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Abstract 

 

    Drought stress is a major issue for food security, affecting yield production, crop survival 

and agricultural land quality. Sorghum bicolor is a vital food crop for semi-arid and arid 

regions, and is also used as a biofuel and as animal fodder. It is extremely well adapted for 

drought-prone climates and is used extensively as a model for investigating drought 

tolerance mechanisms. Several varieties display a ‘stay green’ trait in which leaf chlorophyll 

content and photosynthetic activity is maintained for longer under water limiting 

conditions, improving survival rates and maintaining higher grain yields under stress.  

   Two-dimensional gel electrophoresis was used to compare the proteomes of a stay green 

sorghum variety (B35) and a senescent variety (R16). Alteration in the levels of several 

proteins were identified between the two lines. Identification and functional 

characterisation of differentially expressed genes and proteins could enhance our 

understanding of the processes that underlie the stay green trait in sorghum and identify 

targets for selective breeding.   

    SDIR1 homologs in several species have frequently been associated with drought 

tolerance and stay green mechanisms. Wheat transgenic lines overexpressing SbSDIR1 

were analysed for the acquisition of stay green associated characteristics. Transgenic lines 

were found to display differences in transpiration, ABA-induced gene expression, tiller 

development and senescence timing suggesting it plays a key role in these processes. 

Further validation of the phenotype of the SbSDIR1 overexpressing lines and functional 

characterisation of other candidate genes will contribute to our understanding of the 

drought tolerance mechanisms in sorghum.  
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Chapter 1 

Introduction 

    Constant or intermittent drought conditions affect up to 45% of agricultural land (Ashraf 

and Foolad, 2007; Bot et al., 2000), and 80% of global cultivated land (providing 60% of 

world food production) depends on unreliable rain-fed irrigation methods (UNCTAD, 2011). 

Drought stress is considered a major threat to food security, particularly in the arid and 

semi-arid tropics (Boyer, 1982; Passioura, 2007), and in combination with salinity and 

extreme temperatures it has been estimated to cause greater than 50% yield loss for most 

major crops (Boyer, 1982; Qin et al., 2011). With a projected increase in global food 

demand of up to 70% by 2050, tolerance to drought conditions is a major focus of 

agricultural research and conventional crop breeding programmes (UNWWDR4, 2012).  

    Drought resistance mechanisms occur at the morphological, physiological, biochemical 

and cellular level, and have been previously described to fall into four categories; drought 

escape, drought recovery, drought tolerance and drought avoidance (Fang and Xiong, 2015; 

Luo, 2010). An example of a drought escape strategy could be a reduction in the duration 

of the life cycle to complete full development before water limiting conditions take hold, 

whilst drought recovery strategies allow a plant to recover after periods of complete 

desiccation and halted growth (Luo, 2010; Yue et al., 2006). Drought avoidance strategies 

improve plants water uptake and minimise water loss, whilst drought tolerance strategies 

allow a plant to maintain function under water limiting conditions (e.g. through osmotic 

adjustment) (Luo, 2010; Yue et al., 2006). Avoidance and tolerance strategies tend to be 

the main areas of focus in studies aiming to understand and improve drought resistance in 

crops (Luo, 2010; Yue et al., 2006). One example of a drought tolerance strategy is that of 

the ‘staygreen’ trait, in which leaf chlorophyll content and photosynthetic activity is 

maintained for longer despite drought stress conditions, contributing to higher grain yields 

under stress (Borrell and Hammer, 2000; Harris et al., 2007;). 

    A stay green phenotype is of great agronomic value in crop species. In addition to 

contributing to an increase in yield under drought conditions, desirable morphological 

traits associated with stay green include a greater number of grains per ear (Luche et al., 

2015) and enhanced resistance to stem lodging (Adeyanju et al., 2016; Thomas and 

Howarth, 2000). Greater tolerance to abiotic stresses such as heat stress and submergence 
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have also been reported (Fukao et a., 2012; Luche et al., 2015), as well as greater tolerance 

to biotic stress such as spot blotch infection (Distelfeld et al., 2014; Joshi et al., 2007).    

    Sorghum (Sorghum bicolor L. Moench) is a C4 monocot crop which has been described as 

the 5th
 most important global cereal crop in terms of yield production (Kholova et al., 2013). 

It is primarily a vital food source in the semi-arid regions of Africa and Asia, but also has 

uses as an animal feed and as a biofuel (Anami et al., 2015; Kholova et al., 2013). It is well 

adapted to water limiting environments and is used extensively as a model species for 

drought tolerance studies (Dugas et al., 2011; Kholova et al., 2013), with functional 

genomics approaches facilitated by Sorghum’s fully sequenced genome (Paterson et al., 

2009) and resources such as the metabolic pathways database SorghumCyc 

(http://www.gramene.org/pathway/sorghumcyc.html; Dugas et. al, 2011). In more drought 

sensitive sorghum varieties, post-flowering drought conditions can cause lower yields, 

premature leaf senescence, stem lodging and rot (Harris et al., 2007; Thomas and Ougham, 

2014). In general the crop is capable of growing well under water limited conditions, but 

across the 45000 sorghum accessions there is great genetic and phenotypic diversity (De 

Souza et al., 2015). Several sorghum lines exhibit the specific drought tolerance phenotype 

of ‘stay green’ (Rosenow et al., 1983; Sanchez et al., 2002; Thomas and Ougham 2014) as 

described in the ‘B35’ sorghum line which is derived from the Ethiopia line ‘IS 12555’ 

(Borrell and Hammer, 2000). These lines tend to exhibit greater levels of drought tolerance 

than elite growing varieties such as ‘R16’ which produce higher yields under normal growth 

conditions (Kassahun et al., 2010).  

    Furthering our understanding of the processes and mechanisms that underlie the stay 

green trait in sorghum will contribute to marker assisted breeding programmes to improve 

drought tolerance of cultivars, and could facilitate production of introgression lines more 

accurately targeted to stay green trait loci (Harris et al., 2007; Johnson et al., 2015b). This 

chapter explains the current literature on the stay green phenotype, divided into 

physiological studies, quantitative trait locus (QTL) analysis, transcriptomic studies, 

proteomic studies and targeted gene function analysis.  

1.1 Morphological, physiological and biochemical features of stay green  

    The process of senescence constitutes degradation of chlorophyll and gradual reduction 

in photosynthetic productivity (Xu et al., 2000a). Crop varieties can be described to be 

exhibiting the ‘functional stay green’ trait when senescence processes as a whole are 

delayed or the rate of progression is decreased whilst photosynthesis continues (Thomas 
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and Howarth, 2000; Borrell et al., 2014a). This is distinct from ‘cosmetic stay green’ 

phenotypes in which only the process of chlorophyll catabolism is delayed or slowed 

(Thomas and Howarth, 2000; Thomas and Ougham, 2014). In the review paper by Thomas 

and Howarth, 2000, the functional stay green phenotype was classified into two types. 

Type A involves a late onset of senescence and normal rate of progression, and Type B 

involves a normal timing of senescence but slower progression through senescence. 

Different varieties of sorghum tend to display stay green behaviour that falls into the type 

A or type B functional categories (Thomas and Howarth, 2000).  

    Senescence can also be characterized by the transition in the predominant function of a 

leaf from the photosynthetically active ‘carbon (C) capture phase’ to the ‘nitrogen (N) 

remobilization phase’ in which nitrogen and other nutrients are remobilized from senescing 

leaves to the rest of the plant prior to leaf death (Thomas and Ougham, 2014). Functional 

stay greens such as sorghum therefore constitute a delay in this physiological shift in the 

leaf life cycle, either as a consequence of delayed initiation or slower progression of the 

nitrogen remobilization phase (Thomas and Howarth, 2000; Yoo et al., 2007). Interestingly, 

in species with high N content in grain a delay in C-N transition may be detrimental to the 

supply of nitrogen and essential minerals to the grain, compromising the quality of grain 

composition (Simmonds, 1995; Uauy et al., 2006). This negative effect of the stay green 

phenotype has also been recorded in soybean (Kumudini, 2002). Thomas and Ougham, 

2014 highlight the importance of studying several varieties of sorghum in order to explore 

the potential genetic variation available in senescence initiation, independent of nutrient 

remobilization rate, and potential trade-offs between high yields and grain composition.  

    In addition to improving yield and size of grain, as a consequence of greater capability to 

continue normal grain development under drought stress, the stay green phenotype has 

also been associated with increased resistance to lodging and stem rot, and higher 

carbohydrate content in stems (McBee et al., 1983; Burgess et al., 2002; Thomas and 

Ougham 2014). Morphological features associated with the stay green trait are also 

characteristics which have been suggested to be contributing to greater water use 

efficiency – such as reduced tillering and reduced surface area of upper leaves, potentially 

contributing to water conservation pre-flowering (Borrell et al., 2014a; Borrell et al., 2014b; 

Kassahun et al., 2010). An increase in water availability and accessibility during grain filling 

under drought conditions contributes to a more successful yield (Vadez et al., 2011), and 

therefore is a possible explanation for the improved yields seen in stay green sorghum. Xu 

et al., 2000a observed substantially higher relative water content in the apical leaves under 
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severe drought in apical leaves of stay green compared to non-stay green lines (81% as 

opposed to 38%) which could be related to continued efficiency of stem transport under 

drought conditions, and altered transpiration efficiency (Vadez et al., 2011).  

1.2 QTL analysis and genetic mapping  

    There are several studies that describe the physiological, developmental and 

morphological features of the stay green phenotype, but there is limited understanding of 

the molecular mechanisms and processes that are responsible for the trait. The following 

studies employed quantitative trait locus (QTL) analysis to investigate associations between 

the phenotypic trait and genomic loci, in order to identify potential candidate genes and 

processes contributing to the stay green characteristic.  

    Four QTLs for the stay green trait have been identified, following analysis on a 

recombinant inbred line (RIL) population produced from the cross between B35 (stay green 

line originating from Ethiopia) and Tx7000 (which is susceptible to post-flowering drought) 

(Xu et al., 2000b; Sanchez et al., 2002). A total of 53.5% of the phenotypic variation within 

the RIL population was explained by the genetic variation in all 4 stay green QTLs combined 

(Stg QTL; Stg1, Stg2, Stg3, Stg4) (Subudhi et al., 2000). These stay green QTL regions have 

been mapped to areas in the sorghum genome; both Stg1 and Stg2 have been mapped to 

chromosome 3, Stg3 is located on chromosome 2, and Stg4 on chromosome 5 (Sanchez et 

al., 2002; Subudhi et al., 2000; Xu et al., 2000b).  

    Near isogenic lines (NILs) containing each of the 4 stay green QTLs individually in a 

Tx7000 background have been produced to investigate the individual contribution of the 

QTLs to the stay green trait (Harris et al., 2007). Each line displayed features of the stay 

green phenotype at varying levels of intensity, including universally higher grain yield than 

the non-stay green line, suggesting each QTL region has an important influence on 

determining the overall stay green phenotype (Harris et al., 2007; Borrell et al., 2014b). In 

the paper by Vadez et al., 2011, each QTL was also introgressed into different non-stay 

green lines in addition to Tx7000 (R16 and S35) and each line showed varying effects of the 

same QTLs in different genetic backgrounds. The number of QTLs identified, and the 

variability of their contribution to the stay green phenotype in different genetic contexts 

highlights the complexity of the trait (Borrell et al., 2014b).  

   There is a close association between the stay green phenotype and plant response to 

stress, as is illustrated in the co-localization of QTLs for stay green with QTLs for 
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temperature and drought stress (Xu et al., 2000b; Vadez et al., 2011; Emebiri, 2013; 

Thomas and Ougham, 2014). Another example of QTL co-localization was found in studies 

on RIL populations produced from an original cross between lines with different nodal root 

angles (narrow vs. wide angle). These nodal root angle QTLs have been found to overlap 

with stay green QTLs, suggesting modified root architecture is likely to be a contributor to 

the stay green trait observed in this population, potentially influencing water extraction 

capabilities (Vadez et al., 2011; Borrell et al., 2014a).  

    The knowledge gained from QTL studies such as these can have agronomic application in 

marker assisted selection (MAS) techniques, which attempts to introduce QTL regions for 

stay green into the non-stay green high yielding varieties (Sanchez et al., 2002). Due to the 

genetic linkage between the stay green trait and stress response (highlighted by the 

overlapping QTL regions), selection for stay green can simultaneously lead to inheritance of 

stress tolerance features (Vadez et al., 2011; Thomas and Ougham, 2014).  

1.3 Transcriptomics studies  

    QTL analysis can identify regions of genetic variation which are closely associated with 

variation in the phenotype of interest. This can be used to identify genomic regions that 

could potentially contain genes that contribute to the stay green trait. However, 

transcriptomic studies are able to provide further insight into the molecular and 

physiological basis of the trait by identifying differential expression of specific genes across 

different varieties or in response to a change in environment (Buchanan et al., 2005; Dugas 

et al., 2011; Johnson et al., 2015b). This technique can reveal more about the processes 

involved in the stay green phenotype, without needing to identify the genes underlying the 

QTLs. Several studies have used transcriptomic approaches to analyse the change in gene 

expression in Sorghum as a result of abiotic stress such as osmotic stress and abscisic acid 

(Buchanan et al., 2005; Dugas et al., 2011; Johnson et al., 2014). Others have compared the 

transcriptome of stay green and non- stay green Sorghum under normal conditions 

(Johnson et al., 2015b). RNA sequencing has been used in addition to microarray data to 

give a more complete impression of the altered expression of genes between lines or 

treatment, producing a ‘global transcriptome profile’ (Dugas et al., 2011).  

    In the paper by Johnson et al., 2015b, the transcriptome of B35 (stay green) and R16 

(senescent) was compared in plants grown in non-stress conditions. In the B35 line, 1038 

genes were upregulated and 998 genes were downregulated compared to R16. Gene 

ontological analysis was then used to elucidate the genetic categories and pathways in 
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which significant proportions of differentially expressed genes were involved (Dugas et al., 

2011; Johnson et al., 2015b). Enriched categories included ‘response to osmotic stress’ and 

‘water transport’, which corroborates evidence of the close association between the stay 

green trait and osmotic stress, observed in the co-localization of stay green QTLs with those 

of drought stress (Xu et al., 2000b; Vadez et al., 2011; Emebiri, 2013; Thomas and Ougham 

2014).  

    Genes of particular interest that were upregulated in B35 and grouped in the ‘response 

to osmotic stress’ category included DREB1A (dehydration-responsive element-binding 1A) 

transcription factor, SDIR1 (salt and drought-induced RING finger 1) ubiquitin ligase – both 

of which will be discussed in greater detail later in this review – and P5CS2 (delta-1-

pyrolline-5-carboxylate synthase 2) (Johnson et al., 2015b). P5CS2 is known to be involved 

in the biosynthesis of the osmoprotectant proline (Kishor et al., 1995; Ashraf and Foolad, 

2007), the accumulation of which is thought to contribute to osmotic adjustment under 

stress, as well as contributing to stress responses such as free-radical scavenging, and 

membrane and protein stabilization (Smirnoff and Cumbes, 1989; Mishra and Dubey, 2006; 

Ashraf and Foolad, 2007). Further confirmation of the role of P5CS2 in contributing to the 

stay green trait was found when comparing the transcriptomic data to the QTL analysis of 

earlier studies. P5CS2 has been found to fall within the Stg1 QTL (Johnson, 2015a), 

indicating that there is both an expression level difference between stay green and non-

stay green, and a correlation between genetic variation in/around this gene and variation 

in the phenotype (Subudhi et al., 2000; Johnson, 2015a) The correlation between increased 

P5CS2 expression and actual proline levels was confirmed by measurements of ~1.8-fold 

greater total proline content in B35 compared to R16 (Johnson et al., 2015b). Therefore, 

P5CS2 has an important role in both drought tolerance and the stay green phenotype. 

1.4 Proteomics 

    Transcriptomic studies cannot be used as definitive indicators of gene translation and 

protein production due to the lack of correlation between mRNA and actual protein levels 

(Carpentier et al., 2008; Ngara and Ndimba 2014b, Velez-Bermudez and Schmidt, 2014). 

This non-linearity between mRNA and protein expression can partly be explained by 

variability in mRNA degradation rates (Salekdeh et. al., 2002; Jedmowski et al., 2014), and 

differential translational efficiency between mRNA transcripts (Bailey -Serres, 1999; 

Mustroph et al., 2009). Transcriptome studies also cannot account for the post-

transcriptional modifications (PTMs) that occur extensively in plants, including 
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phosphorylation, ubiquitination and N-linked glycosylation, which can have profound 

effects on protein function, stability and localisation (van Wijk, 2001; Gong et al., 2015). To 

address this problem, several studies have used proteomic analysis to further investigate 

abiotic stress response mechanisms, some of which are described below.  

1.4.1 Proteomic studies on abiotic stress response in crop species      

    In plant proteomics, 2-dimensional gel electrophoresis (2-D GE) continues to be the most 

widely used technique for separation and identification of proteins. Several studies have 

analysed the change in protein expression as a response to different levels of drought 

stress in comparison to normal growth conditions. A review by Wang et al. 2016 listed 440 

unique proteins as being drought-responsive based on proteomics studies on the leaves of 

25 different plant species. These drought-responsive proteins were found to be involved in 

in a range of different functions, including signalling, gene expression regulation, protein 

metabolism and turnover, photosynthesis, photorespiration and carbohydrate metabolism. 

Other proteins had roles in reactive oxygen species scavenging pathways (e.g. superoxide 

dismutase, peroxidases), osmotic regulation (e.g. late embryogenesis proteins or ‘LEAs’) 

and membrane trafficking (e.g. aquaporins) (Wang et al.,2016). For example, a study in 

Barley by Vitamavas et al., 2015 used 2-dimensional difference gel electrophoresis (2-D 

DIGE) to analyse the change in protein expression under drought stress. Glutathione s-

transferase isoforms (GSTs, known to be involved in processes of cell division and stress 

response) were found to accumulate under osmotic stress, as well as LEAs (involved in 

membrane and enzyme stabilization) and chaperones (involved in the prevention of 

protein degradation, and facilitating correct protein folding) (Vitimavas et al., 2015). 

Changes in the expression of several tricarboxylic acid (TCA) cycle enzymes (some up- and 

some down-regulated), suggested a severe disruption of aerobic metabolism, with 

upregulation of glutathione peroxidase potentially indicating a subsequent response to ROS 

accumulation (Vitamavas et al., 2015). More recently, studies have used iTRAQ (isobaric tag 

for relative and absolute quantitation) based proteomic techniques, for example in tobacco 

(Xie et. al., 2016) and apple (Zhou et al., 2015) potentially benefiting from increased 

sensitivity and reproducibility.  

