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Abstract:

We consider several random walk related problems in this thesis. In the first part,

we study a Markov chain on R+ × S, where R+ is the non-negative real numbers

and S is a finite set, in which when the R+-coordinate is large, the S-coordinate of

the process is approximately Markov with stationary distribution πi on S. Denoting

by µi(x) the mean drift of the R+-coordinate of the process at (x, i) ∈ R+ × S, we

give an exhaustive recurrence classification in the case where ∑i πiµi(x)→ 0, which

is the critical regime for the recurrence-transience phase transition. If µi(x)→ 0 for

all i, it is natural to study the Lamperti case where µi(x) = O(1/x); in that case the

recurrence classification is known, but we prove new results on existence and non-

existence of moments of return times. If µi(x) → di for di 6= 0 for at least some i,

then it is natural to study the generalized Lamperti case where µi(x) = di +O(1/x).

By exploiting a transformation which maps the generalized Lamperti case to the

Lamperti case, we obtain a recurrence classification and an existence of moments

result for the former. The generalized Lamperti case is seen to be more subtle, as the

recurrence classification depends on correlation terms between the two coordinates

of the process.

In the second part of the thesis, for a random walk Sn on Rd we study the

asymptotic behaviour of the associated centre of mass process Gn = n−1∑n
i=1 Si.

For lattice distributions we give conditions for a local limit theorem to hold. We

prove that if the increments of the walk have zero mean and finite second moment,

Gn is recurrent if d = 1 and transient if d ≥ 2. In the transient case we show that

Gn has diffusive rate of escape. These results extend work of Grill, who considered

simple symmetric random walk. We also give a class of random walks with symmetric

heavy-tailed increments for which Gn is transient in d = 1.
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Chapter 1

Introduction

Many stochastic processes arising in applications exhibit a range of possible be-

haviours depending upon the values of certain key parameters. Investigating phase

transitions for such systems leads to interesting and challenging mathematics. Much

progress has been made over the years, using various techniques. The most subtle

case is when the system is near-critical in some sense (near a phase boundary). This

thesis will study a few particular near-critical Markov models, with an aim to extend

known criteria for classifying recurrence and transience.

Now we will start on some background knowledge and classical results on random

walk theory, together with some new intuitions.

1.1 Random walk

Random walk is one of the most important models in probability theory. It displays

profound mathematical properties and has a wide range of application in many

scientific fields and much more. It is a stochastic process which describes the random

trajectory of a particle (or random walker) in space. The motion of the particle is

explained with a succession of random increments or jumps at discrete instants in

time. The long term asymptotic behaviour of the particle or walker is of great interest

and has stimulated extensive research in this field. It has a long and rich history

across a variety of subjects. The classical one-dimensional random walk dates back

1
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to the ‘gambler’s ruin’ problem, addressed a few centuries ago by Fermat and Pascal

[92]. The mathematical theory started to formalize as the French mathematician

Louis Bachelier gave his insight to his stock prices model using the random walk

reasoning in his Ph.D. thesis in 1900 [7]. The popularity of the term ‘random walk’

gradually increased when a Professor of Economics at Princeton University, Burton

Malkiel, published his book, A Random Walk Down Wall Street, in 1973 [72].

For the more general version of the model in several dimensions, it was probably

first studied in around 1880 in the form of Lord Rayleigh’s theory of sound [87].

Shortly after, similar ideas from Albert Einstein’s theory of Brownian motion (1905-

1908) in statistical physics [28] and English statistician Karl Pearson’s theory of

random migration of species (1906) in biology [84] arose. The term random walk

is first suggested by Pearson in a letter to the journal Nature [83] and it is stated

as a path with a succession of random steps, usually on a d-dimensional lattices in

classical literature.

In 1920, the Hungarian mathematician George Pólya confirmed the mathemat-

ical importance of this indispensable random walk model [85]. Numerous elegant

connections and ideas in random walk blossom and propagate to other significant

branches of mathematics such as combinatorics, harmonic analysis, potential the-

ory, and spectral theory over the last century. The theory of random walk then

continued to proliferate in lively realm of modern science. A broad range of studies

can be found in [94].

The popularity of researching the random walk model is due to its vast applica-

tions in different subjects such as, but no limited to the following.

• Chemistry: Polymer conformation in molecular chemistry [8, 71, 99];

• Biology: Modelling of microbe locomotion in microbiology [9, 99];

• Economics: Financial systems, modelling stock prices [31];

• Psychology: Human memory search in a semantic network [6].

In this chapter, we will discuss some of the history and motivation behind the

study of such random walk problems. We will also give some foundation material
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on random walk theory with some personal intuition. Let’s discover these hidden

gems through the exciting adventures of some random walk problems.

1.2 Markov chains and recurrence classification

The Markov process, named after the Russian mathematician Andrey Markov, has

a characteristic property that it retains no memory of where it has been in the past.

This property is sometimes known as the Markov property or the memorylessness

property. In other words, where the process will go next only depends on the current

state of the process. By conditioning on the current state of the process, its future

and past states are independent. When the Markov process has a finite or countable

set of states in particular, we would call it a Markov chain.

Although Andrey Markov studied Markov chains and Markov processes, with

his first paper on these topics in 1906, other specific models of Markov processes

already existed. Random walk is an example of a Markov chain, and was studied

hundreds of years earlier [98].

Compared to the usual use of the term random walk, which suggests that the

process is on a regular lattice, Markov chains are usually more general in terms of

describing a more complicated state space. As both of them are stochastic processes,

we would not distinguish them specifically in the context of this thesis, and will use

them interchangeably.

A very important property for Markov chains is the recurrence classification. It

gives us a general idea of how the process will evolve in the long term. Given a

Markov chain (Xn), n ≥ 0 on a countable state space S, a state i ∈ S is called

recurrent if

P(Xn = i for infinitely many n|X0 = i) = 1.

A state i ∈ S is called transient if

P(Xn = i for infinitely many n|X0 = i) = 0.

Although it is not immediate, standard Markov chain theory shows that any state
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can only be either recurrent or transient, see [81, p.26, Theorem 1.5.3].

We can also understand the idea of recurrence and transience by looking at the

return time, also know as the first passage time and the hitting time, defined as

follows. For i ∈ S,

τi = inf{n ≥ 1 : Xn = i},

with the convention that inf ∅ :=∞. Intuitively if X0 = i, τi is time it takes for the

process to come back to its original position. Again, from standard Markov chain

theory, we can easily see that a state i is recurrent if and only if P(τi <∞|X0 = i) = 1

and it is transient if and only if P(τi <∞|X0 = i) < 1.

If a state is recurrent, it implies that the process will come back to this state with

probability one, but it does not guarantee that the process will come back in finite

time in expectation. Hence we could further classify the recurrent case into positive

recurrent or null recurrent. We define a recurrent state i to be positive recurrent if

E[τi|X0 = i] <∞

and null recurrent if

E[τi|X0 = i] =∞.

This time, it is clear that it is a dichotomous classification.

In order to understand the recurrence classification for the whole process, we

should understand the structure of the walk first. Sometimes, it is possible to break

a chain into smaller pieces, so that we can understand the behaviour of each piece

separately in a relatively simple way, and group them all back together to get a

result for the whole chain. This involves identification of communication classes of

the chain.

Given a Markov chain (Xn), n ≥ 0 on a countable state space S, for any states

i, j ∈ S we say that i leads to j and write i→ j if

P(Xn = j for some n ≥ 0|X0 = i) > 0.

We also say that i communicates with j and write i ↔ j if both i → j and
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j → i. It is clear that i↔ i from the definition. Together with the fact that i↔ j

and j ↔ k implies i ↔ k for any states i, j and k ∈ S, we conclude that ↔ is an

equivalence relation on S. So we can partition S into communicating classes. If a

chain only consists of one class, then it is called irreducible.

From standard Markov chain theory, the properties of positive recurrence, null

recurrence and transience are all class properties. This means if a state in a certain

class is transient, then any state in the class is also transient.

In our context of random walks in this thesis, they are always irreducible Markov

chains, hence the recurrence classification for the process (with certain fixed para-

meters) we considered as a whole is well defined.

Hence when we say recurrence classification in context of this thesis, we want

to determine how the parameters in the model will affect the process to be positive

recurrent, null recurrent, or transient.

1.3 Simple symmetric random walk

The most comprehensively studied random walk model is the simple symmetric ran-

dom walk. Formally, denote by {e1, e2, · · · , ed} the standard orthonormal basis on

Rd, and let Ud := {±e1,±e2, · · · ,±ed} be the set of possible jumps of the ran-

dom walk. Given a sequence of independent identically distributed (i.i.d.) random

variables Z,Z1, Z2, . . ., with

P(Z = e) = 1
2d for e ∈ Ud, (1.3.1)

we define the simple symmetric random walk as a discrete-time Markov process

(Sn, n ≥ 0) on the d-dimensional integer lattice Zd by

Sn =
n∑
k=1

Zk. (1.3.2)

Alternatively, we can think about this process in the natural way. To move from a

certain point Sn to the next point Sn+1 in Zd, we chose, uniformly at random, from

all of the 2d neighbours of Sn, in other words, all the points which differ from Sn
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by exactly ±1 in a single coordinate. Here are some pictures of simple symmetric

random walks in one, two and three dimensions.
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Figure 1.1: Three simulated trajectories of 1D SSRW against time.
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Figure 1.2: Three simulated trajectories of 2D SSRW.
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Figure 1.3: Three simulated trajectories of 3D SSRW.

One of the most fundamental properties of a random walk is the recurrence

property. The story goes back to 1920s. George Pólya enjoyed to take random

running paths in a big park as his daily exercise. Although his paths were completely

random, he often met the same couple during his journey, who was also running

around the area [85]. He realized that assuming the couple also takes a random

path every day, then his relative position to the couple is also a random walk. This

can be done by just combining the two steps of the random walks by Pólya and

the couple at every time point as one big step. Then they will meet each other

whenever the combined random walk visits the origin. Now the real question is,

what is the probability that the walk will eventually returns to 0? Mathematically,

define τd := min{n ≥ 1 : Sn = 0} to be the time needed for the first return to the

origin. If the walk never comes back, then τd =∞, as with the usual convention that

min ∅ :=∞. Now our interest is in the Pólya’s random walk constant pd, defined as

pd := P(τd <∞). (1.3.3)
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Similar to the recurrence classification for Markov chains that discussed in Sec-

tion 1.2, we call the random walk recurrent if pd = 1, and transient if pd < 1.

Intuitively, a recurrent walk means that the random walk will visit the origin infin-

itely often with probability one while a transient walk means with probability one,

it will only come back to the origin finitely many times, and never return again.

In general, finding this classification is very difficult due to the fact that the

intrinsic properties of the state space or the movement of the walk is complicated to

quantify for meaningful analysis. However, in the case of simple symmetric random

walk, which is a pleasant model to study due to the simple and clean structure,

there are a lot of well developed combinatorial techniques based on counting sample

paths that give us elegant properties of the walk. We now present the following

beautiful result by George Pólya in 1921 [85].

Theorem 1.3.1 (Pólya’s Recurrence Theorem). The simple symmetric random walk

on Zd is recurrent in one or two dimensions, but transient in three or more dimen-

sions. Equivalently, p1 = p2 = 1 but pd < 1 for all d ≥ 3.

The essence of this theorem can be easily understood by the aphorism credited

to Shizuo Kakutani in a UCLA colloquium talk: ‘A drunk man will eventually

find his way home, but a drunk bird may get lost forever’ [27, p.191]. My version

to remember the critical dimension is by thinking of the sentence ‘Everyone but

astronaut drinks’.

More precisely on the value of pd, Montroll [77] in 1956 showed that for d ≥ 3,

pd = 1− u−1
d where

ud =
∫ ∞

0

[
I0

(
t

d

)]d
e−tdt, (1.3.4)

and I0(z) is the modified Bessel function of the first kind. Numerically, p3 ≈

0.340537, see [21,24,41,97] and p4 ≈ 0.193206 [34,77].

The intuition behind this phenomenon is actually quite difficult to come up with.

At first sight, one might think as the dimension increases, the number of points in

the lattice increases and also more choices are available at each time point, that is

why it is more difficult for the particle or the walker to jump back to the origin.

This is not a very convincing argument since if you are away from the origin, you
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have many choices in higher dimensions, but a high proportion of them are ‘helping’

you to get back in terms of shortening the distance from the starting point, then

you should still have a lot of tendency to come back. In one dimension, except the

starting point, we always have equal tendency to move to or away from the origin.

In two dimensions, most of the points on the lattice have equal number of choices to

help or not help you to come back, while on the axis there are actually more choices

that push you away than those pull you back! However, both one or two dimensions

fall into the recurrent case. This argument is unclear from the classification, and

there is no hint for why the critical change is from two to three dimensions, but not,

say, four to five dimensions.

In fact, Pólya’s original argument was based on delicate path counting and is

largely combinatorial, which the intuition remains hidden behind. Some other in-

tuition is based on the proof by electric networks and potential theory technique.

The end of the proof boils down to the convergence of harmonic series. The in-

crease of dimension changes the convergence to divergence, and thus the critical

point emerges from two to three dimensions, algebraically. Again, this is not a very

satisfactory explanation due to the lack of explaining the physical meaning of how

the dimension affects the series.

If we want to generalize the above methods to more general random walks,

they just completely break down due to the complicated structure or long distance

correlation. We realized that not only the average drift in the model matters, but

the variance of jumps is equally important.

One of the heuristic and intuitive arguments that I came across in the literature

is the following. Consider the random walk in Rd then the probability of the random

walk being within distance O(1) of the origin after n steps will become order O(n− d2 )

from the local limit theorem for random walk, that will be explained in Section 6.5.

Now if we consider all possible n and sum the probabilities up, we get an expression∑∞
n=1 n

− d2 which is divergent when d = 2 and convergent when d = 3. By the

Borel-Cantelli lemma this gives a sufficient condition for transience. However, this

argument does not give both directions, i.e. the divergent sequence does not imply
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recurrence directly.

In my own opinion, the best and neatest argument is using the idea of Lyapunov

functions which can be found in [75], which involves a version of Lamperti’s funda-

mental recurrence classification [64]. We will delay this argument to Chapter 2.

1.4 Homogeneous random walk on Rd

Simple symmetric random walk is a specific model that is very restrictive to the

movement of the walk. It is natural to extend the theory to a more general class of

random walks. A famous intermediate extension involves the Pearson-Rayleigh ran-

dom walk on Rd, which allows the walk to jump to any point on the unit circle/sphere

centred at the current position, with uniform probability. Similar results to those for

the simple symmetric random walk can also be obtained. In fact, we can do far more

than this. Without any particular structure of the jump, we define a random walk

as a discrete-time Markov process (Sn;n ≥ 0) on an unbounded state space Σ ⊆ Rd.

Throughout the whole thesis, we always assume the walk is time-homogeneous, i.e.

the distribution of Sn+1 given (S0, S1, . . . , Sn) only depends on Sn but not on n.

A typical type of random walk that was studied extensively in the literature is

the spatially homogeneous random walk. We can define it as Sn = ∑n
k=1 Zk where

Z,Z1, . . . , Zn are i.i.d. random variables, taking values in Rd, so the law of the

increment does not depend on the current position of the walk.

In the context of the general random walk, there are some results on the general-

ization of the seminal Pólya’s recurrence theorem for the continuous state space Rd.

However, we need to reconsider the definition of recurrence and transience again.

The original definition of recurrence is not completely clear in a continuous state

space. Do we insist of the walk going back to the exact same point or do we allow

the walk just come back to a small neighbourhood of the point it visited in the past?

These two situation exhibit a very different behaviour in critical situations. Hence

we should separate them clearly. Without any specification on the structure of the

walk, we will use the following definition.
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Definition 1.4.1. A random walk (Sn;n ≥ 0) taking values in Σ ⊆ Rd is transient

if limn→∞ ‖Sn‖ = ∞, a.s. The walk is recurrent if, for some constant r0 ∈ R+,

lim infn→∞ ‖Sn‖ ≤ r0.

It is very important to know that the classification of recurrence and transience is

not necessarily exhaustive in general, we will look deeper in this later in our specific

model. In the special case of spatially homogeneous random walk, one can apply the

Hewitt-Savage zero-one law to prove the dichotomy. We will explain in more details

in Part II of the thesis. Also, even with these more general definitions, we need to

make sure that the walk should not be ‘trapped’ in part of the state space as the

transient definition suggest the walk will go to infinity eventually, but here the walk

can just go to a finite limiting point, breaking the dichotomy. So the classification

is not properly defined in this case. The easiest way is to assume the state space Σ

to be locally finite to get some form of irreducibility so we can avoid the ambiguity

on the recurrence classification.

Now we are ready to generalize the influential result of Pólya’s recurrence the-

orem. In 1951, Two mathematicians Kai-lai Chung and Wolfgang Heinrich Johannes

Fuchs (see [19] and [58, Chapter 9]) extended the result to non-degenerate homo-

geneous random walks whose increments have finite second moments as follows.

Theorem 1.4.2 (Chung-Fuchs Theorem). Let Sn be a random walk in Rd. Then

we have the following statements.

1. When d = 1, if E [|Z|] <∞ and E[Z] = 0, then Sn is recurrent.

2. When d = 2, if E [Z2] <∞ and E[Z] = 0, then Sn is recurrent.

3. If d ≥ 3 and the random walk is not contained in a lower-dimensional sub-

space, then it is transient.

Notably, the Brownian motion, as a continuous version of the simple symmetric

random walk, exhibits similar behaviour. However, the proof does not follow by the

theorem above.

Compared to the classic path counting proof of Pólya’s theorem, the proof of

the Chung-Fuchs theorem is based on Fourier analysis. Although the methods are
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different, they both retain the unsatisfactory fact that intuition is still hidden behind

the calculations.

In the early 1960s, John W. Lamperti made a momentous breakthrough on

developing the approach of Lyapunov functions [64]. This method can be applied to

a broader variety of random walks than the combinatorial and analytical approaches.

Just as importantly, it is probably the first method which clarifies the probabilistic

intuition behind the recurrence classification problem. We will see more about this

in the next chapter.

At the end of this section we will provide some pictures of homogeneous random

walks in two dimensions. The behaviour can vary a lot depending on the properties

of the walk.
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Figure 1.4: Three simulated paths of two dimensional random walk with drift.
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Figure 1.5: Three simulated paths of two dimensional random walk with heavy-tailed

distributions.

1.5 Non-homogeneous random walk on Rd

Now we would like to go a step further to ease the restriction of spatial homogen-

eity. What will happen if we allow the jump distribution to depend on the current

location? This means in particular that µ(x) := E[Sn+1 − Sn|Sn = x] becomes a

function of the current position x ∈ Rd. First we should just consider the case that

µ(x) = µ is a constant (vector) not depending on x. Again if this constant (vector)

is not zero (vector), then we will still have the trivial case that the walk will be

transient for any dimensions. The interesting case is if we have zero drift. Is this

condition enough to determine the recurrence classification? Are we able to draw
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similar conclusions as the Chung-Fuchs theorem?

For one dimension, the answer is already quite complicated. See the discussion

in [75, p.50]. A zero drift non-homogeneous random walk must be recurrent on

R+, but not on R. Details and a counter example, which is a particular case of

Kemperman’s oscillating random walk [59], can be found in [90]. The increment law

is one of two distributions (with mean zero but finite variance) depending on the

walk’s present sign. In contrast, for a spatially homogeneous random walk on R,

the zero drift condition does imply recurrence, see [58, Chapter 9].

In higher dimensions, the situation is even more subtle. Either recurrent or

transient behaviour is possible even for walks with uniformly bounded increments.

As a result we quote the following Theorem, as in [75, Theorem 1.5.3].

Theorem 1.5.1. There exist non-homogeneous random walks with uniformly

bounded jumps and µ(x) = 0 for all x ∈ Rd that are

• transient in d = 2;

• recurrent in d ≥ 3.

A recent paper in 2015 [38] gave some examples with elliptical random walks

related to this theorem. They showed that the key property for the recurrence

classification is the increment covariance. It can be shown that if the increment

covariance is fixed throughout space, then one recovers the same conclusion as the

Chung-Fuchs theorem (recurrence if and only if d ≤ 2), see Thm 1.5.4 in [75].

Here are some examples of the non-homogeneous elliptic random walks.
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Figure 1.6: A 2D elliptic random walk with comparatively large radial component.

Figure 1.7: A 2D elliptic random walk with comparatively large transversal com-

ponent.
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The general classification for non-homogeneous random walk in Rd is a long

standing open problem. Despite this fact, we are going to present you a full classi-

fication on a specially structured state space in Part I of this thesis.

1.6 Law of large numbers and central limit the-

orem

In this section, we will state the classical results of the law of large numbers and

the central limit theorem for homogeneous random walk. This will provide us with

a rough idea of how the walk behaves in long term.

In the past, these limit theorems started with the form of a ‘law of averages’. It

first appeared in a theorem of Bernoulli [10] on the sums of binary random variables,

but it was only stated in 1713 over a century after comments of Cardano in his work

on dice games [15]. Fifty years later, Halley’s treatise of mortality rates [48] clearly

expressed a knowledge of decreasing errors in large samples. The term ‘law of

large numbers’ itself wasn’t coined until one of Poisson’s late works on probability

theory in 1837 [80], in which the sum of Bernoulli random variables with varying

probabilities of success was shown to converge to the sum of the probabilities; the

theorem was only rigorously proved by Chebyshev in 1867 [16].

The first description of a law for more general random variables was produced

in 1929 by Kinchin [60] and this became the weak law of large numbers. In the

succeeding couple of years, Kolmogorov [61] improved the result to establish the

well known strong law, which we will present shortly after in this section.

Now we should formally define the random walk that we are considering and set

up the assumptions.

(W) Let d ∈ N, and suppose that Z,Z1, Z2, . . . are i.i.d. random variables with

E ‖Z‖ < ∞ and EZ = µ ∈ Rd. The random walk (Sn, n ∈ Z+) is the

sequence of partial sums Sn := ∑n
i=1 Zi with S0 := 0.

The first moment condition is not required in the setting of a general homogeneous
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walk, but it is necessary for our law of large numbers and central limit theorem to

hold. Here is our formal statement for the law of large numbers.

Theorem 1.6.1 (Law of large numbers of a random walk). Suppose that (W) holds,

then

1
n

(Sn − nµ) a.s.−→ 0, as n→∞. (1.6.1)

The symbol a.s.−→ stands for almost sure convergence. The proof of this the-

orem can be found in [27, p.73, Theorem 2.4.1], which follows the classical lines of

Etemadi’s proof in 1981 [29]. More background material can be found in [100].

To have more control of the walk, in addition to (W), we will sometimes assume

the following:

(V) Suppose that E[‖ξ‖2] < ∞. We write Σ := E[(ξ − µ)(ξ − µ)>] and

σ2 := tr Σ = E[‖ξ − µ‖2, where Σ is a nonnegative-definite, symmetric

d by d matrix.

Again, we may not always have this for the general setting, but have to assume this

for the central limit theorem. Now we are ready for another classical result, the

Lindeberg–Lévy central limit theorem:

Theorem 1.6.2 (Central limit theorem of a random walk). Suppose that (W) and

(V) hold; then

1√
n

(Sn − nµ) d−→ Nd(0,Σ), as n→∞, (1.6.2)

where Nd(0,Σ) is the d-dimensional normal distribution with mean 0 and covariance

matrix Σ.

Again, this theorem is an adaptation from [27, p.124, Theorem 3.4.1], and the

proof can be found therein.
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1.7 Thesis outline

The essence of this thesis consists of three directions of generalization of the clas-

sical theory, namely spatial non-homogeneity, structured state space, and derived

processes.

First, a considerable amount of literature including books such as [55,67,88,95] is

devoted to spatially homogeneous random walks. The spatial homogeneity provides

a well behaved model to first consider a difficult problem. However, it restricts

the random movement of the particle to be the same in any location in the space,

which is often not very realistic due to the underlying environment. This suggests us

to study non-homogeneous random walks. Compared to the homogeneous random

walks, non-homogeneous random walks provide a better understanding of phase

transitions and near-critical behaviour. See [75] for a systematic account of non-

homogeneous random walks on Rd.

Second, random walks on the standard multidimensional integer lattice are com-

mon in the literature. Motivated by certain applications (see Section 2.1), it is also

of interest to consider state spaces with additional structure. We include the strip

and half strip models, and a generalization of the lattice distribution, in the first

and second part of the thesis respectively.

Third, of interest is not only the random walk, but certain other processes derived

from the random walk. For example, the Wiener process, also known as the standard

Brownian motion, is a limit of random walk. It further expands the universe of

random walk to various continuous models including the study of eternal inflation in

physical cosmology and the Black-Scholes option pricing model in the mathematical

theory of finance [50]. Although Brownian motion has been extensively studied,

other simple derived processes remain hidden in the literature as they are very

difficult to understand and investigate.

It is a very difficult task to implement all these three new ideas into one model

of random walk. Non-homogeneous walks and some derived processes from ran-

dom walk are quite rarely investigated due to their complexity and difficulty in the

treatment of the mathematical structure.
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Instead, with these ideas in mind, we hand picked two interesting models in the

two main parts of the thesis. The first part will focus on the half strip model. This

model consists of the first two elements of generalization of the classical theory.

First, instead of the traditional state space on Zd, we considered a Markov chain on

a specially structured state space. This state space gives more useful structure to the

model, in particular to apply in certain specific applications, which are impossible

to analyse with the traditional state space. Second, instead of restricting the walk

to be spatially homogeneous, we allow the walk to be more flexible and only require

the walk to converge to a (different) drift on each line. This suggests an extremely

general model, to the extent that it is usually more general than all of the situations

that most of the applications would need to apply to. Our analysis of the recur-

rence classification is complete with any sensible parameters for the applications we

considered.

The second model is on the centre of mass of homogeneous random walk. It

is a simple derived process of the random walk by taking the average of the sum

over its past trajectory. Despite the simplicity of the model, almost no literature

can be found concerning this process except one in the very special case of simple

symmetric random walk.

The material in this thesis is aimed to be as self-contained as possible. After

this chapter on general introduction and some basics of random walk theory, this

thesis will divided into two parts for two different problems. The first part is about

a model with non-homogeneous random walks on an unusual state space called the

half strip. Our main focus of this part will be the recurrence classification around

the critical region of phase change, and the moment existence or non existence

problems of the model, which quantify the degree of recurrence. Our first group

of main results includes a complete classification depending on various parameters

including the drift and variability of each line, the interactions between the lines,

and the probability to change or stay on the same line. The second group of main

results provides the necessary and sufficient conditions for the moment existence or

non existence depending on the same set of parameters.
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The second part of the thesis is about the centre of mass process of the random

walk in d-dimensions. We want to investigate the change of the recurrence property

when we increase the dimensions. The main results include a local limit theorem,

which help us to prove that the process is transient for dimension 2 or higher.

