one- and two-soliton solutions that solve

the perturbed KdV equation only for certain values of ε1 and ε2. In this chapter,

we discuss the numerical properties of multi-soliton systems that do not analytically

solve the perturbed KdV equation. To construct such an N -soliton configuration,

withN ≥ 2, we use as initial conditions the superposition ofN single-soliton solutions

described by equation (1.3.30), that is,

q = 3
2 + ε2

N∑
i=1

ln
(
1 + eΓi

)
, (4.0.1)

while keeping ε1 = 1.

4.1 Multi-soliton mRLW interactions

In this section, we investigate multi-soliton simulations governed by the mRLW

equation (i.e., ε1 = ε2 = 1). Since we know the form of the analytical two-soliton

solutions, we are particularly interested in the numerical three-soliton simulations.

To construct a three-soliton system, we use the linear superposition of three one-

soliton solutions as initial conditions, with the three solitons initially placed far apart

from each other. We then determine the time evolution of such a system (using the

second-order scheme discussed in section 3.3), and study its properties. However,

to test this method, we first present the numerical time evolution of a simulation
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using equation (4.0.1) as initial conditions, with ε2 = 1 and N = 2, and compare

it with the numerical time evolution of the exact two-soliton solution described by

equation (1.3.38).

4.1.1 Two-soliton solutions

To this end, the superposition of two one-soliton solutions takes the following form

q = ln
(
1 + eΓ1

)
+ ln

(
1 + eΓ2

)
. (4.1.1)

The red curve in figure 4.1 shows the numerical time evolution of such a system.

For comparison purposes, the green curve in figure 4.1 shows the numerical time

evolution of equation (1.3.38), that is, this green curve is exactly the same as the

green curve shown in figure 3.4. We cannot distinguish between the curves on the

scale shown in the figure. In fact, the inset in figure 3.4f shows that even on a smaller

scale, the two solutions are indistinguishable, which implies that the results are very
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Figure 4.1: The red curve represents the numerical simulation constructed with
the linear superposition of two mRLW single-soliton solutions, and the green curve
shows the numerical time evolution of the corresponding analytical mRLW two-
soliton solution.
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reliable.

In this chapter, we also investigate the phase shifts that the numerical solitons

experience. To find the phase shift, we numerically obtain the x- and t-dependence

of the amplitudes of each of the solitons (see the footnote on page 45). Since the

phase velocity of non-interacting solitons (i.e., before and after the collision) is

approximately constant, we can use this data to numerically calculate the resulting

spatial shift of each soliton. For the two-soliton mRLW solutions, we have an

analytical expression for the phase shift (see subsection 1.3.3), and we will use this

expression to determine the numerical phase shift from the aforementioned numerical

spatial shift.

To this end, when the two solitons are far apart (i.e., before and after the colli-

sion), they can be approximated as the superposition of two single-soliton solutions.

Therefore, let us find the expression for the location of a single soliton by setting

the x-derivative of equation (1.3.32) (with ε2 = 1) equal to zero, which yields

x = ω1t− δ1

k1
. (4.1.2)

This equation expresses how the location of a single soliton’s amplitude, x, depends

on time. Furthermore, a single soliton propagates with a constant velocity (see

equation (1.3.34)), and so x satisfies the following linear relation

x = v(k1)
p t+ x

(k1)
0 . (4.1.3)

These equations are also valid for two-soliton systems, provided they are far apart

from each other. Due to the phase shift, x(k1)
0 before the collision will be different

than x(k1)
0 after the collision. To find an analytic expression for this difference, i.e.,

the spatial shift, we use equation (4.1.2) as follows

∆x
(k1)
0 ≡ lim

t→∞
x

(k1)
0 − lim

t→−∞
x

(k1)
0

≈ω1t− (δ1 + lnA12)
k1

− ω1t− δ1

k1
= − lnA12

k1
,

(4.1.4)

where A12 is defined by equation (1.3.37). Following the same procedure for the
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soliton corresponding to k2, we find that the analytical expression for its spatial shift

is given by

∆x
(k2)
0 ≈ ω2t− (δ2 − lnA12)

k2
− ω2t− δ2

k2
= lnA12

k2
. (4.1.5)

Now, let ∆x
(ki,n)
0 denote the numerically obtained spatial shift of the soliton corres-

ponding to ki. Furthermore, let δ12 denote the numerical phase shift of the soliton

corresponding to k1 after it has interacted with the soliton corresponding to k2,

where we assume that k1 > k2, and let δ21 denote the numerical phase shift that the

soliton corresponding to k2 experiences due to the same collision. Then, we have

obtained the following relations

δ12 = −k1 ∆x
(k1,n)
0 and δ21 = −k2 ∆x

(k2,n)
0 . (4.1.6)

Furthermore, we define the relative errors, ε(k1) and ε(k1), of the numerical phase

shifts, δ12 and δ12, as

ε(k1) = |δ12 − lnA12|
|lnA12|

and ε(k2) = |δ21 + lnA12|
|lnA12|

. (4.1.7)

Using this method, we found that for both the red and the green curves presented

in figure 4.1, the relative errors were ε(k1) = 1.97% and ε(k2) = 0.34% (i.e., the two

simulations approximate each other so closely that the relative errors were the same

for both simulations). These errors are a combination of the errors due to:

(i) the numerical second-order scheme discussed in section 3.3,

(ii) and the algorithm to obtain the x- and t-dependence of the solitons’ amplitudes,

as discussed in the footnote on page 45.

To eliminate the first error, we determined the numerical phase shift of the corres-

ponding analytical values (see, for instance, the red curve in figure 3.4), and we

found that ε(k1) = 4.91% and ε(k2) = 3.36%. Thus, in this case, the relative errors for

the analytical solution are significantly higher than for the numerical simulations,

which implies that the algorithm to obtain the phase shift is fairly sensitive. To

further illustrate this sensitivity, we have run additional analytical and numerical
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simulations for various other values of ω2 while keeping ω1 = 5 constant, and de-

termined the relative errors of the phase shifts that the solitons experience. The

corresponding relative errors ε(k1) are shown in figure 4.2, where the red dots rep-

resent the relative errors obtained for the analytical two-soliton solution described

by equation (1.3.38), and the blue dots represent the relative errors observed for the

corresponding numerical simulation. We have repeated these experiments with other

values of ω1 and ω2, and we found that the relative errors always satisfy ε(k1) < 6%

and ε(k2) < 6%.

4.1.2 Three-soliton solutions

Armed with the results of the previous subsection, we now investigate the numerical

time evolution of systems constructed by the linear superposition of three single-

solitons, that is,

q = ln
(
1 + eΓ1

)
+ ln

(
1 + eΓ2

)
+ ln

(
1 + eΓ3

)
. (4.1.8)

Figure 4.3 shows the time evolution of such a simulation. The simulation starts

at t = 0, i.e., figure 4.3a shows the system when it has already evolved for 34 units
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Figure 4.2: The vertical axis represents the relative errors ε(k1) ≡ ε(ω1), with ω1 = 5,
that are experienced during various analytical and numerical mRLW two-soliton
simulations, and the horizontal axis shows various values for ω2 that were used for
these simulations. The red dots are the relative errors due to the analytical two-
soliton solution. Similarly, the blue dots are the errors obtained in the numerical
two-soliton simulation.
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Figure 4.3: Numerical time evolution of a three-soliton system governed by the
mRLW equation. Note that at all times during the simulation, there are three
distinct maxima present.

of time. Figures 4.3b to 4.3e show how the three solitons interact with each other.

Note that the solution’s amplitude decreases during the collision, which is due to

the nonlinearity of equation (1.1.1). Figure 4.3f shows the three solitons after they

have scattered, and we see that the amplitudes and shapes of the solitons have not

visibly changed. In fact, using equation (1.3.33), we found that the relative numerical

error of the amplitude of each of the three solitons before and after the collision

was less than 0.074%. Similarly, the numerical error of the velocity of each of the

solitons (see equation (1.3.34)) was less than 0.12% before and after they interacted.

Furthermore, we did not see any (visible) loss of radiation during the entire simulation.

In figure 4.4a we have plotted how the amplitudes of the three solitons vary with

time. This shows that the parameters of the simulation are such that there are three

distinct solitons present at all times during the simulation. Furthermore, figure 4.4b

shows the (numerically obtained) t-dependence of Q1 and Qε2
2 (see equations (1.1.10)

and (1.1.11)). We see that they are indeed conserved for this numerical three-soliton

simulation, and they approximate equations (1.3.39) and (1.3.40) very closely (with

N = 3). In fact, using these equations, we found that the relative numerical error
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Figure 4.4: The red dots in figure (a) illustrate the time-dependence of left-soliton’s
amplitude shown in figure 4.3; similarly, the green and blue dots, respectively, cor-
respond to the middle- and right-soliton of the simulation. Figure (b) shows how
the charges Q1 and Qε2

2 of the simulation vary with time.

for the conserved charges was smaller than 0.0001% at each time level during the

simulation.

In figure 4.5 we show a different three-soliton mRLW simulation. For this sim-

ulation the parameters of the initial conditions are chosen such that the smallest

soliton gets completely ‘absorbed’ during the three-soliton interaction (see, for in-

stance, figure 4.5c). To better illustrate this, figure 4.6a shows how the amplitudes

of the three solitons vary with time. From this plot we can see that from t ∼ 17
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Figure 4.5: Numerical time evolution of a three-soliton system governed by the
mRLW equation. Figure (c) illustrates that the smallest solitons get ‘absorbed’
during the collision.
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Figure 4.6: The red dots in figure (a) illustrate the time-dependence of left-soliton’s
amplitude shown in figure 4.5; similarly, the green and blue dots, respectively, cor-
respond to the middle- and right-soliton of the simulation. Figure (b) shows how
the charges Q1 and Qε2

2 of the simulation vary with time.

to t ∼ 23, the smallest wave gets absorbed during the three-soliton interaction and

there are only two distinct maxima present. We see that after the collision, the

solitons re-emerge with the same amplitudes and velocities. Figure 4.6b shows the

corresponding charges Q1 and Qε2
2 , which are also conserved for this simulation and

approximate equations (1.3.39) and (1.3.40), for N = 3, very closely (just as for

the previous simulation). To be precise, we found that the numerical errors of the

amplitudes were less than 0.21%, of the soliton’s velocities less than 0.11%, and of

the charges Q1 and Qε2
2 less than 0.01%.

