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Abstract
Global climate change is an important threat to biodiversity and is predicted to be a major driver of

wildlife population extinctions throughout the current century. Across a wide range of taxa, a well-
documented response to climate change has been changes in species distributions, often towards
higher latitudes and altitudes. Species distribution models (SDMs) have been widely used to predict
further range changes in future but their use has often focused on discrete geographical areas.
Moreover, SDMs have typically been correlative, ignoring biological traits. Here, | use SDMs to
project future ranges for the world’s terrestrial birds under climate change. To improve the realism
of projected range changes, | incorporate biological traits, including species’ age at first breeding and
natal dispersal range. | use these projections to predict large-scale patterns in the responses of
terrestrial birds to climate change, and to explore the implications of these models for avian

conservation.

There is little consensus on the most useful predictors for SDMs, so | begin by exploring how this
varies geographically. With this knowledge, | develop SDMs for the world’s terrestrial birds and
project future species ranges using three different global climate models (CCSM4, GFDL-CM3,
HadGEMZ2-ES) under a low (rcp26), a medium (rcp45) and a high (rcp85) representative
concentration pathway. The projected ranges are used to identify species most at risk from climate
change and to highlight global hotspots where species are projected to experience the highest range
losses. | explore how the projected range changes affect global species communities and | identify
areas where species communities are projected to change or novel communities will emerge. |
assess how projected changes will affect the ability of the global Important Bird and Biodiversity
Areas (IBAs) network to confer protection on the world’s terrestrial bird species. Additionally, |
highlight - based on projected range loss and suitable habitat and climate space beyond the dispersal
range - species that will be unable to track climate change and that could be candidates for Assisted
Colonization (AC). Finally, | explore the divergence between global species richness (SR) patterns and
phylogenetic diversity (PD) for the world’s terrestrial birds, to assess if measuring biodiversity and

setting conservation targets based on SR can be expected to cover their PD as well.

Identifying the global consequences of projected range changes can inform future conservation
efforts and research priorities. Changes in range extent and overlap were projected for the vast
majority of the world’s terrestrial birds, with one-fifth projected to experience major range losses
(>75% decline in range extent projected). This has far reaching consequences for the IBA network,
with an overall trend of species moving out of the IBA coverage. Furthermore 13% of the world’s
terrestrial birds are projected to have severe range losses that, combined with an inability to follow

suitable habitat and climate space, mean they could benefit from AC as a conservation tool. Overall,

iv



PD was found to be highly correlated to SR on a global scale; however, there are localized
differences where PD is higher or lower than could be expected from SR alone. These differences
suggest that considering PD could enhance conservation planning. The results demonstrate the
major threat that climate change poses for the world’s terrestrial bird species across all areas of the
globe, and highlight the importance of considering climate change impacts to enhance their

protection.
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Chapter 1

General Introduction



1. Introduction
This thesis identifies the conservation implications of the impact of global climate change on the

world’s terrestrial bird distributions. Both range shifts, as well as decreases in range extent, have
been observed in recent decades and have been attributed to climate change (Parmesan & Yohe,
2003; Thomas et al., 2004; Chen et al.,, 2011). These range changes can have far reaching
consequences for biodiversity, ranging from complete loss of suitable habitat and subsequent
extinction of individual species, to the disruption of species communities, and possible cascading
effects resulting in impacts on ecosystem functioning (Stralberg et al., 2009; Pecl et al., 2017).
Additionally, the redistribution of species can affect the efficacy of protected area (PA) networks and
can complicate conservation planning (Hole et al., 2009; Bagchi et al., 2013). Highlighting the species
most at risk, and identifying the hotspots where species’ ranges are most likely to be affected by
climate change, can aid conservation and focuses future research efforts. This thesis is laid out in five
individual manuscripts, each providing an introduction to the focal topic; consequently, this general
introduction will cover only the broad background to set the research in a global context.
Throughout this introduction, | will briefly introduce the projected changes in global climate. | will
describe the observed and predicted impacts and risks that climate change poses for biodiversity
(both in general, and for terrestrial bird species specifically). | will give a brief overview of the use of
species distribution models (SDMs) to assess the impact of climate change on species’ ranges. | will
summarize potential impacts on the global PA networks and current efforts to evaluate and preserve
their performance. | will also briefly introduce the concept of assisted colonization (AC) as
conservation tool for species that are unable to keep up with climate change. Finally, | will provide
an overview of additional measures of biodiversity, aside from species richness, that can be used to

plan and assess conservation efforts.

1.1 Climate change
Global climate change is predicted to have far reaching impacts on biodiversity, ecosystem services,

and, subsequently, human health (McMichael et al., 2006; McMichael & Lindgren, 2011; Bellard et
al., 2012; Nelson et al., 2013). Sea level rise, ocean acidification and increases in extreme weather
conditions are all consequences of global warming (Easterling et al., 2000b; Easterling et al., 2000a;
Hoegh-Guldberg et al., 2007; Dangendorf et al., 2017). Temperature rise has been attributed to the
increase of atmospheric carbon dioxide (CO,), which is largely driven by anthropogenic greenhouse
gas emissions, for which, current levels exceed observed fluctuations throughout the past 420,000
years (Petit et al., 1999; IPCC, 2001). Since 1880, the global average temperature has risen by 0.85
°C; it is likely to increase between 0.4 to 4.6 °C by 2081-2100 relative to 1986-2005 (IPCC, 2014).

The predicted increase in temperature varies greatly among the different projected emission



pathways (0.3°C to 1.7°C (RCP2.6), 1.1°C to 2.6°C (RCP4.5), 1.4°C to 3.1°C (RCP6.0), 2.6°C to 4.8°C
(RCP8.5)), with a projected 2°C temperature rise under the most stringent mitigation scenario (IPCC,
2014). Without urgent action to lower greenhouse gas emissions, these temperature rises are likely
to lead to severe, widespread and possibly irreversible impacts by the end of the 21* century
(Stocker et al., 2013). The Paris agreement of 2016, a part of the United Nations Framework
Convention on Climate Change, aims to address these global temperature changes by bringing
together all nations in a joint effort to mitigate climate change. This agreement aims to keep the
global temperature rise well below 2°C, compared to pre-industrial levels, targeting a rise of 1.5°C
(Hulme, 2016). It has currently been ratified by 146 out of 195 parties (UNFCCC, 2015). Minimum
climate change scenarios produced fewer predicted extinctions than mid-range or maximum
scenarios; thus, minimizing greenhouse gas emissions can reduce risk for terrestrial species (Thomas
et al., 2004). Ecosystems are already responding to global warming (Hoegh-Guldberg & Bruno,
2010), with community disruptions and disease outbreaks attributed to climate induced range

changes (Ling, 2008).

1.2 Impacts on biodiversity
Climate change is likely to affect biodiversity at all scales, including genes, species, communities and

ecosystems (Leemans & Eickhout, 2004; Parmesan, 2006; Thomas et al., 2006; Gilman et al., 2010;
Hoegh-Guldberg & Bruno, 2010). Enhancing species’ risk of extinction (Thomas et al., 2004; Leadley
et al., 2010; Pereira et al., 2010; Walther, 2010; Bellard et al., 2012), climate change is of particular
concern for the large number of plants and animals that that occur in biodiversity hotspots, including
the Caribbean, the Tropical Andes, Southwest Australia and the Cape Floristic Region (Malcolm et al.,
2006b).

Impacts of climate change on biodiversity are projected to be highly variable across the globe
(Walther et al., 2002). For example, variations in topography can lead to differential responses in
vegetation cover to changes in temperature (Halm 1997). Regional changes in temperature and
precipitation are highly heterogeneous, resulting in spatially heterogeneous responses of organisms,
communities and populations (Walther et al., 2002). In some areas, species might be able to persist
in climatic refugia, although the surrounding climate becomes unsuitable (Taberlet & Cheddadi,
2002; Saxon et al., 2005; Keppel et al., 2012). Both novel and disappearing climates can pose threats
to biodiversity, increasing extinction risk and, potentially, disrupting species communities and
causing the formation of novel communities (Overpeck et al., 1992; Hobbs et al., 2006; Williams et
al., 2007). Novel climates, i.e. with no current analogues are most likely to occur in the tropics and
subtropics, whilst temperate and high latitudes have a lower risk of novel climates (Williams &

Jackson, 2007). The overall velocity of climate change differs across the terrestrial areas of the world



with climate shifting especially rapidly in flat landscapes, in which flooded grasslands, savannas and

mangrove areas are heavily represented (Loarie et al., 2009).

