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Abstract 

 

The potassium ion (K+) is vital for plant growth and development, and K+ deficiency leads to 

reductions in crop yields. Given the significance of K+ deficiency in agriculture, it is important to 

understand the mechanisms by which K+ is taken into the plant and also how K+ deficiency 

impacts on the architecture of the root system, both of which will influence the ability of the 

crop to forage for K+ in the soil. The overall objective of the work described in this thesis is to 

uncover the mechanisms by which plant hormones control the root architectural responses to 

low K+ in the Arabidopsis accession Col-0. This question has been investigated using a 

combination of microscopy, genetics, chemical intervention, transcriptomics and analysis of 

the published literature.  

 

In response to low K+ Arabidopsis reduces its lateral root (LR) growth, and it was established 

that this reduction in growth is mediated through a reduction in cell division in the LR 

meristems. Analysis of RNA-Seq data allowed the identification of gene transcriptional changes 

in response to low K+. These data were then used to form hypotheses about the hormonal 

control of the reduction in LR growth. Data in this thesis allowed the identification of a role for 

the hormone gibberellin (GA) and for DELLA proteins in the modulation of LR growth in 

response to K+ starvation. These data were also used to identify the CBF1 transcription factor 

as a potential regulator of changes in cellular GA levels in response to low K+. The roles of 

reactive oxygen species (ROS), ethylene, auxin and abscisic acid (ABA) in the regulation of the 

root architectural responses to low K+ were investigated but no clear regulatory effects were 

identified. A role for ethylene and low K+ in the root gravitropic response was also identified. A 

model is proposed that describes the link between low K+ availability and root architectural 

changes mediated by altered GA signalling pathways. 
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Chapter 1 Introduction  

 

1.1 Potassium  

 

Potassium (K+) is one of the most important nutrients that plants need to survive. It is the most 

abundant cation in higher plants, making up 2–10% of the dry weight of a plant (Leigh & Jones, 

1984), and is known to be essential for many functions in the plant, including enzyme 

activation, stomatal activity, photosynthesis, protein synthesis and the transport of sugars, 

water and nutrients (see Prajapati & Modi, 2012 for a review). A key role for sufficient K+ 

nutrition in plant resistance to various abiotic and biotic stresses has also been identified; 

these include disease resistance, drought, salt, low temp and reactive oxygen species (ROS) 

(reviewed in M. Wang et al., 2013). All these examples highlight the essential nature of this 

nutrient in plant growth and survival.  

 

Despite being one of the most abundant elements on the earth, its availability to plants is 

often limited. Typically, the concentration of K+ in soil is between 0.1 mM to 6 mM (Adams, 

1971) although acidic soils and intensive farming can lead to the depletion of K+ in soils. As a 

result, large areas of the world's agricultural land are K+-deficient, including three-quarters of 

the paddy soils of China and two-thirds of the wheat belt of southern Australia (Romheld & 

Kirkby, 2010). This deficiency leads to reductions in crop growth, which translates to 

significantly reduced yields (Amtmann & Rubio, 2012). To alleviate this problem, it is necessary 

to apply large amounts of K+ fertilizer to the soils. Potassium in soil solution, as is applied in 

fertilizer form, is rapidly depleted by crops, therefore requiring regular application to maintain 

levels of growth. With increased food demands requirements for, and consumption of, potash 

fertilizer are set to increase dramatically (FAO, 2015).  

 

K+ starved soil is a problem particularly in developing countries, as the addition of K+ fertilisers 

is often neglected or not possible for economic reasons. A recent NAAIAP report (2014) has 

highlighted this problem in Kenya, and describes large areas of K+-deficient soils. This has been 

attributed to the omission of K+ from fertiliser application since the 1960s, due to the 

assumption that it was not a limiting factor for growth (Kanyanjua & Ayaga, 2006). K+ 

starvation not only leads to reduced yields, but also impacts on the nutritional content of crops 

and animal fodder. In addition to its importance in plants, K+ is an essential nutrient in the 

human body, where it is involved in the maintenance of the volume of body fluid, the balance 

of acid and electrolytes and the maintenance of normal cellular functioning (Young, 2001). 
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World Health Organisation (WHO) reports have linked reduced K+ in the diet to increased risk 

of cardiovascular disease, stroke and coronary heart diseases (World Health Organization, 

2012). This report also highlighted that the average K+ consumption in many countries is lower 

than the recommended daily intake (World Health Organization, 2012). Therefore, the K+ 

content of crop plants is of great importance.  

 

Given the importance of K+ deficiency on crops it is therefore important to understand the 

mechanisms by which K+ is taken into the plant and the way in which the architecture of the 

roots affects the ability to forage for K+ in the soil. Even with the addition of K+ to fields, the 

availability of K+ for uptake by plant roots is affected by many different factors. Variables such 

as soil water availability, soil density, soil pH and the presence of NH4
+ and Na+ (Jung et al., 

2009) also limit the extent of K+ uptake, and therefore plants have developed mechanisms to 

enable them to withstand periods of K+ deficiency.   

 

1.2 K+ uptake and sensing  

 

To date there have been 71 K+ channels and transporters characterized in Arabidopsis; these 

are classified into three families of transporters (KUP/HAK/KT, HKT and CPA) and two families 

of channels (Shaker and Tandem-Pore K+ (TPK)/ Kir-like; Gierth & Mäser, 2007; Marcel et al., 

2010; Voelker et al., 2010; Wang & Wu, 2010; Chanroj et al., 2012; Gomez-Porras et al., 2012). 

Depending on the external K+ concentration ([K+]ext), high or low affinity uptake mechanisms 

are used to maintain K+ levels within the plant; high affinity acts at [K+]ext  <0.2 mM and low 

affinity acts at [K+]ext  >0.3 mM (Maathuis & Sanders, 1994; Schroeder et al., 1994; Epstein et 

al., 1963). This suggests that the plant is able to accurately sense [K+]ext and readjust uptake 

mechanisms to adapt to the external concentration.  

 

The sensing mechanism for [K+]ext has not yet been identified in plants, but there are currently 

a number of different, non-mutually exclusive hypotheses, all of which involve the plasma 

membrane (PM). One hypothesis postulates the direct electrical polarization of the membrane 

as a result of the change in flow of K+. Hyperpolarization of the membrane potential under low 

[K+]ext occurs only minutes after a decrease in [K+]ext (Schroeder & Fang, 1991; Maathuis & 

Sanders, 1993; Nieves-Cordones et al., 2008), therefore this hyperpolarization could act as one 

of the earliest sensing signals to low K+. An alternative hypothesis suggests that K+ sensors are 

located at the PM of epidermal root cells due to their proximity with the [K+]ext  environment. 

The GORK shaker channel, and the K+ transporter AKT1 have both been suggested as potential 

K+ sensors in roots, because of their expression in the root hairs and root epidermis, 
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respectively (Sentenac et al., 1992; Lagarde et al., 1996; Johansson et al., 2006). The 

identification of the nitrate (NO3
-) sensor CHL1 (Ho et al., 2009) further supports the potential 

for a role for AKT1 as a K+ sensor, as they share a number of similarities. Both CHL1 and AKT1 

have dual affinity properties for their specific ions (Hirsch et al., 1998; Spalding et al., 1999; Ho 

et al., 2009), and are known to be regulated by the same set of CIPK-CBL (Calcineurin B-like 

(CBL)-interacting protein kinases and partners) (Li et al., 2006; Xu et al., 2006; Cheong et al., 

2007; Ho et al., 2009; Tsay et al., 2011). Recent advances have also linked Ca2+ signals to AKT1 

activation under low K+ (Behera et al., 2017) and used root growth responses in the akt1 

mutant to suggest that the mutant is unable to perceive low K+ (Li et al., 2017). However, there 

is still much work to be done in order to understand the K+ sensing mechanism(s) in plants. The 

work described in this thesis will focus on the events following K+ perception, rather than K+ 

sensing itself.  

