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Abstract 

In the UK North Sea, the Devonian has been perceived little potential to be hydrocarbon res-

ervoir for a long time. Since 1970s, a number of discoveries, though their initial targets were 

not Devonian, have proved that the Upper Devonian Buchan Formation is porous, permeable 

and productive with considerable reservoir quality heterogeneity. The Alma Field (Block 

30/24, UK Central North Sea) possessed relatively complete oil-bearing Buchan Formation 

sandstones with anomalously high reservoir quality, which provides a good opportunity to 

study this poorly understood Palaeozoic reservoir. The study has employed various methods 

from macro to micro scale by integrating analogue outcrops, drilled cores, thin section obser-

vations, SEM analysis and several geochemistry methods (EDX, XRD, cathodoluminescence, 

stable isotopic analysis and fluid inclusion thermometry). It has been recognized that the 

braided-fluvial channel and aeolian dune sandstones form the main types of reservoir with 

good horizontal connectivity in the Buchan Formation of the Alma Field. The Buchan For-

mation sandstones have experienced, due to consistently shallow burial depth until Paleogene 

and then rapidly buried into today’s maximum depth (2.7 km – 3.2 km), less significant com-

paction and highly variable cementation in fluvial and aeolian sandstones. Dolomite cement 

occurred prevalently in both sandstones and the overlying Permian Zechstein dolomite is the 

most possible carbon source. The quartz overgrowth is extensive in fluvial sandstones but 

absent in aeolian sandstones; this difference is due to the presence of early-formed grain coat-

ing illite/smectite (I/S), which is only occurred in aeolian sandstones, originated from fluvial 

distal sector and formed by the mechanical infiltration. This grain coating I/S have effectively 

inhibited quartz overgrowth which maintained anomalously high reservoir quality in aeolian 

sandstones. Including but not limited to Alma Field, the outcomes of this study should have 

broad applications to the future hydrocarbon explorations targeting Devonian in the Central 

and Northern North Sea. 
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1.1 Research context 

Accurate prediction of reservoir quality is crucial throughout the ‘entire life’ of a field exploi-

tation (Sneider, 1990). An appropriate reservoir quality prediction with good accuracy is, and 

will continue to be the main challenge in petroleum exploration (Bukar, 2013). The im-

portance of accurate pre-drill reservoir quality evaluation is growing as hydrocarbon explora-

tion in the North Sea is increasingly focusing on the deeper and stratigraphically older targets. 

Since the access to the deeper reservoirs is usually limited in form of cores, conventional well 

logs and low-resolution seismic survey, a better understanding of reservoir quality is often 

model-driven. Currently, many models of reservoir quality are empirical and may only be 

applicable in the specific fields or basins, therefore, careful integration of available data are 

usually used to predict, prior to drilling, the potential impact of facies and diagenesis on po-

rosity and permeability. 

Devonian rocks are widely distributed in the North Sea and adjacent onshore areas (Figure 

1.1) but commonly perceived to have little hydrocarbon reservoir potential, and the penetra-

tion of Devonian strata has often been taken as termination of the exploration wells (Downie, 

2009). Despite this, a number of discoveries both in UK and Norwegian sectors (Table 1.1) 

have proved that the Devonian strata, especially the Upper Devonian Group, are effective 

reservoirs when the Jurassic Kimmeridge Clay-sourced hydrocarbons are trapped in adjacent 

and structurally elevated Devonian structural highs (e.g. Richards, 1985b; Edwards, 1991; 

Robson, 1991; Knight et al., 1993; Gambaro and Currie, 2003). The unusual discoveries in 

these very ancient rocks may have raised the hope that the Devonian Formation in North Sea 

could be economically valuable. Comparing with those Mesozoic and Cainozoic reservoir 

targets, these older and usually deeper strata now need to claim more attentions as the North 

Sea becomes a mature exploration area. 
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So far, the current discoveries suggest that the Devonian reservoirs have commonly low to, at 

best, moderate-good reservoir quality and were locally improved by fault-induced fractures if 

they still remain open (Downie, 2009). This dual-poro/perm system has resulted in the diffi-

culties in evaluating reservoir quality and increased uncertainties in calculation of recovera-

ble hydrocarbons; additionally, the Devonian penetrations are limited due to the fact that De-

vonian strata were never considered to be the main exploration targets. Therefore, the current 

understanding of these reservoir sandstones is very poor.  

Table 1.1 Hydrocarbon accumulations in Devonian-associated reservoirs of the UK Continental Shelf 

(UKCS) and Norwegian North Sea. Data are collected and summarized from Bifani and Smith (1985), 

Robson (1991), Gluyas et al. (2005), Trewin and Bramwell (1991), Knight et al. (1993), Edwards 

(1991), Gambaro and Currie (2003) and Johnston et al. (1995). 

Field Location Reservoirs Hydrocarbons 

Ardmore UK 30/24 

Permian Rotliegend;  

Permian Zechstein;  

Devonian Buchan 

15.2 million m3 oil from Devonian and 

Permian reservoirs, 5500 barrels oil/day 

from Devonian interval 

Auk UK 30/16 

Permian Rotliegend;  

Permian Zechstein;  

Devonian Buchan 

529 million barrels recoverable oil 

Buchan UK 21/1 
Upper Devonian-

Carboniferous sandstones 
120 million barrels recoverable oil 

Clair UK 208/6 
Late Devonian to Early 

Carboniferous sandstones 

Approximately greater than 300 million bar-

rels oil, may be up to 1.5 billion barrels 

Embla 
Norwegian 

2/7 

Early Permian; 

Carboniferous and/or  

Late Devonian age 

At least 215 million barrels, may be up to 

1.03 billion barrels oil to be explored 

Stirling UK 16/21 
Middle to Late Devonian 

sandstones 
Peak oil flow rate at 4334 barrels oil/day 

 

The Ardmore Field (previous name ‘Argyll’, now part of ‘Alma/Galia Project’ owned by 

EnQuest PLC) is situated in UK Blocks 30/24 and 30/25 in the south-west of the Central 

Graben. It is one of the Devonian-productive oil fields (Bifani and Smith, 1985; Robson, 

1991) in the North Sea and has a relatively complete Upper Devonian reservoir with good 

core coverage although the original targets of the field were the shallower, younger Permian 
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Rotliegend and Zechstein reservoirs. This provides a good opportunity to understand how the 

Devonian reservoir performed and what controls the reservoir quality. Gluyas et al. (2005) 

reported that the Upper Devonian reservoir is a predominantly fluvial sequence with minor 

presence of aeolian deposits, and the reservoir quality has a very large variation from com-

pletely cemented sandstones to loosely compacted and poorly cemented sandstones, which 

implies a great reservoir quality heterogeneity. Therefore, we choose Ardmore Field as the 

main research target in this project and try to understand how the Upper Devonian sandstone 

reservoirs evolved and the main controls on the reservoir quality. This research delivers a 

comprehensive understanding of the sedimentology, petrography, diagenesis, reservoir quali-

ty evolution and basin evolution of the Upper Devonian sandstones in the area of the selected 

field. In this research, several types of data and techniques are employed in order to assess the 

facies architecture, controls on reservoir quality, and reconstruct the diagenetic and burial his-

tories. Beyond the studied areas and this project, the outcomes are expected to be useful ref-

erences for the pre-drilling prediction for the future Devonian explorations in the North Sea.  

1.2 Aim of this research 

The main aim of this research is to have a better understanding on the controls of reservoir 

quality in these ‘unusually-productive’ Upper Devonian sandstone reservoirs, why the reser-

voir quality varies significantly in the vertical direction within meter scale, how the potential 

reservoir distributes and use geochemical methods to reconstruct and quantitatively describe 

the diagenetic and burial histories. To achieve these, efforts have been made by employing 

several techniques and methods to investigate the sedimentary facies, facies architectures, 

lithology, petrography, diagenesis and burial history. The results provide insights into poorly-

understood Upper Devonian strata, and can be useful tools and references for those wishing 
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to target Devonian age reservoirs with exploration wells in the North Sea. The outcomes also 

have broad applications in other areas with similar provenance. 

 

Figure 1.1 General distributions of Devonian strata in the North Sea and associated onshore/offshore 

areas. Original version from Downie (2009), modified by Longxun Tang.  

Generally, the objectives of this research include: 

 To describe the cores and define the sedimentary lithology and facies in details; 

 To investigate the vertical and lateral architectures and connectivity of potential reservoir 

sand bodies on a field-wide scale by using outcrop analogue measurements, core study, 

well logging data and numerical facies modelling; 
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 To determine the main controls on reservoir quality from macro (facies) to micro (effect of 

clay minerals) scales, with the special attentions paid to the positive effect and mechanism 

of grain coating illite/smectite (I/S) in aeolian sandstones; 

 To quantitatively research the diagenetic events using geochemical methods and locate 

them in the burial history; 

 To develop an integrated burial-thermal-diagenetic histories for the local basin; 

 To improve the understanding of the Upper Devonian strata in the UK North Sea. 

1.3 Techniques and methods used in this research 

1.3.1 Investigation and measurement on analogue outcrops 

Due to the sparse and very limited offshore Devonian penetrations, we have investigated ana-

logue Devonian outcrops in Dunnet Head and Orkney, which were deposited under similar 

provenance with the selected field (Trewin and Hurst, 2009). The aim is to recognize and 

have a general view of the Devonian fluvial depositions, and measure the geometry of Devo-

nian fluvial channel sand body as the references for determining geometry parameters when 

doing numerical simulation for subsurface fluvial sand body. 

1.3.2 Core logging and sampling 

Core samples in this study are from the Upper Devonian Buchan members encountered in the 

Ardmore Field, Central North Sea. The sampling and logging of cores were undertaken at 

BGS core store in Keyworth and EnQuest core centre in Aberdeen. The depth intervals have 

been chosen according to the internal well reports provided by EnQuest. Although the sam-

pling points have covered all the lithology types, the main focus is on those sandstones with 

different sedimentary structures and variable reservoir quality. The very coarse and extremely 



Reservoir Quality of Upper Devonian Strata UK North Sea 

7 
 

fine depositions, such as conglomeratic basal lag and muddy flood plain deposits, are not the 

main focus of this research. 

1.3.3 Wireline log analysis 

The Argyll Field (to be called ‘Ardmore’ and ‘Alma’ in the following chapters) was firstly 

developed in the late 1970s and then abandoned in 1992. The well logging was operated dur-

ing 1969 to 1992 by Hamilton Brothers Oil Company. The initial targets were the Permian 

Zechstein and Rotliegend intervals, therefore the drilled cores are not completed for present-

ing whole Upper Devonian sequence. The lithology and vertical facies structure in the un-

cored wells are mainly achieved by well log data interpretation, and the net/gross ratio can 

also be roughly calculated. The lateral correlations between adjacent wells were attempted by 

comparing well log responses (Besly, 2011) in same stratigraphic units in adjacent wells with 

references from analogue outcrop measurements mentioned above. 

1.3.4 Facies modelling by numerical simulation software 

By integrating the parameters and outcomes from analogue outcrop measurements and well 

log interpretation, the architectures of favourable facies can be achieved by numerical simula-

tions. In this study, we have chosen Schlumberger’s software Petrel (V. 2014) for the model-

ling of facies architectures. The object modelling module in the Petrel allows users to popu-

late a facies model with different bodies by defining various geometry parameters, facies 

types and fraction for each component. The basic principle of modelling is upscaling high-

resolution well log data and point attribute data into the geo-cellular grids by using stochastic 

modelling algorithms. Therefore, the correct facies identification (well log explanation) and 

suitable geometry parameters (referred from outcrop measurement and lateral well log corre-

lation) are critical for an appropriate modelling result. The outcomes provide realistic repre-

sentation of the scales, distributions and evolution of the depositional facies.  
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1.3.5 Thin section petrography 

Core samples are manufactured into thin sections for microscopy observations. Visible poros-

ity is highlighted by the impregnated blue epoxy. The general mineral composition is accom-

plished using 300 counts per thin section on a standard petrographic microscope (Leica 

DM2500P) and point counting stage (Petrog – Conwy Valley Systems Limited). These basic 

observations (e.g. grain size, sorting and roundness, QFR composition, visible porosity, grain 

contact relationship, cement types, fraction of clay coated and non-coated grains, etc.) are 

used to select samples for additional petrographic analysis, including intergranular volume 

(IGV), total cement and the extended parameters such as porosity-loss by mechanical com-

paction (COPL) and porosity-loss by cementation (CEPL). The helium porosity and permea-

bility data used in this study was provided by EnQuest. 

1.3.6 Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive 

X-ray (EDX) 

Selected polished thin sections and tiny rock chips (approx. 1 cm * 1 cm * 0.5 cm) are coated 

by 40 nm carbon and 35 nm gold prior to analysis by a Hitachi SU-70 scanning electron mi-

croscope (SEM) equipped with an energy-dispersive X-ray detector (EDX). The SEM analy-

sis on the thin sections and bulk rock chips were conducted at 5 kV to 20 kV acceleration 

voltages with beam currents of 1.0 nA and 0.6 nA, respectively. The SEM can provide high 

magnitude enlargement for clay morphology and pore space geometry. The SEM-EDX was 

used for rapid identification of chemical species (i.e., K ratio in I/S mixed minerals). 

1.3.7 X-ray diffraction (XRD) analysis 

X-ray diffraction (XRD) analysis was conducted by X-ray Mineral Services Ltd. Quantifica-

tion for clay fraction (the < 2 micron clay fraction phases) have been analysed for a full inter-

pretation particularly with respect to silica minerals, feldspar, mica, clay minerals, carbonate 

compositions, evaporates (anhydrite/gypsum) and heavy minerals. 
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1.3.8 QEMSCAN technique 

A very fine-grained fluvial sample (siltstone) was selected for QEMSCAN (quantitative 

evaluation of minerals by scanning electron microscopy) analysis with the aim to provide a 

quantitative petrographic characterisation. The sample was cut to give a flat surface and im-

pregnated with Struers Epofix resin within a 30 mm diameter mould. The sample was pol-

ished, carbon coated and measured using automated mineral analysis at the Rocktype QEM-

SCAN facility. The FEI QEMSCAN technique combines SEM and X-ray (EDX) technology 

to provide automated petrographic description of geological samples in the form of high reso-

lution images and spatially resolved compositional and textural data. 

1.3.9 Cathoduluminescence (CL) 

The cathodoluminescence (CL) analysis has been undertaken on selected thin sections with 

visible macro-quartz overgrowths by using Gata MonoCL system. The purpose is to distin-

guish whether the quartz overgrowth was formed by a single precipitation or multiple genera-

tions. 

1.3.10 Fluid inclusion thermometry 

Eleven double-polished detached wafers are chosen to determine the conditions of quartz ce-

mentation and formation water salinity. Fluid inclusion analysis was undertaken by Linkam 

THMS600 Cooling-Heating Stage in State Key Laboratory of Oil and Gas Reservoir Geology 

and Exploitation, Chengdu University of Technology (CDUT). The temperature range of the 

instrument is from −196°C to 600°C with a precision of < 0.1°C. The rate of temperature in-

crease can be controlled to within 1°C/min when approaching the critical point. The purpose 

is to measure the precipitation temperature (the homogenization temperature, Th) of quartz 

overgrowth in the samples and the composition of the trapped fluid. The results can increase 
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the accuracy of diagenetic and burial history reconstruction, and also provide useful composi-

tional information of the formation fluid. 

1.3.11 Stable isotope analysis 

The stable isotope analysis involves carbon and oxygen elements and is mainly applied on 

authigenic carbonate cements (in this study, dolomite is predominant). The analysis is meas-

ured by the Scottish Universities Environmental Research Centre (SUERC) in the University 

of Glasgow. Seventeen sandstone samples with variable percentage of dolomite cements were 

gently disaggregated with a hammer and then crushed into powder in a mortar and at least 1 

mg of dolomite powder are obtained for each sample. The value of δ
13

C and δ
18

O were de-

termined on CO2 liberating from dolomite cements dissolved by 100% H3PO4 at 50°C. The 

isotopic composition of CO2 is reported in units of ‰ relative to Pee Dee belemnite (PDB). 

The purpose is to determine the possible source and formation temperature of these carbonate 

cements. 

1.3.12 One-dimensional burial history 

The Schlumberger’s PetroMod (V. 2012.2) software is employed for modelling the basin 

evolution in one dimension. The one-dimensional modelling provides a good insight into 

geothermal isogram in the subsurface and is based on a forward modelling algorithm to gen-

erate the burial history. However, the stratigraphic units between Devonian and Palaeocene 

contain many unconformities due to multiple episodes of tectonic uplift and erosion; there-

fore the true thicknesses of missing and incomplete stratigraphic units are mainly inferred 

from nearby wells and fields containing the missing units. The lithology types for those miss-

ing strata are determined according to the BGS project ‘Lexicon of Named Rock Units’ and 

the standard litho-stratigraphic nomenclature of the UK North Sea (Deegan and Scull, 1977). 

The key parameters for the modelling, including palaeo-heat flow, paleo water depth (PWD) 



Reservoir Quality of Upper Devonian Strata UK North Sea 

11 
 

and sediment water interface temperature (SWIT) are mainly collected from previous studies 

(Cornford, 1994; Graham et al., 2003). 

1.4 Research database 

The database for this research comprises core data sampled at different depths, on which the 

various techniques were applied. Other data types include the wireline logs, well reports and 

other supporting documents (Table 1.2). 

Table 1.2 Types and quantities of the data employed in this research 

Item Quantity 

Field 1 

Wells with Devonian cores 7 

Composite well logging curves 20 

Thin sections 126 

SEM rock chips 18 

XRD Samples 7 

Fluid inclusion samples 11 

QEMSCAN sample 1 

Cathodoluminescence samples 4 

Carbonate samples for isotopic analysis 17 

 

1.5 Thesis structure 

Chapter 1 gives a brief introduction of the topic and the rationale behind the project. It also 

gives a brief overview of the aims and objectives of the thesis and how they will be addressed. 

The techniques used and database involved in this project are also briefly introduced. 
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Chapter 2 summarizes the geological background of the North Sea and British Isles in the 

Devonian age, and has reviewed the hydrocarbon exploration history in the North Sea and the 

main controls of sandstone reservoir quality.  

Chapter 3 is a facies and petrography investigation of Upper Devonian Buchan Formation 

outcrops in Dunnet Head and Orkney, and discusses the potential of these outcrops to be the 

analogues of offshore Upper Devonian reservoirs in the North Sea. The chapter is in a paper 

format titled ‘Facies and petrography assessment of the Buchan Formation (Upper Devonian) 

outcrops, Dunnet Head and Orkney, Northern Scotland’. This chapter has been submitted to 

the Scottish Journal of Geology and is now under review. 

Chapter 4 presents and discusses the reservoir architecture and reservoir quality heterogeneity 

in a paper format titled ‘Fluvial and aeolian facies architecture and reservoir heterogeneity of 

the Upper Devonian Buchan Formation, Central North Sea, UK’. This chapter has been pub-

lished in the International Journal of Geosciences. 

Chapter 5 presents and discusses the general petrographic and diagenetic features as it affects 

the reservoir rock from Ardmore Field, special attentions are given to the effect of grain coat-

ing illite/smectite (I/S). The chapter is in a paper format titled ‘Porosity preservation due to 

grain coating illite/smectite: evidence from Buchan Formation (Upper Devonian) of the 

Ardmore Field, UK North Sea’. This chapter has been accepted by the Proceedings of Geol-

ogists’ Association and is now in press. 

Chapter 6 presents the quantitative analysis on diagenesis by using a couple of geochemical 

methods and reconstructs the diagenesis and burial history in a paper format titled ‘Diagenet-

ic and geochemical studies of the Buchan Formation (Upper Devonian) in the Central North 

Sea’. This chapter has been accepted by the Petroleum Science and is now in press. 

Chapter 7 is a review of the studied field in a paper format titled ‘The Alma/Ardmore/Argyll 

Field, Blocks 30/24 and 30/25a, UK North Sea’. This chapter has been accepted by the Geo-
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logical Society of London and will be published in the GSL Memoir Book ‘United Kingdom 

Oil and Gas Fields 50 Years Commemorative Atlas’. 

Chapter 8 is a general summary and conclusion for the whole work, a brief analysis on the 

uncertainties involved during the research, and some suggestions for the further work. 

 

For the chapters written in paper formats, it involves some degrees of repetition of material 

from one chapter to another, especially the geological background of the studied field, meth-

odology sections, and some basic petrographic information. 
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2.1 Geological background of the North Sea and the British Isles in the De-

vonian age 

2.1.1 Tectonic setting 

The component parts of the British Isles were separated by the Iapetus Ocean – the north of 

Scotland was part of Laurentia, and the rest part of Avalonia before the Silurian (Van Staal et 

al., 1998). The Caledonian Orogeny led to the gradual closure of Iapetus Ocean due to the 

collision of these continents and this ancient ocean was finally closed around the Middle to 

Late Silurian (Soper et al., 1992) (Figure 2.1). The closure was oblique with movement along 

a series of sinistral strike-slip faults, such as Great Glen, Walls Boundary, Highland Bounda-

ry and Southern Upland Faults (Graham et al., 2003) (Figure 2.2).  

The closure of Iapetus Ocean created a new giant continent called ‘Laurussia’. Paleo-

magnetic data suggests this new continent was located in a low-latitude position between 15° 

to 30° S during the Devonian (Tarling, 1985; Witzke and Heckel, 1988). 

 

Figure 2.1 The global palaeogeography maps from Early Silurian to Late Devonian; note the red 

parts display the location of British Isles. After Woodcock and Strachan (2009), modified by Longxun 

Tang. 

The suture of Iapetus Ocean in Britain is located south of Southern Upland and extends 

south-westwards and north-eastwards. After the closure, the tectonic regime in Midland Val-

ley altered from compression to continuous extension after the closure of Iapetus Ocean and 
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thus provided accommodation space for local deposition (e.g. Strathmore Basin in Midland 

Valley, Figure 2.3A). It was in these small depo-centres where the first terrestrial Devonian 

sediments occurred (Marshall, 1991). 

 

Figure 2.2 The Iapetus suture and its induced faults. 

The similar extensional movement also occurred along Great Glen, Walls Boundary, High-

land Boundary and Southern Upland Faults and formed a series of half-graben sub-basins 

(Norton et al., 1986; Seguret et al., 1989; Dewey and Strachan, 2003). Initially, these half-
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graben sub-basins were separated and dominated by internal drainage on small-scale alluvial 

fan with local lakes (Graham et al., 2003). In the Mid-Devonian, these small basins were coa-

lesced into a single system which is known as the lacustrine-dominated Orcadian Basin 

(Astin, 1990). This basin contained several depo-centres and extended from western Norway, 

east Greenland, Shetland, Orkney and across to its southernmost margin, the southern shore 

of Moray Firth (Figure 2.3B). In the Middle and Southern North Sea, the presence of a nar-

row trough of marine transgression (Figure 2.3B) was suggested by Glennie (2009) and 

proved by the Middle Devonian Kyle Limestone penetrated in the Auk (Trewin and 

Bramwell, 1991) and Argyll (renamed to ‘Ardmore’, now part of ‘Alma/Galia’ project) 

Fields (Robson, 1991; Gluyas et al., 2005). 

 

Figure 2.3 Simplified maps for distribution of Lower (A), Middle (B) and Upper (C) Devonian strata 

in the British Isles and North Sea. Orange: terrestrial deposition; blue: marine deposition. O-

Orcadian Basin, CG-Central Graben, MV-Midland Valley. After Glennie (2009), slightly modified by 

Longxun Tang.  

In the late Middle Devonian and early Late Devonian age, the extensional movements were 

reactivated and the whole North Sea area are now dominated by a more opened drainage sys-

tem (Figure 2.3C), which was originated from several sediment source areas, such as North-

west Highlands, Grampian Mountains and Southern Uplands. From this time on, the domi-
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nant sedimentary process in North Sea area changed from lacustrine to fluvial. The Upper 

Devonian mainly presented in Orcadian Basin and Central/Northern North Sea with predom-

inantly fluvial-braided deposition (Robson, 1991; Trewin and Bramwell, 1991). Aeolian dep-

osition is also reported but not as popular as fluvial facies (Hall and Chisholm, 1987). Be-

yond the Orcadian Basin and Central/Northern North Sea, there are no Devonian penetrations 

in the Southern North Sea possibly due to that the Devonian might be too deep to form any 

part of the local hydrocarbon system (Glennie, 2009). 

2.1.2 Paleoclimate 

The global climate of the whole Devonian age has been suggested to be a warm period and 

the temperatures have slight variations (Figure 2.4). Joachimski et al. (2009) used oxygen 

isotopes in conodont apatite to reconstruct the paleo-temperature history for the Devonian, 

their calculations show that the surface seawater temperature was 30°C – 32°C in the Early 

and Late Devonian, and about 22°C – 28°C between the end of Early Devonian and the be-

ginning of Late Devonian. Kiessling (2002) showed that the distribution of tropical reef zone 

stretched from 46° S to 40° N and 38° S to 45° N in the early and late Devonian age, respec-

tively. Another evidence of global-scale warm climate is the few presence of glaciation, only 

one Devonian-related glacial example was reported by Caputo et al. (2008).  

For the studied areas in this project, Witzke and Heckel (1988) claimed that the North Sea 

Basin and British Isles were approximately located around 30° S in the Early Devonian, and 

then successively moved northwards to about 15° S to 10° S in the Late Devonian. The char-

acteristic redbed sections (the Old Red Sandstone) have been reported in over 150 wells and 

thus proved the local climate was generally hot and arid (Graham et al., 2003).  
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Figure 2.4 Palaeo-temperature of the late Silurian and Devonian calculated from δ
18

O of conodont 

apatite, assuming a δ
18

O value for Devonian sea water of −1‰ VSMOW. After Joachimski et al. (2009) , 

slightly modified by Longxun Tang. 

2.1.3 Stratigraphy and depositional environment 

The Devonian strata in the British Isles and North Sea area can be divided into Lower, Mid-

dle and Upper Devonian Groups, which correspond to the Early, Middle and Late Devonian 

ages (Graham et al., 2003; Glennie, 2009). Unfortunately, there is no well penetration or out-

crop containing a complete Devonian sequence, thus the stratigraphic subdivision is mainly 

based on regional-scale unconformities (Cameron, 1993a). 

2.1.3.1 Lower Devonian Group 

The Lower Devonian Group was largely deposited on the eroded Caledonian basement, so 

that the base of the Lower Devonian Group is a clear angular unconformity (Graham et al., 

2003). The deposition is distributed in limited areas, mainly in the Orcadian Basin, Scotland 

Midland Valley and its contiguous offshore areas, and southern England (Figure 2.3A).  
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Figure 2.5 The Lower Devonian conglomerate in Sarclet, Northern Scotland, notes the quartz pebbles 

and pink-coloured matrix which contains abundant potassium feldspars. Photo was taken by Longxun 

Tang. 

The distribution of Lower Devonian Group in the Orcadian Basin is around the basin margins,  

the alluvial-fan conglomerates and sandstones are the main lithofacies (Figure 2.5), and the 

depositional environment varied to confined local lakes in the Strathpeffer area (Mykura, 

2002), and this allowed the preservation of organic algal materials. The similar lacustrine ex-

amples are proved by the wells 12/27-1, 12/27-2, 12/28-2 and 13/19-1 in the Moray Firth 
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(Andrews et al., 1990), where the grey to reddish brown, laminated siltstones and claystones, 

and silty calcareous sandstones are predominant. Apart from alluvial and lacustrine environ-

ments, in the Orkney Mainland, the Lower Devonian Yesnaby Sandstone Formation is sug-

gested to be of aeolian origin (Mykura, 2002). The distribution of Lower Devonian Group in 

the offshore Orcadian Basin is difficult to measure due to the poor seismic data and few well 

penetrations, and the thickness of Lower Devonian is believed to be highly variable, a pro-

posed lacustrine shale with maximum 976 m thickness is reported from well 12/27-1 

(Richards, 1985a; Marshall, 1998). 

In the Scotland Midland Valley and its contiguous offshore areas, the Lower Devonian Group 

accumulated in a number of separated but superimposed basins between the Highland 

Boundary Fault and Southern Upland Fault (Armstrong and Paterson, 1970; Cameron and 

Stephenson, 1985; Haughton and Bluck, 1988). The main depositional environments were 

alluvial fan, fluvial and lacustrine deposits, the locally thick volcaniclastic sediments and la-

vas are also presented (Graham et al., 2003). 

The Lower Devonian Group in southern Wales and southern-southwestern England has been 

studied by several researches. Shallow marine deposits were reported in the Southeast Devon 

by the presence of structures made by burrowing animals, tracks or trails, relatively rich fau-

na of brachiopods, corals, bryozoa, gastropods and trilobites (Dieter, 1967). The marine dep-

osition decreased northwards and became alluvial-fluvial dominated, Marriott and Wright 

(1993) investigated the fossil soils in the Early Devonian Moor Cliffs Formation and Rat Is-

land Mudstone (Freshwater West Formation) of south Dyfed, South Wales and proposed that 

depositions occurred on a flood plain under a seasonal, semi-arid climate. Allen (1983) stud-

ied the Lower Devonian Brownstones in the Ross-on-Wye in the southern Welsh Borders, he 

concluded that the main depositional facies are the low-sinuosity braided streams. 
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In the other areas of British Isles and Central and Southern North Sea, the Lower Devonian 

Group is rarely found. 

2.1.3.2 Middle Devonian Group 

Comparing with Lower Devonian Group, the Middle Devonian Group has a wider distribu-

tion in the North Sea but less occurrence in the onshore British Isles (Figure 2.3B). 

 

Figure 2.6 (A) Typical lacustrine flagstone depositions, the Middle Devonian Flagstone Group, 

Caithness, Northern Scotland; (B) The polygonal sand-filled desiccation cracks (black arrows) were 

probably formed during subaerial exposure observed in a typical Middle Devonian lacustrine flag-

stones, Pennyland Shore, Thurso, Northern Scotland. Photos were taken by Longxun Tang. 

In the onshore areas, the Middle Devonian Group is mainly distributed in the Caithness and 

southern England but absent in the Midland Valley and Southern Upland (Gatliff, 1994). 

Trewin and Hurst (2009) has investigated several localities in the Caithness, they confirmed 

that the widely distributed Middle Devonian flagstones (Figures 2.6A and 2.6B), which con-

tain abundant fish fossils, were deposited in lacustrine condition, and this was interpreted as 

the margin of Orcadian Lake in the Middle Devonian age. In the southern England, 

Tunbridge (1984) studied the Middle Devonian Hangman Sandstone Group in the North 

Devon and proposed that the main depositional facies were sandy ephemeral stream and clay 

playa on an extensive alluvial plain. Scrutton (1977) described the limestone deposition in the 



Reservoir Quality of Upper Devonian Strata UK North Sea 

23 
 

South Devon and suggested it was deposited in a shallow shelf setting. Orchard (1978) stud-

ied the carbonate complex on the outer shelf ridge around Plymouth and proposed that the 

back-reef facies were developed. Burton and Tanner (1986) investigated the shallow water 

argillaceous facies in the eastern Cornwall, the presence of rich Eifelian trilobite faunas sug-

gested a shallow marine setting.  

The Middle Devonian Group is more extensive in the North Sea area, there was a narrow ma-

rine trough extended from Southern North Sea to Central Graben, where was thought to be 

the northernmost of this trough. This could be proved by the Middle Devonian penetration in 

the Auk and Ardmore Fields (Robson, 1991; Trewin and Bramwell, 1991; Gluyas et al., 

2005). In the well 30/16-5 of Auk Field, the Middle Devonian limestones directly overlie the 

schistose basement, which is possibly the base of Devonian sequence. The fossiliferous lime-

stones containing corals, bryozoans, brachiopods and crinoids were reported in the well 

38/03-1. 

Apart from this marine trough, other areas of North Sea are considered to be mainly terrestri-

al depositions in the Middle Devonian age, mainly alluvial-fluvial systems and lacustrine 

depositions. The ‘Orcadian Lake’ was believed existing in the centre of Orcadian Basin dur-

ing the Middle Devonian (Trewin, 1989), and the occasional (c. 10%) deeper-water deposits 

of laminated, organic-rich calcareous siltstones and major ephemeral lake deposits of shrink-

age-cracked, thin laminations of mud, coarse silt and fine sands were reported by Rogers and 

Astin (1991). Depositions around the ‘Orcadian Lake’ are the sequences of alluvial-fluvial 

systems which originated from the Northern and Grampian Highlands (Mykura, 2002). The 

‘Orcadian Lake’ was featured as periodic expansions and regressions, the Achanarras and 

Sandwick fish beds in the Caithness were thought to be its maximum level (Glennie, 2009). 

To the northern margin of the ‘Orcadian Lake’, Allen and Mange-Rajetzky (1992) described 
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an alluvial fan and alluvial plain depositions with occasionally aeolian sediments in the Clair 

area.  

2.1.3.3 Upper Devonian Group 

The Upper Devonian Group in the British Isles and North Sea is mainly composed by alluvi-

al-origin fluvial monotonous sandstones and minor aeolian sediments were also reported in 

the Orcadian Basin. 

 

Figure 2.7 (A) Typical fluvial trough cross bedding sandstones, Upper Devonian Sandstone Group, 

Dunnet Head, Northern Scotland; (B) Typical fluvial planar cross bedding sandstones with soft sedi-

ment deformation, Upper Devonian Sandstone Group, Dunnet Head, Northern Scotland. Note the 

handle of hammer is 35 cm in length. Photos were taken by Longxun Tang. 

The Upper Devonian Group is marked by the extension of alluvial-plain and fluvial braided 

system comparing with its underlying Middle Devonian lacustrine deposition (Graham et al., 

2003) (Figure 2.3C). This change indicates the drainage system now could cover a basin-

scale area rather than being limited within the mountain front areas in Early and Middle De-

vonian age. Trewin and Hurst (2009) investigated an outcrop mainly composed by Upper 

Devonian trough cross bedded, red to buff coloured sandstones in Dunnet Head and summa-

rized the depositional facies was braided fluvial channels on a low-angle alluvial fan (Figure 

2.7). In the Scottish Border, mainly the Midland Valley areas, the Upper Devonian Group 
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was suggested to be a fluviatile succession and has an unconformable contact with its under-

lying Silurian strata, a combination of high sinuosity stream systems and low sinuosity braid-

ed stream channels were proposed by their research, and the paleo-current direction is sug-

gested from southwest to northeast (Leeder, 1973). Aeolian sediments were also reported by 

Hall and Chisholm (1987), they described the mixture of grain fall laminae and climbing rip-

ple laminae, and that cross-bedded downward-wedging units of grain flow origin are inter-

bedded with the finely laminated sandstones. They also examined the dip angle: the rose dia-

grams show that the dominance of winds was from easterly direction. To the south, in South 

Wales and Welsh Borderland, a maximum thickness of 1200 ft. Upper Devonian Group sand-

stones were reported by Allen (1965), he proposed that the deposit is composed by two sedi-

mentary cycles, and each cycle contains alluvial deposits at base and gradually changed to 

marginal-marine deposits upward. 

In the North Sea areas, there is no report of marine deposition during the Late Devonian. 

Many wells have encountered the Upper Devonian Group. The main depocentres include 

East Shetland Platform, Orcadian Basin (mainly in Outer Moray Firth Basin) and Central 

North Sea. There are no Devonian-reservoir oil fields in the East Shetland Platform, but 

Holloway et al. (1991) has used gravity and seismic data and interpreted the presence of Up-

per Devonian sediments. 

In the Outer Moray Firth Basin, the Buchan Field (Blocks 20/5a and 21/1a) and Stirling Field 

(Block 16/21) contain typical Upper Devonian Buchan sandstones, which are interpreted as 

sandstones deposited in alluvial-fluvial facies with interbedded sheet flood or overbank mud-

stones (Edwards, 1991; Gambaro and Currie, 2003).  

The Upper Devonian Group occurred in similar facies throughout the Central North Sea. 

Sandstones are mainly fine to medium grained with interbedded silts and shales, indicating 
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that the Central North Sea area was covered by a basinal-scale fluvial system (Gatliff, 1994). 

This could also be proved by a couple of oil fields all have penetrated into the similar Upper 

Devonian sequence. Gluyas et al. (2005), Bifani and Smith (1985) and Robson (1991) inves-

tigated the Ardmore Field in the Block 30/24, UKCS and proposed that the main depositional 

facies of Upper Devonian Group was mainly composed by fluvial and variable quantity of 

aeolian deposits. A 3000 ft. thick of porous sandstones with interbedded shales in the Auk 

Field, Block 30/16 UKCS, were reported by Trewin and Bramwell (1991), which was inter-

preted as fluvial system and flood plain deposits. The Embla Field is located in Norwegian 

sector (Block 2/7) and contains brown to red, very fine to fine-grained, moderately to well-

sorted micaceous sandstones and silty mudstones, deposited in a flood plain/lacustrine envi-

ronment (Knight et al., 1993). 

2.2 Hydrocarbon exploration in the UK North Sea 

The North Sea area is one of the most prolific hydrocarbon provinces in the world (Figure 

2.8), the total recoverable reserves including adjacent onshore areas are about 100 billion bar-

rels, of which nearly 50% was discovered within UK sectors (Spencer et al., 1996). The gen-

eral stratigraphy and oil/gas-bearing formation of Northern, Central and Southern North Sea 

are summarized in Figure 2.9. 
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Figure 2.8 The up-to-date discoveries of offshore oil and gas fields in the North Sea. Origin data and 

figure from Oil & Gas Authority, simplified and modified by Longxun Tang. 

 



Reservoir Quality of Upper Devonian Strata UK North Sea 

28 
 

Before 1964 

Oil exploration began onshore UK (Derbyshire) in 1918 (Craig et al., 2013), but only a few 

small fields were discovered over the next forty years. The picture in western Europe 

changed dramatically in the late 1950s with discovery of the giant Groningen Gasfield and 

Annerveen Field in the Netherlands by Shell/Esso in 1959 and 1962 (Veenhof, 1996; Roels, 

2001). The stratigraphic correlation of gas-bearing Permian sandstones provided the possibil-

ity that this sandstone reservoir, and thus the potential to find gas fields, could extend from 

Netherland to the North Sea (Glennie, 2009). From 1962 to 1964, several companies under-

took marine seismic and aeromagnetic surveys, and provided an initial view of North Sea ge-

ological configuration. 

1964-1970 

BP commenced the offshore exploration in 1964 in the Southern North Sea Permian Basin 

and the first commercial discovery, the giant West Sole Gasfield in UK Block 48/6, was 

found in 1965, and initial reserves were 1.873 trillion cubic feet (TCF) within the Permian 

Lower Leman Sandstone Formation (Winter and King, 1991). After that, in the November of 

1969, the first offshore oil field in UK sector, the Arbroath and Montrose Fields in Blocks 

22/17 and 22/18, was found in the Palaeocene Forties Sandstone interval and oil is trapped by 

mudstones of the Sele Formation, and the reservoir sandstones were deposited in a prograde 

submarine fan. During the 1970, three important discoveries were made: the Forties Field lo-

cated in Block 21/10, produced commercial oil from thick Late Palaeocene sandstones depos-

ited in two major sand-rich submarine fan sequences (Wills, 1991). The Auk Field located in 

Block 30/16, produced light and low-sulphur crude oil at a rate of 940 m
3
 per day from a thin 

collapse-brecciated and vugular dolomite, and underlying Permian Rotliegend Sandstones are 

also productive (Trewin and Bramwell, 1991). The Josephine Discovery from well 30/13-1, 
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has a flow rate of 128 m
3
 per day from Jurassic sands at the depth of 3600 m (Erratt et al., 

2005). 

 

Figure 2.9 A simplified stratigraphic table of Northern, Central and Southern North Sea with notes of 

main oil/gas-bearing reservoirs. After Glennie (2009), slightly modified by Longxun Tang. 
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1971-1976 

In 1971, the discovery of Brent Field was usually thought to be the milestone of the North 

Sea hydrocarbon exploration, the field is located in the Block 211/29 and produced 6500 bar-

rels oil per day from oil-bearing Jurassic sands of deltaic and shallow marine origin, the re-

coverable hydrocarbon was 286 million m
3
 for oil and 108 million m

3
 for gas (Bowen, 1975; 

Struijk and Green, 1991; Taylor et al., 2003). 

The success in Brent Field provided the information that the Brent style ‘buried high’ struc-

ture is an ideal trap for hydrocarbon deposition. Based on this theory, several similar fields 

were successfully discovered, they include: the Statfjord Field, located in Blocks 211/24 and 

211/25, which has produced 5 billion barrels of oil and gas until 2016 (Nyland, 2016). The 

Piper Field, located in Block 15/17, containing approximately 172 million barrels of oil and 

14 billion cubic feet of gas (OGJ, 2017). The Claymore Field, located in Block 14/19, con-

taining approximately 1.45 billion barrels oil, until today 0.41 billion barrels oil has been 

produced (Compernolle et al., 2016). 

Apart from Brent-style discovery, another Auk-type field was also found by Hamilton in 

1971. The Argyll Field (renamed to ‘Ardmore’ and now part of ‘Alma/Galia’ development) 

in Block 30/24 produced commercial oil from Permian Zechstein dolomites and Rotliegend 

sandstones, and the later production proved that the underlying Devonian sandstones are also 

productive (Robson, 1991; Gluyas et al., 2005), although when first discovered what we now 

know to be Devonian sandstones were thought to belong to the Permian Rotliegend. During 

this period, the Jurassic Kimmeridge Clay has been recognized for its important source-rock 

characteristics. Additionally, the potential of Devonian sandstones was also illustrated by the 

discoveries of Buchan Field (Blocks 20/5a and 21/1a) in 1974, about 30,000 barrels/day of oil 
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were produced from Devonian sandstones with low porosity and permeability enhanced by 

intense fracturing (Edwards, 1991).  

1977-1985 

Considerable interests were still focused on the Jurassic targets; furthermore, Lower Creta-

ceous, Palaeocene and Eocene reservoirs became more prominent in this period (Glennie, 

2009).  