1.3 Species responses to climate change
Species’ responses to climate change are not uniform (Walther et al., 2002; Bohning-Gaese &

Lemoine, 2004; Urban et al., 2012). Not all species will be affected by climate change the same way,
and the vulnerability of a species depends on its exposure to climate change as well as its sensitivity
to climate (Dawson et al., 2011; Foden et al., 2013; Pacifici et al., 2015). The sensitivity of a species is
a combination of its adaptive capacity, based on factors like genetics and phenotypic and behavioral
plasticity, as well as its resilience (e.g., the ability to recover from a disturbance might depend upon
factors such as life history, population dynamics and dispersal ability) (Williams et al., 2008; Dawson
et al., 2011; Foden et al., 2013). Species might be able to persist under climate change by shifting
their distributions into climatically suitable space, or through adaptation of populations to the new
local climatic conditions (Berg et al., 2010; Bellard et al., 2012; Hoffmann et al., 2015). Certain traits
in species are associated with higher climate vulnerability. For example, specialist species are
predicted to decline more under climate change than generalist species (Warren et al., 2001; Thuiller
et al., 2005a). Species with a narrow range extent are overall at higher risk of extinction (Purvis et al.,
2000b; Payne & Finnegan, 2007) and have been found to be more vulnerable to climate change
(Urban, 2015). Similarly, endemic species are projected to be more vulnerable to climate change
(Dirnbock et al., 2011; Urban, 2015), with rarity already exposing species to a higher extinction risk
(Pimm et al., 1988; Gaston, 1994). Finally, low natal dispersal ability has been associated with a high
risk of being unable to track climate change (Foden et al., 2013). Responses to climate change vary
across species, and can include range shifts, behavioral modifications and genetic adaptation
(Menzel et al., 2006; Parmesan, 2006; Alberto et al., 2013). In the following paragraphs, | will briefly

introduce species responses in terms of range and community changes.

Species responses to climate change — range changes
Evidence for climate change impacts on species distributions can be found in fossil data (Pitelka et

al., 1997), with the earliest proof of climate driven range changes coming from mismatches between
current distributions and the distribution of plant and animal fossils (Diffenbaugh & Field, 2013). In
response to previous ice ages, species have often demonstrated substantial range shifts. For
example, the peninsulas of Europe were major climate refugia during the Pleistocene Ice Age and
species spread out northwards when the ice retreated 16000 BP (Hewitt, 1999). More recently,
shifts across all taxa have already been shown, with species typically moving towards higher
altitudes and latitudes in response to current climatic changes (Parmesan et al., 1999; Parmesan &

Yohe, 2003; Hickling et al., 2006; Kelly & Goulden, 2008; Thomas, 2010). Species range shifts are



most pronounced in areas that are undergoing the fastest warming, such as those at high latitudes
(Chen et al., 2011; Tayleur et al., 2016). The median velocity of these range shifts has been
estimated at 11 meters per decade for altitudinal shifts and 16.9 km for latitudinal range shifts, but
range shifts vary greatly between different species (Chen et al., 2011). Although rapid range shifts
have been observed under climate change, some species have been found to be lagging behind
climate change (Menéndez et al., 2006; Devictor et al., 2008). These lags behind the climate have
different causes: species might not be able to move through fragmented habitat; they might be
inhibited by their low natal dispersal ability; they might have a very long generation time, resulting in
slow demographic responses; or they might be slowed by biotic interactions (Hill et al., 1999; Cahill
et al., 2012; Schloss et al., 2012; Pearce-Higgins & Green, 2014). As well as shifts in ranges, range
contractions have been shown for various species (McClean et al., 2005; Wilson et al., 2005; Moritz
et al., 2008). More generalist species and species with very high dispersal ability, however, have
been projected to have potential to extend their ranges when climate becomes more favourable (Hill
et al., 2002; Dullinger et al., 2004; Hallinger & Wilmking, 2011). Climate change can affect species
range boundaries directly (having direct impact on recruitment and mortality) or indirectly through
changes to species interactions or climate-driven changes to the physical structure of habitats
(Thomas, 2010). Throughout this thesis | investigate the direct impacts of climate change onto
species range boundaries, including changes in range extents as well as range shifts. In this context
species responses to climate change refer to range changes, which are ultimately a result of
demographic responses, including patterns of birth and death, and the individual dispersal ability of

a species.

Species responses to climate change - biotic interactions and communities
The individualistic responses of species to climate change lead to changes in species community

compositions and can cause entirely novel community compositions (Ackerly, 2003; Williams &
Jackson, 2007; Urban et al., 2012; Gallagher et al., 2013). In particular, novel climates are likely to
lead to non-analogue communities (Overpeck et al., 1992; Williams & Jackson, 2007). Butterfly
species have shown individualistic responses, moving to higher altitudes at highly heterogeneous
rates, leading to changes in species community composition, with a greater number of high
elevation specialists going extinct than new species colonizing (Wilson et al., 2007). These changes in
community composition affect species’ biotic interactions, leading to changes in spatial pattern, and
can have far reaching impacts (Walther, 2010). Possible consequences are changes in the
competitive balance particularly between species that lack a co-evolutionary history (Urban et al.,
2012); changes to or disruptions of the food web (Schweiger et al., 2008), affecting prey abundance,

with prey species declining and less prey being available (Durance & Ormerod, 2010) and predator



densities (Harley, 2011); and changes in the trait composition of a community (Gallagher et al.,
2013). Again, responses across species in a community are not entirely idiosyncratic, with specialists
being more likely to struggle than generalists (Lurgi et al., 2012). Overall, changes in community
compositions are likely to impact trophic interactions, and have consequences for ecosystem
functioning (Tilman et al., 1997; Loreau et al., 2001; Hooper et al., 2005; Suttle et al., 2007; Walther,
2010). Due to their high unpredictability, novel species communities can pose a challenge and it is

important to identify areas where they are likely to occur (Stralberg et al., 2009).

1.4 Climate versus land use change and human disturbance
Humans have been altering habitats and affecting biodiversity for a long time. As a consequence,

one quarter of the world’s birds have gone extinct over the last two millennia (Steadman, 1995).
Today, anthropogenic land use change is the main driver of loss of biological diversity worldwide,
and the leading cause of habitat loss and extinction in vertebrates (Vitousek et al., 1997; Hoffmann
et al., 2010). In particular, the world’s tropical rainforests have been severely affected by habitat loss
through deforestation (Dale et al., 1994; Brook et al., 2003; Achard et al., 2014). Thus, in the tropics
land use change might outweigh climate change as the principal future threat to species (letz et al.,
2007). In addition to being a major threat to biodiversity, land use change also interacts with climate
change, and can amplify its impacts by affecting landscape permeability and reducing habitat
heterogeneity (Oliver & Morecroft, 2014). A study on butterflies in the UK showed that climate has
become more suitable over the last 30 years, but habitat loss has caused declines in most
populations (Warren et al., 2001). Land use change is also the second major driver of changes in
community compositions after climate change, although the relative importance of climate and land
use change in causing non-random community changes varies across different habitats (Kampichler

et al., 2012).

1.5 Terrestrial bird species as a model taxa
Birds are one of the most widely-studied taxon, with intensive monitoring resulting in spatially

diverse and robust data sets (Bonnet et al., 2002; Ducatez & Lefebvre, 2014; Pearce-Higgins &
Green, 2014). Their wide distribution and occurrence in nearly every habitat make them useful
indicators for studies on richness patterns and environmental change (BirdLife International, 2013).
Bird species show individualistic responses to climate change in space and time (Bohning-Gaese &
Lemoine, 2004). A variety of responses of bird species to climate change has been documented, with
projected losses in their breeding (Wauchope et al., 2017) and non-breeding ranges, in both range
extent (Barbet-Massin et al., 2009; Doswald et al., 2009) as well as observed abundance (Wilson et
al., 2011). As with other taxa, birds have been shown to track suitable climate space, often moving

their ranges towards higher latitudes (Thomas & Lennon, 1999; Brommer, 2004; Zuckerberg et al.,



2009) and altitudes (Archaux, 2004; Hickling et al., 2006; Tingley et al., 2012). However, the range
shifts of some bird species have been found to lag behind the rate of climate change. A study on
breeding birds in France found that, whilst their climate envelope has moved 273 km across France
throughout two decades, the bird communities had shifted only about 91km (Devictor et al., 2008).
Those changes in avian species distributions are projected to reshuffle avian communities in many
areas across the globe, with high predicted turnover in the western hemisphere for mountainous
areas such as the Andes but also in the Tundra at high northern latitudes (Lawler et al., 2009;
Pearce-Higgins & Green, 2014). Anticipated changes in species ranges are projected to result in loss
of functional diversity across avian species communities globally (Barbet-Massin & Jetz, 2015).
Furthermore, changes in the phenology of avian species in response to climate change have been
demonstrated, such as the earlier arrival of migrant species on their breeding grounds (Visser &
Both, 2005; Megller et al., 2008; Pearce-Higgins et al., 2010). As well as the threats resulting from
climate change, birds are threatened by land use change (Gaston et al., 2003), with as many as 400

species being projected to lose more than 50% of their habitat by 2050 (Jetz et al., 2007).

1.6 Species distribution models and their application to studying the impacts of climate

change
Analyses of the species—environment relationship have been a central topic in ecology since the

early 19th century (Guisan & Zimmermann, 2000). Species distribution models (SDMs), or ecological
niche models, model the statistical relationship between a species’ geographic distribution and a
suite of bioclimatic variables (Guisan & Thuiller, 2005). As a result of recent computational and
methodological advancements, their use within the ecological community has grown exponentially
since the 1990s (Franklin 1995). SDMs are based on the principle of the realized niche, the set of
“environmental conditions (abiotic factors) under which a species is able to maintain viable
populations without immigration” (Grinnell, 1917; Hutchinson & MacArthur, 1959). SDMs link the
observed range of a species to the environmental variables in the area (Keith et al., 2008). This
allows the prediction of future distributions by applying the species-climate relationship to future
climate scenarios, to identify regions which will be habitable for the species (Heikkinen et al., 2006).
SDMs have been used extensively to predict the impact of future climate change on species
distributions (Thuiller et al., 2005b; Araujo & Rahbek, 2006; Huntley et al., 2006; Lawler et al., 2009).
Today, SDMs are increasingly used in studies for conservation planning and climate adaptation
strategies (Araujo et al., 2006; Hole et al., 2011; Swanson et al., 2012). In this context, SDMs can be
valuable tools with which to identify species’ threats from climate change (Barbet-Massin et al.,

2012a) and to evaluate the impact that climate change will have on the coverage of species by



protected area networks (Aradjo et al., 2004; Hole et al., 2009; Araujo et al., 2011; Bagchi et al.,
2013; Virkkala et al., 2013; Baker et al., 2015).

