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Coherent Control of Ultracold
Polar Molecules

Philip David Gregory

This thesis presents the development of a toolbox for the coherent control of
ultracold polar molecules. Such systems of molecules promise the creation
of long-lived, highly dipolar quantum gases with applications spanning the
fields of quantum state controlled chemistry, quantum information, quantum
simulation, and precision measurement. However, the addition of vibrational
and rotational degrees of freedom leads to molecular systems being signifi-
cantly more complex than their widely used atomic counterparts. In this
work we demonstrate full control of the quantum state down to the hyperfine
level of an optically trapped sample of ultracold bosonic 87Rb133Cs molecules,
and exploit that control to begin an investigation into the collision processes
which take place in an ultracold molecular gas.

We create a sample of up to ∼ 4000 optically trapped molecules in their
rovibronic and hyperfine ground state. We characterise the molecules by
measuring their temperature, binding energy, and molecule-frame electric
dipole moment.

We perform spectroscopy of the first rotationally excited state with hyperfine
state resolution using microwaves to determine accurate values of rotational
and hyperfine coupling constants. We use coherent π pulses to perform com-
plete transfer population between selected hyperfine levels of the ground,
first-excited, and second-excited rotational states.

We investigate the effect of the off-resonant light of our optical dipole trap
on the rotational and hyperfine structure of the molecules. Through a com-
bination of high-resolution microwave spectroscopy and parametric heating
measurements, we characterise the polarisability of the 87Rb133Cs molecule.
We demonstrate that coupling between neighbouring hyperfine states man-
ifests in rich structure with many avoided crossings in any rotational state
other than the ground state. This coupling may be tuned by rotating the
polarisation of the linearly polarised trapping light.

Finally, we study the lifetime of polar bosonic 87Rb133Cs molecules in our 3D
optical dipole trap. We examine the lifetime of the molecules as a function
of dipole trap intensity, magnetic field, and hyperfine and rotational state.
Despite the chemical stability of the 87Rb133Cs molecule, we observe lifetimes
of ∼ 1 s corresponding to 2-body decay rates close to the universal limit.
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Chapter 1

Introduction

1.1 Why Cold Molecules?

Experiments with atomic gases cooled to ultracold temperatures have proved

to be enormously successful, and besides furthering our understanding of

atomic systems outright [1–6], have found applications in many areas of re-

search including many-body physics [7], quantum optics and quantum infor-

mation processing [8, 9], and simulation of condensed-matter physics prob-

lems [10, 11]. However, the interactions between ground state atoms typically

used in experiments are dominated by contact interactions which are only

effective over short range. There is currently great interest in producing ultra-

cold gases with dominant dipole-dipole interactions as they are, in contrast,

long range and tunable. Such a dipolar gas may be realised in an atomic

system either by using highly magnetic species such as Erbium [12, 13] or

Dysprosium [14], or by using atoms in highly excited electronic states known

as Rydberg atoms [15]. Each of these systems however has its drawbacks, as

in the former case the dipole moment of each atom is still relatively small,

while the latter’s electronically excited states are short-lived. Polar molecules

offer a fascinating middle ground between these two systems, as their elec-

tric dipole moments may be larger than the equivalent magnetic moments

available in atoms, yet chemically stable species offer the hope of long life-

times. As a result, many applications have been proposed for systems of

ultracold polar molecules which include but are not limited to the fields

1



Chapter 1. Introduction 2

of quantum-state-controlled chemistry [16, 17], quantum simulation [18–22],

quantum information [23, 24], and precision measurement of fundamental

constants [25]. It is only recently, however, that a few such molecules have

been successfully trapped at ultracold temperatures making them available

for experimental study [26–32].

The success of ultracold atomic systems stems from the development of a

varied range of tools to carefully control both the motion and internal quan-

tum state of the system. Similar tools and control must emerge in molecular

systems if this new field is to flourish. Controlling the motion requires cooling

of the molecules to ultracold temperatures in combination with confinement

to an optical trap. The level of confinement required may vary depending

upon the application, from a 3D trap where collisions between molecules are

allowed in any direction, to a 3D lattice where single molecules are pinned

to individual lattice sites and interactions must proceed over relatively long

range. Control of the internal quantum state on the other hand requires

detailed understanding of the rich and complex structure of the molecules,

which is often hard to predict with theory alone. In this work, we will develop

these tools for ultracold polar 87Rb133Cs molecules, though the techniques

described may be applied to any bialkali molecule system. In addition, we

will demonstrate the use of these tools to investigate the ultracold chemistry

undergone during collisions of these bosonic molecules in a 3D optical trap.

1.2 Creating Ultracold Molecules - An Overview

Laser cooling has proved to be an incredibly powerful and robust tool for

controlling the motion of atoms [33]. The method relies upon the repeated

absorption and emission of photons by each atom in the ensemble being

cooled. Each time a photon is absorbed, the atom of mass m experiences a

momentum kick along the ~k-vector of the light which changes the velocity

of the atom by the recoil velocity vr = ~|~k|/m. Some time later, the atom

spontaneously emits a photon again experiencing another momentum kick.

However, this spontaneous emission is spatially symmetric and over many

absorption/emission cycles this second kick has no net effect on the atom’s

motion. Overall therefore, each atom experiences a time-averaged force in
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the direction of the light.

In order for this process to work, we require the presence of sufficiently closed

transitions, which can allow the atom to scatter multiple photons while al-

ways returning to the same initial quantum state. In order to appreciably

reduce the velocity of an atom, we typically need to scatter of the order of

> 105 photons1. In atoms, such transitions are usually easy to find by mak-

ing use of the angular momentum selection rules and choosing the correct

laser polarisation2. However, the addition of rotational and vibrational de-

grees of freedom, means that even simple diatomic molecules possess a highly

complex internal structure [34–38]. Sufficiently closed transitions are there-

fore difficult to find though recent experimental results have shown great

progress [39–45].

Besides laser cooling, there are a multitude of alternative approaches which

promise to efficiently cool molecules [46], though we only have time to briefly

mention a few here. Molecular beams produced by laser ablation, or by su-

personic expansion of molecules in a carrier gas for instance, can produce

molecules with a high average but small distribution of velocities. Decelera-

tion of such beams may be achieved using Stark [47, 48] or Zeeman [49–52]

deceleration to velocities low enough for loading into a stationary trap for

evaporative cooling. Another option is to use buffer gas cooling, which in-

volves sympathetic cooling of molecules via collisions with a cold atomic gas

(usually helium) [53–56]. Molecules cooled in this way are often used to form

a cold molecular beam as they exit from the buffer gas cell through a small

aperture. A promising technique to cool polyatomic molecules to low temper-

atures is that of optoelectric cooling [41, 57–59]. Here electrostatic trapping

fields are used to remove the energy of polar molecules in a Sisyphus type

process.

1For 87Rb at a velocity of 300 m s−1, the atomic momentum is patom = 87u ×
300 m s−1 ' 4.3 × 10−23 kg m s−1. For cooling on the D2 transition, the photon mo-

mentum is pphoton = h/ ∼ 780 nm' 8.5× 10−28 kg m s−1. The minimum total number of

photons required to reduce the atoms velocity to zero is therefore patom/pphoton ' 5× 104

2Even in completely closed atomic transitions, off-resonant excitation can lead to pop-

ulation build up in dark states. Each additionally populated state requires a repump laser

to return the population back to the cycling cooling transition. Systems requiring only

one or two repumping lasers are common in atomic systems.
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Figure 1.1: Overview of the method we use to produce ultracold molecules. Free atoms are

associated into a weakly bound molecular state by magnetoassociation on an interspecies

Feshbach resonance. These molecules are then transferred to the rovibronic ground state

optically by stimulated Raman adiabatic passage (STIRAP).

So far we have only discussed techniques which attempt to directly cool

molecules, beginning the process at high temperature. An alternative ap-

proach however, is to exploit the relative simplicity and wealth of experience

that surrounds the cooling of atoms, and create ultracold molecules from a

pre-cooled atomic sample. This so-called indirect method is implemented by

either using an optical process (photo-association [60–64]) or via a magnetic

Feshbach resonance to couple the free-atomic state to a bound molecular

state [65].

In the work described in this thesis we apply the latter approach, where

weakly-bound molecules are first created by magnetoassociation on a mag-

netic Feshbach resonance. These molecules are then subsequently transferred

into their rovibrational ground state by stimulated Raman adiabatic passage

(STIRAP) as shown in Fig. 1.1 [66, 67]. This approach was pioneered in polar

molecules using fermionic KRb at JILA, Colorado [68]. Unfortunately, this

system has the drawback that the exchange interaction 2KRb → K2 + Rb2
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is exothermic [69]. This renders KRb molecules unstable [70] which leads

to significant molecule losses [71, 72]. Confinement of the molecules in a

three-dimensional optical lattice eliminates this reaction however [73], and

has led to a series of ground-breaking insights into dipolar spin-exchange

reactions [74]. There are currently a number of groups now pursuing this

method of molecule production with molecules which are collisionally sta-

ble [69]. Yet despite the successful application of this technique in several

systems [28–30, 32, 71] during the production of this thesis, the study of

dipole-dipole interactions has so far been restricted to those early works.

1.3 Proposed Applications

At present, the proposals for systems of ultracold polar molecules are varied

and span a number of highly active areas of research. As a result, it would

be impossible to discuss every proposal made to date in the context of an

introduction to the field. In this section therefore, we present case stud-

ies with reference to a few specific high impact papers which propose uses

for ultracold polar molecules in the fields of quantum computing, quantum

simulation, and precision measurements. In addition, the field of ultracold

polar molecules may make significant contributions to the study of quantum-

state-controlled chemistry [16, 17]. Such applications will be discussed more

heavily in the later chapters of this thesis regarding collisions of ultracold

molecules.

1.3.1 Quantum Computing

Proposal from D. DeMille, Phys. Rev. Lett. 88, 067901 (2002) [23].

Here we describe a quantum computer where the qubits consist of the electric

dipole moments of individual polar molecules, which can be oriented along

or against an externally applied electric field. Transfer between qubit states,

specifically different rotational states of the molecule, can be driven directly

by microwave fields. The molecules are trapped in a 1D trap array, and

interactions between neighbouring sites are mediated by the dipole-dipole

interaction. By applying a spatially varying electric field, single sites may be
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Strong 
E-Field

 Weak
E-Field

+V

-V

1D Trap
  Array

  Dipole influences 
nearest neighbours

Figure 1.2: Proposed experimental apparatus for quantum computing using polar

molecules as outlined in [23]. Qubit states correspond to electric dipole moments ori-

ented up or down relative to the applied E-field.

individually addressed spectroscopically as the energy levels for each molecule

will be uniquely DC Stark shifted depending on its position in the trap array.

The basic experimental apparatus required is shown in Fig. 1.2.

The quantum3 controlled-NOT (CNOT) logic gate along with single qubit

rotations around the Bloch sphere forms a universal gate set. Any arbitrary

computation can be carried out using some sequence of only these two oper-

ations. Realising such a gate operation therefore is a necessary condition for

creating a quantum computer. The scheme for a CNOT gate operations in

the architecture described here is essentially the same as that described for

two quantum dots by Barenco et al. [75], and also similar in concept to the

principle of Rydberg Blockade for highly excited atoms [76]. The process re-

lies on the fact that in the presence of an externally applied electric field, the

charge distribution of the molecular ground state is shifted in the direction

of the applied field, while the charge distribution of the first excited state is

shifted in the opposite direction. The electric field from this shifted charge

distribution in one molecule may shift the energy levels of its neighbours, and

the direction of this shift depends on the state of the neighbouring molecule.

Hence, the resonant frequency to transfer one molecule between qubit states

3Note, that here we are discussing specifically quantum logic gates. The quantum

CNOT gate must be distinguishable from the classical CNOT gate which can be performed

on existing computers. Specifically, the quantum gate is sensitive to the phase between

the qubits which would be irrelevant to classical operation [75].
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depends upon the qubit state of its neighbours in the 1D array. This is

exactly the condition we require to implement CNOT gate operations.

In the original paper by DeMille, the KCs molecule4 is specifically considered

though the concept is the same for other polar molecules including RbCs. In

particular, the parameters important for determining the interaction strength

between molecules are the lattice spacing and the dipole moment. The lattice

spacing is determined by the wavelength and crossing angle of the interfering

trapping beams and is therefore independent of the choice of molecule. The

predicted dipole moment of RbCs is 1.28 D [80] (1.92 D for KCs). As the

interaction strength is proportional to the effective dipole moment d2
eff, we

can therefore expect that for a given lattice spacing the interaction strength

for RbCs will be approximately ∼50% that of an equivalent system using

KCs. A more detailed analysis of the effective interaction strength between

two RbCs molecules is given in 2.6.3.

Further work by Yelin et al. [24] shows how the dipole-dipole interactions may

be switched ‘on’ and ‘off’ by the selective excitation of molecules to different

quantum states. In this way, superposition states of neighbouring rotational

levels become strongly-interacting qubits which can be used for computation.

Meanwhile, superpositions of hyperfine states in the same rotational level are

weakly-interacting and may be used as long-lived quantum memory [81].

1.3.2 Quantum Simulation

Proposal from R. Barnett et al., Phys. Rev. Lett. 96, 190401 (2006) [18].

Understanding complex quantum systems is best achieved by first examining

a more simple yet still fundamentally quantum system. A variety of systems

including but not limited to ultracold atomic gases [82], ensembles of trapped

ions [83], photonic systems [84] and superconducting circuits [85] are all

in development for use as quantum simulators. The work we will examine

here, by Barnett et al. describes how a mixture of dipolar molecules in the

lowest N = 0 and first excited N = 1 rotational states may be used to

4Fledgling KCs mixture experiments have begun at our group in Durham and in Inns-

bruck [77, 78] inspired by predictions of promising Feshbach resonances [79] and a large

accessible dipole moment of ∼1.92 D [80].
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(a)

x

z
α = 0

x

z

(b)

α = π/4

Figure 1.3: The ordering wave vector as the lattice is tilted by an angle α as shown in [18].

The system is prepared in a superposition of the |N = 0,MN = 0〉 and |N = 1,MN = 1〉
rotational and hyperfine states. A magnetic field is applied along the z-axis to lift the

degeneracy of the N = 1,MN = −1, 0, 1 hyperfine levels. The angle α is that between one

of the axes of the lattice and the magnetic bias field.

simulate a range of Mott insulating and superfluid phases. In particular, this

proposal shows that a mixture of rotational states can exhibit long-range

dipolar interactions even in the absence of an external electric field.

In one example given in this work, we consider a single layer of a 3D optical

lattice in the xz plane with a single polar molecule at the centre of each site.

A magnetic bias field is applied along z to break the degeneracy between

MN = 0,±1 hyperfine state components, and we consider a rotation of the

lattice with respect to that magnetic field by an angle α. The molecules are

prepared in a superposition of N = 0 and N = 1,MN = 1 states. When

the magnetic field is parallel to one of the axes of the lattice (i.e. α = 0),

the molecules are allowed to rotate freely in the xy plane. For this case, the

dipoles will choose to point head to tail along the bonds perpendicular to the

magnetic field, while alternating antiferromagnetically in the other direction

as shown in Fig. 1.3(a). If we rotate the lattice such that α = π/2, a more

complex pattern emerges as can be seen in Fig. 1.3(b). Further study shows

the result of melting the Mott insulator to enter the superfluid state, and

how the ordering wave vector is affected by this change.

More proposals for quantum simulation with ultracold polar molecules can

be found in [19–22].
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1.3.3 Precision Measurement

For an introduction to this topic, see T. E. Wall, J. Phys. B: At. Mol. Opt.

Phys. 49, 243001 (2016) [25].

Molecules not only offer a rich and complex internal structure, they also

couple strongly to both DC and AC electric fields making them very use-

ful for probing fundamental physics. At present, there is significant interest

in measurements of the electric dipole moment of the electron; the electron

is predicted to be slightly aspheric leading to it possessing a dipole mo-

ment, however it has so far proved to be too small to detect. In addition,

the exact value of the dipole moment has significant implications for dis-

tinguishing between different models of particle physics. The exceptionally

high internal effective electric field found in molecules offers an incredibly

sensitive probe with which to measure the electric dipole moment of the

molecule. Measurements have been performed using YbF at Imperial Col-

lege, London [86] and in ThO by the ACME collaboration [87]. The lowest

sensitivity measurement so far was performed in ThO and found a dipole

moment de = −2.1 ± 3.7stat ± 2.5syst × 10−29 e·cm [87]. This value is still

consistent with zero but puts an upper limit on the dipole moment which

can be reduced with ever increasing experimental precision.

Molecules are also critical in the search for variation of fundamental con-

stants with varying time, position or local density of matter. Truppe et al.

performed spectroscopy of microwave transitions on a pulsed beam of cold

CH molecules for comparison with those measured from sources of CH in the

Milky Way [88]. By doing this, a limit on the variation of the fine struc-

ture constant and electron-to-proton mass ratios between the high- and low-

density environments of the Earth and the interstellar medium were found

which are at present only limited by the current astrophysical measurements.

The precision of each of these measurements relies upon the available inter-

action time with the sample of molecules - the longer the interaction time,

the higher the precision. In addition, low temperatures are necessary to min-

imise thermal broadening of the measured transitions. Trapped samples of

molecules at ultracold temperatures are therefore required for the highest

precision; learning to produce and control ultracold molecules is the next
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step to enhance the precision of these important measurements.

1.4 Thesis Overview

This thesis is structured as follows:

In chapter 2, we give an overview of the theoretical background required to

understand the results presented in this thesis. This includes a discussion of

why we choose to work with 87Rb133Cs, the key steps to producing ground

state molecules from an atomic mixture, the structure of diatomic molecules,

and interactions specifically relevant to polar molecules.

In chapter 3, we describe the experimental apparatus with particular atten-

tion paid to modifications made over the course of this work. In particular,

we discuss the addition of DC electric fields and MW fields which are both

used to probe the molecule’s electric dipole moment and internal structure.

In chapter 4, we demonstrate that our apparatus can produce 4000 optically

trapped 87Rb133Cs molecules in their rovibronic and hyperfine ground state.

We characterise the molecules by measuring their temperature, binding en-

ergy, and electric dipole moment.

In chapter 5, we show that we can coherently control the rotational and hy-

perfine state of the molecules using externally applied microwaves. We begin

by performing spectroscopy of the first rotationally excited state with hyper-

fine state resolution. By fitting theory to experimental measurements, we

obtain new values for the rotational constant, scalar spin-spin coupling con-

stant, electric quadrupole coupling constants, and nuclear g-factors (includ-

ing shielding) for the molecule. We then proceed to use this knowledge of the

internal structure of the molecule to change both the rotational and hyperfine

state of the molecule using coherent π-pulses - transferring the population

with 100% efficiency between hyperfine states in the ground, first-excited,

and second-excited rotational states.

In chapter 6, we investigate the effect of the far-off-resonant light of our op-

tical dipole trap on the molecules. Following a discussion of the difference

between the polarisability of atoms and molecules, we use a combination of

spectroscopic measurements and parametric heating to completely charac-
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terise the polarisability of the molecule at a wavelength of 1550 nm. We find

that the trapping light couples neighbouring hyperfine states, giving rich and

complex structure with many avoided crossings as a function of laser inten-

sity. This coupling may be tuned by varying the angle between the laser

polarisation and the applied magnetic field.

In chapter 7, we measure the lifetime of the molecules in our 3D optical

dipole trap. We observe loss of molecules which leads to a lifetime in the trap

of around 1 s. We investigate the loss rate of the molecules as a function

of dipole trap laser intensity, magnetic field, and rotational and hyperfine

state. The possible loss processes are discussed, though it is not possible to

determine which is dominant in our experiment at this time. We outline the

next step in our experiment - to investigate the collisions between atoms and

molecules.
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Chapter 2

Theory

In this chapter we will discuss the necessary theory to understand the rest of

the work presented in this thesis and the Rb-Cs mixtures experiment in gen-

eral. We begin by discussing a few of the considerations which must be made

when choosing a molecule to study in an experiment such as ours (2.1). Fol-

lowing this, we will outline some of the processes which we use to create and

trap an ultracold atomic mixture from which we can associate molecules (2.2).

We will then give a brief introduction to the theory of scattering between ul-

tracold atoms and how molecules can be associated by magnetoassociation on

a magnetic Feshbach resonance (2.3). Next we will explain how the process of

Stimulated Raman Adiabatic Passage between molecular states works (2.4)

before reviewing the structure of diatomic molecules (2.5). Finally, we will

consider interactions between polar molecules, and between polar molecules

and external electric fields (2.6).

2.1 Choosing the Molecule - 87Rb133Cs

As has been discussed in the introduction, the key property of diatomic

molecules which we aim to exploit is that they can possess a large perma-

nent electric dipole moment. This property is only available to heteronuclear

molecules (as opposed to homonuclear molecules) and so an appropriate mix-

ture of atoms must be selected as the starting point for any experiment such

as ours.

14
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d0 (D) Bv (GHz) Ecrit (kV cm−1) Stable

LiNa 0.53 11.22 36.1 N

LiK 3.50 7.68 4.3 N

LiRb 4.13 6.45 3.1 N

LiCs 5.48 5.61 2.0 N

NaK* 2.75 2.85 2.0 Y

NaRb* 3.33 2.10 1.3 Y

NaCs 4.60 1.74 0.7 Y

KRb* 0.62 1.16 3.74 N

KCs 1.92 0.90 1.0 Y

RbCs* 1.26 0.51 0.80 Y

Table 2.1: Molecule frame dipole moment d0, rotational constant Bv, and critical electric

field (Ecrit) for a range of bialkali molecular dimers. Stability of each combination against

exchange collisions of the form 2XY → X2 + Y2 is also shown. Data from [69, 80, 92,

93]. *Dimers which have been produced in their rovibronic ground state at ultracold

temperatures at time of writing [28–30, 32, 71].

To implement an indirect cooling method, the chosen constituent atoms for

the molecule must be suitable for laser cooling and trapping. We therefore

limit our search to alkali metal species, though a growing number of molecule

experiments are beginning to use other species such as alkaline earths [89–91]

as laser cooling is applied to more varied and complex systems.

It is also necessary that the system possesses either an experimentally ac-

cessible broad inter-species Feshbach resonance or strong optical coupling to

the molecular states. The prediction of positions of inter-species Feshbach

resonance is not trivial, though reasonable estimations can be made using

the molecular potentials attained from spectroscopic work [79, 94]. In ad-

dition, recent theoretical work has suggested that it is possible to ‘create’

Feshbach resonances at an arbitrary magnetic field by dressing the molecular

state with a strong resonant RF field [95].

A complete comparison of the various bialkali dimers available can be seen in

table 2.1. The 87Rb133Cs molecule we use in our experiment has many ben-



Chapter 2. Theory 16

eficial properties1. For example, it is chemically stable - the atom exchange

reaction 2RbCs→Rb2 + Cs2 is endothermic [69]. This property is crucial

to avoid large losses of molecules through chemically reactive collisions, and

many of the possible combinations do not fulfil this criteria. In addition, the

large electric dipole moment of 1.26 D is aligned by a relatively small electric

field gradient.

2.2 Creating an Ultracold Atomic Mixture

The experimental sequence for producing an ultracold mixture of 87Rb and
133Cs atoms has been developed over a number of years by previous students

working on the experiment [96–101]. A good understanding of the physics

behind the techniques employed is highly important to the continuous run-

ning of the experiment and correct optimisation of this sequence is the key

to producing a large number of molecules.

The experimental sequence has many stages. First we load both species

into a magneto-optical trap (MOT) where the Rb and Cs are slightly sep-

arated by addition of a Rb ‘pusher’ beam. The MOTs are then fully

overlapped in a compressed-MOT stage before performing optical molasses

and optical pumping to the magnetically trappable |f = 1,mf = −1〉 and

|f = 3,mf = −3〉 states for Rb and Cs respectively. Both species are then

loaded into the same magnetic quadrupole trap where we perform forced-RF

evaporation to cool the Rb, and the Cs is cooled sympathetically. Cooling

in the magnetic trap is limited by Majorana losses and so both species are

transferred into a magnetically levitated crossed optical dipole trap. Here

the spins of both species are flipped so that they occupy the |f = 1,mF = 1〉
and |f = 3,mf = 3〉 hyperfine ground states (which are not magnetically

trappable). Both species are evaporatively cooled in this levitated poten-

tial down to high phase-space densities. In this section we will only discuss

the key components towards the end of this sequence; specifically magnetic

levitation (2.2.1) and optical trapping (2.2.2), as they are also relevant to the

1Beside the excellent properties of the molecule, 87Rb may offer the most well doc-

umented route to ultracold temperatures being the first element to ever be cooled to

quantum degeneracy [1].



Chapter 2. Theory 17

molecule work presented later.

Before proceeding further we note that during evaporation we selectively

remove the most energetic atoms in order to reduce the temperature of the

remaining sample. It is therefore not possible to simply optimise routines

for highest number or lowest temperature of atoms as lower temperatures

necessitates the removal of atoms. The quantity which we wish to maximise

in our atomic mixture is the phase-space density (PSD)

PSD = n0λ
3
dB, (2.1)

where n0 is the peak density in the sample and λdB is the thermal de Broglie

wavelength. When the PSD ∼ 2.612, the ensemble forms a Bose-Einstein

condensate.

2.2.1 Magnetic Levitation

The interaction between the magnetic moment of an atom or molecule with

an applied magnetic field gradient generates a force which can be used to

cancel the force due to gravity and hence ‘levitate’ the sample. This makes

experiments which require the ultracold gas to be monitored in free space for

long periods of time (e.g. time of flight expansion measurements) possible

as without this levitation the atoms would fall out of the imaging region. In

addition, it can be used to cancel the gravitational sag in a weak optical trap

or separate an initially mixed sample of atoms or molecules with different

ratios of magnetic moment to mass.

In order to exactly cancel the force due to gravity the following condition

must be satisfied

mg = ∇(~µ · ~B). (2.2)

The left hand side of this equation is the force due to gravity on a particle

of mass m, while the right hand side is the force on a particle with magnetic

moment ~µ in an applied magnetic field ~B [102]. In theory, the magnetic

moment of an atom depends upon the magnetic field owing to the quadratic

nature of the Zeeman effect. However, in a typical experiment at high field

and for relatively small changes in magnetic field the magnetic moment can be
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Species
m

(a.u.)

B

(G)

µ

(µB)

∂ ~B/∂~z

(G/cm)
87Rb |f = 1,mf = 1〉 87 0 -0.50 30.5
133Cs |f = 3,mf = 3〉 133 0 -0.75 31.1

87Rb133Cs |−1(1, 3)s(1.3)〉 220 185 -1.33 29.1
87Rb133Cs |−6(2, 4)d(2, 4)〉 220 181.5 +1.50 -25.8
87Rb133Cs |−2(1, 3)d(0, 3)〉 220 181.0 -0.84 46.0

87Rb133Cs Ground State 220 181.5 0.005 7700

Table 2.2: Levitation gradients ∂ ~B/∂~z, magnetic moments µ, and masses m for the dif-

ferent species and states relevant to the work presented in this thesis. State notation for

molecules in Feshbach states is explained in section 2.3.3. 87Rb133Cs Molecules in the

rovibronic and hyperfine ground state have a negligible magnetic dipole moment when

compared to atoms or Feshbach molecules as only the small nuclear magnetic moments

can contribute.

assumed to be constant and so Eq. 2.2 can be rewritten to give the magnetic

field gradient required to exactly levitate a given atom or molecule

∂ ~B

∂~z
=
mg

µ
, (2.3)

where ~z is the unit vector in the vertical direction, and µ = ±|~µ| is the

magnitude of the dipole moment where the sign indicates whether it is ori-

ented parallel or antiparallel to the applied field. It is most important in our

experiment that the gradient required to levitate atomic 87Rb and 133Cs in

their respective Zeeman hyperfine ground states is roughly the same which

allows us to ensure the two species are well overlapped. This field gradient

is different from that required for the available states of the molecules. See

Table 2.2 for a summary of the field gradients required to levitate both the

relevant atomic and molecular states relevant to our experiment.

2.2.2 Optical Trapping and Evaporation

The optical dipole trap is the final trap in which our atomic mixture and

created molecules are confined. The maximum depth achievable in such a

trap is typically quite low ∼ 10µK, which necessitates the pre-cooling of the
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atoms via the techniques described earlier in this section. Optical dipole

traps rely upon the electric dipole moment induced by the AC electric field

of a laser beam, and the interaction of that induced dipole moment with the

intensity gradient of the light. The optical potential due to this interaction

is given by [103]

Udip.(r) = − 1

2ε0c
Re(α)I(r) ≈ 3πc2Γ

2ω3
0

I(r)

∆
, (2.4)

where Re(α) is the real part of the complex polarisability α, I(r) is the

intensity of the light field, ω0 is the resonant transition frequency, ∆ is the

detuning of the laser frequency from the transition, and Γ is the decay rate

from the excited state. Heating and loss of atoms can be caused by scattering

of the light by the atoms. The scattering rate Γsc is related to the imaginary

part of the complex polarisability Im(α) [103],

Γsc =
1

~ε0c
Im(α)I(r) ≈ 3πc2

2~ω3
0

(
Γ

∆

)2

I(r). (2.5)

From Eq. 2.4 and 2.5 it can be seen that the dipole potential scales as I/∆

whereas the scattering rate scales as I/∆2. It is therefore beneficial to operate

a dipole trap using very high intensity laser light which is far-detuned from

any resonant transitions in order to minimise scattering for a given potential

depth. This is particularly important to remember in our experiment as both

molecules and atoms use the same optical trapping light and scattering must

be minimised throughout the experiment. The polarisability of 87Rb133Cs

molecules is investigated in more detail in chapter 6.

