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A Rydberg-dressed Magneto Optical
Trap

Alistair Bounds

We Rydberg dress a magneto-optical trap of strontium atoms, mixing Rydberg character
into atoms as they are cooled and confined. A recently developed tunable high-power
narrow-linewidth 319 nm laser is used to excite and characterise triplet Rydberg states
in strontium. Off-resonantly dressing a cloud of atoms in a narrow-line MOT operating
on the 5s2 1S0 ↔ 5s5p 3P1 transition, we observe a one-body AC Stark shift on the
cloud, which we characterise to identify a regime in which only Rydberg dressed atoms
are trapped in the MOT. In this cloud the Rydberg dressed atoms are both trapped and
cooled.
Increasing atomic density in the dressed MOT, plasma formation is observed at densities
lower than the density necessary for observation of Rydberg dressed atoms. This plasma
is caused by a build-up of charges due to spontaneous ionisation of Rydberg atoms, which
then DC Stark shift the Rydberg state onto resonance with the coupling laser. The high
charge density of the plasma then results in strong Rydberg excitation that causes rapid
depletion of atoms. Regimes using optimum Rydberg states and charge-extracting electric
fields are identified that may prevent plasma formation, and allow the interacting regime
to be reached. Such a regime, with cooling, confinement, and tunable interactions, may
form the basis of a quantum simulator for dissipative many-body systems.
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Chapter 1

Introduction

The field of quantum technology is growing rapidly, with massive investment on a UK

[1], European [2, 3] and global level [4, 5]. There is a booming field of proposed and

developing quantum devices for precision measurements of gravity [6, 7], magnetic field

[8, 9], microwave electric fields [10, 11], and time-keeping [12–14]. These measurements

may enhance our understanding of fundamental constants [15, 16]. Quantum logic gates

[17, 18] and quantum annealing [19, 20] are bringing quantum computing closer to fruition

[21, 22], and quantum communication [23, 24] and cryptography [25, 26] offer inherently

secure means of information transfer.

Quantum devices are not the only product of quantum technology. Quantum mechanics

formed the basis for the microcomputer revolution through understanding of semiconduc-

tors [27, 28]. Quantum simulation of many-body systems that are too computationally

intensive to model classically offers new insight into phenomena with great potential for

both developing new technology, such as room temperature superconductors [29], and

improving our understanding of the universe, such as modelling Hawking radiation [30].

A many-body quantum simulator requires [31, 32] a quantum system with many degrees

of freedom that can be initialised in an approximately known state. There must be en-

gineerable interactions between particles, either between nearest neighbours or on longer

lengthscales. Finally, the system must be measurable in a verifiable manner. These sys-

tems may be closed, conservative systems, or open systems that interact with a reservoir

that results in dissipation within the system.

In addition to quantum simulation, there are novel phases of matter [33], such as su-

persolid formation [34, 35], and phase transitions [36, 37] that have been theorised and

1



Chapter 1. Introduction 2

observed [38] in media with these requirements.

Ultracold atoms [39], ions [40] and molecules [41, 42], superconducting circuits [43, 44]

and quantum dots [45] have all been proposed or demonstrated as quantum simulators.

We are interested in ultracold neutral atoms due to their widely tunable dimensionality,

the high degrees of freedom offered by a three dimensional system, and the scope for

nearest neighbour and many-body interactions [46].

Several techniques have been used to introduce interactions to neutral atoms, such as

Feshbach resonances [32] and optically mediated interactions [47, 48]. Atoms in Rydberg

states, with an electron in a state of high principal quantum number resulting in a very

large dipole moment, offer a mechanism to engineer very strong, tunable interactions

between neutral atoms [49], and there are numerous proposals for Rydberg atom quantum

devices [50], quantum logic gates [51, 52] and quantum simulators [53, 54]. However,

whilst Rydberg atom interactions are strong and tunable, atoms in Rydberg states can’t

be optically trapped and cooled (barring some velocity selective cooling proposals [55,

56]), and have many decay channels to the atomic ground state [57], resulting in high

trap loss rates and limited trap lifetimes.

Rydberg-dressed interactions have emerged as another mechanism to control interactions

in a many-body system [34, 58]. Rather than populating the Rydberg state and facing

the limited lifetime and trapping challenges associated with Rydberg atoms, a fraction

of the Rydberg state can be mixed into a ground or low-lying excited state, creating a

combined state that we refer to as the dressed state. This controllable Rydberg fraction

results in a controllable interaction between dressed state atoms. These interactions are

very widely tunable in strength through readily accessible experimental parameters of

laser intensity and frequency, and choice of Rydberg state allows control of interaction

lengthscale, as well as control of interaction sign and level of anisotropy [59]. A final

benefit is that the lifetime of the system is extended by the low fraction of the Rydberg

state in the dressed state.

Several interesting and useful manifestations of Rydberg-dressed interactions have been

proposed, for example, supersolid formation in Bose-Einstein condensates [34], spin

squeezing to suppress the quantum projection noise limit on optical lattice clocks [60], and

quantum logic circuits [61]. Entanglement through a Rydberg-dressed spin-flip blockade

in a two-atom system [62] and many-body interferometry in a two-dimensional system

[63] have been demonstrated, but both demonstrations have been performed on short
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timescales, without scope for extension to the long timescales that Rydberg dressing en-

ables and that many quantum simulators and novel phases of matter require. In addition,

these interactions occur without confinement of the atoms during dressing and are limited

to one or two dimensions and spatially ordered clouds.

1.1 Motivation

The goal of this thesis is to introduce-Rydberg dressed interactions into a cloud of atoms

that is both cooled and confined.

Previous observations of Rydberg dressed interactions and attempts to observe Rydberg

dressed interactions have been performed in free space in the frozen gas regime or using

optical dipole forces to trap atoms [62–65]. In this work we want to include dissipation

within the system; we therefore move away from conservative optical dipole trapping to

a dissipative trap.

To obtain trapping and cooling we will use a magneto-optical trap (MOT). A MOT drives

atoms between two states, so by dressing the excited state of the MOT transition the

cooling of the system becomes inherently linked to the interactions that occur within the

system. To achieve sufficiently high atomic densities and low temperatures for Rydberg

dressed interactions to be significant we will use a narrow-line strontium MOT. The Ryd-

berg dressed interactions we expect to be achievable within our system are comparable in

strength to MOT temperatures, comparable in lengthscale to the interparticle separation

in a MOT, and give lifetimes that are comparable to the MOT equilibration time (shown

in more detail in Chapter 2.6).

Such a system offers a versatile platform as a many-body quantum simulator. Whilst

the Rydberg-dressed interactions are inherently linked to the cooling of the cloud, the

interaction strength and lengthscale can be controlled through the Rydberg coupling

laser power and frequency independently of the MOT beam power and frequency that

control the cooling (dissipation) rate and fraction of atoms in the interacting dressed state.

The system is three-dimensional, with many degrees of freedom, and the readout of the

simulation is readily available through imaging of the cloud. Whilst it is not immediately

clear what system we may model with such a quantum simulator, the demonstration of

such a tunable quantum simulator may generate interest sufficient to identify simulatable

systems.
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1.2 Thesis outline

The work in this thesis towards an actively cooled, confined, interacting medium has sev-

eral stages of progression, and the structure of this thesis maps these stages accordingly:

� First we outline Rydberg dressing and the mechanism of Rydberg-dressed interac-

tions, consider narrow-line MOTs as a platform for Rydberg-dressed interactions,

and set out the concept of a Rydberg-dressed MOT in Chapter 2.

� We summarize the experimental apparatus, including modifications to the operation

of the experiment made over the course of this work, in Chapter 3.

� In Chapter 4 we present the 319 nm laser source developed to couple to Rydberg

states, outline the Rydberg excitation process, and characterise a range of previously

unseen Rydberg states that we will dress the MOT with.

� We couple the MOT to the Rydberg state, observing and characterising the non-

interacting Rydberg-dressed MOT and identifying a regime in which only Rydberg-

dressed atoms are trapped in the MOT in Chapter 5.

� Increasing the ground state density to reach the interacting regime, we observe loss

of ground state atoms associated with plasma formation. We study the origins

and consequences of the plasma in Chapter 6 and identify regimes in which plasma

formation may be avoided or suppressed.

� Finally, in Chapter 7 we conclude the findings of this thesis, and provide an outlook

for the experiment.



Chapter 2

Rydberg dressing a MOT

In this chapter we will present the concept of the dressed state and of Rydberg atom inter-

actions, which we draw together to explain the concept of Rydberg dressing. We consider

demonstrations of Rydberg dressing in limited dimensions, and the challenges that have

prevented the observation of Rydberg-dressed interactions in three dimensions. We then

give a brief description of narrow-line MOTs. From this position we will present the

concept of a Rydberg-dressed MOT, possible manifestations of Rydberg-dressed interac-

tions in the MOT, and how to circumvent the barriers to observation of Rydberg-dressed

interactions in three-dimensional systems.

2.1 The dressed state

In 1955 Autler and Townes observed splitting of a microwave transition in OCS molecules

when one of the two levels was strongly coupled to a third level in a process now known

as Autler-Townes splitting [66]. The cause of this splitting is that the bare eigenstates of

the uncoupled molecular levels were no longer eigenstates of the coupled system. Instead

the new eigenstates contained fractions of both the strongly coupled levels, giving rise to

a splitting between the new eigenstates.

The dressed state picture is a powerful tool for understanding this splitting, and can be

used to explain a host of other effects. Both semiclassical [67] and fully quantized [68]

dressed state approaches exist, but the essence is to express a coupled system of bare

states and driving photons, then calculate new eigenstates of the coupled system that are

comprised of fractions of the bare states, illustrated in Figure 2.1.

5
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|g〉

|e〉

|r〉

|g〉

|−〉 = α |e〉 − β |r〉

|+〉 = α |r〉+ β |e〉

Ω, δ

Uncoupled Coupled

δ/Ω

δAC

Figure 2.1: The dressed state. Strong coupling between bare states |e〉 and |r〉 with

coupling light of Rabi frequency Ω and detuned from the transition frequency by δ results

in two eigenstates |+〉 and |−〉 containing fractions of the two bares states. On the right,

the energy of the two dressed states are shown as a function of detuning, the fraction of

the bare states (shown as dashed lines) is indicated by colour. For δ > Ω we are in the

AC Stark shifted regime, on resonance we are in the Autler-Townes regime.

We will consider two eigenstates of an uncoupled system that contains an excited state

|e〉 and a Rydberg state |r〉. We assume strong coherent coupling between |e〉 and |r〉
such that the Rabi frequency Ω, set by the dipole transition strength and the electric field

strength, is greater than the inverse of the state lifetime Γ. Using the Rotating Wave

Approximation (RWA) the Hamiltonian that describes the system is given by the atom

Hamiltonian HA and the atom-light interaction Hamiltonian HAL [69]:

H = HA +HAL = ~

[
0 Ω/2

Ω/2 −δ

]
; (2.1)

where δ = ω − ω0 is the detuning of the driving field frequency ω from the transition

frequency ω0. This gives the eigenvalues E± and eigenvectors |+〉 and |−〉:

E± = −~δ
2
± ~
√

Ω2 + δ2

2
; (2.2)

|+〉 = sin θ |e〉+ cos θ |r〉 = α |r〉+ β |e〉 ; (2.3)
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|−〉 = cos θ |e〉 − sin θ |r〉 = α |e〉 − β |r〉 ; (2.4)

tan 2θ = −Ω

δ
. (2.5)

These equations allow us to express both the energy levels of the dressed states and the

bare state components of the dressed states. This is illustrated in Figure 2.1. We will

also consider how a ground state |g〉 that may couple to the excited state |e〉 couples to

the two dressed states in the presence of a weak probe beam.

When the coupling laser is exactly on resonance α = β and the two dressed states contain

equal fractions of the two bare states. The ground state |g〉 couples equally to the |e〉
component of the two eigenstates, which are split by ~Ω/2 from the undressed states, and

separated by ~Ω from each other, shown in Figure 2.1. This is Autler-Townes splitting,

shown in Figure 2.2(a), and increases proportionally with Rabi frequency and hence with

the square root of coupling beam intensity. The splitting is observed by scanning the

probe beam detuning from the bare state |g〉 ↔ |e〉 transition δP .

(a) (b)

Figure 2.2: Autler-Townes splitting, shown in (a), occurs due to a strong resonant

coupling beam resulting in splitting of the dressed states. As we increase the coupling

beam power the splitting increases, which we observe by scanning the probe beam δP . If

the coupling beam is off-resonance by a detuning δ (shown in (b)) the dressed state is AC

Stark shifted from the undressed case by Ω2/4δ, shown by the blue line. The colourbar

indicates ion signal as a measure of Rydberg population. Experimental details are found

later in this thesis.
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We are interested in the weakly-dressed regime, in which a small fraction of one bare

state is mixed into an eigenstate primarily comprised of another bare state. This occurs

for small θ, where we can approximate the trigonometric terms (cos θ ≈ 1, sin θ ≈ θ and

tan 2θ ≈ 2θ) to get:

|e′〉 ≈ |e〉 − Ω

2δ
|r〉 . (2.6)

Here, we have changed notation from |+〉 and |−〉 to |e′〉 and |r′〉, where the state |e′〉 is

the state that is predominantly |e〉 with only a small fraction of |r〉. The ground state

|g〉 couples strongly to the |e′〉 due to the large |e〉 component. The Rydberg fraction of

the dressed state |e′〉 is f = β2 ≈ Ω2/4δ2. The dressed state acquires an energy difference

with respect to the bare state that is described by Eq. 2.2, which for δ � Ω can be

written as:

Ee′ = ~
Ω2

4δ
. (2.7)

This shift is known as an AC Stark shift and is shown in Figure 2.2(b). Thus, for coupling

with a Rabi frequency that is small compared to the the detuning of the coupling beam,

we expect an AC Stark shift that is proportional to the beam intensity and inversely

proportional to the beam detuning.

This dressed state picture gives insight into the state mixing that strong coupling light

can induce in atoms, without considering interactions between atoms. The motivation of

applying this dressed state picture to interacing states is that we can mix small fractions

f of a strongly interacting Rydberg state |r〉 into a non-interacting state |e〉, to create

very controllable, tunable interactions. Before we consider this, however, we will give a

brief outline of Rydberg interactions.

2.2 Rydberg atom interactions

Our interest in Rydberg atoms is based on the strong dipole-dipole interactions that they

offer. We will first consider the origin of these interactions, and then outline the Rydberg

blockade mechanism that results from this.
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Origins of Rydberg interactions

The dipole-dipole interactions of Rydberg atoms are well documented in several sources

e.g. [49, 70], and are only briefly outlined here. Typically long-range dipole-dipole (also

known as van der Waals) and resonant dipole-dipole interactions are considered; both

have the same origins. We treat the atoms as hydrogenic i.e. a nucleus of charge +e

and an electron of charge −e, and assume that the separation of Rydberg atoms is much

greater than the nucleus-electron separation.

R

+

+

−

−
a

b

Figure 2.3: Dipole-dipole interaction

First we can express the dipole interaction between the two atoms as [71]:

V (R) =
e2

R3
(â · b̂− 3azbz) ; (2.8)

for a quantization axis z defined along the atom axis, and valence electron positions

relative to atom A and atom B given by a and b. Unit vectors corresponding to these

positions are given by â and b̂, and az and bz represent the electron position in the z

direction relative to the positions of atom A and B. Note the R−3 dependence, where R

is the atomic separation.

This interaction couples the atom pair state |nl, nl〉 (with binding energy 2E) to other

pair states. For simplicity we consider coupling only to one final pair state |n1l1, n2l2〉
(with binding energy E1 + E2):

|nl, nl〉 → |n1l1, n2l2〉 . (2.9)

The final pair state can be any pair that preserves the angular momentum projection

of the initial pair. The initial and final state pairs will have different binding energies,

giving rise to an energy defect δ12 given by:
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δ12 = E1 + E2 − 2E . (2.10)

The relative size of this energy defect and the interaction strength V (R) dictates whether

we are in the resonant dipole-dipole regime or the van der Waals regime. From the energy

defect δ12 and the interaction strength V (R) we build the interaction Hamiltonian for the

two states |nl, nl〉 and |n1l1, n2, l2〉 :

H =

[
0 V (R)

V (R) δ12

]
. (2.11)

The eigenvalues of this Hamiltonian are:

∆± =
1

2

(
δ12 ±

√
δ2

12 + 4V (R)2
)
. (2.12)

From this expression we can obtain two regimes. The first is the van der Waals regime,

where δ2
12 � 4V (R)2. Under this condition we can Taylor expand to see a:

∆+ ≈
V (R)2

δ12

=
C6

R6
. (2.13)

This gives an interaction that decays as R−6, and occurs when the interaction between

atoms is much weaker than the energy difference between the pair state and all possible

other Rydberg pairs. We introduce the C6 coefficient, which reflects the energy differ-

ence between pair states and may be anisotropic due to angles between the quantisation

axis and electron position shown in Equation 2.8. The C6 coefficient can be positive

or negative, indicating whether interaction between the Rydberg atoms is repulsive or

attractive.

One eigenstate will comprise primarily of the |nl, nl〉 state and the other will comprise

primarily of the |n1l1, n2l2〉 state, with very little mixing, so a ground state that only

couples to the |nl, nl〉 state will only couple to one of the two eigenstates. We expect to

see a shift in energy of the |nl, nl〉 state described by C6/R
6.

The second regime is the resonant dipole-dipole regime, where δ2
12 � 4V (R)2 i.e. the

interaction between the atom pair is greater than the energy difference between the two

pair states. Taylor expanding, we see:

aHere δ12 < 0 resulting in repulsive van der Waals interactions, and the eigenvalue ∆+ corresponds

predominantly to the |nl, nl〉 state. It is trivial to instead consider δ12 > 0 and attractive interactions.
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∆± ≈ ±|V (R)| = ±C3

R3
. (2.14)

Here the interaction scales as R−3 according to the C3 coefficient, which, as with the

C6 coefficient, reflects anisotropies due to the quantisation axis. This regime typically

occurs near Förster resonances, where the excited Rydberg pair is degenerate or nearly

degenerate with another Rydberg pair. It also becomes dominant at short separations

as V (R) increases. There is strong mixing of both pair states; consequently, a state that

couples only to the |nl, nl〉 state may couple to either of the eigenstates, one of which

rises in energy and one of which falls.

|rr〉 = |nl.nl〉

1/√2(|er〉+ |re〉) Ω

|ee〉
√

2Ω

Figure 2.4: Energy level shifts for repulsive C6 interactions (a) and symmetric C3 in-

teractions (b). (c) illustrates the Rydberg blockade - at long distances Rabi oscillations

between the ground state |ee〉 and the doubly excited state |rr〉 occur with the same Rabi

frequency as the one-body |e〉 ↔ |r〉 Rabi frequency Ω. At close distances the Rydberg

pair state |rr〉 is off resonance with the coupling laser and Rabi oscillations occur between

the ground state |ee〉 and the intermediate state 1/√2(|er〉 + |re〉) with a
√

2 increase in

Rabi frequency.

The difference between the two interactions is illustrated in Figure 2.4(a-b). A key

difference between the two is that only resonant dipole-dipole interactions are symmetric

- a coupling laser that is detuned from the transition may excite pairs of Rydberg atoms

when the interaction shift matches the coupling laser detuning magnitude. In the case of

van der Waals interactions, the coupling beam laser detuning must also match the sign

of the interaction for pair excitation to occur. As we will see later, this is critical to the

ability to off-resonantly dress atoms with Rydberg state.



Chapter 2. Rydberg dressing a MOT 12

Rydberg blockade

Both regimes can give rise to one of the most interesting results of Rydberg atoms -

Rydberg blockade [72, 73]. Consider the Hamiltonian of a two-atom two-level system,

with four possible states |ee〉, |er〉, |re〉 and |rr〉 and an interaction Vint occuring between

the two atoms in the doubly excited |rr〉 state. The |e〉 state couples to the |r〉 state

through a resonant coupling beam of Rabi frequency Ω, resulting in the Hamiltonian:

H = ~


0 Ω/2 Ω/2 0

Ω/2 0 0 Ω/2

Ω/2 0 0 Ω/2

0 Ω/2 Ω/2 Vint

 . (2.15)

To simplify this we transform the system to an effective three-level system |ee〉, (|er〉 +

|re〉)/
√

2 and |rr〉 by noting that the eigenstate (|er〉− |re〉)/
√

2 has a matrix element of

0 i.e. is not coupled:

H = ~


0

√
2Ω/2 0

√
2Ω/2 0

√
2Ω/2

0
√

2Ω/2 Vint

 . (2.16)

If Vint � Ω we can reduce this further to a two-level system and we will see Rabi os-

cillations between the |ee〉 and |rr〉 states with a Rabi frequency of Ω. However, for

interactions much stronger than the Rabi frequency the |rr〉 state becomes far off reso-

nance, and we will observe Rabi oscillations between the |ee〉 and (|er〉+ |re〉)/
√

2 states

with a Rabi frequency
√

2Ω.

We will therefore see a blockade effect, in which we do not couple to the doubly excited

state, which is accompanied by a
√

2 increase in Rabi frequency. This is illustrated in

Figure 2.4(c). It is trivial to see that an increase in the number of atoms experiencing

strong interactions from 2 to N will result in a
√
N speed-up in Rabi frequency.

We also define a Rydberg blockade radius to characterise the separation over which atoms

will experience this speed-up, defined as the distance at which the Rydberg pair interac-

tion equals the transition width. For van der Waals interactions and a transition width

defined by the Rabi frequency this gives a Rydberg blockade radius of:
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rB =
6

√
|C6|
~Ω

. (2.17)

To maximise the interaction strength and minimise the density at which we may observe

Rydberg atom interactions, we require large C6 coefficients.

C6 coefficients

Having considered the theory of van der Waals interactions, we now consider the C6

coefficients of the Rydberg states that we may couple the MOT to. The excited state

of the narrow-line strontium MOT transition is the 5s5p 3P1 state, and we will therefore

consider Rydberg states that can couple to from this state, namely the 5sns 3S1, 5snd 3D1

and 5snd 3D2 states, where n is the principal quantum number. The strength of the van

der Waals interaction is dependent on angular momentum state and orientation of the

interacting Rydberg atoms; averaging over the possible angular momentum states and

directions C6 coefficients are estimated based on [74], shown in Figure 2.5.

Principal quantum number n

C
6
/

G
H

z
µ

m
6

Figure 2.5: Calculated C6 coefficients for the 5sns 3S1 (blue circles), 5snd 3D1 (red

crosses) and 5snd 3D2 (yellow squares) series.

We see repulsive interactions for the 5sns 3S1 series, since the C6 coefficients are positive,

attractive interactions for the 5snd 3D1 series, and a Förster resonance at 5s37d 3D2,

below which the interactions are repulsive and above which the interactions are attractive.

Förster resonances occur at small quantum defects; we therefore see stronger interactions
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at and near the Förster resonance. At 5s37d 3D2 we expect to observe resonant dipole-

dipole interactions rather than van der Waals interactions.

The approach to Rydberg atom interactions outlined above yields insight into the phe-

nomenon of Rydberg blockade when the coupling beam is resonant and transitions may

be strongly driven by coupling light. However, we are interested in the Rydberg dressed

regime, in which an off-resonant coupling laser mixes a small fraction of the Rydberg

state |r〉 into the excited state |e〉.

2.3 Rydberg-dressed interactions

In this section we will consider how Rydberg atom interactions can translate through the

dressed state picture to result in interactions between atoms that are primarily in non-

interacting states [75, 76]. At large separations and weak interactions, the interaction

between two dressed state atoms can be described by the |rr〉 fraction in the dressed-

dressed state f 2 = (Ω2/4δ2)2 so that the dressed interaction strength is given by f 2C6/r
6.

At small separations, the |rr〉 fraction of the dressed state pair is suppressed by the strong

interactions of the bare state Rydberg pair.

We will first consider a simple Hamiltonian similar to the one used to understand Rydberg

blockade, which illustrates the energy shift that results from Rydberg dressed interactions

[77]. A more advanced perturbative treatment from [34] then yields information on the

interaction strength dependence on separation of atoms. We consider only van der Waals

interactions and a coupling beam detuning sign opposite to the van der Waals interaction

sign to avoid Rydberg pair excitation.

A simple approach to Rydberg-dressed interactions

In Section 2.1 we showed how the dressed state picture can explain the energy difference

between the bare state and the dressed state i.e. the AC Stark shift. We will use the same

approach to show the energy difference between the dressed state with Rydberg atom

interactions and without Rydberg atom interactions. This treatment was developed in

[77].

The AC Stark shift of the non-interacting case will simply be N times the one-body AC

Stark shift given in Equation 2.2 where N is the number of interacting dressed state
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atoms:

EN,V�Ω =
−N~δ

2

(
1−

√
Ω2

δ2
+ 1

)
. (2.18)

The AC Stark shift of the strongly interacting case is more complicated, but can be

understood from a simplified version of the N -body Hamiltonian. Firstly, we neglect any

state with two or more atoms in the Rydberg state, as the strong Rydberg interactions

will prevent coupling to this state. This leaves the ground state |eN〉 and N singly excited

states |reN−1〉, |ereN−2〉 etc. We simplify this further to obtain a Hamiltonian in terms

of the ground state |eN〉 and the fully symmetric state 1/√N(|reN−1〉 + |ereN−2〉 + ... +

|eN−1r〉):

H = ~

[
0

√
NΩ/2

√
NΩ/2 −δ

]
; (2.19)

where all other states are not coupled. This is simply expressing Equation 2.16 in the

case of N atoms, a coupling beam detuning, and sufficiently strong interactions for mul-

tiply excited Rydberg states to not be coupled. Note the
√
N speed-up due to Rydberg

blockade. For |δ| �
√
NΩ/2 the eigenvalue of the |eN〉 state is:

EN,V�Ω =
−~δ

2

(
1−

√
NΩ2

δ2
+ 1

)
. (2.20)

Equations 2.18 and 2.20 describe the AC Stark shift of the |eN〉 state for N atoms that

are not interacting and that have strong Rydberg interactions respectively. Taking the

difference between these two equations by using the assumption that
√

NΩ2

δ2
� 1, we get

the peak energy shift from the non-interacting to the strongly interacting regime:

VD = |EN,V�Ω − EN,V�Ω| = ~
N(N − 1)

2

Ω4

8δ3
. (2.21)

This is the Rydberg dressed interaction, emerging due to the
√
N speed-up in Rabi fre-

quency that occurs due to Rydberg blockade. This interaction displays several interesting

features.

Firstly, the dressed interaction strength is only dependent on the coupling beam Rabi

frequency, detuning and the number of interacting atoms, not the C6 coefficient that
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characterises the Rydberg state interactions. Once the |rr〉 fraction of the dressed state

pair is suppressed, the energy shift of the dressed state pair becomes flat. This is a major

strength - it allows the dressed interaction strength to be tuned through coupling laser

Rabi frequency and detuning, which are readily available experimental controls. As we

require Ω � δ to be in the dressed regime we can maximise our interaction strength by

increasing both Ω and δ.

Finally, we observe an N(N−1) dependence, where N is the number of atoms with strong

Rydberg-Rydberg state interactions. To understand the significance of this number, we

must understand the lengthscale of the Rydberg dressed interaction. This requires a

more advanced model, where we can’t simply treat the Rydberg-Rydberg interaction as

much greater or smaller than the Rabi frequency. To do this, we use the results of a

perturbative treatment.

A perturbative approach to Rydberg dressed interactions

The treatment outlined above reveals the Rydberg dressed interaction strength as a result

of the
√
N speed-up that Rydberg blockade causes. However, it only considers the regimes

of very strong and very weak van der Waals interactions. For small N we can construct

and numerically solve the appropriate Hamiltonian. Equation 2.22 shows the same two-

atom two-level Hamiltonian as Equation 2.16 but including a coupling beam detuning δ,

expressed as a three-level system |ee〉, (|er〉+ |re〉)/
√

2 and |rr〉:

H = ~


0

√
2Ω/2 0

√
2Ω/2 −δ

√
2Ω/2

0
√

2Ω/2 C6/r6 − 2δ

 . (2.22)

Figure 2.6 shows a numerical calculation of the eigenvalues of this Hamiltonian, which

illustrates the Rydberg dressed interaction. However, we prefer a technique that offers

more insight and scalability to high N .

In [59] a perturbative treatment is applied to this Hamiltonian. The eigenvalue of the

ground state is considered as a series of expansions, subject to Ω � δ. Odd orders of

this expansion correspond to an odd number of virtual processes that do not modify the

ground state energy. The second order of this perturbative expansion yields the one-

body AC Stark shift associated with a two-photon event i.e. the ground state coupling

to a singly excited state that couples to the ground state. The fourth order of this
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perturbation treatment considers four-photon events, allowing the ground state to couple

to a doubly-excited state that couples to the ground state. This yields the Rydberg

dressed interaction that we seek:

VD(r) =
~Ω4

8|δ|3
[
1 +

( r

rD

)6]−1

. (2.23)

The shape of the dressed interaction potential is shown in Figure 2.6 for δ = 12 MHz,

Ω = 4 MHz. At large separations (r/rD)6 � 1 we see an interaction energy described by

(Ω/2δ)4C6/r
6 = f 2C6/r

6. Thus at large separations, Rydberg dressed interactions follow

the Rydberg-Rydberg interaction but reduced by the |rr〉 fraction of the excited-excited

state. At small separations, we see the interaction level off at the value given by Equation

2.21, as expected.

N = 2 N = 3

r / µm r / µm

Figure 2.6: Shift of the dressed state as a function of interatomic separation for two

(left) and three (right) atom systems and δ = −12 MHz, Ω = 4 MHz. C6 = 2.2 GHz

µm6. The solid blue line shows the lowest eigenvalue of the Hamiltonian 2.22, the dashed

orange line shows the perturbative approach described by Equation 2.23, which relies on

the assumption Ω� |δ|. The vertical dashed line represents the dressed blockade radius

rD. Inset, all eigenvalues are shown- the labels are deceptive as |e〉 and |r〉 are eigenvalues

of the uncoupled system only, and are for indicative use only. The one-body AC Stark

shift has been subtracted.

In this expression we have defined a dressed blockade radius corresponding to the distance
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at which the effective Rabi frequency Ωeff =
√

Ω2 + (2δ)2 ≈ 2|δ| equals the Rydberg-

Rydberg interaction C6/r
6:

rD =
( C6

2~δ

)1/6

. (2.24)

Comparing the result of this perturbative treatment to a numerically calculated eigenvalue

of Equation 2.22 in Figure 2.6 we see good agreement between the dependence of the

interaction on separation, although there is a constant scaling between the two values

due to the limited accuracy of the approximation δ � Ω. In the case of the numerical

solution of the full Hamiltonian we have subtracted the one-body AC Stark shift.

This perturbative treatment can be extended to the many-body case, subject to the

validity of the perturbative treatment, which requires that
√
NΩ � 2δ. Here, we must

be careful of our use of a single value r to express distance between dressed state atoms

- as there are many atoms there will be many distances between them. A thorough

treatment is given in [59]; we will consider the two cases shown in Figure 2.7.

requidistant r1

(a) (b)

Figure 2.7: An illustration of the separation of dressed state atoms. Left, we consider all

atoms being equidistant. Right, we consider a single dressed state at a distance r1 from

other dressed state atoms.

First we consider the number of atoms per dressed blockade sphere, which can be calcu-

lated from the dressed blockade radius rD and the dressed state density ρD:

N =
4

3
πr3

DρD . (2.25)

When N > 1 we expect Rydberg dressed interactions to emerge.

If we consider the case of a collection of N atoms all separated from every other atom by

a distance requidistant the perturbative treatment yields [59]:

VD(requidistant) =
N(N − 1)

2

Ω4

8|δ|3
[
1 +

(requidistant

rD

)6]−1

. (2.26)
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In this case we go from all atoms within the blockade radius at requidistant � rD to no

atoms within the dressed blockade radius at requidistant � rD. The factor of N(N−1)/2 is

the total number of pairs that can be made from N atoms, and returns the two atom case

given in Equation 2.23 when N = 2. This expression also yields the interaction strength

given using the simple approach of Equation 2.21.

Next we consider a cluster of N−1 atoms occupying the same position and the N th atom

at a distance r1 from the cluster:

VD(r1) = (N − 1)
Ω4

8|δ|3
[
1 +

( r1

rD

)6]−1

. (2.27)

In this case we go from N atoms within the dressed blockade radius to N−1 atoms in the

dressed blockade radius as r1 increases, reducing the number of pairs by N − 1. Again,

the two-atom case is recovered for N = 2.

As with the two-atom case, we compare the results of Equation 2.27 with a numerically

calculated dressed interaction from the three-atom two-level Hamiltonian, again with the

one-body AC Stark shift subtracted. This is shown in Figure 2.6. We see good agreement

subject to a scaling due to the limited accuracy of the approximation
√
NΩ� 2δ.

Rydberg dressed interactions

In this section we have shown how the Rydberg blockade can translate through the dressed

state picture to introduce interactions in ground or excited states. A key point to note

from Equation 2.23 is the high level of control offered by Rydberg dressed interactions.

The maximum strength of the interactions is given by Ω4/8|δ|3, both easily controllable

parameters through laser power and frequency, and the interaction lengthscale is given

by (C6/2δ)
1/6. C6 coefficients scale with principal quantum number as n11, allowing wide

tunability of interaction lengthscale.

The versatility of these interactions have led to a boom in theoretical predictions concern-

ing potential applications of Rydberg dressing, for example, formation of supersolids [34]

[78], enhanced metrology [60] and quantum computing [61, 79]. Experimental progress is

much slower.
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2.4 State of the art Rydberg dressing

In optical tweezers, with only two atoms, Rydberg-dressed interactions have been ob-

served and used to entangle atoms in a Bell state, although outside of the usually taken

condition Ω � δ [62]. In a two-dimensional lattice spin-spin correlation measurements

have shown Rydberg dressed interactions and demonstrated the tunability and anisotropy

of Rydberg dressed interactions, subject to post filtering to eliminate a fast avalanche-like

loss process on some shots [63].

Both these systems use limited dimensionality and highly controlled systems to control

the form of the interactions. In addition, neither observe, nor expect to observe, atomic

motion attributable to the Rydberg dressed interaction, due to the short timescales of the

experiment. A key strength of Rydberg dressing is the extended lifetime of the system

obtained by mixing small fractions of the Rydberg state into non-interacting states, which

has not been demonstrated yet [77].

Moving away from this regime, to the three-dimensional, disordered case, work towards

Rydberg dressed interactions has faced heavy trap loss [64, 65]. This has largely been

attributed to Rydberg atoms being driven by blackbody radiation to neighbouring Ry-

dberg states. These states exhibit symmetric resonant dipole-dipole interactions, which

can facilitate enhanced Rydberg excitation when off-resonantly coupling to the Rydberg

state. This is a problem that must be avoided or overcome.

From these studies we can place our work on a Rydberg dressed MOT in perspective.

We must be able to avoid the resonant dipole-dipole loss mechanisms that prevent the

observation of loss in other systems.

All of these techniques have been attempts to dress the ground state. In the case of

one-photon dressing, this requires using l = 1 Rydberg states as the dressing state, which

results in anisotropy in the interactions. Two-photon dressing allows a choice of l = 0 or

l = 2 Rydberg states, but typically with a lower effective Rabi frequency, reducing the

Rydberg dressed interaction strength. Dressing an excited state allows a wider range of

coupling states and strong one-photon coupling.

Finally, all of the experiments above have used atoms trapped using optical dipole forces.

This presents a limitation in seeing continued cooling of the trapped atoms, as optical

dipole trapping is conservative, making it difficult to combine trapping, cooling and

Rydberg dressed interactions,
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From this work we can conclude that whilst Rydberg dressed interactions are observable,

there are many challenges to be overcome. An ideal system would:

� Use one-photon dressing to maximise the dressing Rabi frequency;

� Operate over a sufficiently long timescale with sufficiently strong interactions for a

change in cloud dynamics to be observable;

� Include a dissipative cooling process to allow a change in cloud temperature;

� Avoid rapid loss due to resonant dipole-dipole interactions that occur at high den-

sity;

� Extend the previous observations of Rydberg dressed interactions to three dimen-

sional disordered systems.