    Several proteomic studies have used comparisons between lines of differing drought 

tolerance phenotypes to gain insights into tolerance mechanisms. In the paper by Zang and 

Komatsu in 2007, the proteome of a drought-sensitive rice variety was compared to that of 

a drought-tolerant variety after mannitol treatment. Upregulated proteins in the tolerant 
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line included a 26S proteasome regulatory subunit (required for the correct functioning of 

the proteasome, facilitating removal of polyubiquitinated proteins), a lipid transfer protein, 

and BiP (endosperm luminal binding protein, involved in the correct folding of proteins) 

(Zang and Komatsu, 2007). Another study by Benesova et al., in 2012 comparing maize 

cultivars found evidence of an increase in polysaccharide hydrolysis inhibitors in the more 

drought tolerant line compared to the drought-sensitive line, possibly reflecting an increase 

in lignification as a drought tolerance mechanism. Enhanced cell wall synthesis was 

suggested to be a response to changes in tugor pressure, where maintained mechanical 

strength minimizes further dehydration and cell wall loosening allows continued gradual 

growth and development even under stressed conditions (Benesova et al., 2012; Wang et 

al., 2016). In both apple (Zhou et al., 2015) and maize (Benesova et al., 2012) more tolerant 

varieties have been shown to have increased levels of light-harvesting chlorophyll a/b-

binding proteins compared to the sensitive lines in response to drought (Wang et al., 2016). 

It was suggested that enhanced levels of photosynthesis-related proteins reflect that 

photosynthetic efficiency is protected and maintained in these lines under stressed 

conditions, which is a typical feature of the stay green phenotype. In this way, reactive 

oxygen species (ROS) homeostasis is also protected by continued quenching of excitation 

energy through the light-harvesting complex system (Benesova et al., 2012; Wang et al., 

2016; Zhou et al., 2015).   

    Proteomic comparisons between transgenic and wildtype lines have also provided 

interesting insights into drought tolerance mechanisms. This is evident in the paper by Paul 

et. al., 2015 in which the drought-stressed proteome of a rice line overexpressing DREB1A 

(Dehydration responsive element-binding 1 A), compared to a wildtype line was analysed by 

2-dimensional gel electrophoresis (2-D GE). Stress-induced upregulation of carbohydrate 

metabolism-related proteins, including UDP-glucose pyrophosphorylase, was observed in 

the transgenic line in contrast to the wildtype. It was suggested that the increase in plant 

height and root exploration of the drought-stressed transgenic line could be explained by 

an effectively sustained carbohydrate and energy metabolism despite water limitations.  

    As previously mentioned, PTMs have a significant influence on protein function and 

several proteomic studies have focussed on protein modification changes in response to 

stress. The response of phosphoproteins to drought have been investigated in rice (Ke et 

al., 2009), wheat (Zhang et al., 2014) and maize (Bonhomme et al., 2012; Hu et al., 2015). 

These types of studies investigate the proteome to a greater level of complexity, and give 
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additional insight into alterations and regulation of protein function under stress, beyond 

that of quantitative proteomics methods.        

 

1.4.2 Proteomic studies on abiotic stress response in sorghum       

    Several recent studies have used sorghum as a model crop species to investigate changes 

in the proteome in response to abiotic stress. A paper by Jedmowski et al., in 2014 

described the processes of protein and amino acid metabolism to be significantly altered at 

the protein level in response to drought stress. In this study, a drought tolerant line (11434) 

and a drought sensitive line (11431) were compared using 2-D GE, and the tolerant line was 

found to have an upregulation of heat-shock and chaperone proteins during stress and 

after recovery. This could suggest a more reliable defence against stress-related 

disturbance to protein synthesis and folding processes in this line compared to the drought 

sensitive line. Other studies have looked at differences in the proteome response to salt 

stress between various sorghum cultivars (Swami et al., 2011; Ngara et al., 2012). These 

papers are described in greater detail in section 3.1.        

1.5 Characterization and functional analysis of SDIR1, DREB1, NAC and USP  

    Transcriptomic and proteomic analyses identify proteins with association to drought 

tolerance phenotypes. These could be involved in signal perception (e.g. receptors), signal 

transduction (e.g. transcription factors) or directly in stress protection (e.g. chaperones, 

osmolytes) (Zang and Komatsu, 2007). Genes of interest require further characterization to 

investigate whether the correlations observed indicate a true function in stress tolerance 

mechanisms.  

1.5.1 SDIR1  

    As previously mentioned, one of the genes found to be upregulated in B35 compared to 

R16 and belonging to the ‘response to osmotic stress’ category is SDIR1, encoding an E3 

ubiquitin ligase (Zhang et al., 2007; Johnson et al., 2015b). Overexpression of SDIR1 

homologs in Arabidopsis, maize and rice increased drought tolerance in the transgenic 

lines, potentially involving changes in stomatal aperture and transpiration efficiency (Zhang 

et al., 2007, Zhang et al., 2008; Xia et al., 2012). It has therefore been hypothesized that 

SDIR1 is involved in the aspect of the stay green phenotype in which water availability 

during grain filling is maintained under drought conditions (Vadez et al., 2011; Johnson, 

2015a).  
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1.5.2 DREB1 

    The transcription factor DREB1A is also upregulated in B35 compared to R16 (Johnson et 

al., 2015b). The DREB transcription factors, from the ethylene response factor (ERF) family, 

bind to DNA at their AP2 (apetala 2) domain (Sakuma et al., 2002). DREB transcription 

factors are able to modify expression of stress responsive genes by binding to their 

promoters at the DRE (‘dehydration responsive element’) (Stockinger et al., 1997; Sakuma 

et al., 2002). Homologs in a number of different species have been shown to increase stress 

tolerance when overexpressed, for example in wheat and brassica, suggesting conservation 

of the stress response regulatory system (Shen et al., 2003; Savitch et al., 2005). 

Overexpression in Arabidopsis of AtCBF3, the Arabidopsis homolog of DREB1A, has been 

shown to cause accumulation of osmoprotectants such as proline and sugars (Gilmour et 

al., 2000).  

1.5.3 NAC  

    NAC (no apical meristem (NAM), ATAF1-2 and cup-shaped cotyledon (CUC)) proteins are 

transcription factors which share a highly conserved NAC domain at the N-terminus 

involved in DNA-binding and containing a nuclear localisation signal (Nakashima et al., 

2012; Wang et al., 2013), the structure of which has been determined in Arabidopsis (Ernst 

et al., 2004) and rice (Chen et al., 2011). Several NAC transcription factors have been 

highlighted as potential contributors to the regulation of both drought stress responses and 

senescence processes, with evidence of abscisic acid (ABA) and methyl jasmonic acid 

induced expression (Fujita et al., 2004; Nakashima et al., 2012).  

    There are ~110 members of the NAC family in Arabidopsis (Riechmann et al., 2000), and 

several of these NAC genes have been studied extensively in connection with abiotic stress 

tolerance. For example, overexpression of RD26 (RESPONSE TO DEHYDRATION 26) in 

Arabidopsis transgenic lines have resulted in increased expression levels of stress-inducible 

genes (Fujita et al., 2004). Arabidopsis JUB1 (JUNGBRUNNEN 1) overexpression lines were 

shown to produce a delayed senescence phenotype, and greater tolerance of abiotic stress 

associated with ROS metabolism regulation (Wu et al., 2012).   

    Several NAC transcription factors have been associated with the regulation of senescence 

initiation and progression, and have been hypothesised to contribute to the delayed 

senescence phenotype associated with the stay green trait (Guo and Gan, 2006). There are 

several examples of NAC genes exhibiting positive senescence regulation, for example in 
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Arabidopsis (Guo and Gan, 2006; Yang et al., 2011; Lee et al., 2012) and rice (Sperotto et 

al., 2009), as well as negative regulators in Arabidopsis (Wu et al., 2012) and wheat (Zhao 

et al., 2015).  

1.5.4 USP  

    Universal stress proteins (USPs) can be found in bacteria, archaea and eukaryotes, and 

have roles in plant stress response including defence against superoxide generating agents 

(Nachin et al., 2005). Transcriptomic studies show evidence of USP upregulation when 

sorghum is exposed to heat stress (Johnson et al., 2014). The role of USPs in drought stress 

response is also illustrated in transgenic studies in which tomato lines overexpressing USP 

under drought stress conditions are shown to have reduced stomatal aperture and 

increased expression of genes for the maintenance of photosynthetic components. This 

reflects a stay green-like response of increased water conservation and maintained 

photosynthetic activity under osmotic stress (Loukehaich et al., 2012).  

   In sorghum, evidence of upregulation of a USP gene has also been found in microarray 

analysis in which R16 senescent lines were compared to R16 lines containing the StgB stay 

green QTL. It has been suggested that this USP could have a function that contributes to 

the stay green phenotype, and specifically to the genetic variation underlying that 

particular QTL (Johnson, 2015a). This USP gene was Sb01g037580.1 and was grouped in the 

gene ontology (GO) category ‘response to osmotic stress’ (Johnson, 2015a).  

1.6 Summary 

    Drought stress is a major food security issue. Investigation into the mechanisms of 

response and tolerance is essential to inform future crop breeding programmes. Sorghum 

in particular is an interesting crop to study considering the wealth of genetic diversity 

among cultivars and the evidence of stay green phenotypic traits (Mace et. al., 2013). 

    Several studies have made observations and measurements of the physiological, 

developmental and morphological features associated with the stay green phenotype in 

sorghum. However, there is still limited understanding of the molecular mechanisms and 

processes responsible for these characteristics. Studies have employed QTL analytical 

techniques to follow the correlations between genetic variation and stay green phenotype 

variation in populations in order to narrow down the potential genomic location of genes 

and loci involved in the trait. Discovery of the co-localization of these QTLs with those of 

abiotic stress responses have confirmed the close association between stay green and 
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stress tolerance in sorghum (Xu et al., 2000b; Vadez et al., 2011; Emebiri, 2013; Thomas 

and Ougham 2014; Johnson et al., 2015b). Transcriptomic studies have also been used to 

identify the directional changes in gene expression levels as a response to applied abiotic 

stresses, or between different sorghum lines (Buchanan et al., 2005; Dugas et al., 2011; 

Johnson et al., 2014; Johnson et al., 2015b). Comparison of these results to the genetic 

mapping of QTLs has identified candidate genes/processes that could form the genetic 

basis of the stay green trait.  

    Whilst the transcriptome of B35 stay green and R16 senescent sorghum lines have been 

compared, a complementary proteomic comparison has yet to be conducted. Genes of 

interest identified in the transcriptomic comparison between these lines, such as SbSDIR1 

ubiquitin ligase (Johnson et al., 2015b), require further characterization to investigate their 

respective functions. 

Project plan  

General aim:  

To investigate the underlying mechanisms and pathways involved in the stay green trait in 

Sorghum, in relation to drought tolerance.  

Specific aims of my project:  

1. To conduct a proteomic comparison between the B35 stay green line and the R16 

senescent line to compare the difference in the levels of specific proteins between these 

lines. This data will be analysed alongside previous transcriptomic data for these lines. 

Candidate proteins for involvement in the processes and mechanisms that form the basis of 

the stay green trait can be selected for future study. 

2. To investigate the function of sorghum SbSDIR1 in relation to the stay green trait and 

drought stress response. Work by a previous student Stephanie Johnson (Johnson, 2015a) 

found SbSDIR1 to be upregulated in stay green B35 lines compared to non-stay green R16 

lines in sorghum, and overexpression in other species have shown increased drought 

tolerance characteristics (Xia et al., 2012; Zhang et al., 2007; Zhang et al., 2008). An 

SbSDIR1 overexpression construct was produced by Stephanie Johnson and used to 

transform wheat at NIAB. These were tested for evidence of the stay green phenotype such 

as improved drought tolerance, water use efficiency, stomatal conductivity, production of 

compatible solutes and expression of stress genes.  
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Chapter 2 

Materials and Methods 

 

2.1.1 Reagents 

All chemicals were supplied by the following list of companies: 

Sigma-Aldrich Ltd (Poole, UK) 
Fisher Scientific UK Ltd (Loughborourgh, UK) 
Bioline (London, UK) 
Melford Laboratories Ltd (Ipswich, UK) 
 
  
2.1.2 Sorghum seed source 

Sorghum bicolor seeds of the cultivars B35 and R16 were supplied by Dr Santosh Despande, 

(ICRISAT, Petancheru, India). 

2.1.3 Sorghum growth conditions 

Following overnight imbibition in water, sorghum seeds were germinated on 44mm 

hydrated peat plugs (Jiffy Products international, Moerdijk, Norway) within sealed plastic 

containers. Growth chambers were set to a 12 hour (hr) photoperiod, with 28°C/23°C 

day/night temperature cycles. Containers were opened following evidence of germination, 

normally 3-4 days after sowing (DAS). Sorghum plants were grown for 14 days after 

imbibing, and the whole aerial part of the part was harvested for protein extractions.  

2.1.4 Source of Fielder Wheat seed transformed with the overexpression construct 

pEW304-SbSDIR1 

A construct for overexpressing the sorghum gene SbSDIR1 (Sb01g039740.1) was produced 

by Stephanie Johnson. Agrobacterium-mediated transformation of Fielder wheat (Triticum 

aestivum L.) with the overexpression construct (pEW304-SbSDIR1) was then conducted by 

Dr Emma Wallington at NIAB (Huntington Road, Cambridge, CB3 0LE), and the second 

generation of transformed seeds were collected. 

2.1.5 Wheat growth conditions   

Seed dormancy was broken by heat treating dry seeds at 32⁰C for 6 days, followed by cold 

treatment at 4⁰C overnight. Seeds were then imbibed overnight and germinated on wet 



24 
 

tissue in petri dishes, at 20⁰C in the dark. Germinated seedlings were transferred to 44mm 

hydrated peat plugs and grown at 20⁰C with a photoperiod of 16 hours.  

2.2 Molecular biology techniques 

2.2.1 RNA extraction 

RNA was extracted from mature wheat plants grown for 12 days, and all 3 leaves were 

harvested for RNA extraction. Leaf tissue was disrupted under liquid nitrogen and total RNA 

was extracted using RNeasy Plant Total RNA kit (Qiagen, Crawley, Uk) following the 

manufacturers protocol. 

2.2.2 cDNA synthesis  

Full length cDNA was synthesised from RNA extractions using M-MLV reverse transcriptase 

and oligo dt primers (Promega, Southampton, UK) following the manufacturers protocol.  

2.2.3 Real time polymerase chain reaction (PCR) 

Applied Biosytems 7300 Real Time PCR Machine (Applied Biosystems, Forster City, USA) 

was used to analyse relative transcript levels of the SbSDIR1 gene. A reaction mix 

containing 7.5µl of FastStart SYBR Green Master mix (Roche Diagnostics GmbH, Mannheim, 

Germany), 0.9µl of forward primer (5µM) and 0.9µl of reverse primer (5µm) was added to 

5µl of cDNA (50 x dilution), with 3 technical replicates per reaction. The ADP-ribosylation 

factor (ARF) gene Ta. 2291 (Paolacci et al., 2009) was used as an invariant reference gene 

for wheat RNA. Relative transcript levels were calculated using the algorithm described in 

the Relative Quantitation (RQ) Algorithms in the Applied Biosystems Real-Time PCR 

Systems Software (Applied Biosystems Real-Time PCR Systems, 2007). Values represent the 

relative quantitation (RQ) estimates as calculated using the 2(-Delta Detla C(T)) method 

(Livak and Schmittgen, 2001). The RQMIN and RQmax error bars are calculated from the 

Student’s t test, and represent the limits of acceptable error at 95% confidence as 

described in Knight et al., 2009. A list of real time real time PCR primers is included in 

Appendix A.  

2.3 Physiological experiments for analysing the phenotype of wheat transgenics 

2.3.1 Excised leaf water-loss assay 

Wheat plants were grown for 18 days under normal conditions (see section 2.1.5). For the 

final night prior to the experiment the plants were exposed to conditions of high humidity 

by covering them with a transparent plastic bag. The following day, leaves of the same 
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developmental stage (leaf 4) were detached and weighed at regular intervals over a period 

of 5 hours. The excised leaves were positioned flat with the abaxial side up throughout, and 

maintained at room temperature. One leaf from six individual plants was measured for 

each genotype, and the full experiment was repeated 3 times to produce 3 biological 

replicates.   

2.3.2 Assay for tolerance to polyethylene glycol (PEG) induced stress. 

Leaves of the same developmental stage (leaf 4) were excised from mature wheat plants 

(25 days old) and cut into sections of approximately 1cm in length. Leaf sections from 6 

individual plants per genotype were pooled and mixed, then divided into 6 equal groups. 

Grouped leaf sections were subsequently floated adaxial side up in 7ml of 0, 15 and 25% 

solutions of PEG (w/v) in 6-well plates, with two wells allocated to each unique treatment 

and genotype combination. Assays were maintained at 20°C with a 16hr photoperiod. 

Visible changes in chlorophyll degradation and senescence progression were documented 

photographically over the course of 7 days.  

2.3.3 Light and dark induced senescence assay 

Leaves of the same developmental stage (leaf 6) were excised from mature 28 days-old 

wheat plants and cut across the leaf blade into two equal halves. Leaf sections from 6 

individual plants per genotype line were pooled and mixed, then divided into two equal 

groups with equal numbers of leaf tip and base sections. These sections were then placed 

adaxial side up on wettened tissue in 6ml petri dishes (2 plates per genotype line) and 

sealed with micro-pore tape. One plate from each line was then covered in two layers of tin 

foil. All plates were incubated at 20°C under a 16-hour photoperiod. Visual changes in 

senescence progression between genotype lines and between light and dark exposed 

plates were then documented photographically over the course of 10 days. 

2.3.4 ABA-induced gene expression analysis by real time PCR 

Leaves of the same developmental stage (leaf 5) were excised from mature 25 days-old 

wheat plants and cut into sections of approximately 1 cm in length. Sections from 6 

individual plants from each genotype line were pooled and mixed together. Leaf sections 

were floated adaxial side up in 7ml of water in 6-well plates and allowed to equilibriate 

overnight in the dark. The water was then replaced with 7ml of 100µM ABA solution, with 

0.1% ethanol solution as a control treatment. Plates were incubated at 20°C in the dark, 

and samples were collected and frozen in liquid nitrogen at the intervals of 12 and 24 hours 
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following treatment. One harvested sample equated to approximately 1.5 sectioned leaves, 

and were subsequently used for RNA extraction and real time qPCR (see sections 2.2.1 and 

2.2.3).      

2.4 Proteomics 

2.4.1 Total protein extraction 

Total proteins were extracted from the whole aerial part of sorghum plants grown for 14 

days using the 10% TCA (trichloroacetic acid)/acetone extraction method described in 

Carpentier et al., 2005. Each individual sample consisted of a single plant. Samples were 

then resuspended in resolubilization buffer containing 7M urea, 2M thiourea, 30mM Tris, 

1% protease inhibitor mix and 2% (w/v) CHAPs (3-[(cholamidopropyl)dimethylammonio]-1-

propanesulfonate) at pH 8.5. Proteins were further purified using 2-D Clean-Up kit (GE 

Healthcare, Little Chalfont, UK) following the manufacturer’s instructions, and readjusted 

to pH 8.5 by the addition of resolubilization buffer at pH10. Protein content was quantified 

using 2-D Quant Kit (GE Healthcare) also following the manufacturer’s instructions. 