Evaporation is performed in the optical dipole trap by reducing the intensity

of the trapping beams. This reduces the depth of the trap and allows the

most energetic atoms in the sample to leave the trap.

2.3 Magnetoassociation

The two methods which are typically employed to associate atoms to form

molecules are photoassociation and magnetoassociation. Photoassociation is

a process in which two colliding atoms absorb a photon to form a molecule

in a highly excited state [64]. Molecules formed by this approach will quickly
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decay to a lower energy state of which there are a large number available.

It can therefore be difficult to ensure all molecules formed are in the same

state, i.e. it is hard to create a sample with a high state coherence. Re-

cent work has shown that a sample of 87Rb133Cs molecules where 33% of

the molecules occupy the rovibronic ground state may be created using this

approach [31]. Samples of 7Li133Cs molecules have also been produced in this

way [27]. Magnetoassociation on the other hand is a process whereby atoms

are made to follow an avoided crossing between the free atomic state and a

molecular bound state by the adiabatic ramping of an applied magnetic field

over a Feshbach resonance2. All molecules produced by this process occupy

the same state (though they may need to be separated from the remaining

unbound atoms in the sample). It is this process which we use in our work

and we will discuss in more detail here.

2.3.1 Feshbach Resonances and Scattering Theory

Atoms or molecules in an ultracold gas may interact with each other through

both elastic and inelastic collisions. Elastic collisions allow processes such as

evaporative and sympathetic cooling and are ‘good’ for efficient cooling and

trapping, while inelastic collisions are responsible for trap loss and can be

thought of as ‘bad’. It is therefore important in experiments that the ratio

of the elastic and inelastic collision rates are kept favourable, with elastic

collisions being the desired dominant process. At ultracold temperatures,

interactions can be effectively described by a single parameter - the s-wave

scattering length a, and control of this parameter may be achieved by vary-

ing the magnetic field in close proximity to magnetic Feshbach resonances.

Such control is the key to our experiment where we need to engineer the

interactions between atoms throughout cooling and association. Here, we

will briefly examine where this single parameter comes from and the origin

of magnetic Feshbach resonances. It is important to note that this is far from

a thorough treatment of either of these topics, and far more details may be

2The association of molecules using a resonant RF field at a fixed magnetic field close

to an interspecies Feshbach resonances is also sometimes referred to as magnetoassocition.

The method of sweeping the magnetic field over the resonance is the one which we employ

in our experiment, and we will only use magnetoassociation to refer to this method here.
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Figure 2.1: Potential wave barrier and tunability of scattering length close to a Feshbach

resonance. (a) Effective potential barrier for p-wave collisions. The effective potential

between two colliding particles is described by Equation 2.11. For any partial wave l > 0,

this effective potential forms a barrier. At temperatures below this barrier height, that

potential wave will no longer contribute to the collision. For l = 1 in 87Rb133Cs, this

barrier height is equal to 54µK and so below this temperature only s-wave collisions may

occur. (b) Generalised diagram of a Feshbach resonance described by equation 2.15 with

a non-zero positive background scattering length. By tuning the magnetic field close to

the resonance, the scattering length may be controlled.

found in the wealth of review articles and textbooks which are already in

publication [104–111].

To understand why we can describe collisions between atoms using only a

single parameter a, we must first look at the scattering cross section σ. This

quantity can be derived by considering two colliding particles as a superposi-

tion of plane-waves in a spherically symmetric interaction potential as shown

in [100]. The general equation for the scattering cross section is given for

angular momentum quantum numbers (partial waves) l by

σ =
4π

k2

∑
l

(2l + 1) sin2 δl(k), (2.6)

where k = |~k| is the amplitude of the incident wave vector and δl is the phase

shift between the incoming and outgoing plane waves. However, this is only

necessarily applicable to distinguishable particles.

In the case of indistinguishable particles, the scattering wave function must

be (anti-)symmetric for bosons (fermions) and their scattering wave functions

have the form Ψ(~r1, ~r2) = ε ·Ψ(~r2, ~r1) with ε = +1(−1) for bosons (fermions).
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This wave function can be written in terms of plane waves

Ψ~k(~r) = ei
~k~r + εe−i

~k~r +
(
f(k, θ) + εf(k, π − θ)

)eikr
r
, (2.7)

with differential cross section

dσ

dΩ
= |f(k, θ) + εf(k, π − θ)|2, (2.8)

where f(k, θ) is the scattering amplitude and θ ranges from 0 to π/2. The

scattering amplitude may be written in terms of Legendre polynomials [100]

and therefore have a parity of (−1)l which leads to a cancellation of all odd

(even) partial wave contributions for bosons (fermions). In addition, the

contribution of even partial waves is doubled for the bosonic case, which we

can show by expanding equation 2.8,

dσ

dΩ
= |f(k, θ)|2+|f(k, π−θ)|2+f ∗(k, θ)f(k, π−θ)+f(k, θ)f ∗(k, π−θ). (2.9)

Here, the final two terms indicate interference in the bosonic case which leads

to a factor of two increase in the scattering cross section for identical bosons,

i.e.

σ =
2× 4π

k2

∑
leven

(2l + 1) sin2 δl(k). (2.10)

Note, that in a mixture experiment such as ours where collisions may occur

between different bosons, both even and odd partial waves contribute and

this doubling does not happen. In this case, the scattering cross section is

identical to Eq. 2.6 with the sum being over all available partial waves.

The availability of partial waves is dependent upon the temperature of the

gas. Non-zero partial wave contributions give rise to a centrifugal term ~2l(l+

1)/(2mrr
2) which leads to an effective barrier superimposed on the long range

part of the interaction potential

Veff(r) = −C6

r6
+

~2l(l + 1)

2mrr2
, (2.11)

where r is the separation between the two particles and C6 is the disper-

sion coefficient between the colliding atoms. This effective potential for

a mixture of Rb and Cs is shown in Fig. 2.1(a), where for Rb-Cs colli-

sions C6 = 5693 Eh a
6
0 [94]. If the temperature of the gas is lower than the

barrier height for a given partial wave, that partial wave cannot contribute
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to the scattering cross section. The barrier for p-wave3 (l = 1) has a height

of 54 µK in Rb-Cs, and hence for all temperatures lower than this only s-

wave (l = 0) scattering is present. This occurs at a higher temperature for

Rb-Rb and Cs-Cs collisions as the lowest non-zero partial waves are d-wave

(l = 2). These d-wave partial waves are frozen out below temperatures of

412µK, 180µK, and 282µK for Rb-Rb, Cs-Cs, and Rb-Cs collisions respec-

tively [94, 100, 112, 113].

It follows from equation 2.6 that the scattering cross section for a purely

s-wave collision is4

σ =
2× 4π

k2
sin2 δ0(k). (2.12)

The scattering phase shift scales as δl ∝ k2l+1 at low energies where the

relative wave vector k → 0. The s-wave scattering length can therefore be

defined as

a = − lim
k→0

tan δ0(k)

k
. (2.13)

The resulting scattering cross section at the limit where ka << 1 is there-

fore [105, 106]

σ =
2× 4πa2

1 + k2a2
≈ 2× 4πa2, (2.14)

which depends only upon the scattering length a. In this limit, collisions

between particles is equivalent to a collision between two hard spheres with

radii equal to the scattering length. A positive scattering length indicates

repulsive interactions, while a negative scattering length indicates attractive

interactions.

Feshbach resonances offer a powerful method for tuning the scattering length

by varying the magnitude of an applied magnetic field B. They arise due to

the presence of molecular bound states with different magnetic moments to

the free atomic state. The application of a magnetic field therefore Zeeman

shifts both the atomic and molecular state energies, but each is shifted by a

different amount. A Feshbach resonance occurs when a molecular state and

atomic state have the same energy, and this generates an avoided crossing

3Partial waves are commonly labelled using spectroscopic notation where l = 0, 1, 2, 3...

are referred to as s, p, d, f....
4The factor of two in equation 2.12 should only be included for collisions between

identical bosons. when there are two species involved, this factor of two is not necessary!
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Figure 2.2: Scattering lengths for 87Rb-87Rb, 133Cs-133Cs, and 87Rb-133Cs ground-state

atomic collisions with varying magnetic field. Labels in parenthesis are (f,mf ).

between the molecular (bound) and atomic (unbound) states. This avoided

crossing may be adiabatically followed to create molecules as we will discuss

in section 2.3.2, and also causes a pole in the scattering length of the form

a(B) = abg

(
1− ∆

B −B0

)
, (2.15)

where B0, ∆ are the centre and width of the resonance in magnetic field

and abg is the background scattering length in the absence of the resonance.

An example of a Feshbach resonance of the form given in Equation 2.15 is

shown in Fig. 2.1(b). At the centre of the resonance the scattering length

tends asymptotically to ±∞, and close to the resonance the scattering length

can effectively by tuned to any value both positive and negative depending

on the choice of magnetic field. Such control is critical in for example, the

Bose-Einstein condensation of 133Cs [114, 115] and 85Rb [116, 117], and in

the formation and study of bright matter-wave solitons [118, 119].

The scattering lengths of the atomic scattering partners relevant to our ex-

periment are shown in Fig. 2.2. The contrast between the two species we

use in our experiment is quite clear. The scattering length for 87Rb-87Rb

collisions is reasonably low, yet high enough to enable efficient evaporative
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cooling, and is independent of magnetic field. The simplicity of 87Rb is one

of the primary reasons that it has long been favoured in many ultracold

atom experiments. The scattering length for 133Cs-133Cs on the other hand

is negative (attractive) at low magnetic fields and becomes very large and

positive (repulsive) at high magnetic fields. A large number of wide Feshbach

resonances are present, which can enable control of the intraspecies scatter-

ing. However, this must be done at very specific and well controlled magnetic

fields. In our experiment, we perform the evaporative cooling with 133Cs close

to the zero-crossing at ∼ 17 G for this reason. Specifically there is a window

between 21-25 G where 133Cs may be condensed. Here, the scattering length

varies between approximately 200-400 a0 and there is a minimum in the re-

combination rate due to the existence of Efimov physics5 (when a ≈ 210a0,

B ≈ 21 G) [99, 120].

The interspecies scattering is important both for the pre-cooling of the atomic

mixture and the production of molecules. The interspecies scattering length

is relatively high ∼ 650 a0, which enables the sympathetic cooling of 133Cs,

though also leads to a high 3-body loss rate. In addition, at high phase-space

densities, this strong repulsive interaction leads to phase separation [115]

which restricts the production efficiency of molecules by magnetoassocia-

tion. The two lowest field interspecies magnetic Feshbach resonances are

those relevant to our molecule production and are discussed more in sec-

tion 2.3.3. There is a rich structure of interspecies Feshbach resonances we

do not presently use above B ≈ 200 G, which may be useful in future exper-

iments.
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Figure 2.3: Scheme for association of atoms into molecules and dissociation of molecules

back to atoms on a Feshbach resonance. (a) Ramping the magnetic field down slowly allows

the avoided crossing between the free atom and bound molecule states to be followed,

associating atoms into molecules. (b) To dissociate the molecules, the avoided crossing

does not need to be followed as the molecule state is above the dissociation energy.

2.3.2 Molecule Production on a Feshbach Resonance

Molecules can be formed by adiabatically following the avoided crossing be-

tween the free atomic state and the bound molecular state as shown in

Fig. 2.3. In the case depicted, at fields below the resonance the molecu-

lar state lies below the atomic state while above the resonance the atomic

state is the lower in energy. We can therefore associate molecules by ramping

the magnitude of the applied magnetic field down across the resonance (from

high to low field). Dissociation may be performed by ramping the field in the

opposite direction, however in this case the avoided crossing does not need

to be followed as above the resonance the molecular state will spontaneously

decay down to the energetically favourable atomic state within a short time

(see Fig. 2.3(b)).

The efficiency of magnetoassociation is strongly dependent on the phase-

space density of the initial atomic ensemble [121] and the adiabaticity of

the state transfer. Maximum phase-space density is achieved by cooling the

5Efimov states are weakly-bound trimer states which may exist even where there are

no bound dimer states. In particular, these states appear near to the resonance condition

for two-body interactions (i.e. near to Feshbach resonances). The existence of such states

leads to an enhancement of the three-body recombination loss in the atomic sample. In

order to efficiently cool 133Cs, we ideally want to minimise loss by such processes, and

this was found to be achievable experimentally when the scattering length is 210 a0 by

Kraemer et al. [120]
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Figure 2.4: Near-threshold 87Rb133Cs molecular states. (a) Upper panel: the interspecies

scattering length between 87Rb and 133Cs, the grey regions highlight the locations of the

two Feshbach resonances in the relevant magnetic field region. Molecules are associated

on the higher-field resonance at 197 G. Lower panel: Weakly-bound states relevant to

the Feshbach association sequence. (b) The avoided crossing between the |−6(2, 4)d(2, 4)〉
and |−2(1, 3)d(0, 3)〉 states which is followed both during the association sequence and

following the transfer to a pure optical dipole trap for ground state transfer.

atoms to degeneracy but for a mixture of 87Rb and 133Cs, this does not

lead to efficient magnetoassociation. This is due to the large inter-species

scattering length which renders the two species immiscible [115]. Maximum

efficiency is therefore achieved at high phase-space density provided that

the atomic populations can be well overlapped. The avoided crossing at a

Feshbach resonance can be described using the Landau-Zener model and are

characterised by two parameters: the coupling strength V and the difference

in magnetic moment between the states ∆µ. The coupling strength is defined

as one-half the energy splitting between the two states at the crossing point.

We can then define the critical ramp speed

ṙc =
2πV 2

~|∆µ|
. (2.16)

In order to adiabatically follow the avoided crossing and efficiently create

molecules, the magnetic field must be ramped over the crossing at a rate� ṙc.

2.3.3 Control of the Feshbach State

Control of the molecular state in the near-dissociation states is critical in our

experiment, and such control requires detailed knowledge of the energies and
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positions of avoided crossings between those states. All bound state energies

presented in this work have been calculated by Jeremy Hutson’s group at

Durham University using the BOUND [122] and FIELD [123] packages for

the MOLSCAT program [124] as modified to handle collisions in external

magnetic fields [125]. The accuracy of these calculations is dependent upon

how well known the potential energy curves are, which is determined by the

available spectroscopic work [126] and experimentally determined positions

of Feshbach resonances [127–129].

The near dissociation states are labelled as |n(fRb, fCs)L(mfRb
,mfCs

)〉. Here

n is the vibrational label for the particular hyperfine (fRb, fCs) manifold,

counting down from the least-bound state which has n = −1, and L is

the quantum number for rotation of the two atoms about their centre of

mass6. All of the relevant Feshbach states to this work have Mtot = 4, where

Mtot = MF + ML and MF = mfRb
+ mfCs

. These near-theshold molecular

states may be seen in Fig. 2.4(a). Note that in 87Rb133Cs, the |−1(1, 3)s(1, 3)〉
bound state runs parallel and very close to the dissociation energy, with a

binding energy of only ∼ 150 kHz. It is the presence of this state that

is responsible for the high inter-species scattering length between 87Rb and
133Cs atoms. Association on the Feshbach resonance at ∼ 197 G directly

couples molecules into this state.

Control of the Feshbach state may be achieved by manipulation of the applied

external magnetic field. By sweeping the magnetic field either slowly or

quickly, the avoided crossings between states may be adiabatically followed or

non-adiabatically ‘jumped’ across. The critical ramp speed which determines

whether an avoided crossing will be followed is the same as that presented in

the previous subsection in equation 2.16. We can therefore transfer molecules

out of the initial |−1(1, 3)s(1, 3)〉 state by reducing the field to reach an

adjacent Feshbach resonance at ∼ 181 G where there exists a wide avoided

crossing which leads into the |−6(2, 4)d(2, 4)〉 state7. This state allows the

Feshbach molecules to be bound by ∼MHz. In our experiment we utilise

6For more details about good quantum numbers in molecules, see section 2.5.1
7Note that the -6 in this state indicates that the state is a lower vibrational state than

the other two Feshbach states discussed. This is because its vibrational state is counted

from the higher (2,4) threshold.



Chapter 2. Theory 29

both the |−6(2, 4)d(2, 4)〉 and |−2(1, 3)d(0, 3)〉 states, the avoided crossing

between these two states is shown more closely in Fig. 2.4(b) and has a

critical ramp speed of ∼ 70 G ms−1 [130].

2.4 Stimulated Raman Adiabatic Passage

(STIRAP)

The process of magnetoassociation produces molecules weakly bound by only

a few MHz which are relatively short lived. In addition, the electric dipole

moment scales with inter-atomic separation as d ∝ r−7, and so molecules in

these weakly bound states have a negligible electric dipole moment as their

inter-atomic separation is large. Transfer to a more deeply bound state re-

quires a coherent process which is state-selective, efficient and able to remove

the ∼ 5500 K binding energy with no heating of the molecule sample. STI-

RAP offers a robust method of transferring populations between quantum

states [131, 132] which has been shown to be highly effective at transferring

molecules to more tightly bound states in systems of both homonuclear [133]

and heteronuclear molecules [26].

2.4.1 STIRAP in an Idealised 3-Level System

To achieve STIRAP in our system, we must couple both the initial weakly

bound Feshbach state |F 〉 and the rovibrational ground state |G〉 to a

common excited state |E〉8. We label the optical coupling fields between

|F 〉 ↔ |E〉 as the ‘pump’ and between |G〉 ↔ |E〉 as the ‘Stokes’. The

coupling directly between states |F 〉 and |G〉 is forbidden by selection rules,

and so we can model this system as a three level Λ-type system as shown in

8The available intermediate excited states have very short lifetimes and have multiple

decay routes open to them. Any molecules which are transferred to this excited state will

therefore be lost from the experiment and so population of this state must be avoided for

efficient and coherent transfer.
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Figure 2.5: Configuration and pulse sequence for STIRAP in an idealised 3-level system.

(a) Generalised 3-level Λ-type system. The coupling between the levels is given by two

optical laser fields labelled as the ‘pump’ and ‘Stokes’ as outlined in the main text. (b)

Pulse sequence for STIRAP to transfer molecules directly from state |F 〉 to |G〉. The time

for transfer is defined by the time τ . (c) Time evolution of the populations of the three

states during the pulse sequence given in (b).

Fig. 2.5(a). The Hamiltonian for such a system is

Ĥ =
~
2


0 ΩP(t) 0

ΩP(t) 2∆P ΩS(t)

0 ΩS(t) 2(∆P −∆S)

 , (2.17)

where ΩP(t), ΩS(t) are the driven Rabi frequencies, and ∆P, ∆S are the

detunings from resonance of the pump and Stokes laser fields respectively. If

we set both laser fields on two-photon resonance (∆P = ∆S = ∆), it can be

shown that there are three analytic eigenstates for this Hamiltonian:

|a+〉 = sin θ sinφ |F 〉+ cosφ |E〉+ cos θ sinφ |G〉 , (2.18a)

|a0〉 = cos θ |F 〉 − sin θ |G〉 , (2.18b)

|a−〉 = sin θ cosφ |F 〉 − sinφ |E〉+ cos θ cosφ |G〉 . (2.18c)

Here, we have defined two mixing angles θ and φ which are defined by

tan θ =
ΩP

ΩS

, (2.19) tan 2φ =

√
Ω2

P + Ω2
S

∆
. (2.20)

The eigenstate we are interested in for STIRAP is |a0〉 (Eq. 2.18b) which
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describes a dark state with no intermediate state |E〉 component, as it is this

state which facilitates the direct transfer between states |F 〉 and |G〉.

The sequence in which the pump and Stokes lasers are pulsed on in STIRAP

is often referred to as ‘counter-intuitive’, as the Stokes laser is active before

the pump as shown in Fig. 2.5(b). However the reason for this ordering is

simply a result of the necessity to initialise the molecules into the dark state.

If we first consider the situation where only the Stokes laser is active, the

state mixing angle θ is therefore zero and the dark state |a0〉 ≡ |F 〉. The

other two eigenstates in contrast have no |F 〉 component in this circumstance.

We therefore know that the molecules all populate the eigenstate |a0〉 only.

Transfer of molecules to state |G〉 is then just a case of reducing the Stokes

intensity while increasing the pump intensity slowly such that the dark state

is adiabatically transformed from state |F 〉 to state |G〉. When only the

pump laser is active, the state mixing angle θ is equal to π/2 and the dark

state is entirely composed of the destination state |G〉. The time evolution

of the population in the three available states throughout the STIRAP pulse

sequence described in shown in Fig. 2.5(c). The sequence is completely re-

versible, and is used to transfer molecules back to the Feshbach state at the

end of the experiment for dissociation and imaging.

2.4.2 Efficiency of STIRAP

If the population is held in the dark state throughout the transfer, the effi-

ciency of STIRAP is 100%. In practice however, the efficiency of the transfer

(P ) when on two-photon resonance is reduced due to non-adiabaticity of

the dark state evolution, and limitations imposed by laser decoherence, such

that [134]

P = exp

(
−π

2γ

Ω2
0τ
− Dτ

2

)
. (2.21)

Here, γ is the natural linewidth of the state |E〉, D is the linewidth associated

with the frequency difference between the two lasers, τ is the transfer time (as

shown in Fig. 2.5 (b)) and Ω0 is the reduced Rabi frequency. The reduced

Rabi frequency is defined as Ω0 =
√

Ω2
p + Ω2

S, where Ωp and ΩS are the

peak Rabi frequencies of the pump and Stokes transitions respectively. By

minimizing the two contributions to the exponential in equation 2.21 we are
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able to derive the necessary condition for efficient transfer [135]:

Ω2
0

π2γ
� 1

τ
� D. (2.22)

The natural linewidth is dependent on the excited state chosen; the range of

values for this term are therefore limited by the range of states accessible to

the laser system. The importance of this term in defining the efficiency of the

transfer highlights the need for a thorough molecular spectroscopy search in

order to identify the best state to use, namely a state with high Ω2
0/γ. This

gives the first criterion which the STIRAP laser system must fulfil; it must be

possible to tune both of the lasers over a wide overlapping frequency range in

order to maximize the range in which a suitable excited state can be found.

In practice, Ω2
0/γ is limited by the available laser intensity. This sets the

minimum duration for the transfer required to remain adiabatic. This in

turn sets the maximum linewidth allowed to maintain coherence of the dark

state. Therefore, the second criterion is that the linewidth D associated

with the frequency difference between the two lasers is minimised as this sets

the maximum duration over which the transfer may be performed. As both

of our STIRAP lasers are frequency stabilised to the same cavity we can

expect that the frequency noise from the lasers are correlated, which helps

to minimise this linewidth. Measuring this linewidth is non-trivial, though

experimental measurements on the pump light using delayed self-heterodyne

interferometry suggest a laser linewidth on each laser of the order of ∼ 100

Hz [130]. In our experiment we find transitions which allow pulse durations

on the order of ∼ 10 µs. This indicates that the maximum linewidth for

efficient transfer must be on the order of kHz.

2.5 Structure of Diatomic Molecules

Due to the additional degrees of freedom available, molecules possess not

only electronic energy states, but also rotational and vibrational states. Each

degree of freedom operates on a different energy scale. To drive transitions

between electronic energy states requires energies in the optical or near-infra-

red regime (∼ 100 THz). Meanwhile vibrational transitions take place in the

infra-red (∼ 1 THz) and rotational transitions using microwaves (∼ 1 GHz)
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Figure 2.6: Illustration of the different energy levels present in molecules with the required

energies for transitions between each labelled. Good quantum numbers which may be used

to describe each of these states are discussed in the main text. Hyperfine structure is not

shown; each rotational level is in fact split into (2N + 1)(2IRb + 1)(2ICs + 1) as explained

in section 2.5.3.

(see Fig. 2.6). Here we will investigate each of these degrees of freedom with

particular attention made to the notation used to accurately describe each

of these levels.

In order to simplify our discussion of molecular structure, we must first

make two key assumptions. The first is that when we associate atoms into

molecules, the inner electron shells are unperturbed. Only the outer va-

lence electrons are therefore distributed throughout the molecule to give the

binding force [106]. The second is known as the Born-Oppenheimer approxi-

mation which allows us to approximate the nuclei as being at fixed positions

within the molecule. This approximation requires that the masses of the

nuclei are much larger than that of the electron and so the motion of the

nuclei is therefore slow compared to that of the electron.
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2.5.1 Hund’s Cases and Electronic Structure

Good quantum numbers rely upon the way in which the electronic and nu-

clear angular momenta couple to each other. For a 87Rb133Cs molecule, there

are various sources of angular momenta which have quantum numbers asso-

ciated with them: [36]

L - Electronic orbital angular momentum; ~L = ~lRb + ~lCs.

S - Electronic spin angular momentum; ~S = ~sRb + ~sCs.

J - Total angular momentum; ~J = ~L+ ~S + ~R.

N - Total angular momentum excluding electron spin; ~N = ~J − ~S.

R - Rotational angular momentum of the nuclei; ~R = ~J − ~S − ~L.

I - Total Nuclear spin angular momentum; ~I = ~IRb + ~ICs.

These sources of angular momenta may couple in a variety of ways which

are described by the Hund’s coupling cases. There are a total of five pos-

sible coupling cases though only the cases (a) and (c) are relevant for the

description of the 87Rb133Cs molecule. These cases are shown schematically

in Fig. 2.7.

In Hund’s case (a), the orbital angular momentum ~L strongly couples to

the internuclear axis by electrostatic forces and the electron spin angular

momentum ~S is in turn strongly coupled to ~L through spin-orbit coupling.

The projections of ~L and ~S onto the internuclear axis are given as ~Λ and ~Σ

respectively and their sum is ~Ω = ~Λ + ~Σ. The rotational angular momentum

of the nuclei ~R is coupled to ~Ω and together they form the total angular

momentum ~J . Good quantum numbers for this case are Λ,Σ, S, J,Ω.

In Hund’s case (c), the coupling between ~L and ~S is stronger than the in-

teraction with the internuclear axis. Their individual projections onto the

internuclear axis are therefore not defined and we instead couple ~L and ~S
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Figure 2.7: Coupling of angular momentum in Hund’s cases (a) and (c) which are relevant

to the 87Rb133Cs molecule.

to form the vector ~Ja = ~L + ~S. The projection of this sum ~Ja onto the

internuclear axis defines ~Ω which couples to the rotational momentum ~R to

form the total angular momentum ~J . Good quantum numbers for this case

are Ja,Ω, J .

The electronic states of the molecule can be fully described by the notation

2S+1Λ±Ω. (2.23)

In analogy with the case of spectroscopic notation for atoms, the quantum

number Λ is given the label Σ,Π,∆... for Λ = 0, 1, 2.... The superscript ±

refers to the reflection symmetry in an arbitrary plane which contains the

internuclear axis. This notation is often preceded by a term value equivalent

to the principle quantum number in atoms, where X denotes the ground

state.

The Feshbach states lie in a shallow triplet a3Σ+ potential while the rovi-

bronic ground state X1Σ+ has singlet character. Our transfer between these

two states relies on the fact that not all states in our system are well described

by a single Hund’s case, as the selection rule ∆S = 0 would deny coupling

between these levels. Fortunately, strong spin-orbit coupling causes mixing

of the A1Σ+ and b3Π+ states [136–139] and common vibrational levels of the

two states exist that have mixed singlet and triplet character. It is one these

levels which we use as an intermediate levels in our STIRAP [29, 130, 140].
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2.5.2 Vibrational Structure

The internuclear potential of a diatomic molecule is roughly harmonic near

the bottom of the well. We can hence approximate molecular vibrations

as the solutions to a simple harmonic oscillator with an added correction

term to account for the anharmonicity of the potential at higher energies.

Given this approximation, the vibrational energy can be written for a given

wavenumber (ωe) and associated energy

E(v) = ωe(v +
1

2
)− ωeχe(v +

1

2
)2, (2.24)

where v is the vibrational quantum number and χe is an constant which

describes the anharmonicity of the molecular potential. We expect that low-

lying vibrational levels will be evenly spaced by the energy determined by the

wavenumber. In 87Rb133Cs, this spacing between the vibrational ground state

and first vibrationally excited state v = 0 → v = 1 has been measured to

be 1.49270 THz (or 49.7911 cm−1). In addition, the highest vibrational level

in the electronic ground state has been determined to be either v = 136 or

v = 137 by experimental measurements using the technique of laser-induced

fluoresence combined with Fourier-transform spectroscopy [141].