Having considered the theory of Rydberg dressed interactions, and some of the exper-

imentally observed barriers to seeing Rydberg dressed interactions, we now provide an

introduction to narrow-line MOTs. This will allow us to present the concept of a Rydberg

dressed MOT.

2.5 Narrow-line MOTs

In broadline MOTs, transition linewidths are several orders of magnitude larger than

the Doppler shift due to a single photon recoil, and the temperature will largely be

set by the transition width, excluding sup-Doppler cooling techniques. In this section

we will describe how narrow-line MOTs differ from broadline MOTs, and how these

differences make narrow-line MOTs an ideal platform for the observation of Rydberg

dressed interactions.

Narrow-line consequences and regimes

The narrow transition width condition Γ ∼ ωR states that the transition linewidth Γ =

2π × 7.4 kHz is comparable to the photon recoil frequency shift ωR = ~k2/m, where k =

2π/λ is the photon wavenumber and m is the atomic mass. The first consequence of this is

that single photon recoil can dominate the MOT dynamics, with a single photon
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recoil sufficient to take the atom off resonance with the MOT light. Consequently, the

cloud temperature may be dominated by the single photon recoil temperature, allowing

us to reach cloud temperatures as low as 400 nK [80].

The narrowness of the transition also means that a small magnetic field can take the MOT

light off resonance. The MOT light can thus be made to scatter only at a particular

magnetic field, creating a resonant ring, making the MOT position very sensitive

to magnetic field gradient and MOT beam detuning. We can reach cloud sizes

as small as 20 µm 1/e2 radius in the vertical direction and 50 µm 1/e2 radius in the

horizontal direction. This shell-like structure is observed in Figure 2.8.

A consequence of the low scattering rate is the reduced light force - photons can be

scattered at a maximum rate of Γ/2. In the case of the narrow strontium transiton this

limits the maximum scattering force to ∼ 16 times that of gravity, and gravity can no

longer be considered negligible to atom dynamics, particularly where the detuning

of the MOT beams is greater than the power-broadened linewidth. Figure 2.8(b-d) shows

atoms sagging under gravity to near the bottom of the resonance shell, but being trapped

slightly above the resonance position, where scattering matches gravity. We often use a

more intense vertical red MOT beam to compensate the effect of gravity, with a ratio of

3:1:1 in the vertical and horizontal directions.

The low scattering rate also increases the radiation pressure limit - in broad line MOTs

scattered photons create a force that pushes away from the densest region of the MOT,

limiting the trap density. With a reduced scattering rate, the maximum MOT density

is higher [80]. We can reach densities as high as 2× 1012 cm−3.

Typically when considering narrow-line MOTs three regimes are considered based on the

relative strength of MOT beam detuning δMOT, power-broadened linewidth ΓE and single

photon recoil frequency shift [81]:

� Regime I: δMOT > ΓE - the resonant ring regime, in which atoms predominantly

interact with the vertically upward-pointing MOT beam, sagging under gravity to

a point where the Zeeman shift matches the MOT beam detuning. This is shown

in Figure 2.8(b-d).

� Regime II: ΓE & δMOT - the standard Doppler regime, in which atoms can scatter

from all MOT beams and cooling is dominated by the velocity of the atoms, closest

to standard Doppler theory. The scattering force follows a dispersive shape and the
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effect of gravity is small, illustrated in Figure 2.8(a).

� Regime III: s ≈ 1 - the quantum regime, in which single photon recoils dominate

trap dynamics, and the temperature is limited by the photon recoil limit. The

sensitivity to detuning is similar to Regime I.

Figure 2.8 shows the detuning dependence of a MOT for s = I/ISAT = 18 (6) in the ver-

tical (horizontal) beams. This illustrates the detuning dependence of the MOT position

and also the transition from Regime II at δMOT = −50 kHz to Regime I at δMOT = −150

kHz.
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Figure 2.8: MOT images and vertical scattering force (right) for four different MOT beam

detunings. The resonant ellipse is shown in blue; the position of maximum scattering force

in the vertical direction is shown by dashed lines, and equilibrium with gravity is shown

as a dotted line.

Another novel regime that can occur for blue-detuned MOT or probe light and narrow

transitions is momentum space crystals, demonstrated in Appendix B. These further

demonstrate the sensitivity of the cloud to small changes in MOT or probe beam detuning,

with changes of 20 kHz being detectable from images of momentum space crystals.
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Resonance curves

A key feature of Regime I and III MOTs is the resonance curves that they can be de-

scribed by. When the MOT beam detuning is large compared to the power broadened

linewidth scattering will only occur for a thin resonance shell where the Zeeman shift of

the 5s5p 3P1 mJ = −1 state matches the MOT beam detuning δMOT:

δMOT = mJgJµB
dB

dz
· zres ; (2.28)

Here mJ = −1 is the magnetic sublevel of the MOT transition, gJ = 1.5 is the Lande

g factor and µB = 1.4 MHz/G is the Bohr magneton. dB
dz

is the magnetic quadrupole

field gradient, typically 8 G/cm in the vertical direction and half this in the horizontal

directions, and zres is the resonant ellipse at which the Zeeman shift matches the MOT

beam detuning.

Changing the detuning of the MOT beams causes this resonance condition to form at a

different position, and widens the bowl that the atoms sit at the bottom of, illustrated in

Figure 2.8(b-d), but does not change the cloud temperature. The temperature depends

purely on the MOT beam power. This is shown in Figure 2.9(d). Another consequence

of MOT beam power is that the cloud position will change slightly, as the MOT forms

not at the position of maximum scattering, but at the position where scattering compen-

sates gravity, resulting in the offset between the cloud position and the resonance curves

observed in Figure 2.8(b-d).

MOT modelling

Whilst the resonant ellipses that describe the cloud position are useful, they don’t provide

insight into the cloud dynamics. To understand these dynamics a narrow-line MOT model

has been developed by R. Hanley and P. Huillery [82]. This model has three components:

� Propagating the position and velocity of atoms based on gravity and scattering

events, requiring;

� Calculating the probability of scattering events for all six beams and three transi-

tions, calculated from the steady state optical Bloch equations, requiring;
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Figure 2.9: The Monte-Carlo MOT model presented in [82] can accurately reproduce

the cloud shape and size, temperature and cooling and heating rates for Regime I and

III MOTs. Row (a) shows model data for a range of coupling beam detunings, compared

to experimental data in row (b). (c) shows model temperatures (dots) compared to

experimental data (filled circles) for MOT beam intensities of s = 1.9 (blue) and s = 60

(red). We see good agreement for Regime I and III MOTs, but the model breaks down

for Regime II MOTs (high power and small MOT beam detunings) as the scattering rates

are no longer independent. We also observe good agreement to the cloud cooling rate,

shown in (d) by introducing a step-change in MOT beam intensity from s = 31 to s = 14.
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� Calculating the effective polarisation of each MOT beam in the atomic reference

frame.

This model reproduces the cloud shape, temperature and cooling rate, illustrated in

Figure 2.9, for Regime I and III MOTs. The probability of scattering light from the

MOT beams is calculated independently for all MOT beams and all Zeeman sublevels,

a treatment that breaks down in regimes where the Zeeman shift is small compared to

the transition width or where the MOT beam detuning is small compared to the Zeeman

shift. Consequently, the model breaks down in Regime II MOTs, where atoms interact

with all the MOT beams. However, when working with Regime I and III MOTs the model

yields excellent agreement with the data. This model is extended to the Rydberg dressed

MOT in Section 5.2 by replacing the two-level optical Bloch equations with three-level

optical Bloch equations to provide insight into the Rydberg dressed MOT.

From this model we can also predict the fraction of atoms in the excited state. In Regime

I and III MOTs this is ∼ 5 - 10% for typical parameters, this is comparable to simple

estimates based on the relative strength of single photon recoil, the force of gravity and

the mean atomic speed. In Regime II MOTs we expect half of the atoms to be in the

excited state and half in the ground state.

A MOT for Rydberg dressing

An ideal MOT for Rydberg dressing would have:

� The low temperatures associated with Regime III;

� The high detuning sensitivities of Regimes I and III;

� The high densities and trap lifetimes associated with Regimes I and II;

� The high excited state fractions associated with Regime II.

Clearly, no single regime is universally better for Rydberg dressing. We have other

requirements; we want a MOT that is small compared to the Rydberg dressing laser

beam, and a MOT beam detuning that is large compared to the frequency noise of the

689 nm laser. The nature of the Rydberg dressed interaction that we wish to see will also

influence our choice of MOT regime, which we consider in the next section.
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2.6 A Rydberg dressed MOT

The goal of this thesis is to observe tunable, controllable interactions between atoms in

an ultracold cooled and confined atomic cloud. The mechanism we choose to do this is

to introduce Rydberg dressed interactions into a magneto-optical trap. In this section we

will present the concept of a Rydberg dressed MOT, outline the viability of such a system

and describe some potential manifestations of Rydberg dressed interactions within the

trap.

In this thesis we describe the process of coupling the 5s5p 3P1 state to a Rydberg state

whilst sustaining the magneto-optical trap that operates on the 5s2 1S0 ↔ 5s5p 3P1 tran-

sition. By doing this, we mix Rydberg character into the MOT, introducing the potential

for atoms in the Rydberg dressed state, which primarily comprises of the 5s5p 3P1 state,

to interact with neighbouring Rydberg dressed state atoms, illustrated in Figure 2.10.
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Figure 2.10: A Rydberg dressed MOT - by mixing Rydberg character into the MOT we

introduce interactions into the excited state of the MOT transition, illustrated on the left.

The MOT beam detuning from the dressed state δMOT will become density-dependent.

This may manifest in several ways illustrated on the right, for example a repulsive force

between atoms at a given separation, illustrated by the red point, or a density-dependent

position where the position at which the MOT beams are resonant reflects both the

Zeeman shift of the 5s5p 3P1 mJ = −1 state δZ and the Rydberg dressed interaction VD.

For these interactions to be observable they must be comparable in strength to the cloud

temperature, and the dressed blockade radius must be comparable to the average dressed

state separation.
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Viability

To compare the strength and lengthscale of Rydberg dressed interactions and the prop-

erties of narrow-line MOTs we must know the Rabi frequency that we can achieve for

different Rydberg states (detailed in Chapter 4), and the C6 coefficients for these states

(shown in Figure 2.11). Both are strongly dependent on the Rydberg state principal

quantum number n, Rabi frequency scaling as n−3/2 and C6 scaling as n11. From the ex-

cited state of the MOT transition we can couple to the 5sns 3S1, 5snd 3D1 and 5snd 3D2

series. These couplings all use one-photon dressing to obtain large Rabi frequencies.

800 nK

N = 2

r D
/µ

m
C

6
/G

H
z
µ

m
6

Figure 2.11: Scaling with principal quantum number n of Rydberg dressing parameters.

Three series are shown, 5sns 3S1 (blue), 5snd 3D1 (red) and 5snd 3D2 (black). Attractive

states are shown as crosses, repulsive states as rings. The falling Rabi frequency with

rising principal quantum number results in a falling two-body interaction (calculated for

a detuning of three times the Rabi frequency), whilst the rising C6 coefficient results in a

rising dressed blockade radius. A Förster resonance at 5s37d 3D2 results in a very large

C6 coefficient (not shown), and both attractive and repulsive interactions.

Setting ∆ = 3Ω, we can calculate the Rydberg dressed blockade radius and the two-body

interaction strength. We compare these to a typical cloud temperature of 0.8 µK and a

dressed state density of 1011 cm−3, estimated from a cloud density of 1012 cm−3 and a

10% fraction in the excited state. At this density, two atoms per dressed blockade sphere

occurs at a dressed blockade radius of rD = 1.7 µm. These values are indicated by dashed
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lines on Figure 2.11.

We can clearly see that for 35 . n . 40 there are Rydberg states for which we can

achieve two-body dressed interaction strengths comparable to the cloud temperature and

densities sufficient to reach two dressed state atoms per dressed blockade sphere, showing

the comparable strength of Rydberg dressed interactions to the properties of the MOT.

This considers only two-body Rydberg dressed interactions. We can go further than this,

calculating the number of atoms per dressed blockade sphere N as a function of principal

quantum number, and calculating a many-body dressed interaction from this. Here, we

must be careful what many-body interaction we use, the full N(N−1)/2 interaction given

by Equation 2.26 or the N − 1 interaction given by Equation 2.27. These interactions

are illustrated in Figure 2.12. The full interaction potential of N(N − 1)/2 times the

two-body interaction is accumulated over a series of excitations from the |gN〉 state. An

individual scattering event will experience N−1 times the two-body interaction strength.

We are interested in the shift that a single scattering event will result in.

|gM−1e′1〉

|gM−2e′2〉

|gM−3e′3〉

|gM−4e′4〉

Figure 2.12: Many-body interactions in the Rydberg dressed MOT. If there are M

atoms per dressed blockade sphere and N of these atoms are in the dressed state |e′〉 the

interaction shift experienced by the Nth excitation (labelled VN−1) will be N−1 times that

of the two-body interaction V2−body. The rapidly increasing dressed blockade radius with

principal quantum number results in strong many-body interactions with rising principal

quantum number, shown on the right for a dressed state density of 1011 cm−3. As before

blue, red and black correspond to the 5sns 3S1, 5snd 3D1 and 5snd 3D2 states, crosses

indicate attractive Rydberg-dressed interactions and circles indicate repulsive Rydberg-

dressed interactions.
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We see in Figure 2.12 that although the Rabi frequency falls with rising principal quan-

tum number, the rise in C6 coefficient more than compensates, allowing many-body

interactions that are far greater than the cloud temperature. As N increases, the approx-

imation that
√

NΩ2

δ2
� 1 will break down, reducing the interaction strength compared to

that shown in Figure 2.12.

Typically Rydberg dressing experiments are limited by the Rydberg state lifetime τR and

the Rydberg fraction in the dressed state f as atoms excited to the Rydberg state are

unlikely to decay to the ground state on the timescale of the experiment. This limits the

trap lifetime to τR/f . As only ∼10% of the atoms in the MOT are in the dressed state,

loss due to Rydberg excitation limits the dressing experiment to τR/(f×0.1). For typical

Rydberg state lifetimes of 10-50 µs and a coupling beam detuning of three times the Rabi

frequency we expect a trap lifetime of 3.6-18 ms. This is orders of magnitude larger than

previous dressing experiments [62, 63], and is also large compared to the equilibration

time of the cloud [81].

We can conclude from this study that:

� The densities we can reach are sufficient to reach the two-body case at n ∼ 35 and

the many-body case above this.

� The Rydberg dressed interaction strength we can expect to achieve is comparable

to the cloud temperature in the two-body case below n . 40, and significantly

larger in the many-body case for n & 35 .

� The trap lifetime is sufficient for Rydberg-dressed interactions to modify the cloud

dynamics before excessive loss occurs.

We next consider how interactions may modify the cloud dynamics.

Signatures of interactions

Whilst in previous experiments Rydberg dressing was observed through measurement of

atomic states we intend to observe a modification in cloud dynamics due to Rydberg

dressed interactions. We consider two mechanisms through which interactions may mod-

ify the dynamics; a modification of the scattering rate, and the conversion between kinetic

energy, potential energy and photon energy.
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Narrow-line MOTs are very sensitive to MOT-beam frequency, with small detuning

changes having a direct effect on the position and shape of the MOT. An 8 G/cm

magnetic field gradient corresponds to a Zeeman shift gradient of -1.7 kHz/µm on the

5s5p 3P1 mJ = −1 state, so a Rydberg dressed interaction shift of 20 kHz may result

in the MOT forming in a position where the Zeeman shift is 20 kHz different from the

non-interacting case, resulting in a cloud movement of 12 µm. We typically work with

MOTs with a 1/e2 radius of ∼30 µm, so this is a significant shift. A many-body shift of

∼50 kHz may cause the cloud position to shift by a full cloud width. We may therefore

expect the cloud position to become density dependent. This is illustrated in Figure 2.10.

Alternatively, given that the two-body dressed interaction strength can reach gradients

of ∼10 kHz/µm, greater than the magnetic field gradient, we may see a rearranging of

the cloud position distribution. The scattering rate varies across the cloud due to the

Zeeman shift. A density-dependent scattering rate may compensate the Zeeman shift,

resulting in a density-profile across the cloud that is set by the Zeeman shift. This is

illustrated in Figure 2.13 for attractively interacting Rydberg dressed interactions that

result in a falling dressed state energy with rising density.

A more localised version of this would be a suppression of scattering close to atoms in

the Rydberg dressed state for repulsively interacting Rydberg dressed atoms. It isn’t

obvious whether this repulsion between Rydberg dressed atoms would reduce the density

of the MOT - a reduced scattering rate at high density may result in dense clusters of

atoms forming. Alternatively, for attractive dressed atom pairs, we may observe stronger

scattering by close pairs, which could result in a flat-topping of density, as close atom

pairs experience a stronger scattering force, repelling them.

As well as a modification of scattering due to interactions, there may be a direct force

between dressed state atoms. The time that this force is active over is limited by the

excited state lifetime of 22 µs, at a temperature of 0.8 µK atoms move ∼ 0.3 µm in

this time, resulting in a 3 kHz change in potential energy for a 10 kHz/µm two-body

interaction potential gradient. This energy may then be released through spontaneous

emission as atoms decay from the dressed state to the ground state, creating a dissipative

effect that may give rise to heating or cooling. Whilst a 3 kHz shift may be too small

to be observed, in the many-body case this conversion of potential energy may rise by a

factor of N − 1.

For repulsively interacting dressed pairs we may expect stronger scattering from pairs at
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Figure 2.13: Without interactions (left), the MOT forms around the position at which

the MOT beam detuning from the dressed state δMOT matches the Zeeman shift δZ of the

5s5p 3P1 mJ = −1 state. With interactions, this energy level becomes density-dependent.

We may observe a density ρ that maps onto the Zeeman shift, modifying the cloud shape

(centre). Alternatively we may see a reduction in scattering from close pairs of atoms

(right) for repulsive Rydberg dressed interactions.

a distance where this interaction is weaker given the red-detuned MOT beams. Should

the atoms move closer during this time, a fraction of the kinetic energy of the pair will be

converted to potential energy, which will then be removed by the photon following decay

to the ground state by one of the two atoms. Given the stronger scattering by distant

pairs, we may expect an additional cooling force from scattered light resulting in a lower

cloud temperature in the dressed MOT. The higher probability of the MOT light exciting

pairs of atoms that will experience cooling, rather than heating, is similar to Sisyphus

cooling [83], although in this case the modification of scattering probability originates in

the interaction rather than the polarisation of the cooling light.

We can thus hypothesise many mechanisms through which Rydberg dressed interactions

may affect the cloud. Many of these mechanisms are many-body and non-trivial to

solve, we therefore haven’t attempted to further quantify these effects, but we note that

the Rydberg dressed interaction potential we expect to achieve may exceed both the

cloud temperature and the Zeeman shift across the cloud, and that the gradient of this

interaction potential may exceed the Zeeman shift gradient. We may expect changes
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to the cloud position, density profile, and velocity distribution, which will be density

dependent and tunable through Rydberg state, coupling beam intensity and coupling

beam detuning.

Summary

In this chapter we have outlined the dressed state picture and Rydberg atom interactions,

which we bring together to understand Rydberg dressed interactions. These interactions

have been observed in highly controlled systems in reduced dimensions, but have not

been observed in three dimensions, on long timescales, or in actively cooled gases.

We have outlined narrow-line MOT dynamics, and presented the concept of a Rydberg

dressed MOT. The predicted interaction strength, lengthscale and timescale of Rydberg

dressed interactions are comparable to the properties of strontium narrow-line MOTs,

which suggest that we may expect to observe both two-body and many-body interactions

within the Rydberg dressed MOT. Several possible consequences of these interactions,

which may modify the cloud position, density profile and velocity profile, are considered.

Finally, we consider the requirements of a Rydberg dressed MOT. To observe Rydberg

dressed interactions in a Rydberg dressed MOT we first require:

� A cold, dense MOT - we need a MOT with excited state densities of around 1011

cm−3 to reach the interacting regime, and temperatures on the order of 1 µK for

the effect of interactions to be observable;

� Coupling to Rydberg states - we need a laser capable of providing strong cou-

pling from the excited state of the MOT to a range of Rydberg transitions, and we

need to characterise the Rydberg states that we will couple to;

� Dressed MOT characterisation - coupling the MOT to a Rydberg state will

induce a one-body AC Stark shift, modifying the operation of the MOT. We need

to characterise these changes to understand the effect of the one-body AC Stark

shift.

Once these requirements are met we can examine the characterised Rydberg dressed MOT

to identify suitable parameter regimes for the observation of Rydberg dressed interactions.
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The cold strontium experiment

To Rydberg dress a narrow-line MOT we must obtain small, dense narrow-line MOTs and

characterise the Rydberg states that we will dress the MOT with. This chapter describes

the experimental apparatus, steps to increase the density of the narrow-line MOT, and

the diagnostic tools that we have to characterise Rydberg states and the ground state

population. This chapter will:

� Briefly describe the experimental set-up, with emphasis on changes made during

the course of this work.

� Summarise the steps taken to increase the density of the narrow-line red MOT.

� Document the imaging and ion detection techniques that we use for Rydberg state

characterisation and studying the Rydberg dressed MOT.

Having done this, we will characterise Rydberg states, documented in Chapter 4, which

will allow us to Rydberg dress the narrow-line MOT, documented in Chapter 5.

3.1 Experimental apparatus

The experimental apparatus can loosely be broken into three categories; the vacuum sys-

tem; the laser systems; and the control program, all with assorted supporting equipment

such as electronics. We consider the apparatus in that order. More details on the exper-

imental apparatus can be found in [84–87]; this section offers an outline and details of

significant changes to the apparatus made during the course of this work.

34
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3.1.1 Vacuum chamber

The main vacuum chamber is illustrated in Figure 3.1. An oven heated to ∼700 K pro-

duces a collimated beam of atomic strontium that passes through a Zeeman slowing stage,

provided by a set of coils that generate a magnetic ‘Zeeman’ field, which is permanently

on, and a counterpropagating 461 nm Zeeman beam.

OvenZeeman slower

Ion pump

Getter pump

MOT beams & 
Zeeman beam

z

x

-y

Figure 3.1: Strontium atoms from an oven are decelerated as they pass through a Zeeman

slower. They can then be trapped in a blue MOT. Taken from [86].

The main chamber contains a pair of in-vacuum copper coils that can produce a magnetic

quadrupole field gradient of up to 25 G/cm without the need (or the capability) for water

cooling. A set of four pairs of electrodes in a split-ring configuration allow application

of uniform electric fields during Rydberg excitation and steering of ions towards a micro

channel plate (MCP).

The chamber has twelve horizontal DN40 ports housing eight viewports; four for MOT

beams; two for an imaging camera and an imaging beam; and two for spectroscopy beams.

The other four horizontal ports are for the atom beam, the MCP, a getter pump and a

cross that is connected to the Zeeman viewport, an ion pump and a valve. On the vertical

axis, the MOT beam is aligned 3◦ off axis, allowing spectroscopy beams to be aligned

on the vertical axis. Electrical connections to the electrodes and MOT coils are made

through feedthroughs on the top of the chamber.

External to the vacuum chamber, a ‘quantisation coil’ sits beneath the vacuum chamber,

allowing uniform magnetic fields to be applied to the chamber. Due to the very narrow
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transitions we can now observe, and the ability to rapidly repeat Rydberg excitations,

we have observed that this quantisation coil may induce eddy currents, most likely in the

copper gasket that sits between the quantisation coil and the excitation region. More

details are given in Appendix C.

Three pairs of external coils are wrapped around the vacuum chamber to apply a magnetic

field to compensate the Earth’s magnetic field and any stray field. These are also used

for shifting the effective quadrupole field centre, shifting the MOT position through the

spectroscopy beams; hence they are referred to as shim coils.

The most significant changes on previous generations largely relate to the viewport

through which the Zeeman laser beam passes. As the oven is directed towards this

viewport we expect that atoms may be deposited on the glass, where they can chemically

bond, causing the viewport to become opaque. Whilst this was not observed previously,

following vacuum maintenance work documented in [87] where the Zeeman viewport was

replaced with an anti-reflection coated viewport, we have observed significant build-up

of strontium on the viewport, causing attenuation of the Zeeman laser beam and a lower

blue MOT loading rate. As the blue MOT transition is not closed, the atom number

that we can trap in the blue MOT is proportional to the loading rate until the radiation

pressure limit is reached, so attenuation of the Zeeman beam causes a reduced atom

number in the blue MOT. Several techniques to address this issue will be presented in

this chapter.

3.1.2 Laser systems

Several laser systems are necessary for this experiment, although only one will receive any

significant attention in this thesis, the Rydberg coupling laser described in Chapter 4.

Most of the wavelengths used for this experiment are demonstrated in Figure 3.2.

The primary transition in strontium is the 5s2 1S0 ↔ 5s5p 1P1 transition at 461 nm. We

use this transition for Zeeman deceleration (∼ 40 mW), the first stage of MOT cooling

(∼ 10 mW) and imaging the cloud (∼ 2 mW). We produce up to 300 mW of 461 nm

light from a commercial Toptica DL100-TA-SHG system, which is frequency stabilised

using modulation transfer spectroscopy [88]. A new strontium beam machine has been

developed to perform this locking, documented in [89], but for the purposes of locking

the 461 nm laser there is no difference to the previous locking cell [90].
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Figure 3.2: Strontium atomic energy levels. Imaging and primary cooling occur on the

5s2 1S0 ↔ 5s5p 1P1 transition, which is not a closed transition, resulting in the use of

repump lasers at 707 nm and 679 nm lasers to prevent loss to the metastable 5s5p 3P0,2

states during cooling. Secondary cooling uses the 5s2 1S0 ↔ 5s5p 3P1 transition. We

couple the 5s5p 3P1 state to Rydberg states using a 319 nm laser. Taken from [86].

Initially, the light out of the laser was immediately coupled into a polarisation maintain-

ing fibre, allowing drift in the laser output direction to be corrected without requiring

significant alignment, but resulting in immediate fibre coupling losses of ∼ 45%. Due to

attenuation of the Zeeman beam on the strontium coated viewport, we now pick off the

Zeeman beam before the fibre, allowing us to compensate Zeeman viewport losses with

reduced fibre coupling loss. All 461nm beams (Zeeman, MOT and probe) are controlled

with AOMs; in addition, the Zeeman beam and the MOT beam have mechanical shutters

to eliminate light leakage, which was found to heat the red MOT.

The second stage of cooling is performed on the 5s2 1S0 ↔ 5s5p 3P1 transition using

689 nm light. Due to the narrow (Γ/2π = 7.4 kHz) line, action must be taken to ensure

the laser has a narrow linewidth, on the order of the transition linewidth. To do this,
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we use an ECDL master laser at 689 nm that is stabilised to high-finesse cavity, which is

itself stabilised to a modulated fluorescence signal from a strontium beam machine. This

master laser also injects a slave laser to produce sufficient power for the MOT beams

(∼ 10 mW).

The high-finesse cavity developed in [86] for frequency stabilising the 689 nm laser uses

mirrors mounted on two piezo-electric transducers to stabilise the length of the cavity.

The piezos have different stroke lengths, allowing broad scanning using the ‘large’ piezo

and precision locking using the ‘small’ piezo, although the smaller piezo initially did not

function due to a loose connection. This connection has since been fixed. A consequence

of stabilising the length of the cavity using the small piezo is that the drift range that

the circuit can correct for is small; to compensate this a low noise integrator feeds back

to the large piezo voltage from the voltage of the small piezo. In addition, the large piezo

was found to show hysteresis, particularly at low voltages (< 80 V), possibly due to the

absense of a pre-load. When the large piezo voltage is below 80 V a high drift rate results

in increased frequency noise on the 689 nm laser. The piezo is driven by a Thorlabs 150 V

driver; the output of the driver is connected in series with a 50 V battery pack to reach

the 200 V rating of the piezo and to avoid regions demonstrating hysteresis. The two

issues of limited drift range and hysteresis are independent of each other.

The other change to the 689 nm laser set-up is picking off a probe beam from the zeroth

order of the MOT AOM, which we control with a second double-passed AOM, producing

up to 3 mW of probe light. As a result we can’t use the 689 nm probe beam and the red

MOT light simultaneously.

At the vacuum chamber the blue MOT and red MOT beams are collimated and over-

lapped using a dichroic mirror.

During loading of the blue MOT atoms have a small probability of decaying to the

5s5p 3P1,2 states. Whilst the 5s5p 3P1 state decays to the ground state quickly enough to

be retrapped the 5s5p 3P2 state is metastable, introducing a source of loss to the cloud.

Previously, this has not been a problem and we could reach the radiation pressure limit in

the blue MOT. However, attenuation of the Zeeman beam through the Zeeman viewport

reduces the blue MOT loading rate and therefore the achievable blue MOT atom number,

making it necessary to implement repumps to prevent loss to the metastable state.

Several repumping techniques may be employed to address this [91]; for reasons of cost

and convenience of laser sources we use ECDL repumps at 707 nm and 679 nm. The
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707 nm light drives atoms from the 5s5p 3P2 state to the 5s6s 3S1 state, which can decay

into any of the 5s5p 3P0,1,2 states. We use 679 nm light to drive atoms from the 5s5p 3P0

back to the 5s6s 3S1 state, thus depopulating both metastable states. The repump lasers

are frequency stabilised to a wavemeter, and are controlled using a shutter rather than an

AOM as precise time control of the repump beams is not necessary. The repump lasers

have been implemented in previous versions of the experiment, but are only necessary

now. Both beams enter the chamber via a multimode optical fibre through a MOT

viewport.

A 408 nm laser is used to autoionise Rydberg atoms; this laser is not frequency stabilised

as the autoionising transitions that we utilise are typically on the order of GHz wide.

This laser is an ECDL with pulses controlled using a single-pass AOM.

The Toptica DL100-TA-SHG 413 nm laser used in previous experiments is not used in the

context of this thesis. Instead Rydberg excitation from the 5s5p 3P1 state uses 319 nm

light, detailed in Chapter 4.

All laser beams reach the vacuum chamber via steering optics after optical fibres, apart

from the 461 nm Zeeman beam and the 319 nm beam, which passes from the doubling

cavity through a shutter and an AOM to the vacuum chamber. This laser is considered

in Section 4.1.

3.1.3 Experimental control

The experiment has always been controlled using a field programmable gate array (FPGA)

programmed through LabVIEW, but early in the start of this thesis both the FPGA card

and the code have been replaced. The replacement, Durham Experimental Terminal

(DExTer), was developed by Tim Wiles [92] and modified by David Szwer before being

implemented in the strontium group. The essence of the program is the same; a sequence

of digital TTL outputs and analog voltage outputs with deterministic time-steps. The

digital TTL outputs are used to trigger AOMs, pulse generators, electronics etc; the

analog voltage outputs are used to set MOSFET current levels, generate electric fields,

scan laser powers and frequencies etc. The program also includes communication with

other devices e.g. arbitrary function generators, cameras etc. Communication with these

devices is performed outside of the well-controlled timing sequence.

The new program has improved the timing resolution from 2 µs to 25 ns, offers 96 digital
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arrays, of which we typically need up to 20, and eight analog outputs scanning from -10 V

to +10 V with 16-bit resolution. These analog outputs can be ramped linearly between

two voltages. It offers the facility to repeat sections of the sequence, which is particularly

useful for performing multiple Rydberg excitations within a single MOT, which will be

considered later. It also offers much more versatility for adding new devices controlled

from the main computer rather than the FPGA card (e.g. passing values to function

generators) to the control program, and easier user interface.

The program can vary parameters across a two-dimensional parameter-space, with the

functionality to perform immediate repeats of experimental sequences under identical

conditions and full repeats of every experimental sequence run. The full repeats can be

done in a linear, alternating or random order. Typically we use a random order to reduce

the effect of laser power drift, but in the case of the UV laser frequency, which can’t be

scanned in large steps, we use alternating repeats. Parameters that can be scanned are

analog voltages, timesteps, or values passed to instruments controlled by DExTer, for

example AOM frequencies or drive powers.

To increase the transfer efficiency between the blue MOT and the broadband red MOT

we have developed a new MOT coil driver. Previously the current through the coils was

set by a circuit that could pass two levels of current, which would set the quadrupole

magnetic field gradient necessary for the blue MOT and the red MOT. This circuit has

now been replaced, allowing the current through the coils to be varied linearly in response

to a voltage applied to the circuit. Combined with the computer control system described

above, this allows us to ramp the magnetic field gradient, increasing the transfer efficiency

from the blue MOT to the red MOT. This circuit is documented in Appendix A.

Previously a ‘pushing’ electric field from two electrodes was used to direct ions towards

an MCP in the vacuum chamber and four other electrodes were used to generate uniform

electric fields. Following changes in internal electric field described in [87], it is now

necessary to apply a voltage to 5 of the 8 electrodes to guide the ions towards the MCP.

We therefore require some of the electrodes to both generate uniform electric fields and

apply ion steering electric fields. As the steering electric fields and uniform electric

fields are generated by different sources (pulse generators and the experimental control

program respectively) we have designed and implemented an electrode switching circuit.

This allows us to switch the connection on all the electrodes with a switching time of

∼ 1 µs and a voltage range of ± 10 V, allowing electric fields in the horizontal direction

of up to ± 3.5 V/cm. This allows us to generate uniform electric fields during Rydberg
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excitation and ion steering electric fields during autoionisation. A ∼ 50 mV difference

between the pulse generator ground and the chamber ground results in a stray field of

∼ 18 mV/cm at the position of the MOT when the electrodes are connected to the pulse

generator.

3.2 Optimising the red MOT performance

In all of the above work the red MOT light is assumed to be monochromatic. In practice

the MOT operates in stages, shown in Figure 3.3. First the blue MOT is loaded. Then

a broadband MOT uses 689 nm red light that is -2.3 MHz detuned from resonance and

modulated with ± 2 MHz of sidebands of 50 kHz separation - this artificial broadening of

the light is chosen to match the Doppler profile of the blue MOT, increasing the fraction

of atoms transferred from the blue MOT to the broadband MOT [93]. Details of this

technique are provided in [86]. Depending on the experiment, this MOT is either used

as a platform for Rydberg excitation, or a third stage of cooling using single frequency

red MOT light is used, usually obtaining a smaller, colder, denser MOT.

We will consider two aspects of the MOTs that we generate. Firstly, we outline some

techniques to increase the transfer efficiency between stages of the MOT. Secondly, we

consider a technique to turn the MOT off and on in quick succession, allowing us to

perform multiple Rydberg excitations within a single MOT.

Transfer efficiency enhancement

An ideal MOT for Rydberg dressing is small, cold and dense, requiring small MOT beam

detuning, low MOT beam power, and having high transfer efficiency between MOT stages.

Optimum transfer efficiency occurs for large MOT beam detuning and high MOT beam

power. We therefore require a transition from optimum transfer parameters to optimum

Rydberg-dressed MOT parameters. This also compensates the previously noted effect

of Zeeman beam attenuation. We have implemented three new changes to the MOT

to increase our transfer efficiency and change the red MOT parameters from optimum

transfer efficiency to optimum dressing parameters; all are illustrated in Figure 3.3.

The first change is the introduction of a rampable magnetic quadrupole field, explained in

Section 3.1.1 and documented in Appendix A. The transfer from blue MOT to broadband

MOT requires the velocity distribution of the cloud to match the frequency profile of
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the broadband MOT light and the position of the atoms in the blue MOT to match

the resonance curve of the red MOT light. Using a lower magnetic field during initial

cooling of the broadband MOT increases the size of the resonance curve, resulting in

lower confinement but a higher transfer efficiency to the broadband MOT. Smoothly

increasing the magnetic field gradient, we combine the high transfer efficiency obtained

at low magnetic field gradients and the high confinement of high magnetic field gradients.