Thus, from the above two simulations, we see that the numerical solitons of the

partial integrable mRLW equation share some of the properties that we observe for

integrable models (see section 1.2). As we mentioned in section 1.2, the total phase

shift of an integrable soliton due to an N -soliton interaction is equal to the total

sum of the phase shifts due to separate two-soliton interactions with each of the

other N − 1 solitons involved. Assuming this also holds for the mRLW equation,

then for a numerical three-soliton collision, with k1 > k2 > k3, we expect that

∆x
(k1)
0 ≈ ω1t− (δ1 + lnA12 + lnA13)

k1
− ω1t− δ1

k1
= − lnA12 + lnA13

k1
, (4.1.9)

∆x
(k2)
0 ≈ ω2t− (δ2 − lnA12 + lnA23)

k2
− ω2t− δ2

k2
= lnA12 − lnA23

k2
, (4.1.10)

∆x
(k3)
0 ≈ ω3t− (δ3 − lnA13 − lnA23)

k3
− ω3t− δ3

k3
= lnA13 + lnA23

k3
. (4.1.11)

Following the discussion in the previous subsection, let δijm denote the numerical
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phase shift which the soliton related to the wavenumber ki experiences as a result of

a three-soliton interaction with the other two solitons related to the wavenumbers kj

and km. Furthermore, let the numerically obtained spatial shift of the soliton

corresponding to ki be denoted by ∆x
(ki,n)
0 . It then follows from the above three

equations that

δ123 = −k1 ∆x
(k1,n)
0 , δ213 = −k2 ∆x

(k2,n)
0 and δ312 = −k3 ∆x

(k3,n)
0 . (4.1.12)

We define the corresponding relative errors, ε(k1), ε(k2) and ε(k3), in a similar way as

in the previous subsection, that is,

ε(k1) = |δ123 − lnA12 − lnA13|
|lnA12 + lnA13|

, ε(k2) = |δ213 + lnA12 − lnA23|
|− lnA12 + lnA23|

, (4.1.13)

and

ε(k3) = |δ312 + lnA13 + lnA23|
|lnA13 + lnA23|

. (4.1.14)

For the simulation shown in figure 4.3, we found that ε(k1) = 1.92%, ε(k2) = 4.72%

and ε(k3) = 1.75%. And for the time evolution corresponding to figure 4.5, we

observed that ε(k1) = 0.69%, ε(k2) = 0.19% and ε(k3) = 0.10%. We observed similar

relative errors for various other three-soliton simulations, which indicates that the

phase shifts due to multi-soliton collisions can be explained by the additivity of

‘two-particle’ effects.

To sum up, the simulations discussed in this subsection have shown that the

partial integrable mRLW equation admits numerical three-soliton solutions. The

resulting solitons evolve very similar to integrable solitons in the sense that there

is no particle creation or destruction and the solitons scatter elastically with each

other during a three-soliton interaction. Furthermore, we also see that the phase

shift is additive (with a numerical error of less than 6%).
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4.2 Multi-soliton RLW interactions

As discussed in section 1.1, the RLW equation admits only one-soliton solutions,

which are expressed by equation (1.3.30) with ε2 = 0. Therefore, to study multi-

soliton systems governed by the RLW equation, we use numeric procedures. The

numeric solutions of the RLW have been extensively studied [3, 7, 8, 20, e.g.]. In

this section, we briefly present the two- and three-soliton simulations with the intent

to discuss their quasi-integrability properties in chapter 6.

4.2.1 Two-soliton solutions

To construct an RLW two-soliton simulation, we use the methods discussed in the

previous section. Thus, we use equation (4.0.1), with ε2 = 0 and N = 2, as initial

conditions. Figure 4.7 shows such a simulation, which has been constructed with

the same angular parameters (i.e., k1, k2, δ1, and δ2) used to produce figure 4.1 (see

appendix A). Figure 4.7a shows the start of the simulation, and figures 4.7b to 4.7f

show the numerical time evolution at various points in time. The simulation showed
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Figure 4.7: Numerical time evolution of a two-soliton system governed by the RLW
equation.
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that immediately after the largest soliton passed the smallest soliton, the smallest

soliton emitted a small amount of (visible) radiation. To illustrate this, the insets in

figure 4.7e and 4.7f show the radiation at a smaller scale. These observations agree

with the results presented in [3, 20].

Figure 4.8 shows the corresponding numerical conserved charges (see equa-

tions (1.1.6) to (1.1.8)). We thus see that the quantities are independent in time (up

to small numerical errors) for RLW two-soliton simulations. Using equation (1.3.33)

with ε2 = 0, we found that the relative error for each soliton’s amplitude was less

than 0.11%, and the relative errors of the velocities were found to be less than 0.12%.

These errors are very small, and so we see that the (small) loss of radiation did not

have a significant impact on these variables. Since there is no analytic two-soliton

expression that solves the RLW equation, we do not have an analytical expression

for the phase shift. However, when we used the relative errors defined by equa-

tion (4.1.7), we found that ε(k1) = 8.27% and ε(k2) = 0.25%. Furthermore, just as

in subsection 4.1.1, we have determined the relative errors for various simulations

using different values for ω2 while keeping ω1 = 5 constant. The results are shown

in figure 4.9. From this, it appears that the phase shift due to a two-soliton RLW

interaction can be approximated by lnA12, provided that |ω1 − ω2| is sufficiently

small. However, more research needs to be done to draw definite conclusions.
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RLW two-soliton simulation shown in figure 4.7.
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Figure 4.9: The vertical axis represents the relative errors ε(k1) ≡ ε(ω1), with ω1 = 5,
that are experienced during various numerical RLW two-soliton simulations, and the
horizontal axis shows various values for ω2 that were used for these simulations.

4.2.2 Three-soliton solutions

Figure 4.10 shows the numerical time evolution of a system constructed using the

superposition of three single-soliton RLW solutions. This simulation was run with

the same angular parameters used to produce figure 4.3. The results show that

after the three-soliton collision, the smallest soliton emits some (visible) radiation
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Figure 4.10: Numerical time evolution of a three-soliton system governed by the
RLW equation. Note that at all times during the simulation, there are three distinct
maxima present.



4.2. Multi-soliton RLW interactions 63

(see figure 4.10f), which is comparable with the two-soliton simulation. Numerical

analysis of QRLW
1 , QRLW

2 and QRLW
3 showed that they were conserved at about the

same order as for the two-soliton simulation discussed in the previous subsection.

Furthermore, we found that the errors of the amplitudes were less than 0.13%, and

the errors of the phase velocities were less than 0.089%. As mentioned in the previous

subsection, we do not have an analytic expression for the phase shift, and so we have

used equations (4.1.13) and (4.1.14) to determine that ε(k1) = 5.34%, ε(k2) = 8.97%

and ε(k3) = 0.48%.

Figure 4.11 shows the RLW simulation corresponding to figure 4.5, with ε2 = 0.

We found that the relative errors of the solitons’ amplitudes and velocities (before

and after the collision) to be less than 1.22% and 0.54%, respectively. For the phase

shift, we found that ε(k1) = 11.47%, ε(k2) = 8.13% and ε(k3) = 3.40%.

To sum up, the main difference between the numerical RLW and mRLW solutions

is that the RLW solitons emits some visible radiation, whereas for the mRLW

simulations we did not see any visible loss of radiation. Furthermore, using the

analytical expression for the phase shift of the exact two-soliton mRLW solution,
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Figure 4.11: Numerical time evolution of a three-soliton system governed by the
RLW equation. Figure (c) illustrates that the smallest solitons get ‘absorbed’ during
the collision.
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we have determined that the phase shift of the numerical three-soliton interaction

governed by the mRLW equation is additive (within a numerical error of 6%). On the

other hand, since we do not have an analytic expression for the phase shift of RLW

solitons, it is more complicated. If we look at the numerical observed errors ε(k1),

ε(k2) and ε(k3) presented in this section, and compare it with the results presented in

section 4.1, we see that overall the errors are significantly larger. However, it does

appear the RLW phase shift approximates the mRLW phase shift to within a certain

degree, provided |k1 − k2| is small enough.

4.3 General initial pulses

In this section, we test the soliton resolution conjecture for the mRLW and RLW

equation. As mentioned in section 1.2, we want to test if any arbitrary initial pulse

will eventually decouple in a stable system composed of soliton- and radiation-like

components.

To test this conjecture, we use the following initial conditions

q = −t erf(0.5x) =⇒ u = 1√
π

exp
(
−x2

)
. (4.3.1)

The time evolution of this system governed by the mRLW equation (i.e., ε1 = ε2 = 1)

is shown in figure 4.12. Unlike before, the simulation now starts at t = 1, which is

shown in figure 4.12a. The dotted line shows the trajectory of the Gaussian function’s

amplitude, which shows that it initially decreases sharply, and subsequently stabilises

at some constant value. This happens while the initial conditions decouple into

soliton- and radiation-like components, as shown in figures 4.12b and 4.12c. As

time progresses, the radiation’s amplitude starts to increase. This can be seen by

comparing figure 4.12e with figure 4.12f, which shows that the amplitude of the

radiation-like structure has grown significantly during a short period of time. In fact,

the whole system blows up at t ≈ 67.2. We have run this simulation with various

different grid spacings and time steps, and found that the system always blew up at
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Figure 4.12: The time evolution of a Gaussian function governed by the mRLW
equation.

(approximately) the same t. Therefore, we believe that the blow-up is not a result

of instabilities due to the second-order finite difference method.

Thus, we see that the soliton resolution conjecture does not hold for the mRLW

equation. We have also investigated the time evolution of these initial conditions,

and various others, governed by the RLW equation (i.e., ε1 = 1 and ε2 = 0), and

found that they also decouple into soliton- and radiation-like components. However,

none of the initial pulses governed by the RLW equation blew up. This suggests

that the conjecture may hold for the RLW model, which is consistent with the

results obtained in [8]. This difference between the RLW and mRLW models might

be because, to our knowledge, the mRLW equation does not admit a Hamiltonian

structure, which potentially controls and limits the growth of the radiation-like

components.