Explicitly, we show that the centre of mass process has diffusive rate of escape in

the transient case. On the other hand, we proved that the process is recurrent in

one dimension. We also give a class of random walks with symmetric heavy-tailed

increments for which the centre of mass process is transient in one dimension.

A journey of thoughts starts here.



Part I:

Non-Homogeneous Walks on a

Half Strip

21



Chapter 2

Notation, preliminaries and

prerequisites

2.1 Literature review

Markov processes (Xn, ηn) on structured state-spaces Σ contained in X × S are of

interest in many applications. In this part of the thesis, we are interested in the

case where Xn ∈ X = R+ and ηn ∈ S a finite set, in which case Σ is a half strip.

Motivating applications include

• modulated queues [79], where Xn represents the queue length and ηn tracks

the state of a service regime or buffer;

• regime-switching processes in mathematical finance, where ηn tracks a state

of the market;

• physical processes with internal degrees of freedom [63], where ηn tracks in-

ternal momentum states of a particle.

In much of the literature, ηn is itself a Markov chain; in this case (Xn, ηn) is

known as a Markov-modulated Markov chain or a Markov random walk [2,52]; in the

contexts of strips, study of these models goes back to Malyshev [73]. The case where

ηn is Markov also includes processes that can be represented as additive functionals

22
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Figure 2.1: An illustration of the half strip model.

of Markov chains [89]. Such models pose a variety of mathematical questions, which

have been studied rather deeply over several decades using various techniques that

take advantage of the additional Markov structure, and much is now known.

Much less is known when ηn is not Markov. In this part of the thesis, follow-

ing [30, 39], we are interested in the case where ηn is not Markov but is, roughly

speaking, approximately Markov whenXn is large, with stationary distribution πi on

S. This relaxation is necessary to probe more intimately the recurrence/transience

phase transition for these models. If µi(x) is the mean drift of the R+-coordinate

of the process at (x, i) ∈ Σ, then crucial to the asymptotic behaviour of the pro-

cess are the asymptotics of the µi in comparison to the πi. If µi(x) → di ∈ R for

each i ∈ S, then the process is transient if ∑i πidi > 0 and positive recurrent if∑
i πidi < 0 [30, 39]. The critical case ∑i πidi = 0 is more subtle, and to investigate

the recurrence/transience phase transition it is natural, by analogy with classical

work of Lamperti on R+ [64, 65], to study the case where ∑i πiµi(x) = O(1/x). In

particular, the law of the increments is non-homogeneous in Xn, which typically

precludes ηn from being Markovian, but admits our weaker conditions.

The Lamperti drift case in which every line has µi(x) = O(1/x) was studied

in [39], and we will state the results in Section 3.1, with some new techniques to

prove the results. The main focus of this part of the thesis is the generalized Lamperti

drift case where µi(x) = di +O(1/x) with ∑i∈S πidi = 0.

We obtain a recurrence classification for the generalized Lamperti drift case, and

in the recurrent case we obtain results on existence and non-existence of passage-
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time moments, quantifying the recurrence. We obtain these results by use of a

transformation of the process into one with Lamperti drift, and so we establish new

results on existence and non-existence of passage-time moments in that setting first.

Our method is different from that of [39], which relied on an analysis of an embedded

Markov chain, in that we make use of some Lyapunov functions for the half-strip

model.

2.2 The state space Σ

Let us start with the traditional model in the literature first. We define (Xn, ηn) as

a time-homogeneous irreducible Markov chain on Z+×S. We need the irreducibility

here because we want to keep the recurrence classification as a class property for

the whole problem rather than a property in some states. Although all the results

in this part of the thesis will be applicable to this model, we would like to first do

some modification of the state space. There are technical reasons for this change

that we will explain later in Section 3.2, see Remark 3.2.5(a). However, we should

now provide some intuition why we should make such a change.

Originally, the Markov chain (Xn, ηn) is on Z+ × S. This is very restrictive in

terms of the mean drift that you can get from this model. Later in this part, we

would like to have a more general non-homogeneous drift. If we stick with this model,

then we can only assign a complicated probability on each point in order to achieve

the right drift, rather than having the flexibility to assign a simple probability for a

point with non-integer horizontal coordinate. In reality it is very tricky to achieve

the drift we want: one must carefully pick all those integer-valued jumps to obtain

such a subtle drift. This is the reason we want to extend the state space from Z+×S

to Σ, as the following,

• Σ is a locally finite subset of R+ × S, where R+ is the set of positive real

numbers and S is a finite and non-empty set.

• Λk := {x ∈ R+ : (x, k) ∈ Σ}.



2.2. The state space Σ 25

• Λ := ⋃
k∈S Λk.

• Sx := {i ∈ S : (x, i) ∈ Σ}.

In here, we call Λk a line, where k ∈ S and also Λ as the projection of Σ. Sx
stores the information of which line has an accessible state that can project to Λ at

a certain horizontal reference point x.

We need to assume Λk unbounded for each k ∈ S to make sure that the model is

allowed to go to infinity, i.e. be transient, on any line whenever possible to preserve

the structure of the model, so that the classification make sense.

Recall that Σ being a locally finite subset of R+×S means that for any c ∈ R+,

Σ∩ ([0, c]×S) has finite number of points. Notice here the locally finite property is

inherited by each line from the state space.

The local finiteness condition is to ensure that Σ has no finite limit points, so

that if (Xn, ηn) is transient, then Xn → ∞. Consider the following example when

the local finiteness condition is not satisfied. First we define the state space to be

Σ =
(
Z+ ∪

{
k

k + 1 : k ∈ Z
})
× {1}.

Then we assign the transition probabilities as follows,

• P(Xn+1 = k+1
k+2 |Xn = k

k+1) = p, P(Xn+1 = k−1
k
|Xn = k

k+1) = 1 − p for all

k ∈ Z+,

• P(Xn+1 = k − 1|Xn = k) = P(Xn+1 = k + 1|Xn = k) = 1
2 for all k ∈ Z+,

• P(Xn+1 = 1
2 |Xn = 0) = P(Xn+1 = 1|Xn = 0) = 1

2 .

When p is close to 1, we can see that whenever the walk goes into the state 0, it has

half probability to go to state 1
2 , and then the process has very high tendency not

to go back to 0 and keep on increasing, while it does not go to infinity as it would

not be greater than 1.

From now we extend and replace the definition of half strips or semi-infinite

strips from the state space Z+ × S to Σ unless otherwise specified. Here is our

model formally.
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(A) Suppose that (Xn, ηn), n ∈ Z+, is a time-homogeneous, irreducible Markov

chain on Σ, a locally finite subset of R+× S. Suppose that for each k ∈ S the

line Λk is unbounded.

Notice that all the results in this part are also applicable to the more restricted

state space Z+ × S.

2.3 Recurrence classification for the half strip

As described earlier, one of the most important properties to understand for a

random walk or a Markov chain is the recurrence classification. Intuitively, as we

saw in the introduction, recurrent means that the random walk will always come

back to any state in long-run, while transient means the random walk will to go to

infinity in some direction and never come back. Some thought is required to see how

this applies to the present state space. First, in the vertical direction, S is finite and

thus the walk cannot actually escape in this direction. On the other hand, in the

horizontal direction R+, the process cannot escape to the left, but only to the right

side. It can escape via any line due to the fact that Λk is unbounded for all k ∈ S

when we set up the model. Here is the formal definition for our half strip model.

Lemma 2.3.1. Let (Xn, ηn) be a time-homogeneous irreducible Markov chain on

the state-space Σ. Exactly one of the following holds:

(i) If (Xn, ηn) is recurrent, then P[Xn = x i.o.] = 1 for any x ∈ Λ.

(ii) If (Xn, ηn) is transient, then P[Xn = x i.o.] = 0 for any x ∈ Λ, and Xn →

∞ a.s.

In the former case, we call (Xn) recurrent, and in the latter case, we call (Xn)

transient.

Notice that the process (Xn) is not a Markov chain so this is different from our

usual definition. This is a lemma but not a definition because it is not trivial that

the dichotomy of recurrence and transience holds, i.e. the probability must be 0 or

1 rather than other values. Now we are going to prove Lemma 2.3.1.
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Proof. As (Xn, ηn) is an irreducible Markov chain, the states of (Xn, ηn) are either

all recurrent or all transient. In the former case, for any x ∈ Λ, where Λ = ⋃
k Λk,

we have x ∈ Λk for some k ∈ S. Then we get (x, k) ∈ Σ. That (Xn, ηn) is recurrent

means (Xn, ηn) = (x, k) i.o. a.s., thus we have Xn = x i.o. a.s. This gives

P(Xn = x i.o.) = 1.

On the other hand, if (Xn, ηn) is transient, for any x ∈ Λ, (Xn, ηn) = (x, k) only

f.o. for any k such that (x, k) ∈ Σ. Summing over k, of which there are finitely

many, we have Xn = x only f.o. So we have P(Xn = x i.o.) = 0.

This implies Xn ∈ R f.o. for any finite non-empty set R ∈ Λ. As Σ is locally

finite, we know Λk is also locally finite. With the knowledge that S is finite, we get

that Λ is locally finite. For any L ∈ Z+, denote RL = Λ ∩ [0, L], which is finite

and non-empty for L large enough. Summing over Xn = i f.o. for i ∈ RL, we have

Xn ∈ RL f.o. as RL is finite. Hence we have lim infn→∞Xn ≥ L. As L was arbitrary,

we conclude that lim infn→∞Xn =∞. So we have limn→∞Xn =∞.

As in the usual random walk, recurrence in the half strip can be further classified

as null recurrence or positive recurrence. Again, we have to properly define these

concepts due to the complication of the state space. Intuitively, null recurrence

means the expected time of return to any point is infinite while it is finite if the

random walk is positive recurrent. We also define null to be null recurrent or

transient. Here are the formal definitions.

Lemma 2.3.2. Let (Xn, ηn) be a time-homogeneous irreducible Markov chain on

the state-space Σ. There exists a unique measure ν : Λ→ R+ such that

lim
n→∞

1
n

n−1∑
k=0

1{Xk = x} = ν(x), a.s.

Exactly one of the following holds.

(i) If (Xn, ηn) is null, then ν(x) = 0 for all x ∈ Λ.

(ii) If (Xn, ηn) is positive recurrent, then ν(x) > 0 for all x ∈ Λ and∑
x∈Λ ν(x) = 1.
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If Xn is recurrent, then we say that it is null recurrent if (i) holds and positive

recurrent if (ii) holds.

This is again a lemma because it is not trivial that the case that ν(x) = 0 for

some x and ν(x) > 0 for some other x would not happen. The proof relies on careful

separation of the two coordinates of the state space.

Proof. By standard Markov chain theory, e.g. [81], P.35, Theorem 1.7.5 and 1.7.6,

there exists a (unique) measure φ(x, i) : Σ→ R+ such that

lim
n→∞

1
n

n−1∑
k=0

1{Xk = x, ηk = i} = φ(x, i), a.s.

Define ν(x) as the projection of φ(x, i) on the second component, i.e.

ν(x) =
∑
i∈Sx

φ(x, i)

for any x ∈ Λ. Then we get, a.s.,

ν(x) =
∑
i∈Sx

lim
n→∞

1
n

n−1∑
k=0

1{Xk = x, ηk = i}

= lim
n→∞

1
n

n−1∑
k=0

∑
i∈Sx

1{Xk = x, ηk = i}

= lim
n→∞

1
n

n−1∑
k=0

1{Xk = x}.

It is very important to notice that the sum for i here is finite so that it can be

taken out of the other sum and limit without causing any extra problem. The set

Sx is also non-empty because given the fact that x ∈ Λ, there exist some i ∈ S such

that (x, i) ∈ Σ. So the set Sx 6= ∅ for x ∈ Λ.

Now when (Xn, ηn) is null, then φ(x, i) = 0 for all (x, i) ∈ Σ, so ν(x) =∑
i∈Sx φ(x, i) = 0, always bearing in mind that we are doing a finite sum.

For (Xn, ηn) positive recurrent, φ(x, i) > 0 for all (x, i) ∈ Σ and hence ν(x) > 0

since as ν(x) = ∑
i∈Sx φ(x, i) > 0 and the sum is not empty. With the fact that∑

(x,i)∈Σ φ(x, i) = 1, we can separate the sum across the two coordinates and get∑
x∈Λ

∑
i∈Sx φ(x, i) = 1. This is the same as saying ∑x∈Λ ν(x) = 1. Hence all of the

claims in the lemma are proved.
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2.4 Assumptions of the model

To solve our recurrence classification problem, we also need the following technical

assumptions. First, to be realistic, we first need to assume the displacement of the

X-coordinate has bounded p-moments for some p < ∞. This is a crucial but weak

assumption because without this, there will be no control of the size of jumps. We

do not want the walk have an increasing size of boundless jumps when it is at the

position far on the right side. In this bad behaviour the walk can suddenly jump back

to the far left or have a very big jump on the right in one step, so that all the steps

that the walk had before are negligible. So we would like to impose this uniform

bound for the walk to get some regularity to predict the long term behaviour.

(Bp) There exists a constant Cp <∞ such that for all n ∈ Z+,

E[|Xn+1 −Xn|p | Xn = x, ηn = i] ≤ Cp, for all (x, i) ∈ Σ.

We will need p > 2 most of the time in this part of the thesis, which we sometimes

refer to as demanding that ‘two moments exist’. However, for some of the results,

p > 1, i.e. ‘one moment exists’ is already sufficient.

We define p(x, i, y, j) as the transition probabilities of our irreducible Markov

chain (Xn, ηn) ∈ Σ, i.e.

P[(Xn+1, ηn+1) = (y, j) | (Xn, ηn) = (x, i)] = p(x, i, y, j).

For the sake of reasonable behaviour of the probabilities so that we can have the

unique stationary distribution π from the embedded process in the vertical, i.e. η,

direction, we need to assume that ηn is approximately Markov when Xn is large.

First, we define

qij(x) =
∑
y∈Λj

p(x, i, y, j) (2.4.1)

as we do not need the information of the exact point that the walk is jumping to, but

only which line it jumps to and which point it starts from. Here is our assumption:
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(Q∞) Suppose that limx→∞ qij(x) = qij exists for all i, j ∈ S, and (qij) is an irredu-

cible stochastic matrix.

Now if we assume (Q∞), then we can define a new process (η∗n), n ∈ Z+, as

a Markov chain on S with transition probabilities given by qij. As (η∗n) is ir-

reducible and finite, we know that there exists a unique stationary distribution

π= (π1, π2, . . . , π|S|)> on S with πj > 0 for all j ∈ S and satisfying πj = ∑
i∈S πiqij

for all j ∈ S. (Q∞) is very important here because if π does not exist, then we

cannot define the total average drift of the whole system, which determines the

recurrence classification.

Naturally, we want to specify the movement of the chain by the one-step mean

(horizontal) drift at each point on each line, i.e., its first moment in theX-coordinate

on line i. This is:

µi(x) := E[Xn+1 −Xn | Xn = x, ηn = i] =
∑
j∈S

∑
y∈Λj

(y − x)p(x, i, y, j);

notice that µi(x) is finite if (Bp) holds for some p ≥ 1. In the simplest case, we

suppose that each line has an asymptotically constant drift, and we assume

(DC) For each i ∈ S there exists di ∈ R such that µi(x) = di + o(1) as x→∞.

Although this is called the constant drift, from the term o(1) we actually allow

µi(x) to fluctuate around the constants, as long as the fluctuation converges to zero

when x→∞. In some sense, only the behaviour when x is big matters.

Instead of stating the original theorems by Malyshev [73] or Falin [30], we shall

state a slightly generalised and polished result in a paper of Georgiou and Wade [39],

for the model that we are using now.

Theorem 2.4.1 (Georgiou, Wade, 2014, amended). Suppose that (A) holds, and

that (Bp) holds for some p > 1. Suppose also that (Q∞) and (DC) hold. Then the

following classification applies.

• If ∑i∈S diπi > 0, then (Xn, ηn) is transient.

• If ∑i∈S diπi < 0, then (Xn, ηn) is positive recurrent.
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Theorem 2.4.1 is a minor generalization of Theorem 2.4 of [39], which took

Σ = Z+ × S; the proof there readily extends to the statement here. We give an

alternative proof, using Lyapunov functions, in Section 4.4. Earlier versions of the

result, which had the extra assumption that qij(x) = qij not depending on x, are

Theorem 3.1.2 of [32] and the results of [30]. The proof in [39] is based on the

investigation of the embedded process (Yn), which records the X-coordinate of the

chain when it returns to a given line. They use increment moment estimates together

with some Foster-Lamperti conditions to classify the process (Yn), and then deduce

the classification for (Xn) from the equivalence results.

Intuitively, ∑i∈S diπi stands for the total average drift of the system, as it is sum-

ming over all lines with the average drift on each line multiplied by the proportion

of time spent on the line. So if the total average drift is positive, the walk has the

tendency to go to the right on average, thus it is difficult for the process to return

to the points on the left in long term, and the walk is transient. On the other hand,

if we have a negative total average drift, then the walk will have the tendency to go

to the left, and keep coming back to the left boundary, thus the walk is (positive)

recurrent.

As you can see, Theorem 2.4.1 has nothing to say about the much more subtle

case where ∑i∈S diπi = 0. One natural guess would just be null recurrence whenever

the condition is satisfied but this is not always true. In fact, the model can fall into

any classification, i.e., it can be positive recurrent, null recurrent or transient. Here

further assumptions are required to reach any conclusion.

One way to achieve ∑i∈S diπi = 0 is to have di = 0 for all i ∈ S. In this

case, by analogy with the classical one-dimensional work of Lamperti [64, 65], the

natural setting in which to probe the recurrence-transience phase transition is that

of Lamperti drift, as studied in [39], which we present in Section 3.1. In this setting

we give new results on existence and non-existence of moments of passage times.

The second possibility and the most subtle case, in which di 6= 0 for some i ∈ S

but nevertheless ∑i∈S diπi = 0, leads to what we call generalized Lamperti drift,

which is the main focus of this part of the thesis and is presented in Section 3.2. Here
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we establish a recurrence classification as well as results on passage-time moments.

The proof of the theorems introduced in these sections will be delayed until

Chapter 4, after we introduce various techniques related to Lyapunov functions

method, martingale theory and some well known linear algebra results.

2.5 The Lamperti problem

For the first step to probe the recurrence classification for the Lamperti drift case

in our half strip problem, we should recall the origin of the name, i.e., the Lamperti

problem, see [75], Section 1.3 and Chapter 3.

We start again with the simple symmetric random walk Sn on Zd, and start

the walk at the origin. This time instead of going through the standard proof of

Pólya’s recurrence theorem to get the recurrence classification, we will try a different

method. First we reduce this d-dimensional problem into a one dimensional one by

the Lyapunov function, a transformation process given by

Xn := ‖Sn‖,

where ‖ •‖ is the Euclidean norm in Rd. Hence Xn is just the distance between the

origin and the particle at time n. So now the stochastic process will take values

in S := {‖x‖ : x ∈ Zd}, a countable subset of the half line R+. Notice that the

recurrence classification property will transfer from Sn to Xn, since Sn = 0 if and

only if Xn = 0. However the Markov property was sacrificed for the reduction in

dimensionality. One can easily observe, say in two dimension, for the same value of

Xn on different positions for Sn may give different distributions, thus the Markov

property will not hold for Xn, see the example in [75], Section 1.3. Hence from this

point, we need to have a method to find the recurrence classification of Xn, which

does not heavily depend on the Markov property.

This topic leads to a more general area called the Lamperti problem, introduced

by John Lamperti [64, 65] in early 1960s. Informally, let us begin with a discrete-

time time-homogeneous Markov process Xn with well-defined increments moment
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functions

mk(x) = E
[
(Xn+1 −Xn)k|Xn = x

]
for all k ≥ 0. Having a uniform bound on the increments can easily guarantee

this condition, but is is not necessary. The Lamperti problem is asking if we are

given the first few moments, especially the first two, µ1 and µ2, how to determine

the asymptotic behaviour of Xn. If we indeed impose the uniform bound condition

formally,

P (|Xn+1 −Xn| ≤ B) = 1 (2.5.1)

for some B ∈ R+, then we can have a slightly modified version of Lamperti’s fun-

damental recurrence classification, see Theorem 1.3.1 of [75].

Theorem 2.5.1 (Lamperti, 1960). Suppose that Xn is a Markov process on S sat-

isfying (2.5.1). Under mild conditions on irreducibility, the following recurrence

classification holds. Let ε > 0.

• If 2xm1(x) +m2(x) < −ε, then Xn is positive recurrent;

• If 2x|m1(x)| ≤ m2(x) +O(x−ε), then Xn is null recurrent;

• If 2xm1(x)−m2(x) > ε, then Xn is transient;

Notice that the null recurrence classification is slightly sharper than Lamperti’s

original results. This theorem states that if the absolute value of the first moment is

large enough compared to the second moment in the tail (infinite side) of the walk,

then the process will have enough force to go in the specific direction, left or right,

depending on the sign of the drift, resulting in transience or positive recurrence.

Otherwise, if the absolute value of (twice) the drift is not large enough compared to

the variance, then the walk does not have enough force to go in a specific direction,

as the variance dominates the effect of the drift, resulting in the null-recurrent case.

Although this version of the theorem does not directly give us the Pólya’s The-

orem because of the lost of Markov property stated before, this method is still

applicable by slight modification of the definition of µk. By computing the first and
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second moment of Xn explicitly for this simple symmetric random walk Sn, we get

E [Xn+1 −Xn|Sn = x] =
(
d− 1

2d

)
1
‖x‖

+O(‖x‖−2)

E
[
(Xn+1 −Xn)2|Sn = x

]
= 1
d

+O(‖x‖−1).

So the corresponding terms in the theorem will be

2xm1(x) = 1− 1
d

+O(x−1)

m2(x) = 1
d

+O(x−1).

Hence using the theorem we get Sn is transient if and only if

1− 1
d
>

1
d
,

which is equivalent to d > 2. For the technical details see [75] Section 3.5. As

you can see, this is a potent way to prove the Pólya’s Theorem. With the sole and

elementary computations of the increment moments of Xn using Taylor’s theorem,

the method can generalize to a broad range of random walks, and does not require

any special structure on the original process.

Finally, back to our half strip model, if we take the special case that S, the ver-

tical component of Σ to be a singleton, it reduces back to the model in the Lamperti

problem. So one might see the half strip model is actually a generalization of the

Lamperti problem. One may think we can easily push the Lamperti’s fundamental

recurrence classification result through the half strip model. However, the real situ-

ation is much more difficult than that. There is no doubt that if all of the lines

have the same classification, say transient, then the whole system of the half strip

will also be transient, because no matter which line the process is on, we still have

the tendency to go to infinity on the right side. However, what if some of the lines

are recurrent and some of the lines are transient? Then the result is not clear, as

it depends on how much time the process spends on each line and how recurrent or

transient each line is. In Section 2.4, we gave the result when we have a non-zero

total average drift, and in the next chapter we will discuss the subtle case when we
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have zero total average drift, starting with the special case of Lamperti drift, and

complete the classification with generalised Lamperti drift.



Chapter 3

Main results

3.1 Lamperti drift on a half strip

3.1.1 Recurrence classification

For the remainder of this part of the thesis we introduce the following shorthand to

simplify notation:

Ex,i[ • ] = E[ • | Xn = x, ηn = i].

Continuing with our half strip model, we would like to probe the classification

in the special case with zero total average drift, i.e. ∑
i∈S diπi = 0. To proceed

with more complicated drifts, as in the Lamperti’s fundamental recurrence classific-

ation, we need to have some control on the variance, i.e. the second moment of the

increments. So we define, for (x, i) ∈ Σ,

σ2
i (x) := Ex,i[(Xn+1 −Xn)2];

note that σ2
i (x) is finite if (Bp) holds for some p ≥ 2. The formal definition for the

Lamperti drift case of the half strip model is as follows:

(DL) For each i ∈ S there exist ci ∈ R and s2
i ∈ R+, with at least one s2

i non-zero,

such that, as x→∞, µi(x) = ci
x

+ o(x−1) and σ2
i (x) = s2

i + o(1).

The reason that we named this case the Lamperti drift is because the problem has

a very similar structure and result as in the Lamperti problem. And in fact for our

36
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half strip state space Σ, if we take S to be a singleton, it returns to the well-known

Lamperti problem. Results in this chapter hence cover the results from Lamperti.

In this case, comparing to (DC), we have di = 0 for all i ∈ S. We specify the

error in o(1) can be in the natural form ci
x

+ o(x−1), but it is possible to impose the

drift in other forms such as ci√
x
. The exact form of the drift does not actually affect

the theory here but the calculation would be different. So for the time being we

will stick with the traditional drift type coinciding with the representation in the

Lamperti problem.

To obtain results at the critical point for the phase transition we will need to

strengthen the assumptions (Q∞) and (DL) by imposing additional assumptions:

(Q+
∞) Suppose that there exists δ0 ∈ (0, 1) such that maxi,j∈S |qij(x)−qij| = O(x−δ0)

as x→∞.

(D+
L) Suppose that there exist δ1 ∈ (0, 1), ci ∈ R, and s2

i ∈ R+, with at least one

s2
i non-zero, such that for all i ∈ S, as x → ∞, µi(x) = ci

x
+ o(x−1−δ1) and

σ2
i (x) = s2

i + o(x−δ1).

We need these assumptions in the critical case to have slightly more control on the

error terms of the transition probability and the mean and variance of the hori-

zontal increments. In the Lamperti drift setting, we have the following recurrence

classification.

Theorem 3.1.1. Suppose that (A) holds, and that (Bp) holds for some p > 2.

Suppose also that (Q∞) and (DL) hold. Then the following classification applies.

• If ∑i∈S(2ci − s2
i )πi > 0, then (Xn, ηn) is transient.

• If |∑i∈S 2ciπi| <
∑
i∈S s

2
iπi, then (Xn, ηn) is null recurrent.

• If ∑i∈S(2ci + s2
i )πi < 0, then (Xn, ηn) is positive recurrent.

If, in addition, (Q+
∞) and (D+

L ) hold, then the following condition also applies (yield-

ing an exhaustive classification):

• If |∑i∈S 2ciπi| =
∑
i∈S s

2
iπi, then (Xn, ηn) is null recurrent.
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Theorem 3.1.1 is a slight generalization of Theorem 2.5 of [39], which took Σ =

Z+ × S. The proof in [39], which made use of Lamperti’s [64, 65] results applied to

the embedded process obtained by observing the X-coordinate on each visit to a

reference line, extends readily to the statement here. We give an alternative proof

in Section 4.5 of the first three points in the theorem (not the critical case).