Typically, we perform 50 ms of cooling at a low magnetic field of 3 G/cm before linearly

ramping the magnetic field to 8 G/cm over 50-100 ms. Magnetic field gradient ramps

were implemented previously [86] using pulse width modulation but the pulse width

modulation technique was found to increase the cloud temperature.
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Figure 3.3: Left - the previous MOT loading procedure detailed in [86, 87]. Right -

the new MOT procedure, with the addition of repump lasers, a magnetic quadrupole

field gradient ramp, and single frequency red MOT power and frequency ramps. These

modifications allow control of the final single frequency red MOT parameters without

sacrificing transfer efficiency. They are also required to compensate attenuation of the

Zeeman laser beam on the strontium coated Zeeman viewport.

The second change is the use of a frequency ramp when moving from broadband MOT

to single frequency MOT. Simply stepping from a large MOT beam detuning to a small

MOT beam detuning results in atoms outside of the smaller resonance curve being lost.

Several groups ramp the red MOT beam detuning and sideband separation from large to
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small [80, 94] to maximise the transfer from the broadband stage to the single frequency

stage of the narrow-line MOT, requiring complicated arbitrary function generation. We

exploit the property that, for a broadband MOT that has been trapped for sufficiently

long for cooling to be complete, the position of the atoms is dominated by the sideband

closest to resonance [81]. Thus by choosing a single frequency red MOT beam detuning

of δMOT = −300 kHz, the resonance curve of the MOT encompasses the whole cloud,

and we obtain a high transfer efficiency into the single frequency red MOT. We can then

linearly sweep the initial single frequency red MOT beam detuning to a smaller MOT

beam detuning for greater confinement of the cloud.

The final modification is the use of a power ramp in the single frequency MOT stage.

High single-frequency MOT beam power typically increases transfer efficiency from the

broadband stage but we frequently want low MOT beam power for Rydberg dressing

experiments. We use a voltage variable attenuator to reduce the MOT beam power as

we scan the MOT beam frequency to increase transfer efficiency without sacrificing low

final MOT beam powers. This technique is particularly beneficial when used with the

MOT beam frequency ramp.

The exact times used in these sequences are dependent on the final MOT parameters but

common values are given in Figure 3.3. The increase in transfer efficiency also depends

on final MOT beam parameters, all can offer at least a factor of two gain in transfer

efficiency in some regimes. As these ramping techniques were implemented to transition

to optimum red MOT dressing parameters, a detailed study of the increase in transfer

efficiency that these techniques cause has not been performed. We can reach the single

frequency red MOT radiation pressure limit of ∼ 2×1012 cm−3 with these techniques. As

we show in Chapter 6, in the future we may attempt to optimise these ramping techniques

to reach the radiation pressure limit at lower MOT beam powers.

Retrapping

To perform Rydberg spectroscopy we excite Rydberg atoms from the cloud and detect

the ions generated from the Rydberg atoms. We must turn off the MOT laser beams

and quadrupole field to do this. Previously, the experiment control program and the

oscilloscope read time limited us to performing a single Rydberg excitation per MOT.

This is no longer true due to the new control program documented in Section 3.1.3 and

a new oscilloscope documented in Section 3.3.2. We have now implemented a retrapping
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technique that turns the trap off, performs a Rydberg excitation, and turns the trap back

on, allowing us to perform up to 100 Rydberg excitations within each MOT, drastically

increasing our data-taking rate.

It takes ∼ 400 µs for the MOT quadrupole field to decay to a sufficiently low point as to

not affect the Rydberg excitation. Combined with the Rydberg excitation time and the

time taken for the field to turn back on, this corresponds to ∼ 1 ms when the MOT is

not trapping the cloud between Rydberg excitations. We typically run the MOT for 3 ms

between Rydberg excitation to sustain cooling and trapping, in the broadband MOT we

typically observe cloud depletion of less than 20% due to trap leakage over the course of

100 excitations, and otherwise no change between the first excitation and the last.

In low MOT beam power single frequency MOTs this is not the case. In the 1 ms when

atoms are not trapped atoms move due to their thermal motion, resulting in a changed

Zeeman shift. At 1 µK and 8 G/cm, this Zeeman shift will be 29 kHz if this motion

is in the vertical direction. The atoms will also acquire a Doppler shift of 13 kHz as

they accelerate due to gravity. The total shift in transition frequency in the 1 ms when

the atoms are not confined may therefore exceed the transition linewidth, resulting in

atoms not being retrapped. As a result, this retrapping technique does not work at low

MOT beam powers. At high MOT beam powers where the line is power broadened to

significantly greater than this, we can perform ∼ 10 retrapping repeats of the cloud with

less than 20% depletiona.

We have attempted rapid repeated Rydberg excitation in low power MOTs without re-

trapping between excitations, but as shown in Appendix C eddy currents caused by the

quantisation coil result in a varying magnetic field that affects the Rydberg excitation.

This retrapping technique has drastically increased our data-taking rate when performing

Rydberg state characterisation.

3.3 Experimental readout

To observe MOTs and characterise Rydberg states we have two diagnostics - imaging and

ion detection. We briefly outline these two diagnostics here.

aMOT beam powers used in the single frequency red MOT are typically one to three orders of

magnitude less than those used in the broadband red MOT, so even high power single frequency red

MOTs have less power than the broadband red MOT, reducing the number of repeats possible.
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3.3.1 Imaging techniques

We image the cloud to obtain both the atom number and the atomic position distribution.

Typically the cloud spatial profile is Gaussian, and can be described by a vertical and

horizontal width and position. If the cloud is radially symmetric around the vertical axis,

as we typically assume it is, we can estimate the width of the cloud in the imaging axis

to be equal to the width of the cloud on the horizontal axis perpendicular to the imaging

axis. From the atom number and cloud widths we calculate a density.

We primarily use absorption imaging using a 461 nm probe beam to image the MOT. We

use a PCO PixelFly QE camera with a magnification of 0.8 and a 1.4 µs resonant 461 nm

laser pulse, with 1/e2 radius of 2.5 mm and a power of up to 2 mW corresponding to a

peak intensity of s ≈ 0.5.

Initially in the experiment we used fluorescence imaging using the 461 nm MOT beams

but the high density of the single frequency red MOT inhibits the use of fluorescence

imaging - the cloud is optically thick, so only atoms in the outer shell of the cloud

are imaged through fluorescence imaging. To partially suppress this we implemented

absorption imaging, measuring the optical depth of the cloud. The use of a smaller probe

beam allows us to reach higher intensities, and allows us to clearly detect optically thick

clouds through the absence of probe light on the camera [87].

Whilst this imaging technique makes it clear when the cloud is optically thick, it does not

eliminate the problem. When the cloud is optically thick and so little of the light reaches

the camera as to be indistinguishable from noise, we can’t measure the true optical depth

of the cloud. To address the problem of optically thick clouds we use two techniques. We

can ballistically expand the cloud, leaving it to fall and expand as it does. This allows us

to accurately image the atom number but sacrifices information on the cloud width and

position.

Alternatively, when we are confident that the cloud has a Gaussian spatial profile, we can

fit a Gaussian distribution to the wings of the cloud, where the cloud is not optically thick.

This technique is developed and presented in [87]. By comparing the atom number of an

optically thick cloud to a ballistically expanded cloud taken under the same conditions

we can be confident that this technique is effective in reproducing the atom number. This

technique is only valid for clouds that have a Gaussian spatial profile and are radially

symmetric.
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3.3.2 Ion detection

Ionised Rydberg atoms are detected using an MCP inside the vacuum chamber. The

MCP cathode is held at -2 kV, allowing the detection of positively charged particles by

the MCP. A metal mesh grid in front of the MCP at -20 V shields the MOT region from

this voltage and draws positively charged particles towards the MCP. In addition, after

Rydberg excitation and ionisation, a pulsed ‘steering electric field’ pushes ions towards

the MCP. When ions hit the MCP they create a voltage spike lasting ∼ 5 ns, which is

detected on an oscilloscope by observing the number of times the MCP voltage crosses

a threshold, illustrated in Figure 3.4. The threshold is set to avoid ‘ringing’, when the

oscillation in voltage due to a single ion causes the voltage to pass the threshold more

than once.

Arrival time/µs

〈Ṅ
〉/
µ

s−
1

Time/µs

Figure 3.4: When ions hit the MCP they create a voltage spike, shown on the left. The

number of times a threshold (black horizontal dashes) is passed and the time at which the

threshold is crossed (black vertical dashes) are recorded, generating an ion number and

ion arrival times. This allows us to determine an ion detection rate 〈Ṅ〉 illustrated on

the right in addition to an ion number. By starting the ion steering electric field before

autoionising the Rydberg population we can distinguish between spontaneously ionised

Rydberg atoms that arrive first (before the vertical line), and autoionised Rydberg atoms

that arrive later (after the vertical line).

Previously, we used a Tektronix DPO4054 oscilloscope, which recorded only the number

of times that this threshold was crossed. In the course of this work we replaced this

oscilloscope with a LeCroy 610Zi oscilloscope, which has allowed us to make two changes.

Firstly, the large memory of the oscilloscope allows us to store several scans and then

analyse them. This allows us to perform multiple (up to 100) Rydberg excitations,
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separated by ∼ 3 ms of trapping, and then analyse and observe the results of all 100

excitations independently.

By increasing the number of Rydberg excitations per MOT we drastically increase our

data-taking rate but we must still take sufficient repeats to suppress both atom number

fluctuation and the Poissonian nature of the Rydberg excitation.

Secondly, we can record the time at which each ion is detected, illustrated in Figure

3.4. Turning on the ion steering electric field before autoionising the Rydberg population

with the 408 nm laser, we can use the ion arrival time to distinguish between Rydberg

atoms that spontaneously ionise and those that are autoionised, also shown in Figure

3.4. Ions that have spontaneously ionised when the ion steering field is turned on will be

immediately accelerated towards the MCP. Rydberg atoms that are autoionised will only

be accelerated towards the MCP after they have been autoionised. Spontaneously ionised

Rydberg atoms will therefore reach the MCP before the autoionised Rydberg atoms.

The biggest advantage to this time-resolved ion detection is clear from Chapter 6 - it

allows us to observe real-time ion creation rates in the Rydberg-dressed MOT, which

offers a powerful diagnostic of the loss processes in the Rydberg-dressed MOT.

Detection efficiencies

As detailed in [85] the peak detection efficiency is limited by the threshold at which an

ion is observed, resulting in ions hitting the MCP having a 60% chance of being recorded.

In addition, the grid in front of the MCP has an open area of 37%, we therefore expect

a maximum detection efficiency of 22%. This is the probability of an ion at the centre

of the vacuum chamber reaching the MCP and being recorded by the oscilloscope under

the presence of steering electric fields.

In Chapter 6 we compare the ions detected from the cloud to the number of atoms

lost from the cloud. To do this we must estimate the detection efficiency in the cloud

under the conditions being used. We do not use an ion steering electric field during

these experiments. Typically, when performing Rydberg excitation and ionisation under

identical conditions with and without ion steering electric fields we observe a factor of

∼ 5 increase in detection efficiency when using ion steering electric fields.

Additionally, it is necessary to reduce the time-resolution that the oscilloscope operates at

to observe ion signals over the length of the dressing experiments (∼ 10 ms) compared to
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when we observe ions following Rydberg excitation (∼ 10 µs). Reducing the oscilloscope

time-resolution to 10 ns, we observe a factor of two reduction in detector efficiency, which

is consistent with ion spikes that last ∼ 5 ns.

These two factors combine to reduce the estimated detection efficiency to ∼ 2% for data

taken without ion steering electric fields in Chapter 6. This is not a precise estimate,

but will allow us to calculate a ballpark conversion rate from atom numbers to total ion

numbers. In cases where we dress for longer times we may reduce the oscilloscope time-

resolution further, further reducing the ion detection efficiency. At large charge densities

Coulomb repulsion will also reduce the detection efficiency and high ion detection rates

will cause detector saturation.

Detector saturation

A key property we must understand is the mechanisms that can saturate our ion detec-

tion. Saturation of Rydberg population is a crucial diagnostic, and we must be able to

distinguish between the effects that can come about due to saturation of Rydberg exci-

tation and saturation due to ion detection. We consider two saturation mechanisms that

may affect the probability of ions reaching the MCP and the probability of ions being

detected when they reach the MCP. Both are presented in [87].

The first effect is Coulomb repulsion of ions. At low ion densities the electric field due

to neighbouring charges is negligible and ions can be steered by the ion steering electric

field. At high charge densities, ions can repel each other, expanding as they are propelled

towards the MCP. This is expected to become an issue for detected ion numbers > 60

per shot in a MOT of 40 µm 1/e2 radius [87]. A technique implemented to suppress this

is to turn on the ion steering field before autoionising the Rydberg atoms. This reduces

the peak ion density, reducing the charge repulsion as well as allowing us to distinguish

between spontaneously ionised Rydberg atoms and autoionised Rydberg atoms. When

performing Rydberg excitations we tailor our Rydberg excitation rate to avoid reaching

the Coulomb repulsion regime; however, when observing massive ion detection rates in

Chapter 6 it is likely that Coulomb repulsion will reduce the probability of ions being

detected.

The second effect is due to the method that we use for counting ions. Voltage spikes

caused by ions last ∼ 5 ns, so if an ion arrives within ∼ 5 ns of another ion, it will not be

recorded as the MCP voltage will not have dropped back below the detector threshold.
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To avoid this occuring we must ensure that there is a very low probability of two ions

arriving within 5 ns of each other. In addition, ringing of the MCP may modify the

probability of an ion being detected immediately after the MCP voltage drops below the

detector. As explained in [87] this saturation becomes significant for ion counts of ∼ 60

for ions arriving spread over ∼ 2 µs i.e. a detection rate of 30 ions/µs.

In cases where the detection efficiency is reduced due to the oscilloscope time-resolution

settings, the detection rate at which saturation occurs will be proportionally reduced i.e.

if we reduce the detection efficiency by a factor of two, we expect detector saturation to

become significant at a detection rate of 15 ions/µs.

In Appendix D we consider the role that atom number fluctuations and detector satura-

tion have on the ion statistics.

Experimental summary

In this chapter we first described the experimental apparatus. The most significant

changes made during the course of this thesis has been a series of steps necessary to

increase the transfer efficiency to compensate attenuation of the Zeeman laser beam

on the Zeeman viewport due to a build-up of strontium on the viewport. We have also

implemented techniques to control the final stage of the single frequency red MOT without

sacrificing high transfer efficiency into the final stage MOT. A new control program

has been implemented, offering more versatility and allowing sections of experimental

sequences to be rapidly repeated.

We outline the two diagnostics of the experiment. We use absorption imaging to obtain

ground state atom numbers and atomic distributions, and we use ion detection as a

measure of the Rydberg population. We present estimates of the detector efficiency and

the threshold at which detector saturation becomes significant. Two improvements to

the ion detection method have been implemented, the use of repeated Rydberg excitation

within the cloud to improve the data-taking rate, and the recording of ion arrival times,

which allows us to distinguish between spontaneously ionised and autoionised Rydberg

atoms and provides a measure of the ion production rate within the experiment.

Having described the experiment and reached densities in the narrow-line MOT that are

high enough to reach the Rydberg dressed interactions regime, we can now identify and

characterise the Rydberg states with which we will Rydberg dress the MOT.
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Rydberg state characterisation

A key requirement of the Rydberg-dressed MOT is the coupling to and characterisation

of Rydberg states that we will dress with. Previous spectroscopy on these triplet states

is very limited [95–99], due to the difficulties of UV laser spectroscopy and the narrow

widths of the transitions, and several of the states that we have observed have never been

observed before. This chapter will:

� Describe the laser system used to observe the Rydberg states, documented in [100].

� Describe techniques used for first observation of the states and characterise our

excitation methods and sequences.

� Thoroughly characterise these states.

To characterise the states we need to know the state energy and coupling strength, to

assess the dressed state fractions that we can achieve in the Rydberg dressed MOT. We

need to know the state sensitivity to electric and magnetic field, and the state lifetime.

This will provide a better understanding of the loss mechanisms within our system.

Finally, we observe autoionisation spectra for the Rydberg states. Previous Rydberg

dressing experiments described in Section 2.4 have been limited by state transfer, which

we can diagnose through autoionisation.

50
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4.1 Rydberg excitation laser

A major challenge in this work was the development of a suitable laser source for coupling

to Rydberg states from the 5s5p 3P1 state. The laser needs to meet several criteria:

� Operate in the ultraviolet at ∼ 319 nm;

� Be tunable across a range of Rydberg states;

� Be narrow linewidth, on the order of 10 kHz, to coherently drive narrow transitions;

� Produce high power, on the order of 100 mW, to allow high Rabi frequencies nec-

essary for off resonant Rydberg dressing.

In addition, the research group has interest in Rydberg excitation from the metastable

5s5p 3P0 state, requiring laser light ∼ 317 nm. However, although the laser system

described here has this capability, this has not been tested or used and is not considered

in this thesis. A laser capable of meeting these requirements has been developed by E.

M. Bridge, and is documented in [100], so is only briefly outlined here, and illustrated in

Figure 4.1. The laser consists of two infrared lasers, which are amplified and frequency

summed to produce red light. This light is then frequency doubled to produce UV light.

Two seed lasers, an ECDL with operation from 1549-1565 nm (referred to as the 1550 nm

laser) and a fibre laser at 1079 nm, both with 10 mW outputs, feed two fibre amplifiers

outputting 5 W and 10 W of infrared light respectively. The amplified beams make a

single pass through a periodically-poled stoichiometric lithium tantalate (PPSLT) crystal

that produces up to 1.8 W of red light at ∼ 638 nm. A high power fibre, with a coupling

efficiency of ∼ 70 %, transmits most of this light into a frequency doubling cavity that

initially produced more than 200 mW of UV light at 319 nm.

To stabilise the laser frequency and to narrow the laser linewidth ∼ 1 mW of 638 nm light

is coupled to a high-finesse transfer cavity that is actively stabilised to the 5s2 1S0 ↔
5s5p 3P1 transition (described in Section [86]). To obtain tunability, we frequency shift

the 638 nm light into two equally shifted carrier bands by a variable shift of up to the

free spectral range of the transfer cavity (1.5 GHz). To lock the laser to the cavity

using Pound-Drever-Hall (PDH) locking [101] we add sidebands to both carrier bands

at ±10 MHz. Both the frequency shift and the sideband modulation is provided by a

wideband EOM. This provides both frequency stability and linewidth narrowing, with
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Figure 4.1: Schematic of the 319 nm laser, adapted from [100]. Two seed lasers are

amplified and frequency summed to produce 638 nm light. Most of the 638 nm light is

passed to a frequency doubler to produce 319 nm light, ∼ 1 mW of the 638 nm light is

used to generate an error signal that is fed back to one of the seed lasers.

a longterm frequency stability < 35 kHz in the UV. When well optimised, the 638 nm

locking electronics can correct for step shifts of up to 2 MHz on the 638 nm light, allowing

us to shift the UV frequency in steps of up to 4 MHz (as the 319 nm light is doubled from

the 638 nm light) without unlocking from the cavity. As there are two carrier sidebands

either side of the main frequency, and multiple possible cavity modes, occasionally these

modes will overlap, causing the 638 nm to lock to the wrong mode, careful choice of

appropriately spaced cavity modes avoids this.

Of the four Rydberg laser criteria considered, UV operation and power are obtained

through the use of fibre amplifiers and non-linear crystals. Tunability is given by the

large tuning range of the 1549-1565 nm ECDL. Frequency stability and narrow linewidth

is given by the high-finesse cavity lock. A final merit of this laser system, which has not

been utilised for the work considered in this thesis, is a 638 nm pickoff beam that goes to

an optical frequency comb [102], allowing high-precision frequency measurements to be
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made.

Since [100] has been published some additional features and challenges of the laser system

have been observed:

� Transmission fluctuations in the high power fibre at maximum power;

� Degradation of the frequency doubling crystal performance over time;

� Very weak sidebands (at least two orders of magnitude smaller than the main fre-

quency) on the UV light at ± 20 MHz originating from the sidebands used to

stabilise the frequency doubling cavity.

The transmission fluctuations and degredation of the frequency doubling performance

limit our reliable UV output power to 80 mW.

The sidebands are so weak as to be neglected in most cases unless we are operating ± 20

MHz from resonance. More detail is given in Appendix E.

This laser meets all the criteria set out at the start of this section, and has been used to

characterise the Rydberg states with which we will Rydberg dress the MOT.

4.2 Exploratory Rydberg spectroscopy

Extensive Rydberg spectroscopy has been performed on strontium in the past 40 years

but this has largely focussed on singlet Rydberg states and low principal quantum num-

ber triplet Rydberg states accessible through one-photon excitation from the metastable

5s5p 3P0,1,2 states [95–98, 103–106]. Detailed characterisations of highly excited triplet

Rydberg states are less frequent, although it is a growing field e.g. [99]. We must therefore

perform exploratory spectroscopy to first observe triplet series Rydberg states.

When this strontium project began an exploratory Rydberg spectroscopy technique was

developed, in which a blue MOT was continuously loaded, driving population to the

5s5p 1P1 state, and a ∼ 413 nm coupling laser was shone onto the MOT and scanned

in frequency. When on resonance, the Rydberg state is populated and a fraction of the

Rydberg atoms ionise and are detected by the MCP.

In the case of triplet Rydberg states the process is similar, but as we drive atoms to the

Rydberg state from the 5s5p 3P1 intermediate state, we must use a 689 nm, red MOT.
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The low scattering rate of this transition inhibits loading atoms directly into a red MOT;

instead we load a blue MOT in ∼ 50 ms, transfer to a broadband red MOT with a

lifetime > 1 s, then shine the UV coupling laser onto the red MOT. We scan the coupling

laser frequency by scanning the piezo voltage of the 1550 nm ECDL; on resonance we

observe massive depletion, which is detected through imaging the cloud, and we observe

the 638 nm laser frequency on a wavemeter. We do not lock the 638 nm to the high

finesse cavity for these experiments.

This depletion can be observed in realtime through imaging the red MOT. This is chal-

lenging due to the low scattering rate of the 5s2 1S0 ↔ 5s5p 3P1 transition but by increas-

ing the imaging time to 50 ms/frame, we can video the MOT, observing high depletion

on resonance shown in Figure 4.2. However, the camera video frames can’t be accurately

synchronised with the laser frequency, and the time resolution of this technique is poor.

It is a useful technique for first observation of Rydberg states.
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Figure 4.2: Fluorescence from the 5s5p 3P1 state detected on the camera during ex-

ploratory spectroscopy. Images are ∼ 50 ms apart, and the coupling laser was scanned

around 3GHz during this time. Two resonances occur, around the 14th and 24th images.

Inset, a massive spike in fluorescence that saturates the camera indicates the loading of

the blue MOT, which is used to synchronise the scan start point.

A more sensitive probe of Rydberg excitation is to scan the coupling laser whilst recording

the ion detection rate on an oscilloscope. When on resonance, we see high ion detection

rates on the MCP, illustrated in Figure 4.3. By applying a small electric field of ∼ 1

V/cm we allow excitation to otherwise forbidden states. From the transition frequency,
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the energy difference between neighbouring states, and the electric field sensitivity we

can identify the observed Rydberg states, although this becomes harder at very high n

where the density of states is higher.
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Figure 4.3: An exploratory UV frequency scan in a red MOT, at n ∼ 80. A small electric

field allows excitation to otherwise forbidden states. Inset is a zoom on the 5s79d 3DJ

states and the timing sequence is illustrated above, showing the laser frequency fC scan.

The laser frequency is shown from ∼ 941.616 THz.

This technique is much more sensitive than imaging depletion, allowing better time-

resolution and the observation of multiple transitions.

This frequency sweep method has several limitations. The observed signal strengths will

be a combination of coupling strength, atom number in the MOT, and density dependent

excitation and ionisation effects etc, so we can’t use the observed signals as a measure

of transition strength. The UV laser frequency can drift, and the wavemeter used to
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calibrate the frequency scan has a relative accuracy of 40 MHz and an absolute accuracy

of 3 GHz, which is poor compared to the absolute accuracy we can reach when the laser

is locked to the high-finesse cavity and an optical frequency comb beat measurement is

taken. In addition the linearity of the laser scan with time is not guaranteed, depending

on the behaviour of the piezo in the 1550 nm seed laser. The coupling laser power

is derived from a frequency doubling cavity stabilised using PDH locking, so scanning

the frequency too quickly can reduce the final UV power if the locking feedback is not

sufficient to correct for change in frequency.

We thus need a second stage of state characterisation. For this, we must lock the coupling

laser to the high-finesse cavity.

4.3 Frequency stabilised excitation

To thoroughly characterise the Rydberg states we lock the 638 nm light that is used to

generate 319 nm light to the high-finesse cavity as described in Section 4.1. With both

the 689 nm probe and the 319 nm coupling laser frequency stabilised, and a typical cloud

temperature of 1− 20 µK (sufficient to suppress Doppler broadening and operate in the

frozen gas regime) we can perform very high precision spectroscopy.

4.3.1 Typical excitation techniques and sequences

Several excitation techniques are available to us. We can shelve atoms in the 5s5p 3P1

state and use a one-photon excitation from this state, a technique that exploits the 22 µs

lifetime of this state. We can use a two-photon excitation, driving directly from the

ground state, either with both lasers on resonance, or both lasers equally and oppositely

off-resonant. These two excitations are shown in Figure 4.4.

One-photon excitation from atoms shelved in the 5s5p 3P1 state offers several interesting

features, including the use of Rabi or Ramsey pulses to control the excitation fraction.

In particular, it allows us to eliminate two-photon effects, such as AC Stark shifts, and

measure transition frequencies independently of the other transition. We use 689 nm

light to populate the 5s5p 3P1 state, turn the 689 nm light off, then turn the 319 nm light

on to populate the Rydberg state. We use this technique to measure precise frequencies,

distinguish between two-photon excitation and control the intermediate state population.
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Two-photon excitation offers different advantages, such as electromagnetically induced

transparency (EIT) [107, 108], coherent population trapping (CPT) [109] and two-photon

off-resonant excitation to populate the Rydberg state without populating the intermediate

state. We use two-photon excitation, shining both excitation lasers on simultaneously, to

measure the Rydberg coupling Rabi frequency using Autler-Townes splitting.

We can also use stimulated Raman adiabatic passage (STIRAP) [110]. In many ways

our set-up is ideally suited to STIRAP, given the high Rabi frequencies (∼MHz) that we

can achieve on both transitions and the long lifetimes (∼10 µs) of both excited states.

Future work may utilise these advantages, but as a spectroscopic tool we only need a small

fraction of the cloud excited to the Rydberg state. In fact, a high excitation fraction would

cause problems, due to both the resulting strong Rydberg-Rydberg interactions, and the

high depletion of the cloud that we would see, limiting the number of excitations we can

do in each MOT.

In this work we have used both two-photon excitation from the ground state and one-

photon excitation from atoms shelved in the 5s5p 3P1 state to populate the Rydberg

state.

The excitation sequence depends on whether we use one-photon or two-photon excitation

sequences, shown in Figure 4.4. After MOT formation the MOT laser beams and fields

are turned off and a quantisation magnetic field is turned on. After 400 µs (sufficient for

the magnetic fields to stabilise) the Rydberg excitation is performed. This excitation will

consist of either simultaneous or consecutive 689 nm and 319 nm laser pulses for two-

photon or one-photon excitation. Excitation pulses are typically 5-30 µs, long enough to

limit Fourier broadening and obtain detectable Rydberg population but not long enough

for significant blackbody transfer to other Rydberg states.

A 408 nm autoionising laser beam then ionises the Rydberg population with near-unity

ionisation probability and a steering electric field pushes ions towards the MCP. Turning

on the steering field before the autoionising laser we widen the ion arrival time spread,

increasing the MCP saturation limit, and can distinguish between spontaneously ionised

Rydberg atoms and autoionised Rydberg atoms from arrival time, as explained in Section

3.3.2.

Naturally, care must be taken to ensure that if an electric or magnetic field is switched on

or off then the field has stabilised before the laser pulses are applied, and that the different

laser pulse switching times are considered, to ensure correct ordering of excitation pulses.
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Figure 4.4: Typical excitation sequences. We perform either one-photon excitation to the

Rydberg state from atoms shelved in the 5s5p 3P1 state or two-photon excitation from

the ground state, before autoionising the atoms with the 408 nm beam, which are pushed

by an ion steering electric field towards the MCP. Before excitation, we turn the MOT

quadrupole field off and turn a uniform magnetic quantisation field of 2-3 G on.

As discussed in Section 3.2 after Rydberg excitation and detection we can turn the trap

back on for 3 ms to maintain trapping and cooling. We then turn the trap off again,

allowing for multiple Rydberg excitations to be performed in each MOT. In broadband

MOTs this allows up to 100 excitations/MOT and in high-power single-frequency red

MOTs this allows up to 10 excitations/MOT. In low power single frequency red MOTs

this technique is not effective in retrapping the cloud. Consecutive excitations (excitations

100 µs after the previous excitation without retrapping) can be used, but these incur

problems due to eddy currents induced in a copper gasket between the quantisation

coil and the cloud, resulting in a magnetic field that is dependent in the time that the

quantisation coil has been turned on for. Detail of these eddy currents are presented in

Appendix C.

4.3.2 Zeeman resolved excitation

Initial spectroscopy was performed using the red MOT beams to drive the lower transition

without an applied magnetic or electric field. This resulted in split features, due to stray

magnetic and electric fields that split and shifted the states. An example of this is shown

in Fig. 4.5(a), scanning the probe beam frequency across resonance with the coupling

beam resonant with the 5s80s 3S1 state. The MOT light drives to all three 5s5p 3P1
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magnetic sublevels, all of which couple to the Rydberg state.

Figure 4.5: (a) Scanning the probe laser detuning δP without a quantisation field and

using the 689 nm MOT beams as the probe beam. A stray magnetic field splits the

intermediate state magnetic sublevels and all are driven by the MOT beams. (b) Effect

of coupling beam detuning δC and polarisation with a vertical quantisation field of 2-3 G,

driving from the 5s5p 3P1 mJ = −1 state. Blue points show vertically polarised coupling

light, red points show a combination of vertically and horizontally polarised light. We

see wider features scanning the coupling beam than scanning the probe beam.

The relative amplitude of the three features is influenced by the polarisation of the MOT

beams and the coupling beam relative to the stray magnetic field and the coupling beam

detuning from the possible transitions.

To better distinguish between the magnetic sublevels we apply a vertical quantisation field

of 2-3 G, sufficient to cause Zeeman splitting greater than the expected Autler-Townes

splitting.

To control the polarisation of the probe light we switch to using a single probe beam,

typically mounted on the vertical axis. By defining a quantisation field we are able to

control which mJ state we drive using the frequency and polarisation of the driving lasers,

illustrated in Figure 4.5(b). Here, we drive to the 5s37s 3S1 state via the 5s5p 3P1 mJ =

−1 using two coupling beam polarisations. Blue dots indicate vertically polarised light

that drives only to the 5s37s 3S1 mJ = −1 state, red crosses are a combination of

vertical and horizontal polarisation, the horizontally polarised light can partially drive

σ+ transitions to the 5s37s 3S1 mJ = 0 state.

It is possible if one of the driving lasers is slightly off-resonance and both lasers are on

simultaneously to observe both one-photon excitation from the 5s5p 3P1 state and two-
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photon excitation from the ground state in a single spectrum. These are easily distin-

guished; one-photon transition amplitudes (frequencies) are much more (less) dependent

on the fixed laser beam frequency than two-photon transitions.

Unless otherwise stated, spectroscopy is performed on the 5s2 1S0 ↔ 5s5p 3P1 mJ =

−1 ↔ 5snl 3l1 mJ = −1 transition in the presence of a 2-3 G quantisation field in the

z-axis with a vertically polarised coupling beam propagating horizontally and a circularly

polarised probe beam propagating vertically.

A key point to note is the narrow widths that we can observe on these transitions,

with FWHMs scanning the coupling laser as small as 350 kHz observed, and narrower

lines when scanning the probe laser. Previously the narrowest features measured in this

experiment have been an order of magnitude greater than this for both probe and coupling

beam frequency scans due to the larger (30 MHz) width of the intermediate transition

when coupling to singlet Rydberg states. In future, the research group intends to perform

precision spectroscopy on these Rydberg states in conjunction with an optical frequency

comb.

4.4 Rydberg state properties

Having characterised the Rydberg laser and excitation method, we can characterise Ry-

dberg states. To do this we will measure the Rabi frequency, state lifetime, sensitivity

to electric fields, and autoionisation spectra. All of these properties are relevant to our

attempts to Rydberg dress a MOT, and we will characterise the Rydberg states with

which we intend to Rydberg dress the MOT.

4.4.1 Autler-Townes splitting

A critical part of observing Rydberg dressing is obtaining a high Rabi frequency on the

Rydberg transition. We measure the Rabi frequency of the coupling beam using Autler-

Townes splitting, this is sometimes challenging for coupling beams of comparable size to

the cloud.

We have measured Autler-Townes splitting in the broadband MOT using two coupling

beam sizes and in the single frequency MOT using a single beam size.
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Autler-Townes splitting in a broadband MOT

We observe Autler-Townes splitting using two-photon excitation with a resonant coupling

beam and varying the probe beam frequency, shown in Figure 4.6. As we increase the

coupling beam intensity we see the resonance feature split into two distinct features, the

separation of which is the Rabi frequency that we couple to the Rydberg state with.

(a) (b)

(c)

x/µm
z/
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m

Figure 4.6: Autler-Townes splitting in a broadband MOT with a large (a) and a small

(c) coupling beam with respect to the cloud. Focussing the coupling beam gives higher

Rabi frequencies, illustrated through the increased splitting, but also blurs the features

out due to the range of Rabi frequencies experienced by the cloud. (b) shows an averaged

fluorescence image of the cloud, the red ring indicates the size of the large coupling beam

and the blue ring indicates the size of the small coupling beam - both are 1/e2 radii.

In the broadband MOT we can see splitting of up to 400 kHz at full coupling beam

power at the 5s37s 3S1 state. This is not sufficient for Rydberg dressing experiments,

as to obtain a dressed interaction of 20 kHz with this Rabi frequency we would need a

maximum coupling beam detuning of 580 kHz, where we would not be in the ΩC � δC

regime.

To increase the Rabi frequency we focus the coupling beam to around a fifth of its previous
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size, expecting a rise in peak intensity of 52 and a rise in peak Rabi frequency of 5. The

broadband MOT typically has a 1/e2 horizontal radius of 420 µm and vertical radius

of 150 µm. By comparison, the coupling beam before focussing has a 1/e2 horizontal

and vertical radius of 790 µm and 930 µm. The focussing lens is outside the vacuum

chamber, so measuring the exact size of the coupling beam at the position of the atoms

is challenging.

Initially, we attempted to see Autler-Townes splitting in the broadband MOT with the

focussed coupling laser beam. This had some success, shown in Figure 4.6(c), as we

observe a power dependent splitting, but the features are not as resolved as we would

like. The peaks are more separated than those in Figure 4.6(a) but are also much more

broad, with less dip in the centre than we would expect extrapolating from the previous

data. This is due to averaging over a range of Rabi frequencies due to using an atom

cloud that is larger than the coupling beam; to avoid this we switch to using a smaller,

single frequency MOT.

Autler-Townes splitting in a single frequency MOT

To avoid this averaging effect we use a single frequency MOT that is much smaller (65 µm

by 140 µm 1/e2 radii) than the expected coupling beam size, eliminating the averaging

effect and allowing us to see well resolved Autler-Townes peaks. Figure 4.7 shows Autler-

Townes spectra taken coupling to the 5s36d 3D1 mJ = −1 state, where we expect a larger

Rabi frequency due to the larger dipole matrix element [74].

The peaks are much more separated due to the higher intensity of the focussed coupling

beam and stronger coupling of the 5s36d 3D1 state than the 5s37s 3S1 state, allowing

us to reach Rabi frequencies of 4 MHz. This is sufficient to off-resonantly Rydberg dress

the MOT with - a 4 MHz Rabi frequency and a detuning of 12 MHz gives rise to a two-

body dressed interaction strength of 18 kHz (Equation 2.21), comparable to the cloud

temperature. The averaging effect observed in the broadband MOT is largely suppressed,

allowing us to be confident that all of the atoms experience strong coupling to the Rydberg

state.