2.5.3 Rotational and Hyperfine Structure

A diatomic molecule such as 87Rb133Cs is allowed to rotate around any axis

which passes through its centre of mass. At low rotational energies, the

behaviour of the molecule may be likened to that of a rigid rotor and in this

case the separation of rotational levels is defined by the rotational constant

Bv of the molecule such that

E(N) = BvN(N + 1), (2.25)

where N is the rotational quantum number. In 87Rb133Cs, this rotational

constant has been previously measured to be 490.155(5) MHz [141] by spec-

troscopic measurements, and we present an improved measurement of this

quantity later in this work. A real molecule however is not rigid and when

it rotates, an apparent centrifugal force acts on the atoms to increase the

internuclear separation. This centrifugal distortion becomes greater as the
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rotational energy of the molecule increases and leads to a rotational energy

level structure of the form

E(N) = BvN(N + 1)−DvN
2(N + 1)2 + ..., (2.26)

where Dv is the centrifugal distortion constant. Note there are higher or-

der terms available in this expression [142] but these are not experimentally

relevant to the low-lying rotational levels investigated in this work. The cen-

trifugal distortion constant for 87Rb133Cs has been previously measured as

213.0(3) Hz [141]. This is a relatively small correction, being six orders of

magnitude smaller than the rotational constant.

The hyperfine structure of a single rotational level in a diatomic molecule

is tremendously complicated and the number of levels depends upon the

magnetic field and the spins of the component nuclei. The nuclear spins of
87Rb133Cs are IRb = 3/2 and ICs = 7/2. At zero magnetic field, the total

nuclear spin ~I = ~IRb + ~ICs is conserved, and in the rotational ground state

this leads to 4 hyperfine states with I = 2, 3, 4, and 5. The application

of an external magnetic field however splits each rotational manifold into

(2N + 1)(2IRb + 1)(2ICs) Zeeman-hyperfine sublevels, so there are 32 levels

for in the rotational ground state and 96 levels for in the first rotationally

excited state. The rotational and hyperfine Zeeman structure of 87Rb133Cs is

shown in Fig. 2.8. Full control of the molecular state down to these hyperfine

levels is crucial for the majority of the proposed applications for ultracold

polar molecules.

In this work we calculate the rotational and hyperfine energy level structure

of 87Rb133Cs in the electronic and vibrational ground state by diagonalizing

the Hamiltonian [36, 143–145]

Ĥ = Ĥr + Ĥhf + ĤZ, (2.27)

where

Ĥr = Bv
~N2 −Dv

~N2 ~N2, (2.28a)

Ĥhf =
∑

i=Rb,Cs

~Vi · ~Qi +
∑

i=Rb,Cs

ci ~N · ~Ii

+ c3
~IRb · ~T · ~ICs + c4

~IRb · ~ICs, (2.28b)

ĤZ = −grµN
~N · ~B −

∑
i=Rb,Cs

gi(1− σi)µN
~Ii · ~B. (2.28c)
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The rotational contribution Hr (Eq. 2.28a) is defined by the rotational an-

gular momentum of the molecule ~N , and the rotational and centrifugal dis-

tortion constants Bv and Dv. The hyperfine contribution Hhf (Eq. 2.28b)

consists of four terms. The first describes the electric quadrupole interaction

with coupling constants (eqQ)Rb and (eqQ)Cs, while the second is the inter-

action between the nuclear magnetic moments and the magnetic field gener-

ated by the rotation of the molecule, with spin-rotation coupling constants

cRb and cCs. The final two terms represent the tensor and scalar interactions

between the nuclear magnetic moments, with tensor and scalar spin-spin cou-

pling constants c3 and c4 respectively. Finally, the Zeeman contribution HZ

(Eq. 2.28c) consists of two terms which represent the rotational and nuclear

interaction with an externally applied magnetic field. The rotation of the

molecule produces a magnetic moment which is characterized by the rota-

tional g-factor of the molecule (gr). The nuclear interaction similarly depends

on the nuclear g-factors (gRb, gCs) and nuclear shielding (σRb, σCs) for each

species. Note, this Hamiltonian does not consider the application of external

electric fields, this would require the addition of a further Stark contribution

to the Hamiltonian and significantly complicate the spectra [146]. The effect

of DC and AC electric fields on molecules in states with well defined MN is

considered in the following section.

2.6 Polar Molecules

Access to relatively long-range dipole-dipole interactions is a key motivator

for the creation of ultracold systems of molecules. Heteronuclear alkali metals

in their absolute ground state possess a large electric dipole moment but a

practically negligible magnetic dipole moment. The theoretical discussion

in this section will therefore be limited to a discussion of the behaviour of

electric dipoles only. It is important to note throughout that no state with

well-defined parity can possess a space-fixed dipole moment. A superposition

of opposite-parity states must be created to induce a dipole moment, either

by applying an external electric field or by driving microwave transitions

between neighbouring rotational states.
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MN

0 ±1 ±2 ±3

N

3

2

1

0

Table 2.3: Probability distribution (P, θ) for a rigid rotator in various states specified

by the rotational quantum number (N) with projection along the z-axis (mN ). Coupling

between states by electric field can only occur when ∆N = ±1, ∆MN = 0. Each plot is a

2D slice through the probability distribution, with the symmetry axis running vertically

through the centre of each plot.

2.6.1 Polar Molecules in DC Electric Fields

The application of an external DC electric field couples rotational states

of opposite parity to induce a dipole moment in the laboratory frame of

reference. We can demonstrate this by considering the diatomic molecule to

be similar in behaviour to that of a rigid rotor, where the atoms are treated

as point masses separated by a distance (r) as is generally applicable to all

diatomic molecules in low-lying rotational energy levels (see 2.5.3). It can be

shown that such a system has eigenfunctions (Ψr) in polar coordinates (θ, φ)

given by [147],

Ψr = A0 P
|mN |
N (cos θ) eimNφ, (2.29)

where A0 is a normalisation constant, N is the rotational quantum number

with its projection onto the z-axis MN , and P
|MN |
N (cos θ) is the associated

Legendre polynomial. This equation has an associated quantum mechani-

cal probability distribution (P = Ψ∗Ψ) which is different for each value of

the rotational quantum number. The probability distributions for rotational

quantum numbers up to N = 3 has been plotted in Table 2.3.

The rigid rod model can be adapted for polar molecules by considering the

masses on the ends of the rod carrying a different charge. The centre of

the charge distribution is then no longer located at the centre of the rod.
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The hamiltonian in the basis of |N,MN〉 for such an unevenly charged rigid

rod in an electric field is made up of two terms. The first term describes

the rotational energy of the rigid rod structure without the presence of an

electric field, the second describes the Stark effect9 [68].

〈N,MN | Ĥ |N ′,M ′
N〉 = B ·N(N + 1) · δNN ′MNM

′
N

−d0E
√

(2N + 1)(2N ′ + 1) ·(−1)MN ·

(
N 1 N ′

−MN 0 M ′
N

)(
N 1 N ′

0 0 0

)
,

(2.30)

Here, d0 is the molecule-frame electric dipole moment, B is the rotational

constant of the molecule, and E is the magnitude of the applied electric field.

The matrices in the equation are Wigner 3-j coefficients. They ensure that

the electric field only ‘mixes’ states with the same MN , and that the |N,MN〉,
|N,−MN〉 are degenerate. Hence, the electronic ground state |1, 0〉 will mix

with all of the |N, 0〉 levels. Increasing the magnitude of the electric field

leads to a greater contribution from the coupling term.

Diagonalising the Hamiltonian given in 2.30 yields the Stark map for the

rotational energy structure shown in Fig. 2.9. using the predicted parameters

for 87Rb133Cs (d0 = 1.28 D [80], B = 0.51 GHz [141]). For each energy level,

the space-fixed dipole moment is given by the gradient of the curve presented

in the plot (i.e. the rate of change in energy of the state with respect to the

applied electric field). The space fixed dipole moment for the lowest two

rotational states can be seen in Fig. 2.10(a). Experimental measurement of

the Stark shift of one of these states can therefore be used to measure the

electric dipole moment in the molecular frame (see 4.6). In order for such

a measurement to be accurate, we must consider the number of rotational

levels which must be included in the calculation for adequate convergence

to the correct solution within the uncertainty required. In Fig. 2.10, we

demonstrate how the number of rotational levels included in the calculation

changes the calculated dipole moment for the rovibrational ground state at

large electric fields. Fortunately, it is clear that the coupling is dominated

9Here we are neglecting the centrifugal distortion term D amongst all other higher

order terms in equation 2.26 as part of our approximation of treating the molecule as a

‘rigid’ rotor. This is valid as we are only considering low-lying rotational levels.
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Figure 2.9: Stark shift of the lowest four rotational states N = 0, 1, 2, 3 of a rigid rotor-

like polar molecule. The application of an external electric field ‘mixes’ states of opposite

parity and splits each rotational state into N + 1 hyperfine levels each corresponding to a

different value of the projection |MN |.

by the low-lying rotational states and convergence quickly occurs with only

N < 6 required for reasonable accuracy.

2.6.2 Polar Molecules in Microwave Fields

The dipole induced by applying an electric field is a result of a superposition

of states of opposite parity. Unfortunately however, the magnitude of the

field required is of the order of 10 kV cm−1 which can often be experimen-

tally difficult. Since neighbouring rotational levels have opposite parity, an

alternative approach is to engineer a superposition of opposite parity states

by coupling two of these neighbouring rotational states with a resonant mi-

crowave field. With the molecules starting in the rotational ground state,

the easiest superposition to prepare is between N = 0 and N = 1 rotational

levels. The dipole moment operator is

d̂ = d0

√
(2N + 1)(2N ′ + 1) · (−1)MN ·

(
N 1 N ′

−MN M M ′
N

)(
N 1 N ′

0 0 0

)
,

(2.31)
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Figure 2.10: Space-fixed dipole moment calculations in the rigid rotor model. (a) Variation

of space-fixed dipole moment with applied electric field for the lowest two rotational states

N = 0, 1. (b) Calculated induced dipole moment at large electric field as a function of the

number of rotational levels included in the calculation. Typically only N < 6 is required

for reasonable accuracy.

where M = MN −M ′
N to account for the allowed superpositions between

states with different MN . A 50:50 superposition of the N = 0 and N = 1

states will therefore have a dipole moment of d0/
√

3, and this dipole moment

persists even after the resonant field has been removed. For 87Rb133Cs, this

is equal to d0/
√

3 ≈ 0.7 D. To achieve this using DC electric fields in the

rotational ground state would require an electric field of 2 kV cm−1.

2.6.3 Interacting Dipoles

We consider the general case of two interacting particles each with relative

position ~r = rr̂, and with common dipole moments d pointed along the unit

vectors ê1 and ê2 respectively as shown in Fig. 2.11(a). The potential energy

Vdd between these two particles due to their dipole-dipole interactions is

Vdd(~r) =
d2

4πε0

ê1 · ê2 − 3(ê1 · r̂)(ê2 · r̂)
r3

, (2.32)

where ε0 is the permittivity of free space. If these dipoles are fixed parallel

to each other as in Fig. 2.11(b) then this expression simplifies to

Vdd(~r) =
d2

4πε0

1− 3 cos2 θ

r3
, (2.33)
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r

e1^

e2^

rθ

(a) (b)

Figure 2.11: General case of two interacting dipoles. (a) Unaligned dipoles where each

particle has its respective dipole moment pointed along a unit vector ê. The particles

are separated by a vector ~r = rr̂. (b) Aligned dipoles where the two dipole moments are

parallel to each other, and θ is the angle between the dipole moments and the particles’

relative position vector ~r.

where θ is the angle between the dipole moments and the particles’ relative

position vector. This form highlights the two key features of dipole-dipole

interactions; the interaction is anisotopic (i.e. depends on θ) and is relatively

long ranged (scales as 1/r3).

In the context of 87Rb133Cs molecules confined to an optical lattice, given

a lattice spacing of 532 nm and molecule frame dipole moment of d0/
√

3 =

0.7 D, we can use Eq. 2.33 to calculate the interaction strength between spin-

polarised molecules on neighbouring lattice sites. Head-to-tail interactions

are attractive with Vdd/h = −960 Hz (Vdd/kB = −46 nK), and side-to-

side interactions are repulsive with Vdd/h = +480 Hz (Vdd/kB = +23 nK).

These interactions are relatively large compared to existing magnetic dipolar

systems, and are an order of magnitude larger than those accessible in the

equivalent 40K87Rb system where dipolar spin-echange interactions between

lattice confined molecules have already been observed using Ramsay inter-

ferometry [74]. In addition, energy shifts of this magnitude are significantly

larger than the natural linewidth of the rotational and hyperfine states of the

molecule, and given sufficient spectroscopic resolution could lead to effects

equivalent to Rydberg blockade [15].

In the work presented in this thesis, molecules are trapped in a 3D optical

potential with a peak density of ∼ 1011 cm−3. Given the average separation

of molecules at this density, we would expect interaction strengths of around

Vdd/h ∼ ±10 Hz for molecules with a dipole moment of d0/
√

3 ≈ 0.7 D.
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To see how dipole-dipole interactions affect the system in the 3D case, it is

perhaps more instructive to compare the energy scale of the dipole-dipole

interaction to that of short-ranged contact interactions which depend upon

the s-wave scattering length a. We can define an effective dipole length

scale (add), by equating a typical centrifugal energy ~2/(ma2
dd) to the dipole

interaction energy in equation 2.33 such that

add =
d2m

4πε0~2
, (2.34)

which may be compared to the s-wave scattering length. For 87Rb133Cs, the

full molecule-frame dipole moment leads to add = 3.4×104 a0. Although the

s-wave scattering length between the molecules has yet to be measured, the

dipolar length is significantly larger than the contact interactions in either

atomic species and this indicates that the dominant interactions between

molecules will likely be dipolar. During a collision, the relative orienta-

tion between the two molecules will have strong effects as the dipole-dipole

interaction serves to raise or lower the barrier for collisions depending on

whether the interaction is attractive or repulsive. This has been investi-

gated as a means of either encouraging or suppressing reactive collisions in
40K87Rb. With the molecules trapped in pancake-shaped optical dipole trap,

the molecules were polarised along the tight axis of the trap by a DC elec-

tric field. The ratio of trap frequencies in the optical trap is not sufficiently

high to restrict collisions to two dimensions, but rather collisions occur more

often along the tighter axis of the trap due to the higher trap frequency.

In this case, collisions become predominantly attractive head-to-tail and the

collision rate is observed to increase [72]. Suppression of collisions can be sim-

ilarly achieved but requires a geometry which favours side-to-side repulsive

collisions.
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Experimental Apparatus

In this chapter we will discuss the experimental apparatus used through-

out this thesis. The majority of the experiment has been built and docu-

mented by previous students working on the experiment [96–101], so only

a brief overview will be given here paying particular attention to the con-

tinued maintenance and running of the experiment. This is one of the key

challenges when inheriting an experiment from a previous generation of PhD

students and one which should not be taken lightly! I will also highlight

some important additions to the experiment, specifically the relatively new

STIRAP laser system (3.2.3), the addition of DC electric fields (3.4) to ori-

ent the molecule electric dipole moments, and microwave radiation (3.5) to

probe the hyperfine and rotational structure of the deeply-bound molecules.

3.1 Vacuum System

Our experiment comprises of a two chamber vacuum system. The first houses

a pyramid MOT which is loaded directly from dispensers and acts as a cold

dual-species atom source for the second ‘science’ chamber. The pyramid

MOT has been shown to be highly robust with little to no maintenance

required over several years. The second chamber is a cell constructed from

2 mm thick fused silica with internal dimensions of 20 mm×20 mm×83 mm.

Each chamber has its own ion pump (40 l s−1 for the pyramid chamber,

55 l s−1 for the science chamber), while the science chamber also has a non-

46
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40 l s-1 

Ion Pump 

55 l s-1 

Ion Pump 

Pyramid 

MOT 

Cs Dispenser 

Feedthrough 

Rb Dispenser 

Feedthrough 

Up-to-Air 

Valve Viewport 

(For Probe Beam) 

Fused Silica Cell 

(Science MOT) 

NEG 

Pump 

Figure 3.1: Vacuum system used in this work consisting of two chambers each containing

their own MOT. The first, a pyramid MOT, acts as a cold dual-species atom source for

the second labelled as the science MOT.

evaporable getter (NEG) pump; a factor of ∼ 100 pressure differential is

maintained between the two [97]. A diagram of the experimental apparatus

may be seen in Fig. 3.1.

At present, although the fused silica cell provides excellent optical access, the

necessary optics to create a MOT in the science chamber means that access is

still at a premium. To remedy this, and to improve the vacuum quality where

the molecules are created, a future iteration of the experiment is planned.

This will have three chambers with magnetic transport of cold atoms in a

quadrupole potential between the second and third chambers similar to that

used in [148].

3.2 Laser Systems

Multi-species experiments can have highly complex laser requirements as

each species must be addressed independently. In this section we will discuss

the laser systems used to laser cool an atomic mixture of 87Rb and 133Cs,

optically trap both species together, and to transfer weakly-bound molecules
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Figure 3.2: Energy level scheme for the D2 lines in 87Rb and 133Cs atoms. Laser frequencies

used in this work are labelled. The cooling light for both species is detuned dynamically

during the experimental sequence and is used to depump the atoms during the optical

pumping stage.

produced by magnetoassociation to the rovibronic ground state.

3.2.1 Cooling, Optical Pumping, and Imaging

A dual-species experiment requires two complete laser systems to generate

light for cooling and repumping in the magneto-optical trap, optical pumping

prior to magnetic trapping, and for absorption imaging of both species. The

systems developed in our experiment are identical for 87Rb and 133Cs and

are built on the same optical breadboard. Light for both species utilises

the D2 transition (S1/2 →P3/2) at 780 nm and 852 nm for 87Rb and 133Cs

respectively. Light is passed from the laser system to the main experiment

through polarisation maintaining optical fibres. The 87Rb system may also

be easily adapted for 85Rb [129, 149]. The frequencies of light required in

our experiment are shown in Fig. 3.2.

The cooling and imaging light in the science MOT for each species is gen-

erated by a Toptica DL100 extended cavity diode ‘master’ laser, which is
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frequency stabilised to fRb = 2 → f ′Rb = 3 (fCs = 4 → f ′Cs = 5) using a sig-

nal obtained from modulation transfer spectroscopy in a room temperature

vapour cell [150]. The laser frequency is offset from the atomic transition by

∼ 200 MHz due to a double-pass acousto-optic modulator (AOM) between

the laser and the spectroscopy setup. Light sent to the experiment is then

shifted back to near-resonance using a second double-pass AOM before the

optical fibre. This allows controllable detuning of the light from the cooling

transition by varying the modulation frequency on the second AOM. Extra-

cooling light for the pyramid MOT is supplied by seeding an additional slave

laser with ∼100µW of light from the master laser. The repump and opti-

cal pumping light for each species comes from a home-built external cavity

diode laser frequency stabilised to the fRb = 1→ X ′Rb:1,2 (fCs = 3→ X ′Cs:3,4)

crossover resonance using an error signal created by frequency modulation

spectroscopy [151]. Single-pass AOMs are used to shift the frequency onto

resonance with fRb = 1 → f ′Rb = 2 (fCs = 3 → f ′Cs = 4) for repump and

fRb = 1 → f ′Rb = 1 (fCs = 3 → f ′Cs = 3) for optical pumping. The power

from each homebuilt laser is enough to supply repump light for both the pyra-

mid and science MOTs, as well as light for optical pumping in the science

cell.

3.2.2 Optical Trapping

After evaporation in the magnetic quadrupole trap, the atoms (and subse-

quently produced molecules) are loaded into an optical dipole trap. The light

for this trap is provided by a single-frequency IPG Photonics ELR-30LP-SF

fibre laser with a maximum output power of 30 W at 1550 nm. The 1550 nm

light is split into two beams on a polarising beam splitter. The intensity of

each beam is independently controlled using separate AOMs via an active

feedback loop. The input signal for this feedback comes from photodiodes

which monitor the light leaked through the back of mirrors along each beam

path. Each AOM is driven with a fixed modulation frequency of 50 MHz,

though the light in one beam is shifted up in frequency while the other is

shifted down in frequency in order to avoid standing wave effects in the

crossed beam region. λ/2 waveplates are positioned in each beam path to
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Figure 3.3: Dipole trapping and STIRAP optical layout. (a) Layout of the dipole trapping

and STIRAP beams around the vacuum apparatus. Both 1550 nm beams are derived

from a single erbium fibre laser. The power in each beam is independently controlled

using separate AOMs. (b) A single retro-reflected beam of 1064 nm light is produced by

an Nd:YAG non-planar ring oscillator (Innolight Mephisto). The output of this laser is

split along two paths. The first passes through an AOM for control of the power before

it is fibre coupled and sent to the experiment. The second path leads to a fibre amplifier

which will be used to enable higher laser powers in the future. (c) Crossing angles of the

trapping beams close to the centre of the glass science cell.

enable control of the polarisation as shown in Fig. 3.3. Up to ∼ 6 W of power

is available in each beam.

When the dipole trap was first constructed, the crossing angle of the beams

was measured to be ∼ 22◦ using knife edge measurements to track the po-
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Figure 3.4: Measurement of the dipole trap beam crossing angle using reflectance of light

from the uncoated walls of the fused silica cell. The refractive index of the glass is 1.455

for 1550 nm wavelength light. (a) Dependence of reflectance on the angle of incidence and

light polarisation. (b) Measurement of beam power with varying the setpoint of the servo.

The difference in gradient gives the difference in power after the cell for each polarisation.

sition of one beam relative to the other [98]. However, as the design of the

experiment has evolved, the trap has been realigned on many occasions and

the crossing angle has been changed to accommodate new optics such as

those used to focus STIRAP light onto the molecules [101]. Accurate mea-

surement of this crossing angle using knife edge measurements is non-trivial

on a crowded optical table, so we therefore estimate the beam crossing angle

by measuring the reflectance R of the light from the walls of the glass cell.

Fig. 3.4(a) shows the dependence of the reflectance of fused silica on the

angle of incidence and light polarisation. To measure the angle at which the

beam meets the wall of the cell, we measure the power transmitted through

the cell for both s and p laser polarisations as shown in Fig. 3.4(b). The

total transmission T ∝ (1−R)4, as the light must pass through both walls of

the cell and hence encounters 4 optical surfaces. In our experiment we find

a transmitted power ratio Ps/Pp = 1.019(1) and 1.028(1), which correspond

to angles of incidence of ∼ 12.5◦ and ∼ 15◦ for beams 1 and 2 respectively

(see Fig. 3.3 for beam labelling convention). The angle at which the beams

intersect each other is simply equal to the sum of the angles of incidence at

which they meet the cell. This crossing angle is ∼ 27.5◦, considerably larger
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Figure 3.5: Measurement of trap frequency experienced by 87Rb atoms in the crossed

optical dipole trap. The λ = 1550 nm trapping light has a total power of ∼ 5.4 W. Open

and filled circles show measurements of the vertical and horizontal widths of the atomic

cloud, while the lines show damped sine curves fitted to the results. In this case the radial

and axial trap frequencies are ωr/(2π) = 181(2) Hz and ωa/(2π) = 33(1) Hz respectively.

than was measured for the original trap geometry.

The waists where the two beams intersect are estimated from the trap fre-

quency experienced by atoms in the trap. To measure the trap frequency,

the trapping beams are switched off with the atoms magnetically levitated

for ∼ 1 ms, during which the cloud expands. The atoms are then recaptured

in the optical trap for a variable hold time before once again releasing the

atoms for a 20 ms time of flight and absorption imaging. During the variable

hold time, the cloud width oscillates at twice the frequency of the trap as

shown in Fig. 3.5. We repeat this measurement in both single beam traps

to determine waists of 105(2) µm and 95(2) µm for each beam. The measure-

ment is then repeated in the crossed beam trap to ensure that the beams are

well overlapped at the position of the atoms/molecules. These measurements

are in agreement with direct knife edge measurements of the beams close to

the centre of the trap.

In future iterations of our experiment, we plan to trap molecules using light at

1064 nm as this is a convenient wavelength for high power narrow linewidth

lasers, and because at this wavelength the Feshbach and ground molecule
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states have the same polarisability. Preliminary tests using light at this

wavelength have been performed in our experiment using a Nd:YAG non-

planar ring oscillator (Innolight Mephisto). This laser can produce up to

2 W of 1064 nm light in continuous operation and has a very narrow free-

running linewidth of ∼ 1 kHz. We servo the intensity of the light using

an AOM before coupling the light into a standard single-mode ThorLabs

optical fibre. The output of this fibre is then monitored through the leaked

light of a mirror and actively stabilised by varying the RF power to the

AOM via a feedback loop. The light then passes through the glass cell as

shown in Fig. 3.3. The waist at the centre of the glass cell is ∼ 60 µm. This

arrangement has also been used to form a bow-tie 3-D trap and 1-D lattice

in which Feshbach molecules have been trapped [101]. Some light from the

laser is sent to a Nufern fibre amplifier, which can be used to produce higher

trapping powers at 1064 nm, however we intend to replace this in the near

future with a Mephisto MOPA system.

3.2.3 STIRAP

A laser system for STIRAP must consist of two narrow-linewidth laser light

sources which are labelled as the pump and Stokes as shown in Fig. 3.6. The

frequency difference between these two sources is required to be relatively

large (∼ 100 THz) and equal to the binding energy of the molecule. To

ensure smooth running of the experiment, the frequency of both lasers must

have excellent short and long term stability. In addition, the frequency of

each laser must be continuously tunable over a wide frequency range in order

to find and perform spectroscopy on the multitude of available molecular

states.

The narrow-linewidths necessary for STIRAP can be achieved by stabilising

the laser frequencies to an optical frequency comb [26], multiple indepen-

dent cavities [152], or a single multi-wavelength cavity [153]. In the case of

frequency stabilisation to an optical cavity, there are two approaches. The

length of the cavity may be actively stabilised by referencing back to a fre-

quency comb [152], or an atomic reference [154, 155]. Alternatively, the

necessity of having an optical reference can be removed by relying on the
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Figure 3.6: Molecular transitions for STIRAP. The coupling between states introduced by

the STIRAP lasers is shown. The shaded purple area shows the region in which excited

states may lie and still be accessible to our laser system for coupling to both states near

dissociation and the rovibronic ground state.

passive stability of an ultra-low-expansion (ULE) glass cavity maintained at

the zero expansion temperature of the glass [153]. Typically, a tunable fre-

quency source is then generated by using the output of another laser which

is offset-locked to the frequency stabilised laser via an optical phase-locked

loop [153]. The laser system developed in our experiment is fundamentally

different to those typically used in similar experiments as we only require

two lasers.

Our system utilises a pair of Toptica DL Pro external cavity diode lasers to

provide light at 1557 nm and 977 nm for the pump and Stokes transitions

respectively. Light from each laser is passed through an optical isolator

(∼ 40 dB) before being split on polarising beam splitters and coupled into

four separate fibres leading to the main experiment, an optical frequency

comb, a wavemeter and an optical cavity as shown in Fig. 3.7(a).

Both lasers are referenced to the same 10 cm plane-concave optical cavity to

narrow the linewidth. The cavity (ATFilms) is constructed from ULE glass,

and is mounted in a temperature stabilised vacuum housing from Stable

Laser Systems. The temperature of the cavity is maintained at 35◦C, the

zero-expansion temperature of the ULE glass. Each beam sent to the cavity
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Figure 3.7: STIRAP laser system. (a) Optical setup for the laser locking and distribution

of laser light to the experiment. Laser light is supplied by two Toptica DL Pros at 1557 nm

for the pump (top left) and 977 nm for the Stokes (bottom right). The light is then split

between the main experiment, an optical frequency comb (FC), a wavemeter, and the ULE

optical cavity for frequency stabilisation. Fibre coupled EOMs between each laser and

the optical reference cavity provide the Pound-Drever-Hall (PDH) and offset modulation

signals required for frequency stabilisation as described in the main text. (b) The Pound-

Drever-Hall and offset electronics. The directional coupler which is used to split the PDH

modulation signal is a Minicircuits ZDC-20-3, and the mixer is a Minicircuits ZFM-150+.

The resultant error signal is sent to a Toptica FALC 110 fast analogue servo module.

(c) Example PDH error signal while scanning the pump laser over a small frequency

range. (d) Example PDH error signal while scanning the pump laser over a large frequency

range. The free spectral range of the cavity is ωFSR = 1496.873(1) MHz at 1557 nm and

ωFSR = 1496.662(1) MHz at 977 nm.
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passes through an optical fibre-coupled electro-optic modulator (EOM). The

output of each EOM (Thorlabs LN65S-FC for 1557 nm, EOSpace PM-0K5-

10-PFA-PFA-980 for 977 nm) is then coupled via a fibre and mode-matching

optics to the optical cavity. Dichroic mirrors at either end of the cavity are

used to combine the two different wavelengths of light entering the cavity,

and to separate the two wavelengths following transmission or reflection.

Both the transmitted and reflected beams are monitored on photodiodes, and

the signal generated by the reflected light is sent to the locking electronics

(Fig. 3.7(b)). The frequency stabilisation electronics are a standard Pound-

Drever-Hall (PDH) setup as has been explained in [156], where the EOM is

driven at a frequency ωPDH ∼ 10 MHz to generate the PDH readout signal

(Fig. 3.7(c)). Each laser control unit is fitted with a fast analogue servo

module (Toptica FALC 110) to which the error signal is sent.