2.4.2 Preparation of samples for coomassie stained gels 

For the non-labelled protein samples intended for use in coomassie stained 2-dimensional 

SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis) gels, 250µg of 

protein was added to Destreak Rehydration buffer (GE Healthcare) containing 0.5% IPG 

(Immobilized pH Gradient) buffer pH 3-10 (GE Healthcare), up to a total volume of 340µl.  

2.4.3 Labelling and preparation of protein samples for Difference Gel Electrophoresis 

(DIGE) 

Protein samples intended for use in DIGE were labelled using Cy-Dye DIGE Fluor Minimal 

Labelling Kit (GE Healthcare) using 50ug of protein per sample, according to the 

manufacturer’s instructions. B35 and R16 sorghum samples were labelled with Cy-3 and Cy-

5 alternately, and control samples were labelled with Cy-2. One labelled sample of each 

genotype and one control were combined for separation on each separate gel. For Gels 1 

and 2, B35 and R16 samples were labelled with Cy-3 and Cy-5 respectively, with the 

opposite labelling for gels 3 and 4.   

2.4.4 2-Dimensional gel electrophoresis 

Protein extracts (both fluorescent labelled and non-labelled) were primarily separated in 

the first dimension by IEF (Isoelectric focussing) on 18 cm pH 3-10 Nonlinear (NL) 
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Immobiline DryStrips strips (GE Healthcare), using the IEF unit Ettan IPGphor II (Amersham 

Biosciences, GE Healthcare, Little Chalfont, UK). The overnight programme used is detailed 

in Table 2.1. Once completed, the strips were equilibrated by 20-minute incubation in 10ml 

of equilibration buffer (6M urea, 30% glycerol, 2% SDS and 50mM Tris pH 8.8) with 1% 

(w/v) dithiothreitol (DTT) added. This was followed by a second 20-minute incubation in 

10ml equilibration buffer with 2.5% (w/v) iodoacetamide (IAA) added. SDS-PAGE was run in 

the second dimension using 12.5% 1mm polyacrylamide gels. Gels used for separating non-

labelled proteins were stained using Coomassie Brilliant Blue G-250 and scanned using an 

Image Scanner (Amersham Biosciences, GE Healthcare). DIGE gels were scanned using the 

Ettan DIGE Imager (Amersham Biosciences, GE Healthcare) using the final exposure times 

of cy2:1, cy3:0.1, cy5:0.2.  

Table 2.1- 1EF programme for IPG strips ph3-10 NL 18cm 

Step Volts Volt Hours 

1. Rehydration step 30 10 

2. Focussing step & 

hold 

500 500 

3. Focussing gradient 1000 800 

4. Focussing gradient 8000 13500 

5. Focussing step & 

hold 

8000 20000 

 

2.4.5 Statistical analysis of 2D-gels 

Aligned gel scans were analysed using Progenesis Samespots software 4.0 (Nonlinear 

Dynamics, Newcastle, UK). Gels were aligned to the reference gel image, and spot volumes 

were normalized to the total spot intensity. In DIGE analysis the spot volumes were 

normalized to the internal standard in each gel to minimize inaccuracy due to gel-to-gel 

variation. Each detected spot was confirmed manually to avoid artefacts. Differentially 

expressed proteins between the two lines were identified using the criteria of a 2-fold or 

greater change in gene expression (ratioB35/R16 , ANOVA p<0.05).  
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Chapter 3 

Comparison between the proteomes of stay 

green and senescent sorghum varieties using 2-

dimensional gel electrophoresis 

 
3.1 Introduction  

 

    Transcriptomic data reveals changes at the gene expression level in response to abiotic 

stress, but gene transcript levels often do not correlate directly to actual protein level due 

to factors such as protein degradation and post-translational modifications (Carpentier et 

al., 2008; Gong et al., 2015; Jedmowski et al., 2014; Ngara and Ndimba 2014b; van Wijk 

2001). Proteomic studies are required to investigate changes at the level of the end-

product; the protein. In plant proteomics, 2-dimensional gel electrophoresis (2-D GE) 

continues to be the most widely used technique for separation and identification of 

proteins. Rice has been used extensively as a model crop species for proteomic and abiotic 

stress studies, as previously described (see section 1:2:2) (Chitteti et al., 2007; Zang and 

Komatsu, 2007; Paul et al., 2015). However, this study instead utilizes the drought tolerant 

crop sorghum to analyse drought stress response mechanisms. Ngara and Ndimba 2014a 

champion sorghum as a superior model for drought tolerance mechanisms as an 

alternative to rice, considering it’s natural drought tolerance and use as a staple food crop 

in arid and semi-arid regions (Rosenow et al., 1983; Ngara and Ndimba 2014a). It is also a 

C4 crop species, in contrast to C3 rice, and this method of carbon fixation helps to maintain 

photosynthetic activity under stressed conditions (Buchanan et al., 2005; Ngara and 

Ndimba 2014a).  

    A few papers have described analysing the proteome-level responses of sorghum to 

abiotic stress. The proteome of Egyptian landraces of Sorghum lines were compared using 

2-D GE in a paper by Jedmowski et al., in 2014, focussing on a drought tolerant line 11434 

and drought sensitive line 11431. The drought treatment was sufficient to cause disruption 

to levels of proteins involved in photosynthesis, glycolysis and the TCA cycle for both lines. 

Of particular note was the response of proteins involved in protein and amino acid 

metabolism. For example, methionine synthase and S-Adenosyl-L-methionine synthase 

(SAM synthase) are upregulated in both lines, but only remain upregulated in the tolerant 
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line following recovery (Jedmowski et al., 2014). Interestingly, upregulation of SAM 

synthase was also found in the drought tolerant rice transgenic line overexpressing DREB1A 

compared to wildtype (Paul et al., 2015), and overexpression of SAMs in transgenic A. 

thaliana has been shown to increase drought tolerance (Kim et al., 2015). SAM synthase 

and methionine synthase are both involved in the biosynthesis of S-adenosyl-L methionine 

(SAM) via the ‘SAM cycle’, components of which have roles in methyl-group donation, 

ethylene biosynthesis (a hormone involved in senescence), gene expression regulation, cell 

wall metabolism and lignin biosynthesis (Boerjan et al., 1994; Cruz et al., 1992; Jedmowski 

et al., 2014; Kim et al., 2015; Krannich et al., 2015). SAM also has a major role in polyamine 

production, and sorghum microarray data has previously indicated upregulation of the 

polyamine spermidine synthase under combined heat and drought stress (Gill and Tuteja, 

2010; Jedmowski et al., 2014; Johnson et al., 2014). Additionally, Hsp60, a chaperone 

protein disulphide isomerase (PDI) and 40S ribosomal protein S3 were all upregulated 

either during stress or after recovery in the tolerant line, but not the sensitive sorghum 

line, indicating a greater efficiency of protein synthesis, assembly and regulation of 

aggregation associated with drought tolerance (Jedmowski et al., 2014).  

    Two independent papers using different cultivars of sorghum have studied proteomic 

changes in response to salt stress (Swami et al., 2011; Ngara et al., 2012). In both cases, 

there was evidence of upregulation of GSTs, ATP synthases and peroxidases in response to 

increased salinity – similar to the proteomic response to drought stress found in several 

other crop species (Zang and Komatsu 2007; Vitamavas 2015; Xie et al., 2016).  

    In this study, the full proteome of the stay green sorghum line B35 and the senescent line 

R16 are compared by 2-D GE, firstly using Coomassie Blue staining and secondly using 

CyDye DIGE fluor dyes in the more sensitive 2-dimensional difference gel electrophoresis 

(DIGE) method. This data will complement previous transcriptomic data which compared 

the differences in gene expression between the same lines at the same developmental 

stage (Johnson et al., 2015b), and any differentially expressed proteins discovered can be 

investigated for correlation to changes previously found at the transcription level.   

Aims; 

• To compare the total proteins expressed in the stay green and senescent lines 

grown under normal conditions using 2D gel electrophoresis (2-D GE). 
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• To identify differentially expressed proteins between the two lines using Matrix 

assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-

MS).  

• To use previous microarray data to identify any correlation between protein level 

and gene expression level differences between the two lines, and identify 

candidate genes and processes that potentially underlie the stay green trait.  

 

3.2 Comparative analysis of the full proteomes of the stay green line B35 and the 

senescent line R16 grown under normal conditions. 

3.2.1    Comparison of total protein extractions of B35 (stay green) and R16 (senescent) 

sorghum plants at 14 days old using 2D gel electrophoresis visualized using Coomassie 

Blue staining. 

    In this study, the full proteomes of two sorghum cultivars with different drought 

tolerance phenotypes were compared using 2-D GE with Coomassie Blue staining (section 

2.3). Sorghum plants were grown for 14 days (5 leaf stage) under normal conditions, and 

the whole aerial part of the plants were harvested (section 2.1.2). Total proteins were 

extracted from 4 replicates using a TCA/acetone extraction method (section 2.3.1). Each 

replicate sample consisted of a single plant. Gel scans were analysed using Progenesis 

Samespot software, and differentially expressed proteins between the different lines were 

selected using the criteria of a 2-fold threshold change in relative signal intensity, ANOVA 

p<0.05 (Swami et al., 2011) (section 2.3.3).   

    The drought tolerant ‘stay green’ sorghum line used in this study is ‘B35’ (or BTx632) and 

is of Ethiopian origin, derived from accession IS 12555 (Rosenow et al., 1983; Kassahun et 

al., 2010). It exhibits a phenotype of delayed senescence under drought treatment, and 

maintains greater chlorophyll content and percentage of photosynthetically active leaf area 

compared to ‘senescent’ drought sensitive varieties such as R16 (Rosenow et al., 1983; 

Kassahun et al., 2010). The stay green phenotype of B35 has been studied extensively, and 

B35 and R16 were used in the paper by Johnson et al., 2015b which conducted a 

transcriptomic comparison between the two lines under normal conditions. By using these 

same varieties at the same developmental stage, the proteomics data generated in this 

study can be used to complement this transcriptomic data and give further insight into 

both the gene transcript level and protein level disparities between stay green and non-

stay green sorghum.    
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    The 2-D GE gels presented in this report were stained using Coomassie Brilliant Blue G-

250, and serve as a pilot study to test for the suitability of the total protein extraction 

method prior to use in the more sensitive DIGE analysis (see section 3.2.2). Progenesis 

Samespot software 4.0 (Nonlinear Dynamics) was used to align the gels to the reference gel 

image, detected spots were validated manually to avoid artefacts and spot volumes were 

normalized to total spot intensity.  

    A total of 919 protein spots were detected on the 2-D GE gels, and the comparative 

analysis using Progenesis SameSpots identified 27 of these spots as having a 2-fold or 

greater change in expression level between the two lines, statistically significant to a level 

of 95% confidence (ratioB35/R16 ANOVA p<0.05). Twelve protein spots were upregulated in 

B35, and 15 protein spots were downregulated in B35 compared to R16 (see Table 3.1). 

Figure 1a displays the reference gel image following separation by SDS-PAGE, with the 

differentially expressed protein spots numbered. Evidence of clearly defined spots over a 

range of isoelectric points (PIs) and molecular weights suggests that the protein extraction 

and analysis methods used are sufficient for analysis of total proteins from sorghum 

seedlings, with minimal degradation.    
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Figure 1- Gel images of second dimension 

protein separation by SDS-PAGE. Proteins 

were separated in the first dimension on 

Immobiline DryStrip strips pH 3-10 

(nonlinear) NL, then in the second 

dimension on 12.5% 1mm thick 

polyacrylamide gels and visualized using 

Coomassie Brilliant Blue G-250. Gels were 

scanned on ImageScanner (Amersham 

Biosciences) and analysed using 

Progenesis Samespot software 4.0 

(Nonlinear Dynamics). a. Reference gel 

image following spot analysis. Numbered 

spots relate to the 27 differentially 

expressed proteins as identified using a 

selection criteria of FC < 2, ANOVA P 

value < 0.05 b. Original gel scan for B35. 

c. Original gel scan for R16.   

a 

IEF3 

IEF10 IEF3 

IEF10 

IEF3 

IEF3 
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Spot 

Number 

Anova 

(p)  

Fold 

change 

(FC) 

Regulation in B35 

compared to R16 

Average Normalised 

Volumes  

B35 R16 

3728 7.38E-05 3.2 Down 1.32E+06 4.23E+06 

3909 2.39E-04 4 Up 8.83E+06 2.23E+06 

1414 0.002 2.5 Down 7.85E+05 1.95E+06 

4954 0.003 2.6 Down 3.65E+06 9.37E+06 

787 0.003 2.3 Down 5.57E+05 1.30E+06 

3699 0.005 2.7 Down 3.62E+06 9.66E+06 

1817 0.005 3.3 Up 1.55E+06 4.76E+05 

1515 0.005 2.4 Up 1.65E+06 6.75E+05 

4291 0.007 5.2 down 6.30E+05 3.26E+06 

2380 0.009 2.3 down 4.06E+05 9.47E+05 

2252 0.012 3.7 up 1.00E+07 2.74E+06 

1759 0.013 2.2 up 8.74E+05 4.02E+05 

860 0.016 2.3 up 8.93E+06 3.93E+06 

3953 0.019 2.6 down 1.80E+06 4.63E+06 

2113 0.024 3.1 down 4.94E+05 1.54E+06 

3841 0.026 2.4 up 1.06E+06 4.43E+05 

4870 0.03 3.3 up 3.02E+06 9.12E+05 

1429 0.033 2.2 down 3.82E+06 8.26E+06 

4980 0.035 3.8 up 1.14E+07 3.04E+06 

1000 0.035 2.1 up 6.28E+06 2.95E+06 

3568 0.035 2 up 2.13E+06 1.07E+06 

2294 0.037 2.9 down 6.89E+04 1.98E+05 

4067 0.039 2.1 down 1.06E+06 2.19E+06 

2101 0.041 2.2 down 1.05E+06 2.34E+06 

188 0.042 2.1 down 1.26E+06 2.61E+06 

55 0.044 2.1 up 2.39E+05 1.15E+05 

      

 

Table 3.1 – Average normalised spot volumes and fold changes for each differentially 

expressed protein spot identified. Criteria for differentially expressed proteins was a fold 

change > 2, statistically significant to a level of 95% confidence (ANOVA P value <0.05).  
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3.2.2    Comparison of the full proteome in B35 (stay green) and R16 (non-stay green) 14 

day old plants using 2-dimensional difference gel electrophoresis (DIGE). 

    Having confirmed the suitability of the extraction method and the quality of the proteins 

obtained, the protein samples were then separated using DIGE. In DIGE analysis, one 

replicate sample from each variety can be separated on the same gel in the presence of an 

internal standard (mixture of all replications). In this way, each gel exposes both genotypes 

to identical running conditions, and subsequent normalization to the internal standard can 

account for between gel variation, minimizing the risk of false positives (Jedmowski et al., 

2014). Accuracy is therefore improved upon compared to conventional staining methods, 

achieving greater sensitivity to true variation in protein levels. The results are highly 

reproducible, and technical replication is not required (Ettan DIGE System, User Manual, GE 

Healthcare, https://www.mcgill.ca/cian/files/cian/ge_dige_manual.pdf).           

    Protein samples were labelled with fluorescent dye prior to separation, and gel scans 

were again analysed using Progenesis Samespot software 4.0 (Nonlinear Dynamics). Gels 

were aligned to the refence image, and spot volumes normalized to the internal standard 

on each gel. This technique successfully identified only 329 true protein spots in total, 

suggesting the sensitivity of the labelling reaction was compromised. None of these 

identified protein spots met the criteria of a 2-fold threshold change in relative signal 

intensity between the two lines. Instead, potentially differentially expressed proteins were 

identified by the criteria of a 1.5 or greater fold change in spot intensity, statistically 

significant to a level of 95% confidence (ratioB35/R16 ANOVA p<0.05). Two candidate proteins 

satisfy this criterion, as highlighted in Table 3.2, neither of which appear to correlate with 

the differentially expressed proteins identified in the Coomassie Blue stained gels (see 

figure 1). Figure 2 and Table 3.2 list all proteins with a statistically significant variation in 

signal intensity at ANOVA p<0.05. There is a potential correlation between spot #790 

(figure2) at 1.4 fold change (FC) (ANOVA P value = 0.038) and #2252 (figure 1) which might 

illustrate corroboration between both techniques and could identify an upregulated 

protein in B35 that requires further functional analysis.     
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Figure 2 - Reference gel image of second dimension protein separation by SDS-PAGE. 

Proteins were fluorescently labelled then separated in the first dimension on IPG strips pH 3-

10 NL, then in the second dimension on 12.5% 1mm thick polyacrylamide gel. Gels were 

scanned on (Ettan DIGE Imager (GE Healthcare, Amersham Biosciences) and analysed using 

Progenesis Samespot software 4.0 (Nonlinear Dynamics). Numbered spots relate to the 

differentially expressed proteins as identified using a selection criteria of ANOVA P value < 

0.05. 
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Spot 

Number 

Anova 

(p)  

Fold 

change 

(FC)  

Regulation in B35 

compared to R16  

Average 

Normalised 

Volumes  

B35 R16 

341 0.004 1.2 Up 0.925 0.79 

295 0.013 1.2 Up 0.871 0.698 

104 0.016 1.3 Up 1.048 0.804 

153 0.018 1.3 down 0.783 1.024 

407 0.023 1.2 Up 1.014 0.83 

773 0.031 1.2 down 0.866 1.073 

785 0.033 1.1 Up 0.942 0.826 

790 0.038 1.4 Up 1.282 0.888 

413 0.04 1.7 Up 1.196 0.724 

456 0.041 1.9 Up 1.115 0.575 

176 0.042 1.3 down 0.931 1.214 

51 0.042 1.3 Up 0.863 0.689 

 

Table 3.2 – Average normalised spot volumes and fold changes for each differentially 

expressed protein spot identified. Criteria for differentially expressed proteins was a fold 

change > 1.1, statistically significant to a level of 95% confidence (ANOVA P value <0.05).  

3.3 Discussion  

   The proteomic comparison in this study has found evidence of protein level differences 

between the B35 stay green and R16 senescent sorghum lines when grown under normal 

conditions. The previous transcriptomic comparison also found significant differences 

between transcript levels of several genes in the two lines under normal conditions 

(Johnson et al., 2015b). By combining these two studies, correlation between protein level 

and transcript level variation could be identified, and candidate proteins investigated for 

their roles in stay green and drought tolerance mechanisms. 