We can use similar intuition behind Theorem 2.5.1 to understand the theorem

here. Instead of considering only one line, we consider the weighted average of the

total drift with the weighted average of the total variance in the system, weighting

on the proportion of time spent on each line. If the absolute value of the former is

large enough compared to the latter, then it will give the system a strong enough

push to a direction either right or left in average, depending on the sign of the drift,

resulting in transience or positive recurrence accordingly. However, if the absolute

value of the former is not big enough, the walk will not be able to generate enough

force to overcome the second moment, thus giving the null-recurrent case.

In the next subsection, we will quantify these two forces from the first and second

moment. Comparing the size of these will give us the knowledge of the degree of

recurrence of the process.

3.1.2 Existence and non-existence of moments

In the case of recurrence, we can actually quantify how recurrent the process is.

Instead of just having the classification of positive recurrent and null recurrent,

one way to obtain quantitative information on the nature of recurrence is to study

moments of passage times. For x ∈ R+, define the stopping time

τx := min{n ≥ 0 : Xn ≤ x}. (3.1.1)

In the positive-recurrent situation, we have that E[τx] <∞ a.s., for all x sufficiently

large. In the case of null, E[τ sx ] =∞ a.s., for all s ≥ 1, and x sufficiently large.

First we state a result that gives conditions for E[τ sx ] to be finite.

Theorem 3.1.2. Suppose that (A) holds, and that (Bp) holds for some p > 2.
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Suppose also that (Q∞) and (DL) hold. If for some θ > 0,

∑
i∈S

[
2ci + (2θ − 1)s2

i

]
πi < 0, (3.1.2)

then for any s ∈
[
0, θ ∧ p

2

]
, we have E[τ sx ] <∞ for all x sufficiently large.

We have the following result in the other direction.

Theorem 3.1.3. Suppose that (A) holds, and that (Bp) holds for some p > 2.

Suppose also that (Q∞) and (DL) hold. If for some θ ∈ (0, p2 ],

∑
i∈S

[
2ci + (2θ − 1)s2

i

]
πi > 0, (3.1.3)

then for any s ∈
[
θ, p2

]
, we have E[τ sx ] =∞ for all x sufficiently large.

In the case where S is a singleton, Theorems 3.1.2 and 3.1.3 reduce to versions

of Propositions 1 and 2, respectively, of [5] on passage-time moments for Markov

chains on R+.

Using these two theorems, by plugging in different values of θ in the expression∑
i∈S [2ci + (2θ − 1)s2

i ] πi, we can pinpoint which moments of the passage times exist

or not. In short, if more moments exist then the process is more recurrent, and we

should expect a smaller scale of time for the process to return.

We also see that if we put θ = 1 in Theorems 3.1.2, we can see the moments

of the passage time exists for all s ∈ [0, 1], implying that the process is positive

recurrent. if we put θ → 0+ in Theorems 3.1.3, we can see that the moments of

the passage time does not exists for all s ∈ [0, p2 ], implying that the process is null.

(This does not directly imply transient unfortunately because some null-recurrent

random walk can also have no moment exist, e.g. simple random walk on Z2.)

Intuitively, these two theorems add an extra parameter θ in the equation, com-

paring to Theorem 3.1.1, which gives some extra flexibility on how tolerant is the

drift size comparing to the variance. For Theorems 3.1.2, the stronger the restric-

tion on ci, i.e. imposing a larger θ, the more moments you can get from the passage

time. This means if there is a larger θ that satisfies the equation in the theorem,
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the process is more ‘recurrent’ in some sense. On the opposite hand, if we impose a

smaller θ, giving more flexibility to ci, you will get fewer moments as a result.

Theorem 3.1.3 is essentially the opposite consideration of Theorem 3.1.2. Its

use is to pinpoint the critical value of s which gives you the existence-non-existence

phase transition.

The proofs of Theorem 3.1.2 and Theorem 3.1.3 will be presented in Chapter 4,

with the use of some specific Lyapunov functions and some semi-martingale methods.

Notice that we need to use different functions for the proofs of Theorems 3.1.2 and

Theorems 3.1.3, and there is no direct relation between them.

The next section will discuss the most subtle case when di 6= 0 for some i ∈ S

but nevertheless ∑i∈S diπi = 0, which is what we call the generalized Lamperti drift.

3.2 Generalized Lamperti drift on a half strip

3.2.1 Recurrence classification

Now we turn to the main topic of this part of the thesis. The last case is when some

(or all) of the lines have non-zero constant drift, but the total average drift is zero.

This case is the most subtle, as it is possible to construct some examples with the

same µi(x) and σi(x) but which fall into different classifications. We will show some

explicit examples in Chapter 5. We discovered that the asymptotic properties of the

process depend not only on µi(x) and σ2
i (x) but also on the quantities

µij(x) := Ex,i [(Xn+1 −Xn)1{ηn+1 = j}] ;

this alerts us to the fact that correlations between the components of the increments

are now crucial. The case of generalized Lamperti drift is the following. To avoid

confusion with the Lamperti drift case, we changed the symbols for ci and si to ei
and ti.

(DG) For i, j ∈ S there exist di ∈ R, ei ∈ R, dij ∈ R and t2i ∈ R+, with at least one

t2i non-zero, such that
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(a) for all i ∈ S, µi(x) = di + ei
x

+ o(x−1) as x→∞;

(b) for all i ∈ S, σ2
i (x) = t2i + o(1) as x→∞;

(c) for all i, j ∈ S, µij(x) = dij + o(1) as x→∞; and

(d) ∑i∈S πidi = 0.

Note that necessarily we have the relation di = ∑
j∈S dij.

As in the Lamperti drift case, we need to have an additional condition at the

phase boundary.

(D+
G) There exist δ2 ∈ (0, 1), di ∈ R, ei ∈ R, dij ∈ R and t2i ∈ R+, with at least one

t2i non-zero, such that

(a) for all i ∈ S, µi(x) = di + ei
x

+ o(x−1−δ2) as x→∞;

(b) for all i ∈ S, σ2
i (x) = t2i + o(x−δ2) as x→∞; and

(c) for all i, j ∈ S, µij(x) = dij + o(x−δ2) as x→∞.

We also must impose refined forms of the condition (Q∞), where now further

terms come into play.

(QG) For i, j ∈ S there exist γij ∈ R such that qij(x) = qij + γij
x

+ o(x−1), where

(qij) is a stochastic matrix.

(Q+
G) There exist δ3 ∈ (0, 1) and γij ∈ R such that qij(x) = qij + γij

x
+ o(x−1−δ3).

The fact that∑j∈S qij(x) = 1 implies, after the following calculation, that∑j∈S γij =

0 for all i ∈ S.

First as the sum of all the transition probabilities on a line is 1, we have

∑
j∈S

qij(x) = 1.

Plugging in the condition (QG), we get

∑
j∈S

(
qij + γij

x
+ o(x−1)

)
= 1.
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Simplifying, ∑
j∈S

γij
x

= o(x−1)

for all x ∈ Λ. By choosing appropriate x ∈ Λ, we have∣∣∣∣∣∣
∑
j∈S

γij

∣∣∣∣∣∣ ≤ ε.

Since ε > 0 was arbitrary, we get

∑
j∈S

γij = 0.

The underlying intuition of how many terms we should consider before the error

term for each parameter is quite interesting. In principle, we need to take the same

order on every basic variable to get the balance of the estimation. That is if we take

the first two order terms on the drift of each line, it is sensible to take the first two

terms of the transition probabilities. However because the second moment and the

interaction between the lines is already on one higher level of the model, as they

are like the first level, i.e. pairwise interaction between the basic variables, we only

need the first term of the estimation. So now we can have every parameter on the

same accuracy of consideration, and it turns out that this accuracy level is enough

for determining our classification.

This time, for understanding the statement of our recurrence classification in

the generalized Lamperti case, we need the following preliminary result on solutions

a = (a1, . . . , a|S|)> to the system of equations

di +
∑
j∈S

(aj − ai)qij = 0, for all i ∈ S; (3.2.1)

we say that a solution a = (a1, . . . , a|S|)> is unique up to translation if all solutions

a′ = (a′1, . . . , a′|S|)> have a′j − aj constant for all j ∈ S.

Lemma 3.2.1. Let di ∈ R and (qij) be an irreducible stochastic matrix with sta-

tionary distribution π. Then the following statements are equivalent.

• ∑i∈S diπi = 0.
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• There exists a solution a = (a1, . . . , a|S|)> to (3.2.1) that is unique up to trans-

lation.

For the proof of Lemma 3.2.1, see Section 4.3.

Next we give our main recurrence classification for the model with generalized

Lamperti drift. The criteria involve solutions to (3.2.1); as described in Lemma

3.2.1 such solutions are not unique, but nevertheless the expressions in which they

appear in Theorem 3.2.2 are invariant under translations (see Remark 3.2.5(c)), and

so the statement makes sense.

Theorem 3.2.2. Suppose that (A) holds, and that (Bp) holds for some p > 2.

Suppose also that (QG) and (DG) hold. Define a = (a1, . . . , a|S|)> to be a solution

to (3.2.1) whose existence is guaranteed by Lemma 3.2.1. Define

U :=
∑
i∈S

2ei + 2
∑
j∈S

ajγij

 πi, and V :=
∑
i∈S

t2i + 2
∑
j∈S

ajdij

 πi. (3.2.2)

Then the following classification applies.

• If U > V then (Xn, ηn) is transient.

• If |U | < V then (Xn, ηn) is null recurrent.

• If U < −V then (Xn, ηn) is positive recurrent.

If, in addition, (Q+
G) and (D+

G) hold, then the following condition also applies (yield-

ing an exhaustive classification):

• If |U | = V then (Xn, ηn) is null recurrent.

From this complicated theorem, you can see that each of the parameters has its

own role in controlling the recurrence classification. The ai’s here are actually a

key element to the proof of the theorem. They give the shift on each line in the

state space, resulting in a transformation to the system. In this way, the system

is aligned in a way that the constant term di’s in the drift are eliminated and we

can recover the Lamperti drift after the transformation. When all ai’s are zero, it
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actually implies all di’s are zero, and Theorem 3.2.2 recovers the Lamperti drift case

as in Theorem 3.1.1.

After this transformation on ai’s, the effects of di’s transfer to the ai’s, so similar

to the Lamperti drift type, we can just compare the size of the Lamperti component

of the drift, ei’s to the second moment ti’s, with the proportion of time spent on

each line, given by πi’s, and most importantly, the effect on the shifting of lines.

That is the reason why now we have got some extra terms, with the interactions, γij
and dij coming into play, depending on the weight that how much we shift the line.

Focusing on a single line i, the larger value of γij from any point on any line j in

the same direction of the Lamperti drift component, ei’s , with the same direction

of the shift ai, (decrease in the other direction) will help to increase the total of the

drift, thus giving more force to walk on that line to go either transient or positive

recurrent depending on the direction. If the increase on the second term of the

transition probability is either opposite to the direction of the Lamperti component

of the drift, or the direction of the shift (not both), then they will cancel out each

other. So it will have a counter effect on the drift thus lower the force to go through

the fluctuation of the variance of the line, giving a higher tendency to go to the case

of null recurrence. In the last case that the the transition probability is increases

in both the opposite direction of the Lamperti drift component and the direction

of shift, these two opposing signs will work together thus increase the force on the

line to go to either transient or positive recurrent depending on the direction of

the Lamperti drift component. Vice versa for the case of decreasing the transition

probabilities.

The other quantity dij, on the other hand, would affect the power of the second

moment of the walk. Again, it depends also on the fact if the sign of ai is the same

as the interacting drift dij or not. The sign of the variance plays no role here because

it is always positive. This means for a specific line, if ai is positive, i.e., shifting to

the right, then if dij is also positive (same direction), then increasing the interacting

drift dij would also increase the fluctuation of the walk. This will help to increase the

corrected variance and the walk on this line will need more drift in order to go pass
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the effect of the second moment. So this increase the tendency for the walk to go to

the null-recurrent case. The same happens when both ai and dij is negative as they

also help each other in the same way. On the contrary, if they have a different sign,

increasing dij would decrease the fluctuation of the walk, thus shorten the tolerance

gap for small drifts. This would mean that the walk now need a smaller drift to go

though the variance and result in transient or positive recurrent, depending on the

sign of the Lamperti drift component.

Weighting these tendencies with the right proportion of time spent on each line,

it will adjust the right comparison with the corrected drift and variance in the whole

system on average, thus giving you the right classification.

The proof of this theorem will be the main focus of Chapter 4.

3.2.2 Existence and non-existence of moments

As in Section 3.1, we quantify the degree of recurrence by establishing existence and

non-existence of moments of the passage times τx as defined at (3.1.1). First we give

conditions for existence of moments.

Theorem 3.2.3. Suppose that (A) holds, and that (Bp) holds for some p > 2.

Suppose also that (QG) and (DG) hold. Define a = (a1, . . . , a|S|)> to be a solution

to (3.2.1) whose existence is guaranteed by Lemma 3.2.1. If for some θ > 0, with U

and V as given by (3.2.2),

U + (2θ − 1)V < 0, (3.2.3)

then for any s ∈
[
0, θ ∧ p

2

]
, we have E[τ sx ] <∞ for all x sufficiently large.

Finally, we give conditions for non-existence of moments.

Theorem 3.2.4. Suppose that (A) holds, and that (Bp) holds for some p > 2.

Suppose also that (QG) and (DG) hold. Define a = (a1, . . . , a|S|)> to be a solution

to (3.2.1) whose existence is guaranteed by Lemma 3.2.1. If for some θ ∈ (0, p2 ], with

U and V as given by (3.2.2),

U + (2θ − 1)V > 0, (3.2.4)
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then for any s ≥ θ, we have E[τ sx ] =∞ for all sufficiently large X0 > x.

Remarks 3.2.5. (a) The generalization of the state-space Σ from Z+×S considered

in [39] and previous work is not merely for the sake of generalization; it is necessary

for the technical approach of the generalized Lamperti drift case, whereby we find

a transformation φ : Σ → Σ′ such that if (Xn, ηn) has generalized Lamperti drift,

then φ(Xn, ηn) has Lamperti drift (i.e., the constant components of the drifts are

eliminated). We then apply the results of Section 3.1 to deduce the results in

Section 3.2. Even if Σ = Z+×S, the state-space Σ′ obtained after the transformation

φ will not be (lines are translated in a certain way).

(b) The local finiteness assumption ensures that transience of the Markov chain

(Xn, ηn) is equivalent to limn→∞Xn = +∞, a.s., and hence all our conditions on

µi(x) etc. are asymptotic conditions as x→∞.

(c) As mentioned above, the non-uniqueness of solutions to (3.2.1) is not a problem

for the statement of the theorems in this section, because the quantities in our

conditions are unchanged under translation of the ai. The variables ai are well

defined here in a non-trivial way. Indeed, Lemma 3.2.1 shows that if (ai, i ∈ S) is a

solution then so is (c+ai, i ∈ S) for any c ∈ R, and, furthermore, every solution is of

this form. Moreover, the facts that ∑j∈S γij = 0 and ∑i∈S
∑
j∈S dijπi = ∑

i∈S diπi =

0 guarantee that replacing every ai by c+ ai does not change the conditions in our

theorems. Another way to go around this is to choose a particular line 0 ∈ S and set

a0 = 0, then ai is now forced to be unique. There is no loss of generality if a0 6= 0,

we can also obtain a new set of solutions by a translation ãi = ai − a0.



Chapter 4

Proofs and technical details

4.1 Semi-martingale criteria for recurrence clas-

sification

In this section we will present some of the fundamental results on the semi-martingale

criteria for recurrence classification. These results on discrete-time martingales are

due to Doob [26]. More of these results and their proofs can also be found in [27,93].

First we recall the definitions of martingales, submartingales and supermartingales.

Definition 4.1.1 (Martingales, submartingales, supermartingales). A real-valued

stochastic process Xn adapted to a filtration Fn is a martingale (with respect to the

given filtration) if, for all n ≥ 0,

(i) E |Xn| <∞, and

(ii) E [Xn+1 −Xn|Fn] = 0.

If in (ii) ‘ = ’ is replaced by ‘ ≥ ’ (respectively, ‘ ≤ ’), then Xn is called a submartin-

gale (respectively, supermartingale).

For the term semimartingale, it does not just includes martingales, submartin-

gales and supermartingales. We will use it in a broader context with some stochastic

process which drift is of similar structure, on the whole space or just locally on some

tail set.

47
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We use the standard notation

x+ := max{0, x}. (4.1.1)

Recall the follow fundamental result from martingale theory.

Theorem 4.1.2 (Martingale convergence theorem). Assume that Xn is a submartin-

gale such that supn E[X+
n ] <∞. Then there is an integrable random variable X such

that Xn → X a.s. as n→∞.

For the proof please see [27], Therem 5.2.8. Now we give an important corollary

to Theorem 4.1.2 and Fatou’s lemma.

Theorem 4.1.3 (Convergence of non-negative supermartingales). Assume that

Xn ≥ 0 is a supermartingale. Then there is an integrable random variable X such

that Xn → X a.s. as n→∞, and E[X] ≤ E[X0].

For the proof please see [27], Therem 5.2.9. Based on the previous convergence,

we give the following recurrence and transience criteria, which are central to our

analysis of the half strip model. The statements here are taken from Section 2.5

of [75].

Theorem 4.1.4 (Recurrence criterion). An irreducible Markov chain Xn on a count-

ably infinite state space Σ is recurrent if and only if there exist a function f : Σ→ R+

and a finite non-empty set A ⊂ Σ such that

E [f(Xn+1)− f(Xn) | Xn = x] ≤ 0, for all x ∈ Σ \ A, (4.1.2)

and f(x)→∞ as x→∞.

Theorem 4.1.5 (Transience criterion). An irreducible Markov chain Xn on a count-

ably infinite state space Σ is transient if and only if there exist a function f : Σ→ R+

and a non-empty set A ⊂ Σ such that

E [f(Xn+1)− f(Xn) | Xn = x] ≤ 0, for all x ∈ Σ \ A, (4.1.3)

and

f(y) < inf
x∈A

f(x), for at least one site y ∈ Σ \ A. (4.1.4)
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These two criterion can be trace back to the work of F.G. Foster [35]. He proved

the ‘if’ part of Theorem 4.1.4 in the case where the exceptional set A is a singleton.

For the finite set version for this direction can be found in Pakes [82]. The ‘only if’

part of Theorem 4.1.4 is due to Mertens et al. [76]. Foster [35] also proved Theorem

4.1.5 for the case where A is a single point. The finite set version is due to Harris

and Marlin [49] and Mertens et al. [76].

4.2 Lyapunov function estimates for the half strip

Recall in Section 2.5 we proved the Pólya’s Theorem with a Lyapunov function

using the technique of reduction of dimensionality. We took Xn := ‖Sn‖ as our

function and one critical bit to apply the semi-martingale criteria is the calculation of

expectations. Although it is pretty straightforward in the model of simple symmetric

random walk, it can take a bit of effort in general models.

The main difficulty in applying the theorems in the previous section for

the classification is to find a good Lyapunov function which gives suitable

E [f(Xn+1)− f(Xn) | Xn = x]. Depending on the model, these functions can be

sometimes simple and easy to find, while sometimes it is very difficult to come

up with the right function and calculate the expectation stated. In our half strip

problem, we will give a Lyapunov function for each of the constant drift case and

the Lamperti drift case. The formulation and the calculation of the former one is

straightforward, while the latter one requires a lot more effort. They show both the

strength and weakness of this Lyapunov function method. Although the method is

very robust and constructive, it is tricky to start with the right function without

any experience. Also, without explicit calculation of the expectation, it is hard to

tell if the function that we picked is indeed the right one. The Lyapunov function

for a specific model is usually not unique and it can be in various forms. To pick

a good Lyapunov function that enables simplier calculation among all those which

will satisfy the conditions in the theorems is a skill derived from experience.
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4.2.1 Lyapunov function for constant drift

Our analysis for the constant drift case is based on two Lyapunov functions g : Σ→

(0,∞) and hν : Σ → (0,∞) for ν > 0 for the recurrent case and transient case

respectively, defined by

g(x, i) := x+ bi (4.2.1)

for some bi ∈ R, and

hν(x, i) :=


x−ν − νbix−ν−1 if x ≥ x0,

x−ν0 − νbix−ν−1
0 if x < x0,

(4.2.2)

where bi ∈ R and x0 := 1 + 2ν maxi∈S |bi|.

We will need the following increment moment estimates for our Lyapunov func-

tion in the constant drift case. For the function g, we have the following lemma.

Lemma 4.2.1. Suppose that (A) holds, and that (Bp) holds for some p > 1. Suppose

also that (Q∞) and (DC) hold. Then we have, as x→∞,

Ex,i [g(Xn+1, ηn+1)− g(Xn, ηn)] = di +
∑
j∈S

(bj − bi)qij + o(1). (4.2.3)

Proof. Using the condition (DC) that Ex,i [Xn+1 −Xn] = di + o(1), we get

Ex,i [g(Xn+1, ηn+1)− g(Xn, ηn)] = Ex,i [Xn+1 −Xn] + Ex,i
[
bηn+1 − bηn

]
= [di + o(1)] +

∑
j∈S

qij(bj − bi),

by applying (Q∞) in the last step. Hence we have the result as stated.

On the other hand for the function hν , we have a slightly more complicated

situation.

Lemma 4.2.2. Suppose that (A) holds, and that (Bp) holds for some p > 1. Suppose
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also that (Q∞) and (DC) hold. Then for any ν ∈ (0, p], we have, as x→∞,

Ex,i [hν(Xn+1, ηn+1)− hν(Xn, ηn)] = −νx−1−ν

di +
∑
j∈S

(bj − bi)qij + o(1)
 .
(4.2.4)

Proof. Denote ∆n := Xn+1 −Xn, and consider the event En := {|∆n| ≤ Xζ
n} where

ζ ∈ (0, 1). Then we choose ζ ∈ (0, 1) and x1 ∈ R+ such that x1 − xζ1 ≥ x0; then on

the event En ∩ {Xn ≥ x1} we have Xn+1 ≥ x1 − xζ1 ≥ x0. Thus, for all x ≥ x1, we

may write

Ex,i [hν(Xn+1, ηn+1)− hν(Xn, ηn)]

= Ex,i
[(
X−νn+1 −X−νn

)
1(En)

]
− ν Ex,i

[(
bηn+1X

−ν−1
n+1 − bηnX−ν−1

n

)
1(En)

]
+ Ex,i [(hν(Xn+1, ηn+1)− hν(Xn, ηn)) 1(Ec

n)] (4.2.5)

For the first term in equation (4.2.5), we apply Taylor’s expansion and get

Ex,i
[(
X−νn+1 −X−νn

)
1(En)

]
= x−ν Ex,i

(1 + ∆n

Xn

)−ν
− 1

1(En)


= x−ν Ex,i
[
−ν

(
∆n

Xn

)
1(En) + Z

]

where |Z| ≤ CX−2
n |∆n|21(En), C ∈ R a constant. As |Z| ≤ CX−2

n |∆n|·|∆n|1(En) ≤

CX−2
n |∆n|Xζ

n, we have

|Ex,i [Z]| ≤ Ex,i [|Z|] ≤ Cxζ−2 Ex,i [|∆n|] = O(xζ−2),

using (Bp) in the last step. Thus we get Ex,i [Z] = o(x−1). So we get

Ex,i
[(
X−νn+1 −X−νn

)
1(En)

]
= −νx−1−ν (Ex,i [∆n1(En)] + o(1)) .

Observing

|∆n|1(Ec
n) = |∆n|p|∆n|1−p1(Ec

n) ≤ |∆n|pXζ(1−p)
n ,

we have

|Ex,i [∆n1(Ec
n)]| ≤ Ex,i [|∆n|1(Ec

n)] ≤ Cpx
ζ(1−p),
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by (Bp), where Cp is a constant depending on p. As ζ ∈ (0, 1) and p > 1, we obtain

Ex,i [∆n1(En)] = Ex,i [∆n]− Ex,i [∆n1(Ec
n)] = Ex,i [∆n] + o(1)

Using (DC), we get

Ex,i
[(
X−νn+1 −X−νn

)
1(En)

]
= −νx−1−ν [di + o(1)] . (4.2.6)

For the second term in equation (4.2.5), first observe that

Ex,i
[(
bηn+1X

−ν−1
n+1 − bηnX−ν−1

n

)
1(En)

]
= Ex,i

[
bηn+1

(
X−ν−1
n+1 −X−ν−1

n

)
1(En)

]
+ Ex,i

[(
bηn+1 − bηn

)
X−ν−1
n 1(En)

]
. (4.2.7)

We deal with the two terms on the right-hand side of (4.2.7) separately. First,

∣∣∣Ex,i [bηn+1

(
X−ν−1
n+1 −X−ν−1

n

)
1(En)

]∣∣∣ ≤ (max
j∈S
|bj|

)
Ex,i

[∣∣∣X−ν−1
n+1 −X−ν−1

n

∣∣∣1(En)
]
,

where, by Taylor’s formula, given Xn = x,

∣∣∣X−ν−1
n+1 −X−ν−1

n

∣∣∣1(En) = O(x−ν−2+ζ) = o(x−ν−1).

On the other hand,

Ex,i
[(
bηn+1 − bηn

)
X−ν−1
n 1(En)

]
= x−ν−1 ∑

j∈S
(bj − bi)Px,i [{ηn+1 = j} ∩ En] .

Here we have

|Px,i [{ηn+1 = j} ∩ En]− qij(x)| ≤ Px,i [Ec
n] = Ex,i

[
|∆n|p|∆n|−p1{Ec

n}
]

≤ x−pζ Ex,i [|∆n|p]→ 0.

Hence we get

Ex,i
[(
bηn+1X

−ν−1
n+1 − bηnX−ν−1

n

)
1(En)

]
= x−ν−1 ∑

j∈S
(bj − bi)qij(x) + o(x−ν−1).

For the third term in equation (4.2.5), we observe that

0 ≤ hν(x, i) ≤ C, for all x ≥ 0 and all i ∈ S.
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for some C, depending on ν and (bi, i ∈ S). As ν ∈ [0, p − 1). For all x and i, we

have

|Ex,i [(hν(Xn+1, ηn+1)− hν(Xn, ηn)) 1(Ec
n)]| ≤ CPx,i (Ec

n)

= C Ex,i
[
|∆n|p|∆n|−p1(Ec

n)
]
≤ Cx−pζ Ex,i [|∆n|p] = O(x−pζ),

Since −ν > 1 − p, we can choose ζ such that 0 < 1+ν
p

< ζ < 1, which gives

−ζp < −1− ν. Finally, grouping all three terms together gives the desired result.

4.2.2 Lyapunov function for Lamperti drift

Our analysis for the Lamperti drift case is a lot more complicated. It is based on

the Lyapunov function fν : Σ→ (0,∞) defined for ν ∈ R by

fν(x, i) :=


xν + ν

2bix
ν−2 if x ≥ x0,

xν0 + ν
2bix

ν−2
0 if x < x0,

(4.2.8)

where bi ∈ R and x0 := 1 +
√
|ν|maxi∈S |bi|.