Chapter 5

Perturbed RLW and mRLW

simulations

As we mentioned in section 1.2, integrability also manifests itself in the stability

of perturbed solitons. Therefore, in this chapter, we investigate the nonintegrable

mRLW and RLW models in the presence of perturbation terms. To be specific,

we study various one-, two- and three-soliton mRLW and RLW configurations in

the presence of perturbing terms determined by ε1 and ε2. The quasi-integrability

properties of these perturbed soliton simulations will be discussed in chapter 6.

5.1 Perturbations of mRLW solutions

Let us first focus on the mRLW equation. To study its perturbations, we rewrite

equation (1.1.1) as

ut + ux +
[
α

2 u
2 + α

4wxvt − uxt
]
x

=
[
χ2
α

4wxvt − χ1 (uxx − uxt)
]
x
, (5.1.1)

where we have defined χ1 and χ2 by

χ1 = 1− ε1 and χ2 = 1− ε2 . (5.1.2)

Since the left-hand side of equation (5.1.1) is equivalent to the mRLW partial dif-

ferential operator, we can think of u as a solution governed by the mRLW equation
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in the presence of an additional external force that is described by the right-hand

side of equation (5.1.1). The parameters χ1 and χ2 determine the magnitude of the

perturbing terms.

5.1.1 One-soliton solutions

We start by investigating one-soliton systems governed by the perturbed mRLW

equation. To this end, we construct the initial conditions using the family of one-

soliton solutions that exactly solve the left-hand side of equation (5.1.1), that is,

q = ln
(
1 + eΓ1

)
. (5.1.3)

Using various different values of χ1 and χ2, we then let this system numerically

evolve according to the second-order algorithm .

Figure 5.1 shows three different simulations; figures 5.1a to 5.1c are perturbed

through χ1 = 0 and χ2 = 0.1, figures 5.1d to 5.1f through χ1 = 0 and χ2 = 0.7, and

figures 5.1g to 5.1i through χ1 = 0 and χ2 = 1. For all three simulations, we see

that the initial soliton emits a small amount of visible radiation shortly after the

start of the simulation (see the insets in figures 5.1b, 5.1e and 5.1h). Comparing

the insets shown in figures 5.1c, 5.1f and 5.1i, it appears that the radiation becomes

larger as χ2 becomes larger. Particularly, the radiation emitted when χ2 = 1 is

significantly larger than for the simulations corresponding to χ2 = 0.1 and χ2 = 0.7.

As usual, the dotted line shows the trajectory of the soliton’s amplitude. We see

that for all three simulations, the amplitude slightly decreases immediately after the

simulation has started, and then stabilises after the soliton has emitted the radiation-

like component. We have found that when we increase χ2 from 0 to 0.7 in increments

of 0.1, the soliton’s amplitude decreases more when χ2 increases. However, when

χ2 increases from 0.7 to 1 in increments of 0.1, the soliton’s amplitude starts to

decrease less. We have illustrated this effect in figure 5.2. Figure 5.2a shows the

trajectory of the perturbed soliton’s amplitude for χ2 ranging from 0 to 0.7. We see

that the amplitude of the soliton decreases more when the perturbation through χ2
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Figure 5.1: Figures (a) to (c) show the time evolution of an mRLW one-soliton
solution perturbed through χ1 = 0 and χ2 = 0.1. Similarly, figures (d) to (f) show
the time evolution perturbed through χ1 = 0 and χ2 = 0.7, and figures (g) to (i)
show the simulation perturbed through χ1 = 0 and χ2 = 1.

increases. This can be explained by the fact that the initial conditions are a more

‘accurate’ solution to the perturbed equations of motion when the perturbation is

small. Figure 5.2b shows how the amplitude varies when χ2 is increased from 0.7
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Figure 5.2: The trajectories of an mRLW soliton’s amplitude perturbed through
various values of χ2 while keeping χ1 = 0 constant.
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to 1. Surprisingly, we see that as the perturbation becomes larger in this range, the

amplitude decreases less in magnitude. Finally, for future reference, we have also

plotted a simulation produced with χ2 = 0.5, which is shown in figure 5.3.

Furthermore, for all these simulations we have analysed the charges introduced

in section 1.1. We found that Q1 and Qε2
2 are incredibly well conserved. However,

as shown in figure 5.4, the charges QRLW
2 and QRLW

3 are not conserved in general. It

is interesting to point out that as the perturbation parameter χ2 gets closer to the

RLW equation, the quantities QRLW
2 and QRLW

3 become ‘better’ conserved. This is

expected because these charges are only exactly conserved for the RLW equation.

We have also investigated these perturbations with χ2 < 0 while keeping χ1 = 0.

For these simulations, we found that the amplitude of the initial soliton increases

(instead of decreasing) while it emits radiation. Figure 5.5 shows an example of

such a simulation with χ2 = −0.5, and figure 5.2c shows the various trajectories

of a soliton’s amplitude that is perturbed through various values of χ2 < 0. Upon

analysing the charges, we also found the same behaviour in the sense that Q1 and Qε2
2

were conserved, whereas QRLW
2 and QRLW

3 were not conserved, as shown in figure 5.4.

For all the values of χ2 discussed so far, we see that the initial configuration in

the presence of a perturbation through χ2 evolves into a long-lived system consisting

of soliton- and radiation-like components. However, we found that as we decrease χ2

from 0 to −1 in increments of 0.1, the system blows up when χ2 ≤ −0.8. To

illustrate this, figure 5.6 shows such a simulation for χ2 = −0.9. We see that initially,

the soliton behaves similar as the solitons discussed in the previous simulations in
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Figure 5.3: The time evolution of an mRLW one-soliton solution perturbed through
χ1 = 0 and χ2 = 0.5.
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Figure 5.4: The time-dependence of the quantities QRLW
2 and QRLW

3 observed for
various mRLW one-soliton simulations perturbed through χ2 while keeping χ1 = 0
constant.

the sense that the initial soliton emits some radiation in the beginning while its

amplitude increases slightly, and then it stabilises. However, looking at the insets

in figures 5.6b to 5.6e, we see that the amplitude of the radiation-like structure is

slowly increasing. The amplitude keeps increasing, as shown in figure 5.6f, until the

system blows up at around t ≈ 22.8.

We have furthermore investigated the perturbations of the mRLW one-soliton

solution for various values of χ1 6= 0 while keeping χ2 = 0. Figure 5.7 show two of

such simulations; figures 5.7a to 5.7c show the time evolution perturbed through

χ1 = 0.5 and χ2 = 0, and figures 5.7d to 5.7f through χ1 = −0.5 and χ2 = 0. From

this, we see that the initial soliton changes its shape after emitting radiation. The

amplitude of the soliton increases initially if χ1 > 0, and it decreases if χ1 < 0. To

illustrate this in more detail, figure 5.8 shows how the trajectory of the initial soliton
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Figure 5.5: The time evolution of an mRLW one-soliton solution perturbed through
χ1 = 0 and χ2 = −0.5.
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Figure 5.6: The time evolution of an mRLW one-soliton solution perturbed through
χ1 = 0 and χ2 = −0.9, shown at a larger scale to illustrate the blow-up of the
system.

changes for various values of χ1.1 This shows that as |χ1| increases, the initial

soliton’s amplitude changes more rapidly. In this respect, simulations perturbed

1Note that our algorithm cannot solve the equations of motion when χ1 = 1, because then both
the upper and lower diagonal of the tridiagonal matrix A (see equation (3.3.4)) vanish.
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Figure 5.7: Figures (a) to (c) show the time evolution of an mRLW one-soliton
solution perturbed through χ1 = 0.5 and χ2 = 0. Similarly, figures (d) to (f) show
the simulation perturbed through χ1 = −0.5 and χ2 = 0.
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Figure 5.8: The trajectories of an mRLW soliton’s amplitude perturbed through
various values of χ1 while keeping χ2 = 0 constant.

through χ1 differ from the simulations perturbed through χ2 (see the discussion on

page 68).

5.1.2 Two-soliton solutions

In the previous subsection, we discussed how an mRLW one-soliton solution evolves

in the presence of perturbing terms governed by χ1 and χ2. We have seen that,

provided χ1 and χ2 are relatively small, the perturbed systems result in long-lived

localised structures after the initial configuration has emitted some radiation. In

this subsection, we investigate the stability properties of mRLW two-soliton systems

in the presence of perturbations through χ1 and χ2. That is, we take the following

initial conditions

q = ln
(
1 + eΓ1 + eΓ2 + A12e

Γ1+Γ2
)
, (5.1.4)

and obtain the numerical time evolution for various different values of χ1 and χ2.

Figures 5.9 and 5.10 show two of such simulations; figure 5.9 was produced with

χ1 = 0 and χ2 = 0.5, and figure 5.10 with χ1 = 0 and χ2 = −0.5. Looking at

the simulation corresponding to χ2 = 0.5, we see that the two initial solitons both

emit some visible radiation while their amplitudes decrease. Note that the inset in

figure 5.9b shows the radiation emitted by the smallest initial soliton. Subsequently,

the largest soliton interacts with this radiation, which causes the amplitude of the

largest soliton to alter slightly (see the inset in figure 5.9c). After this interaction,

the soliton’s amplitude returns to its original magnitude, as shown in figure 5.9d.
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Figure 5.9: The time evolution of an mRLW two-soliton solution perturbed through
χ1 = 0 and χ2 = 0.5.

Next, figure 5.9e shows how the soliton-like structures interact with each other. Note

that the total amplitude decreases while they interact, whereas this is not necessarily

true for the soliton-radiation collision (see the inset in figure 5.9c). Furthermore,

figure 5.9f shows that the solitons’ amplitudes return to their original values. For
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Figure 5.10: The time evolution of an mRLW two-soliton solution perturbed through
χ1 = 0 and χ2 = −0.5.
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the simulation perturbed through χ2 = −0.5, we observe similar behaviour, with

the main difference that the initial solitons increase their amplitude when they emit

radiation.