 

1.3 Responses of plants to nutrient starvation 

 

In response to nutrient starvation there are typically two adaptive mechanisms employed by 

the plant to increase nutrient acquisition. The first is through the regulation of nutrient 

transporters, channels and their transport properties. The second is through the alteration of 

plant morphology. The latter involves the reprogramming of developmental processes in the 

roots, for example leading to increased lateral root (LR) branching and root hair growth to 

facilitate nutrient uptake through increased root surface area. Of the identified transporters 

and channels, only the K+ transporter HAK5 is reported to be consistently upregulated in 

response to low K+ levels (Ahn et al., 2004; Gierth et al., 2005). It is believed to be the major 

component of the high affinity K+ uptake mechanism and, due to its rapid and consistent 

upregulation, much research has focussed on understanding how low soil K+ leads to this 

increase in HAK5 expression. Work has demonstrated roles for the hormones ethylene and 

cytokinin, and for reactive oxygen species (ROS) in HAK5 expression (Shin & Schachtman, 2004; 

Jung et al., 2009; Nam et al., 2012). In addition, the affinity of HAK5 for K+ has also been shown 

to be modified by protein phosphorylation (Ragel et al., 2015). The roles of other K+ channels 

have also been characterized in response to low soil K+ (for a review see Ashley et al., 2006). 

However, there has been less work investigating the role of root architectural changes leading 

to increased K+-scavenging capacity in the response to low K+. This topic will form the main 

focus of the work described in this thesis.     
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1.4 Root system architecture  

 

Roots are essential for the sensing and uptake of water and nutrients from the soil but their 

physical location in the soil, and associated technical difficulties of biological analysis, has left 

them under-researched compared with the above-ground parts of the plant. A number of high 

profile review articles have declared roots to be the key to the ‘next green revolution’ and 

therefore an important factor in the maintenance of food security as populations increase 

dramatically (Lynch, 2007; Herder et al., 2010). One of the below-ground characteristics of 

plants identified as a promising feature for enabling the so called ‘new green revolution’ is root 

system architecture (RSA).  

 

RSA describes the spatial configuration of the root system and the exact arrangement of the 

root axes through the growth medium (Lynch, 1995). The main components of the root system 

are the primary root (PR), lateral roots (LRs), root hairs, seminal roots and adventitious roots 

(Smith & De Smet, 2012). The combinations of these different components of the root system 

vary between species, a difference that can be seen dramatically between monocotyledonous 

and dicotyledonous plants (Smith & De Smet, 2012). Root systems of dicots typically display a 

hierarchical tree structure, where one PR gives rise to LRs, and these LRs produce a branching 

pattern of higher order LRs (Kellermeier et al., 2013) (Fig. 1-1A). By contrast, monocots such as 

grasses and cereals, form a much more complex fibrous root system, often with adventitious 

roots, such as crown roots, constituting a large proportion of the total root system (Smith & De 

Smet, 2012) (Fig. 1-1B). 

 

In addition to between-species variation in root architecture there is also a large amount of 

within-species variability. Roots display phenotypic plasticity, which allows the plant to change 

its growth in response to changing environmental conditions, such as the availability of soil 

water and nutrients, and stresses such as salinity (López-Bucio et al., 2003; Comas et al., 2013; 

Galvan-Ampudia et al., 2013). It is this dynamic nature of RSA that determines the survival of 

plants in the continuously changing microenvironment they experience as they grow. 

Identification of root traits that increase the nutrient- and water-foraging capacity of a plant is 

essential for breeding programmes focused on increasing crop productivity and survivability in 

a future of limited resources and against a backdrop of a changing climate. Traits such as 

rooting depth, gravitropic setpoint angle, root hair distribution and length, and the level of 

root branching have all been identified as key elements of RSA relevant for crop productivity 

(Paez-Garcia et al., 2015). The importance of this area of research has recently been 

highlighted by RSA research resulting in increased shoot and yield attributes in maize (Hammer 
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et al., 2009; Lynch & Brown, 2012). Therefore, increasing knowledge of the RSA and the factors 

controlling RSA are key for increasing crop productivity in future breeding programmes.  

 

 

Fig. 1-1: Typical root architectures of dicot (A) (tomato) and monocot (B) (wheat) root systems, 
in both seedlings (left) and mature plants (right). Different root types are labelled in different 
colours. Adapted from Atkinson et al. (2014).  
 
 

1.5 Arabidopsis as a model for root development 

 

Arabidopsis thaliana has been used in plant science research for over 100 years, but it was not 

until the late 1970s/1980s that it was fully accepted as a model species across the research 

community. Traits such as short lifecycle, small size, ability to self-fertilize and diploid genome, 

led to its wide usage, and being the first published plant genome (The Arabidopsis Genome 

Initiative, 2000) cemented it as a key resource for molecular and developmental research. In 

addition to the above-mentioned traits, Arabidopsis also presents an ideal model for root 

analysis. Displaying the typical dicotyledonous hierarchical tree RSA (Kellermeier et al., 2013), 

it is small enough to grow on the surface of agar plates and has almost translucent roots with a 

diameter of only 100–150 µM. These features allow the characterization of RSA changes to 

various stimuli, and make microscopic analysis and quantification of changes very easy.  
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1.5.1 Structure and growth 

The Arabidopsis root has a highly ordered structure (Dolan et al., 1993). A transverse section 

displays a radial symmetry with concentric ring cell files, consisting of the epidermis, the cortex 

and the endodermis, all surrounding the vascular tissue, or stele, which is made up of 

pericycle, phloem, xylem and procambium (Scheres et al., 1995) (Fig. 1-2). All of these distinct 

cell types originate from a pool of stem cell initials at the root tip. These cells are in contact 

with, and under the control of, the cells of the quiescent centre (QC), which act to maintain 

their undifferentiated state (Dolan et al., 1993; van den Berg et al., 1997; Van Berg et al., 

1998). Together the stem cells and QC make up the stem cell niche (SCN) (Fig. 1-2). Each cell 

file originates through asymmetric cell division from its specified stem-cell initial, thereby 

creating a self-renewing cell and a daughter cell. The cells undergo repeated cell division in the 

meristematic zone, before division stops and elongation begins in the elongation zone. The 

boundary between these two zones is referred to as the transition zone. The final zone is 

referred to as the differentiation zone, in which root hairs, vascular tissues and the Casparian 

strip develop (Verbelen et al., 2006; Sanz et al., 2009; Petricka et al., 2012) (Fig. 1-2). This 

repeated cell division and elongation creates the basis of apical root growth, pushing the root 

tip further into the soil (Dolan et al., 1993; Beemster & Baskin, 1998; Petricka et al., 2012).   

 

Fig. 1-2: Structure of the Arabidopsis root. Longitudinal section through the root (left), cross 
section of the root taken from the differentiation zone (right). Different cell types marked in 
different colours and developmental zones indicated. Image adapted from De Smet et al. 
(2015).  
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1.5.2 LR development 

LRs develop from xylem pole pericycle cells, the priming of which occurs in the PR meristem. 

These primed cells then gain founder cell identity and go on to develop into LRs (Dubrovsky et 

al., 2001; Benková et al., 2003; De Smet et al., 2007). These founder cells then undergo a series 

of periclinal and anticlinal cell divisions to form the LR primordium (LRP). Malamy & Benfey 

(1997) defined eight stages of LR development (Fig. 1-3A,B) each with specific anatomical 

characteristics and cell divisions (Malamy & Benfey, 1997). Initial anticlinal divisions of 

pericycle founder cells make a single layered primordium (stage I), then periclinal divisions 

create two layers (stage II). Combinations of both anticlinal and periclinal divisions then create 

the characteristic dome shape of the LRP (stages II–VII) (Fig. 1-3A,B). Stage VIII marks the 

emergence of the LRP from the PR, after which the meristem is activated and the LR continues 

to grow through tip-based growth, as described in the PR (Malamy & Benfey, 1997; Casimiro et 

al., 2001; Dubrovsky et al., 2001) (Fig. 1-3C). A number of plant hormones have important 

roles in the control of LR development, and auxin works centrally in the coordination of this 

developmental process (discussed further in section 1.7.1).  