In the Central North Sea, a number of discoveries were found within the Upper Jurassic shal-

low marine sandstones (Saigal et al., 1992). These included Clyde, Duncan, East Duncan and 

Innes Fields (Robson, 1991). The hydrocarbon-bearing and productive Lower Cretaceous, 

which is mainly composed of turbidite sandstones, is distributed in the limited areas within 

Witch Ground Graben and Fisher Bank Basin in the Quadrants 14 and 16 of Northern North 

Sea (O’driscoll et al., 1990; Jeremiah, 2000). Beyond these areas, the Lower Cretaceous has 

poor potential. There are several large accumulations (200 million to 400 million barrels) in 

the Tertiary, and the hydrocarbon types range from gas/condensate to heavy oil (Glennie, 

2009).  

A small number of gas fields were discovered and started producing gas in the middle of 

1980s, these include Esmond (Block 43/13a), Forbes (Block 43/8) and Gordon (Blocks 43/15 

and 43/20), which were all operated by Hamilton Brothers (Glennie, 2009), the main reser-

voirs are Triassic Bunter Sandstone Group. 

1985-1993 

Several political and economic events (world-wide glut of oil, global stock-market collapse 

and Gulf War) had made the oil-price volatile during this period, the North Sea hydrocarbon 

exploration also suffered with few wells drilled. Despite this, there were also some discover-
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ies in the Northern North Sea from Tertiary deep-water sand fans, the heavy oil and gas were 

found from the well 3/30a-3 in the Frigg Field (Brewster, 1991). BP found medium-gravity 

oil from Gryphon and Forth Fields in the Quadrant 9 (Newman et al., 1993). In the Central 

North Sea, Shell/Esso made a number of discoveries in the Eocene sands in the Gannet area 

along the western margin of the Central Graben. In the Southern North Sea, Arco, Conoco 

and BP have discovered several gas fields which had been described in details by Abbotts 

(1991). 

Recent times and future trend 

Until the end of 2014, about 42 billion barrels oil equivalent (BOE) have been produced from 

the UKCS (Figure 2.10). 210 oil fields (including oil fields and condensate fields) and 115 

gas fields were in production (OGA, 2017). Most of the largest oil fields are within Mesozoic 

and Cenozoic strata and were discovered during the half-century since 1960s (Figure 2.11). 

The UK North Sea is now considered to be a mature petroleum province (Glennie, 2009). 

 

Figure 2.10 Rate of Discovery versus Rate of Production (Wood, 2014). 
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However, the Palaeozoic strata, especially the older objectives in the Carboniferous and De-

vonian strata are relatively unexplored and less well understood. The Carboniferous-Permian 

petroleum system in the Southern North Sea and onshore Europe is estimated to contain 22 to 

184 million barrels of oil, and 3.6 to 14.9 trillion cubic feet of natural gas, approximately 62 

million barrels of oil and 13 trillion cubic feet of gas are in offshore areas, and 26 million bar-

rels of oil and 1.9 trillion cubic feet of gas are in onshore areas. 

The older and commonly deeper Devonian strata have been generally assumed to have little 

hydrocarbon potential and regarded as only suitable for the termination depth for exploration 

wells (Glennie, 2009). However, there are several discoveries both in UK and Norwegian 

sections proved the considerable hydrocarbon potential in Devonian strata. Four oil fields in 

UK North Sea (Argyll, Buchan, Stirling and West Brae) and one field in Norwegian North 

Sea (Embla) have produced oil either solely from Devonian or Devonian-Carboniferous for-

mations. The total recoverable hydrocarbon within Devonian is not totally clear but has in-

creased more attentions for the future exploration. 

 

Figure 2.11 “Creaming” curves for areas of UKCS (Oil & Gas, 2012). 
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2.3 Reservoir quality of sandstones: a review 

2.3.1 Reservoir quality controlling factors in siliciclastic rocks 

The reservoir quality is defined by the hydrocarbon storage capacity and deliverability. The 

hydrocarbon storage capacity is characterized by the effective porosity and the size of the 

reservoir, whereas the deliverability is closely related to the permeability. At least within si-

liciclastic rocks, there is generally a positive correlation between porosity and log10 permea-

bility. The exact relationship varies by various factors; however, increased porosity is com-

monly accompanied by increased permeability (Grier and Marschall, 1992). Generally there 

are three main controls on reservoir quality: 

2.3.1.1 Depositional facies 

Depositional facies can exert a considerable influence on the reservoir quality in relatively 

shallow depth. Each depositional facies would produce sand bodies with certain size and 

shape, by determining: a). Types and amounts of detrital grains; b). Detrital grain composi-

tions; and c). Rate and distribution of depositions (Bloch and McGowen, 1994). In the shal-

low-buried rocks, lithofacies is the main control on reservoir quality, itself a product of the 

depositional facies (Weber, 1980). 

Even in deeply-buried sandstones, reservoir quality of each facies does not change signifi-

cantly if reservoirs were not affected by extremely heavy diagenetic process. Weber (1980) 

described as ‘one often finds the same general contrasts in permeability of the reservoir that 

existed in the original sandstone body but with an enhancement of the ratio between maxi-

mum and minimum permeability’. 

In the diagenetically-simple rocks, reservoir quality is related to the facies-controlled parame-

ters, such as framework composition and texture (Bloch and McGowen, 1994). These param-

eters can be expressed quantitatively and used to predict reservoir quality when the calibra-

tion data set is available. In this study, however, quantitative reservoir quality prediction is 
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much less accurate due to the diagenetic processes was extensive and complex. However, 

even in these diagenetically-complex rocks, the original composition generally controls the 

diagenetic history. Consequently, understanding the relationship between depositional facies 

and diagenesis can make qualitative evaluation of reservoir quality possible. 

2.3.1.2 Diagenesis 

Diagenesis will modify the original pore space during and following burial. Typically the res-

ervoir quality is affected by four diagenetic mechanisms: compaction, cementation, dissolu-

tion and recrystallization. These mechanisms are mainly controlled by the detrital composi-

tion, burial process (time, depth and temperature), formation fluid and pressure. 

a. Compaction 

Compaction reduces porosity by grain rotation and rearrangement into a denser packing con-

figuration (Hantschel and Kauerauf, 2009a; Brzesowsky et al., 2014), plastic deformation of 

ductile grains and breakage of brittle grains (Pettijohn et al., 2012). Physically, mechanical 

compaction is the result of effective overburden stress (Hantschel and Kauerauf, 2009b) and 

the main porosity reducer in shallow to medium burial depth (< 2.5 km) (Paxton et al., 2002). 

Rocks containing high ductile grains, such as mica, detrital clay clasts, and some volcanic 

clasts are more vulnerable to experience porosity reductions by mechanical compaction 

compared to those which are mainly made of rigid grains (i.e. quartz). 

Since the porosity commonly has a negative relationship with burial depth, Gluyas and Cade 

(1997) have investigated numerous data both from actual fields and laboratory tests, and 

proposed an empirical equation for predicting porosity (± 2.5%) of clean, normally pressured 

and uncemented sands at 95% confidence level (Figure 2.12). Although the uncemented 

sands are uncommon in the natural circumstances, however, this compaction-only trend pro-



Reservoir Quality of Upper Devonian Strata UK North Sea 

36 
 

vides the theoretical maximum porosity (Pmax) for a given depth, and the deviation of actual 

porosity to Pmax may be roughly estimated as authigenic mineral volumes.  

 

 Figure 2.12 Porosity-depth relationship for uncemented, rigid-grain sandstones under hydrostatical-

ly pressured (calculated as the effective burial depth) and overpressure samples. After Gluyas and 

Cade (1997), slightly modified by Longxun Tang. 
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b. Cementation 

Cementation is the most significant but not the only process consolidating loose sands into 

sandstones (Bridge and Demicco, 2008). It consists of mineral materials precipitated chemi-

cally from pore fluids and could occur at either early, middle or late stages in the diagenetic 

history (Hayes, 1979). Precipitation of authigenic minerals usually reduces reservoir quality 

by occupying intergranular pore space; however, cementation can also protect porosity if it 

supports the framework before the grains undergo further compaction. In this case, porosity 

would be limitedly decreased by compaction and it is possible to maintain good porosity at 

considerable depth (Ali et al., 2010). 

Table 2.1 Common cement types and their usual crystal shapes (Welton, 1984). 

Cement type Subtype Common Crystal Form  

Authigenic 

clay 

Chlorite Rosette pattern platy 

Dickite Thicker platy 

Illite Fibrous, hairy 

Kaolinite Platy 

Smectite Crenulated, honeycomb 

Carbonate 

Calcite 
Fibrous, bladed, granular, blocky, poikilotopic, syn-axial 

rim 

Dolomite Rhombohedral, blocky, granular 

Siderite Granular, blocky, bladed 

Feldspar 
Orthoclase Syn-axial overgrowth, prismatic 

Plagioclase Syn-axial overgrowth, prismatic 

Iron oxide Hematite Disc-shaped 

Silica Quartz Syn-axial overgrowth, prismatic 

Sulphate 

Anhydrite Blocky, bladed 

Barite - 

Gypsum Blocky, bladed, prismatic 

Zeolite - Platy, bladed, fibrous, prismatic, blocky  
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Cementation is closely related to many parameters, such as composition of the pore fluids, 

temperature, pH, available time for cementation and so on. Therefore, cementation can be 

promoted when those parameters are suitable thereby decreases porosity. Many mineral types 

can form cements; Table 2.1 lists some common cement types and their usual crystal shape. 

Calcite, dolomite, ankerite and siderite are the most common carbonate cement types in clas-

tic rocks (Boggs Jr, 2006). The precipitations of carbonate cement require several physical 

and chemical conditions such as the concentration of carbonate in the formation water, pH 

value of the solution, temperature, partial pressure of CO2 and the presence of the seed crys-

tal as initial site for further growth, etc. (Harris et al., 1985). The effect of carbonate cement 

on reservoir quality is still on debate. The deterioration of reservoir quality occurs when 

sandstones are heavily cemented by carbonates. The massive carbonate-cemented horizons 

would compartmentalize reservoirs by acting as flow barriers between source rocks and res-

ervoirs (Kantorowicz et al., 1987; Carvalho et al., 1995). The pore throats would also be 

blocked by the by-products (such as ferroan dolomite and iron oxide/oxyhydroxide) of car-

bonate cement once reacting with injected acid (Morad, 2009). On the other hand, an early-

formed, lightly cemented carbonate may help decreasing porosity loss from compaction and 

provide secondary porosity when encountered acid formation water in the medium to deep 

burial depth (Schmidt and McDonald, 1979).  

Quartz overgrowth is responsible for porosity and permeability reduction in moderately to 

deeply buried quartz-rich sandstones in various basins (Bjorlykke and Egeberg, 1993; 

Walderhaug, 1996). It typically forms syntaxial cements on framework host quartz grains 

during burial diagenesis at temperature above 70°C (Worden and Burley, 2003). The main 

sources of silica have been suggested to be from: 1). Dissolution of quartz grains by pressure 

dissolution; 2). Silica dissolved in circulating pore fluids by flow over quartz grains; 3). Silica 

(including amorphous phases) from shales; and 4). Liberation of silica during mineral reac-
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tions (Leder and Park, 1986). The development of quartz overgrowth are closely related to 

many petrographic, mineralogical, physical and chemical factors, such as grain size, mineral-

ogy, clay coatings, temperature history, pH condition and so on (Walderhaug, 1996).  

Authigenic clay cements are common in all kinds’ facies sandstones, the most common au-

thigenic clay cement types are kaolinite/dickite, illite and chlorite. The types, occurrences, 

and distributions of authigenic clays are closely related to the reservoir quality, particularly 

permeability and water saturation (Wilson and Pittman, 1977). Clay minerals can modify 

pore size and shape by pore filling, pore lining (often regarded as grain coatings, details in 

chapter 2.3.2) or complex combination of these.  

Authigenic feldspar commonly occurs but less abundant than carbonate, quartz overgrowth 

and clay cements. It usually presents as overgrowths around detrital feldspar host grains but 

occasionally as cement or newly formed crystal without a feldspar host grain (Ali et al., 

2010). 

c. Dissolution and secondary porosity 

The post-depositional dissolution of detrital grains or cements usually results in the creation 

of secondary porosity (Taylor et al., 2010). Leaching of feldspars, lithic fragments and car-

bonates is very common (Table 2.2) and the importance of dissolution on improving reser-

voir quality has been reported in numerous studies (e.g. Loucks et al., 1979; Schmidt and 

McDonald, 1979; Mathisen, 1984; Taylor, 1990b; Ehrenberg and Jakobsen, 2001). The con-

tribution of secondary porosity in deeply buried sandstones produced a big debate, opposing 

opinions mainly focused on the lack of convincing geochemical mechanisms that the disso-

lution and mass transfer could occur in the deep subsurface (Bjørlykke, 1984; Giles, 1987; 

Giles and De Boer, 1990). 
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Table 2.2 Common dissolvable matters and their portion of secondary porosity (Schmidt and 

McDonald, 1979). 

Dissolvable matters  Portion of secondary porosity 

Calcite Major 

Dolomite Major 

Siderite Major 

Feldspar Major 

Sulphate Minor* 

Other evaporates Minor* 

Silicate Very minor 

*: Maybe of major portion under specific conditions 

 

To evaluate the effect of dissolution, Taylor et al. (2010) has investigated the Permian to Eo-

cene sandstones from the Gulf of Mexico, West Africa and North Sea. The results show that 

the volume of secondary porosity is probably overestimated in some publications. They sug-

gested that no apparent relationship between temperature and secondary porosity created by 

framework grain dissolution is shown among their samples. The greatest value of secondary 

porosity is about 5% and the average value of secondary porosity is just 2%. They also con-

cluded that the secondary porosity could be important in some specific situations but overall 

it only possesses a minor fraction of total porosity. The true effect of dissolution in sandstone 

is still in debate. In this study, dissolution of feldspar is commonly sighted, but the contribu-

tion of secondary porosity is generally minor, with the greatest value of 4% and an average 

value about 2.5% of total porosity. 

d. Recrystallization 

Recrystallization mainly occurs in carbonate and clay minerals and has variable effects on 

reservoir quality. Dolomitization of a limestone precursor may increase porosity by forming a 

space-supporting framework (Weyl, 1960) and the mole-for-mole shrinkage (Mg
2+

 replaced 

Ca
2+

) which could create at most 13% secondary porosity (Dominguez, 1992). For the clay 
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recrystallization, illitization is the most common process which could occur on kaolinite and 

smectite precursors and usually reduced reservoir quality, the fibrous/hairy crystal shape usu-

ally complicates the fluid pathway therefore decreases permeability.  

2.3.1.3 Structural deformation 

The structural deformations, such as folds, faults and diapirs, will create fracturing and brec-

ciation thus modifies the reservoir quality. The fracturing induced porosity is low (approx. 

1%) but permeability could be significantly increased if the fractures keep open and are not 

filled by mineralization. For the brecciation process, except where the extensive cementations 

occurred in the breccia, it can increase reservoir quality due to shearing or collapse (Mitra, 

1988). However, in this study, structural deformation did not play an important role on modi-

fying reservoir quality. 

2.3.2 The grain coating minerals 

The effect of grain coating minerals on reservoir quality in siliciclastic reservoirs has been 

reported by numerous studies and is also a key finding in this project. The grain coating min-

erals are well known for the positive effect in preventing quartz cementation (e.g. Heald and 

Larese, 1974; Pittman, 1992; Ehrenberg, 1993; Bloch et al., 2002; Berger et al., 2009; 

Ajdukiewicz and Lander, 2010; Taylor et al., 2010). The negative effect of grain coating 

minerals are also reported for filling the intergranular pore space (e.g. Dewers and Ortoleva, 

1991; Worden and Morad, 2003; Morad et al., 2010; Taylor et al., 2010; Wilson et al., 2014). 

Good reservoir quality is not strictly related to the absence of quartz overgrowth (Heald and 

Larese, 1974), but the presence of continuous and thick developed grain coating minerals are 

frequently associated with good porosity (Pittman, 1992).  
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Figure 2.13 SEM microscopy photos for: (A) Grain coating smectite (Fesharaki et al., 2007); (B) 

Grain coating illite (Wilson et al., 2014); (C) Grain coating chlorite (Welton, 1984); (D) Grain coat-

ing micro-crystallized quartz (Taylor et al., 2010). 

The occurrence of grain coats has been reported in a large variety of depositional environ-

ments, such as alluvial fan, delta, fluvial channel, shallow marine and aeolian facies (e.g. 

Carrigy and Mellon, 1964; Pittman and Lumsden, 1968; Heald and Larese, 1974; Dixon et al., 

1989; Pittman, 1992). Although there is no generally preferred facies type for grain coats to 

develop, however, the necessary cations (e.g. Fe
3+

, Mg
2+

, and K
+
) for authigenic grain coats 

were predominantly provided by alternation of lithic fragments, which are closely related to 

the depositional facies.  

Mineralogically, the grain coats could be formed either by authigenic or allogenic process. 

Many minerals can form grain coats mainly including smectite, illite/smectite, illite, chlorite 

and microcrystalline quartz (Figure 2.13). The positive effect on porosity preservation in 

deeply buried sandstones due to grain coating chlorite and microcrystalline quartz has been 
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reported in many studies (e.g. Pittman and Lumsden, 1968; Ehrenberg, 1993; Berger et al., 

2009; Jahren and Ramm, 2009; French and Worden, 2013; Stricker and Jones, 2016). Other 

coat types, have also been more or less mentioned, exerted similar effect under some special 

provenances and conditions (Storvoll et al., 2002; Tang et al., 2017b). 

The main principle of porosity preservation of grain coatings, no matter what kind of coats, is 

inhibiting quartz overgrowth on the host detrital grains. When the silica is over-saturated in 

the formation fluid, it is easy to form the syntaxial quartz overgrowth on the detrital quartz 

grains. The early-formed, thick, well-developed and continuous coats can retard quartz over-

growth by masking the surface of quartz grains and prevent the nucleation of quartz over-

growth. However, the epitaxial cements, such as carbonate and sulphates, would not be af-

fected by grain coats (Pittman, 1992). 

2.3.3 Other reservoir quality controlling factors 

The role of oil emplacement played on diagenesis still remains a controversial topic. The dif-

ferent amount of quartz cement in water leg and oil leg has been used as evidence for sup-

porting or opposing the concept ‘the oil emplacement prevents quartz cementation’ and 

thereby the effect of porosity preservation in deeply buried sandstones (e.g. Dixon et al., 1989; 

Gluyas et al., 1993; Ramm and Bjørlykke, 1994; Barclay and Worden, 2000; Marchand et al., 

2001; Aase and Walderhaug, 2005). The principle mechanism of oil emplacement preventing 

quartz overgrowth is that the quartz cementation is strictly controlled by the silica transporta-

tion rate in the water leg. When the water in the pore space is replaced by oil, the silica 

transport by diffusion is too slow to form quartz overgrowth and even halted when the oil 

saturation is high (Marchand et al., 2001). However, Barclay and Worden (2000) did not find 

any significant difference in quartz cement amount across oil-water contact in the Magnus 

Field, Block 211/12a, Northern North Sea. In the Fulmar field, it is reported that the quartz 
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cementation in oil leg is even higher than that of in the water leg (Saigal et al., 1992). How-

ever, the oil emplacement has exerted a minor diagenetic effect in the studied area of this re-

search, the oil was originated from Upper Jurassic Kimmeridge Clay and filled the field by 

migrating a relatively long distance from north of the field (Gluyas et al., 2005). The fluid 

inclusions in the quartz overgrowth (with homogenization temperature from 80 to 120°C) are 

composed by pure brine and do not contain any organic matter. This might indicate the oil 

migration occurred in very recent time and does not have significant impact on diagenesis. 

Therefore, the effect of oil emplacement will not be discussed in the later chapters. 

Overpressure is another frequently mentioned factor affecting diagenesis and reservoir quali-

ty. It is defined as the amount of pressure that exceeds the calculated hydrostatic pressure at a 

specific depth (Osborne and Swarbrick, 1997). Over-pressured pore fluids are common in 

sealed or semi-sealed geological systems where pore fluids are trapped and unable to circu-

late (Jeans, 1994; Osborne and Swarbrick, 1997). It could usually be produced by: 1). In-

crease of compressive stress especially due to the rapid burial process; 2). Variations in the 

volume of the pore fluid or rock matrix, and 3). Fluid movement or buoyancy (Osborne and 

Swarbrick, 1997). Other processes, such as aqua-thermal expansion, clay dehydration, hydro-

carbon generation and cracking to gas may also create overpressure but in a limited effect and 

the geological system need to be strictly closed (Barker, 1972; Flemings, 1998). The main 

porosity preservation mechanisms by overpressure are: 1). The primary porosity, which 

would otherwise be lost to compaction, is kept open by overpressures; and 2). Inhibiting  

pressure solution in sandstones by decreasing the effective stress at grain contacts therefore 

eliminating a presumed primary source of silica (Taylor et al., 2010). However, the mineral 

composition and formation time of overpressure are also critical for an effective overpressure 

(Bloch et al., 2002). Lander and Walderhaug (1999) and Bloch et al. (2002) used artificial 

rigid and ductile models to demonstrate the importance of mineral composition and formation 
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time of overpressure on its porosity preservation. The results show that: 1). For both rigid and 

ductile sands, the early-formed overpressure, which is usually earlier than mechanical com-

paction occurred, provides a depth window of potential porosity preservation until tempera-

tures reach the point where significant quartz cementation can occur (∼90°C), but late devel-

opment of overpressure has small or negligible effect on preserving porosity; and 2). The po-

rosity preservation effect of overpressure, compared with hydrostatic pressure, is more obvi-

ous in ductile sands (14% and 3% intergranular porosity preserved by early and late overpres-

sure, respectively) than in rigid sands (5% and 1% intergranular porosity preserved by early 

and late overpressure, respectively). In this study, the burial history shows that the Devonian 

Formation was indeed rapidly buried, however, the Devonian strata are not a completely 

closed system which is pressure communicated with overlying Permian Rotliegend, Permian 

Zechstein and Jurassic formations (Gluyas et al., 2005), and the presence of stylolite and ex-

tensive quartz overgrowth also indicate the overpressure does not have significant impact on 

diagenetic process. Therefore, the effect of overpressure on reservoir quality will not be dis-

cussed in this study. 
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This chapter has been submitted to the Scottish Journal of Geology and is now under jour-

nal’s review.  



Reservoir Quality of Upper Devonian Strata UK North Sea 

47 
 

Outline of this chapter 

 

3.1 Introduction 

3.2 Geological Background 

3.3 Materials and Methods 

3.4 Results 

3.4.1 Description of Sandstone Bodies and Depositional Environment 

3.4.1.1 Dwarwick Pier, Dunnet Head  

3.4.1.2 Hoy Island, Orkney  

3.4.2 Petrography and Porosity 

3.4.2.1 Fluvial Sandstones 

3.4.2.2 Aeolian Sandstones 

3.4.3 Controls on Porosity 

3.5 Proportion and Connectedness of Fluvial Sandstone Bodies 

3.6 Comparison with Subsurface Sandstone Bodies 

3.7 Conclusions  



Reservoir Quality of Upper Devonian Strata UK North Sea 

48 
 

Summary 

The Buchan Formation (Upper Devonian) comprises of non-marine deposited sandstones and 

intercalated siltstones and mudstones. It occurs in the Central and Northern North Sea and 

crops out in coastal exposures in north-eastern Scotland. Although the offshore unit has been 

locally proven as an important hydrocarbon reservoir, the sparse and limited core coverage in 

the North Sea means that the Buchan Formation is poorly understood. This study uses two 

localities with excellent Buchan Formation exposures in Caithness and Orkney, the main 

aims are to describe the detailed facies and investigate the mineralogical composition and po-

rosity variations using detailed petrographic analyses. The results identify that the Buchan 

Formation is formed by braided fluvial and aeolian dune deposits. The aeolian sandstones 

have higher compositional/textural maturity and porosity than fluvial sandstones. The main 

control of porosity is the different facies types which result in different sedimentary struc-

tures, grain size and abundance of rock fragments. With the similar palaeo climate, deposi-

tional environment, comparable lithology and characteristic petrography evidence, these out-

crops can be considered an excellent analogue for the Buchan Formation reservoirs in the 

North Sea. 
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3.1 Introduction 

The term ‘Buchan Formation’ was first introduced by Cameron (1993) for the sandstone-

dominated strata of Late Devonian to Early Carboniferous age in the Central and Northern 

North Sea. The term was initially used in the areas of the Buchan Field (UK Blocks 20/5a and 

21/1a) and it is now largely used for Upper Devonian strata in the North Sea. Equivalent on-

shore strata are present along the margins of the Moray Firth, in Caithness and on Orkney 

(Whitbread and Kearsey, 2016). The Buchan Formation is generally dominated by fine- to 

medium-grained sandstones, with minor pebbly sandstones, conglomerates, siltstones and 

mudstones (Cameron, 1993). The main depositional environments are suggested to have been 

easterly-flowing fluvial systems stretching from the Central North Sea to the Shetland Islands 

(Hunter and Easterbrook, 2004). Fluvial systems are generally regarded as broad sandy braid-

ed rivers, which were locally associated with aeolian dune systems and to a lesser extent sab-

kha depositional environment (Trewin, 2002). 

Until now, the Buchan Formation sandstone has been perceived to have little potential as ef-

fective hydrocarbon reservoir (e.g. Glennie, 2009). There are a few oil fields in both UK and 

Norwegian North Sea that have reserves and have produced oil from the Buchan Formation 

sandstones (Bifani and Smith, 1985; Edwards, 1991; Robson, 1991; Trewin and Bramwell, 

1991; Knight et al., 1993; Gambaro and Currie, 2003; Gluyas et al., 2005). However, the 

Buchan Formation has never been the main exploration target. As a consequence, the cores of 

offshore Buchan Formation are few and typically short in amounts recovered. 

On the contrary, there are excellent coastal exposures of Buchan Formation at Dunnet Head 

and on the nearby Orkney Islands. These exposures provide an ideal opportunity to study fa-

cies, petrography and porosity of these Upper Devonian non-marine facies. The main aims of 

this research are to identify and describe the facies types in details, quantify the petrology and 
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porosity of the Buchan Formation using samples from these two localities and determine the 

main controls on porosity evolution. Outcrop data have also been used to measure the propor-

tion, connectedness of the fluvial sand bodies and compared them with the offshore Buchan 

Formation sandstone reservoirs. We complete the study by discussing the potential of select-

ed outcrop as possible analogues for the offshore Buchan Formation reservoirs in the North 

Sea. 

 

Figure 3.1 The sketched paleogeography map of British Islands and North Sea areas in the late De-

vonian age, and the locations of selected outcrops for this study, after Glennie (2009). 
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3.2 Geological background 

Palaeo-magnetic data show that during the latest Middle to Late Devonian, the British Isles 

and North Sea areas were located in near equatorial latitudes around 15°S to 10°S, and the 

local climate was warm to hot and generally arid to semi-arid (Tarling, 1985; Witzke and 

Heckel, 1988). During the Early to Middle Devonian, continuous extension of Caledonian 

Orogeny created several important depo-centres for the Old Red Sandstone (Middle-Late Si-

lurian to Earliest Carboniferous) deposits such as North Sea Basin and Orcadian Basin 

(Marshall and Hewett, 2003). From latest Middle Devonian to the end of Late Devonian, a 

continent-size braided system stretched from what are now the Central North Sea to the 

Northern North Sea, Orcadian Basin, western coast of Norway, Orkney, Shetland and its 

northernmost part probably reached the eastern Greenland (Ziegler, 1990; Friend et al., 2000) 

(Figure 3.1). The high relief areas, which were created by Caledonian Orogeny such as 

Southern Upland, Grampian Mountains and Northwest Highlands, are hypothesised as the 

main sediment source areas (Bradshaw et al., 1992). The general flowing directions of this 

braided system are suggested to be eastwards and north-eastwards (Ziegler, 1990). The wide 

distribution has made these fluvial sediments generally correlatable in the Central/Northern 

North Sea, Caithness and Orkney (Figure 3.2). The Buchan Formation was initially termed 

within the Buchan Field area, and now it is the representative Upper Devonian unit in the 

Central and Northern North Sea (Cameron, 1993b). It is partially equivalent to the Upper 

Eday Sandstone Formation and Hoy Sandstone Formation of Orkney Islands, and the Dunnet 

Head Sandstone Formation of Caithness (Kearsey et al., 2015). 
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Figure 3.2 Stratigraphic correlations of Buchan Formation in the Central/Northern North Sea (with 

key wells), Orcadian Basin, Caithness and Orkney, after Graham et al. (2003).  

The Buchan Formation in the Central and Northern North Sea is dominated by fine- to medi-

um-grained sandstones, with minor pebbly sandstone, conglomerate, siltstone and mudstone 

(Cameron, 1993b). The succession represents a regional development of fluvial depositional 

systems across the former Orcadian Basin and Central Graben (Kearsey et al., 2015). The 

fluvial facies are dominated by low sinuosity sandy braided rivers; aeolian activities have 

been locally reported in the Ardmore Field (Gluyas et al., 2005; Tang et al., 2017a), Midland 

Valley of Scotland (Chisholm and Dean, 1974), Caithness and Orkney (Mykura, 2002). 

The onshore Buchan Formation has excellent outcrops in Dunnet Head of the north-eastern 

Scotland and on the Orkney Islands. These localities have already attracted attentions and 

basic studies. An early study by Crampton et al. (1914) has described the sandstones in Dun-

net Head as the ‘Upper Old Red Sandstone’ composed of major pink and yellow sandstones, 

minor shales, marls and mudstones. McAlpine (1977) recognized two major facies including 

braided river and aeolian in Dunnet Head and Hoy Island, respectively. Trewin and Hurst 

(2009) have made a preliminary study summarizing the outcrops displaying a typical Upper 
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Devonian fluvial sandstones with a general north-eastwards flowing direction. While the Up-

per Devonian outcrops in the Orkney Islands only distributed in the middle part of Hoy 

(Astin, 1990), despite the reports regarding exposed volcanic horizon at the base of the Hoy 

Sandstone (Upper Devonian) at a few localities (Storetvedt and Meland, 1985), the sand-

stones are interpreted as aeolian in origin (McAlpine, 1977; Friend and Williams, 1978; 

Trewin, 2002). 

3.3 Materials and methods 

In the northern Scotland, the Dwarwick Pier in the Dunnet Head (UK grid reference ND 207 

713) has an excellent exposure of Upper Devonian sandstone which is large enough to permit 

collection of samples for petrography and porosity measurements. The sampling point on 

Orkney is located near Mill Bay on the east coast of Hoy Island (58°50'19.7''N 3°12'36.2''W), 

a small but typical aeolian facies exposure. A total of 25 samples (23 from Dunnet Head, 2 

from Hoy) were collected by using a handheld rock drill. The samples were collected from 

discrete portions of the exposure and usually from less weathered parts of the outcrop. 

All 25 samples were made into thin sections for petrographic examination and impregnated 

with blue epoxy to facilitate the identification of porosity. Petrographic examination was per-

formed on a Leica DM2500P standard microscope to identify textures and mineral composi-

tion. Photomicrographs were taken using an attached Leica DFC420C digital camera. Estima-

tion of the percentages of detrital grains, cements and porosity was made on an automated 

point counting stage with analysis of 300 counts per thins section. A HITACHI SU70 scan-

ning electron microscope (SEM) equipped with energy-dispersive X-ray detector (EDX) was 

employed for a high-magnitude observation and semi-quantitative recognition of clay miner-

als.  
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 3.4 Results 

3.4.1 Description of sandstone bodies and depositional environment 

3.4.1.1 Dwarwick Pier, Dunnet Head (Figures 3.3 and 3.4) 

Description: the locality is at the northwest of the pier and displays typical fluvial sandstones 

of the Upper Devonian Formation (Trewin and Hurst, 2009). The outcrop mainly comprises 

pink, red to buff coloured, predominantly fine to medium grained sandstones. The sandstones 

are in sheet-like geometry and range in thickness from 0.2 m to 0.75 m, the thickness varies 

considerably due to erosion from the overlying sand sheets, up to a few centimetres thick at 

the flanks of sand body may be preserved locally between the individual sheets. Each sand 

body extends across the length of exposure with maximum 57.5 m in width (Table 3.1). Ver-

tically the sand sheets stack to form a multi-storey sandstone bodies with about 6 m thickness. 

Based on differences in the sedimentary structures, three different types of sandstones have 

been recognized. 

Sandstones with trough cross beddings (St) are the predominant type, consist of medium-

grained sandstones with grouped sets of trough cross laminations. The sets are generally me-

dium scale and range in thickness from approximately 10 cm – 30 cm. Some conglomerate-

sized muddy clasts are scattered at the bases of the trough, soft sediment deformation and 

convolute beddings can be sighted towards the top of beds. Inclined beddings (Sl) and low-

angle parallel laminations (Sh) are subordinate sedimentary structures. Sandstones are fine to 

medium grained with well-developed millimetre scale laminations and display current linea-

tion. Silty or muddy layers are typically not observed. 

Interpretation: based on the previous studies by McAlpine (1977) and Trewin and Hurst 

(2009), these sandstones are interpreted as the deposits in a low-sinuosity braided fluvial sys-

tem possibly on a low-angle alluvial fan with the general transport direction from SW to NE. 
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This is inferred from the common presence of trough cross-bedding, tabular inclined bed-

dings, low-angle parallel laminations and no presence of conglomerate and overbank fines, 

which are interpreted as within-channel sand deposits. The occurrence in places of laterally 

adjacent and coeval channel sand bodies indicates braided rivers (Tirsgaard and Øxnevad, 

1998). Soft sediment deformation and convolute bedding on the top of beds are interpreted as 

the subsequent sediment reworking from the overlying layers or the rapid deposition of fine-

grained sediment, thereby causing excess pore pressure (Bridge et al., 2000a). This combina-

tion of sedimentary structures strongly suggests an ephemeral braided system with a fluctuat-

ing water level, variations in flow velocity and periods of subaerial exposure (Tirsgaard and 

Øxnevad, 1998). The sheet-like sand body is also a characteristic feature of channels in a 

wide and shallow geometry with rapid lateral migration, the consequent sediment reworking 

resulted in the absence of fine-grained sediments. 

 

Figure 3.3 Fluvial profile in the Dunnet Head with 14 recognized sandstone units. 
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Figure 3.4 The sedimentary logs of the profile in Figure 3.3 with point count porosity.  
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3.4.1.2 Hoy Island, Orkney 

Description: according to the BGS geological map of Hoy (sheet number 117W), the expo-

sure located near Mill Bay on the east coast of Hoy Island (58°50'19.7''N 3°12'36.2''W) is a 

good outcrop for the Buchan Formation aeolian deposits. The main sedimentary structures 

are low-angle, asymptotic to base planar cross-beddings in a medium to large scale with wind 

ripples (Swr) and thin parallel laminations (Spl) (Figure 3.5). Wind ripple-laminated sand-

stones are at the base of the beds and gradually changed upward to thin and parallel laminated 

sandstones. Each lamination has thickness ranges from 1 cm to 5 cm with moderate to good 

continuity. Sandstones are yellow coloured, medium-grained and well sorted with no pres-

ence of conglomerates and fine-grain sediments. 

 

Figure 3.5 The aeolian exposures on the Hoy Island, Orkney. Swr – wind rippled sandstones; Spl – 

aeolian sandstone with thin parallel laminations. The length of hammer is 35 cm. 

Interpretation: the large-scale planar cross bedding with thin parallel laminations indicates a 

stable and consistent sediment supply from the same direction. The occurrence of wind rip-

pled laminated sandstones may indicate a damp interdune environment. The sandstones 

changes upward to the thin and parallel laminated sandstones which probably represents a 



Reservoir Quality of Upper Devonian Strata UK North Sea 

58 
 

facies variation to the dune deposit. The well sorted sands and no presence of conglomerates 

and fine-grain sediments are also good indicators that these sediments were formed by aeoli-

an process. The petrographic features (reported below) can also support this interpretation. 

3.4.2 Petrography and porosity 

3.4.2.1 Fluvial sandstones 

According to the Folk (1957) classification, the point-count data (Table 3.2) indicate that the 

fluvial sandstones are litharenite (Q52.1F2.4R45.5) and have a low textural/compositional ma-

turity and low porosity (average ϕ = 5%). The sandstones are generally fine to medium grain 

size, sub-angular to sub-round with poor to moderate sorting (Figures 3.6a – 3.6d). Detrital 

quartz has a range of 33.6 % to 55.6%. The major type is the monocrystalline (Figure 3.6b) 

with subordinate amounts of quartz grains with undulose extinction (Figure 3.6d). Feldspar 

grains occur in minor amounts from trace and up to 4%, with most of the feldspar grains be-

ing microcline displaying polysynthetic twinning (Figure 3.6d). Rock fragments are particu-

larly abundant (24% to 60%) and mainly consist of mica, chert and fine grained volcanic 

clasts (Figures 3.6b, 3.6d). Authigenic minerals mainly include calcite and kaolinite. The 

calcite cements show patchy distributions in the pore space with poikilotopic cementation 

(Figure 3.6b). Authigenic kaolinite mainly occurs in the intergranular space as vermicular 

aggregates. Some of the aggregates occur as infills in weathered feldspar grains (Figures 

3.6b, 3.6d). There is a very limited amount of syntaxial macro quartz overgrowths. The 

point-count porosities of all 23 fluvial sandstone samples are very poor, from zero visible po-

rosity up to 10% with an average value of 5% (Table 3.2). 

3.4.2.2 Aeolian sandstones 

Although there are only two aeolian sandstone samples, the point-count results (Table. 2) 

show contrasting features compared with fluvial sandstones. Both samples are medium 
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grained sub-litharenite (Q89.0F1.0R10.0). The grains are moderate to very well sorted and sub-

rounded to rounded (Figure 3.6e). Detrital quartz grains show major monocrystalline and 

minor undulose extinction (Figure 3.6f) and are coated by clay minerals. The grain coating 

clays are dense and continuous with strong birefringence (Figure 3.6f). SEM microscopy has 

shown that grain coating clays have 5 µm – 10 µm thickness, by using the EDX spectrum 

these clays are interpreted as illite/smectite (Figure 3.7). Feldspars, quartz overgrowths and 

pore-filling kaolinite are all in trace amount (< 1%). Carbonate cements are in minor abun-

dance around 3%. The porosity of aeolian sandstone samples is higher than the fluvial sand-

stones and ranges from 11% to 14% (Table 3.2). 
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Figure 3.6 Thin section photos of fluvial and aeolian samples: (a) and (b): Plane-polarized and cross- 

polarized light photomicrographs of sample DH05-2, note the patchy distribution of carbonate ce-

ments and the presence of quartz overgrowth; (c) and (d): Plane-polarized and cross- polarized light 

photomicrographs of sample DH07-1, note the presence of quartz grains with undulose extinction; (e) 

and (f): Plane-polarized and cross- polarized light photomicrographs of sample OR01-1, note the 

high compositional and textural maturity, and the extensive distribution of grain coating clays on the 

quartz grains.  

Q-quartz; OG-quartz overgrowth; K-kaolinite; C-carbonate cements; Ch-chert; Qu-quartz with undu-

lose extinction; F-feldspar; GC-grain coatings. 

 

Figure 3.7 SEM image of the grain coating clay and its corresponding EDX spectrum, sample OR01-

1. 

3.4.3 Controls on porosity 

Figure 3.8 is the scattered distribution of 23 fluvial samples from Dunnet Head with point-

count porosity versus abundance of rock fragments. The data are categorised by grain sizes 

and sedimentary structures. The correlation between porosity and abundance of rock frag-

ments shows an obvious inverse relationship (R
2
 = 0.85). Apart from the abundance of rock 

fragments, the different grain size and sedimentary structures also have significant impact on 

porosity: the medium-grained samples have clearly higher porosity than fine-grained samples; 

while within the same grain size grade, sandstones with trough cross beddings (St) have 

higher porosity than those with inclined bedding (Sh) and parallel laminations (Sl). The dif-

ferent grain size, sedimentary structures and abundance of rock fragments are all closely faci-
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es-related to channel; therefore we proposed that the primary and main controls of porosity in 

fluvial sandstone samples are the different fluvial micro-environments. 

Aeolian samples have better porosity than fluvial samples (Table 3.2). Due to the limited 

sample quantities, the good porosity could preliminarily be attributed to good sorting and 

roundness with high content of quartz grains. Grain coating I/S also occurs at the grain con-

tact areas, indicating early formation before the start of the mechanical compaction. Such 

grain coating clays may also have inhibited subsequent quartz overgrowth (e.g. Ehrenberg, 

1993; Storvoll et al., 2002; Tang et al., 2017b). 

 

Figure 3.8 Scattered map of point-count porosity versus abundance of rock fragments, makers are 

differentiated by different grain size and sedimentary structures. Note the remarkable inverse correla-

tion between porosity and the abundance of rock fragments (R
2 
= 0.85).  
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3.5 Proportion and connectedness of fluvial sandstone bodies 

The channel-deposit proportion (CDP) is one of the key factors determining whether the sand 

bodies are interconnected (e.g. Bridge, 1993; Bridge et al., 2000a; Bridge and Tye, 2000). It 

is proposed that if CDP is less than 0.4, channel belts are unconnected; while if CDP is great-

er than 0.75, all channel belts are connected. In our study, the proportion of sandstone bodies 

is very high both vertically and laterally within the outcrop. Channel sandstone proportion is 

generally greater than 0.95, explaining why most sandstone bodies are connected. The rela-

tively thin, channel-form sandstone bodies are the deposits of the braided channels that mi-

grated across the ancient low-angle alluvial plain. Vertical superimposed channel bars and 

fills are common, indicating a multiple episodes of fluvial channel depositions. Laterally ad-

jacent sandstone bodies have been interpreted as the coeval channels. With the given 

width/thickness ratio (50:1 to 155:1, average 100:1) (Table 3.1) and sheet-like channel sand 

body geometry, the fluvial system is interpreted to have been wide and shallow channels with 

little confinement from river banks, this may also attribute to the lack of rooted vegetation in 

the Middle to Late Devonian (e.g. Davies and Gibling, 2010; Davies and Gibling, 2011; 

Gibling and Davies, 2012). 