We also observe a central feature that occurs in a similar position to the unsplit feature.

Close inspection suggests that this is due to weakly confined atoms that are not trapped

at the quadrupole field centre. We are using a high MOT beam power of 500 µW and

a MOT beam detuning of -120 kHz to reach such a small tightly confined MOT that
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Position/µm

Figure 4.7: Autler-Townes splitting in a retrapped single frequency MOT. (a) Ion signals

for high (blue, 50 mW) and low (orange, 200 µW, rescaled for comparison) coupling beam

powers. At high coupling power Autler-Townes splitting is observed, as well as a third

central peak caused by trap leakage illustrated in the optical depth images (b) and (c).

The same cloud is shown with a different colorbar, allowing atoms trapped far from the

quadrupole field centre to be observed.

can be retrapped, under these conditions atoms are observed leaking from the cloud. We

believe that these atoms are being retrapped by leaked broadband red MOT light. Far

from the focus of the coupling beam, they can still be excited to Rydberg states but will

not be Autler-Townes split. The rate of atoms leaking from the trap is slightly density

dependent, making this appear to be an effect of Rydberg atom interactions, but it is

observed well below the blockade density for this state.

Coupling beam profile from Autler-Townes splitting

We can move the MOT position by changing the current in the external shim coils, mov-

ing the cloud through the coupling beam and taking Autler-Townes spectra at different

positions. This allows us to measure the beam size and ensure accurate alignment of

the atoms in the coupling beam. Figure 4.8 shows the ion signal as a function of both

cloud vertical position and probe beam detuning. We can clearly see splitting, as well

as a position dependent shift, which is caused by the changing magnetic field due to the

shim coils. The splitting is poorly resolved as the cloud was a similar size to the coupling

beam width.

From the splitting dependence on position, we estimate the coupling beam 1/e2 radii
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Figure 4.8: Moving the MOT and scanning the probe beam detuning for a high power

coupling beam, we observe position dependent Autler-Townes splitting on the left (colour

indicates the ion number over the peak ion number). This is heavily blurred due to the

comparable cloud size and coupling beam size, but by plotting the separation of the two

peaks (shown on the right) we can fit the width of the coupling beam. Blue (orange)

rings indicate Autler-Townes splitting as a function of vertical (horizontal) position.

as 160 µm and 120 µm in the vertical and horizontal direction. These numbers are

comparable to those estimated from the increase in Rabi frequency due to focussing the

coupling beam of 160 µm and 130 µm.

In future, an optical dipole trap will be implemented; this will allow the quantisation field

to be on for long enough for eddy currents to decay, allowing consecutive excitations.

Dipole traps can be switched off and on rapidly without the need for a 400 µs MOT

coil switching time, allowing for easy recapture. It will also allow for a smaller trap

size, reducing the averaging effect. The techniques described are sufficient for estimating

Rabi frequency for our purposes; a particular strength of these techniques is that any

observation of blurring of Autler-Townes splitting due to cloud size provides information

on the distribution of Rabi frequencies that the atoms experience.

Rabi frequencies

Rabi frequency scales with the square root of beam intensity. From the data presented

we have calculated the coupling strength as a function of coupling beam intensity to

be Ω37s/
√
I = 190±30 kHz/

√
W/cm2 for the 5s5p 3P1 mJ = −1 ↔ 5s37s 3S1 mJ =

−1 transition and Ω36d/
√
I = 290±30 kHz/

√
W/cm2 for the 5s5p 3P1 mJ = −1 ↔

5s36d 3D1 mJ = −1 transition. Uncertainties are dominated by the precision of our
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coupling beam width measurements and, for the s-state, the position averaging of the

relative MOT and coupling beam size. These values are sufficient for Rydberg dressing

experiments as shown in Chapter 2.6.

A thorough comparison between these measurements and predicted values is not the fo-

cus of this thesis, but we do compare our measured Rabi frequency to the predicted Rabi

frequency achievable coupling to the 5s37s 3S1 state. Using the oscillator strengths set

out in [74] we expect a total coupling strength of 920 kHz/
√

W/cm2 on the 5s5p 3P1 ↔
5s37s 3S1 transition, giving a predicted coupling strength of 150 kHz/

√
W/cm2 on the

5s5p 3P1 mJ = −1 ↔ 5s37s 3S1 mJ = −1 transition. Given the paucity and lim-

ited accuracy of the spectroscopic data that [74] is based on, and the accuracy of our

measurements, we consider a 21% difference between theory and experiment to be very

reasonable.

4.4.2 DC Stark sensitivity

The Rydberg dressed MOT will have a sensitivity to electric field due to the admixture

of Rydberg character into the MOT, as shown in Section 5.5. In addition, the role of

charged particles in the dressed MOT is critical to the losses from the dressed MOT,

shown in Chapter 6. We therefore require an understanding of the static polarisability,

α0, of the bare Rydberg states.

The large dipole moments of Rydberg atoms make them very sensitive to electric fields,

which mix nearby Rydberg states together [111, 112]. For small electric fields F we

expect the DC Stark shift of Rydberg states δDC to scale with F 2 according to the scalar

polarisability of the Rydberg state α0:

δDC = −α0F
2. (4.1)

Figure 4.9 shows a Stark map for the 5s36d 3D1 state, taken by scanning the coupling

beam laser over resonance for a range of electric fields. Two |mJ | sublevels are observed,

both increasing in energy with electric field, but at different rates. By fitting to the feature

centres (shown as solid lines in Figure 4.9) we can calculate Rydberg state polarisability.

This has been done for both sublevels for the 5s36d 3D1 and 5s37s 3S1 Rydberg states

that we Rydberg dress the MOT with in Chapter 5. The fitted static polarisabilities are

shown in Table 4.1.
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Figure 4.9: A Stark map of the 5s36d 3D1 state. The inset shows an example scan at

an electric field of -2.13 V/cm coupling to the 5s36d 3D1 |mJ | = 1 state, by combining

several scans we can observe the DC Stark shift of the Rydberg state. Fits to the |mJ | = 1

and |mJ | = 0 states are shown in blue and orange.

The data was taken with one-photon excitation to eliminate possible two-photon effects,

using two consecutive 689 nm and 319 nm pulses of 8 µs separated by 1 µs. No quanti-

sation coil was used, as the electric field is used to define a quantisation axis.

Two electric field pulses are required for this experiment, the first a uniform field during

which excitation takes place, and the second an ion steering field to direct ions towards the

MCP. The uniform electric field was supplied directly from the FPGA card analog output

voltage; the ground of the analog output is not the same as the ground of the vacuum

chamber, resulting in an offset of around 100 mV in electric field ground that causes an

asymmetry around the field centre in Figure 4.9. Two voltages of ± V are applied to

two opposite pairs of electrodes, resulting in a horizontal electric field perpendicular to

the MCP. We obtain an electric field of 0.355 V/cm per ± V applied to the electrode

pairs [85].

The static polarisabilities given in Table 4.1 are consistent with Stark maps generated

from predicted and measured Rydberg energy levels, although precise measurements of

static polarisability will require more attention to the cancellation of stray electric field

for small applied fields.

We will use the static polarisabilities measured here to understand the dressed MOT

sensitivity to electric field, and also understand the role of charged particles in the dressed
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State α0 / MHz / (V/cm)2

5s37s 3S1 |mJ | = 0 1.4± 0.1

5s37s 3S1 |mJ | = 1 1.4± 0.1

5s36d 3D1 |mJ | = 0 −20± 1

5s36d 3D1 |mJ | = 1 −8.1± 0.4

Table 4.1: Rydberg state static polarisability. For small electric fields, polarisability

scales with F 2, and scales with principal quantum number as n7. The dominant source

of error is the electric field calibration.

MOT. As shown in Chapter 6, the Rydberg state response to electric field may be critical

to the ability to observe Rydberg dressed interactions without prohibitive loss.

4.4.3 State lifetime

Rydberg state atoms may be resonantly transferred through blackbody radiation to sev-

eral states and have many decay channels, including to metastable states, making it

unlikely that atoms in the Rydberg state will decay to the ground state on the timescale

of dressing experiments. As a result the dressed MOT lifetime will depend on the Ryd-

berg state lifetime. To measure the lifetime of the Rydberg state we excite atoms to the

Rydberg state and then leave a variable delay before using the 408 nm laser to autoionise

any surviving Rydberg atoms, shown in Figure 4.10. We can distinguish between spon-

taneously ionised ions and autoionised Rydberg atoms from their arrival times at the

MCP, allowing us to remove the spontaneous ion signal to get a true measure of Rydberg

population.

Coupling to the 5s36d 3D1 Rydberg state, we observe double-exponential decays in ion

signal, in which Rydberg atoms decay into other, longer-lived Rydberg atoms. This is

shown in Figure 4.10, which shows the detected ions against delay time t with two fits, a

single exponential N(t) = Npke−t/τ and a double exponential N(t) = N1e−t/τ1 +N2e−t/τ2 .

We see far better agreement to the double exponential, yielding lifetimes of τ1 = 11.8±1.1

µs and τ2 = 63±13 µs. We use excitation pulses that are short compared to the Rydberg

state lifetime to limit transfer to other states during excitation.

Coupling to the 5s37s 3S1 Rydberg state, we observe a lifetime of τ = 35 ± 3 µs and

don’t observe a clear double exponential. This could be due to reduced transfer to other
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Figure 4.10: Lifetime of the 5s36d 3D1 Rydberg state. Blue points are autoionised

Rydberg atoms, purple points are spontaneously ionised Rydberg atoms, distinguished

from arrival time on the MCP. Fitting a single lifetime (red dashes) yields a poor fit,

a double exponential (solid blue) yields a better fit, indicating decay to longer lived

Rydberg states. This is more obvious from the inset, for which the change in lifetime is

more obvious.

states, but could also be due to the comparable lifetime of the 5s37s 3S1 state to the

states that are transferred to. A 5s38s 3S1 state lifetime of 20± 1 µs is measured in [99],

measured using state selective field ionisation, suggesting that there is state transfer that

is not obvious from our lifetime measurement technique when the initial state and the

transfer states have comparable lifetimes.

To better understand this we can use autoionisation as a probe of the Rydberg population

- if Rydberg atoms transfer to nearby Rydberg states with different lifetimes they will

also have different probabilities of autoionising.
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4.4.4 Autoionisation spectroscopy

A merit of using a divalent atom is the presence of a second valence electron that allows

for autotionisation [113]. Many processes, such as blackbody radiation, radiative decay,

collisions, facilitated growth and plasma formation may transfer Rydberg atoms into new

states and autoionisation may be a powerful tool for diagnosing Rydberg population in

the Rydberg dressed MOT.

Exciting the inner valence electron of a Rydberg atom can lead to very rapid ionisation of

the Rydberg atom and the high ionisation rate results in very broad autoionising spectra.

The ionisation rate is dependent on the overlap of the Rydberg electron wavefunction and

the inner valence electron wavefunction, with higher n states having narrower autoionising

spectra, and high l states typically having negligible autoionisation.

The data in Figure 4.11 were taken by exciting atoms to the Rydberg state, then ionising

the Rydberg atoms before applying an ion steering electric field. We autoionise the

Rydberg atoms before applying the ion steering electric field, to avoid mixing additional

Rydberg state into the Rydberg atoms being ionised, as this may modify the observed

spectra. We also observe the ion signal without the autoionising laser and subtract this

spontaneous ionisation from the autoionisation signal. Care must be taken when taking

these spectra to avoid depleting the Rydberg population with the autoionising laser.

Two spectra are shown in Figure 4.11 for the 5s37s 3S1 and 5s37p 3P1 Rydberg states. We

clearly see a frequency shift of several GHz between the two Rydberg states. The lower

plot of Figure 4.11 illustates autoionisation as a diagnostic of state transfer. Measuring

the spectra of the 5s37s 3S1 state with a delay between excitation and ionisation, we can

see an autoionisation laser frequency dependent lifetime - when the autoionising laser

is strongly resonant with the 5s37p 3P1 state and not the driven 5s37s 3S1 state we

predominantly ionise Rydberg atoms in the p series that are populated through decay

and transfer from the driven 5s37s 3S1 state, and measure the longer lifetime of the p-

state Rydberg atoms. Autoionisation is expected to be stronger for the p states than

the s states as there is more overlab between the two orbitals of the electrons for p-state

Rydberg atoms.

From these data we can be confident that the lifetime measurement technique we use

in Section 4.4.3 will measure the Rydberg population in both the 5s37s 3S1 state and

neighbouring 5snp 3P1 Rydberg states. This is the likely cause of the discrepancy between

our Rydberg state lifetime measurement and the Rydberg state lifetime observed in [99].
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Figure 4.11: Autoionising spectra for the 5s37s 3S1 (blue crosses) and 5s37p 3P1 (or-

ange dots) Rydberg states. We can readily distinguish between the two Rydberg states

from their autoionising spectra. Also shown is the lifetime of the Rydberg population,

measured as a function of autoionising laser detuning. The longer lifetime nearer reso-

nance with the 5s37p 3P1 state implies that 5s37s 3S1 Rydberg atoms are decaying to

the 5snp 3PJ series.

When there is a large difference in lifetime between the state that we couple to and the

states that are transferred to we can observe this in the exponential, as shown in Figure

4.10 but when these lifetimes are comparable we require a more careful technique to

measure Rydberg state lifetimes, for example, state selective field ionisation.

The detuning axis of Figure 4.11 is from the ion line 4p65s 2S1/2 ↔ 4p65p 2P3/2 ion

transition at 734.99 THz [114]. Excitation to the 5s37p 3P1 is possible by applying a

weak electric field during the coupling pulse; this mixes a small amount of s- and d-states

into the p-state, allowing excitation from the 5s5p 3P1 intermediate state.

In practice these experiments are time-consuming and challenging - the autoionising laser

must be scanned over several tens of GHz and frequently modehops to a multimode posi-
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tion when being scanned. The laser must be scanned by hand, making these experiments

difficult to automate, and fitting the spectra requires knowledge of the autoionisation

spectra of nearby Rydberg states. A possible enhancement of this autoionisation spec-

troscopy technique is the use of ion arrival times - the rate of Rydberg population de-

pletion under the autoionising laser depends on the autoionisation cross section and the

Rydberg state lifetime, both of which are strongly state dependent. Consequently, dif-

ferent Rydberg states will deplete in the presence of the autoionising laser at different

rates, which can be observed from the ion arrival times. This could drastically reduce the

time needed to diagnose the Rydberg population by avoiding the need to scan the laser

frequency. This technique may be tested at a later point.

In the future, we may attempt to fit the autoionising spectra using multichannel quantum

defect theory (MQDT) [113]. A this stage, we have measured spectra allowing us to

potentially diagnose the Rydberg population in the Rydberg dressed MOT.

4.5 Summary

In this chapter we have described the laser that we will use to Rydberg dress the MOT,

and have characterised several previously unseen Rydberg states.

The 319 nm coupling laser can reliably produce up to 80 mW of coupling light with

a frequency stability of ∼ 35 kHz. Ideally we will avoid operating at ± 20 MHz from

resonance, due to a very small amount of frequency modulated 638 nm light from the

doubling cavity being summed with unmodulated light.

We have observed several previously unmeasured Rydberg states, typically identifying

states from ion signals or MOT depletion when the coupling laser is on resonance. Thor-

ough characterisation is performed when both probe and coupling laser are frequency

stabilised, and involves measurement of coupling Rabi frequency, state lifetime, static

polarisability and autoionisation spectra. We have thoroughly characterised the 5s37s3S1

and 5s36d 3D1 Rydberg states. Most challenging of this characterisation is the observa-

tion of Autler-Townes spectra to measure Rabi frequency, due to the comparable size of

the coupling beam and the atom cloud, and difficulties in performing multiple excitations

within a single frequency MOT.

The research group intend to enhance and extend this characterisation to a range of Ryd-

berg series in conjunction with an optical frequency comb to perform very high resolution
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spectroscopy of previously unobserved Rydberg series in strontium with unprecedented

precision. Doing this in an optical dipole trap will allow easier trap switching and smaller

traps.

Having characterised several Rydberg states we can now Rydberg dress the MOT.



Chapter 5

A Rydberg Dressed MOT

Having described Rydberg dressing and the experiment in Chapters 2 and 3 and charac-

terised several Rydberg states in Chapter 4, we now bring these together to demonstrate

a Rydberg dressed MOT. The first half of this chapter will:

� Describe some initial experiments to observe the AC Stark shift due to the coupling

laser on the cloud shape.

� Introduce a simple AC Stark shifted resonance model to understand the cloud

shape and develop the Monte-Carlo MOT model described in Section 2.5 to include

coupling to the Rydberg state.

� Identify an appropriate MOT regime for Rydberg dressing, in which only Rydberg

dressed atoms are trapped in the MOT.

Having identified a regime in which atoms remain both trapped and coupled to the

Rydberg state, we can characterise the Rydberg dressed MOT. The second half of this

chapter will:

� Demonstrate the Rydberg character of the cloud through sensitivity to electric field.

� Study the cloud dynamics and demonstrate sustained cooling of the cloud.

� Study the lifetime of the trapped cloud, which we want to be comparable or longer

than the equilibration time of the cloud.

73
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This dressed MOT characterisation will both demonstrate the viability of a Rydberg

dressed MOT and the challenges that must be overcome to observe Rydberg dressed

interactions in a Rydberg dressed MOT.

5.1 Adding Rydberg character to the MOT

A single coupling laser beam is required to mix Rydberg character into the excited state

of the single frequency red MOT transition. The Rydberg fraction of the dressed state,

subject to Ω � δ is then given by Equation 2.6. This fraction can give rise to Ryd-

berg dressed interactions, but the first effect we observe is an AC Stark shift given by

Equation 2.7. Initial Rydberg dressing experiments were performed on the 5s37s 3S1

and 5s36d 3D1 Rydberg states, with achievable Rabi frequencies of 2.5 MHz and 4 MHz

respectively.

The first step towards characterising the Rydberg dressed MOT is looking at the effect

of the AC Stark shift on the spatial distribution of the cloud.

5.1.1 Initial experiments

Initial Rydberg dressing experiments were performed by shining the coupling laser onto

a single frequency red MOT for a range of coupling beam detunings and dressing times,

shown in Figure 5.1. The first observation, even before considering the shape of the

MOT, is that the trap continues to operate. After 5 ms of dressing we still observe atoms

when the coupling beam is red- and blue-detuned. The 5sns 3S1 Rydberg series exhibits

repulsive interactions, and we might expect a blue-detuned coupling laser to excite pairs

of Rydberg atoms, leading to heavy depletion, but at initial densities of 1011 cm−3, we

don’t see this.

When the coupling beam is red-detuned from resonance we observe a dimple protruding

into the MOT, shown in the top two lines of Figure 5.1. Atoms within this dimple are

not trapped and fall under gravity. When blue-detuned (bottom two rows of Figure 5.1),

we see a dimple outside of the MOT, into which atoms flow. On resonance we see heavy

loss due to Rydberg excitation, shown in the third row of Figure 5.1.

The cause of this dimple is illustrated in Figure 5.2. The red-detuned coupling beam

results in an AC Stark shift that reduces the MOT beam detuning from the dressed
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Figure 5.1: Dressing a MOT with 5s37s 3S1 Rydberg character, using Ω = 2.5 MHz,

δMOT = −400 kHz and PMOT = 150 µW for different dressing times (left to right) and

coupling beam detunings (top to bottom). The scale shows cloud optical depth, averaged

over two repeats. The single frequency red MOT is held for 50 ms for cooling to complete

before the coupling laser is turned on.

state. MOT beam resonance with the dressed state then occurs for a smaller Zeeman

shift, closer to the quadrupole field centre. The reverse is true for blue-detuned coupling

- MOT beam resonance with the dressed state occurs further from the quadrupole field

centre, creating a dimple into which atoms can flow.

The effect observed in Figure 5.1 is spatially asymmetric, suggesting the coupling beam

is not perfectly aligned onto the cloud centre. As the cloud is larger than the coupling

beam the AC Stark shift only affects part of the cloud.

A two-stage dressed MOT

To better understand the effect that the AC Stark shift has we have developed a two-

stage MOT detuning scan, shown in Figure 5.3. We form a single frequency red MOT

at δMOT = −350 kHz and PMOT = 90 µW, which we then dress with 5s37s 3S1 Rydberg

character using Ω = 2.5 MHz, δC = -6 MHz. Being red-detuned, we expect a dimple to
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Figure 5.2: (a) When the coupling beam δC is red-detuned it reduces the energy of the

dressed state |e′〉 below the bare state |e〉, effectively reducing the MOT beam detuning

magnitude, illustrated on the left. The smaller effective MOT beam detuning results in

resonance occuring for a smaller Zeeman shift, closer to the quadrupole field centre. (b)

shows the dependence on the coupling beam detuning δC - when the coupling beam is

blue-detuned the dressed state |e′〉 is shifted higher in energy than the bare state |e〉, and

resonance occurs for a larger Zeeman shift. The colour of the dressed state indicates the

fraction of |e〉 (blue) and |r〉 (red) in the dressed state and the black dotted line indicates

the MOT beam detuning. (c) shows the effective MOT beam detuning δMOT − δAC from

the dressed state |e′〉.

protrude into the cloud. When the coupling laser is turned on the MOT beam detuning

δMOT is changed. This was repeated with and without the coupling laser, for 10 ms of

dressing.

In the bare state case (Figure 5.3(a-e)), as the MOT beam frequency moves further from

resonance the cloud gets larger and moves lower, retaining the ellipse outline set by the

quadrupole field as we expect. When the coupling beam is on (Figure 5.3(f-j)) we see

very different MOT shapes - as the MOT beam detuning increases the cloud gets larger

but also splits into two clouds that form either side of the dimple due to the coupling

beam. We also see a fraction of the cloud that is not trapped and falls under gravity,

seen in Figure 5.3(f).

Making a composite image from all the MOT images at different MOT beam detunings,
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Figure 5.3: Stepping the MOT detuning to a new value (row a-e), we see the MOT form

in a new position. Adding the red-detuned coupling laser to this (row f-j) modifies the

cloud shape - the cloud flows under gravity to either side of the coupling beam dimple.

Taken with δC = −6 MHz, Ω = 2.5 MHz. Predicted resonance curves described in Section

5.1.2 are overlaid.

we can map out the shape of the dimple that protrudes into the MOT. This is shown in

Figure 5.4, and offers a very striking representation of the effect of the coupling beam.

Rather than atoms simply sagging to the lowest point of a resonance ellipse set by the

quadrupole field, the resonance condition is met either side of the coupling beam, and

above the coupling beam. Atoms sag under gravity to the lowest positions on the reso-

nance curve, either side of the coupling beam. As the coupling beam is slightly off-centre,

the atoms preferentially fall to the right of the coupling beam. The effect does not appear

to be significantly blurred by the 30◦ angle between the coupling beam and the imaging

axis.

5.1.2 An AC Stark shifted resonance model

In Figure 5.3 we overlay a modified resonance curve on the data that accounts for the

AC Stark shift. This section will use the dressed state picture and the MOT resonance

curves from Chapter 2 to calculate these resonance curves. To do this we will consider

when the MOT beams are resonant with the dressed state |e′〉 rather than the bare state

|e〉.

We first consider how the energy of the dressed state |e′〉 is shifted by the AC Stark shift
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Figure 5.4: A composite image from the data in Figure 5.3, made using a range of MOT

beam detunings to visualise the effect of the coupling beam.

from the bare state |e〉, and the position dependence of this shift.

In Chapter 2 we demonstrated that the AC Stark shift of the dressed state |e′〉 compared

to the bare state |e〉 is given by δAC = − δC
2
±
√
δ2C+Ω2

C

2
, where δC is the coupling beam

detuning and ΩC is the coupling beam Rabi frequency. The coupling beam intensity is

Gaussian, I(x, z) = I0 exp
(
−2(x−x0)2

ω2
x
− 2(z−z0)2

ω2
z

)
, where I0 is the peak intensity, ωx,z is the

1/e2 radius in the horizontal and vertical direction, and x0 and z0 describes the coupling

beam position. The Rabi frequency is proportional to the square root of intensity, so

Ω2
C(x, z) = Ω2

C(x0, z0) exp
(
−2(x−x0)2

ω2
x
− 2(z−z0)2

ω2
z

)
.

From this we obtain an expression for the AC Stark shift of the dressed state |e′〉 that

reflects the intensity profile of the coupling beam, which can be simplified when ΩC � δC :

δAC = −δC
2
±

√
δ2
C + Ω2

C exp
(
−2(x−x0)2

ω2
x
− 2(z−z0)2

ω2
z

)
2

≈ Ω2
C

4δC
exp

(
−2(x− x0)2

ω2
x

− 2(z − z0)2

ω2
z

)
.

(5.1)

This is simply introducing a position dependent term to the AC Stark shift to reflect the

coupling beam intensity profile. The AC Stark shift is shown in Figure 5.5(b) for the

parameters used in Figure 5.3.

This treatment assumes that the Rabi frequency position dependence is purely dependent

on the coupling beam intensity. In practice, the angle between the magnetic field and the

coupling beam polarisation will influence what transitions are coupled and the effective

Rabi frequency, but at this point we consider only Regime I MOTs, where the magnetic

field is primarily vertical. This matches the coupling beam polarisation axis and the

configuration under which the Rabi frequency was measured. In Appendix F we consider
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the effect of magnetic field direction variation.

Having considered the AC Stark shift that the dressed state experiences we now consider

when the MOT beams are resonant with the dressed state. The atoms will be trapped

where the MOT beams are resonant.

In Chapter 2.5 we did this by equating the MOT beam detuning from the bare state

δMOT to the Zeeman shift mJgJµB
dB
dz

· z, shown in Figure 2.8. Now we are interested in

the dressed state |e′〉 so we replace the MOT beam detuning from the bare state δMOT

with the MOT beam detuning from the dressed state δMOT − δAC to obtain:

δMOT − δAC = mJgJµB
dB

dz
· z , (5.2)

The MOT beam detuning δMOT is constant, the Zeeman shift and AC Stark shift are

shown in Figure 5.5(a-b). We can numerically solve this to obtain a curve on the x − z
plane where the MOT beams are resonant with the dressed state, shown in Figure 5.5(c).

Included in this calculation is an offset on the 689 nm frequency due to an offset on the

laser lock point, which has been estimated based from the MOT shape. Parameters used

in this calculation were chosed to match experimental parameters and are: ΩC = 2.4 MHz,

δC = 6 MHz, ωx = 120 µm, ωz = 160 µm, x0 = 60 µm, z0 = 250 µm, dB/dz = 7.2 G/cm,

and a 689 nm laser lockpoint offset of -40 kHz.

In Figure 5.3(d-h) we see good agreement between the resonance curve and the cloud

shape, subject to the vertical offset due to the cloud forming above the resonance curve.

The largest limitation is the two-dimensional nature of this model. The imaging axis is

at 30◦ to the coupling beam propagation axis, so the position offset will not be constant

across the imaged plane. As a result, the position of the dimple will be dependent on

the depth of the plane being imaged, resulting in a blurring of the dimple across the

image. The larger the MOT, the stronger this effect will be; this is particularly apparent

in Figure 5.5(g).

Whilst the agreement between the model and the data is good, there is a position offset

between the resonance curve and the cloud. We expect the cloud to be positioned slightly

above the resonance curve, where the scattering force is equal to gravity, rather than

where scattering is strongest [115]. This is observed in Figure 2.8 in the undressed MOT;

by calculating when the scattering force is equal to gravity we identify the true cloud

position. We extend this treatment to the dressed MOT in Figure 5.6 for a range of

coupling beam positions and detunings.
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Figure 5.5: Modelling the AC Stark shift due to the coupling beam. (a) and (b) show

the Zeeman shift and the AC Stark shift of the 5s5p 3P1 mJ = −1 state through a

plane perpendicular to the coupling beam through the quadrupole centre. (c) shows the

combined effect; overlaid are contour plots for the detunings used in in the data. These

contours are compared to data in Figure 5.3.

The data in Figure 5.6 show four coupling beam detunings and three MOT positions,

labelled high, medium and low. Moving the cloud with the shim coils is equivalent

to moving the coupling beam and the images are corrected for the cloud movement to

illustrate the effect of coupling beam position.

Having accounted for the relative strength of scattering and gravity we see excellent agree-

ment between data and the model. We can see the dimple becoming more pronounced

both as the coupling laser frequency nears resonance, and as the coupling laser alignment

on the cloud is improved.

Two ellipses at which the scattering force equals gravity are observed, an inner curve and

an outer curve. Atoms outside these curves are lost, atoms inside the outer curve will be

pushed to the inner curve, where a stable equilibrium between gravity and scattering is

reached. This is particularly apparent for the −6 MHz detuned case - at high alignment,

the lower curve encompasses the entire position of the undressed cloud, consequently all of

the atoms remain trapped. At the lowest alignment, the outer resonance curve is shifted

above the position of part of the undressed cloud. Atoms that are below this curve when

dressing is initiated are not trapped and are observed falling under gravity. This model

therefore provides insight both into the cloud shape and the recapture fraction.
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Figure 5.6: Rydberg dressed MOTs for four coupling beam detunings and three coupling

beam positions. The dashed black line indicates the modelled position of the coupling

beam and the solid blue lines indicate positions where the scattering force magnitude

is equal to gravity, which occurs above and below the position of strongest scattering.

Taken with δMOT = −400 kHz, PMOT = 90 µW and 5 ms of dressing with ΩC = 2.4 MHz.

The modelled coupling beam includes a position offset from the quadrupole centre of

x0 = 100 µm and z0 = 25 µm (high), 100 µm (medium) and 175 µm (low).

This technique is only suited to Regime I and III MOTs as it neglects the direction of

scattering. It also does not account for different MOT beam power ratios in the vertical

and horizontal MOT beams, and considers only a single x− z plane. We use an imaging

axis that is at 30◦ angle from the coupling beam axis. Given these limitations, the success

of this model is very satisfactory.

5.2 Monte-Carlo modelling of the MOT

The AC Stark shift model offers insight on the outline of the cloud shape and even on the

recapture fraction, but does not provide insight into the cloud dynamics, such as atom
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temperature, settling time and trap lifetime. To understand these properties we extend

the Monte-Carlo MOT model described in Section 2.5 and documented in [82] to the

dressed MOT case.

The underlying principle of the model is the same, that the probability of being found

in an excited state is calculated for each atom as a function of position, weighted by a

timestep to generate a probability of scattering a photon, compared to a random number

that ‘decides’ whether a scattering event occurs, and the position and momentum of the

atom updated accordingly. To modify this another level is added to the OBEs, cou-

pled through the coupling laser, to make a three-level system with a position-dependent

Rabi frequency. However, as the Rydberg transition is not closed, we expect most Ry-

dberg atoms that are excited to decay to long-lived or metastable states, and thus not

be trapped. Atoms excited to Rydberg states are therefore removed from the model,

introducing an additional source of loss.

For the sake of simplicity the Rydberg state is included as a single level that all inter-

mediate states can couple to. In reality, the Rydberg state comprises of three magnetic

sublevels and the coupling strength to these sublevels will be dependent on the relative

coupling beam polarisation and local magnetic field. In Regime I and III MOTs the

atoms sag to the bottom of the resonance curve and predominantly experience a vertical

magnetic field, allowing us to neglect these effects. The Zeeman shift of the Rydberg

state is small compared to the detuning of the coupling beam, so is neglected.

Position/µm Position/µm Position/µm Position/µm

Figure 5.7: Comparison of data and dressed MOT model results. We see very good agree-

ment between the data and the model, particularly given the uncertainty in experimental

parameters such as MOT beam detuning and coupling beam position.

Figure 5.7 shows the resulting shape of the MOT model to simulate the data from the
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‘Low’ dataset in Figure 5.6. We see very good agreement between the model and data.

A key strength of the model is that it can predict the dressed MOT dynamics. Later

in this chapter we measure cloud temperatures, which we compare to predictions taken

using this model.

As in the undressed case the model breaks down for Regime II MOTs. In addition, mod-

elling of the small clouds associated with Regime II MOTs is very sensitive to uncertainty

in experimental parameters such as coupling beam position and MOT beam detuning and

the fractional uncertainty in these parameters rises.

We now have a very good understanding of the effect of AC Stark shift on the cloud. The

next stage towards Rydberg dressed interactions in a Rydberg dressed MOT is for all of

the atoms to experience strong coupling to the Rydberg state. This requires us to use a

cloud that is smaller than the coupling beam.

5.3 Smaller MOTs, stronger coupling

In Figure 5.6 the cloud is larger than the coupling beam, so only a small fraction of the

cloud experiences strong coupling to the Rydberg state. If most atoms experience a low

coupling Rabi frequency we will not observe Rydberg dressed interactions.

To address this we must use smaller MOT beam detunings to reduce the cloud size. The

breakdown of the MOT model for small clouds therefore poses a problem. In this section

we present dressed MOT data using a smaller MOT beam detuning to reduce the size of

the cloud to less than that of the coupling beam. We also develop the resonance curves

considered above to better account for the small MOT size.

Dressing a smaller MOT

Figure 5.8 shows a single frequency MOT of δMOT = −140 kHz, PMOT = 30 µW split

in a power ratio of 3:1:1 in the vertical and two horizontal directions dressed for 10 ms.

The cloud is similar in size to the coupling beam in the horizontal direction, and is

substantially smaller in the vertical direction. We also move to dressing the MOT with

the 5s36d 3D1 Rydberg state, allowing us to Rydberg dress with a higher Rabi frequency

of ΩC/2π = 3.7 MHz, for a range of δC . Overlaid is a modified resonance curve that is

described later.
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Figure 5.8: Single frequency MOTs dressed for 10 ms with a Rabi frequency of 3.7 MHz.

Pixels in the images for δC = −6 MHz and δC = −14 MHz have been binned in 2 by 2

cells to improve the signal-to-noise ratio. The dashed black line indicates the coupling

beam position, the solid blue lines indicate the modelled gravity-matched scattering force

reflecting the angle between coupling beam polarisation and local magnetic field.

The smaller MOT beam detuning clearly results in a cloud that is smaller than the

coupling beam. However, the cloud still experiences poor coupling to the Rydberg state.

When the coupling beam is blue-detuned, atoms sag to the bottom of the coupling beam.

When the coupling beam is red-detuned for small detunings, the dimple created by the

coupling beam is larger than the cloud and the MOT is destroyed. We will consider

techniques to rectify these issues, but first we consider the resonance curves that describe

the smaller dressed MOT.

We had success reproducing the dressed MOT cloud shape using a simple resonance

model given by Equations 5.1 and 5.2. We want to repeat this for the smaller MOT, but

for smaller clouds, the approximation that all atoms experience a similar magnetic field

breaks down - the magnetic field direction is no longer primarily vertical. We previously

calculated the AC Stark shift in Equation 5.1 by assuming a Rabi frequency proportional

to the square root of intensity, with no consideration of driven transitions, in this section

we consider what transitions the coupling light can drive.

When the cloud sags under gravity and predominantly interacts with a vertical mag-



Chapter 5. A Rydberg Dressed MOT 85

netic field, the vertical coupling beam polarisation and the quantisation axis align, and

the coupling light drives π transitions. All of the coupling light can couple to the

5snl 3l1 mJ = −1 state.

When atoms are in the wings of a Regime II cloud and experience a horizontal mag-

netic field, the coupling light can be considered as a combination of left-hand and right-

hand circularly (LHC+RHC) polarised light that may drive σ± transitions. From the

5s5p 3P1 mJ = −1 intermediate state only transitions to the 5snl 3l1 mJ = 0 state can

then be driven, so only one component of the LHC + RHC polarised light may drive the

transition. Consequently the coupling is weaker as less of the light couples the states.

Treating the the coupling light as a combination of parallel and perpendicular polarisation

to the quadrupole magnetic field, and treating the coupling to the two Rydberg states as

independent, the AC Stark shift can be approximated as:

δAC =
Ω2
C exp

(
−2x2

ω2
x
− 2z2

ω2
z

) [
1− r2

r2+4z2
/2
]

4δC
, (5.3)

where ΩC � δC and r2 = x2 + y2 is the horizontal position from the quadrupole centre.