Limitations of species distribution models
Although SDMs are widely used in ecology and are highly useful for evaluating the impacts of climate

change on species ranges and supporting conservation planning, they do have limitations. These
limitations are widely recognized (Aradjo & Guisan, 2006; Araujo & Peterson, 2012) and need to be
considered when applying SDMs and interpreting projected distributions. Awareness needs to be
paid to the basic assumption of an SDM: that the data on which the model is built describe the full
climatic niche of a species; if species do not fill their entire niche, due to biotic interactions, the
predictive power of an SDM is limited (Araujo & Guisan, 2006). Novel climates add to this challenge,
since the climatic niche of a species might not be fully described by the current data used to build
the model (Williams & Jackson, 2007; Fitzpatrick & Hargrove, 2009). This can also be a challenge for
species with a very narrow range extent. Species endemic to small oceanic islands, or those that
occur in a single lake are obvious examples of where range extent is not directly related to climate
(Thomas, 2010). For species with ranges largely shaped by interspecific interactions, bioclimatic
models will be less accurate for projecting potential range shifts under climatic change (Lawler et al.,
2009). Competition can slow the advance of colonizing species and, thus, can cause lags in climate

tracking, which might not show in range predictions based on the climatic niche (Urban et al., 2012).

Additionally, both current and future climate data can introduce uncertainty resulting from the
variability between datasets (Beaumont et al., 2008; Baker et al., 2016) as well as the approach used
to process and downscale the data (Baker et al., 2017). The predictions from different SDM types
can be highly variable (Elith & Graham, 2009). One way to improve the predictions is to use
ensemble modelling to produce a consensus of the predicted distributions derived from the
different modelling types (Aradjo et al., 2005a; Marmion et al., 2009). Two more technical
challenges are the spatial extent from which the absence data are drawn and potential spatial
autocorrelation of ecological data, the latter of which violates the assumption of independence,
undermining the statistical analysis if it is not addressed (Lichstein et al., 2002; Dormann, 2007).
Finally, the choice of bioclimatic variables to model a species distribution can introduce uncertainty
into the predictions and can be especially challenging when modelling large numbers of species
(Barbet-Massin & Jetz, 2014). This has found surprisingly little attention in the SDM literature so far
(Synes & Osborne, 2011; Braunisch et al., 2013). Keeping these limitations in mind, SDMs are a very

useful tool to identifying exposure to climate change (Dawson et al., 2011).



1.7 Protected areas and species conservation under climate change
Between 10 and 15% of the earth’s surface is under some kind of protection, safeguarding some of

the world’s most imperiled biodiversity (Chape et al., 2005; Soutullo, 2010). Still, the protected area
(PA) network is far from complete (Rodrigues et al.,, 2004b; Venter et al., 2014). Without
conservation intervention, species can rapidly go extinct (Sinervo et al., 2010). Furthermore, climate
change is posing new threats to biodiversity by causing loss of species’ protected area coverage
(Téllez-Valdés & DijVila-Aranda, 2003). Due to the static nature of the protected area network,
species are likely to move in and out of PA boundaries under climate change (Hannah, 2008). For
some PAs, rates of local colonisation may counteract losses, maintaining the importance of those
areas; however, this is not always the case (Gillingham et al., 2015). Reductions in biodiversity
coverage have been projected for a wide array of PAs across country as well as continent wide
networks (Araujo et al., 2004; Coetzee et al., 2009; Hole et al., 2009; Araujo et al., 2011; Bagchi et
al., 2013; Virkkala et al., 2013; Baker et al., 2015). Not only has species richness been projected to
reduce within protected areas but, also, species’ abundance (Johnston et al., 2013). Additionally the
occurrence of disappearing and novel climates will cause challenges for conservation management

in these areas (Wiens 2011).

Adapting protected area networks to climate change
A variety of potential management strategies has been suggested to adapt protected area networks

to climate change. Firstly, it is important to model the impacts of climate change onto the protected
area network and to assess the change (Hannah et al., 2002). Useful modelling tools to assess the
overall impact of climate change on biodiversity, across a protected area network, are general
circulation models (GCMs), regional climate models or dynamic vegetation models (Hannah et al,
2002). Furthermore SDMs can support conservation planning by providing species specific
information about changes in protected area coverage (Hannah et al, 2002). Following this,
suggested steps to ensure future coverage of biodiversity include: creating additional reserves to
compensate for the losses in coverage under climate change, which can be based on minimum
coverage of species or representation of climate (Pressey & Cowling, 2001; Hannah, 2008);
reclassifying the existing areas and replacing ineffective areas instead of adding new ones, which can
be more cost efficient (Fuller et al., 2010; Alagador et al., 2014); temporal alteration of PAs’
protection status or mobile protected areas, to facilitate range changes (Soto, 2002; Hannah, 2008);
or increasing connectivity between PAs and introducing stepping stones, which is another cost
efficient solution (Williams et al., 2005; Saura et al., 2014). All of the afore mentioned conservation
strategies rely on a good spatial understanding of the climate change impact on the species

communities within the PAs in a network and their stability under climate change.



Assisted colonization
For some species, improvements to the PA network and the facilitation of movements between PAs

will not be enough to prevent their extinction. Species with low natal dispersal ability, in particular,
are likely to be unable to keep up with the velocity of climate change (Midgley et al., 2002;
Broennimann et al., 2006). Other species might be prevented from dispersing through the landscape
by human barriers (Mc Lachlan 2007). For these species, assisted colonization (AC), the translocation
of species into suitable habitat and climate space beyond their natal range, has been widely
discussed in recent years (Hunter, 2007; Hoegh-Guldenberg et al., 2008; Ricciardi & Simberloff,
2009b; Thomas, 2011). Although there are strong arguments for the artificial movement of these
species to avoid their extinction, there are also risks (Mueller & Hellmann, 2008; Ricciardi &
Simberloff, 2009a), to both the target species and the recipient community (Chauvenet et al.,
2013b), and ethical arguments (Minteer & Collins, 2010; Sandler, 2010; Schwartz et al., 2012) that
make AC a very controversial conservation tool. So far it is not known how many threatened species

could actually benefit from this conservation tool (Thomas, 2011).

1.8 Measuring biodiversity
Species richness is the most frequently used measure of biodiversity (Gaston, 1996; Gotelli &

Colwell, 2001), and is often the basis on which conservation plans are made and PAs are planned. In
recent years it has been widely discussed whether species richness (SR) alone is a sufficient indicator
to select areas for the conservation of biodiversity (Faith, 2002; Orme et al., 2005; Forest et al.,
2007; Helmus et al., 2007; lIsaac et al., 2007). Maximising phylogenetic diversity (PD) has been
suggested as a key for conservation decisions (Isaac et al., 2007), as it is a useful indicator for the
evolutionary potential of a community (Faith, 1994). The most frequently used measure of PD in a
conservation context, is Faith’s PD, which summarizes how much of the branching pattern of the
phylogenetic tree is represented within a community, by adding the branch length of all members of
the community (Faith, 1992). Recent advances in the construction of phylogenetic super trees
facilitate comparisons between SR and PD for large groups of species or even entire taxa (Barker,
2002). Although SR has been found to be a good surrogate for PD, in general, evidence from
mammals and amphibians (Davies & Buckley, 2011; Fritz & Rahbek, 2012) suggests that the two
measures are not entirely congruent, with localized differences where PD is unexpectedly high or
low. It is not known if SR and PD are congruent for the world’s birds and, thus, if SR can be expected

to automatically cover PD when used as a measure for conservation planning.
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1.9 Project aims
Several gaps in current knowledge emerge from the above review and form the basis for this thesis.

Here, | reiterate those gaps and describe the structure of the following chapters.

1. To identify hotspots for climate change impacts on avian diversity
Firstly, | identify climatic variables that perform well for modeling bird distributions on a global scale.

Using the selected climatic variables, | model the distribution of all terrestrial bird species under
climate change. | identify hotspots where climate change is projected to have the highest impact on
the ranges of terrestrial bird species and | highlight species groups whose ranges are projected to be
most affected by climate change. Using the projected impacts on species ranges, | identify areas
where species communities are likely to be disrupted, resulting in major changes in community
composition, or the emergence of novel communities.

2. To determine how projected changes in bird distributions affect the protected area network
Changes in species range extents under climate change can lead to changes in the coverage PAs

provide for biodiversity. | use the projected terrestrial bird ranges to identify changes in the
coverage provided by the Important Bird Area (IBA) network. | estimate the future performance of
the network by comparing the coverage of current and future terrestrial bird diversity. Additionally, |
flag up areas that are projected to have a high turnover in their communities and areas that are
projected to have very stable community compositions under climate change. | subsequently
identify which areas are projected to increase, decrease or remain of similar value for species
conservation, based on their proportion of emigrating and colonizing species.