3.6 Comparison with subsurface sandstone bodies 

The appropriate use of fluvial outcrops as an analogue for subsurface reservoirs is well doc-

umented (e.g. Miall, 1988; Howell et al., 2014; Pranter et al., 2014; Romain and Mountney, 

2014). Buchan Formation is locally important reservoir rock in the Central and Northern 

North Sea (e.g. Marshall and Hewett, 2003; Glennie, 2009). The sandstone bodies in the out-

crops need to be compared with subsurface sandstones in order to evaluate whether they can 

be useful analogues.  
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Detailed analysis of the thickness, width, proportion and connectedness of the offshore Buch-

an Formation reservoir has yet to be done. A preliminary attempt of comparing subsurface 

and outcrop data can be made using the summaries from Edwards (1991), Gambaro and 

Currie (2003), Gluyas et al. (2005) and Tang et al. (2017a). Subsurface sandstone lithologies, 

sedimentary structures, and interpretations are summarized in Table 3.3. Sandstone thickness 

was derived from cores and wireline logs. The lateral extent of sandstone bodies were estab-

lished by well log correlation between neighbouring wells. 

It is suggested that the thickness range, lithology and depositional environment of the select-

ed offshore Buchan Formation sandstones are similar to that observed in the outcrops. In ad-

dition, more specific evidence is from the detailed petrography study which has clearly iden-

tified the presence of grain coating I/S in the Hoy aeolian samples. The grain coating I/S has 

also been found in the aeolian sandstones of Buchan Formation intervals in the Ardmore 

Field (Tang et al., 2017b). It is interpreted as the product of sediments in the distal sectors of 

fluvial distributary system. In the Ardmore Field, the fluvial-aeolian intercalated sediments 

were deposited under an arid climatic setting, the grain coating I/S was formed when the flu-

vial system retreated and aeolian deposition was dominant. The detrital clay-bearing waters 

of fluvial-origin may accumulated in the topographically lower interdune areas and would 

flow into the underlying, dry, porous and permeable aeolian sands by mechanical infiltration 

(Tang et al., 2017b).  

In this study, the grain coating I/S widely occurs within grain contact area meeting the criteria 

of identifying an early-formed infiltrated clays (Figures 3.6e, 3.6f) (Wilson and Pittman, 

1977; Moraes and De Ros, 1990). The fluctuating water level and variations in flow velocity 

have been interpreted from the Dunnet Head fluvial outcrop. Within the given fluvial-aeolian 

setting, rainfall variations in the hinterland high relief areas were the main control of the low 

sinuosity fluvial system (Nichols, 2005). With the suggested fluvial flowing direction to-
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wards NE, the Hoy Island was farther to the fluvial system than the Dunnet Head. The aeoli-

an exposure may represent a period of less developed braided system. In this case, only finer 

grained sediments, such as smectitic clays could be transported to Hoy. 

By considering the highly similar palaeo-climate, sedimentary environment, lithology and 

petrography features, we recommended that the studied outcrops are good analogues to the 

offshore Buchan Formation in the Central and Northern North Sea. 

3.7 Conclusions 

This study has investigated the Buchan Formation sandstone outcrops from two selected lo-

calities at Dunnet Head and on Hoy, Orkney Islands to characterise their facies, petrography 

and porosity. The Hoy exposure on the Orkney Islands is an aeolian dune and interdune suc-

cession; sandstones are medium-grained, well sorted and sub-round to round with point-count 

porosity from 11% to 14%. In comparison the outcrop at Dunnet Head has been interpreted as 

a typical braided fluvial system with superimposed different types of channel deposits with 

trough cross bedding, inclined bedding and parallel laminations. The sandstones are fine to 

medium grained, poorly to moderately sorted and sub-angular to sub-round with point-count 

porosity from 0% to 10%. The main controls on porosity are the grain size, compositional 

and textural maturity, and the abundance of rock fragments, which are directly linked to the 

depositional environments. Channel sand bodies show a flat and thin geometry with a great 

width/thickness ratio about 100:1. The high fluvial channel sand body proportion in both ver-

tical and lateral directions indicate that these sand bodies are likely to be interconnected. 

The regional-scale depositional and climatic settings, lithological properties and sedimentary 

structures between selected outcrops and offshore Buchan Formation reservoir are highly 

comparable. In addition with the evidence that the outcrops and offshore Buchan Formation 
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reservoir both contain grain coating mixed layer illite/smectite that formed in the very early 

stage of burial by mechanical infiltrations. We recommended that the selected outcrops are 

excellent analogues to the Buchan Formation reservoir in the offshore oil fields of Central 

and Northern North Sea. 
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Table 3.1 The measured thickness and width of channel sand bodies from Dunnet Head profile and 

their corresponding width/thickness ratio. 

Sand body 

unit 

Thickness 

(m) 

Width 

(m) 

Width/thickness 

ratio 

DH1 0.3 40 133.3 

DH2 0.35 35.5 101.4 

DH3 0.3 46.5 155.0 

DH4* 0.2 10 50.0 

DH5* 0.3 26 86.7 

DH6 0.25 24 96.0 

DH7 0.4 49.5 123.8 

DH8* 0.25 19.5 78.0 

DH9* 0.35 34 97.1 

DH10 0.25 33 132.0 

DH11 0.55 57.5 104.5 

DH12* 0.75 51 68.0 

DH13* 0.3 22 73.3 

DH14 0.25 28.5 114.0 

Average 0.34 34.1 100.9 

Note: the sand bodies marked by * are significantly truncated by the overlying 

unit, so the measured results might be underestimated. 
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Table 3.2 Facies, lithology and point-counting mineralogical data of the samples taken from outcrops. 

Sampling 

point 

Sand 

body 

unit 

Sample No. Sedimentary Structures 
Grain 

size 
Q F R 

Carbonate 

cement 

Quartz 

cement 
Kaolinite Porosity Facies 

Dunnet 

Head 

DH01 
DH01-1 

Parallel lamination fine 
0.38 0.02 0.50 0.03 0.01 0.02 0.03 

Fluvial 

DH01-2 0.37 0.02 0.53 0.03 0.01 0.01 0.03 

DH02 
DH02-1 Inclined bedding; wavy 

lamination 
medium 

0.45 0.01 0.46 0.03 0.00 0.00 0.05 

DH02-2 0.42 0.01 0.49 0.03 0.01 0.02 0.02 

DH03 
DH03-1 

Inclined bedding medium 
0.44 0.02 0.45 0.03 0.01 0.01 0.04 

DH03-2 0.43 0.01 0.45 0.04 0.02 0.00 0.05 

DH04 DH04-1 Parallel lamination fine 0.36 0.02 0.55 0.04 0.01 0.00 0.02 

DH05 
DH05-1 

Trough cross bedding medium 
0.56 0.03 0.29 0.03 0.01 0.00 0.08 

DH05-2 0.54 0.04 0.28 0.04 0.01 0.02 0.07 

DH06 DH06-1 Trough cross bedding medium 0.56 0.03 0.26 0.03 0.01 0.01 0.09 

DH07 
DH07-1 Trough cross 

bedding; wavy lamination 
medium 

0.57 0.03 0.27 0.02 0.01 0.01 0.09 

DH07-2 0.57 0.02 0.26 0.05 0.02 0.00 0.08 

DH08 DH08-1 Inclined bedding medium 0.52 0.02 0.25 0.10 0.01 0.03 0.07 

DH09 
DH09-1 

Trough cross bedding medium 
0.51 0.02 0.24 0.12 0.01 0.02 0.08 

DH09-2 0.57 0.02 0.25 0.04 0.00 0.02 0.10 

DH10 DH10-1 Inclined bedding medium 0.52 0.02 0.28 0.09 0.01 0.03 0.06 

DH11 
DH11-1 

Inclined bedding fine 
0.34 0.01 0.60 0.03 0.01 0.01 0.00 

DH11-2 0.36 0.01 0.56 0.05 0.01 0.01 0.01 

DH12 
DH12-1 

Trough cross bedding fine 
0.40 0.02 0.53 0.02 0.00 0.00 0.02 

DH12-2 0.42 0.02 0.49 0.02 0.01 0.01 0.04 

DH13 
DH13-1 

Inclined bedding fine 
0.38 0.03 0.50 0.06 0.01 0.00 0.01 

DH13-2 0.37 0.03 0.52 0.05 0.01 0.00 0.02 

DH14 DH14-1 Inclined bedding medium 0.45 0.03 0.38 0.07 0.02 0.03 0.02 

Orkney   
OR1-1 Large-scale planar cross 

beddings with pin-stripe 

laminations 

medium 
0.75 0.01 0.07 0.02 0.00 0.01 0.14 

Aeolian 
OR1-2 0.74 0.01 0.10 0.03 0.00 0.01 0.11 



Reservoir Quality of Upper Devonian Strata UK North Sea 

68 
 

Table 3.3 Lithology, sedimentary facies and interpretation of subsurface sandstone bodies compared with studied outcrops. 

Field & 

Outcrop 
Location Rock type 

Grain 

size 

Sedimentary 

structures 

Sedimentary 

facies 

Possible sediment 

source area 

Flowing direc-

tion 

Individual sand 

body thickness 

Sand body 

ratio 

Dunnet 

Head/Hoy 

Caithness 

Sandstone 

fine to 

medium 
St, Sh, Sl 

Braided-

fluvial 

Northwest high-

lands 
north-eastwards 0.2 m to 0.75 m > 95% 

Hoy medium Swr, Spl Aeolian - - 0.3 m to 0.5 m > 95% 

Ardmore 
Block 30/24, 

UKCS 

Sandstone 
fine to 

medium 
St, Sp, Sh, Sl 

Braided-

fluvial 
Southern Uplands eastwards 0.2 m to 1.5m 72.30% 

Sandstone medium Swr, Sps Aeolian - westwards 0.5 m to 2 m > 95% 

Buchan 
Blocks 20/5a, 

21/1a, UKCS 
Sandstone 

fine to 

medium 
- 

Braided-

fluvial 

Grampian Moun-

tains 

eastwards or 

south-eastwards 
- - 

Stirling 
Block 16/21, 

UKCS 
Sandstone - - 

Braided-

fluvial 

Grampian Moun-

tains 
- - - 

Sedimentary structures: St-trough cross bedding sandstone; Sh-low angle horizontal laminated sandstone; Sl-inclined bedding sandstone; Swr-wind rippled sand-

stone; Spl-parallel laminated sandstone; Sp-planar cross bedding sandstone; Sps-pin stripe laminated sandstone. 
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Summary 

The Upper Devonian Buchan Formation in the Central North Sea is a typical terrestrial de-

posit and predominantly comprises fine to medium-grained sandstones with occasional con-

glomerates and mudstones. The Buchan Formation has been previously described as being 

made up mostly of braided fluvial sandstones; however, this study confirms the presence and 

significance of aeolian sandstones within this fluvial-dominated sequence. Facies architecture 

is investigated through analogue outcrop study, well log curves and numerical facies model-

ling, and the results show contrasting differences between fluvial and aeolian facies. The flu-

vial facies is composed of multiple superimposed sand-dominated fining-upward cycles in 

the vertical direction. Individual sand body has a large width/thickness ratio but shows no 

correlation between wells. The high channel deposition proportion (CDP, average value = 

72%) in fluvial-dominated intervals means that it is likely all the sand bodies are intercon-

nected. Aeolian facies comprise superimposed dune and interdune depositions and can be lat-

erally correlated over considerable distances (over 1 km). Although the aeolian sandstones 

are volumetrically minor (approx. 30%) within the whole Buchan Formation, they have very 

high porosity and permeability (14.1% – 28%, 27 mD – 5290 mD) and therefore are excellent 

potential reservoirs. The fluvial sandstones are significantly cemented by quartz overgrowth 

and dolomite and by comparison with the aeolian sandstones are poor reservoirs. Aeolian 

sandstones can be differentiated from fluvial sandstones using several features: pin-stripe 

lamentation, good sorting, high visible porosity, friable nature and lack of muddy or con-

glomeratic contents. These characteristics allow aeolian sandstones can be tentatively recog-

nized by low gamma ray values, high sonic transit time and low density in uncored wells. The 

thin, laterally correlatable and permeable aeolian sandstones within the Buchan Formation are 

effective reservoirs and could form important exploration targets when the Devonian is tar-

geted elsewhere in the Central and Northern North Sea.   
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4.1 Introduction 

The hydrocarbon reservoirs of the Ardmore Field (previous name ‘Argyll’, now part of ‘Al-

ma/Galia project’) in the UK Central North Sea comprise Upper Devonian Buchan Formation, 

Permian Rotliegend Sandstone and Permian Zechstein Carbonate (Bifani and Smith, 1985; 

Robson, 1991; Gluyas and Hichens, 2003). The Permian Rotliegend and Zechstein groups are 

important reservoirs in the North Sea and have been researched by numerous studies (e.g. 

Nagtegal, 1979; Glennie and Provan, 1990; Purvis, 1992; George and Berry, 1993; Howell 

and Mountney, 1997; Sweet, 1999). For the Devonian strata, the reservoir properties of 

Buchan Formation are highly variable, the depositional facies were poorly understood and 

briefly described as fluvial deposition under a semi-arid to arid setting (Robson, 1991; Gluyas 

et al., 2005). Until now, no report has focused on detailed facies analysis, how the facies ar-

chitecture of Buchan Formation displays in the subsurface and the relationship between dif-

ferent facies and highly variable reservoir properties. 

In this study, we have re-examined the cores and re-interpreted depositional facies of Buchan 

Formation in the Ardmore Field. The results show that the Buchan Formation is composed of 

mixed fluvial-aeolian sandstones. The aeolian sandstone intervals have the best reservoir 

quality among the Buchan Formation. Facies architectures and porosity/permeability relation-

ships of fluvial and aeolian intervals show distinct differences which are responsible for the 

highly variable reservoir properties. The main aims of this paper are: (1) To characterize and 

interpret the main facies associations; (2) To simulate the facies architecture based on ana-

logue outcrop study and the well log data; (3) To propose facies model for the fluvial–aeolian 

deposition of the Buchan Formation; and (4) To set several tentative criteria for recognizing 

aeolian sandstones in uncored wells. This is the first study on the fluvial-aeolian facies archi-

tecture of the offshore Upper Devonian reservoirs in the UK North Sea. The results provide 

insights into facies architecture of Buchan Formation, improve the knowledge of poorly un-
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derstood Devonian in the North Sea and are useful for forecasting the quality of Upper Devo-

nian reservoirs in the Central North Sea and other areas ahead of drilling. 

During this study, lithofacies description and facies identification were carried out on cores 

from six wells in the Ardmore Field. Study on the analogue outcrops provides useful infor-

mation of the geometry and lateral extent of the fluvial facies associations. The facies archi-

tecture in the subsurface was achieved by the facies modelling module of the Schlumberger 

Petrel software based on the integration of outcrops study, core data and well logging inter-

pretation. 

4.2 Geological background 
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Figure 4.1 Geological maps showing: (a) Location and main structure elements of Ardmore (Adm) 

Field, note the location of the studied outcrop (Dunnet Head); (b) Vertical section of an SW-NE pro-

file (dashed line in 1a); (c) Seismic section of an SW-NE profile (part of dashed line in 1a). 

4.2.1 Tectonic setting of the Ardmore Field 

The Ardmore Field is located on the Argyll Ridge, a large SW-NE trending Palaeozoic age 

tilted fault block on the south-western flank of the Central Graben in Block 30/24, UK North 

Sea, about 350 km south-east from Aberdeen. The field is a horst feature with the crest in the 

north and fault closure to the north-east. It measures 2.5 km wide and 6 km long (Figure 

4.1A). A combination of dip and faulting defines the limits of the field on the north-west and 

south-east flanks, while dip closure defines the southern limits of the field. The major fault 

trends are in two main directions, WNW–ESE cut by NW-SE faults (Figure 4.1B). Top seal 

of the field is provided by Triassic shale to the far west, Jurassic shale in the mid-part of the 

field and impermeable Chalk at the north-eastern crest (Gluyas et al., 2005). The trap relies 

heavily on the major SW-NE trending graben edge faults to the northeast and southwest of 

the field while dip closure occurs to the northwest and west.   

4.2.2 Stratigraphy of the Buchan Formation 

The Devonian sequence in the Ardmore Field comprises a succession of the Middle Devoni-

an Kyle Limestone and Upper Devonian Buchan Sandstone. The succession dips to the south-

west, and is separated from the Permian by a palaeo-topographic unconformity, in which suc-

cessively younger stratigraphic units in the Devonian sub crop towards the south-west. Alt-

hough the pre-Permian surface has topography also dips to the SW, this has the effect of 

making the oldest part of the Buchan Sandstone subcrop the unconformity in the NE of the 

field and thus the youngest Devonian in the SW slightly deeper (Figure 4.1B). 
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Figure 4.2 Stratigraphy column and sedimentary logs of the Ardmore Field. 

The Middle Devonian Kyle Group is a fairly thin unit (c. 105 m. thick, Figure 4.1C) com-

prising limestones and minor evaporates (Graham et al., 2003). In the adjacent Auk Field, this 

succession rest unconformably on pre-Devonian basement (Trewin and Bramwell, 1991); this 

might be similar in Ardmore as inferred from seismic interpretation. The Middle Devonian 

limestone is mainly encountered in Ardmore wells 30/24-03 and 30/25a-02 (Figure 4.1B), 
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and forms a strong intra-Devonian seismic reflector throughout the area of the field (Figure 

4.1C).  

The Upper Devonian Buchan Formation comprises a thick, generally upward-coarsening suc-

cession of shales of mixed shallow marine and sabkha environment at the base, passing up-

wards into mainly fluvial and aeolian sandy sediments (Figure 4.2). The whole Buchan suc-

cession lacks clear seismic stratigraphic markers, a combination of log and core data has been 

used to divide the stratigraphic units for the Upper Devonian Group: B01 is the oldest unit 

overlying the Middle Devonian Limestone, and B11 is the youngest unit (Gluyas et al., 2005). 

In the absence of bio-stratigraphic data, sedimentary structures and lithofacies associations 

have been applied to help correlation (Gluyas et al., 2005). The total thickness of the Buchan 

Formation is nowhere documented due to the combination of erosion below the Devonian-

Permian unconformity, lateral thickness variation and incomplete well penetrations. The es-

timated thickness is about 500 – 800 m according to the seismic profile (Figure 4.1C).  

4.3 Facies analysis 

The detailed lithofacies study forms the basis of this paper, six wells were chosen because 

they comprises important fluvial and aeolian intervals in the Ardmore Field, and have a good 

data availability (drilled cores with good recovery and well log data). 

The lithofacies in the Ardmore Field can be roughly divided into three associations according 

to the dominant grain size grades: conglomerates (G), sandstones (S) and fine-grain sedi-

ments (F). The further detailed lithofacies identification has confirmed eight sub-types (Table. 

4.1), the classification of lithofacies is mainly based on the original scheme of Miall (1977). 

4.3.1 Fluvial facies association 
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Table 4.1 The lithofacies types in the Ardmore field and the corresponding descriptions, sedimentary structures, interpretations and appearances. 

Facies 
Lithofacies 

code 
Lithology description Structures Interpretation Appearances 

Fluvial 

Gm 

0.5 – 1 m thick, sandy matrix-supported, red brown intra-

formational mudstone or grey to white-grey quartz pebbles 

conglomerates, pebbles are around 1 - 3 cm in diameter. 

Massive to crudely bed-

ding 
Basal lag deposits 

B04, B09, B10, 

B11 

St 
0.5 – 1.5 m thick, fine to medium-grained sandstones, con-

taining grouped or solitary sets of trough cross laminations 
Trough cross-bedding  

Downstream migration of sinuous-

crested dunes in fluvial channels 

(lower flow regime) 

B04, B09, B10, 

B11 

Sp 

0.5 – 1 m thick, fine to medium-grained sandstone with soli-

tary sets of planar cross laminations, better sorted and clean-

er than St and lack mudstone or quartz pebbles 

Planar cross-bedding 

Transverse and linguoid sand bars 

in fluvial channels (lower flow 

regime) 

B04, B09, B10, 

B11 

Sh 
0.2 – 0.5 m thick, red-brown, fine-grained sandstones with 

millimetre-scaled thin laminations. 
Horizontal lamination 

Flash floods deposits (lower flow 

regime) 

B04, B09, B10, 

B11 

Fl 
0.2 – 1 m thick, argillaceous and micaceous, very fine-

grained sandstones to siltstones. 

Thin laminations with soft 

sediment deformation 

Temporary floodplains and inac-

tive or abandon channels 

B04, B09, B10, 

B11 

Fm 
0.2 – 0.5 m thick, micaceous dark red-brown silty mud-

stones and mudstones 
Massive bedding Overbank 

B04, B09, B10, 

B11 

Aeolian 

Sps 

0.5 – 1 m thick, upper fine- to medium-grained, well sorted, 

well rounded sandstones. High visible porosity, friable na-

ture and the absence of muddy or conglomeratic intra-clasts. 

Pin-stripe lamination Dune B07, B08 

Sw 

1 – 2 m thick, very fine- to medium-grained sandstones, 

moderately to well sorted, locally developed mud desicca-

tion, de-water structure, cross-bedding ripples and argilla-

ceous streaks  

Discontinuous wavy lami-

nation with several local 

structures 

Interdune with fluctuating dry and 

wet conditions 
B07, B08 
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The fluvial facies is volumetrically major (approx. 70%) in the whole Buchan Formation of 

the Ardmore Field and composed of multiple fining-upward cycles (see details in facies ar-

chitecture part). In this study, two types of fluvial facies are identified: fluvial channel deposit 

and flood plain deposit. 
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Figure 4.3 Core photos of fluvial-associated lithofacies. (A) Lithofacies Gm. Dark red-brown muddy 

cobbles with 0.5 cm - 2.5 cm grain size in a sandy supported matrix. Well 30/24-20z, 3159.1 m, Layer 

B04. (B) Lithofacies Gm. White and grey, sub-angular to sub-rounded quartz pebbles with 1 cm – 2 

cm grain size in a sandy supported matrix, the platy ones are aligned or display crude imbrication 

(yellow arrows). Well 30/24-34, 2972.1 m, Layer B11. (C) Lithofacies St. Trough cross-bedded, medi-

um to fine sandstones, note the white dash lines indicate the trough sets. Well 30/24-20z, 3121.7 m, 

Layer B04. (D) Lithofacies Sp. Planar cross bedding, medium to fine sandstones; note the white dot 

line indicate the interface between two planar bedding sets, Well 30/24-20z, 3172.7 m, Layer B04. (E) 

Lithofacies Sh. Red-brown fine-grained sandstones with millimetre-scale laminates. Well 30/24-20z, 

3164 m, Layer B04. (F) Lithofacies Fl. Laminated very fine grain sandstones and silts with ripples or 

soft sediment deformation (yellow arrows) and the muddy desiccation cracks (white arrow). Well 

30/24-20z, 3129.8 m, Layer B04. (G) Lithofacies Fm. Dark brown mudstones with no obvious bed-

dings. Well 30/24-34, 2945.3 m, Layer B11. 

4.3.1.1 Fluvial channel facies 

a. Conglomerate (Gm) 

Description: this lithofacies occurs in a minor proportion (< 10%). It is commonly developed 

as thin lags (0.5 m – 1 m) on erosional planes. The conglomerates are generally composed of 

red brown intra-formational mudstone clasts (Figure 4.3A) or grey to white-grey quartz peb-

bles (Figure 4.3B) up to 3 cm in diameter with a fine to medium grained sandy matrix. The 

muddy clasts and quartz pebbles are sub-angular to sub-round (Figures 4.3A and 4.3B), and 

the platy ones are often aligned or display crude imbrication (Figure 4.3B). This lithofacies 

generally occurs at base of the fining-upward cycle. 

Interpretation: this lithofacies represents a depositional setting with very high energy, which 

can be explained as the fluvial basal lag deposition. The wide range of sediment grain size 

(from fine sand to conglomeratic grade) represents a clast-rich debris flow (Miall, 2013). 

b. Sandstones (St, Sp and Sh) 

Description: fine to medium-grained sandstone bodies up to 10 m thick comprise the main 

lithology type (approx. 80%) of fluvial channel facies, various sedimentary structures have 
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been recognized (Table 4.1). Typically the sandstone bodies are organized into three lithofa-

cies: 1) Trough cross-bedding (St); 2) Planar cross bedding (Sp); and 3) Inclined horizontal 

lamination (Sh).  

Lithofacies St (Figure 4.3C) is common within the whole fluvial interval (approx. 30% – 

40%) and it consists of 0.5 m – 1.5 m thick, fine to medium-grained sandstones with grouped 

or solitary sets of trough cross laminations. The sets generally range in thickness from ap-

proximately 10 cm – 30 cm. The sedimentary structures are defined by argillaceous laminae. 

This lithofacies forms an important unit within fining-upward cycle and commonly passes 

transitionally upwards into lithofacies Sp, Sh, Fl or Fm. 

Lithofacies Sp (Figure 4.3D) is also common (approx. 20% – 30%) and consists of 0.5 m – 1 

m thick, fine to medium-grained sandstone with solitary sets of planar cross beddings. The 

sandstones are better sorted and cleaner than lithofacies St and lack mudstone or quartz peb-

bles. This lithofacies also forms an important unit within fining-upward cycle and commonly 

passes transitionally upwards into lithofacies Sh, Fl or Fm. 

Lithofacies Sh (Figure 4.3E) is subordinate (10% – 20%) and consists of 0.2 m – 0.5 m thick, 

fine-grained sandstones with well-developed inclined horizontal laminations. The millimetre-

scaled thin laminations are defined by dense concentrations of fine-grained detrital rock 

fragments in red-brown colour, and the coarser and cleaner laminates show lighter colour. 

This lithofacies occurs towards the upper part of fining upward cycles. 

Interpretation: the fine- to medium-grained sandstones with various sedimentary structures 

record the different types of channel migration and accretion. The trough cross bedding rep-

resents the result of downstream migration of sinuous-crested dunes, which was usually 

formed by braided channel-fill deposits under a lower flow regime (Miall, 2013). The planar 

cross bedding usually represents the transverse and linguoid sand bars in fluvial channels, and 
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this could be either the result of lateral or downstream accretions (Miall, 2013). The inclined 

horizontal laminations could be interpreted as the plane-bed flow and was probably formed 

by the flash floods deposits within a distal sheet-flood sand-bed river system. 

4.3.1.2 Flood plain facies (Fl and Fm) 

Description: the flood plain facies consists of very fine laminated sandstones to siltstones 

with soft sediment deformation (Fl) and massive silty mudstones and mudstones (Fm). The 

lithofacies Fl (Figure 4.3F) consists of 0.2 m – 1 m thick, argillaceous and micaceous, very 

fine-grained sandstones to siltstones. The argillaceous content occurs as inclined parallel lam-

inae, small ripple cross laminae, and discontinuous steaks and mud curls. Soft sediment de-

formation structures are common, some occasional desiccation cracks with infilled sands are 

also recorded (Figure 4.3F). The lithofacies Fm (Figure 4.3G) consists of 0.2 m – 0.5 m 

thick, micaceous dark red-brown silty mudstones and mudstones with massive beddings, and 

usually occurs at the top of fining-upward cycles. 

Interpretation: these finer-grained sediments record flood plain deposition resulting from 

overbank flood event (McKee et al., 1967). The lithofacies Fl might be the temporary flood-

plains and inactive or abandon channels. The desiccation cracks with infilled sands indicate 

the occasional exposed setting under arid climate. The mudstones (Fm) were accumulated in 

the lowest energy zones which represent a quite standing water condition following flooding 

events. 

4.3.2 Aeolian facies association  

The aeolian facies is volumetrically minor in the whole Buchan Formation of the Ardmore 

Field (approx. 30%). In this study, two types of aeolian deposit are identified: the pin-stripe 

laminated dune and discontinuous wavy laminated interdune sandstones. 
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Figure 4.4 Core photos of aeolian-associated lithofacies. (A) The oil-stained, medium-grained, pin-

stripe (p-s) aeolian dune sandstones, Well 30/24-31, 3191 m, Layer B08. (B) Muddy-rich fine–grained 

interdune sandstones with muddy desiccation cracks (white arrows), Well 30/24-31, 3184.7 m, Layer 

B08. (C) The de-watering (white dashed ellipse) sighted in a sandy-dominated interdune deposit, Well 

30/24-31, 3187.8 m, Layer B08. (D) Centimetre-scale cross-bedding ripples (white arrows) sighted in 

a sandy-dominated interdune deposit, note the underlying soft sediment deformation. Well 30/24-31, 

3183.8 m, Layer B08. (E) The discontinuous wavy laminations (white arrows) and argillaceous 

streaks (black arrows) sighted in a sandy-dominated interdune deposit. Well 30/24-31, 3189.3 m, 

Layer B08. 
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4.3.2.1 Lithofacies Sps: pin-stripe laminated sandstones (Figure 4.4A) 

Description: this lithofacies forms the major component (approx. 70%) of aeolian facies and 

are characterized by 0.5 m – 1 m thick, upper fine- to medium-grained, well sorted sand-

stones. The grains are well rounded and the thin pin-stripe laminates are commonly exhibited. 

The sandstones display large-scale cross-bedding organized into 0.5 m to 1 m-thick sets, and 

the dip angle is about 35°. Additionally, there are several secondary features possessed by 

these deposits contrast them with the fluvial facies: high visible porosity, friable nature and 

the absence of muddy and/or conglomeratic intra-clasts. 

Interpretation: the presence of well-rounded and sorted, upper fine- to medium-grained, mud-

dy or conglomeratic clast-free sandstones with pin-stripe laminates are typical features of the 

aeolian dune deposits (Hunter, 1977; Kocurek and Dott Jr, 1981; Fryberger and Schenk, 

1988). The high-angle, relatively stable graded laminates are interpreted as sand-flow depos-

its, formed by avalanching of non-cohesive sands on dune slip faces (Hunter, 1977). The 

highly friable nature suggests the low cementation, which is probably responsible for the high 

visible porosity. 

4.3.2.2 Lithofacies Sw: discontinuous wavy laminated sandstones 

Description: this lithofacies is the minor type (approx. 30%) in aeolian association and occurs 

interbedded with the dune sandstones. It is dominantly composed of 1 m – 2 m thick, very 

fine- to medium-grained sandstones that are moderately to well sorted, with low-angle dis-

continuous wavy laminates. Several local sedimentary structures can be sighted, including the 

mud desiccation infilled by sands (Figure 4.4B), de-water structure (Figure 4.4C), cross-

bedding ripples (Figure 4.4D) and argillaceous streaks (Figure 4.4E). Vertically, there is no 

obvious boundary between Sps and Sw. 
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Interpretation: the discontinuous wavy laminates with several local sedimentary features sug-

gest that this lithofacies represents the interdune environment. The interdune is usually locat-

ed in low-relief areas of a dune system (Langford, 1989). In the given fluvial-presented set-

ting, the interdune area would be affected by fluvial depositions. The mud desiccation infilled 

by sands and de-water structures indicate dry condition, while the cross-bedding ripples and 

argillaceous streaks can represent a wet and damp condition (Kocurek and Dott Jr, 1981). The 

variation between dry and wet conditions could be associated with the fluctuated develop-

ment of the fluvial system. 

4.4 The analogue outcrop in Dunnet Head, Northeast Scotland 

The appropriate use of outcrop data is a good way to study the behaviour of subsurface reser-

voirs when wells are sparse and high resolution seismic survey is missing (Bridge et al., 

2000b; Howell et al., 2014; Pranter et al., 2014; Romain and Mountney, 2014). The onshore 

Upper Devonian strata (equivalent to Buchan Formation) are present in the Midland Valley, 

along the margins of the Moray Firth, in Caithness and on Orkney (Gatliff and Survey, 1994; 

Hunter and Easterbrook, 2004). 

In the Dunnet Head of Northwest Scotland, a good outcrop of Upper Devonian strata is crop-

ping at the Dwarwick Pier (see Figure 4.1A for location) and it has already attracted a num-

ber of researches. The outcrop has been generally described as the Upper Devonian braided 

fluvial sandstones (Crampton et al., 1914; McAlpine, 1977; Trewin and Hurst, 2009) but 

none of them has linked it with the offshore Upper Devonian reservoirs. Tang et al. (2018) 

studied the facies and petrography of this outcrop and compared it with the subsurface Buch-

an Formation reservoirs (see Chapter 3 for details). They proposed that with the similar cli-

matic and depositional setting and comparable lithology types, this outcrop could be good 

analogue of offshore Buchan Formation. They also measured the scale of channel sand bodies 
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and the data shows that the sand bodies typically display a flat and wide geometry with an 

average width/thickness ratio of 100:1 (see Table 3.1). For the purpose of numerical simula-

tion of subsurface channel sand bodies, this would be a useful reference to determine the ge-

ometrical parameters. 

4.5 Facies architecture analysis 

The study on the lithofacies has revealed that the Buchan Formation in Ardmore Field is 

composed by sandstones mainly deposited in fluvial-braided and aeolian dune/interdune set-

tings. By using the well logging data, geometry knowledge from analogue outcrop study and 

the facies modelling module in Schlumberger Petrel software, it is possible to study the facies 

architecture in both vertical and lateral directions. The selected profile is roughly perpendicu-

lar to the fluvial flowing (NW to SE) and palaeo wind blowing (E to W) directions (Hall and 

Chisholm, 1987). Wells are in relatively close spacing (approx. 500 m) which will be helpful 

on increasing accuracy of lateral correlation (Miall, 1988). The main parameters for Petrel 

facies modelling are listed in Table 4.2 (at the last page of this chapter). 

4.5.1 Fluvial association (Layer B10 as example) 

4.5.1.1 Vertical architecture 

In the Ardmore Field, layers B04, B10 and B11 are fluvial-dominated and composed of con-

glomerates, sandstones and fine grain sediments. Figure 4.5A is the detailed lithology log for 

three wells containing Layer B10 (see Figure 4.1A for well locations). The Layer B10 in all 

three wells is composed by superimposed fining-upward cycles, each with 5 m – 8 m thick. 

Each cycle generally comprises minor lithofacies Gm at base, succeeded by predominant 

lithofacies St, Sp and Sh in the middle and minor Fl/Fm on the top. The fluvial types could be 

classified as the combination of high-energy sand-rich and sheet-flood distal braided deposi-
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tions according to the classification scheme of Miall (2013). The occurrence of fining-upward 

cycle indicates the deposition within channel streams (Bridge and Lunt, 2006; Bongiolo and 

Scherer, 2010). Therefore, the superimposed fining-upward cycles in each well represent the 

multi-stage developments of braided channels. 

 

Figure 4.5 Well logging profile and facies modelling result of a typical fluvial association Layer B10. 

(A) The lithology log of selected wells, note the superimposed fining-upward cycles. (B) Petrel simu-

lation result of the selected profile. 
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Within an individual fining-upward cycle, the lithofacies Gm usually forms the cycle base 

with thickness around 0.5 m – 1 m, indicates the thin basal lag deposit within a channel. The 

dominant lithofacies St, Sp and Sh are the most common types and form the main part of the 

fining-upward cycle, representing residual dunes, linguoid and transverse bars, and planar 

bed flows, respectively, and were produced in a low flow regime (Miall, 1977). The finer 

grained sediments Fl and Fm indicate the decrease of flow velocity or channel abandonment 

(Miall, 2013), and separate the channel deposits and usually occur at the top of the cycle with 

0.5 m and up to 4 m thick. The stained oil is mainly distributed within the lithofacies St and 

Sp, indicates that braided channel sands are likely to be effective reservoirs.  

4.5.1.2 Lateral architecture 

The parameters for facies modelling are integrated by analogue outcrop study and depended 

on the actual well log correlation in Ardmore wells. In the lateral direction, the well log curve 

and detailed lithofacies log for three wells are not laterally correlatable, which indicate that 

the deposition was multiple braided channels rather than a single channel with kilometre-

scale width.  

The facies modelling result for Layer B10 (Figure 4.5B) shows a high gross sand ratio in the 

profile, the channel sand bodies are closely superimposed with adjacent ones both in vertical 

and lateral directions. According to the relationship between sand body connectivity and 

channel deposit proportion proposed by Karssenberg and Bridge (2008), the high gross sand 

ratio (67.18% for B04, 71.5% for B10 and 77.7% for B11) has increased the possibility that 

the superimposed sand bodies are almost inter-connected with each other, and only some 

thick muddy layers (> 2 m) could form local flow barriers.  
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4.5.2 Aeolian association (Layer B08 as example) 

4.5.2.1 Vertical architecture 

 

Figure 4.6 Well logging profile and facies modelling result of the typical aeolian association Layer 

B08. (A) The lithology log and lateral correlations of selected wells. (B) Petrel simulation result of 

the selected profile. 

In the Ardmore Field, Layers B07 and B08 are aeolian-dominated units and mainly composed 

by upper fine to medium-grained and well sorted sandstones and minor fine-grained sedi-

ments. Figure 4.6A is the detailed lithology log for four adjacent wells containing Layer B08 
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(see Figure 4.1A for well locations). In the vertical direction, aeolian association shows a 

relatively simple architecture composed by superimposed dune and interdune depositions, 

there is no significant grain size variation in the vertical direction. The coarse grain sediments, 

such as conglomerates, are absent in the association, and the fine grain sediments occur con-

sistently minor in four wells and increase south-eastwards.  

4.5.2.2 Lateral architecture 

The close spacing (around 500 m) of development wells in Ardmore Field permits the lateral 

correlation of aeolian units with reasonable confidence. By comparing the well log data of 

selected wells, the aeolian association comprises a number of laterally correlatable horizons 

over kilometre scale across the profile and generally shows a tabular geometry (Figures 4.6A, 

4.6B). Dune sand bodies pinch out into finer grained interdune deposits, in this case the de-

sert lake association, towards south-east, and the bounding surfaces of each horizon are 

commonly the overlain interdune deposits.  

4.6 Discussion 

4.6.1 Depositional pattern for the Ardmore Field area in the Late Devonian age 

The aforementioned lithofacies and facies architecture studies have revealed that the Upper 

Devonian Buchan Formation in the Ardmore Field comprises a succession of thick terrestrial 

sandstones, mainly fluvial and subordinately aeolian depositions under a semi-arid to arid 

climate. The climatic changes, in this case the rainfall variations in the hinterland high relief 

area, were the main control of fluvial distributary system (Nichols and Fisher, 2007), and 

would occur uniformly across the basin-scale area at the same time (Nichols, 2005). There-

fore, the changes from fluvial to aeolian facies between B04 and B07/B08 (B05 and B06 are 

not clear), and the reverse transition from aeolian to fluvial between B07/B08 and B09-B11 

may be expected to have occurred across the basin-scale area at about the same time, and pre-
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sented a general progradation-retreat-progradation cycle of the alluvial fan-based braided sys-

tem with aeolian deposits occurred mainly between two main progradation periods. 

Therefore this study proposed a depositional pattern for the Ardmore Field area in the Late 

Devonian age (Figure 4.7). The lithofacies database is restricted to the Ardmore Field and 

the areas beyond that are conjectured based on previous studies on related areas. 

The braided fluvial fan system was possibly sourced from high-relief uplands in Scotland 

Midland Valley, and flowed south-eastwards to the Central North Sea area (Bluck, 2000; 

Graham et al., 2003). The Ardmore Field is believed locating near the margin of the braided 

fluvial fan system (Figure 4.7), as the presence of aeolian and associated desert lake sedi-

ments became established during more arid periods. It could be generally divided into two 

patterns: the fluvial dominated and aeolian dominated patterns. The bird-eye view slices of 

facies modelling results demonstrate more details of fluvial and aeolian dune geometry: 
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Figure 4.7 Schematic depositional pattern for the Ardmore Field and its adjacent areas (Figure not for scale). Note the red dashed ellipse indicate the loca-

tion of Ardmore Field. 
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Figure 4.8 Bird-eye view slices generated by Petrel facies modelling for: (A) Layer B10, typical fluvial-dominated unit. (B) Layer B08, typical aeolian-

dominated unit. 
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I. During the fluvial-dominated period, the Ardmore Field was located in a braided flu-

vial fan with multiple conglomeratic-sandy channels and minor overbank/flood plain 

depositions (Figure 4.8A). The braided fluvial sedimentation was featured as poorly 

confined channels with rapid and frequent lateral migrations, the cross section of a 

single channel, according to the analogue outcrops, shows a sheet-like sand body with 

high width-thickness ratio. This could be explained by the weak riverbank stability 

due to the lack of deeply rooted vegetation in the Devonian age (Davies and Gibling, 

2010; Gibling et al., 2014) and overall arid climate which enabled the frequent lateral 

migration of channel deposits. 

II. During aeolian-dominated period, the dune and interdune deposits were predominated 

and the general wind direction was suggested as blowing from east to west (Hall and 

Chisholm, 1987). Clearly not all the interdune deposits were aeolian origin, but also 

the modification by the loading occasional fluvial deposits. There were no conglom-

eratic-sandy channel deposits during this period, and only some distal fluvial deposits 

(e.g. sheet flood, floodplain) could affect the study area (Figure 4.8B). The fluvial-

origin fine grained sediments were deposited in the topographically lower area, in this 

case, the interdune facies. During this period, occasional desert lakes could exist when 

the water table was high. The dune and interdune facies are laterally extensive which 

suggests the stable development of aeolian deposition, either as the consequences of 

major channel switching and/or the regionally significant hiatus of fluvial activity. 
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4.6.2 Significance of identifying aeolian deposits 

 

Figure 4.9 The scattered porosity and permeability maps for: Fluvial-associated sandstones. (B) Aeo-

lian-associated sandstones. Note porosity = 15% and permeability = 10 mD are set as the lower lim-

its of effective reservoir. 

Aeolian facies is commonly featured as widespread occurrence and good reservoir properties, 

which usually make aeolian sandstones attractive exploration targets (Ahlbrandt and 

Fryberger, 1982). In the Ardmore Field, the reservoir quality of volumetrically major fluvial 

sandstones was significantly suffered by cementation of extensive quartz overgrowths and 

authigenic dolomites (Bifani and Smith, 1985), porosity ranges from 6% to 24%, but permea-

bility never exceeded 400 mD (Figure 4.9A). Conversely, aeolian deposits possess volumet-

rically minor component but both dune and interdune facies show good reservoir quality 

(Figure 4.9B).  
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Figure 4.10 Different well log responses for (A) Fluvial-dominate intervals, note in blue arrows indi-

cate the features of low gamma ray, low sonic log and high density in fluvial channel sandstones, 

BL=basal lag, CH=channel, OB=overbank. (B) Aeolian-dominated interval, note the red arrows in-

dicate the features of low gamma ray, high sonic log and low density in aeolian dune sandstones, 

D=dune, InD=interdune. 