 

1.6 What is currently known about how K+ affects root architecture? 

 

K+ deficiency is known to have an adverse impact on plant growth, both of the above ground 

tissue as well as the roots (Chérel et al., 2014). The changes in root architecture of many crop 

plants have not been investigated due to the difficulty in cultivating and measuring root 

systems of crop species in controlled conditions; however, A. thaliana has been used as a 

model species to investigate the effects of K+ starvation on growth and development of root 

systems. Work over many years has reported that in response to K+ starvation there is 

inhibition of LR initiation and development (Armengaud et al., 2004; Shin & Schachtman, 

2004), an increase in root hair elongation (López-Bucio et al., 2003; Desbrosses et al., 2003; 

Jung et al., 2009), inhibition of growth of the PR (Jung et al., 2009; Kim et al., 2010), and a mild 

agravitropic response (Vicente-Agullo et al., 2004). Work by Kellermeier et al. (2013) reported 

a phenotypic gradient of growth responses to K+ starvation in different accessions of A. 

thaliana explaining conflicting results published in previous papers. This phenotypic gradient 

has two extremes, based on the trade-off between growth of the PR and LRs. In the 

Kellermeier et al. paper two strategies were defined (Fig. 1-4): the first strategy results in the 

maintenance of the growth of the PR as K+ decreases but restricts the growth of the LRs, 

whereas the second strategy restricts the growth of the PR in favour of elongation of LRs 

(Kellermeier et al., 2013) (Fig. 1-4). Despite identifying this gradient, the architectures were not 

explored in detail and the mechanisms that govern the responses were not elucidated. The 
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ecological significance of these different strategies was also not discussed in the work and little 

is known about the optimal RSA for potassium foraging.  

 

 
Fig. 1-3: Lateral root (LR) development in Arabidopsis. (A) Stages of lateral root primordia (LRP) 
development, stages 1- VII and e (emergence), as defined by Malamy & Benfey (1997). Cells 
visualized using proPIN1::PIN1:GFP, green is GFP, white is propidium iodide stain. Scale bars = 
50 µm. (B) Different cell types in the developing LRPs, stages as described, Malamy & Benfey 
(1997). Figure adapted from (De Smet et al., 2015). (C) LR after emergence from the primary 
root and after establishment of the meristem. Black, propidium iodide stain. Scale bar = 50 µm 
 



9 
 

 

 
Fig. 1-4: Typical root architectural responses to low K+ of ‘strategy 1’ and ‘strategy 2’ 
Arabidopsis accessions grown on control and low K+ media. Images and definitions of growth 
responses from Kellermeier et al. (2013). Representative images taken 12 d after germination 
(DAG). Scale bars = 1 cm. Accessions represented Col-0 and Oystese-0 (Oy-0). PR, primary root; 
LR, lateral root. 
 

1.7 Plant hormones as regulators of root growth 

 

Hormones are ubiquitous across the plant and animal kingdoms and are defined as ‘a chemical 

substance produced by one tissue with the primary function of exerting a specific effect of 

functional value on another tissue’ (Huxley, 1935). Plant hormones are essential in governing 

and coordinating the developmental responses of the plant to external cues, such as light, 

temperature and nutrition. Investigations into the impacts of hormones on plant development 

have been ongoing since the late 1800s, with the plant hormone auxin initially being described 

by Charles Darwin in ‘The power of movement in plants’ (albeit chemically undefined at that 

point) (Darwin, 1880). More recently four other hormones, ethylene, gibberellin (GA), 

cytokinin and abscisic acid (ABA) have joined auxin to be collectively known as the classical five 

plant hormones. Synergistic or antagonistic interactions between different combinations of 

these hormones are key in coordinating processes such as LR formation (Chang et al., 2013), 

PR growth (Dello Ioio et al., 2008; Perilli et al., 2010) and root hair development (Rahman et 

al., 2002), as well as playing important roles in several developmental processes in the above-
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ground tissues. Mutant screens and observations of specific mutants in Arabidopsis have 

allowed the discoveries of many of the hormonal perception and downstream signalling 

pathways, however there is still much that is unknown.   

 

1.7.1 Auxin 

Auxins are a class of plant hormones known to be essential in the coordination and control of 

almost all aspects of plant development and growth. The regulation of these processes is 

coordinated through directional transport and through auxin-specific regulation of gene 

transcription.  

 

1.7.1.1 Directional auxin transport  

The distribution of auxin in the root is controlled by polar auxin transport (PAT). This polar 

transport exhibited by auxin is unique among all plant hormones, and provides positional 

information for developmental processes. PAT is facilitated by the asymmetrical localization of 

membrane proteins inserted into the PM (Rubery & Sheldrake, 1974; Raven, 1975). These 

proteins belong to three main families; PIN-Formed (PIN), P-Glycoprotein (PGP), and AUX/LAX. 

Members of the AUX/LAX family act as influx carries, pumping auxin into cells. Of these 

proteins, AUX1 is the most studied (Bennett et al., 1996; Marchant et al., 1999; Yang et al., 

2006; Péret et al., 2012). The PIN family act as an important group of efflux carriers (Friml, 

2003; Petrášek et al., 2006; Wisniewska et al., 2006), and the PGP family has been less well 

characterised although they are thought to act independently but in coordination with the 

PINs (Mravec et al., 2008). Auxin is transported acropetally through the vasculature of the PR 

mainly by AUX1 and PIN1 (Gälweiler et al., 1998) (Fig. 1-5A). The proteins are localized to the 

apical and basal sides of the cells respectively, creating polar transport of auxin that correlates 

with the known directionality of the auxin flow (Swarup et al., 2001). As auxin is transported to 

the root tip it is targeted to the root columella cells by PIN4, which is positioned on the distal 

side of the cells of the central root meristem (Friml et al., 2002a) (Fig. 1-5A). Auxin 

accumulates in the first layers of columella cells, and during normal growth, the auxin is then 

directed symmetrically on both sides of the root by PIN3 and PIN7. Auxin is then transported in 

a basipetal direction to the elongation zone by AUX1 and PIN2 (Luschnig et al., 1998; Müller et 

al., 1998) (Fig. 1-5A), where it inhibits cell elongation (Wolverton et al., 2002). This directional 

transport at the root tip is referred to as the reverse fountain model.  
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Fig. 1-5: (A) The reverse-fountain model of auxin transport in an Arabidopsis primary root tip, 
showing auxin distribution (blue gradient) and the direction of flow shown by the arrows 
mediated by the different PIN proteins involved. Figure from Křeček et al. (2009). AUX/LAX 
proteins are not included in this diagram. Black arrows show direction of acropetal auxin 
transport. Green arrows show direction of basipetal auxin transport. (B) In response to gravity 
auxin flux is redirected asymmetrically to the lower side of the root. The thickness of arrows 
depicts the relative auxin flux. 
 

 

1.7.1.2 Auxin regulation of gene transcription  

Auxin regulates transcription by rapidly stabilizing the interaction between Aux/IAA 

transcription factors and F-box proteins of the TRANSPORT INHIBITOR RESPONSE 1/ AUXIN 

SIGNALLING F-BOX (TIR1/AFB) family (Tan et al., 2007). The F-box proteins act as the substrate 

selection subunit of the SCF-type ubiquitin protein ligase complex, thereby leading to the 

ubiquitination and removal of the inhibitory Aux/IAA by the 26S proteasome in an auxin-

dependent manner (Fig. 1-6) (Gray et al., 2001; Smalle & Vierstra, 2004; Dharmasiri et al., 
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2005; Kepinski & Leyser, 2005; Dos Santos Maraschin et al., 2009). Removal of the Aux/IAA 

transcriptional repressors (Ulmasov et al., 1997) allows Auxin Response Factors (ARFs) to 

homodimerize and bind to the promoter regions of auxin regulated genes (Boer et al., 2014; 

Mironova et al., 2014), regulating the level of gene expression (Fig. 1-6).  