3. To identify candidate species for assisted colonization
A species’ ability to persist under climate change depends on its ability to track suitable climate

space. Here, | identify species that, based on their natal dispersal ability, are unlikely to keep up with
the velocity of climate change. | identify species that are projected to experience serious range
losses, but have substantial suitable habitat and climate space beyond their natal dispersal range.
These species could be candidates for future assisted colonization. | assess how many candidate
species there are, where they are located, and what attributes they have in common. The latter
attributes are potentially associated with a low ability to track suitable climate space.

4. To compare species richness and phylogenetic diversity as biodiversity measures for
conservation
Species richness (SR) is commonly used to identify hotspots for biodiversity, and is the measure |

have used throughout this thesis. It is generally observed to correlate strongly with phylogenetic
diversity (PD) of communities, but localized differences have been observed for some taxa. Here, |
investigate how avian SR and PD correlate on a global scale, and | identify drivers of the observed

differences.
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Chapter 2

Selecting bioclimatic predictors to model global bird

distributions
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2.1 Abstract
Species distribution models (SDM) are frequently used to project potential range alterations under

climate change. SDM methods have been widely reviewed in the research literature, where potential
sources of uncertainty have been identified and methods to measure and reduce that uncertainty
have been suggested. One aspect of such models that has been discussed relatively little, is the
choice of bioclimatic variables used to model species distributions. Ideally, the choice of bioclimatic
variables should be based on expert knowledge about the species but often these data are not
available. When modelling large assemblages of species, the choice of relevant bioclimatic variables
can be challenging. Here | use a subset of 400 birds from across the world to test if variable
combinations exist that performs well for the majority of the world’s birds. | explore the utility of a
range of bioclimatic variables that are provided by the major source of such data (WorldClim) for
SDMs. | run general additive models (GAM) on sensible variable combinations and identify sets that
perform well for the majority of the species.

| found that a combination of variables comprising temperature seasonality, maximum temperature
of the warmest period, annual precipitation and precipitation seasonality performed best overall,
although several related variable combinations also had high model performance. The importance of
the individual variables varied for species of different latitudinal bands, with temperature variables
being more important at high latitudes. The results suggest that for studies on a global extent, where
ecological expertise on the modelled species is not available, the chosen bioclimatic variable

combination is a good substitute.
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2.2 Introduction
Species Distribution models (SDMs) are the most widely used tool to assess the impact of climate

change on species’ ranges and to forecast shifts in their distribution (Thuiller, 2004; Huntley et al.,
2006; Barbet-Massin et al., 2012a; VanDerWal et al., 2013). They are increasingly used to predict
range changes not only for individual species but across assemblages of species, of various taxa, to

identify general patterns in distribution changes (Araudjo et al., 2004; Lawler et al., 2009).

SDMs are based on the ecological niche concept (Hutchinson 1957) and relate species occurrences
to environmental variables, using a variety of different modelling approaches (Guisan &
Zimmermann, 2000). If the SDM is used to infer potential future distributions based on the climatic
niche of a species, typically a statistical model is used to relate the recent distribution of a species to
contemporary climatic conditions. The resultant model can then be applied to future climatic

scenarios, under the assumption of niche conservatism (Pearson & Dawson, 2003; Thuiller, 2003;

Wiens et al., 2010). In recent years various sources of uncertainty in such models have been

described, which impact the accuracy and robustness of their predictions. Among the sources

contributing to model uncertainty are:

1. differences in the predictions resulting from applying different model algorithms or different
implementations of the same technique (Thuiller, 2004; Pearson et al., 2006; Elith & Graham,
2009);

2. the lack of absence data and potential bias in the selection of pseudo-absences (Barbet-Massin
et al., 2012b);

3. the spatial autocorrelation of the environmental variables (Lichstein et al., 2002; Dormann et
al., 2007);

4. the choice of, and variability between, different baseline climate datasets (Baker et al., 2016) or
General Circulation Models (Beaumont et al., 2008), and:

5. the climate down-scaling approach used (Baker et al., 2017).

One aspect of uncertainty that, until recently, has been given relatively little consideration in SDMs

is the uncertainty introduced by using different climatic predictor variables in models. However, the

importance of the predictor variable choice in producing meaningful predictions, and the lack of a

framework to make informed decisions when selecting climatic variables, have been recognized

(Franklin, 2009; Austin & Van Niel, 2011). Furthermore recent studies have highlighted that different

combinations of bioclimatic predictors included in SDMs can result in very different predictions

(Synes & Osborne, 2011; Braunisch et al., 2013; Barbet-Massin & Jetz, 2014). A plausible causal

relationship must exist between any predictor variables used and the species’ occurrence (Austin,

2002). Ideally, the choice of variables used in an SDM should be based on expert knowledge about
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the relevance of the available variables to the modeled species. However, such knowledge is rarely
available (Mac Nally, 2000). An alternative approach to choosing suitable predictor variables in SDMs
is to use model selection, although this approach cannot fully substitute the preliminary variable
selection based on ecological knowledge (Mac Nally, 2000). Studies have found that different
combinations of bioclimatic variables, which have a similarly high model-fit when tested on
contemporary data, can produce very different projections, especially when projecting into novel
climatic space (Synes & Osborne, 2011; Braunisch et al., 2013). Additionally variables can also differ

in their importance (even within a single species) across space and scale (Menke et al., 2009).

Despite the concerns raised above, the vast majority of studies using SDMs fail to justify their
selection of predictor variable. Porfirio et al (2014) found through extensive review of the current
SDM literature, that the most commonly used approaches are: (1) to use all variables available in the
model, (2) to use all variables available but to consider collinearity, and exclude highly correlated

variables, or, more rarely, (3) to select variables based on ecological knowledge.
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Figure 2.1: The frequency of the bioclimatic variables used in papers modelling species distributions.
183 papers were reviewed for the study listing the predictor variables used in SDMs. Figure adapted
from Porfirio (2014) to only include bioclimatic variables. Black bars represent the variables that
were selected to be tested in the models.
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Bioclimatic variables that are very frequently linked to determine species ranges are annual mean
temperature and annual mean precipitation, as well as measures of the maximum and minimum
temperature of the warmest/coldest period and precipitation of the warmest/coldest quarter
(Figure2.1, Full description of bioclimatic variables see Table 2.1; data available from Porfirio et al.
2014).

For studies involving large numbers of species, selecting species-specific bioclimatic variables for
models is especially challenging. For many/most species, the ecological knowledge required to select
appropriate bioclimatic variables to define their niche limits does not exist. Additionally, using a
model selection approach for individual species is computationally intense, and hence often
impractical, across large species groups. Such approaches can occasionally result in the chance
selection of inappropriate variables that just happen to help explain a species range limits (Lennon,
2000; Dormann, 2007). However, the risk of chance correlations is much less problematic when the
model building and test data are not spatially auto-correlated. Another commonly applied approach
to select bioclimatic variables is to select variables associated with known physiological limits to
groups of species (Thuiller et al., 2005b; Araujo et al., 2006). Whilst this latter approach is appealing,
it does still presuppose knowledge of limiting factors in ecosystems, which could be based on only
sparse evidence. Here, | use a combination of the two approaches, pre selecting bioclimatic variables
that have been frequently linked with limiting species ranges and then using a model selection

approach for the final selection of the best performing combination of bioclimatic variables.

| use a subset of 400 bird species whose ranges are distributed relatively evenly across the globe,
and which represent species from all latitudinal bands and species of varying range extents. This
even distribution of range centers across the globe is important, since the climatic properties that
limit species ranges differ across different latitudes. According to the species energy hypothesis, the
limiting factor at high northern and southern latitudes is energy (temperature) whereas at medium
latitudes it is moisture availability (Wright, 1983). To assess if a variable combination works for a
global study, incorporating birds with ranges at all latitudes, it is important to get species from all
latitudes into the sample. | compile combinations of three and four bioclimatic variables, based on
those that are frequently used to predict species’ ranges and after considering collinearity. | then fit
SDMs for each of the 400 selected species using all of the variable combinations and compare their
performance across species using a model selection approach. The aim is to identify whether a single
combination of bioclimatic variables can be used to model the distribution of the majority of the
world’s terrestrial birds, or whether particular subsets of bioclimatic variables routinely perform

better at predicting species ranges in different areas of the world.
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2.3 Methods

2.3.1 Species distribution data
| obtained global breeding range polygons from BirdLife International for 400 bird species (BirdLife

International & NatureServe, 2012). The subset of species was drawn using stratified random
sampling based on the centre point of the distribution of a species, so that | had an even
representation of species globally (Figure 2.1). The distribution data were intersected with a 0.5°
degree (55 x 55 km at the equator) resolution grid. Species were considered present in a cell if their

polygon overlapped at least 10% with the underlying grid cell.

Sampling absences too narrowly around the edge of a species’ range limits the sampled climate
space and, thus, can truncate the environmental response curve (Thuiller et al., 2004; Barbet-Massin
et al., 2012b). | selected pseudo-absence data for each species using a distance-weighted approach.