Figures 5.11 and 5.12 show the two-soliton mRLW simulations perturbed through

χ1 = 0.5 and χ1 = −0.5, respectively, with χ2 = 0 for both simulations. The

behaviour of these solutions is very similar in the sense that the initial solitons emit

radiation while increasing or decreasing their amplitude slightly. Next, the largest

soliton interacts with the radiation emitted by the smallest soliton. This causes the

amplitude of the soliton-like structure to change slightly, but after the interaction

it emerges with the same amplitude as before the collision. Finally, the two soliton

structures interact with each other in a (nearly) elastic manner.

In all of the above two-soliton simulations, we have observed that during the

soliton-radiation interactions, the total amplitude is sometimes higher than the

soliton’s amplitude before or after the interaction. This property has only been

observed for radiation scattering with other soliton- or radiation-like structures. On

the other hand, for perturbed soliton-soliton interactions, we see that the total

amplitude always decreases, similar to the unperturbed soliton solutions.
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Figure 5.11: The time evolution of an mRLW two-soliton solution perturbed through
χ1 = 0.5 and χ2 = 0.
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Figure 5.12: The time evolution of an mRLW two-soliton solution perturbed through
χ1 = −0.5 and χ2 = 0.

5.1.3 Three-soliton solutions

In this subsection, we briefly present some numerical three-soliton simulations in

the presence of perturbation terms, which allow us to investigate the ‘many-particle’

effects of perturbed three-soliton interactions. Furthermore, we discuss their quasi-

integrability properties in chapter 6.

Since there are no known analytical three-soliton solutions that solve the mRLW

equation, we use the superposition of three single-soliton solutions as initial condi-

tions, that is,

q = ln
(
1 + eΓ1

)
+ ln

(
1 + eΓ2

)
+ ln

(
1 + eΓ3

)
. (5.1.5)

Figures 5.13 and 5.14 show two simulations constructed with these initial conditions;

figure 5.13 is produced with χ1 = 0 and χ2 = 0.5, and figure 5.14 with χ1 = 0

and χ2 = −0.5. Similarly, figures 5.15 and 5.16 show the three-soliton simulations

corresponding to χ1 = 0.5 and χ1 = −0.5, respectively, with χ2 = 0 for both

simulations. The behaviour of these systems is very similar to the behaviour of

the perturbed two-soliton simulations. We see that initially the two largest solitons

emit visible radiation. (Note that we observed that the smallest soliton also emits



5.1. Perturbations of mRLW solutions 77

100 50 0 50
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

u(
x,

t=
0)

perturbed mRLW solution; 2 = 0.5

(a) t = 0

100 50 0 50
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

u(
x,

t=
3.

15
) perturbed mRLW solution; 2 = 0.5

(b) t = 3.15

100 50 0 50
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

u(
x,

t=
5.

88
) perturbed mRLW solution; 2 = 0.5

(c) t = 5.88

100 50 0 50
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

u(
x,

t=
10

.9
2) perturbed mRLW solution; 2 = 0.5

(d) t = 10.92

100 50 0 50
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

u(
x,

t=
23

.5
2) perturbed mRLW solution; 2 = 0.5

(e) t = 23.52

100 50 0 50
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

u(
x,

t=
36

.5
4) perturbed mRLW solution; 2 = 0.5

(f) t = 36.54

Figure 5.13: The time evolution of an mRLW three-soliton solution perturbed
through χ1 = 0 and χ2 = 0.5.

radiation, however it is too small to see it in the figures.) As a result of the largest

soliton colliding with the emitted radiation, its amplitude changes (see for example

figures 5.13c, 5.14c, 5.15c and 5.16c). However, after this interaction, it returns to

the same height as it had before the interaction. Subsequently, the three soliton-like
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Figure 5.14: The time evolution of an mRLW three-soliton solution perturbed
through χ1 = 0 and χ2 = −0.5.
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Figure 5.15: The time evolution of an mRLW three-soliton solution perturbed
through χ1 = 0.5 and χ2 = 0.

structures simultaneously scatter with each other and, after the interaction, they

again return to their original shapes.

Thus, to sum up, we see that the perturbed mRLW (multi-)soliton solutions give

rise to long-lived localised structures, provided the perturbations are small enough.
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Figure 5.16: The time evolution of an mRLW three-soliton solution perturbed
through χ1 = −0.5 and χ2 = 0.
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These long-lived localised structures behave very much like solitons in the sense that

interactions with other such structures appear to be (nearly) elastic. Furthermore,

the interactions with radiation-like components also appears to result in (nearly)

elastic scattering properties.

5.2 Perturbations of RLW solutions

In this section, we investigate the perturbed RLW soliton solutions. To this end, let

us now rewrite equation (1.1.1) as

ut + ux +
[
α

2 u
2 − uxt

]
x

=
[
−ε2

α

4wxvt − χ1 (uxx − uxt)
]
x
, (5.2.1)

where χ1 is defined by equation (5.1.2). The left-hand side is equivalent to the RLW

partial differential operator. Thus, u can now be considered as a solution of the

perturbed RLW equation, where the magnitudes of the perturbations are determined

by χ1 and ε2.

5.2.1 One-soliton solutions

To study the perturbed RLW one-soliton solutions, we use equation (1.3.30) with

ε2 = 0 as initial conditions, that is,

q = 3
2 ln

(
1 + eΓ1

)
. (5.2.2)

The time evolution of these initial conditions governed by χ1 = 0 and ε2 = 0.5

is shown in figures 5.17a to 5.17c, and figures 5.17d to 5.17f show the simulation

perturbed through χ1 = 0 and ε2 = −0.5. These simulations are similar to the

results obtained from the perturbed mRLW one-soliton solutions. That is, we see

that initially, the soliton emits some radiation while its amplitude changes slightly.

Subsequently, the soliton-like structure propagates to the right unhindered, and

appears to be long-lived.

In figure 5.18a we present the amplitude’s trajectory for various values of ε2 ≥ 0,
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Figure 5.17: Figures (a) to (c) show the time evolution of an RLW one-soliton
solution perturbed through χ1 = 0 and ε2 = 0.5. Similarly, figures (d) to (f) show
the simulation perturbed through χ1 = 0 and ε2 = −0.5.

and figure 5.18b shows the trajectory for various values of ε2 ≤ 0. Figure 5.18a

shows that as we increase ε2, the amplitude of the soliton increases more rapidly.

The results shown in figure 5.18b are more complicated; the amplitude of the soliton

perturbed through ε2 = −0.1 initially increases very slightly (see figure 5.18c: from

t = 0 to t ∼ 2), and then the soliton starts to decrease until the soliton stabilises

with an amplitude that is in fact smaller than the initial soliton’s amplitude. For the

simulation corresponding to ε2 = −0.2 we see the same pattern (i.e., the amplitude

increases initially (until t ∼ 3) and then decreases again until it stabilises), but
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Figure 5.18: The trajectories of an RLW soliton’s amplitude perturbed through
various values of ε2 while keeping χ1 = 0 constant. Figure (c) shows the same first
three plotted curves as shown in figure (b) but at a much smaller scale.
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the amplitude now stabilises at a slightly larger value than its initial value (see

figure 5.18c). When we decrease ε2 < −0.2 even further, we see from figure 5.18b

that the soliton stabilises at an increasingly larger amplitude. However, for ε2 = −1,

we found that the simulation in fact blows up at approximately t ≈ 4.4.

We have also investigated the perturbations through χ1 while keeping ε2 = 0.

Figure 5.19 shows two of such simulations; figures 5.19a to 5.19c show the time

evolution perturbed through χ1 = 0.5, and figures 5.19d to 5.19f through χ1 = −0.5.

We again see that the initial soliton emits radiation while its amplitude changes in

magnitude. Furthermore, figure 5.20 shows how the amplitude of the initial soliton

changes under various perturbations through χ1. This shows that for χ1 > 0, the

amplitude increases, and for χ1 < 0 the amplitude decreases. This behaviour is less

complex than for perturbations through ε2.

5.2.2 Two-soliton solutions

In this subsection, we briefly discuss the RLW two-soliton solutions in the presence

of perturbations. Since this model does not admit any exact multi-soliton solutions,
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Figure 5.19: Figures (a) to (c) show the time evolution of an RLW one-soliton
solution perturbed through χ1 = 0.5 and ε2 = 0. Similarly, figures (d) to (f) show
the simulation perturbed through χ1 = −0.5 and ε2 = 0.
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Figure 5.20: The trajectories of an RLW soliton’s amplitude perturbed through
various values of χ1 while keeping ε2 = 0 constant.

we use the following initial conditions

q = 3
2 ln

(
1 + eΓ1

)
+ 3

2 ln
(
1 + eΓ2

)
. (5.2.3)

Figures 5.21 and 5.22 show the time evolution of such initial conditions under

the perturbations governed by ε2 = 0.5 and ε2 = −0.5, respectively, and χ1 = 0

for both simulations. We see that, provided the perturbation is sufficiently small,

the perturbed RLW two-soliton solutions have many of the same features as the

perturbed mRLW soliton solutions discussed in the previous section. When the

largest soliton-like structure interacts with the radiation emitted by the smallest
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Figure 5.21: The time evolution of an RLW two-soliton solution perturbed through
χ1 = 0 and ε2 = 0.5.
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Figure 5.22: The time evolution of an RLW two-soliton solution perturbed through
χ1 = 0 and ε2 = −0.5.

initial soliton, as shown in figures 5.21c and 5.22c, the amplitude of the soliton

changes briefly. However, after the interaction, the amplitude returns to the same

height it was at before the interaction. Furthermore, when the two soliton-like

structures interact with each other (see figures 5.21e and 5.22e), the solution’s

amplitude decreases, which is what we expect from soliton interactions.

The RLW two-soliton configuration in the presence of perturbations through χ1

behaves in a very similar manner. This is shown in figures 5.23 and 5.24 for χ1 = 0.5

and χ1 = −0.5, respectively, with ε2 = 0 for both simulations. The two initial

solitons, shown in figures 5.23a and 5.24a, emit some radiation at the beginning of

the simulation. As a consequence, the solitons’ amplitudes change in magnitude, and

then stabilise again after the resulting soliton-like structures have moved sufficiently

far from the emitted radiation, as shown in figures 5.23b and 5.24b. When the largest

soliton-like structure collides with the radiation emitted by the smallest initial soliton,

see figures 5.23c and 5.24c, its amplitude changes slightly. However, it returns to its

original height after the soliton-like structure has moved passed the radiation-like

component, as shown in figures 5.23d and 5.24d. Next, the two solitons interact

with each other in a nonlinear manner, as shown in figures 5.23e and 5.24e. Finally,
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Figure 5.23: The time evolution of an RLW two-soliton solution perturbed through
χ1 = 0.5 and ε2 = 0.

figures 5.23f and 5.24f show that they continue to propagate to the right unhindered.