First we want to establishes some bounds on fν .

Lemma 4.2.3. Suppose ν ∈ R. There exist positive constants k1, k2 ∈ (0,∞),

depending on ν and (bi, i ∈ S), such that

k1(1 + x)ν ≤ fν(x, i) ≤ k2(1 + x)ν , for all x ≥ 0 and all i ∈ S.

Proof. To start with, we consider the case when x ≥ x0, with x0 = 1+
√
|ν|B, where

B = maxi∈S |bi|, we have

∣∣∣∣ν2 bixν−2
∣∣∣∣ ≤

∣∣∣∣∣
ν
2bix

ν

x2
0

∣∣∣∣∣ =

∣∣∣∣∣∣∣
ν
2bix

ν(
1 +

√
|ν|B

)2

∣∣∣∣∣∣∣ ≤
|ν|
2 |bi|x

ν

|ν|B
≤ 1

2x
ν (4.2.9)

So we have
1
2x

ν ≤ fν(x, i) ≤
3
2x

ν (4.2.10)
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for all x ≥ x0. Noticing x ≥ x0 > 1, which implies 1 < x+1
2 < x, we have

min(1, 2−ν)(1 + x)ν ≤ xν ≤ max(1, 2−ν)(1 + x)ν

Together with the inequality (4.2.10), we have

1
2 min(1, 2−ν)(1 + x)ν ≤ fν(x, i) ≤

3
2 max(1, 2−ν)(1 + x)ν (4.2.11)

for all x ≥ x0.

On the other hand, Suppose x < x0. Then fν(x, i) = fν(x0, i), which is a case of

(4.2.10) when x = x0, so we have

1
2x

ν
0 ≤ fν(x, i) ≤

3
2x

ν
0 (4.2.12)

for all x < x0. Now consider the fact that for x < x0,

min(1, (1 + x0)−ν) ≤ (1 + x)−ν ≤ max(1, (1 + x0)−ν).

Together with the inequality (4.2.12), we get for x < x0,

1
2x

ν
0 min(1, (1+x0)−ν)(1+x)ν ≤ fν(x, i) ≤

3
2x

ν
0 max(1, (1+x0)−ν)(1+x)ν . (4.2.13)

Hence the proof is completed by taking appropriate positive constants k1 and k2 in

different cases as just shown.

The next result, which is central to what follows, provides increment moment

estimates for our Lyapunov function in the Lamperti drift case.

Lemma 4.2.4. Suppose that (A) holds, and that (Bp) holds for some p > 2. Suppose

also that (Q∞) and (DL) hold. Then for any ν ∈ (2− p, p], we have, as x→∞,

Ex,i [fν(Xn+1, ηn+1)− fν(Xn, ηn)]

= ν

2x
ν−2

2ci + (ν − 1)s2
i +

∑
j∈S

(bj − bi)qij + o(1)
 . (4.2.14)

The rest of this section is devoted to the proof of Lemma 4.2.4. Denote ∆n :=

Xn+1 −Xn, and again consider the event En := {|∆n| ≤ Xζ
n} where ζ ∈ (0, 1). The

basic idea behind the proof of Lemma 4.2.4 is to use a Taylor’s formula expansion.
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Such an expansion is valid only if ∆n is not too large; to handle various truncation

estimates we will thus need the following result.

Lemma 4.2.5. Suppose that (Bp) holds for some p > 2. Then for any ζ ∈ (0, 1)

and any q ∈ [0, p], we have

Ex,i [|∆n|q1(Ec
n)] ≤ Cpx

ζ(q−p). (4.2.15)

Furthermore, if ζ ∈ ( 1
p−1 , 1), we have

Ex,i [∆n1(En)] = Ex,i [∆n] + o
(
x−1

)
, (4.2.16)

Ex,i
[
∆2
n1(En)

]
= Ex,i

[
∆2
n

]
+ o (1) . (4.2.17)

Proof. For q ∈ [0, p],

|∆n|q1(Ec
n) = |∆n|p|∆n|q−p1(Ec

n) ≤ |∆n|pXζ(q−p)
n (4.2.18)

The inequality follows as q− p ≤ 0, so under the condition that |∆n| > Xζ
n, we have

|∆n|q−p ≤ (Xζ
n)(q−p). Taking the conditional expectation on both sides of (4.2.18)

and using the condition (Bp), we obtain (4.2.15). For the second statement, we use

the fact that for r ∈ {1, 2},

Ex,i [∆r
n] = Ex,i [∆r

n1(En)] + Ex,i [∆r
n1(Ec

n)] ,

where, by the q = r case of (4.2.15),

|Ex,i [∆r
n1(Ec

n)]| ≤ Ex,i [|∆n|r1(Ec
n)] ≤ Cpx

ζ(r−p). (4.2.19)

When r = 1, we choose ζ ∈ ( 1
p−1 , 1), so we have ζ(1 − p) < −1, and then (4.2.19)

gives (4.2.16). When r = 2, we know r−p < 0, and then (4.2.19) gives (4.2.17).

To obtain Lemma 4.2.4, we decompose the increment of fν . First note that, for

ζ ∈ (0, 1),

Ex,i [fν(Xn+1, ηn+1)− fν(Xn, ηn)] = Ex,i [(fν(Xn+1, ηn+1)− fν(Xn, ηn))1(En)]

+ Ex,i [(fν(Xn+1, ηn+1)− fν(Xn, ηn))1(Ec
n)] . (4.2.20)
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Choose ζ ∈ ( 1
p−1 , 1) and x1 ∈ R+ such that x1 − xζ1 ≥ x0; then on the event

En ∩ {Xn ≥ x1} we have Xn+1 ≥ x1 − xζ1 ≥ x0. Thus, for all x ≥ x1, we may write

Ex,i [(fν(Xn+1, ηn+1)− fν(Xn, ηn)) 1(En)]

= Ex,i
[(
Xν
n+1 −Xν

n

)
1(En)

]
+ ν

2 Ex,i
[(
bηn+1X

ν−2
n+1 − bηnXν−2

n

)
1(En)

]
. (4.2.21)

We proceed to estimate the terms on the right-hand sides of (4.2.20) and (4.2.21)

separately, via a series of lemmas.

Lemma 4.2.6. Suppose that (Bp) holds for some p > 2. Suppose also that (DL)

holds. Let ζ ∈ ( 1
p−1 , 1). Then for any r ∈ R, we have, as x→∞,

Ex,i
[(
Xr
n+1 −Xr

n

)
1(En)

]
= rxr−2

(
ci + r − 1

2 s2
i + o(1)

)
.

Proof. By Taylor’s formula we have that

Ex,i
[(
Xr
n+1 −Xr

n

)
1(En)

]
= xr Ex,i

[(
(1 + x−1∆n)r − 1

)
1(En)

]
= xr Ex,i

r(∆n

Xn

)
+ r(r − 1)

2

(
∆n

Xn

)2
1(En) + Z

 , (4.2.22)

where |Z| ≤ CX−3
n |∆n|31(En) for some fixed constant C ∈ R+. To bound the term

Ex,i[Z], first we observe that

|Z| ≤ CX−3
n |∆n|2|∆n|1(En) ≤ C|∆n|2Xζ−3

n .

Taking expectations on both sides of the last inequality, we obtain

|Ex,i[Z]| ≤ Ex,i |Z| ≤ Cxζ−3 Ex,i[|∆n|2] = O(xζ−3),

using (Bp). Since ζ < 1 this implies Ex,i[Z] = o(x−2), so the expression (4.2.22)

becomes

Ex,i
[(
Xr
n+1 −Xr

n

)
1(En)

]
= rxr−1 Ex,i [∆n1(En)] + r(r − 1)

2 xr−2 Ex,i
[
∆2
n1(En)

]
+ o

(
xr−2

)
. (4.2.23)
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Then by Lemma 4.2.5 together with the facts that, under (DL),

Ex,i[∆n] = µi(x) = ci
x

+ o(x−1), and Ex,i[∆2
n] = σ2

i (x) = s2
i + o(1),

we obtain

Ex,i
[(
Xr
n+1 −Xr

n

)
1(En)

]
= rxr−1

(
ci
x

+ o
(
x−1

))
+ r(r − 1)

2 xr−2
(
s2
i + o(1)

)
+ o

(
xr−2

)
,

from which the statement in the lemma follows.

Lemma 4.2.7. Suppose that (Bp) holds for some p > 0. Let r ∈ R and ζ ∈ (0, 1),

and let g : S → R. Then, as x→∞,

Ex,i
[(
g(ηn+1)Xr

n+1 − g(ηn)Xr
n

)
1(En)

]
= xr

∑
j∈S

(g(j)− g(i))qij(x) + o(xr).

Proof. First observe that

Ex,i
[(
g(ηn+1)Xr

n+1 − g(ηn)Xr
n

)
1(En)

]
= Ex,i

[
g(ηn+1)

(
Xr
n+1 −Xr

n

)
1(En)

]
+ Ex,i [(g(ηn+1)− g(ηn))Xr

n1(En)] . (4.2.24)

We deal with the two terms on the right-hand side of (4.2.24) separately. First,

∣∣∣Ex,i [g(ηn+1)
(
Xr
n+1 −Xr

n

)
1(En)

]∣∣∣ ≤ (max
j∈S
|g(j)|

)
Ex,i

[∣∣∣Xr
n+1 −Xr

n

∣∣∣1(En)
]
,

where, by Taylor’s formula, given Xn = x,

∣∣∣Xr
n+1 −Xr

n

∣∣∣1(En) = O(xr+ζ−1) = o(xr).

On the other hand,

Ex,i [(g(ηn+1)− g(ηn))Xr
n1(En)] = xr

∑
j∈S

(g(j)− g(i))Px,i [{ηn+1 = j} ∩ En] .

Here |Px,i [{ηn+1 = j} ∩ En]− qij(x)| ≤ Px,i [Ec
n] → 0, by the q = 0 case of

Lemma 4.2.5. Combining these calculations gives the result.

Combining the last two results we obtain the following estimate for the first term
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on the right-hand side of (4.2.20).

Lemma 4.2.8. Suppose that (Bp) holds for some p > 2. Suppose also that (DL)

and (Q∞) hold. Let ζ ∈ ( 1
p−1 , 1). Then for any r ∈ R, we have, as x→∞,

Ex,i [(fr(Xn+1, ηn+1)− fr(Xn, ηn)) 1(En)]

= r

2x
r−2

2ci + (r − 1)s2
i +

∑
j∈S

(bj − bi)qij + o(1)
 .

Proof. In the equation (4.2.21) we apply Lemma 4.2.6 and Lemma 4.2.7 with g(y) =

by and r − 2 in place of r; together with (Q∞) we obtain the result.

We have the following estimate for the second term on the right-hand side

of (4.2.20).

Lemma 4.2.9. Suppose that (Bp) holds for some p > 2. Then for any r ∈ (2−p, p],

we can choose ζ ∈ (0, 1) for which, as x→∞,

Ex,i [|fr(Xn+1, ηn+1)− fr(Xn, ηn)|1(Ec
n)] = o(xr−2).

Proof. We may suppose throughout this proof that Xn ≥ 1. First suppose that

r ∈ (0, p]. If |∆n| ≤ Xn
2 , then Xn

2 ≤ Xn + ∆n ≤ 3Xn
2 . Thus with Lemma 4.2.3 we

have, on {|∆n| ≤ Xn
2 },

fr(Xn+1, ηn+1) ≤ k2

(
1 + 3Xn

2

)r
≤ C1 (1 +Xn)r , (4.2.25)

for some constant C1 ∈ R+. On the other hand, if |∆n| > Xn
2 , then 0 ≤ Xn+1 =

Xn + ∆n ≤ 3|∆n|. So with Lemma 4.2.3, we have, on {|∆n| > Xn
2 },

fr(Xn+1, ηn+1) ≤ k2 (1 + 3|∆n|)r ≤ C2 |∆n|r , (4.2.26)

for some constant C2 ∈ R+. Combining the results of (4.2.25) and (4.2.26), we

obtain for r > 0,

fr(Xn+1, ηn+1) ≤ C3 (1 +Xn)r + C3|∆n|r, (4.2.27)



4.3. Some consequences of the Fredholm alternative 59

for some C3 ∈ R+. Hence, for r > 0, for some C ∈ R+,

|Ex,i [(fr(Xn+1, ηn+1)− fr(Xn, ηn))1(Ec
n)]|

≤ fr(x, i)Px,i [Ec
n] + Ex,i [|fr(Xn+1, ηn+1)|1(Ec

n)]

≤ C (1 + x)r Px,i [Ec
n] + C Ex,i [|∆n|r1(Ec

n)] ,

where we have used Lemma 4.2.3 and inequality (4.2.27). Then, by the q = 0 and

q = r ∈ (0, p] cases of Lemma 4.2.5 we have

|Ex,i [(fr(Xn+1, ηn+1)− fr(Xn, ηn))1(Ec
n)]| = O(xr−pζ) +O(xζ(r−p)) = O(xr−pζ),

since ζ < 1. This last term is o(xr−2) provided r − pζ < r − 2, i.e., ζ > 2
p
.

Finally, suppose that r ∈ (2−p, 0]. Now by Lemma 4.2.3, we have 0 ≤ f(x, i) ≤ C

for some C ∈ R+ and all x and i, so that

|Ex,i [(fr(Xn+1, ηn+1)− fr(Xn, ηn)) 1(Ec
n)]| ≤ CPx,i [Ec

n] = O(x−pζ),

by the q = 0 case of Lemma 4.2.5. Since r > 2 − p, we can choose ζ such that

0 < 2−r
p
< ζ < 1, which gives −ζp < r − 2.

Now we are ready to complete the proof Lemma 4.2.4.

Proof of Lemma 4.2.4. The expression for the first moment in (4.2.14) is simply a

combination of the r = ν cases of Lemmas 4.2.8 and 4.2.9.

4.3 Some consequences of the Fredholm alternat-

ive

This section serves two purposes. The first aim for this section is to prepare for the

proofs in the next section, which we need to understand the term with bi’s in the

Lyapunov function estimate for the case of Lamperti drift. The other purpose is to

show existence of ai in Lemma 3.2.1 for our translation in the generalized Lamperti

drift case.
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4.3.1 Fredholm alternative

The following well-known algebraic result will enable us to show that suitable bi
exist to construct the Lyapunov function fν as defined at (4.2.8) under appropriate

conditions involving πj.

In this section, vectors are column vectors on R|S|, 0 denotes the column vector

whose components are all zero, and I denotes the |S| × |S| identity matrix. We will

need the following well-known algebraic result.

Lemma 4.3.1 (Fredholm alternative). Given an |S| × |S| matrix A and a column

vector b, the equation Aa = b has a solution a if and only if any column vector y

for which A>y = 0 satisfies y>b = 0.

See [86] for other formulations and the proof of this theorem. First of all, we

shall give the proof of Lemma 3.2.1.

Proof of Lemma 3.2.1. First we write the system of equations (3.2.1) in matrix form.

To this end, denote by Q = (qij)i,j∈S the transition matrix for the Markov chain η∗n
on S, and denote column vectors a = (a1, a2, . . . , a|S|)> and d = (d1, d2, . . . , d|S|)>.

Then (3.2.1) is equivalent to

(Q− I)a = −d.

Setting A = Q − I and b = −d, Lemma 4.3.1 shows that (3.2.1) has a solution a

if and only if any column vector y such that (Q− I)>y = 0 satisfies y>d = 0. But

(Q − I)>y = 0 is equivalent to y>Q = y>, which implies that y = απ (α ∈ R) is

a scalar multiple of the (unique) stationary distribution for Q. Thus (3.2.1) has a

solution a if and only if π>d = 0, i.e., ∑i∈S diπi = 0, the special case that α = 0 is

contributing nothing to the condition.

Finally, we show that any solution a to (3.2.1) is unique up to translation.

Suppose there are two solutions, a′ and a′′, so that (Q − I)a′ = (Q − I)a′′ = −d;

thus (Q−I)(a′−a′′) = 0. In other words, Q(a′−a′′) = a′−a′′. As Q is a stochastic

matrix, this means that a′ − a′′ is a scalar multiple of the eigenvector (1, 1, . . . , 1)>

corresponding to eigenvalue 1. Thus the components of a′ and a′′ differ by a fixed

amount.
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4.3.2 Corollaries

A modification of the above argument yields the following statements, with inequal-

ities instead of equality, which will enable us to show that, under appropriate condi-

tions involving πj, suitable bi exist to construct the Lyapunov function fν satisfying

appropriate supermartingale conditions.

Lemma 4.3.2. Let ui ∈ R for each i ∈ S.

(i) Suppose ∑i∈S uiπi < 0. Then there exist (bi, i ∈ S) such that

ui +
∑
j∈S

(bj − bi)qij < 0, for all i ∈ S.

(ii) Suppose ∑i∈S uiπi > 0. Then there exist (bi, i ∈ S) such that

ui +
∑
j∈S

(bj − bi)qij > 0, for all i ∈ S.

Proof. We prove only part (i); the proof of (ii) is similar. Suppose that ∑i∈S uiπi =

−ε for some ε > 0. Then taking εi = ε
|S|πi we get

∑
i∈S(ui+εi)πi = 0. An application

of Lemma 3.2.1 with di = ui + εi shows that there exist bi such that

ui + εi +
∑
j∈S

(bj − bi)qij = 0, for all i ∈ S,

which gives the result since εi > 0.

4.4 Proof of the constant drift classification

In this section, we will give a new proof of Theorem 2.4.1 using the method of

Lyapunov functions. We will apply Theorem 4.1.4 and Theorem 4.1.5 with the

Lyapunov functions stated in (4.2.1) and (4.2.2).

Proof of Theorem 2.4.1. For the recurrence part, we will use the Lyapunov function

g(x, i) defined at (4.2.1), with suitably chosen bi. First we see that g(x, i) → ∞ as

x→∞. Thus Theorem 4.1.4 shows that the process is recurrent if

Ex,i [g(Xn+1, ηn+1)− g(Xn, ηn)] ≤ 0 (4.4.1)
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for all sufficiently large x. Now suppose ∑i∈S diπi < 0, then we use Lemma 4.3.2 (i)

from our Fredholm alternative corollaries, with ui = di to show that we may choose

bi so that

di +
∑
j∈S

(bj − bi)qij < 0.

Hence from Lemma 4.2.1 we know the condition (4.4.1) is satisfied for x sufficiently

large.

For the transience part, this time we will use the Lyapunov function hν(x, i)

defined at (4.2.2) for a small positive value of ν close to 0, and apply Theorem 4.1.5.

We see that the condition in equation (4.1.4) is satisfied as hν(x, i) is a decreasing

function. Hence the process is transient if

Ex,i [hν(Xn+1, ηn+1)− hν(Xn, ηn)] ≤ 0 (4.4.2)

for all sufficiently large x. Now suppose ∑i∈S diπi > 0, using Lemma 4.3.2 (ii) from

our Fredholm alternative corollaries, with ui = di we may choose bi so that

di +
∑
j∈S

(bj − bi)qij > 0.

Finally, from Lemma 4.2.2 we know the condition (4.4.2) is satisfied for x sufficiently

large as we wanted. This completes the proof of the theorem.

4.5 Proofs of results for Lamperti drift

The first goal of the section is to give a new proof of the first three points in Theorem

3.1.1 using the method of Lyapunov functions. To prove the whole classification, we

should separate the argument in a few parts.

First, in this subsection, we will prove the conditions for recurrence and transi-

ence, by applying Theorem 4.1.4 and Theorem 4.1.5.

In the second and the third subsection, we turn our attention to our second and

third objectives, the proof of existence and non-existence of moments.

Lastly in the fourth subsection, we will show the conditions for positive recur-

rence and null, which are in fact special cases for the existence and non-existence of
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moments. Combining with the dichotomy in the first subsection will give us the full

classification as stated in Theorem 3.1.1, with the exception of the boundary cases.

For the critical case for null recurrence in Theorem 3.1.1, we would need a more

delicate treatment with a Lyapunov function which grows slower, like (log x)θ, θ ∈

(0, 1). Some general calculation can be found in the book by Menshikov et. al. [75].

4.5.1 Proof of recurrence and transience in the Lamperti

drift case

Here is our formal statement to be proved in this subsection.

Theorem 4.5.1. Suppose that (A) holds, and that (Bp) holds for some p > 2.

Suppose also that (Q∞) and (DL) hold. Then the following classification applies.

• If ∑i∈S(2ci − s2
i )πi < 0, then (Xn, ηn) is recurrent.

• If ∑i∈S(2ci − s2
i )πi > 0, then (Xn, ηn) is transient.

Proof. Using the Lyapunov function fν(x, i) stated in (4.2.8), we would like to apply

Theorem 4.1.4 to get a condition for recurrence.

Suppose that ν > 0, then by Lemma 4.2.3, fν(x, i)→∞ as x→∞. So we know

the process is recurrent if

Ex,i [fν(Xn+1, ηn+1)− fν(Xn, ηn)] ≤ 0 (4.5.1)

for all x sufficiently large. Now suppose that ∑i∈S(2ci− s2
i )πi < 0, then there exists

ν > 0 such that ∑
i∈S

[
2ci + (ν − 1)s2

i

]
πi < 0.

Now we use Lemma 4.3.2 (i) from our Fredholm alternative corollaries, with ui =

2ci + (ν − 1)s2
i to show that we may choose bi such that

2ci + (ν − 1)s2
i +

∑
j∈S

(bj − bi)qij < 0.
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Hence we get

ν

2x
ν−2

2ci + (ν − 1)s2
i +

∑
j∈S

(bj − bi)qij + o(1)
 ≤ 0

for all x sufficiently large. Finally, apply Lemma 4.2.4 to get our recurrence condition

in equation (4.5.1) as desired.

For the transient side, this time we take ν < 0 and apply Theorem 4.1.5. With

Lemma 4.2.3, we have fν(x, i) → 0 as x → ∞, hence the condition in equation

(4.1.4) is immediately satisfied. So the process is transient if (4.5.1) holds for all x

sufficiently large. This time we suppose that ∑i∈S(2ci− s2
i )πi > 0, then there exists

ν < 0 such that ∑
i∈S

[
2ci + (ν − 1)s2

i

]
πi > 0.

Now we use Lemma 4.3.2 (ii) from our Fredholm alternative corollaries, with ui =

2ci + (ν − 1)s2
i to show that we can choose bi such that

2ci + (ν − 1)s2
i +

∑
j∈S

(bj − bi)qij > 0.

Hence we get

ν

2x
ν−2

2ci + (ν − 1)s2
i +

∑
j∈S

(bj − bi)qij + o(1)
 ≤ 0.

for all x sufficiently large. Finally, apply Lemma 4.2.4 to get our transience condition

in equation (4.5.1) as desired. Hence the proof is completed.

4.5.2 Proof of existence of moments

To obtain existence of moments of hitting times, we apply the following semimartin-

gale result, which is a reformulation of Theorem 1 from [5], see also [75] Corollary

2.7.3.

Lemma 4.5.2. Let Wn be an integrable Fn-adapted stochastic process, taking values

in an unbounded subset of R+, with W0 = w0 fixed. Suppose that there exist δ > 0,
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w > 0, and γ < 1 such that for any n ≥ 0,

E[Wn+1 −Wn | Fn] ≤ −δW γ
n , on {n < λw}, (4.5.2)

where λw = min{n ≥ 0 : Wn ≤ w}. Then, for any s ∈ [0, 1
1−γ ], E[λsw] <∞.

Now we can give the proof of Theorem 3.1.2.

Proof of Theorem 3.1.2. Set Wn := fν(Xn, ηn) for ν ∈ (0, p]; note Wn → ∞ as

Xn →∞. We aim to show that (4.5.2) holds with γ = ν−2
ν
< 1. First note that, for

Xn sufficiently large,

W γ
n =

(
Xν
n + ν

2aηnX
ν−2
n

) ν−2
ν

= Xν−2
n

(
1 + ν

2aηnX
−2
n

) ν−2
ν

= Xν−2
n +O

(
Xν−4
n

)
,

using the fact that aηn is uniformly bounded. In other words, Xν−2
n = W γ

n + o(W γ
n ),

so we have from Lemma 4.2.4 that

E[Wn+1 −Wn | Xn, ηn] = ν

2W
γ
n

2ci + (ν − 1)s2
i +

∑
j∈S

(aj − ai)qij

+ o(W γ
n ).

(4.5.3)

Take ν = p ∧ 2θ and set ui = 2ci + (ν − 1)s2
i ; then, by (3.1.2),

∑
i∈S

uiπi ≤
∑
i∈S

[
2ci + (2θ − 1)s2

i

]
πi < 0,

so that by Lemma 4.3.2(i) we have that the coefficient of W γ
n on the right-hand side

of (4.5.3) is strictly negative. Hence there exists δ > 0 such that

E[Wn+1 −Wn | Xn, ηn] ≤ −δW γ
n , on {Wn ≥ w},

for some w big enough. Note that 1
1−γ = ν

2 = θ∧ p
2 ; thus we may apply Lemma 4.5.2

to conclude that E[λsw] <∞ for all w sufficiently large, for any s ∈
[
0, θ ∧ p

2

]
.

It remains to deduce that E[τ sx ] <∞ for all x sufficiently large. But Lemma 4.2.5

shows that Xn ≤ CW 1/ν
n for some C ∈ R+, so {Wn ≤ w} implies that
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{Xn ≤ Cw1/ν }. It follows that τCw1/ν ≤ λw, completing the proof of the

theorem.

4.5.3 Proof of non-existence of moments

To obtain non-existence of moments of hitting times, we apply the following semi-

martingale result, which is a variation on Theorem 2 from [5], see also [75] Theorem

2.7.4.

Lemma 4.5.3. Let Zn be a Fn-adapted stochastic process taking values in an

unbounded subset of R+. Suppose that there exist finite positive constants z, B,

and c such that, for any n ≥ 0,

E[Zn+1 − Zn | Fn] ≥ − c

Zn
, on {Zn ≥ z}; (4.5.4)

E[(Zn+1 − Zn)2 | Fn] ≤ B, on {Zn ≥ z}. (4.5.5)

Suppose in addition that for some p0 > 0, the process Z2p0
n∧λz is a submartingale, where

λz = min{n ≥ 0 : Zn ≤ z}. Then for any p > p0, we have E[λpz | Z0 = z0] = ∞ for

any z0 > z.

We will apply this result with Zn := W 1/ν
n = (fν(Xn, ηn))1/ν . Thus we must

establish some estimates on the first and second moments of the increments of Zn;

this is the purpose of the next result.

Lemma 4.5.4. Suppose that (A) holds, and that (Bp) holds for some p > 2. Suppose

also that (Q∞) and (DL) hold. Then for any ν ∈ (0, p], we have

Ex,i[Zn+1 − Zn] = ci
x

+ 1
2x

∑
j∈S

(bj − bi)qij + o
(
x−1

)
; and

Ex,i[(Zn+1 − Zn)2] ≤ B,

where B is a constant.