The fibre-coupled EOMs are crucial to the simplicity and flexibility of our

setup. These modulators are non-resonant and hence work over a wide band-

width of 10 GHz. Additionally, these devices can be driven simultaneously at

multiple frequencies and require relatively small driving voltages (∼ 4.5 V).

In addition to providing the modulation for the PDH lock, we use these

EOMs to provide continuous tunability of the laser frequency sent to the

main experiment. By applying a second modulation frequency ωOffset to each

EOM, we add high-frequency sidebands to the original carrier light (Fig. 3.7).

By stabilizing the frequency of a sideband to a cavity mode, we are then

able to precisely tune the frequency of the carrier light by simply changing

the modulation frequency, ωOffset [157]. Due to the high bandwidth of the

EOMs, ωOffset may be larger than the free spectral range of the optical cav-

ity ωFSR. Hence, the frequency of the carrier light can be tuned continuously

to any point between the modes of the cavity.

Isolating the optical reference cavity from vibrations is typically critical for

achieving high efficiency STIRAP. Our cavity is placed on a breadboard on

top of a sorbathane mat, which is inside a wooden box lined with sound-

proofing foam (30 mm thick). The whole assembly is placed on an optical

table (without a vibration isolation platform) in the same room as the main

experiment itself. We neglect further isolation in part because we find that

the part of the apparatus most sensitive to vibrations is not the cavity itself
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Figure 3.8: STIRAP pulse sequence control scheme. (a) STIRAP and spectroscopy pulses

are controlled by two signals produced by a single arbitrary function generator (Agilent

33522B) which is triggered by a TTL pulse TTLTrig. from the FPGA. The outputs of

the function generator are connected to the modulation input of two independent fixed

frequency 80 MHz amplifiers via an array of TTL-controlled analogue switches (DG412).

The switch array allows either output of the function generator to be connected to either

amplifier. In the schematic shown, when TTLSwap is on, switches labelled A are closed

and B are open. Output 1 of the function generator is therefore connected to the amplifier

which controls the pump acousto-optic modulator (AOM) and output 2 controls the Stokes.

Similarly, when TTLSwap is off, output 1 controls the Stokes and output 2 controls the

pump. This allows a single pulse sequence to transfer molecules to and from the ground

state as shown in (b). A third TTL control TTLOff disconnects the amplifiers from their

respective AOMs to ensure no resonant light can reach the experiment when the STIRAP

light is not in use.

but instead the EOM and the accompanying fibres.

Light destined for the main experiment is passed through an acousto-optic

modulator (AOM) prior to fibre coupling (ISOMET 1205C-1023 for 1557 nm,

ISOMET 1205C-1 for 977 nm); this shifts the frequency of the light by

80 MHz and allows control of the amplitude of the light to create the STI-

RAP pulses. The pulse sequence for STIRAP is generated by an arbitrary

function generator (Agilent 33522B). The output from this is sent to a fast

(∼ns) TTL-controlled analogue switch (DG412) which allows the pump and

Stokes control signals to be swapped. This enables the same pulse sequence

from the signal generator to be used to transfer the molecules to and from the

ground state. The output of the switch then controls the amplitude output

of the fixed frequency amplifier (ISOMET 532B-2) driving the AOM, and

hence the intensity of the light at the experiment. Between the amplifier

and the AOM there is another switch (Minicircuits ZX80-DR230-S+) which
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disconnects the output of the amplifier from the AOM. This is used to en-

sure that there is no leaked resonant light reaching the molecules when not

required. The control scheme used is shown in Fig. 3.8.

At the main experiment, the light from each fibre is coupled in free space

on a dichroic mirror and focussed (f = 300 mm) to a waist of 37.7(1)µm

(pump) and 35.6(6)µm (Stokes) at the position of the trapped molecules

(Fig. 3.3). The system can provide up to 16 mW of each wavelength of light

at the position of the molecular sample.

3.3 Magnetic Fields

Homogeneous magnetic bias fields and magnetic field gradients are generated

using various pairs of copper coils outside the glass cell. These copper coils

are wound from square cross-section copper tubing and are water cooled using

a barrier cooler filled with distilled water. Two sets of coils in anti-Helmholtz

configurations produce magnetic field gradients for the magnetic trap (quad

1) and science MOT (quad 2). The magnetic trap gradient is roughly an order

of magnitude greater than the MOT gradient for a given current. There are

three sets of bias field coils each in a Helmholtz configuration. Bias 1 and 2

are capable of producing the largest magnetic fields. At present, only bias 1 is

used to reach the ∼ 200 G magnetic field required in our molecule production

sequence. However, both of these coils may be connected in series to produce

a magnetic field of up to 1157(1) G using a current of 425 A [98]. Bias 3

is used to make small fast (∼ 1 ms) changes to the bias field as each coil

consists of just two turns of wire. In the current experimental sequence, bias

1 is switched on to produce a fixed magnetic field just below the Feshbach

resonance while bias 3 is used to precisely tune the magnetic field over the

resonance to associate atoms into molecules.

3.3.1 Magnetic Field Calibration

To calibrate the magnetic field we measure the microwave transition fre-

quency between the spin-stretched states of atomic Cs (|f = 3,mf = +3〉 →
|4,+4〉) or Rb (|1,+1〉 → |2,+2〉). The energy difference ∆E between these
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Figure 3.9: Breit-Rabi diagrams showing the magnetic field dependent energy shifts of the

hyperfine ground states in (a) 87Rb and (b) 133Cs.

states at a given magnetic field B can be calculated using the Breit-Rabi

equation

∆E =
hVhfs

2(2I + 1)
− gIµBBmf ±

1

2
hVhfs(1 +

4mf

2I + 1
x+ x2)1/2, (3.1a)

where x =
(gI + gJ)µBB

hVhfs

. (3.1b)

Here, I is the nuclear spin, Vhfs is the hyperfine splittings of the ground states

at zero magnetic field, g(f,I,J) is the Landé g-factor, h is the Planck constant,

and µB is the Bohr magneton [158]. The relevant Breit-Rabi diagrams for

Rb and Cs can be seen in Fig.3.9. By measuring the transition frequency

between these states experimentally, we can therefore calculate the magnetic

field experienced by the atoms.

Considering specifically Cs, the atoms are initially trapped in the |3,+3〉
state and the transition frequency between the spin-stretched states is in the

microwave regime (∼ 9.6 GHz for Cs). The atoms are exposed to microwave

radiation (see Sec. 3.5) for ∼ 100 ms and some of the population is trans-

ferred into the |4,+4〉 state only when the microwave frequency is resonant

with the transition. To perform a measurement we need to separate the

atomic populations in each of the two states from each other. The |3,+3〉
state has a negative magnetic dipole moment while the |4,+4〉 state has a

positive magnetic dipole moment, the two states can therefore be separated

via the Stern-Gerlach effect (2.2.1). By applying a magnetic field gradient

to levitate the |3,+3〉 atoms, these atoms will be separated vertically from

those transferred into the |4,+4〉 state which experience a downward force in
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Figure 3.10: Magnetic field calibration using the spin-stretched hyperfine states in atomic
133Cs. (a) Absorption images of Cs after Stern-Gerlach separation of the |f = 3,mf = +3〉
and |f = 4,mf = +4〉 hyperfine states as discussed in the main text. (b) Experimental

results showing the microwave (MW) frequency dependence on the 133Cs atom population

in each hyperfine state. The centre frequency of the transition here is 9634.630(3) MHz

which corresponds to a magnetic field of 179.124(1) G.

the same magnetic field gradient. The microwave frequency is resonant with

the transition when the largest proportion of the atomic population has been

transferred into the |4,+4〉 state. An example experimental measurement is

shown in Fig. 3.10.

3.4 Electric Fields

The application of an external electric field serves to mix states with opposite

parity which allows the observation of the molecular dipole moment in the

laboratory frame of reference. Until recently, our apparatus had been used

only for preparing the high phase-space density atomic mixtures and therefore

no electric fields had been required. The initial design criteria was to be able

to produce electric fields up to ∼ 1.5 kV cm−1 using a set of electrodes

outside of the fused silica vacuum cell with minimal modifications to the

existing apparatus. This electric field would give access to a lab-frame dipole

moment of ∼ 0.6 D. In addition, the electric field must be quite uniform

at the position of the molecules in order to minimise the variation in dipole

moment across the molecular sample.

The final design utilises a set of four wire electrodes positioned parallel to the
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Figure 3.11: Electrode array for producing DC electric fields. A set of four electrodes are

mounted in Tufnol G10 around the centre of the magnetic field coil array. Each electrode

can be connected to one of two power supplies capable of producing potentials of up to

±5 kV. In its current configuration, the top electrodes are connected to a negative potential

and the bottom electrodes are connected to a positive potential. This gives a DC electric

field anti-parallel to the applied magnetic field.

four corner edges of the fused silica cell. This is a relatively straightforward

way of generating an electric field inside the cell without impeding any optical

access. In addition, by wiring different pairs of electrodes, the electric field

direction can be chosen to either be parallel or perpendicular to the magnetic

bias field. The disadvantage of this setup is that the electric field produced

is only uniform close to the centre of the electrode array. To ensure the

molecules are close to this position, the electrodes are mounted on the coil

mounts used to produce the magnetic fields rather than with respect to the

glass cell. The electrodes are made from 1.5 mm stainless steel wire and run

through a pair of mounts made from Tufnol G10 as shown in Fig. 3.11. Each

mount sits in a hole at the centre of the coil mount. These holes are also

used for the vertical MOT and optical pumping beams which are unimpeded

by the addition of the electrodes.

To calculate the electric field at the centre of our glass cell we cannot only

consider the simple geometry of the four electrodes; we must also include

the dielectric constant of the glass cell and the surrounding magnetic field

coils. To achieve this, we begin by constructing a model of the experimental

apparatus in Autodesk Inventor, a common computer-aided design (CAD)
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Figure 3.12: Simulating the electric potential across the cell. Calculation is performed

using finite element methods in Autodesk Multiphysics. Here ±5 kV is applied to the

electrodes positioned close to the corners of the fused silica cell to give an electric field at

the centre of the cell of 1.5 kV cm−1.

program. We then use a second program, Autodesk Multiphysics 1 to create

a 3D mesh which follows the geometry of the experimental apparatus. We

use finite element methods [159] to calculate the potential at all nodes on

this mesh taking into account the potential applied to the electrodes and

coils and dielectric properties of the glass cell (see Fig. 3.12). Applying an

electric potential of ±1 kV between the upper and lower electrode pairs yields

an electric field at the position of the molecules of 153(1) V cm−1. A total

potential difference between the electrodes of ∼ 10 kV is therefore required

to achieve the desired maximum electric field of 1.5 kV cm−1.

The uncertainty on the electric field has three contributions. The largest

contribution is due to the uncertainty in the measurement of the electrode

separations, including any uncertainties in the electrode shape (i.e. the bend

radius at either end of the electrode). This is currently the largest source

of uncertainty in our calculation. The next source of error is caused by

the uncertainty in the position of the molecules with respect to the centre

of the electrode array. This uncertainty is estimated to be ±1 mm in any

direction, and the uncertainty in the field therefore also gives an indication

of the uniformity of the field. Note that the position of the glass cell with

respect to the electrode array has an error of similar magnitude. However,

calculations of the electric field where we move the glass cell by ±1 mm show

1The Autodesk Multiphysics package has subsequently been merged into Autodesk

Simulation Mechanical
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Figure 3.13: Switching of high voltages. (a) Circuit diagram for the switches used. Ev-

erything contained within the dotted box is contained within the moulded plastic housing

of the switch itself, while the rest is mounted on an external PCB. When charging the

electrodes, switch A is closed and B is open, when discharging switch B is closed and A

is open. Example (b) rise and (c) fall times for the high voltage switches are also shown.

Both switches were activated/deactivated simultaneously, though only the positive po-

tential pulses are shown here. The potential on the electrodes and current in/out of the

electrodes are shown in black and red respectively. The time t = 0 is defined as the time

where the TTL control signal reached 2.5 V.

negligible deviation from the central value. The final source of error is from

the electric field calculation itself. Finite element analysis is an approximate

method which relies upon a converging solution. The convergence has some

noise, which is estimated by repeating the calculation with a range of mesh

densities.

In our experiment we need to be able to switch on the electric field for time

scales similar to that used for the STIRAP pulse sequence (microseconds)

and to the expected lifetime of the molecules in the trap (seconds). We

therefore require fast switching times to enable the fast pulsing on of the

electric field and for the potential to be relatively stable over many seconds

while active.

The high potentials required are generated using two Stanford Research Sys-

tems PS350 5kV power supplies. This allows us to apply potentials of ±5 kV

to the electrodes; in theory allowing access to the 10 kV potential difference
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required to reach our maximum field goal. The power supplies have a very

large capacitance, and are hence very slow to switch on and off (the dis-

charge time can be measured in seconds). In order to speed up the switching

times we employ two Behlke HTS-61-03-GSM switches in conjunction with

a parallel capacitor. See Fig. 3.13(a). These switches allow the slow power

supplies to store charge in the capacitor; the switches then allow the transfer

of that stored charge to the electrodes, and away from the electrodes much

more quickly than using the power supplies alone. The switches are con-

trolled via TTL, and the connection for this is made via an external optical

link to minimise the risk of damage to the FPGA used to control the exper-

iment. The size of the charging capacitor required, and the final switching

time depend enormously on the capacitance of the electrode configuration.

Consequently, it is important to keep the high voltage wires separate and

as short as possible to minimise extra resistance and capacitance being in-

troduced by these components. The switching times in our experiment have

been measured using a Testec HVP-15HF 50 MHz high voltage probe with a

4.7 nF capacitor used in the switching circuit. Example input/output signals

can be seen in Fig. 3.13. Some ringing can be seen on the activation pulse

which limits the switching time to around 1µs. This is due to the inductive

nature of the system we have. Moreover, it is very difficult to damp without

further increasing the switching time. The deactivation switch time is much

faster and takes 300 ns. The peak current measured in each direction is 13 A.

Note that it is very difficult to get an accurate measurement of the minimum

switching time. This is because the addition of a probe necessarily increases

the capacitance of the electrode array which therefore increases the switching

time!

The maximum electric field attainable in our experiment is not limited by the

maximum potential we can apply to the electrodes. It is instead limited by

the electric field at which the fused silica cell becomes measurably polarised

(∼ 1 kV cm−1). Above this electric field, charge build up on the surface of

the cell leads to a significant electric field even when there is no potential

applied to the electrodes. This electric field causes a DC Stark shift of the

ground state which shifts the state off-resonance with our STIRAP lasers,

making return of the molecules to the free-atomic state for imaging difficult.
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We have found that with UV light we can remove this stray charge between

experimental runs, but we have not tried to apply the UV light during the

experimental sequence. Future iterations of the experiment will seek to min-

imise this effect by placing electrodes in vacuum so as to minimise the electric

field at the walls of the glass cell. Another option may be to use ITO coatings

on the walls of the glass cell. It has been shown that an array of 8 electrodes

may be used to generate extremely uniform fields with a fractional deviation

in electric field across the sample of trapped molecules of ∼ 10−6 [160].

3.5 Microwave Sources

As discussed in section 3.3.1, microwaves at ∼ 6.8 GHz and ∼ 9.6 GHz are

used in the experiment to transfer atoms between hyperfine levels in the

atomic ground states as a means of calibrating the magnetic fields. At these

frequencies, we use two microwave horns (Atlantec RF AS6366 and AS6186)

positioned just outside the coil array which serve as a directional source of

unpolarised microwaves. However, the transitions between the lowest-energy

rotational states of the molecule require lower frequency microwaves than

can be provided by these two antennas.

The rotational constant of 87Rb133Cs is around Bv ≈ 490 MHz. Therefore,

the splitting between the ground and first rotationally excited state is there-

fore BvN(N + 1) = 2Bv ≈ 980 MHz. This is a microwave frequency (MW)

in the ultra-high frequency (UHF) part of the radio spectrum which is used

for military and aeronautical communication and radio-navigation, and is

close in frequency to those used in cellular communication [161]. Directional

antennas (e.g. horns) must typically have dimensions on the order of one

wavelength λ. As the wavelength in this part of the spectrum is relatively

large (λ ≈ 30 cm), directional sources placed close to the molecules would be

impractical and we must therefore consider omnidirectional antennas which

can be constructed with a less-intrusive form factor.

Our solution was to install a pair of homebuilt base-fed λ/4 monopole anten-

nas in the apparatus to work around 980 MHz. A schematic diagram of one

of our antennas is shown in Fig. 3.14. The antenna consists of a square of
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Figure 3.14: 980 MHz λ/4 monopole antenna design. (a) Side view showing both sides

of the high frequency circuit board and length of copper wire used to match the resonant

frequency. (b) End view looking down the length of copper wire. The oscillating magnetic

field produced around the wire is cylindrically symmetric around the length of wire and the

molecules are positioned some distance from the antenna r. The microwave polarisation

is therefore linear and perpendicular to both the vector r and the axis of the copper wire.

high frequency circuit material with a layer of rolled copper on each surface

(Rogers Corp. RO3003). One of the copper faces is milled to leave a narrow

copper track leading from the edge to the centre of the board. The centre

end is soldered to a straight piece of copper wire angled perpendicular to the

plane of the circuit board. The copper wire has length equal to a quarter

wavelength (λ/4 = 77 mm). A female SMA connector is attached to the

edge of the circuit board. The pin of the SMA is connected to the milled

narrow wire, while the ground is connected to the opposing square copper

surface which acts as a ground plate2. The idealised monopole antenna can

be considered as a dipole whose lower half has been cut off and replaced by

its image in the ground plane. However, as the ‘grounded’ monopole antenna

only radiates its power in a hemisphere above the ground plane, the intensity

output is 3 dB greater than that of a free-space dipole antenna [162, 163].

The polarisation of the microwaves (defined as the plane of the magnetic

field component) is reasonably linear and is perpendicular to the axis of the

antenna at the position of the molecules as shown in Fig. 3.14. As a re-

2One of the antennas in our apparatus is mounted such that the ground plate is clamped

close to and parallel to the surface of the earthed optical breadboard. In this case, the

breadboard also acts as an extended ground plate.



Chapter 3. Experimental 67

sult, installing two antennas orientated perpendicular to each other and with

appropriate orientation with respect to the magnetic field, allows one to pref-

erentially drive π transitions (MW polarisation parallel to B-field) and the

other to drive σ± transitions (MW polarisation perpendicular to B-field).

Microwaves are provided by two analog signal generators (Agilent N5183B

and E8257D) which are both frequency referenced to the same external

10 MHz GPS disciplined oscillator (Jackson Labs Fury). Each signal gener-

ator is connected to a Minicircuits TVA-R5-13 +38 dB amplifier, which is

in turn connected directly to the antenna. The signal may be pulsed on and

off using an external TTL-controlled switch (Minicircuits ZYSW-2-50DR)

placed between the source and the amplifier. These switches have a typical

rise/fall time of 6 ns, though our minimum pulse time is limited to 730 ns

by the minimum allowed step duration in the field programmable gate array

(FPGA) which controls the timing of the experiment. Alternatively, the Ag-

ilent N5183B has built-in pulse modulation enabling pulse times down to as

low as 20 ns.

Transitions to higher rotational levels require higher frequency microwaves.

Our existing array of horns covers a frequency range of ∼2-13 GHz. There-

fore, with the addition of the 980 MHz antennas, we can access any rota-

tional states starting from the rotational ground state up to around N = 13

(EN=13 − EN=12 ≈ 12.7 GHz). However, as the horns offer no control of the

polarisation of the microwaves, it may prove useful to develop alternative

broadband antenna solutions to enable more selective transfer between cer-

tain molecular hyperfine states. Linear antennas, as we are using at 980 MHz,

offer linear polarisations of microwaves, but it is also possible to generate cir-

cular microwave polarisations to enable selectivity between σ+ and σ− states.

One such antenna design is the spiral antenna [164, 165], which is frequency

independent [166] and widely used commercially in GPS applications.
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Creation and Characterisation

of Ultracold 87Rb133Cs

The production of molecules at ultracold temperatures is a difficult goal

to accomplish. Although direct cooling techniques are making great

progress [39, 42, 45], to date the most successful approach is to employ mag-

netoassociation on a Feshbach resonance to produce weakly-bound molecules

from a pre-cooled atomic gas. These molecules can then be transferred to

their rovibronic and hyperfine ground state by stimulated Raman adiabatic

passage (STIRAP). This process has been used to produce homonuclear

molecules such as Cs2 [152] and Rb2 [67] and, most relevant to this work, a

small but growing number of heteronuclear molecules possessing permanent

electric dipole moments [26, 28–30, 32].

In this chapter, we will demonstrate the production of 87Rb133Cs molecules

in the lowest hyperfine level of the rovibronic ground state. Production

of weakly-bound Feshbach molecules in our apparatus was first reported

in [167], with transfer the the rovibronic ground state in [29]. Each of these

steps has been the primary subject of previous theses [100, 101], and we

will therefore only briefly outline the necessary steps and key results (4.1,

4.2). In this work, we will pay special attention to optimising the efficiency

of both processes to maximise the number of molecules produced. This is

vital to maximise the initial density of the molecule sample, and to enable

measurements of the molecule lifetime with an acceptable signal to noise. In

68
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Figure 4.1: Experimental sequence for the (a) association and (b) dissociation of weakly-

bound Feshbach molecules. We begin with a mixture of 87Rb and 133Cs atoms at a

temperature of ∼ 300 nK in a magnetically-levitated optical dipole trap at a magnetic

bias field of ∼ 22 G. To associate molecules, we sweep the magnetic field from high to low

magnetic field across a Feshbach resonance at 197.1 G. We separate the atoms and the

molecules via the Stern-Gerlach effect before transferring the molecules to an unlevitated

optical trap. The molecules are then prepared in the |−6(2, 4)d(2, 4)〉 Feshbach state

ready for transfer to the rovibronic ground state by STIRAP. To dissociate the molecules,

the magnetic bias field is swept back across the Feshbach resonance and held where the

energy of the molecular state is higher than the energy of the free atoms. Once all of the

molecules have been dissociated back to atoms, the magnetic field must be switched off

for absorption imaging. (c) Near-threshold molecular bound states for 87Rb133Cs in the

magnetic field regime close to the association Feshbach resonance. (d) Scattering length

between 87Rb133Cs showing the Feshbach resonances used in this work.

addition, we will discuss the process of imaging atoms and molecules in our

experiment (4.3). Finally, we present a number of characterisation measure-

ments of the molecule’s temperature (4.4), binding energy (4.5), and electric

dipole moment (4.6).

4.1 Feshbach Association

We begin the association process with a mixture of 87Rb and 133Cs at a

temperature of ∼ 300 nK and a phase-space density of ∼ 0.1. The atomic

mixture is held in a magnetically-levitated optical dipole trap following a
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Figure 4.2: Spatial separation of atoms and molecules via the Stern-Gerlach effect. Cs

absorption images after various hold times in a magnetic field gradient. The magnetic

field gradient is chosen to over-levitate the atoms such that they are thrown out of the

top of the dipole trap.

sequence of evaporative cooling, where the intensity of the dipole trapping

light is reduced over ∼ 800 ms to allow the most energetic atoms to escape

from the sample. A magnetic bias field of ∼ 22 G is applied which is required

for the efficient evaporative cooling of 133Cs. We tune the ratio of 87Rb and
133Cs atoms in the trap to optimise the efficiency of magnetoassociation by

varying the number of 133Cs atoms loaded into the MOT at the start of the

experimental sequence. We typically find that the largest number of Feshbach

molecules are produced with 3.5× 105 133Cs atoms and at least 4× 105 87Rb

atoms.

To associate molecules from the atomic mixture we must increase the mag-

netic bias field to near the Feshbach resonance at 197.1 G as shown in Fig. 4.1.

We begin by increasing the bias field to 212 G, where the field is allowed to

stabilise, before reducing the magnetic field to within ∼ 0.4 G of the reso-

nance. We perform association by sweeping the magnetic bias field over the

Feshbach resonance from high to low field with a ramp speed of ∼ 250 G s−1

over 1.56 ms. Once across the resonance, molecules occupy a bound state

which runs nearly-parallel to the free-atomic energy. We therefore ramp the

magnetic field down further to a second Feshbach resonance around ∼ 182 G.

The speed of this ramp is carefully designed to follow the avoided crossings

between the Feshbach states and allows us to transfer the molecules to the

|−2(1, 3)d(0, 3)〉 Feshbach state. The molecules created have a temperature

similar to that of the atomic distribution from which they are associated.

The |−2(1, 3)d(0, 3)〉 state has a different ratio of magnetic moment to mass

than either of the free atom species1. This allows the separation of the

1The |−6(2, 4)d(2, 4〉 Feshbach state which the molecules pass through could also be



Chapter 4. Creation and Characterisation of Ultracold 87Rb133Cs 71

200 100 0 100 200
z ( m)

0

20

40

60

80

100

120

140

En
er

gy
/k

B 
(

K)

(a)

(b)

(c)

Figure 4.3: Transfer of Feshbach molecules from the shallow magnetically levitated trap to

an unlevitated pure optical trap. (a) The molecules begin in a shallow optical trap which

is supported against gravity by the interaction between the molecules magnetic dipole

moment and an applied 43 G cm−1 magnetic field gradient. (b) The trap is made deeper

by increasing the intensity of the trapping beams by a factor of ∼ 10 over 20 ms. (c) The

magnetic field gradient is ramped off over 10 ms leaving the molecules trapped in a purely

optical trap. The trap centre shifts over this time by ∼10 µm due to gravitational sag.

atoms from the molecules via the Stern-Gerlach effect. Both atomic species

are exactly levitated using a magnetic field gradient of 29 G cm−1, while

molecules in the |−2(1, 3)d(0, 3)〉 state require a gradient of 43 G cm−1. If

we apply a gradient to levitate the molecules, the trap for the atoms will

therefore be tilted and they are lost from the trap as shown in Fig. 4.2. We

find that the most robust method for removing all of the atoms requires an

initial field gradient of 50 G cm−1. In order to minimise loss of molecules

during this step, we ramp the magnetic field gradient up to this value initially

before relaxing the gradient back to exactly levitate the molecules over 15 ms.

Once only molecules remain in the trap, we must transfer the molecules to

an unlevitated optical trap as the ground state has no appreciable magnetic

dipole moment. The dipole trap intensity is increased from 3 kW cm−2 to

used for Stern-Gerlach separation. However, at present we are unable to magnetically

levitate states with positive magnetic dipole moments such as this. In addition, we observe

a factor ∼ 10 shorter lifetime in the |−6(2, 4)d(2, 4〉 state which would likely make the

overall molecule production process less efficient. This shorter lifetime is not a problem

when used as the starting point for STIRAP transfer, as the molecules only occupy this

state for 2 ms before they are transferred to the long-lived rovibronic ground state.
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36 kW cm−2, corresponding to an increase in trap depth from 7 µK to 82 µK

over 20 ms. During this transfer, the radial (axial) trap frequency increases

from 51 Hz (10 Hz) to 174 Hz (34 Hz) which causes heating of the molecules.

However, as the heating is roughly adiabatic, the trap depth increases ∝ I

while the temperature of the molecules increases proportional to the change in

trap frequency ωtrap ∝
√
I. The molecules are therefore heated significantly

less than the depth increase of the trap. After the increase in intensity, the

magnetic gradient is ramped off over 10 ms. This leaves the molecules in a

trap tilted by gravity with a depth of 47µK as shown in Fig. 4.3. Once in the

unlevitated optical trap, the molecules are transferred to the |−6(2, 4)d(2, 4)〉
Feshbach state in preparation for STIRAP transfer to the rovibronic ground

state. When well optimised, our apparatus can create up to 5000 Feshbach

molecules at the end of this sequence. Typically the number is slightly lower

due to slow drifts in magnetic fields and light power/polarisation out of the

optical fibres. When optimised for stability, we routinely create 3000-4000

Feshbach molecules (∼ 1% conversion efficiency) for around 300 experimental

cycles per day.

4.2 Transfer to the Ground State

The first step to performing STIRAP is to set both lasers on resonance

with the necessary molecular transitions. To find the pump transition, we

perform one-photon spectroscopy of the electronically excited b3Π + A1Σ+

hyperfine manifold. This is initially done in the dipole trap by pulsing 20 µW

of pump light, polarised parallel to the magnetic field, on for 750 µs. The

molecules, which are initially in the near-dissociation Feshbach state |F 〉,
are transferred to an excited state |E〉 when the pump is resonant with a

transition. This is observed as a loss of molecules remaining in state |F 〉.
Using this method, we have observed seven excited states with the molecules

starting in the |−2(1, 3)d(0, 3)〉 Feshbach state as reported in [130]. The

|3Π1, v = 29, N = 1〉 excited state identified for use as the intermediate state

for STIRAP is shown in Fig. 4.4 (b).