Absences were selected randomly from beyond a species range margin but following a declining

probability of # whereas D, is the distance from the edge of a species range. This approach aims

e

to balance the selection of pseudo-absence data from too narrowly around a species range, whilst
also minimising selecting absence points from areas very distance from the range edge, where
absence could be due to non-climatic factors e.g. dispersal limitations. Qur approach also minimises
the selection of pseudo absences from geographically distant points that might contain little useful
information for the model (Anderson & Raza, 2010). | used an equal number of presences and
absences to build models for each species. However, for species with a range of fewer than 1000
cells | selected 1000 pseudo-absence points for the species. This minimum number of pseudo-
absences was chosen to reduce the risk of restricting model performance of the general additive
models (GAM) due to a low number of pseudo absences (Barbet-Massin et al., 2012b). For each

species | derived five sets of pseudo-absences for modelling purposes.
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Figure 2.1: Range centroids for the 400 focal species. Colours are indicating the different
zoogeographic realms of Holt et al. (2013) in which each range centroid is located in.

2.3.2 Contemporary climate data
| obtained 19 bioclimatic variables from Worldclim (Hijmans et al., 2005, http://worldclim.org/) as

potential explanatory variables (Table 2.1). | up-scaled the bioclimatic data to a 0.5° degree grid to
match with the gridded species distribution data. | then pre-selected 12 of these as potential
explanatory variables of species ranges, based on those most frequently used in the SDM modelling
literature across a broad variety of species (See Figure 2.1 and Supplementary material Table S2.1),
excluding variables that were highly correlated (>0.7) with other variables (for example, annual
mean temperature is highly correlated with all other temperature variables, Figure 2.2). After this
process seven potential variables remained. These were: temperature seasonality, maximum
temperature of the warmest period, minimum temperature of the coldest period, annual
precipitation, precipitation seasonality, precipitation of the warmest quarter and precipitation of the
coldest quarter. | produced SDMs based on all possible combinations of three and four variables,
again avoiding combinations of variables that had a Pearson’s correlation coefficient of >0.7 with
other variables in the models (Dormann et al.,, 2013). This resulted in 23 possible variable
combinations (7 four-variable combinations and 16 three-variable combinations; see Supplementary

material, Table S2.2).
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Table 2.1: Bioclimatic variables extracted from Worldclim (Hijmans et al, 2005,
http://worldclim.org/). The variables highlighted were selected to be tested in the models.

WorldClim code

Variable name

How is the variable derived

BIO1
BIO2

BIO3
BIO4
BIO5
BIO6
BIO7
BIO8
BIO9
BIO10
BIO11
BIO12
BIO13
BIO14
BIO15
BIO16
BIO17
BIO18
BIO19

Annual mean temperature

Mean diurnal range

Isothermality

Temperature seasonality

Maximum temperature of the warmest period
Minimum temperature of the coldest period
Temperature annual range

Mean temperature of the wettest quarter
Mean temperature of the driest quarter
Mean temperature of the warmest quarter
Mean temperature of the coldest quarter
Annual precipitation

Precipitation of the wettest period
Precipitation of the driest period
Precipitation seasonality

Precipitation of the wettest quarter
Precipitation of the driest quarter
Precipitation of the warmest quarter

Precipitation of the coldest quarter

Mean of monthly

(max temp — min temp)
(BlO2/BIO7) * 100
Standard deviation * 100

BIO5-BIO6

Coefficient of variation
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Figure 2.2: Correlation matrix of the bioclimatic variables from the WorldClim dataset. Blue indicates
a positive correlation, red indicates a negative correlation, colour shade and circle size indicate the
strength of the correlation. Crossed out combinations have a correlation > 0.7 and cannot be used in
the same model.

2.3.3 Species distribution models
To compare the performance of these different variable combinations among the 400 species |

produced SDMs for each species for each variable combination. | applied general additive models
(GAMs), using thin-plate regression splines (Wood, 2003; Wood, 2006) to model the relationship
between species’ occurrence and the three or four bioclimatic variables. | used the ‘gam’ function of
the ‘mgcv’ R package, fitting a Bernoulli response, using a logit link (Wood, 2011; R Developement

Core Team, 2012).

Spatial dependence
To deal with the spatial dependence of the data | used a blocking approach following the methods of

Bagchi et al. (2013). The data were split into sampling units based on the world’s ecoregions (Olson
et al., 2001). | then collated these sampling units into 10 blocks of approximately equal extents, each
of which fully represented climate parameter-space. Models were subsequently built using data
from nine blocks and the performance was assessed based on the (spatially semi-independent) left-
out tenth block. This process was repeated 10 times leaving out a different block each time. For each

model, | evaluated the performance of SDMs based on the different variable subsets, using the ‘area
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under the curve’ (AUC) (Fielding & Bell, 1997) of the model when applied to independent blocks of
data as our metric of model fit. Using this approach, | ranked the variable combinations by the
frequency with which they came up as one of the best models (from AUC) for a species, when
applied to blocks not used in model-fitting. | then summed the number of times that different
variable subsets produced the best, second-best etc. fitting models as a measure of how the variable
subsets performed overall, in terms of being able to define species distributions. | also explored how
the SDMs based on different variable subsets performed in relation to the latitude of species ranges.
| split the species into three groups according to the latitude of their range centroid as follows:
centroids above 23.5° latitude, centroids between 23.5° and -23.5° latitude (the tropics) and
centroids below -23.5° latitude and explored difference in the top variable combinations in the

different latitudinal bands.

Variable importance
To extract a metric of relative importance of the individual variables used to model species

distributions, | contrasted AUC values of the different three- and four-variable combinations with
and without a focal variable. | used the decline in AUC value between the four-variable and the
three-variable model as an indicator for the importance of the variable missing from the latter. To
test if there was a significant difference in the relative variable importance, based on the mean
decline in AUC after dropping each variable individually, | used a one-way analysis of variance
(ANOVA). Once | found a significant difference in the relative importance of the different variables, |
used a post-hoc Tukey test to identify which of the variables differed in their relative importance.
This was done for the entire data set to identify if there was an overall difference in the relative
importance of the four variables, as well as for the latitudinal subsets (described above) to see if the

variable importance differed across the different latitudinal bands.
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2.4 Results

Top variable combinations

Overall, the four-variable combination: temperature seasonality (BIO4), maximum temperature of
the warmest period (BIO5), annual total precipitation (BIO12) and precipitation seasonality (BIO15)
and performed best most frequently and was among the top 5 models for 75% of the species (Figure
2.3).

This was true for species breeding at all latitudes, though for species at high latitudes in the southern
hemisphere (below -23.5°) the difference between this variable combination and the second best
combination (with only three variables: the temperature seasonality, maximum temperature of the
warmest period and precipitation seasonality) was smaller. Both combinations were in the top three
models equally often; i.e. for our southern hemisphere high latitudes species total precipitation was

less frequently important in describing species ranges (Figure 2.4).

The fit of models (using AUC on independent blocks) of the top variable combinations for the
individual species were very similar (Figure 2.5). Models based on the three top variable
combinations (BIO4+BIO5+BI012+BI015, BIO4+BIO5+BI015+BI018 and BIO4+BIO5+BI018+BIO19;

variable acronyms as in Table 2.1), result in AUC values >0.8 for 80% of the modelled species.
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Variable importance for the top combination
For the top performing variable combination ‘BIO4+BIO5+BI012+BIO15’, the variables differed

significantly in their importance (ANOVA, Fg14s7 = 59.55, p <0.001). The variable ‘maximum
temperature of the warmest period’ (BIO5) appears to contribute most to model performance (Post
hoc Tukey, p < 0.001, between all variable combinations), typically increasing AUC by 0.05 when
added to 3-variable models (Figure 2.6, Table 2.3). The importance of BIO5 is similar, though slightly
higher, for species of higher northern latitudes (>23.5°) (ANOVA, F343¢) = 94.77, p <0.001, Post hoc
Tukey, p < 0.001). For species of lower latitudes and also those of high southern latitudes, of
temperature seasonality (BIO4) is the most influential variable when added to models, increasing
AUC by 0.45-0.5. Typically, when added to 3-variable models the most influential precipitation
variables add only about 60% of the additional predictive power of the most influential temperature
variables (e.g. gains of 0.03 vs 0.048 AUC units for the best precipitation vs the best temperature

variable across all 400 species; Figure 2.7).
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Table 2.3: Mean increase in AUC when adding the fourth variable to the three variable model, for
each of the tested bioclimatic variables across all models. Red indicates temperature variables, blue
indicates precipitation variables. Bold highlight the most influential variables across each row. High
latitude > 23.5°, medium latitude < 23.5° and > -23.5°, low latitude < -23.5°.

BI04 | BIOS BIO6 | BIO12 | BIO15 | BIO18 | BIO19
All 400 species 0.040 | 0.048 | - 0.030 | 0.015 | 0.026 | 0.012
Higher northern lats. (n = 257) 0.035 | 0.060 | - 0.020 | 0.015 | 0.022 | 0.010
Lower lats. (n=94) 0.050 | 0.023 | - 0.030 | 0.014 | 0.024 | 0.010
Higher southern lats (n=22) 0.045 | 0.013 | - - 0.013 | 0.020 | 0.01
0.2 .
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Figure 2.6: The variable importance (as measured by AAUC, when they are added to 3-variable
models without them) of the individual variables that comprise the best 4-variable combination
across all species.
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Figure 2.7: The variable importance of the chosen best variable combination across
different latitudes. The top left figure shows the variable importance for species whose
range centroid is located at a high latitude (>23.5°, n=235), the top right figure shows
the variable importance for species with their range centroid in the tropical belt (<23.5°
and >-23.5°, n= 116) and the bottom figure shows the variable importance for species
with their range centroid at low latitudes (>-23.5°, n=22).
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2.5 Discussion
The selection of predictor variables is a fundamental step when developing species distribution

models (SDMs) to predict species ranges (Guisan & Zimmermann, 2000; Heikkinen et al., 2006) and
the importance of choosing ecologically relevant variables has been recognized previously (Aradjo &
Guisan, 2006). Selecting the most appropriate bioclimatic variables for all terrestrial bird species,
based on ecological theory, is not possible with the data currently available. Model selection
approaches have been suggested as a means to identify the most suitable variable to predict a
species’ range, when hand-selecting variables based on theory is not an option (Franklin, 2009).
However, to do this individually for each of the world’s birds (10,500 species) would be too
computationally intense to implement. Here, | adopt an intermediate approach to explore the best
variables combinations to use for such global modelling of species. | use prior ecological knowledge
to inform the overall candidate variable subset, and then using model selection to explore whether
common variable subsets work well for all species, or whether regional, latitudinal or ecological

subsets of species require different bioclimatic predictors to describe their ranges.