 

 

 
Fig. 1-6: Regulation of gene transcription by auxin, as described in text. (A) Aux/IAA 
transcription repressor inhibits gene transcription. (B) Auxin binding to the SCFTIR complex 
promotes the interaction between the Aux/IAA transcriptional repressor and the ubiquitin 
protein ligase SCFTIR leading to the degradation of AUX/IAA. This allows the transcription of 
auxin regulated genes by Auxin Response Factor (ARF) binding to Auxin Response Element 
(AuxRE). Figure taken from Morita & Tasaka (2010).  
 

 

1.7.1.3 Auxin control of RSA 

It is through the regulation of gene expression that auxin plays an important role in the control 

of RSA. Its directional transport sets up concentration gradients that are regulatory (Sabatini et 

al., 1999). Auxin has an essential role in the control of meristem size, and growth of the root, 

and it is known to promote cell division and cell elongation and inhibit differentiation (Dello 

Ioio et al., 2007, 2008; Moubayidin et al., 2010; Perrot-Rechenmann, 2010), whilst at high 

concentrations it is known to inhibit root elongation (Eliasson et al., 1989). Auxin is also known 

to control the development of LRs through multiple auxin-signalling modules. It coordinates 

the priming of LR initials (De Rybel et al., 2010; Xuan et al., 2016), LR initiation (Fukaki et al., 

2002, 2005; Okushima et al., 2005), development of the LRP (Benková et al., 2003; Hirota et 

al., 2007; De Smet et al., 2008) and emergence of the LR from the PR (Swarup et al., 2008; also 

see Lavenus et al., 2013 for a comprehensive review of the role of auxin at each stage of 

development). Another RSA trait that auxin plays an important role in is the plant's response 

to gravity. Following a gravistimulation event, auxin is directed asymmetrically at the root tip 
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towards the downward facing side of the root (Fig. 1-5B), through the redistribution of the 

PIN3 and PIN7 proteins in the root columella cells (Friml et al., 2002b; Kleine-Vehn et al., 

2010). The accumulation of auxin on one side of the root leads to differential cell expansion, 

which results in the root bending towards the direction of gravity.  

 

1.7.2 Ethylene 

Ethylene is a gaseous plant hormone known for its important agricultural roles in senescence 

and ripening, as well as its role as a modulator of a plants' responses to biotic and abiotic 

stresses. The ethylene signal is perceived by a family of five receptors located at the 

endoplasmic reticulum (ER), ETHYLENE RESPONSE1 (ETR1), ETR2, ETHYLENE RESPONSE 

SENSOR1 (ERS1), ERS2, and ETHYLENE INSENSITIVE4 (EIN4) (Hua & Meyerowitz, 1998). In their 

active state (ethylene not bound), these receptors activate the Raf-like kinase (CONSTITUTIVE 

TRIPLE RESPONSE 1) CTR1 (Kieber et al., 1993; Clark et al., 1998), which in turn phosphorylates 

the ETHYLENE INSENSITIVE 2 (EIN2) protein (Alonso et al., 1999). EIN2 is inactive in its 

phosphorylated state and remains localized to the ER, inhibiting downstream signalling (Ju et 

al., 2012) (Fig. 1-7A). The binding of ethylene to the receptors leads to their inactivation, 

releasing the inhibitory effect on downstream elements of the pathway. As a result of this 

relieved suppression, EIN2 is proteolytically processed so that the carboxyl terminal end (C-

END) is cleaved and migrates to the nucleus where it stabilises EIN3 leading to the 

accumulation of EIN3 (An et al., 2010; Ju et al., 2012; Qiao et al., 2012; Wen et al., 2012). EIN3 

activates the transcription of ETHYLENE RESPONSE FACTOR 1 (ERF1) and other ethylene 

regulated target genes (Solano et al., 1998) (Fig. 1-7B).  

 

In the root, ethylene is known to inhibit root elongation and LR development as well as 

stimulating root hair formation resulting in the production of characteristic short fat hairy 

roots upon ethylene treatment. Ethylene control of root growth is thought to be largely 

mediated by the regulation of auxin biosynthesis and transport. Ethylene stimulates the 

expression of auxin biosynthesis genes and members of the auxin transport machinery 

(Swarup et al., 2007; Negi et al., 2008; Stepanova et al., 2008; Lewis et al., 2011). This leads to 

ethylene induced auxin accumulation and inhibition of cell expansion of cells exiting the root 

meristem (Ruzicka et al., 2007; Swarup et al., 2007; Stepanova et al., 2008). Ethylene has also 

been proposed to play a role in the inhibition of cell division in the root meristem (Street et al., 

2015), and in the regulation of stem cell proliferation and quiescence at the root tip (Ortega-

Martínez et al., 2007).   
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Fig. 1-7: The ethylene signalling pathway as described in the text. (A) In the absence of 
ethylene, the receptors activate CTR1, which phosphorylates EIN2, halting downstream 
signalling. EIN3 is degraded. (B) Binding of ethylene to the receptor results in the proteolytic 
release of the EIN2 C-END, which migrates to the nucleus. In the nucleus, it stabilizes EIN3 and 
EIN3 activates the transcription of ETHYLENE RESPONSE FACTOR 1 (ERF1) and other ethylene 
regulated target genes. Figure taken from Chang (2016).  
 

 

1.7.3 Gibberellic acid 

Gibberellins (GAs) are a class of tetracyclic diterpenoid hormones regulating many processes 

such as germination, root and shoot growth, flowering and fruit development (Fleet & Sun, 

2005; Yamaguchi, 2008; Brian, 1959), and are best known for their role in promoting growth. 

Over a hundred GAs have been identified in higher plants and fungi (MacMillan, 2002), 

however only GA1, GA3, GA4  and GA7 are considered biologically active (Hedden & Phillips, 

2000). Of these, the predominant bioactive forms are GA1 and GA4 (Sponsel & Hedden, 2010). 

The GA signal is perceived by the soluble GA receptor GA-INSENSITIVE DWARF1 (GID1) 

(Ueguchi-Tanaka et al., 2005). GA-bound GID1 proteins interact with growth repressing DELLA 

proteins, forming a GA-GID1-DELLA complex. (Griffiths et al., 2006; Nakajima et al., 2006; 

Murase et al., 2008). This interaction targets the DELLA proteins for degradation via E3 

ubiquitin ligases such as SCFSLY1/SNZ in Arabidopsis (McGinnis et al., 2003; Dill et al., 2004; Fu et 
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al., 2004; Dohmann et al., 2010; Ariizumi et al., 2011). The pathway has been referred to as the 

relief of restraint, or relief of repression model, whereby DELLAs restrain plant growth, and GA 

promotes growth by overcoming DELLA-mediated growth restraint (Gao et al., 2011) (Fig. 1-8).  

 

 
Fig. 1-8: Model of gibberellin (GA) signalling, as described in the text. GA binds to the GID1 GA 
receptor, which forms a GA-GID1-DELLA complex with DELLA proteins. This targets the DELLAs 
for degradation via the ubiquitin-proteasome pathway. In the absence of GA, DELLA proteins 
are stabilized and repress GA responses. Figure taken from (Sun, 2010).   
 

In Arabidopsis there are five DELLA proteins; GAI, RGA, RGL1, RGL2 and RGL3, all sharing the 

DELLA-motif as well as the C-terminal GRAS domain (Peng et al., 1997; Ikeda et al., 2001; 

Silverstone et al., 2001; Lee et al., 2002; Wen & Chang, 2002). They act as key repressors of 

GA-responsive growth by inhibiting GA-regulated gene expression (Sun & Gubler, 2004) by 

interacting with transcription factors (TFs) such as PHYTOCHROME INTERACTING FACTORS 

(PIFs) and SCARECROW-LIKE3 (SCL3) (Zentella et al., 2007; Feng et al., 2008; de Lucas et al., 

2008; Heo et al., 2011; Zhang et al., 2011). GA homeostasis is regulated through the 

biosynthesis and deactivation of bioactive GAs. The system is strongly influenced by 

developmental and environmental cues, and three families of dioxygenases, the GA 3-oxidases 

(GA3ox), GA 20-oxidases (GA20ox) and the GA 2-oxidases (GA2ox), have been identified as the 

primary sites of this regulation (Colebrook et al., 2014). The GA3oxs and GA20oxs act in the 

final step of GA biosynthesis, and the GA2oxs deactivate GAs, therefore regulation of the 

expression of these genes provides a mechanism for GA homeostasis (Thomas et al., 1999; 

Yamaguchi, 2008). In the control of RSA, GA is known to increase root elongation, modulate 

meristem size and promote cell division through the degradation of DELLAs (Ubeda-Tomás et 

al., 2008; Achard et al., 2009; Moubayidin et al., 2010). Various stresses, such as cold, salt and 

osmotic stress, are known to induce reduced GA levels and stabilised DELLAs, resulting in 
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reduced root growth responses (Achard et al., 2008a; Magome et al., 2008; Dubois et al., 2013; 

Zhou et al., 2017).   