Thus, to sum up, the initial two-soliton systems result in two long-lived soliton-like

structures, with additional radiation-like components.
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Figure 5.24: The time evolution of an RLW two-soliton solution perturbed through
χ1 = −0.5 and ε2 = 0.
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5.2.3 Three-soliton solutions

Finally, in this subsection, we present the numerical time evolution of the RLW

three-soliton solutions in the presence of the perturbing terms. In other words, we

use the following initial conditions

q = 3
2 ln

(
1 + eΓ1

)
+ 3

2 ln
(
1 + eΓ2

)
+ 3

2 ln
(
1 + eΓ3

)
, (5.2.4)

and investigate how these systems evolve for non-zero values of χ1 or ε2. The simu-

lations corresponding to ε2 = 0.5 and ε2 = −0.5, with χ1 = 0 for both simulations,

are shown in figures 5.25 and 5.26, respectively. Furthermore, figures 5.27 and 5.28,

show the simulations for χ1 = 0.5 and χ1 = −0.5, respectively, with ε2 = 0 for

both simulations. These perturbed three-soliton configurations behave as we expect.

Immediately after the start of the simulation, the two largest solitons emit vis-

ible radiation while their amplitudes change significantly. Subsequently, the largest

soliton interacts with the radiation emitted by the second-largest soliton. Due to the

interaction between the soliton-like structure and the radiation-like structure, the

amplitude of the soliton field changes slightly, but then returns to the same height it
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Figure 5.25: The time evolution of an RLW three-soliton solution perturbed through
χ1 = 0 and ε2 = 0.5.
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Figure 5.26: The time evolution of an RLW three-soliton solution perturbed through
χ1 = 0 and ε2 = −0.5.

had before the interaction. Eventually, the three soliton-like fields interact with each

other in a three-body collision. The solution’s amplitude during this collision always

decreases, and so this interaction is due to nonlinear effects. After the multi-soliton

collision, the three solitons propagate to the right unhindered, i.e., they appear to
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Figure 5.27: The time evolution of an RLW three-soliton solution perturbed through
χ1 = 0.5 and ε2 = 0.
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Figure 5.28: The time evolution of an RLW three-soliton solution perturbed through
χ1 = −0.5 and ε2 = 0.

be long-lived soliton-like structures.





Chapter 6

Numerical investigations of

quasi-integrability

In this chapter, we investigate the quasi-integrability properties of the simulations

presented in the previous two chapters. In particular, we have determined the corres-

ponding first three non-trivial Q(−2n−1)’s, i.e., Q(−3), Q(−5) and Q(−7), as discussed in

subsection 2.2.1. To this end, we first use equation (2.2.33) to determine ∂tQ(−2n−1).

All the simulations we discuss in this chapter start at t = 0, and so we integrate

∂tQ
(−2n−1) to find

t∫
0

dt′ Q
(−2n−1)

dt′
= Q(−2n−1)(t)−Q(−2n−1)(0) . (6.0.1)

We only focus on the first non-trivial charge Q(−3). We found that the behaviour of

the next charges Q(−5) and Q(−7) are very similar to Q(−3). However, to calculate

Q(−5) and Q(−7), we need to calculate terms with higher-order derivatives. As a result,

their charge densities (i.e., Xγ(−5) and Xγ(−7)) suffer from significant numerical

errors. Since these errors are random, they essentially cancel each other out when

the densities are integrated to calculate Q(−5) and Q(−7). However, they are less

reliable, and so we do not discuss them in detail.

Thus, we use
∫ t

0dt′ ∂t′Q(−3) and ∂tQ(−3) to investigate the quasi-integrability of

the simulations presented in the previous two chapters. In particular, in the first
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two sections of this chapter, we investigate the quasi-integrability properties of the

multi-soliton mRLW and RLW simulations, as previously discussed in chapter 4.1

In sections 6.3 and 6.4, we discuss the quasi-integrability properties of the perturbed

mRLW and RLW solutions that were presented in chapter 5.

6.1 mRLW solutions

As mentioned above, in this section we investigate the quasi-integrability properties

of the multi-soliton simulations presented in section 4.1. First, however, we focus

on the two-soliton simulation shown in figure 3.4; figure 6.1 shows how the values

of
∫ t

0dt′ ∂t′Q(−3) and ∂tQ
(−3) vary with respect to time, where the red curves in

figure 6.1 represent the values due to the simulation shown by the red curves in

figure 3.4 (i.e., the analytical mRLW two-soliton solution), and the green curves

in figure 6.1 are due to the simulation shown by the green curves in figure 3.4

(i.e., the numerical mRLW two-soliton simulation). Comparing figure 6.1a with

figure 3.4, we see that initially, before the solitons start to interact with each other,

the quantity
∫ t

0dt′ ∂t′Q(−3) is approximately equal to zero. However, as the solitons

1We do not discuss the single-soliton simulations for these models, because we know that they
will be truly conserved (see subsection 2.3.1).
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Figure 6.1: The red curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the analytical mRLW two-soliton solution

presented by the red curves in figure 3.4. Similarly, the green curves in figures (a)
and (b) display the time-dependence of

∫ t
0dt′ ∂t′Q(−3) and ∂tQ

(−3) for the corres-
ponding numerical mRLW two-soliton simulation presented by the green curves in
figure 3.4. Finally, the dotted vertical lines in both figures is t = t∆, as defined by
equation (2.4.6).
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start to interact with each other (i.e., at t ∼ 20, as shown in figure 3.4c), the

value of
∫ t

0dt′ ∂t′Q(−3) starts to decrease until t = t∆ (see equation (2.4.6)), which is

illustrated by the dotted vertical lines in figure 6.1. Subsequently, the solitons start

to move away from each other, and
∫ t

0dt′ ∂t′Q(−3) starts to increase again until it

approximately equals zero. Then, as the solitons continue to move unhindered, the

value stays (approximately) constant, and so we see that equation (1.4.2) is satisfied.

Thus, we can conclude that Q(−3) is indeed quasi-conserved and, as mentioned in the

introduction of this chapter, we found similar properties for Q(−5) and Q(−7). This

is not surprising, since we have proved this analytically in section 2.4.

Looking at figure 6.1, we see that the analytical and numerical results are very

close together. However, note that from t ∼ 7 to t ∼ 12 we see a small disturbance in

the numerical results. To illustrate this effect, we have added insets in figure 6.1 that

show this region at a much smaller scale. After a careful analysis of the simulations

shown in figure 3.4 at a much smaller scale, we found that the numerical solitons

initially do emit a tiny amount of radiation. Subsequently, the largest soliton scatters

with the radiation emitted by the smallest soliton (in a similar manner as we have

observed in chapter 5). The amplitude of the soliton changes slightly during this

interaction, which causes the small disturbance displayed by the insets in figure 6.1.

Next, we focus on the quasi-integrability properties of the three-soliton mRLW

simulations discussed in subsection 4.1.2. The time-dependence of
∫ t
0dt′ ∂t′Q(−3)

and ∂tQ(−3) related to figure 4.3 are shown in figure 6.2. We again see that the value
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Figure 6.2: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW three-soliton solution

presented by the green curves in figure 4.3.
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of
∫ t
0dt′ ∂t′Q(−3) initially is (approximately) equal to zero, and its value decreases as

the solitons get closer to each other. At t ∼ 73.5, the value of
∫ t
0dt′ ∂t′Q(−3) starts

to increase again until it approximates zero, which is when the three solitons have

moved away from each other after the interaction. Thus, we can conclude that the

charges Q(−2n−1) are also quasi-conserved for this three-soliton simulation.

Similarly, figure 6.3 shows the time-dependence of
∫ t
0dt′ ∂t′Q(−3) and ∂tQ

(−3)

for the simulation corresponding to figure 4.5. We see that the charges Q(−2n−1)

for this three-soliton simulation are also quasi-conserved. Just as with the other

simulations, the quantity
∫ t
0dt′ ∂t′Q(−3), which is initially approximately equal to zero,

decreases when the three-solitons start to interact with each other. Subsequently,

when the solitons start to move away from each other, its value increases again until

it approaches zero.

By comparing figure 4.4a with figure 4.6a, we see that the three-soliton interaction

shown in figure 4.5 is ‘less symmetric’ in the sense that the largest two solitons start

interacting with each other (and as a result, their shapes and velocities also change)

before they scatter with the smallest soliton. Furthermore, when the solitons cease

to interact, the largest soliton regains its original shape and velocity while the other

two solitons are still interacting with each other. On the other hand, the solitons

shown in figure 4.3 start to interact with each other approximately at the same time;

and after the interaction they regain their original shape and velocity approximately

at the same time. As a result, figure 6.3 shows ‘less symmetric’ curves than figure 6.2.
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Figure 6.3: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW three-soliton solution

presented by the green curves in figure 4.5.
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To sum up, these results have shown that the first three non-trivial chargesQ(−2n−1)

appear to be quasi-conserved for the numerical three-soliton solutions governed by

the mRLW equation. Furthermore, as discussed in section 2.4, we have analytically

shown that for the exact mRLW two-soliton solutions they are quasi-conserved. We

have not investigated any N -soliton interactions for N > 3. However, from these

observations, we conjecture that the charges are quasi-conserved for any N -soliton

mRLW solution, where N > 1.

6.2 RLW solutions

In this section, we investigate the quasi-integrability properties of the RLW simula-

tions presented in section 4.2. First, we focus on the simulation shown in figure 4.7;

figure 6.4 shows the quantities
∫ t

0dt′ ∂t′Q(−3) and ∂tQ
(−3) for this simulation. Just

as for the mRLW solutions, the quantity
∫ t

0dt′ ∂t′Q(−3) changes only during the

scattering of the two solitons. Furthermore, the value of
∫ t

0dt′ ∂t′Q(−3) before and

after the interaction is approximately the same, and so equation (1.4.2) is satisfied.