The preselection of bioclimatic variables was based on the frequency with which they have been
used previously, and successfully, across a broad variety of SDM studies. Of the 7 pre-selected
variables (temperature seasonality, maximum temperature of the warmest period, minimum
temperature of the coldest period, annual precipitation, precipitation seasonality, precipitation of
the warmest quarter and precipitation of the coldest quarter), | derived all possible variable
combinations under consideration of collinearity, and included all possible combinations of three
(16) and four variables (7) for the analysis. Models with larger numbers of explanatory variables
would have included collinear variables, or would have been vulnerable to overfitting. A variety of
studies has successfully modelled species distribution with a lower number of predictor variables
(Hole et al., 2009; Araujo et al., 2011; Bagchi et al., 2013; Baker et al., 2015). Additionally, the higher
the number of explanatory variables in the model, the higher is the risk of overfitting (Randin et a/
2006). Since the selected variable combination is intended to be used in a global study on all
terrestrial birds, having a high number of predictive variables, could lead to additional modelling
problems when birds with as few as 10 presences are included. Thus, the results in this chapter
answer the question, which bioclimatic variables perform well across a large range of birds (including
all kinds of range sizes) using a relatively low number of predictor variables, rather than exploring

the ideal number of predictor variables included within a model.

For the majority of these species the predictor combination comprising ‘temperature seasonality’,
‘maximum temperature of the warmest period’, ‘annual total precipitation’ and ‘precipitation

seasonality’, was among the highest performing models, suggesting that a single common subset of

29



bioclimatic variables performed well globally. Several of the alternative, but often closely related,
variable combinations often also produced high model performance (based on AUC). When looking
at subsets of the 400 species for higher northern (>23.5°) and lower latitudes (23.5° to -23.5°) this
variable combination was the best performing combination. However at higher southern latitudes (<
-23.5°) the variable combination ‘temperature seasonality’, ‘max temp of the warmest month’ and
‘precipitation seasonality’ (i.e. without ‘total precipitation’) performed equally well. However, the
sample size for higher southern latitude species annual total precipitation was small (n=22, a
consequence of the relatively small land area of the southern hemisphere below the Tropic of
Capricorn). Generally there was not much difference in mean AUC scores amongst the top
performing model combinations. For models built using the three best performing variable
combinations, more than 80% of the models for species had an AUC above 0.8 and more than 40%

had an AUC higher than 0.9.

Although | was able to identify a variable combination that performed well across the selected
subset of species, the predicted distributions based on the chosen combination need to be treated
with care. Using different predictor variables to model a species distribution can lead to very
different predictions, especially when predicting into novel space (Araujo et al., 2005a). Even similar
high performing variable combinations can lead to different, sometimes even contradicting,
predictions (Synes & Osborne, 2011; Braunisch et al., 2013). Ideally, | would use several well
performing variable combinations and explore the uncertainty around the projections that is

introduced by using different variable combinations.

When working with a large set of species, the chosen best variable combination may not be among
the top variable combination for all species. Although | found that the best variable combination
generally had a high AUC score, for 12 % of the tested species this combination was not among the
top five models. Thus, for those species, their range limits might be better described by using a
different combination. If | used a true model selection approach to select the most parsimonious
variable subsets, | would have assessed model fit using AIC, and non-nested models within 6 AAIC
points of the best model would be ranked equally highly (Richards et al 2011). However, automating
the exclusion of nested models and building models based on all variable combinations when

modelling 10.500 species would be too computationally demanding to undertake here.

Overall, ‘maximum temperature of the warmest period’ was most the important bioclimatic variable
within the chosen variable combinations, in terms of improving model fit of 3-variable models. Both

temperature variables were of greater importance than the two precipitation variables, when
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looking at the overall variable importance across all species. This was similar for higher latitudes,

whereas for medium latitudes differences in variable importance were less pronounced.

The bioclimatic variables represent two primary properties of climate — energy and water. My
results for the variable importance when looking at the different latitudinal bands are consistent
with earlier studies on variable importance, which found temperature variables to be more
important at northern latitudes and variables quantifying moisture availability to be more important
at medium latitudes (Howard et al 2015). This change in variable importance is consistent with the
species-energy hypothesis (Wright, 1983). In cold areas (towards the poles) energy (temperature) is
the limiting factor of a species range, whereas in hot areas moisture availability is the limiting factor

(Hawkins et al., 2003).
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Chapter 3

Global assessment of range changes of the world’s terrestrial

bird species under future climate change
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3.1 Abstract
Species range changes under climate change have been widely documented. Movements towards

higher latitudes and altitudes have been shown across a variety of species and taxa. These range
changes not only result in reduced range extent between current and future species ranges but can
also lead to a reshuffling of species community compositions, and the emergence of novel
communities. Here, | highlight species and areas that are particularly threatened by climate change

and require conservation intervention most urgently.

| use species distribution models (SDMs) to assess the potential impact of future climate change on
the ranges of the world’s terrestrial birds. | incorporate species dispersal abilities to produce realistic
predictions of species range shifts. | summarize predicted changes in richness patterns as well as
summarizing changes in range extent and overlap for individual species. | highlight species most at
risk from climate change as well as areas where changes in the geographic distribution of species are
most severe. Additionally, | define current avian communities across the different biological realms
of the world, based on projected current species distributions and compare these to future

community patterns.

| predict the highest changes in species richness in the Amazon basin, Eastern Africa and the
Himalayas. These results parallel those simulated for other taxa by previous regional studies in these
areas. Species that are projected to be most affected by future climate change are those with a
restricted range or that occur at high latitudes and altitudes. Species turnover is highest in the
Amazon basin, across the European Mediterranean and in the northern Nearctic and Palearctic
regions. Localities of marked predicted shifts in avian communities to some extent mirror sites of
highest turnover, with novel communities appearing mainly in the Amazon basin, across the

European Mediterranean and in the northern Palearctic.
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3.2 Introduction
Climate change is a major threat to global biodiversity (Thomas et al., 2004), and impacts on species

ranges are already evident across a wide array of taxa (Parmesan & Yohe, 2003; Chen et al., 2011). A
primary response of animal and plant species to climate change are shifts in their distribution
(Parmesan, 2006), leading to a global reshuffling of species assemblages (Walther et al., 2002; Root
et al., 2003). Some species are tracking suitable climate to higher latitudes and altitudes (Grabherr et
al., 1994; Easterling et al., 2000a; Hughes, 2000; Kelly & Goulden, 2008), but idiosyncratic range
shifts are also occurring (VanDerWal et al., 2013; Gillings et al., 2015) with some species even
shifting their ranges to lower elevations (Tingley et al., 2012; Gibson-Reinemer & Rahel, 2015).
Hence, species are demonstrating individualistic responses, based on their abiotic tolerances,
dispersal abilities and interactions with other species (Davis et al., 1998; Guisan & Thuiller, 2005;
Jeschke & Strayer, 2008b). Overall these range shifts can lead to changes in community compositions
and the emergence of novel communities (Roy et al., 1996; Williams et al., 2007). Changing
community compositions, attributed to climate change, have already been observed throughout the
last century (Moritz et al., 2008; Davey et al., 2013) and will become more likely (Stralberg et al.,
2009). These changes can lead to novel interactions and imply additional threats for species (Gilman
et al., 2010; Lurgi et al., 2012). Thus it is important to identify areas where changes in community

compositions are likely to occur.

Contractions of species ranges under climate change have been found across a variety of taxa (Hill et
al., 2002; Wilson et al., 2005; Svenning & Skov, 2006; Thomas et al., 2006). Range contractions are
predicted to be especially severe for endemic species in biodiversity hotspots (Malcolm et al., 2006a)
and for montane species (Sekercioglu et al., 2008; La Sorte & Jetz, 2010). Identifying areas and
species that are at threat from climate change through range losses and changes is important for the
conservation of biodiversity (Thuiller et al., 2005b). A better understanding of species potential
future distributions can support conservation planning; for example, directing the locations of new

protected areas or corridors (Hannah, 2008; Hagerman & Chan, 2009).