 

1.7.4 Abscisic acid (ABA) 

Another of the five major plant hormones that is known for its regulatory roles in root growth 

is ABA (Harris, 2015). It has been shown to regulate root meristem function, through inhibition 

of cell differentiation in the QC thereby maintaining the pool of stem cells (Zhang et al., 2010). 

It has also been shown to increase the rate of root elongation through modulation of the 

elongation zone and through inhibiting ROS accumulation (Sharp et al., 1994; Sharp et al., 

2004). It is also known to play a role in the regulation of LR development, at the stage of 

initiation (Ariel et al., 2010; Van Norman et al., 2014) emergence (Ariel et al., 2010), and 

meristem activation (Signora et al., 2001).  

 

In the ABA signalling cascade, ABA binds to members of the PYR/PYL/RCAR receptor family 

creating a surface for protein phosphatases (PP2Cs) to bind (Ma et al., 2009; Park et al., 2009). 

When unbound, PPC2s act to inhibit the autophosphorylation of the SnRK2 family (SNF1-

RELATED PROTEIN KINASE) of kinases, preventing their activation of ABA-RESPONSIVE 

ELEMENT BINDING FACTOR (ABF) transcription factors (Furihata et al., 2006; Yoshida et al., 

2006, 2015) (Fig. 1-9A). The binding of PP2Cs to the PYR/PYL/RCAR receptor when ABA is 

present, leads to its inactivation and release of its negative regulatory effect on the 

autophosphorylation of the SnRK2s, allowing the activation of ABFs. This subsequently leads to 

transcriptional initiation at ABA-responsive promoter elements (ABREs) (Choi et al., 2000; Uno 

et al., 2000; Furihata et al., 2006) (Fig. 1-9B).  

 

1.7.5 Reactive oxygen species (ROS) 

Significant evidence has accumulated supporting the premise that ROS can act as signalling 

molecules serving a functional role similar to hormones. ROS, such as singlet oxygen (1O2), 

superoxide (O2
–), hydrogen peroxide (H2O2) and hydroxyl radical (HO.), are constantly produced 

in plants through metabolic processes such as photosynthesis and respiration. However, their 

reactive nature means that at high levels, they can be very detrimental to the plant, leading to 

cell death and damage to DNA, lipids and proteins. For this reason, ROS levels are tightly 

regulated through detoxification and scavenging systems (Bowler et al., 1994; Caverzan et al., 

2012; Sofo et al., 2015). As well as causing detrimental effects, it has emerged that ROS also 

play a role in the regulation of responses to developmental and environmental signals. One of 

the areas in which ROS is known to have roles is the control of root development. ROS has 

been shown to reduce the number of dividing cells in the root meristem, play a role in defining 
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the transition zone (Passardi et al., 2006; Tsukagoshi et al., 2010) and also in repressing the 

size of the meristem itself (Tsukagoshi, 2012). ROS has also been strongly implicated in root 

hair development (Foreman et al., 2003), and in the regulation of LR emergence (Manzano et 

al., 2014). There is still much that is unknown about how the levels and localization of ROS 

affects developmental processes, however it is likely to be important in many processes.  

 
 

 
Fig. 1-9: The abscisic acid (ABA) signalling cascade, as described in the text. (A) In the absence 
of ABA, PP2Cs autophosphorylate SnRK2 proteins, which prevents them from activating ABF 
regulated gene transcription. (B) In the presence of ABA, ABA binds to the PYR/PYL/RCAR 
family of receptors, forming a surface for the binding of PP2C proteins. The PP2Cs are 
sequestered and this relieves the inhibition on the downstream pathway components. ABFs 
are able to activate transcription at ABA-responsive promoter elements (ABREs). Figure taken 
from Sheard & Zheng (2009).  
 
 
1.7.6 Hormonal crosstalk 

As discussed above, hormones and ROS have specific roles in the regulation of root growth, 

however it is through the crosstalk between them that the plant maintains growth and 

development, and integrates and responds to environmental signals. The hormones already 

mentioned, as well as cytokinin, brassinosteroids, strigolactones, jasmonates and salicylic acid 

all communicate in different regions of the developing roots to control the rate of cell division, 

elongation and differentiation. It is beyond the scope of this thesis to describe every proposed 

interaction in detail; however, recent review articles have summarised the evidence to date 
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describing the crosstalk models influencing root growth (Takatsuka & Umeda, 2014; Pacifici et 

al., 2015) and Fig. 1-10 elegantly displays the complexity involved. 

 

 
Fig. 1-10: Hormonal control of cell elongation, differentiation, proliferation and regulation of 
the quiescent centre (QC) in different developmental zones of the Arabidopsis primary root 
tip. EDZ, elongation/differentiation zone; TZ, transition zone; PM, proximal meristem; SCN, 
stem cell niche; ABA, abscisic acid; GA, gibberellic acid; CK, cytokinin; BR, brassinosteroids. 
Figure taken from Takatsuka & Umeda (2014).  
 
  

1.8 What is known about hormonal crosstalk in response to K+ deficiency? 

 

As already discussed, much of the work surrounding K+ starvation has focused on the changes 

in K+ transporter levels and uptake kinetics, leading to the elucidation of key hormonal 

signalling pathways involved in the regulation of these factors. The rapid upregulation of the K+ 

transporter HAK5 has been one of the best characterized. Here there is strong evidence 

suggesting an increase in ethylene and ROS leads to the induction of HAK5 transcription (Jung 

et al., 2009; Nam et al., 2012). However, much less is known about the hormonal control of the 
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architectural changes displayed in response to low K+. As well as being a key early step in the 

activation of HAK5, ethylene and ROS have also been linked to an increased elongation of root 

hairs (Pitts et al., 1998; Jung et al., 2009) and in a reduction in PR growth (Jung et al., 2009) in 

response to low K+. In this case, increased ethylene leads to increased ROS levels, however it 

has been recognised that there is also an ethylene-independent increase in ROS in response to 

low K+ (Jung et al., 2009).  

 

There is also mounting evidence to suggest that auxin plays a key role in the response to K+ 

deficiency. Observations of gene expression changes (Armengaud et al., 2004) and the 

identification of a K+ transporter that also behaves like an auxin efflux facilitator 

(TRH1/AtKUP4) (Vicente-Agullo et al., 2004) provided the basis for a link between auxin and K+ 

deficiency. The agravitropic nature of the trh1 mutant has been shown to be attenuated when 

grown on low K+ (Vicente-Agullo et al., 2004) which more recently has been attributed to a 

mislocalization of auxin transport carriers, leading to impaired auxin transport (Rigas et al., 

2013).  

 

Auxin has also been linked to the development of LRs under low K+ conditions through reduced 

LR density observed in response to low K+ in the auxin signalling mutant (MYB77; Shin et al., 

2007). A reduction in the concentration of free IAA and reduced basipetal auxin transport in 

response to K + stress has also been observed (Shin et al., 2007). It is therefore likely that auxin 

is playing a role in the response to low K+ in Arabidopsis. Cytokinin synthesis mutants have also 

identified a role for cytokinin in the response to low K+ pathway, displaying enhanced K+ 

starvation response (Nam et al., 2012).   

 

Hormonal crosstalk interactions are often very complex networks and tightly regulated. Much 

is still unknown about how hormonal signals lead to the diverse range of adaption strategies 

deployed by plants as a coping mechanism in response to K+ starvation.  