To find the Stokes transition, we perform two-photon spectroscopy. This

involved pulsing 40µW of pump and 16 mW of Stokes light simultaneously,
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Figure 4.4: One- and two-photon spectroscopy of STIRAP transitions. (a) Molecular

potentials for 87Rb133Cs. The pump and Stokes transitions couple the intial Feshbach

triplet state |F 〉 and rovibronic singlet ground state |G〉 to a common electronically excited

state |E〉 with mixed singlet-triplet character. These two transitions differ in energy by

the binding energy of the ground state of the molecule with respect to the intial Feshbach

state. (b) One-photon spectroscopy of the |3Π1, v = 29, N = 1〉 excited state used as state

|E〉 in this work. The pump light only is pulsed on for 750 µs and the transition is observed

as loss of molecules from the initial Feshbach state |F 〉. (c/d) Two-photon spectroscopy of

(c) N = 0 and (d) N = 2. Both pump and Stokes light is pulsed on simultaneously. When

the Stokes light is on resonance, the loss of molecules due to the pump light is suppressed.

again for 750 µs. The Stokes light is polarised perpendicular to the applied

magnetic field, while the pump polarisation remains parallel as it is in the

one-photon spectroscopy. When the Stokes is off -resonance, we observe no

molecules as they are all transferred to the excited state |E〉. When the

Stokes is on-resonance, the loss of molecules is suppressed due to the for-

mation of a two-photon dark state. Features for when the Stokes laser is

resonant with transitions to the rotational ground state N = 0 and the sec-

ond rotationally excited state N = 2 are shown in Fig. 4.4 (c/d). Note

that when using this technique we are unable to resolve any of the hyperfine

structure in the deeply-bound rotational states.

To efficiently transfer molecules between the initial Feshbach state |F 〉 and



Chapter 4. Creation and Characterisation of Ultracold 87Rb133Cs 74

the rovibronic ground state |G〉, we must modulate the intensities of both the

pump and Stokes light to form the required STIRAP sequence (see Fig. 4.5).

We begin the transfer with the molecules starting in the |−6(2, 4)d(2, 4)〉
Feshbach state to maximise the strength of the coupling of the pump transi-

tion [29, 130]. Both lasers are set on-resonance with their respective transi-

tions and the intensities varied sinusoidally between 0 and ∼ 13 mW in each

beam over 20 µs to perform the transfer. Details of imaging in the experiment

will be discussed in section 4.3. In brief, imaging requires that the molecules

be returned to the initial Feshbach state at the end of each experiment. This

requires that we perform a ‘double’ STIRAP sequence as shown in Fig. 4.5.

Initial attempts to perform STIRAP were carried out in the λ = 1550 nm

dipole trap and showed limited efficiency of 50% in each direction [29]. This

low efficiency was caused by the polarisability difference between states |F 〉
and |G〉 which led to a spatially varying AC Stark shift in the two-photon de-

tuning across the molecules. To remove this effect, the dipole trap is switched

off for ∼100 µs during the STIRAP transfer after which the molecules are re-

captured. During this time, the motion of the molecules is small and we

observe no loss of molecules as a result of switching off the trap. The STI-

RAP transfer efficiency in free space is 92(1)% as shown in Fig. 4.5.

To optimise the efficiency, we perform the STIRAP pulse sequence and vary

the detuning of the Stokes laser. The two photon resonance feature we ob-

serve by this method is significantly narrower than that from the two-photon

spectroscopy, and this allows us to observe hyperfine structure. In Fig. 4.5(c)

we show the result of varying the Stokes detuning for two different polari-

sations of the Stokes laser. The states |F 〉 and |E〉 both have MF = 4.

When the Stokes laser is polarised parallel to the applied magnetic field, we

therefore drive a π-transition to a ground hyperfine state with MF = 4. Al-

ternatively, when the Stokes laser is polarised perpendicular to the applied

magnetic field, we drive σ± transitions to hyperfine states with MF = 3 or 5.

Sufficiently strong transitions to enable efficient transfer are only observed to

two of the available hyperfine states. The energy difference between the two

observed hyperfine states, along with the selection rules for the allowed tran-

sitions, allows these two states to be uniquely identified as the spin stretched

MF = 5 state, and the highest energy MF = 4 state shown in Fig. 2.8. The
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Figure 4.5: STIRAP transfer of 87Rb133Cs molecules to the rovibronic ground state with

hyperfine state control. (a) Pulse sequence used for transfer. To transfer the molecules, the

intensities of the pump and Stokes light are changed sinusoidally over 20µs. (b) Feshbach

state population at various times during the round-trip STIRAP pulse sequence. Molecules

are first transferred to the hyperfine and rovibronic ground state |G〉 ≡ |N = 0,MF = 5〉
where they may no longer be dissociated for imaging. We therefore transfer the molecules

back to the initial Feshbach state at the end of the sequence to allow imaging. Transfer

efficiency in each direction is 92(1)%. The red and blue lines are the ground and Fesh-

bach state populations calculated with no-free parameters as described in the main text

and [140]. (c) STIRAP round-trip efficiency as a function of the detuning for two different

linear polarisations of the Stokes light. The pump laser is left on resonance and is polarised

parallel to the magnetic bias field. With the Stokes laser polarised parallel to the magnetic

field we can access a hyperfine state with MF = 4 (red filled circles). With perpendicular

polarisation we can access the spin-stretched MF = 5 hyperfine state which is the lowest

energy and therefore absolute ground hyperfine state (blue empty circles).

spin-stretched MF = 5 state is the absolute ground state, i.e. it is the lowest

energy hyperfine level of the rovibronic ground state.

Understanding our ground-state transfer requires that the peak Rabi frequen-

cies for each transition are well known. This is measured by direct observation

of Rabi oscillations of the molecule population between the states, as shown

in Fig. 4.6. For the pump transition, we simply pulse on the resonant pump

light for a variable time and measure the population of molecules remaining

in the initial Feshbach state. In Fig 4.6(a), data with the dipole trap on and

off are shown. With the dipole trap on, rapid dephasing due to the variable
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Figure 4.6: Rabi oscillations on (a) the pump and (b) the Stokes transitions. A fit to each

is shown, which includes decay of the excited state and dephasing from spatial variation

of the Rabi frequency. Inset are sketches of the pulse sequences for each measurement,

with the pump laser in red and the Stokes in blue. For the pump, we show the effect of

carrying out the same pulse sequence with the dipole trap (DT) on (empty circles) and

off (filled circles). We cannot drive Rabi oscillations in the presence of the dipole trap as

explained in the main text. For the Stokes, we transfer the molecules to the ground state

by STIRAP before driving the oscillations, and then transfer any remaining ground state

population back to the Feshbach state for detection.

transition AC Stark shift across the cloud means that we no longer observe

Rabi oscillations. Rabi oscillations on the Stokes transition are observed by

first transferring the molecules to the ground state. The resonant Stokes light

is then pulsed on for a time before we reverse the STIRAP process to measure

the number of remaining molecules. The measurement of Rabi frequency on

the Stokes transition is therefore measuring the number of molecules remain-

ing in the ground state as a function of the duration of the Stokes light pulse.

Rabi oscillations on each transition with the dipole trap off are fit using a

damped cosine function to extract Rabi frequencies for the pump and Stokes

transitions of ΩP/(2π) = 666(6) kHz and ΩS/(2π) = 915(7) kHz, with an

intensity of approximately ∼ 0.9 kW cm−2 in each beam. The visible de-

phasing of the Rabi oscillations arises as a result of the intensity variation of

the tightly focussed STIRAP light across the cloud.

We model the transfer using a numerical simulation based on an open three-

level ‘lambda’ system. Loss is included in the system as the decay of the

intermediate state to a fourth ‘dump’ level at a rate given by the linewidth Γ.

We estimate the linewidth of the excited state from the loss of molecules dur-
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Cs Rb

Figure 4.7: Absorption images of ∼ 4000 87Rb and 133Cs atoms resulting from the disso-

ciation of ground state molecules. The dipole trap intensities are increased to compress

the atoms prior to imaging, and each species is imaged in the dipole trap with minimal

time of flight.

ing the Rabi oscillation measurements. Our best estimate for this linewidth

is Γ/(2π) = 35(3) kHz. By diagonalising the appropriate Hamiltonian for

our ‘four’ level system including uncorrelated noise between the two driving

lasers [140], we produce the theory lines for population transfer shown in

Fig. 4.5. This calculation is performed using our measured linewidth and

Rabi frequencies and hence has no free parameters. Our theoretical model

describes the experimentally observed STIRAP efficiency remarkably well.

Our transfer efficiency is likely limited by the laser linewidth and available

light intensity.

4.3 Imaging

At present, imaging in our experiment is performed by reversing the routine

for molecule creation to dissociate the molecules back to their constituent

atoms. The resultant atoms are imaged by standard atomic absorption imag-

ing at low magnetic field. Atom numbers are recorded for each species and

the recorded number of molecules for each experimental run is the average

of these two numbers. As this process requires STIRAP back to the initial

weakly-bound Feshbach state, it is very sensitive to changes in magnetic field

and we can only probe molecules in the centre of the STIRAP beams. How-

ever, this method has its advantages as it is hyperfine-state selective and the

atom imaging process is well-known and robust.
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To improve signal to noise when imaging the small number of atoms remain-

ing at the end of our experimental sequence, we increase the powers in each

dipole trap beam to ∼ 3W during the dissociation sequence. This compresses

the atoms, maximising the optical depth of our absorption images, and al-

lowing imaging down to a few hundred atoms. Each species is imaged in-situ

with minimal time of flight. There is a delay between the imaging pulses

for the two atomic species. The dipole trap is switched off for 50µs during

the Cs probe pulse, after which the atoms are recaptured until the Rb probe

pulse 5 ms later. A typical set of compressed-atom absorption image can be

seen in Fig. 4.7.

Direct imaging the molecules could be less sensitive to magnetic field varia-

tion and would give additional information about the spatial distribution and

temperature of molecules in the trap. However, to get an image with high op-

tical depth we require a sufficiently closed transition such that each molecule

can scatter multiple photons. A previous study using 40K87Rb showed that

the open transition between the rovibronic ground state and the v = 3 level

of the a1Π state can be used to perform such direct absorption imaging of

molecules despite a branching ratio η = 0.14 [168]. A mostly-closed transition

in 40K87Rb has been identified as potentially good for laser cooling between

the |X1Σ+, v = 0, N = 1〉 and |b3Π0+, v = 0, N = 0〉 states [169], and may

also be used for improved direct imaging. An analogous transition also ex-

ists in 87Rb133Cs where the decay of the b3Π0+ state to the a3Σ+ state is

deeply suppressed due to a small transition dipole moment and small en-

ergy of the emitted photon [138, 170]. Based on the known Franck-Condon

factors for this transition (λ ≈ 1145 nm) [139], with two vibrational repump-

ing lasers we could expect to scatter ∼ 100 photons before only 50% of the

molecules remain in the ground state. This may be useful in the future for

direct imaging of molecules, though would require transfer of the molecules

to the first rotationally excited state prior to imaging.

4.4 Temperature

Accurate measurement of the temperature T of the atomic/molecular sample

requires the measurement of the cloud’s expansion in free space over time.
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Figure 4.8: Temperature measurement of the atomic mixture in the levitated trap at the

end of the dipole trap evaporation ramps just prior to Feshbach association. Each data

point is a result of a single run of the experiment. We observe a faster expansion of

the Rb atoms due to their lower mass. We find average temperatures of 0.28(1) µK and

0.280(3) µK for the Cs and Rb atoms respectively.

In the experiment, we turn off the optical and magnetic traps and allow the

cloud to fall in free space. By varying the time between the traps switching

off and the imaging sequence, we vary the time of flight experienced by the

atoms or molecules. We get the width of the cloud by fitting the absorption

images assuming a Gaussian density distribution. The 1/e2 width of the

cloud σ increases with time of flight t such that

σ2 = σ2
0 +

kBT

m
t2, (4.1)

where σ0 is the trapped cloud width, m is the mass, and kB is the Boltzmann

constant. Hence, by plotting the cloud width squared (σ2) against the time

of flight squared (t2) we expect a linear correlation with gradient kBT
m

.

A temperature measurement for the atomic mixture at the end of the dipole

trap evaporation is shown in Fig. 4.8. Here, due to the large number of

atoms available, images with high optical depth may be taken for flights of

up to 25 ms before the atoms fall out of the imaging field of view2. When

performing similar measurements using the molecules as shown in Fig. 4.9,

2Longer times of flight may be observable by magnetically levitating the atoms.
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much shorter times of flight (< 9 ms) must be used as the initial numbers

and hence optical depth of the images is much lower. In addition, the pro-

cess of dissociation and switching off of the large magnetic fields limits the

minimum time of flight to 3.3 ms. The total range of expansion times we are

able to image across is therefore around 5 ms over which the cloud expands

by less than a factor of two; this limits the certainty in the measured tem-

perature of the molecules. We find an average translational temperature for

the molecules in the pure optical trap of 0.9(1) µK. This temperature indi-

cates that the transfer between the magnetically levitated trap of the atoms

and the pure optical trap of the molecules is adiabatic. Adiabatic transfer

preserves the phase-space density of the trapped sample, i.e.

N

(
~ω
kBT

)3

= Constant (4.2)

where N is the number of molecules, ω is the trap frequency, kB is Boltz-

mann’s constant, and T is the temperature. During the transfer between

the magnetically levitated trap of the atoms and the pure optical trap of

the molecules, the trap frequency is increased by a factor of ∼ 3. As both

the phase-space density and the number of molecules in the sample remains

constant, the temperature must also increase by the same factor as the trap

frequency.

4.5 Binding Energy

Accurate characterisation of the internal structure of even simple diatomic

molecules is difficult both theoretically and experimentally. Here we will

discuss the measurement of a fundamental property of the molecule - its

binding energy. Our chosen method of creating ultracold molecules is well-

suited to measuring this quantity as we start off with free ground-state atoms

(i.e. atoms which are at the minimum dissociation energy of the molecules)

and must ‘remove’ the ∼ h × 114 THz of energy from the atom-pair in a

controlled way to form a tightly-bound molecule.

We begin our measurement of the binding energy by precisely measuring

the frequencies of our STIRAP lasers. The transfer efficiency of STIRAP is
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Figure 4.9: Temperature measurement of Feshbach molecules in the pure optical trap

by observing the rate of expansion in free-space. Each data point is an average of 3-4

experimental runs. Due to the 5 ms delay between imaging of the two atomic species, only

the Cs atom absorption images have sufficient optical depth to collect useful results. We fit

the data for the cloud width in the vertical and horizontal directions and find temperatures

of 0.8(1) µK and 0.9(2) µK respectively, giving an average translational temperature for

the molecules of 0.9(1) µK.

maximised when the laser frequencies meet the two-photon resonance con-

dition, while being relatively insensitive to any common detuning of both

lasers from the intermediate state [131]. Therefore, the frequency difference

between the two lasers when the efficiency of STIRAP is maximised yields

a direct measurement of the energy difference between the rovibronic and

hyperfine ground state of the molecule and the initial Feshbach state.

Our precision measurements of laser frequency are performed with reference

to a GPS-referenced optical frequency comb. The frequency comb we have

installed at the Durham University Department of Physics is the first of

its kind, based on difference frequency generation technology developed by

TOPTICA Photonics AG [171]. In a typical frequency comb, the frequency

of each comb tooth N has a frequency f = Nfrep + fCEO, where frep is the

repetition rate of the comb and fCEO is the carrier-envelope offset frequency.

The key feature of the difference method implemented in the TOPTICA op-

tical frequency comb is that the carrier-envelope offset frequency is cancelled,
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Figure 4.10: Schematic of the experiment used to perform spectroscopy while recording the

beat note νbeat of the STIRAP lasers with the optical frequency comb. The beat signal

between each STIRAP laser and the nearest comb line N is detected on a photodiode

which is connected to a spectrum analyzer (SA). The light reaching the molecules is offset

by 80 MHz from that sent to the frequency comb by an acousto-optic modulator (AOM).

The frequency comb, spectrum analyzers, and EOM driver are all referenced to the same

10 MHz GPS disciplined oscillator. This figure shows the setup for the Stokes laser; the

setup for the pump laser is identical.

meaning that each comb tooth has a frequency f = Nfrep with zero frequency

offset. The frequency comb is seeded by a mode-locked Er:fibre laser with

an 80 MHz repetition rate, whose 10th harmonic is locked to an 800 MHz

ultra-low-noise oven-controlled RF oscillator, which in turn is locked to the

10 MHz output of a GPS disciplined quartz oscillator (GPSDO).

Absolute frequencies of the STIRAP lasers are measured by beating light

from each laser with the nearest tooth of the frequency comb as shown in

Fig. 4.10. The beat note is recorded on a spectrum analyzer (Agilent N1996

and N9320B for pump and Stokes respectively) which is referenced to the

same 10 MHz GPSDO as the comb. The nearest comb tooth is identified

using a wavemeter with absolute accuracy of 30 MHz (High Finesse WS-U),

which is calibrated using lasers locked to well-known spectral lines in Rb,

Cs, and Sr. Light sent to the frequency comb is offset from that sent to the
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Figure 4.11: Schematic view of the energy levels involved in measuring the binding energy

of 87Rb133Cs. The frequency difference between the STIRAP lasers gives the energy dif-

ference between the rovibronic and hyperfine ground state of the molecule with respect to

the initial |−6(2, 4)d(2, 4)〉 Feshbach state. To convert this energy into a binding energy

for the molecules at zero magnetic field we must consider the binding energy of the Fesh-

bach state (BEFB), Zeeman shifts of the free-atomic and bound-molecular states, and the

zero-field hyperfine splitting (HFAtoms and HFMol.).

molecules by the frequency of an 80 MHz acousto-optic modulator (AOM).

We have measured the offset from the nominal 80 MHz of these AOMs to be

-705(3) Hz with a negligible statistical uncertainty.

To measure the energy difference between the pump and Stokes transitions,

we fix the frequency of the pump laser on resonance with the Feshbach and

intermediate states. We then vary the frequency of the Stokes laser and

measure the efficiency of the STIRAP transfer. The beat notes of both lasers

with the optical frequency comb are measured throughout, and for each data

point we subtract the pump and Stokes absolute frequencies measured with
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Source Correction (MHz) Error (MHz)

fStokes − fpump 114 258 363.067 0.006

Feshbach binding energy 1.84 0.04

Rb Zeeman 194.084

Cs Zeeman 134.353

RbCs Zeeman −0.734

Total Zeeman 0.013

Cs hyperfine 9
16
× 9 192.631 770 ≡ 0

Rb hyperfine 5
8
× 6 834.682 611 < 10−10

RbCs hyperfine (I=5) 0.100

Binding energy 114 268 135.24 0.04

Table 4.1: All the corrections, and their respective experimental errors, which must be

added to each measurement of the energy difference fStokes − fpump to give the energy

difference between the degeneracy-weighted hyperfine centroids of the free atoms and the

RbCs rovibronic ground state, i.e. the binding energy. The uncertainty in the Zeeman

shift is from the uncertainty in the measured magnetic field. The values shown are for a

measurement at a magnetic field 181.538(6) G driving a transition to the MF = 5 hyperfine

ground state.

the comb. The result of this experiment is to find a peak as a function of

Stokes frequency (see Fig. 4.5(c)), which we fit with a Gaussian lineshape to

determine the energy difference between the initial and final states. We have

repeated this measurement five times, each on different days. One of these

measurements was performed using a different intermediate excited state

|3Π1, v = 35, N = 1〉; for this measurement STIRAP was not performed and

we instead used the two-photon spectroscopy routine used at the beginning

of section 4.2.

To convert our measured STIRAP energy difference into a binding energy

at zero magnetic field, we must correct for the Zeeman shifts in both the

free-atom and bound-molecule states. The Zeeman shift of the ground-state

molecular hyperfine state depends upon molecular constants which at the

time had reasonable theoretical predictions, but we have since experimentally

measured in chapter 5. In addition, as the energy difference we measure

between the STIRAP transitions is between the ground state and the initial

Feshbach state, we must also consider the binding energy of that Feshbach
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state. Fig. 4.11 illustrates all of the corrections which must be made, all of

which depend upon magnetic field (measured using the procedure outlined

in section 3.3.1). An example calculation of the binding energy from one of

our measurements is shown in Table 4.1. Taking a weighted mean of our five

independent measurements of the binding energy of 87Rb133Cs, we find

D0 = h× 114 268 135.25(3) MHz

= hc× 3 811.574 714(1) cm−1.

Further details regarding this measurement may be found in [172].

4.6 Electric Dipole Moment

The reason we choose to work with heteronuclear diatomic molecules such as
87Rb133Cs is to access the large molecule-frame electric dipole moment. In

order to observe an electric dipole moment in the laboratory-frame, we must

apply a DC electric field which mixes states with opposite parity and gives

an external axis along which the dipoles can orient themselves.

In the experiment, we observe the response of the molecules to the applied

electric field as a DC Stark shift of the energy levels of the molecule (see 2.6.1

for theory). We are primarily interested in the energy shift of the rovibronic

ground state of the molecules. In particular, it is important that we per-

form this measurement on molecules in the rotational ground state as the

DC Stark shift of the molecules depends on the rotational angular momen-

tum projection MN which is the same for all hyperfine states with N = 0.

The picture becomes far more complicated in higher rotational levels due to

nuclear quadrupole coupling as will be seen in the remaining chapters of this

thesis.

We begin by measuring the DC Stark shift of the pump transition by per-

forming one-photon spectroscopy as described in section 4.2. The electric

field is switched on for the duration of the spectroscopy light pulse. As the

initial Feshbach state has a negligible electric dipole moment, this shift is

equal to the Stark shift of the electronically excited state. We observe a

near-linear shift of the excited state of ∼ 500 kHz V−1 cm before an avoided

crossing with a collection of higher-lying hyperfine states at ∼ 500 V cm−1.



Chapter 4. Creation and Characterisation of Ultracold 87Rb133Cs 86

0 100 200 300 400 500 600 700 800
Electric Field (V cm 1)

80

70

60

50

40

30

20

10

0

G
ro

un
d 

St
at

e 
Sh

ift
 (M

H
z)

(a)

0 800 1600
300

200

100

0
0 400 800

0

50

100

150

200

Ex
ci

te
d 

St
at

e 
Sh

ift
 (M

H
z) (b)

0 800 1600
Electric Field (V cm 1)

0.0

0.2

0.4

0.6

ED
M

 (D
)

d = 0.355(4) D

(c)

Figure 4.12: Measurement of the electric dipole moment (EDM) of 87Rb133Cs molecules.

(a) DC Stark shift of the rovibrational ground state. The ground-state shift is equal to

the DC Stark shift of the two-photon dark-state resonance used for STIRAP. White circles

show experimental measurements of the ground-state shift. The black line shows the fitted

AC Stark shift found by diagonalising the matrix given in Eq. 2.30. The red shaded region

illustrates the systematic uncertainty in this measurement due to the uncertainty in the

electric field at the molecules. Inset: AC Stark shift of the ground state in the full-region

accessible to the experiment in the absence of charge build-up on the cell walls. (b) AC

Stark shift of the intermediate excited state. An avoided crossing is observed with a group

of higher lying hyperfine states around E = 500 V cm−1. (c) Laboratory-frame dipole

moment in the electric field region currently accessible. The red-shaded region shows the

electric fields at which we have been able to perform measurements with negligible charge

build-up on the cell. The highest space-fixed electric dipole moment generated so far is

0.355(4) D.

The DC Stark shift of the ground state is given by the energy shift of the

two-photon dark-state resonance used for STIRAP. We measure this by per-

forming two-photon spectroscopy (see 4.2) in an electric field with the pump

laser set on resonance with the Stark shifted excited state transition. The

experimental results and fitting are shown in Fig. 4.12. By diagonalising the

matrix given in Eq. 2.30 we can fit the experimental data with the molecule-

frame dipole moment as the only free parameter. We find a permanent

electric dipole moment of

d0 = 1.225(3)(8) D. (4.3)
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The first uncertainty is the statistical and the second is systematic, arising

from the uncertainty in the electric field. The systematic uncertainty is

illustrated in Fig. 4.12(a) by the red shaded region.

Although in theory our electrode and power supply configurations could allow

us to investigate electric fields up to ∼ 1500 V cm−1, we are only able to

access fields of ∼ 800 V cm−1 before we find a measurable charge on the

surface of the fused silica cell. This accessible electric field translates to

a laboratory-frame electric dipole moment of d = 0.355(4) D as shown in

Fig. 4.12(c).

4.7 Summary

We are able to produce a sample of over 4000 87Rb133Cs molecules in their

rovibronic and hyperfine ground state. The molecules are spatially separated

from the atomic mixture from which they are associated via the Stern-Gerlach

effect and are trapped in a purely optical potential where they have a tem-

perature of 0.9(1)µK measured by time-of-flight expansion of the molecular

cloud in free space. We have measured the binding energy of the molecular

ground state by precisely measuring the frequency difference between our

two narrow-linewidth STIRAP lasers with reference to an optical frequency

comb. We find a binding energy of D0 = hc × 3 811.574 714(1) cm−1. Fi-

nally, by measuring the DC Stark shift of the rovibronic ground state of the

molecules in a static electric field, we have measured the molecule-frame elec-

tric dipole moment of the molecule to be d0 = 1.225(3)(8) D. This translates

to a maximum laboratory-frame electric dipole moment of d = 0.355(4) D

given the largest electric fields we currently have access to.



Chapter 5

Coherent Control of the

Rotational and Hyperfine State

Full control of the quantum state has been an invaluable tool in ultracold

atom physics; it is therefore highly important to develop similar methods for

ultracold molecules, which allows us to fully address the complex rotational

and hyperfine structure. Such control is at the heart of nearly all proposals

for applications of ultracold polar molecules. For example, the rotational

states of molecules might be used as pseudo-spins to simulate quantum mag-

netism [18, 22]. This requires a coherent superposition of opposite-parity

states to generate dipolar interactions [18], which may be probed by mi-

crowave spectroscopy [74, 173]. Similarly, hyperfine states in the rotational

ground state have been proposed as potential qubits for quantum computa-

tion [23, 81, 174]. In this context, robust coherent transfer between the hyper-

fine states is essential. Such transfer can be achieved using a scheme proposed

by Aldegunde et al. [175] which employs microwave fields to manipulate the

molecular hyperfine states. This approach has been implemented for the

fermionic heteronuclear molecules 40K87Rb [70, 176] and 23Na40K [177], lead-

ing to ground-breaking studies of the dipolar spin-exchange interaction [74]

and nuclear spin coherence time [81].

In this chapter, we report microwave spectroscopy of bosonic 87Rb133Cs in its

ground vibrational state, and demonstrate our ability to coherently transfer

our molecules from the absolute rovibrational and hyperfine ground state to

88
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a chosen single hyperfine state in either the first-excited, second-excited,

or ground rotational states. We begin by discussing the selection rules

which dictate which transitions are allowed between rotational and hyperfine

states (5.1). We then show the high precision with which we can map out

the rotational energy structure of 87Rb133Cs in the lowest vibrational state

using externally applied microwave fields. We use these spectroscopic mea-

surements to obtain new values for the rotational constant, scalar spin-spin

coupling constant, electric quadrupole coupling constants, and nuclear g-

factors (including shielding) for the molecule (5.2). With this understanding

of the molecule, we are able to predict the transition frequencies between hy-

perfine levels in neighbouring low-lying rotational levels to typically less than

1 kHz. Transfer between these hyperfine levels is carried out using microwave

π-pulses. With one-photon excitation, we are able to transfer the molecules

to a range of single hyperfine levels in the first excited rotational state. We

also extend this to use a two-photon pulse sequence to transfer molecules

to either a different hyperfine level of the rovibrational ground state, or a

single hyperfine level of the second rotationally excited state (5.3). Finally,

we discuss the use of superposition states created using external microwaves,

and demonstrate work done on this topic in the experiment so far (5.4).

5.1 Quantum Numbers and Allowed Transitions

As discussed in section 2.5, the hyperfine structure of molecules is far more

complex than for a single atom. The total number of hyperfine states present

depends upon both the nuclear spins of the constituent nuclei and the rota-

tional energy of the molecule, and the quantum numbers that can be used

to identify these states depends on the external magnetic field present. The

nuclear spins in 87Rb133Cs are IRb = 3/2 and ICs = 7/2. At zero field, the

total angular momentum F = N +IRb +ICs is conserved. For the rotational

ground state (N = 0), the total nuclear spin I = IRb + ICs is very nearly

conserved, and there are 4 hyperfine states with I = 2, 3, 4 and 5 with sep-

arations determined by c4 [145] (as shown earlier in Fig. 2.8). For excited

rotational states, however, only F is conserved and I is a poor quantum

number.
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Figure 5.1: Electric dipole transitions in 87Rb133Cs between the N = 0 and N = 1

rotational levels in the vibrational ground state. (a) Electric dipole transitions between

N = 0 and N = 1 rotational levels in the absence of hyperfine coupling. (b) Two-photon

pulse sequence used to transfer population to a different hyperfine level of N = 0, taking

advantage of the mixing caused by hyperfine coupling.

An external magnetic field splits each rotational manifold into (2N+1)(2IRb+

1)(2ICs + 1) Zeeman-hyperfine sublevels, so there are 32 levels for N = 0

and 96 levels for N = 1. Assignment of quantum numbers to the individual

hyperfine levels is non-trivial and depends on the magnetic field regime [145].