Therefore, it is important to identify the aeolian association as early as possible during explo-

ration or development. Due to the presence of conglomerates and highly cemented sandstones, 

the well log responses of fluvial sandstones are commonly featured as medium-low gamma 

ray value (50 API – 80 API), low sonic transit times (< 75 μs/ft.) and medium-high density (> 

2.5 g/cm
3
), and each conglomerate-sandstone group is separated by an overbank-associated 

muddy layer whose gamma ray value is greater than 100 API (Figure 4.10A). The aeolian 

deposits are sandy-dominated with high compositional and textual maturity, high porosity, 

low cementation and absence of conglomerates and muddy contents, these features can be 

manifested on well log curves by low gamma ray value (consistently less than 75 API), high 
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sonic transit times (consistently greater than 80 μs/ft.) and low density (< 2.5 g/cm
3
). These 

featured well log responses, combined with uniform dipmeter patterns (not shown in the Fig-

ure), make it possible to tentatively identify aeolian facies in uncored wells (Figure 4.10B).  

4.6.3 Implications on Devonian-associated reservoir explorations 

Devonian strata in the North Sea have been perceived little hydrocarbon potential for a long 

time (Downie, 2009), several fields in both UK and Norwegian North Sea have confirmed the 

industrial oil productions from Devonian-associated reservoirs in recent decades (Edwards, 

1991; Knight et al., 1993; Gambaro and Currie, 2003; Gluyas et al., 2005).  

In this study, we confirm that the Buchan Formation in Ardmore Field is composed not only 

of fluvial deposits but also the presence of aeolian components. Aeolian components possess 

volumetrically minor percentage (approx. 30%) but show the best reservoir quality among the 

whole Buchan Formation: in fluvial sandstones, the extensive quartz and dolomite cementa-

tion reduces permeability by 1 – 2 orders of magnitude. However, quartz overgrowth is ab-

sent in aeolian sandstones. Given the same tectonic setting and burial process, these con-

trasting differences have two implications: 1). The relationship of porosity and permeability 

is different in fluvial and aeolian sandstones; and 2). The fluvial and aeolian sandstones have 

undergone different diagenesis processes. These make the sandwiched aeolian sandstones can 

still keep good porosity/permeability even the surrounding fluvial sandstones were signifi-

cantly cemented. 

In the Ardmore Field, aeolian sandstones are thin, laterally extensive, poorly cemented and 

permeable, and interbedded with thick, cemented and low-permeability fluvial sandstones. 

Since the North Sea area had similar depositional setting in the Late Devonian age, careful 

facies identification is important for determining the presence of aeolian sandstones. This 

study has improved the knowledge of depositional setting in the study area and provided sev-
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eral tentative criteria for recognizing aeolian sandstones for the uncored wells. The results 

can have broad applications on future exploration in Devonian targets of the North Sea or 

other places with similar provenance. 

4.7 Conclusions 

A renewed attempt on facies identification and modelling has been made by using lithofacies, 

analogue outcrops, well logging data and software simulation. This study has announced the 

presence of aeolian sandstones within the fluvial-dominated Buchan Formation in the 

Ardmore Field, which has not been clearly identified in the previous time. 

Fluvial-associated sandstones are volumetrically major facies type (approx. 70%) and typical 

braided origin. They are composed of superimposed fining-upward cycles, and each cycle 

represents a deposition of channel bar or channel fills. None of channel deposits can be corre-

lated among the inter-well distance, but the high channel deposition proportion indicate that 

the channel sandstones are likely to be interconnected with each other. 

Aeolian-associated facies form a volumetrically minor (approx. 30%) but important reservoir 

in the studied field. It comprises superimposed dune and interdune sandstones and is laterally 

correlatable over kilometre scale. Both dune and interdune sandstones have good reservoir 

quality as a consequence of good sorting, roundness, absence of muddy and conglomeratic 

contents, and low cementation. These features allow them to be tentatively identified, espe-

cially for those uncored wells, by using the combination of well log responses such as low 

gamma ray, high sonic transit time and low density. 

Understandings on the scheme of this fluvial-aeolian facies system demonstrate the possibil-

ity of effective reservoir potential in Devonian strata. Sandstones deposited in different facies 

would undergo different diagenesis, in this case, the sandwiched aeolian sandstones could 
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still hold good reservoir property even the surrounding fluvial sandstones were highly ce-

mented. This should have an important impact on reservoir identification, appraisal and dis-

covery.  
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Table 4.2 The main parameters of Petrel facies modelling for the selected layers 

Layer 
Sandstone-body 

type 

Simulation 

method 

Main constraints 

Background sedi-

ment type Lithology-Lithofacies 

elements 

Proportion 

(%) 

Orientation  

(Compass degrees) 

Mean 

width(m) 

Mean thick-

ness(m) 

Fluvial-dominated association 
        

B10 Fluvial channels 
Object model-

ling 

Conglomerate Gm 7.86 

240-240 

80 1 

Mud 

Medium sand St, Sp 56.84 400 4 

Fine sand Sh 14.5 180 1.5 

Mud 
Fl, 

Fm 
20.8 250 1.5 

          

Layer 
Sandstone-body 

type 

Simulation 

method 

Main constraints 

Background sedi-

ment type 
Lithology-Lithofacies 

elements 

  

Proportion 

(%) 

Orientation (Com-

pass degrees) 

Mean 

width(m) 

Mean thick-

ness(m) 

Aeolian-dominated association 
        

B08 

Aeolian dunes 

Object model-

ling 

Medium sand Sps 41.7 
140-140 

700 2 

Fine sand 
Aeolian interdunes 

Fine sand Sw 52.2 1000 4 

Silt Sw 1.47 
240-240 

100 1 

Mud Sw 14.64 150 1.5 
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Summary 

The Buchan Sandstone reservoirs (Upper Devonian) from the Ardmore Field in the UK Cen-

tral North Sea are fluvial-aeolian deposits and provide examples of porosity preservation in 

deeply-buried reservoirs (2.7 km – 3.2 km) caused by grain-coating illite/smectite. Here, high 

reservoir quality commonly correlates with the occurrence of grain-coating illite/smectite and 

consequent inhibition of quartz cementation in the aeolian dune and interdune sandstones; 

while porosity is lower in fluvial sandstones lacking grain coating illite/smectite but with in-

tense quartz overgrowths. We propose that the presence of illite/smectite content reflects syn-

depositional concentration of the smectitic-rich clay bearing water which would have been 

the deposits of the interdune and/or distal sector of fluvial distributary system. The smectitic 

clays were introduced into porous aeolian deposits by mechanical infiltration. Petrographic 

relationships indicate that these coatings grew mainly before the beginning of mechanical 

compaction as the presence of clays occurs at grain contacts. An empirical model is applied 

to calculate the effect of these coatings and the results suggested that about 6% – 7% porosity 

has been preserved. The burial and thermal history of the Ardmore area contributed to 

preservation of high quality reservoir because throughout much of the time since deposition 

the Devonian sandstones have been little buried. Only in the Tertiary have reservoir tempera-

tures exceeded about 70°C. A consequence is that the minor amounts of pore-filling smectitic 

clays have only minor negative effect on reservoir quality while at the same time they inhib-

ited quartz cementation. The circumstances of porosity preservation in the Buchan Formation 

aeolian sandstones of the Ardmore Field may be unusual, but nonetheless have profound con-

sequences for exploration. It may be possible to identify new Buchan Formation prospects in 

areas hitherto dismissed because they were assumed to contain none effective reservoir. 
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5.1 Introduction 

Quartz cement is one of the dominant porosity reducing agents in many reservoir sandstones, 

but other factors such as grain size, sorting, clay content, mechanical compaction, pore fluid 

pressure, early cementation and authigenic clay minerals also play a critical role (Worden and 

Morad, 2000). Different types of grain coatings have been identified to inhibit or reduce 

quartz cementation. The basic mechanism of inhibiting quartz overgrowth is that the grain 

coatings covered the nucleation site on the host grains and the authigenic quartz could not 

nucleate on or through the coatings (Pittman, 1972). The most effective grain coating mineral 

is said to be micro-quartz (Aase et al., 1996) and for the grain coating clays, authigenic chlo-

rite is commonly reported as a preserver (e.g. Pittman and Lumsden, 1968; Ehrenberg, 1993; 

Berger et al., 2009; Stricker and Jones, 2016). Illite is less frequently reported as grain coat-

ings that preserve porosity (Storvoll et al., 2002) but frequently cited as the cause of permea-

bility destruction (Robinson et al., 1993). Smectitic clay is commonly regarded as having 

negative effects on reservoir quality due to its water-sensitive swelling property (Gray and 

Rex, 1965), and it commonly transforms to fibrous/hairy illite in a potassium-rich pore fluids. 

Precipitation of illite usually causes significant permeability reduction (Almon and Davies, 

1981; Le Gallo et al., 1998; Wilson et al., 2014). 

The oil reservoirs in the Ardmore Field, UK Block 30/24, Central North Sea, are hosted in 

Permian Zechstein carbonates, Permian Rotliegend sandstones and Upper Devonian Buchan 

Formation sandstones (Gluyas et al., 2005). The two Permian units have been studied in a 

number of publications (e.g. Nagtegal, 1979; Glennie and Provan, 1990; Purvis, 1992; 

Howell and Mountney, 1997; Leveille et al., 1997; Sweet, 1999); however, the deeper and 

older Buchan Formation sandstones (2.7 km – 3.2 km TVDSS) are poorly understood but 

have also been proven to be an important hydrocarbon reservoir in the Central North Sea 

(Edwards, 1991; Knight et al., 1993; Gambaro and Currie, 2003; Gluyas et al., 2005). The 
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Buchan Formation is composed chiefly of a sand-dominated unit deposited in a braided fluvi-

al and aeolian environment during a hot and semi-arid to arid period (Gluyas et al., 2005; 

Kearsey et al., 2015). Gluyas et al. (2005) reported the conventional core analysis data for 

Buchan Formation sandstones, porosity ranges between 1% and 28% while permeability var-

ies between < 1 mD and > 5000 mD. The main influences on reservoir quality reduction were 

mechanical compaction, extensive quartz overgrowth and dolomite cementation (Bifani and 

Smith, 1985). However, many of the Buchan Formation sandstones have little cement and are 

excellent reservoirs. Why some of these ancient sandstones remain high quality reservoirs has 

not previously been reported.  

In this study, we discovered that the aeolian-associated sandstones with grain coating il-

lite/smectite (I/S) usually have anomalously high porosity and permeability, while quartz 

overgrowth is almost absent in this sandstone type. Conversely, the fluvial facies sandstones 

without thick and continuous I/S coatings are usually cemented by extensive quartz over-

growth, and commonly show poor, or at best, moderate reservoir quality. Therefore, this 

study focused on the following points and questions: 1). Why is the grain coating I/S only 

presented in aeolian sandstones and how did it form? and 2). Is it possible to quantitatively 

evaluate the porosity preserving effect of I/S grain coatings? The positive effect of grain coat-

ing I/S can be expected to occur only under particular circumstances, but in such cases it can 

have profound consequences for exploration. This study has broad implications for future ex-

ploration, appraisal and production of Devonian reservoirs within this area. 

5.2 Geological Setting 

5.2.1 Tectonic setting 

The Ardmore Field is located on the Argyll Ridge, a large SW-NE trending Palaeozoic age 

tilted fault block on the south-western flank of the Central Graben in Block 30/24, UK North 
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Sea, about 350 km south-east from Aberdeen. The field is located in a horst feature with the 

crest in the north and fault closure to the north-east. It measures 2.5 km wide and 6 km long 

(Figure. 5.1a). A combination of dip and faulting defines the limits of the field on the north-

west and south-east flanks, while dip closure defines the southern limits of the field. The ma-

jor fault trends are in two main directions, WNW–ESE cut by NW-SE faults (Figure. 5.1b). 

The top seal is provided by Triassic shale in the far west, Jurassic shale in the mid-part of the 

field and impermeable Chalk at the north-eastern crest (Gluyas et al., 2005). The trap relies 

heavily on the major NW-SE trending graben edge faults to the northeast and southwest of 

the field while dip closure occurs to the northwest and west. 

 

Figure 5.1 Geological maps showing: (a) Location and main structure elements of Ardmore (Adm) 

Field; (b) Vertical section of an SW-NE profile (dashed line in 1a); (c) Seismic section of an SW-NE 

profile (part of dashed line in 1a). 
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5.2.2 Stratigraphy 

The Devonian sequence in the Ardmore Field comprises a succession of the Middle Devoni-

an Kyle Limestone and Upper Devonian Buchan sandstone. The succession dips to the south-

west, and is separated from the Permian by a palaeo-topographic unconformity, in which suc-

cessively younger stratigraphic units in the Devonian sub crop towards the south-west. Alt-

hough the pre-Permian surface has topography it also dips to the SW, this has the effect of 

making the oldest part of the Buchan sandstone subcrop the unconformity in the NE of the 

field and thus the youngest Devonian in the SW slightly deeper (Figure. 5.1b). 

 

Figure 5.2 General stratigraphy of the Ardmore Field and a schematic stratigraphic log of the Buch-

an Formation. 
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The Upper Devonian Buchan Formation comprises a thick, generally upward-coarsening suc-

cession of shales of mixed shallow marine and sabkha environment at the base, passing up-

wards into mainly fluvial and aeolian sandy sediments (Figure. 5.2). The whole Buchan suc-

cession lacks clear seismic stratigraphic markers, a combination of log and core data has been 

used to divide the stratigraphic units for the Upper Devonian Group: B01 is the oldest unit 

overlying the Middle Devonian Limestone, and B11 is the youngest unit (Gluyas et al., 2005). 

In the absence of bio-stratigraphic data, sedimentary structures and lithofacies associations 

have been applied to help correlation (Gluyas et al., 2005). The total thickness of the Buchan 

Formation is not documented due to the combination of erosion below the Devonian-Permian 

unconformity, lateral thickness variation and incomplete well penetrations. The estimated 

thickness is about 500 m – 800 m according to the seismic profile (Figure. 5.1c). 

Units B01, B02, B03, B05 and B06 are equivocal about their origin due to the insufficient 

core coverage. The core description revealed the presence of two main sedimentary facies 

within the Buchan formation (Robson, 1991; Gluyas et al., 2005). Braided fluvial facies is the 

volumetrically major type (approx. 70%) and consists of multiple fining-upward sequences 

(not shown in the Figure. 5.2), each sequence is commonly composed of: a). Sand-supported 

conglomerates at the cycle base with thickness around 0.5 m – 1 m, the quartz and muddy 

clast pebbles (1 cm – 3 cm in diameter) are sub-angular to sub-rounded and show roughly 

imbricated alignment, which indicates the thin basal lag deposit within a channel (CHC); b). 

Fine to medium-grained, moderately sorted sandstones with trough cross bedding, planar 

cross bedding and horizontal laminations are the dominant type within the fining-upward cy-

cle, representing various channel bar deposits (CHB) such as residual dunes, linguoid and 

transverse bars, and planar bed flows; and c). Laminated fine-grained sediments with soft 

sediment deformation usually form the top of the sequence, which indicate the decrease of 
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flow velocity such as sand flat (SF) or channel abandonment (CHA) and usually occur at the 

top of the cycle with 0.5 m and up to 3 m thick.  

The aeolian facies is the volumetrically minor type (approx. 30%) and composed of well 

sorted, medium-grained, pin-stripe laminated sandstones and fine-grained, discontinuous 

wavy laminated sandstones, which represents an interbedded dune (AD) and interdune (ID) 

deposits. Overall, the known units comprise a vertically fluvial (B04, approx. 100 m)-aeolian 

(B07 and B08, approx. 50 m)-fluvial (B09, B10 and B11, approx. 240 m) variation, which 

generally represents a progradation-retreat-progradation cycle of the alluvial fan-based braid-

ed system with aeolian deposits occurring mainly between two main progradation periods. 

5.3 Dataset and Methodology 

A total of 190 samples were taken from BGS and EnQuest core stores. Cores from five wells 

(30/24-05, 30/24-20z, 30/24-28, 30/24-31, 30/24-34) in the Buchan Formation ranging from 

2650 m to 3150 m (TVDSS) were logged (Appendix I). The porosity and permeability data 

were provided by EnQuest internal reports, porosity was determined via direct measurement 

of grain volume and bulk volume by helium expansion in a Boyle’s Law porosimeter. The 

permeability data was determined by use of a nitrogen permeameter at a confining pressure of 

400 psig and are Klinkenberg-corrected. 

Thin-section petrography was used to determine the rock mineralogy, diagenetic features, 

pore types and clay distribution in the pore spaces. One hundred and one thin sections (14 

from well 30/24-05, 16 from well 30/24-20z, 38 from well 30/24-28, 16 from well 30/24-31 

and 17 from well 30/24-34) were used for petrographic analysis and point counting. The 

samples were impregnated with blue-dyed resin in order to identify porosity.  
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At least 300 points were counted in each thin section to identify detrital and authigenic phas-

es, including the clay aggregates which are larger than 0.05 mm in size (pore space is exclud-

ed). This number of point counts per thin section has a standard deviation of 5.5% or less (at 

the 95% confidence level) for any measured volumetric percentage of mineral or porosity 

components (Stanton, 1994). The point count results, petrographic information, and laborato-

ry measured porosity/permeability are presented in Appendix II-1. 

Microstructural observation was obtained in both secondary and backscattered electron imag-

ing, with a Hitachi SU70 scanning electron microscope (SEM). Typical voltage for thin sec-

tions was obtained at 15 kV, 0.73 nA together with an analytical working distance of 15 mm. 

The electron microscope is equipped with an Oxford Instrument Aztec microanalysis system 

and Silicon Drift (SDD) EDX detector X-max 50. Rock chip samples from both fluvial and 

aeolian sandstones were Au/Pd coated with 35 nm thick (Cressington Scientific 108 Auto 

sputter coater) for optimum imaging resolution at 5 KeV and 8 KeV. Thin sections were car-

bon coated with 30 nm thick (Cressington Scientific 108 evaporating system A) in order to 

obtain large area “Phase Maps” which were achieved using Phase ID within Aztec 3.3 soft-

ware. 

To identify and quantify the clay mineralogy, six samples were chosen for XRD analysis (4 

from grain coated aeolian sandstone samples, 2 from fluvial sandstone samples with quartz 

and dolomite cements and without grain coatings). The bulk rock was disaggregated by gen-

tle crushing and suspend in distilled water. After allowing the coarse grains to settle for 3 

hours, the clay in suspension was decanted in the centrifuge for 4.8 minutes at 1000 rpm, and 

this process is performed 3 times. Clay with less than 2 microns was tested after being air 

dried, solvation with glycerol and heating at 500°C for 2 hours. 
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5.4 Results 

5.4.1 Porosity and permeability 

The Buchan Formation sandstones have a wide range of porosity and permeability (ϕ = 1% – 

28% and K= 0.1 mD – 5290 mD). Porosity and permeability are well correlated in most of 

the samples (in fluvial samples, R
2 

= 0.68; in aeolian samples, R
2 

= 0.89; in all samples, R
2 
= 

0.74) inferred that the factors affecting porosity would also affect permeability (Figure. 5.3a). 

 

Figure 5.3 Porosity and permeability distributions and correlation coefficients for: (a) All the sam-

ples; (b) Stratigraphic unit B04; (c) Stratigraphic unit B09; (d) Stratigraphic unit B10; (e) Strati-

graphic unit B11; (f) Stratigraphic units B07 and B08. 

For the fluvial units including B04, B09, B10 and B11 (Figure. 5.3b – 5.3e), the porosity 

ranges from 0.1% to 23.1% (arithmetic mean 12.7%), and the permeability ranges from 0.2 

mD to 1240 mD (arithmetic mean 147.7 mD, geometric mean 5.41 mD). For the aeolian units 

B07 and B08 (Figure. 5.3f), the porosity ranges from 5.1% to 28% (arithmetic mean 20.2%), 
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and the permeability ranges from 0.2 mD to 5290 mD (arithmetic mean 740.6 mD, geometric 

mean 64.9 mD). 

5.4.2 General petrographic descriptions 

5.4.2.1 Detrital mineralogy 

The studied Buchan sandstone samples are litharenite to sub-litharenite and minor quartz-

arenite based on Folk (1957), with an overall average composition of Q78.3F2.9R18.8. The aver-

age composition for fluvial sandstones is Q76.1F3.3R20.7 (Figure. 5.4a); aeolian sandstones 

have an average composition of Q82.1F2.4R15.6 (Figure. 5.4b). Texturally, the fluvial sand-

stones are relatively immature and fine to medium grained, sorting ranges from poor to mod-

erate and roundness of grains varies from sub-angular to sub-rounded, grains are tightly com-

pacted showing curved and concavo-convex grain contacts. Conversely, the fine to medium 

grained aeolian sandstones are more mature, sorting ranges from moderate to good and 

roundness of grains varies from sub-rounded to rounded, and the grain contacts are common-

ly point to linear. 

 

Figure 5.4 (a) QFR charts for fluvial sandstone samples; (b) QFR charts for aeolian sandstone sam-

ples. 

In all samples, quartz is the dominant grain type (41% – 95%). Most quartz grains are mono-

crystalline (Figure 5.5a), some of them showing little to moderate undulose extinction (Fig-
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ure 5.5b). Polycrystalline quartz is a minor constituent and only found in conglomerate-size 

quartz grains (Figure 5.5c). Feldspar is commonly present in trace amount and up to 7%, the 

main type is microcline with polysynthetic twinning (Figure 5 5d), the feldspars occur as 

both fresh (Figure 5.5d) and kaolinitized grains (Figure 5.5e). Most mica grains are musco-

vite presenting in all the samples and comprising up to 13%. Micas show variable amounts of 

distortions (Figure 5.5b). Rock fragments (Figure 5.5f) are mainly micaceous and illitic mud 

clasts, fine-grained metamorphic and volcanic fragments are present in trace quantities. The 

abundance of rock fragments is highly variable (1% – 69%) and related to each sub-facies: 

CHB has the lowest average rock fragments (11%) among all fluvial sub-facies (15% in CHC, 

16% in SF and 27% in CHA). While in the aeolian facies, aeolian dune has a lower average 

rock fragments (13%) than interdune deposits (16%). 
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Figure 5.5 Photomicrographs of sandstone detrital minerals. All thin section images were produced 

under cross-polarized light. (a) Monocrystalline quartz grain with quartz overgrowth and visible dust 

rims (yellow arrows) on the original detrital grain. Well 30/24-34, 2967.8 m, unit B11, fluvial facies; 

(b) Bended muscovite grains (white arrows) and quartz grains with undulose extinction. Well 30/24-

20z, 3125.4 m, unit B04, fluvial facies; (c) Polycrystalline quartz in conglomeratic-sized grains. Well 

30/24-28, 2791.5 m, unit B10, fluvial facies; (d) Microcline with polysynthetic twinning, notes the 

presence of carbonate cement and pore-filling kaolinite. Well 30/24-05, 2846.4 m, unit B04, fluvial 

facies; (e) SEM image of severely dissolved feldspar and authigenic kaolinite. Well 30/24-20z, 3125.4 

m, unit B04, fluvial facies; (f) Possible volcanic-origin rock fragments, note the pore-filled kaolinite 

aggregates and quartz overgrowth (yellow arrows). Well 30/24-05, 2847 m, unit B04, fluvial facies; 

Q-quartz; Qu- quartz grains with undulose extinction; PQ- Polycrystalline quartz; F-feldspar; C-

carbonate cement; K-kaolinite; RF-rock fragment 

Pore space mainly consists of primary intergranular pores, secondary inter- and intragranular 

pores and intra-crystalline micro pores. The polygonal intergranular pores are the main type 

(more than 90% among all pore space) and range in sizes from 5 μm to 200 μm. The second-

ary pores (less than 10% among all pore space) are mainly contributed from framework-grain 

dissolution, i.e. the dissolution of detrital feldspars. Dissolution of dolomite cement can be 

found in trace amounts. The intra-crystalline micro pores (negligible among all pore space) 

mainly consist of micro pores in clay minerals (e.g., kaolinite, illite, smectite) and range in 

size from 0.1 μm to 5 μm. 

5.4.2.2 Authigenic mineralogy 

Authigenic minerals in the studied sandstones are mainly dolomite, quartz overgrowth, kao-

linite, illite and I/S. The kaolinite, illite and quartz overgrowth are usually associated with 

fluvial sandstones, while I/S are only found in aeolian sandstones. 

Dolomite is the prevalent cement in the Buchan sandstones ranging from 0% – 36% with an 

average value of 5.7%, and are commonly iron-stained. It is usually presented as thin bands 

of disseminated red-brown stained nodules in hand specimen with a size of up to 2 mm (Fig-
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ure 5.6a). Thin section observation reveals a rhombic shape with clear rims and cloudy cen-

tre (Figure 5.6b) and poikilotopic structure (Figure 5.6C). 

 

Figure 5.6 Photomicrographs showing different diagenetic minerals. (a) Thin bands of ‘spotty’ red-

brown stained cements (yellow arrows) in the cores. Well 30/24-05, 2849.1 m, unit B04, fluvial facies; 

(b) Dolomite cements in the pore space showing well rhombic shape with cloudy core and light rims, 

cross-polarized light. well 30/24-05, 2849.1 m, unit B04, fluvial facies; (c) Quartz grains floating in 

the dolomite cements and well compacted (white arrows) without pore-filling dolomite cements, 

cross-polarized light, well 30/24-20z, 3126 m, unit B04, fluvial facies; (d) Extensive quartz over-

growth (red arrows) on the detrital quartz grains, cross-polarized light, well 30/24-20z, 3126 m, unit 

B04, fluvial facies; (e) Kaolinites showing pseudo-hexagonal plates and vermicular and booklet mor-

phologies under SEM. Well 30/24-20z, 3176.6 m, unit B04, fluvial facies; (f) Fibrous/hairy authigenic 

illite based on kaolinite under SEM. Well 30/24-20z, 3126 m, unit B04, fluvial facies; (g) SEM image 

showing pore-bridging habit of authigenic illite (yellow arrows). Well 30/24-20z, 3165.3 m, fluvial 
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facies; (h) Grain coating clays existing between grain contact areas (white arrows), plane- polarized 

light ,well 30/24-31, 3197.7 m, unit B08, aeolian facies; (i) Pore-filling and grain coating smectite-

illite mixed layers showing honeycomb or cornflake morphology under SEM. Well 30/24-28, 2891.1 m, 

unit B07, aeolian facies; (j) Enlarged view of the rectangle area in Fig. 6i, note the filamentous ter-

minations (white arrows) indicates the illitization occurred; (k) EDX spectrum of the rectangle area 

in Fig. 5.6j, note the small peak of potassium indicates the partial illitization. 

D-dolomite; P-pore space; K-kaolinite; I-illite; I/S-illite/smectite 

Quartz overgrowth is present primarily as syntaxial cement forming incomplete or complete 

rims around quartz grains (Figures 5.5a and 5.6d). Boundaries between detrital grains and 

overgrowth cements are visible due to the presence of inclusions along grain boundaries. 

Quartz overgrowths are widely distributed in the fluvial sandstone samples (up to 6%, aver-

age 3%). While the quartz overgrowth is typically absent in most of the aeolian samples, ex-

cept a few samples (5 out of 36) have trace amount of quartz overgrowth up to 1% (Appen-

dix II-1). Kaolinite and authigenic illite are the two main clay types in fluvial sandstones. 

Kaolinite mainly occurs as euhedral pseudo-hexagonal plates and vermicular or booklet ag-

gregates filling primary pores (Figure 5.6e). Illite occurs as fibrous or hairy crystals mainly 

nucleated on kaolinite (Figure 5.6f) and shows a pore-bridging habit (Figure 5.6g).  
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Figure 5.7 The mineral phases maps for two typical aeolian sandstone samples which contain well-

developed and continuous grain coating clays. (a) (b) (c) BSEM image, quartz-facies map and grain 

coating facies map of sample from Well 30/24-31, 3197.7 m, unit B08, aeolian facies; (d) (e) (f) 

BSEM image, quartz-facies map and grain coating facies map of sample from Well 30/24-28, 2891.1 

m, unit B07, aeolian facies. 

I/S has been identified by XRD (Table. 5.1, at the end of this chapter) and EDX analysis 

(Figure 5.6k) and it is the most important clay type in the studied aeolian sandstones alt-

hough it is only present in minor amounts (0.5% – 5%). The thin section and SEM observa-

tions illustrate that the I/S is presenting in two forms: a). Grain coating I/S (Figures 5.6h and 

5.6i) commonly occurs as cornflake or honeycomb morphology with filamentous termina-

tions, and consists of a 1 μm – 5 μm thick rim coating all the detrital grains in aeolian facies 

sandstones; it is absent in fluvial facies sandstones. It is also observed that quartz overgrowth 

are absent in aeolian facies sandstones where uniform and robust grain coating I/S has devel-

oped; and b). Pore-filling I/S (Figure 5.6i and 5.6j), commonly presenting as flocculent ag-

gregates existing in the intergranular pore space of aeolian facies sandstones, and is also ab-

sent in fluvial facies sandstones. To evaluate the development, coverage and continuity of the 

grain coating I/S, the mineral phases map has been created for two aeolian dune samples 

(Figure 5.7). Figures 5.7c and 5.7f clearly displayed that nearly all the grains are coated by 

well-developed and continuous grain coating I/S, the visual grain coating coverage is nearly 

100%. 

In both sandstone types, chlorite is subordinate and present in trace amounts (0.1% – 0.5%) 

which is confirmed by XRD analysis (Table 5.1). 

5.4.3 Porosity loss evaluation 

Calculation on porosity loss from compaction (COPL) and cementation (CEPL) is a good 

way to calculate the effect of compaction and cementation on reducing porosity. These two 
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parameters were firstly proposed by Lundergard (1992), and a useful parameter compaction 

index (Ic), can be calculated using following equations: 

COPL = Pi − (
(100−Pi)∗IGV

100−IGV
). 

(1) 

CEPL = (Pi − COPL) ∗ (
C

IGV
). 

(2) 

Ic =
COPL

COPL+CEPL
. 

(3) 

Where Pi is the assumed initial porosity, the intergranular volume (IGV) is calculated by add-

ing up the measured porosity and the total cement volume C. The calculation of COPL and 

CEPL are only accurate when three conditions are met: 1). The assumed initial porosity Pi is 

appropriate; 2). The amount of cement produced by local grain dissolution is negligible or 

known; and 3) The amount of framework exported by dissolution is negligible or known 

(Lundergard, 1992). The compaction index (Ic) equals 1.0 when all porosity loss is due to 

mechanical compaction, and equals 0 when all porosity loss is due to cementation.  

In this study, we employ the estimated Pi for loose sands according to Beard and Weyl 

(1973), the assumed Pi for the fine-medium grained, moderately sorted fluvial sandstones is 

34.8%, and for the fine-medium grained, well sorted aeolian sandstones, Pi is 37.8%. 

The results (Appendix II-2) show that compaction has reduced more porosity in aeolian 

sandstones than in fluvial sandstones: the COPL value is 14.82% (accounted for 39.21% on 

initial porosity, average Ic = 0.73) in aeolian sandstone samples and 10.06% (accounted for 

28.91% on initial porosity, average Ic = 0.44) in fluvial sandstone samples, respectively. It is 

also worthy to note that the COPL of fluvial samples has a larger range (0% – 29%) than aeo-

lian samples (3.5% – 22.8%). 
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The CEPL results suggest that fluvial sandstones suffered much more porosity loss from ce-

mentation (average 12.71%, accounted for 36.52% on initial porosity) than aeolian sand-

stones (average 5.63%, accounted for 14.89% on initial porosity).  

5.4.4 Burial-thermal history 

The 1D burial history was modelled using Schlumberger petroleum systems modelling soft-

ware PetroMod (V2014.1). Several heat flow histories of the Central Graben and, more spe-

cifically, of UK Quadrant 30 in the Central North Sea (Swarbrick et al., 2000; Carr, 2003; Di 

Primio and Neumann, 2008) have been employed for the modelling. Figure 5.8 is a burial-

temperature history for the Buchan Formation in the Ardmore Field which is generally simi-

lar to burial histories presented in other studies of Central Graben (Nguyen et al., 2013). The 

Buchan Formation in the Ardmore Field was at consistently shallow burial depth and low 

temperature (< 1.5 km and < 60°C) until Paleogene, and then rapidly buried into current max-

imum depth and reached higher temperature within a short time.  

 

Figure 5.8 1D burial depth curves with geothermal isochore lines of Buchan Formation. 
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5.5 Discussion 

5.5.1 Paragenesis 

The relative timing of the main diagenetic features can be reconstructed by considering the 

relationships between the different diagenetic events (Figure 5.9). However, there are some 

diagenetic differences between fluvial and aeolian sandstones. 

The earliest diagenetic event was the formation of grain coating clays in aeolian deposits, 

which is considered to be introduced from the infiltration of clay-bearing groundwater 

through the sands. This event was prior to the compaction and could be proved by the pres-

ence of grain coating clays between grain contact areas (Figure 5.6h). 

Mechanical compaction in both aeolian and fluvial deposits followed after clay infiltration, 

during which mica flakes were deformed around quartz and feldspar grains (Figure 5.5b). In 

both fluvial and aeolian samples, an early dolomite cementation occurred at this time, as in 

some samples the detrital grains appear to float and point grain contact is preserved within 

the poikilotopic dolomite cement (Figure 5.6c). Where dolomite is not present, grains are 

well compacted (Figure 5.6c). The presence of euhedral dolomite with cloudy centres and 

clear rims (Figure 5.6B) might be an indicator of dolomitization occurred on calcrete precur-

sor. Pressure dissolution at the quartz grain contacts would have occurred as compaction in-

creased due to the weight of overburden. This is more common in fluvial sandstones possibly 

due to the greater number of rock fragments, such as ductile micaceous clast, may promote 

the compaction in the fluvial sandstones and resulted in concavo-convex grain contacts (Fig-

ure 5.6c). This is also supported by greater maximum COPL in fluvial samples (COPLmax = 

29%) than in aeolian samples (COPLmax = 22.8%). 
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Figure 5.9 Paragenetic sequences of the Buchan Formation, the solid/dash lines represent the ma-

jor/minor events. Note the superscripts at the end of each event represent: A – the event mainly oc-

curred in aeolian sandstones; F – the event mainly occurred in fluvial sandstones; A&F – the event 

mainly occurred in both aeolian and fluvial sandstones; * – the event is not observed under either thin 

section or SEM, but confirmed by XRD. 

A subsequent event was the dissolution of feldspar in both aeolian and fluvial deposits which 

generated authigenic kaolinite (Figure 5.5e). Considerable silica ions were released into solu-

tion, this would form quartz overgrowth in fluvial sandstones, this is usually suggested to be 

occur in middle to late diagenesis stage (Worden and Morad, 2000). While in the aeolian 

sandstones, the presence of early-formed grain coating clays provided no site on the grain 

surface for nucleation of silica ions, quartz overgrowth is thereby not observed. 

The whole diagenetic setting might become more alkaline during late diagenesis. In the fluvi-

al sandstone, illitization occurred on kaolinite displaying a fibrous/hairy morphology (Figure 

5.6f). While in the aeolian sandstones, illitization is observed both on grain-coating and pore-

filling smectite (Figure 5.6i), and the presence of pore-bridging habit of illite is often regard-

ed to be an indicator of intermediate to deeper burial (Jiang, 2012). It can also be supported 

by XRD data (Table 5.1), the I/S is in R1 ordered interstratification and the percentage of 

illite within I/S is around 70% – 80%, this usually occurred at 100°C – 110°C (Hoffman and 
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Hower, 1979; Huang et al., 1993). There are also minor chloritization possibly due to the 

presence of Mg
2+

 and ferroan ions in the formation water. 

5.5.2 The grain coating I/S 

5.5.2.1 Source of grain coating I/S 

The cornflake or honeycomb morphology observed under SEM suggests that the grain coat-

ing I/S (also the pore-filling I/S) was transformed from smectite precursor, as illite originated 

from kaolinite is more possible to show sheet-like morphology (Pollastro, 1985). Mineralogi-

cally, Pittman (1992) deduced that smectite could form an effective dense and continuous 

grain coat because they nucleate flatly attached to the detrital grain surface and curl away 

from that surface. The clay developed initially as clay wisps and progressed to clay platelets 

that formed a root zone, then to an open polygonal box-work and finally to a denser polygo-

nal box-work. 

In this study, the grain coating I/S has a contrasting distribution pattern that it is only found in 

aeolian facies sandstones and absent in fluvial sandstones. Within the given arid/semi-arid 

aeolian-dominated setting, the fine-grained sandstones with discontinuous wavy laminations 

commonly indicate a wet interdune or desert lake deposits, which were possibly charged by 

distal sector (i.e. sand flat) of fluvial distributary system during fluvial-retreat period. As a 

consequence, the fine-grained sediments, in this case the smectitic clays, would be accumu-

lated in this setting and flow into aeolian dune by mechanical infiltration, which is suggested 

to be a likely main source of grain coating (also the pore-filling) I/S. 
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Figure 5.10 The photomicrograph (plane-polarized light) illustrates the presence of grain coating I/S 

in the grain contact areas (white arrows), thicker coats in grain surface depressions (yellow arrows) 

and grain rough surface (red arrows), and thinner coats in non-depression areas (black arrows). 

Sample from well 30/24-31, 3190.6 m, unit B08, aeolian dune sands. 

Petrographic evidences also support this idea. Wilson and Pittman (1977) has set several cri-

teria for recognizing mechanically infiltrated clay rims in aeolian and shallow marine sand-

stones: 1). Presence at grain contact areas; 2). Increased thickness in depressions on frame-

work-grain surface; and 3). More extensive development in finer grained laminae or beds. In 

this study, the petrographic features of grain coating I/S meet the recognition criteria of me-

chanical infiltration, it occurs commonly at the grain contact areas of aeolian sandstones, and 

generally shows a thicker I/S coating in the framework-grain depressions and rough surfaces 

than the non-depression and smooth areas (Figure 5.10). Additionally, Figure 5.11 clearly 

displays that more extensive development of grain coating and pore filling I/S in finer-

grained aeolian sands than in medium-grain aeolian sands. 
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Figure 5.11 Photomicrograph illustrating different abundance of infiltrated clays in representative 

pin-stripe lamination dune sandstones. Note the finer grain-size lamentation (right) contains more 

pore-filling clays. Well 30/24-31, 3190.6 m, unit B08, aeolian dune sands. 
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5.5.2.2 Effect of grain coating I/S on reservoir quality 

The sum of total cements (dolomite, quartz overgrowth and authigenic clays) clearly has an 

inverse relationship (R
2
 = 0.47) with porosity (Figure 5.12). This at least indicates that the 

various types of cementation are jointly the main control of reservoir quality. As the dolomite 

and authigenic kaolinite occurred in both fluvial and aeolian sandstones, the most remarkable 

difference between two sandstone types is the quartz overgrowth which is extensively dis-

tributed (up to 6%) in fluvial sandstones and nearly negligible in aeolian sandstones. 

 

Figure 5.12 The scattered image of porosity and total cements showing a clearly inverse relationship. 

The data is categorized by aeolian and fluvial facies. 

Continuous grain coating minerals are often the key factor for high porosity in deeply buried 

(> 2.5 km) sandstones (Pittman, 1992). Amongst the numerous studies, the grain coating 

chlorite and microcrystalline quartz are most frequently mentioned. In our study, the grain 

coating I/S is also effective on inhibiting quartz overgrowth thus preserving porosity. 
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Figure 5.13 Comparison between: (a) fluvial channel sandstone without clay coatings which is exten-

sively cemented by quartz overgrowth, the clay coating coverage is 0%, and about 95% of grains 

have quartz overgrowth, n = 89. Well 30/24-20z, 3117.8 m, unit B04; (b) aeolian sandstone with very 

high clay coating coverage (100%, n = 212) with no quartz overgrowth. Well 30/24-31, 3202 m, unit 

B08. Both figures are taken under plane-polarized light. 

In the Buchan Formation, the amount of quartz cement in all the samples is clearly linked to 

the presence and coverage of grain coating I/S. The fluvial sandstones do not contain any 

type of continuous and well developed clay coatings around quartz grains (grain coverage is 

nearly 0%, n = 89) and are hence 95% of grains (84 out of 89) are cemented by quartz over-

growth in variable amount (Figure 5.13a). Conversely, grain coating I/S are well developed 

in almost all the aeolian sandstone samples with good coverage (grain coverage = 100%, n = 

212) and continuity, and the quartz cementation is almost absent (Figure 5.13b).  

To quantitatively evaluate the effect of grain coating I/S, we employ the algorithm of 

Walderhaug (1996) to calculate the theoretical amount of quartz cementation in upper fine to 

medium-grained (grain size = 0.25 mm – 0.3 mm) aeolian sandstones if the grain coating I/S 

were absent (parameters and functions of the algorithm see Appendix III). With the assumed 

duration of 70 million years from beginning of Paleogene, the result shows there would be 

about 6% – 7% porosity has been preserved by grain coating I/S (Figure. 5.14). 
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Figure 5.14 Empirical calculations of possible quartz overgrowth amounts for sand grain size in 0.25 

mm and 0.30 mm during 70 million years. The algorithm is after Walderhaug (1996). 

The grain coating I/S in this study was transformed from a smectitic precursor. For the reser-

voir quality, smectitic clay usually has two shortcomings: 1). Smectite would transform to 

mixed layer smectite-illite and finally illite when the K
+
 is enriched in the fluid and tempera-

ture reaches around 70°C – 80°C or higher. The hairy/fibrous morphology of illite would re-

duce the pore and throat space, thus significantly decreasing reservoir quality, especially 

permeability (Almon and Davies, 1981; Wilson, 1994; Le Gallo et al., 1998); 2). Smectite has 

a high water sensitivity thus could easily swell and occupy the pore space (Gray and Rex, 

1965). 

However, these two shortcomings have very limited negative impact on reservoir quality in 

this study. Huang et al. (1993) and Wilson (1994) suggested that the kinetics of illitization of 

precursor detrital smectitic clays not solely depends on temperature but potassium concentra-

tion and total time-temperature exposure. In the Buchan Formation, feldspar dissolution 

might provide considerable amount of K
+
. The burial history has illustrated that the Buchan 
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Formation was consistently at shallow depth (< 1.5 km, temperature < 60°C) until the Palae-

ogene and was then rapidly buried to present day maximum burial depth. This rapid burial 

would only provide short thermal exposure which is insufficient for full and complete illitiza-

tion. Secondly, the amount of pore-filling I/S are commonly less than 5% in each aeolian 

sandstone sample and this would not significantly occlude the pore space.  