3.3.1 Conclusions from the 2-D GE analysis visualised using Coomassie Blue stain, 

comparing the proteomes of B35 and R16 

   Of the 27 proteins found to be significantly differential expressed between the two lines, 

12 proteins were more highly expressed in B35 compared to R16. In the paper by Johnson 

et al., 2015b, expression levels of 1038 genes were higher in the B35 tolerant line 

compared to the senescent line, including a DREB1A (dehydration-responsive element-
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binding 1A) transcription factor and a SbSDIR1 (salt and drought-induced RING finger 1) E3 

ubiquitin ligase. Identification of the proteins of interest in this proteomic study will reveal 

the degree of correlation between these two omics studies, revealing differences between 

the two lines at both the protein and transcript level. It could also indicate the level at 

which genes and processes contributing to the stay green phenotype may be regulated, i.e. 

either pre- or post-transcription.  

   Fifteen proteins were found to be lower in B35 compared to R16. Previous proteomic 

studies found proteins involved in damage and repair to be expressed to lower levels in the 

tolerant crop varieties than the more sensitive lines, indicating a greater efficiency of stress 

protective mechanisms and minimization of subsequent damage. This is evident in the 

proteomic comparison between two Egyptian sorghum lines where there was significant 

upregulation of an aspartate protease in the sensitive line, suggesting increased 

degradation activity, possibly as a manifestation of damage due to oxidative stress 

(Jedmowski et al., 2014). A study comparing the response of two maize cultivars to mild 

water deficit reported lower levels of ribosomal proteins in the drought tolerant cultivar 

compared to the sensitive line, suggesting potential differences in drought-induced 

photosynthesis regulation (Benesova et al., 2012). It would be interesting to discover 

whether the proteins found at lower levels in B35 also have similar functions to those 

proteins found at lower levels in other tolerant cultivars, or if different proteins and 

processes are downregulated in this particular sorghum stay green line compared to R16. 

Isolation and functional characterization of the target proteins in this experiment is 

required to fully explore the significance of the proteomic differences between B35 and 

R16.   

3.3.2 Conclusions for DIGE comparison of B35 and R16 proteome.  

    A total of 329 proteins were detected using DIGE analysis, and only 2 proteins showed a 

significant difference between B35 and R16 at FC > 1.5 (ANOVA P value = 0.05), both of 

which were upregulated in the stay green line compared to the senescent line. The 

previous Coomassie Blue stained 2D gels (described above in section 3.1.1) were used to 

separate 250µg of protein per sample, five times as much protein that was loaded onto the 

DIGE gels (at 50µg of protein per sample). CyDye fluorescent dyes are known to be 

significantly more sensitive than Coomassie Blue dye, and have been shown to detect 

approximately four times as many spots from the same initial protein load (Tonge et al., 

2001). Considering 919 protein spots were detected on the Coomassie Blue stained 2D gels 
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following separation of 5 times as much protein, we would expect a similar number of 

spots to be detected in the DIGE analysis. The weakness of the fluorescence signal and the 

low spot number detection, suggests that the CyDye is inadequately labelling the proteins. 

Consequently, it is unlikely that this DIGE analysis properly represents the differential 

expression of proteins between the stay green and senescent line, and the method should 

be improved prior to protein identification by MALDI-TOF-MS. One possible explanation is 

that the protein concentration in the lysate for the labelling reaction may have been 

measured incorrectly. 2D Quant Kit (GE Healthcare) was used to quantify the proteins in 

each sample and is a method compatible with thiourea containing buffers (see section 

2.4.1), but duplicates of the assay were not conducted due to limited sample volume. By 

confirming the protein concentration by duplication prior to the labelling reaction, a 

sufficient ratio of protein:dye can be ensured. Another option is to add more dye to ensure 

sufficient labelling despite any competition from contaminants that may still be present 

(Ettan DIGE System User Manual GE Healthcare 

https://www.mcgill.ca/cian/files/cian/ge_dige_manual.pdf). Alternatively, technical 

replicates of the Coomassie Blue stained 2-DE could be conducted, and these could be used 

instead to identify differentially expressed proteins by MALDI-TOF-MS.    

 

3.4 - Summary 

   In conclusion, progress has been made towards conducting a full proteome comparison 

between the stay green sorghum line B35 and the senescent line R16. This is an essential 

study to complement a previous transcriptomic comparison between the same lines, in 

order to observe changes at both the protein and transcript level. The suitability of the 

protein extraction method has been confirmed by a pilot study using 2-D GE with 

Coomassie Blue staining which picked up proteins in the stay green line which were higher 

and lower compared to the senescent line. 2-D DIGE was subsequently used to confirm 

differential protein expression. Weak signal intensity of the protein spots in the DIGE 

analysis suggests an inadequate level of labelling that was insufficient for identifying 

differentially expressed proteins using the required criteria. Modifications to the labelling 

method, or additional technical replicates of the Coomassie Blue stained gels are required 

before differentially expressed proteins can be confirmed reliably, prior to identification by 

MALDI-TOF-MS. Genes and proteins expressed at different levels in the stay green line 

compared to the non-stay green line can later be investigated for their potential function in 

stay green mechanisms. 

https://www.mcgill.ca/cian/files/cian/ge_dige_
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    The next step in analysing the differences between B35 and R16 at the protein 

expression level would be to expose these plants to drought-stress conditions and then 

extract the proteins for DIGE analysis. In this way, differences in response to water-limiting 

conditions at the protein level can also be analysed in addition to differences under normal 

conditions, giving further insight into the potential biological processes involved in the stay 

green phenotype of B35. Changing the intensity of the drought treatment used may reveal 

more about response strategies in the two lines. For example, the thesis by Stephanie 

Johnson (Johnson, 2015a) described the sorghum transcriptome response following 

osmotic stress imposed by water withdrawal, and compared this to the response following 

(polyethylene glycol) PEG-induced osmotic stress as described in the paper Dugas et al., 

2011. It was found that genes associated with ‘response to reactive oxygen species’ were 

enriched following PEG-treatment, whereas treatment by water-withdrawal indicated an 

enrichment of genes associated with wax biosynthesis. It was suggested that treatment by 

PEG could be considered a more immediate and severe osmotic-stress treatment 

compared to gradual water withdrawal, explaining the differences in response observed 

here (Johnson, 2015a). Stress-induced changes in the transcript abundance of seven 

aquaporin genes in grapevine have also been found to differ significantly depending on the 

severity of the stress imposed, where all 7 genes decreased in expression within the leaf 

following moderate stress but were all upregulated following severe stress (Galmés et al., 

2007). It would be interesting to explore the differences in response to moderate and 

extreme drought conditions between B35 and R16. Additionally, there is substantial 

evidence for the differences between initial and later stage drought responses, so analysis 

of the sorghum plants at multiple time-points following drought treatment could reveal 

temporal variation in transcriptome or proteome response between stay green and 

senescent lines (Gong et al., 2015). For example, the initial drought response phase in 

Arabidopsis 30 minutes post-treatment is characterized by a unique transcriptome profile, 

which differs from that of the acclimation phase several hours later (Gong et al., 2015; 

Kilian et al., 2007). Analysing the proteome following a period of recovery could also reveal 

differences between the mechanisms and processes involved in restoration of normal 

growth and development after stress, as analysed at the transcriptome level in sorghum in 

a paper by Jedmowski et al., in 2014.     

    As previously mentioned (see section 1.2.2), post-translational modifications (PTM) have 

significant influence over protein activity, binding, transportation, signalling and 

localisation (van Wijk 2001; Gong et al., 2015). Phosphorylation is an important PTM, and 
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analysis of the differences in drought-responsive phosphoproteins between stay green and 

senescent sorghum lines could provide further information on the behavioural and 

functional differences of proteins in addition to expression level variation. For example, a 

paper by Zhang et al., in 2014 found differences in the phosphorylation level of high 

mobility proteins (HMG) between drought tolerant and sensitive wheat lines, and these 

proteins are associated with transcriptional regulation via chromatin modification (Zhang et 

al., 2014; Wang et al., 2016). Phosphoproteomics studies in maize and wheat have found 

an increase in phosphorylation of E3 ubiquitin ligases as a response to drought stress 

conditions (Hu et al., 2015; Wang et al., 2016; Zhang et al., 2014) which corroborates 

evidence of upregulation of the E3 ubiquitin ligase SbSDIR1 in B35 sorghum compared to 

R16 (Johnson et al., 2015b) (see chapter 4).    
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Chapter 4 

Analysis of transgenic wheat lines 

overexpressing SbSDIR1 

4.1 Introduction 

 

     Differentially expressed genes in drought tolerant crop lines compared to drought 

sensitive lines could potentially be involved in the stress tolerance mechanisms, and could 

reveal processes and pathways that underlie those phenotypes. Whilst some of these 

genes could have direct roles in protection from cellular damage and maintenance of 

osmotic homeostasis, others might be involved in signalling and regulatory pathways (Zang 

and Komatsu, 2007). For example, genes involved in post-translational modifications such 

as phosphorylation and ubiquitination are major players in signalling responses to drought 

(Gong et al., 2015; Lyzenga and Stone, 2012; Wang et al., 2016). Sorghum microarray data 

revealed the E3 ubiquitin ligase gene SbSDIR1 (salt and drought dependent 1) to be 

upregulated in the stay green variety B35 compared to the senescent R16 variety under 

normal unstressed conditions (Johnson et al., 2015b). E3 ubiquitin ligases are integral to 

ubiquitin-dependent protein degradation, a process which influences a wide variety of 

plant growth and developmental processes such as senescence, hormone regulation, 

photo-morphogenesis and pathogen response (Devoto et al., 2003; Gao et al., 2011; Xie et 

al., 2002). Considering the significant upregulation of this gene in B35 compared to R16 

(Johnson, 2015a; Johnson et al., 2015b), and its known role in drought stress tolerance as 

implicated by several previous studies (Gao et al., 2011; Tak and Mahtre 2013; Xia et al., 

2012; Xia et al., 2013; Zhang et al., 2007), the function of SbSDIR1 in relation to drought 

tolerance and the stay green phenotype is investigated in greater detail in this chapter.      

 

    The ubiquitin-proteasome system (UPS) is the principle mechanism for protein turnover, 

and principally involves three consecutively acting enzymes for ubiquitin attachment, and 

the 26S proteasome for proteolysis (Xia et al. 2012). The universally expressed ubiquitin 

protein is attached to target proteins as part of a polyubiquitin chain or as a single or 

multiple mono-ubiquitination. The topology of the chain or singular attachment determines 

the fate of the target protein (Chen et al., 2009; Cheng et al. 2012; Lyzenga and Stone 2011. 

It could be labelled for destruction by the 26S proteasome, or involved non-proteolytic 

functions such as gene silencing via chromatin modification, DNA repair or membrane 
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trafficking (Chen et al., 2009; Cheng et al. 2012; Lyzenga and Stone 2011). The coupling of 

ubiquitin involves a conjugation enzyme cascade starting with E1 catalysing the ATP-

dependent ubiquitin activating step, followed by E2 (ubiquitin-conjugating enzyme) and E3 

(ubiquitin-ligase) (Cheng et al., 2012; Dametto et al., 2015). Specificity to a target protein is 

regulated at the substrate recruitment stage by E3 ligases in conjunction with accessory 

proteins such as F proteins (Dametto et al., 2015). The three major types of E3 ubiquitin 

ligases are ‘Homology to E6-AP C-Terminus’ (HECT), ‘Really Interesting New Gene’ (RING) 

and U-box type, which differ in their mechanisms of ubiquitin transfer (Dametto et al., 

2015; Lyzenga and Stone 2011). RING- type E3 ligases are of particular interest for this 

chapter, and are defined by a motif consisting of an octet of conserved zinc-binding 

cysteine and histidine residues in a ‘cross-brace’ system, as described in Freemont et al., 

1993 (Dametto et al., 2015; Lyzenga and Stone 2011; Xia et al., 2012).  

 

    Substrates that are targeted for degradation via the UPS include transcription factors, 

hormone receptors, hormone biosynthesis enzymes and effector proteins involved in stress 

tolerance, as well as damaged or misfolded proteins (Cheng et al., 2012; Lyzenga and Stone 

2011). An increasing number of studies suggest the UPS system plays an important role in 

abiotic stress responses. Early observations found that expression of polyubiquitin genes in 

maize and tobacco was stress regulated (Christensen et al., 1992; Genschik et al., 1992). 

Arabidopsis proteomic studies have used immunoaffinity chromatography to specifically 

isolate and analyse Ub-related proteins, and have the found majority of these proteins to 

be associated with abiotic-stress response (Manzano et al., 2008; Igawa et al., 2009,). More 

recent studies focus on stress-regulated E3 ubiquitin ligases, and their potential roles in 

tolerance mechanisms. 

 

    E3 ubiquitin ligases are the most abundant of the three protein ubiquitination enzymes 

within eukaryotes, and are highly diverse. This diversity enables specific interaction with a 

wide range of substrates (Cheng et al., 2012; Xia et al., 2012). An increasing number of 

studies suggest a role for E3 ubiquitin ligases in ABA-mediated stress responses in several 

model plants. In Arabidopsis, overexpression of the RING-type E3s AIRP1, XERICO and 

RHA2b all enhance drought tolerance and reduce transpiration water loss via ABA-

mediated stomatal closure (Ko et al., 2006; Li et al., 2011; Ryu et al., 2010). Overexpression 

of the rice genes CTR1 and BIRF1, the soybean gene DSR7, and the pepper genes DTR1, 

AIP1 and RING1 have all been shown to increase tolerance to dehydration stress and 
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enhance ABA-dependent stress response (Joo et al., 2016; Lim et al., 2014; Li et al., 2016a; 

Lim et al., 2015; Liu et al., 2008; Park et al., 2016). Functional analysis of the pepper gene 

Rma1H1 in the paper by Lee et al., in 2009 suggested that this stress-induced E3 may 

regulate the ubiquitin-dependent degradation of the aquaporin PIP2;1. Reduction in 

aquaporins may help the plant to maintain tugor pressure by minimizing water transport 

across membranes via the symplastic pathway (Alexandersson et al., 2005).  

 

    There is also evidence of RING-type E3 ubiquitin ligases playing negative roles in drought 

response. DIS1 overexpression lines in rice displayed lower survival rates under water 

limiting conditions (Ning et al., 2011), and therefore appear to promote drought stress 

sensitivity. Ning et al., 2011 speculate that DIS1 may interfere with drought tolerance 

mechanisms by disrupting H2O2-dependent stomatal control, via suppression of the gene 

OsMT-14b which has a potential role in ROS elimination, and concurrent suppression of the 

RNA-binding protein OsGRP2A (Kim et al., 2008; Ning et al., 2011; Yang et al., 2009). A 

drought sensitive phenotype was also observed in hot pepper lines overexpressing AIR1, 

accompanied by differential expression of stress genes and impaired stomatal closure 

mechanisms (Park et al., 2015).        

     

    Transcriptomic comparison between the B35 stay green sorghum and the R16 senescent 

line revealed a higher level of expression of the E3 ubiquitin ligase SbSDIR1 (salt- and 

drought-induced RING finger1) under normal conditions in both 14 and 50 days old plants 

(Johnson et al., 2015b). Homologs of this gene have previously been studied in several 

other species following initial identification in Arabidopsis as a stress responsive RING 

finger protein, specifically associated with salt and drought stress response (Zhang et al., 

2007). Analysis of the amino acid sequence of the sorghum SbSDIR1 gene confirmed the 

presence of putative N-terminal transmembrane domains and a C-terminal C3H2C3 RING 

domain, features also identified in Arabidopsis, grapevine, tobacco, rice and maize 

homologs (Johnson, 2015a; Gao et al., 2011; Tak and Mahtre 2013; Xia et al., 2012; Xia et 

al., 2013; Zhang et al., 2007). This distinctive RING motif has been shown to be required for 

E3 ubiquitin ligase activity in both Arabidopsis and rice (Gao et al., 2011; Zhang et al., 

2007). There appears to be strong conservation of DNA and amino acid sequence across 

several different dicot and monocot species, and the putative ubiquitin ligase function may 

also be conserved in the sorghum gene although further functional analysis is required 

(Johnson, 2015a). SDIR1 and the homologs mentioned above all appear to be induced by 
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drought, but the sorghum and grapevine genes are additionally induced in response to salt, 

ABA and heat, and the rice gene is suppressed by cold treatment ((Johnson, 2015a; Gao et 

al., 2011; Tak and Mahtre 2013; Xia et al., 2012; Xia et al., 2013; Zhang et al., 2007). Spatial 

expression analysis of the maize homolog indicated highest expression in the aerial tissues, 

in agreement with that observed in Arabidopsis, but in rice the predominant expression 

appears to be in the roots (Gao et al., 2011; Xia et al., 2012; Zhang et al., 2007). It has been 

hypothesised that differential expression patterns may be a result of a slight divergence in 

regulation and function of SDIR1 in a monocot compared to dicot species (Xia et al., 2012).      

 

    Overexpression of SDIR1 and its homologs has enhanced drought tolerance across 

several species including Arabidopsis, maize, tobacco, rice and grapevine (Gao et al., 2011; 

Tak and Mahtre 2013; Xia et al., 2012; Xia et al., 2013; Zhang et al., 2007). It has frequently 

been hypothesised that the altered transpiration rates within these transgenic lines 

explains the improved tolerance, supported by measurements of reduced rate of water loss 

and reduced stomatal aperture under normal and drought-stressed conditions (Gao et al., 

2011; Tak and Mahtre 2013; Xia et al., 2012; Xia et al., 2013; Zhang et al., 2007). SDIR1 

could therefore be involved in ABA-controlled stomatal closure, consistent with 

observations of other ABA-related phenotypes in overexpression lines such as ABA-

hypersensitivity at germination and post-germinative stages, confirmed by observations of 

expanded and greener cotyledons and inhibited root growth in comparison to control lines 

(Zhang et al., 2007; Zhang et al., 2015). It has previously been suggested that the sorghum 

SbSDIR1 gene could function in a similar way, and overexpression of this gene in 

Arabidopsis lines also resulted in reduced rates of water loss from excised leaves, and 

reduced stomatal aperture compared to wild type lines (Johnson, 2015a). Considering stay 

green sorghum varieties are known to have reduced rates of transpiration, and that B35 

stay green has higher levels of expression of SbSDIR1 (along with SDD1, GTL1 and SLAC1 

which are also involved in stomatal regulation) compared to R16 senescent line (Johnson, 

2015a), it is possible that SbSDIR1 may be contributing to the stay green phenotype 

through ABA-mediated stomatal control thus improving water conservation (Berger and 

Altmann 2000; Borrell et al., 2014; Geiger et al., 2009; Johnson, 2015a; Vadez et al., 2011; 

Yoo et al., 2010).   

     

    Understanding of the mechanism by which SDIR1 contributes to drought tolerance and 

the stay green phenotype is still limited. Sequencing the promoter region of the sorghum 
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gene has revealed recognition sites for MYB, MYC, AREB and DRE elements, indicating 

potential for regulation by several different transcription factors (Johnson, 2015a). 