The field mixes states with different values of F that share the same total

projection MF . At low field, the levels are still approximately described by

F and MF (equivalent to I and MI for N = 0). At high field, however,

the nuclear spins decouple and the individual projections MN , mRb
I and mCs

I

become nearly good quantum numbers, with MF = MN + mRb
I + mCs

I . The

only quantum number that is good in all field regimes is MF , and this is the

only good quantum number at the magnetic field at which we operate our

experiment.

A microwave field induces electric dipole transitions between rotational levels.

At low field, all transitions allowed by the selection rules ∆F = 0,±1 and

∆MF = 0,±1 have significant intensity. At higher field, however, additional

selection rules emerge. If hyperfine couplings are neglected, electric dipole

transitions leave the nuclear spin states unchanged (∆mRb
I = ∆mCs

I = 0) and

are allowed only between neighboring rotational states such that ∆N = ±1,

∆MN = 0,±1 for microwave polarizations π, σ±. In the absence of hyperfine

interactions (where MN would be a good quantum number) we would be able

to drive at most three transitions from any given hyperfine level, as shown
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in Fig. 5.1(a). Hyperfine coupling mixes states with different values of MN ,

mRb
I and mCs

I , and additional transitions become allowed. The couplings are

principally due to scalar spin-spin coupling in N = 0 and nuclear quadrupole

coupling in N = 1. The mixing allows us to use a multi-photon scheme

to move the population to different hyperfine states of the rotational ground

state. Fig. 5.1(b) shows a simple example of this scheme, using two microwave

photons to change the hyperfine state by ∆MF = −1.

5.2 Spectroscopy of N = 1

Our apparatus is equipped with two omnidirectional λ/4 antennas placed

close to the outside of the fused silica cell as described in section 3.5. The

polarization from each is roughly linear at the position of the molecules.

They are oriented perpendicular to each other and aligned with respect to

the static magnetic field such that one preferentially drives transitions with

∆MF = 0 and the other drives those with ∆MF = ±1. Each antenna

is connected to a separate signal generator, which is frequency referenced

to an external 10 MHz GPS reference. Fast (∼ns) switches are used to

generate microwave pulses of well-defined duration (typically 1µs - 500µs).

The antenna design and other experimental setup details are described in

more detail in Section 3.5.

To avoid AC Stark shifts of the transition centres, the optical trap is switched

off throughout the spectroscopy; the transition frequencies are thus measured

in free space1. This limits the maximum available interrogation times with a

single microwave pulse to < 1 ms before we observe significant heating and

loss of the molecules. In addition, the large dipole moment of the molecule

(1.225 D [29]) makes it remarkably easy to drive fast Rabi oscillations between

neighboring rotational states. These Rabi oscillations do not dephase over

the timescales available in the experiment due to the large wavelength of

the microwaves ∼ 30 cm and high uniformity of the magnetic bias field. To

perform the final spectroscopy, therefore, we pulse on the microwave field for

a time (tpulse) which is less than the duration of a π-pulse for the relevant

1The effect of the dipole trapping light on the microwave transitions will be investigated

later in chapter 6.
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Figure 5.2: Initial microwave spectroscopy between the |N = 0,MF = 5〉 rotational and

hyperfine ground state to the various hyperfine sublevels of the first rotationally excited

state. Vertical dashed lines show the measured transition frequencies from the final spec-

troscopy shown in Fig. 5.4.

transition (< tπ). We then observe the transition as an apparent loss of

molecules as they are transferred into the first-excited rotational state. In

order to find tπ we begin by pulsing the microwaves on at high power where

the transition is relatively broad; by varying tpulse with fixed frequency, we

can observe Rabi oscillations and from there determine the appropriate pulse

length for spectroscopy.

An early attempt at microwave spectroscopy was performed using a fixed

microwave pulse duration at the maximum power output by the antenna.

The result of this can be seen in Fig. 5.2, and shows observable ‘loss’ of

molecules close to 6 of the 8 observed transitions. However, this method

was found to be unreliable due to the range of strengths of the available

transitions and the possibility of driving Rabi oscillations when off-resonant

due to broadening of the transitions.

To perform accurate spectroscopy, radically different tpulse are required for

different transitions, depending on the transition strength and antenna used.

We find that the widths of all of the features we measure are Fourier-

transform limited, i.e. the width is proportional to 1/tpulse, the linear

relationship between pulse duration and spectroscopic width is shown in

Fig. 5.3(c). To precisely measure the position of each of the transition cen-
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Figure 5.3: Method and Fourier-transform limiting of the microwave spectroscopy.

(a) Fast Rabi oscillations performed close to resonance with the transition between

|N = 0,MF = 5〉 and the lowest energy |N = 1,MF = 5〉 states. (b) Spectroscopy is per-

formed by setting the pulse duration tPulse to approximately a π-pulse for a given mi-

crowave power. The full-width half-maximum (FWHM) of the Lorentzian spectroscopic

feature depends upon the duration of the pulse used. Spectroscopy using a 6.1 µs pulse

(red open circles and dashed line) and an 18 µs pulse (blue closed circles and solid line)

are shown. (c) FWHM of the Lorentzian feature against inverse pulse duration for all

spectroscopy performed. A linear fit is shown which is fixed to go through the origin and

has a gradient of 0.78(3).

tres, we need to minimise the width of the spectroscopic feature. We therefore

iteratively reduce the power to get slower Rabi oscillations and allow longer

pulse durations. We are able to drive π transitions weakly using the an-

tenna intended for σ± and vice versa, and the spectroscopy for the MF = 6

transition is performed in this way to minimize the width of the spectro-

scopic feature. We carry out the spectroscopy at two different magnetic

fields ∼ 23 G apart; the field is calibrated using the microwave transition

frequency between the |f = 3,mf = +3〉 and |f = 4,mf = +4〉 states of Cs

as described in Section 3.3.1.

With the population initially in the lowest hyperfine level (MF = 5) of the

rovibrational ground state, we expect to find a maximum of 10 transitions

to the first-excited rotational state |N = 1,MF = 4, 5, 6〉. We are able to

observe 8 of these transitions, the measured centre frequencies of which are

shown in Table 5.1. A complete set of experimental spectra at a magnetic

field of ∼ 181.5 G is shown in Fig. 5.4(a-h). The intensity of each of these

transitions depends on the magnitude of the component of the destination

state with the same nuclear spin as the initial state. Calculations of the ex-
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Figure 5.4: Microwave spectra at a magnetic field of 181.5 G. (a-h): Experimen-

tally observed spectra showing all of the microwave transitions from |N = 0,MF = 5〉 to

|N = 1,MF = 4〉 observed in this work. The vertical lines shows the transition frequencies

given by the least-squares fit to obtain spectroscopic constants. The pulse durations used,

chosen to be less than a π-pulse for each transition, are (a) 12 µs, (b) 150 µs, (c) 100 µs,

(d) 400 µs, (e) 60 µs, (f) 50 µs, (g) 400 µs, (h) 200 µs.

pected intensities of the two unseen transitions show that the relative tran-

sition probability is ∼ 10−4 lower than for those we do observe.

We fit our model to the experimental spectra by minimizing the sum of the

squared quotients between each residual and the uncertainty of the line. We

fit the rotational constant, nuclear quadrupole constants and scalar nuclear

spin-spin constant. The nuclear g-factors and shielding coefficients are multi-

plied together in the Hamiltonian so it is not possible to separate them, and

we therefore fit the shielded g-factors gRb · (1− σRb) and gCs · (1− σCs). The

resulting values, along with the values of parameters held fixed at theoretical

values, are given in Table 5.2.

The fitted hyperfine parameters in Table 5.2 are all within 10% of the val-

ues predicted from DFT calculations [145], except for (eQq)Cs, which is

about 15% larger than calculated. This helps to calibrate the probable ac-

curacy of the calculations for other alkali-metal dimers. The fitted value
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Figure 5.5: Microwave spectroscopy of 87Rb133Cs with varying applied magnetic field.

Hyperfine Zeeman structure of the (a) N = 1 and (b) N = 0 rotational states. The

MF = 5 initial state in N = 0 is highlighted as a bold red line. The 10 states in N = 1

that are accessible from this initial state are shown as bold blue (MF = 4), red (MF = 5),

and green (MF = 6) lines. The vertical dotted lines mark the two magnetic fields at which

spectroscopy is performed in this work. (c) Comparison of experimentally measured tran-

sition frequencies from |N = 0,MF = 5〉 to |N = 1,MF = 4, 5, 6〉 with the fitted theory.

Dashed lines indicate transitions that are weakly allowed but we have not observed. Error

bars are not visible at this scale.

c4 = 19.0(1) kHz removes one of the two largest sources of error in the deter-

mination of the binding energy D0 of 87Rb133Cs (see 4.5). The fitted values of

the shielded g-factors gRb · (1−σRb) = 1.829(2) and gCs · (1−σCs) = 0.733(1)

are consistent with the corresponding atomic values, 1.827 232(2) [179] and

0.732 357(1) [180] (with the sign convention of Eq. 2.28c). The latter include

shielding due to the electrons in the free atoms. Our values may be used in

conjunction with the calculated molecular shielding factors (σRb = 3531 ppm

and σCs = 6367 ppm [145]) to obtain values of the “bare” nuclear g-factors

1.836(3) and 0.738(1).

Fitting of the spectra and the observed transition intensity variation also

gives the composition of the accessible hyperfine levels in either the coupled
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MF B (G) fThe. (kHz) fExp. (kHz) ∆f (kHz)

+5 181.507(2) 980 231.07 980 233(2) −2(2)

204.436(2) 980 235.14 980 237(1) −2(1)

+4 181.484(1) 980 277.96 980 278.9(2) −0.9(2)

204.397(2) 980 292.08 980 291.0(2) 1.1(2)

+4 181.487(1) 980 320.47 980 320.4(2) 0.1(2)

204.397(2) 980 331.83 980 331.8(3) 0.0(3)

+6 181.541(2) 980 384.98 980 384.97(6) 0.01(6)

204.38(1) 980 384.87 980 384.90(5) −0.03(5)

+5 181.507(2) 980 443.97 980 444.8(7) −0.8(7)

204.436(2) 980 458.35 980 457.2(8) 1.1(3)

+5 181.507(2) 980 546.75 980 546.9(7) −0.2(7)

204.436(2) 980 572.86 980 573.5(6) −0.6(6)

+4 181.487(1) 980 661.35 980 661.15(6) 0.20(6)

204.397(2) 980 694.22 980 694.35(5) −0.13(5)

+4 181.487(1) 980 758.64 980 758.6(1) 0.0(1)

204.397(2) 980 810.62 980 810.8(3) −0.2(3)

Table 5.1: Microwave transitions found in 87Rb133Cs from |v = 0, N = 0〉 to

|v = 0, N = 1〉. All transitions start from the spin-stretched MF = +5 hyperfine level

of the rotational ground state. Each transition is labeled by the MF quantum number of

the destination hyperfine level in the first-excited rotational state.
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Constant Value Ref.

IRb 3/2

ICs 7/2

d0 1.17(2)(4) D [28]

1.225(3)(8) D This Work [29]

D0 h× 114 268 135.25(3) MHz This Work [172, 178]

Bv 490.155(5) MHz [141]

490.173 994(45) MHz This Work [178]

Dv 213.0(3) Hz [141]

(eQq)Rb −872 kHz [145]

−809.29(1.13) kHz This Work [178]

(eQq)Cs 51 kHz [145]

59.98(1.86) kHz This Work [178]

cRb 29.4 Hz [145]

cCs 196.8 Hz [145]

c3 192.4 Hz [145]

c4 17.3 kHz [145]

19.019(105) kHz This Work [178]

gr 0.0062 [145]

gRb · (1− σRb) 1.8295(24) This Work [178]

gCs · (1− σCs) 0.7331(12) This Work [178]

Table 5.2: Constants involved in the molecular Hamiltonian for 87Rb133Cs. Parameters

not varied in the least-squares fit are taken from the literature. The majority of the fixed

terms are calculated using density-functional theory (DFT) [145], with the exception of

the centrifugal distortion constant Dv, which is obtained from laser-induced fluorescence

combined with Fourier transform spectroscopy (LIF-FTS) [141]). The constants shown in

this table are defined in Eq. 2.27.
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|N, I, F,MF 〉 or uncoupled |N,MN ,m
Rb
I ,mCs

I 〉 basis sets. As we have already

discussed earlier, the calculation in the uncoupled basis in particular can

be used to predict the relative strengths of the transitions by comparing

the magnitude of the nuclear spin preserving component of the destination

hyperfine state. The composition of the immediately accessible hyperfine

states in N = 0 and N = 1 (i.e. those accessible with 1- or 2-photon transfer

respectively) are shown in Tables 5.3 and 5.4. This information may also

help to explain why our STIRAP transfer only has strong enough coupling

to efficiently transfer our molecules to two of the available six hyperfine levels.

The calculations of the hyperfine and rotational structure presented, along

with the fitting to the experimental results, were performed by Jesús Alde-

gunde at the University of Salamanca and in close collaboration with Jeremy

Hutson in the Department of Chemistry, Durham University.

5.3 Coherent Population Transfer

Our STIRAP transfer (see 4.2) produces molecules in a spin-stretched state,

where |mRb
I +mCs

I | has its maximum possible value and MN ,m
Rb
I ,mCs

I are all

good quantum numbers. However, the other hyperfine states of N = 0, 1, and

2 are significantly mixed in the uncoupled basis set at the fields considered

here, and have no good quantum numbers other than MF . In this section

we demonstrate complete transfer of the molecular population between these

mixed-character hyperfine states.

The simplest transfer we can demonstrate in our system is one which only

requires a single photon. This form of transfer has effectively already been

shown in the previous section as it is the method by which we perform the

spectroscopy. We are able to perform Rabi oscillations on all 8 transitions

which we have observed between N = 0 and N = 1. Given the available

microwave power and high transition strengths, the duration of a π-pulse

on many of these transitions can be driven in less than <10 µs. However,

the rate at which the transfer can be carried out is typically limited by the

requirement that we do not want to couple to neighboring transitions. To

ensure this, the Fourier width of the microwave pulse must be significantly
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Figure 5.6: Coherent population transfer of molecules between specific hyperfine states

in rotational levels N = 0 and N = 1. (a) Transfer scheme followed in this work. All

molecules start in the lowest hyperfine state (MF = 5) of N = 0. States are described in

the uncoupled basis set |N,MN ,m
Rb
I ,mCs

I 〉. (b) Rabi oscillations in one-photon transfer

of molecules to the single hyperfine level of N = 1 shown in (a). (c) Rabi oscillations in

two-photon transfer, using a π-pulse on the first transition and a second microwave pulse

with different frequency and polarization to drive transitions to the MF = +4 hyperfine

state of N = 0 shown in (a). (d) Effect of scanning the frequency of the second microwave

pulse with duration < tπ. Both MF=4 transitions in N = 0 are accessible with similar

coupling strengths2. A double Lorentzian fit is shown. Dashed grey lines show the expected

transition frequencies given the molecular constants fitted to the N = 1 spectroscopy.

less than the separation between available nearby states. As such, higher

transfer speeds could be achieved by operating the experiment at a higher

magnetic field, where the separation between neighbouring hyperfine levels

is greater.

We can expand on this transfer method by introducing a second microwave

field. As outlined in section 5.1, in the absence of hyperfine coupling, the

electric-dipole selection rules demand that the nuclear spin projections mRb
I

and mCs
I remain unchanged. However, a two-photon transfer can utilize a

mixed character intermediate state to allow these nuclear spin projections

to be changed by driving transitions to and from different components of

that intermediate state. In Fig. 5.6, we demonstrate such a two-photon

transfer sequence to change the populated hyperfine level in the rovibrational

ground state. We begin by transferring the molecules to an MF = 4 level

of N = 1 (transition frequency = 980320.47 kHz, shown in Fig. 5.4(e)).

The eigenvector component of the uncoupled basis function that couples to

our initial N = 0 hyperfine level is ∼ 0.687. To ensure we do not off-
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1+1

Figure 5.7: Two-step transfer between the spin-stretched and lowest energy hyperfine

levels of N = 0, 1 and 2. (a) Transfer scheme followed in this work. All molecules start in

the lowest hyperfine state (MF = 5) of N = 0. States are described in the uncoupled basis

set |N,MN ,m
Rb
I ,mCs

I 〉. (b) Rabi oscillations in one-photon transfer of molecules to the

spin-stretched MF = 6 state of N = 1 shown in (a). (b) Rabi oscillations in two-photon

transfer, using a π-pulse on the first transition and a second microwave pulse with different

frequency to drive a second transition to the MF = 7 hyperfine level of N = 2 shown in

(a). (d) Effect of scanning the frequency of the second microwave pulse with duration

< tπ. The dashed grey line shows the expected transition frequency given the molecular

constants fitted to the N = 1 spectroscopy.

resonantly couple to neighboring states we tune the microwave power such

that the Rabi frequency of the transition is Ω01/2π = 7.26(5) kHz, as shown

in Fig. 5.6(b). Single π-pulses allow complete transfer of the population to

the destination hyperfine level. We subsequently transfer the molecules to

a different hyperfine level of N = 0 by applying the second microwave field

with a different polarization and frequency. We choose to use π-polarized

microwaves to transfer the molecules to the higher-energy of the two MF = 4

levels of N = 0 (transition frequency 980119.14 kHz). At this field, the

composition of this final level is 0.947 |0, 0, 1/2, 7/2〉 + 0.321 |0, 0, 3/2, 5/2〉
in the uncoupled basis |N,MN ,m

Rb
I ,mCs

I 〉. We observe Rabi oscillations on

the second transition by pulsing on the π-polarized microwaves between two

π-pulses on the σ−-polarized microwave transition, as shown in Fig. 5.6(c).

Coherent transfer is achieved with a Rabi frequency of Ω10/2π = 29.2(3) kHz.

2In fact, coupling to the lower energy MF = 4 hyperfine level is the strongest. The

relative coupling strengths are 0.321 × 0.133 + 0.947 × 0.635 ≈ 0.64 and 0.974 × 0.133 +

0.321× 0.635 ≈ 0.33 for the states in order of increasing energy. The compositions of the

states involved are given in tables 5.3 and 5.4.
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Figure 5.8: Two-photon transfer between the spin-stretched states of N = 0 and 2.

(a) Scheme followed in the transfer. To avoid population build up in the intermediate

N = 1 level, both microwaves are detuned by +30 kHz. The intensity in each frequency of

microwaves is tuned such that both transitions are driven with a similar Rabi frequency

when on resonance. (b) Observation of two-photon Rabi oscillations. At this microwave

intensity, the Rabi frequency is much slower than is observed in one-photon transfer. We

are therefore unable to observe a complete Rabi cycle in free-space as after ∼1 ms we

begin to lose molecules during retrapping; the molecule number has been normalised to

compensate for this loss in the fitting. The solid line is a cosine curve fitted to the results

up to 1 ms. (c) Effect of scanning the second higher microwave frequency. A ‘loss’ of

molecules is observed when on two-photon resonance due to molecules being transferred

to the higher rotational state from which they can no longer be dissociated.

We can use a similar protocol to transfer molecules to the second rotation-

ally excited state N = 2. The second microwave transition in this case

has a frequency of ∼ 1960 MHz and is supplied using a microwave horn

originally installed for spectroscopy of Rb atoms. Rabi oscillations between

spin-stretched hyperfine states in N = 0 and 1, and N = 1 and 2 are shown

in Fig. 5.7. We measure Rabi frequencies of Ω01/2π = 5.05(5) kHz and

Ω12/2π = 3.55(4) kHz respectively. Fig. 5.7(d) shows the effect of scanning

the frequency of the second microwave frequency with tpulse = tπ, i.e. spec-

troscopy of a single hyperfine state in N = 2. The dashed vertical line shows

the theory prediction for the centre frequency using the molecular constants

fitted to the spectroscopy of N = 1. We find that the theory is able to predict

the energy of this hyperfine state in N = 2 to < 1 kHz.

It is also possible to perform two-photon transfer of molecules in a single step

by pulsing the two microwave frequencies on simultaneously. We investigate

this approach for the spin-stretched state transfer to N = 2. To avoid popu-
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lation of the intermediate state we detune both beams to an energy 30 kHz

above the intermediate state as shown in Fig. 5.8. The powers for each mi-

crowave frequency are tuned such that the on-resonance Rabi frequency for

both transitions are similar and are around Ω/2π ≈ 5 kHz. Two-photon Rabi

oscillations are observed with a Rabi frequency of Ω02/2π = 0.40(1) kHz.

Note, that the time required for a π pulse using these parameters is over

1 ms, and so in free-space we are unable to observe a complete Rabi cycle

due to loss of molecules from the trap. Transfer by this method for a given

microwave intensity is therefore significantly slower than the two-step ap-

proach shown in Fig. 5.6 and 5.7, this is due to the reduction in coupling

strength when off-resonance from the narrow hyperfine transitions. This ap-

proach may be useful if population of an intermediate state is particularly

undesirable. In particular, the superposition of states N = 0 and 2 have

no associated dipole moment, whereas the superposition of either of those

states with N = 1 does. In the case where dipole-dipole interactions are

strong enough to affect microwave transfer, e.g. through blockade effects,

complete population transfer between rotational states may only be possible

using a single two-photon pulse.

Although π pulses offer one method of transferring the population between

states, the transfer efficiency is limited by how well we can measure the

required duration of a π pulse. In addition, the stability of the transfer over

long timescales depends upon the reproducibility of the microwave intensity

and external electromagnetic fields. In practice, such pulses are useful for

producing superpositions of states as we will move on to discuss in the next

section. However, when requiring as close to 100% transfer efficiency as

possible (as is necessary when investigating lifetimes of molecules in a range of

states) a more robust method may be to use adiabatic rapid passage (ARP).

We are looking to implement this in the near future.

5.4 Superpositions of Molecule States

As no state with well-defined parity may possess a dipole moment, superpo-

sitions of opposite-parity rotational states are necessary to access the electric

dipole moment of the molecule. Such a superposition can be easily achieved
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Figure 5.9: Oscillations observed in population when using a short high power microwave

pulse to transfer molecules between N = 0 and N = 1. The duration of a π pulse

tπ = 3.29 µs which leads to a Fourier width much wider than the spacing between neigh-

bouring hyperfine states.

using π/2 pulses to create 50:50 superpositions of the two states coupled

by the microwaves. Such control leads to the possibility of using Ramsey

interferometry as a sensitive probe to the collisional and dipolar processes

undergone by the molecules.

In our experiment, we find that the production of superposition states lim-

its the maximum speed at which we can transfer molecules between rota-

tional states. Specifically, the maximum rate of transfer depends upon the

proximity of neighbouring transitions to other hyperfine levels in the target

rotational state. An example of this can be seen when trying to transfer

molecules between N = 0,MF = 5 and N = 1,MF = 4. This uses a tran-

sition at 980.320 MHz, the same as that used in the first step of Fig. 5.6.

Our initial attempt at this transfer was performed using high intensity mi-

crowaves which enabled a Rabi frequency of Ω01/2π = 152(2) kHz, i.e. the

duration of a single π pulse was 3.29µs. The Fourier width of this pulse is

304 kHz which is significantly larger than the spacing between neighbouring

hyperfine states in N = 1 at this magnetic field. We therefore lose the abil-

ity to resolve the hyperfine structure, and the microwaves can couple to any

hyperfine states which possesses appropriate values of MF . This leads to a
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Figure 5.10: Contrast of Rabi oscillations driven between N = 0 and 1 against the hold

time of the molecules in a superposition state. A spin-echo pulse sequence is used to reduce

the effect of dephasing from the variable AC Stark shift across the 3D optical trap. The

contrast of the Rabi oscillations is found by varying the duration of the final microwave

pulse and fitting a sine wave to the result. The contrast is defined as the ratio of the

amplitude to the number offset from zero of the fitted sine curve. The blue dashed line is

an exponential fitted to the data with a time constant of 0.18(3) ms to be used as a guide

to the eye.

production of a superposition of states. We demonstrate the production of a

superposition by performing two π pulses with a variable hold time between

them. This gives a hold time in N = 1 as shown in Fig. 5.9. We observe

oscillations in the molecule population are observed at a rate of 90 kHz as a

result of the superposition of states - comparable to the hyperfine splitting

in the first rotationally excited state at B ≈ 180 G.

We are also able to produce superposition states in a more controlled fashion

by performing π/2 microwave pulses. Here we first present an initial mea-

surement performed by preparing the molecules in a superposition of the two

lowest energy MF = 5 hyperfine levels of N = 0 and 1. Note, this prelimi-

nary work was performed with the molecules held in our optical dipole trap

throughout the microwave pulse sequence; the effect of the dipole trap on

the molecules will be discussed in detail in the next chapter. We perform

a spin-echo pulse sequence on the molecules as shown in Fig. 5.10; this is a

sequence which is designed to remove the dephasing caused by differential

AC Stark shifts across the trap. We vary the duration of the final π/2 pulse

and look at the contrast in the observed Rabi oscillations as a function of
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Figure 5.11: Bloch sphere representation of Ramsey spectroscopy. The molecules are

placed into a superposition of two states using a π/2 microwave pulse. The phase of

this superposition is allowed to freely evolve which corresponds to rotation around the

equator of the bloch sphere, during which the superposition accumulates a phase φ. The

second microwave pulse must have a phase offset from the first of φ for the molecules to

be successfully transferred to the excited state as shown. Varying the phase of the second

pulse allows inspection of the phase and coherence of the superposition state. Ramsey

spectroscopy may also be performed by varying the frequency of the microwave pulses. In

this case, the first π/2 pulse places molecules at a different latitude on the sphere, which

leads to a variation on the rate of precession during free-evolution and subsequently maps

the precession rate onto the molecule number. This method is demonstrated in Fig. 5.12.

hold time in the superposition state. We find that the coherence of the su-

perposition appears to decay over around 180 µs. This is seemingly shorter

than the coherence times previously observed in KRb molecules confined to a

3D optical lattice [74]. The cause of this is not clear. Dephasing rather than

decoherence could be due to the motion of the molecules around the trap

which the spin-echo pulse does not account for. However, we would expect

this to operate on the timescale of the trap period which in this case is ∼1 ms.

In addition, there appears to be some oscillatory behaviour, though this may

be due to poor signal to noise at the time of running the experiment.

A better approach and the logical continuation to this measurement is to per-

form a Ramsey measurement where we can directly probe the free-evolution

of the superposition phase. Ramsey interferometry may be performed by

fixing the duration of both microwave pulses (such that they are each a π/2
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Figure 5.12: Ramsey interferometry between the two lowest hyperfine states of the N = 0

and N = 1 rotational levels of 87Rb133Cs in free-space. (a) The relevant hyperfine levels

in 87Rb133Cs. We vary the detuning of the microwaves from the on-resonance transition

frequency. (b) The relevant timings for the observation of kHz separated Ramsey fringes.

The two microwave pulses are set such that they each drive a π/2 pulse when on resonance.

The duration of 47.8 µs corresponds to a Rabi frequency of Ω/2π = 5.2(1) kHz. The pulses

are separated by a free-space evolution time of 600 µs. (c) By varying the frequency of

both microwave pulses, Ramsey fringes separated by ∼ 1.5 kHz are observed. Each point

is the result of a single run of the experiment, the solid blue line is a least-squares fit to the

data using Eq. 5.1 with two free parameters: the centre frequency and the peak number

of molecules.

pulse on-resonance with the transition) and subsequently varying either the

phase or frequency of the second pulse. Either of these variables maps the

phase of the superposition onto the final population of molecules in each

state as shown in Fig. 5.11. We demonstrate this approach by varying the

frequency of the microwave pulses. Note that this time the molecules are not

recaptured in the dipole trap and the whole sequence is performed in free

space. In the absence of the dipole trapping light there is little reduction

in contrast of the Ramsey fringes even at hold times of up to 1400 µs. In
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Fig. 5.12, we show a wide scan of the detuning away from the resonant fre-

quency δ for a free-evolution time of T = 600µs. The spacing of the fringes

observed is inversely proportional to the free-evolution time used, and the

width of the envelope is inversely proportional to the duration of the π/2

pulses used, τ (i.e. the Fourier-limited width of the microwave pulses). We

fit the number of remaining molecules N with [88]

N(δ) =
4π2 sin2

(
X
4

)
X4

[
X cos

(
X

4

)
cos

(
δT

2

)
− 2δτ sin

(
X

4

)
sin

(
δτ

2

)]2

,

(5.1)

where X =
√
π2 + 4δ2τ 2. Future experiments will likely look towards directly

controlling the phase of the microwave pulses, as this removes the dependency

of the feature spacings and widths on the pulse timings.

5.5 Summary

In summary, we have performed high-precision microwave spectroscopy of

ultracold 87Rb133Cs molecules in the vibrational ground state, and have ac-

curately determined the hyperfine coupling constants for the molecule. Our

results confirm that the hyperfine coupling constants calculated by Alde-

gunde et al. [145] are generally accurate to within ±10%, calibrating the

probable accuracy of the calculations for other alkali-metal dimers. The re-

sulting understanding of the hyperfine structure enables full control of the

quantum state, and we have demonstrated coherent transfer to a chosen hy-

perfine state in either the second-excited, first-excited or ground rotational

state. Such complete control is essential for many proposed applications of

ultracold polar molecules, and opens the door to a range of exciting future

experimental directions, including studies of quantum magnetism [18, 22]

and novel many-body phenomena [181, 182].