Thus, the charges Q(−2n−1) for the RLW two-soliton configurations appear to be

quasi-conserved as well.

Next, we look at the quasi-integrability properties of the three-soliton RLW

simulations shown in figures 4.10 and 4.11. The time-dependence of
∫ t
0dt′ ∂t′Q(−3)

and ∂tQ(−3) for the three-soliton systems are shown in figures 6.5 and 6.6, respectively.
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Figure 6.4: The green curves in figures (a) and (b) show the time-dependence of
the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical RLW two-soliton solution

presented by the green curves in figure 4.7.
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Figure 6.5: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ

(−3) for the numerical RLW three-soliton solution
presented by the green curves in figure 4.10.

We again see that the value of
∫ t

0dt′ ∂t′Q(−3) only changes during the three-soliton

interactions, and after the collision its value returns to the same initial value. In

other words, the first three non-trivial charges Q(−2n−1) appear to also be quasi-

conserved for the three-soliton solutions governed by the RLW equation. This

strongly indicates that the charges are quasi-conserved for any N -soliton solution,

provided N > 1. Thus, the RLW solutions display the same quasi-integrability

properties as the mRLW solutions that we discussed in the previous section.

6.3 Perturbed mRLW solutions

In this section, we discuss the quasi-integrability properties of the perturbed mRLW

simulations presented in section 5.1. To be specific, in subsection 6.3.1 we discuss

the perturbed one-soliton simulations presented in subsection 5.1.1. Subsequently, in
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Figure 6.6: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ

(−3) for the numerical RLW three-soliton solution
presented by the green curves in figure 4.11.
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the next two subsections, we discuss the two- and three-soliton simulations presented

in subsections 5.1.2 and 5.1.3, respectively.

6.3.1 One-soliton solutions

To this end, figure 6.7 shows the time-dependence of
∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) related

to the simulation perturbed through χ2 = 0.5, as shown in figure 5.3. We see that∫ t
0dt′ ∂t′Q(−3) initially increases until it stabilises at t ∼ 2. Thus, comparing this with

figure 5.3, we see that
∫ t

0dt′ ∂t′Q(−3) stabilises after the initial soliton configuration

has emitted its radiation component, and the resulting soliton-like structure has

moved away sufficiently far from the radiation.

Figure 6.8 shows the time-dependence of
∫ t

0dt′ ∂t′Q(−3) and ∂tQ(−3) for the one-

soliton simulation perturbed through χ2 = −0.5, as shown in figure 5.5. We now

see that
∫ t

0dt′ ∂t′Q(−3) initially decreases until it stabilises around t ∼ 1. Looking at

figure 5.5, we see that this happens when the soliton-like structure and the radiation

have stopped interacting with each other.

For the perturbed one-soliton solutions through χ1 = 0.5, as shown in figures 5.7a

to 5.7c, we have displayed the time-dependence of
∫ t

0dt′ ∂t′Q(−3) and ∂tQ
(−3) in

figure 6.9. Just as for the perturbations through χ2, the quantity
∫ t
0dt′ ∂t′Q(−3)

changes rapidly when the initial soliton splits up in a soliton- and radiation-like

component. However, figure 6.9c shows that the value of
∫ t

0dt′ ∂t′Q(−3) does not

stabilise when the two components have moved away from each other. Instead, even
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Figure 6.7: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW one-soliton solution

perturbed through χ1 = 0 and χ2 = 0.5, as presented by the green curves in figure 5.3.
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Figure 6.8: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW one-soliton solution

perturbed through χ1 = 0 and χ2 = −0.5, as presented by the green curves in
figure 5.5.

when the structures are far away from each other, its value decreases slowly.

Figure 6.10 shows the time-dependence of
∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the per-

turbation through χ1 = −0.5, as shown in figures 5.7d to 5.7f. In this instance, we

see that the quantity
∫ t
0dt′ ∂t′Q(−3) initially decreases rapidly, but then it continues

to steadily increase when the soliton-like and radiation-like structure have moved

away from each other.

Thus, for perturbations through either χ1 or χ2, we see that the value of∫ t
0dt′ ∂t′Q(−3) changes rapidly at the beginning of the simulation (i.e., when the

soliton- and radiation-like components separate from each other). The main differ-

ence between these perturbations is that for χ2, the value of
∫ t

0dt′ ∂t′Q(−3) approaches

some constant value after the soliton-like structure has ceased interacting with the
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Figure 6.9: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW one-soliton solution

perturbed through χ1 = 0.5 and χ2 = 0, as presented by the green curves in
figures 5.7a to 5.7c. Figure (c) shows the same plot as figure (a), but on a much
smaller scale.
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Figure 6.10: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW one-soliton solution

perturbed through χ1 = −0.5 and χ2 = 0, as presented by the green curves in
figures 5.7d to 5.7f.

radiation-like component. On the other hand, for perturbations through χ1, we see

that the value of
∫ t

0dt′ ∂t′Q(−3) slowly increases or decreases after the components

have stopped interacting. In the next two subsections, we will further investigate

this by looking at the perturbed mRLW two- and three-soliton simulations.

6.3.2 Two-soliton solutions

The quantities
∫ t

0dt′ ∂t′Q(−3) and ∂tQ(−3) presented in figure 6.11 correspond to the

two-soliton simulation perturbed through χ2 = 0.5 (see figure 5.9). These figures

show that initially, the value of
∫ t

0dt′ ∂t′Q(−3) changes rapidly (i.e., when the soliton-

and radiation-like components separate from each other), and then from t ∼ 5 to

t ∼ 9 the value stabilises (i.e., when there are no interactions between the various

soliton- and radiation-like components). Subsequently, the value of
∫ t
0dt′ ∂t′Q(−3)
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Figure 6.11: The green curves in figures (a) and (b) show the time-dependence
of the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ

(−3) for the numerical mRLW two-soliton
solution perturbed through χ1 = 0 and χ2 = 0.5, as presented by the green curves
in figure 5.9.
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starts to decrease at t ∼ 9 (i.e., when the largest soliton-like field starts to interact

with the radiation emitted by the smallest initial soliton, see for instance figure 5.9c).

Next, the value of
∫ t
0dt′ ∂t′Q(−3) returns to its original value at t ∼ 18 (i.e., when the

soliton-like structure separates from the radiation-like component). Finally, we see

that
∫ t
0dt′ ∂t′Q(−3) changes again during the interaction between the two soliton-like

structures, and then returns to its original value after the interaction.

The quantities
∫ t

0dt′ ∂t′Q(−3) and ∂tQ
(−3) corresponding to χ2 = −0.5 (see fig-

ure 5.10) are shown in figure 6.12. Again, we see that
∫ t

0dt′ ∂t′Q(−3) only changes

initially when the soliton- and radiation-like components separate from each other,

and during interactions between these components.

Figures 6.13 displays the values of
∫ t

0dt′ ∂t′Q(−3) and ∂tQ(−3) related to the sim-

ulation shown in figure 5.11 (i.e., χ1 = 0.5 and χ2 = 0), and figure 6.14 shows the

values of
∫ t

0dt′ ∂t′Q(−3) and ∂tQ(−3) corresponding to figure 5.12 (i.e., χ1 = −0.5 and

χ2 = 0). Thus, just as for the two-soliton simulations perturbed through χ2, the

value of
∫ t

0dt′ ∂t′Q(−3) rapidly changes initially and during the interactions. However,

the quasi-integrability properties of the perturbation through χ1 is different, because∫ t
0dt′ ∂t′Q(−3) also changes slowly when all the soliton- and radiation-like components

are far away from each other, as shown in the insets in figures 6.13a and 6.14a.

The results presented in this subsection are consistent with the results discussed

in the previous subsection. We found that for the one- and two-soliton solutions
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Figure 6.12: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW two-soliton solution

perturbed through χ1 = 0 and χ2 = −0.5, as presented by the green curves in
figure 5.10.



6.3. Perturbed mRLW solutions 99

0 10 20 30 40
t

0.01

0.00

0.01

0.02

0.03

0.04

t

0dt ′ t ′Q( 3)
20 400.032

0.034
0.036

(a)

0 10 20 30 40
t

0.10

0.05

0.00

0.05

tQ( 3) 30 400.01

0.00

0.01

(b)

Figure 6.13: The green curves in figures (a) and (b) show the time-dependence
of the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ

(−3) for the numerical mRLW two-soliton
solution perturbed through χ1 = 0.5 and χ2 = 0, as presented by the green curves
in figure 5.11.

perturbed through χ2 = 0.5 and χ2 = −0.5, the value of
∫ t

0dt′ ∂t′Q(−3) changes for

the following two reasons:

(i) immediately at the start of the simulation, i.e., when the soliton-like structures

separate from their radiation-like components,

(ii) and during interactions between soliton-like components and other soliton- or

radiation-like components.

Furthermore, we saw that the value of
∫ t

0dt′ ∂t′Q(−3) always approaches some constant

value when the soliton-like structures are not interacting with any other soliton-

or radiation-like components. On the other hand, for the one- and two-soliton

simulations perturbed through χ1 = 0.5 and χ1 = −0.5, the value of
∫ t
0dt′ ∂t′Q(−3)

also varies with time when the different components are not interacting with each
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Figure 6.14: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW two-soliton solution

perturbed through χ1 = −0.5 and χ2 = 0, as presented by the green curves in
figure 5.12.
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other. We have also observed this for various other values of χ1 and χ2, and found

similar results.

6.3.3 Three-soliton solutions

Let us now discuss the quasi-integrability properties of the three-soliton simulations

presented in subsection 5.1.3. Figures 6.15, 6.16, 6.17 and 6.18 show the time-

dependence of
∫ t

0dt′ ∂t′Q(−3) and ∂tQ(−3) for the perturbed three-soliton simulations,

as shown in figures 5.13, 5.14, 5.15 and 5.16, respectively. Looking at figure 6.15

(perturbed through χ2 = 0.5), we see that the value of
∫ t

0dt′ ∂t′Q(−3) initially increases,

and then stabilises. Subsequently,
∫ t

0dt′ ∂t′Q(−3) only changes during the interactions

of soliton-like structures and other soliton- and radiation-like components. We see

similar behaviour for the quantities
∫ t

0dt′ ∂t′Q(−3) and ∂tQ(−3) shown in figure 6.16

(i.e., the simulation with χ2 = −0.5). On the other hand, the insets in figures 6.17

and 6.18 (i.e., the simulations with χ1 = 0.5 and χ1 = −0.5) show that
∫ t
0dt′ ∂t′Q(−3)

changes slowly even when there are no interactions. This is consistent with the

results we have seen in the previous two subsections.