Consistent evidence using transgenic technology has suggested that SDIR1 is a positive 

regulator of drought tolerance. Considering the various ABA-associated phenotypes 

observed in overexpression lines, it is likely that it acts partly through positive regulation of 

ABA signalling pathways, potentially targeting negative regulators for proteasomal 

degradation, or promoting mono-ubiquitination and stabilization of ABA signalling 

components (Zhang et al., 2007; Zhang et al, 2015). In addition to changes in stomatal 

regulation, expression of Delta 1-pyrroline-5-carboxylate 1 (P5CS1) has also been found to 

increase following overexpression of the Arabidopsis and grapevine homologs, and higher 

proline levels have been observed in maize overexpression lines, potentially suggesting a 

role in osmoregulation at the cellular level (Tak and Mahtre 2013; Zhang et al., 2015). SDIR1 

has been shown to function upstream of bZIP transcription factors ABF3 and ABF4, and to 

interact with SDIR1-INTEREACTING PROTEIN 1 (SDIRIP1) which in turn acts upstream of the 

bZIP ABI5 (Zhang et al., 2015). A further 38 other potential interacting partners were 

identified in the paper by Zhang et al., in 2015, which could represent other pathways of 

response that require further investigation. Considering SDIR1 expression is also induced by 

heat stress in grapevine and sorghum, and overexpression of its homolog in maize 

enhances expression of antioxidant enzymes, it is also possible that SDIR1 contributes to 

heat stress response pathways (Johnson, 2015a; Tak and Mahtre 2013; Liu et al., 2013).          

 

    To investigate the function of SbSDIR1 within sorghum it would be best to overexpress 

the gene within sorghum itself rather than a different plant species. However previous 

attempts at stable sorghum transformation have been unsuccessful (Johnson, 2015a). This 

chapter instead analyses wheat lines transformed with an SbSDIR1 overexpression 

construct, produced by Stephanie Johnson in Durham University and Dr Emma Wallington 

at NIAB (Huntington Road, Cambridge, CB3 0LE). The sorghum gene was expressed using a 

rice actin promoter (see construct diagram Appendix B). By overexpressing this monocot 

gene in another monocot system such as wheat, the observed function and phenotype is 

likely to be more representative of its true function within sorghum, rather than 

overexpressing it in a dicot system such as Arabidopsis, which has been done previously 

(Johnson, 2015a).     
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    Wheat production represents 25.6% of total cereal crop production worldwide (based on 

figures for 2013), the leading producers being China, India, USA and Russia (Daryanto et al., 

2016). Several wheat cultivars display the stay green characteristic of delayed senescence 

and extended photosynthetic capacity during grain filling (Chen et al., 2010). In this crop, 

stay green phenotypes are studied more extensively in the context of the trade-off 

between grain yield and quality, but stay green characteristics have also been linked to 

enhanced drought tolerance in the field (Tian et al., 2013; Checovich et al., 2016). The stay 

green cultivars CN12 and CN18 were found to have reduced H2O2 in flag leaves at the grain 

filling stage and larger grains under normal growth conditions (Chen et al., 2010). The CN17 

stay green variety has been shown to be associated with prolonged chloroplast 

ultrastructure regeneration, possibly related to enhanced antioxidant capacity and high 

unsaturated fatty acid content (Luo et al., 2013). This chapter investigates whether 

overexpression of SbSDIR1 in Fielder wheat (Triticum aestivum) can reproduce stay green 

characteristics within the transgenic lines.  

 

Summary 

 

    This chapter focusses on the functional characterisation of sorghum SbSDIR1 in relation 

to the stay green trait and drought stress response. This gene has been shown to be 

upregulated in stay green B35 lines compared to non-stay green R16 lines in sorghum when 

grown under normal conditions (Johnson et al., 2015b), and has been implicated in drought 

stress response strategies in several other papers (Gao et al., 2011; Xia et al., 2012; Zhang 

et al., 2007; Zhang et al., 2008; Zhang et al., 2015). Previous student Dr Stephanie Johnson 

produced an SbSDIR1 overexpression construct, and fielder wheat plants have been 

transformed to produce transgenic lines at NIAB. The general aim for this experiment was 

to test these wheat lines for acquisition of stay-green and drought tolerance phenotypes. 

 

The specific aims of this chapter are the following; 

 

• To determine the SbSDIR1 expression levels of the transgenic lines and identify a 

subset of lines that have higher transcript levels than the untransformed control 

line, over a range of different magnitudes. 



47 
 

• To measure any differences in the rates of transpirational water loss between 

these selected lines and the non-transformed control lines, which could potentially 

indicate change in stomatal conductivity. 

• To examine the rate of senescence progression under normal conditions and 

osmotic stress between wheat lines. 

• To investigate differences in the expression levels of ABA-regulated genes between 

the wheat lines, after treatment with exogenous ABA. 

 

 

4.2 Results  

 

4.2.1 Analysis of SbSDIR1 expression levels in wheat overexpression lines  

  

    The role of SbSDIR1 in conferring stay green characteristics, and the extent to which its 

role and response pathway is conserved in other plant systems, was investigated by 

overexpressing the gene in Fielder wheat (Triticum aestivum L). T0 lines were assessed for 

qPCR copy number of the construct based on the selectable marker nptII (neomycin 

phosphotransferase II) by Dr Emma Wallington (see Appendix B). From the 36 transformed 

T0 lines, 14 lines with the lowest (but still multiple) qPCR copy number of the construct 

were selected for further analysis (see Appendix B for SbSDIR1 copy number in all 

transformed lines). Along with the non-transformed control lines 81con1 and 81con2, T1 

plants of the selected 14 lines were grown for 12 days under normal growth conditions (see 

section 2.1.5). RNA was extracted and SbSDIR1 expression levels were analysed using real-

time qPCR (see figure 3). Four transgenic lines with detectable SbSDIR1 transcript levels 

across a range of different magnitudes were chosen for further study. These lines were 

81.20 (the highest expresser), 81.5 (a low-level expresser), and 81.21 and 81.22 

(intermediate level expressers).  
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Figure 3 – Analysis of SbSDIDR1 expression levels in wheat transgenic lines overexpressing 

SbSDIR1 compared to the untransformed control lines 81con1A and 81con2A. Plants were 

grown for 12 days before RNA extraction. Transgenic lines chosen for further analysis are 

indicated by a star symbol. Error bars represent the RQ min/max range, based on a 

95% confidence interval (student’s t test). 

 

4.2.2 Morphological and developmental phenotype  

 

    Wheat transgenic lines 81.5, 81.2, 81.21 and 81.22 where grown for 6 weeks alongside 

an untransformed control line 81con1A under normal conditions, as outlined in section 

2.1.4. Six individual plants were grown per line, and the experiment was repeated twice to 

give two biological replicates. No obvious differences were observed between the 

transgenic lines and the control at the germination stage, and 6 week old plants appeared 

similar in height and leaf number (data not shown). At 25 DAS (days after sown), the 

percentage of plants with a primary tiller was recorded for each line (see figure 4). For this 

study, a primary tiller is defined as a first tiller growth (Till1) from the main stem (Till0). The 

control line showed no evidence of primary tiller development in any of the plants grown in 

either experiment. However, in the first experiment transgenic lines showed evidence of 

primary tiller emergence in 83.3%, 83.3%, 100% and 66.7% of plants for lines 81.5, 81.20, 

81.21 and 81.22 respectively (see figure 4). In the second experiment only 16.7% of plants 

in transgenic lines 81.5 and 81.20 had developed a primary tiller, and none from the line 
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81.22. However, plants from the transgenic line 81.21 still showed primary tiller 

development in the majority of individuals (66.7%), having shown 100% tiller development 

in the first experiment. Figure 5 shows photographic evidence of the tillering phenotype of 

one wheat plant from the control line (2a) and one example of a tillered plant from the 

wheat transgenic line 81.21 (2b).   

 

 

 

 

Figure 4 – Bar chart showing the number of plants showing emergence of primary a tiller at 

the early growth stage of 25 days old, in the untransformed control line compared to the 

transformed lines. Wheat plants were at the 4th leaf stage and grown under normal 

conditions (see section 2.1.4) and data was taken from two biological replicates of 6 

individual plants.  
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Figure 5 – Photographs showing the tillering phenotype in an individual plant from the 

transformed wheat line 81.21 (a) compared to the untransformed control line (b) after 25 

days growth under normal conditions (see section 2.1.4). This transformed line showed the 

highest occurrence of a second tiller at this growth stage compared to the other 

transformed lines (see figure 4) whereas the control line still displayed only one tiller at this 

growth stage in 100% of the plants. Main stem is labelled Till0 and the first primary tiller is 

labelled Till1.  

 

 

4.2.3 Excised leaf water loss assay 

 

    Stay green sorghum lines have been reported to have improved transpiration efficiency 

compared to senescent lines when grown in both well-watered and water-limiting 

conditions (Borrell et al., 2014a; Vadez et al., 2011). This characteristic potentially 

contributes to stay green drought tolerance by improving water conservation and 

maintaining supply during grain filling, even under drought conditions. Differences in 

transpiration can be partly attributed to differences in ABA-mediated stomatal control 

(Leung and Giraudat, 1998; Zhang et al., 2007). Sorghum SbSDIR1 has previously been 
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suggested to be involved in stomatal regulation, particularly considering the differences in 

stomatal aperture reported in Arabidopsis SbSDIR1 overexpression lines (Johnson, 2015a). 

SbSDIR1 has previously been overexpressed in Arabidopsis, producing transgenic lines with 

decreased stomatal conductivity under well-watered conditions, and reduced rate of water 

loss from excised leaves, in comparison to control lines (Johnson, 2015a). To investigate 

whether overexpression of SbSDIR1 in wheat lines can produce stay green characteristics of 

improved transpiration efficiency, the loss of water from excised leaves of plants grown 

under normal conditions was measured over the course of 5 hours. Leaves of the same 

developmental stage were cut from 18 day old plants and placed abaxial side up. Leaf 

weight was measured at regular intervals over 5 hours, and percentage weight loss was 

recorded (see figure 6).  

 

    This experiment was conducted on 6 individual plants per line, and the experiment was 

repeated 3 times to give 3 biological replicates. In all experiment lines 81.5 (the lowest 

transgenic expresser of SbSDIR1) and 81.20 (the highest transgenic expresser of SbSDIR1) 

showed relatively faster rates of water loss and greater percentage relative weight loss 

after 5 hours compared to the control line. Figure 6 displays the average leaf weight loss 

over 5hours from all 3 experiments. At 300 minutes there was no significant difference 

between the mean leaf weight loss of any of the genotypes (F=0.908, P=0.495, 4 df). At the 

final time point of 300 minutes the control line, 81.5 and 81.20 showed 69%, 60% and 55% 

leaf weight respectively. While not statistically significant, these results suggest that 

transgenic lines 81.5 and 81.20 are less able to retain water, with line 81.20 showing the 

fastest rates of water loss compared to the control line. Line 81.22 appeared to have a 

similar capacity for water retention as the control line reaching 68% leaf weight at 300 

minutes compared to the control at 69%. Interestingly, line 81.21 shows a non-statistically 

significant reduced rate of water loss compared to the control at 73% leaf weight at 300 

minutes.  
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Figure 6 – Excised-leaf water loss assay on wheat lines overexpressing SbSDIR1. Leaf 4 from 

18 day old plants (grown in normal conditions) were cut, placed abaxial side up at room 

temperature, and weight was measured at regular intervals over a 5 hour period and 

percentage weight loss compared to the original weight at 0 minutes calculated. Six 

individual plants per line were used in each biological replication of the experiment, and 3 

experiments were conducted. The graph plots an average of all 3 biological replicates.   

 

4.2.4 ABA-induced gene expression  

 

    Expression of SbSDIR1 has been found to be induced in response to ABA treatment in 

sorghum (Johnson, 2015a), and overexpression of OsSDIR1 in rice has been found to confer 

ABA hypersensitivity at germination and in later vegetative growth stages (Zhang et al., 

2007). Several other ABA-associated phenotypes have been observed in SDIR1 

overexpression lines including stunted early growth, salt sensitivity at germination, and 

changes in stomatal conductance (Gao et al., 2011; Zhang et al., 2007). To assess the wheat 

overexpression lines for changes in ABA-sensitivity, and investigate the potential role of 

SbSDIR1 in regulating ABA-related gene expression, the transcript abundance of known 

wheat ABA-induced genes were analysed following ABA treatment.      
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    The genes TaGBF1 and TaNAC29 were selected for this experiment. The bZIP 

transcription factor TaGBF1 is known to be a blue-light responsive component and is 

involved in abiotic stress responses, particularly salt stress (Sun et al., 2015). It has been 

shown to be induced in wheat by ABA exposure and overexpression lines have displayed 

ABA hypersensitivity phenotypes (Sun et al., 2015). The wheat NAC transcription factor 

TaNAC29 is induced by ABA treatment, in addition to exposure to salt and drought stress 

(Xu et al., 2015). NAC transcription factors have previously been found to play essential 

roles in leaf senescence in connection with stay green phenotypes (Guo and Gan, 2006).     

 

    Transgenic lines 81.5, 81.20, 81.21 and 81.22 were grown for 25 days alongside the 

control line. Leaves of the same developmental stage were excised and cut into segments, 

then floated adaxial side up in solutions of 100µM ABA, with ethanol controls for 

comparison. These explants were incubated at 20°C under a 16 hour photoperiod, and 

samples for RNA extraction were taken at 12 hours and 24 hours following ABA/ethanol 

control treatment. Transcript abundance of TaGBF1 and TaNAC29 was analysed using real-

time PCR.  

 

    Across all wheat lines the expression of TaNAC29 was increased to its peak value 

following 12 hours of ABA treatment compared to the control line in the ethanol 

treatment, corroborating earlier evidence that this gene is ABA-induced (figure 7(a)) (Xu et 

al., 2015). Following 12 hours of ABA treatment, the trend in expression level suggests that 

the transgenic lines have similar transcript abundance of TaNAC29 compared to the control 

line, with no statistically significant differences (figure 7(c)). After 24 hours of ABA 

treatment, the expression level of TaNAC9 remains upregulated in all ABA treated lines 

compared to the control treated untransformed line (figure 8 (a)). Although not statistically 

significant, line 81.21 shows higher expression levels than the ABA treated untransformed 

line suggesting an increased duration of ABA-induced expression in this line (figure 8 (c)). In 

the ethanol control treated group, the line 81.21 shows a statistically significant 

upregulation of TaNAC29 compared to the untransformed line, at both 12 hours (figure 7 

(b)) and 24 hours (figure 8 (b)) following treatment. This suggests that in the absence of 

exogenous ABA this line already displays induction of TaNAC29 expression.   

  

    Across all wheat lines the expression of TaGBF1 is increased to it’s peak value following 

12 hours of ABA treatment compared to the control line in ethanol treatment, in 
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agreement with earlier evidence that this gene is ABA-induced (figure 9 (a)) (Sun et al., 

2015). Following 12 hours of ABA treatment, data for TaGBF1 transcript abundance is 

impaired by large and overlapping large error bars, leaving any trend uninterpretable with 

no statistically significant differences between lines (Figure 9 (a), (b), (c)). After 24 hours of 

ABA treatment initial upregulation of TaGBF1 in all wheat lines has begun to reduce with 

no statistically significant differences between transformed lines and the control (Figure 10 

(a)). Although statistically not significant, the line 81.21 does appear to have sustained a 

higher level of TaGBF1 expression compared to the control line in ABA treatment at the 24-

hour time point (Figure 10 (c)), suggesting that ABA-induction of this gene may have a 

longer duration of response in this line. There is also a non-statistically significant higher 

expression level of TaGBF1 in the non-ABA treated 81.21 line compared to the control at 

the 24 hour time point (figure 10 (b)), suggesting a possible upregulation of this gene even 

in the absence of ABA. Interestingly, 81.21 also shows the lowest rate of water loss in the 

excised leaf assay compared to all plant lines including the control (see figure 6).    
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Figure 7 – (a) Real-time PCR of TaNAC29 expression levels in wheat lines overexpressing 

SbSDIR1 in comparison to untransformed control line in ethanol treatment, following 12 

hours of ABA treatment with ethanol controls. (b) Magnification of data for expression of 

TaNAC29 in ethanol treated lines. (c) Expression of TaNAC29 in ABA treated lines, 

compared to ABA treated untransformed control line. The error bars show the RQ 

maximum and minimum values, representing the 95% confidence interval for Student’s t 

test.   
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Figure 8 – (a) Real-time PCR of TaNAC29 expression levels in wheat lines overexpressing 

SbSDIR1 in comparison to untransformed control line in ethanol treatment, following 24 

hours of ABA treatment with ethanol controls. (b) Magnification of data for expression of 

TaNAC29 in ethanol treated lines. (c) Expression of TaNAC29 in ABA treated lines, 

compared to ABA treated untransformed control line. The error bars show the RQ 

maximum and minimum values, representing the 95% confidence interval for Student’s t 

test.   
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Figure 9 – (a) Real-time PCR of TaGBF1 expression levels in wheat lines overexpressing 

SbSDIR1 in comparison to untransformed control lines in ethanol treatment, following 12 

hours of ABA treatment with ethanol controls. (b) Magnification of data for expression of 

TaGBF1 in ethanol treated lines. (c) Expression of TaGBF1 in ABA treated lines, 

compared to ABA treated untransformed control line.  The error bars show the RQ 

maximum and minimum values, representing the 95% confidence interval for Student’s t 

test.   
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Figure 10 – (a) Real-time PCR of TaGBF1 expression levels in wheat lines overexpressing 

SbSDIR1 in comparison to untransformed control line in ethanol treatment, following 24 

hours of ABA treatment with ethanol controls. (b) Magnification of data for expression of 

TaGBF1 in ethanol treated lines. (c) Expression of TaGBF1 in ABA treated lines, 

compared to ABA treated untransformed control line.  The error bars show the RQ 

maximum and minimum values, representing the 95% confidence interval for Student’s t 

test.   
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4.2.5 PEG-induced osmotic stress senescence assay  

 

    Previous papers have reported that overexpression of SDIR1 and its homologs in various 

plant species has improved drought tolerance, and reduced the progression of senescence 

as a response to stress (Gao et al., 2011; Tak and Mahtre 2013; Xia et al., 2012; Xia et al., 

2013; Zhang et al., 2007). Considering SbSDIR1 is expressed significantly higher in sorghum 

stay green line B35 compared to R16, it may have a role in stay green-related drought 

tolerance mechanisms (Johnson et al., 2015b), possibly contributing to processes that allow 

the plant to delay senescence under water-limited conditions. To investigate stay green-

like characteristics in the wheat SbSDIR1 overexpression line, leaf sections from 25 day old 

plants were exposed to polyethylene glycol (PEG)-induced osmotic stress conditions by 

floatation on solutions of 15% (w/v) and 25% (w/v) PEG, compared to 0%. PEG solutions are 

high molecular weight osmotica that can impose low -water potential stress that is 

comparable to conditions of gradual soil drying, in contrast to low-molecular weight 

mannitol which can be taken up by plant cells and cause additional toxic effects as well as 

severe osmotic stress (Verslues et al., 2006). Sorghum SbSDIR1 expression has previously 

been shown to be induced by growth in 10% PEG, but not mannitol (Johnson, 2015a). 