Chapter 6

Polarisability, Trapping, and

the AC Stark Effect

Many of the applications for ultracold molecules rely on coherent microwave

transfer between rotational states of optically trapped molecules. In the

last chapter we developed the tools to perform microwave transfer between

hyperfine and rotational states in free-space. Now we will investigate the

effect of the trapping light on this transfer and on the hyperfine structure of

the molecules.

All molecules that have been prepared at ultracold temperatures so far [26,

28–30, 32] have nuclei with non-zero spins, resulting in complex hyperfine and

Zeeman structure [70, 145, 175, 177, 178, 183]. In such cases, the laser fields

used to confine the molecules have important effects through the AC Stark

effect, particularly for molecules in rotationally excited states. A thorough

understanding of these effects is essential in order to eliminate differential

Stark shifts detrimental to internal state transfer and thus to develop ultra-

cold polar molecules into a controllable resource for use in quantum science.

The key quantity that determines the AC Stark effect is the molecular polar-

isability. Following a theoretical proposal by Kotochigova and DeMille [184],

Neyenhuis et al. [176] have carried out parametric heating experiments at

fixed laser intensity to determine the polarisabilities of different molecular

states. They showed that there exists a magic angle for the linear polari-

sation of optical trapping light. In analogy with magic-wavelength traps in

110
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atomic systems, at the magic angle, the AC Stark shift of hyperfine levels of

different rotational states are the same. This allowed Ramsey interferometry

between two rotational levels of the molecule with a reasonably long coher-

ence time, and led to a pivotal study of the dipolar spin-coherence time in

a 3D optical lattice [74]. More recently, Deiß et al. [185, 186] have carried

out parametric heating experiments on aligned triplet Rb2 molecules and

extracted both isotropic and anisotropic polarisabilities.

In this chapter, we explore the dependence of the AC Stark effect on laser in-

tensity both experimentally and theoretically, using microwave spectroscopy

of the chemically stable and bosonic 87Rb133Cs molecule. We begin by out-

lining the theory behind the AC Stark effect in ultracold molecules (6.1). We

show that there is a subtle interplay between the AC Stark effect and the hy-

perfine structure. The trapping light couples neighbouring hyperfine states,

giving rich and complex structure with many avoided crossings as a function

of laser intensity. We use our measurements to extract a precise value for the

anisotropic component of the molecular polarisability (6.2). We complete

the characterization of the polarisability tensor by performing parametric

heating and spectroscopic measurements to extract the isotropic component

of the polarisability (6.3). We demonstrate how varying the polarisation of

the trapping laser allows us to tune strength of avoided crossings between

neighbouring hyperfine states (6.4). Our findings will allow us to engineer

trapping potentials suitable for internal state transfer with long coherence

times and have implications for experiments with other molecular species.

6.1 The AC Stark Effect in Molecules

The AC Stark effect arises from the interaction of the electric field due to

a laser of intensity I with the polarisability α of an atom or molecule, and

results in a perturbation in energy of −αI. By contrast with the atomic case,

the molecular polarisability is anisotropic; in the case of a linear diatomic

molecule like 87Rb133Cs, the highest polarisability is along the internuclear

axis. We apply a magnetic field Bz in the vertical z direction, and the

orientation of the molecule is defined with respect to this magnetic field.
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Figure 6.1: Coordinate system used in this work. A homogeneous magnetic bias field is

applied in the vertical (z) direction. A single trapping beam (DT) propagates along the x

axis and has polarisation defined with respect to the magnetic field by the angle β. The

angle between the internuclear axis of the molecule and the laser polarisation is given by

the angle θ. We apply microwaves polarised parallel to the z and y axes.

The polarisability of the molecule at an angle θ to the internuclear axis is

α(θ) = α‖ cos2 θ + α⊥ sin2 θ

= α(0) + α(2)P2(cos θ),
(6.1)

where α‖ and α⊥ are the polarisability parallel and perpendicular to the

internuclear axis respectively, α(0) = 1
3
(α‖ + 2α⊥) and α(2) = 2

3
(α‖ − α⊥),

and P2(cos θ) is the Legendre polynomial equivalent to 1
2
(3 cos2 θ − 1). The

trapping light is linearly polarised in the xz plane at an angle β to the

magnetic field. We therefore rotate the polarisability tensor through an angle

β and find matrix elements

〈N ′,M ′
N |Iα|N,MN〉 = Iα(0)δNN ′δMNM

′
N

+Iα(2)
∑
M

d2
0M(β)(−1)M

′
N

√
(2N + 1)(2N ′ + 1)(

N ′ 2 N

0 0 0

)(
N ′ 2 N

−M ′
N M MN

)
,

(6.2)

where N is the rotational angular momentum of the molecule, with projection

MN along the magnetic field axis, and d2(β) is a reduced rotation matrix.
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To calculate the hyperfine levels in the presence of an AC Stark effect, we con-

struct the Hamiltonian matrix in a decoupled basis |NMN〉|IRbm
Rb
I 〉|ICsm

Cs
I 〉,

where IRb = 3/2, ICs = 7/2 and mRb
I , mCs

I are the corresponding projections.

We supplement the Zeeman and hyperfine matrix elements described in sec-

tion 2.5.3 with the AC Stark terms of Eq. 6.2, which are diagonal in and

independent of mRb
I and mCs

I . We include all basis functions with N ≤ 3 in

the calculation. Diagonalizing the resulting Hamiltonian gives us both en-

ergy levels and wavefunctions in the presence of off-resonant trapping light.

We then use the wavefunctions to calculate spectroscopic transition strengths

for the required polarisation of microwaves.

The representation in terms of α(0) and α(2) conveniently separates the ef-

fects of the two components of the polarisability. The isotropic component

α(0) shifts all diagonal matrix elements by the same amount and has no ef-

fect on transition frequencies, though it does contribute to optical trapping.

The anisotropic component α(2), on the other hand, mixes different hyper-

fine states through matrix elements diagonal and off-diagonal in MN and

dependent on β. For N = 0, the matrix elements of α(2) are zero, so the

polarisability is simply α(0) for all hyperfine states. For N = 1, however, α(2)

has important effects; if we neglect terms off-diagonal in N , the matrix of

the polarisability tensor between basis functions with N = 1, MN = 0, +1

and −1 is

〈1,M ′
N |Iα|1,MN〉 = Iα(0)+

Iα(2)

5


2P2(cos β) − 3√

2
sin β cos β + 3√

2
sin β cos β

− 3√
2

sin β cos β −P2(cos β) 3
2

sin2 β

+ 3√
2

sin β cos β 3
2

sin2 β −P2(cos β)

 .
(6.3)

In the absence of the trapping laser, MF = MN + mRb
I + mCs

I is a good

quantum number, but MN , mRb
I and mCs

I are not individually conserved.

When the trap laser is polarised along Bz, corresponding to β = 0, MF is

still conserved. However, when β 6= 0, the AC Stark effect mixes levels with

different values of MF and there are no good quantum numbers.
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Figure 6.2: Transition frequencies from the lowest energy hyperfine level of the rovibronic

ground state N = 0,MF = 5 to the 96 hyperfine states for N = 1 as a function of laser

intensity, for laser polarisation perpendicular to the magnetic field, β = 90◦. The relative

transition strengths for microwaves polarised along z and y and are shown as blue and red

color maps respectively. The data points show experimental microwave frequencies. The

magnitude of the applied magnetic field is B = 181.5 G.

6.2 Anisotropic Component of Polarisability α(2)

The differential AC Stark shift between N = 0 and N = 1 gives a direct

measurement of the anisotropic component of the polarisability. To measure

this, we perform microwave spectroscopy (see Chapter 5) in the presence of

the dipole trapping light. A single beam (λ = 1550 nm, waist = 95 µm)

is switched on for 500 µs before the microwave pulse to allow the inten-

sity of the trapping light to stabilize. The laser polarisation is tunable to

a precision of ±1◦ by a λ/2 waveplate. The molecules experience a rea-

sonably homogeneous laser intensity within 2% of the peak intensity. With

the molecules initially in the spin-stretched rotational and hyperfine ground

state (N = 0,MN = 0,mRb
I = 3/2,mCs

I = 7/2), we pulse on the microwave

field for a time (tpulse) that is less than the duration of a π pulse for the

relevant transition. We measure the number of molecules remaining in the
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Figure 6.3: Transition frequencies from N = 0,MF = 5 to N = 1 as a function of

laser intensity, for laser polarisation parallel to the magnetic field, β = 0◦. The relative

transition strengths are coded as in Fig. 6.2. The data points show experimental microwave

frequencies. The magnitude of the applied magnetic field is B = 181.5 G.

ground state by reversing the STIRAP sequence to dissociate the molecules

and using absorption imaging to detect the resulting atoms. We observe

the microwave transition as an apparent loss of ground-state molecules. The

widths of all features we measure are Fourier-transform limited, i.e. the

width is proportional to 1/tpulse. The microwave power is tuned to allow

pulse times of 100-180 µs, yielding Lorentzian lines with 5-10 kHz full width

at half maximum. We observe transitions due to microwaves polarised along

the z and y axes, when the dipole trap is off these correspond to π and σ±

polarisations respectively.

We begin by setting the laser polarisation perpendicular to the magnetic

field, i.e. β = 90◦. Fig. 6.2 shows the measured transition frequencies for

Bz = 181.5 G as a function of laser intensity. These are superimposed on cal-

culations of the 96 hyperfine levels of N = 1, using molecular constants fitted

to the experiments as described below. Calculated transition strengths are

shown for microwaves polarised along z (blue) and y (red). Many avoided
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crossings appear in the region where Iα(2) is comparable to the hyperfine

couplings and Zeeman splittings. The basis functions that carry the spectro-

scopic intensity cut through the manifold of states, resulting in a complicated

variation in transition strengths as each state brightens and fades. At suf-

ficiently high laser intensities, the AC Stark effect dominates the Zeeman

splittings; N eventually requantizes along the laser polarisation axis, and the

pattern of transition strengths and frequencies simplifies.

Fig. 6.3 shows analogous results for laser polarisation parallel to the ap-

plied magnetic field, β = 0◦. A single beam is used at low intensities, as in

Fig. 6.2. At the highest intensities shown, however, two beams are used to

form a crossed optical dipole trap. The beams propagate in the xy plane and

cross at an angle of ∼ 27◦. In this case MF is a good quantum number even

in the presence of the trapping laser. The three MF = 5 hyperfine states for

N = 1 (blue) diverge as a function of laser intensity, and there are no avoided

crossings between them. At high intensity MN becomes an increasingly good

quantum number, and the two states with MN = ±1 lose intensity for mi-

crowaves polarised along z. Nevertheless, strong avoided crossings still exist

where states with the same MF cross.

The experimental uncertainties are not visible on the scale presented in

Figs. 6.2 and 6.3. The statistical uncertainties in the transition frequen-

cies are typically ±0.5 kHz. The dominant uncertainty in the laser intensity

on the other hand is systematic and due to the uncertainty in the beam waist

at the position of the molecules. We estimate this uncertainty to be ±3% of

the peak intensity.

We have fitted the experimental results of Figs. 6.2 and 6.3 independently to

obtain α(2), while holding the hyperfine constants fixed at the values of ref.

[178]. For laser polarisation β = 0◦ and 90◦, we obtain values of α
(2)
β=0◦/4πε0 =

507(1) a3
0 and α

(2)
β=90◦/4πε0 = 602(2) a3

0 respectively. The uncertainties given

are the statistical uncertainties found during fitting, but both results are

subject to the same systematic uncertainty in intensity described above. The

difference between the two fitted values of α(2) is not understood; it is not

due to hyperpolarisabilty effects or to uncertainties in the molecular hyperfine

constants. Nevertheless, despite the difference between the two fitted values,

the theory in each individual case describes the observed AC Stark shift well.
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Figure 6.4: AC Stark shift of the transition to the lowest energy hyperfine level of N =

1 with varying laser polarisation β. Squares show experimentally measured transition

frequencies at intensities of 1.3 kW cm−2, 2.8 kW cm−2 and 4.3 kW cm−2 in the single

beam trap. The solid lines are the theory prediction using the value of α(2) found in the

β = 90◦ case shown in Fig. 6.2. The horizontal dashed line shows the frequency of the

transition when measured in free space.

To more closely examine the dependence of the AC Stark shift on the laser

polarisation, we fix the single beam laser intensity and vary β. Fig. 6.4

shows the AC Stark shift of transition to the lowest energy hyperfine level

of N = 1 for three intensities in the single beam trap. All three intensities

used are relatively weak such that the overall shift is smaller than the spac-

ing between neighbouring hyperfine levels. The theory lines in Fig. 6.4 are

calculated using the α(2) fitted to the β = 90◦ result shown in Fig. 6.2, as

such they systematically predict a larger AC Stark shift than we observe in

the experiment when at β = 0◦. This result corroborates the conclusion that

there is some unexpected dependency on β which our model does not include.

The horizontal dashed line shows the transition frequency when measured in

free space. The angle at which our measured AC Stark shift crosses this

frequency depends strongly upon intensity; this crossing point is therefore

not an indication of a magic laser polarisation angle.
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Figure 6.5: Measurement of the isotropic component α(0) with spectroscopy. (a) Tran-

sitions used in STIRAP of molecules to the lowest hyperfine sublevel of the rovibronic

ground state. (b) AC Stark shift of the STIRAP dark-state resonance.

6.3 Isotropic Component of Polarisability α(0)

To characterize the polarisability of the molecule fully, we must also measure

the isotropic component α(0). To do this, we perform several complemen-

tary measurements. First, we observe the energy shift of N = 0, MF = 5

with respect to an initial weakly bound Feshbach state. This is given by the

AC Stark shift of the two-photon transition used in STIRAP [140], shown

in Fig. 6.5. This energy shift gives the difference in polarisability between

the two molecular states, and the polarisability of the Feshbach state is sim-

ply the sum of the polarisabilities of the constituent atoms, which are well

known [187]. Note that we have also used this method to determine the trap

frequency experienced by atoms in the lowest hyperfine sublevel of N = 1

when β = 0◦. This was reported in [188], and by compensating for the known

value of α(2) we find the same value for the isotropic component within our

experimental uncertainty using either rotational state.

In addition to this spectroscopic method, we perform parametric heating on

the molecular sample. Here, we retrap N = 0 molecules in their lowest hyper-

fine state with two beams with β = 0◦ and total intensity I = 36 kW cm−2.

The intensity of one of the beams is then modulated sinusoidally by ±20%

for 1 s. When the modulation frequency is twice the trapping frequency, we

resonantly heat the molecules and observe evaporative loss from the trap

as shown in Fig. 6.6. If the AC Stark shift is linear, the trap frequency ω
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Figure 6.6: Measurement of the isotropic component α(0) through parametric heat-

ing. Parametric heating measurements of trap frequency experienced by molecules in

the lowest-energy hyperfine state of N = 0, and 87Rb and 133Cs ground state atoms in

traps with the same peak laser intensity. The dotted lines and shaded regions show the

fitted trap frequencies and uncertainties, respectively, for each data set.

is proportional to
√
α/m, where m is the mass. We compare the trap fre-

quency for molecules with those for 87Rb and 133Cs atoms in a dipole trap

of the same intensity in Fig. 6.6 to find the absolute polarisabilities of the

molecules in both states. We find α(0)/4πε0 = 8.8(1)× 102 a3
0, in reasonable

agreement with theoretical predictions [184, 189, 190]. Note that the para-

metric heating approach does not require knowledge of the absolute intensity

of the trapping beams and thus gives a smaller uncertainty in α(0).

6.4 Tuning Avoided Crossings and

Experimental Considerations

The avoided crossings between laser-dressed levels can cause trap loss if the

molecules undergo Landau-Zener transitions to different hyperfine states as

they move around the trap, or if the intensity of the dipole trap is changed

dynamically. This is particularly important when retrapping molecules that

have been manipulated in free space. Since in our experiment trapping re-
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Figure 6.7: Transition frequencies from N = 0,MF = 5 to the two lowest energy hyperfine

states of N = 1 for β = 90◦ and 80◦. Transition strengths are coded as in Figs. 6.2 and 6.3.

quires a minimum laser intensity around 15 kW cm−2, such losses occur

for example when attempting to retrap the spin-stretched N = 1,MF = 6

state with β = 90◦. Avoided crossings will also produce anharmonic and

anisotropic trapping potentials, which may result in complicated density

profiles for molecular clouds and cause coupling between translational and

rotational degrees of freedom in optical lattices. The strengths of avoided

crossings may be tuned by varying β; for example, Fig. 6.7 shows how the

avoided crossing between the two lowest energy hyperfine levels of N = 1

varies due to a 10◦ change in laser polarisation. Understanding the avoided

crossings will allow us to identify optimum laser intensities and polarisations

for optical trapping. Furthermore, given sufficient broadening of the avoided

crossing and precise control of the laser intensity, it may be possible to tra-

verse the avoided crossings in a controlled manner during the retrapping of

molecules. This may allow access to hyperfine states that are not easily

produced with microwave transfer.

A further consequence of the AC Stark effect is that the frequencies of mi-

crowave transitions depend on the position within an optical trap. This

has important ramifications for the design of experiments to achieve coher-

ent control of trapped molecules. Neyenhuis et al. demonstrated coherence

times in Ramsey interferometry up to 1.5 ms in 40K87Rb by optimizing a

“magic angle” between the magnetic field and the laser polarisation [176].

To achieve longer coherence times, it is desirable to find excited states that
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Figure 6.8: Effect of varying the magnetic field on the AC Stark shift in the first rota-

tionally excited state. The AC Stark shift for the transition from N = 0,MF = 5 to the

various hyperfine states of N = 1 is shown for experimental parameters (a) B = 20 G,

β = 0◦, (b) B = 20 G, β = 90◦, (c) B = 400 G, β = 0◦, (d) B = 400 G, β = 90◦. At low

dipole trap intensities, the structure of avoided crossings is somewhat simplified at higher

magnetic fields due to the larger Zeeman separation of the hyperfine states. However, low

magnetic fields may sometimes be beneficial as the AC electric field of the off-resonant

trapping light dominates the behaviour at lower intensities.

are parallel to the ground state as a function of laser intensity. This con-

dition is met at the turning point of an avoided crossing. This will make

it possible to achieve longer coherence times by controlling laser intensity

as well as polarisation. A specific example of such magic conditions can be

seen in Fig. 6.3. The red MF = 4 hyperfine state with transition frequency

∼ 980.32 MHz in free space shows a very broad turning point at around

20 kW cm−2. When trapping close to this turning point, the transition fre-

quency is relatively insensitive to variations in the intensity of the trapping

light, i.e. the variable AC Stark shift across the cloud is minimised, which

should lead to long coherence times.
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An additional parameter which may be tuned is the magnitude of the applied

magnetic field. The effect of changing the magnetic field is shown in Fig. 6.8.

At low magnetic fields, the dipole trap dominates at correspondingly lower

trapping intensities. In this case, trapping the molecules at intensities over

∼ 20 kW cm−2 is greatly simplified. However, the small initial Zeeman

splitting of the states makes navigating the structure of avoided crossings

in the lowest intensity regions far more difficult. Retrapping of molecules

would be further complicated by working at lower magnetic fields, as the

number of available avoided crossings is greater. Increasing the magnetic field

on the other hand increases the Zeeman splitting between hyperfine states.

This simplifies the structure in the regions between 0 and 20 kW cm−2,

and is clearly preferential for retrapping of molecules. However, creating

deeper traps for the molecules, i.e. working at higher intensity, would require

a similar increase in the magnetic field to ensure that the magnetic field

continues to dominate over the AC electric field of the off-resonant trapping

light. These plots indicate that changing the magnetic field is a powerful tool

in controlling the structure of rotationally excited molecules. In the future,

we plan to also look at the effect of DC electric fields. The strong coupling of

the molecules electric dipole moment to the DC electric field should dominate

over both the magnetic field and trapping light and could be used to further

control the behaviour of the molecular structure.

6.5 Summary

In summary, we have completely characterized the anisotropic polarisabil-

ity of 87Rb133Cs for λ = 1550 nm. We have measured microwave spectra

of several hyperfine components of the N = 0 → 1 microwave transition

as a function of laser intensity and used them to extract precise values of

the anisotropic component α(2) of the molecular polarisability. We have sup-

plemented this with parametric heating and spectroscopic measurements to

determine the isotropic component α(0). We have discovered a subtle inter-

play between the AC Stark effect and the hyperfine structure, which produces

a rich and complex pattern of avoided crossings between levels as a function

of laser intensity and polarisation. Understanding this pattern has allowed
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us to trap molecules in well-defined hyperfine states and control their polar-

isability. This lays the foundations for enhanced coherent microwave control

of the internal state of polar molecules confined in optical traps and lat-

tices, which will underpin many exciting proposed applications of ultracold

molecules.



Chapter 7

Lifetimes and Collisions of

Ultracold Molecules

The earliest works studying collisions of heteronuclear molecules in the

ultracold regime were conducted with fermionic 40K87Rb molecules at

JILA [26, 68, 71, 191]. As this molecule is chemically unstable to the atom

exchange reaction 2KRb → K2 + Rb2 [69], the lifetime of the molecules was

limited to 200(40) ms [71] in a 3D optical dipole trap. However, recent works

have reported loss even in systems of chemically stable molecules [28, 30, 32].

Although such loss can be suppressed by confining the molecules to a 3D op-

tical lattice [73], the mechanism of the loss is still unknown and is a hot topic

in the field of ultracold molecules.

In this chapter we will study the lifetime of 87Rb133Cs molecules in our 3D op-

tical dipole trap. We begin by reviewing the types of collisions which can exist

in an ultracold quantum gas (7.1), and in particular we will look at the possi-

ble mechanism of ‘sticky collisions’ in systems of ultracold molecules (7.1.1).

We will then look at experimental results from our experiment, examining

the lifetime of the molecules as a function of dipole trap intensity (7.2.1),

magnetic field (7.2.2), and hyperfine and rotational state (7.2.3). Finally we

will discuss a future proposal for our experiment - to study collisions between

atoms and molecules (7.3).

124
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7.1 Collision Processes Between Ultracold

Molecules

Lossy collision processes undergone in an ultracold gas can be categorised as

either one-, two- or three-body in nature, and whichever of these is dominant

dictates the rate at which molecules are lost from the trap. A one-body colli-

sion for example, could either be a collision of a molecule with an untrapped

atom or molecule from the background gas, or due to absorption of a photon

from the optical trapping light. Such collisions cause an exponential decay

of the number of trapped molecules

Ṅmol = −Nmol

τ
, (7.1)

where the trap lifetime τ is typically on the order of minutes in ultra-high

vacuum systems. Two-body and three-body collisions on the other hand rely

upon the collision between optically trapped molecules.

Two-body collisions can lead to loss in a number of different ways. In the

case of chemically reactive species like 40K87Rb, dimers are lost as trimers

and single atoms are produced in the trap. For chemically stable molecules

however, loss may be observed due to dipolar spin relaxation as colliding

molecules exchange angular momentum and are scattered into an undetected

hyperfine state. The rate for two-body loss increases with density and so

molecules are lost preferentially from the densest regions. This leads to

‘anti-evaporation’ and results in heating of the remaining sample as each

molecule lost takes away on average, 9
4
kBT of energy (see Appendix A) - less

than the average thermal energy of the cloud. Two-body loss occurs with a

characteristic heating and loss rate K2 as

Ṅmol = − K2

23/2

(
mω̄2

2πkB

)3/2
N2

mol

T 3/2
,

Ṫ =
K2

23/2

(
mω̄2

2πkB

)3/2
Nmol

T 1/2
,

(7.2)

where m is the molecule mass and ω̄ is the geometrically averaged trap fre-

quency. There is a special case for the two-body loss rate when there is unity

probability of loss during a collision [192–194]. This is known as ‘universal
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loss’ and is the case for chemically reactive species [70, 192]. This special

case puts an upper bound on the observable value of K2. The universal loss

rate depends only on the quantum scattering by the long range potential at

distances greater than the van der Waals length. For identical bosons, the

rate is given by

KUniv. =
16π~
m

ā. (7.3)

Here, ā is the characteristic van der Waals length

ā ≈ 0.47799

(
mC6

~2

)1/4

, (7.4)

which in turn depends upon C6 [193]. For most species (including 87Rb133Cs),

the rotational dipole component dominates the value of C6, and so [19]

C6 ≈ Crot.
6 =

d4
0

6Bv

, (7.5)

i.e. the universal loss rate depends mainly upon the molecule frame dipole

moment d0, rotational constant Bv, the mass of the scattering molecules m,

and whether the molecule is a boson or a fermion. The universal loss rate for
87Rb133Cs is predicted to be ∼ 10−10 cm3 s−1 in the absence of a DC electric

field [193].

In the case of three molecules colliding, even ‘chemically stable’ molecules

such as 87Rb133Cs may still be reactive. As such, molecules can be lost from

the sample as quads, trimers, homonuclear dimers, and single atoms are cre-

ated during the collision. However, as such a collision requires three molecules

to be sufficiently close together, three-body collisions have a stronger depen-

dence on density than two-body collisions. This process therefore results in

greater heating of the remaining molecules as each lost molecule only carries

away on average, 2kBT of energy (see Appendix A). Three-body loss occurs

with a characteristic heating and loss rate K3 as

Ṅmol = − K3√
27

(
mω̄2

2πkB

)3
N3

mol

T 3
,

Ṫ =
K3√
27

(
mω̄2

2πkB

)3
N2

mol

T 3

(T + Th)

3
,

(7.6)

where Th is the recombination heating associated with the loss [195]. This

process usually only plays a minor role for uncondensed clouds. As an exam-

ple, for 87Rb atoms in their lowest hyperfine state, the measured three-body
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Figure 7.1: Cartoon (not to scale) illustrating the origin of sticky collisions. Molecules

colliding in their rovibrational ground state experience a very high density of states in

the 4 atom collision complex, this leads them to become ‘stuck’ together for some time.

Figure adapted from [197]

loss rate is K3 = 4 × 10−29 cm6 s−1 [196]. For peak densities less than

∼ 1013 cm−3, this translates to a decay rate of less than 1 atom per minute.

7.1.1 Sticky Collisions

The addition of rotational and vibrational degrees of freedom logically leads

to a far higher density of Feshbach resonances in molecules than in compara-

ble atomic systems. Collisions between two relatively heavy molecules may

have such a high density of resonant states in fact, that tens of vibrational

levels and hundreds of rotational levels may be energetically accessible [197].

This leads to a big unanswered question as to whether it could be possible

to experimentally resolve the individual resonances.

Theoretical work by Prof. John Bohn’s group at JILA relies on the as-

sumption that individual resonances between 87Rb133Cs molecules cannot be

resolved. As a result, a statistical approach may be taken as all observables

become averaged over many resonances whose average spacing is dictated by

the density of states [197, 198]. This method allows the system to effectively

be described using non-resonant scattering calculations. In 87Rb133Cs, the ex-

tremely narrow resonances in the rovibrational ground state lead to long-lived
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two-molecule collision complexes. This leads to so-called ‘sticky’ collisions

where two colliding molecules remain associated with each other for some

time as their collision complex explores the high density of rotational and

vibrational states energetically available to them [199]. The lifetimes of these

collision complexes γ is hard to estimate, but may be on a timescale relevant

to experiments [198, 200]. This is particularly important as molecules which

occupy these collision complexes would be hidden from our hyperfine-state

selective imaging techniques, and would appear to be lost from the exper-

iment. In addition, as the collision complex is long-lived, a third molecule

may collide with the complex. This delayed three-body collision process could

lead to an enhancement of the energetically allowed three-body chemical re-

actions or to molecules being ejected from the trap. The number of ‘free’

molecules and collision complexes remaining in the sample can be modelled

by the coupled rate equations

Ṅmol = −
(

mω̄2

4πkBT

)3/2 (
N2

molKmm +NmolNcomKmc

)
+ 2γNcom,

Ṅcom = +

(
mω̄2

4πkBT

)3/2(
1

2
N2

molKmm −NmolNcomKmc

)
− γNcom.

(7.7)

Here, Kmm and Kmc are the molecule-molecule and molecule-complex two-

body rate coefficients respectively; the molecule-molecule rate constant must

be summed over all available partial waves L,ML. Each of the rate equa-

tions has three components. The first, proportional to N2
mol, is a two-body

process which gives the rate of production of collision complexes as pairs of

molecules collide with each other. The second, proportional to NmolNcom, is

a second two-body process which gives the rate at which those collision com-

plexes collide with the remaining molecules, after which both the complex

and the ‘free’ molecule are removed from the sample. The final component,

proportional to Ncom, is a one-body decay process of the collision complexes

dissociating back to free molecules.