 

1.9 Aims and objectives 

 

The overall objective of the work described in this thesis was to uncover the hormonal control 

of root architectural responses to low K+ in the Arabidopsis accession Col-0. In order to 

investigate this question, the first aim of the work was to characterize the root architectural 

response of Col-0 to low K+ (Chapter 3). The second aim was to identify gene expression 

differences between seedlings grown on high (2 mM) and low (0.005 mM) [K+] for short 

periods of time (Chapter 4). Using these data, the aim was to create hypotheses about the 
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hormonal control of root architectural changes in response to low K+ (Chapter 4). Next, the 

work aimed test these hypotheses experimentally to identify the roles of hormones in the root 

architectural changes (Chapter 5). The final results chapter (Chapter 6) aimed to utilise RNA-

Seq data to explore possible upstream events regulating changes in hormone levels in 

response to low K+. Together, the work in the four experimental chapters utilises experimental 

and bioinformatics data as well as literature-based searches to increase the understanding of 

the root architectural responses to low K+ and the means by which they are regulated.  
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Chapter 2 Materials and Methods  

 

2.1 Materials 

 

2.1.1 Chemical suppliers 

All chemicals were obtained from SIGMA (Poole, UK) or Fisher Scientific Ltd (Loughborough, 

UK) unless otherwise stated.  

 

2.1.2 Plant material 

Arabidopsis thaliana wild type (WT) Columbia (Col-0) seeds were obtained from lab stocks. All 

mutants and reporter lines are in Col-0 background and from lab stocks, unless otherwise 

stated.  

 

2.1.2.1 Reporter lines 

The reporter lines were obtained as follows: pDR5rev::3XvenusN7 (Heisler et al., 2005); 

proRGA::RGA::GFP (Silverstone et al., 2001) Ari Sadanandom (Durham University, UK); 

QC25::GUS, proPIN1::PIN1:GFP (Benková et al., 2003) and proPIN2::PIN2::GFP courtesy of Ben 

Scheres (Utrecht University, the Netherlands); WOX5::GFP courtesy of Chunli Chen (Huazhong 

Agricultural University, Wuhan, China); pAtHAK5::GUS/GFP courtesy of Frans Maathuis (York 

University, UK) (Gierth et al., 2005). HyPer courtesy of Marc & Heather Knight (Durham 

University, UK)(Belousov et al., 2006). 35S::DII-VENUS-N7 (Brunoud et al., 2012) and 

CYCB1;2:GUS were obtained from the Nottingham Arabidopsis Stock Centre (NASC) 

(http://arabidopsis.info/).  

 

2.1.2.2 Mutant lines 

Mutant lines were obtained as follows: aux1-22 courtesy of Claire Grierson (University of 

Bristol, UK); ga2ox quintuple mutant courtesy of Steve Thomas (Rothamsted Research, 

UK)(Rieu et al., 2008); sfr6-1 and erf5 erf6 courtesy of Marc & Heather Knight (Durham 

University, UK)(Knight et al., 2009); atrbohF and atrbohD/F mutants courtesy of Alistair 

Hetherington (University of Bristol, UK); atrbohD-3 and aux1-7 DR5::GUS were obtained from 

NASC. SALK_056756, SM_3.32872, SALK_054092, SALK_087356, SALK_127471, GK-843H09 

were also obtained from NASC.  

 

2.1.2.3 Genetic cross progeny 

Progeny of crossing: aux1-7 x 35S::DII-VENUS-N7 and aux1-7 x proPIN2::PIN2::GFP  
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2.1.3 Genotyping insertion lines 

Insertion lines were genotyped by running two parallel PCR reactions using three primers; a 

forward primer (Fw), a reverse primer (Rev) and an insertion-specific primer (Fig. 2-1B). PCR 

conditions are described in section 2.8.2. One PCR reaction was set up using the Fw and Rev 

primer set, and the second PCR was set up with the Rev primer and the insertion specific 

primer. Primer sets were designed so that different sized bands would be created in each case. 

Homozygous plants would display a band in one of the other PCR reactions, whereas a 

heterozygous line would display bands in both (Fig. 2-1C). Details of insertion lines and primer 

combinations required for genotyping displayed in Table 2-1 below. Primer sequences listed 

(Appendix I).  

 

 

Fig. 2-1: Workflow for the genotyping of T-DNA insertion lines. (A) identification of insertion 

site. (B) Primer design. DNA extraction is performed and PCR with specific primers is 
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completed & run on gel to determine genotype (C). Border (B,C) refers to the specific primer 

for each T-DNA insertion type.  

 

Seed line Locus Associated 

gene 

name 

Insertion specific 

primer 

WT 

band 

size 

Mutant 

band 

size 

atrbohD-3 AT5G47910  dSpm1 732 ~660 

atrbohF AT1G64060  dSpm11 924 ~700 

atrbohDF   dSpm1 & dSpm11 

(*) 
(see above) 

SALK_127471 AT5G39670 CML46 LBb1.3 1117 584–

848 

SM_3.32872 AT1G80840 WRKY40 Spm32 1127 448–

748 

SALK_087356 AT4G17490 ERF6 LBb1.3 1005 462–

762 

SALK_054092 AT1G27730 STZ LBb1.3 1092 493–

793 

(*) two PCR reactions, one for each mutation  

Table 2-1: Details of insertion lines with associated loci, gene name, primer combinations used 

for genotyping and sizes of bands expected if the insertion was present/absent.  

 

 

2.1.4 Genetic crosses 

Genetic crosses between Arabidopsis plants were made under the Zeiss STEMI SV8 dissecting 

stereomicroscope (Carl Zeiss, Cambridge, UK). Large unopened flower buds were emasculated 

to remove all immature anthers using fine forceps. All other siliques and flowers were 

removed. Mature pollen from the male plant was then transferred manually using forceps and 

brushed against the stigma of the female plant. The stem was labelled using MicroporeTM tape, 

and plants were returned to the growth cabinet. Siliques were removed upon maturity but 

before senescence and pod shatter.  

 

2.2 Plant tissue culture 

 

2.2.1 Seed sterilisation 

To ensure that seeds were sterile and free from surface contamination seeds were placed in 

1.5-ml Eppendorf® tubes and washed with 70% v/v ethanol for 1 min. The ethanol was then 

replaced with concentrated bleach (Tesco, UK) with a drop of 0.1% v/v Tween20 as wetting 

agent for 15 min. The seeds were then rinsed four times with sterile deionised water and then 

left in 1 ml of sterile distilled water (sdH2O) and stratified for 4–7 d in the dark at 4°C to 

encourage and synchronise germination. 
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2.2.2 Culture media 

Half strength Murashige and Skoog media (½ MS10) (Murashige & Skoog, 1962) 

2.2 g/L half strength Murashige and Skoog medium (SIGMA M5519), 10 g/L sucrose, adjusted 

to pH 5.7 with 1M KOH, 8 g/L agar.  

 

2.2.2.1 High and low K+ media 

A stock of growth medium was made up with zero potassium: the stock consisted of 1.497 mM 

CaCl2, 0.363 mM Ca(H2PO4)2, 10.3 mM NH4N03, 0.7506 mM MgSO4.7H2O, 29.21 mM sucrose, 

50 ml/L half strength MS Vitamins 10 and 500 µl/L half strength Murashige and Skoog basal 

salt micronutrients from 1000 stock (for full list of ingredients in the MS vitamins and basal 

salt micronutrients, see the SIGMA websites listed below: 

ttp://www.sigmaaldrich.com/catalog/product/sigma/m7150?lang=en&region=GB 

http://www.sigmaaldrich.com/catalog/product/sigma/m0529?lang=en&region=GB 

The solution was adjusted to pH 5.7 with 1 M NaOH solution. Different concentrations of K+ 

ions were added to the media using K2SO4 to achieve final K+ concentrations of 2 mM and 

0.005 mM.Half strength Murashige and Skoog medium has a final K+ concentration of 10 mM.  