5.6 Conclusions 

The grain coatings observed in the fluvial-aeolian Buchan Formation sandstones of the 

Ardmore Field have been identified as illite/smectite (I/S) which were transformed from 

smectite precursor. The effect of porosity preservation due to grain coating chlorite and mi-

crocrystalline quartz has been demonstrated in a number of publications, however this study 

shows that I/S grain coatings can also be very effective in preventing quartz cementation un-

der specific conditions, and thereby help preserving primary porosity. 

In the fluvial sandstones, the precursor material has been absent resulting in the absence of 

clay coatings on the sand grains, and thereby quartz cementation is extensively developed and 

reservoir quality is poorer. 

The thick and continuous grain coating I/S with extensive and good grain coverage is only 

observed in aeolian sandstones and this clay coating has inhibited quartz overgrowth and 

hence high porosity values have been persevered at more than 2.5 km depth. The illitization 

on smectite occurred limitedly thus would not significantly reduce reservoir quality. This is 

mainly due to the featured burial history: the Buchan formation was at consistently shallow 

depth and low temperature until Palaeogene which is not kinetically favourable to activate the 

smectite illitization. After the Palaeogene, the Buchan Formation was buried to today’s max-

imum depth and temperature rapidly, the short time-temperature exposure is insufficient for 
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full and complete illitization. The I/S coatings were generated from smectitic precursor. It is 

possible that the precursor has been formed by mechanical infiltration from associated wet 

interdune deposits charged by clay-bearing water representing more distal sector of fluvial 

distributary system during aeolian-dominated period. 

The understanding of the positive effect on porosity preservation from grain-coating I/S may 

aid predictions of high quality Devonian-hosted reservoirs in the Central North Sea. Such 

sandstones could form attractive exploration targets that hitherto may have been ignored be-

cause they would be expected to have low porosity on the basis of regional trends. 
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Table 5.1 XRD data for < 2 μm size mineral fraction in selected samples. 

Well 
Depth 

(m) 
Facies 

Wt.%  Illite/smectite Illite Kaolinite Chlorite Quartz Calcite Dolomite 

<2um 
% 

A 

% 

B 
Order % I 

% 

A 

% 

B 
Crys 

% 

A 

% 

B 
Crys 

% 

A 

% 

B 
Crys 

% 

A 

% 

B 

% 

A 

% 

B 

% 

A 

% 

B 

30/24-28 2790.1 AD 1.9 34.4 0.7 O 
70-

80 
58.3 1.1 P 0.0 0.0 - 7.1 0.1 P 0.3 0.1 0.0 0.0 0.0 0.0 

30/24-28 2829.8 AD 3.0 46.3 1.4 O 
70-

80 
25.9 0.8 P 22.6 0.7 M 2.9 0.1 M 2.4 0.1 0.0 0.0 0.0 0.0 

30/24-28 2844.1 AD 3.0 50.5 1.5 O 
70-

80 
32.7 1.0 P 7.5 0.2 M 3.5 0.1 M 5.8 0.2 0.0 0.0 0.0 0.0 

30/24-31 3190.3 AD 2.0 44.8 0.9 O 
70-

80 
34.9 0.7 P 10.7 0.2 M 5.1 0.1 P 4.5 0.1 0.0 0.0 0.0 0.0 

30/24-28 2794.7 CHB 3.3 TR TR - - 22.0 0.7 P 58.7 1.9 M 15.8 0.5 M 3.6 0.1 0.0 0.0 0.0 0.0 

30/24-05 2849.3 CHB 3.2 TR TR - - 8.5 0.3 P 72.6 2.3 M 5.3 0.2 P 3.1 0.1 0.0 0.0 10.6 0.3 

Facies: AD = aeolian dune; CHB- channel bar 

A = Weight% relevant size fraction; B = Weight% bulk sample;  

Mixed-layer Ordering: RI= Randomly Interstratified (R0); O = Ordered Interstratification (R1); LR = Long-range Ordering (R3);  

Crystallinity: VW = Very Well Crystallised; W = Well Crystallised; M = Moderately Crystallised; P = Poorly Crystallised. 
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Summary 

The Upper Devonian Buchan Formation sandstone reservoirs in the UK Central North Sea 

are litharenite/sublitharenite and were deposited in fluvial/aeolian settings. The grain-coating 

clays in the aeolian sandstones has effectively inhibited quartz overgrowth, the reduction of 

reservoir quality is mainly due to mechanical compaction and early dolomite precipitation in 

both fluvial and aeolian sandstones; quartz overgrowth and kaolinite illitization in fluvial 

sandstones; and limited smectite illitization in aeolian sandstones. 

The carbon/oxygen stable isotopes of dolomite cements suggest a predominantly marine car-

bon source and precipitation temperature at between 25°C – 58°C indicating a shallow burial 

depth during dolomite precipitation. The temperatures and the dolomite distribution indicate 

that the cements originated from the overlying Upper Permian Zechstein carbonates. Exten-

sive quartz overgrowths formed at 80°C – 120°C in the late and deep diagenetic burial history. 

The most probable silica source was from feldspar kaolinitization and pressure dissolution of 

quartz grains. Through detailed petrography and geochemical analyses the burial-

paragenesis-thermal history of Buchan Formation has been constructed. 

Similar diagenetic processes are likely to have occurred in the Buchan Formation in other 

parts of the Central and Northern North Sea. This study may allow new petroleum plays to be 

considered in areas previously thought to have poor hydrocarbon potential. 
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6.1 Introduction 

The Upper Devonian Buchan Formation have a wide distribution in the Central and Northern 

North Sea (Ziegler, 1990) but are usually perceived to have little hydrocarbon potential 

(Downie, 2009). Despite this, a number of discoveries both in UK and Norwegian North Sea 

have confirmed considerable, but highly variable hydrocarbon reserves in the Buchan For-

mation sandstones (Edwards, 1991; Trewin and Bramwell, 1991; Knight et al., 1993; 

Gambaro and Currie, 2003; Gluyas et al., 2005). Until now, the Buchan Formation sand-

stones have been poorly understood due to the fact that the Devonian Formations were never 

considered as the main exploration targets for petroleum. Previous studies of the Upper De-

vonian reservoirs have concentrated on the sedimentology, describing the strata as deposits of 

fluvial-braided and aeolian systems (Graham et al., 2003; Downie, 2009). 

The reservoir quality of these typically terrestrial deposits is highly heterogeneous and varies 

from nearly impermeable (less than 0.1 mD) up to Darcy level (Gluyas et al., 2005). It is re-

ported that the cementation by authigenic carbonate and quartz overgrowth are the principle 

causes of poor reservoir quality (Downie, 2009). However, no detailed report has explained 

the sources of these cements, when and under what conditions they were formed and how the 

cements control the reservoir quality. 

To achieve a better understanding on these problems, the Ardmore Field (previous name ‘Ar-

gyll’) was selected as the main research target due to it possessing extensive core coverage of 

the Buchan Formation interval. The Ardmore Field has multiple reservoirs: Permian Zech-

stein carbonate, Permian Rotliegend sandstone and Upper Devonian Buchan Formation sand-

stones all of which are in communication, together with minor, isolated oil accumulations in 

Upper Jurassic Fulmar Sandstones and Upper Cretaceous Chalk (Bifani and Smith, 1985; 

Robson, 1991; Gluyas et al., 2005). The properties of the former two Permian units have been 

recognised in numerous studies (e.g. Nagtegal, 1979; Glennie and Provan, 1990; Purvis, 1992; 
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Howell and Mountney, 1997; Leveille et al., 1997; Sweet, 1999; Heward et al., 2003; Gluyas, 

2016); but this is the first time a study has been reported on the combined diagenetic and ge-

ochemical analyses of the Buchan Formation sandstone reservoirs. The results provide new 

insights into these poorly-understood Devonian reservoirs. We investigate the sources of ce-

ments, diagenetic history and evaluate their influences on reservoir quality. Additionally, the 

outcomes have broad implications for the future petroleum explorations of Devonian age res-

ervoirs in the Central and Northern North Sea. 

 

Figure 6.1 Geological maps showing: (A) Location and main structure elements of Ardmore (Adm) 

field. (B) Vertical section of an SW-NE profile a-b in Figure 6.1A. (C) Seismic section of a-b profile.  

6.2 Geological setting 

The Ardmore Field is located on the Argyll Ridge, a large NE-SW trending Palaeozoic-age 

tilted fault block on the south-western flank of the Central Graben in Block 30/24, UK Conti-
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nental Shelf, about 300 km east from Edinburgh, the field measures 2.5 km wide and 6 km 

long (Figure 6.1A). It is a horst feature with the crest in the north and fault closure to the 

north-east. A combination of dip and faults defines the limits of the field on the north-west 

and south-east flanks, while dip closure defines the southern limits of the field. The major 

fault trends are in two main directions, WNW–ESE cut by NW-SE faults. As the Devonian is 

steeply dipping within the Ardmore Field, it is further dissected by those NW-SE oriented 

faults, which divide the field into three parts: the NE, Central and SW segments (Figure 

6.1B). 

The Middle Devonian Kyle Limestone and overlying Upper Devonian Buchan Formation 

sandstones are the oldest strata penetrated in the Ardmore Field. The Kyle Limestone shows 

strong seismic reflection which provides a good lower limit and its upper boundary is a con-

formable transition to the Buchan Formation sandstones (Figure 6.1C). The uppermost 

Buchan Formation sub-crops at the Base Permian unconformity, the oldest stratigraphic units 

sub-crop in the NE segment with progressively younger stratigraphic units sub-cropping to-

wards the SW segment. Eleven units (named as B01 to B11 from base to top) have been di-

vided within the formation based on well logs utilising laterally correlative shale beds 

(Gluyas et al., 2005). The interpretation is controlled by available core data, although this 

provides limited stratigraphic control, as core coverage per unit is sparse. The lowest units 

(B01 to B03) are of poor reservoir quality, as they are shaley relative to the overlying reser-

voirs. These older units are oil-bearing in the NE segment of the field but few wells have 

penetrated them and only minor oil production has occurred. The reservoir quality of Buchan 

Formation sandstones improves towards the south-west, with the central and south-west seg-

ments containing better reservoir quality intervals.  

We are uncertain about the depositional facies for sandstones in stratigraphic units B01, B02, 

B03, B05 and B06 due to the poor core coverage; while the units B04, B09, B10 and B11 are 
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dominated by fluvial braided deposits, and units B07, B08 and some minor portions in B09 

and B10 contain significant aeolian deposits (Figure 6.2) (Tang et al., 2017a). The overall 

known units comprise a fluvial (B04)-aeolian (B07 and B08)-fluvial (B09, B10 and B11) var-

iation and generally represent a progradation-retreat-progradation cycle of the alluvial fan-

based braided system with aeolian deposits occurring mainly between two main progradation 

periods (Tang et al., 2017a). The total thickness of Buchan Formation sandstones is nowhere 

fully penetrated but based on seismic interpretation we estimate it to be up to 800 m. 

 

Figure 6.2 Stratigraphy and sketched sedimentary log of the Ardmore Field. 

The Buchan Formation sandstones in the Ardmore Field are heterogeneous and hence the 

reservoir quality is highly variable. Net to gross ratio is commonly greater than 70% in the 

better quality zones, the better developed braided channels and aeolian dune sand bodies 

achieve porosity between 12% to 28%, and the typical porosity values of North Sea oil-



Reservoir Quality of Upper Devonian Strata UK North Sea 

137 
 

bearing sandstones at this depth is around 16% (Selley, 1978). Net sand permeability reaches 

5 Darcies, though 10’s mD and 100’s mD are typically average values in the fluvial and aeo-

lian sand packages, respectively. 

6.3 Database and methods 

One hundred and one Buchan Formation sandstone core samples were collected from five 

wells (14 from well 30/24-05, 16 from well 30/24-20z, 38 from well 30/24-28, 16 from well 

30/24-31 and 17 from well 30/24-34). Care was taken to minimize breakage and thereby pre-

serve cements, textures, and fabrics. Thin sections for petrographic examination, fluid inclu-

sion wafers, and other analytical analysis were prepared. Samples for thin-section petrogra-

phy were impregnated with blue epoxy to facilitate the identification of porosity. Petrograph-

ic examination was performed on a Leica DM2500P standard polarising microscope to identi-

fy textures and mineral composition as well as characterize the relationships between differ-

ent cement types. Photomicrographs were taken using an attached Leica DFC420C digital 

camera. Estimation of the percentages of detrital grains and cements was made on thin sec-

tions by point counting analysis (n = 300). The measured porosity and permeability data were 

provided by EnQuest internal reports.  

Based on the microscopic petrography examinations, representative samples were selected 

for Hitachi SU70 scanning electron microscope (SEM) observation. The electron beam has 

acceleration energy of 10 kV – 20 kV. The technique relies on backscattered electrons on pol-

ished sections to define mineral grain boundaries, and then analyses X-ray emission with an 

energy-dispersive X-ray detector (EDX) to assign the mineral compositions. Cathodolumi-

nesence (CL) was employed for recognizing different quartz overgrowth generations and per-

formed on a Hitachi SU70 electron microscope equipped with a Gatan Mono CL Digiscan II, 

operated at 12 kV for panchromatic imaging. 
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To identify and quantify the clay mineralogy, six samples were chosen for XRD analysis (4 

from grain coated aeolian sandstone samples, 2 from fluvial sandstone samples with quartz 

and dolomite cements and without grain coatings). The bulk rock was disaggregated by gen-

tle crushing and suspended in the distilled water. After allowing the coarse grains to settle for 

3 hours, the clay in suspension was decanted into a tube for centrifuging. Clay with less than 

2 microns was tested after being air dried, solvation with glycerol and heating at 500°C for 2 

hours.  

A very fine-grained sample (siltstone) was selected for QEMSCAN (quantitative evaluation 

of minerals by scanning electron microscopy) analysis with the aim to provide a quantitative 

petrographic characterisation. The sample was cut to give a flat surface and impregnated with 

Struers Epofix resin within a 30 mm diameter mould. The sample was polished, carbon coat-

ed and measured using automated mineral analysis at the Rocktype QEMSCAN facility. The 

FEI QEMSCAN technique combines SEM and X-ray (EDX) technology to provide automat-

ed petrographic description of geological samples in the form of high resolution images and 

spatially resolved compositional and textural data.   

Doubly polished wafers for fluid inclusion analysis were prepared from eleven samples se-

lected from sandstones with extensive quartz overgrowth. The aim is to investigate the pre-

cipitation temperature of the quartz overgrowth. Homogenization temperatures (Th) of fluid 

inclusions were measured by the Linkam THMS600 Cooling-Heating Stage in State Key La-

boratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Tech-

nology (CDUT). The temperature range of the instrument is from −196°C to 600°C with a 

precision of < 0.1°C. The rate of temperature increase can be controlled to within 1°C/min 

when approaching the critical point.  

The carbon- and oxygen-isotopic analysis on carbonate cements was measured by the Scot-

tish Universities Environmental Research Centre (SUERC) in the University of Glasgow. 
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Seventeen sandstone samples with variable amounts of dolomite cements were gently dis-

aggregated with a hammer and then crushed in a mortar, at least 1 mg of dolomite powder is 

obtained for each sample. The value of δ13
C and δ18

O were determined on CO2 liberating 

from dolomite cements dissolved by 100% H3PO4 at 50°C. The isotopic composition of CO2 

is reported in units of ‰ relative to Pee Dee belemnite (PDB).  

Burial history and thermal condition of the Ardmore Field have been analysed using data 

from exploration wells by the Schlumberger software PetroMod (V2014.1). In the studied 

area, there are several stratigraphic hiatuses between Devonian and Palaeogene, with the es-

timated thicknesses calculated by using data from adjacent fields (Graham et al., 2003; 

Hayward et al., 2003; Glennie, 2009). The maximum burial depth of the Upper Devonian 

Buchan Formation in the Ardmore Field occurs today at approximately 2.7 km to 3.2 km. The 

present day geothermal gradient is around 34.6°C/km (Graham et al., 2003) with an average 

surface temperature of 12°C, and the present day maximum temperature in the field is around 

115°C – 120°C at 3.2 km burial depth. 

6.4 Results 

6.4.1 Petrography 

Petrographic examination indicates that the fluvial and aeolian sandstones have different fea-

tures for both mineral composition and grain texture. Generally the sandstone samples are 

classified as litharenite to sublitharenite according to Folk (1957), with the total average 

composition of Q78F3R19, and the aeolian sandstones have a more mature composition 

(Q82F2R16, Figure 6.3B) than fluvial sandstones (Q76F3R21, Figure 6.3A). Texturally, except 

the minor thin-bedded (less than 1 m) and sandy-clast supported conglomerates (less than 10% 

among all fluvial deposits) and mudstones (less than 10% among all fluvial deposits), the flu-

vial sandstones are relatively immature and fine to medium grained. Sorting ranges from poor 
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to moderate and roundness of grains varies from sub-angular to sub-rounded. Quartz grains 

are tightly compacted usually showing curved and rare concavo-convex grain contacts. The 

fine to medium grained aeolian sandstones have a higher textural maturity, sorting ranges 

from moderate to good and roundness of grains varies from sub-rounded to rounded. The 

grain contacts are commonly point to long. 

 

Figure 6.3 The QFR ternary charts for (A). Fluvial sandstone samples; and (B). Aeolian sandstone 

samples. 

Detrital quartz is the dominant mineral type (41% – 95%) in all samples. Most quartz grains 

are monocrystalline with 0.15 mm to 0.3 mm grain size (Figure 6.4A) and can exhibit undu-

lose extinction (Figure 6.4B). Detrital feldspar occurs from trace amounts up to 7% with the 

main feldspars commonly demonstrating polysynthetic twinning microcline (Figure 6.4C). 

The feldspars occur as both fresh grains and dissolved grains with relic outlines (Figures 

6.4C and 6.4D). Other major identified minerals include mica comprising up to 13%, and 

show variable amounts of distortions and grain breaking (Figure 6.4E). Rock fragments are 

in variable quantities and include micaceous and illitic mud clasts and fine-grained metamor-

phic and volcanic fragments to a lesser quantity (Figure 6.4F). 

Diagenetic minerals in Buchan Formation sandstones include dolomite, quartz overgrowth, 

kaolinite, illite and illite/smectite (I/S). Dolomite occurs in both fluvial and aeolian sand-

stones (up to 28%, mean value 7.5%) showing sporadically ‘spotty’ purple-red stained ce-
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ments and sometimes in irregular band distribution in hand specimen (Figure 6.5A). Under 

thin section observation, the poikilotopic dolomite cements commonly show typical structure 

of ‘light rims and cloudy core’ in a well-developed rhombic shape and size ranges from 20 

µm – 200 µm (Figure 6.5B). Chlorite occurs in both fluvial and aeolian sandstones with a 

trace amount (up to 0.5%), confirmed by XRD analysis (see Table 6.1).  

 

Figure 6.4 Photomicrographs of sandstone compositions. (A) Monocrystalline quartz grain with 

quartz overgrowth and visible dust rims (yellow arrows) on the original detrital grain. Well 30/24-34, 

2967.8 m. (B) Quartz grains exhibiting undulose extinction. Well 30/24-20z, 3125.4 m. (C) Microcline 

showing polysynthetic twinning. Well 30/24-05, 2846.4 m. (D) SEM image of feldspar dissolution and 

presence of authigenic kaolinite. Well 30/24-20z, 3126 m. (E) Bended mica (white arrows) between 

quartz grains. Well 30/24-20z, 3125.4 m. (F) Possible volcanic-origin rock fragments, notes the pore-

filled kaolinite aggregates and quartz overgrowth (yellow arrows). Well 30/24-05, 2847 m.  

Q-quartz; Qu-quartz with undulose extinction; F-feldspar; K-kaolinite; Fd-dissolved feldspar; RF-

rock fragments; D-dolomite; P-porosity. 

Apart from the prevalent dolomite cements, fluvial sandstones are featured as containing 

dense authigenic kaolinite aggregates and extensive quartz overgrowths. The authigenic kao-

linite is present as densely-packed pseudo-hexagonal booklets and platelets as grain-shaped 

masses and the pore-filling aggregates in the interstices (Figure 6.5C). The quartz over-

growth (1% – 7%, mean value 4.5%) occur as syntaxial cements forming incomplete or com-

plete rims around quartz grains with the thickness ranging from 10 μm to 50 μm. Boundaries 
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between detrital quartz grains and overgrowth are visible due to the presence of ‘dust’ lines 

(Figure 6.4A). The SEM-cathodoluminescence (CL) analysis revealed that the quartz over-

growths were probably formed by several stages (Figures 6.5D and 6.5E), which corre-

sponds to the range of measured homogenization temperature in the fluid inclusion (80°C – 

120°C). Authigenic illite can be found under SEM and mainly occurs as fibrous or hairy crys-

tals (Figure 6.5F).  

 

Figure 6.5 Photomicrographs and EDX spectrums of authigenic minerals. (A) Thin bands of ‘spotty’ 

red-brown stained cements (yellow arrows) in the cores. Well 30/24-05, 2849.1 m; (B) Dolomite ce-

ments in the pore space showing well rhombic shape with cloudy core and light rims under micro-

scope. Well 30/24-05, 2849.1 m; (C) SEM image of authigenic kaolinite presents in densely-packed 

pseudo-hexagonal booklets and platelets. Well 30/24-05, 2849.1 m; (D) A quartz grain with intense 

quartz overgrowth under SEM, Well 30/24-34, 2976.4 m; (E) A quartz grain with intense quartz over-

growth under CL, note multiple stages of overgrowth sighted around the host grain. Well 30/24-34, 

2976.4 m; (F) SEM image of authigenic illite occurs as fibrous and hairy crystals based on the asso-

ciated with kaolinite precursor aggregates. Well 30/24-05, 2850.9 m; (G) SEM image of grain-

coating illite/smectite showing cornflake-honeycomb morphology. Well 30/24-31, 3190.6 m; (H) The 

EDX spectrum of grain coating I/S (the dashed square area in Fig. 5G). Well 30/24-31, 3190.6 m; (I) 
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BSEM image of pore-filling illite/smectite occurred as flocculent aggregates existing in the intergran-

ular pore space. Well 30/24-31, 3190.6 m. 

Qh-host quartz grains; Qog-quartz overgrowth; K-kaolinite; I-illite; I/S-illite/smectite; gc-grain coat-

ing; pf-pore filling. 

Conversely, quartz overgrowth is absent and kaolinite is subordinate in aeolian sandstones. 

Illite/smectite (I/S) has been identified by EDX spectrum (Figure 6.5H) and XRD analysis 

(Table. 6.1) which is the unique and most important clay type in aeolian sandstones although 

it is present in minor amounts (0.5% – 5%). Thin section and SEM observations illustrate that 

the I/S occurs in two forms. a) The grain coating I/S (Figure 6.5G) commonly occurs as 

cornflake and/or honeycomb morphology with short filamentous terminations, and consists of 

1 μm – 5 μm thick rim coating all detrital grains in the aeolian sandstones. These grain coat-

ings are absent in fluvial sandstones. Quartz overgrowths are noticeably absent in the aeolian 

sandstone facies where uniform and robust grain coating I/S has developed. b) Pore-filling I/S 

can occur (< 5%) as aggregates existing in the intergranular pore space of aeolian sandstones, 

and is absent in the fluvial sandstones (Figure 6.5I). 

6.4.2 Fluid inclusions 

Fluid inclusion thermometry can provide useful temperature information for the authigenic 

mineral precipitation (Robinson and Gluyas, 1992). The fluid inclusions in the selected sam-

ples primarily occur in two forms: a) The belt-like distribution along the healed micro-

fractures within quartz grains (Type I, Figure 6.6A); and b) Between the host quartz grain 

and their surrounding overgrowths (Type II, Figure 6.6B). The size of fluid inclusions is 

about 2 µm – 8 µm in diameter and most of them have gas bubbles and fluid phases with a 

gas/liquid ratio less than 5% at room temperature (15°C). 

The measured homogenization temperature (Th) of the two types fluid inclusions are shown 

in Table 6.2, and the Figure 6.6 presents the Th distribution of fluid inclusions both in Type I 
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and Type II. The Th in the healed micro-fractures mainly ranges from 110°C – 140°C and a 

few of them are under 110°C and over 140°C. For the Type II fluid inclusions, Th has a rela-

tively uniform range from 80°C to 120°C with a mean value of 101.2°C. More than half 

(56.3%) measured Th values are located between 81°C to 100°C, which might imply the tem-

perature condition for precipitation of the primary quartz overgrowth. 

 

Figure 6.6 Photomicrographs and temperature distribution charts of fluid inclusions (A) In the micro 

fractures within quartz grains (Type I); and (B) between host quartz grains and overgrowth (Type II), 

note at least two stages quartz overgrowths have been sighted. 

6.4.3 Isotopic composition of dolomite cements 

The carbon and oxygen isotopic compositions of dolomite cements were measured in 17 

sandstone samples (Table. 6.3). The results show that most dolomite cements have a relative-

ly wide range of δ
18

OPDB values from -6‰ to 0.8‰ but are mainly allocated between -3‰ to 
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0‰ with an average value of -1.8‰. The values of δ
13

CPDB vary from -3.1‰ to 1.6‰. The 

calculated value of δ
18

OSMOW is derived from: δ
18

OSMOW = 1.03091× δ
18

OPDB + 30.91 (Coplen 

et al., 1983), and the temperature is calculated by using fractionation equation between car-

bonate and water: 1000× lnαdolomite-water  = 3.06 × 10
6
/T

2
 - 3.24 (Matthews and Katz, 1977). 

6.5 Discussion 

6.5.1 Sources of the authigenic minerals 

6.5.1.1 Authigenic kaolinite and quartz overgrowth 

Precipitation of authigenic kaolinite and formation of quartz overgrowth occurred relatively 

late in the diagenetic history. For the deeply buried sandstones, the concentration of SiO2 (aq) 

(< 100 ppm) and Al
3+

 (< 10 ppm) is commonly low (Bjorlykke and Jahren, 2012; Yuan et al., 

2015). In such a condition with considerable heterogeneity in porosity and permeability, none 

of the advective flow, thermal convection and diffusion is capable for long-distance and mas-

sive transfer of SiO2 (aq) and Al
3+ 

from the remote external sources (Bjørlykke et al., 1988; 

Yuan et al., 2015).  

 

Figure 6.7 The different occurrences of authigenic kaolinite aggregates which may indicate at least 

two different sources, note the recognizable relic shape of seriously dissolved feldspar grains (yellow 

dash circles), Well 30/24-34, 2887.7 m. df-dissolved feldspar; Kp- pore filling kaolinite; Q-quartz. 
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For the authigenic kaolinite in sandstones, Shelton (1964) suggested three possible sources: 1) 

Crystallization of introduced material from solutions and/or deposition of material from col-

loidal suspensions; 2) Alteration in place of some parent minerals; and 3) Recrystallization of 

fine-grained detrital kaolinite clay. In this study, the authigenic kaolinite mainly presents in 

two forms (Figure 6.7): 1) Relatively isolated patches of pore-filling aggregates; and 2) Ag-

gregates with a recognizable precursor grain shape. With the observed petrographic features 

and no obvious clue of external source, the most possible source for authigenic kaolinite 

should be the dissolution of feldspars within the sandstones. On the thin section scale, an in-

verse correlation could be identified between quantity of remained feldspar and kaolinite 

(Figures 6.8B): that is little remained feldspars are commonly accompanied with massive 

kaolinite, and massive remained feldspars are commonly accompanied with little kaolinite. 

The inverse correlation between remained feldspar and kaolinite suggests that the most possi-

ble source of kaolinite is the dissolution of local feldspars and/or the dissolved solution from 

the nearby sandstones. At the same time, the authigenic kaolinite content increases slightly 

with the increasing burial depth (Figure 6.8A), this suggests that the higher temperature and 

deeper burial depth would probably promote the feldspar dissolution and therefore generate 

more kaolinite.  

In quartz-dominated sandstones with quartz overgrowths, the most probable source of silica 

is from quartz dissolution along grain contacts (commonly stylolite) and feldspar dissolution 

(Walderhaug, 2000; Tournier et al., 2010). The feldspar alteration, in this case the kaolinitiza-

tion, could release considerable amount of silica ions (Bjørlykke, 1983). In this study, the 

sandstones experienced minor pressure dissolution. Additionally, both the authigenic kaolin-

ite and released silica are the products of feldspar dissolution, and there is indeed a positive 

correlation between authigenic kaolinite and quartz overgrowth (Figure 6.8C). It is proposed 
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in this study that the most probable silica source for quartz overgrowth is the dissolution of 

local feldspars and pressure dissolution has provided a minor contribution. 

 

Figure 6.8 Scattered diagrams showing relationship between: (A) kaolinite and depth; (B) kaolinite 

and feldspar; and (C) kaolinite and quartz overgrowth. Database is from fluvial sandstone samples. 

6.5.1.2 Dolomite 

Syn-depositional dolomite commonly occurs in sabkha deposits when the Mg/Ca ratio in the 

brines increased with a consequent Ca
2+

 removal from solution (Evans et al., 1969; Kinsman, 

1969). If this was the case for the dolomite in the Buchan Formation, the distribution of do-

lomite cements would expect to be highly facies-related, such as with the interdune sabkha 

and desert lakes. However, the dolomite cements are found throughout the cored intervals, 

regardless of lithofacies, and occur in both aeolian and fluvial sandstones. 
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The δ
13

CPDB values are largely but slightly negative and restricted near 0‰ (14 out of 17 are 

between -3.0 ‰ and 1 ‰, mean value -1.2 ‰, Table 6.3) which may indicate a major contri-

bution from marine carbon source (Keith and Weber, 1964) and minor from other sources. 

Talbot (1990) has suggested that the correlation coefficient between δ
13

CPDB and δ
18

OPDB is a 

useful tool to discriminate the water setting is open or closed, that is high (r > 0.7) and low (r 

< 0.4) coefficients indicate closed and open settings, respectively. The measured samples 

have a quite low correlation coefficient between δ
13

CPDB and δ
18

OPDB (r = 0.46) which would 

imply a generally open settings, where the fresh sea water was commonly introduced. There-

fore the δ
18

OSMOW value of 0‰ of formation water in eodiagenetic stage is acceptable. By 

employing the oxygen isotope fractionation factor for dolomite/water (Matthews and Katz, 

1977), the calculated precipitation temperatures for dolomite cements range mainly from 

25°C to 58°C (Table. 6.3), which could indicate that these dolomite cements were formed at 

relatively shallow burial depth. 

 

Figure 6.9 Sketched map showing dolomite precipitation from Zechstein and the statistics of the do-

lomite abundance in three segments. Note the vertical thickness is not for scale. 
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Although there were several major marine incursions in the study area during Carboniferous, 

Late Permian, Late Triassic, Cretaceous, Palaeogene and Quaternary age (Bradshaw et al., 

1992), this study proposes that the overlying Late Permian Zechstein carbonates would be the 

most likely source of carbonate cements. A number of comparable cases were reported in the 

Southern North Sea, the dolomite cements (also some other evaporates) are prevalent in the 

underlying Permian Rotliegend sandstones, and were precipitated by percolating brines origi-

nating directly from the overlying Permian Zechstein carbonates (e.g. Pye and Krinsley, 1986; 

Glennie and Provan, 1990; Purvis, 1992). It is proposed that this situation would also have 

occurred in the Ardmore Field. The Upper Devonian Buchan Formation sandstones, Permian 

Rotliegend sandstones and Permian Zechstein carbonates jointly form the reservoir, and they 

were all charged with oil by the stratigraphically younger Jurassic Kimmeridge Clay (Gluyas 

et al., 2005). This would imply that these three units are in fluid communication. Across the 

field, the Rotliegend sandstones vary in thickness. It is thicker (around 20 m) in the southwest 

and centre of the field and thins to the far NE pinching out onto what were pre-Permian (De-

vonian) topographic highs during deposition (Figure 6.9). Thus the Permian Zechstein car-

bonates directly overlie Buchan Formation over much of NE segment of the field. After the 

Zechstein marine incursion, the Mg
2+

-rich marine water flowed downwards through the 

Rotliegend and entered Buchan Formation, displacing and mixing with the groundwater al-

ready present and precipitated dolomite in the interstices. The mixing of the marine and 

groundwater probably occurred by a combination of salinity/density differences and diffusion 

(Purvis, 1992). This explanation is strengthened by the distribution pattern of dolomite abun-

dance in these three segments (Figure 6.9), the NE segment has the highest dolomite cements, 

while intermediate and minor dolomite cements are shown in the central and SW segments 

due to part of dolomite has been precipitated  in the Permian Rotliegend (Figure 6.9). Within 

the Upper Devonian sequence, there is no clear relationship between abundance of dolomite 
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and the distance between samples and Devonian/Permian unconformity. This may be at-

tributed to the presence of transmissive faults and fractures. Also, it is unlikely that the post-

Permian meteoric water could have entered the Buchan Formation later, owing to the thick 

Zechstein sediments. 

6.5.1.3 Illite/smectite (I/S) 

The cornflake and honeycomb morphology with boxwork structure and curved edges is a 

good indicator implying that these I/S clay were transformed from smectitic precursors (e.g. 

Wilson and Pittman, 1977; Burley, 1984; Keller et al., 1986; Vitali et al., 1999; Wilson et al., 

2014). Both the grain-coating and pore-filling I/S, though the average amount is around 5%, 

are the featured clay types in aeolian sandstones. There are several petrographic features can 

be characterized including: 1) The general occurrence at the grain contact areas; 2) Thicker 

I/S coating in the framework-grain depressions and rough surfaces, and 3) Thinner I/S coat-

ing in the non-depression and smooth areas (Figure 6.10). These features closely conform to 

the criteria set by Wilson and Pittman (1977) for recognizing mechanical infiltrated clays.  

 

Figure 6.10 Photomicrograph showing I/S occurred at the grain contact areas (white arrows), thicker 

I/S coating in the framework-grain depressions and rough surfaces (yellow arrows), and thinner I/S 

coating in the non-depression and smooth areas (black arrows). Well 30/24-31, 3190.6 m. 
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In such a fluvial-aeolian mixed setting, especially during the aeolian-dominated period, the 

fluvial system retreated and only distal sectors of fluvial distributary system could affect the 

study area (e.g. sheet flood and floodplain). Additionally, the smectitic clays are usually ex-

tremely fine grained and therefore could be carried further than other sediment grains 

(McKinley et al., 2003). This observation is supported by the XRD analysis where smectite 

(shown in illite/smectite) only occurs as trace amounts in the fluvial channel samples (Table. 

6.1). 

 

Figure 6.11 The BSEM (A) and QEMSCAN (B) images of a sheet flood deposits; this silty sample con-

tains a higher concentrated illite/smectite which mainly presented as the pore-filling aggregates. 

Sample from well 30/24-05, 3163.5 m. 

The most likely source of smectite is the fluvial-origin clay-bearing waters which represent 

the sheet flood and/or flood plain deposits. In the aeolian dominated period, these sediments 

could be accumulated in the interdune and/or desert lake environments. The dune sands were 

dry, porous and permeable shortly after deposition, this clay-bearing water could easily move 

into grain interstices by downward or lateral migration and form grain coating and pore fill-

ing clay aggregates before compaction. This interpretation can be reinforced by the QEM-

SCAN technique undertaken on a sheet flood siltstone sample (Figure 6.11), which contains 
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higher concentrated illite/smectite content (15.5%) and mainly presents as the pore-filling 

aggregates. 

6.5.2 Paragenesis and burial history 

The relative sequence of the major diagenetic events of the Buchan Formation sandstones in 

the Ardmore Field can be determined from thin sections and SEM observations based on the 

textural relationships. With the constraints set by the clay mineral XRD analysis, calculated 

temperatures from isotopic composition of dolomite cements, homogenization temperature of 

fluid inclusions in the quartz overgrowths, and the thermal conditions of Ardmore exploration 

well, a joint paragenesis-burial-thermal history can be generated (Figure 6.12). 

In summary, before mechanical compaction, the earliest event was the infiltration of clay 

which only occurred in the aeolian sandstones. The dominant eogenetic processes in both flu-

vial and aeolian sandstones were compaction and dolomite cementation. The burial curves 

show that the Upper Devonian intervals were consistently at shallow burial depth (< 1 km) 

until Palaeogene and then rapidly buried to today’s maximum depth around 2.7 km to 3.2 km. 

The subsequent mesogenetic events mainly occurred since the Palaeogene and include: 1) For 

the aeolian sandstones, compaction continuously reduced porosity with the increasing depth. 

Illitization might be the final event in the aeolian sandstones. This is supported by the XRD 

analysis: there are 70% – 80% of illite within I/S which are in ordered interstratification (R1 

order) and this usually indicates the temperature is greater than 100°C (Hoffman and Hower, 

1979; Huang et al., 1993); and 2) For the fluvial sandstones, it is not easy to determine the 

accurate sequence of the quartz pressure dissolution and feldspar dissolution/authigenic kao-

linite generation. As the most possible source of silica, these processes are certainly prior to 

the quartz overgrowths which occurred in a formation temperature range of 80°C to 120°C. 

The dissolution of feldspar can provide considerable amounts of potassium, and the higher 

temperature conditions corresponded with increasing burial depth. The illitization of the flu-
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vial sandstones is likely to occur in the late burial-diagenetic history and can usually be re-

garded as an indicator of formation temperatures greater than 100°C (Bjørlykke et al., 1986; 

Ehrenberg and Nadeau, 1989; Bjorkum et al., 1993). 

 

Figure 6.12 Paragenesis-burial-thermal history of Upper Devonian Buchan Sandstone in Ardmore 

Field with corresponded petrographic evidences.  

Q-quartz; D-dolomite; M-mica; F-feldspar; K-kaolinite; I-illite. 
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6.5.3 Facies and diagenetic controls on reservoir quality 

The porosity versus permeability diagrams show that aeolian sandstones generally have a bet-

ter reservoir quality than fluvial sandstones (Figure 6.13A). This is partly due to the higher 

compositional and textural maturity of aeolian deposits, while the fluvial deposits are poorly 

to moderately-sorted, sub-angular to sub-rounded and contain abundant ductile rock frag-

ments. Within each facies, the inter-granular porosity of most fluvial channel samples range 

between 10% and 20% with a mean value 15.1%. While other non-channel deposits, such as 

sheet flood and overbank, have lower porosity ranged from 0.1% to 15%, and most of them 

are less than 10% (Figure 6.13B). It is also noticed that the reservoir quality is closely corre-

latable to the lithology variations: channel sandstones which are close to the channel/non 

channel interface (< 2 m) contain more rock fragments (Figure 6.14A) and show less porosi-

ty (Figure 6.14B). While the channel sandstones which have a considerable distance to the 

channel/non-channel interface (> 2 m) commonly possess better reservoir quality (Figure 

6.14). Within aeolian facies, the dune deposits possess an excellent reservoir quality. Nearly 

all the dune sandstone samples have porosity greater than 15% (Figure 6.13C). However, the 

reservoir properties of each sub-facies still show considerable heterogeneity, this heterogenei-

ty is suggested to be induced by the subsequent diagenetic processes, which resulted in vari-

ous diagenetic alterations that controlled reservoir quality (Salem et al., 2005).  

 

Figure 6.13 Porosity-permeability diagrams of: (A) all samples; (B) fluvial-associated samples; and 

(C) aeolian-associated samples. Note that porosity = 15% and permeability = 10 mD are set as the 

lower limit of an effective reservoir. 
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Compaction and cementation are two main processes reducing reservoir quality during burial 

diagenesis (Houseknecht, 1987; Ehrenberg, 1989; Gluyas and Cade, 1997). The relative im-

portance of compaction and cementation on porosity reduction can be quantified using 

‘measured intergranular porosity-intergranular volume-total cements’ diagram. This diagram 

can be used to evaluate which diagenetic processes have been most influential to porosity re-

duction (Houseknecht, 1987). For this study, the intergranular volume-cement diagram in 

Figure 6.15 shows Buchan Formation data, the total cements include authigenic kaolinite, 

illite, illite/smectite, dolomite and quartz overgrowth, and the initial porosity is set as 40%. 

 

Figure 6.14 The diagrams showing relationships: (A) sample point distance to the channel/non chan-

nel interface and amount of rock fragment; and (B) sample point distance to the channel/non channel 

interface and porosity. 

Compaction exerted a similar average reduction of porosity in both facies sandstones. The 

mean value 30.97% and 33.18% of the initial porosity has been decreased by compaction in 

fluvial and aeolian facies, respectively (Figure 6.15). However, evidence from petrographic 

observations reveal that the fluvial sandstones have undergone highly various degrees of 

compaction from moderate to intense (1.5% to 80.75% of the original porosity has been de-

stroyed by compaction, Figure 6.15A). This is supported from the presence of long and con-

cavo-convex grain contacts in the fluvial sandstones. The aeolian sandstones have only expe-

rienced a low to moderate compaction (11.25% to 51.5% of the original porosity has been 
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destroyed by compaction, Figure 6.15B), as they commonly display point to long grain con-

tacts. 

 

Figure 6.15 Intergranular volumes versus cement with the importance of compaction/cementation on 

reducing porosity in different Buchan Sandstone facies. (A) Fluvial-associated samples; and (B) Aeo-

lian-associated samples. 

Cementation clearly shows different development in fluvial and aeolian sandstones. Tang et 

al. (2017b) have reported that the primary porosity of aeolian sandstones has been preserved 

by the early mechanical infiltration of grain coating illite/smectite, which has inhibited quartz 

overgrowth development. The calculated results suggest that in the aeolian sandstones, there 

were only 13% and 26% porosity reduction of dune and interdune facies respectively by ce-

mentation (Figure 6.15B). In comparison, the dolomite cements, authigenic kaolinite and 

quartz overgrowth in the fluvial sandstones have significantly occupied the pore space. The 

fluvial channel and non-channel deposits have undergone 36.4% and 42.9% of the original 

porosity loss by cementation, respectively (Figure 6.15A). 

Compaction and cementation have exerted the major porosity loss in the Buchan Formation 

sandstone reservoirs. Aeolian sandstones maintained a better reservoir quality due to the 

higher compositional and textural maturity, this would be helpful on keeping primary porosi-
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ty from mechanical compaction. Additionally, with the absence of abundant kaolinite aggre-

gates and the presence of grain coating illite/smectite which has effectively prevented quartz 

overgrowth, only sparse dolomite cements have a subordinate effect on reducing porosity. 