To sum up the results of this section, for the two- and three-soliton models

perturbed through χ2 = 0.5 and χ2 = −0.5, we have seen that the charges Q(−3)

are quasi-conserved during interactions between soliton-like structures with other

soliton- and radiation-like components. This is the behaviour we would expect from

0 10 20 30 40
t

0.03

0.02

0.01

0.00

0.01

t

0dt ′ t ′Q( 3)

(a)

0 10 20 30 40
t

0.01

0.00

0.01

tQ( 3)

(b)

Figure 6.15: The green curves in figures (a) and (b) show the time-dependence
of the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ

(−3) for the numerical mRLW three-soliton
solution perturbed through χ1 = 0 and χ2 = 0.5, as presented by the green curves
in figure 5.13.
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Figure 6.16: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW three-soliton solution

perturbed through χ1 = 0 and χ2 = −0.5, as presented by the green curves in
figure 5.14.

quasi-integrable models. However, this perturbed model is different because Q(−3)

initially increases or decreases until the solitons in the initial configuration (i.e., the

initial conditions) have emitted some radiation-like component, and so we do not

know if equation (1.4.2) is satisfied. Only when the resulting soliton- and radiation-

like structures have moved away from each other (i.e. they cease to interact), the

quantity Q(−3) stabilises to some constant value. Subsequently, as mentioned, Q(−3)

only changes during interactions between the various soliton-like and radiation-like

components; and after these interactions, Q(−3) returns to the same value it had

before the interactions.

These results suggest that each initial soliton, which is given by the initial

conditions, forms an interaction between some (numerical) one-soliton solution of

the perturbed model and some radiation-like component. Subsequently, following
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Figure 6.17: The green curves in figures (a) and (b) show the time-dependence
of the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ

(−3) for the numerical mRLW three-soliton
solution perturbed through χ1 = 0.5 and χ2 = 0, as presented by the green curves
in figure 5.15.
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Figure 6.18: The green curves in figures (a) and (b) show the time-dependence of the
quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical mRLW three-soliton solution

perturbed through χ1 = −0.5 and χ2 = 0, as presented by the green curves in
figure 5.16.

off this assumption, one might deduce that as t→ −∞, the value of Q(−3) returns

to the same aforementioned constant, and so equation (1.4.2) would be satisfied.

However, more work has to be done to investigate this conjecture.

6.4 Perturbed RLW solutions

Let us now briefly discuss the quasi-integrability properties of the perturbed RLW

simulations presented in section 5.2. We found that the properties of these systems

are very similar to the results discussed in the previous section. Therefore, for brevity,

we only discuss the one-soliton simulations.

Namely, figure 6.19 shows the time-dependence of
∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) re-

lated to the simulation shown in figures 5.17a to 5.17c (i.e., ε2 = 0.5). This shows
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Figure 6.19: The green curves in figures (a) and (b) show the time-dependence of
the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical RLW one-soliton solution

perturbed through χ1 = 0 and ε2 = 0.5, as presented by the green curves in
figures 5.17a to 5.17c.
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that the value of
∫ t

0dt′ ∂t′Q(−3) only changes initially when the initial soliton splits

up in a soliton-like and a radiation-like component. After they cease interacting

with each other, the value approaches a constant value. Similarly, figure 6.20 shows

the time-dependence of
∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) related to the simulation shown in

figures 5.17d to 5.17f (i.e., ε2 = −0.5). We again see that
∫ t

0dt′ ∂t′Q(−3) only changes

initially, and subsequently stabilises when the soliton-like structure has moved away

from the radiation-like component.

Next, we focus on the two one-soliton RLW simulations perturbed through χ1,

as shown in figure 5.19. To be specific, figure 6.21 shows the time-dependence of∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) related to the simulation perturbed through χ1 = 0.5, and

figure 6.22 shows the time-dependence of
∫ t

0dt′ ∂t′Q(−3) and ∂tQ
(−3) related to the

simulation perturbed through χ1 = −0.5. We see that the value of
∫ t

0dt′ ∂t′Q(−3) for

both simulations changes quite rapidly initially, i.e., when the initial soliton splits

up into a soliton- and radiation-like structure. However, even after the components

have moved away from each other, the value of
∫ t
0dt′ ∂t′Q(−3) changes slowly. This

is similar to the mRLW solitons perturbed through χ1, as discussed in the previous

section.

Armed with these observations, we found that the quasi-integrability properties of

the multi-soliton simulations presented in subsections 5.2.2 and 5.2.3 are as expected.

That is, for the simulations perturbed through ε2 = 0.5 and ε2 = −0.5, the value of
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Figure 6.20: The green curves in figures (a) and (b) show the time-dependence of
the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical RLW one-soliton solution

perturbed through χ1 = 0 and ε2 = −0.5, as presented by the green curves in
figures 5.17d to 5.17f.
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Figure 6.21: The green curves in figures (a) and (b) show the time-dependence of
the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical RLW one-soliton solution

perturbed through χ1 = 0.5 and ε2 = 0, as presented by the green curves in
figures 5.19a to 5.19c.

∫ t
0dt′ ∂t′Q(−3) only changes initially and during the interactions between the various

soliton- and radiation-like structures. For the simulations perturbed through χ1 = 0.5

and χ1 = −0.5, we found that the value of
∫ t

0dt′ ∂t′Q(−3) additionally changes when

the various soliton- and radiation-like structures are not interacting with each other.

Thus, we see that the RLW simulations perturbed through ε2 share similar quasi-

integrability properties as the mRLW simulations perturbed through χ2, and the

RLW simulations perturbed through χ1 share similar quasi-integrability properties

as the mRLW simulations perturbed through χ1. Just as for the perturbed mRLW

simulations, it will be interesting to study the time evolution of the perturbed RLW

simulations as t→ −∞. This will allow us to test if equation (1.4.2) is satisfied for

the perturbations through ε2.
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Figure 6.22: The green curves in figures (a) and (b) show the time-dependence of
the quantities

∫ t
0dt′ ∂t′Q(−3) and ∂tQ(−3) for the numerical RLW one-soliton solution

perturbed through χ1 = −0.5 and ε2 = 0, as presented by the green curves in
figures 5.19d to 5.19f.



Chapter 7

Conclusions and future work

In this thesis, we investigated the integrability properties of the perturbed KdV equa-

tion, which includes the RLW and mRLW equations as special cases. In chapter 2,

we introduced the anomalous curvature equation, which is based on the same Lax

potential Ax that is used to construct the well-known infinite amount of conserved

charges for the KdV equation. This anomalous curvature equation results in an

infinite amount of potentially quasi-conserved quantities Q(−2n−1) for the perturbed

KdV equation. Using parity arguments, we proved that these quantities are truly

quasi-conserved for the exact mRLW two-soliton solutions, which is the first analytic

proof of quasi-integrability for any family of two-soliton solutions.

In section 2.5, we showed that the analytical KdV two- and three-soliton solutions

are even under the space-time parity operator, provided that the (three) solitons

scatter at the same point in space-time. Furthermore, in section 2.6, we argued

that an expansion of the u-field around some exact KdV solution preserves quasi-

integrability, on the assumption that u solves the perturbed KdV equation and

that the exact KdV solution is even under the space-time operator. This seems to

suggest that the perturbed KdV model in some sense favours solutions that satisfy

the quasi-conservation laws. It will be interesting to develop a method in the future

that allows us to test this conjecture.

Next, we developed a first- and second-order finite difference scheme to numeric-
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ally investigate the perturbed KdV model. The schemes involve implicit methods

that are based on the algorithms discussed in [7], where we appropriately adapted

them to solve the perturbed KdV equation. These schemes have been extensively

tested by comparing numerical soliton solutions with their corresponding analytical

values. The results for the second-order scheme showed that they were essentially

indistinguishable, which reassured us that the numerical simulations could be trusted.

We then used this scheme to simulate three-soliton configurations governed by

the mRLW equation. We found that the three solitons evolve smoothly and do

not emit any visible radiation. Furthermore, they re-emerge from the three-soliton

interaction with the same initial shape and velocity. In fact, the only noticeable

result of the three-soliton interaction is the phase shift that each soliton experiences,

which is equal (within a numerical error of less than 6%) to the sum of pairwise

phase shifts. Thus, these numerical solutions appear to share many of the same

properties that integrable solitons possess.

Furthermore, we used the second-order scheme to study the time evolution of

mRLW soliton solutions in the presence of external perturbing terms. Provided the

perturbations are small enough, the perturbed systems resulted in long-lived localised

structures, which can be interpreted as soliton-like components, with additional

radiation-like components. This indicates that the mRLW solitons are very stable,

which is another feature the model shares with integrable systems.

Thus, both the perturbed and unperturbed mRLW systems share many features

of integrable solitons. To further investigate this, we numerically evolved an arbitrary

initial pulse with finite energy to test the soliton resolution conjecture. We found

that the system blows up, and so the conjecture does not hold for the mRLW

equation. Numerically, this is the only property of this partial integrable model

whose behaviour differs from integrable models such as the KdV equation.

For future work, it would therefore be interesting to study other nonintegrable

systems which do not possess a Hamiltonian structure but do admit one- and two-

soliton Hirota solutions. One could test if such systems admit numerical three-soliton
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configurations in which the time-evolved solitons behave similar to integrable solitons,

and also test the soliton resolution conjecture. This could shine new light on the

connection between (Hirota) integrability and the soliton resolution conjecture.

We have performed the same tests with the RLW model. Since the RLW equation

only admits one-soliton solutions, we investigated the two- and three-soliton RLW

configurations. The simulations showed that the solitons emit a small amount of

visible radiation when they scatter. Furthermore, for the three-soliton interactions,

the phase shift that each numerical soliton experiences is not equal to the sum of

the pairwise phase shifts. Simulating RLW soliton configurations in the presence of

perturbing terms showed that they resulted in soliton- and radiation-like components,

similar to the perturbed mRLW solutions. On the other hand, we found that the

time evolution of various arbitrary initial pulses did not blow up, which suggests

that the soliton resolution conjecture may hold for the RLW equation. To sum up,

we see that the numerical results for the RLW simulations are significantly different

than for the mRLW simulations.