Visual symptoms of senescence in the drought tolerance assay were documented 

photographically, and evidence of senescence progression after 5 days is shown in figure 

11. Section from leaves of the same developmental stage were used across all lines in order 

to account for age-related senescence variation.  

 

    Visible evidence of chlorophyll loss was first noticeable after 6 days (see figure 11). 

Surprisingly, variation in chlorosis between 0%, 15% and 25% (w/v) PEG within each line 

(including the control) was not clearly visible, despite 25% PEG being shown to be sufficient 

for initiating senescence-related drought responses in wheat (Konigshofer and Loppert 

2015; Liu et al., 2015a and Tian et al., 2013). However, at all concentrations of PEG there 

appears to be greater visible chlorophyll loss in all the transgenic lines compared to the 

control line, which remains much greener at this stage. Therefore, compared to the control 

the transgenic lines appear to have display premature senescence possibly as a protective 

response to stress conditions unrelated to PEG. Visual observation of senescence would 

need to be confirmed by quantitative chlorophyll content analysis in the future.   
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Figure 11 – Leaf section assay for tolerance to various PEG concentrations, photographed 6 

days after treatment. Wheat plants were grown for 25 days under normal growth 

conditions. Leaf 4 was excised and cut into sections roughly 1cm in length, and floated 

adaxial side up in 7ml of 0, 15 and 25% solutions of PEG (w/v) in 6-well plates, incubated at 

20°C with a 16hr photoperiod.     
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4.2.6 Light and dark induced senescence assay 

 

    In addition to delayed drought-induced senescence, stay green sorghum lines also 

display delayed developmental senescence (Thomas and Howarth 2000). Analysis of 

developmental senescence is problematic due to the lack of coordination in the 

development of individual cells within a leaf, particularly between the proximal and distal 

ends, resulting in asynchronous senescence progression (Buchanan-Wollaston et al., 2005). 

To investigate whether the wheat transgenic lines had acquired the stay green 

characteristic of delayed developmental senescence, an assay for dark-induced senescence 

in excised leaves was used. This method is frequently used as a model for age-triggered 

senescence, and produces synchronised senescence across the leaf to better facilitate 

comparison, as the leaf responds to the removal of light and subsequent carbon starvation 

(Keech et al., 2007; Song et al., 2014). The paper by van der Graaf et al., 2006 suggests 

dark-induced senescence shares many common pathways and processes to developmental 

senescence. 

 

    Leaves of the same developmental stage were excised from 24 days-old wheat plants, 

grown under normal conditions. These were incubated at 20 °C in petri dishes on wettened 

filter paper covered in tin foil, with uncovered plates used as a control. Visible progression 

of senescence was then documented photographically. Interestingly, light exposed leaves 

showed a greater rate of senescence than covered leaves, with significant chlorophyll loss 

observed in all lines after 5 days (figure 12), and extensive senescence after 7 days (figure 

13). The rapid and synchronized senescence across the entire leaf is characteristic of stress-

responsive senescence, possibly as a result of photodamage and oxidative stress 

(Buchanan- Wallaston 2005). There is possible evidence of more advanced senescence 

after 5 days in all transgenic lines compared to the control line (figure 12), but this minute 

variation requires confirmation by actual chlorophyll content measurement. In the covered 

plates, there is some initial evidence of senescence in the transgenic lines after five days 

but not the control (figure 12), but after 7 days the faster progression of senescence within 

the overexpression lines compared to the control is much more visible (figure 13). It is 

possible that the lowest SbSDIR1 expressing line 81.5 shows the lowest chlorophyll loss out 

of all the transgenic lines after 7 days (figure 13) but confirmation by chlorophyll content 

analysis would again be required to confirm this. The progression of dark-induced chlorosis 
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occurs in a gradient across the leaves, which is more characteristic of developmental 

senescence rather than stress-responsive (Song et al., 2014).   

 

 

 

 

Figure 12 – 

Photograph of 

senescence 

assay showing 

phenotypic 

differences 

after 5 days. 

Plants were 

grown for 24 

days under 

normal 

conditions, 

and the 4th 

leaf was 

excised and 

cut into 4 

sections. 

Sections were 

incubated on wet filter paper in petri dishes covered in tin foil (a) or light exposed (b). See 

Section 2.3.3 for growth conditions and light regime.   
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Figure 13 – Continuation of senescence assay described in figure 12, photographed after 7 

days. Image of covered plates (a) and uncovered plates (b). 

   

4.3 Discussion  

 

    The sorghum gene SbSDIR1 is an E3 ubiquitin ligase previously selected for further 

analysis following its identification as an upregulated gene in B35 stay green sorghum, in 

comparison to the R16 senescent line (Johnson, 2015a; Johnson et al., 2015b). Homologs of 

this gene are found in several other crop species, and overexpression of SDIR1 has been 

shown to improve drought tolerance, reduce transpiration rates in excised leaves, and 

produce ABA-associated phenotypes (Gao et al., 2011; Tak and Mahtre 2013; Xia et al., 

2012; Xia et al., 2013; Zhang et al., 2007). By overexpressing SbSDIR1 in wheat the function 
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of this gene within a monocot plant system can be investigated, and conservation of its 

function compared to that of homologs in other species can be assessed. In this chapter, 

wheat transgenic lines overexpressing SbSDIR1 were analysed for the acquisition of stay 

green and drought tolerance characteristics, including delayed senescence, reduced 

transpiration rate and ABA hypersensitivity. 

 

4.3.1 Morphological and developmental phenotype of wheat lines overexpressing 

SbSDIR1 compared to the control    

 

    When grown under well-watered conditions, no obvious differences were observed 

between wheat SbSDIR1 overexpression (OE) lines and the control line at germination, in 

agreement with previous reports in Arabidopsis (Zhang et al., 2007).  However, previous 

studies on Arabidopsis and rice SDIR1 overexpression lines have recorded a reduction in 

the size of the aerial parts at the seedling growth stage when grown on MS (Murashige and 

Skoog) media (Gao et al., 2011; Zhang et al., 2007). Considering SDIR1 has previously been 

implicated in ABA signal promotion, it has been suggested that this stunted growth could 

reflect constitutive activation of ABA and ABA-mediated growth inhibition (Zhang et al., 

2007). This would be consistent with findings of ABA-hypersensitivity at germination and 

early growth stages in overexpression lines (Zhang et al., 2007). No differences in the size 

of aerial parts were observed for the wheat transgenic lines in this report, but this may be 

due to differences in growth conditions, where germinated seeds were directly transferred 

to soil rather than grown on media.  

 

    At later growth stages, overexpression lines in Arabidopsis, tobacco and rice showed no 

obvious differences in height or leaf number (Gao et al., 2011; Xia et al., 2013; Zhang et al., 

2007). However, in this report the wheat transgenic lines showed a significant tillering 

phenotype compared to the control, with a higher occurrence of primary tiller 

development in all transgenic lines compared to the control, within the 25-day growth 

period. There is some discrepancy between the two separate experiments for this 

observation which may be explained by slight and unintentional alteration in water regime. 

For example, it is possible that tillering could have been reduced overall in experiment 2 as 

a response to a slight reduction in water availability (Borell et al., 2014a). However, in both 

batches the line 81.21 consistently shows evidence of primary tiller emergence in the 

majority of the individuals. Considering the role of ABA in promoting tiller development 
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(Cai et al., 2014; Hall and McWha 1981; Lin et al., 2016; Quarrie and Jones 1977), this 

difference in tillering may be considered an ABA-associated phenotype. 

 

   Interestingly, an increase in tillering would contrast the growth phenotype associated 

with sorghum stay green (stg) QTLs, where stg near isogenic lines (NILs) have displayed 

reduced tillering and reduced upper leaf size at flowering, minimising canopy size (Borrell 

et al., 2014a; Borrell et al., 2014b; Kassahun et al., 2010). It has been suggested that this 

morphology enhances water conservation pre-flowering and increases water availability 

post-anthesis, contributing to increased grain yield under water limiting conditions (Borrell 

et al., 2014a; Borrell et al., 2014b). If early emergence of a primary tiller in wheat leads to 

an increased tillering phenotype in later in growth, these results may suggest that the 

overexpression of SbSDRI1 in the wheat lines has produced the opposite of the stay green 

characteristic possibly due to the sorghum gene behaving differently in a different plant 

system, or SbSDIR1 may be involved in other aspects of the stay green mechanism but not 

regulation of tiller development. Observation of tiller number at later growth stages closer 

to flowering stage (as has been done in previous studies such as Borrell et al., 2014a; 

Borrell et al., 2014b; Kassahun et al., 2010) may be more relevant for investigating stay 

green-associated phenotypes because the balance between supply and demand is likely to 

have more effect on water availability during grain filling at this stage. In general, repeats of 

this experiment using more replicates is required in order to carry out proper statistical 

analysis.   

          

4.3.2 Excised-leaf water loss assay 

    The link between stay green and improved transpiration efficiency (TE) is well established 

in sorghum. By minimising water loss through transpiration, crop water use is more 

efficient and water is more readily available during grain filling, improving yield in drought 

conditions (Borrell et al., 2014a). Stay green QTLs are shown to be associated with 

differences in the balance of water usage pre- and post- anthesis (Borrell et al., 2014a; 

Borrell et al., 2014b; Vadez et al., 2011), and improved water retention has been observed 

at the leaf level in the B35 sorghum line (the same stay green source used in this study) 

compared to R16 (Johnson, 2015a). In addition to reducing canopy area, transpiration can 

also be minimized by stomatal control. Stomata in the epidermal leaf tissue control gas 

exchange and water evaporation through coordinated changes in aperture via ABA-

controlled guard cells (Schroeder et al., 2001). Other E3 ubiquitin ligases have previously 
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been found to improve drought tolerance through ABA-induced stomatal closure when 

overexpressed, including AtAIRP1 and RHA2B (Ryu et al. 2010; Li et al., 2011). Several 

studies have suggested that SDIR1 also contributes to stay green and drought tolerance 

mechanism via stomatal regulation (Gao et al., 2011; Zhang et al., 2007; Zhang et al., 2008). 

    An excised-leaf water loss assay on Arabidopsis lines overexpressing sorghum SbSDIR1 

(35S::SbSDIR1) showed improved water retention, positively correlated with SbSDIR1 

transcript abundance, when grown in well-watered conditions suggesting that the sorghum 

gene contributes to drought tolerance by improving TE via stomatal regulation (Johnson, 

2015a). These findings are consistent with the TE phenotypes observed when homologs of 

this gene are overexpressed in other species. Reduced leaf water loss is observed under 

normal conditions in tobacco, Arabidopsis and rice overexpression lines (Gao et al., 2011; 

Liu et al., 2013; Zhang et al., 2007; Zhang et al., 2008), and following drought treatment in 

tobacco OE lines (Liu et al., 2013; Xia et al., 2013).  Reduced Stomatal aperture was also 

observed in these lines under well-watered and drought conditions (Gao et al., 2011; Liu et 

al., 2013; Xia et al., 2013; Zhang et al., 2007; Zhang et al., 2008). Interestingly, in 

Arabidopsis, ABA-treatment revealed a greater sensitivity in stomatal response in the 

transgenic lines than the control, suggesting SDIR1 contributes to stomatal control via ABA-

signalling pathways (Zhang et al. 2007). This agreement between studies suggests that the 

function of SDIR1 and its role in the stay green mechanism is conserved across several plant 

species, including sorghum.     

 

    The wheat lines overexpressing SbSDIR1 analysed in this report showed no statistically 

significant differences in the rate of water loss from excised leaves. However, the lines 81.5 

and 81.20 displayed a statistically non-significant increase in the rate of water loss from 

isolated leaves compared to the untransformed line, suggesting a reduced ability to retain 

water. This appears to be in opposition to the stay green characteristics of sorghum 

(Johnson, 2015a), and to previous findings of improved water retention when homologs of 

SDIR1 are overexpressed in other species (Gao et al., 2011; Liu et al., 2013; Zhang et al., 

2007; Zhang et al., 2008). Considering Arabidopsis SbSDIR1 OE lines discussed above display 

improved water retention and reduced stomatal aperture (Johnson, 2015a), it is possible 

that while the function of SDIR1 in drought tolerance is conserved in the sorghum gene, it 

may not behave the same within the wheat plant system and genetic background. For 

example, post-transcriptional regulation that may be essential to the functioning of 

SbSDIR1 may vary in wheat, or target proteins may differ in expression or structure. 
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However, the line 81.21 does show a non-statistically significant reduction in the rate of 

water loss compared to the control line which would be consistent with previous 

observations in of TE in Arabidopsis SbSDIR1 OE lines (Johnson, 2015a). This line has 

potentially acquired the stay green-associated phenotype of improved water retention, 

which could be attributed to alteration in stomatal conductance.  

     

    Discrepancies between the three individual water loss experiments, and the large error 

bars in this data, may be explained by the low number of replicates in the experiment and 

the minute changes in weight under analysis. In order to confirm these findings, water loss 

from several leaves or the whole aerial tissue should be measured, which could make 

differences in transpiration rate easier to detect and identify in the plant as a whole rather 

than restricting the experiment to observations at just one leaf stage. Stomatal 

conductance and density measurements could reveal direct differences in stomatal control 

and transpiration efficiency at the leaf level, without relying on water loss experiments 

which follow very small changes in weight, which may be affected by inconsistencies in 

weighing and room temperature across the 5 hour period. Studying water retention and 

stomatal conductance in the wheat lines following drought treatment may also accentuate 

any true differences in TE and drought response of the OE lines which may not have been 

detectable under normal conditions (Liu et al., 2013; Xia et al., 2013). Stomatal 

conductance following ABA-treatment could also be analysed to determine whether 

SbSDIR1 is involved in ABA-controlled stomatal closure directly, as has been done 

previously in the paper Zhang et al., 2007. Stomatal conductance measurements are also a 

more sensitive measurement for changes in stomatal aperture, and are more likely to 

detect differences between B35 and R16 if there are any.   

 

    Both the tillering phenotype and water retention measurements of the wheat OE lines 

appear to be the opposite of stay green-associated responses when compared to the 

control line, and contrast those phenotypes observed in SDIR1 OE lines in several other 

species (Gao et al., 2011; Tak and Mahtre 2013; Xia et al., 2012; Xia et al., 2013; Zhang et 

al., 2007). This could be explained by the sorghum SbSDIR1 gene acting differently in the 

wheat plant system, but this seems unlikely due to the conservation of SbSDIR1 function in 

relation to stomatal aperture and transpirational efficiency observed in Arabidopsis 

SbSDRI1 OE lines and homologs of other species (Gao et al., 2011; Tak and Mahtre 2013; 

Xia et al., 2012; Xia et al., 2013; Zhang et al., 2007). Alternatively, it could be hypothesised 
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that the transformation of wheat lines with the SbSDIR1 overexpression construct has 

produced transgenics acting as pseudo-suppression lines due to co-suppression of 

endogenous wheat SDIR1 by the homologous SbSDIR1. Three SDIR1 homologs were found 

in wheat using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with high identity at 80.3%, 

80.9% and 80.3%, potentially sufficient for dominant negative activity with SbSDRI1.    

 

4.3.3 PEG-induced osmotic stress senescence assay 

 

    The process of senescence constitutes a loss of photosynthetic activity as chlorophyll is 

degraded and nutrients are remobilized to younger leaves, characterized visibly by a loss of 

green leaf area (Distelfeld et al., 2014; Lim and Nam, 2007). Drought conditions reduce 

photosynthetic activity as stomatal closure limits carbon dioxide (CO2) uptake and ROS 

accumulation interferes with photosynthetic machinery (Chaves, 1991). Premature 

senescence is a drought response mechanism that reduces transpiration water loss, 

allowing remobilization of nutrients to younger leaves (Lim and Nam 2007; Munne-Bosche 

and Aelgre 2004). The functional stay green phenotype found in sorghum delays stress 

responsive senescence, maintaining photosynthetic activity for longer and enhancing yields 

under drought conditions (Thomas and Howarth, 2000).  

 

    Overexpression of the grapevine SDIR1 homolog in tobacco increased tolerance to PEG-

induced osmotic stress, with significantly less visible senescence observed after 4 days of 

treatment with 10% (w/v) PEG compared to the wildtype (Tak and Mahtre, 2013). 

Overexpression lines in several other species have been shown to confer enhanced drought 

tolerance with reduced evidence of senescence and wilting following water withdrawal at 

the whole plant level, for example in Arabidopsis (Zhang et al., 2007) and rice (Gao et al., 

2011; Zhang et al., 2008). Additionally, the sorghum SbSDIR1 gene has previously been 

shown to be induced by 10% (w/v) PEG, suggesting this gene is specifically responsive to 

the drought stress type imposed by this osmotica (Johnson, 2015a). To determine whether 

the function of SbSDIR1 in drought tolerance and senescence delay is conserved within 

sorghum, the PEG-induced senescence response of the wheat OE lines was analysed. 

Analysis of Arabidopsis SbSDIR1 OE lines did not cover either developmental or stress-

induced senescence progression (Johnson, 2015a), so the function of SbSDIR1 in 

association with senescence timing has yet to be investigated.  

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi


69 
 

    There appeared to be no obvious visible difference in senescence within each wheat line 

(including the control) in relation to varying degree of PEG (0%, 15% and 25% (w/v)). This is 

surprisingly considering the visible effect of 20% (w/v) PEG concentration on wildtype 

wheat recorded in previous papers (Konigshofer and Loppert 2015; Liu et al., 2015a; Tian et 

al., 2013). However, there does appear to be some evidence of premature senescence 

within all transgenic lines (irrespective of PEG concentration) compared to the control, 

suggesting an earlier initiation of senescence in response to a PEG-unrelated trigger. This 

could be a response to photodamage of excised leaf segments, or disturbed osmotic 

balance as a result of floatation on aqueous solution. It is possible that equilibration on 

water prior to PEG treatment may have been required to remove any effect of PEG-

unrelated osmotic shock that could interfere with the analysis. A major limitation of this 

analysis is that it is reliant on visual inspection of leaves rather than chlorophyll 

quantification. Due to time constraints of the project, quantitative analysis was not 

possible. Therefore, in the future actual chlorophyll content measurement or 

photochemical activity is required to confirm visual differences. 