For the fluvial sandstones, lower grain maturity and extensive cementation have significantly 

reduced porosity. The fluvial intervals with relatively good reservoir quality are mainly com-

posed of the channel sand packages that tended to be insolation from other channel facies. 

6.6 Conclusions 

This research of the Upper Devonian Buchan Formation has investigated the source of vari-

ous cements, reconstructed the sequence of diagenetic events, and evaluated their effects on 

reservoir quality by using diagenetic and geochemical methods. Mechanical compaction ex-

erted similar porosity loss on both aeolian and fluvial sandstones. However, cementation of 

various authigenic minerals shows contrasting differences. Dolomite cementation is prevalent 

in both sandstone facies: the stable isotope analysis suggested a major marine carbon source 

and the precipitation at a shallow burial depth. The overlying Upper Permian Zechstein car-

bonate is suggested as the most probable source. The aeolian sandstones contain grain coating 

clays that have restricted quartz overgrowth development. Conversely, the fluvial sandstones 

suffered higher degrees of porosity loss from quartz cementation due to the lack of grain 

coating clays. The extensive quartz overgrowths in the fluvial sandstones probably originated 

from feldspar kaolinitization and pressure dissolution. The homogenization temperature of 

fluid inclusions (80°C – 120°C) between the quartz overgrowths and host grains indicates this 

process occurred at a relatively late stage of burial. Illitization occurred in both aeolian and 

fluvial sandstones and was suggested to be the last diagenetic event.  

This research has important implications for the hydrocarbon exploration of mixed fluvial –

aeolian reservoir sandstones where there can be considerable variations in reservoir quality 
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controlled primarily by early grain coating clays. The results highlight the immense potential 

for exploration in Devonian mixed fluvial-aeolian reservoirs of mature hydrocarbon prove-

nances such as the Central and Northern North Sea.  
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Table 6.1 XRD data for < 2 μm size mineral fraction from selected samples. 

Well 
Depth 

(m) 

Wt.%  Illite/smectite Illite Kaolinite Chlorite Quartz Calcite Dolomite 

<2um 
% 

A 

% 

B 
Order 

% 

Illite 
% A % B Crys % A % B Crys % A % B Crys % A % B % A % B % A % B 

30/24-28 2790.14 1.9 34.4 0.7 O 70-80 58.3 1.1 P 0.0 0.0 - 7.1 0.1 P 0.3 0.1 0.0 0.0 0.0 0.0 

30/24-28 2829.76 3.0 46.3 1.4 O 70-80 25.9 0.8 P 22.6 0.7 M 2.9 0.1 M 2.4 0.1 0.0 0.0 0.0 0.0 

30/24-28 2844.09 3.0 50.5 1.5 O 70-80 32.7 1.0 P 7.5 0.2 M 3.5 0.1 M 5.8 0.2 0.0 0.0 0.0 0.0 

30/24-31 3190.34 2.0 44.8 0.9 O 70-80 34.9 0.7 P 10.7 0.2 M 5.1 0.1 P 4.5 0.1 0.0 0.0 0.0 0.0 

30/24-18 2794.71 3.3 TR TR - - 22.0 0.7 P 58.7 1.9 M 15.8 0.5 M 3.6 0.1 0.0 0.0 0.0 0.0 

30/24-05 2849.27 3.2 TR TR - - 8.5 0.3 P 72.6 2.3 M 5.3 0.2 P 3.1 0.1 0.0 0.0 10.6 0.3 

A = Weight% relevant size fraction; B = Weight% bulk sample;  

Mixed-layer Ordering: RI= Randomly Interstratified (R0); O = Ordered Interstratification (R1); LR = Long-range Ordering (R3);  

Crystallinity: VW = Very Well Crystallised; W = Well Crystallised; M = Moderately Crystallised; P = Poorly Crystallised. 
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Table 6.2 Thermometry data of fluid inclusions in Buchan Formation sandstone samples from Ardmore Field. Th-Homogenization temperature 

Sample 

Type Distribution 
Shape of 

FI 

Gas/Liquid 

ratio 

Homogenization 

phase 

Th (°C) 
Salinity  

(wt.% NaCl) Well Depth (m) Type I Type II 

30/24-05 

2840.1 Brine Belt Regular ≤ 5% Liquid 117-130 83 6.88 

2844.7 Brine Belt Regular ≤ 5% Liquid 110-135 97 12.68 

2846.5 Brine Belt Regular ≤ 5% Liquid 109-131 87 11.61 

2846.8 

Brine Belt Regular ≤ 5% Liquid 

109-149 

101 10.62 

Brine Belt Regular ≤ 5% Liquid 92 11.58 

Brine Belt Regular ≤ 5% Liquid 93 4.8 

Brine Belt Regular ≤ 5% Liquid 121 2.74 

2848.1 
Brine Belt Regular ≤ 5% Liquid 

109-141 
118 8.35 

Brine Belt Regular ≤ 5% Liquid 94 2.74 

2849.6 
Brine Belt Regular ≤ 5% Liquid 

114-146 
123 4.96 

Brine Belt Regular ≤ 5% Liquid 87 11.61 

2850.8 Brine Belt Regular ≤ 5% Liquid 118-146 103 3.87 

30/24-28 2795.0 Brine Belt Regular ≤ 5% Liquid 112-137 91 11.05 

30/24-34 

2903.8 Brine Belt Regular ≤ 5% Liquid 
111-117 

94 8.19 

2903.8 Brine Belt Regular ≤ 5% Liquid 117 2.74 

2933.9 Brine Belt Regular ≤ 5% Liquid 112-157 118 3.55 
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Table 6.3 Stable isotopic data and calculated formation temperature of dolomite cements in the Buchan Sandstone samples 

Well 
Depth 

(m) 

Carbonate 

cement type 

Carbonate 

cement% 

δ
18

OPDB 

(‰) 

δ
13

CPDB 

(‰) 

δ
18

OSMOW 

(Calculated, ‰) 

Temp (°C) 

δ
18

OSMOW = 0‰ 

30/24-03 2692.0 dolomite 20 0.5  0.0  31.4 24.0 

30/24-03 2692.3 dolomite 5 0.6  1.0  31.5 23.5 

30/24-03 2697.8 dolomite 10 -0.1  1.2  30.8 26.6 

30/24-05 2844.7 dolomite 20 -1.0  -2.4  29.9 30.8 

30/24-05 2846.5 dolomite 3 -2.4  -2.6  28.4 37.7 

30/24-05 2848.1 dolomite 10 -2.7  -3.0  28.1 39.2 

30/24-05 2849.3 dolomite 10 -0.8  -2.4  30.1 29.9 

30/24-05 2850.2 dolomite 20 -1.3  -3.1  29.6 32.2 

30/24-05 2850.8 dolomite 10 -0.7  -2.1  30.2 29.4 

30/24-18 2797.8 dolomite 40 -1.7  -0.1  29.2 34.2 

30/24-18 2798.4 dolomite 15 -0.5  -0.3  30.4 28.5 

30/24-20z 3120.8 dolomite 7 -2.1 -1.5  28.8 35.9 

30/24-20z 3129.9 dolomite 5 -2.1  -2.3  28.8 36.1 

30/24-20z 3131.2 dolomite 10 0.8  -2.1  31.7 22.8 

30/24-20z 3174.5 dolomite 5 -6.0  -2.9  24.7 57.6 

30/24-28 2795.0 dolomite 10 -0.9  1.6  30.0 30.2 

30/24-34 2903.8 dolomite 10 -1.7  0.6  29.2 34.2 

Note: the calculated δ
18

OSMOW (‰) is derived from δ
18

OPDB (‰) by the equation: δ
18

OSMOW = 1.03091×δ
18

OPDB+30.91 (Coplen, 1983); the equations used for 

fractionation between carbonates and water are: 1000×lnα dolomite/ankerite-water = 3.06×10
6
/T

2
 - 3.24 (Matthews and Katz, 1977), T is in Kelvin unit. 
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the GSL Memoir Book ‘United Kingdom Oil and Gas Fields 50 Years Commemorative At-

las’. 
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Summary 

The Alma Field (initial name was Argyll from 1975 – 1992 and then Ardmore from 2003 – 

2005) is located within Block 30/24 (one well in 30/25a flowed oil on test but was not put on 

production) in the UK North Sea, on the western margin of the Central Graben. The block 

was awarded in 1969 to a Hamilton operated partnership, and the first discovery well 30/24-1 

was drilled in 1969. A converted semi-submersible drill rig (Transworld 58) was installed in 

1975 and oil production started up the following year. The 2D and 3D seismic surveys were 

shot over the field in 1980 and 1991, respectively. Oil was produced from four reservoirs: 

Devonian Buchan Formation sandstones, Permian Rotliegend sandstones, Zechstein car-

bonates and minor production from Jurassic sandstones until the October 1992 when the field 

was abandoned for economic reasons. In 2002, Tuscan Energy and Acorn Oil & Gas were 

awarded the licence to redevelop the Argyll Field and they renamed it as Ardmore since on 

abandonment and return of the licence to the UK government Argyll had ceased to exist from 

a legal perspective. The first Ardmore well was drilled in 2003 and oil flowed in again in 

September 2003. A further 5 million barrels were produced at high rate before commercial 

considerations once again forced abandonment despite the technical success. In 2013, the li-

cence was once again issued to EnQuest; the company renamed it as Alma and drilled 6 new 

high angle wells. First oil from the Alma development was achieved in October 2015 and the 

field is currently producing oil. 

Commercial hydrocarbons mainly occur in reservoirs ranging in age from Late Devonian to 

Late Jurassic together with untested oil in parts of the Cretaceous Chalk. Total ultimate re-

covery for all reservoirs in the field is expected to be about 100 million barrels of oil 

(MMBBL). As of end 2005, the field had produced 77.6 MMBBL. A further 3.8 million bar-

rels has been produced from the Alma Field to April 2017 (includes about 0.5 MMBBL from 

a long reach well drilled into the Duncan/Galia Field immediately west of Alma). 
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The field has been described previously by Bifani and Smith (1985), Robson (1991), Heward 

et al. (2003), Gluyas et al. (2005) and Gluyas et al. (2018). This review of the Alma Field in-

cludes new information on the volumetrically largest reservoir, the Upper Devonian Buchan 

Formation sandstones. Research conducted on the facies and reservoir quality of these Devo-

nian Buchan Formation sandstones has been added to update the previous field descriptions. 

The research has allowed a better understanding of the Devonian reservoir, its distribution 

and properties. 

The aim of this paper is to describe the geology, development and production history of the 

Argyll Field in UK Blocks 30/24 and 30/25a (Figure. 7.1). Argyll is unique. Not only was it 

the first field to be produced for oil in the North Sea, it also has a peculiar history insofar as 

the field has been developed on three separate occasions by completely different partnership 

and it has been twice abandoned, ceasing to exist from a legal perspective. It is thus the only 

field in the UK North Sea which as existed as three legal entities: first it was Argyll (produc-

tion 1976 – 1992), then Ardmore (production 2003 – 2005) and now Alma (production from 

2015). The understanding of the field has been dramatically changed since it was first discov-

ered. 

7.1 History 

The development of Block 30/24 started in 1969 under Licence P.073 issued in 1965. The 

first well (30/24-1) of Argyll discovery was drilled for a Tertiary target. The Tertiary was dry 

(reservoir absent) but the deeper Permian Zechstein had oil shows. A second well, 30/24-2, 

was drilled in 1971 and just 400 m SW of the 30/24-1, its target was an identified horst at 

Base Cretaceous. It found Zechstein and Devonian reservoirs and 4300 BOPD were produced 

from Zechstein carbonates after acidising. Three subsequent wells (30/24-3, 5 and 6) were 

drilled and also found oil in what were termed Zechstein and Rotliegend reservoirs. It was 
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several years later that much of the so-called Rotliegend interval proved to be Old Red Sand-

stone and hence Devonian. 

Following an appraisal programme, the initial reserves estimate for the Argyll Field were 25 

mmstb (Methven, 1993). In June 1975, a converted semi-submersible drill rig, the 

Transworld 58, was used to begin production from the Argyll Field. The initial production 

was all from Zechstein completions, though well 30/24-3 was completed as a Devonian pro-

ducer. 
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Figure 7.1 The location map of Alma Field. 

Drilling on the Argyll Field continued until 1986. The process can be roughly divided into 

three stages: Zechstein development until 1979, Rotliegend development between 1979 and 

1982, and finally Devonian development from 1983 onwards. Two wells, 30/24-6 and 30/24-

8 produced small quantities of oil from Upper Jurassic marine sandstones found on the west-

ern flank of the field and likely connected with the Duncan (now Galia) Field immediately 

east of Argyll. The final well to be drilled during the Argyll phase was 30/24-39 in 1989. It 

targeted possible Jurassic sandstones on the southern flank of the field. The well found a thin 

and wet Jurassic sandstone package. A total of 23 wells were drilled in the field during this 

period.  

From 1983 it became difficult to sustain production from natural flow. This was caused by 

falling reservoir pressure and increasing water cuts. The gas lift system helped maintain pro-

duction, however as time went on it became increasingly difficult to start up wells after shut-

downs. The problem was a lack of gas to start up the system.  

Hamilton continued to pursue exploration prospects in the late 1980s; however they increas-

ingly met with failure. In 1985 they drilled two wells elsewhere on the block (30/24-34 and 

37) both of which tested oil at ~1000 BOPD, but neither was capable of sustaining flow 

without gas lift. In 1991 Hamilton shot a 3D seismic survey in Block 30/24, this survey was 

designed to look for other prospects in the area, though it did cover the northern part of the 

field. Argyll continued production until October 1992 then the field was abandoned.  

In 2002, two new oil companies, Tuscan Energy and Acorn Oil & Gas were awarded the li-

cence to redevelop Argyll Field and they renamed it as ‘Ardmore’. The first Ardmore well 

was drilled in the summer of 2003 and oil flowed in again in September 2003, a further 5 mil-
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lion barrels were produced at high rate. The field was then abandoned again due to commer-

cial considerations despite the technical success. 

Ten years after cessation of production from Ardmore, the licence was once again issued to 

EnQuest. The company renamed it as ‘Alma’ and drilled 6 new high angle wells. First oil 

from the Alma development was achieved in October 2015; the estimated amount is c.26 

MMBOE (million barrels of oil equivalent) of net 2P (proven and probable) reserves. Only 

30% has so far been recovered from Alma STOIIP of 307 million barrels (EnQuest, 2015). 

7.2 Structure, stratigraphy and trap 

The Alma Field is located on the Argyll Ridge, a large SW-NE trending Palaeozoic-age tilted 

fault block on the south-western flank of the Central Graben. The field is a horst feature with 

the crest in the north and fault closure to the north-east (Figures 7.2A and 7.2B). A combina-

tion of dip and faulting defines the limits of the field on the north-west and south-east flanks, 

while dip closure defines the southern limits of the field. Truncation of the post Devonian 

reservoirs at the crest of the field also provides a potential trapping mechanism. As the Devo-

nian does not act as a base seal, the trapping relies on the major NW-SE trending graben edge 

faults to the northeast of the field. The major NW-SE faults are pre-Permian in age.  

7.2.1 Devonian 

The Middle Devonian Kyle Limestone is the oldest strata penetrated in the Alma Field (Fig-

ure. 7.2C). The overlying Upper Devonian is assigned to Buchan Formation, where its base 

part is dated a late Givetian to early Frasnian age by palynological evidence (Gluyas et al., 

2005). There is no palynological age control for upper part of Buchan Formation: the topmost 

part of Buchan Formation may extend to the earliest Carboniferous. The Buchan Formation 

has a dip at 7° – 10° to the SW, and thus the oldest stratigraphic units sub-crop in the NE with 
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progressively younger stratigraphic units sub-cropping the Base Permian Unconformity to-

wards the SW. Eleven units (named as B01 to B11 from base to top) have been divided with-

in the formation based on well logs utilizing laterally correlative shale beds (Gluyas et al., 

2005). Deposition of the Buchan Formation occurred in a fluvial-aeolian mixed depositional 

setting (Tang et al., 2017a). 

 

Figure 7.2 The structure contour maps and seismic profile of the Alma Field. (A): Top Upper Devoni-

an depth structure; (B): Top Zechstein depth structure; and (C) The seismic image of the SW-NE dash 

line shown in Fig. 7.2A and 7.2B. Note the well names in Figs. 7.2A and 7.2B are associated with top 

depth of corresponding layers shown in feet. 

At the top of the Devonian sequence is a major angular unconformity (the Hercynian uncon-

formity) (Figure. 7.2C). The nature of this erosion and resulting palaeo-topography controls 
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the distribution of all later sediments. Therefore, Permian Rotliegend, Permian Zechstein and 

minor Cretaceous Chalk were all deposited onto the Devonian in different parts of the field. 

Regionally, the Devonian sequence can be divided into three segments (Figure. 7.3): 

 The northeast segment: Cretaceous Chalk and Permian Zechstein overlie Devonian; 

 The central segment: Permian Zechstein and thin Permian Rotliegend overlie Devonian; 

 The southwest segment: thicker Permian Rotliegend overlies Devonian. 

7.2.2 Permian Rotliegend and Zechstein 

The Middle-Late Permian Rotliegend is assigned to Auk Sandstone, overlies the Devonian in 

the central and SW parts of the field (Figure. 7.3). The distribution of this unit is limited and 

its distribution controlled by local pre-Permian palaeo-topography. The Auk Sandstone con-

sists of aeolian and fluvial sandstones. They are interpreted to have been deposited from 

southeasterly directed palaeo-winds and easterly flowed fluvial system. Locally an altered 

volcanic horizon occurs at the Devonian/Permian boundary. These rocks have been dated as 

Permian- Carboniferous in age, and it is likely that they are related to the thick sequences of 

volcanic which occur farther south (Robson, 1991). 

 

Figure 7.3 The sketched SW-NE cross section and general stratigraphy column of the Alma Field. 
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Late Permian Zechstein carbonates directly overlie the Rotliegend reservoir and can be fur-

ther divided into four units from bottom to top: Kupferschiefer, Halibut Bank Formation, 

Sapropelic Dolomite and the Turbot Bank Formation (Figure. 7.3). The whole Zechstein in-

terval in Alma is assigned to Z2, Z3 and Z4 subunits (Taylor, 1990a).  

A thin Kupferschiefer marks the onset of the Zechstein transgression, with suggestions of the 

uppermost parts of the Rotliegend sequence was reworked by marine. Subsequent Zechstein 

carbonates conformably overlie the Kupferschiefer. These carbonate sediments are of a mar-

ginal marine facies and consist of a lower dolomitic horizon, assigned to the Halibut Bank 

Formation and an overlying sequence of anhydrite, dolomite and claystone assigned to the 

Turbot Bank Formation. An organic matter-rich dolomitic interval known as the Sapropelic 

Dolomite separates the upper and lower parts of the Zechstein interval (Robson, 1991). 

7.2.3 Triassic Heron Group  

The Smith Bank claystones (Triassic Heron Group) cover the Zechstein as continental condi-

tions become established. These Triassic siltstones/claystones partly contribute as the seal on 

the Zechstein reservoir in the western fringe of the Alma Field (not shown in Figure 7.3). 

7.2.4 Upper Jurassic 

Major unconformities resulted in the absence of the Lower and Middle Jurassic in the Alma 

Field area, along with severe truncation of other post-Devonian sediments at the crest of the 

field. Thin Upper Jurassic shallow marine sandstones are present over the rest of the field and 

are equivalent to the Fulmar Formation sandstones as seen in the Fulmar Field 50 km to the 

NW (not shown in Figure. 7.3).  
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7.2.5 Cretaceous 

The Lower Cretaceous Cromer Knoll Group sediment and Upper Cretaceous Chalk Group 

chalks blanket the Alma Field and provide an ultimate top seal for the hydrocarbon accumu-

lation (Figure. 7.3). 

7.2.6 Paleogene to recent strata 

The Paleogene, Neogene and Quaternary strata in the Alma are thick (over 2000 m) are large-

ly argillaceous and not considered to have any hydrocarbon potential. 

7.3 Database 

The three-stage development has made the well and core database comprehensive. A total of 

fifty-three wells have been drilled, thirty-two of them were cored. 

Many 2D seismic lines across Block 30/24 are available. A 3D seismic survey was shot over 

the northern half of the Alma area in 1991 by BHP. An Agip 3D seismic survey covered the 

southern half of the field in 1993.  

The authors of this paper have done extensive research on the Buchan Formation sandstone 

reservoirs of the Alma Field. This new information was not available for the previous publi-

cations on the field. The new information reported here includes data from one hundred and 

one petrographic thin sections, data from core chips examined using a scanning electron mi-

croscope, fluid inclusion micro-thermometry of quartz overgrowth, stable isotope data from 

dolomite cement and XRD analysis of clay minerals. 

7.4 Reservoirs 

Alma contains four reservoir units (Upper Devonian-Buchan, Permian-Rotliegend, Permian-

Zechstein and Upper Jurassic). The former three units are in pressure and fluid communica-



Reservoir Quality of Upper Devonian Strata UK North Sea 

173 
 

tion, while the Upper Jurassic is independent (Gluyas et al., 2005). The 1D burial-thermal 

history (Figure. 7.4) indicates that the stratigraphic units between Devonian and Palaeocene 

were little buried until the Paleogene and contain many unconformities due to multiple epi-

sodes of tectonic uplift and erosion. 

 

Figure 7.4 The 1D burial-thermal history of stratigraphic units in Alma Field. 

7.4.1 Upper Devonian Buchan Formation 

The Upper Devonian Buchan Formation comprises predominantly sandstones with minor 

siltstone, mudstones and conglomerates. The main deposition facies are braided-fluvial and 

aeolian sandstones. However, for units B01, B02, B03, B05 and B06 there is only very poor 

core coverage and hence uncertainty about the exact depositional environments in which their 

sediments formed. The remaining units vary in the dominant facies: fluvial (B04), aeolian 

(B07 and B08) and fluvial (B09, B10 and B11) representing a progradation-retreat-

progradation cycle of the alluvial fan-based braided system with aeolian deposits occurred 

mainly between two main progradation periods (Tang et al., 2017a). Wells can be correlated 

by aeolian sand packages (Figure. 7.8A) but the correlations between fluvial intervals are 

difficult and may not be reliable. 
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The commonest sedimentary structures include: trough and planar cross bedding in fluvial 

sandstones (Figures 7.5A and 7.5B), and the large scale planar cross bedding with pin-stripe 

and discontinuous wavy lamination in aeolian sandstones (Figures 7.5C and 7.5D). Most of 

the sandstones are litharenite to sublitharenite with fine to medium grain size. Both composi-

tional and textural maturities of aeolian sandstones are higher than fluvial sandstones. 

 

Figure 7.5 Typical core photos of Buchan Sandstone fluvial and aeolian deposits: (A): Trough cross-

bedded, medium to fine sandstones, Well 30/24-20z, 3121.7 m; (B): Planar cross bedding, medium to 
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fine sandstones, Well 30/24-20z, 3172.7 m; (C): The oil-stained, medium-grained, pin-stripe aeolian 

dune sandstones, Well 30/24-31, 3191 m; and (D): The fine-medium grained sandstone with discon-

tinuous wavy lamination. Well 30/24-31, 3183.8 m. 

The braided channel and aeolian dune deposits mainly form the reservoir, while the facies 

with finer grain size, such as fluvial abandonment, overbank and aeolian interdune, are typi-

cally non-reservoir and form significant formation heterogeneity. The reservoir quality of 

fluvial reservoir sandstones is suffered from significant dolomite cementation and quartz 

overgrowth. While the early formed grain coating illite/smectite in the aeolian sandstones has 

effectively inhibited quartz overgrowth and the aeolian sandstones therefore have better res-

ervoir quality than fluvial sands (Tang et al., 2017b).  

The reservoir quality of Buchan Formation has a large range, porosity and permeability of 

fluvial and aeolian sandstones varied from 0.1% to 23.1% & 0.2 mD to 1240 mD and 5.1% to 

28% & 0.2 mD to 5290 mD, respectively (Figures 7.7A and 7.7B). 

7.4.2 Middle-late Permian Rotliegend 

A more detailed description of the Rotliegend reservoir can be found in Heward et al. (2003). 

The Rotliegend deposition is confined to the SW and central areas of the field. The 

Rotliegend consists of good quality medium-grained dune slipface sands and coarse water-

lain sands (Weissliegend unit) which were deposited on the denuded Devonian surface, the 

dune slipface sandstones are consolidated to poorly consolidated, and the cementation is lim-

ited (Figure. 7.6A). The coarse water-lain sandstones contain conglomeratic quartz pebbles 

with sandy-supported matrix (Figure. 7.6B). The sands dominated by wind ripple laminated 

facies are relatively tight and have characteristically high water saturations. These differences 

can be picked out in core or on the sonic log. Occasionally the wind ripple laminated facies 

can be seen as potential barriers to flow. Porosity and permeability ranges from 18% – 25% 
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and 10 milli-Darcies and up to 10 Darcies (Figure. 7.7C). Net to gross is from 70% – 98%, 

and the sandstones can be well correlated between selected wells (Figure. 7.8B). 

 

Figure 7.6 Typical core photos of Permian examples: (A): Permian Rotliegend aeolian sandstone, 

Well 30/24-18, 2780.7 m; (B) Permian Rotliegend waterlain conglomeratic sandstone, Well 30/24-18, 

2788.9m; and (C) Zechstein dolomite with visible vugs (white arrows), Well 30/24-18, 2751.4 m. 

7.4.3 Late Permian Zechstein 

A comprehensive description of Zechstein dolomite reservoir are made by Bifani and Smith 

(1985), Gluyas et al. (2005) and Gluyas et al. (2018). The Zechstein here is subdivided into 

three cycles, the Halibut Bank Formation (Z2) and the Turbot Bank Formation (Z4) separated 

by the easily correlatable Sapropelic Dolomite (Z3) (Figure. 7.8C). The reservoir possesses a 

dual porosity system of large pores visible to naked eyes (Figure. 7.6C) and microscopic-

scale pores. The large pores include tectonic-origin fractures and dissolved vugs, the vugs are 
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100 μm to 5 mm in diameter (Figure. 7.6C). The Lower Halibut Bank is a calcite cemented 

dolomite and generally exhibits poorer reservoir qualities than the Upper Turbot Bank For-

mation. This is overlain by an organic rich dolomite interval, the Sapropelic Dolomite which 

could act as a vertical permeability barrier. The better quality Upper Turbot Bank Formation 

consists of interbedded anhydrites, clays and dolomite. The dolomite has undergone extreme 

karstification resulting in vuggy porosity and collapse breccias. Porosity and permeability are 

poorly correlated, a typical porosity ranges from 5% – 20% but the permeability ranges from 

hundreds milli-Darcies and up to 1 Darcy which is locally enhanced by vugs and fractures. 

 

Figure 7.7 The porosity and permeability crossplots of (A): Fluvial samples of Buchan Sandstone res-

ervoir; (B): Aeolian samples of Buchan Sandstone reservoir; and (C) Rotliegend Auk Formation res-

ervoir. 
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Figure 7.8 The well correlations of three main reservoirs among selected wells 

 

 

(A): Aeolian dominated layer B08 of Devonian Buchan Formation (Tang et al., 2017a). 
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(B): Rotliegend sandstone unit. 
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(C): Zechstein dolomitic unit 
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7.4.4 Upper Jurassic 

An overall fining upwards sequence is recognized varying from coarse conglomeratic sand-

stones through pebbly sandstones into fine grained sandstones upwards. The relatively high 

energy conglomerate and pebbly sandstones are interpreted as representing the reworking of 

the top of the underlying conglomeritic unit. The sequence represents decreasing energy and 

increasing water depth upwards and possibly is part of an overall transgressive sequence 

culminating with the deposition of the Kimmeridge Clay (Bifani and Smith, 1985). 

Porosity and permeability are moderate to good within the fine grained sandstones (16% – 

21%, few milli-darcies to a few hundred milli-darcies). Petrographic analysis shows occlu-

sion of porosity due to carbonate cementation. Petrographic analysis suggests that calcite ce-

ment leaching and feldspar dissolution may have occurred thus creating the secondary porosi-

ty.  

7.5 Source 

The deeply buried Upper Jurassic Kimmeridge Clay organic shales are the source of hydro-

carbons for the Central Graben region (Gluyas et al., 2005). They are not mature in the Alma 

Field area, but migration is likely to have come from the deeper more basinal Central Graben 

from the east-northeast. 

7.6 Oil in place, reserves and production 

The most recent estimate for oil in place for Alma Field plus the adjacent Galia Field (for-

merly Duncan Field) is 307 million barrels (EnQuest, 2015). We are aware of at least ten ‘dif-

ferent calculations’ oil in place calculations. These range from 198 mmstb in the 1991 Argyll 

‘Cessation of Production’ report by Hamilton to 375 mmstb calculated by Tuscan during the 
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Ardmore phase of the field (Gluyas et al., 2018). There were in total 72.6 million barrels oil 

has been produced during the Argyll-stage development from 1975 to 1992 (41.1 million bar-

rels from Zechstein interval completions, 18.2 million barrels from Rotliegend interval com-

pletions, and 12.8 million barrels from Devonian interval completions. Much of the oil pro-

duced from wells completed in the Zechstein was produced from the Rotliegend and Devoni-

an reservoirs via cross-flow (Gluyas et al., 2018). Only natural aquifer support and gas lift 

were used to support production of Argyll. During the Ardmore phase of the field, wells were 

completed in both the Zechstein and Devonian intervals and co-produced using natural flow 

initially and then with electro-submersible pumps. Five million barrels was produced from 

Ardmore between 2003 and 2005 (Figure. 7.9). Well workovers completed during the 

Ardmore phase demonstrated that the main natural aquifer was the Rotliegend sandstones 

with about 30 billion barrels attached to the field (Gluyas et al., 2018). Water flows from the 

Rotliegend into both the Zechstein above and Devonian below. Reservoir quality in the deep-

er Devonian is poorer and there is effectively no bottom drive. The Alma development phase 

has provision for water injection but as of yet has not been implemented. Alma production 

has delivered 3.8 million barrels including about 0.5 million barrels from a long-reach well 

into the adjacent Galia Field. Remaining reserves prior to Alma start-up were calculated to be 

about 25 MMBBL. 
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Figure 7.9 Three-stage production history of the Alma Field by the end of April 2017.  
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7.7 Field Summary Table 

Parameter  Data and suggested Units Author’s explanatory comments 

Trap    

Type  Horst block  

Depth to crest  8,600 (ft. TVDSS)   

Hydrocarbon contacts  9,360 (ft. TVDSS)  

The contact is shallower in the NE crest 

of the field at 9150 ft. TVDSS and 

deepest in the far SW at 9430 ft. 

TVDSS 

Maximum oil column 

thickness  
860 (ft.)  Measured from NE crest to SW OWC 

Maximum gas column 

thickness  
Not applicable (ft.)   

Main Pay Zone    

Formation  

1. Fulmar Formation 

2. Halibut Bank, Sapropelic Dolo-

mite, Turbot Bank formations 

3. Auk Formation 

4. Buchan Formation 

1. Minor development on western 

flank 

2. Zechstein Group formations 

3. Rotliegend sandstone 

4. Old Red Sandstone 

Age  

1. Upper Jurassic 

2. Upper Permian 

3. Lower Permian 

4. Upper Devonian 

4. Youngest Buchan Formation may be 

Lower Carboniferous in age 

Depositional setting  

1. Shallow marine 

2. Shallow, restricted marine, 

evaporate basin 

3. Terrestrial aeolian, fluvial & 

sabkha 

4. Terrestrial aeolian and fluvial 

 

Gross/net thickness  1600 ft. to 3,300 ft. 

Zechstein oversteps Rotliegend and 

where the latter is absent lies uncon-

formably above Buchan sandstones; 

The Rotliegend sandstones infill topog-

raphy in pre-Permian land surface; 

Buchan tilted to west with topographic 

erosion surface separating it from 

younger sediments 

Average porosity 

(range)  

Fulmar: 20 – 25% 

Zechstein: 5% – 20%; 

Rotliegend: 18% – 25%; 

Buchan: 0.1% – 28%; 

 

Average net: gross 

ratio  

Fulmar: 0.8 - 1 

Zechstein: 0.25-0.9 

Rotliegend: 0.7-0.98 

Buchan: 0.5-0.95 

 

Cutoff for net reser-

voir  

Fulmar: 17% porosity 

Zechstein: 5% porosity 

Rotliegend: 12% porosity 

Buchan: 13% porosity 

Argyll phase 

Average permeability 

(range)  

Fulmar: range 1mD to 100 mD 

Zechstein: >1D 

Rotliegend: 200mD range 4-5410 

mD 

Buchan: 340 mD (arithmetic) 10.5 

(geometric) range <1 to >1000 mD 

Zechstein core is rubbly and vuggy, 

core measurements are unreliable, frac-

ture permeability dominates 

Average hydrocarbon 

saturation  

Fulmar: 70% 

Zechstein: 45% 
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Rotliegend 50% 

Buchan 42% 

Productivity index 

range  
Not available  

Hydrocarbons    

Oil gravity  38 (°API)   

Oil properties  
Light crude with viscosity (0.58 cp 

to 0.7 cp) 
 

Bubble point (oil)  

Dew point (conden-

sate)  

Fulmar: 1920 psi 

Zechstein: 1152 psi 

Rotliegend: 989 to 1152 psi 

Buchan: 142 psi 

 

Gas/Oil Ratio or 

Condensate/Gas Ratio  
267 scf/bbl Based on cumulative production  

Formation Volume 

Factor (oil)  
1.214  

Gas gravity  n/a  

Gas Expansion Factor  n/a  

Formation Water    

Salinity  58,110 (ppm NaCl equiv.)   

Resistivity  0.141 ohm-m at 250°F  

Pressure gradient - 

water  
0.43 psi ft

-1
  

Reservoir Conditions    

Temperature  122 (°C)  252°F at 9000 ft. TVD datum 

Initial pressure  5285 (psia at 9,000 ft. TVDSS)   

Hydrocarbon pres-

sure gradient - oil  
0.326 (psi/ft.)   

Hydrocarbon pres-

sure gradient - gas  
n/a   

Field Size    

Area  11.33 (km
2
)   

Gross Rock Volume  n/a   

STOOIP  

Alma 307 (mmbbl)  

Ardmore 375 mmbbl 

Argyll 198 mmbbl (range 198-342 

mmstb) 

Most recent update (Enquest 2015) 

Argyll STOIIP calculation from cessa-

tion of production report 

Associated GIP  Not calculated (bcf)   

Non-associated GIP  Not calculated (bcf)   

Drive mechanism 

(primary, secondary)  
Primary pressure depletion  

Recovery to date - oil  81.4  (mmbbl)  To April 2017 

Recovery to date - gas  n/a   

Expected ultimate 

recovery fac-

tor/volume - oil  

33 (%) / 100 (mmbbl)  Based upon 307 mmstb STOIIP 

Expected ultimate 

recovery fac-

tor/volume - gas  

(%)/(bcf)   

Production    

Start-up date  June 1975  

Number of Explora-

tion/Appraisal Wells  
1/4  

Number of Produc-

tion Wells  

17 Argyll 

3 Ardmore 

6 Alma 

Appraisal wells used for production 

during Argyll phase 

Number of Injection 

Wells  
0  

Development scheme  Argyll converted drill ship  
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Ardmore converted jack-up 

Alma floating production  

Plateau rates – oil/gas  

Argyll 34,500 bopd 

Ardmore 18,900 bopd 

Alma 13,000 bopd 

August 1976 

December 2003 

May 2016 

Planned abandon-

ment  
n/a   
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CHAPTER 8: CONCLUSIONS AND FURTHER DISCUS-

SIONS 

 

 

Chapter outline 

 

8.1 Principle findings 

8.2 Analysis of uncertainties: the architecture of fluvial channel sand body in the Ardmore 

Field 

8.3 Implications from this study 

8.4 Suggestions for the future research 
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8.1 Principle findings 

8.1.1 Lithology, facies identification, facies architecture and sand body connec-

tivity 

 Core cut in Buchan Formation of the Ardmore Field contains three lithologies: conglom-

erates, sandstones and fine-grain sediments including siltstones and mudstones. They can 

be further classified into eight sub-types based on sedimentary structures. These deposits 

were formed in fluvial and aeolian systems under hot and arid conditions.  

 In the Ardmore Field, the core and well log studies identify that the Buchan Formation 

consists of a fluvial-aeolian-fluvial succession representing a predominantly progradation-

al sequence of the alluvial fan-based braided system with aeolian-dominated deposits be-

tween two main fluvial progradation periods. 

 Facies architecture was studied using analogue outcrops, core logging data, well log corre-

lation and basin modelling. The results demonstrate that the fluvial sequences are com-

posed of metre scale superimposed fining-upward cycles, interpreted as high-energy fluvi-

al braided systems. Laterally, a single fluvial channel sand body has a thin (1 m – 3 m) and 

sheet-like morphology with a high width/thickness ratio (80:1 – 120:1, mean value 

110.7:1).The high channel deposit proportion (> 75%) indicates that nearly all the channel 

sand bodies were likely to be interconnected both vertically and laterally. 

 The aeolian sequence has a simpler internal architecture: the interbedded occurrence of 

dune (good reservoir quality) and interdune (moderate reservoir quality) deposits. Individ-

ual dune and interdune deposit can laterally extend up to a kilometre scale and generally 

shows tabular geometry in the lateral direction. The connectivity of individual dune sand 

body is excellent in the lateral direction and is compartmentalized by interdune deposits in 

the vertical direction. 
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 Compared with fluvial facies sandstones, the aeolian-associated facies form a volumetri-

cally minor (approx. 30%). They are an important reservoir in Ardmore Field due to good 

sorting, high grain roundness and absence of both muddy and conglomeratic contents and 

were little cemented. These features allow them to be tentatively identified, especially for 

those uncored wells, by using the combination of well log responses: low gamma ray, high 

sonic transit time and low bulk density.  

8.1.2 Petrography, diagenesis and reservoir quality of the Upper Devonian 

Buchan Formation in Ardmore Field 

 The main sandstone type is fine to medium-grained, moderately to well sorted litharenite 

and sublitharenite with anomalously good but variable reservoir quality (ϕ = 1% – 28%, K 

= 0.1 mD – 5280 mD). An important finding from this research is the recognition that the 

Upper Devonian stratigraphy of the North Sea can have good reservoir quality with hydro-

carbon potential. 

 The reservoirs consist of braided fluvial channel and aeolian dune sandstones. The volu-

metrically minor aeolian dune sandstones generally show excellent reservoir quality (ϕ = 

5.1% to 28%, mean value 20.2%, K = 0.2 mD to 5280 mD, geometric mean 64.9 mD). 

The volumetrically major fluvial channel sandstones possess reservoir quality with a large 

variation (ϕ = 0.1% to 23.1%, mean value 12.7%; K = 0.2 mD to 1240 mD, geometric 

mean 5.41 mD). 

 Both reservoir sandstone types suffered moderate porosity loss from early mechanical 

compaction (average 14.82% and 10.06% porosity have been reduced by compaction in 

aeolian and fluvial samples, respectively), but show clearly different phases of burial dia-

genesis and cementation (average 5.63% and 12.71% porosity have been reduced by ce-

mentation in aeolian and fluvial samples, respectively). The dolomite cementation is 

common in both sandstone types. In the fluvial facies sandstones, the intense quartz over-
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growth is widely presented and volumetrically occupied 3% – 7% intergranular space. In 

the aeolian facies sandstones, the most noticeable differences are the absence of quartz 

overgrowth and presence of thick (1 μm – 5 μm) and continuous grain-coating clays cov-

ering nearly all the quartz grains. 

 Detailed petrographic analysis has identified that grain coating clays were formed before 

compaction and mixed layer clay of illite/smectite (I/S). The cornflake and/or honeycomb 

morphology identifies that the precursor of I/S is likely to be smectite. The most probable 

source of these detrital clays was from the distal sector of a braided system such as flood 

plain deposits and the accumulations in the interdunes. When the clay-bearing water en-

countered the porous and permeable aeolian sands, the clays would have infiltrated into 

the porous intergranular space by mechanical infiltration. 

 The grain coating I/S inhibited subsequent quartz overgrowth and helped to preserve pri-

mary porosity. By using the model of Ehrenberg (1993) it is proposed that 6% – 7% poros-

ity would be occupied by quartz overgrowth if there wasn’t grain coating I/S. 

 Illitization of smectite has limited negative effect on reservoir quality, the 1D burial curve 

shows that the Buchan Formation was at consistently shallow depth (< 1.5 km) and low 

temperature (< 70°C) until Palaeogene and rapidly buried to today’s maximum depth (2.5 

km – 3.2 km). The low burial temperatures encountered for much of the geological history 

of the Buchan Formation sandstones has provided insufficient time for transformation of 

smectite to hairy/fibrous illite. 

8.1.3 Results from geochemical analysis 

 Quartz overgrowths show zoned structure under CL (cathodoluminescence) representing 

multiple stages of authigenic quartz precipitation. This corresponds to the homogenization 

temperature of fluid inclusions between quartz and overgrowth ranges uniformly from 

80°C to 120°C. Fluid inclusions consist of pure brine water confirming that the quartz 
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overgrowths developed earlier than the oil migration. The most possible source of silica is 

from alteration (kaolinitization) of feldspars, the pressure dissolution of quartz grains also 

has a minor contribution. 

 The temperature of precipitation and paragenesis of dolomitic cements were investigated 

through stable isotopic analysis. The results of δ
13

C and δ
18

O clearly identify a well-

developed marine carbon signature (δ
13

C = -3.1‰ to 1.6‰) forming in temperature range 

from ~25°C to ~58°C. It is proposed that the most likely source for such a marine signa-

ture is the overlying Zechstein carbonates. 

 For the clay minerals, the XRD analysis show that the I/S is in the R1 ordered interstratifi-

cation, the illite component is 70% – 80% in the mixed I/S and dickite is not found in the 

kaolinite aggregates. Burial history temperatures never exceeded ~130°C and the Buchan 

Formation is at maximum burial at present day. 

8.2 Analysis of uncertainties: the architecture of fluvial channel sand bod-

ies in Ardmore Field 

The geological concept ‘the present is the key to the past’ was firstly developed during the 

Scottish Enlightenment, which means that the processes and phenomena of occurring today 

have operated throughout most of the Earth’s history (Mathieson, 2002). But, is it really ap-

plicable to the whole geological history? In this study, the answer is ‘no’. 