Birds are a well-studied taxon with a lot of available data and, consequently, a wide array of studies
has addressed potential impacts of climate change. Changes in bird ranges under climate change
have been assessed for individual species (Marini et al., 2010), for assemblages within countries
(Peterson et al., 2002) and at sub-continental scales (Hole et al., 2009; Lawler et al., 2009; Barbet-
Massin et al., 2012a; VanDerWal et al., 2013; National Audubon Society, 2015) using species
distribution models (SDMs). At a global scale, current species ranges have been intersected with
future climate and land-use scenarios to assess potential impacts on species ranges (Jetz et al.,

2007). The ranges of many birds are projected to contract significantly under climate change, as
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many as 20% of the world’s birds potentially being imperiled by land use and climate change (Jetz et
al.,, 2007). Consistent with other taxa, birds have, in recent decades, extended their ranges
northward (Thomas & Lennon, 1999) and to higher latitudes (Pounds et al., 1999). But there is also
evidence that some species are unable to track their climate envelope rapidly enough to track
changes in the location of suitable climate (Devictor et al., 2008). Species with poor dispersal abilities
are particularly prone to being more severely affected by dispersal lags (IUCN, 2009; Foden et al.,
2013). To date, the incorporation of dispersal abilities into species in distribution models has been
uncommon, leading to widespread criticism (Berg et al., 2010; Travis et al., 2013). Comparing two
basic assumptions of dispersal, full dispersal and no dispersal, suggests that, inclusion of dispersal
data into SDMs can have substantial impacts on predicted distributions (Araujo et al., 2006; Thuiller
et al., 2006). Recent approaches to predict future species distributions have introduced SDMs that
incorporate dispersal (Génard & Lescourret, 2013). Further refinements to projections have also
incorporated population and habitat dynamics (Franklin, 2010). These approaches should result in
more realistic future predictions but are computationally intensive when considering large

assemblages of species.

Here | project the impact of climate change on ranges and distributions of all terrestrial bird species
globally for which robust SDMs can be created. | project range changes for more than 9,000
terrestrial bird species (Figure 3.1) under different climate change scenarios. | include biological
traits (dispersal) for all the species, for the first time in a global study, to produce more realistic
projections than have been made previously. The aim of this chapter is to assess the impact of
climate change on terrestrial bird distributions at a global scale and to highlight those species and
areas particularly at risk from climate change, and hence which most urgently require conservation

intervention. In particular | will answer the following questions:

1. How is global avian richness projected to change as a consequence of future climate
change?
a. How do current and projected future patterns species of richness differ?
b. How are future projections altered by additionally considering species-specific
dispersal ability?
2. How are species’ current ranges projected to alter under future climate change?
a. What are the changes in range extent, range shift current and to what extent do
current and future projected ranges overlap for individual species?
b. In which areas of the world will future climate change have the greatest impact on

species ranges?
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3. How might different subsets of species affected by projected future climate change?

a.

Are montane species more robust to climate change than lowland species? Are the
ranges of montane species projected to shift less than lowland species?
Are wide ranging species less susceptible to reduced range overlap between current

and projected future range extents?

4. How might avian community assemblages be reorganized as a result of projected climate

change?

a.

What are the projections of species turnover as a result of future climate change
across the world?

Can we identify distinct avian communities at present and, if so, to what extent will
these shift, either in range or in composition in future? Will climate change lead to

novel avian communities forming?
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a) Current richness all species

Figure 3.1: The graph shows the global species richness for: (a) all 10,178 bird species (b) for the
species (9,196) with sufficient data to be modeled within this chapter. Richness is derived from
individual species’ breeding range polygons from BirdLife International (BirdLife International &
NatureServe, 2012).
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3.3 Methods

3.3.1 Species distribution data
| obtained global breeding range polygons from BirdLife International for 9,237 bird species (BirdLife

International & NatureServe, 2012). For modelling purposes, the distribution data were gridded onto
a 0.5° (lat-long) grid (55 x 55 km at the equator). Species were considered present in a cell if their
polygon overlapped with at least 10% of a grid cell. Species whose breeding range intersected with
fewer than 50 0.5° grid-cells were re-gridded onto a 0.25° grid, without the application of a
minimum range overlap, i.e. any cell overlap on the 0.25° grid was considered presence. 6,982
species occurred in >50 0.5° grid cells, with the remaining 2,255 species ranges (which included
many range-restricted species of high conservation priority) gridded at 0.25° degree resolution.
Subsequent modelling was undertaken at 0.5° resolution for the more widely distributed species and
0.25° resolution for the restricted-range species. Any species with a range <10 grid cells at this finer
resolution (705 species) were not considered any further due to the difficulties in modelling sparse
data. This included a number of species that occur only on small, remote Islands whose ranges are
likely to be not solely climate restricted (Schwartz et al., 2006; Thomas, 2010). Seabird species (355
species) were excluded from the analysis due to the terrestrial focus of the study, and the fact that
their terrestrial breeding localities are, to a large extent, dictated by factors other than terrestrial
climate.

For modelling purposes, | selected pseudo-absence data for each species using a distance-weighted
approach, following the method described in Chapter 2. | used an equal number of presences and
absences to build models for each species. However, for species with a range <1000 cells at the
relevant grid resolution for that species, | selected 1000 pseudo-absence points for the species. For
each species, | produced five pseudo-absence datasets to be used in the species distribution models

(SDMs).

3.3.2 Climate data
Contemporary climate: The bioclimatic data were obtained from WorldClim, and the same

combination of four bioclimatic variables as selected in the preliminary analysis in Chapter 2, where

used for characterising the species’ ranges (Table 3.1).
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Table 3.1: Bioclimatic variables used for the species distribution models.

WorldClim code Variable name

BIO4 Temperature seasonality

BIO5 Maximum temperature of the warmest period
BlO12 Annual precipitation

BIO15 Precipitation seasonality

Future climate: | used three global climate models (GCMs), available from WorldClim, as being
representative of future projections of climate change: CCSM4, GFDL-CM3 and HadGEM?2-ES. These
were selected as they have been shown to perform well in representing climatic regimes across
three widely separate parts of the world: The Americas, Europe and Asia (McSweeney et al., 2015).
All other GCMs available on WorldClim were either incomplete or evaluated to not perform well for

at least one of the three areas when downscaling (McSweeney et al., 2015).

For each of the three GCMs | considered three greenhouse gas emission scenarios, the
representative concentration pathways rcp26, rcp45 and rcp85. These rcp pathways have been
named according to their radiative forcing values in the year 2100, relative to the pre-industrial
values (+2.6, +4.5, and +8.5 W/m?) (van Vuuren et al., 2011). | omitted the rcp65 pathway, since data
for this pathway was not available for all of the three chosen GCMs. Climate data were extracted for
two time periods, one centred around 2050 (average climate data for 2041 — 2060) and a second
centred around 2070 (average for 2061 — 2080) and for the same bioclimatic variables as the

contemporary climate data.

3.3.3 Species distribution models
| modelled the relationship between current species’ distributions and the four bioclimatic variables

using three modelling approaches: Generalized Linear Models (GLM), General Additive Models
(GAM), and Random Forest Models (RF), following the methods of Bagchi et al. (2013). These models
were chosen based on their performance in previous assessments (Araujo et al., 2005b; Prasad et
al., 2006; Meynard & Quinn, 2007; Elith & Graham, 2009; Wenger & Olden, 2012) and to provide a
contrast between parametric (GLM), semi-parametric (GAM) and machine learning (RF) methods

(Bagchi et al., 2013).
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Spatial dependence
| dealt with spatial dependence using the blocking approach described in Chapter 2. The data were

split into 10 blocks, using the world’s ecoregions as subunits that were aggregated to form each
block (see Bagchi et al. 2013 for details). Models were build based on 9 blocks and performance was

assessed based on predictions to the left-out 10" block.

For some species with a restricted range, this blocking approach would not work (e.g. all records
occur in one block). In such situations, | applied a 30:70 data splitting approach for model
development and testing, though acknowledge that the resultant models are likely to be less robust
than those produced using a blocking approach. | repeated the 70:30 splitting and pseudo-absence
selection 10 times for modelling and testing. Note that, despite its shortcomings 70:30 data splitting

is still the accepted norm in most SDM modelling.

Generalized linear models (GLM)
| used generalized linear models (McCullagh & Nelder, 1989) to fit relationships between the

bioclimatic variables and species distributions. | allowed up to 3™ order polynomials for the four
bioclimatic variables, resulting in 81 possible combinations. | fitted 81 models to nine of the blocks,
leaving one block out at a time, and assessed model performance based on the left-out block each
time. Using the mean AUC across the ten left out blocks, | chose the combination of polynomial
degrees that maximised AUC. Since the pseudo-absences for each species were drawn from different
extents, the relationship between the predictor and response variable varied. For some species, for
some of the data subsets, this resulted in complete or quasi-complete separation for higher
polynomials (one of the predictor variables being perfectly separated by the response variable
(Albert & Anderson, 1984)). These combinations were not considered any further. The best
combination of polynomials was used to fit a final set of ten models. The mean AUC across the left-

out blocks of these models was used as an indicator of the models’ fit.