 

    Despite the apparent lack of sensitivity to PEG concentration there does appear to be a 

phenotype of premature stress-responsive senescence within all wheat OE lines for this 

developmental stage and this type of drought stress induction. This is inconsistent with 

previous findings of delayed senescence in SDIR1 overexpression lines, and is in opposition 

to observed stay green phenotypes in sorghum (Rosenow et al., 1983; Kebede et a., 2001; 

Borrell and Hammer et al., 2000). This could be because the sorghum SbSDIR1 doesn’t have 

a conserved function in drought tolerance and senescence delay, or that the gene functions 

differently within the wheat plant system and genetic background than it does in sorghum 

(see explanation 4.3.2). It could also be explained by the theory that SbSDIR1 expression 

within the wheat lines has a dominant negative effect of wheat SDIR1, and suppressing the 

function of this gene (see section 4.3.2). 

 

    In future experiments it would be important to investigate the drought tolerance 

phenotype of these wheat lines at the whole plant level, as well as at the level of the leaf. 

The process of senescence constitutes a change in the source-sink relationship between 

the senescing leaf and the rest of the plant, and studying the senescent phenotype of 

leaves of different developmental ages in the context of the whole plant may reveal more 

about the drought response phenotype (Distelfeld et al., 2014). Whilst PEG is often used as 
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a proxy for gradual soil drying, there will be differences in the stress conditions imposed on 

leaf sections in aqueous solution (for example possible additional osmotic stress of 

floatation on solution) that doesn’t reflect the conditions of soil-grown plants under limited 

water. Analysing the senescent phenotype of whole plants grown on soil during water 

limitation and following recovery may give a more representative impression of the wheat 

OE lines’ ability to tolerate stress and recover from it. 

 

4.3.4 Dark-induced senescence assay 

 

    In addition to delayed drought-responsive senescence, stay green sorghum also shows 

delayed developmental senescence under well-watered conditions (Thomas and Ougham, 

2014; Johnson, 2015a; Xu et al., 2000a; Xu et al., 2000b). Dark-induced senescence assays 

are commonly used as a model for age-triggered developmental senescence (Keech et al., 

2007; Song et al., 2014).      

 

    The wheat OE lines displayed accelerated dark-induced senescence compared to the 

control line, with visible chlorosis after 5 days. This suggests that overexpression of SbSDIR1 

in wheat has again produced a phenotype that is the opposite of stay green characteristics. 

The OE line 81.5 appeared to have the least advanced senescence within the transgenic 

lines. This line has the lowest SbSDIR1 transcript levels of the OE lines, so it is possible that 

lower transcript abundance of the ubiquitin ligase produces an intermediate senescence 

phenotype. If the phenotype can be explained by co-suppression of the endogenous wheat 

SDIR1, it could be hypothesised that suppression is lower within this transgenic line. Due to 

time constraints this analysis is limited to visual inspection of leaves not quantitative 

analysis of chlorophyll levels. In the future, actual chlorophyll content analysis is essential 

to confirm these minute differences in senescence progression. 

 

    The senescent patterning in dark-induced senescence has previously been found to be 

synchronized across the whole of the leaf as a response to carbon starvation (Keech et al., 

2007; Song et al., 2014). However, the covered wheat OE lines displayed a gradient of 

chlorosis more like that observed in ageing attached leaves, which was less easy to 

compare visibly. Although all excised leaves were at the same developmental stage, due to 

time constraints of the experiment they were not the active (currently growing leaf) and 

may be less responsive to carbon starvation, so using the active leaf in future experiments 
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may give a more uniform impression of senescence progression for this method. Covering 

attached leaves in foil and observing the progression of senescence could give a more 

representative impression of dark-induced senescence when the leaf remains a functional 

part of the whole plant, removing the additional stress effect of excision. Covering leaves of 

several developmental stages could remove age-related effects on senescence progression 

which could mask any phenotype specifically related to SbSDIR1 expression. Ultimately, 

developmental senescence is best observed by allowing the plants to reach terminal 

senescence under normal conditions, such as the experiments in the paper by Thomas and 

Ougham in 2014, removing any additional stress effect from excision or coverage.     

 

4.3.5 ABA-induced gene expression 

 

    ABA plays a vital role in mediating plant responses to common abiotic stress, 

contributing to the regulation of several developmental and physiological processes 

including seed dormancy, germination, vegetative growth and stomatal behaviour 

(Finkelstein et al., 2002; Leung and Giraudat 1998). Overexpression of SDIR1 produces 

several ABA-related phenotypes, including altered stomatal aperture, exaggerated stomatal 

closure response to ABA, hypersensitivity at germination and seedling growth stage, salt 

hypersensitivity and shorter primary root length (Gao et al., 2011; Liu et al., 2013; Tak and 

Mahtre, 2013; Xia et al., 2012; Xia et al., 2013; Zhang et al., 2007; Zhang et al., 2008). To 

investigate the ABA sensitivity of wheat SbSDIR1 OE lines and the potential role of SbSDIR1 

in transcriptional regulation of ABA/stress responsive genes, the expression of known 

wheat ABA-inducible genes were analysed following ABA treatment. The genes TaGBF1 and 

TaNAC29 were used in this analysis (Sun et al., 2015; Xu et al., 2015).   

 

    The variation in expression of TaGBF1 and TaNAC29 particularly between the OE line 

81.21 and the control suggests that there could be a difference in their ABA-controlled 

transcriptional regulation, which could be directly or indirectly related to SbSDIR1. 

Therefore, this could represent another ABA-related phenotype for this wheat OE line, in 

addition to altered senescence timing and transpiration efficiency.  

 

    For all wheat lines, the peak expression level of both TaNAC29 and TaGBF1 was reached 

at 12 hours following ABA treatment, and transcript abundance was reduced for both 

genes after 24 hours. Although non-statistically significant, the expression levels of both 
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TaNAC29 and TaGBF1 remained higher than control levels for the OE line 81.21 after 24 

hours of ABA treatment, which could suggest a longer duration of transcriptional response 

to ABA. Additionally, non-ABA treated 81.21 tissue displayed statistically significant 

upregulation of TaNAC29 compared to the control line at both 12 and 24 hours after 

treatment, which could potentially indicate constitutive promotion of ABA signalling even 

in the absence of exogenous ABA treatment. This may be comparable to the ABA 

hypersensitive phenotype seen in Arabidopsis SDIR1 overexpression lines (Zhang et al., 

2007). 

     

    The wheat gene TaGBF1 belongs to the G group in the bZIP transcription factor family 

(Sun et al., 2015). Arabidopsis SDIR1 has previously been found to promote ABA signalling, 

functioning upstream of the bZIP transcription factors ABI5, ABF3 and ABF4. (Sun et al., 

2015; Zhang et al., 2007, Zhang et al., 2008). The ABA signalling component ABI5 has been 

shown to heighten sensitivity to ABA when overexpressed, and is vital to ABA-mediated 

stress response pathways (Lopez-Molina et al., 2001; Sun et al., 2015). Overexpression of 

TaGBF1 in wheat and Arabidopsis confers a salt and ABA hypersensitivity phenotype, but 

when TaGBF1 is overexpressed in abi5-1 mutant background this hypersensitivity is not 

observed, suggesting that ABI5 is required for the GBF1 mediated hypersensitive response 

(Sun et al., 2015). These findings, supported with the expression data in this report, could 

be consistent with a model in which SDRI1 acts as a positive regulator of ABA signaling, 

functioning upstream of transcription factors such as GBF1 (directly or indirectly controlling 

degradation rate or stability) which in turn function upstream of ABA signalling 

components such as ABI5 to mediate ABA/stress response pathways.  

 

    The wheat gene TaNAC29 encodes an NAC transcription factor (named after NAM, ATAF, 

CUC proteins), and has been shown to be induced by ABA, salt and drought stress. 

Overexpression in wheat produces enhanced salt stress tolerance, with reduced evidence 

of chlorosis when grown in high salt (Murashige and Skoog) MS medium and increased 

activity of antioxidant enzymes (Xu et al., 2015). Several studies in Arabidopsis examining 

the association between NAC transcription factors and senescence, have found evidence 

for both positive and negative regulators of senescence timing (Guo and Guan, 2006), 

whilst RNA interference (RNAi) lines for TaNAM genes in wheat exhibit delayed senescence 

phenotypes associated with the preservation of chloroplast ultrastructures (Checovich et 

al., 2016; Uauy et al., 2006). Altered expression level of TaNAC29 in the SbSDIR1 OE line 
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81.21 could be consistent with a model for SbSDIR1 functioning in which the ubiquitin 

ligase acts upstream of NAC transcription factors such as NAC29 to alter senescence timing.      

 

    There is some disagreement regarding the SbSDIR1 OE lines in terms of ABA response 

within this experiment. While 81.21 appears to show a similar peak in TaNAC29 expression 

level to that of the control following 12 hours of ABA treatment, lines 81.5, 81.20 and 81.22 

show a lower peak in expression at this time point (although not statistically significant) 

which could suggest an ABA insensitivity phenotype for these lines. Arabidopsis sdir1-1 

mutant plants were recorded to have a lower sensitivity to ABA treatment at the seedings 

stage (Zhang et al., 2007), which could be consistent with the wheat OE lines in this report 

acting as pseudo-suppression lines for SDIR1. Incongruence between lines could be due to 

differences in expression level, but line 81.21 was selected as an intermediate-level 

SbSDIR1 expresser with very similar transcript abundance to that of the line 81.22 (see 

figure 3).  

 

    Future experiments could look at the change in expression of ABA signalling components 

such as ABI5, ABF3 and ABF4 (as has been done previously in Arabidopsis (Zhang et al,, 

2007)) in order to investigate promotion/suppression of ABA signalling at the level of its 

core components rather than investigating ABA signalling indirectly through genes involved 

in ABA-response. ABA sensitivity at germination and early seedling growth (as has been 

observed in Arabidopsis (Zhang et al., 2007)) may also indicate more clearly if there are 

differences in ABA-responses at the whole plant level which may not be decipherable at 

the gene expression level. Analysing gene expression at more frequent time points would 

ensure that the point of peak expression was captured. ABA-mediated upregulation is 

short-lived in both genes (Sun et al., 2015; Xu et al., 2015), and the initial measurement 

following 12 hours may not represent the highest level of expression for all OE lines.     

 

    In several instances in this chapter the line 81.21 has shown contrasting morphological 

and physiological phenotypes in comparison to all other wheat OE lines and the control 

line. It displayed the most consistent evidence of primary tiller emergence within the 

transgenic lines, which is in opposition to stay green associated behaviour (Borrell et al., 

2014a; Borrell et al., 2014b; Kassahun et al., 2010). However, it also shows higher capacity 

for water retention than the wildtype, and increased expression of ABA-regulated genes in 

the presence and absence of exogenous ABA, both of which observations could suggest the 
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acquisition of stay green-like traits (Borrell et al., 2014a; Borrell et al., 2014b; Vadez et al., 

2011; Zhang et al., 2007). Although it is inconclusive whether this line has acquired the stay 

green mechanism, overexpression of SbSDIR1 within this wheat line does appear to affect 

similar pathways and processes affected when homologs from other species are 

overexpressed (Gao et al., 2011; Tak and Mahtre 2013; Xia et al., 2012; Xia et al., 2013; 

Zhang et al., 2007). Further analysis of this line could improve understanding of the 

functioning of SbSDIR1 in comparison to its homologs.   

     

4.4 Conclusions 

 

     This chapter focusses on the functional characterisation of sorghum SbSDIR1, and 

investigates its potential contribution to drought tolerance and stay green mechanisms. 

Preliminary data identified this gene as being upregulated in B35 stay green sorghum 

compared to the R16 senescent line (Johnson et al., 2015b). Overexpression of SbSDIR1 in 

Arabidopsis produced the stay green-like characteristics of reduced transpiration water 

loss, reduced stomatal conductance and shorter primary root length, suggesting that 

increased expression of this gene is sufficient to confer stay green and drought tolerance 

features in the transgenic line (Johnson, 2015a). By overexpressing SbSDIR1 within wheat, 

the function of this monocot gene was investigated within a monocot system, and 

conservation of its function compared to that of homologs in other species was assessed.  

 

    Overexpression of SbSDIR1 within wheat was sufficient to confer morphological and 

physiological changes within the transgenic lines. However, whether these changes support 

a putative connection between expression of this gene and acquisition of stay green-

associated characteristics is unclear. The fact that the lines analysed were T1 generation 

and therefore not homozygous means that these results are preliminary, and lack of 

homozygosity could explain the variable phenotype. The promotion of tiller development, 

reduced ability to retain water, and accelerated senescence observed in the OE lines are 

the opposite of the characteristics associated with the stay green phenotype (Zhang et al., 

2007; Gao et al., 2011). However, considering the stay green-associated phenotypes 

conferred in Arabidopsis lines overexpressing SbSDIR1 (Johnson, 2015a), it likely that the 

SDIR1 drought tolerance function observed in homologs in other species is conserved in 

sorghum but that the gene either acts differently in the wheat system and genetic 

background, or the OE construct has produced a dominant negative effect. Several 
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differences between the wheat OE lines and the control lines are ABA-related, such as 

transpiration efficiency, tiller development and ABA-induced gene expression which is 

consistent with a role for SbSDIR1 in ABA-mediated stress response (Zhang et al., 2007; 

Zhang et al., 2008), irrespective of whether the transgenic lines are acting as 

overexpression lines or pseudo-suppression lines.  

 

    Short term future experiments have already been outlined in the relevant sections. 

Overexpression lines of SDIR1 homologs in other systems have revealed differences in 

primary root length, antioxidant gene expression, stress gene expression and stomatal 

aperture response to exogenous ABA (Gao et al., 2011; Liu et al., 2013; Tak and Mahtre 

2012; Xia et al., 2012; Xia et al., 2013; Zhang et al., 2007; Zhang et al., 2008; Zhang et al., 

2015). Investigation into these additional features within the wheat SbSDIR1 OE lines could 

reveal more about the functioning of SbSDIR1 in association with drought stress, within this 

plant system. It could also be useful to check the presence of the SbSDIR1 overexpression 

construct using PCR to confirm the presence of the construct particularly in the lower and 

intermediate expressing lines (i.e. 81.5, 81.21 and 81.22). This was done by NIAB on the 

previous generation (see Appendix B), but not confirmed in the segregating T1 generation 

in the current results. Ultimately, work towards successful sorghum transformation is 

essential to investigate how SbSDIR1 functions within sorghum itself, and the extent to 

which the function of the gene contributes to stay green and drought tolerance within this 

plant system. Investigating the expression and functioning of this gene within other stay 

green sorghum varieties could also determine whether a putative role of SbSDIR1 in stay 

green mechanisms is specific to B35 or more universal. Additional long term experiments 

and future perspectives are outlines in chapter 5.  
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Chapter 5 

Discussion and conclusions 

 

5.1 Summary of experiments conducted 

 

    Abiotic stresses have been estimated to cause 50-70% of average yield losses to major 

crops (Ghosh and Xu, 2014; Mittler, 2006). Drought stress and water scarcity are 

considered major threats to food security, affecting not only yield production but also 

promoting soil erosion and land desertification (Fang and Xiong, 2015). In response to the 

threat of global climate change, several countries and international organizations have 

launched projects focussed on improving crop performance under drought conditions, 

including the Generation Challenge Programme (https://www.generationcp.org/) initiated 

by The Consultative Group on International Agricultural Research (CGIAR), and the 2005 

project in European and African countries for Improving Water Use Efficiency in 

Mediterranean agriculture (WUEMED, 

http://www.distagenomics.unibo.it/wuemed/index.html). 

 

    Water limiting conditions can restrict photosynthesis and metabolic function (Farooq et 

al., 2009; Samarah et al., 2009), expose photosynthetic components to oxidative stress 

(Munne-Bosch and Penuelas 2003), promote chlorophyll degradation and senescence, alter 

carbohydrate metabolism and assimilate partitioning (Farooq et al., 2009), trigger stress 

response signalling, alter membrane lipid composition (Toumi et al., 2008), and reduce 

growth and yield (Anjum et a., 2011; Fracasso et al., 2016a; Fracasso et al., 2016b; Hussain 

et al., 2008). The cereal crop sorghum is well suited to drought-prone climates, having 

evolved features such as a waxy cuticle, a deep rooting system, C4 photosynthesis and stay 

green characteristics (Fracasso et al., 2016a; Fracasso et al., 2016b; Dugas et al., 2011). As a 

vital food crop in semi-arid African and Asian regions, Sorghum has received significant 

attention as a model crop for drought tolerance studies, and has a fully sequenced genome 

(Paterson et al., 2009), and vast genetic diversity across its multiple accessions (Mace et al., 

2013).    

  

http://www.distagenomics.unibo.it/wuemed/index.html
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    This project focussed specifically on the stay green mechanism of drought tolerance 

observed in some sorghum varieties. The ‘stay green’ characteristic refers to the ability of 

some varieties to maintain leaf chlorophyll content and photosynthetic activity for a longer 

duration under drought stress conditions, contributing to higher grain yields under such 

stress (Borrell and Hammer 2000; Harris et al., 2007). This thesis aimed to investigate the 

underlying mechanisms and pathways involved in the stay green trait in Sorghum, in 

relation to its ability to tolerate higher levels of drought.  

 

    The transcriptome of the B35 stay green sorghum line and the R16 senescent line were 

previously compared under normal unstressed conditions, in the paper by Johnson et al., in 

2015b. In the B35 line, 1038 genes were upregulated and 998 genes were downregulated 

compared to R16, showing clear differences between these two varieties at the gene 

expression level (Johnson et al., 2015b). As a continuation of this experiment, this report 

compared the full proteome of the same two sorghum varieties, grown in identical 

conditions to the same developmental stage. Variation in gene expression may not 

correlate directly to actual protein levels due to factors such as protein degradation and 

post-translational modification, and consequently the proteomic data provides further 

insight into the differences between the stay green and senescent line, and could reveal 

more about the candidate genes and processes contributing to the stay green phenotype 

(Bailey-Serres 1999; Jedmowski et al., 2014; Mustroph et al., 2009; Salekdeh et. al., 2002). 

The observed proteomic variation (see sections 3.2.1 and 3.3.2) suggests there are 

differences at the protein level as well as the transcript level. Future experiments can be 

used to identify the differentially expressed proteins between B35 and R16, and functional 

characterization could be conducted to investigate their potential role in contributing to 

the stay green trait. Analysing the extent of the correlation between transcriptome and 

proteome variation could be used to corroborate the identification of specific 

genes/proteins as putative contributors to stay green characteristics, but could also 

indicate the level at which the regulation of those candidate genes/processes differs 

between the two lines, i.e. pre- or post-transcription.    