Fluvial systems are a common part of the landscape on Earth and its architecture is vital in 

the petroleum industry for estimating reservoir volumes and petroleum productivity (Miall, 

2013). Both external and internal factors can have impacts on fluvial architecture including 

climate, tectonics, sediment supply rate, topography, sediment calibre, slope, avulsion rate, 

soil and vegetation (Bull, 1991; Charlton, 2007; Miall, 2013). Amongst all these factors, veg-

etation might be the only one with significant evolution which shows contrasting differences 



Reservoir Quality of Upper Devonian Strata UK North Sea 

 

192 

 

between ancient and modern ages. Therefore, the morphology of ancient fluvial (early and 

middle Palaeozoic age) may be very different to that of today due to the absence of these riv-

er bank stabilizers. 

Geologically, the most important impact of the vegetation, particularly the truly rooted vascu-

lar species, on the fluvial morphology is stabilizing river banks and forming relatively fixed 

channels (Gibling and Davies, 2012). The vascular plants started presenting on the land sur-

face at approximately Late Silurian to Early Devonian and became widespread at the Late 

Devonian to Early Carboniferous (Małkowski and Racki, 2009; Davies and Gibling, 2010). 

Before the universal colonization of truly rooted vegetation on the land surface, the fluvial 

deposits usually demonstrate a ‘sheet-like’ braided style generated by wide and shallow flow 

with low relief margins, and the floodplain deposit was generally little preserved (e.g. Davies 

and Gibling, 2011; Gibling and Davies, 2012; Gibling et al., 2014). 

During the Devonian the UK and especially the North Sea area were located at the 15° to 20° 

latitude in the southern hemisphere (Hunter and Easterbrook, 2004). The low latitude tropical 

position, presence of aeolian deposits and mud desiccation cracks support a palaeo-climatic 

setting of hot and arid to semi-arid. Any vegetation is likely to be restricted and have played a 

negligible role in controlling fluvial system evolution. The superimposed meter-scale fining-

upward cycles imply that the discharge was the ‘seasonal’ flood events probably depending 

on the variation of rainfall in the sediment source areas, rather than a single-episode and rela-

tively steady long-term discharge mode. A single discharge cycle might look like a thin and 

flat sheet flow with high width/thickness ratio. Moreover, the uncorrelated conglomeratic ba-

sal lags might be a good indicator representing multiple discharges existed contemporaneous-

ly.  
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So far we know that the fluvial system in the study area is a combination of the high-energy, 

braided-like and distal, sheet flood sand-bed styles. In this case, the main facies which could 

form effective reservoir are the sandy-dominated channel deposits. A good quality of estima-

tion on the scale of these channel deposits is important for: 1). Lateral extension of single 

sand body in the subsurface; 2). Net-gross ratio: the key factor for calculating the approxi-

mate reservoir volume; and 3). The channel deposition proportion (CDP) which is decisive on 

subsurface sand body connectivity (Bridge and Tye, 2000). 

To minimize the uncertainty of geometry parameters of subsurface channel sand bodies and 

obtain a relatively accurate width/thickness ratio, we employed both analogue outcrops with 

similar sedimentary facies and well logs among neighbouring wells in the Ardmore Field. 

The measurement of channel sand bodies at outcrops provides an approximate range of 

width/thickness ratio, and this could be used to decide whether the sand bodies with compa-

rable well log responses in different wells are correlated or not. Here we propose that the 

combination of analogue outcrops and well logs among neighbouring wells could provide 

parameters for subsurface simulations. These might be the best way to study the geometry of 

subsurface channel sand bodies when the high resolution seismic data is not available. 

8.3 Implications from this study 

8.3.1 Reservoirs with possibly good potential of the Upper Devonian Buchan 

Formation in the Central North Sea 

In the North Sea, the Permian, Mesozoic and Cainozoic reservoirs have been considerably 

studied and explored. However the often deeper and older objectives (Devonian and Carbon-

iferous) have been overlooked for a long time. This study has confirmed that in the Central 

North Sea, the Upper Devonian Buchan Formation could form good reservoirs under specific 

depositional, diagenetic and burial conditions. The outcomes may stimulate further investiga-
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tions on Buchan Formation and re-evaluate the potential of Upper Devonian strata in Central 

and Northern North Sea. 

8.3.2 Survival of porous aeolian sandstones within cemented fluvial sandstones  

In this study, we have found that the aeolian deposits are sandwiched by considerably ce-

mented fluvial sandstones but show abnormally high reservoir quality and lesser cementa-

tions. The fluvial sandstones are highly cemented by authigenic dolomite and quartz over-

growth, but these aeolian deposits are free of quartz cementation. This study has proposed 

that the presence of early formed mechanically infiltrated grain coating clays and the featured 

burial history are the main key factors for the good reservoir quality in aeolian sandstones. 

The presence of grain coating clays is closely related to the fluvial-aeolian setting which is 

reportedly extensive from Midland Valley (Cameron and Stephenson, 1985; Hall and 

Chisholm, 1987) to the UK-Norwegian boundary areas in the North Sea (Knight et al., 1993; 

Graham et al., 2003; Abay et al., 2014). A number of publications have shown that the burial 

history with similar features may present elsewhere in the Central Graben (e.g. Swarbrick et 

al., 2000; Carr, 2003; Di Primio and Neumann, 2008; Nguyen et al., 2013). Based on these 

clues, we proposed that the Upper Devonian aeolian sandstones in the Central Graben are 

likely to possess good reservoir quality if they have been deposited in analogue depositional 

setting and experienced similar diagenetic and burial histories. 

8.3.3 Positive effect of smectite (subsequently altered to I/S) on preserving po-

rosity 

The illitization of smectite is traditionally regarded to be harmful to the reservoir quality (es-

pecially on reducing permeability) due to its water and salinity sensitive swelling property. 

This study has demonstrated that grains coated with tangential illite/smectite can still keep 

high quality reservoirs if illitization has not progressed to develop to the stage of elongated 

filamentous illite. In the Buchan Formation of the Ardmore Field, the smectite/illite has not 



Reservoir Quality of Upper Devonian Strata UK North Sea 

 

195 

 

fully transformed to illite despite the high reservoir temperature (approx. 120C) because bur-

ial to such temperature only occurred in the recent geological past and provided insufficient 

time-temperature exposure for illitization. Based on the numerous reports on the positive ef-

fect of porosity preservation by grain coating chlorite and microcrystalline quartz overgrowth, 

this study has confirmed that the grain coating I/S, with particular depositional, diagenetic 

and burial conditions, can also be a good porosity preserver which has been rarely realized 

before. 

8.4 Suggestions for future research 

During this research, a number of questions and ideas turned up. These ideas are presented 

below and may represent opportunities to expand on the research reported here and to further 

develop the research into related areas. 

8.4.1 Aeolian dune deposits of Upper Devonian Buchan Formation in the Cen-

tral North Sea: is it a new hope in the old strata? 

The excellent reservoir quality of aeolian dune sandstones has been confirmed in this study 

and this was largely unidentified in previous research. It shows that the high compositional 

and textural maturity, early-formed grain coating clays and the featured burial history are the 

key points determining high reservoir quality in late Palaeozoic sediments of the North Sea. 

We suggest that the future research and exploration of Devonian targets should consider these 

aeolian sandstones associated with fluvial deposits if they are at low temperatures or only re-

cently heated. Since the aeolian deposits were not well identified in Devonian strata of the 

North Sea, a critical revisit on drilled Devonian intervals and careful explanation of any new 

encountered Upper Devonian Formation should be made in the future. 
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8.4.2 Source area of the fluvial sediments 

Mykura (2002) illustrated that in the Midland Valley and Southern Upland, the Late Devoni-

an fluvial systems generally flowed eastwards into the Central North Sea. In the further north 

area, the Upper Old Red Sandstone in the Buchan Field (UK Block 21/1) was originated from 

igneous rocks in the Grampian Region (Richards, 1985b). However, there is no direct evi-

dence could prove these localities were true sediment source areas, and the exact scale of the 

fluvial systems existed during Late Devonian is still unclear. We suggest that the further in-

vestigations can be made by studying polycrystalline quartz grains, smectite aggregates, dif-

ferent quartz colours under cathodoluminescence, heavy minerals to achieve a better under-

standing of the sediment provenance (Haughton and Farrow, 1989). 

8.4.3 Quantitative petrography analysis on the quartz overgrowth 

In this study, fluid inclusions have been used to determine the precipitation temperature of 

quartz overgrowth and cathodoluminescence analysis has identified the multiple stages of 

quartz cementation. To constrain the rates and mechanisms of quartz cementation and quanti-

fy changes in the physical properties of sandstones during burial, we suggest that the situ sec-

ondary ion mass spectrometry (SIMS) can be used in the future to quantitatively determine 

the quartz cementation histories. 

8.4.4 Recognition of open fractures in uncored wells. 

Downie (2009) has mentioned the important role of open fractures on assisting the flow of 

hydrocarbons in the Devonian reservoir rocks. By investigating the existed cores, the frac-

tures are not widely distributed. Less than 10% cores have visible fractures presenting in 

sealed and open types (Figures 8.1A and 8.1B). The open fractures are likely to be recog-

nizable according to a couple of well log responses including: 1). The high value and ‘cycle 

skip’ shape of acoustic log due to the contrasting sonic propagation velocity in the air and 
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rocks (Gao and Xie, 2007); and 2). Rapid decrease of ILM (medium-depth induction) while 

the ILD (deep-depth induction) varies stably and smoothly (Cancan, 2003) (Figure 8.1B). 

We suggest that these characteristics can be used for recognizing open fractures in the un-

cored wells. 

 

Figure 8.1 The presence and well log response of two types’ fractures. A. the sealed fractures in the 

Upper Devonian fluvial sandstones, well 30/24-05, 2772.5 m. B. the open fractures in the Upper De-

vonian fluvial sandstones, well 30/24-20z, 2835.6 m.
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APPENDIX I: CORE LOG DATA OF THIS PROJECT 

 

Well list: 

30/24-03 

30/24-05 

30/24-16 

30/24-18 

30/24-20 

30/24-20z 

30/24-28** 

30/24-31** 

30/24-34** 

 

 

 

 

Abbreviations 

Grain size: vf-very fine; f-fine; m-medium; c-coarse 

Sample or not: y-8849.8-43732 (yes sample has been taken at this depth-depth in ft.-sample label 

number) 

*All the core log works were done at BGS Core Store in Keyworth, Nottingham (30/24-03, 05, 16, 18, 

20 and 20z) and EnQuest Core Store in Aberdeen (30/24-28, 31 and 34). 

**Note: the ‘sample or not’ column is not available for wells 30/24-28, 31 and 34, check the Appen-

dix II-1 for sample information of wells 30/24-28, 31 and 34. 
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30/24-03 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

8849.3-

8850.5 
sandstone 

interbedded 

dark brown and 

light brown 

f-m parallel y-8849.8-43742   

8850.5 mudstone dark green grey clay / 
 

fractured, oil stained 

8850.8 sandstone 
light grey, with 

seldom purple 
f-m not obvious y-8850.8-43743 vertical fractured, but be filled 

8851.2 sandstone purple-red f-m 
not obvious, some soft sedi-

ment deformation 
y-8851.0-43744 Small fractures, filled by oil? 

8851.3-

8851.7 
sandstone purple-red f-m 

not obvious, some soft sedi-

ment deformation 
y-8851.4-43745 

fractures vary in different directions, oil 

stained, probably heavy oil 

8852 sandstone 

yellow brown 

with part of 

purple red 

f-m 
not obvious, some soft sedi-

ment deformation 
y-8851.9-43746 Small fractures, filled by oil? 

8852.2-

8853.7 
sandstone 

interbedded 

dark brown and 

light brown 

m parallel y-8853.4-43747 small fractures 

8854-8854.4 sandstone 

red to yellow 

grey, with wide 

grey-white belt   

f-m not obvious 

y-8854.0-

43748;y-8854.3-

43749 

Fractures, 0.3-2mm width, various direc-

tions, infilled by dark matter. 

8854.4-

8855.4 
sandstone 

grey yellow to 

grey 
m parallel y-8854.8-43750 some tilted laminate at the top 

8855.5-

8855.7 
sandstone 

purple red and 

brown 
f-m not obvious n a wide belt around 1cm width 

8855.8-

8856.5 
sandstone 

grey-white and 

purple brown, 

with black-grey 

laminate, at the 

bottom, there is 

a belt with 

2.5cm width 

infilled with 

grey-white and 

green laminate 

f-m parallel 
y-8856.1-43751; 

y-8856.4-43752  
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8856.6-8858 sandstone brown-yellow m not obvious y-8856.9-43753 
vertical fractures, 0.1mm width, with 

some branches 

8858-8859 sandstone 

purple red with 

brown-yellow 

laminate 

m parallel y-8858.8-43754 reaction with HCL 

8859.0-

8859.6 
sandstone 

purple-red with 

light yellow 

brown laminate 

f-m parallel and cross bedding y-8859.2-43755 
 

8859.7-

8864.3 
sandstone brown-yellow f-m parallel 

y-8859.6-43756; 

y-8861.5-43757; 

y-8863-43758 

Fractures well developed, vertical, with 

small braches, 0.2mm width, infilled with 

dark matter. Especially in 8861.5, heavy 

smell of oil. At the 8862.8ft and bottom, 

wide belt infilled with dark and white-

grey matter 

8864.3-

8864.6 
sandstone 

purple-red and 

grey 
f-m not obvious y-8864.5-43759 

small lateral fractures infilled with dark 

matter, with 0.5mm width 

8864.7-

8865.3 
sandstone 

grey-white with 

brown laminate 
f-m perfect parallel y-8864.9-43760 the dark laminate is less than 1mm 

8865.4-

8867.2 
sandstone 

grey-white with 

purple-red dots 
f-m parallel y-8865.7-43761 

 

8867.4-8869 sandstone 
dark grey and 

brown 
m not obvious y-8868.1-43762 

well-developed fractures, heavy smell of 

oil, poorly cemented 

8869.5-

8871.4 
sandstone 

dark grey and 

yellow brown 
f-m parallel, and few cross bedding y-8870.0-43763 

fractures developed but infilled with grey 

matter, width from 0.2mm-2mm 

8871.4-

8871.8 
sandstone 

dark brown 

with lots of 

huge pink dot, 

diameter from 

2mm-2cm  

m not obvious y-8871.7-43764 poorly cemented, with many tiny fractures 

8871.8-8873 sandstone 

yellow-brown 

with dark grey 

laminate 

m not obvious, some parallel y-8872.5-43765 
 

8873.4 sandstone yellow-brown m parallel y-8873.4-43766 
 

8873.9 sandstone yellow-brown m parallel y-8873.9-43767 
 

8874.5 sandstone yellow-brown m parallel y-8874.5-43768   
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30/24-05 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

9103-9108 

sandstone, 

high muddy 

content 

purple red f 
approximately parallel, some 

soft sediment deformation 

y-9103.2-43776;    

y-9106.5-43777 

some lateral fractures, nothing infilled, 

0.2-0.4mm width 

9108-9110 sandstone 

light grey-

brown with 

purple laminate 

f-m parallel y-9108.6-43778 
 

9110-9112 sandstone 

dominated pur-

ple, with grey 

laminate and 

dark line 

f-m perfectly parallel 
y-9110.7-43779;    

y-9111.7-43780 

the dark line seems like poorly cemented 

with visible fractures 

9112-9113 sandstone 

purple-red dot 

and grey back-

ground, to-

wards bottom, 

the purple red 

dot become 

fewer and few-

er, and finally 

become into 

entire grey 

f-m parallel 
y-9112.1-43781;   

y-9112.9-43782  

9113-9114 sandstone 
light yellow 

brown 
m not obvious y-9113.5-43783 

 

9114-9114.5 sandstone yellow-brown m not obvious y-9114.3-43784 
 

9114.5-9117 

same to 

9114-

9114.5 
     

9117-9118 sandstone 

light yellow 

brown with 

light purple red 

m approximately parallel y-9117.3-43785 
 

9120-9123 sandstone yellow-brown m not obvious y-9120-43786 
 

9124-9130.5 sandstone yellow-brown m not obvious y-9124.3-43787 
 

9130.5-9133 sandstone yellow-brown m 
not obvious, with some ap-

proximately parallel 
y-9131-43793 
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9133-9134 sandstone purple-red m 
not obvious, with some ap-

proximately parallel 
y-9133.5-43794 

 

9134-9135 sandstone yellow-brown m some approximately parallel y-9134.5-43795 
 

9135-9137 sandstone purple-red f-m 
not obvious, with some ap-

proximately parallel 
y-9136.5-43796 more muddy content 

9137-9138.5 sandstone 
purple with 

grey belt 
m 

parallel, with soft sediment 

deformation 
y-9137.8-43797 

 

9138.5-

9139.5 
sandstone 

interbedded 

purple and grey 
m perfectly parallel y-9139-43798 

 

9140-9143 sandstone yellow-brown m 
not obvious, with some paral-

lel beddings 
y-9140.5-43799 

 

9143.3-9147 sandstone 
yellow-brown 

light 
m-c 

approximately parallel bed-

dings 
y-9144.0-43800 Fractures developed, indurated. 

9147-9150 sandstone brown-yellow m not obvious y-9149.5-43804 
 

9150-9152.5 sandstone yellow-brown m parallel y-9150.8-43805 
 

9152.6-9155 sandstone 
interbedded 

purple and grey 
m parallel y-9154-43807 

 

9155-9157 sandstone yellow-brown m approximately parallel y-9156.5-43808 
 

9157-9160 sandstone light brown m parallel y-9159.5-43809 
 

9160-9161.5 sandstone brown m not obvious y-9161.0-43810 
 

9322.5-

9323.8 
sandstone brown m 

parallel, with some soft sedi-

ment deformation 
y-9312.8-43813 

 

9323.8-9324 sandstone 

white-grey con-

tent significant-

ly increased, 

also contains 

some pink con-

tent 

m not obvious y-9323.9-43814 
 

9224-9328.5 sandstone brown m 
parallel, with some soft sedi-

ment deformation 
y-9224.6-43815 

 

9328.5-

9329.5 
sandstone 

white-yellow 

light, with 

some purple 

dots 

m 
approximately parallel, but not 

very obvious 
y-9329.3-43817 

 

9329.5-9335 sandstone 
grey with lots 

of purple dots 
m parallel y-9329.8-43818 
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9335-9337 sandstone 

light grey white 

with a few dark 

green line 

m parallel y-9335.2-43821 
 

9337-9337.8 sandstone 
grey with pur-

ple lines 
m parallel y-9337.8-43823 

 

9337.8-

9343.8 
sandstone 

grey with pur-

ple dots 
m dots are parallel distributed y-9338.3-43824 many dots 

9343.8-

9349.5 
sandstone 

grey with wide-

ly distributed 

purple dots 

m parallel y-9344.2-43827 
a group of sudden yellow-brown lami-

nates shown up 

9349.5-9357 sandstone 

grey with vari-

ous quantity of 

purple dots 

m parallel y-9351-43831 majorities are purple 
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30/24-16 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

9643-9644 sandstone light brown m angular parallel 
  

9644-9645 sandstone brown 

m but 

coarser 

than 

previous 

one 

not obvious 
  

9645-9646 sandstone light brown m not obvious 
  

9646-9648.4 sandstone brown m approximately parallel y-9646.4-43835 
vertical fractures with 0.2mm width, in-

filled by dark matter 

9648.4-

9648.8 
sandstone brown m approximately parallel 

 
with dark matters stained 

9648.8-

9653.5 
sandstone dark brown m not obvious y-9653.0-43836 not water wettable 

9653.5-

9654.5 
sandstone dark brown m not obvious 

 
not water wettable 

9654.5-

9655.75 
sandstone brown m not obvious 

 

not water wettable, with fracture devel-

oped, -.5-1mm width, infilled 

9656-9657 sandstone dark brown m not obvious 
 

not water wettable 

9657-9658 sandstone grey m parallel 
  

9658-9659 sandstone light brown m angular parallel y-9658.2-43837 with dark matter stained 

9659-

9660.33 
sandstone grey-brown m angular parallel 

 
with dark matter stained 

9660.33-

9662.9 
sandstone light brown m angular parallel 

 
fewer dark matter stained 

9662.9-

9663.3 
sandstone 

dark-grey in-

terbedded with 

yellow brown 

m parallel with high angle 
  

9663.3-

9665.33 
sandstone 

light greyish 

yellow brown 

with dark lines 

m parallel with high angle 
  

9665.33-

9666.5 
sandstone 

yellow brown 

with dark lines 
m parallel with high angle 
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9666.5-

9667.9 
sandstone 

dark yellow 

brown with 

dark matter 

stained 

m parallel with high angle 9667.7-43838 
 

9667.9-9670 sandstone 

brown inter-

bedded with 

light brown 

m 
parallel with soft sediment 

deformation   

9670-9670.8 sandstone dark brown m parallel with high angle y-9670.4-43839 not water wettable 

9670.8-

9671.2 
sandstone grey-brown m 

not obvious parallel, with soft 

sediment deformation   

9673-

9676.25 
sandstone 

light-greyish 

and red brown 
m parallel with angle y-9674-43840   
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30/24-18 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

9153-9157 sandstone  

yellow-brown 

with lots of 

black matter 

m-c perfectly parallel y-9155.3-43842 
poorly cemented, black matters every-

where 

9157-9159 conglomerate 

purple-red ma-

trix, the peb-

ble's colours 

contain white, 

pink, grey, 

dark grey 

matrix 

is m-c, 

pebbles 

diameter 

from 1-

2mm-

1cm 

no obvious gradient y-9158.3-43843 
 

9159-9160 conglomerate 

purple-red ma-

trix, the peb-

ble's colours 

contain white, 

pink, grey, 

dark grey 

matrix 

is m-c, 

pebbles 

diameter 

from 1-

2mm-

1cm 

no obvious gradient 
  

9160-9161.5 sandstone purple-red m not obvious parallel y-9160.5-43844 
 

9161.5-9162 sandstone 

grey-white 

with brown 

lines 

m parallel and x bedding y-9161.8-43845 
 

9162-9165.5 sandstone light brown m 
parallel, some small cross 

bedding 
y-9164.3-43855 

 

9165.5-9168 sandstone 

grey with pur-

ple  dots wide-

ly spread 

m 
purple dots parallel distribut-

ed 
y-9168-43846 

at 9167, small vertical fractures infilled 

with dark purple matters 

9168-9170 sandstone 

grey with pur-

ple  dots wide-

ly spread 

m not obvious y-9169.8-43847 

in sampled area, there is a lateral frac-

ture presented, infilled with the dark 

matter, with 0.2mm width 

9170-9170.8 sandstone 

purple with a 

few light lines 

interbedded 

m parallel 
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9170.8-9172 sandstone 

suddenly 

change to grey-

yellow and 

dark grey 

m not obvious y-9171.6-43848 
 

9172-9173 sandstone 

purple with 

light lines in-

terbedded  

f-m parallel 
  

9173-9174 sandstone 

grey-white 

with dark grey 

matter irregu-

larly distribut-

ed 

m 
not obvious, soft sediment 

deformation 
y-9173.7-43849 

 

9174-9177 sandstone 

grey-white 

matrix with 

abundant pur-

ple dots dis-

tributed 

m almost parallel 

y-9174.2-43850 medium content of purple dots 

y-9175.2-43851 majority is purple 

 
at 9174.4, soft sediment deformation 

 

at 9176.3-9176.5, some lateral fractures, 

0.2-0.3mm width, infilled with dark pur-

ple matters 

9177-9178.6 sandstone 

light grey 

white with 

purple dots, 

m parallel y-9178-43852 
 

9178.6-9180 sandstone 
purple content 

increased 
m parallel y-9179-43853 

sampled depth is a well-developed frac-

tured zone 

9180-9183 sandstone 

grey white ma-

trix with purple 

dots widely 

spread 

m parallel y-9181.5-43854   
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30/24-20 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

9877.5-

9881.2 
sandstone 

yellow brown 

matrix with 

purple dots 

widely distrib-

uted 

m angular parallel y-9878-43857 
 

9881.2-9884 sandstone 

yellow brown 

matrix with less 

purple dots 

widely distrib-

uted 

m angular parallel y-9883-43859 
At 9883, there are many greys muddy? 

Content angularly parallel distributed. 

9884-9887.5 sandstone 
dark grey and 

purple 
m angular parallel y-9885.1-43860 

 

9887.5-

9887.8 
sandstone yellow-brown m not obvious y-9887.5-43862 

 

9887.8-9889 sandstone 
dark grey and 

purple 
m parallel with high angle y-9888-43863 

 

9889-9891 sandstone yellow-brown m not obvious y-9890.5-43864 
 

9891-9891.3 sandstone red f-m not obvious parallel y-9891.1-43865 
 

9891.3-9895 sandstone dark brown m high angle parallel y-9893-43866 
 

9895-9897 sandstone 
dark brown-

black 
m high angle parallel y-9896-43868 inside is black, poor cemented, brittle 

9897.5-9901 sandstone 

light yellow 

brown with 

purple and dark 

grey lines 

m high angular parallel y-9899-43870 
 

9902.5-

9906.5 
sandstone 

dark grey, yel-

low-brown 

frequently in-

terbedded 

m high angle parallel y-9902.5-43872 much grey content 

9906.4-

9908.5 
sandstone light brown m high angle parallel y-9908.4-43876 a few dark lines 
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9908.4-9911 sandstone 

light brown 

matrix, the dark 

lines are signif-

icantly in-

creased 

m high angle parallel y-9910-43877 
 

9911-9913.5 sandstone light brown m high angle parallel y-9911.5-43878 
 

9913.5-9916 sandstone 

light brown 

matrix, the dark 

lines are signif-

icantly in-

creased 

m high angle parallel y-9914.5-43879 
 

9916-9923 sandstone 

dark brown 

with yellow 

brown lines 

m high angle parallel y-9916.8-43880 
 

9923-9926.9 sandstone 

light grey-

brown  with 

purple dots 

m 
approximately parallel, some 

soft sediment deformation 
y-9923.7-48530 

 

9926.9-

9933.5 
sandstone 

light purple red 

with grey belts 
f-m angular parallel y-9927-48532   
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30/24-20z 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

10156.8-

10158 
sandstone brown m not obviously parallel 

  

10158-10159 sandstone 
grey with pur-

ple belt 
m parallel y-10158.8-48536 

 

10159-

10159.2 
sandstone 

grey with pur-

ple dots 
m not obvious y-10159.1-48534 

 

10159.2-

10160 
sandstone brown m not obvious y-10160-48535 

 

10161.6-

10162 
sandstone grey m parallel 

  

10162-10165 sandstone dark brown m angular parallel y-10162.2-48537 
 

10166-10168 sandstone purple grey m not obviously parallel y-10167.5-48538 
 

10168-10169 sandstone purple-red f-m 
not obvious, with some soft 

sediment deformation  

contains high proportion of muddy con-

tent 

10169-

10169.3 
sandstone grey f-m not obvious 

 
less muddy content 

10169.3-

10177 
sandstone 

brown and dark 

brown 
m 

some sections have angular 

parallel, whole sections are not 

obvious 

y-10170-48539 
 

10177-

10181.5 
sandstone light brown m angular parallel y-10177.5-48542 light brown 

10181.5-

10186 
sandstone 

brown-dark 

brown 
m angular parallel y-10181.5-48543 brown 

10186-

10186.6 
sandstone brown m not obvious 

  

10186.6-

10192.8 
sandstone 

light brown and 

grey 
m approximately parallel y-10192.4-48545 

 

10192.8-

10202 
sandstone brown and grey m 

high angular parallel, with 

small scales cross bedding 

y-10194.6-48546 
at 10194.9-10195.2, contains some purple 

contents,  

y-10198.2-48547 at 10197.8, contains some purple belts 

y-10201.7-48548 
at 10200-10200.8, contains small scale of 

cross bedding 
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10202-10208 sandstone brown and grey m not obvious parallel y-10203.5-48549 
at 10206.3, a thin purple layer about 2cm 

presented 

10208-10211 sandstone 
brown-dark 

brown 
m-c not obvious parallel y-10208.5-48550 

 

10211-10214 sandstone 
light brown - 

grey brown 
m not obvious y-10213.3-48552 

at 10213.7, purple red content significant-

ly increased 

10214-10215 sandstone dark brown m not obvious y-10214.4-48553 not water wettable 

10216-

10216.6 
sandstone 

light brown - 

grey brown 
m parallel y-10216.4-48554 with some black lines 

10216.6-

10217 
mudstone red clay / y-10216.9-48555 

 

10217-

10222.8 
sandstone 

light grey 

brown 
m not obvious 

 
from 10220-10222.8 cores are missing 

10222.8-

10223.4 
sandstone brown m not obvious y-10223.2-48556 

 

10224.6-

10225 
sandstone light brown m 

approximately high angle par-

allel 
y-10225-48557 

 

10228.3-

10229 
sandstone grey-purple m not obvious y-10228.5-48558 

 

10229-10235 sandstone 
brown and grey 

interbedded 
m approximately parallel y-10234.5-48559 

 

10235-10237 sandstone 

purple-red and 

dark grey inter-

bedded 

m approximately parallel y-10235.5-48560 
 

10237-

10238.5 
sandstone red-purple m not obvious y-10237.6-48561 

 

10238.5-

10238.8 
sandstone 

dark grey con-

tains purple 

content 

m not obvious 
  

10238.8-

10241.5 
sandstone 

purple inter-

bedded with 

white-grey 

m approximately parallel y-10239-48562 
 

10241.5-

10243 
sandstone 

brown inter-

bedded with 

white grey 

m cross bedding y-10241.8-48563 
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10243-

10244.5 
sandstone 

dark brown 

with few light 

yellow brown 

lines 

m not obvious y-10243.5-48564 
 

10244.5-

10251.1 
sandstone 

light grey- 

brown- dark 

brown 

m not very obvious y-10245-48565 
At 10245.7, some small fractures devel-

oped, infilled with dark matter? 

10251.1-

10253 
mudstone 

purple red with 

some grey con-

tent 

clay soft sediment deformation y-10252.8-48567 
 

10253-10256 sandstone 
dark brown and 

grey 
m 

not obvious parallel, with soft 

sediment deformation 
y-10253.2-48568 

the grey content increased with the depth 

in this section 

10256-

10257.1 
sandstone 

grey and purple 

interbedded 
m parallel y-10256.5-48570 

the sampled area contains gradient form 

purple to red 

10257.1-

10259 
sandstone 

dark brown and 

light yellow 

brown inter-

bedded 

m parallel y-10258-48571 
 

10259-

10260.8 
missing 

     

10260.8-

10262 
sandstone 

Dark grey and 

light grey in-

terbedded. 

With moderate 

purple content 

m parallel and cross bedding y-10260.5-48572 
 

10262-

10263.5 
sandstone grey m parallel y-10262.2-48573 

 

10263.5-

10265 
sandstone 

orange-red and 

grey with grey 

content 

m not obvious y-10264-48574 
fractures well developed,0.1-0.3mm 

width, partly infilled 

10265-

10266.5 
sandstone 

orange-red with 

grey content 
m not obvious y-10265.4-48575 

 

10266.5-

10267.2 
mudstone purple-red clay not obvious 

  

10267.2-

10268 
sandstone purple-red f-m not obvious y-10267.9-48576 

 

10268-

10268.8 
mudstone purple-red clay not obvious y-10268.7-48577 
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10268.8-

10271 
sandstone 

lighter purple-

red 
f-m 

not obvious, with some soft 

sediment deformation 
y-10270.8-48578 

 

10271-

10272.5 

muddy 

sandstone 

purple red with 

grey content 
f-m 

not obvious, with soft sedi-

ment deformation 
y-10271.3-48579 

 

10272.5-

10274 
sandstone dark brown m not obvious y-10273.8-48580 

 

10274-

10360.3 
sandstone purple-red m approximately parallel y-10355-48581 

 

10360.3-

10360.5 
mudstone 

     

10360.5-

10363 
sandstone purple-red m not obvious y-10361-48584 at depth 10362, there is mud concrete 

10363--

10366.3 

sandstone 

with mud 

concrete 

purple-red with 

grey content 

sand-

m 

not obvious, mud concrete 

randomly distributed 
y-10365.5-48585 

 

10366.3-

10369.9 
sandstone grey-pink m angular parallel y-10366.6-48586 

 

10372-

10372.8 
sandstone pink-grey m cross bedding y-10372.3-48587 

 

10372.8-

10381 
sandstone purple-red m 

parallel, soft sediment defor-

mation 
y-10373-48588 fractures seldom developed 

10381-10382 sandstone purple-red m approximately parallel y-10381.2-48592 
 

10382-10386 sandstone purple-red m parallel y-10385.8-48593 
 

10386-10391 sandstone pink-grey m parallel y-10386.4-48594 
 

10391-

10396.5 
sandstone purple-red m parallel y-10392.5-48597 

 

10396.5-

10399.75 
sandstone dark purple red m parallel y-10398.8-48599 

 

10399.75-

10409 
sandstone purple-red m parallel y-10405-48601 

 

10409-10418 sandstone purple-red m parallel y-10410.5-48604 
 

10418-10427 sandstone 
lighter purple 

red 
m parallel y-10422.5-48606 at depth 10426.5, cross bedding 

10427-

10427.5 
sandstone purple-red m not obvious y-10427.2-48608   
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30/24-28 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

9149-9153 sandstone 
grey, light 

brown 
m low angle parallel 

  

9153-9158 sandstone brown m low angle parallel & massive 
  

9158-9162 sandstone 
light brown-

grey 
m low angle parallel 

  

9162-9166.5 sandstone brown f-m low angle parallel 
  

9166.5-9168 sandstone 
brown, dark 

brown 
m 

small scale x-bedding, low 

angle parallel   

9168-9171 

sandstone 

with red clast 

inside 

light grey f-m massive 
  

9171-9173 sandstone brown m 
low angle parallel & horizon-

tal   

9173-9173.5 

sandstone 

with red clast 

inside 

light grey f-m 
soft sediment deformation, 

low angle parallel   

9173.5-9176 sandstone dark brown m x-bedding 
  

9176-0=9180 sandstone 
brown, light 

brown 
m 

low angle parallel & x-

bedding   

9180-9181 sandstone dark brown m low angle parallel 
  

9181-9190 sandstone 
light brown, 

yellow brown 
m 

low angle parallel & fractures 

fully filled   

9190-9196 
sandstone & 

conglomerates 
brown c massive 

  

9196-9225 sandstone 
light yellow 

brown 
m 

low angle parallel & massive 

& fractures fully filled   

9233-9236 sandstone dark brown m 
x-bedding & soft sediment 

deformation   

9236-9239 

sandstone 

with red clast 

inside 

light grey m horizontal 
  

9239-9242 sandstone 
brown, dark 

brown 
m massive & low angle parallel 
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9242-9242.4 sandstone 
light grey-

brown 
m low angle parallel 

  

9242.4-9248 sandstone dark brown m 
low angle parallel & x bed-

ding   

9248-9262 sandstone 
brown, light 

brown 
m 

massive & low angle parallel 

& horizontal   

9262-9264 sandstone dark brown m high angle parallel 
  

9264-9266 

sandstone 

with red clast 

inside 

light grey f-m 
massive & soft sediment de-

formation   

9266-9269 
muddy sand-

stone 
purple red f-vf 

horizontal & soft sediment 

deformation   

9269-9272 sandstone brown m massive 
  

9272-9276 
muddy sand-

stone 
purple red f-vf 

horizontal & soft sediment 

deformation   

9276-9289 sandstone grey m massive, small fractures 
  

9289-9292 sandstone dark brown m massive 
  

9292-9300 sandstone 
light brown, 

brown 
m 

x-bedding & high angle paral-

lel   

9300-9305 
muddy sand-

stone 
purple red f-m 

low angle parallel & soft sed-

iment deformation   

9305-9307 sandstone dark brown m massive 
  

9307-9346 sandstone 
brown, light 

grey brown 
m 

low angle parallel & soft sed-

iment deformation & fractures 

fully filled 
  

9346-9354 sandstone dark brown m 
low angle parallel & fractures 

fully filled   

9354-9373 sandstone 
brown, light 

grey brown 
m 

low angle parallel & soft sed-

iment deformation & fractures 

fully filled 
  

9373-9375.2 sandstone dark brown m 
low angle parallel & fractures 

fully filled   

9375.2-9388 sandstone 
light grey, pur-

ple red 
f-m 

low angle parallel & soft sed-

iment deformation & horizon-

tal 
  

9388-9392 sandstone dark brown m low angle parallel 
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9392-9398 sandstone 
light grey, pur-

ple red 
f-m 

low angle parallel & soft sed-

iment deformation & horizon-

tal 
  

9398-9404 sandstone 
light grey, pur-

ple red 
f-m 

low angle parallel & soft sed-

iment deformation & horizon-

tal 
  

9404-9419 sandstone 

light brown and 

brown inter-

bedded 

m 
low angle parallel & soft sed-

iment deformation   

9419-9426 sandstone pink, light grey f-m 
massive & low angle parallel 

& soft sediment deformation   

9426-9435 sandstone 

light brown and 

brown inter-

bedded 

m 
low angle parallel & soft sed-

iment deformation   

9435-9440.5 sandstone pink, light grey f-m 
massive & low angle parallel 

& soft sediment deformation   

9440.5-9446 sandstone dark brown m massive 
  

9446-9459 sandstone 

light brown and 

brown inter-

bedded 

m 
low angle parallel & soft sed-

iment deformation   

9459-9489 sandstone pink, light grey m-c 
massive & low angle parallel 

& soft sediment deformation   

9489-9499 sandstone light grey m low angle parallel & massive 
  

9499-9508 sandstone pink, light grey m-c 
massive & low angle parallel 

& soft sediment deformation   

9508-9524 sandstone light grey m low angle parallel & massive 
  

9524-9532 sandstone pink, light grey m-c 
massive & low angle parallel 

& soft sediment deformation 
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30/24-31 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

10438-

10444.5 
sandstone 

grey and light 

brown 
m soft sediment deformation 

  

10444.5-

10445 
sandstone light red purple m parallel 

 

lateral fractures developed, infilled by 

dark brown matter 

10445-10447 sandstone 

grey and light 

brown, with 

purple red belts 

m soft sediment deformation 
 

lateral fractures developed, infilled by 

dark brown matter 

10447.7-

10447.9 
sandstone 

light brown and 

grey 
m 

parallel and soft sediment de-

formation   

10447.9-

10449 
sandstone 

brown and pur-

ple interbedded 
m soft sediment deformation 

 
purple belts 1cm width 

10449-10450 sandstone 

purple red, dark 

grey, light pink 

brown inter-

bedded 

m soft sediment deformation 
 

major colour is light pink brown, purple 

bels 1cm width, dark grey belts 0.5-1cm 

width 

10450-

10451.8 
sandstone 

purple red, light 

pink brown 

interbedded 

m 
parallel and soft sediment de-

formation  
purple red content becomes major colour 

10451.8-

10453 
sandstone 

light brown and 

grey, with a 

few purple red 

belts, 0.5cm 

width 

m 
parallel and soft sediment de-

formation   

10456-10463 sandstone 

grey and 

brown, with a 

few purple red 

belts 

m soft sediment deformation 
  

10463-10465 sandstone 

light grey with 

purple belts, 

purple belts 

width range 

from 0.3cm-

2cm 

m soft sediment deformation 
 

lateral fractures developed, infilled with 

dark purple and dark grey content 
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10465-

10466.5 
sandstone 

brown and light 

yellow brown, 

with purple 

belts and dark 

grey lines 

m 
parallel and soft sediment de-

formation  

dark grey lines width about 0.2mm-

0.8mm, purple belts width 0.5cm 

10466.5-

10469 
sandstone dark brown m not obvious 

 
not water wettable 

10469-10474 sandstone 
light brown and 

light grey 
m 

not obvious, with some soft 

sediment deformation  

at the bottom depth, the purple content 

obviously increased 

10474-10486 sandstone 

light brown and 

light grey in-

terbedded 

m soft sediment deformation 
 

lateral fractures developed, infilled with 

dark purple content, fractures width range 

from 0.2-0.5mm 

10486-10488 sandstone 
light brown and 

light grey 
m soft sediment deformation 

  

10489-10491 sandstone 
brown to dark 

brown 
m not obvious 

 
not water wettable 

10491-10492 sandstone light brown m parallel 
  

10492-10494 sandstone brown m not obvious 
 

not water wettable 

10494-10495 sandstone 
light brown and 

light grey 
m not obvious 

  

10495-10504 sandstone 
brown-light 

grey 
m 

approximately parallel, soft 

sediment deformation  

from 10499.5-10500 and 10501-10501.2 

and 10502.5-10503, light grey contents 

are major colour, otherwise the major col-

our is brown interbedded with light grey 

10504-10508 sandstone brown m not obvious 
  

10508-

10508.6 
sandstone dark brown m not obvious 

 
not water wettable 

10508.6-

10510 
sandstone brown m not obvious 

  

10510-10512 sandstone 
light brown and 

light grey 
m soft sediment deformation     
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30/24-34 

Depth (ft.) Lithology Colour 
Grain 

size 
Sedimentary structure Sampled or not Other comments 

9467-

9474.25 
sandstone 

light yellow 

brown 
m parallel     

9474.25-

9477.5 
sandstone 

light yellow 

brown 
m parallel 

 

some small lateral fractures developed, 

not infilled 

9477.5-9489 sandstone 
light yellow 

brown 
m parallel 

 

some small lateral fractures developed, 

infilled by brown matter 

9489-9489.4 sandstone 
light yellow 

brown 
m parallel 

 
lateral fractures developed 

9489.4-9501 sandstone 

light purple red 

with grey con-

tent 

m parallel 
 

with dark grey lines 

9501-9508 sandstone 

purple red with 

parallel dark 

grey lines 

m parallel 
 

fractures developed moderately 

9508-

9511.25 
sandstone 

light yellow 

brown 
m not obvious 

 

at depth 9511.25, a large purple content 

presented, width 3cm 

9511.25-

9514 
mudstone dark purple red clay / 

  

9514-9517 sandstone 
light yellow 

brown 
m not obvious 

 
with few dark grey content 

9517-9523.5 sandstone 
light yellow 

brown 
m 

not obviously parallel, with 

dark brown lines, width 

0.2mm 
  

9523.5-

9524.7 
sandstone light red purple m not obvious 

  