Proof. Again we define the event En := {|∆n| ≤ Xζ
n} for ζ ∈ (0, 1); then

Ex,i[Zn+1 − Zn] = Ex,i [(Zn+1 − Zn) 1(En)] + Ex,i [(Zn+1 − Zn) 1(Ec
n)] . (4.5.6)
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For the first term on the right-hand side of (4.5.6), we first notice that for x large

enough

f 1/ν
ν (x, i) = x

(
1 + ν

2 bix
−2
)1/ν

= x+ bi
2x +O(x−3).

Also, given (Xn, ηn) = (x, i), on En we have |Xn+1−Xn| ≤ xζ so that Zn+11(En) =

Xn+1 + bηn+1
2x + o(x−1). As a result we get

Ex,i [(Zn+1 − Zn) 1(En)]

= Ex,i [(Xn+1 −Xn)1(En)] + 1
2x Ex,i

[
(bηn+1 − bηn)1(En)

]
+ o(x−1)

= ci
x

+ 1
2x

∑
j∈S

(bj − bi)qij + o
(
x−1

)
(4.5.7)

where in the last equality we used Lemma 4.2.6 and the r = 0 case of Lemma 4.2.7

for the first and second term respectively. On the other hand, to bound

Ex,i [(Zn+1 − Zn) 1(Ec
n)], we can just mimic the proof of Lemma 4.2.9, inserting

additional powers of 1/ν, to obtain

Ex,i [(Zn+1 − Zn) 1(Ec
n)] = o(x−1),

which combined with (4.5.7) gives the first statement in the lemma. For the second

moment, given (Xn, ηn) = (x, i) we have

(Zn+1 − Zn)21(En) ≤ (Xn+1 −Xn)21(En) + |Xn+1 −Xn|
x

|bηn+1 − bηn|1(En) +O(x−1)

≤ (Xn+1 −Xn)2 + o(1).

Taking expectations, we obtain

Ex,i
[
(Zn+1 − Zn)21(En)

]
≤ C,

for some C ∈ R+. On the other hand, we follow the proof of Lemma 4.2.9, inserting

powers of 2/ν and 1/ν respectively, to get

Ex,i
[
(Zn+1 − Zn)21(Ec

n)
]

= Ex,i[(Z2
n+1 − Z2

n)1(Ec
n)]− 2Ex,i[Zn(Zn+1 − Zn)1(Ec

n)]

= o(1).
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Combining these estimates the second statement in the lemma follows.

Now we can complete the proof of Theorem 3.1.3.

Proof of Theorem 3.1.3. Take ν = 2θ. We will apply Lemma 4.5.3 with Zn =

(fν(Xn, ηn))1/ν and p0 = ν
2 ; we must verify (4.5.4) and (4.5.5), and that Zν

n∧λz is a

submartingale. For the latter condition, it suffices to show that

E[fν(Xn+1, ηn+1)− fν(Xn, ηn) | Xn, ηn] ≥ 0, on {Zn > z},

which follows from the ν = 2θ case of Lemma 4.2.4 with hypothesis (3.1.3).

Of the remaining two conditions, (4.5.5) follows immediately from the second

statement in Lemma 4.5.4, provided ν ≤ p, i.e., θ ≤ p
2 . From the first statement in

Lemma 4.5.4, we have that for all x sufficiently large

Ex,i[Zn+1 − Zn] = 1
x

ci + 1
2
∑
j∈S

(bj − bi)qij + o(1)
 ≥ −C1

x
, (4.5.8)

for all i and all x sufficiently large, where C1 ∈ R+ depends on the ci and bi.

Now Lemma 4.2.3 implies that Zn ≤ C2Xn for some C2 > 0, so we deduce condi-

tion (4.5.4) from (4.5.8).

4.5.4 Complete classification

To complete the classification in Theorem 3.1.1, we need to classify the different

conditions for positive recurrent and null. Hence we should prove the following

theorem, which is a simple consequence of the moment existence and non-existence

results in the previous subsections.

Theorem 4.5.5. Suppose that (A) holds, and that (Bp) holds for some p > 2.

Suppose also that (Q∞) and (DL) hold. Then the following classification applies.

• If ∑i∈S(2ci + s2
i )πi < 0, then (Xn, ηn) is positive recurrent.

• If ∑i∈S(2ci + s2
i )πi > 0, then (Xn, ηn) is null.

Proof. Taking θ = 1 in Theorem 3.1.2, we recover the condition for the first moment

to exist, applying a technical Lemma 2.6.1 in [75] will give us the positive-recurrent
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part. Take θ = 1 in Theorem 3.1.3, we get the condition for the first moment to not

exist, which means the process is null.

If we group the results from Theorem 4.5.1 and Theorem 4.5.5, we proved The-

orem 3.1.1 using the Lyapunov function method, completing the classification of

positive recurrence and transience for the Lamperti drift case.

4.6 Proofs of results for generalized Lamperti

drift

For this section, we turn our attention to the last and most subtle case with the

generalized Lamperti drift, and give a complete classification for all situations for

the half strip problem. Our main goal is to prove Theorem 3.2.2.

4.6.1 Transformation to Lamperti drift case

As the structure of (Xn, ηn) is quite complicated, in the first step of the proof, we

want to transform Xn to X̃n so that we can have a simpler form for the drifts and

conditions. An enlightening transformation would be (X̃n, ηn) = (Xn + aηn , ηn),

where ai are the solution of the system of equations di +
∑
j∈S(aj − ai)qij = 0 for all

i ∈ S. The intuition behind this is that the transformation pulls or pushes each line

separately in a way such that the effects of di are eliminated, turning all di = 0 after

the transformation, i.e., the constant components of the drifts are eliminated; then

we can apply the results in Section 3.1, once we have at hand increment moment

estimates for the transformed process (X̃n, ηn). A few items of technicality that

need to be handled are listed as follows.

1. Existence and uniqueness up to translation of ai,

2. Preservation of the classification under the transformation,

3. Changed moments.
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For the first item, for di, i ∈ S with ∑
i∈S πidi = 0 as specified under

assumption (DG), choose ai, i ∈ S as guaranteed by Lemma 3.2.1, so that

di + ∑
j∈S(aj − ai)qij = 0; since we are free to translate the ai by any constant,

we may (and do) suppose here that ai ≥ 0 for all i ∈ S.

Let Σ′ = {(x + ai, i) : (x, i) ∈ Σ} denote the state space of the transformed

process; then Σ′ is a locally finite subset of R+×S with unbounded lines Λ′k = {x ∈

R+ : (x, k) ∈ Σ′}. The map (x, i) 7→ (x + ai, i) is a bijection, so the Markov chain

(X̃n, ηn) has precisely the same abstract structure as the Markov chain (Xn, ηn), in

particular, the transformed process is (positive) recurrent if and only if the original

process is (positive) recurrent, and so on, see Theorem 4.6.1 for a formal statement.

Thus to obtain results for the process (Xn, ηn) it is sufficient to prove results for the

transformed process (X̃n, ηn).

4.6.2 Preservation of the recurrence classification after

transformation

To see the preservation of the recurrence classification after the transformation, we

want to establish the following theorem.

Suppose we have a Markov chain Zn on a countable space Σ. Define λx =

min{n ≥ 0 : Zn = x} and λA = minx∈A λx. Then we call the Markov chain Zn

s-recurrent if, for every x ∈ Σ, and any finite, non-empty A ⊂ Σ, Ex[λsA] <∞. The

following theorem will give all the facts we need for both the recurrence classification,

and the moment existence and non-existence.

Theorem 4.6.1. For any irreducible Markov chain Zn on a countable space Σ, and

any bijective function f : Σ → Σ′, denote Z ′n = f(Zn), then we have all of the

following.

1. Z ′n is an irreducible Markov chain on Σ′,

2. Zn is recurrent if and only if Z ′n is recurrent,

3. Zn is positive recurrent if and only if Z ′n is positive recurrent,
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4. Zn is s-recurrent if and only if Z ′n is s-recurrent.

Proof. As Zn is a Markov chain, then P(Zn+1 = z | Z1 = z1, Z2 = z2, . . . , Zn =

zn) = P(Zn+1 = z | Zn = zn). By applying the transformation f on every point

on the space, we have P(Z ′n+1 = f(z) | Z ′1 = f(z1), Z ′2 = f(z2), . . . , Z ′n = f(zn)) =

P(Z ′n+1 = f(z) | Z ′n = f(zn)). So for any z′, z′1, z
′
2, . . . , z

′
n ∈ Σ′, we can find z =

f−1(z′), z1 = f−1(z′1), z2 = f−1(z′2), . . . , zn = f−1(z′n) so that the Markov property

preserves. Also, for any state z′1, z′2 ∈ Σ′, we can find z1 = f−1(z′1) and z2 = f−1(z′2).

If Zn is irreducible, then z1 and z2 communicates, and so does z′1 and z′2. So Z ′n is

also irreducible. The other direction follows as f−1 is also a bijection.

Next, for any y ∈ Σ′, there exists x ∈ Σ such that x = f−1(y). Then if Zn is

recurrent, we have P[Zn = x i.o.] = 1. This means P[Z ′n = y i.o.] = 1 by applying

the transformation. So we get Z ′n is recurrent. The other directing follows similarly.

Hence we have proved the second statement.

The third claim is in fact a special case of the fourth claim with s = 1, so we

will just prove the fourth claim instead.

Suppose Zn is s-recurrent. Let λ′B = min{n ≥ 0 : Z ′n ∈ B}. Then

λ′B = min{n ≥ 0 : f(Zn) ∈ B}

= min{n ≥ 0 : Zn ∈ f−1(B)}

= λf−1(B)

so Ey(λ′B)s = Ef−1(y) λ
s
f−1(B) <∞, i.e. Z ′n is s-recurrent. The argument clearly goes

both ways.

Hence we have proved all claims in the Theorem.

Now with the first three claims of Theorem 4.6.1, we know the structure of the

Markov chain and the classification of positive recurrent, null recurrent and transient

is preserved under the transformation.
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4.6.3 Calculation of the transformed moments

For the increment moments of the transformed process, we use the notation

µ̃i(y) := E[X̃n+1 − X̃n | X̃n = y, ηn = i],

σ̃2
i (y) := E[(X̃n+1 − X̃n)2 | X̃n = y, ηn = i].

Lemma 4.6.2. Suppose that (A) holds, and that (Bp) holds for some p > 2. Suppose

also that (QG) and (DG) hold. Define ai, i ∈ S to be a solution to (3.2.1) with ai ≥ 0

for all i, whose existence is guaranteed by Lemma 3.2.1. Either (i) set δ4 = 0; or

(ii) suppose that (Q+
G) and (D+

G) hold and set δ4 = δ2∧ δ3 ∈ (0, 1). For i ∈ S, define

ci := ei +
∑
j∈S

ajγij, and s2
i := t2i + 2

∑
j∈S

ajdij +
∑
j∈S

(a2
j − a2

i )qij. (4.6.1)

Then we have that, as x→∞,

µ̃i(x) = ci
x

+ o(x−1−δ4), and σ̃2
i (x) = s2

i + o(x−δ4).

Proof. For concreteness, we give the proof when (Q+
G) and (D+

G) hold; in the other

case the argument is the same but with δ4 set to 0 throughout. For the first moment,

we have

µ̃i(x) = Ex−ai,i[Xn+1 −Xn] +
∑
j∈S

Ex−ai,i
[(
aηn+1 − aηn

)
1{aηn+1 = j}

]
= µi(x− ai) +

∑
j∈S

(aj − ai)qij(x− ai).

Now using hypothesis (a) in (D+
G) and (Q+

G) we obtain

µ̃i(x) = di + ei
x− ai

+
∑
j∈S

(aj − ai)qij +
∑
j∈S

(aj − ai)
γij

x− ai
+ o((x− ai)−1−δ4)

= di +
∑
j∈S

(aj − ai)qij + ei
x

+ 1
x

∑
j∈S

ajγij + o(x−1−δ4),

since ∑j∈S γij = 0. By hypothesis (d) in (DG) and choice of the ai (cf Lemma 3.2.1),

the constant term here vanishes, so we obtain the expression for µ̃i(x) in the lemma.
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For the second moment, we have

σ̃2
i (x) = Ex−ai,i

[
(Xn+1 −Xn)2

]
+ 2Ex−ai,i

[
(aηn+1 − aηn)(Xn+1 −Xn)

]
+ Ex−ai,i

[
a2
ηn+1 − a

2
ηn

]
= s2

i + 2
∑
j∈S

(aj − ai)µij(x− ai) +
∑
j∈S

(aj − ai)2qij(x− ai).

Then using hypothesis (c) in (D+
G) and (Q+

G) we obtain

σ̃2
i (x) = s2

i + 2
∑
j∈S

(aj − ai)dij +
∑
j∈S

(aj − ai)2qij + o(x−δ4)

= s2
i + 2

∑
j∈S

ajdij +
∑
j∈S

(a2
j − a2

i )qij − 2ai
(
di +

∑
j∈S

(aj − ai)qij
)

+ o(x−δ4),

which gives the result after once again using the fact that di + ∑
j∈S(aj − ai)qij =

0.

4.6.4 Proof of recurrence classification

Armed with our transformation of the process, we can now use the results in Sec-

tion 3.1 to complete the proofs of the theorems in Section 3.2.

Proof of Theorem 3.2.2. Lemma 4.6.2 shows that if (Xn, ηn) satisfies the conditions

of Theorem 3.2.2, then (X̃n, ηn) satisfies the conditions of Theorem 3.1.1 with ci and

s2
i as given by (4.6.1). Theorem 3.1.1 shows that the process is transient if

0 <
∑
i∈S

[2ci − s2
i ]πi =

∑
i∈S

2ei + 2
∑
j∈S

ajγij −

t2i + 2
∑
j∈S

ajdij +
∑
j∈S

(a2
j − a2

i )qij

 πi
=
∑
i∈S

2ei − t2i + 2
∑
j∈S

aj(γij − dij)
 πi −∑

i∈S

∑
j∈S

(a2
j − a2

i )qijπi,

using the expressions at (4.6.1). Note that the final term here vanishes, because

∑
i∈S

∑
j∈S

(a2
j − a2

i )qijπi =
∑
j∈S

a2
j

∑
i∈S

qijπi −
∑
i∈S

a2
iπi

∑
j∈S

qij

=
∑
j∈S

a2
jπj −

∑
i∈S

a2
iπi = 0,

using the fact that π is the stationary distribution for (qij). This gives the condition
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for transience stated in Theorem 3.2.2.

Similarly, the condition for positive recurrence is

0 >
∑
i∈S

[2ci + s2
i ]πi =

∑
i∈S

2ei + 2
∑
j∈S

ajγij +
t2i + 2

∑
j∈S

ajdij +
∑
j∈S

(a2
j − a2

i )qij

 πi
=
∑
i∈S

2ei + t2i + 2
∑
j∈S

aj(γij + dij)
πi +

∑
i∈S

∑
j∈S

(a2
j − a2

i )qijπi

=
∑
i∈S

2ei + t2i + 2
∑
j∈S

aj(γij + dij)
πi,

which gives the condition for positive recurrence in the theorem.

4.6.5 Proofs of existence and non-existence of moments

The case for null recurrence and at the critical point follows accordingly by the same

calculation.

Proof of Theorem 3.2.3. The proof is analogous to the proof of Theorem 3.2.2, this

time applying Theorem 3.1.2 to the transformed process.

Proof of Theorem 3.2.4. This time we apply Theorem 3.1.3 to the transformed pro-

cess.



Chapter 5

Examples, applications and

simulations

To finish this part of the thesis, we present an application of our results to a simple

model of a correlated random walk and some more complicated numerical examples

to see the delicacy of the phase transition.

5.1 Correlated random walk

Correlated random walk is a type of random walk that remembers a fixed number of

previous steps of its past trajectory (except the first few steps, which may affected by

less steps due to lack of history). There is a long list of literature in which this model

is studied with various names by different researchers: as ‘persistent random walks’

by Fürth [90], ‘correlated random walks’ by Gillis [40], ‘random walks with restricted

reversals’ by Domb and Fisher [25], and, recently, ‘Newtonian random walks’ by

Lenci [68]. The correlated random walk also leads to the telegrapher’s equation

in the scaling limit under suitable rescaling, see Goldstein [45] and Kac [57]. For

some recent work on correlated random walk and related models, see [1, 17, 54, 96].

Some applications or motivation for studying these models can be found in [37] on

physical Brownian motion and [22] on models for molecular configurations. Some

background material can be found in [55].

75
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Now we formally state the model. Suppose that a particle performs a random

walk on Z+ with a short-term memory: the distribution of Xn+1 depends not only

on the current position Xn, but also on the ‘direction of travel’ Xn−Xn−1. Formally,

(Xn, Xn −Xn−1) is a Markov chain on Z+ × S with S = {−1,+1}, with

P[(Xn+1, ηn+1) = (x+ j, j) | (Xn, ηn) = (x, i)] = qij(x), for i, j ∈ S.

Then for i ∈ S,

µi(x) = E[Xn+1 −Xn | (Xn, ηn) = (x, i)] = qi,+1(x)− qi,−1(x).

The simplest model has qii(x) = q > 1/2 for x ≥ 1, so the walker has a tendency to

continue in its direction of travel.

More generally, suppose that for q ∈ (0, 1) and constants c−1, c+1 ∈ R and δ > 0,

qij(x) =


q + ici

2x +O(x−1−δ) if j = i;

1− q − ici
2x +O(x−1−δ) if j 6= i.

(5.1.1)

Here is the recurrence/transience classification for this model, which includes as the

special case q = 1/2 the recurrence classification in Corollary 3.1 of [39].

Theorem 5.1.1. Consider the correlated random walk specified by (5.1.1). Let

c = (c+1 + c−1)/2. If c < −q, then the walk is positive recurrent. If c > q, then the

walk is transient. If |c| ≤ q, then the walk is null recurrent.

We can also achieve results for moment existence and non-existence for the cor-

related random walk model.

Theorem 5.1.2. Consider the correlated random walk specified by (5.1.1). Let

c = (c+1 + c−1)/2. Then E[τ θx ] <∞ if θ < 1
2 −

c
2q while E[τ θx ] =∞ if θ > 1

2 −
c
2q .
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5.2 Proofs of theorems on correlated random

walk

In this section we complete the proof of Theorem 5.1.1 and Theorem 5.1.2 on cor-

related random walk given in the last section.

Proof of Theorem 5.1.1. Note first that qii = q and qij = 1 − q for j 6= i; hence

π = (1
2 ,

1
2). By direct calculation, we get µi(x) = i(2q − 1) + ci

x
+ O(x−1−δ). This

gives di = i(2q−1) and ei = ci. Now we want to solve the system of equations (3.2.1)

for ai, which amounts to

1− 2q + (a1 − a−1)(1− q) = 0.

Since the solution (ai) is unique up to translation, without loss of generality we can

choose a−1 = 0 and then we get a+1 = 2q−1
1−q . Next we observe that dii = q, while if

i 6= j we have dij = 1− q; also, γij = jci
2 and t2i = 1. Now we calculate

∑
i∈S

(
2ei + 2

∑
j∈S

ajγij

)
πi = e+1 + e−1 + a+1γ+1,+1 + a+1γ−1,+1 = c+1 + c−1

2(1− q) ; and

∑
i∈S

(
t2i + 2

∑
j∈S

ajdij

)
πi = 1 + (a+1d+1,+1 + a+1d−1,+1) = q

1− q .

Then applying Theorem 3.2.2 we obtain the desired result.

Proof of Theorem 5.1.2. With the calculation in the last proof, apply Theorem 3.2.3

and Theorem 3.2.4 gives the desirable results.

5.3 Numerical examples and simulations

Now we will give some simulations of the correlated random walk. For the first

example, we consider a one-step correlated random walk, with the transition prob-

abilities as in the following Figure 5.1, where the ‘+1’ line represents the case where

the last step was going to the right and the line ‘-1’ means the last step was going

to the left. In this sense we can model the different behaviour of the transition

probabilities (i.e. the correlation).
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Figure 5.1: An example of a one-step correlated random walk.

We now conduct two simulations of 103 steps of the walk, with different values of

c = 1 (Figure 5.2 left) and c = −1 (Figure 5.2 right). The horizontal axis represents

the number of steps n and the vertical axis represents the value of Xn. The colour of

the line segment represents which line the process is from, with the same colouring

scheme shown in Figure 5.1.
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Figure 5.2: Two simulations of 103 steps of one-step correlated random walks, as

an application of the half strip model. Top: c = 1, bottom: c = −1.
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You can see the two simulations give very different behaviour in this walk. In

fact, the left picture in Figure 5.2 shows the transient case and the right one shows

the positive-recurrent case. The phase transitions of c are actually as the following,

transient for c > 1
3 , positive recurrent for c < −

1
3 and null recurrent for |c| ≤ 1

3 from

the application of Theorem 5.1.1. Moreover, if we apply Theorem 5.1.2, we know

E[τ θx ] <∞ if θ < 1
2 −

3c
2 while E[τ θx ] =∞ if θ > 1

2 −
3c
2 .

Here is another example of two-steps correlated random walk, as the transition

probabilities as shown in the following Figure 5.3, where this time we will have four

lines, spanning all the combinations of the direction of the last two steps.

Figure 5.3: An example of a two-steps correlated random walk.

Again, for different value of c, we will get different results of classification.
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Figure 5.4: Two simulations of 103 steps of two-steps correlated random walks, as

an application of the half strip model. Top: c = 1, bottom: c = −1.
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The random walk is transient in the left picture in Figure 5.4, with the value

c = 1 while the walk is positive recurrent for the right picture in Figure 5.4, with

the value c = −1. The phase transitions of c in this case are transient for c > 1
3 ,

positive recurrent for c < −1
3 and null recurrent for |c| ≤ 1

3 , from the application of

Theorem 3.2.2. Moreover, if we apply Theorem 3.2.3 and Theorem 3.2.4, we know

E[τ θx ] <∞ if θ < 1
2 −

3c
2 while E[τ θx ] =∞ if θ > 1

2 −
3c
2 .

An important observation is that we have the same phase boundary as in the last

example with only one step correlated random walk. This is not a mere coincidence.

In fact, a careful calculation shows the same result for any n-step correlated random

walk for any positive integer n, irrelevant to how we assign the favourableness to stick

with or change direction with a certain pattern of the previous steps, for a symmetric

and balance design. It would be quite clumsy to state the formal statement here

and we shall leave the reader to discover the scintillating calculation.
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Chapter 6

Notation, preliminaries and

prerequisites

6.1 Literature review

In physics, the center of mass of a distribution of mass in space is defined as the

unique point that the weighted relative position of the distributed mass sums to

zero and so the distribution of mass is balanced around the center of mass. We can

get the coordinates of the center of mass by calculating the average of the weighted

position coordinates of the distribution of mass. It is a very important concept and

has a lot of useful applications in physics.

Back to random walk, properties of random walk in Zd are undoubtedly a popular

subject to study. A vast amount of study has been devoted to the investigation of

the recurrence classification. This includes the famous Pólya’s and Chung-Fuchs

results in Chapter 1.

Now we want to go one step further and combine these two concepts, to consider

the centre of mass (or time average, centre of gravity) of a random walk. Let d ≥ 1.

Suppose that X,X1, X2, . . . is a sequence of i.i.d. random variables on Rd. We

consider the random walk (Sn, n ∈ Z+) in Rd defined by S0 := 0 and Sn := ∑n
i=1Xi

(n ≥ 1).

Our object of interest is the centre of mass process (Gn, n ∈ Z+) corresponding

84
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to the random walk, defined by G0 := 0 and Gn := 1
n

∑n
i=1 Si (n ≥ 1). The question

of the asymptotic behaviour of Gn was raised by P. Erdős (see [46]).

Lets look at some simulations of how it looks.
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Figure 6.1: An example of a one dimensional random walk (Light blue to blue) with

the corresponding centre of mass process (Orange to red).
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Figure 6.2: Two examples of a two dimensional random walk (Light blue to blue)

with the corresponding centre of mass process (Orange to red).
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Figure 6.3: An example of a three dimensional random walk (Blue) with the corres-

ponding centre of mass process (Red) at front (top left), top (top right), left (bottom

left) and side (bottom right) angle.
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Compared to Part I of this thesis, this is a very different model. We used a

non homogeneous walk in a very special state space in the former to fit in some

applications with the specific structure. However, this is not the only way to put

our theory of random walk in action. Instead, we will try to use a common state

space on a d-dimensional space, but as general as possible, together with the centre

of mass, an averaging process derived from a random walk with as little structure

as possible. As a result, we are able to get very general results, which can apply to

a broad range of problems.

Random walks can be used to model physical polymer molecules [20,91] in which

case the centre of mass is of obvious physical relevance. The random walk can also

be used to model animal behaviour, and the motion of both macroscopic and micro-

scopic organisms [53, 84]. In this context the centre of mass is a natural summary

statistic of an animal’s roaming behaviour.

Despite the fact that it is a interesting and useful model, there is an extremely

limited literature which gives any recurrence property of the centre of mass of ran-

dom walk. The only result related to the properties of this process that we found

is due to Karl Grill [46], which gives the fact that for simple symmetric random

walk, its center of mass is recurrent for d = 1 only and is transient for d ≥ 2. This

answer was originally conjectured by Paul Erdős, and no further generalization or

conjecture is found in the literature.

This centre of mass process has a rich meaning in terms of application. For

example in [20], the asymptotic behaviour of a d-dimensional self-interacting random

walk, which is repelled or attracted by the centre of mass of its previous trajectory,

was studied. The walk’s trajectory models a random polymer chain in either poor

or good solvent.

In this part of the thesis we will deeply investigate this mysterious centre of mass

process and prove some of its properties in a general setting. The first goal in this

part is to get the asymptotic behaviour of the process. We give the strong law of

large numbers and the central limit theorem for the centre of mass, under minimal

assumptions and we will further extend these results in the next part of the thesis.
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The first main result is a local central limit theorem. Unlike the usual central limit

theorem, it is a much more precise theorem that requires a lot of effort to prove as

it is not a direct consequence of the central limit theorem. One crucial difference

here is that the usual central limit theorem does not distinguish between continuous

and discrete random variables, while the local limit theorem does. Especially in the

discrete case, the local limit theorem tells us more on the structure of the process.

Roughly speaking, the central limit theorem tell us the process should behave like

the normal distribution as a whole, but the local limit theorem tell us that the

probability distribution of the process at each point behave like the probability

density function of the normal distribution.