The vertical position from the quadrupole centre is z, so the term r2/r2+4z2 reflects the

component of the coupling light that is polarised orthogonal to the magnetic quadrupole

field. The derivation of this expression is given in Appendix F.

In the two-dimensional case, we set y = 0 so that r = x. The exponential term accounts

for the coupling beam intensity profile as in Equation 5.1, the term in the square bracket

accounts for the weaker coupling strength when the coupling beam polarisation and the

quantisation axis are not aligned.

This treatment considers only the shift of the 5s5p 3P1 mJ = −1 level, and assumes the

sublevels are defined only by the local magnetic field. This approach breaks down in

some regimes, either where a second quantisation field is present, as will be considered

in Section 5.5, or where the coupling light drives π and σ+ transitions with similar

strengths. Appendix F demonstrates a six-level Hamiltonian solution (considering the

three magnetic sublevels of the 5s5p 3P1 state and the Rydberg state) and considers

multiple planes of resonance, which more accurately replicate the cloud shape, but which

requires numerical solution. We will therefore typically use Equation 5.3 and Equation

5.2 to reproduce the cloud shape.

In Figure 5.8 we overlay the resonance curves, matched to where the scattering force
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is equal in magnitude to gravity, over the data. As in Chapter 2.5, we use a model

MOT beam power ratio of 1:1:1 in the vertical and horizontal directions, compared to

experimental parameters of 3:1:1, as it is simpler to calculate the scattering strength for

a constant power in all beams.

This modified resonance condition shows good agreement to the experimental data taken

with a smaller MOT, shown in Figure 5.8, although the agreement is not as good as

in Regime I MOTs (Figure 5.6). This is partly because of the limited validity of this

approach for small magnetic fields, as explained above. We expect these limitations to

predominantly affect the fit close to the quadrupole field zero. There are several other

factors.

Firstly, as the atoms can interact simultaneously with several MOT beams rather than

a single MOT beam being dominant this model is not particularly effective even in the

undressed regime. This is particularly true when the coupling beam is red-detuned,

resulting in a smaller cloud.

Secondly, the resonance condition only shows when the Zeeman shift and AC Stark

shift match the MOT beam detuning, but if the resonance ring does not encompass the

quadrupole field zero, the scattering force will not be from all six MOT beams, so there

will not be a restoring force in every direction. Consequently, the trap may not be sealed.

As explained previously, we are using a two-dimensional model to compare to a three-

dimensional system. The effects of this are exacerbated by the 30◦ angle between the

coupling beam axis and the imaging axis. Whilst using a smaller MOT reduces the effect

of the imaging axis angle, the added dependence on r, which varies through the imaged

axis, reduces the effectiveness of the two-dimensional model. In Appendix F multiple

planes are considered, yielding better agreement between the observed and predicted

cloud shape, but with less intuitive insight.

Appropriate coupling beam parameters

As shown above, we can couple the MOT to a Rydberg state and for large clouds we

reproduce the MOT outline through a simple AC Stark shifted resonance model. Smaller

MOTs pose a greater challenge to reproduce the shape outline, but we see reasonable

success modifying this simple model by considering the coupling beam polarisation and

good agreement using a six-level Hamiltonian and considering multiple resonance curves

at different imaging depths.
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An optimum Rydberg dressed MOT regime involves atoms being confined to the coupling

beam region; as is apparent from Figure 5.8 this is challenging whether red- or blue-

detuned. We consider several techniques for keeping atoms in the coupling beam in

Section 5.4; before we do this we must identify appropriate coupling beam parameters.

To obtain strong two-body interaction strengths (given by Ω4/8δ3
C) we want large cou-

pling beam Rabi frequencies and detunings. For achievable Rabi frequencies of 4 MHz

coupling to the 5s36d 3D1 state and a detuning of +12 MHz we expect a two-body

dressed interaction strength of 19 kHz from Equation 2.21. This is comparable to the

cloud temperature and will be used for the next stage of the experiment.

5.4 Keeping atoms in the coupling beam

The motivation for reducing the MOT size in the previous section was to confine the

atoms to a region of strong coupling. However, as shown in Figure 5.8, reducing the

MOT beam detuning alone is not enough to keep atoms in the coupling beam. We

see the cloud either sagging to a position below the peak coupling beam intensity (when

blue-detuned), or simply failing to trap (when red-detuned) for the desired coupling beam

detunings. Several approaches have been considered to address this:

� Increasing the magnetic field gradient to more tightly confine the cloud to the

coupling beam region.

� Using a larger coupling beam width, reducing the peak AC Stark shift and AC

Stark shift gradient but sacrificing Rabi frequency and thus interaction strength.

� Smoothly increasing the coupling beam intensity over time. Whilst this does not

change the final resonance condition it avoids a step-change in resonance condition,

allowing atoms to reach a new equilibrium rather than falling under gravity.

� Changing the MOT beam detuning when the coupling beam is turned on, to com-

pensate the AC Stark shift.

We prefer to keep our choice of Rydberg state based on the achievable coupling strength

and interaction strength. However, we do note that going to higher n will reduce our

coupling strength, reducing the perturbation due to the AC Stark shift, but also increasing
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the interaction length scale, allowing us to move beyond the two-body dressed interactions

case.

The most effective technique that we have used to keep atoms in the coupling beam when

using blue-detuned coupling light is to compensate the AC Stark shift by changing the

MOT beam detuning when we turn the coupling laser on. This is shown in Figure 5.9.

Parameters used are the same as in Figure 5.8 but with a shorter dressing time of 5 ms

and a coupling beam detuning fixed at +12 MHz. We change the MOT beam detuning

by a compensation amount δCOMP, if we undercompensate the cloud still moves lower

and if we overcompensate the cloud will move and a fraction of the cloud will fall under

gravity and be lost from the trap.
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Figure 5.9: The dressed MOT (b) forms at a lower position than the undressed MOT (a).

Changing the MOT beam detuning (c-e) when coupling reduces the position shift but

excessively large changes result in atom loss. (g) shows the cloud movement (blue) and

the atom number (red). The dashed line indicates the initial cloud vertical position. (f)

shows the Zeeman shift (black, solid) and the combined Zeeman shift and AC Stark shift

(blue) as a function of vertical position. Dotted lines indicate the four δMOT used in (b-e),

dashed lines indicate resonance for the undressed case. The shaded red areas illustrate

the cloud position for the undressed MOT and the optimally compensated MOT.
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This has been done with an initial MOT beam detuning of δMOT = −140 kHz. What

is particularly interesting about this is that optimum compensation occurs at δCOMP =

+280 kHz i.e. the compensated MOT is blue-detuned by +140 kHz from the bare state.

Consequently, the trap can only work in the presence of the coupling laser, and only traps

Rydberg dressed atoms.

A peak Rabi frequency of 3.7 MHz and a coupling beam detuning of +12 MHz gives rise

to a peak AC Stark shift of 280 kHz, which matches the observed optimum compensation.

Using this compensation technique we can successfully trap atoms at the centre of the

coupling beam, where coupling is strongest. We will refer to MOTs formed using this

technique as ‘compensated MOTs’.

In addition to reduced cloud movement and atom loss, compensation of the AC Stark shift

minimises the perturbation to the MOT dynamics - the more the resonance condition

changes between the dressed and the undressed MOT, the longer it will take for the

cloud to reach a new equilibrium. Reducing the initial perturbation of the cloud when

we begin dressing will make it easier to eliminate effects due to atoms reaching a new

equilibrium position that may make the effect of Rydberg dressed interactions less clear.

Cloud dynamics are considered more later in this chapter.

This technique is effective at keeping atoms trapped at the quadrupole field centre for

blue-detuned dressing experiments, but is less effective when red-detuned, as illustrated

in Figure 5.10. When blue-detuned the Zeeman shift and AC Stark shift both cause the

5s5p 3P1 mJ = −1 state to fall in energy with increasing distance from the quadrupole and

coupling beam centre, referred to as the trap centre. This means that there will always

be a MOT beam detuning for which the cloud can form at the trap centre, illustrated in

Figure 5.10(a).

When red-detuned the Zeeman shift and AC Stark shift compete, shifting the 5s5p 3P1 mJ =

−1 state down and up in energy respectively. The two effects both have different gra-

dients in the vertical and horizontal direction, the Zeeman shift because of the nature

of the quadrupole field and the AC Stark shift because of the ellipticity of the coupling

beam spatial profile. We can therefore identify three possibilities when coupling with

red-detuned light:

� In regions where the AC Stark shift gradient is stronger than the Zeeman shift

gradient in both vertical and horizontal directions, the 5s5p 3P1 mJ = −1 state

energy rises with distance from the trap centre and the MOT cannot form.
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� In regions where the Zeeman shift gradient is stronger than the AC Stark shift

gradient in the vertical direction but not in the horizontal direction, atoms will

be trapped in the wings of the MOT rather than at the trap centre, illustrated in

Figure 5.10(b).

� Where the Zeeman shift gradient is stronger than the AC Stark shift gradient in

both directions, the trap can form in the centre of the coupling beam.
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Figure 5.10: Combined Zeeman and AC Stark shift for red- and blue-detuned Rydberg

coupling of |δC| = 12 MHz, ΩC = 4 MHz, with resonance contours overlaid.

To compensate the AC Stark shift due to red-detuned coupling light, we must ensure

that the Zeeman shift gradient is stronger than the AC Stark shift gradient in both the

vertical and horizontal directions at the trap centre. This may involve increasing the

quadrupole field strength, defocussing the coupling beam, using a lower Rabi frequency,

coupling to a higher principal quantum number Rydberg state, or a combination of these

techniques. There are also more novel techniques we can attempt, such as using a spatial

light modulator to control the coupling beam spatial profile, or retroreflection of the

coupling beam with a position offset to reduce the AC Stark shift gradient.

These techniques are being investigated as part of the ongoing work on Rydberg dressed

MOTs in this group; however, this thesis will focus on compensated MOTs that are

dressed with blue-detuned coupling light. Our ability to compensate the AC Stark shift

caused by Rydberg dressing of the MOT allows us to keep atoms trapped at the centre

of the coupling beam, where the Rydberg-mixed fraction is strongest, and reduces the

equilibration time of the cloud by reducing the initial perturbation of the cloud when we

couple the cloud to the Rydberg state.
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In the above sections we have demonstrated techniques for coupling the MOT to the

Rydberg state. We understand the role of the AC Stark shift in modifying the spatial

distribution of the cloud, and we can confine atoms to regions of strong Rydberg coupling.

A full characterisation of the Rydberg dressed MOT will demonstrate the Rydberg char-

acter of the MOT, study the cloud dynamics, observing the cloud velocity and velocity

distribution and measure loss from the Rydberg dressed MOT.

5.5 An electric field sensitive MOT

Our goal in Rydberg dressing a MOT is to introduce Rydberg interactions to the MOT.

However, even in the non-interacting case we have introduced Rydberg character into the

MOT. To demonstrate that we have made a MOT with Rydberg character, we observe

the dressed MOT sensitivity to electric fields, a property that the dressed MOT acquires

due to the high polarisability of Rydberg atoms.

Figure 5.11 shows the Rydberg dressed MOT for a range of electric field strengths and a

coupling beam detuning from the unshifted Rydberg state of +50 MHz. We see a very

striking dependence of cloud shape, position, and trap viability on the electric field that is

not observed in the undressed MOT. We see that we can make the MOT form either side

of the coupling beam (e.g. Figure 5.11(e-f), at the coupling beam centre (Figure 5.11(k-

l)) or below the coupling beam centre (Figure 5.11(c)). To the best of our knowledge,

this is the first magneto-optical trap that demonstrates sensitivity to electric fields.

To understand the shape of the MOT and how it depends on the electric field, we consider

the Stark map of the bare Rydberg states 5s36d 3D1 |mJ | = 0 and 5s36d 3D1 |mJ | = 1,

shown in Figure 5.12(a). Resonance with a Rydberg state will occur at two electric fields,

resulting in the MOT being destroyed, but we clearly see that different regions of the MOT

have different sensitivities to the two different Rydberg states. To understand this, we

consider the AC Stark shift that the 5s5p 3P1 mJ = 0 and 5s5p 3P1 mJ = ±1 states will

experience. The coupling beam polarisation is orthogonal to the electric field, so drives

σ± transitions. As a result the 5s5p 3P1 mJ = 0 and 5s5p 3P1 mJ = ±1 states will be AC

Stark shifted when the coupling beam is near resonance with the 5s36d 3D1 |mJ | = ±1

and 5s36d 3D1 |mJ | = 0 states respectively.

Figure 5.12(a) shows the AC Stark shift that the 5s5p 3P1 mJ = 0,±1 state experiences as

defined in the electric field basis (dashed lines). However, the MOT transition is defined
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Figure 5.11: A MOT dressed with 5s36d 3D1 Rydberg character for 10 ms under the

presence of an electric field applied along the imaging axis. Taken with δC = 50 MHz,

the effective detuning from the electric-field-shifted Rydberg sublevels is indicated above

the images.

in the magnetic field basis. We must therefore rotate the angular momentum projection

of the upper state of the MOT transition from the magnetic field basis into the electric

field basis.

We define the magnetic field basis as mmag and the electric field basis as mel. Treating

the MOT light as only driving to the 5s5p 3P1 mJ = −1 state, we only ever populate the

mmag = {1, 0, 0} state, where mmag = {1, 0, 0}, {0, 1, 0} and {0, 0, 1} correspond to the

5s5p 3P1 mJ = −1, 0 and +1 states. The two bases are related by the rotation matrix:

R(β) =


1/2(1 + cos(β)) − sin(β)/

√
2 1/2(1− cos(β))

sin(β)/
√

2 cos(β) − sin(β)/
√

2

1/2(1− cos(β)) sin(β)/
√

2 1/2(1 + cos(β))

 . (5.4)
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Figure 5.12: The 5s36d 3D1 |mJ | = 0 (blue, solid) and 5s36d 3D1 |mJ | = 1 (orange, solid)

Rydberg states rise in energy at different rates in response to an electric field (left axis).

The 5s5p 3P1 mJ = 0 (blue, dashed) and 5s5p 3P1 mJ = ±1 (orange, dashed), defined

in the electric field basis therefore experience different AC Stark shifts as a function of

electric field (right axis). On the right, the relationship between 5s5p 3P1 sublevel in the

electric field basis and magnetic field basis as a function of position is shown.

Here β is the angle between the magnetic and electric field directions. Where the electric

and magnetic field are parallel (E ‖ B), the 5s5p 3P1 sublevel remains the same in both

bases. Where the electric and magnetic field are orthogonal (E ⊥ B) the magnetic

sublevel mmag = {1, 0, 0} is translated into the electric sublevel mel = {1/2,
1 /√2,

1 /2}.
This is illustrated in Figure 5.12(b).

From the AC Stark shift of the 5s5p 3P1 states in the electric field basis, and the relation-

ship between the magnetic field basis and electric field basis as a function of the angle

between the electric field and the magnetic field, we can now express the AC Stark shift

that different regions of the MOT experience. This is shown in Table 5.1

Table 5.1 gives the excited state of the MOT transition in both bases for β = 0◦ and

β = 90◦, as well as the effective coupling strength for both transitions given the coupling

beam polarisation. Note that this treatment utilises the equal coupling strengths of

all allowed Rydberg transitions; different weightings must be applied if coupling to the

5snd 3D2 state, where the different sublevel transitions have different transition strengths.

This approach is effective in explaining many of the features of the electrically sensitive

MOT shown in Figure 5.11. When near resonance with the 5s36d 3D1 |mJ | = 0 state, the

strongest AC Stark shift will occur where E ‖ B, which occurs in line with the quadrupole
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Quantisation axes E ‖ B E ⊥ B

mmag {1, 0, 0} {1, 0, 0}
mel {1, 0, 0} {1/2,

1 /√2,
1 /2}

Coupling to 5s36d 3D1 |mJ | = 0 0.5 0.25

Coupling to 5s36d 3D1 |mJ | = 1 0 0.5

Table 5.1: Rydberg state coupling due to a vertically polarised coupling beam, a hori-

zontal electric field, and two magnetic field directions. mmag is the excited state of the

MOT transition, defined in the magnetic field basis, mel is the excited state of the MOT

transition, defined in the electric field basis. Coupling strength is given relative to the

peak coupling strength of the 5s5p 3P1 mJ = −1 to 5s36d 3D1 mJ = −1 transition

measured in the absence of an electric field.

field centre as imaged. Consequently, we expect atoms to drop out of this region due to

the strong AC Stark shift when blue-detuned, as seen in Figure 5.11(c), and the MOT to

form either side of this region when red-detuned, as seen in Figure 5.11(e-f).

When near resonance with the 5s36d 3D1 |mJ | = 1 state we expect no coupling directly in

line with the quadrupole field zero, and strong coupling in the cloud wings. When blue-

detuned, we therefore see a wide spread of atom positions (Figure 5.11(h)) corresponding

to a wide spread of AC Stark shifts, and when red-detuned we see the cloud preferentially

form in line with the quadrupole field zero, where the AC Stark shift is smallest (Figure

5.11(k-l)).

Electric fields between 1.7 V/cm and 2.6 V/cm are of particular interest, as the coupling

beam is effectively red-detuned from the 5s36d 3D1 |mJ | = 0 transition and blue-detuned

from the 5s36d 3D1 |mJ | = 1 transition. Due to the coupling dependence on β it may

be possible to construct a MOT that predominantly experiences blue-detuned coupling

from one Rydberg state sublevel for regions of high β, whilst predominantly experiencing

red-detuned coupling from the other Rydberg state sublevel in regions of low β, or vice

versa, depending on choice of coupling beam polarisation. However, whilst interesting,

this regime is not a useful platform for the observation of Rydberg dressed interactions

- to observe Rydberg dressed interactions the coupling laser frequency must not excite

pairs of Rydberg atoms, which is not possible if there is a resonance above and below the

laser frequency.

Further study of the MOT may involve alternate electric field axes and coupling beam
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polarisations - a coupling beam polarisation that is linear and aligned with the electric

field axis would only allow coupling via π transitions, thus not allowing coupling to the

5s36d 3D1 |mJ | = 0 state. Use of the 5snd 3D2 Rydberg series would increase the

sublevels available to couple to and change the coupling strengths of transitions between

sublevels.

These experiments demonstrate the Rydberg character of the cloud. In addition, as we

will show in Chapter 6, the presence of an electric field may modify the loss mechanisms

in a Rydberg dressed MOT, requiring an understanding of the effect of electric field on

cloud shape.

Having demonstrated the Rydberg character of the dressed MOT, we return to Rydberg

dressed MOTs in the absense of electric fields.

5.6 Laser cooling of Rydberg dressed atoms

Our goal is to create a Rydberg dressed MOT that exhibits trapping, cooling and Rydberg

dressed interactions. We have thoroughly characterised the trapping and the Rydberg

character of the cloud in previous sections. In this section we characterise the cooling rate

of the Rydberg dressed MOT. To do this we characterise both the cloud mean velocity

and the velocity distribution of the cloud - typically the mean velocity of a steady state

cloud will be zero, but the initial perturbation of the cloud by the coupling laser may

result in a non-zero mean velocity e.g. [116].

We will first demonstrate that the cloud follows a Maxwellian velocity distribution, which

allows us to express the velocity distribution as a cloud temperature. The cloud mean

velocity resulting from the initial perturbation will also be measured. We will then

compare these experimental results to the Rydberg dressed MOT model.

Cloud ballistic expansion

To observe the velocity distribution of the cloud, we perform a ballistic expansion, turning

off all laser beams and fields for a variable time up to 5 ms, during which the cloud

expands and falls, then image the cloud. The final position distribution of the cloud

becomes a convolution of initial position distribution and velocity distribution. If the

initial position distribution is Gaussian and described by the standard deviation σx(0),
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and the velocity distribution is Maxwellian and described by the temperature Tx, the

final position distribution σx(t) follows [117]:

σx(t) =

√
σ2
x(0) +

kBTx
m

t2 . (5.5)

Figure 5.13 shows a MOT that has been dressed for 2 ms and expanded for 1 ms, 3 ms

and 5 ms. Vertical slices through the centre of the cloud agree well with a Gaussian fit,

allowing us to treat the cloud using Maxwellian statistics.

In the horizontal direction, we are very sensitive to which part of the cloud is fitted to -

initially the densest slice of the cloud (which is what we fit to) is not the widest part of

the cloud, but as the cloud expands the densest part of the cloud becomes the widest part

of the cloud. Consequently, we can’t fit to the densest part of the cloud in the horizontal

direction. Instead we sum the columns of the image and fit to a summed horizontal cloud

profile.
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Figure 5.13: Ballistically expanding a MOT dressed for 2 ms, we see freefall and ex-

pansion (inset images). Plotting vertical slices through the densest region of the cloud

for expansion times of 1 ms (blue), 3 ms (green) and 5 ms (red), we see good agreement

to Gaussian fits. From the fits we obtain peak column density, cloud position (from an

arbitrary constant) and cloud width, from which we calculate density and atom number.
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The cloud is dressed with Ω = 3.7 MHz of coupling light that is detuned +12 MHz

from the 5s36d 3D1, and then expanded for up to 5 ms. The optimum MOT beam

compensation of +190 kHz is less than the previously observed +280 kHz, suggesting a

slight misalignment of the coupling beam from the centre of the cloud.

Having verified the Maxwellian nature of the dressed cloud we obtain cloud positions,

widths and peak density from the fitsa. We calculate atom number from the peak density

and the cloud widths. We see no change in atom number with expansion time, which

gives confidence in the fitting. To reduce the effect of the initial size, and also to reduce

the problems of fitting to an optically thick cloud, we only consider datasets that have

been expanded for 1 ms or longer for vertical fitting and 2 ms or longer for horizontal

fitting.

Cloud temperature and velocity

Using Equation 5.5 we can fit a temperature to the width of the cloud as a function of

expansion time, shown in the top line of Figure 5.14. The fractional change in cloud size

with expansion time is small in the horizontal direction, resulting in large uncertainties

in the cloud horizontal temperature, however the trend is clear.

We observe initial heating in both the vertical and horizontal direction, followed by

cooling. This is expected; when the resonant position changes there will be heating as the

atoms reach the new resonant position, followed by cooling once the position is reached.

That the cloud then returns to its initial temperature demonstrates that there is sustained

cooling in the MOT. This is a key finding; we believe this is the first demonstration of

sustained trapping and cooling of atoms with measurable Rydberg character. We see a

vertical cooling time on the order of 3 ms.

The cooling rate is faster in the vertical direction as the atoms predominantly interact

with the vertical MOT beam and experience an effective damping force due to gravity.

In addition to the cloud temperature, we can observe cloud movement with expansion

aWhen fitting the cloud shape we assume rotational symmetry. Whilst common practice with most

MOTs, we break the rotational symmetry of the MOT when dressing. When the cloud is larger than the

coupling beam this treatment is not appropriate but in this case the cloud is smaller than the coupling

beam, and as we will show later by modelling the cloud temperature, this treatment is reasonable.

In addition, the imaging axis and the coupling beam axis, being neither parallel nor orthogonal, are

effectively blurred.
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Figure 5.14: Cloud temperature (top) and mean velocity (bottom) in the vertical (left)

and horizontal (right) direction. The orange line is the results of a Monte-Carlo model

simulation.

time, in both the vertical and horizontal direction. Vertical movement during expansion is

expected to follow a parabola as the cloud freefalls under gravity, but horizontal movement

is not expected. We attribute this movement to the misalignment of the coupling beam

from the cloud centre, which results in a net cloud velocity causing the cloud to move

sideways as it falls. Fitting a parabola (z(t) = zinit + vzt+ 0.5gt2) to the cloud movement

in the vertical direction and a linear fit (x(t) = xinit + vxt) to cloud movement in the

horizontal direction as the cloud expands and falls, we can measure the cloud velocity in

the vertical and horizontal direction, shown in the bottom line of Figure 5.14.

The vertical velocity rises for ∼ 2 ms. This velocity is downwards, suggesting the equilib-

rium dressed MOT position is below that of the dressed MOT. Comparing the position

of the MOT before and after dressing, we observe a shift of ∼ 15 µm downwards in the

dressed MOT, which corresponds to the area under the curve of ∼ 15 µm for the vertical

velocity against time graph in Figure 5.14. The vertical velocity of the cloud therefore

corresponds to the cloud moving to the new equilibrium position, and returns to zero

once the cloud has reached the new equilibrium position. As a comparison to the data,
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1 ms of freefall will give rise to a mean vertical velocity of 9.81 µm/ms. This is larger

than the observed velocity as the vertical MOT beam opposes the freefall of atoms.

The velocity in the horizontal direction does not return to zero - we see the cloud fall

sideways for all dressing times greater than 0 ms. We also observe the equilibrium position

of the cloud move by ∼ 35 µm from the undressed case to the dressed case after 5 ms.

We attribute this to the coupling beam alignment, which is not centred on the cloud.

The different AC Stark shift on one side of the cloud to the other may result in stronger

scattering from one direction than the other, resulting in a net force on the cloud. As

the mean velocity is calculated based on the change of the fitted mean position of the

cloud with expansion time, it is susceptible to changes in cloud shape and this technique

may overstate the cloud velocity. It is also possible that attenuation of the retroreflected

MOT beams or imperfect polarisation of the MOT beams results in a net force on the

cloud that modifies the perturbation of the cloud when the coupling laser is turned on.

Modelling the cloud temperature

In Section 2.5 we show that the Monte-Carlo MOT model can reproduce the cloud tem-

perature and the cooling rate of the MOT and in Section 5.2 we describe how the Rydberg

state can be added to the MOT model. We now use this model to simulate the cloud

temperature. We show the results of a simulation of the experiment compared to exper-

imental data in Figure 5.14 showing both cloud temperature and mean velocity.

Given the complexity of the system the results of this simulation show good qualitative

agreement. The large uncertainty on coupling beam position and challenges of fitting in

the horizontal direction make exact agreement hard to obtain for temperature and mean

velocity in the vertical and horizontal direction. We can optimise for any of these four

observables individually but it is too computationally intensive to thoroughly fit all four

observables.

From the Monte-Carlo MOT model we can study the dependence of the initial tempera-

ture on the parameter space. We observe that the initial perturbation of the cloud that

results in cloud movement and heating can be minimised through optimum compensa-

tion. Small misalignments of the coupling beam from the cloud centre also modify the

optimum compensation that we must apply to reduce initial heating. We consistently see

that trapped atoms continue to be cooled in the dressed MOT.

The poor temperature agreement in the horizontal direction is likely to be due to the



Chapter 5. A Rydberg Dressed MOT 100

challenges of fitting to an optically thick cloud that only expands by a small fraction

of its width during the expansion time. The difference in cloud movement is similarly

attributed to the changing shape of the cloud as it expands as discussed previously. The

cloud velocity from the MOT model is taken as the mean velocity of all atoms rather

than by fitting the changing position of the cloud during freefall so is less susceptible to

changing cloud shape.

The model is calculated with Ω = 3.7 MHz, δC = 12 MHz, δMOT = −140 kHz before

dressing begins and δMOT = +50 kHz during dressing and PMOT =20 µW. The coupling

beam misalignment is given by x0 = −80 µm, z0 = +10 µm. Small changes in coupling

beam Rabi frequency can have drastic effects on the cloud heating rate, as the AC Stark

shift due to coupling changes the resonance condition.

Cloud dynamics

In this section we have thoroughly characterised the cloud dynamics. When we begin

dressing we perturb the cloud, causing initial heating in both directions. Cooling of

the cloud continues, returning the cloud temperature to the initial temperature. This

is believed to be the first observed laser cooling of atoms with Rydberg character. The

initial perturbation also results in a net velocity of the cloud. Both the heating and the

net velocity can be reduced through optimum alignment of the coupling beam onto the

cloud and optimum compensation of the AC Stark shift of the cloud.

In previous sections we thoroughly demonstrated that the dressed MOT continues to

trap Rydberg dressed atoms. In this section we have shown that the cloud continues to

cool Rydberg dressed atoms. Our goal is to observe Rydberg dressed interactions in a

system containing both confinement and cooling and with a trap lifetime longer than the

equilibration time of the cloud. Having shown confinement and cooling, and measured

the vertical cooling time of the cloud to be on the order of 3 ms, we now measure the

cloud lifetime.

5.7 Dressed MOT lifetime

The 5s2 1S0 ↔ 5s5p 3P1 transition used for the narrow-line red MOT is closed, allowing

long trap lifetimes of seconds to be obtained in the broadband MOT for high MOT beam

powers. In low power single frequency MOTs, we typically reach trap lifetimes of tens
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to hundreds of milliseconds, limited by several processes such as collisions, laser jitter,

and atoms passing through the resonant region without scattering sufficient photons to

be retrapped.

However, the Rydberg laser introduces a new loss mechanism to the cloud - atoms excited

to the Rydberg state have several decay paths to the ground state, many through longlived

or metastable intermediate states, and we therefore expect most atoms excited to the

Rydberg state not to decay to the ground state on the timescale of the experiment. Most

atoms excited to the Rydberg state are therefore lost both from the trap and from the

images.

In this section we measure the trap lifetime - we want a cloud lifetime that is long

compared to the 3 ms equilibration time of the cloud measured in Section 5.6.
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Figure 5.15: Dressed MOT lifetime. We see rapid loss in the first ∼ 300 µs, followed by

a steady decay. Two datasets are shown with MOT beam powers of 20 µW (blue rings)

and 40 µW (red crosses), both fitted with a double exponential. At higher MOT beam

power we obtain a higher initial density and atom number but see a faster rapid decay

that terminates at a lower atom number.

To avoid problems with calculating atom numbers from optically thick clouds we ballis-

tically expand the cloud before imaging, using the same data that we have from Section

5.6. We note that the atom number remains constant during expansion, shown in Figure

5.13, allowing us to average the atom number across all ballistic expansion times.
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Figure 5.15 shows atom number as a function of dressing time for the dataset given in

Figure 5.14, and a second dataset using a higher MOT beam power of 40 µW, rather

than 20 µW. We see a very rapid decay in atom number in the first ∼ 300 µs, followed

by a slower exponential decay. This rapid decay is fatal to our attempts to see Rydberg

dressed interactions in these two datasets as it reduces the cloud density to below the

interacting regime. This is shown in Figure 5.16 - the interparticle spacing of dressed

state atoms is comparable to the dressed interaction lengthscale when dressing begins,

but the catastrophic loss that occurs within the first millisecond of dressing increases the

interparticle separation to much greater than the interaction lengthscale.

Separation/µm Separation/µm

Figure 5.16: Intermediate state nearest neighbour distribution before dressing (dark

shading) and after 1 ms of dressing (light shading) for two MOT beam powers of 20 µW

(left) and 40 µW (right), based on a 5% intermediate state fraction. Also shown is the

two-body interaction potential. In both cases, the rapid loss process shown in Figure 5.15

drastically reduces the expected interaction strength.

The nature of the rapid decay is not obvious. We see good agreement fitting a double

exponential decay of atom number ((a1 exp(−t/τ1) + a2 exp(−t/τ2))). The fit results are

shown in Table 5.2. At higher MOT beam power and higher initial density, the rapid

loss occurs slightly faster and saturates at a much lower atom number - around 90% of

the initial atom population is lost to this rapid loss process. Clearly, any observation

of Rydberg dressed interactions in the dressed MOT will require us to eliminate this

effect. Before we can do this we must understand what this rapid loss process is. This

investigation is presented in Chapter 6.

The slow loss τ2 is expected to be one-body losses such as atoms leaking from the trap or

being excited to Rydberg states. The Monte-Carlo dressed MOT model predicts a cloud
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Fit parameter 20 µW 40 µW

a1 3.9± 0.1× 105 1.17± 0.03× 106

τ1 / ms 0.15± 0.01 0.11± 0.01

a2 2.7± 0.1× 105 1.19± 0.02× 105

τ2 / ms 5.5± 0.4 5.9± 0.2

Table 5.2: Dressed MOT lifetimes, fitted to a double exponential for two MOT beam

powers and initial densities. After the rapid loss the dressed MOT lifetime is reasonable,

but we must eliminate the rapid loss process if we are to see Rydberg dressed interactions

in the Rydberg dressed MOT.

lifetime of 9 ms, limited by atoms passing through the resonant region without scattering

sufficient photons to remain trapped; given that this model does not include several loss

mechanisms, such as collisions with hot atoms, laser frequency noise etc., we consider the

two values of 5.5± 0.2 ms and 9 ms to be in reasonable agreement.

A second trap lifetime estimate calculated from the Rydberg fraction of the excited state

(Ω2/4δ2), the Rydberg state lifetime (11 µs) and the estimated excited state fraction

(5%) corresponds to a predicted lifetime of 8 ms, which again is in reasonable agreement

with the observed lifetime. This lifetime does not account for the falling Rabi frequency

far from the coupling beam centre, or other MOT loss mechanisms.

The observed lifetime of 5.5 ± 0.2 ms is longer than the 3 ms equilibration time of the

cloud, and is long enough for the effects of Rydberg dressed interactions to manifest

themselves, but only if we can eliminate the rapid loss that depletes the cloud.

Summary

In this chapter we have demonstrated a Rydberg dressed MOT, creating a system in which

only Rydberg dressed atoms are trapped. This is the first demonstration of sustained

trapping and cooling of atoms with observable Rydberg character.

If we can reach the density necessary for Rydberg dressed interactions to occur we will

have a versatile and tunable platform for quantum simulation of dissipative many-body

systems. However, rapid loss that occurs at high density prevents us from reaching this

regime.
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We have thoroughly studied the effect of AC Stark shift on the MOT, observing that

for large MOT beam detunings we can simply consider the AC Stark shift as dependent

on coupling beam intensity but for small MOTs that experience a range of magnetic

field directions, the polarisation of the coupling beam relative to the magnetic field must

be considered. This sensitivity to polarisation is particularly apparent when applying an

electric field to the dressed MOT, which shows a striking sensitivity to both the magnitude

of the electric field and the direction of the electric field relative to the magnetic field.

We believe this to be the first demonstration of a MOT that is sensitive to electric fields.

When we initially couple the cloud to the Rydberg state we create a perturbation that

causes heating of the cloud as the cloud settles into the new potential. This heating may

be associated with a mean cloud velocity if the coupling beam alignment and AC Stark

shift compensation is not optimal. However, the MOT continues to cool the Rydberg

dressed atoms and the cloud returns to its initial temperature within 3 ms. The cloud

lifetime at low density is longer than this time, allowing the Rydberg dressed MOT to

be used as a many-body quantum simulator, but only if the rapid loss process observed

in Figure 5.15 can be suppressed. The investigation of this loss process forms the basis

of Chapter 6.



Chapter 6

Losses in a Rydberg dressed MOT

In Chapter 5 we characterised a Rydberg dressed MOT with respect to cloud shape,

cloud dynamics and trap lifetime, using imaging of ground state atoms. We would like

to increase the density in the Rydberg dressed MOT to the Rydberg dressed interaction

regime, but a rapid loss process shown in Figure 5.15 limits the cloud density to below

the interacting regime. In this chapter we will study this loss process using time-resolved

ion detection, allowing us to attribute this loss process to the formation of a plasma. To

do this we will:

� Present data on the ion signals detected in dressing experiments, identifying signa-

tures and stages of plasma formation.

� Provide an outline of ultracold plasma physics.

� Present some Rydberg dressing experiments studying the different stages of the

plasma.

� Identify a range of solutions to eliminate the plasma.

From the study of the plasma, we will present regimes in which we expect to avoid the

formation of a plasma, allowing us to identify regimes in which we may observe Rydberg

dressed interactions in a Rydberg dressed MOT.

Aspects of this analysis were performed after datataking was completed, so at times

hypotheses have been tested against data taken for other purposes, rather than more

direct experiments.

105
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6.1 Ion signals from the Rydberg dressed MOT

A key tool to study the loss mechanism in the dressed MOT is to observe the ions

generated during dressing. In this section we will describe the ion signals that we observe

whilst Rydberg dressing the MOT, identify four stages within the ion signals, and show

that these stages are consistent with the formation of an ultracold neutral plasma that

causes accelerated atom loss from the trap.