The time dependence of loss from sticky collisions depends on all three com-

ponents Kmm, Kmc and γ, and the ratio between these coefficients may de-

termine how similar this loss mechanism appears to a generic two-body loss

process. Discerning ‘sticky’ collisions from another loss process is difficult;



Chapter 7. Lifetimes and Collisions of Ultracold Molecules 129

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t (s)

0

500

1000

1500

2000

2500

3000
M

ol
ec

ul
e 

N
um

be
r

(a)

3-Body
2-Body
1-Body

0 1
t (s)

1.00

1.25

1.50

T 
(

K
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t (s)

0

500

1000

1500

2000

2500

3000

M
ol

ec
ul

e 
N

um
be

r

(b) `Free' molecules
`Stuck' molecules

Figure 7.2: Example lifetime results for molecules in the rovibronic and hyperfine ground

state. Each experimental data point is an average of at least three experimental measure-

ments, higher averaging is likely required for meaningful statistics on fitted rate constants.

The initial peak density of the sample is ∼ 1.4 × 1011 cm−3. (a) Fitting of the results

as one-, two- and three- body loss as described in section 7.1. This result appears to fit

best to a two-body loss curve though the difference between two-body and three-body are

not statistically significant given our current signal to noise. Relevant rate coefficients are

given in the main text. The inset shows the evolution of temperature; in our experiment

we can only measure the initial temperature of the molecules. (b) Fitting of the results

using the rate equations for ‘sticky’ collisions as given in Eq. 7.7. The number of molecules

available for imaging is plotted as the solid line while the dashed line shows those molecules

‘stuck’ in dark collision complexes. Each collision complex contains two molecules so the

number of complexes is half the number plotted.

the mechanism may be identifiable by the dependence of the loss rate on the

induced dipole moment of the molecule [198, 201].

7.2 Experimental Measurements of Molecule

Loss

In our experiment we observe the number of ground state molecules remain-

ing in our 3D optical dipole trap as a function of time. An example plot of

such a measurement may be seen in Fig. 7.2, with an initial peak density

of 1.3× 1011 cm−3, initial temperature of 1.0 µK, and applied magnetic bias

field of 181.5 G. In Fig. 7.2(a), we fit the results using the rate equations for

one-, two- and three-body loss as given in section 7.1. The initial tempera-

ture is fixed during the fitting but its time evolution is a free parameter; as
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the molecule number decreases so does the optical depth of our absorption

images which makes taking temperature measurements difficult.

We find that given our initial densities and signal to noise, it is hard to dis-

cern between the different possible loss mechanisms. The one-body process

describes the experimental results least well; this is expected as our trapping

light is far detuned from any available molecular transitions [202, 203]. In ad-

dition, our vacuum is good enough to allow lifetimes for 87Rb atoms in a sim-

ilar trap greater than 400 s, so the fitted 1-body time is therefore inconsistent

with measurements on atoms. Similarly, we can also try to fit the result as a

three-body process. Here we find a rate coefficient K3 = 7(1)×10−21 cm6 s−1,

which is 8 orders of magnitude greater than the three-body loss rate mea-

sured in 87Rb [196]. Fitting the results as a two-body process appears to

generally describe the results best as shown in Fig. 7.2, though the difference

in χ2 is not statistically significant. For the results shown, we find a two-body

fit gives a rate coefficient K2 = 1.7(1) × 10−10 cm3 s−1. However, there is

significant variation (up to a factor of ∼ 2 variation) in the rate we measure

day to day. This is rate is close to universal loss and is remarkably similar to

all rate coefficients so far measured in other ultracold and optically trapped

chemically stable bialkali species [28, 30, 32].

We can also fit the same results using the rate equations for ‘sticky’ collisions

given in Eq. 7.7 as shown in Fig. 7.2(b). The fitting of two simultaneous decay

processes enables this fit to better reproduce the fast loss we observe at short

hold times. We can extract rate coefficients of Kmm = 9(5)× 10−11 cm3 s−1

and Kmc = 2(2) × 10−10 cm3 s−1. The large uncertainty on Kmc is due to

the low signal to noise when measuring low molecule numbers, which limits

the amount of data which can be taken with long hold times. The fit also

indicates that the lifetime of the collision complexes γ would likely be on the

order of seconds, and significantly longer than the experimental times used

here. However, similarly good fits to the results can be obtained using any

multi-process fit such as a combination of one- and three-body loss.

Throughout the rest of this work, the loss will be assumed to be dominated

by a two-body process and fits to the results will be given by solving the rate

equations in Eq. 7.2. This will allow us to simply parametrise the loss by the

single rate coefficient K2.
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Figure 7.3: Dependence of two-body molecule loss rate K2 on the intensity of the trap-

ping laser. Error bars shown are those found during the fitting of the results. The real

uncertainty in loss rate is likely significantly higher.

7.2.1 Dependence on Optical Trap Laser Intensity

To investigate the collision processes which are causing loss of molecules

from our trap, we can change certain parameters in our experiment and

observe how those parameters affect the rate of loss. The first parameter

we investigate is the intensity I of our optical trapping beams. Varying the

intensity of our trapping beams varies both the trap depth ∝ I and trap

frequency ∝
√
I observed by the molecules, it therefore leads to a variation

in both temperature and density of the molecules. The variation of the two-

body loss rate K2 for rovibronic and hyperfine ground state molecules with

intensity is shown in Fig. 7.3. The range of intensities over which we are

able to trap molecules is limited by the minimum intensity we require to

support the molecules against gravity, and by the maximum laser power we

currently have available from our fibre laser. This intensity range corresponds

to a variation of temperature of the molecules from 0.5 µK to 1.7 µK, and a

variation in density between 1.1 × 1011 cm−3 and 1.5 × 1011 cm−3. This

further suggests that the loss mechanism may be a multi-body process, as

this would lead to the observed lack of variation with intensity in the laser

while our signal to noise may not be good enough to observe the change in

loss over such a small variation in density.

At present, we observe significant day to day variation in the fitted value of

K2, much greater than the uncertainty given in the fit parameter. In Fig. 7.3
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for example, we show three repeat measurements all with the same intensity

dipole trap of ∼ 42 kW cm−2, yet one of the measurements differs from the

others by a factor of two. Due to this variation, we are unable to identify

any significant change in the loss with varying dipole trap intensity.

7.2.2 Magnetic Field Dependent Lifetime in the Rota-

tional Ground State

Next we investigate the dependence of the lifetime of molecules in the N =

0,MF = 5 state as a function of magnetic field. At 181.5 G, where our

molecules are produced, this state is both the rotational and hyperfine ground

state. It is no longer the hyperfine ground state below magnetic fields of

∼ 90 G. At magnetic fields below this value, there is the possibility of loss of

molecules to a lower energy hyperfine state. However, we would expect that

such loss should have a relatively high energy centrifugal barrier associated

with it and so loss by this mechanism is likely suppressed due to the low

Zeeman energy released in changing hyperfine state.

In Fig. 7.4, we show measured molecular lifetimes for three different values

of magnetic field. We note that at magnetic fields of 181.5 G and 25.6 G,

we observe similar loss rates which agree even within the uncertainties in the

fits. However, reducing the magnetic field to 3.5 G results in significantly

increased loss, with over an order of magnitude increase in K2. To see how

the loss increases with magnetic field more carefully, in the inset we fix the

hold time in the ground state to be 200 ms. We then vary the magnetic field

and observe that the molecule number is relatively constant above 25 G but

drops below this value corresponding to the increased loss rate.

Conveniently, a similar measurement has also been performed on the same

molecule in a similar trap geometry by the group of Prof. Hanns-Christoph

Nägerl at the University of Innsbruck. In their work [28], the molecules are

at a higher temperature of 8.7 µK but similar density of 1.1 × 1011 cm−3 to

our experiment. In the Innsbruck experiment, an increase in K2 of similar

magnitude to that which we observe is found. However, the magnetic field

dependence is different as the transition occurs at a much higher magnetic

field of 90 G; the point at which the MF = 5 hyperfine state is no longer
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Figure 7.4: Dependence of the two-body molecule loss rate K2 on the magnetic field.

(a) Hyperfine structure of the rotational ground state of 87Rb133Cs. At ∼ 90 G the

N = 0,MF = 5 hyperfine state our molecules populate is no longer the hyperfine ground

state. Vertical dashed lines show the magnetic fields at which we have performed full

lifetime measurements. (b) Lifetime measurements at three different magnetic fields. The

solid lines show two-body loss curves fitted to each result. Similar loss rates are measured

at magnetic fields of 181.5 G and 25.6 G, but a much higher loss rate is observed at 3.5 G.

Inset: The remaining molecules after a fixed hold time of 200 ms in the optical dipole trap

as a function of magnetic field. A significant reduction in molecule number indicating a

higher scattering rate is observed below 25 G.

the ground state. The original interpretation of the Innsbruck results was

that hyperfine-changing collisions lead to loss once the initially populated

hyperfine state is no longer the lowest in energy. This does not consider

the presence of a centrifugal barrier which should energetically suppress such

changes in hyperfine state as at the crossing point between the two states.

There is no energy to enable to molecules to overcome this barrier. In ad-

dition, we observe similar lifetimes with the molecules in either the MF = 4

and MF = 5 hyperfine states at a magnetic field of 181.5 G, this would not be

the case if the Innsbruck interpretation was correct. Our work demonstrates

that this critical magnetic field appears to have some temperature depen-

dence, though the real interpretation behind the result is still unknown and

the subject of on-going investigations.
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Figure 7.5: Two-body decay rates K2 for molecules in a range of rotational and hyperfine

states. The bias field is fixed at 181.5 G for all measurements, and the trap intensity and

laser polarisation is chosen such that the trap frequency experienced by the molecules is

similar independent of its state.

7.2.3 Lifetime in a Range of Rotational and Hyperfine

States

Using a fixed dipole trap intensity and magnetic bias field of 181.5 G, we

investigate the lifetime of molecules in a range of rotational and hyperfine

states. In a similar way to the magnetic field variation, we might expect

that in states which are not the ground state the loss rate may increase as

they may decay to those states with lower energy. We transfer the molecules

between states using π-pulses in free space as described in chapter 5. The

polarisation of both beams in the crossed optical dipole trap are set to be

parallel to the applied magnetic field; the AC Stark shift of each of the states

we investigate is linear with no observed avoided crossings which enables

efficient retrapping of the molecules (see Fig. 6.3). The intensity of the

dipole trap is chosen independently for each state such that the molecules

always experience a similar trap frequency, and are therefore trapped at

the same temperature and density (although as previously discussed, the

loss rate appears to be relatively insensitive to these parameters). Fig. 7.5

shows the fitted two-body rate coefficients for loss data taken for molecules

in two hyperfine states in each of N = 0 and N = 1 and a single hyperfine

level of N = 2. The rate coefficient for molecules in N = 2 is around
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twice that for molecules in the the first excited and ground rotational states.

However, this is still within the normal variation we have observed in day

to day measurements of the loss rate. This shows that the loss process we

observe dominates over any hyperfine or rotational state changing collisions

which may also take place. It also indicates that this may not be the reason

why we observe increased loss as we reduce the magnetic field as shown in

section 7.2.2, as at fixed magnetic field we can put the molecules in a higher

energy hyperfine state and no increase in loss rate is observed.

7.3 Collisions Between Atoms and Molecules

The lifetime of a collision complex in a ‘sticky’ collision depends upon the

density of states; the higher the density of states, the longer the complex

lives and the more dominant the process becomes. To properly identify the

role of such collisions, it may be helpful to vary the density of states. An

obvious conclusion is to look at the case of atom-molecule collisions as an

intermediate case between the incredibly high density of states of molecule-

molecule collisions, and the relatively low density of states of atom-atom

collisions. This could be achieved by removing the Stern-Gerlach separation

step from the experimental routine, leaving the molecules and atoms together

in the same trap. However, in practice it is preferable to study collisions

between the molecules and only a single atomic species at a time. This can

be achieved quite simply by only removing one atomic species from the trap

following association using resonant light. However, we do not yet have the

capability to do this in our experiment; a system to do this is currently in

development.

When this is possible, we will be able to consider collisions of 87Rb133Cs

molecules with the two available atomic collision partners in our experiment.

For the case of molecule collisions with 87Rb, the reaction

87Rb133Cs + 87Rb→ 87Rb2 + 133Cs (7.8)

is exothermic. We might therefore expect that a mixture of 87Rb133Cs and
87Rb would be shorter lived than the molecule-only mixture if the molecule-

molecule collision loss mechanism is not already universal. Collisions of the
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molecules with 133Cs atoms on the other hand are chemically stable such that

the reaction
87Rb133Cs + 133Cs→ 87Rb + 133Cs2 (7.9)

is endothermic. This mixture therefore offers the perfect opportunity to study

the dependence of our observed loss on the density of states. In addition, if

we can find a way to suppress the loss of molecules, it may in the future be

possible to use the 133Cs atoms for sympathetic cooling.

7.4 Summary

In summary, we observe loss of molecules from our 3D optical dipole trap

with a lifetime of the order of ∼ 1 s. We have discussed the available collision

processes which may take place in an ultracold gas, and how they may be

characterised as one-, two-, or three-body loss. We have also outlined how

the high density of states which may contribute to the behaviour in molecule-

molecule collisions can lead to long-lived two-molecule collision complexes,

and a delayed but enhanced three-body loss of molecules due to the so-called

‘sticky’ collisions. We have studied the loss of molecules as a function of

intensity of the trapping light, magnetic field, and rotational and hyperfine

state. Most significantly, we observe an increase in the loss rate for molecules

in the rotational ground state at magnetic fields below 25 G. This contradicts

the results from similar experiments performed on the same molecule at

Innsbruck [28], and indicates that this behaviour likely has some dependence

on temperature of the molecules. Finally, we have discussed the next step we

hope to take in our experiment - to study collisions in a mixture of molecules

and atoms.



Chapter 8

Conclusion

In this work we have developed the tools to precisely control the motion and

internal quantum state of polar molecules. Such control is at the heart of

many applications proposed for systems of ultracold polar molecules, and

this work represents a key evolutionary step for our experiment from a ma-

chine designed to produce ultracold molecules to one which can exploit those

molecules to achieve new scientific goals. We have demonstrated the crossing

of this boundary by studying the collision processes which may occur between

the optically trapped molecules, and there are many more possibilities for the

future.

8.1 Summary

We have described an apparatus which, by associating molecules from a

pre-cooled atomic mixture, produces up to 4000 optically trapped 87Rb133Cs

molecules in their rovibronic and hyperfine ground state, at a temperature of

1 µK and a peak density of 1011 cm−3. We measure the binding energy of the

molecules in the rovibronic ground state to be h×114 268 135.24(4)(3) MHz;

achieved by measuring the frequency of the lasers used in ground-state trans-

fer with reference to an optical frequency comb. In addition, by applying a

DC electric field to the molecular sample, we observe the DC Stark shift of

the rovibrational ground state and determine a molecule-frame electric dipole

moment of 1.225(3)(8) D. Given the maximum electric field we currently have

137
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accessible in our experiment, this corresponds to a laboratory-frame dipole

moment of 0.355(4) D.

The transitions between the low-energy rotational states of the molecule have

been probed using external microwave fields. With the molecules starting in

the hyperfine ground state, we initially performed microwave spectroscopy

of the first rotationally excited state in free space. We were able to re-

solve hyperfine states spaced by ∼ 40 kHz, and with precision down to

∼ 50 Hz. Transitions to 8 of the 96 available hyperfine levels available were

both selection-rule allowed and had sufficient coupling strength to be observ-

able. By performing the spectroscopy at two magnetic fields we were able to

measure the Zeeman shifts and, by fitting of theory to experiment, obtain

new experimental values for the rotational constant, scalar spin-spin cou-

pling constant, electric quadrupole coupling constants, and nuclear g-factors

(including shielding) for the molecule.

We have shown that one- and two-photon π-pulses may be used to transfer

the population between the ground, first, and second rotationally excited

states with unity efficiency. In addition, the mixing of states that arises

from nuclear quadrupole coupling offers a method of changing hyperfine state

via two-photon transfer. We have also briefly investigated how coherent

superpositions of states can be generated in our experiment; a superposition

of rotational states can be used to activate dipole-dipole interactions even

in the absence of a DC electric field. In addition, we have discussed how

Ramsey interferometry may be a vital and highly sensitive tool to investigate

interactions within the ultracold molecular gas.

The effect of the trapping light on the molecules has been investigated, and

both the isotropic and anisotropic components of the polarisability com-

pletely characterised for the 87Rb133Cs molecule. We have found that the

trapping light couples neighbouring hyperfine states, giving rich and com-

plex structure with many avoided crossings as a function of laser intensity.

This coupling may be controlled by varying the laser polarisation which en-

ables the possibility of engineering avoided crossings if and when experiments

require. In contrast to previous works which propose the existence of a magic

angle between the laser polarisation and magnetic field, in our experiment

no such angle appears to exist as these two quantities compete to take the
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role of the angular momentum quantisation axis.

Finally, we have investigated the lifetime of molecules in our 3D optical trap

as a function of laser intensity, magnetic field, and internal state. Despite

the chemical stability of the molecules, we observe surprisingly high loss rates

leading to lifetimes for the molecules of around 1 s. At present, we are un-

able to discern the dominant loss process. We have found that the lifetime

of molecules in the spin-stretched MF = 5 hyperfine level of the rotational

ground state depends upon magnetic field; the rate of loss of molecules ap-

pears to increase significantly below 25 G. The magnetic field at which this

occurs is lower than has been observed in similar experiments performed at

the University of Innsbruck, which were performed at a similar density but

significantly higher temperature. The cause of the unexpectedly short life-

times of chemically stable molecules is one of the big unanswered questions

of the field, and one which may have highly important implications for many

future experiments. We have outlined the next step we would like to take

in our quest to understand these collisions; studying the collisions between

atomic and molecular species.

8.2 Outlook

The future of experiments with polar molecules in our group is bright, and

we have many varied goals which we hope to achieve in the near future. Here

we will discuss some of the key directions which are being investigated as a

continuation of the experiments presented in this thesis.

8.2.1 Optical Lattices

Collisional loss of molecules may be investigated and even suppressed by

confinement to optical traps with reduced dimensionality. In addition, the

majority of applications for ultracold molecules in quantum computing and

quantum simulation require the loading of molecules into optical lattices

such that interactions must occur over long-range. At present a single retro-

reflected 1064 nm beam may be used as a 1D optical lattice in our experiment

(see Fig. 3.3). So far, 87Rb atoms have been successfully loaded into this trap
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and there is the possibility of loading molecules after ground state transfer

into this same geometry. However, we are currently in the process of re-

placing this setup with a pair of retro-reflected beams to create a 2D optical

lattice instead. In this new geometry, the molecules would be confined to

a series of vertical tubes. Given the density of the molecules we currently

achieve and spacing of the tubes at this wavelength we could expect to trap

on average only two molecules in each site. This should therefore be the

perfect test bed to determine whether the loss process we observe in our

experiments is one-, two-, or three-body. In addition, we can then attempt

to control collisions between these small numbers of molecules by applying

DC electric fields parallel or perpendicular to the long axis of these tubes.

Another natural direction is to control these collisions not just with the trap

geometry, but by using the dipole-dipole interactions. By transferring the

molecules to a microwave dressed state for instance, it is possible to tune the

collisions between molecules to be either attractive or repulsive [204]. This

could give us further insight into the collision mechanisms which dominate

the ultracold molecular gas, or at least enable further cooling of the molecules

by sympathetic cooling with atomic Cs.

Further ahead in the future, the addition of a third retro-reflected beam

would give access to a full 3D optical lattice. This could be useful for sup-

pressing loss of molecules all together and is also a requirement for many pro-

posed applications, enabling the exploration of exotic quantum phases [205–

207], quantum magnetism [18, 208], and quantum simulation [19] - i.e. the

long-term goal we are working towards in our experiment. Achieving a high

filling factor in such a lattice has proved difficult in similar molecule experi-

ments; typically a filling factor of around 30% has been achievable [209–211]

by forming a double atomic Mott insulator prior to molecule formation.

8.2.2 Other Bialkali Species

Working with 87Rb133Cs has two primary limitations. Firstly, the mixture

of 87Rb133Cs is difficult to work with at high phase-space densities; the high

interspecies scattering length leads to immiscibility of a quantum degenerate

mixture [115], which leads to low efficiency during the magnetoassociation of



Chapter 8. Conclusion 141

molecules [167]. This problem may be circumvented by using the more abun-

dant 85Rb isotope. Our experiment has already performed measurements to

determine the positions of magnetic Feshbach resonances in an ultracold

mixture of 85Rb and 133Cs. However, cooling of 85Rb is much more difficult

than for 87Rb; creating a mixture with sufficiently high phase-space density

for magnetoassociation is therefore non-trivial and may require alternative

cooling techniques such as Raman sideband cooling for 133Cs.

The second limitation is that the two isotopes 87Rb133Cs and 85Rb133Cs avail-

able in our current experiment are bosonic. A molecule which has both

fermionic and bosonic isotopes may be very useful for future investigations.

As discussed in section 2.1, there are a limited number of chemically sta-

ble bialkali molecules, and even fewer also have fermionic isotopes; the only

options available are NaK and KCs molecules. During the course of this

work, one group has reported the creation of a chemically stable ultracold

gas of fermionic polar molecules; the group of Prof. Martin Zwierlein at

MIT work with 23Na40K. However, promising Feshbach resonances for mag-

netoassociation have been predicted for 40K133Cs molecules [79], and this

molecule ties in well with the wealth of experience in working with 133Cs in

our group [115, 212–214]. An experiment to investigate an atomic mixture of

K and Cs is currently under construction. Preliminary work on spectroscopy

of potassium was published in [215].

8.2.3 Optical Tweezers

Optical microtraps are a powerful tool which have been used by many groups

in the capture of single atoms [216, 217]. However, they may also be use-

ful to the field of ultracold molecules. By preparing exactly the number

of molecules required for an experiment, the species involved in a reaction

could unambiguously be determined [218]. In addition, this method greatly

simplifies the creation of ordered arrays of molecules with unity site filling.

Loading of molecules into optical microtraps may be performed following

either direct or indirect cooling methods - both methods are currently be-

ing investigated as part of ‘Quantum Science with Ultracold Molecules’

(QSUM), a new initiative between Durham University and Imperial College
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(a)                                                  (b)

Figure 8.1: Design for the Durham molecule tweezer experiment. (a) Compact single

chamber vacuum system for the experiment. An array of four rod electrodes will be

placed in vacuum, enabling electric fields to be applied to the molecules with minimal

charge build up on the walls of the cell. (b) Optical layout for beams entering the glass

cell. A high objective (NA∼ 0.5) lens is positioned outside of the glass cell to focus the

light down for the optical tweezer trap and to collect light for detection of atoms and

molecules. MOT beams, Raman cooling beams and the STIRAP beams necessary for the

experiment are also shown.

London [219]. The indirect approach which follows on directly from the work

presented in this thesis will involve the loading of 87Rb and 133Cs atoms into

individual tweezer traps. Following cooling of each species to their motional

ground states by Raman sideband cooling, these traps could then be merged

and a single molecule produced via magnetoassociation followed by STIRAP.

The newly designed system for the Durham molecule tweezer experiment is

shown in Fig. 8.1.

8.2.4 Molecular Quantum Gas Microscope

Quantum gas microscopes are capable of imaging atoms in a single plane of an

optical lattice with single-site and single-atom resolution [220]. An equivalent

molecular microscope will enable us to detect individual molecules in a lattice.

Such a device may be used for the detection of the novel quantum phases

predicted for polar molecules in optical lattices where spatial correlations are

expected. The microscope will also make is possible to address the individual
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Figure 8.2: Typical experimental apparatus for an atomic quantum gas microscope. A

combination of a microscope objective and solid immersion lens close to the atoms typically

achieves an effective numerical aperture of ∼ 0.8 [220]. The atoms are illuminated from

the side by molasses/Raman light, and the scattered fluorescence light is collected by the

objective lens and projected onto a CCD camera.

molecules in the lattice. For example, by creating a local AC Stark shift

using a focussed off-resonant laser beam, a microwave pulse can be used to

transfer a single molecule to an excited rotational state. This technique has

been demonstrated for atoms [221] and allows the direct monitoring of the

quantum tunneling dynamics of individual particles.

The atomic quantum gas microscope consists of a high-resolution optical

imaging system integrated with a 2D optical lattice for confining the atoms.

The spacing between lattice sites is typically ∼ 500 nm. Resolving individual

sites requires a custom microscope objective lens with a very high numeri-

cal aperture situated close to the place of the lattice as shown in Fig. 8.2.

Microscopes have been used to observe directly the spatial structures and

ordering associated with the Mott-insulator transition [222, 223] in the Bose-

Hubbard model and to investigate the correlations and dynamics in such

systems [224, 225].

Adapting the methods developed for atoms to a molecular system will be a

complex task, however our group is working towards this goal also as part of

the QSUM project [219]. One particular problem of note arises from the fact

that we cannot image the molecules directly due to the absence of sufficiently
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Figure 8.3: Trapping scheme for a molecular quantum gas microscope. Left: Polaris-

ability of 87Rb and 133Cs atoms. The black dashed lines indicate the primary trapping

wavelengths which may be useful in future experiments. Right: Scheme for separating
87Rb and 133Cs atoms for imaging. Coloured arrows indicate direction of lattice beams.

(a) We begin by loading a 2D square lattice with molecules. (b) Following the evolution

in the lattice, the molecules are dissociated back into atoms. We choose a trapping wave-

length where both 87Rb and 133Cs seek the high intensity regions, and hence share lattice

sites. (c) By switching the lattice light in the vertical (z) direction to 830 nm, the 87Rb

and 133Cs are spatially separated for imaging.

closed cooling transitions. We will therefore need to dissociate the molecules

back to atoms as we do in our current experimental procedure. However,

during the imaging process, light assisted collisions between pairs of atoms

would cause both atoms to be ejected from the trap within ∼100 µs while

exposure times of typically 100-1000 ms are required to scatter sufficient

photons to be detected. The atoms will therefore need to be separated by

using species-specific trapping techniques. One possibility is to separate the

two species into different vertical sites during the imaging sequence, through

careful choice of wavelength. Fig. 8.3 (left) shows the polarisability of 87Rb

and 133Cs as a function of wavelength. At 1064 nm, both have positive

polarisabilities and are attracted to the high-intensity antinodes of the lattice.

Around 830 nm, the polarisability of 87Rb is positive, whereas for 133Cs it is

negative. This wavelength can be used to separate the two species because
87Rb is attracted to the antinodes, while 133Cs is repelled. Fig. 8.3 (right)

shows how we can use the species-specific lattice to implement the microscope

imaging.
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A further challenge is to be able to apply uniform electric fields to the

molecules in the lattice. This requirement negates the option of using a

solid immersion lens as shown in Fig. 8.2, as charge can easily build up on

the dielectric surface of the lens. This would generate stray electric fields

which would interfere with experiments; a problem which we have already

experienced in the current apparatus using electrodes placed out of vacuum.

To circumvent this problem, a high resolution objective lens which also has

a reasonably long distance must be used. The implementation of a quantum

gas microscope for molecules will require the development of a new dedi-

cated apparatus as our existing setup does not have the optical access to add

high-resolution imaging optics.

8.3 Concluding Remarks

In this thesis we have developed the methods for producing and opti-

cally trapping ultracold polar molecules in well-defined controllable quan-

tum states. The techniques presented here represent a step forward for our
87Rb133Cs experiment towards the long-term goal of creating a quantum sim-

ulator with polar molecules. However, as is often the case in science, the

development of new tools opens up numerous alternative avenues also wor-

thy of exploration. As such, now is a very exciting time to be a part of the

burgeoning field of ultracold molecules, and our experiment is one of the first

few to investigate this previously uncharted territory.



Appendix A

Collision Heating Rates

In chapter 7, loss processes associated with one-, two-, and three-body col-

lisions are discussed and specifically we state the average mean energy that

each molecule carries away with it when lost during each sort of process. To

calculate these energies we use the Boltzmann distribution function for a gas

confined to an axially symmetric potential,

f(~x,~v) =
Nm3ω2

rωz
8π3k3

BT
3

exp

(
− mv2

2kBT
− m

2kBT
(ω2

rr
2 + ω2

zz
2)

)
. (A.1)

Here, ~x and ~v are vectors describing the position and velocity of a single par-

ticle in the ensemble, N is the total number of particles, T is the temperature

of the ensemble, ωr and ωz are the radial and axial trap frequencies respec-

tively, and kB is Boltzmann’s constant. To calculate the average energy of

each molecule in our sample, we calculate the total kinetic and potential

energy and divide by the total number of molecules

Ē =
1

N

∫
d3x d3v

(
1

2
mv2 +

1

2
m(ω2

rr
2 + ω2

zz
2)

)
f(~x,~v) = 3kBT, (A.2)

which is also equal to the average energy taken away by a molecule lost by

a one-body process (i.e. a process with no density dependence). Two-body

loss processes depend upon the square of the density n2, and therefore the

average energy taken away during a two-body process is calculated as

Ē2-body =
1

N2

∫
d3x d3v

(
1

2
mv2 +

1

2
m(ω2

rr
2 + ω2

zz
2)

)
f(~x,~v)2 =

9

4
kBT.

(A.3)
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Similarly, three-body loss processes depend on n3 and the average energy is

therefore

Ē3-body =
1

N3

∫
d3x d3v

(
1

2
mv2 +

1

2
m(ω2

rr
2 + ω2

zz
2)

)
f(~x,~v)3 = 2kBT.

(A.4)
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Phys. Rev. A 83, 052519 (2011).
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