The second important goal in this part is to obtain the recurrence classification

of the center of mass process, associated with any homogeneous random walk in

d-dimensions. If we just focus on the recurrence classification, then the case where

the random walk has a non-zero drift will not be very interesting, as the strong

law of large numbers that we prove tells us the process must be transient in any

dimension. In the case of zero drift, it turns out to be a very difficult problem

without any additional assumptions. We acquire the classification result for any

lattice random walk on Rd with finite second moments of the drift, which is a

minor but important assumption to control the behaviour of the jumps. We show

that under these assumptions the centre of mass is recurrent in one dimension but

transient in two or more dimensions. We will also provide more general results in

one dimension.

It is notable that the behaviour of the centre of mass of the random walk, es-

pecially in 2-dimensions, is counter-intuitive at first sight. If we just observe the

central limit theorem of both process, they behave very similarly. In fact, compar-

ing Proposition 7.1.2 with Theorem 1.6.2, we see Sn converge to µ and Gn converge

to µ/2. The variance in the normal distribution for Gn is 1/3 of the one for Sn.

Also, after some calculation, we will see that both process have the same magnitude

of probabilities to come back to a fixed region. Comparing Theorem 7.2.1 with

Theorem 6.5.1 we see that for a fixed ball B, both P(Sn ∈ B) and P(Gn ∈ B) are
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of order n−d/2. Hence one might think the recurrence classification of the center of

mass process should follow from the random walk. Shockingly, this is not the case

because we did not consider the speed of the processes, which will be the key for our

proofs of theorems in the next chapter. This once again suggests that the recurrence

classification is easy to define and to understand, but to really classify it properly

around the critical region is a very subtle problem.

The outline of this part of the thesis is as follows. This chapter will provide

the background material we need for the proofs of our main theorems. In the next

chapter, we will give a local central limit theorem for the center of mass process,

and give the recurrence classification of it in different dimensions. Chapter 8 will

provide all the proofs and technical details for these theorems, and we will close up

with some examples in Chapter 9.

We view vectors in Rd as column vectors throughout; 0 denotes the zero vector.

6.2 Lattice distributions and characteristic func-

tions

The first main goal for this part of the thesis is a local central limit theorem for the

centre of mass process. To achieve this we have to know some facts about lattice

distributions and characteristic functions.

In our centre of mass model, we assume that X has a non-degenerate d-

dimensional lattice distribution. Thus (see [11, Ch. 5]) there is a unique minimal

subgroup L := HZd of Rd, where H is a d by d matrix, such that P(X ∈ b +L) = 1

for some b ∈ Rd, with the property that if P(X ∈ x + L′) = 1 for some closed

subgroup L′ of Rd and x ∈ Rd, then L ⊆ L′, and with h := | detH| ∈ (0,∞). In

other words, we make the following assumption.
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(L) Suppose that the minimal subgroup of Rd associated with X is L := HZd with

h := | detH| > 0.

Equivalent conditions to (L) can be formulated in terms of the characteristic function

of X or in terms of the maximality of h: see Lemma 6.2.3 below. Note that there

may be many matrices H for which HZd is equal to (unique) L, but for all of these

| detH| is the same. Also note that symmetric simple random walk (SSRW) does

not satisfy (L) with the obvious choice H = I (the identity), but does satisfy (L) if

H has the maximal choice h = 2: see Chapter 9 for more details.

We collect some facts about lattice distributions: for reference see [11, Ch. 5]

and [95, §7]. Let

H := {H : P(X ∈ b +HZd) = 1 for some b ∈ Rd}.

If X has a lattice distribution, then H is nonempty, and if X is non-degenerate

then any H ∈ H has | detH| > 0. (Here and elsewhere, ‘non-degenerate’ means not

supported on any (d − 1)-dimensional hyperplane.) Let K := {| detH| : H ∈ H}.

The next result gives an upper bound on h ∈ K; note that this bound is sharp in

both of the examples in Chapter 9.

Lemma 6.2.1. Suppose that X has a non-degenerate lattice distribution. Then

K ⊆ (0,∞) is bounded, and inf K = 0.

Proof. Since X has a non-degenerate lattice distribution, we have that (i) H is non-

empty and | detH| > 0 for allH ∈ H; and (ii) there exists X := {x0,x1, . . . ,xd} such

that x0, . . . ,xd are affinely independent, and P(X = xi) > 0 for each i. Statement

(i) shows that K ⊆ (0,∞) is nonempty, and statement (ii) shows that K is bounded.

Indeed, for any H ∈ H we have that there exists b such that X ⊂ b + HZd, i.e.,

H−1(X −b) ⊂ Zd. For i ∈ {1, . . . , d} let λi = xi−x0. Then the linearly independent

vectors λ1, . . . , λd define a parallelepiped P with volume | det Λ| ∈ (0,∞), where Λ

denotes the d×d matrix whose columns are λ1, . . . , λd. Since H−1(X −b) are points

of Zd, we have that all the vertices of the parallelepiped P ′ := H−1(x0 +P −b) are

points of Zd. Now P ′ has volume h−1| det Λ| > 0, but, as a parallelepiped of positive
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volume whose vertices are in Zd, must have volume at least 1. Thus h−1| det Λ| ≥ 1,

i.e., h ≤ | det Λ| < ∞. Also, we see that if H ∈ H, then H/2 ∈ H as well, so if

h ∈ K then h/2d ∈ K too.

The next lemma will be on the characteristic function of X, which is defined for

t ∈ Rd as ϕ(t) := E eit>X . We also define U := {t ∈ Rd : |ϕ(t)| = 1}. Given an

invertible d by d matrix H, set SH := 2π(H>)−1Zd. The next result shows that if

H ∈ H, then SH ⊆ U .

Lemma 6.2.2. Suppose that H ∈ H. Then |ϕ(u)| = 1 for all u ∈ SH .

Proof. First observe that the norm of the characteristic function is invariant under

translation by any vector of the form of 2π(H>)−1k with k ∈ Zd. To see this, note

that for any k ∈ Zd,

∣∣∣ϕ(t + 2π(H>)−1k)
∣∣∣ =

∣∣∣E [eit>X · e2πik>H−1X
]∣∣∣ .

Since H ∈ H, we may write X = b + HW , where b ∈ Rd is constant and W ∈ Zd.

Hence ∣∣∣ϕ(t + 2π(H>)−1k)
∣∣∣ =

∣∣∣e2πik>H−1b
∣∣∣ · ∣∣∣E [eit>X · e2πik>W

]∣∣∣ ,
because k>H−1b is a non-random scalar. Then, since | exp{2πik>H−1b}| = 1 and

k>W ∈ Z, so that exp{2πik>W} = 1, it follows that for any k ∈ Zd,

∣∣∣ϕ(t + 2π(H>)−1k)
∣∣∣ = |ϕ(t)| . (6.2.1)

In particular, the case t = 0 of (6.2.1) shows that |ϕ(u)| = 1 if u ∈ SH .

If P(X ∈ b + HZd) = 1 and P(X = x) > 0, then x − b ∈ HZd so that

x + HZd = b + HZd, and so if H ∈ H then P(X ∈ x + HZd) = 1 for any x with

P(X = x) > 0.

Lemma 21.4 of [11] shows that there is a unique minimal subgroup L of Rd such

that P(X ∈ x + L) = 1 for any x with P(X = x) > 0 and if H ∈ H then L ⊆ HZd.

Moreover, the discrete subgroup L is generated by {ξ : P(X = x + ξ) > 0} for any

given x with P(X = x) > 0. We have L = H0Zd for some (not necessarily unique)

H0 ∈ H; let H0 := {H ∈ H : L = HZd}.
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The next result gives equivalent formulations of the fundamental assumption (L).

For ρ > 0, define SH(ρ) := ∪y∈SHB(y; ρ), where B(y; ρ) is the open Euclidean ball

of radius ρ centred at y ∈ Rd.

Lemma 6.2.3. Suppose that X is non-degenerate and H ∈ H. The following are

equivalent.

(i) H ∈ H0.

(ii) | detH| is the maximal element of K.

(iii) SH = U .

Moreover, if any one of these conditions holds then, for any ρ > 0, there exists a

positive constant cρ such that

|ϕ(u)| ≤ e−cρ , for any u /∈ SH(ρ).

Proof. Suppose that H0 ∈ H0 and H ∈ H. Let h0 = | detH0| and h = | detH|.

Then, by minimality, H0Zd ⊆ HZd, i.e., H−1H0Zd ⊆ Zd. Thus H−1H0[0, 1]d is

a parallelepiped whose vertices are all in Zd, and necessarily this parallelepiped

has volume at least 1. Hence h0/h ≥ 1, i.e., h ≤ h0. Thus if H ∈ H0 then

| detH| is maximal. On the other hand, suppose H ∈ H \ H0 and H0 ∈ H0.

Then H0Zd ⊂ HZd are not equal, so there is some x ∈ HZd with x /∈ H0Zd.

Thus if y = H−1x ∈ Zd, we have that H−1H0Zd ⊂ Zd with y /∈ H−1H0Zd. For

z ∈ Zd we have y = H−1H0(z + α) where α ∈ [0, 1]d is not a vertex; but then

y − H−1H0z ∈ Zd as well. Thus β = H−1H0α is a point of Zd contained in the

parallelepiped P = H−1H0[0, 1]d, and moreover all the vertices of P are in Zd, and

β is not a vertex. Hence the parallelepiped P has volume strictly greater than 1

(see [95, p. 69]), and so h0/h > 1. Thus if H /∈ H0 then | detH| is not maximal.

Thus (i) and (ii) are equivalent.

We show that (i) implies (iii). For H ∈ H set

RH := {t ∈ Rd : x>t ∈ 2πZ for all x ∈ HZd}

= {t ∈ Rd : z>H>t ∈ 2πZ for all z ∈ Zd}.
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It follows that

RH = 2π(H>)−1{y ∈ Rd : z>y ∈ Z for all z ∈ Zd} = 2π(H>)−1Zd = SH .

So RH = SH for any H ∈ H with | detH| > 0. Moreover, Lemma 21.6 of [11] shows

that RH = U if HZd is minimal. Thus (i) implies (iii).

Next we show that (iii) implies (ii). Let h? := supK, which, by Lemma 6.2.1 is

finite and positive. Suppose that H ∈ H with | detH| = h ∈ (0, h?). Then for any

ε > 0 sufficiently small, we can find H1 ∈ H with | detH1| = h1 ∈ (h, h?] such that

h1 > (1 + 2ε)h and h1 > (1− ε)h?. Let S = 2π(H>)−1Zd and S1 = 2π(H>1 )−1Zd.

Consider x with P(X = x) > 0. Then there exist b,b1 ∈ Rd (not depending on

x) and z, z1 ∈ Zd (depending on x) such that

x = b +Hz = b1 +H1z1,

and hence

z = H−1(b1 − b) +H−1H1z1. (6.2.2)

Take s = 2π(H>1 )−1z1 ∈ S1. Assume, for the purpose of deriving a contradiction,

that S1 ⊆ S. Then s ∈ S, i.e., there exists z2 ∈ Zd such that

s = 2π(H>1 )−1z1 = 2π(H>)−1z2.

Together with (6.2.2), this implies that

z = H−1H1H
>
1 (H>)−1z2 +H−1(b1 − b).

It follows that

x = b +Hz = b1 +H1H
>
1 (H>)−1z2.

Now if we take b2 = b1 and H2 = H1H
>
1 (H>)−1, we have shown that every x for

which P(X = x) > 0 has x ∈ b2 +H2Zd, i.e., H2 ∈ H. But

|detH2| = |detH1|
∣∣∣detH>1

∣∣∣ ∣∣∣det(H>)−1
∣∣∣ = h2

1
h

> (1 + 2ε)(1− ε)h? > h?,
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for ε sufficiently small, which contradicts the definition of h?. Thus there exists

some x ∈ S1 with x /∈ S.

From Lemma 6.2.2, we have S1 ⊆ U ; hence there is some x ∈ U with x /∈ S. In

other words, we have shown that if h ∈ (0, h?) then S 6= U . Thus if we assume that

S = U , the only possibility is h = h? ∈ H. Thus (iii) implies (ii).

To prove the final statement in the lemma, we may suppose that (iii) holds.

Then |ϕ(u)| < 1 if u /∈ SH . To finish the proof of the lemma, it suffices to

show that supu/∈SH(ρ) |ϕ(u)| < 1. But, by the periodicity property (6.2.1), we have

supu/∈SH(ρ) |ϕ(u)| = supu∈TH(ρ) |ϕ(u)| where TH(ρ) := 2π(H>)−1[−1
2 ,

1
2 ]d \ B(0; ρ).

Suppose that supu∈TH(ρ) |ϕ(u)| = 1; then by the continuity of |ϕ(u)|, the supremum

is attained at a point u in the compact set TH(ρ), contradicting the fact that

|ϕ(u)| < 1 for all u /∈ SH . Hence supu∈TH(ρ) |ϕ(u)| < 1, and the proof is com-

pleted.

Further information about lattice distributions can also be found in [11] and [95].

6.3 Hewitt-Savage zero one law

The Hewitt-Savage zero-one law is important for us to establish some recurrence

results in one dimensional center of mass process.

It is a theorem similar to Kolmogorov’s zero-one law and the Borel-Cantelli

lemma, that specifies that a particular type of event will happen almost surely or

not happen almost surely.

Formally, we will follow the formulation and definitions from Chow and Teicher

[18, p.232].

Let (S,S) be a measurable space. Define S∞ = S×S×S× . . . and let S∞ be the

Borel subsets of S∞. Let X = (X1, X2, . . .) be a sequence of random variables on

(Ω,F ,P) taking values in S, so X ∈ S∞. A mapping π = (π1, π2, . . .) from N to N is

called a finite permutation if π is one-to-one and πn = n for all n sufficiently large.

Let Π be the set of all finite permutations. For π ∈ Π define πX = (Xπ1 , Xπ2 , . . .).
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Then

E =
{
X−1(B) : B ∈ S∞,P

(
X−1(B)4 (πX)−1(B)

)
= 0 for all π ∈ Π

}
is called the exchangeable σ-algebra of X, where 4 is the symmetric difference. In

words, events in E are those events which are invariant under all finite permutations

of the Xi. Now we state the Hewitt-Savage zero-one law as in [18]. For the proof

see [18, p.238].

Theorem 6.3.1 (Hewitt-Savage zero-one law). Let X1, X2, . . . be i.i.d. random

variables on (Ω,F ,P) taking values in a measurable space (S,S), and let E denote

the exchangeable σ-algebra. Then E is trivial, i.e., if A ∈ E then P(A) ∈ {0, 1}.

In the special case of spatially homogeneous random walk, one can apply the

Hewitt-Savage zero-one law to prove the dichotomy of the recurrence classification

of the walk as the the event R = {Sn = 0 infinitely often} is invariant under finite

permutations of the increments, i.e., exchangeable. Notice that the Kolmogorov’s

zero-one law cannot directly apply here as R is not a tail event.

6.4 Local limit theorem for random walks

It is always good to start with a similar or classical result in random walk theory

and try to compare them with our centre of mass process. Sometimes, it is possible

to extract useful bits in the classical proofs of similar theorems. Towards our goal

to the local limit theorem of the centre of mass process, we should first establish a

local limit theorem for our random walk. Here is the formal setup.

Throughout we will use the notation

µ := EX, M := E[(X − µ)(X − µ)>]

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

To go further we typically assume the following.

(M) Suppose that E[‖X‖2] <∞ and M is positive-definite.
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Notice that P(X ∈ b + HZd) = 1 implies P(Sn ∈ nb + HZd) = 1. For x ∈ Rd,

define qn(x) := P(n−1/2Sn = x), and

m(x) :=
exp{−1

2x>M−1x}
(2π)d/2

√
detM

. (6.4.1)

Also define

Ln :=
{
n−1/2

(
nb +HZd

)}
.

Here is our local limit theorem for the random walk.

Theorem 6.4.1. Suppose that (L) hold and suppose E[‖X‖2] < ∞ and M is

positive-definite. Then we have

lim
n→∞

sup
x∈Ln

∣∣∣∣∣nd/2h qn(x)−m
(
x− n1/2µ

)∣∣∣∣∣ = 0. (6.4.2)

Note that P(Sn ∈ B) = O(n−d/2) for a fixed ball B since n−1/2B contains O(1)

lattice points.

This rest of this section is devoted to the proof of Theorem 6.4.1.

Proof of Theorem 6.4.1. With standard Fourier analysis, we know Theorem 6.4.1 in

the case where b = 0 and H = I (the identity), see e.g. [67, §2.2–§2.3] for details.

The first proof of the one-dimensional result can be trace back to [42].

Now it remains to show that it suffices to establish Theorem 6.4.1 in this special

case. To see this, suppose that X ∈ b + HZd and set X̃ = H−1(X − b). Then

X̃ ∈ Zd. By linearity of expectation, we have

µ̃ := E X̃ = H−1(µ− b), and M̃ := E[(X̃ − µ̃)(X̃ − µ̃)>] = H−1M(H−1)>.

Note that (H−1)> is nonsingular, so (H−1)>x 6= 0 for all x 6= 0. Hence for x 6= 0,

x>M̃x = y>My where y = (H−1)>x 6= 0, so that since M is positive definite we

have x>M̃x > 0; hence M̃ is also positive definite. We also have S̃n := ∑n
i=1 X̃i =

H−1(Sn−nb). The assumption thatHZd is minimal forX implies that Zd is minimal

for X̃. Thus the process defined by X̃ satisfies the hypotheses of Theorem 6.4.1 in

the case where b = 0 and H = I, with mean µ̃ and covariance M̃ , and that result
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yields

lim
n→∞

sup
x∈n−1/2Zd

∣∣∣nd/2P(n−1/2S̃n = x)− m̃
(
x− n1/2µ̃

)∣∣∣ = 0, (6.4.3)

where

m̃(z) := (det M̃)−1/2

(2π)d/2 exp
{
−1

2z>M̃−1z
}
.

But

P(n−1/2S̃n = x) = P
(
n−1/2Sn = n1/2b +Hx

)
= P(n−1/2Sn = y)

where y = n1/2b +Hx so y ∈ n−1/2(nb +HZd). Also,

x− n1/2µ̃ =
(
H−1y− n1/2H−1b

)
− n1/2H−1(µ− b)

= H−1y− n1/2H−1µ.

Hence, since M̃−1 = H>M−1H and det M̃ = h−2 detM ,

m̃
(
x− n1/2µ̃

)
= (det M̃)−1/2

(2π)d/2 exp
{
−1

2
(
y− n1/2µ

)>
M−1

(
y− n1/2µ

)}
= hm

(
y− n1/2µ

)
.

It follows that (6.4.3) is equivalent to

lim
n→∞

sup
y∈n−1/2(nb+HZd)

∣∣∣∣∣nd/2h P(n−1/2Sn = y)−m
(
y− n1/2µ

)∣∣∣∣∣ = 0,

which is the general statement of Theorem 6.4.1.

6.5 Stable distributions and domains of attrac-

tion

In this section, we will recall some basic theory on stable distributions, which will be

used in the one dimensional case of the center of mass process. Definitions, proofs

of theorems and more background material can be found in [12] and [100].

Formally, a distribution is defined to be stable if any linear combination of two

independent random variables with this distribution has the same distribution, up

to a shift and rescaling. A random variable is defined to be stable if its distribution
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is stable.

We can characterize this type of function using the characteristic function of the

distribution, as stated as the next theorem, a rewritten version of [80, Def. 1.6].

Theorem 6.5.1. A distribution is stable if and only if the logarithm of its charac-

teristic function is of the form

log(φ(t)) = iγt− c|t|α
(

1 + iβ
t

|t|
ω(t, α)

)

where γ ∈ R, α ∈ (0, 2], β ∈ [−1, 1], and

ω(t, α) =


tan

(
π
2α
)

if α 6= 1

2
π

log(|t|) if α = 1

In the case of α < 2, the formula can express in the following way.

log(φ(t)) = iγt+ c1

∫ 0

−∞

(
eitu − 1− itu

1 + u2

)
du

|u|1+α

+ c2

∫ ∞
0

(
eitu − 1− itu

1 + u2

)
du

u1+α (6.5.1)

where c1 and c2 are some positive constants and, again, γ ∈ R.

The case that α = 2 is the classical Gaussian distribution, which we can write

down the close form of the distribution. We can also find closed forms for the density

functions in the cases α = 1 (the Cauchy distribution) and α = 0.5 (the Lévy

distribution). However, there are no closed form in general, meaning that working

with the characteristic functions is necessary. For the purpose of this thesis, we will

only consider the symmetric case, i.e. γ = β = 0, when φ(t) = e−c|t|
α , α ∈ (0, 2).

We also recall the definition of the domains of attraction as follows.

Definition 6.5.2. A random variable X belongs to the domain of attraction of a

stable law G iff there exist an > 0, bn ∈ R such that

Sn − bn
an

d−→ G,

where Sn denotes the nth partial sum, Sn = ∑n
k=1Xk, and Xk are i.i.d copies of X.

We write X ∈ D(G), or, in terms of the distribution functions, FX ∈ D(FG).
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The stable distribution is closely related to domain of attraction in the following

way.

Theorem 6.5.3. A distribution or random variable has a domain of attraction if

and only if it is stable.

We will omit the proof here. For a deeper analysis of domains of attraction, and

a characterisation of the distributions within them, see, for example, Chapter XVII

of [33].

All stable distributions are, by definition, in their own domains of attraction. In-

tuitively, by considering the distribution of the later terms of the sequence, we expect

the limiting distribution to exhibit the same “self-similar” behaviour we required of

stable distributions above.

Theorem 6.5.4. If ξ is in the domain of attraction of a stable distribution with

index α ∈ (0, 2), then

E[|ξ|r] <∞ if r < α

=∞ if r > α.

For r = α either case is possible.

This implies that for α < 1, ξ has no mean, and that for α < 2, ξ has no variance.

The Normal (α = 2) distribution is the only stable distribution with finite variance.

Now we should focus on a slightly narrower interest; the domain of normal

attraction, in which we specify the form of the constants an.

Definition 6.5.5. A random variable X belongs to the domain of normal attraction

of a stable law G iff there exist a > 0 and bn ∈ R such that

Sn − bn
an

1
α

d−→ G, (6.5.2)

where Sn denotes the nth partial sum, Sn = ∑n
k=1Xk.

We have set an = an
1
α . The Convergence to Types theorem in [12] allows us to

assume without loss of generality that a = 1.



Chapter 7

Main results

7.1 Law of large numbers and central limit the-

orem for centre of mass

In this first section we would like to establish some standard properties and theorems

in random walk theory for our centre of mass process.

Recall that we will use the notation

µ := EX, M := E[(X − µ)(X − µ)>]

whenever the expectations exist; when defined, M is a symmetric d by d matrix.

Suppose X,X1, X2, . . . is a sequence of i.i.d. random variables on Rd. The strong

law of large numbers for Sn yields the following strong law for Gn.

Proposition 7.1.1. Suppose that E ‖X‖ <∞. Then n−1Gn → 1
2µ, a.s., as n→∞.

Comparing with the strong law of large numbers for Sn, i.e., Theorem 1.6.1, we

see Gn behaves very similarly to Sn, up to a constant factor of 1
2 .

Proof of Proposition 7.1.1. By the strong law for Sn, we have that for any ε > 0

there exists Nε with P(Nε < ∞) = 1 such that ‖Sn − nµ‖ ≤ nε for all n ≥ Nε.

Then, by the triangle inequality,

‖Gn − (n+ 1)(µ/2)‖ = 1
n

∥∥∥∥∥
n∑
i=1

(Si − iµ)
∥∥∥∥∥

101
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≤ 1
n

Nε∑
i=1
‖Si − iµ‖+ 1

n

n∑
i=Nε
‖Si − iµ‖

≤ 1
n

Nε∑
i=1
‖Si − iµ‖+ 1

n

n∑
i=1

iε.

It follows that

lim sup
n→∞

n−1 ‖Gn − (n+ 1)(µ/2)‖ ≤ ε/2,

and since ε > 0 was arbitrary we get the result.

To go further we typically assume the condition (M) holds. Note that

Gn =
n∑
i=1

(
n− i+ 1

n

)
Xi. (7.1.1)

The representation (7.1.1) leads via the Lindeberg–Feller theorem for triangular

arrays to the following central limit theorem; we write ‘ d−→’ for convergence in

distribution, and Nd(m,Σ) for a d-dimensional normal random variable with mean

m and covariance Σ.

Proposition 7.1.2. If (M) holds, then, as n→∞,

n−1/2
(
Gn −

n

2 µ
)

d−→ Nd(0,M/3).

Comparing with the central limit theorem for Sn, i.e., Theorem 1.6.2, we see Gn

behaves very similarly to Sn except the variance in the normal distribution is one

third of the corresponding variance for Sn.

Proof of Proposition 7.1.2. For any unit vector e ∈ Sd−1, e ·Gn is the centre-of-mass

associated with the one-dimensional random walk with increments e ·Xi; thus, by

the Cramer–Wold device (see e.g [27, Theorem 3.9.5]), it suffices to establish the

central limit theorem for d = 1.

So take d = 1 and write µ = µ, M = σ2 ∈ (0,∞). It follows from (7.1.1) that

for fixed n, Gn has the same distribution as

G′n :=
n∑
i=1

(
i

n

)
Xi.

It thus suffices to show that n−1/2(G′n− n
2µ) converges in distribution to N (0, σ2/3).
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We show that this follows from [14, Corollary 8.4.1]. Define Tn,i := i
n3/2 (Xi − µ).

Then
n∑
i=1

Var(Tn,i) =
n∑
i=1

i2

n3σ
2 → σ2

3 .

It remains to verify the Lindeberg condition for triangular arrays: for every ε > 0,

lim
n→∞

n∑
i=1

E
[
T 2
n,i1{|Tn,i| > ε}

]
= 0.

But we have that
n∑
i=1

E
[
T 2
n,i1{|Tn,i| > ε}

]
≤

n∑
i=1

E
[
T 2
n,n1{|Tn,n| > ε}

]
=

n∑
i=1

1
n
E
[
(Xn − µ)21{|Xn − µ| > ε

√
n}
]

= E
[
(X − µ)21{|X − µ| > ε

√
n}
]
.

Now (X − µ)21{|X − µ| > ε
√
n} → 0 a.s. as n → ∞ and |(X −

µ)21{|X − µ| > ε
√
n}| ≤ (X−µ)2 which has E[(X−µ)2] <∞. Thus the dominated

convergence theorem yields E[(X − µ)21{|X − µ| > ε
√
n}] → 0 as n →∞ and the

Lindeberg condition is verified.

7.2 Local limit theorem for centre of mass

To get the recurrence classification of the centre of mass process, only knowing

the law of large numbers and central limit theorem is not enough to control the

trajectory of the process. We need a more precise result. Our first main result is a

local central limit theorem.