Figure 6.1 shows ion signal from the dressed MOT presented in Section 5.6. We detect

without autoionisation or steering electric fields.
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Figure 6.1: Atom number (blue circles) and ion number (red crosses) from the dressed

MOT as a function of total dressing time for PMOT = 20 µW (a) and PMOT = 40 µW (b).

We see massive ion signals on a similar timescale to the atom loss. By binning the ion

arrival times we measure an ion detection rate as a function of bin time, observing a very

sharp rise in detection rate followed by a rapid fall shown in (c), and a second, slower fall

after the initial drop in atom number shown in (d). Ions continue to be detected after

the dressing is turned off, indicated by the vertical dashed line.

We observe a mean ion signal of 〈N〉 ≈ 1, 600 in Figure 6.1(b), which is enormous by the

standards of this experiment, where we typically tailor Rydberg excitations to keep ion

detection below ∼ 50. Clearly, the rapid loss observed in Figure 5.15(a-b) is associated

with a massive ion signal. From an estimated detection efficiency of < 2% (described in



Chapter 6. Losses in a Rydberg dressed MOT 107

Section 3.3.2) this suggests that at least 5% of the ground state atoms are converted to

ions within the first 500 µs of dressing.

As we observe up to 90% of the atoms being lost from the images and on the order of

5% of the atoms being ionised the high loss rate must therefore be dominated by loss

to atomic states that are dark to detection through imaging. The 5s2 1S0 ↔ 5s5p 3P1

transition is closed, so for loss to dark states to occur, atoms must be excited to a Rydberg

state.

From the arrival times of the ions we observe an ion detection rate 〈Ṅ〉 explained in

Section 3.3.2. This time-resolution is a major strength of this work as it gives us a real-

time indication of the processes occuring in the Rydberg dressed MOT, and allows us

to observe processes over several orders of magnitude in ion detection rate. From the

ion detection rates we can identify four stages within the ion signals, shown in Figure

6.1(c-d).

Ions are first detected ∼ 40 µs after dressing begins, and the ion detection rate rises

sharply for ∼ 20 µs, shown in Figure 6.1(c). This initial delay and rise we will refer to

as the ‘seeding stage’.

The ion signal then falls for a few hundred microseconds, seen in Figure 6.1(c-d). This fall

time is largely exponential and occurs with the same timescale as the loss in atom number.

We therefore refer to this stage as the ‘rapid loss stage’. The peak ion detection rates

of ˙〈N〉 ∼ 8/µs are consistent with an ion production rate of ∼ 400/µs (see detection

efficiencies outlined in Section 3.3.2), which suggests that a sufficient accumulation of

ions in the cloud occurs to pass the plasma threshold, described in Section 6.2.

On a longer timescale ions continue to be observed whilst the coupling laser is on, shown

in Figure 6.1(d). The ion decay rate here is also exponential, although with a different

timescale to the decay in atom number after the rapid loss is complete. We refer to this

stage as the ‘stable MOT stage’.

Even when the coupling laser is turned off, ion detection does not completely stop, al-

though there is a drop in ion detection rate and a change in decay rate. This is shown

in Figure 6.1(d) and is referred to as the ‘slow ions stage’. The ions that appear after

the coupling laser is turned off can’t be attributed to the Rydberg state that we couple

to, due to the massive difference in 11 µs lifetime of 5s36d 3D1 Rydberg atoms and the

ion detection decay lifetime, which is on the order of milliseconds. Long-lived Rydberg

state atoms are a characteristic feature of ultracold Rydberg plasmas, populated through
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Rydberg-electron collisions and three-body ion-electron recombinations (considered more

in Section 6.2).

The conversion of a significant fraction of the cloud to ions [118], the large overall ion

signal [119], and the longlived ion signal [120, 121] after the coupling laser is off are

all characteristic features of plasmas. Another signature of Rydberg cloud to plasma

formation is a threshold with atom number [118], which we investigate by varying both

the ground state density and the MOT beam power.

Figure 6.2(a) shows the ion signal as a function of initial atom number for a range of

MOT beam powers after 5 ms of dressing, using the same coupling parameters as in

Figure 6.1. There is clearly a threshold of ∼0.6 million atoms at which ion signals start

being observed, this threshold appears to be dependent on MOT beam power.

MOT beam power /µW

Figure 6.2: (a) Ions detected as a function of initial atom number, for a range of MOT

beam powers from 16 µW (red) to 300 µW (blue). There is clearly a threshold density,

which is dependent on MOT beam power. (b) Increasing the red MOT beam power

increases the transfer efficiency into the MOT, but also increases the rapid loss. Varying

the red MOT beam power formed after loading a blue MOT to the radiation pressure

limit, we identify 9 µW as the MOT beam power that supports the highest atom number

without plasma formation.

This initial study suggests that the loss process is dependent on density and MOT beam

power, and associated with a significant fraction of the population being converted to ions.

From the rate of ion production we expect the ions in the cloud to exceed the plasma

threshold (considered more in Section 6.2). There is a clear threshold in ion signal with
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atom number. Finally, ions are detected well after the coupling laser is turned off. From

these findings we conclude that there is plasma formation within the Rydberg dressed

MOT.

To identify the maximum density that we can achieve without plasma formation we load a

blue MOT to the radiation pressure limit, then transfer this via a broadband red MOT to

a single frequency red MOT for a range of single frequency red MOT beam powers, before

dressing the MOT for 5 ms with compensation of the AC Stark shift. The resulting atom

numbers and ion signals are shown in Figure 6.2(b). The highest atom number occurs at

a MOT beam power of 9 µW, above this power plasma formation reduces the density of

the cloud, below this power transfer efficiency into the undressed MOT is prohibitively

low.

The peak ground state density that we can obtain after 5 ms of dressing is 1.3×1011 cm−3.

For a dressed state fraction of 10% (based on the MOT model), this corresponds to a

dressed state Wigner-Seitz radius of 2.6 µm. This is double the dressed blockade radius

of 1.3 µm at the 5s36d 3D1 Rydberg state. Clearly, the plasma occurs before we reach

the Rydberg dressed interaction regime.

To understand and eliminate the plasma, we must perform a detailed study of the plasma.

Before we do this, we provide a brief overview of ultracold neutral plasmas.

6.2 Ultracold plasmas

There are several studies and reviews of ultracold plasma physics (e.g. [122, 123]) and

Rydberg-plasma systems (e.g. [124]), which we do not seek to replicate in this work.

We will provide a brief overview of ultracold plasmas, describing what they are and

the evolution of Rydberg gases to plasmas, and we will identify some experiments that

are very relevant for our system. This will allow us to identify suitable experiments to

investigate plasma formation.

Plasma formation

Ultracold neutral and quasi-neutral plasmas have been formed and studied since 1999

[125], commonly by photoionising laser cooled atoms. Conservation of momentum results

in the energy difference between the photoionising photon and the ionisation potential
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being largely transferred to the electron, resulting in hot electrons that rapidly disperse

leaving a cluster of cold ions. If the Coulomb potential of the cold ions exceeds the kinetic

energy of the electrons the electrons are bound to the cloud, resulting in a plasma.

For a plasma to form the Coulomb potential of the cold ions must be sufficient to bind

electrons to the cloud. Rydberg atoms may ionise through many mechanisms, but typ-

ically the electron kinetic energy is on the order of the binding energy of the Rydberg

state [126]. At n = 36, this is ∼ 3 THz.

The binding energy of the ions for a single electron is given by [84]:

Ui =

√
2

π

Nie
2

4πε0r
, (6.1)

where r is the electron distance from the Ni ions. For a typical cloud length of 50 µm

the ion binding energy matches the electron kinetic energy for Ni = 670. If the cloud

contains 670 ions we therefore expect a plasma to occur. Given the very high electron

speeds and the very small cloud sizes, we expect untrapped electrons to clear the cloud

very quickly (on the order of ns).

We can make a rough estimate of the atom number required to reach the plasma threshold

in the one-body case by considering the Rydberg fraction, the ionisation rate and the stray

electric field. It is not trivial to calculate an expected Rydberg fraction as the detuning

of the MOT beams varies across the cloud and we are in the AC Stark shifted regime,

but a simple estimate based on 10% of the atoms being in the dressed state (based on the

MOT model) and a Rydberg fraction of Ω2
C/4δ

2
C in the dressed state suggests we expect

a Rydberg fraction of around 0.28%.

We can make a rough estimate from the ionisation rate and the stray electric field as to

the atom number required to reach the plasma threshold, based on one-body excitation

and ionisation. A stray electric field of 20 mV/cm (documented in Section 3.1.3) will

remove a singly ionised stationary strontium ion from a 50 µm cloud in 6.7 µs. From

Figure 4.10 we estimate probability of spontaneous ionisation of 5s36d 3D1 state atoms

to be ∼ 0.2. From the Rydberg state lifetime of 11 µs, we can therefore estimate that for

every Rydberg atom in the cloud, there will be a 0.2 × 6.7/11 ≈ 0.13 ions in the cloud.

Given the Rydberg fraction of 0.28% we expect 3.6× 10−4 ions per atom in the cloud.

To reach 670 ions in the cloud, we therefore require ∼ 1.8 million atoms in the cloud.

These are rough estimates, but clearly the predicted plasma threshold is substantially
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more than the plasma threshold of ∼ 600, 000 observed in Figure 6.2(b). This suggests

there must be an enhancement of Rydberg excitation or ionisation in the dressed MOT.

A key property of plasmas is the ability of the bound electrons to redistribute to shield

the plasma from the effect of an applied electric field [127]. This redistribution marks the

divide between individual responses of charged particles and collective behaviour and is

described by the Debye screening length λD. When the ion temperature is much lower

than the electron temperature the Debye wavelength is given by λD =
√
ε0kBTe/e2ne

where Te and ne are the electron temperature and density [128]. For an electron kinetic

energy of 3 THz and a charge density corresponding to 670 electrons in a 50 µm cloud

(all typical values), we obtain a Debye length of 7.4 µm, much less than the size of the

cloud.

A Debye length that is smaller than the cloud but larger than the interparticle separation

is a significant result. It suggests that whilst the cloud will be shielded from externally

applied electric fields, electrons in the plasma will not be sufficient to shield the atoms in

the cloud from the ions in the plasma. Atoms in the cloud will experience large variation

in electric fields.

Another key measure of ultracold plasmas is whether they are strongly coupled i.e.

whether the Coulomb potential energy between ions is larger than the kinetic energy

of the plasma [128]. This has a significant effect on the evolution of the plasma. From

estimates of the electron energy and the Coulomb repulsion of ions we expect not to be

in the strongly coupled regime.

Plasma evolution

Typically during ultracold plasma formation the ion temperature is initially dominated

by the pre-ionisation atom temperature and the electron temperature depends on the

ionisation process. Electron gas pressure [128] or disorder induced heating between ions

[129] then results in expansion of the cloud of ions [130, 131] reaching ion expansion

velocities on the order of 40 m/s [128]. As the cloud expands, the Coulomb potential

falls, and previously trapped electrons can escape.

As the plasma expands three-body recombinations can occur, which populate high angu-

lar momentum Rydberg states [121]. The three-body recombination typically consists of

a single ion and two electrons, and is therefore very dependent on both electron density

and electron energy [132]. This is not the only process that can populate high angu-
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lar momentum Rydberg states; if Rydberg atoms are present in the cloud before plasma

formation these can be redistributed to high angular momentum states through Rydberg-

electron collisions [133]. These long-lived Rydberg atoms are responsible for the ‘slow ion

stage’ shown in Figure 6.1(d).

Rydberg gas evolution to plasma

There has been a lot of interest in the evolution of clouds of Rydberg atoms into ultracold

neutral plasmas given the potential to create strongly coupled plasmas i.e. with Coulomb

interaction strengths that significantly exceed the kinetic energy of the charged particles

[118]. In addition, Rydberg blockade can lead to structure in the Rydberg spatial distri-

bution, which may reduce the effect of disorder induced heating [129].

Experiments have studied several ionisation mechanisms for Rydberg atoms, studying the

effect of blackbody radiation [134], Penning ionisation between Rydberg atoms [135, 136]

and ground or intermediate state atoms [137], collisions with hot Rydberg atoms [126]

and many-body ionisation processes [119]. All of these may influence the ‘seeding stage’

of the plasma.

The key feature of Rydberg plasma formation is an avalanche ionisation process that

occurs when the ions pass the plasma threshold. At this point, electrons are bound to

the cloud and Rydberg-electron collisions rapidly ionise the Rydberg population, resulting

in more ions and electrons [118]. In addition to ionising collisions, collisions between

Rydberg atoms and electrons can transfer Rydberg atoms to long-lived high angular

momentum Rydberg states with long lifetimes and high probability of ionising due to

blackbody radiation[120].

Of particular interest to us is the work of [137], [138] and [139]. Whereas in most of the

experiments referenced above, in which a Rydberg population is excited and then left to

evolve without coupling lasers present, in these cases resonant coupling to the Rydberg

state is sustained during plasma formation, allowing continuous Rydberg excitation in

the plasma. In [137] an ultracold gas of Rb is excited to the Rydberg state in the strongly

blockaded regime. As Rydberg atoms ionise through blackbody radiation and collisions

the ion number in the cloud grows until the plasma threshold is reached. At this point

the Rydberg population experiences strong ionisation through collisions with electrons,

breaking the Rydberg blockade and resulting in strong excitation to the Rydberg state.

In [138] the effect of three body recombinations is considered and found to partially limit
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the plasma by removing electrons and ions from the system. In [139] the effect of ion

blockade is considered as a broadening of the Rydberg line and a reduction in the Rydberg

excitation rate - in this case the Rydberg excitation rate is reduced by the presence of the

plasma through ion blockade, rather than in [137] where ionisation breaks the Rydberg

blockade, enhancing Rydberg excitation.

From the above work we conclude that van der Waals interactions and Coulomb inter-

actions are the likely processes that may modify plasma seeding and Rydberg excitation

in the plasma. Figure 6.3 shows the energy level shift of a 5s36d 3D1 state atom as a

function of distance from another 5s36d 3D1 state atom and an ion.

r/
µ

m

Figure 6.3: Energy shift of the 5s36d 3D1 Rydberg state in response to the the DC Stark

shift due to an ion (blue) and the van der Waals shift of another atom in the 5s36d 3D1

Rydberg state (orange), averaged over mJ states.

To study these processes of van der Waals and Coulomb interactions we will vary the

coupling beam detuning (equivalent to the x-axis of Figure 6.3) and the ground state

density (equivalent to the y-axis of Figure 6.3). There are two key questions we must

answer in this plasma study. Firstly, we must understand why we observe a plasma

threshold that is so much lower than the predicted plasma threshold. Secondly, we must

understand why the Rydberg excitation rate is so much higher in the plasma than after

the plasma disperses.
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6.3 Seeding the plasma

In Figure 6.1 we identify a seeding stage in the plasma formation, consisting of a delay

of ∼ 40 µs followed by a sharp rise in ion detection rate lasting ∼ 20 µs. In Figure 6.3

we show that coupling beam detuning and atomic density are the natural parameters to

study this process.

〈Ṅ〉/µs−1

〈Ṅ
〉/
µ

s−
1

Figure 6.4: (a) Ion detection rate as a function of arrival time from when the coupling

begins, for two coupling beam detunings indicated by dots in (d). Taking a series of

coupling beam detunings, we create colourmaps of ion detection rate against time and

coupling beam detuning, shown for different densities (b-f). We can also measure a

seeding time from when a threshold is crossed, indicated by the dashed lines in (a).

Figure 6.4 shows ion detection rates for a series of dressing experiments. Figure 6.4(a)

illustrates the ion detection rate as a function of arrival time at two coupling beam

detunings. Repeating this for a wide range of coupling beam detunings we build up

a colourmap of the ion detection rate against arrival time and coupling beam detuning.
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This is then repeated for a range of densities to build a thorough picture of the parameter

space in which the plasma exists.

This offers a very striking visualisation of the ion signals from the dressed MOT. Starting

from low density (Figure 6.4(b)), we see very few ions, and the ions that we do see have

little structure in their arrival times. Increasing the density we see a rise in ion detection

rate on resonance and for small red-detunings consistent with van der Waals enhanced

Rydberg excitation (Figure 6.4(c-d)). Increasing the density further (Figure 6.4(e-f)) the

broadening of the feature to the red-detuned side continues, and ions appear earliest when

red-detuned rather than on resonance. In addition, strong ion signals are observed when

blue-detuned with large variation in seeding time. As well as large variation in seeding

time these ion signals are highly super-Poissonian. This is shown in Appendix G. The ion

signals when red-detuned are also super-Poissonian until MCP detector saturation occurs.

Super-Poissonian ion detection is consistent with Rydberg or Coulomb anti-blockade and

Rydberg density dependent ionisation.

A drop in detection rate at δC = −12 MHz and −14 MHz in Figure 6.4(c) and (f)

corresponds to the 689 nm laser unlocking from the cavity and the MOT being lost for

some of the shots. Between 12 and 20 repeats were taken for each detuning (more repeats

at lower densities), the ion detection rates are the mean of all repeats. The MOT beam

detuning is δMOT = −210 kHz, resulting in a cloud that is larger than the coupling beam,

and the MOT power is 500 µW. This high MOT beam power results in plasma formation

at relatively low ground state densities.

In Appendix G we demonstrate that reducing the cloud size and MOT beam power

increases the density at which plasma formation occurs. This is consistent with a reduced

Rydberg fraction and an increased plasma charge density threshold. Ionising collisions

between Rydberg atoms and excited state atoms may also be reduced.

6.3.1 Van der Waals interactions

We expect van der Waals interactions to increase the Rydberg excitation rate when the

coupling beam is red-detuned from the 5s36d 3D1 state due to the attractive van der Waals

interactions of this state. This is illustrated in Figure 6.5 - when a ground or excited

state atom is at a distance from a Rydberg atom where the van der Waals interaction

shift matches the coupling beam detuning there will be a strong enhancement of Rydberg

excitation rate.
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Figure 6.5: Ground or excited state atoms may be excited in the presence of a Rydberg

atom when the van der Waals interaction strength equals the coupling beam detuning

(left). We can estimate the range of interaction strengths the atoms will experience by

overlaying the van der Waals interaction strength of the 5s36d 3D1 state (black line)

and the intermediate state interparticle distributions (shown for ground state densities

of 7.3× 1010 cm−3 (pink) and 2.7× 1010 cm−3 (light blue)). Also shown is the time taken

for the attractive van der Waals interactions to result in collisions of Rydberg atoms.

From the atomic density we can estimate an interparticle separation for the ground or

intermediate state, and calculate the most probable interparticle separation, shown in

Figure 6.5. In Regime II MOTs half of the population occupies the intermediate state,

which will experience stronger one-photon coupling to the Rydberg state than the two-

photon coupling of ground state atoms to the Rydberg state. We will therefore consider

the intermediate state particle density.

To compare the density-dependent van der Waals interaction shift illustrated in Figure

6.5 to the density-dependent seeding of the plasma observed in Figure 6.4 we measure a

seeding time, defined as the first point at which ˙〈N〉 > 3〈N〉/µs a. This is illustrated in

Figure 6.4(a). This seeding time is a measure of when the ion detection rate begins to

rise (as the rise does not begin as soon as the coupling laser is turned on) and includes a

aWe reduce the bin size to 200 ns to improve our time-resolution at the expense of greater noise on

the ion detection rate. A threshold of ˙〈N〉 > 3/µs is the lowest threshold at which we avoid ‘false seeding’

measurements, where the noise exceeds this threshold.
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∼ 35 µs delay between when the ions are created and when the ions reach the detector,

we subtract this delay and invert to get a seeding rate, shown in Figure 6.6. b
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Figure 6.6: The ion detection seeding rate (blue crosses and dotted line) and the most

probable van der Waals interaction strength (dashed black vertical line), calculated from

the density. We see good agreement between the most probable interaction strength and

the highest seeding rate. Penning ionisation and Rydberg excitation from the ground

state may both increase the seeding rate at larger red-detunings, and one-body excitation

in the low power regime is expected to draw the peak seeding rate closer to resonance.

We can clearly see a broadening and a shift to the red-detuned side of resonance with

increasing density and a broadening with increasing coupling beam power from the data

given in Appendix G. Particularly at high densities greater than 2.7 × 1010 cm−3 and

powers greater than 2.5 mW we see good agreement between the most probable inter-

action strength and the peak seeding rate. We therefore conclude that van der Waals

bAlso included in this Figure is seeding rates for different coupling beam intensities. The raw data

from which this is taken are shown in Appendix G.
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interactions therefore play a major role in Rydberg atom excitation at high densities and

powers when the coupling beam is red-detuned.

A final effect of van der Waals interactions we must consider is illustrated on the right

hand axis of Figure 6.5. The 5s36d 3D1 Rydberg state exhibits attractive van der Waals

interactions, so a pair of Rydberg atoms will draw themselves together and ionise (col-

lisional ionisation). The greater the coupling beam red-detuning, the closer the pair of

Rydberg atoms will be, and the faster the pair will collide [136]. The collision times shown

in Figure 6.5 have been estimated from the C6 coefficients, from which an interatomic

force can be calculated. Consequently, Rydberg atom pairs have a higher ionisation prob-

ability when excited with red-detuned coupling light. This gives rise to a seeding rate

shift to the red-detuned side of resonance and a Rydberg-density-dependent ionisation

mechanism that may give rise to super-Poissonian ion statistics. We observe lower spon-

taneous ionisation on the van der Waals anti-blockade side of resonance for repulsive van

der Waals interactions at the 5s37s 3S1 state in Appendix G.

In the analysis presented in this section we have shown that the van der Waals interaction

shift is comparable to the shift observed in the seeding rate of the plasma. In addition,

van der Waals interactions are consistent with the super-Poissonian ion signals that we

observe. We are therefore confident that van der Waals interactions are responsible for

rapid seeding of Rydberg excitation when the coupling beam is red-detuned. Later in the

section we will present further data whilst coupling to the 5s37s 3S1 state where the van

der Waals interaction is repulsive, corroborating this interpretation of the data. Before

doing this, we will consider the role that we expect ions to have on Rydberg excitation.

6.3.2 Charges in the cloud

In Figure 6.3, we identify van der Waals interactions and Coulomb interactions as likely

causes for enhancement of Rydberg excitation. In Figure 6.4 we clearly observe very

different seeding times, variation in seeding time, and different seeding density thresholds

when the coupling beam is red-detuned to blue-detuned. This is consistent with different

seeding mechanisms either side of resonance. Having shown the role that van der Waals

interactions play, we now consider the role that ions play.

We can consider the DC Stark shift that a Rydberg state will experience as a function of

distance from an ion. This is shown in Figure 6.7 - at a detuning dependent ‘Coulomb

anti-blockade’ distance the DC Stark shift will match the coupling beam detuning and
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we will see a strong enhancement of Rydberg excitation rate. As we will show in this

section, for relevant experimental parameters, this anti-blockade radius is comparable to

the separation of atoms from ions. As with the Rydberg anti-blockade, this excitation

enhancement will result in super-Poissonian ion statistics.

In Figure 6.7 we quantify the effect of the Coulomb anti-blockade on the Rydberg frac-

tion. We have estimated the fraction of atoms in the Rydberg state PRyd using the

two-level optical Bloch equations to avoid the challenges of modelling a varying MOT

beam detuning across the cloud i.e.

PRyd(r) = PE
1

2

Ω2

Ω2 + 2(δC − δDC)2
. (6.2)

Here PE is the fraction of atoms in the excited state, which in a Regime II MOT is 1/2. δC

and δDC are the coupling beam detuning from the unshifted state and the DC Stark shift

of the Rydberg state and Ω is the one-photon coupling to the Rydberg state from the

excited state. This two-level treatment treats half of the atoms as completely uncoupled

from this two-level system (i.e. in a ground state that plays no further part in Rydberg

excitation) and the other half as occupying a two-level system of the excited state and

the Rydberg state. This will understate the Rydberg fraction, but is sufficient to test

whether ions in the cloud may strongly modify the Rydberg excitation rate.

To estimate the effect that ions have on the cloud we weight the charge-modified Rydberg

fraction PRyd(r) given by Equation 6.2 and shown in Figure 6.7 by the probability of

finding an atom in a shell of thickness δr and radius r:

PRyd ≈
∫ rion

0
PRyd(r)× 4πr2δr

4/3πr3
ion

. (6.3)

The limit of this integral is the ion Wigner Seitz radius rion, requiring us to estimate

the ion density. In Section 6.2 we estimate that with one-body Rydberg excitation and

ionisation we have 3.6 × 10−4 ions per atom in the cloud for a Regime I MOT and a

coupling beam detuning of δC = +12 MHz. In a Regime II MOT this rises to 1.8× 10−3

ions per atom as half of the atoms are in the excited state, rather than 10%.

From Figure 6.4 we observe plasma formation, evidenced by very large ion signals, in 3 of

12 shots for an atomic density of 7.3×1010 cm−3 and δC = +12 MHz. We will consider the

effect of Coulomb anti-blockade at this density. In the one-body excitation and ionisation

case a density of 7.3× 1010 cm−3 corresponds to an ion density of 1.3× 108 cm−3 and an
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r/µm
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Figure 6.7: DC Stark shift (red) of the 5s36d 3D1 Rydberg state for the |mJ | = 0 (solid)

and |mJ | = 1 (dashed) sublevels, and Rydberg state fraction (blue) for a two-level system

with coupling beam detuning of +12 MHz (dashed black line) that has been DC Stark

shifted, as a function of distance r from an ion. The black dotted line indicates the

unshifted fraction. The fraction of atoms that experiences this shift is proportional to r2,

illustrated in the inset.

ion Wigner-Seitz radius of rion = 12 µm.

Numerically solving Equation 6.3 for an ion Wigner-Seitz radius of rion = 12 µm we

predict a Rydberg fraction of 1.8%, compared to the one-body case of 1.3%. This estimate

is an average of the two Rydberg sublevels. As a first order approximation we therefore

expect an increase in Rydberg excitation rate on the order of 35% in response to ions in

the cloud. This is a significant increase in the Rydberg excitation rate, and suggests that

charges in the cloud will increase the Rydberg excitation rate when the coupling laser is

blue-detuned.

This is a first iteration - as charges increase the Rydberg fraction, the rising Rydberg

fraction will increase the charge density. Iteratively recalculating the ion Wigner-Seitz

radius rion we observe convergence within ∼ 5 iterations, reaching a Rydberg fraction of

2.0%. We therefore expect ions in the cloud to increase the Rydberg excitation rate by a

factor of ∼50%.

This factor is very dependent on the ionisation probability and the ion extraction time
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that set the ratio of ions per Rydberg atom in the steady state. For example, if this ratio

is doubled (i.e. a higher ionisation probability or atoms remaining in the cloud for longer)

this technique predicts the Rydberg fraction will rise to 3.5%, a 165% increase on the

one-body case. Recalling that there is approximately a factor of three between the esti-

mated plasma threshold based on one-body Rydberg excitation and the observed plasma

threshold in Figure 6.2(a), ion enhanced Rydberg excitation may be a very significant

factor in the seeding of the plasma.

This technique is meant only to estimate whether the role of ions in the cloud is significant

to the Rydberg excitation rate prior to plasma formation. It has several limitations, most

significantly, it does not consider two-photon excitation, it averages over the effect of MOT

beam detuning and it does not consider collisional ionisation processes. All of these effects

mean that this approach will understate the increase in Rydberg excitation rate due to

ions in the cloud. However, it is sufficient to show that ions from spontaneously ionised

Rydberg atoms have the potential to significantly increase the Rydberg excitation rate

when the coupling beam is tuned to the Coulomb anti-blockade side of resonance.

6.3.3 Variation of Rydberg state

From these analyses we believe van der Waals interactions and Coulomb interactions

may both enhance the Rydberg excitation rate. The natural test of this is to vary the

Rydberg state that we couple to. We have coupled the MOT to both the 5s36d 3D1 state

(at which all of the data in this chapter to this point has been taken), which has attractive

van der Waals pair interactions and a negative polarisability, and also to the 5s37s 3S1

state, which has repulsive van der Waals pair interactions and a positive polarisability.

This makes a comparison between the two a valuable technique for testing hypotheses

involving van der Waals and Coulomb interactions.

Whilst coupling to the 5s37s 3S1 state we used autoionisation after dressing to probe the

spontaneous ion and Rydberg population, rather than the continuous detection technique

used whilst coupling to the 5s36d 3D1 state. Whilst this prevents a direct comparison

between the two states, the use of autoionisation offers significant insight. In particular,

the ability to distinguish between spontaneously ionised atoms and autoionised atoms

described in Section 3.3.2 allows us to observe the relationship between ion population

and Rydberg population.

In Figure 6.8 we present ion signals, separated by arrival time to distinguish between spon-
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Figure 6.8: Coupling the cloud to the 5s37s 3S1 state and performing autoionising laser

pulses with steering electric fields after dressing, we can distinguish between sponta-

neously ionised Rydberg atoms (a) and autoionised Rydberg atoms (b). We dress the

cloud for 1 ms (red), 3 ms (black) and 5 ms (blue).

taneously ionised Rydberg atoms and autoionised Rydberg atoms, taken whilst coupling

to the 5s37s 3S1 Rydberg state for varied dressing times and coupling beam detunings.

This is the same dataset that was shown in Figure 5.1.

We see a strong shift to the red-detuned side of resonance in spontaneous ion signal

after 1 ms of dressing relative to longer dressing times. This is consistent with a plasma

formation increasing both Rydberg excitation and ionisation rate on the Coulomb anti-

blockade side of resonance, which for the positive polarisability of the 5s37s 3S1 state is

red-detuned. This dies away quickly, due to the short timescale of plasma formation.

In contrast the autoionised ion signals show a clear shift to the blue-detuned side of reso-

nance. We attribute this to van der Waals enhanced excitation - a +12 MHz interaction

shift corresponds to a pair separation of 1.9 µm for the doubly excited 5s37s 3S1 state,

whilst the ground state density of 1011 cm−3 corresponds to a ground state Wigner Seitz

radius of 1.3 µm (the excited state Wigner-Seitz radius is greater than this). We don’t

observe a rapid decay in signal except on resonance, which is expected given that we only

see strong depletion on resonance (discussed in Section 5.1.1).

Notably the spontaneous ion signal and the autoionised ion signal do not match each

other even after the plasma formation, with the autoionised ion signal stronger than the

spontaneously ionised ion signal when blue-detuned and vice versa when red-detuned.

Recalling from Figure 6.5 that attractive van der Waals interactions may lead to strong
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ionisation of pair states, we note that this is not the case for the repulsive van der Waals

interactions of the 5s37s 3S1 state. In Appendix G we show further evidence of collisional

ionisation occuring for the 5s36d 3D1 state but not for the 5s37s 3S1 state through the

use of coupling beam intensity ramps.

Only two repeats are taken at each coupling beam detuning, the average of which is

shown, limiting our analysis to a qualitative study. However, the signals shown in Figure

6.8 are fully consistent with the hypothesis that both van der Waals interactions and

Coulomb interactions can strongly enhance the Rydberg excitation rate on the van der

Waals anti-blockade and Coulomb anti-blockade side of resonance.

Seeding processes

In this section we have estimated the most probable van der Waals interaction strength for

a range of atomic densities and found the shift resulting from van der Waals interactions

to be consistent with enhanced excitation rates for a range of densities and coupling

beam powers. We also observe strong spontaneous ionisation on the van der Waals anti-

blockade side of resonance for the attractive van der Waals interactions of the 5s36d 3D1

state, which is not observed for the repulsive van der Waals interactions of the 5s37s 3S1

state, consistent with Penning ionisation for attractive van der Waals interactions.

We have also estimated the Coulomb interactions that we expect from ionised Rydberg

atoms in the cloud and found the effect to be significant at the densities at which we

observe plasma formation.

We are therefore confident that both van der Waals interactions and Coulomb interactions

can result in a drastically increased Rydberg excitation rate compared to the one-body,

off-resonant case. In turn, this increased Rydberg excitation rate results in a greater ion

population in the cloud, which then results in plasma formation. When the Rydberg state

that we dress with exhibits attractive van der Waals interactions there is an additional

collisional ionisation mechanism. There may be other effects that modify the ionisation

rate, but these are beyond the scope of this study.

Having shown the effect of interactions in the seeding of the plasma, we must now consider

why the plasma increases the Rydberg excitation rate.
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6.4 Rapid loss during plasma formation

As shown in Figure 6.1, we observe massive loss from the MOT whilst the plasma ex-

ists. We have studied the plasma seeding mechanisms of van der Waals interactions and

Coulomb interactions, we now consider why the Rydberg excitation rate is so high in the

plasma. We will focus this study on the regime that we expect to observe Rydberg dressed

interactions in. For the 5s36d 3D1 Rydberg state, this occurs at δC = +12 MHz, where

Coulomb interactions are the natural candidate for enhancing the Rydberg excitation

rate.

In this section we will estimate the charge density in the cloud and show that charges in

the cloud are sufficient to drastically increase the Rydberg excitation rate in the cloud.

We then compare the predicted loss rate that results from Coulomb enhanced Rydberg

excitation to observed ion detection rates and atom loss rates.

6.4.1 Charges in the plasma

As we have discussed previously, we expect a plasma to occur when the number of ions in

the cloud passes a threshold at which electrons are bound to the cloud. Electron pressure

or Coulomb repulsion will cause plasma expansion, reducing the charge density, and

Rydberg excitation and ionisation will increase the charge density. Whilst the Rydberg

excitation and ionisation rate is sufficient to compensate plasma expansion, the plasma

will continue to exist.

Given the unknown plasma expansion rate, the modified excitation rate within the cloud,

and the dependence of collisional ionisation on the electron density and temperature, it

is not trivial to calculate a charge density. Neither is it obvious what the mean electric

field experienced by atoms in the plasma will be. Overall, the net charge of the cloud

is limited to the plasma threshold and electrons can shield the electric field produced

by ions over the Debye length of ∼ 7 µm [127], but the mean interparticle separation is

much less than this.

Having established that a quantitative calculation of the distribution of electric fields

within the plasma is too complex for this work, we instead make some simple estimates

of the charges in the cloud at the point the plasma is seeded.

A cloud of 50 µm containing 670 ions (the plasma threshold) corresponds to a charge
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density of 2× 109 cm−3 and an ion Wigner-Seitz radius of 4.9 µm. As we see from Fig-

ure 6.7 this is close to the 4.3 µm Coulomb anti-blockade radius at δC = 12 MHz for

the 5s36d 3D1 |mJ | = 0 state, so we expect a strong enhancement of Rydberg excita-

tion. Calculating the Rydberg fraction of the excited state using Equation 6.3 for an ion

Wigner-Seitz radius of 4.9 µm we expect the Rydberg fraction of the excited state to rise

to 6.3%, compared to 1.3% based on one-body Rydberg excitation and ionisation in a

Regime II MOT. This suggests that charges in the plasma will give rise to a very large

increase in Rydberg excitation rate.

Given the Rydberg state lifetime of 11 µs and the negligible probability of decay to the

ground state on the timescale of the MOT, a 6.3% Rydberg state fraction suggests a

cloud lifetime of ∼ 170 µs, considering only atom loss due to Rydberg excitation within

the plasma. This is comparable to the lifetimes measured in Section 5.7, although these

lifetimes are taken in Regime I MOTs.

Once the Rydberg excitation rate in the plasma falls below that necessary to sustain the

charge density against plasma expansion the plasma will disperse, leaving the MOT with

a largely one-body lifetime as measured in Section 5.7.

As previously discussed this treatment only considers Rydberg excitation from the excited

state, as to include two-photon excitation from the ground state is challenging given the

varying detuning and polarisation of the MOT beams. It is therefore better suited to

MOTs with high excited state fractions and will overstate the cloud lifetime.

6.4.2 Plasma lifetime

Having shown that the charge density of the plasma is sufficient to drastically increase the

Rydberg excitation rate and cause rapid depletion, we now compare the atom loss rate

to the ion detection rate. Figure 6.9 shows both the atom number and the ion detection

rate for a Regime II MOT, taken with δMOT = −140 kHz, PMOT = 230 µW. We observe

strong correlation between the atom number and the ion detection rate, confirming that

Rydberg excitation is responsible for the loss and that ionisation in the plasma results in

the ion signal that we observe.