9524.7-

9526.25 
sandstone 

yellow brown 

and dark grey 

content 

m not obvious 
 

small fracture developed, 0.1mm width, 

infilled 

9526.25-

9527 
sandstone 

yellow brown 

and dark grey 

content 

m not obvious 
 

towards 9527, red purple content in-

creased 

9527-9529.1 sandstone red purple m not obvious 
  

       
9529.1- sandstone light red purple m not obvious 
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9651.6 

9651.6-9652 
sandy con-

glomerates 
grey purple m-c not obvious 

 
fracture developed 

9652-9653.2 sandstone purple red m not obvious 
 

fracture well developed, infilled by dark 

content 

9653.2-

9654.5 
conglomerates 

purple red ma-

trix with white 

pebbles 

c not obvious 
 

pebble width from 0.3cm-0.6cm 

9654.5-

9655.8 
conglomerates 

purple red ma-

trix with white 

pebbles 

c not obvious 
 

pebble width from 0.3cm-0.6cm 

9656.7-

9657.5 
sandstone yellow brown  m parallel 

 
with parallel dark lines 

9657.5-9659 sandstone 
purple red with 

coarse grains 
m-c nearly parallel 

  

9659-9659.5 conglomerates 

purple red ma-

trix with white 

pebbles 

c not obvious 
 

pebble width from 0.3cm-0.6cm 

9660.5-

9660.7 
mudstone dark purple red clay not obvious 

  

9660.7-

9661.5 

matrix with 

white pebbles 
purple red c not obvious  pebble width from 0.3cm-0.6cm 

9661.5-

9663.4 
mudstone dark purple red clay not obvious 

  

9663.4-

9669.8 
mudstone dark purple red clay not obvious 

  

9669.8-

9674.1 
sandstone 

yellow brown 

with purple 

content 

m not obvious 
 

dark lines presented 

9674.1-

9674.3 
sandstone purple red m nearly parallel 

 
dark grey lines, 0.2mm width 

9674.3-

9678.2 
sandstone yellow brown m not obvious 

  

9678.2-

9682.5 
sandstone yellow brown m not obvious 

 
some pebbles seldom distributed 
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9682.5-

9687.4 
conglomerates 

purple red with 

brown content, 

pebbles are 

white and grey, 

width from 

0.3cm-1cm 

c not obvious 
  

9687.4-

9696.5 
conglomerates 

purple red with 

brown content, 

pebbles are 

white and grey 

c not obvious    
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APPENDIX II: PETROGRAPHIC DATA USED IN THIS 

PROJECT 
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II-1 Point counting data 

Well 

Name 

Depth 

(m) 
Unit Facies Sorting 

Round- 

ness 
GS 

Detrital (%) Authigenics (%) 
Porosity 

(%) 

Permeability 

(mD) Q F M RF K I/S Ch QOG D 

30/24-05 2840.7 B04 CHC p SA f 51 5 6 28 6 tr N 4 N 20 28 

30/24-05 2841.8 B04 CHC p SA f 64 4 tr 27 0 N N 5 N 22.3 221 

30/24-05 2843.0 B04 CHA md SR f 51 2 tr 16 5 tr N 4 22 17.9 48 

30/24-05 2843.9 B04 CHC p SA vf 46 2 2 12 5 N N 5 28 11.9 0.12 

30/24-05 2844.5 B04 SF md SR f 54 3 2 17 7 1 N 3 13 4.4 0.9 

30/24-05 2845.5 B04 SF w SR f 53 2 3 27 10 tr N 5 N 14.5 2.7 

30/24-05 2846.4 B04 SF md SR f 49 2 tr 23 5 tr N 3 18 10.6 0.13 

30/24-05 2846.7 B04 CHA md SR f 36 1 2 30 6 tr N 1 24 3.2 0.06 

30/24-05 2847.0 B04 CHA p SR f 46 3 5 19 5 tr N 4 18 9.5 0.18 

30/24-05 2847.6 B04 SF md SA f 51 1 1 25 4 tr N 3 15 12.7 0.19 

30/24-05 2849.1 B04 CHB md SR vf 51 1 4 4 11 0 N 5 25 10.9 0.49 

30/24-05 2850.0 B04 CHB md SA vf 48 1 2 24 10 N N 3 12 7.2 1.1 

30/24-05 2850.9 B04 CHB md SR f 54 2 1 25 5 1 N 3 9 11.8 0.12 

30/24-05 2851.4 B04 CHB md SR f 56 2 tr 17 4 N N 3 18 0.1 0.1 

30/24-20z 3097.7 B04 CHB mw SR m 77 3 2 10 4 tr N 3 1 17.3 408 

30/24-20z 3104.4 B04 CHA p SA vf 48 1 1 31 15 tr N 4 N 5.6 0.24 

30/24-20z 3112.0 B04 CHB mw SR m 81 3 tr 6 5 N N 3 2 18.4 1090 

30/24-20z 3117.8 B04 CHB md SR vf 73 1 2 5 5 3 N 5 6 9.9 1.6 

30/24-20z 3123.9 B04 CHB w SR m 71 3 tr 15 3 tr N 3 5 17.6 240 

30/24-20z 3125.4 B04 CHB md SR f 78 2 tr 7 4 N N 1 8 12.1 12 

30/24-20z 3126.0 B04 SF md SR vf 71 1 2 7 12 1 N 1 5 12.6 1.1 

30/24-20z 3156.2 B04 SF md SR vf 62 1 2 14 10 N N 3 8 10.7 0.45 

30/24-20z 3157.1 B04 CHB md SR f 74 1 1 4 10 tr N 6 4 14.7 80 
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30/24-20z 3159.3 B04 CHA md SR f 30 2 1 40 9 N N 4 14 8.3 1.6 

30/24-20z 3162.6 B04 SF md SR vf 68 1 8 5 10 N N 3 5 5.2 0.15 

30/24-20z 3163.5 B04 SF md SR vf 62 2 2 16 15 N N 3 N 10.9 0.49 

30/24-20z 3165.3 B04 CHB md SR vf 66 0 1 13 8 N N 4 8 10.4 0.42 

30/24-20z 3169.6 B04 SF w SR f 58 3 tr 3 9 N N 5 22 3.8 0.13 

30/24-20z 3173.6 B04 CHB mw SR m 76 3 1 5 11 N N 4 tr 18.8 351 

30/24-20z 3176.6 B04 CHB md SR m 76 1 1 8 9 tr N 5 tr 16.8 770 

30/24-28 2791.1 B10 AD w R m 71 5 tr 19 0 2 N N 2 19.6 122 

30/24-28 2794.1 B10 CHB mw SR m 74 3 5 16 1 1 N N 1 21.5 75.7 

30/24-28 2795.0 B10 CHC p A m 50 3 1 37 4 tr N 2 3 7.2 4.4 

30/24-28 2795.6 B10 CHC p SA m 60 2 1 28 7 1 N 3 N 15 510 

30/24-28 2797.8 B10 CHB w SR m 73 2 1 15 9 tr N N N 17.9 481 

30/24-28 2799.6 B10 AD w SR m 73 1 N 15 5 tr N N 6 21.3 367 

30/24-28 2804.8 B10 CHA md SR vf 59 2 2 19 2 2 N 2 12 16.3 1.6 

30/24-28 2806.6 B10 CHB md SR f 75 2 N 11 6 tr N 6 N 17.7 130 

30/24-28 2809.3 B09 CHB md SR f 65 5 N 13 0 1 N 4 12 15.4 31 

30/24-28 2817.3 B09 CHB mw SR m 63 5 N 27 0 1 N 1 3 23.1 150 

30/24-28 2819.1 B09 CHB w SR f 80 4 N 10 0 1 N 3 2 21.7 114 

30/24-28 2820.6 B09 AD w R m 78 4 N 15 0 1 N N 2 24.1 59 

30/24-28 2823.4 B09 AD w R f 71 5 3 14 0 1 N N 6 18.8 27 

30/24-28 2824.0 B09 SF w SR silt 50 2 8 31 2 5 N N 2 11.1 0.45 

30/24-28 2824.6 B09 SF md SR vf 70 5 1 12 0 2 N N 10 13.8 0.28 

30/24-28 2827.0 B09 CHA p SA m 25 3 5 67 0 N N N N 7.7 4.8 

30/24-28 2828.8 B09 CHB md SR f 67 5 3 16 0 3 N N 6 19.3 2.5 

30/24-28 2831.9 B09 AD w R m 84 2 1 2 5 5 N 1 N 24.4 123 

30/24-28 2839.8 B09 CHB w SR f 71 4 N 16 0 2 N tr 8 16.6 72 

30/24-28 2845.0 B09 AD w SR f 79 3 2 1 0 12 N tr 3 17.7 86 

30/24-28 2845.9 B09 AD w SR m 73 4 1 17 0 1 N N 4 19.4 39 

30/24-28 2847.7 B09 CHC p SA m 72 2 2 22 0 2 N tr N 18 46 

30/24-28 2849.0 B09 AD w SR f 82 3 N 11 0 1 N N 3 23.7 229 
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30/24-28 2851.7 B09 SF md SR f 75 3 2 14 0 tr N 1 5 16.8 21 

30/24-28 2857.2 B08 AD w SR m 84 1 1 13 N 1 N N N 22.3 115 

30/24-28 2862.1 B08 AD w R m 86 1 1 8 N 1 N N 3 19.4 34 

30/24-28 2872.2 B08 ID md SR vf 71 2 3 10 5 tr N N 9 14.1 0.61 

30/24-28 2882.2 B08 AD mw SR f 85 1 2 9 N tr N 1 2 17.9 11 

30/24-28 2884.0 B08 AD w R m 73 2 2 17 N 1 N N 5 18.5 14 

30/24-28 2890.4 B08 AD w R f 79 2 1 13 N 2 N N 3 19.6 21 

30/24-28 2891.6 B07 AD mw R m 74 4 N 20 N 2 N N N 28 5200 

30/24-28 2892.2 B07 AD w R f 83 2 3 5 N 1 N N 5 19.1 147 

30/24-28 2893.5 B07 AD w R m 77 4 N 11 6 1 N 1 N 27.5 4910 

30/24-28 2894.7 B07 AD md R m 87 4 1 7 N 1 N tr N 22.7 242 

30/24-28 2899.9 B07 AD w R m 92 4 N 3 tr 1 N N N 28 5290 

30/24-28 2901.1 B07 AD w R m 78 4 1 16 N 1 N N 1 26.7 3040 

30/24-28 2902.3 B07 AD w R m 79 3 2 11 N 3 N tr 3 23 337 

30/24-28 2905.0 B07 AD md R f 71 1 2 12 N N N 1 13 11.4 2.5 

30/24-31 3182.1 B08 AD w SR m 72 2 1 15 1 2 N N 7 22 50 

30/24-31 3183.6 B08 ID md SR vf 54 2 1 13 N 1 N tr 29 5.1 0.18 

30/24-31 3186.1 B08 ID md SR vf 69 2 1 18 1 4 N tr 5 16.2 4.8 

30/24-31 3186.7 B08 ID w SR f 77 1 1 16 1 3 N N 1 16.2 6.5 

30/24-31 3188.8 B08 AD w R m 78 2 1 10 1 2 N N 6 20.5 21 

30/24-31 3190.6 B08 AD w R m 86 4 tr 7 0 3 N N N 26.3 4600 

30/24-31 3193.4 B08 ID md SR f 72 3 1 20 tr 2 N tr 2 18 5.5 

30/24-31 3195.2 B08 ID w SR f 74 1 1 19 N 3 N tr 2 14.3 1.2 

30/24-31 3195.8 B08 ID md SR f 75 0 tr 20 1 2 N N 2 18.5 3.4 

30/24-31 3197.4 B08 AD w SR m 76 2 1 18 N 1 N tr 2 23.2 318 

30/24-31 3197.7 B08 AD w R m 76 2 tr 19 tr 1 N N 1 23.7 638 

30/24-31 3199.2 B08 AD w SR f 68 0 1 18 N 1 N N 12 15.7 10.3 

30/24-31 3199.9 B08 AD md R f 77 1 2 16 N 2 N N 2 19.9 90 

30/24-31 3201.9 B08 AD md SR m 72 1 1 23 N 1 N N 1 23.2 82 

30/24-31 3202.2 B08 AD w R m 84 1 tr 13 N 1 N N 1 24.4 252 
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30/24-31 3204.1 B08 AD w SR f 76 1 2 15 1 2 N N 3 17.5 4.4 

30/24-34 2887.7 B11 CHB md SA m 76 1 2 3 12 1 N 5 N 16.6 18 

30/24-34 2890.1 B11 CHB md SA m 75 1 2 6 9 2 N 3 2 14.6 33.5 

30/24-34 2892.2 B11 CHA p SR vf 75 2 2 4 13 1 N 3 N 10.7 1.1 

30/24-34 2895.6 B11 CHC p SA m 54 1 13 2 13 3 N 4 10 3.8 0.18 

30/24-34 2898.6 B11 CHC p SA m 77 7 3 6 4 2 N 1 N 17 28 

30/24-34 2903.0 B11 CHC p A m 59 4 1 4 8 N N 2 22 4.4 0.05 

30/24-34 2942.8 B11 CHC p A m 57 3 1 12 5 N N 3 19 5.6 0.1 

30/24-34 2946.5 B11 CHC p SA m 82 6 1 5 3 N N 3 N 6.1 0.28 

30/24-34 2947.4 B11 CHC p SA m 73 3 4 5 7 7 N 1 N 4.6 0.22 

30/24-34 2949.2 B11 CHB md SA m 68 1 6 5 14 1 N 5 N 13.2 46 

30/24-34 2955.6 B11 CHC p SA m 76 6 tr 12 2 1 N 3 N 8.1 1.01 

30/24-34 2960.5 B11 CHC p SA m 67 4 5 13 4 4 N 3 N 12.3 0.35 

30/24-34 2962.0 B11 CHA md SR vf 73 1 6 11 7 0 N 2 N 13.8 9 

30/24-34 2967.8 B11 CHB md SR m 76 2 tr 6 6 1 N 3 6 13.8 15 

30/24-34 2970.9 B11 CHB w SR m 75 5 tr 5 8 tr N 2 5 20.1 1130 

30/24-34 2972.4 B11 CHC p SA f 66 3 tr 12 3 0 N 5 11 9.5 7.8 

30/24-34 2976.4 B11 CHB mw SR m 63 1 tr 7 15 0 N 6 8 18.6 429 

Facies: CHC-channel conglomeratic basal lag; CHB-channel bar; CHA-channel abandonment; SF-sheet flood; AD-aeolian dune; ID-interdune.  

Sorting: p-poor; md-moderate; mw-moderate to well; w-well. Roundness: A-angular; SA-sub angular; SR-surrounded; R-rounded;  

GS-Grain size: vf-very fine; f-fine; m-medium. Mineralogy: tr-trace; N-no data or zero. 

Detrital: Q-quartz; F=feldspar; M-mica; RF-rock fragment 

Authigenic: K-kaolinite; I/S-illite/smectite; Ch-chlorite; QOG-quartz overgrowth; D-dolomite 
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II-2 COPL, CEPL and Ic 

Well Name 
Depth 

(m) 
Unit Facies C (%) 

IGV 

(%) 
COPL (%) CEPL (%) Ic 

30/24-28 2791.1 B10 AD 4.66 24.26 17.88 3.83 0.82 

30/24-28 2799.6 B10 AD 10.10 31.40 9.33 9.16 0.50 

30/24-28 2820.6 B09 AD 3.00 27.10 14.68 2.56 0.85 

30/24-28 2823.4 B09 AD 5.10 23.90 18.27 4.17 0.81 

30/24-28 2831.9 B09 AD 10.94 35.34 3.80 10.52 0.27 

30/24-28 2845.0 B09 AD 14.47 32.17 8.30 13.27 0.38 

30/24-28 2845.9 B09 AD 5.00 24.40 17.72 4.11 0.81 

30/24-28 2849.0 B09 AD 4.00 27.70 13.97 3.44 0.80 

30/24-28 2857.2 B08 AD 1.00 23.30 18.90 0.81 0.96 

30/24-28 2862.1 B08 AD 4.00 23.40 18.80 3.25 0.85 

30/24-28 2882.2 B08 AD 3.10 21.00 21.27 2.44 0.90 

30/24-28 2884.0 B08 AD 6.00 24.50 17.62 4.94 0.78 

30/24-28 2890.4 B08 AD 5.00 24.60 17.51 4.12 0.81 

30/24-28 2891.6 B07 AD 2.00 30.00 11.14 1.78 0.86 

30/24-28 2892.2 B07 AD 6.00 25.10 16.96 4.98 0.77 

30/24-28 2893.5 B07 AD 8.00 35.50 3.57 7.71 0.32 

30/24-28 2894.7 B07 AD 1.10 23.80 18.37 0.90 0.95 

30/24-28 2899.9 B07 AD 1.10 29.10 12.27 0.97 0.93 

30/24-28 2901.1 B07 AD 2.00 28.70 12.76 1.74 0.88 

30/24-28 2902.3 B07 AD 6.10 29.10 12.27 5.35 0.70 

30/24-28 2905.0 B07 AD 14.00 25.40 16.62 11.67 0.59 

30/24-31 3182.1 B08 AD 10.00 32.00 8.53 9.15 0.48 
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30/24-31 3188.8 B08 AD 9.00 29.50 11.77 7.94 0.60 

30/24-31 3190.6 B08 AD 3.36 29.66 11.57 2.97 0.80 

30/24-31 3197.4 B08 AD 3.10 26.30 15.60 2.62 0.86 

30/24-31 3197.7 B08 AD 2.10 25.80 16.17 1.76 0.90 

30/24-31 3199.2 B08 AD 13.00 28.70 12.76 11.34 0.53 

30/24-31 3199.9 B08 AD 4.00 23.90 18.27 3.27 0.85 

30/24-31 3201.9 B08 AD 2.00 25.20 16.84 1.66 0.91 

30/24-31 3202.2 B08 AD 2.00 26.40 15.49 1.69 0.90 

30/24-31 3204.1 B08 AD 6.00 23.50 18.69 4.88 0.79 

30/24-28 2872.2 B08 ID 14.10 28.20 13.37 12.21 0.52 

30/24-31 3183.6 B08 ID 30.10 35.20 4.01 28.89 0.12 

30/24-31 3186.1 B08 ID 10.10 26.30 15.60 8.52 0.65 

30/24-31 3186.7 B08 ID 5.00 21.20 21.07 3.95 0.84 

30/24-31 3193.4 B08 ID 4.20 22.20 20.05 3.36 0.86 

30/24-31 3195.2 B08 ID 5.10 19.40 22.83 3.94 0.85 

30/24-31 3195.8 B08 ID 5.00 23.50 18.69 4.07 0.82 

Average           14.82 5.63 0.73 

30/24-05 2847.6 B04 SF 22.10 34.80 0.00 22.10 0.00 

30/24-20z 3157.1 B04 CHB 20.10 34.80 0.00 20.10 0.00 

30/24-34 2887.7 B11 CHB 18.00 34.60 0.31 17.94 0.02 

30/24-28 2804.8 B10 CHA 18.14 34.44 0.55 18.04 0.03 

30/24-34 2895.6 B11 CHC 30.00 33.80 1.51 29.55 0.05 

30/24-34 2942.8 B11 CHC 28.00 33.60 1.81 27.49 0.06 

30/24-20z 3173.6 B04 CHB 14.10 32.90 2.83 13.70 0.17 

30/24-05 2850.0 B04 CHB 25.00 32.20 3.83 24.04 0.14 
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30/24-34 2949.2 B11 CHB 19.00 32.20 3.83 18.27 0.17 

30/24-20z 3156.2 B04 SF 21.00 31.70 4.54 20.05 0.18 

30/24-20z 3126.0 B04 SF 19.00 31.60 4.68 18.11 0.21 

30/24-28 2809.3 B09 CHB 16.00 31.40 4.96 15.21 0.25 

30/24-34 2890.1 B11 CHB 16.00 30.60 6.05 15.03 0.29 

30/24-20z 3165.3 B04 CHB 20.00 30.40 6.32 18.74 0.25 

30/24-05 2840.7 B04 CHC 10.10 30.10 6.72 9.42 0.42 

30/24-20z 3176.6 B04 CHB 13.20 30.00 6.86 12.29 0.36 

30/24-05 2850.9 B04 CHB 18.00 29.80 7.12 16.72 0.30 

30/24-28 2806.6 B10 CHB 12.10 29.80 7.12 11.24 0.39 

30/24-34 2972.4 B11 CHC 20.00 29.50 7.52 18.50 0.29 

30/24-20z 3117.8 B04 CHB 19.00 28.90 8.30 17.42 0.32 

30/24-20z 3163.5 B04 SF 18.00 28.90 8.30 16.51 0.33 

30/24-34 2962.0 B11 CHA 15.00 28.80 8.43 13.74 0.38 

30/24-20z 3123.9 B04 CHB 11.10 28.70 8.56 10.15 0.46 

30/24-34 2892.2 B11 CHA 18.00 28.70 8.56 16.46 0.34 

30/24-20z 3112.0 B04 CHB 10.00 28.40 8.94 9.11 0.50 

30/24-28 2828.8 B09 CHB 9.00 28.30 9.07 8.18 0.53 

30/24-28 2817.3 B09 CHB 5.00 28.10 9.32 4.53 0.67 

30/24-34 2967.8 B11 CHB 14.00 27.80 9.70 12.64 0.43 

30/24-28 2819.1 B09 CHB 6.00 27.70 9.82 5.41 0.64 

30/24-05 2841.8 B04 CHC 5.10 27.40 10.19 4.58 0.69 

30/24-28 2839.8 B09 CHB 10.10 26.70 11.05 8.98 0.55 

30/24-28 2797.8 B10 CHB 8.60 26.50 11.29 7.63 0.60 

30/24-20z 3125.4 B04 CHB 14.00 26.10 11.77 12.35 0.49 
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30/24-28 2795.6 B10 CHC 10.97 25.97 11.93 9.66 0.55 

30/24-28 2824.6 B09 SF 12.00 25.80 12.13 10.54 0.53 

30/24-20z 3097.7 B04 CHB 8.10 25.40 12.60 7.08 0.64 

30/24-05 2851.4 B04 CHB 25.00 25.10 12.95 21.76 0.37 

30/24-20z 3104.4 B04 CHA 19.10 24.70 13.41 16.54 0.45 

30/24-28 2794.1 B10 CHB 3.00 24.50 13.64 2.59 0.84 

30/24-20z 3162.6 B04 SF 19.00 24.20 13.98 16.34 0.46 

30/24-34 2960.5 B11 CHC 11.00 23.30 14.99 9.35 0.62 

30/24-34 2898.6 B11 CHC 6.00 23.00 15.32 5.08 0.75 

30/24-28 2851.7 B09 SF 6.10 22.90 15.43 5.16 0.75 

30/24-28 2847.7 B09 CHC 2.20 20.20 18.30 1.80 0.91 

30/24-28 2824.0 B09 SF 9.00 20.10 18.40 7.34 0.71 

30/24-34 2947.4 B11 CHC 15.00 19.60 18.91 12.16 0.61 

30/24-28 2795.0 B10 CHC 9.10 16.30 22.10 7.09 0.76 

30/24-34 2955.6 B11 CHC 6.00 14.10 24.10 4.55 0.84 

30/24-34 2946.5 B11 CHC 6.00 12.10 25.82 4.45 0.85 

30/24-28 2827.0 B09 CHA 0.00 7.70 29.36 0.00 1.00 

Average           10.06 12.71 0.44 

Facies code: AD – Aeolian dune; ID – Interdune; CHA – Channel abandonment; CHB – Channel bar; CHC – 

Channel conglomeratic base; SF – Sand flat 

COPL: porosity loss by compaction; CEPL: porosity loss by cementation; Ic: compaction index 
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APPENDIX III: ALGORISMS FOR CALCULATING 

THEORETICAL AMOUNT OF QUARTZ CEMENTATION  

 

 

Detailed description of algorisms can be found in: 

 

Walderhaug, O., 1996. Kinetic modelling of quartz cementation and porosity loss in deeply 

buried sandstone reservoirs. AAPG bulletin, 80(5), pp.731-745. 
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Principle functions: 

1) 𝐴0 = 6𝑓𝑉/𝐷 

2) 𝑉𝑞2 = 𝜙0 − (𝜙0 − 𝑉𝑞1)𝑒𝑥𝑝
−𝑀𝑎𝐴0

𝜌𝜙0𝑏𝑐𝑙𝑛10
 (10𝑏𝑇2 − 10𝑏𝑇1) 

 

A0 is the initial quartz surface area; 

f is the fraction of detrital quartz; 

V is the unit volume; 

D is the diameter of grains; 

Vq2 is the amount of quartz cement (cm
3
) precipitated from time T1 to T2 (m.y.); 

Vq1 is the amount of quartz cement present at time T1; 

M is the molar mass of quartz (60.09 g/mole); 

𝜌 is the density of quartz (2.65 g/cm
3
); 

𝜙0 is the porosity when quartz cement precipitation starts. 

a = 1.98 × 10
–22

 moles/cm
2
s; 

b = 0.022°C
–1  

 

 

 

 



Reservoir Quality of Upper Devonian Strata UK North Sea 

 

244 

 

 

 

APPENDIX IV: OTHER COOPERATIVE CONTRIBU-

TIONS 

 



Reservoir Quality of Upper Devonian Strata UK North Sea 

 

245 

 

The role played by carbonate cementation in controlling reservoir quality of the Trias-

sic Skagerrak Formation, Norway  

Yufeng Cui
a,b,*

, Stuart J. Jones
b
, Christopher Saville

b
, Stephan Stricker

b
, Guiwen Wang

a
, 

Longxun Tang
b
, Xuqiang Fan

a
, Jing Chen

a 
 

a: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petro-

leum, Beijing 102249, China  

b: Department of Earth Sciences, Durham University, South Road, Durham, DH1 3LE, UK  

Abstract 

Anomalously high porosities up to 30% at burial depth of >3000 m along with varying 

amounts and types of carbonate cements occur in the fluvial channel sandstone facies of the 

Triassic Skagerrak Formation, Central Graben, Norway. However, porosities of the Skager-

rak Formation are lower in the Norwegian sector than in the UK sector. In this study, petro-

graphic analysis, core examination, scanning electron microscopy, elemental mapping, car-

bon and oxygen isotope, fluid inclusion and microgeometry analysis are performed to deter-

mine the diagenesis and direct influence on reservoir quality, with particular focus on the role 

played by carbonate cementation. The sandstones are mainly fine-grained lithic-arkosic to 

sub-arkosic arenites and display a wide range of intergranular volumes (2.3%–43.7% with an 

average of 23.6%). Porosity loss is mainly due to compaction (av. 26.6%) with minor contri-

bution from cementation (av. 12.1%). The carbonate cements are patchy in distribution (from 

trace to 20.7%) and appear as various types e.g. calcretes (i.e. calcareous concreted gravels), 

poikilitic sparite and sparry ferroan dolomite, and euhedral or/and aggregated anker-

ite/ferroan dolomite crystals. This study highlights the association of carbonate precipitation 

with the remobilisation of carbonate from intra-Skagerrak calcretes during early burial stage 
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i.e. <500 m. During deeper burial, compaction is inhibited by carbonate cements, resulting 

high intergranular volume of up to 32% and 29% for fine- and medium-grained sandstones, 

respectively. Carbonate cement dissolution probably results from both meteoric water flow 

with CO2 during shallow burial, and organic CO2 and carboxylic acid during deep burial. The 

maximum intergranular volume enhanced by dissolution of early carbonate cements is calcu-

lated to 8% and 5% for fine- and medium-grained sandstones, respectively. Compaction con-

tinues to exert influence after dissolution of carbonate cements, which results in a loss of ∼6% 

intergranular volume for fine- and medium-grained sandstones. Reservoir quality of the Nor-

wegian sector is poorer than that of the UK sector due to a lower coverage of clay mineral 

coats e.g. chlorite, later and deeper onset of pore fluid overpressure, lower solubility of car-

bonate compared to halite, and a higher matrix content. 

https://doi.org/10.1016/j.marpetgeo.2017.05.020 

Cui, Y., Jones, S.J., Saville, C., Stricker, S., Wang, G., Tang, L., Fan, X. and Chen, J., 2017. 

The role played by carbonate cementation in controlling reservoir quality of the Triassic 

Skagerrak Formation, Norway. Marine and Petroleum Geology, 85, pp.316-331. 

 

https://doi.org/10.1016/j.marpetgeo.2017.05.020
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Argyll Field: the first oilfield to be developed on the UK continental shelf  

Jon Gluyas*, Longxun Tang & Stuart Jones 

Department of Earth Sciences, Durham University, DH1 3LE, UK 

Abstract 

In June 1975, oil from the Argyll Field became the first to be produced from the UK North 

Sea. Hamilton Brothers, a US company had beaten BP and their giant Forties Field into pro-

duction. Seventeen years later the Argyll Field was abandoned with all production facilities 

removed. The first chapter of UK offshore oil production closed. Argyll lay forgotten by most 

and unwanted by all. 

A new millennium dawned and with it two new companies Acorn Oil and Gas and Tuscan 

Energy. Both had identified Argyll as a potential field redevelopment. An alliance formed. 

The UK's Department of Industry was approached with a request to relicense the Argyll Field 

out of round in order to redevelop the field. No company previously had sought to obtain a 

licence for production rather than exploration. It worked, as did the quest by both companies 

to obtain equity and debt funding. 

In September 2003 the first well was drilled on the newly renamed Ardmore Field since 

abandonment (Gluyas et al 2005). It flowed unaided at 20,000 barrels of dry oil per day; sig-

nificantly in excess of expectation. However, after two months of sustained high rate the well 

cut water. With a second well on stream production peaked at 28,000 barrels of oil for one 

day before the facilities, designed for 50,000 barrels of fluid per day, tripped-out. All was not 

well; during the next two years, facilities and well issues limited production. Debt was not 

adequately serviced and funding withdrawn. In mid-2005 the field was abandoned again. Five 

million from an expected 25 million barrels was produced. Argyll/Ardmore chapter 2 ended 
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but the story was not yet done. By 2013 Enquest had acquired the licence and drilled 6 wells. 

Production restart began in late 2015. Chapter 3 has opened for the newly named Alma Field. 

 

 

*This paper has been accepted by The Geological Society London Special Publications 

(Section/Category: History of the European Oil and Gas Industry) and is now in press. 
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Conference: PETEX 2016 

Presentation type: oral presentation 

 

Porosity Controls on Devonian Strata of the North Sea: a case study from Ardmore 

Field, Block 30/24, UKCS 

Longxun Tang, Jon Gluyas, Stuart Jones 

Department of Earth Sciences, Durham University, Durham, DH1 3LE, United Kingdom 

Abstract: the Devonian strata are widely distributed in the North Sea area but rarely regarded 

as effective petroleum reservoirs. Several oil fields (UK: Ardmore, Auk, Buchan, Stirling; 

Norway: Embla) proved that Devonian formations can be porous, permeable and productive. 

Ardmore Field (previous name ‘Argyll’) was selected as the main research target because it 

was extensively cored when first discovered and produced. It has both high quality Devonian 

sandstones with around 1 Darcie permeability interbedded with 'white rock’, sandstones 

which have near zero porosity and immeasurably low permeability and the origin of this het-

erogeneity of reservoir quality was not understood. This study aims to reveal the controls on 

Devonian reservoir quality from perspectives of sedimentology, petrography and diagenesis, 

using both Ardmore Field cores and comparable Devonian outcrops in Dunnet Head and 

Orkney Islands and offshore Northern Scotland. 

Our research, from macro outcrop to micro pore scale, suggests that the Upper Devonian 

formation shows an upward fluvial-aeolian-fluvial cycle deposited under a generally hot and 

semi-arid to arid circumstance, different depositional facies and resulting mineralogy exerted 

a powerful influence on the subsequent diagenesis. For the fluvial sandstone, the lack of root-

ed vegetation in Devonian age led the frequent combination and bifurcation of fluvial mor-
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phology, thus the complex mineral composition and immature grain texture are responsible 

for low primary porosity, the later compaction, quartz overgrowth and carbonate cementation 

worsened the situation and the reservoir was limitedly improved by dissolutions on feldspar 

and dolomite cement. For the aeolian sandstone, the natural deposition property of aeolian 

transportation led very good sorting and roundness, and high percentage of rigid grains, these 

are favourable on preserving primary porosity. Another important discovery in this project is 

the thick and continuous grain coating clay, which effectively inhibited the quartz overgrowth, 

was confirmed as detrital smectite (with partial illitization) by thin section, SEM and EDX 

spectrum. It is only found in aeolian sandstone but believed as fluvial origin. The suspended 

smectite aggregates, deposited in remote part of fluvial system the distal sandflat, will auto-

matically flow into the dry, porous and permeable aeolian sediments by infiltration mecha-

nism once encountered, and precipitated as grain coating and pore-filled clays. In the short 

future fluid inclusion and stable isotopes will be added for quantitative description of diagen-

esis events, and try to draw a whole picture of porosity evolution. The outcomes will be a 

useful reference for future Devonian explorations in the North Sea. 
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Conference: AAPG/SEG International Conference & Exhibition (ICE) 2017 

Presentation type: poster presentation 

 

The grain-coating illite/smectite (I/S): a new discovery on its positive effect on porosity 

preservation 

Longxun Tang, Jon Gluyas, Stuart Jones 

Department of Earth Sciences, Durham University, South Road, Durham, DH1 3LE, UK 

Introduction 

The deeply buried (2.7 km – 3.2 km) Upper Devonian Buchan Formation in Ardmore Field 

(Block 30/24, UK Continental Shelf) is a locally important reservoir composed by fluvial-

aeolian sandstones. While the fluvial sandstones are extensively quartz cemented with porosi-

ty values ranging from 3.2% – 22.4% (avg. 14.4%); the porosity of aeolian sandstones ranges 

from 15% – 28% (avg. 20.2%) and was preserved by grain-coating clays preventing quartz 

overgrowth. The aeolian sandstones show higher porosity compared with the general depth-

porosity trend of oil-bearing sandstones in the Central North Sea (Selley, 1978).  

The petrographic analysis show that the grain coating clays only developed in aeolian sand-

stones and formed on the aeolian grain surface by mechanical infiltration before compaction. 

Although it is well known that chlorite and microcrystalline quartz coatings inhibit quartz 

cementation (Ehrenberg, 1993; Aase et al., 1996), our study does show that illite/smectite (I/S) 

coatings can also be effective in preventing quartz overgrowth. In the studied field, the grain-

coating I/S were transformed from smectite precursor which had been introduced by fluvial 

clay-bearing water.  
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Illitization was observed to have occurred within a very limited degree, which could be ex-

plained by the Devonian strata were at consistently shallow burial depth (< 1 km) and low 

temperature (< 80°C) until Palaeocene and rapidly buried into its current depth and tempera-

ture of 110°C within a short time thus not giving enough time for illite to develop into 

hairy/fibrous shape. This phenomenon can be expected to occur only under particular circum-

stances, in which case it has a profound consequence for exploration. 

Geological setting 

The Ardmore Field is located on the Argyll Ridge, a large SW-NE trending Palaeozoic age 

tilted fault block on the south-western flank of the Central Graben in Block 30/24, UK North 

Sea, about 350 km SE from Aberdeen. The field is a horst feature with the crest in the north 

and fault closure to the NE. It measures 2.5 km wide and 6 km long (Fig. 1A). A combination 

of dip and faulting defines the limits of the field on the NW and SE flanks, while dip closure 

defines the southern limits of the field. The major fault trends are in two main directions, 

WNW–ESE cut by NW-SE faults. Top seal of the field is provided by Triassic shale to the far 

west, Jurassic shale in the mid-part of the field and impermeable Chalk at the north-eastern 

crest. The trap relies heavily on the major NW-SE trending graben edge faults to the NE and 

SW of the field while dip closure occurs to the NW and west (Fig. 1B).  

The Upper Devonian Buchan Formation comprises a thick, generally upward-coarsening suc-

cession of fluvial-aeolian sandy sediments formed on an alluvial fan system in an arid/semi-

arid setting. The whole Buchan succession lacks clear seismic stratigraphic markers, a com-

bination of log and core data has been used to divide the stratigraphic units for the Upper De-

vonian group: B01 is the oldest unit overlying the Middle Devonian Limestone, and B11 is 

the youngest unit (Fig. 1B). In the absence of bio-stratigraphic data, sedimentary structures 

and lithofacies associations have been applied to help correlation (Gluyas et al., 2005). The 
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total thickness of the Buchan Formation is about 500 m – 800 m according to the seismic pro-

file (Fig. 1C). 

 

Fig.1: A. the location and structural contour map of Ardmore Field; B. a selected SW-NE vertical 

profile (line a-b in 1A); C. the seismic profile of selected a-b profile. 

Petrography and diagenesis 

The studied Buchan sandstones are litharenite to sub-litharenite and minor quartz-arenite, the 

aeolian sandstones (Q82.1F2.4R15.5, upper fine to medium grained, moderate to good sorting, 

sub-rounded to well-rounded grains) are compositionally and textually more mature than flu-

vial sandstones (Q76.1F3.3R20.7, very fine to medium grained, poor to moderate sorting, sub-

angular to sub-rounded grains). The grain contact show point to linear and curved to con-

cavo-convex in aeolian and fluvial sandstones, respectively. 

In both sandstone types, quartz is dominantly monocrystalline, showing little undulose ex-

tinction; feldspar is commonly presented in trace amount and up to 7%, the main types are 

microcline, which occur as both fresh and nearly completely dissolved grains; most of the 
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mica grains are muscovite presenting in all the samples and comprising up to 13% showing 

distortion due to the compaction; rock fragments are in variable quantities including mica-

ceous and illitic mud clasts.  

Authigenic dolomite is prevalent in all Buchan sandstones ranged from 0% – 36% with an 

average value 6.7%. Quartz overgrowth is absent in aeolian sandstones but shows highly var-

iable in fluvial sandstone (0% – 16%, average value 3.2%). Kaolinite and illite are the two 

main types of authigenic clays in fluvial sandstones. Kaolinite mainly occurs as euhedral 

pseudo-hexagonal plates and vermicular or booklet aggregates filling primary pores. Illite 

occurs as fibrous or hairy crystals mainly based on kaolinite and shows the pore-bridging 

habit. 

The grain-coating I/S is the most important clay type in aeolian sandstones and presents in 

two forms: a). Grain-coating I/S commonly occurs as cornflake or honeycomb morphology 

with filamentous terminations (Fig. 2A), and consists of 1 μm – 5 μm thick rim coating all 

detrital grains in aeolian facies sandstones (Fig. 2B, 2C); it is absent in fluvial facies sand-

stones. It is also observed that quartz overgrowth are absent in aeolian facies sandstone sam-

ples where uniform and robust grain-coating I/S has developed; and b) Pore-filling I/S is 

commonly presenting as flocculent aggregates existing in the intergranular pore space (Fig. 

2A), and is absent in fluvial facies sandstones. 

 

Fig. 2: A. the SEM image of grain coating and pore-filling I/S; B. BSEM image of typical aeolian 

sandstone; C. the mineral facies map showing good continuity of the grain coating I/S. 
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The source of grain-coating I/S 

Mineralogically, the cornflake or honeycomb morphology observed under SEM supports that 

the I/S have formed from smectite precursor (Pollastro, 1985), and the smectite crystals 

would form an effective coat because they nucleate flatly attached to the detrital grain surface 

and curl away from that surface, this crystal morphology leads to a dense and effective coat 

(Pittman, 1992).  

In terms of facies, the vertical fluvial-aeolian-fluvial variation generally represents a progra-

dation-retreat-progradation cycle of the alluvial fan-based braided system with aeolian depos-

its occurred mainly between two main progradation periods. The distribution of grain-coating 

I/S is highly facies-controlled which is only found in aeolian sandstones, however, it is not 

considered as aeolian in origin. During aeolian dominated period, the studied area was only 

affected by distal sectors of fluvial distributary system. Thus a very possible source of these 

smectite precursors is from fluvial clay-bearing water, within such an environment, the lower 

water table allowed muddy water to infiltrate through the coarser, porous and permeable aeo-

lian sands; and the petrographic features do meet the criteria set by Wilson (1992) for identi-

fying mechanical infiltrated clays.  

The effect of grain-coating I/S on reservoir quality 

The grain-coating I/S in the aeolian sandstones show an excellent continuity around the 

grains (Fig. 2C) and has effectively inhibited possible subsequent quartz overgrowth. By us-

ing 1D thermo-burial history and the theoretical model proposed by Walderhaug (1996), we 

calculated that quartz overgrowth would theoretically occupy 6% – 7% of porosity in the fine 

to medium grained aeolian sandstones if the grain-coating I/S is absent (Fig. 3).  
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Fig.3: Theoretical quantity of quartz overgrowth in fine to medium grained aeolian sandstones if the 

grain coatings are absent, the algorithm is after Walderhaug (1996). 

Despite this positive effects, the smectite-based clays are commonly known to be harmful to 

the reservoir quality due to its swelling property (Gray and Rex, 1965) and illitization (Le 

Gallo et al., 1998). However, the reservoir quality of the aeolian sandstones is not obviously 

affected by these two shortcomings due to: 1). the pore-filling I/S is only possessed in a mi-

nor amount (< 5%) thus would not significantly decrease permeability, and 2). the Devonian 

strata were consistently at shallow burial depth (< 1.5 km) and low temperature (< 80°C) un-

til Palaeogene and rapidly buried into the current depth within a short time (Fig. 4) which 

does not allow authigenic illite to develop into elongated hairy/fibrous crystals. 
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Fig.4: 1D burial and temperature history of the Ardmore Field. 

Conclusions 

The grain-coatings observed in the studied field have been identified as illite/smectite. This 

study shows that I/S coatings can be very effective in preventing quartz cementation and 

thereby help preserve primary porosity. The I/S coatings in the Ardmore field were generated 

from a smectite precursor, which had originated from fluvial clay-bearing water that repre-

sents the deposits of distal sectors of fluvial distributary system, and were formed as grain-

coatings in aeolian sandstones by mechanical infiltration. The understanding of the positive 

effect on porosity preservation from grain-coating I/S may aid the predictions of high quality 

Devonian-associated reservoirs in the Central North Sea and other places with similar prove-

nance.
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