 

    Chapter 4 in this thesis investigates the function of the Sorghum gene ‘salt and drought 

dependent 1’ SDRI1 in relation to the stay green trait and drought stress response. This 

ubiquitin ligase was previously found to be upregulated in B35 stay green sorghum 

compared to senescent R16, and has consistently been implicated in drought stress 



78 
 

response within several plants species (Gao et al., 2011; Tak and Mahtre 2013; Xia et al., 

2012; Xia et al., 2013; Zhang et al., 2007). Therefore, this gene was selected for further 

analysis as a putative contributor to the stay green trait and drought tolerance 

characteristics in sorghum. Sorghum SbSDIR1 was overexpressed in Fielder wheat by Dr 

Stephanie Johnson (Durham University) in collaboration with NIAB (Huntington Road, 

Cambridge, CB3 0LE), and the transgenic lines were analysed for the acquisition of stay 

green-associated characteristics. Some variation in morphological and physiological 

features were observed, including variation in tiller development, rate of water loss by 

transpiration, rate of stress-induced senescence, and ABA-induced stress gene expression. 

Evidence of ABA-related phenotypes in connection with a change in SDIR1 expression level 

corroborates several previous studies which have found this gene to function in an ABA-

mediated manner (Zhang et al., 2008; Zhang et al., 2015). However, whether the 

overexpression of SbSDIR1 within wheat has produced an overall phenotype with enhanced 

or reduced stay green-associated traits was inconclusive. Considering overexpression of 

SbSDIR1 in Arabidopsis has previously been shown to confer stay green-associated traits 

such as improved water retention and lower stomatal conductance (Johnson, 2015a), it is 

possible that SbSDIR1 is behaving differently in the wheat plant system and genetic 

background than it would in Arabidopsis and sorghum. For example, although we know 

that the SbSDIR1 is being transcribed within the wheat lines (see figure 3 in section 4.2.1) 

post-transcriptional regulation (e.g. phosphorylation) that could be essential to its 

endogenous function may differ in wheat compared to sorghum. A yeast 2-hybrid screen of 

Arabidopsis SDIR1 previously found that the ubiquitin ligase interacts with SDIRIP1 (SDIR1-

INTEREACTING PROTEIN1) and 38 other clones (Zhang et al., 2015), and it is possible that 

within the wheat plant system these target proteins may differ in expression or structure in 

comparison to Arabidopsis and sorghum, interfering with regular functioning. Further 

experiments have been suggested in section 4.3 to further dissect the phenotype of the 

wheat overexpression lines in relation to stay green and drought tolerance associated 

traits.       

 

5.2 Experimental limitations and short-term future experiments  

 

    This thesis reports preliminary progress towards a proteomic comparison between B35 

and R16, and functional characterization of SbSDIR1 as a putative contributor to the stay 
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green state. However, there are several key limitations within the experimental approach 

which could be addressed in future experiments.  

 

    The proteomic data analysed in this report (chapter 3) was focussed only on plants that 

are 14 days old, and the acquisition of stay green traits in the wheat SbSDIR1 

overexpression lines (chapter 4) was measured only at the early seedling growth stage 

between 2 and 5 weeks old. Therefore, observations of molecular and physiological 

differences between varieties and transgenic lines is limited to those observed during the 

seedling growth stage, and characteristics that may be specific to earlier or later growth 

stages are not considered. Transcriptomic data comparing stay green and senescent 

varieties of sorghum 14 days and 50 days after sowing (DAS) found that some genes were 

differentially expressed only at one time point (Johnson et al., 2015b; Johnson, 2015a), 

suggesting a difference in gene expression across these two developmental stages for B35 

and R16 which is not investigated at the protein level within this thesis. In the context of 

the SDIR1 overexpression lines, previous studies have observed phenotypic differences at a 

variety of specific growth stages which are not analysed within the wheat lines, such as 

hypersensitivity to ABA observed at germination in Arabidopsis SDIR1 overexpression lines 

(Zhang et al., 2007). The reduced tillering phenotype associated with sorghum stay green 

QTL near isogenic lines (NILs) has previously been observed at anthesis rather than the 

early seedling stage, at which stage water conservation prior to grain filling may be a 

greater priority (Borrell et al., 2014a; Borrell et al., 2014b; Kassahun et al., 2010). It appears 

that drought stress response and stay green mechanisms are complex, and pathways and 

processes involved may be specific to a particular developmental stage. Analysis at various 

different growth stages will give a fuller picture of the overall morphological and 

physiological differences between sorghum varieties, and between SbSDIR1 overexpression 

lines compared to the wildtype.        

 

    Several studies including this report only compare or introgress a single stay green 

variety with one comparative senescent line (Jedmowski et al., 2014; Swami et al., 2011). 

This limits the investigation of the stay green trait to the genetic basis of that specific 

variety, ignoring the possible genetic and phenotypic variability within the trait across 

several accessions. Other B35-unrelated sorghum stay green sources include E36-1, SC56 

and KS19 (Anami et al., 2015; Haussmann et al., 2002; Kebede et al., 2001). This study 

focussed solely on the stay green source of B35, which has been extensively characterized 
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in previous papers (Crasta et al., 1999; Johnson et al., 2015b; Vadez et al., 2011;). However, 

in the thesis by Johnson, in 2015a the transcriptome of the E36-1 was analysed alongside 

B35 and R16, finding 993 and 1406 differentially expressed genes to be unique to B35 and 

E36-1 respectively (Johnson, 2015a). A variable transcriptomic basis for the stay green 

phenotype in E36-1 corroborates earlier findings of minor stay green associated QTLs 

unique to this line, in addition to the four major QTLs consistent with B35 (Anami et al., 

2015; Haussmann et al., 2002; Wu et al., 2016). It could also reflect the unique senescence 

phenotype observed in this line, where delayed senescence is only visible under stressed 

conditions, in contrast to B35 which additionally exhibits developmental senescence 

(Thomas and Howarth et al., 2000). The stay green line E36-1 could also be included in the 

proteomic analysis of this study, and the unique genes/proteins further characterized. By 

analysing multiple stay green lines simultaneously, correlations between proteomic or 

transcriptomic variation associated with the trait could identify universal processes and 

genes contributing to the stay green trait across multiple varieties, but could also have the 

potential to identify unique mechanisms specific to single varieties. It could also be 

interesting to investigate lines such as SPV475 which exhibit accelerated senescence 

compared to the intermediate senescing R16, and identify the genes and processes 

contributing to this extreme phenotype (Thomas and Howarth 2000).   

 

    Within the sorghum genome, several regions have been identified as quantitative trait 

loci (QTLs) that associate to the stay green trait (Sanchez et al., 2002). Genetic variation 

within these regions correlates to variation in stay green characteristics. Studies using B35 

sorghum as a source of stay green consistently identify four major stay green QTLs 

(Kassahun et al. 2010; Sanchez et al., 2002; Xu et al., 2000b). The thesis by Stephanie 

Johnson (Johnson, 2015a) maps the transcriptomic changes between B35 and R16 to the 

known loci of stay green QTLs, and several differentially expressed genes map directly to 

QTLs, including P5CS1 located within Stg1. It would be interesting to map the proteomic 

changes between B35 and R16 to known stay green QTLs. Variation in proteins directly 

genetically linked to QTLs may represent proteins and processes that directly underlie the 

trait. Other variable proteins may lie outside of QTLs and be regulated upstream by other 

QTL located genes (Johnson, 2015a).    

 

    This study analysed the variation in proteome between B35 and R16 only under well-

watered unstressed conditions. Similarly, the transcriptome comparison between B35 and 
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R16 in the thesis by Johnson, 2015a is only characterized under well-watered conditions, 

whilst transcriptome comparison of heat, drought and combined stress have only been 

analysed in the R16 variety (Johnson et al., 2014). It would be interesting to analyse the 

difference in transcriptome and proteome under stress conditions between the stay green 

and senescent line, and identify the genes and processes contributing to the variation in 

adaptive response before, during and in recovery from the stress. The full proteome of 

drought tolerant and drought sensitive accessions in several other crop species have been 

compared under drought stress, including in maize (Benesova et al., 2012), rice (Zang and 

Komatsu 2007) and apple (Zhou et al., 2015), and have described protein level variation in 

relation to various processes including lipid metabolism, ROS scavenging, and the UPS. It 

could also be interesting to characterize the temporal change in protein and gene 

expression phenotype during developmental and stress-induced senescence, as previously 

analysed in sorghum leaves of a rapid senescing accession (Wu et al., 2016). This method 

could be used to identify variation in senescence associated genes/proteins between stay 

green and senescent lines, and potentially could help to dissect the distinct senescence 

phenotypes of E36-1 and B35, which display similar stress-induced senescence but 

divergent developmental senescence phenotypes (Anami et al., 2015; Haussmann et al., 

2002; Johnson, 2015a; Thomas and Howarth 2000). Studies could look at changes in the 

whole transcriptome during senescence, or specific change in genes known to be involved 

in senescence regulation such as NAC transcription factors (Guo and Gan et al., 2006).    

 

    For the functional characterization of SbSDIR1, expression of the sorghum gene within 

wheat limits analysis to the behaviour of SbSDIR1 specifically within the wheat plant system 

and genetic background, which may differ to its functioning within sorghum due to 

different post-transcriptional regulatory mechanisms in wheat, or different 

structure/expression of downstream target proteins. Transformation of sorghum with an 

SbSDIR1 overexpression construct is essential to investigate its role and contribution to stay 

green within sorghum itself.  The sorghum transformation method using particle 

bombardment is detailed in the paper Liu et al., 2014, and should be re-attempted with 

SbSDIR1, as well as with other candidate genes (Johnson, 2015a).  

 

5.3 Long term experiments and future perspectives 

    This study focussed on the functional characterization of SbSDIR1. This gene was selected 

for further investigation due to the differential expression of SbSDIR1 in B35 sorghum 
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compared to R16 (Johnson, 2015a), and its previously described contribution to the stay 

green phenotype (Gao et al., 2011; Tak and Mahtre 2013; Xia et al., 2012; Xia et al., 2013; 

Zhang et al., 2007). However, several other genes have been identified as potential 

candidates for contribution to the stay green trait in sorghum. For example, several NAC 

genes have been found to be differentially regulated between B35 and R16, and 

Sb10g027100 in particular was strongly upregulated in B35 (Johnson, 2015a). NAC 

transcription factors have been studied extensively in relation to abiotic stress tolerance, 

and several have been implicated in senescence regulation (Guo and Gan 2006; Yang et al., 

2011; Lee et al., 2012; Sperotto et al., 2009). The Universal Stress Protein (USP) 

Sb01g037580 was found to be expressed to higher levels in the StgB introgression line 

compared to the parent senescent line (Johnson, 2015a), suggesting that this gene may 

contribute to the stay green phenotype and the genetic variability underlying this QTL. 

Universal Stress Proteins are ubiquitous in plants and appear to play significant roles in 

promoting abiotic stress responses (Loukehaich et al., 2012; Nachin et al., 2005). 

Additionally, the sorghum gene ‘Stomatal density and distribution 1’ (SDD1) was found to 

be significantly upregulated in B35 compared to R16 (Johnson, 2015a). Overexpression of 

ZmSDD1 in maize has been found to improve drought tolerance via reduced stomatal 

numbers (Liu et al., 2015c), and consequently it has been hypothesised that this sorghum 

gene could be contributing to the stay green trait, specifically the aspect of transpiration 

efficiency, through regulation of stomatal density (Johnson, 2015a). Functional 

characterization of additional candidate genes within sorghum, in comparison to 

homologues in other species, could broaden our understanding of the genetic basis for the 

stay green trait within this crop.  

    The drought tolerance of stay green varieties has partly been attributed to reduced 

transpirational water loss via stomatal regulation (Borrell et al., 2014a; Vadez et al. 2011; 

Zhang et al., 2007). Regulation of stomatal conductance as a drought avoidance strategy 

has been investigated previously in comparisons of stay green and non-stay green sorghum 

under well-watered conditions (Johnson, 2015a), and in the assessment of the SbSDIR1 OE 

lines within this study. However, there are several other drought avoidance strategies in 

plants associated with plant-water relations and water transport, which could potentially 

be employed to varying degrees within sorghum varieties, in relation to the stay green 

trait. For example, enhanced root exploration to maximise root water uptake is a common 

drought avoidance strategy, and the general drought tolerance of sorghum is associated 

with its deep rooting system (Borrell et al., 2014a). An aberrant root phenotype has been 
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observed in SDIR1 overexpression lines in rice and Arabidopsis (Gao et al., 2011; Zhang et 

al., 2007), and the loci of QTLs for root nodal angle within sorghum have been found to 

overlap with stay green QTLs (Borrell et al., 2014a; Mace et al., 2013). Transcriptomic 

comparison between R16 and B35 is so far restricted to leaf tissue (Johnson et al., 2015b). 

Future experiments should study the variation in physical root morphology and root tissue 

gene expression between R16 and B35, or in SbSDIR1 OE lines, to investigate the potential 

role for root architecture in conferring drought tolerance in sorghum, in relation to the stay 

green trait.  

 

    Aquaporins are water and solute transport channels vital for water flux control 

throughout the plant, influencing stomatal conductivity, root hydraulic capacity, and 

transpiration (Afzal et al., 2016; Moshelion et al., 2015). A potential role for aquaporins in 

the stay green mechanism within sorghum was previously suggested following the 

transcriptomic comparison of B35 and R16, in which PIP2B isoforms were identified in 

association with the enriched GO category ‘water transport’ (Johnson, 2015a). Both plasma 

membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) appear to be 

critical to drought stress response, and multiple PIP1 and PIP2 genes in sorghum have been 

found to be induced by salt and osmotic stress (Hasan et al., 2017; Liu et al., 2014; Liu et al., 

2015b). Overexpression of various aquaporin genes in different species has produced 

contrasting results, with some transgenic plants in Arabidopsis, sorghum, maize and 

tobacco exhibiting improved drought tolerance and enhanced water retention capabilities 

(Cui et al., 2008; Hasan et al., 2017; Zhou et al., 2012) whilst rapid water loss following 

overexpression of Arabidopsis PIP1 and PIP2 genes has proved detrimental to drought 

survival rates (Aharon et al., 2003). Analysis of aquaporin expression levels within B35 and 

R16, under stressed and non-stressed conditions, could investigate a potential role of these 

genes in the improved water use efficiency and drought survival within stay green lines.  

  

    The proteomic analysis in chapter 3 sought to complement earlier transcriptomic data by 

analysing actual differences in protein levels between B35 and R16. However, as well as 

looking at differences in proteins, it could also be interesting to look at the variation in 

metabolites such as sugars within the two varieties. During drought stress sugars have 

been shown to be involved in stomatal closure, ROS scavenging, membrane protection, 

osmotic adjustment, senescence initiation and expression of senescence associated genes 

(Sami et al., 2016). The stay green trait in sorghum is associated with accumulation of stem 
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sugar which has been attributed to the maintenance of photosynthetic activity during grain 

filling which removes the demand on stem assimilate stores (Borrell and Hammer, 2000; 

Duncan et al., 1981). It could be interesting to look at assimilate partitioning into different 

sugars in relation to the stay green phenotype. In particular, the gene trehalose-6-

phosphate (TPS) is upregulated in B35 compared to R16 (Johnson, 2015a), and future 

experiments could investigate whether this transcript abundance correlates to an increase 

in trehalose, which has known roles as a compatible solute and in membrane stability 

(Goddijn and van Dun 1999). Previous overexpression studies for trehalose biosynthesis 

genes have recorded an improvement in drought tolerance but with only minimal 

accumulation of trehalose, and it has been suggested that this phenotype may be 

attributed to changes in signalling (possibly involved the intermediate trehalose-6-

phosphate) and sugar-mediated gene expression changes rather than actual trehalose 

content (Garg et al., 2002; Karim et al., 2007).             

 

5.4 Conclusions 

    This thesis reports the investigation of the pathways and processes that underlie the stay 

green trait in sorghum, a phenotype which improves grain yield under water limited 

conditions. Progress has been made toward conducting a full proteome comparison 

between the stay green sorghum line B35 and the senescent line R16, and the functional 

characterization of the sorghum gene SbSDIR1. Further investigation into proteomic and 

transcriptomic variation between these lines and other accessions when under stressed 

conditions, and functional characterization of additional candidate genes, will broaden our 

understanding of the mechanisms involved in this drought tolerance strategy. In the future, 

this knowledge could be utilized in the breeding programmes aimed at improving stress 

tolerance in important crops.    
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Appendix A 

 

Primers used for real time PCR 

Primers for the ADP-ribosylation factor (ARF) gene Ta. 2291 used as an endogenous control 

for wheat was designed by Dr. Mark Skipsey (Durham University). 

MS137 TaARFqPCR5’ gggttgtacgagggtcttga 

MS138 TaARFqPCR3’ tccagcacgtttgtttcttg 

 

Primers for analysing the transcript level of sorghum SbSDIR1 in wheat overexpression lines 

were designed by Stephanie Johnson (Durham University) as described in Johnson et al., 

2015b. 

SbSDIR1 Fw                                          ccaaattcgttgctgcgtga 

SbSDIR1 Rev                                        ccctgcatgaattcgcatgg 

Primers for analysing the transcript level of GBF1 in wheat SbSDIR1 overexpression lines 

were designed by Sun et al., 2015. 

GBF1 Fw                                               tgagacagaggaattggccacac 

GBF1 Rev                                             caactgctgatttgtccagaggc 

Primers for analysing the transcript level of NAC29 in wheat SbSDIR1 overexpression lines 

were designed by Xu et al., 2015.   

NAC29 Fw                                     gacgccggagcagactaccagc 

NAC29 Rev                                    gatctcttcctctccatgccgtt 
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Appendix B 

Stephanie Johnson (Durham University) produced a construct for overexpressing the 

sorghum gene SbSDIR1 (Sb01g039740.1) using a rice actin promoter, see map below 

courtesy of Dr Emma Wallington, at NIAB (Huntington Road, Cambridge, CB3 OLE).  

 

Dr Emma Wallington conducted agrobacterium-mediated transformation of Fielder wheat 

(Triticum aestivum L.) with the overexpression construct (pEW304-SbSDIR1). The table 

below lists the names and qPCR copy number of the 36 transformed lines, with the 14 lines 

used in chapter 4 highlighted in yellow. From these 14 lines, numbers 81.5, 81.20, 81.21 

and 81.22 were selected for further analysis. The copy number data is based on the 

selectable marker nptII. 

Plant 

number 

QPCR 

copy 

number 

81.1 4+ 

81.2 1 

81.3 4+ 

81.4 3 

81.5 2 

81.6 4+ 

81.7 4+ 

81.8 4+ 

81.9 4 

81.11 3 
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81.12 3 

81.13 4+ 

81.14 4+ 

81.15 4+ 

81.16 4+ 

81.17 4+ 

81.18 1 or 2 

81.19 1 

81.20 1 or 2 

81.21 3 or 4 

81.22 2 or 4 

81.23 4+ 

81.24 4+ 

81.26 4+ 

81.27 4 

81.28 4+ 

81.29 4+ 

81.30 4+ 

81.31 4+ 

81.32 2 

81.33 4+ 

81.con1 0 

81.con2 0 

81.con3 0 

82.1 4+ 

82.2 4+ 

82.3 4+ 

82.6 2 or 3 

82.7 4+ 

82.con1 0 
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