The data are taken for three initial atom numbers. We see that the final atom number of

∼ 3× 104 is largely independent of the initial atom number. This is expected - the cloud

will be depleted through Rydberg excitation to the density at which Rydberg excitation
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Figure 6.9: (a) Atom number (points, left axis) and ion detection rate (dotted line,

right axis) for three initial atom numbers, indicated by colour. We see matching rapid

decay in atom number and ion detection rate until the plasma terminates. (b) Fitting

an exponential decay to the fall in atom number (blue crosses) and ion detection rate

(orange circles), we see a lifetime that rises with initial atom number.

is no longer sufficient to sustain the plasma.

The most surprising feature of Figure 6.9 is the dependence of the lifetime on the initial

atom number - higher initial atom numbers result in a slower decay in atom number and

ion detection rate. It is not clear why this is the case. Several mechanisms are discussed

in Appendix H, but a full study of this effect is beyond the scope of this work. We note

that a constant Rydberg excitation rate within the plasma is predicted in [139] due to

a plasma feedback mechanism in which Coulomb blockade limits the Rydberg excitation

rate to the rate at which ions leave the plasma. If the charge density varies across the

plasma the Coulomb blockade may not be complete across the cloud, resulting in an

exponential decay in atom number in the wings of the cloud and a linear decay in atom

number at the centre of the cloud. As the cloud must be ballistically expanded before

imaging to avoid optical depth problems we can’t observe this from the cloud images.

The plasma lifetime is quantified by fitting an exponential decay to the ion detection

rate after 80 µs of dressing and for 〈Ṅ〉 > 0.1/µs. We see plasma lifetimes that are

lower than the ∼ 150 µs predicted by Equation 6.3 and the plasma threshold, but not

incomparable. The model does not consider the role of electrons, which may suppress

the Coulomb blockade that occurs at very small distances (< 3 µm) from ions shown in

Figure 6.7, nor does it consider two-photon excitation from the ground state. Both of

these effects may increase the Rydberg excitation rate.
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From this simple model of ions in the cloud we are confident that the charge density in

the plasma is responsible for DC Stark shifting the Rydberg state onto resonance with

the coupling laser, resulting in strong Rydberg excitation and loss of atoms from the

trap. To observe Rydberg dressed interactions in the MOT we must avoid the enhanced

Rydberg excitation that occurs in the plasma.

6.5 Stable dressed MOT

In the previous sections we have studied the processes that result in plasma formation,

and that result in massive loss of trapped atoms during plasma formation. When the

depletion results in Rydberg excitation and ionisation being less than the ion loss rate,

the plasma will cease and both ions and electrons will disperse. At this point we have the

Rydberg dressed MOT that we set out to observe, but at too low a density to observe

Rydberg dressed interactions; the ‘stable dressed MOT’ in Figure 6.1(d).

Surprisingly, the rate at which the ion detection rate decays during the stable dressed

MOT stage (a lifetime of ∼ 2.5 ms), shown in Figure 6.1(d) is different to the rate at

which the atom number decays (a lifetime of ∼ 5.5 ms).

A second surprising feature of these data is that the ion detection rate is an order of

magnitude higher for the data taken at PMOT = 40 µW than at PMOT = 20 µW, despite

the atom number being a factor of two lower by the time the plasma finishes. These

two effects combined suggest that the ions detected in the stable dressed MOT stage are

attributable to something other than Rydberg excitation of atoms trapped in the MOT.

To quantify this effect we will use the ion detection rate from the stable MOT measured

after 1 ms of dressing, 〈Ṅ1ms〉. We compare this ion detection rate to the ground state

atom number in the stable dressed MOT measured after 1 ms of dressing, S1ms, the initial

atom number measured before dressing, S0ms, and the product of the two, S0ms × S1ms,

to look for correlations between ion detection rate and atom number. This is shown in

Figure 6.10. We do this for two MOT beam powers and three initial atom numbers.

We see poor correlation between the ion detection rate in the stable MOT and the atom

number in the stable MOT, confirming the that the ion detection rate from the stable

dressed MOT is not attributable to the atoms in the dressed MOT. We see much better

correlation between the ion detection rate in the stable dressed MOT and both the initial

atom number and the atom number product.
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Figure 6.10: Ion detection rate after 1 ms of dressing for PMOT = 230 µW (a-c) and

80 µW (d-f), plotted against the atom number after 1 ms of dressing (a, d), the initial

atom number (b,e), and the product of the two (c,f).

The correlation with initial atom number suggests this signal is related to atoms lost

during the plasma. This can’t simply be spontaneous ionisation of long-lived Rydberg

atoms as the ion detection rate drops when the coupling laser is turned off. We attribute

the signal to magnetically trapped metastable 5s5p 3P2 state atoms populated by atoms

decaying from Rydberg states. These atoms may photoionise due to the coupling laser, in

which case the ion detection rate should be proportional to the atoms lost in the plasma,

or they may collide with Rydberg atoms resulting in ionisation, in which case the ion

detection rate should be proportional to the product of the atoms lost in the plasma and

the atoms remaining after 1 ms.

For the magnetic field gradient we expect a magnetic trap gradient of 0.16 µK/µm [140]

for 5s5p 3P2 mJ = +2 state atoms. This trap depth is sufficient to confine atoms

close to the quadrupole field centre, suggesting that Rydberg atoms that decay to the

5s5p 3P2 mJ = +1,+2 state may be trapped near the magnetic quadrupole centre.

The coupling laser is of high enough energy to drive atoms in the 5s5p 3P2 state into

the continuum, photoionising the atoms. It is not trivial to calculate the photoionisation
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cross-section for the 5s5p 3P2 state, which is dependent on the excess photon energy (the

difference between the photon energy and the binding energy) of ∼9 THz for this state.

[141] measures the photoionisation cross-section of the 5s5p 3P1 state to be ∼11 Mb =

11 × 10−18 cm2 for excess energies on this scale. If we treat this as the same for the

5s5p 3P2 state, we can estimate a photoionisation rate for our coupling beam intensity.

The photoionisation rate is given by [142]:

R(ω) =
Iσω
~ω

. (6.4)

A peak coupling beam intensity of 180 W/cm2, and a photon frequency of 940 THz

corresponds to a photoionisation rate of ∼ 2.9 ms−1 and a lifetime of ∼ 300 µs, rising to

2.2 ms at the 1/e2 radius of the coupling beam. These numbers are consistent with the

observed ion detection rate decay times of ∼ 2 ms in the stable dressed MOT.

We have not attempted to calculate the probability of collisional ionsation of Rydberg

atoms due to collisions with metastable atoms, but we note that [137], [138] and [139] all

consider ionising collisions between Rydberg atoms and excited state atoms in modelling

plasma seeding. If the ion detection rate in the stable MOT was due to collisions we may

expect the ion detection rate to decay with the same rate as the atom number, ∼ 5 ms,

although if metastable state atoms are being lost from the trap, the detection rate may

fall faster than this.

From this analysis it appears likely that some atoms excited to Rydberg states decay

to magnetically trapped metastable states that can then be photoionised or result in

collisional ionisation. This is a reasonable expectation of the system - we know that a

large fraction of the cloud is lost to dark states, and only a small fraction of the lost

atoms are converted to ions. Some atoms will be lost to long-lived Rydberg states, but

we still expect a significant fraction of the dark state atoms to decay to metastable or

longlived lowlying states, some of which can be magnetically trapped.

This effect could explain the large delay in seeding time observed in Figure 6.4 when

the coupling beam is blue-detuned from the 5s36d 3D1 state. If a reservoir of atoms is

accumulated in the metastable state that may increase the ion production rate, either

through collisions or photoionisation, the probability of seeding the plasma may rise with

dressing time.

Regardless of the mechanism, the increased ion production rate due to metastable mag-

netically trapped atoms is not desirable as it increases the probability of plasma formation
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and prevents us from studying the ions generated from the stable dressed MOT. Future

experiments may use the 707 nm repump laser to depopulate the metastable state.

6.6 Slow ions

The final observed stage of the plasma is the ions that are detected well after the coupling

laser has turned off, observed in Figure 6.1(d). Ultracold neutral plasmas can create long-

lived high angular momentum Rydberg states through three-body recombination of ions

and electrons and Rydberg-electron collisions [121, 133].

These longlived Rydberg atoms act as a probe of the plasma dynamics - the probability

of recombination and collision are related to the electron density and the Rydberg atom

density. If the feedback mechanism proposed in [139], in which Coulomb blockade limits

the Rydberg excitation rate to the rate at which ions leave the cloud, occurs, we expect

evidence of this to be apparent from the longlived Rydberg population.

Figure 6.11(a) shows the ion detection rate in the slow ion tail stage for two dressing

times. Fitting an exponential to the slow ions we observe a lifetime and an initial ion

detection rate from the y-intercept, shown in Figure 6.11(b-c). This has been repeated

for a range of dressing times and initial atom numbers.

We see that the fitted peak ion detection rate, shown in Figure 6.11(c) rises until the

plasma ceases. This rise is largely linear for the first 200 µs, which is consistent with a

plasma charge density that is largely constant with time.

The rise is also fairly constant with initial atom number - there is an order of magnitude

between the lowest ground state density (blue, 0.4 million atoms) and the highest ground

state density (red, 3.6 million atoms), but there is never more than a factor of two between

the ions in the tail until the plasma terminates. This is true apart from the first datapoint

of 10 µs of dressing, at which point the plasma has not seeded at the lowest ground state

density. This suggests the charge density within the plasma is largely independent of both

ground state atom number and dressing time, consistent with the feedback mechanism

proposed in [139].

The combination of a density dependent plasma lifetime and the largely density inde-

pendent and linearly increasing number of long-lived Rydberg atoms populated during

plasma formation are consistent with the feedback mechanism proposed in [139] but the

data shown above is not sufficient to rule out all other possibilities. Further study may
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Figure 6.11: (a) Ion signals for a coupling laser turned off after 100 µs (blue) and 1 ms

(orange) and an initial atom number of 3 million. We observe an exponential decay in ion

detection rate after the coupling laser has turned off. Fitting to this (dashed lines), we

obtain a lifetime (b) and an initial ion detection rate (c) as a function of the dressing time

and the initial atom number. Colours indicate initial atom number, 0.4, 1.0, 1.4, 3.0 and

3.6 million atoms corresponding to blue, dark blue, black, brown and red respectively.

Taken with δMOT = −140 kHz, PMOT = 80 µW.

allow us to conclude the mechanisms that give rise to these phenomena.

The lifetime of the slow ions is consistently on the order of 1.5 ms, and may increase with

dressing time, but we do not have the resolution to determine this with the available data.

This lifetime may be a reflection of the range of lifetimes that will be populated through

collisions and recombinations, alternatively, it could be an artefact of the dispersion of

long-lived Rydberg atoms, which are not confined and may be much hotter than the

trapped atoms.

We have not observed any increase in ion detection in response to the autoionising 408 nm

laser during this stage, but for high angular momentum Rydberg states there is very little

orbital overlap between the Rydberg state electron and the excited state of the second

valence electron and we don’t expect the ∼GHz broadening of the autoionising transition

that occurs when coupling to low angular momentum states. A closer study using more

careful autoionisation and/or field ionisation may reveal the range of principal quantum

numbers and angular momentums states that the longlived Rydberg atoms have.
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The ions detected after the coupling laser is turned off are a useful tool for studying

the processes that occur during plasma formation. The data from these slow ions are

consistent with a process that limits the Rydberg excitation rate to a constant level,

regardless of ground state density, until the plasma disperses. This may be related to the

density dependent plasma lifetimes observed in Figure 6.9.

Plasma results

So far in this chapter we have shown that during the rapid loss of trapped atoms we

observe the formation of an ultracold neutral plasma. Studying the plasma dependence

on coupling beam detuning, atomic density, and Rydberg state, we observe facilitated

growth in Rydberg population due to both van der Waals and Coulomb interactions.

Within the plasma the high charge density DC Stark shifts the Rydberg state onto

resonance with the coupling beam, resulting in strong Rydberg excitation and rapid

loss of trapped atoms. Within the plasma, Rydberg atoms may be ionised, decay to

metastable states, or be transferred to longlived Rydberg states. Signatures of all of

these processes have been observed.

Having studied and understood the processes that give rise to plasma formation and

evolution, we can now identify regimes in which plasma formation may be eliminated or

suppressed.

6.7 Eliminating plasma-induced loss

To reach the Rydberg dressed interacting regime we must eliminate the plasma. We will

consider three approaches to this. First, we describe how optimum choice of Rydberg

state may avoid the Coulomb anti-blockade. Secondly, we consider the effect of an ion

extracting electric field. Finally, we consider some techniques to increase the plasma

threshold to the point that we can observe Rydberg dressed interactions.

The research group is now investigating these techniques, but a full study of these regimes

is beyond the scope of this thesis.
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6.7.1 Rydberg state selection

As explained in Section 2.3 the coupling laser must be detuned to the van der Waals

blockade side of resonance to be in the Rydberg dressed regime. This results in the

coupling beam being detuned to the Coulomb anti-blockade side of resonance for both

the 5sns 3S1 and 5snd 3D1 Rydberg series, illustrated in Figure 6.12. This results in

heavy loss of atoms during plasma formation. In the 5snd 3D2 Rydberg series a Förster

resonance at 5s37d 3D2 results in repulsive van der Waals interactions below n = 37 and

attractive van der Waals interactions above n = 37 in this Rydberg series. Consequently,

in the 5sn<37d
3D2 series the van der Waals blockade and the Coulomb blockade occur

on the same side of resonance, allowing us to Rydberg dress with red-detuned coupling

light and avoid both van der Waals and Coulomb enhanced Rydberg excitation.

r/
µ

m
r/
µ

m

Figure 6.12: DC Stark shifts (blue) and van der Waals shifts (orange) for the three

Rydberg series that we can strongly couple to from the 5s5p 3P1 state at two principal

quantum numbers. For the 5s n<37d
3D2 Rydberg series, the Coulomb anti-blockade and

the van der Waals anti-blockade both occur on the blue-detuned side of resonance.

Given that the C6 coefficients rise near a Förster resonance, the 5s36d 3D2 state is the
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most promising state for the observation of Rydberg dressing. For a predicted peak Rabi

frequency of 4 MHz and a coupling beam detuning of δC = −12 MHz we expect a two-

body, dressed interaction potential of 18 kHz, corresponding to a cloud temperature of

0.9 µK. The predicted C6 coefficient of 2.2 GHz µm6 corresponds to a dressed blockade

radius of 2.1 µm. For a typical atomic density of 1012 cm−3 and excited state fraction of

10% we can therefore expect up to 4 dressed atoms per dressed blockade sphere and a

many-body interaction up to 6 times greater than the two-body interaction of 18 kHz.

These values compare very favourably to the temperatures and densities we can achieve

in the Rydberg dressed MOT. In Section 5.4 we showed that compensating the AC

Stark shift of the dressed state caused by a non-uniform coupling beam is challenging

when coupling with red-detuned light, but an upgrade to the 319 nm coupling laser has

increased the laser output power, allowing us to use a larger more uniform coupling beam

to make it easier to compensate the resulting AC Stark shift on the MOT. In addition, the

polarisation dependence of the coupling beam considered in Section 5.4 will be reduced

by coupling to a J = 2 Rydberg state, as illustrated by Equation F.6 in Appendix F.

This is not the only route to Rydberg dressed interactions. We can attempt to observe

Rydberg dressed interactions in a MOT dressed with a higher principal quantum number.

As shown in Figure 2.12, the reduction in two-body Rydberg dressed interaction due to

a lower Rabi frequency is more than compensated by the rise in dressed blockade radius,

allowing us to reach the many-body interacting regime. The large C6 coefficients and

lower polarisabilities of the 5sns 3S1 Rydberg series offer more promise than the d-state

Rydberg series at high principal quantum number. However, the rising polarisability of

Rydberg atoms with principal quantum number, a falling electron kinetic energy with

principal quantum number and a coupling beam detuning that must fall with falling Rabi

frequency to maintain a reasonable Rydberg dressed interaction strength, mean that the

density at which the plasma terminates will fall sharply as the principal quantum number

of the Rydberg state that we couple to rises.

The most promising path to observing Rydberg dressed interactions in the MOT is there-

fore Rydberg dressing the MOT with the 5s36d 3D2 state. We expect to avoid plasma

formation by avoiding the Coulomb anti-blockade and, in addition, the repulsive van der

Waals interactions should reduce the collisional ionisation rate. We expect a two-body

dressed interaction strength comparable to the cloud temperature, and up to 4 dressed

state atoms per dressed blockade sphere.
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6.7.2 Charge-extracting electric field

Another technique to prevent plasma formation is to apply an electric field to remove

ions that result from spontaneously ionised Rydberg atoms and photoionised metastable

state atoms. Plasma formation occurs when the number of ions in the cloud passes a

threshold at which the Coulomb potential of the ions is greater than the kinetic energy of

the electrons. The longer ions remain in the cloud, the more likely it is that this threshold

will be reached.

Currently we rely on a stray electric field that we estimate as ∼ 20 mV/cm to remove

ions from the cloud. We can apply electric fields of up to 3.5 V/cm from the experimental

control program, which will extract ions from the cloud in ∼ 0.5 µs, rather than ∼ 7 µs,

potentially increasing the density that we can reach by a factor of 14. However, as we

show in Section 5.5, applying an electric field causes significant perturbation to the cloud

shape. This may inhibit the compensation of the AC Stark shift of the coupling beam. It

may also reduce the coupling strength that the cloud experiences, as the Rabi frequency

may be effectively split across transitions.

These issues are not insurmountable. A vertically applied electric field and a Regime I

MOT, in which atoms experience a primarily vertical magnetic field, will ensure that both

electric and magnetic field quantisation axes are the same. Use of a vertically polarised

coupling beam will ensure maximum coupling strength.

A strength of this charge-extracting electric field technique is that it is applicable to

a range of Rydberg states, rather than limiting the regime for which Rydberg dressed

interactions can be observed to a single Rydberg state.

6.7.3 Increasing the plasma threshold

There are several techniques to increase the density at which plasma formation occurs.

We can reduce the cloud size - the charge density at which plasma formation occurs is

proportional to r−2
MOT, so using a smaller MOT beam detuning and a larger magnetic field

gradient may increase the density that we can reach before plasma formation occurs.

Currently, the stability of the high-finesse cavity that we use to frequency stabilise the

689 nm laser limits the frequency stability of the laser to∼ 30 kHz, but the next generation

of this experiment will have a new high-finesse cavity that will allow us to improve the

frequency stability of the laser, potentially allowing us to work with MOT beam detunings
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much closer to resonance.

We can also optimise the transfer efficiency into the single frequency red MOT. The

density at which plasma formation occurs is dependent on MOT beam power - if we

increase the transfer efficiency into the single frequency MOT we can use a lower MOT

beam power, reaching a higher density without plasma formation occuring. We can

increase the transfer efficiency by optimising the ramps in the magnetic field gradient

and MOT beam power discussed in Section 3.2 and we may be able to use shelving

of atoms in the 5s5p 3P2 magnetically trapped metastable state to avoid the radiation

pressure that limits the blue MOT density. We must be confident of recovering these

atoms from the metastable state to avoid photoionisation or collisional ionisation.

We can also use repump lasers during Rydberg dressing to remove atoms from the

metastable magnetically trapped 5s5p 3P2 state. A build-up of atoms in this state may

result in an additional source of ions, increasing the probability of plasma formation.

With a higher plasma threshold, filtering of results may allow us to remove shots in which

plasma formation occurs, similar to the technique used to avoid resonant dipole-dipole

seeding shown in [63].

A combination of these techniques, possibly in conjunction with optimum Rydberg state

selection and ion extracting electric field, may allow us to observe Rydberg dressed in-

teractions within the cloud without plasma formation.

6.8 Summary of plasma losses

In this chapter we set out to identify the cause of the catastrophic loss in atom number

observed in the Rydberg dressed MOT whilst off-resonantly coupling to the 5s36d 3D1

state. Through time-resolved ion detection we have observed ∼ 5% of the ground state

population being converted to ions on the same timescale of the loss in atom number, a

clear threshold with ground state density, and sustained ion detection after the coupling

laser is turned. From these results we conclude that this loss is associated with the

formation of an ultracold neutral plasma.

Studying the regime in which this plasma exists we observe facilitated growth in Rydberg

population that may be facilitated either by van der Waals interactions when red-detuned

from the 5s36d 3D1 or, at higher ground state density, by Coulomb interactions when

blue-detuned. When coupling to the 5s37s 3S1 state, for which the van der Waals and
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Coulomb interactions occur with opposite signs to the 5s36d 3D1 state, we still observe

signatures of facilitated growth, but the repulsive van der Waals interactions do not

result in high ionisation rates of pairs of Rydberg atoms observed whilst coupling to the

5s36d 3D1 state.

The ions resulting from collisions and spontaneous ionisation are sufficient to bind elec-

trons to the cloud, resulting in plasma formation. Within the plasma, charges DC Stark

shift the 5s36d 3D1 Rydberg state onto resonance with the blue-detuned coupling beam,

resulting in a very strong enhancement of the Rydberg excitation rate. It is this enhance-

ment that results in rapid depletion of ground state atoms. This is the first time this

effect has been observed.

Curiously, the lifetime of the plasma rises with ground state density. Several mechanisms

for this have been hypothesised in Appendix H, particularly the feedback mechanism

between Rydberg excitation and plasma expansion proposed in [139], but it is an open

question as to why this occurs. During the plasma formation, Rydberg atoms can de-

cay to the metastable and magnetically trapped 5s5p 3P2 state, which may either pho-

toionise or collide with Rydberg atoms, resulting in ionisation. This decay to metastable

magnetically trapped states is something that may create an additional ion production

mechanism, potentially increasing the probability of plasma formation. We also observe

long lived high angular momentum Rydberg states that spontaneously ionise with high

probability and are detected after the coupling laser is turned off. These act as a probe of

the processes occuring during plasma formation, and imply a charge density in the cloud

that is largely constant with dressing time and ground state density, consistent with a

feedback mechanism between plasma expansion and Rydberg excitation.

A combination of the different probes of the plasma processes (time-resolved spontaneous

ionisation and autoionisation of Rydberg atoms, photoionisation/collisional ionisation of

magnetically trapped metastable state atoms, spontaneous ionisation of long-lived high

angular momentum state Rydberg atoms and ground state atom imaging) may allow us to

thoroughly diagnose the mechanism through which the plasma lifetime rises with ground

state density. However, for the purposes of a Rydberg dressed MOT, it is sufficient

to conclude that where charges in the cloud result in Coulomb anti-blockade, plasma

formation can result in massive depletion of ground state atoms.

Having considered a range of possible techniques to reach the Rydberg dressed interac-

tions regime without plasma formation causing prohibitive loss, we believe that coupling
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to the 5s36d 3D2 state offers the greatest promise. Here we avoid the Coulomb anti-

blockade that results in prohibitive loss, and expect up to four dressed atoms per dressed

blockade sphere and interactions of up to six times greater than the cloud temperature.

Another promising route is the application of ion-extracting electric fields. There may

be complications in such a system due to the combination of electric and magnetic fields

and coupling beam polarisation, but appropriate choice of electric field axes and coupling

beam polarisations should allow these complications to be addressed. This technique

would be applicable across a range of Rydberg states.

Finally, there are techniques concerning the MOT itself. Reducing the MOT size and

MOT beam power may both increase the density at which plasma formation occurs.

Increasing the magnetic field gradient may have a similar effect. Removing magnetically

trapped metastable state atoms may reduce the ionisation rate, reducing the probability

of reaching the plasma threshold.
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Conclusion and outlook

This thesis presents Rydberg dressing in a narrow-line strontium MOT. This has required

the development of a 319 nm laser, Rydberg spectroscopy on triplet Rydberg states, and a

detailed characterisation of dressed MOT dynamics, allowing us to demonstrate sustained

trapping and cooling of Rydberg dressed atoms. At high atom densities plasma formation

causes loss of atoms, preventing observation of Rydberg dressed interactions.

In Chapter 2 we provide an introduction to Rydberg dressing. Mixing of Rydberg charac-

ter into ground or excited ‘dressed’ states allows highly tunable interactions to be induced

in the dressed state and has been demonstrated in one- and two-dimensional systems.

By dressing the excited state of the narrow-line MOT transition we may combine the

trapping and cooling of the MOT with the tunable interactions of Rydberg dressing.

The interaction strengths are comparable to the cloud temperature and the interaction

lengthscale is comparable to the dressed state separation. Such a system offers a versatile

platform as a quantum simulator of dissipative many-body systems.

In Chapter 3 we describe the experimental apparatus, with emphasis on the changes made

during the course of the experiment. The most significant changes relate to techniques

to increase the transfer efficiency into the single frequency red MOT, and the ability to

perform multiple Rydberg excitations per MOT with measurement of ion arrival times.

The 319 nm laser is presented in Chapter 4. This laser system is widely tunable across

Rydberg states, generates up to 80 mW, and has a frequency stability of < 35 kHz.

Using this laser, we have thoroughly characterised several Rydberg states, measuring Rabi

frequencies, polarisabilities, Rydberg state lifetimes and autoionisation-cross sections.

These Rydberg states are previously unstudied, and future work may involve a systematic

139
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measurement of Rydberg state properties.

Coupling the MOT to the Rydberg state for a range of MOT beam and coupling beam

parameters, we have thoroughly characterised the AC Stark shift of the 5s5p 3P1 state

due to dressing. This is shown in Chapter 5. To compensate the AC Stark shift of the

MOT, we change the MOT beam detuning when we begin dressing to create a MOT

that only traps Rydberg dressed atoms. This trap experiences initial heating when the

coupling laser is turned on, before returning to its initial temperature. We believe this to

be the first demonstration of trapping and cooling of atoms with Rydberg character. The

Rydberg character of the trap is demonstrated by applying an electric field to the trap,

observing changes in the cloud shape and position that are dependent on the electric field

strength and direction; in this we also believe this to be the first MOT that is sensitive

to electric field.

Increasing the dressed state density to reach the Rydberg dressed interactions regime,

we observe formation of an ultracold neutral plasma due to build-up of charges from

ionised Rydberg atoms. Within the plasma the high charge density results in a DC Stark

shift that brings the Rydberg state onto resonance with the coupling laser, resulting in

strong excitation to the Rydberg state and heavy depletion of ground state atoms. We

believe that this enhancement of Rydberg excitation due to plasma formation has not

been previously observed. This loss mechanism limits the Rydberg dressed MOT to a

regime in which Rydberg dressed interactions are not observed, and may pose a barrier to

observing Rydberg dressed interactions in large three-dimensional many-body systems.

This is shown in Chapter 6.

The diagnostic of time-resolved spontaneous ion detection allows observation of multi-

ple signatures of plasma formation, including rapid excitation and ionisation of Rydberg

atoms, photoionisation/collisional ionisation of atoms that decay to metastable states

and spontaneous ionisation of high angular momentum Rydberg states populated dur-

ing plasma formation. In conjunction with autoionisation as a probe of Rydberg state

and imaging of ground state atoms, we have established the tools to thoroughly study

Coulomb enhanced Rydberg excitation within a plasma.

Curiously, the lifetime of the plasma and the cloud are dependent on the ground state

density. This may be evidence of a limited Rydberg excitation rate due to the charge den-

sity. Further evidence of a Coulomb blockade effect within the plasma is observed through

study of the longlived high angular momentum state Rydberg atoms, the population of
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which increases largely linearly with dressing time in the plasma and independently of the

ground state density, suggesting a constant charge density within the plasma. However,

we do not identify the cause of this density dependent lifetime.

Having identified that DC Stark shifts due to ions in the cloud are responsible for the

rapid decay in atom number we consider several mechanisms to avoid plasma forma-

tion. Appropriate choice of Rydberg state, specifically the 5s36d 3D2 state with repulsive

van der Waals interactions and a negative polarisability, may allow Rydberg dressing

using red-detuned coupling light to avoid both the van der Waals anti-blockade and the

Coulomb anti-blockade with two-body interaction strengths comparable to the cloud tem-

perature and up to four dressed state atoms per dressed blockade sphere. Alternatively,

the use of an ion extracting electric field may prevent ions accumulating in the cloud.

Outlook

From this work we have identified the regime in which Rydberg dressed interactions in

a MOT may be observed, and work towards Rydberg dressed interactions in a Rydberg

dressed MOT is ongoing. Optimum choice of Rydberg state has allowed the avoidance

of plasma formation, but at the expense of weaker confinement of the cloud. A series

of improvements to the 319 nm laser power, the 689 nm laser frequency stability and

imaging of optically thick clouds may allow this weaker confinement to be overcome and

Rydberg dressed interactions to be observed in the Rydberg dressed MOT.

The research group will also continue work on high precision Rydberg spectroscopy. Pre-

vious studies of singlet Rydberg state energy levels face challenges due to one-photon

excitation being limited to Rydberg p-state series, and two-photon excitation being lim-

ited by the intermediate state linewidth. Two-photon excitation to Rydberg states via

the narrow 5s2 1S0 ↔ 5s5p 3P1 transition allow very narrow spectra to be measured.

In combination with a femtosecond optical frequency comb we believe we can measure

Rydberg state energy levels with absolute accuracy on the order of kHz. A systematic

study of Rydberg states across a wide range of principal quantum number will allow a

detailed study of the quantum defects in strontium; the unprecedented precision with

which this can be performed may allow strontium to become the workhorse of studies

of quantum defects. Stark maps and autoionisation spectra of these Rydberg series may

also enhance this study.
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The rate at which this spectroscopy can be performed will be drastically accelerated with

the addition of a dipole trap, which can be switched on and off much faster than the

magneto-optical trap.

Dipole trapping of the cloud offers further benefits, and the next generation of the exper-

iment contains lenses inside the vacuum chamber, allowing optical tweezers to be imple-

mented. The Ti:Sapphire laser used for the dipole trap can cover magic wavelengths for

both the 5s2 1S0 ↔ 5s5p 3P1 and the 5s2 1S0 ↔ 5s5p 3P0 transition, allowing trapping

of longlived atoms that can be one-photon Rydberg dressed. This opens the potential of

performing spin-squeezing proposed in [60] in a scaled up system.

The use of a divalent atom in optical tweezers opens several opportunities, for example,

dipole trapping of a strontium Rydberg atom. By exciting one electron to a Rydberg

state and using the AC polarisability of the atom due to the second valence electron we

may optically trap Rydberg atoms.

We may also explore the potential for charge- and excitation-hopping in a single tweezer

of atoms by exciting or photoionising an atom via singlet transitions in the presence

of triplet state Rydberg atoms, which can then be probed through state- and position-

dependent autoionisation.



Appendix A

Electronics

The new MOT coil circuit allows the current through the MOT coil to be set by two

internal trimpots or an externally applied voltage, allowing the current through the coil

to be smoothly ramped to increase the transfer efficiency between the blue MOT and the

broadband red MOT. The circuit has been largely successful, although a small offset that

occurs between the circuit ground and the power supply ground results in a short (< 1 ms)

delay in the MOT coil turning on if it has been off for more than a few milliseconds. This

delay is negligible given the typical blue MOT loading times (> 40 ms). The previous

circuit had the same issue, but with the opposite polarity, resulting in the coil never fully

turning off (always passing ∼ 5 mA, compared to a typical running current of 0.8−2.5A).

Figure A.1: The MOT coil circuit.
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Momentum space crystals

A novel feature of the narrow transition is the existence of momentum-space crystals [81].

If the MOT beams are blue-detuned, rather than cool the atoms they can accelerate the

atoms away from the centre of the cloud. This only occurs if the MOT beam frequency

is close enough to the Doppler shifted resonance of an atom for an initial scattering

event to occur, and every scattering after this results in a Doppler shift that increases the

probability of further scattering. This effect saturates once the Doppler shift significantly

exceeds the MOT beam detuning; at this point scattering is suppressed. It is therefore

possible to choose a MOT beam detuning slightly greater than the cloud temperature,

such that a fraction of the atoms will scatter from each MOT beam, and a fraction of

the slowest atoms will not scatter. The atoms that scatter photons will be accelerated

into discrete velocity classes set by the MOT beam detuning and power, these velocity

classes then expand in a face-centred cubic crystal formation.

This has been demonstrated in [81] in three dimensions. In Figure B.1 we demonstrate

one-dimensional momentum-space crystals. We use a retroreflected probe beam with a

1/e2 radius of 0.5 mm and a power of 1.6 µW, corresponding to a peak intensity of 130 ISAT

and a power broadened linewidth of 80 kHz. Despite this relatively large linewidth, we

can observe changes in the cloud due to changes in laser frequency of 20 kHz. This offers

a very visual representation of the effect of narrow transitions on cloud dynamics, and

confirms that frequency shifts of 20 kHz, comparable to the expected cloud interaction

strength, are resolvable in the cloud.

The detuning is taken from the 5s5p 3P1 mJ = +1 transition in the presence of a 2.5 G

uniform magnetic field provided by the quantisation coil. The probe beam is mounted
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Figure B.1: One-dimensional momentum space crystals, taken with 2 ms of probe light

and 5 ms of expansion time. With each 20 kHz step, the final atom distribution evolves -

the velocity of the expanding sites increases with detuning, resulting in greater displace-

ment of the position of the sites, whilst the fraction of atoms that are in the expanding

sites falls until all the atoms occupy the central site. The atoms preferentially occupy

the lower site relative to the upper site, due to gravity and a slight divergence in the

retroreflected probe beam. The colourbar shows pixel fluorescence count. Above each

image the detuning from the 5s5p 3P1 mJ = +1 transition is shown.
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on the vertical axis pointing down, and is retroreflected. The beam is slightly diverging,

so the upward beam is ∼20% less intense than the downward beam. The combination

of lower intensity and the effect of gravity accelerating the atoms down result in atoms

preferentially occupying the velocity class that moves downwards than upwards.

Whilst momentum-space crystals can occur in theory on broad transitions, the difference

in velocities of the different sites are impractically large, and they are not practical to

observe experimentally.



Appendix C

Observation of eddy currents

A significant improvement to the datataking rate of the experiment is a new oscilloscope

that allows us to perform multiple Rydberg excitations within a single MOT. As discussed

in Chapter 3 we can either retrap the MOT between Rydberg excitations or perform

consecutive Rydberg excitations.

When performing consecutive Rydberg excitations we observe a shift in the resonance

feature with excitation number. This has been observed by scanning the probe beam

frequency across resonance whilst performing a two-photon excitation to the 5s37s 3S1

state and separating the spectra by excitation number. We see the 5s5p 3P1 mJ =

−1 (+1) shifting to lower (higher) frequency with excitation number. The symmetry of

the shift points to this being an effect of magnetic field increasing in magnitude.

To identify the source of this shift we have performed a series of comparable experiments,

varying the delay between excitation pulses, the delay between turning the quantization

coil on and the first excitation, the delay between turning the MOT coil off and the first

excitation, and also how long the atoms have to freefall for before beginning excitation,

shown in Figure C.1. We scan the probe beam across resonance for low probe and

coupling beam power, and fit the spectra, plotting the feature centre as a function of

time between excitation and the freefall time tFreefall, MOT coil switching time tMOTswitch

and quantization coil switching time tQswitch.

From the results, we can clearly see a correlation between the centre of the feature and

how long the quantization coil has been on for. This suggests that the magnetic field

experienced by the atoms continues to increase for several milliseconds after the current

running through the coil has settled.
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Figure C.1: By varying the delay between Rydberg excitation and the quantisation coil

turning on, tQswitch, the MOT coil turning off, tMOTswitch, and when the trap no longer

operates, tFreefall (either because the MOT coil or MOT light is turned off), and measuring

the resulting shift of the 5s5p 3P1 mJ = −1 state δP , we identify the shift as caused by

the quantisation coil. Different colours indicate different experimental datasets.

Two different coil drivers have been used to drive current through the quantisation coil.

One actively stabilises the current through the coil using a sense resistor in series with

the coil and a PI feedback loop, the other applies a constant voltage to a MOSFET that

sets the current flow through the coil. The effect shows no dependence on the driver.