Notice that P(X ∈ b + HZd) = 1 implies P(Sn ∈ nb + HZd) = 1 which again

implies P(Gn ∈ n−1(1
2n(n+ 1)b +HZd) = 1. For x ∈ Rd, define

pn(x) := P(n−1/2Gn = x),

and

n(x) :=
exp{−3

2x>M−1x}
(2π)d/2

√
det(M/3)

. (7.2.1)



7.3. Transience in 2D+ 104

Also define

Ln :=
{
n−3/2

(
1
2n(n+ 1)b +HZd

)}
.

Here is our local limit theorem.

Theorem 7.2.1. Suppose that (L) and (M) hold. Then we have

lim
n→∞

sup
x∈Ln

∣∣∣∣∣n3d/2

h
pn(x)− n

(
x− (n+ 1)

2n1/2 µ

)∣∣∣∣∣ = 0. (7.2.2)

Comparing to Theorem 6.4.1, the local limit theorem for the random walk, Gn

has a different scaling factor and a different shift in the normal distribution. The

formal difference is one of the key for the difference in recurrence classification of Sn
and Gn, we will see more in Section 8.3.

Remarks 7.2.2. (i) In the case d = 1, versions of Theorem 7.2.1 are given in [78,

Lemma 4.3] and in [46, Lemma 1]; the latter result deals only with the special case

of SSRW and only bounds pn(x) up to constant factors. See Chapter 9 for a demon-

stration that our assumptions are indeed satisfied by SSRW on Zd for appropriate

choice of H with h = 2. The proof in [78] is only a sketch, and the claim that “it

is enough to apply the usual analytical methods” [78, p. 515] does not quite tell the

whole story, even in the one-dimensional case. Both [46,78] also give bivariate local

limit theorems for (Sn, Gn) (in the case d = 1). A related result is [23, Theorem 4.2].

(ii) If Zn := Sn − Gn, then note that Zn+1 = n
n+1

∑n
i=1(i/n)Xi+1, which means

that Zn+1
d= n

n+1Gn, where ‘ d=’ stands for equality in distribution. Thus The-

orem 7.2.1 also yields a local limit theorem for Zn. However, the processes Zn
and Gn may behave very differently: see [20, Remark 1.1].

7.3 Transience and diffusive rate of escape in two

or higher dimensions

Now we are ready for the recurrence classification for the centre of mass process and

we now turn to the almost-sure asymptotic behaviour of Gn. We have the following

transience result in dimensions greater than one. In particular, Theorem 7.3.1 says
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that limn→∞ ‖Gn‖ = +∞, a.s., and gives a diffusive rate of escape; in the case of

SSRW the result is due to Grill [46, Theorem 1].

Theorem 7.3.1. Suppose that d ≥ 2 and that (L) and (M) hold, and that µ = 0.

Then

lim
n→∞

log ‖Gn‖
log n = 1

2 , a.s.

As said at the start of this part, it is interesting to investigate why the walk itself

is recurrent while the centre of mass process is transient in two dimensions. The

real reason behind this is because the centre of mass travels much slower than the

original process, with steps of the order of O(n−1/2) comparing to O(1) respectively.

This suggests that the former process is too slow to return to a specific region in a

short amount of time. This idea will be formalized and in fact greatly contribute to

the last part of our proof of the recurrence classification.

Obtaining necessary and sufficient conditions for recurrence and transience of

Gn is an open problem. See Section 10.2 for details.

7.4 One dimension

Next we have a recurrence result in one dimension; in the case of SSRW the fact

that Gn returns i.o. (infinitely often) to a neighbourhood of the origin is due to

Grill [46, Theorem 1].

Theorem 7.4.1. Suppose that d = 1 and that either of the following two conditions

holds.

(i) Suppose that E |X| ∈ (0,∞) and X d= −X.

(ii) Suppose that (M) holds and that EX = 0.

Then lim infn→∞Gn = −∞, lim supn→∞Gn = +∞, and lim infn→∞ |Gn−x| = 0 for

any x ∈ R.

In contrast to Theorem 7.4.1, we will show that in the case where E |X| = ∞,

Gn may be transient. The condition we assume is as follows.
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(S) Suppose that X d= −X and X is in the domain of normal attraction of a

symmetric α-stable distribution with α ∈ (0, 1).

Theorem 7.4.2. Suppose that d = 1 and the lattice condition (L) holds, i.e., P(X ∈

b + hZ) = 1 for b ∈ R and maximal h > 0. Suppose also that (S) holds. Then

lim infn→∞Gn = −∞, lim supn→∞Gn = +∞, and limn→∞ |Gn| =∞.

Remark 7.4.3. The transience here fails in the natural continuous time version of

this model. The analogous continuum model, a symmetric α-stable Lévy process for

α ∈ (0, 1), st, has centre of mass gt = 1
t

∫ t
0 sudu, and it is surely true that gt again

changes sign i.o., but in this case continuity of gt implies that gt = 0 i.o.

Chapter 9 verifies our main assumptions for a couple of simple examples. The

proof of Theorem 7.2.1 is given in Section 8.2. The proof of Theorem 7.4.1 uses

Proposition 7.1.2, some observations following from the Hewitt–Savage zero–one law,

and the fact that in the case where EX = 0 oscillating behaviour is sufficient for

lim infn→∞ |Gn−x| = 0: see Section 7.4 and Section 8.4. The proof of Theorem 7.4.2

uses another local limit theorem (Theorem 8.5.1) and is also presented in Section 8.4.

The proof of Theorem 7.3.1 relies on Theorem 7.2.1: see Section 8.2. Section 8.1

collects auxiliary results on characteristic functions that we need for the proofs of

our local limit theorems.



Chapter 8

Proofs and technical details

In this chapter, we will provide the proofs of all the theorems stated in the last

chapter. Our main goal is to prove Theorem 7.2.1, Theorem 7.3.1, Theorem 7.4.1

and Theorem 7.4.2.

8.1 A characteristic function result

We will use the following characteristic function estimation based on Taylor expan-

sion a few times throughout our proof.

Lemma 8.1.1. Suppose that E[‖X‖2] <∞. For any t ∈ Rd,

ϕ(t) = 1 + it> EX − 1
2t> E[XX>]t + ‖t‖2W (t), (8.1.1)

where for any ε > 0, there exists δ > 0 such that |W (t)| ≤ ε for all t with ‖t‖ ≤ δ.

Proof. Applying [27, Lemma 3.3.7] with x = t>X, we get that if E[‖X‖n] < ∞,

then ∣∣∣∣∣E eit>X −
n∑

m=0
E

(it>X)m
m!

∣∣∣∣∣ ≤ E
∣∣∣∣∣eit>X −

n∑
m=0

(it>X)m
m!

∣∣∣∣∣
≤ Emin

(
|t>X|n+1

(n+ 1)! ,
2|t>X|n
n!

)
.

Taking n = 2 and rearranging, we get equation (8.1.1), and |W (t)| ≤ EZ(t), where

Z(t) = min{‖t‖‖X‖3, ‖X‖2}. Now |Z(t)| ≤ ‖X‖2 and E[‖X‖2] <∞. Also we have

107
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|Z(t)| ≤ ‖t‖‖X‖3 → 0 a.s. as ‖t‖ → 0. So the dominated convergence theorem

implies that EZ(t)→ 0 as ‖t‖ → 0.

8.2 Proof of the local limit theorem

This section is devoted to the proof of Theorem 7.2.1. The outline of the proof

mirrors the standard Fourier-analytic proof of the local central limit theorem for

the random walk: compare e.g. [42], [44, Ch. 9], [27, §3.5], or [56, Ch. 4] for the

one-dimensional case, and [67, §2.2–§2.3] for the case of walks on Zd. The details of

the proof require some extra effort, however.

First we show that it suffices to establish Theorem 7.2.1 in the case where b = 0

and H = I (the identity). To see this, suppose that X ∈ b + HZd and set X̃ =

H−1(X − b). Then X̃ ∈ Zd. By linearity of expectation, we have

µ̃ := E X̃ = H−1(µ− b), and M̃ := E[(X̃ − µ̃)(X̃ − µ̃)>] = H−1M(H−1)>.

Note that (H−1)> is nonsingular, so (H−1)>x 6= 0 for all x 6= 0. Hence for x 6= 0,

x>M̃x = y>My where y = (H−1)>x 6= 0, so that sinceM is positive definite we have

x>M̃x > 0; hence M̃ is also positive definite. Also, S̃n := ∑n
i=1 X̃i = H−1(Sn − nb)

and G̃n := n−1∑n
i=1 S̃i = H−1(Gn − n+1

2 b). The assumption that HZd is minimal

for X implies that Zd is minimal for X̃. Thus the process defined by X̃ satisfies the

hypotheses of Theorem 7.2.1 in the case where b = 0 and H = I, with mean µ̃ and

covariance M̃ , and that result yields

lim
n→∞

sup
x∈n−3/2Zd

∣∣∣∣∣n3d/2P(n−1/2G̃n = x)− ñ
(

x− (n+ 1)
2n1/2 µ̃

)∣∣∣∣∣ = 0, (8.2.1)

where

ñ(z) := (det M̃/3)−1/2

(2π)d/2 exp
{
−3

2z>M̃−1z
}
.

But

P(n−1/2G̃n = x) = P
(
n−1/2Gn = (n+ 1)

2n1/2 b +Hx
)

= P(n−1/2Gn = y)
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where y = (n+1)
2n1/2 b +Hx so y ∈ n−3/2(1

2n(n+ 1)b +HZd). Also,

x− (n+ 1)
2n1/2 µ̃ =

(
H−1y− (n+ 1)

2n1/2 H−1b
)
− (n+ 1)

2n1/2 H−1(µ− b)

= H−1y− (n+ 1)
2n1/2 H−1µ.

Hence, since M̃−1 = H>M−1H and det M̃ = h−2 detM ,

ñ

(
x− (n+ 1)

2n1/2 µ̃

)

= (det M̃/3)−1/2

(2π)d/2 exp

−3
2

(
y− (n+ 1)

2n1/2 µ

)>
M−1

(
y− (n+ 1)

2n1/2 µ

)
= hn

(
y− (n+ 1)

2n1/2 µ

)
.

It follows that (8.2.1) is equivalent to

lim
n→∞

sup
y∈n−3/2( 1

2n(n+1)b+HZd)

∣∣∣∣∣n3d/2

h
P(n−1/2Gn = y)− n

(
y− (n+ 1)

2n1/2 µ

)∣∣∣∣∣ = 0,

which is the general statement of Theorem 7.2.1. Thus for the remainder of this

section we suppose that b = 0 and H = I; hence Ln = n−3/2Zd.

8.2.1 Integral estimates

After the reduction, the next step of the proof will focus on the estimation of the

characteristic function of the centre of mass process. This can done by delicate

Fourier-type analysis as follows.

Let Yn := ∑n
i=1 Si and thus Gn = Yn/n. Recall that ϕ denotes the characteristic

function (ch.f.) of X, and let Φn be the ch.f. of n−3/2Yn, i.e., for t ∈ Rd,

ϕ(t) := E eit>X and Φn(t) := E ein−3/2t>Yn .

Denoting the smallest eigenvalue of M by λmin(M) we have that

inf
t 6=0

t̂>M t̂ = λmin(M) > 0, (8.2.2)



8.2. Proof of the local limit theorem 110

under assumption (M), where t̂ := t/‖t‖ for t 6= 0. Define

fn(t) := exp
{
i(n+ 1)t>µ

2n1/2 − t>Mt
6

}
. (8.2.3)

Our starting point for the proof of the local limit theorem is the following.

Lemma 8.2.1. Suppose that (M) holds and that P(X ∈ Zd) = 1. Then

sup
x∈Ln

∣∣∣∣∣n3d/2pn(x)− n
(

x− (n+ 1)
2n1/2 µ

)∣∣∣∣∣
≤
∫
R(n)
|Dn(t)| dt +

∫
Rc(n)

exp
{
−λmin(M)

6 ‖t‖2
}

dt,

where R(n) := [−πn3/2, πn3/2]d, Rc(n) := Rd \R(n), and Dn(t) := Φn(t)− fn(t).

Proof. For a lattice random variable W ∈ Zd, by the inversion formula for the

characteristic function (see e.g. [67, Corollary 2.2.3, p. 29]) we have that

P(W = y) = 1
(2π)d

∫
[−π,π]d

e−iu>y E
[
eiu>W

]
du, (8.2.4)

for y ∈ Zd. Now we have for x ∈ Ln, pn(x) = P(Yn = n3/2x), so applying (8.2.4)

with W = Yn ∈ Zd, we get for x ∈ Ln that

pn(x) = 1
(2π)d

∫
[−π,π]d

e−in3/2u>x E
[
eiu>Yn

]
du.

Using the substitution u = n−3/2t, we obtain

n3d/2pn(x) = 1
(2π)d

∫
[−πn3/2,πn3/2]d

e−it>xΦn(t)dt. (8.2.5)

On the other hand, since the probability density n(x− (n+1)
2n1/2 µ), with n( •) as defined

at (7.2.1), corresponds to the ch.f. fn(t) as defined at (8.2.3), the inversion formula

for densities yields

n

(
x− (n+ 1)

2n1/2 µ

)
= 1

(2π)d
∫
Rd

e−it>xfn(t)dt, (8.2.6)

for x ∈ Rd. Now we subtract (8.2.6) from (8.2.5) to get



8.2. Proof of the local limit theorem 111

n3d/2pn(x)− n
(

x− (n+ 1)
2n1/2 µ

)

= 1
(2π)d

∫
R(n)

e−it>xDn(t)dt− 1
(2π)d

∫
Rc(n)

e−it>xfn(t)dt.

Thus, by the triangle inequality with the estimates π > 1 and |e−it>x| ≤ 1, we obtain

sup
x∈Ln

∣∣∣∣∣n3d/2pn(x)− n
(

x− (n+ 1)
2n1/2 µ

)∣∣∣∣∣ ≤
∫
R(n)
|Dn(t)| dt +

∫
Rc(n)

exp
{
−t>Mt

6

}
dt,

which with (8.2.2) yields the statement in the lemma.

To prove Theorem 7.2.1 we must show that the right-hand side of the inequality

in Lemma 8.2.1 approaches 0 when n→∞. To do so, we bound Dn(t) in different

regions for t. Observing that Yn = ∑n
i=1 Si = ∑n

j=1(n− j + 1)Xj, we see

Φn(t) = E
[
exp

{
in−3/2t>Yn

}]
= E

exp

in−3/2
n∑
j=1

(n− j + 1)t>Xj


 .

For fixed n, ∑n
j=1(n− j + 1)t>Xj

d= ∑n
j=1 jt>Xj, so that

Φn(t) = E

exp

in−3/2
n∑
j=1

jt>Xj


 =

n∏
j=1

E
[
exp

{
in−3/2jt>Xj

}]
.

Hence we conclude that for t ∈ Rd,

Φn(t) =
n∏
j=1

ϕ(n−3/2jt). (8.2.7)

To study Φn we require certain characteristic function estimates, presented in Sec-

tion 8.1.

We partition R(n) into four regions defined as follows:

R1 := [−A,A]d

R2(n) := [−δ
√
n, δ
√
n]d \R1

R3(n) := [−π
√
n, π
√
n]d \ (R1 ∪R2(n))

R4(n) := R(n) \ (R1 ∪R2(n) ∪R3(n))

where constants A ∈ (0,∞) and δ ∈ (0, π) will be chosen later. We also denote the

corresponding integrals Ik(n) :=
∫
Rk
|Dn(t)| dt, k = 1, 2, 3, 4.
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Lemma 8.2.2. For δ > 0 sufficiently small, the following statements are true.

(i) For any A ∈ R+, limn→∞ |I1(n)| = 0,

(ii) limA→∞ supn |I2(n)| = 0,

(iii) limn→∞ |I3(n)| = 0,

(iv) limn→∞ |I4(n)| = 0.

We will combine all the estimates at the end of the argument.

Proof of Lemma 8.2.2. First we aim to show that

lim
n→∞

sup
t∈R1

|Dn(t)| = 0. (8.2.8)

Since EX = µ and E[(X − µ)(X − µ)>] = M , we have E[XX>] = M + µµ>, so

that Lemma 8.1.1 implies, uniformly over t ∈ R1, as n→∞,

n∏
j=1

ϕ(n−3/2jt) = exp


n∑
j=1

log
[
1 + A(n, j, t) + o(n−1)

] ,
where

A(n, j, t) := in−3/2jt>µ− 1
2n
−3j2t>(M + µµ>)t. (8.2.9)

Taylor’s theorem for a complex variable shows that for a constant C <∞,∣∣∣∣∣log(1 + z)−
(
z − z2

2

)∣∣∣∣∣ ≤ C|z|3, (8.2.10)

for z in an open disc containing 0. Note from (8.2.9) that

A(n, j, t)2 = −n−3j2t>µµ>t + ∆0(n, j, t), (8.2.11)

where max1≤j≤n supt∈R1 |∆0(n, j, t)| = O(n−3/2). Then, by (8.2.7), (8.2.10), (8.2.11),

and the fact that max1≤j≤n supt∈R1 |A(n, j, t)| = O(n−1/2), it follows that

Φn(t) = exp


n∑
j=1

(
in−3/2jt>µ− 1

2n
−3j2t>Mt

)
+ ∆0(n, t)

 ,
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where supt∈R1 |∆0(n, t)| → 0. Elementary algebra gives ∑n
j=1 j = 1

2n(n + 1) and∑n
j=1 j

2 = 1
6n(n+ 1)(2n+ 1), so we obtain the estimate

Φn(t) = exp
{
i(n+ 1)t>µ

2n1/2 − t>Mt
6 + ∆1(n, t)

}
,

where supt∈R1 |∆1(n, t)| → 0 as n→∞. Hence, by (8.2.3),

|Dn(t)| = |Φn(t)− fn(t)| ≤ |1− exp{∆1(n, t)}| ,

which establishes (8.2.8) and proves part (i) of the lemma. For part (ii), suppose

that t ∈ [0, δn1/2]d. Fix ε > 0. Then for 1 ≤ j ≤ n, we have ‖n−3/2jt‖ ≤ δd1/2.

Thus, from Lemma 8.1.1,

ϕ(n−3/2jt) = 1 + A(n, j, t) + ∆1(n, j, t),

where A(n, j, t) is as defined at (8.2.9), and |∆1(n, j, t)| ≤ εn−1‖t‖2 for all t ∈

[0, δn1/2]d and δ sufficiently small. Also note that |A(n, j, t)| ≤ Cn−1/2‖t‖, so that

|A(n, j, t)|3 ≤ Cn−3/2‖t‖3 ≤ C ′δn−1‖t‖2 ≤ εn−1‖t‖2, (8.2.12)

for δ sufficiently small; here C and C ′ are constants that do not depend on δ. Thus

we may apply (8.2.10) to obtain

n∏
j=1

ϕ(n−3/2jt) = exp


n∑
j=1

log [1 + A(n, j, t) + ∆1(n, j, t)]


= exp


n∑
j=1

(
A(n, j, t)− 1

2A(n, j, t)2
)

+ ∆1(n, t)

 ,
where |∆1(n, t)| ≤ ε‖t‖2 for δ sufficiently small. Here (8.2.11) holds, where now,

for all t ∈ [0, δn1/2]d, similarly to (8.2.12), |∆0(n, j, t)| ≤ εn−1‖t‖2 for δ sufficiently

small. So, for δ sufficiently small, for t ∈ R2(n),
n∏
j=1

ϕ(n−3/2jt) = exp
{
i(n+ 1)t>µ

2n1/2 − t>Mt
6 + ∆2(n, t)

}
,

where |∆2(n, t)| ≤ ε‖t‖2 for all n sufficiently large. Suppose ε ∈ (0, λmin(M)/12),
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so that, by (8.2.2), t>Mt ≥ 12ε‖t‖2. Then

|Φn(t)| =
∣∣∣∣∣exp

{
−t>Mt

6 + ∆2(n, t)
}∣∣∣∣∣ ≤ exp{−ε‖t‖2}.

So we have

I2(n) ≤
∫
R2(n)

|Φn(t)|dt +
∫
R2(n)

|fn(t)|dt

≤ 2
∫
Rd\R1

exp
{
−ε‖t‖2

}
dt,

for δ sufficiently small and n sufficiently large. This yields part (ii) of the lemma.

Now we proceed to estimate I3(n). First note that, by (8.2.7),

|Φn(t)| =
n∏
j=1
|ϕ(n−3/2jt)| ≤

n∏
j=dn/2e

|ϕ(n−3/2jt)|. (8.2.13)

For any t ∈ R3(n), we have n−3/2jt ∈ [−πj/n, πj/n]d \ [−δj/n, δj/n]d. In particular
n⋃

j=dn/2e
{n−3/2jt} ⊂ [−π, π]d \ [−δ/2, δ/2]d.

Thus we may apply the final statement in Lemma 6.2.3 for some ρ sufficiently small

to obtain

sup
t∈R3(n)

sup
dn/2e≤j≤n

|ϕ(n−3/2jt)| ≤ e−cρ ,

for some cρ > 0. Hence from (8.2.13) we have

sup
t∈R3(n)

|Φn(t)| ≤ e−ncρ/2.

It follows that

|I3(n)| ≤
∫

[−π
√
n,π
√
n]d

e−ncρ/2 +
∫
Rd\[−δ

√
n,δ
√
n]d

exp
{
−t>Mt

6

}
dt

≤ (2π)dnd/2e−ncρ/2 +
∫
Rd\[−δ

√
n,δ
√
n]d

exp
{
−λmin(M)

6 ‖t‖2
}

dt,

using (8.2.2). This gives part (iii) of the lemma.

It remains to estimate I4(n). Fix t ∈ R4(n), and consider sets

Λn(t) =
{
n−3/2jt : j ∈ {1, 2, . . . , n}

}
, and Ln(t) =

{
n−3/2ut : 1 ≤ u ≤ n

}
.
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Recall that SH := 2πZd in the case H = I, and, for ρ > 0, define SH(ρ) :=

∪y∈SB(y; ρ), where B(y; ρ) is the open Euclidean ball of radius ρ centred at y ∈ Rd.

Define Nn(t) := |Λn(t) \ SH(ρ)|. Lemma 6.2.3 and (8.2.7) show that

|Φn(t)| =
n∏
j=1
|ϕ(n−3/2jt)| ≤ exp{−cρNn(t)}, (8.2.14)

for some positive constant cρ. We aim to show that Nn(t) is bounded below by

a constant times n. To do this we use a counting argument related to one used

in [23, Lemma 4.4].

Let Kn(t) be the number of x ∈ SH such that B(x; ρ) ∩ Ln(t) 6= ∅. Set ν :=

n−3/2‖t‖. As t ∈ [−πn3/2, πn3/2]d \ [−πn1/2, πn1/2]d, we have

π

n
≤ ν ≤ π

√
d. (8.2.15)

Take ρ = π/8. We claim that between any two balls of SH(ρ) that intersect Ln(t)

there is at least one point of Λn(t). Write yj = n−3/2jt for j ∈ {1, . . . , n}. Suppose

i1, i2 ∈ {1, . . . , n} with i1 < i2 and x1,x2 ∈ SH with x1 6= x2 are such that yi1 ∈

B(x1; ρ) and yi2 ∈ B(x2, ρ). To prove the claim we need to show that there exists j

with i1 < j < i2 such that yj /∈ SH(ρ). First note that since n−3/2t ∈ [−π, π]d and

yi1 ∈ B(x1; ρ), the point yi1+1 must lie in the box Q(x1) = x1 + [−9π/8, 9π/8]d.

As 9π/8 < 15π/8 = 2π − ρ, the box Q(x1) does not intersect any balls in SH(ρ)

other than B(x1; ρ). There are two cases. Either (i) yi1+1 /∈ B(x1; ρ), or (ii) yi1+1 ∈

B(x1; ρ). In case (i) the claim is proved. In case (ii), we have ν ≤ 2ρ, and since

B(x1; 3ρ) is contained in Q(x1), there is some j with i1 + 1 < j < i2 such that

yj /∈ SH(ρ), proving the claim. Hence

Nn(t) ≥ Kn(t)− 1. (8.2.16)

The total length of Ln(t) is less than νn, and each segment of Ln(t) between neigh-

bouring balls that intersect Ln(t) has length at least 2π−2ρ, so (Kn(t)−1)(2π−2ρ) ≤

νn, or, equivalently,

Kn(t) ≤ 4νn
7π + 1. (8.2.17)

Moreover, each ball of SH(ρ) that intersects Ln(t) contains at most 2ρ/ν + 1 points
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of Λn(t), so that the number of points in Λn(t) ∩ SH(ρ) satisfies

n−Nn(t) ≤ Kn(t)
(
π

4ν + 1
)
. (8.2.18)

Let ε > 0 be a constant. We consider the following two cases.

Case 1: Kn(t) ≤ εnν. In this case we have from (8.2.18) and (8.2.15) that

Nn(t) ≥ n− πε

4 n− εnν ≥ n− π

4 εn− εnπ
√
d ≥ εn,

for ε small enough.

Case 2: Kn(t) > εnν. If ν ≥ 1
2 , then we have from (8.2.16) that,

Nn(t) ≥ Kn(t)− 1 ≥ (ε/3)n,

for n sufficiently large. On the other hand, if ν < 1
2 , then (8.2.18) and (8.2.17) show

that

Nn(t) ≥ n−
(4νn

7π + 1
)(

π

4ν + 1
)

= 6n
7 −

π

4ν −
4νn
7π − 1

≥ 6n
7 −

n

4 −
2n
7π − 1,

by (8.2.15). Thus we have shown that, in any case, Nn(t) ≥ εn for some constant

ε > 0 and all n sufficiently large. Thus from (8.2.14) we conclude that

|I4(n)| ≤
∫
R4(n)

|Φn(t)|dt +
∫
R4(n)

|fn(t)|dt

≤ (2πn3/2)d exp {−εcρn}+
∫
Rd\[−πn1/2,πn1/2]d

exp
{
−λmin(M)

6 ‖t‖2
}

dt.

Hence we have proved the last statement in Lemma 8.2.2.

Now we can gather all our estimates and complete the proof of Theorem 7.2.1.

Proof of Theorem 7.2.1. We have from Lemma 8.2.1 that

sup
x∈Ln

∣∣∣∣∣n3d/2

h
pn(x)− n(x)

∣∣∣∣∣ ≤
4∑

k=1
Ik(n) +

∫
Rc(n)

exp
{
−λmin(M)

6 ‖t‖2
}

dt. (8.2.19)

Clearly the integral term tends to 0 as n → ∞, while Lemma 8.2.2 shows that
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|I3(n) + I4(n)| → 0. Lemma 8.2.2 also shows that for any ε > 0, we can choose A

large enough so that |I2(n)| ≤ ε for all n, and hence lim supn→∞ |I1(n) + I2(n)| ≤ ε.

Hence |I1(n) + I2(n)| → 0 as well. This completes the proof of the theorem.