General additive models (GAM)
| applied general additive models, using thin-plate regression splines (Wood, 2003; Wood, 2006) to

model the relationship between species’ occurrence and the four bioclimatic variables. | used the
‘gam’ function of the ‘mgcv’ R package, fitting a Bernoulli response, using a logit link (Wood, 2011; R
Developement Core Team, 2012). | fitted models to the species data omitting one block at a time

and used AUC to assess model performance based on the left-out blocks.
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Random Forest models (RF)
| used random forests, a machine learning approach, to describe the relationship between the

response variable and the predictors. | used cross-validation to define the two main parameters
required for the model, the number of trees (ntree) and the number of predictors used to build each
tree (mtry) (Prasad et al., 2006). The number of predictors was set to be between one and three and
the number of trees was set to initially 1000, which was incremented by 500 trees at a time. The
model was built on nine blocks each time and assessed on the left-out tenth block using AUC. If a
larger model improved the previous model by > 1%, it was accepted. This process was repeated until
the AUC was not improved any further. The number of trees (ntree) and predictors (mtry) that had
the best mean AUC across the ten left-out blocks were used to build the final set of models. The
models were implemented using the ‘randomForest’ package in R (Liaw & Wiener, 2002; R

Developement Core Team, 2012).

3.3.4 Predictions
Due to computational limitations, species potential ranges were not predicted to all global terrestrial

cells but to a subset of the global grid that was within the colonisation potential of species. For
species gridded to a 0.5° grid (i.e. more widely distributed species) | used the current distribution of
a species with the terrestrial zoogeographic realms of Holt et al. (2013) to determine the extent to
which the future distributions were projected for that species. These realms are often defined by
unsurpassable biogeographical barriers for many species, and using realms to define the modelling
extent is more biologically valid than the rather arbitrary political boundaries that are more often
employed for SDM analyses. For each species, | projected to the biological realm that the species
currently occurs in, as well as to any adjacent realms, that the species might be capable of colonising
in future. Figure 3.2 shows the zoogeographic realms used and Table 3.2 the resulting neighbouring
realms used for each realm of occurrence. If a species occurs currently in more than one realm,
models were applied to all currently occupied realms as well as to all of the relevant neighbouring
realms. For species of restricted range extent (i.e. those occurring in <50 half-degree cells),
predictions were made to all areas within 1000 km radius of a species’ current range. This 1000km
buffer exceeded the maximum potential dispersal distance over the current century (117+157km,
meanzSD) for the majority of these restricted-range species (based on estimated generation length,
mean natal dispersal potential and the number of generations completed in the period (Equation 1
in next section); data from BirdLife (in prep.)). 450 projections of range extent were produced for
each species in each future time period (5x Pseudo-absences, 10 x blocks, 3 x GCM, 3 x rcp), from
which multi-model ensemble median projected changes (Thuiller, 2004; Araujo et al., 2005a), and

their variability, were estimated.
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Figure 3.2: Map of the terrestrial zoogeographic realms by Holt et al. (2013). See Table 3.2 for realm
definitions for numbered regions.

Table 3.2: The individual terrestrial zoogeographic realms and the neighbouring realms to which

species’ distributions were also projected. Realm numbers relate to the numbers in Figure 3.1.

Realm Realm Neighbouring | Neighbouring | Neighbouring | Neighbouring
number | realm| realm Il realm Il realm IV
Neotropical 1 7 - - -
Australian 2 5 6 - -
Afrotropical 3 4 8 - -
Madagascan 4 3 - - -
Oceanian 5 2 6 - -
Oriental 6 2 5 8 10
Panamanian 7 1 9 - -
Saharo - Arabian 8 3 11 - -
Nearctic 9 7 11 - -
Sino - Japanese 10 6 11 - -
Palearctic 11 8 10 9 -
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Thresholding climatic suitability values from models
To converting modelled suitability data from SDMs to projections of presence or absence for a

species (which is often necessary for simplifying likely impact summaries), | followed the common
practice (Freeman & Moisen, 2008; Franklin, 2009) of applying thresholds to convert projected
continuous suitability values (or likelihood of occupancy) to binary data (i.e. projected suitable or
unsuitable). Species-specific thresholds were used that optimized the fit of the resultant present-day
suitability models to current observed distributions, using the kappa statistic (Cohen, 1960) to assess

model fit.

Using natal dispersal data to project realistic range changes
To avoid predicting unrealistic increases in range, beyond a species dispersal capability, | limited

projected range alterations based on species-specific trait data. | projected a species potential future
range to only occur in areas of suitable climate that were within the distance dx of the current range

edge of a species, using the following formula:

Eqn. 3.1:

rojection period
dx :( proj 14

- - ) * natal dispersal distance
age at first breeding

where the projection period is the duration (in years) between the contemporary modelled range
and the future time period (2050 or 2070), the age at first breeding is the typical time (in years)
between a species birth and first breeding and the natal dispersal distance of a species is the mean
distance between the place of birth and the place of first breeding of a species (following e.g. (Baker
et al., 2015)). The dispersal data were made available from unpublished data (Joe Tobias, UCL)
derived from the quantified relations between dispersal ability and wing biometric data. Data for the
age at first breeding were obtained for most species from BirdLife International (in prep.), derived
from published data. 909 species lacked data for age of first breeding in the BirdLife dataset; for
these species the age of first breeding was either sourced from the primary literature (n = 37
species) or an estimate of the mean age of first breeding was derived based on closely related
species (usually derived from species in the same genus). | restricted the dispersal ability for species
endemic to islands since, in this situation, summing natal dispersal distance over a prolonged time
interval does not necessarily reflect the ability of a species to travel a single long distances over
water. If an island endemic species’ natal dispersal distance was shorter than the distance to the
nearest neighbouring island, but their summed dispersal ability (from Equation 2.1) was sufficient to
cross, | restricted the total dispersal to 10x the natal dispersal distance. This allowed for the

possibility that rare long distance dispersal events much longer (10x) the typical natal dispersal could
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result in range expansion to more distant areas but not, for example, dispersal events of 50-70x the

natal dispersal distance (for species that breed in the year following their birth).

Model performance
| used AUC to evaluate the performance of the species distribution models fitted to the present

period. For each species, AUC values were calculated for the individual left-out blocks from the 10
fitted models and a mean AUC across these 10 validation blocks was calculated. | then compared the
resultant AUC values across the different model types, using a one-way ANOVA, to test if there was a
significant difference between the mean AUC values. | also tested for significant differences in model
performance between species with small (<50 cells) and large (> 50 cells) ranges and between
species assigned to different IUCN threat categories, using a Wilcoxon signed rank test for non-
normal distributions and a one-way ANOVA respectively. Additionally, | checked for spatial
patterning in model performance, calculating the mean AUC value of models for all species that
occurred within a grid cell, based on their current range polygons. 41 species were excluded from

further analysis because they had AUC values of < 0.7 for all three model types.

Projected range changes across different latitudes, altitudes and range sizes
| calculated changes in projected range extent and range overlap (between present modelled and

projected future range), and the distance between current and future range centroids. | then
checked whether there were systematic differences in these variables in relation to latitudinal
altitudinal bands and in relation to current range extent. | used a Kruskal-Wallis test to assess if
differences among groups were significant, and subsequently assessed which pairs of groups

differed using post hoc tests (Kruskal-Wallis Nemeny) for pairwise comparisons.

Latitudinal bands were defined as high northern latitudes (> 60°), temperate northern latitudes (60°
to40°), subtropical northern latitudes (40° to 23°), tropical latitudes north of the equator (23° to 0°),
tropical latitudes south of the equator (0° to -23°), subtropical southern latitudes (-23° to -40°), and
high southern latitudes (-40° to -60°). Ranges were split into several bands with species currently
occurring in <50 cells, 50 to 500 cells, 500 to 1500 cells, 1500 to 2500 cells and > 2500 cells.
Altitudinal bands were split in minimum altitude a species occurs at (< 500 m, 500m to 1000m,
1000m to 1500m, 1500m to 2000m and > 2000m), based on the minimum values of their altitudinal
range. For this analysis 6218 species were included for which altitudinal range data was available

from BirdLife (BirdLife International & NatureServe, 2012).

3.3.5 Species Turnover
To characterize the geographic pattern of changes in community composition, due to species

changing ranges, | calculated the turnover within each grid cell until 2050. | extracted the current
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and future projected species community for each grid cell and calculated the Bray-Curtis dissimilarity
(Bray & Curtis, 1957). Projected climatic suitability for each species for this analysis was based on the
ensemble median projections from the three SDMs types. Future projections for each species for
this analysis were based on the mean suitability across the three GCMs (CCSM4, GFDL-CM3,
HadGEM-2ES). For simplicity, in this chapter, these results are presented for only a single, medium
emission RCP pathway (rcp45; for rcp26 and rcp85 see supplementary material S3). Turnover was
based on simulations of species presence or absence in a cell, using thresholding as described

previously.

3.3.6 Species community analysis
| used the same projections described above (of individual species occurrences within each

terrestrial grid cells) to group cells in those containing similar avian communities based on their
modelled species assemblages in a period. | derived species communities for grid cells for the
present and the mid-term future period (i.e. 2050) only due to computational constraints, and due
to the increased uncertainty in individual species projections over longer periods (e.g. (Baker et al.,
2015)). The global grid was split into the zoogeographic regions (Figure3.2, (Holt et al., 2013)). The
Palearctic was split into two halves for the analysis, due to computational limitations. The split was
made along the Ural Mountains roughly following the geographic transition between Europe and
Asia. | calculated the Bray-Curtis dissimilarity between each pair of cells within a biological realm.
Subsequently | grouped the grid cells based on the Bray-Curtis dissimilarity matrix for each realm
using a hierarchical agglomerative cluster analysis, based on Ward's criterion (Murtagh & Legendre,

2014) minimizing the within cluster variance, to define species communities (Stralberg et al., 2009).
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Since limited information exists regardin