We also numerically calculated various Q(−2n−1) quantities for all of the aforemen-

tioned simulations to investigate their quasi-integrability properties. We found that

the Q(−3) quantity is quasi-conserved for both the two- and three-soliton solutions

governed by the mRLW equation. Moreover, Q(−3) is also quasi-conserved for the

RLW two- and three-soliton simulations. These numerical results are the strongest

support for our working definition of quasi-integrability. Namely, we observed that

Q(−3) only changes value when the solitons scatter with each other, and remains

constant when the solitons are far away from each other. This behaviour has also

been observed for other (quasi-integrable) models.

To our knowledge, this is the first time that the quasi-integrability properties

of three-soliton interactions have been investigated. Note that the parity argument

for three-soliton solutions is much more involved. Since we observed that Q(−3) is

quasi-conserved for two-soliton interactions, we would expect Q(−3) to also be quasi-

conserved when three solitons scatter pairwise. However, when the three solitons
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scatter with each other at the same time, we cannot make this assumption due to

the possible ‘many-particle’ effects.

Furthermore, we investigated the quasi-integrability properties of the aforemen-

tioned perturbed simulations. For both the mRLW and RLW simulations perturbed

through ε2, we observed that Q(−3) changes at the start of the simulation, i.e.,

when the soliton- and radiation-like components separate from each other. Sub-

sequently, after this initial change in the value of Q(−3), it appears that the system is

quasi-integrable in the sense that the value of Q(−3) only changes when the various

structures scatter with each other; and after such an interaction, it returns to the

same value it had before the scattering. In other words, the results show that the

soliton-radiation interactions respect our working definition of quasi-integrability.

This raises the question if we can consider the initial solitons, i.e., the initial con-

ditions, as the interaction of some (numerical) soliton-like solution with some ad-

ditional radiation-like components. Assuming this is true, we would expect that

equation (1.4.2) is satisfied. Therefore, we can test this conjecture by developing an

algorithm that allows us to run simulations backwards in time in order to determine

the time-dependence of Q(−3) as t→ −∞. Finally, note that since the usual parity

arguments do not apply to such an interaction, at this stage we do not understand

why quasi-integrability is respected for such soliton-radiation interactions.

Finally, note that the finite difference methods as discussed in chapter 3 approx-

imate equation (1.3.23), which we use to calculate the u-field (see equation (1.3.21)).

This implies that we cannot use these methods to simulate an exact KdV soliton

solution that is governed by the KdV equation in the presence of additional perturb-

ing terms. We believe that it might be fruitful to investigate the quasi-integrability

properties of such perturbed simulations in the future.



Appendix A

Simulation parameters

Tables A.1 to A.11 summarise the values of the parameters that were used to produce

the simulations that are presented in this thesis.

Table A.1: Summary of the parameters used to produce figure 2.1, and figures 3.1
to 3.4.

Figure 2.1 Figures 3.1 and 3.3 Figures 3.2 and 3.4
α 8 8 8
ε1 1 1 1
ε2 1 1 1
x0 98.9 −50 −50
xN 168.9 300 300
h N/A 0.1 0.1
t0 18.9 0 0
tK 28.9 40 40
τ N/A 0.001 0.001
ω1 5.00 5.00 5.00
δ1 0.00 0.00 0.00
ω2 3.00 N/A 3.00
δ2 −40.00 N/A −40.00
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Table A.2: Summary of the parameters used to produce figures 4.1, 4.3 and 4.5.

Figure 4.1 (red curve) Figure 4.3 Figure 4.5
α 8 8 8
ε1 1 1 1
ε2 1 1 1
x0 −50 −220 −125
xN 300 250 175
h 0.1 0.1 0.1
t0 0 0 0
tK 40 170 42
τ 0.001 0.001 0.001
ω1 5.00 0.80 0.80
δ1 0.00 66.51 16.63
ω2 3.00 1.33 3.07
δ2 −43.63 110.90 63.77
ω3 N/A 1.84 4.28
δ3 N/A 152.88 89.00

Table A.3: Summary of the parameters used to produce figure 4.7, and figures 4.10
to 4.12.

Figure 4.7 Figure 4.10 Figure 4.11 Figure 4.12
α 8 8 8 8
ε1 1 1 1 1
ε2 0 0 0 1
x0 −50 −220 −125 −150
xN 300 400 175 350
h 0.1 0.1 0.1 0.1
t0 0 0 0 1
tK 40 170 42 81
τ 0.001 0.001 0.001 0.001
ω1 5.00 0.80 0.80 N/A
δ1 0.00 66.51 16.63 N/A
ω2 3.00 1.33 3.07 N/A
δ2 −43.63 110.90 63.77 N/A
ω3 N/A 1.84 4.28 N/A
δ3 N/A 152.88 89.00 N/A
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Table A.4: Summary of the parameters used to produce the three simulations shown
in figure 5.1.

Figures 5.1a to 5.1c Figures 5.1d to 5.1f Figures 5.1g to 5.1i
α 8 8 8
ε1 1 1 1
ε2 0.9 0.3 0
x0 −50 −50 −50
xN 300 300 300
h 0.1 0.1 0.1
t0 0 0 0
tK 40 40 40
τ 0.001 0.001 0.001
ω1 5.00 5.00 5.00
δ1 0.00 0.00 0.00

Table A.5: Summary of the parameters used to produce figures 5.3, 5.5 and 5.6.

Figure 5.3 Figure 5.5 Figure 5.6
α 8 8 8
ε1 1 1 1
ε2 0.5 1.5 1.9
x0 −50 −50 −350
xN 300 300 400
h 0.1 0.1 0.1
t0 0 0 0
tK 40 40 40
τ 0.001 0.001 0.001
ω1 5.00 5.00 5.00
δ1 0.00 0.00 0.00

Table A.6: Summary of the parameters used to produce figures 5.7, 5.9 and 5.10.

Figures 5.7a to 5.7c Figures 5.7d to 5.7f Figure 5.9 Figure 5.10
α 8 8 8 8
ε1 0.5 1.5 1 1
ε2 1 1 0.5 1.5
x0 −100 −50 −50 −50
xN 300 300 300 300
h 0.1 0.1 0.1 0.1
t0 0 0 0 0
tK 40 40 40 40
τ 0.001 0.001 0.001 0.001
ω1 5.00 5.00 5.00 5.00
δ1 0.00 0.00 0.00 0.00
ω2 N/A N/A 3.00 3.00
δ2 N/A N/A −40.00 −40.00



112 Appendix A. Simulation parameters

Table A.7: Summary of the parameters used to produce figures 5.11 to 5.15.

Figure 5.11 Figure 5.12 Figure 5.13 Figure 5.14 Figure 5.15
α 8 8 8 8 8
ε1 0.5 1.5 1 1 0.5
ε2 1 1 0.5 1.5 1
x0 −50 −50 −125 −125 −225
xN 300 300 275 275 275
h 0.1 0.1 0.1 0.1 0.1
t0 0 0 0 0 0
tK 40 40 42 42 42
τ 0.001 0.001 0.001 0.001 0.001
ω1 5.00 5.00 0.80 0.80 0.80
δ1 0.00 0.00 16.63 16.63 16.63
ω2 3.00 3.00 3.07 3.07 3.07
δ2 −40.00 −40.00 63.77 63.77 63.77
ω3 N/A N/A 4.28 4.28 4.28
δ3 N/A N/A 89.00 89.00 89.00

Table A.8: Summary of the parameters used to produce figures 5.16 and 5.17.

Figure 5.16 Figures 5.17a to 5.17c Figures 5.17d to 5.17f
α 8 8 8
ε1 1.5 1 1
ε2 1 0.5 −0.5
x0 −125 −50 −50
xN 275 300 300
h 0.1 0.1 0.1
t0 0 0 0
tK 42 40 40
τ 0.001 0.001 0.001
ω1 0.80 5.00 5.00
δ1 16.63 0.00 0.00
ω2 3.07 N/A N/A
δ2 63.77 N/A N/A
ω3 4.28 N/A N/A
δ3 89.00 N/A N/A
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Table A.9: Summary of the parameters used to produce figures 5.19, 5.21 and 5.22.

Figures 5.19a to 5.19c Figures 5.19d to 5.19f Figure 5.21 Figure 5.22
α 8 8 8 8
ε1 0.5 1.5 1 1
ε2 0 0 0.5 −0.5
x0 −50 −50 −50 −50
xN 300 300 400 300
h 0.1 0.1 0.1 0.1
t0 0 0 0 0
tK 40 40 40 40
τ 0.001 0.001 0.001 0.001
ω1 5.00 5.00 5.00 5.00
δ1 0.00 0.00 0.00 0.00
ω2 N/A N/A 3.00 3.00
δ2 N/A N/A −43.63 −43.63

Table A.10: Summary of the parameters used to produce figures 5.23 to 5.27.

Figure 5.23 Figure 5.24 Figure 5.25 Figure 5.26 Figure 5.27
α 8 8 8 8 8
ε1 0.5 1.5 1 1 0.5
ε2 0 0 0.5 −0.5 0
x0 −50 −50 −125 −125 −125
xN 300 300 275 175 175
h 0.1 0.1 0.1 0.1 0.1
t0 0 0 0 0 0
tK 40 40 42 42 42
τ 0.001 0.001 0.001 0.001 0.001
ω1 5.00 5.00 0.80 0.80 0.80
δ1 0.00 0.00 16.63 16.63 16.63
ω2 3.00 3.00 3.07 3.07 3.07
δ2 −43.63 −43.63 63.77 63.77 63.77
ω3 N/A N/A 4.28 4.28 4.28
δ3 N/A N/A 89.00 89.00 89.00
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Table A.11: Summary of the parameters used to produce figure 5.28.

Figure 5.28
α 8
ε1 1.5
ε2 0
x0 −125
xN 175
h 0.1
t0 0
tK 42
τ 0.001
ω1 0.80
δ1 16.63
ω2 3.07
δ2 63.77
ω3 4.28
δ3 89.00
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