 

2.2.2.2 High and low phosphate media 

High and low phosphate media were made as described in Jiang et al. (2007). Four-day-old 

seedlings were transferred to low P medium (10 µM NaH2PO4) or high P medium (1 

mM NaH2PO4), which was supplemented with: 2.0 mM NH4NO3, 1.9 mM KNO3, 0.3 

mM CaCl2·2H2O, 0.15 mM MgSO4·7H2O, 5 μM KI, 100 μM H3BO3, 100 μM MnSO4·H2O, 

30 μM ZnSO4·7H2O, 1 μM Na2MoO4·2H2O, 0.1 μM CuSO4·5H2O, 0.1 μM CoCl2·6H2O, 

100 μM FeSO4·7H2O, 100 μM Na2EDTA·2H2O, 1% Sucrose. The solution was adjusted to pH 5.7 

using KOH. 

 

2.2.2.3 High and low nitrate media 

High and low nitrate media were made up as described in Mounier et al. (2014). Four-day-old 

seedlings were transferred to low N medium (0.05 mM KNO3) or high N medium (10 mM 

KNO3), which was supplemented with: 0.5 mM CaSO4, 0.5 mM MgCl2, 1 mM KH2PO4, 2.5 mM MES 

(2-[morpholino]ethanesulphonic acid), 50 μM NaFeEDTA, 50 μM H3BO3, 12 μM MnCl2, 1 

μM CuCl2, 1 μM ZnCl2, 0.03 μM NH4MoO4. The solution was adjusted to pH 5.7 using KOH.  
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9 g/L SIGMA agar (A-1296) was added to all the growth media solutions to create solid media 

and the media were autoclaved at 121°C for 20 min before use. 

 

2.2.3 Plant growth conditions 

All experiments were conducted using solid growth media in growth rooms or growth cabinets 

under long day conditions, 16 h light: 8 h dark at 22°C (c. 3000 lux). 

 

Seeds were grown for 4 d on horizontal sterile 10 × 10 cm2 square Petri dishes containing 50 ml 

of solid ½ MS10 growth medium and sealed around the edges with MicroporeTM tape. The 

seedlings were then transferred to vertical 10 × 10 cm2 square Petri dishes containing 50 ml of 

the solid K+ media for a further 8 d, or the seedlings were transferred to vertical ½ MS10 plates 

for a further 5 d before being moved to K+ media for time-course experiments. The vertical 10 

× 10 cm2 square Petri dishes were placed vertically into cardboard racks constructed to allow 

light to the shoots but not to the roots. All biological replicates for each experiment were 

conducted at the same time unless otherwise stated in the thesis. Technical replicates are 

specified when used.  

 

For the RNASeq experiment the growth conditions were as follows: Col-0 seedlings were 

grown for 4 d on ½ MS10 horizontal plates, followed by 7 d on ½ MS10 vertical plates. The 

seedlings were then transferred to plates containing ether 2 mM or 0.005 mM K+. Tissue was 

collected after 3 h and 30 h.  

 

For growth in soil, seedlings were grown in 24-well trays in a 5: 1 mixture of Gem multipurpose 

compost and horticultural silver sand (LBS Horticulture Ltd, UK). Plants were grown at 21°C, 

with a 16-h photoperiod. The systemic insecticide Intercept (Levinton Horticulture Ltd, UK) was 

applied to all compost (60 mg per 24-well tray) before seeds were sown.  

 

2.3 Phytohormones  

 

Stock solutions for all the phytohormones were made up at 10 mM, filter sterilised and stored 

at 20°C before use. Details of the stock solutions are shown in Table 2-2 below. 
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Table 2-2: Method of preparation of phytohormone stock solutions. All made up 10 mM.  

 

2.4 Root architecture assays 

 

2.4.1 Primary and lateral root length analysis 

Vertical plates were scanned using a flatbed scanner Epson Expression 1680Pro (Epson, UK) at 

resolution 600 dpi. Primary root (PR) length, lateral root (LR) number and LR length were 

analysed from these images using ImageJ (Schneider et al., 2012) with the plugin SmartRoot 

(Lobet et al., 2011), an analysis tool specifically designed for the quantitative analysis of root-

system architecture (RSA). All LRs were measured when they were long enough to be picked 

up by the analysis software (c. >200 µm). Data from ImageJ was then transferred to Microsoft 

Excel to produce graphs. Anchor roots (defined as roots emerging from the hypocotyl–root 

junction; Ingram et al., 2011) were discounted from analysis.  

 

2.4.2 Vertical growth index 

To assess the degree of positive gravitropism exhibited by the seedlings, the vertical growth 

index (VGI) was used. It is calculated as:  

 

Hormone Notes Method of preparation 

1-aminocyclopropane-1-

carboxylic acid (ACC)  

An ethylene precursor Dissolve 10.1 mg 1-
aminocyclopropane-1-
carboxylic acid in 10 ml sdH2O 
 

Silver thiosulphate 

(AgS2O3) 

 

Binds to the copper atom 
in ETR1 to inhibit 
ethylene responses 

Combine 5 ml AgNO3 at 3.4 

mg/ml and 5 ml of NaS2O3 at 

12.7 mg/ml 

Indole-3-acetic acid (IAA) The principal free auxin in 
plants  

Dissolve 17.5 mg indole-3-acetic 

acid in 1 ml in 98% ethanol, top 

up to 10 ml with sdH2O 

Abscisic acid (ABA)  
 

 Dissolve 22.6 mg of ABA in 10 

ml methanol  

Fluridon An inhibitor of abscisic 
acid biosynthesis 

Dissolve 32.9 mg of fluridon in 
10 ml of methanol  

Diphenylene iodonium 
(DPI) 

An inhibitor of NADPH 
oxidase and other flavin 
containing enzymes 

Dissolve 31.5 mg 
diphenyleneiodonium chloride 
in 10 ml DMSO 

Paclobutrazol (PAC) GA inhibitor  Dissolve 2.9 mg paclobutrazol in 
10 ml 98% ethanol 

Gibberellic acid (GA3)  Dissolve 34.6 mg Gibberellic 
acid in 2 ml 98% ethanol and 
top up to 10 ml with dsH2O 

N-1-naphthylphthalamic 

acid (NPA) 

An inhibitor of polar 
auxin transport 

Dissolve 27.3 mg (N-1-
naphthylphthalamic acid) in 10 
ml DMSO 



27 
 

VGI=CHY 

                     RL  

where CHY is the depth of the root apex penetration, and RL is the root length (Vicente-Agullo 

et al., 2004) (Fig. 2-2).  

 

Fig. 2-2: Vertical Growth Index, defined as the ratio between the vertical projection (CHy) of 

the base-to-tip chord CH and the root length RL, figure taken from Vicente-Agullo et al. (2004). 

 

2.4.3 Total LR counts & LR progression analysis 

Localised auxin accumulation in the PR is required for the first cellular divisions involved in LR 

development. These very early stages can, therefore, be marked and observed using auxin 

reporters such as DR5::GUS (Sabatini et al., 1999). By GUS staining developing LRs it was 

possible to count LRs at all stages of development (Fig. 3-4B). In cases where DR5::GUS could 

not be used (mutant analysis), lugol staining was used to visualize areas of LRP development as 

these areas appeared a much darker colour under the lugol staining conditions compared to 

the areas of the PR around the developing site. Roots were examined using compound light 

microscopy (see the Materials and Methods section 2.11.1). LR progression analysis used these 

techniques to count and identify the stages of development of each LR along each PR, allowing 

the influence of stresses and hormones on LR development to be analysed.   

 

2.5 Statistical analysis 

 

All statistical analyses were performed in IBM SPSS Statistics for Windows, Version 22 

(Armonk, NY, USA; IBM Corp.). The 0.05 level of significance was used. The one-way analysis of 

variance (ANOVA) and Tukey Pairwise comparison post hoc test were used to determine 

significance between the means of three or more independent groups. An independent 

samples t-test was used to determine significance between the means of two independent 

groups.  
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2.6 Histochemical staining 

 

2.6.1 GUS staining 

The reporter gene GUS (beta-glucuronidase) is used as a histochemical reporter gene for the 

localization of promoter activity in transgenic plants (Jefferson et al., 1987). Activity of the 

enzyme is localised by incubating tissues in the colourless substrate X-Gluc, which is converted 

to a blue precipitate in tissues expressing the GUS enzyme. 