We believe the effect is caused by eddy currents induced inside the vacuum chamber

when the quantization coil turns on. Eddy currents oppose the magnetic field applied by

the quantization coil, and as they die away the magnetic field at the atoms rises. The

quantization coil sits ∼ 3 cm beneath a 20 cm diameter copper gasket, this is the probable

source of quantization coil induced eddy currents.

The effect is weak; a 300 kHz shift in 3 ms suggests a magnetic field change of around

150 mG, compared to the bare magnetic field of around 2.6 G. It is too weak to have

been observed when performing singlet state Rydberg excitations via the broad 5s5p 1P1

intermediate state. However, it is sufficient to inhibit performing multiple consecutive

Rydberg excitations within a single MOT. This issue does not affect the retrapping

technique, as the quantisation coil is switched off between Rydberg excitation.



Appendix D

Ion statistics

A powerful tool when studying quantum mechanics is the statistics of experimental repeti-

tions. Statistical tools such as the correlation function (g(2)) and the Mandel Q parameter

can be used to observe correlations between signals and deviation from Poissonian statis-

tics as indicators of interactions such as Rydberg blockade and facilitated growth. We

measure the Poissonian nature of ion statistics using the Mandel Q parameter:

QX =
Var(X)

〈X〉
− 1 , (D.1)

where the variance and mean of X are given by Var(X) and 〈X〉. Q < 0 indicates

sub-Poissonian ion statistics, Q > 0 indicates super-Poissonian statistics.

Within this experiment we have not previously observed sub-Poissonian ion statistics.

This is attributed to a combination of laser frequency noise on the 461 nm laser and

the 413 nm laser used for Rydberg excitation, which can result in super-Poissonian ion

statistics [85], and the low ion detection efficiency, which brings the ion statistics closer

to a Poissonian statistics. By using 689 nm and 319 nm light with power broadening

much greater than the observed laser frequency noise we can suppress the effect of laser

noise. However, we must also consider the effect of atom number variation.

We typically trap on the order of 1 million atoms in the cloud. We typically observe

standard deviations of up to 300,000 on an atom number of 1 milliona, and do not expect

aThis is a worst-case scenario, with a poorly locked 689 nm laser due to cavity drift and a small MOT

beam detuning, resulting in high sensitivity to 689 nm laser noise. Typically the atom number is more

stable than this, particularly in broadband MOTs.
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the atom number to follow Poissonian statistics. Expressing the fractional standard

deviation in atom number εatom from the atom number 〈Natom〉 and the standard deviation

σatom:

εatom =
σatom

〈Natom〉
; (D.2)

and noting that Var(Natom) = σ2
atom we can express the Mandel Q parameter of the atom

number as:

Qatom =
σ2

atom

〈Natom〉
= ε2atom × 〈Natom〉 . (D.3)

If the probability of ionising an atom and detecting an atom are both Poissonian and

described by Pionise × Pdetect, the Mandel Q parameter of the detected ions is then given

by:

Qion = Qatom × Pionise × Pdetect = ε2atom × 〈Natom〉 × Pionise × Pdetect . (D.4)

Given that the number of detected ions is given by 〈Nion〉 = 〈Natom〉 ×Pionise×Pdetect we

can therefore express the expected Q parameter of the ions, assuming Poissonian Rydberg

excitation and detection, as:

Qion = ε2atom × 〈Nion〉 . (D.5)

This simple expression allows us to understand the role that atom number fluctuations

play in ion statistics. The super-Poissonian atom number will give rise to super-Poissonian

ion statistics and a Mandel Q parameter that is proportional to the ion number - the

worst-case scenario of εatom = 0.3 will therefore give rise to a Mandel Q parameter of

0.09 × 〈Nion〉 attributable to atom number variation. Deviation from this Mandel Q

parameter will indicate deviation from Poissonian Rydberg excitation and detection.

The same argument is true for ion numbers that are binned into discrete timesteps using

the ion arrival times. In this case we expect:

QṄion
= ε2atom × 〈Ṅion〉 ×∆T . (D.6)
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where ∆T is the width of the discrete timestep - when considering counting statistics we

must use the number of ions detected within the timestep, not the rate of ion detection.

This approach to ion statistics has been verified through simple statistical modelling as

part of this work.

Note that this only considers changes in atom number. The cloud width is proportional

to the MOT beam detuning, so, for small MOT beam detunings, fluctuations in MOT

beam frequency may cause variation in cloud size and therefore density even for constant

atom number. This will not affect the Mandel Q parameter for independently excited

Rydberg atoms, but may modify ion statistics if there are density dependent effects.

An ion number (detection rate) Mandel Q parameter that is greater than ε2atom × 〈Nion〉
(ε2atom × 〈Ṅion〉 × ∆T ) indicates super-Poissonian Rydberg excitation or ionisation. A

Mandel Q parameter below this indicates either sub-Poissonian Rydberg excitation or

ionisation, or saturation of the MCP. Total saturation of the MCP will allow the Mandel

Q parameter to fall as low as Qion = −1, whilst total Rydberg blockade may eliminate

the effect of fluctuations in atom number but will still not allow the Mandel Q parameter

to drop below the detector efficiency i.e. the lowest Mandel Q parameter that may be

observed due to Rydberg blockade is Qion = −0.2 for a detection efficiency of 20%.

With this understanding of the role of super-Poissonian atom number variation on the

ion detection number and the ion detection rate, we can study the ion statistics of the

ion detection rate considered in Chapter 6 and distinguish between changes in Mandel Q

parameter due to atom number fluctuation, detector saturation and Rydberg excitation.



Appendix E

UV laser sidebands

During the characterisation of the UV laser we have observed very weak sidebands at

±20 MHz. We believe a very small fraction of frequency modulated 638 nm light is

being frequency-summed with unmodulated light. An EOM in the frequency doubling

cavity applies sidebands to the 638 nm light at ±20 MHz for PDH locking, and we have

spectrospically observed very weak resonances at ±20 MHz from a strong resonance.

Figure E.1: Observation of weak sidebands at ±20 MHz to the main carrier frequency.

On resonance we see depletion and a large ion signal that reduces with excitation number,

at ±20 MHz of the main feature we also see very small ion signals that are attributed to

a small fraction of frequency modulated light in the doubling cavity being doubled.

Figure E.1 shows spectroscopic observation of sidebands on the coupling beam. A cou-

pling power of 3.5 mW was used, with 5 excitations lasting 300 us followed by a 20 us
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autoionising pulse and a 5 µs electrode pulse. We retrap the cloud between Rydberg

excitation and couple to the 5s37s3S1 state. This is sufficient to cause significant de-

pletion on resonance and heavily saturate the MCP, with several hundred ions detected,

and a much stronger ion signal on the first excitation in the MOT. We see features two

orders of magnitude smaller than the central feature at a detuning of 20 MHz either

side of resonance. This two orders of magnitude estimate is very rough, as we do not

have a reliable understanding of our detection efficiency for such large ion numbers, we

deplete the cloud on resonance, and interaction effects on resonance may influence our

atom number. However, as an order of magnitude estimate we can be confident that the

intensity of this sideband light is very low compared to the main frequency.



Appendix F

MOT beam resonance with dressed

states

In Chapter 5 we document the effect of coupling the MOT to the Rydberg state, with

particular consideration given to the AC Stark shifted resonance condition. Initially we

consider the AC Stark shift as purely dependent on the coupling beam intensity profile,

the coupling beam peak Rabi frequency and the coupling beam detuning, which shows

good agreement with the dressed MOT shape when using large MOT beam detunings,

shown in Figures 5.5 and 5.6.

However, this approach breaks down for small MOT beam detunings and strong pertur-

bations due to the coupling beam. In this appendix we will:

� Consider the role of coupling beam polarisation relative to local magnetic field with

regards to what transitions the coupling beam can drive.

� Illustrate a simple modification to the AC Stark shifted resonance model to reflect

this effect.

� Consider the validity of this approach in regimes of strong coupling by solving

for the eigenvalues and eigenstates of the Hamiltonian of the coupled system and

compare this to data.
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The role of coupling beam polarisation relative to local magnetic field

In Section 4.4.1 we measured Rabi frequencies of Rydberg transitions with vertical cou-

pling beam polarisation and a vertical quantisation axis, driving π transitions. In Regime

I MOTs the cloud sags under gravity to the resonance curve, and predominantly experi-

ence a vertical magnetic field, allowing us to treat the coupling beam Rabi frequency as

equal to that which we measured.

However, if the coupling beam polarisation is not aligned parallel to the magnetic field, we

may also drive σ± transitions, and reduce the strength with which we drive π transitions,

as illustrated in Figure 4.5(b). As we move closer to Regime II MOTs we increase

the range of magnetic field directions that the cloud experiences. In the wings of the

MOT atoms experience a horizontal magnetic field, whilst the coupling beam polarisation

remains vertically polarised. Under these conditions, we consider the coupling beam

polarisation to be a linear combination of left-hand circularly and right-hand circularly

polarised light, capable of driving σ± transitions.

A generalised case considers the coupling beam polarisation as a combination of light that

is polarised parallel to the quantisation axis E‖ and light that is polarised perpendicular

to the quantisation axis E⊥ in terms of the angle θ between the vertical coupling beam

polarisation and the local magnetic field:

E =

[
E‖

E⊥

]
=

[
E0 cos θ

E0 sin θ

]
=

[
E0 2z/

√
r2 + 4z2

E0 r/
√
r2 + 4z2

]
. (F.1)

Here r2 = x2 + y2 is the position of the atom in the x-y plane and the origin is the

quadrupole field centre. The factor of 2 before z reflects the stronger magnetic field in

the vertical direction. This expression does not consider the coupling beam intensity

profile.

We now consider what transitions the coupling beam can drive. The E‖ component can

drive π transitions, driving from the 5s5p 3P1 mJ = −1 state to the 5snl 3l1 mJ =

−1 state. The strength with which the transition can be driven will be reduced by a

factor 2z/
√
r2 + 4z2 compared to the conditions under which the transition strength was

measured i.e. with a coupling beam polarisation parallel to the quantisation axis.

The E⊥ component, being comprised of 1/
√

2 LHC and 1/
√

2 RHC polarised light, can

drive both σ+ and σ− transitions, but for l = 1 Rydberg states there is only the σ+
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transition to the 5snl 3l1 mJ = 0 transition that can be driven. The transition strength

will therefore be reduced both by the factor of r/
√
r2 + 4z2 that reflects the component

of the light that is polarised perpendicular to the quantisation axis and by a further

factor of 1/
√

2 that reflects that only part of this light can drive the transitiona. The two

Rabi frequencies Ωπ and Ωσ+ of the two transitions can thus be expressed in terms of the

measured Rabi frequency Ωmeas and horizontal and vertical position r and z:

Ωπ = Ωmeas 2z/
√
r2 + 4z2 ; (F.2)

Ωσ+ = Ωmeas r/
√

2(r2 + 4z2) . (F.3)

A modified AC Stark shift model

A rigerous analysis of the two transitions with two Rabi frequencies Ωπ and Ωσ+ would

consider the coherences between the states that can be driven, which are considered

later. At this point we ignore these coherences, and treat the transitions as independent.

We then consider the AC Stark shift of the 5s5p 3P1 state that these couplings induce

independently, and sum them. The AC Stark shift, subject to Ω� δ, is given by Ω2/4δ.

As the Zeeman shift of the two Rydberg states is small compared to the coupling beam

detuning, we treat δ as the same for both transitions. We can therefore express the

combined AC Stark shift due to the two transitions as:

δAC =
Ω2
π

4δ
+

Ω2
σ+

4δ
=

Ω2
meas

4δ

[ 4z2

r2 + 4z2
+

r2/2

r2 + 4z2

]
=

Ω2
meas

4δ

[
1− r2/2

r2 + 4z2

]
. (F.4)

This treatment allows us to use a simple analytical term to express the AC Stark shift

that a vertically polarised uniform intensity coupling beam will introduce to the MOT,

accounting for the angle between the quantisation axis of the local magnetic field and the

polarisation of the coupling beam.

We now introduce the coupling beam intensity profile, described in terms of the 1/e2

radii ωx and ωz as exp(−2(x− x0)2/ω2
x − 2(z − z0)2/ω2

z), to this term to obtain:

aThis treatment uses the fact that all allowed transitions from the 5s5p 3P1 mJ = −1 state to the

5snl 3l1 mJ states are equally allowed. If we couple to the 5snd 3D2 Rydberg series we must account

for the different coupling strengths between different sublevels.
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δAC =
Ω2

meas

4δ
exp

(
− 2

(x− x0)2

ω2
x

− 2
(z − z0)2

ω2
z

)[
1− r2/2

r2 + 4z2

]
. (F.5)

For z � r i.e. Regime I and III MOTs that experience predominantly vertical mag-

netic fields, we obtain the result shown in Equation 5.1 where we neglect the effect of

quantisation axis for MOTs.

This modified expression for the AC Stark shift of the Rydberg-dressed 5s5p 3P1 mJ = −1

transition can then be used in Equation 5.2 to calculate a new resonance curve that

accounts for the coupling beam polarisation relative to the local magnetic field. To

simplify this expression we typically consider the x-z plane through the origin, by setting

y = 0 such that r = x.

We compare the resonance curves generated through this approach to data in Figure 5.8,

observing good agreement between the cloud shape and the resonance curves.

The effect of the changing quantisation axis is to reduce the coupling strength of the cloud

where the coupling beam polarisation is not parallel to the quantisation axis. Atoms in

the wings of the MOT will couple less to the 5snl 3l1 mJ = −1 Rydberg state and more

to the 5snl 3l1 mJ = 0 Rydberg state. As we want to maximise the coupling strength

in the position that the atoms predominantly occupy, which corresponds to a vertical

magnetic field, a vertically polarised coupling beam is optimum.

If we couple to the 5snd 3D2 Rydberg series, the different coupling strengths for different

magnetic sublevel transitions result in slightly stronger coupling where the coupling beam

polarisation and the magnetic field direction are orthogonal, as the strongest coupling

from the 5s5p 3P1 mJ = −1 state occurs when coupling to the 5snd 3D2 mJ = −2 state,

and we obtain:

δAC =
Ω2

meas

4δ
exp

(
− 2

(x− x0)2

ω2
x

− 2
(z − z0)2

ω2
z

)[
1 +

r2/6

r2 + 4z2

]
. (F.6)

Strong perturbations due to the coupling beam

The treatment described above assumes that we can treat the two transitions indepen-

dently and sum the AC Stark shifts that result from the two transitions. It also assumes

that the sublevels of the 5s5p 3P1 states are defined purely by the local magnetic field.

This treatment breaks down in some regimes. For example, under a vertical quantisation

axis, and vertically polarised coupling, the 5s5p 3P1 mJ = ±1 states experience both
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Zeeman shifts and AC Stark shifts, whilst the 5s5p 3P1 mJ = 0 state experiences neither.

There can therefore be parameters (e.g. when coupling with blue-detuned coupling light)

where the above treatment would predict the 5s5p 3P1 mJ = 0 state being lower in energy

than the 5s5p 3P1 mJ = −1 state.

To address this we construct a Hamiltonian to describe the three sublevels of the 5s5p 3P1

state and the three sublevels of the 5snl 3l1 state, and the coupling between states Ωπ

and Ωσ. The full Hamiltonian is given by:

H =



−BP 0 0 Ωπ/2 Ωσ/2 0

0 0 0 Ωσ/2 0 Ωσ/2

0 0 BP 0 Ωσ/2 Ωπ/2

Ωπ/2 Ωσ/2 0 −BD − δC 0 0

Ωσ/2 0 Ωσ/2 0 −δC 0

0 Ωσ/2 Ωπ/2 0 0 BD − δC


, (F.7)

where the Zeeman shift of the 5s5p 3P1 mJ = ±1 magnetic sublevels are given by ±BP ,

the Zeeman shift of the 5s36d 3D1 mJ = ±1 magnetic sublevels are given by ±BD and

the coupling beam detuning is given by δC . The Rabi frequencies are given by:

Ωπ = Ωmeas exp
(
− (x− x0)2

ω2
x

− (z − z0)2

ω2
z

) 2z√
r2 + 4z2

; (F.8)

Ωσ = Ωmeas exp
(
− (x− x0)2

ω2
x

− (z − z0)2

ω2
z

) r√
2(r2 + 4z2)

. (F.9)

Solving this numerically for Ωmeas = 3.7 MHz, δC = 12 MHz, dB/dz = 8 G/cm and y = 0

for the x-z plane, we obtain six eigenvalues, labelled (a) to (f) from smallest to largest

in Figure F.1. Far from the coupling beam three eigenvalues primarily correspond to the

5s5p 3P1 sublevels, and the other three to the 5s36d 3D1 sublevels. All are Zeeman shifted

accordingly. We see eigenstate (d), which is largely comprised of the state 5s5p 3P1 mJ =

−1 far from the coupling beam, rise in energy nearer the quadrupole field but then level

off near the centre of the quadrupole field. By contrast, eigenstate (e), which is largely

comprised of the state 5s5p 3P1 mJ = 0 far from the coupling beam, does not experience

a Zeeman shift far from the coupling beam, but near the coupling beam is shifted to

higher energy.

To understand this effect we consider eigenvectors of these eigenstates. We are primarily
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Figure F.1: Dressed MOT eigenvalues as a function of position, sorted from smallest to

largest. (a) to (c) primarily correspond to the Rydberg state magnetic sublevels, (d) to

(f) primarily correspond to the 5s5p 3P1 magnetic sublevels. However, at the centre of the

coupling beam we observe (d) flatten, rather than rising in energy near the quadrupole

field centre, and (e), which previously was static, rising in energy near the quadrupole

field centre. This is due to a change in the fraction of the 5s5p 3P1 mJ = −1 and

5s5p 3P1 mJ = 0 components of the the eigenstates, illustrated in (g-i).

interested in the 5s5p 3P1 mJ = −1 state as this is the state that the MOT beams drive

to, we therefore show the 5s5p 3P1 mJ = −1 component of the three eigenstates (d-f) in

Figure F.1(g-i).

Far from the coupling beam eigenstate ‘d’ predominantly contains the 5s5p 3P1 mJ = −1

state. For strong coupling, the fraction of 5s5p 3P1 mJ = −1 state in eigenstate ‘d’ falls

and rises in eigenstate ‘e’. This reflects the fact that there is an eigenstate that under

these conditions falls in energy in response to magnetic field, but is increased in energy

by the AC Stark shift by more than the Zeeman shift, rising above an eigenstate that

is not sensitive to magnetic field and is not AC Stark shifted. As a result there is an

eigenstate ‘e’ that is higher in energy than eigenstate ‘d’ but predominantly contains the

bare state 5s5p 3P1 mJ = −1 .
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This technique allows us to map the eigenvalues and eigenvectors of the dressed MOT,

avoiding the problem posed above, of the 5s5p 3P1 mJ = 0 state being lower in energy

than the 5s5p 3P1 mJ = −1 state. We now consider when the MOT beams will drive

these transitions.

The MOT beam polarisation is chosen such that the light can drive to the 5s5p 3P1 mJ =

−1 as it propagates towards the quadrupole field centre, and to the 5s5p 3P1 mJ = +1 as

it propagates from the quadrupole field centre, although this second transition is usually

neglected in Regime I MOTs as the light is not resonant with this transition. We will

therefore consider when is the MOT light resonant with any eigenstate, which we can

see from the eigenvalues(Figure F.1(d-f)), and the 5s5p 3P1 mJ = −1 component of the

corresponding eigenvector (Figure F.1(g-i)), which sets how strongly the MOT light can

drive the transition.

As a simple treatment to understand the resonance curve of the dressed MOT we calculate

a scattering from a Lorentzian for the three eigenstates (d-f) based on a MOT beam

detuning of δMOT = −140 kHz, weight these by the 5s5p 3P1 mJ = −1 component of the

eigenstates, and sum the three contributions of the three eigenstates. This generates the

resonance curve shown in Figure F.2(a).
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Figure F.2: (a) Normalised scattering force from the 5s5p 3P1 mJ = −1 fraction of

the three eigenstates in Figure F.1(d-f). This is calculated for a single x-z plane, with

y = 0. As the coupling beam propagates at an angle to the imaging axis, the effect of

the coupling beam will vary across the cloud, illustrated in (b).

MOT beam resonance with the eigenstates

This technique is still a two-dimensional technique, which causes particular problems

given the coupling beam angle with the imaging axis, illustrated in Figure F.2(b). For
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this reason, we overlay several resonance curves, in which we vary both y (the position

of the x-z plane that we consider) and x0 = xoff + y sin(θ) (the horizontal position of the

coupling beam through the x-z plane). This allows us to see the relationship between the

resonance curve and the position of the x-z slice. Figure F.3 shows the data from Figure

5.8 overlaid with 5 resonance curves for five values of y from -150 µm to +150 µm in

steps of 75 µm, showing excellent agreement between the cloud and the resonance curves.

x/µm x/µm x/µm x/µm

z/
µ

m
z/
µ

m

Figure F.3: Resonance curves for imaging depths from -150 µm (red) to +150 µm

(blue) for six different coupling beam detunings overlaid on data. When the coupling

beam is red-detuned contours represent where the force is 90% of the maximum. When

blue-detuned contours indicate where the force matches gravity.

When the coupling beam is red-detuned, the resonance curve shrinks and atoms can

interact with multiple MOT beams simultaneously. We therefore plot resonance curves

at the 90% level, to indicate where scattering is strongest. We expect the trap to form

inside the curve. If the resonance curve does not encompass the quadrupole field zero the

MOT beams will not provide a trapping force in every direction, and the trap will not

be sealed, causing the cloud to be lost at δC = -6 MHz and -14 MHz.

When the coupling beam is blue-detuned atoms predominantly interact with the vertical

MOT beam, so we plot resonance contours where the scattering force matches gravity.

Equilibrium occurs for the inner curves and we expect the cloud to be slightly broader

than the resonance curves, as the horizontal MOT beams are weaker and thus less power
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broadened, which we observe.

The agreement between the resonance curves calculated by solving the six-level Hamil-

tonian for multiple imaging planes and the data is very good. However, this treatment is

complex, and requires numerical solution of a six-level Hamiltonian as a function of po-

sition. We would prefer to use the AC Stark shift calculation described by Equation F.5

as it offers a more intuitive understanding of the AC Stark shift on the MOT resonance

condition.

Exact agreement between any model and the data is difficult due to the complexity of the

theory, uncertainty in parameters (e.g. exact MOT beam detunings, quadrupole centre

and coupling beam centre positions etc) and the two-dimensional nature of the imaging

planes that we consider. We are therefore very satisfied with the comparisons demon-

strated in Figure F.3. Typically when we consider resonance conditions for simplicity

we will use the analytic expression established above, but in some regimes it may be

necessary to use the full treatment established in this appendix.



Appendix G

Additional plasma seeding data

In Section 6.3 we study the seeding of the plasma that occurs during Rydberg dressing.

We present data showing the effect of coupling beam detuning δC and ground state density

on plasma formation. In this appendix we will consider the effect of coupling beam power,

MOT beam power and MOT beam detuning. We also consider the Mandel Q parameter

of the ion signals, and present a coupling beam power ‘ramp’.

In Figure 6.4 we present ion detection rates as a function of coupling beam detuning and

ground state density. In Figure G.1 we present data taken under the same conditions,

but as a function of coupling beam detuning and power.

〈Ṅ〉/µs−1

Figure G.1: Ion detection rate as a function of arrival time, coupling beam detuning and

coupling beam power.
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Clearly, the effect of varying the coupling beam power is not the same as varying the

ground state density. We see ions predominantly on resonance at low coupling beam

power, compared to ions on the red-detuned side of resonance at low ground state density.

This is consistent with low coupling beam power resulting in the signal being predom-

inantly generated through one-body processes, which suggests that the reduced power

broadening of the Rydberg transition reduces the probability of off-resonantly exciting

pairs of Rydberg atoms.

Increasing the coupling beam power we see the emergence of the red-detuned shifted fea-

ture first observed in Figure 6.4, although the features span a narrower range of coupling

beam detunings. In Figure 6.6 the plasma seeding rate for these datasets is compared to

the van der Waals interaction shift, observing good agreement apart from at low coupling

beam power where one-body excitation dominates.

Average ion detection rates are not the only measurement we can make. Figure G.2

shows the Mandel Q parameter for the datasets shown in Figure 6.4 and Figure G.1.

As discussed in Appendix D we expect atom number fluctuations to result in super-

Poissonian ion detection rates, but the Q parameter of the ion detection rates are too

large to be explained by atom number fluctuations alone. At large ion detection rates

detector saturation (discussed in Section 3.3.2) results in strongly negative Q parameters

but before this occurs we clearly see super-Poissonian ion statistics for both red- and

blue-detuned coupling and for a range of ground state densities.

These super-Poissonian ion detection rates are consistent with Rydberg and Coulomb

anti-blockade, which enhance the Rydberg excitation rate when red- and blue-detuned.

Notably, we do not see super-Poissonian ion detection rates on resonance at low coupling

beam power. Taken in conjunction with the seeding rate measured in Figure 6.6(f),

we can conclude that at this low coupling beam power we observe one-body Rydberg

excitation but in other datasets we observe many-body Rydberg excitation.

We observe much larger Q parameters when blue-detuned than when red-detuned. The

ion detection rates when blue-detuned are much more bimodal, as it is only in the exper-

iment shots that plasma formation occurs that we see large ion detection rates.

So far we have only varied the coupling beam parameters and the ground state density.

We can also vary the MOT beam parameters of MOT beam detuning, which sets the

size of the MOT, and MOT beam power, which sets the excited state fraction in the

MOT. Figure G.3 shows ion detection rates for a MOT taken with δMOT = −140 kHz,
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Figure G.2: Ion Mandel Q parameter as a function of arrival time, coupling beam

detuning, ground state density and coupling beam power.

PMOT = 30 µW.

The most striking observation is that the massive variation in seeding time that is ob-

served when blue-detuned is suppressed. Whilst there is still strong variation in whether

plasmas form for blue-detuned coupling, when strong ion signals are observed they will

be observed within the first 100 µs.

Less visually striking but very significant is that a smaller, lower power MOT allows

higher densities, roughly an order of magnitude greater, to be reached before significant

ion formation occurs than for the data shown in Figure 6.4. This is true for a coupling

beam that is both red- and blue-detuned. This is attributed to a combination of lower

MOT beam power, reducing the fraction of atoms in the excited state, and a smaller

cloud, resulting in a higher charge density being required for plasma formation. The

lower excited state fraction may also reduce collisional ionisation between Rydberg atoms
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〈Ṅ〉/µs−1

Figure G.3: Ion detection rate as a function of dressing time and coupling beam detuning

for different ground state densities. The MOT beam detuning of δMOT = −140 kHz results

in a MOT that is smaller than the coupling beam, and the MOT beam power is 30 µW.

and excited state atoms.

The final datasets we consider in this appendix smoothly increase the coupling beam

power rather than using a step-change. This technique allows us to map the coupling

beam power at which seeding occurs onto the ion detection rate. In addition, this tech-

nique has been used to compare data taken coupling the MOT to two Rydberg states

under the same MOT conditions of δMOT = −210 kHz, PMOT = 500 µW.

Figure G.4(a) shows a coupling beam power ramp over 1 ms, with ion detection rates

taken at δC =-10 MHz (blue), 0 MHz (orange) and +10 MHz (yellow). When coupling

to the 5s36d 3D1 state we observe sharp ion peaks on resonance and when red-detuned

(the van der Waals anti-blockade side of resonance) at low and high densities, and the

emergence of sharp ion peaks at high densities when blue-detuned (the Coulomb anti-

blockade side of resonance).

These sharp peaks emerge at the same density as we observe simply switching the coupling

beam on in Figure 6.4 but we observe a delay that is attributed to the coupling beam

power ramp. Seeding occurs only when the coupling beam power is sufficiently high for

the anti-blockade effect to enhance Rydberg excitation. This is true for both van der

Waals and Coulomb anti-blockade.

We can therefore identify the coupling beam Rabi frequency necessary for seeding to

occur as a function of density and coupling beam detuning, shown in Figure G.5.
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Figure G.4: Smoothly increasing the coupling beam power (a, left axis), we observe

the ion detection rate for for several coupling beam detunings (right axis, indicated by

the dots in (c)). From this we construct a colourmap of ion detection rates. This has

been performed at three densities whilst coupling to the 5s36d 3D1 state and one density

whilst coupling to the 5s37s 3S1 state. Different detection efficiencies were used for the

different Rydberg states.

The most interesting observation from these data is from a comparison between Rydberg

states. We have data from a single density whilst coupling to the 5s37s 3S1 state, which

has a positive polarisability and repulsive van der Waals interactions.

We observe the ion detection rate rise fastest on resonance, and we observe sharp ion

peaks when red-detuned (the Coulomb anti-blockade side of resonance). However, we

don’t observe sharp ion peaks when blue-detuned (the van der Waals anti-blockade side

of resonance). Whilst we achieve lower Rabi frequency coupling to the 5s37s 3S1 state,

this state has a greater C6 coefficient than the 5s36d 3D1 state, and the density is higher

than that used when dressing the 5s36d 3D1 state so we expect stronger van der Waals
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Figure G.5: The coupling beam Rabi frequency at which the plasma seeds during cou-

pling beam power ramps, shown for a ground state density of 2.2 × 1010 cm−3 (blue),

4.2 × 1010 cm−3 (orange) and 8.3 × 1010 cm−3 (yellow). At higher density, the plasma

seeds at lower power. Measured using the data in Figure G.4(b-d) whilst coupling to the

5s36d 3D1 state.

enhancement of the Rydberg excitation rate.

We believe the lack of ions detected when blue-detuned from the 5s37s 3S1 is due to

a lower ionisation rate. The van der Waals interactions between 5s37s 3S1 state pairs

is repulsive, so we do not expect strong collisional ionsation between pairs of atoms.

In contrast, the van der Waals interaction between pairs of 5s36d 3D1 state atoms is

attractive and can result in collisional ionisation.



Appendix H

Plasma lifetime study

In Section 6.4 we show that the charge density of the plasma results in a sufficiently large

electric field to DC Stark shift the 5s36d 3D1 state onto resonance with the blue-detuned

coupling beam. We show that the lifetime of the cloud whilst the plasma is present is

comparable to that which we expect due to enhanced Rydberg excitation caused by this

DC Stark shift.

One surprising observation from this lifetime measurement is that the loss rate of the

cloud is density dependent. In this appendix we present more data showing the lifetime

dependence on density for three MOT beam powers and propose some mechanisms that

may cause this.

Figure H.1 shows atom numbers and ion detection rates for three MOT beam powers and

a range of initial atom numbersa. At the lowest MOT beam power we only observe one

dataset with a high enough atom number for plasma formation to occur, but in the other

two datasets we observe a rising plasma lifetime with initial atom number.

Fitting an exponential to these atom numbers we can quantify this effect. We see the

plasma lifetime rise as we reduce the MOT beam power, which is consistent with a reduced

Rydberg excitation rate, and we see the atom number at which plasma depletion stops

rise, also consistent with a reduced Rydberg excitation rate. The ion detecton rates do

not follow a purely exponential decay, the decay rate of the ion detection rate appears

to rise with dressing time, which is consistent with a mechanism that inhibits Rydberg

excitation at high density.

aThe different MOT beam power datasets were taken with different oscilloscope settings, so with

different ion detection efficiencies, making direct comparisons of ion numbers impossible.
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(a) 230µW
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Figure H.1: Atom number (left plots, left axis) and ion detection rate (left plots, right

axis) for a range of MOT beam powers and initial atom numbers, indicated by colour. We

see a rapid decay in atom number corresponding to a similar rapid decay in ion detection

rate. Right, fitting an exponential decay to the fall in atom number (blue crosses) and ion

detection rate (orange circles), we see a lifetime that rises with initial atom number and

with falling MOT beam power. At the lowest MOT beam power, we don’t have strong

plasma formation beyond the highest initial atom number, breaking the trend of lifetime

rising with atom number.
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The observation of a plasma lifetime that rises with ground state density is very surprising.

We will propose some mechanisms that could result in this, but we do not have the data

to draw conclusions about the mechanism that causes this effect.

The first effect we consider is Coulomb blockade. [139] proposes a feedback mechanism

whereby rising ion density DC Stark shifts the Rydberg transition off resonance, limiting

excitation to the rate at which ions are lost from the cloud. We are detuned to the

Coulomb anti-blockade side of resonance, but at a sufficiently high charge density we

may expect to pass through the Coulomb anti-blockade and reach the Coulomb blockade

region. This would result in a Rydberg excitation rate limited to the rate at which ions

are lost, which, for an uncoupled plasma, would result in an almost constant Rydberg

density and loss rate.

In Figure 6.11 we measure the number of longlived Rydberg atoms as a function of atom

number and dressing time. These measurement suggest that the charge density within

the plasma is largely independent of the initial atom number and largely constant in

time until the plasma depletes. These measurements are therefore consistent with such a

Coulomb blockade. However, a Coulomb blockade would suggest a linear atom loss rate

and a constant ion detection rate until the plasma depletes, suggesting this mechanism

alone can’t be responsible for the density dependence of the plasma lifetime.

We may be observing an incomplete Coulomb blockade effect, for example if the charge

density varies across the cloud. Consequently, the collisional process that gives rise to

longlived Rydberg atoms may be dominated by the blockaded region in the centre of the

cloud, where the charge density is highest, whilst atom loss continues without Coulomb

blockade in the wings of the cloud.

The nature of the Coulomb blockade may be sufficiently modified by the off-resonant

nature of the coupling beam that we do not expect only a limited version of the feedback

observed in [139]. Alternatively, there may be a van der Waals blockade simultaneously

occuring, although we expect the Rydberg-electron collision rate to be too strong for a

significant Rydberg population to develop.

Alternatively, the rate at which ions are lost from the plasma may be charge-density

dependent. This is the case for strongly coupled plasmas, but the Coulomb potential

energy of two ions separated by the Coulomb anti-blockade radius is a factor of thirty

less than the electron kinetic energy, suggesting that we are not in the strongly coupled

regime.
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The plasma charge density threshold is proportional to r−2 where r is the size of the

plasma. A higher atom number resulting in a larger ion production rate may result

in more charges within the plasma, allowing a larger plasma with a lower density to

form. The lower charge density may then result in a lower Rydberg excitation rate i.e.

the probability of each atom being excited to the Rydberg state is reduced at higher

atom numbers whilst the overall ion production rate is higher due to the higher atom

number. The probability of longlived Rydberg atoms being produced due to collisions

is proportional to the Rydberg population and the electron density, the probability of

longlived Rydberg atoms being produced through recombination is proportional to the

ion density and the square of electron density, so it is not clear what effect this would

have on the longlived Rydberg population.

Charges are not only lost through plasma expansion - in [138] charge-density dependent

three-body recombination in plasmas is observed to deplete the charges in the plasma.

This is proportional to Nion×N2
electron, so will be strongly dependent on the charge density.

This recombination may limit the charge density within the cloud, limiting the Rydberg

excitation rate within the cloud. However, this would result in the longlived Rydberg

population to be strongly density dependent, whilst we observe the opposite to be true

in Figure 6.11.

The rapid movement of electrons in the cloud results in large AC electric fields that allow

excitation to Rydberg states other than the 5s36d 3D1 state. Electric fields can allow

coupling through transitions that are otherwise forbidden as well as DC Stark shifting

Rydberg state energy levels, potentially creating a ‘spaghetti’ of energy levels that can

be coupled to. A combination of a Coulomb blockade and excitation to different states

with low ionsation probabilities may result in a density dependent loss rate.

From the data available it is not possible to conclude what the mechanism for the density

dependent plasma lifetime is. The strongest candidate is an incomplete Coulomb blockade

effect that limits the Rydberg excitation rate to the rate at which ions leave the cloud.

A full study of this system is beyond the work of this thesis. We can, however, be

confident that the high charge-density of the plasma is capable of drastically increasing

the Rydberg excitation rate in a plasma when the coupling beam is detuned to the

Coulomb anti-blockade side of resonance. It is an open question as to why the lifetime of

the plasma rises with atom density.
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