8.3 Proofs for two or higher dimensions

This section is devoted to the proof of Theorem 7.3.1. The idea is to use the local

limit theorem to control (via Borel–Cantelli) the visits of Gn to a growing ball, along

a subsequence of times suitably chosen so that the slow movement of the centre of

mass controls the trajectory between the times of the subsequence as well. Here is

our estimate on the deviations.

Lemma 8.3.1. Suppose that (M) holds and that µ = 0. Let an = dnβe for some

β > 1. Then, for any ε > 0, a.s. for all but finitely many n,

max
an≤m≤an+1

‖Gm −Gan‖ ≤ n
β
2−1+ε.

Proof. We use the crude bound that for any ε > 0, ‖Sn‖ ≤ n(1/2)+ε all but f.o., a.s.

It follows from the triangle inequality that

‖Gn‖ ≤
1
n

n∑
i=1
‖Si‖ ≤ max

1≤i≤n
‖Si‖ ≤ n(1/2)+ε, (8.3.1)

all but f.o., a.s. Next, by the triangle inequality again, for any ε > 0, a.s., all but

f.o.,

‖Gn+1 −Gn‖ =
∥∥∥∥Sn+1 −Gn

n+ 1

∥∥∥∥ ≤ ‖Sn+1‖
n+ 1 + ‖Gn‖

n+ 1 ≤ n−(1/2)+ε. (8.3.2)

It follows that for any ε > 0, a.s., all but f.o.,

max
an≤m≤an+1

‖Gm −Gan‖ ≤ (an+1 − an) max
an≤m≤an+1−1

‖Gm+1 −Gm‖,

where an+1 − an ≤ (n+ 1)β − nβ + 1 = O(nβ−1), and, a.s., all but f.o., by (8.3.2),

max
an≤m≤an+1−1

‖Gm+1 −Gm‖ ≤ a−(1/2)+ε
n = O(n−(β/2)+βε).

Since ε > 0 was arbitrary, the result follows.
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Now we are ready to prove Theorem 7.3.1.

Proof of Theorem 7.3.1. First, given the upper bound in equation (8.3.1), we only

need to show that for any ε > 0, a.s., for all but finitely many n,

‖Gn‖ ≥ n(1/2)−ε. (8.3.3)

Let B(r) denote the closed Euclidean ball, centred at the origin, of radius r > 0.

We show that for any γ ∈ (0, 1/2), Gn will return to the ball B(nγ) only f.o. To

do this, we show that along a suitable subsequence an = dnβe, β > 1, Gan returns

to the ball B(2aγn) only f.o., and Lemma 8.3.1 controls the trajectory between the

instants of the subsequence.

First, we claim that

P(Gn ∈ B(2nγ)) ≤ Cnd(γ−
1
2), (8.3.4)

for sufficiently large n and some constant C. Then
∞∑
n=1

P(Gan ∈ B(2aγn)) ≤ C
∞∑
n=1

nβd(γ−
1
2).

Assuming that

β >
2

d(1− 2γ) (8.3.5)

this sum converges, so the Borel–Cantelli lemma shows that Gan /∈ B(2aγn) for all

but finitely many n, a.s. It then follows from Lemma 8.3.1 that between any an

and an+1 with n sufficiently large, the trajectory deviates by at most n(β/2)−1+ε.

In particular, the trajectory between times an and an+1 will not visit B(aγn) if we

ensure that n(β/2)−1+ε < aγn. (See Figure 8.1.) The latter condition can be achieved

(for sufficiently small choice of ε) if (β/2)− 1 < βγ, i.e., β < (1
2 − γ)−1. Combined

with (8.3.5) we see that we must choose β > 1 such that

2
d(1− 2γ) < β <

2
(1− 2γ) ,

which is possible for any γ ∈ (0, 1/2), provided d ≥ 2.

Consider n such that am ≤ n < am+1; then we have shown that a.s., for all but
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finitely many n,

‖Gn‖ ≥ aγm ≥ mβγ ≥
(

mβγ

2(m+ 1)βγ

)
aγm+1.

In particular, for all n sufficiently large, ‖Gn‖ ≥ (1/4)nγ, which establishes (8.3.3).

Figure 8.1: Controlling Gn along a subsequence.

It remains to prove the claim (8.3.4); here we use our local limit theorem. First

note that

P(Gn ∈ B(2nγ)) = P(n−1/2Gn ∈ n−1/2B(2nγ)).

The ball n−1/2B(2nγ) has radius O(nγ− 1
2 ), and the lattice spacing of Ln is of order

n−3/2, so n−1/2B(2nγ) contains O(nd(γ+1)) lattice points. From Theorem 7.2.1, we

also know that for all x ∈ Ln, P(n−1/2Gn = x) = O(n−3d/2). Summing up over all

x ∈ n−1/2B(2nγ) we get

P(n−1/2Gn ∈ n−1/2B(2nγ)) = O
(
n−3d/2 × nd(γ+1)

)
= O

(
nd(γ−

1
2)
)
,

establishing (8.3.4). This completes the proof.

8.4 Proofs for one dimension

8.4.1 Recurrence

We will start with a couple of general observations that help the proof of Theorem

7.4.1 in Section 8.4. Recall the definition of an exchangeable event from Section 6.3.
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For our one dimensional centre of mass process, we have the following result.

Lemma 8.4.1. Let d = 1. For any x ∈ R, the event {lim supn→∞Gn ≥ x} is

exchangeable.

Proof. For any x ∈ R, we notice that for any fixed positive integer k,
{

lim sup
n→∞

Gn ≥ x
}

=
{

lim sup
n→∞

[ 1
n

(S1 + S2 + · · ·+ Sk) + 1
n

(Sk+1 + Sk+2 + · · ·+ Sn)
]
≥ x

}
=
{

lim sup
n→∞

1
n

(Sk+1 + Sk+2 + · · ·+ Sn) ≥ x
}
,

which is invariant under permutations of X1, X2, . . . , Xk.

The next result shows that Gn can either be trivial, transient, or oscillating.

Lemma 8.4.2. Let d = 1. One and only one of the following will occur with

probability 1.

(i) Gn = 0 for all n.

(ii) Gn →∞.

(iii) Gn → −∞.

(iv) −∞ = lim infn→∞Gn < lim supn→∞Gn =∞.

Proof. We adapt the proof of Theorem 4.1.2 in [27]. Lemma 8.4.1 and the Hewitt–

Savage zero–one law (Theorem 6.3.1) imply lim supn→∞Gn = `, a.s., for some ` ∈

[−∞,∞]. Let G′n := n+1
n

(Gn+1 − X1) = ∑n
i=1

n−i+1
n

Xi+1. Recalling (7.1.1), we

see the sequence (G′n) has the same distribution as (Gn). So taking n → ∞ in
n
n+1G

′
n = Gn+1−X1 we obtain ` = `−X1, a.s., implyingX1 = 0 a.s. if ` is finite, which

is case (i). Otherwise, ` = −∞ or +∞. A similar argument applies to lim infn→∞Gn.

The 3 possible combinations (lim supn→∞Gn = −∞ and lim infn→∞Gn =∞ being

impossible) give (ii), (iii), and (iv).

Clearly cases (ii) and (iii) of Lemma 8.4.2 are transient; case (iv), when the

walk oscillates, is the most interesting case. The next result shows that oscillating

behaviour is enough to ensure recurrence provided that EX = 0.
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Lemma 8.4.3. Suppose that d = 1 and EX = 0. Suppose that lim supn→∞Gn =

+∞ and lim infn→∞Gn = −∞. Then, for any x ∈ R, lim infn→∞ |Gn − x| = 0, a.s.

Proof. Fix ε > 0. Since Sn/n→ 0 a.s. and, by Proposition 7.1.1, Gn/n→ 0 a.s., we

have

Gn+1 −Gn = Sn+1 −Gn

n+ 1 → 0, a.s.

Hence |Gn+1−Gn| < ε all but f.o. (finitely often). For any x ∈ R, lim supn→∞Gn =

+∞ and lim infn→∞Gn = −∞ implies that there are infinitely many n for which

Gn − x and Gn+1 − x have opposite signs. Hence |Gn − x| < ε infinitely often.

The next result shows that Gn does oscillate when (M) holds.

Lemma 8.4.4. Suppose that d = 1, that (M) holds, and that EX = 0. Then

lim supn→∞Gn = +∞ and lim infn→∞Gn = −∞.

Proof. For any x ∈ R, we have that

P
(

lim sup
n→∞

Gn ≥ x
)
≥ P (Gn ≥ x i.o.)

= P

 ∞⋂
m=1

⋃
n≥m
{Gn ≥ x}


= lim

m→∞
P

 ⋃
n≥m
{Gn ≥ x}


≥ lim

m→∞
P (Gm ≥ x)

= 1
2 ,

by the central limit theorem, Proposition 7.1.2. With Lemma 8.4.1 and the Hewitt–

Savage zero–one law (Theorem 6.3.1), it follows that lim supn→∞Gn ≥ x, a.s., and

since x ∈ R was arbitrary, we get lim supn→∞Gn = +∞. A similar argument gives

lim infn→∞Gn = −∞.

Now we are ready to prove our main recurrence theorem in one dimension.

Proof of Theorem 7.4.1. Under the conditions in part (i) of the theorem, the process

(Gn) has the same distribution as the process (−Gn), and so we must be in either
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case (i) or (iv) of Lemma 8.4.2. The trivial case (i) is ruled out since E |X| > 0.

Thus case (iv) applies, and Gn changes sign i.o., so by Lemma 8.4.3 we obtain the

desired conclusion.

Under the conditions in part (ii), Lemma 8.4.4 applies, so (iv) applies again, and

the same argument gives the result.

8.5 Case of stable distribution

8.5.1 Local limit theorem for stable distribution

For the remainder of this section we work towards a proof of Theorem 7.4.2. The

proof rests on the following local limit theorem. We use the notation

Ln :=
{
n−1−1/α

(
1
2n(n+ 1)b+ hZ

)}
,

and pn(x) := P(Gn = n1/αx).

Theorem 8.5.1. Suppose that d = 1 and (L) holds, i.e., P(X ∈ b + hZ) = 1 for

b ∈ R and h > 0 maximal. Suppose also that (S) holds. Then

lim
n→∞

sup
x∈Ln

∣∣∣∣∣n1+1/α

h
pn(x)− (α + 1)1/αg

(
(α + 1)1/αx

)∣∣∣∣∣ = 0, (8.5.1)

where g(x) is the density of the stable distribution in (S).

Proof. The proof is similar to that of Theorem 7.2.1, and can also be compared to

the proof of the local limit theorem for sums of i.i.d. random variables in the domain

of attraction of a stable law: see [56, §4.2].

Assumption (S) implies that n−1/αSn converges in distribution to a (constant

multiple of) a random variable with characteristic function ν(t) = e−c|t|α , where

c > 0 and α ∈ (0, 1); see Theorems 2.2.2 and 2.6.7 of [56]. It also follows, by an

examination of the statements of Theorems 2.6.1 and 2.6.7 of [56] and the proof of

Theorem 2.6.5 of [56], that for t in a neighbourhood of 0,

logϕ(t) = −c|t|α (1 + ε(t)) , (8.5.2)
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where |ε(t)| → 0 as t→ 0.

Define Yn = ∑n
i=1 Si and let

Φn(t) := E ein−1−1/αtYn .

Using the d = 1 case of the inversion formula (8.2.4) with W =
(
Yn − n(n+1)

2 b
)
/h ∈

Z, we get

pn(x) = 1
2π

∫ π

−π
e−

iu
h (n1+1/αx−n(n+1)

2 b) E
[
e
iu
h (Yn−n(n+1)

2 b)
]

du, for x ∈ Ln.

Using the substitution t = un1+1/α/h, we obtain

n1+1/α

h
pn(x) = 1

2π

∫ πn1+1/α/h

−πn1+1/α/h
e−itxΦn(t)dt. (8.5.3)

On the other hand, from the inversion formula for densities we have that

g(x) = 1
2π

∫ ∞
−∞

e−itxν(t)dt,

where g is the density corresponding to ν. It follows that

(α + 1)1/αg
(
(α + 1)1/αx

)
= 1

2π

∫ ∞
−∞

(α + 1)1/αe−it(α+1)1/αxν (t) dt

= 1
2π

∫ ∞
−∞

e−isxν
(

s

(α + 1)1/α

)
ds,

using the substitution s = (α + 1)1/αt. Since ν(t) = e−c|t|α , we get

(α + 1)1/αg
(
(α + 1)1/αx

)
= 1

2π

∫ ∞
−∞

e−itx−
c|t|α
α+1 dt. (8.5.4)

Subtracting equation (8.5.4) from equation (8.5.3) we obtain∣∣∣∣∣n1+1/α

h
pn(x)− (α + 1)1/αg

(
(α + 1)1/αx

)∣∣∣∣∣ ≤
4∑

k=1
Jk(n) + J5,

where

J1(n) :=
∫ A

−A

∣∣∣∣Φn(t)− e−
c|t|α
α+1

∣∣∣∣ dt
J2(n) :=

∫
A≤|t|≤δn1/α

|Φn(t)| dt

J3(n) :=
∫
δn1/α≤|t|≤πn1/α/h

|Φn(t)| dt
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J4(n) :=
∫
πn1/α/h≤|t|≤πn1+1/α/h

|Φn(t)| dt

J5 :=
∫
|t|>A

∣∣∣∣e− c|t|αα+1

∣∣∣∣ dt

for some constants A and δ to be determined later. The statement of the theorem

will follow once we show that

lim
A→∞

lim
n→∞

( 4∑
k=1

Jk(n) + J5

)
= 0.

Thus it remains to establish this fact.

Since Yn has the same distribution as ∑n
j=1 jXj, we get

log Φn(t) = log
n∏
j=1

ϕ
(

jt

n1+1/α

)
=

n∑
j=1

logϕ
(

jt

n1+1/α

)

= − c|t|
α

nα+1

n∑
j=1

jα
(

1 + ε
(

jt

n1+1/α

))
, (8.5.5)

using (8.5.2). Since |ε(t)| → 0 as t→ 0, we have

lim
n→∞

sup
t∈[−A,A]

max
j∈{1,2,··· ,n}

ε
(

jt

n1+1/α

)
= 0. (8.5.6)

A simple consequence of the fact that ∑n−1
k=0 k

α ≤
∫ n

0 u
αdu ≤ ∑n

k=1 k
α for α > 0 is

n∑
j=1

jα = nα+1

α + 1 +O(nα). (8.5.7)

It follows from (8.5.5), (8.5.6) and (8.5.7), that uniformly over t ∈ [−A,A], as

n→∞,

log Φn(t) = − c|t|α

1 + α
(1 + o(1)).

It follows that limn→∞ J1(n) = 0 for any A ∈ R+.

For J2(n), we see that

lim
δ→0

sup
n

sup
t∈[−δn1/α,δn1/α]

max
j∈{1,2,··· ,n}

ε
(

jt

n1+1/α

)
= 0.
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So by (8.5.7) we may choose δ small enough so that for t ∈ [−δn1/α, δn1/α],

log Φn(t) ≤ − c|t|
α

nα+1

(
1− 1

4

)( 1
α + 1n

α+1 +O(nα)
)
.

Hence for sufficiently large n, for all t ∈ [−δn1/α, δn1/α],

log Φn(t) ≤ −1
2
c|t|α

α + 1 .

It follows that

sup
n
J2(n) ≤

∫
|t|≥A

e−
1
2
c|t|α
α+1 dt,

which tends to 0 as A→∞.

Next we consider J3(n). First observe that

|Φn(t)| =
n∏
j=1

∣∣∣∣ϕ( jt

n1+1/α

)∣∣∣∣ ≤ n∏
j=dn/2e

∣∣∣∣ϕ( jt

n1+1/α

)∣∣∣∣ .
Now for any δn1/α ≤ |t| ≤ πn1/α/h and any dn/2e ≤ j ≤ n, we have

δ

2 ≤
∣∣∣∣ jt

n1+1/α

∣∣∣∣ ≤ π

h
.

We can take ρ sufficiently small so that

ρ <
δ

2 ≤
∣∣∣∣ jt

n1+1/α

∣∣∣∣ ≤ π

h
<

2π
h
− ρ.

So an application of the d = 1 case of Lemma 6.2.2 gives, for all n,

sup
δn1/α≤|t|≤πn1/α/h

sup
dn/2e≤j≤n

∣∣∣∣ϕ( jt

n1+1/α

)∣∣∣∣ ≤ e−cρ ,

for some cρ > 0. Hence we have

sup
δn1/α≤|t|≤πn1/α/h

|Φn(t)| ≤ e−ncρ/2,

and hence

J3(n) =
∫
δn1/α≤|t|≤πn1/α/h

|Φn(t)| dt ≤ π

h
n1/αe−ncρ/2 → 0,

as n→∞.

For J4(n), we follow essentially the same counting argument as that used for



8.5. Case of stable distribution 126

I4(n) in Section 8.2. Let t′ = t/h. Define

Λ′(t′) :=
{
n−1−1/αjt′ : j ∈ {1, 2, . . . , n}

}
and L′n(t′) :=

{
n−1−1/αut′ : 1 ≤ u ≤ n

}
Let ν := n−1−1/α|t′| denote the spacing of the points of Λ′(t′). Since πn1/α ≤ |t′| ≤

πn1+1/α, we have
π

n
≤ ν ≤ π,

which is just the d = 1 case of (8.2.15). Since the counting argument is based on the

fact that there are n points with spacing satisfying (8.2.15), the rest of the argument

goes through unchanged and we get

J4(n) =
∫
πn1/α/h≤|t|≤πn1+1/α/h

|Φn(t)| dt ≤ π

h
n1+1/α exp {−εcρn} → 0,

as n→ 0.

Finally, it is clear that limA→∞ supn J5 = 0.

8.5.2 Transience with stable distribution in one dimension

Using the local limit theorem we just proved, we are ready for the proof of the

transient case in one dimension.

Proof of Theorem 7.4.2. Fix x ∈ (0,∞) and consider the interval I = (−x, x). Then

P(Gn ∈ I) = P(n−1/αGn ∈ n−1/αI). Since the lattice spacing of Ln is of order

n−1−1/α, the interval n−1/αI contains O(n) lattice points of Ln. Theorem 8.5.1

shows that each such lattice point is associated with probability O(n−1−1/α). So we

get P(Gn ∈ I) = O(n−1/α), which is summable for α ∈ (0, 1). Hence the Borel–

Cantelli lemma implies that lim infn→∞ |Gn| ≥ x, a.s., and since x was arbitrary the

result follows.



Chapter 9

Examples and applications

In this chapter, we will give a few examples to illustrate the complication on the

lattice distribution. In order to apply the local limit theorems in Chapter 7, one has

to carefully find the maximal span h to interpret the theorem in the right lattice.

This is not always immediate even for some classical random walks.

Recall the notation that ϕ(t) := E[eit>X ] for the characteristic function of X.

Also, we set U := {t ∈ Rd : |ϕ(t)| = 1}, and given an invertible d by d matrix H,

set SH := 2π(H>)−1Zd.

9.1 Lazy simple symmetric random walk

It is remarkable that the trivial choice of lattice distribution for simple symmetric

random walk, i.e. b = 0 and H = I, the d by d identity matrix, is not the right one

as the span h in this case is not maximal. The right choice is actually quite a hassle

to obtain. We will discuss that in the next section. Before that, there is actually an

elementary walk that has the trivial choice as the right choice. It is the lazy simple

symmetric random walk.

Example 9.1.1 (Lazy SSRW on Zd). Let e1, . . . , ed be the standard orthonormal

basis vectors of Rd, and suppose that P(X = ei) = P(X = −ei) = 1
4d for all i, and

P(X = 0) = 1
2 . Then for b = 0 and H = I, the d by d identity matrix, we have

P(X ∈ Zd) = 1. To verify that L = Zd is minimal, it is sufficient (see Lemma 6.2.3)
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to check that U = SH = 2πZd. If t = (tj) ∈ Rd,

ϕ(t) = 1
2 + 1

4d

d∑
j=1

(
eitj + e−itj

)
= 1

2 + 1
2d

d∑
j=1

cos tj.

Thus t ∈ U if and only if cos tj = 1 for all j, i.e., U = 2πZd = SH , as required. Note

that we could alternatively see the upper bound and apply Lemma 6.2.1 to check

that h = 1 is maximal.

Maybe this walk is just too lazy to bother with a complicated choice of a lattice

distribution.

9.2 Simple symmetric random walk

Without delay, we will show a right choice of lattice distribution for simple symmetric

random walk.

Example 9.2.1 (SSRW on Zd). Suppose that P(X = ei) = P(X = −ei) = 1
2d for

all i. For SSRW the construction of H for which (L) holds is non-trivial. For d = 1,

we take b = −1 and h = 2. In general d ≥ 2, we take H = (hij) and b = (bi) defined

as follows. If d = 2n− 1 for n ≥ 2, n ∈ Z, we take

bi = −1 for all i = 1, 2, . . . , d;

hij =


1 if i− j ≡ 0 or n (mod 2n− 1),

0 otherwise.

If d = 2n for n ≥ 1, n ∈ Z, we take

bi =


0 if i = 2n,

−1 otherwise;

hij =



−1 if (i, j) = (2n, 1),

1 if j − i ≡ 0 or 1 (mod 2n) and (i, j) 6= (2n, 1),

0 otherwise.
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For example, for d = 2 we have

b =

−1

0

 and H =

 1 1

−1 1

 .
For d = 3, we have

b =


−1

−1

−1

 and H =


1 1 0

0 1 1

1 0 1

 .

For d = 4, we have

b =



−1

−1

−1

0


and H =



1 1 0 0

0 1 1 0

0 0 1 1

−1 0 0 1


.

For d = 5, we have

b =



−1

−1

−1

−1

−1


and H =



1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

0 1 0 0 1


,

and so on. Note that h = 2 for all such H. It is elementary to verify that P(X ∈

b + H{0, 1}d = 1). It suffices to check that H−1(x − b) ∈ {0, 1}d for any x = ±ei.

For example, in the case d = 2n− 1 we have that H−1 has elements h−1
ij given by

h−1
ij =


1
2 if i− j = 0, 1, . . . , n− 1 (mod 2n− 1),

−1
2 otherwise,

and then one checks that, for example, H−1(ei−b) = a where a has all components

zero apart from ai = · · · = ai+n−1 = 1 (for i < n− 1). The other cases are similar.

We show that (L) holds for SSRW with this choice of H, by checking (see
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Lemma 6.2.3) that U = SH . Since Lemma 6.2.2 shows that SH ⊆ U , it suffices

to show that U ⊆ SH . For SSRW on Zd, if t = (tj) ∈ Rd,

ϕ(t) = 1
2d

d∑
j=1

(
eitj + e−itj

)
= 1
d

d∑
j=1

cos tj.

So t ∈ U if and only if |∑d
j=1 cos tj| = d, which occurs if and only if either (i)

cos tj = 1 for all j, or (ii) cos tj = −1 for all j. Case (i) is equivalent to t ∈ 2πZd

and case (ii) is equivalent to t ∈ π1 + 2πZd, where 1 is the vector of all 1s. Hence

U = (2πZd) ∪ (π1 + 2πZd).

Consider x ∈ U . Then for some a ∈ Zd, either (i) x = 2πa, or (ii) x = π1+2πa.

In case (i), let z = H>a; then since all entries in H are integers, we have z ∈ Zd

and 2π(H>)−1z = 2πa = x, so x ∈ SH . In case (ii), let z = H>(1
21 + a). Note that

if d is odd then 1
2H

>1 = 1 while if d is even, 1
2H

>1 = (0, 1, 1, . . . , 1)>; in any case it

follows that z ∈ Zd. Then 2π(H>)−1z = π1 + 2πa = x, so x ∈ SH . Thus U ⊆ SH .

In general, it is very difficult to find a right lattice distribution for a specific

random walk which has the maximal span. It requires onerous effort for trial and

error. Even if we can find a possible candidate, it is tricky to prove that indeed it

is the right choice. The author feels like it is more an unsolved discrete geometry

problem, rather than anything in the field of probability, and we should proceed to

our next part of our thesis, leaving the pleasure for the reader to discover more with

lattice distribution.



Part III:

Conclusions
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Chapter 10

Open problems and conjectures

In this chapter, we are going to give some open problems and conjectures for further

research topics.

10.1 Half strip

There are a few models related to the continuum analogue of the half strip model.

One of the popular model is called ‘Markov-modulated diffusions’ [79]. Consider

(Xt, ηt) ∈ R × S, where S is a finite set. The reason why taking the whole real

lines instead of the half lines is because we need to define the movement of the

walk using stochastic differential equation. Assume that ηt is a continuous-time

irreducible Markov chain on S with stationary distribution π. Let µ : S → R and

σ : S → (0,∞), then the movement of the horizontal direction can be determined

by the following stochastic differential equation

dXt = µ(ηt)dt+ σ(ηt)dWt, (10.1.1)

where Wt is a Brownian motion on R.

For a full continuum analogue for the (half) strip model, define A as a manifold

in Rd without boundary. Then our point of interest is (Xt, ηt) ∈ R×A, a diffusion

process.

On R×A, we assume ηt is e.g. a Brownian motion on A = Sd−1 and also assume
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there exist a stationary distribution π such that ηt → π on A. Again we have the

following stochastic differential equation,

dXt = µ(ηt)dt+ σ(ηt)dWt, (10.1.2)

where Wt is a Brownian motion on R. We also assume µ : A → R is bounded and

continuous and σ bounded uniformly from {0,∞}, e.g. σ = 1. We conjecture the

following recurrence classification, similar to our discrete model.

Conjecture 10.1.1. If
∫
A π(dx)µ(x) > 0, then Xt →∞. If

∫
A π(dx)µ(x) < 0, then

Xt → −∞.

10.2 Centre of mass

In d = 1, we believe that for any zero drift random walk, Gn is recurrent:

Conjecture 10.2.1. Suppose d = 1. If EX = 0, then Gn is recurrent.

For d ≥ 2, we believe that Gn is always ‘at least as transient’ as the situation in

Theorem 7.3.1:

Conjecture 10.2.2. Suppose that suppX is not contained in a one-dimensional

subspace of Rd. Then

lim inf
n→∞

log ‖Gn‖
log n ≥ 1

2 a.s.

Also, is there an analogue of Chung-Fuchs Theorem, i.e., criterion for recurrence

using characteristic function of X?

There is also a continuum analogue for the centre of mass process. Suppose

we start with Bt, a Brownian motion on Rd. Consider the following stochastic

differential equation,

dXt = Btdt. (10.2.1)

The process Xt is also known as the integrated Brownian motion, which can also be

written as

Xt =
∫ t

0
Bsds. (10.2.2)
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The process (Bt, Xt) is the famous Kolmogorov diffusion process [62], which sat-

isfies the Markov property. The joint distribution of the continuum analogue for

the random walk and its centre of mass process, (Bt,
1
t
Xt), however, behaves very

differently. It is expected that 1
t
Xt is recurrent if and only if d = 1.
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