 

Single whole seedlings were submerged in a staining solution of 1 mM N-N-

dimethylformamide in 100 mM sodium phosphate (pH 7.0), 10 mM EDTA, 0.5 mM potassium 

ferrocyanide, 0.5 mM potassium ferricyanide, 0.1% v/v Triton X buffer as described by Topping 

& Lindsey (1997) in a 1.5-ml Eppendorf tube®. Time-course experiments were carried out to 

identify the optimum time for staining for each GUS line and buffer solution prior to the 

experiment. The reaction was stopped by replacing the reaction mix with 98% ethanol. Before 

imaging, the seedlings were rehydrated by replacing the ethanol with water, then the tissue 

was cleared by transferring the seedling to a slide with chloral hydrate solution (8 g chloral 

hydrate, 1 ml glycerol, 2 ml water). A coverslip was placed over the top. Slides were imaged 

using compound light microscopy (see the Materials and Methods section 2.11.1).  

 

2.6.2 Lugol staining 

Whole individual seedlings were immersed in Lugol solution (SIGMA, UK) for 5 min before 

being transferred to dsH2O to wash. The seedlings were then mounted on a microscope slide in 

chloral hydrate solution, the aerial parts of the plant were removed using a scalpel blade and 

the root tissue was imaged using compound light microscopy (see the Materials and Methods 

section 2.11.1). 

 

2.7 Nucleic acid isolation  

 

2.7.1 Genomic DNA extraction (Edwards Prep; Edwards et al., 1991)  

A leaf disk was placed in an Eppendorf tube, frozen in liquid nitrogen and ground using a micro 

pestle. 400 μl of extraction buffer (200 mM Tris-HCl pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% 

w/v SDS) was added before the sample was vortexed for 5 s. The sample was then centrifuged 

at 15000 x g for 4 min and 300 μl of the supernatant was removed and mixed with 300 μl 

isopropanol to precipitate the DNA. The sample was left at room temperature for 2 min before 

centrifuging at 15000 x g for 5 min. The supernatant was discarded and 200 μl of 70% ethanol 
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was added in order to wash away salts. The sample was centrifuged for 5 min at 15000 x g 

before the ethanol was removed and the pellet was allowed to dry on the bench overnight. 

DNA was resuspended in 30 μl sterile water and stored at 20°C 

 

2.7.2 RNA extraction / DNase treatment / cDNA synthesis 

A maximum of 100 mg of plant tissue was placed in a 1.5 ml Eppendorf® tube and flash frozen 

in liquid nitrogen; the sample could then be stored at 80°C until required.  Tissue was ground 

in the Eppendorf® tube by a micro pestle before RNA extraction. RNA extraction was carried 

out using the SIGMA Spectrum™ Plant Total RNA Kit following the manufacturer’s instructions. 

The procedure extracts RNA using a process of lysis, filtration, binding of the RNA to a column, 

washing and eluting. An on-column DNA digest was also carried out for all samples (SIGMA). 

The extracted RNA was analysed using a Nanodrop 1000 spectrophotometer (ThermoFisher 

Scientific, Hemel Hempstead, UK).  

 

cDNA synthesis was carried out using 5 ng of RNA in a 20 μl reaction mixture. The reactions 

used SuperScript® III First-Strand Synthesis Supermix (Invitrogen Ltd, Paisley, UK) following the 

manufacturer’s protocol and primed with Oligo(dT)20. The cDNA samples were diluted with 

sterile distilled water in a ratio of 1 : 4 before use in PCR and qRT-PCR. 

 

PCR amplification with ACT2 primers (see Appendix I for primer sequences) designed over an 

intron were used to test whether cDNA samples were contaminated with genomic DNA. 

Contaminated samples were taken though another DNase treatment step (Promega RQ1 

DNase) before cDNA was resynthesized.  

 

2.7.3 Tissue extraction and sample preparation for RNA-Seq experiment 

Tissue of between 20 mg and 100 mg was flash frozen in liquid nitrogen. Two metal ball 

bearings were added to each microcentrifuge tube of frozen tissue. The tissue was ground 

using the TissueLyser II (QIAGEN®, Manchester, UK) before 1 ml of Trizol (TRI Reagent® SIGMA) 

was added to each tube. Samples were incubated at room temperature for 5 min before 0.2 ml 

chloroform was added to each tube. Samples were vortexed then incubated at RT for 3 min. 

The tubes were then centrifuged at 15000 x g for 15 min at 4°C and 400 ml of the colourless 

upper phase was transferred to a fresh microcentrifuge tube. 400 ml of 70% ethanol was then 

added and vortexed to mix. 700 ml of the sample was then transferred to the binding column 

from the Spectrum™ Plant Total RNA Kit (SIGMA).  Samples were centrifuged at 14,000 x g and 

flow-through discarded. 300 ml of Wash 1 solution from Spectrum™ Plant Total RNA Kit, was 

added to the column and centrifuged at 14,000 x g. The rest of protocol was completed 
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following manufacturer’s instructions including a DNase treatment step using On-Column 

DNase 1 Digestion Set (SIGMA).  

 

RNA samples were analysed using the NanoDrop® ND-1000 spectrophotometer (ThermoFisher 

Scientific) and Agilent 2200 TapeStation. RNA samples with RNA integration number 

equivalent (RINe) above 7.0 were taken forward to library preparation (Appendix II).   

 

Library preparation was completed using NEBNext® Ultra™ Directional RNA Library Prep Kit for 

Illumina® protocol for use with NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB 

#E7490) following the manufacturer’s instructions (NEB, Hitchin, UK). Total RNA starting 

material of between 100 ng and 1 µg was used. mRNA was isolated, fragmented and primed, 

cDNA was synthesised and end prep was performed. NEBNext Adaptor was ligated and the 

ligation reaction was purified using AMPure XP Beads. PCR enrichment of adaptor ligated DNA 

was conducted using NEBNext Multiplex Oligos for Illumina (Set 1, NEB #E7335). The PCR 

reaction was purified using Agencourt AMPure XP Beads. Library quality was then assessed 

using a DNA analysis ScreenTape on the Agilent Technologies 2200 TapeStation. qPCR was 

then completed for sample quantification using NEBNext® Library Quant Kit Quick Protocol 

Quant kit for Illumina®. Samples were all diluted to 10 nM. 7 µl of each 10 nM sample was 

pooled together and all were run on one lane using the Illumina HiSeq 2500, through the DSB 

Genomics facility in Durham University.  

 

 

2.8 Polymerase chain reaction PCR 

 

2.8.1 Primers 

Primers were designed using Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) 

and synthesised by MWG Eurofins (http://www.eurofinsdna.com/). The full list of primers used 

can be found in Appendix I.  
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2.8.2 Standard PCR 

The following reaction mix (Table 2-3) was made up per reaction using MyTaqTM Mix (Bioline).  

 

10 Reaction Buffer  4 μl 

Bioline Taq  0.1 μl 

Forward Primer  0.5 μl 

Reverse Primer  0.5 μl 

Template  0.4 μl 

RNase/DNase free water  14.5 μl 

Table 2-3: Reaction mix per reaction for standard PCR, using MyTaqTM Mix (Bioline). 

 

The following program (Table 2-4) was run using an Applied G-Storm GS1 PCR machine. 

  

 Temperature (°C) Time Number of cycles 

Initial denaturation 95 1 min 1 

Denaturation 95 15 s  

25–60 Annealing (variable depending on 

primer sets) 

15 s 

Extension 72 15 s 

Final extension 72 1 min 1 

Refrigerate 4 Hold 1 

Table 2-4: Program used for standard PCR using an Applied G-Storm GS1 PCR machine.  

 

2.8.3 Quantitative RT-PCR (qRT-PCR)  

AT1G13320 was used as a reference gene for all qRT-PCR analyses. It was selected due to its 

stable expression profile across a wide range of developmental and environmental conditions 

(Czechowski et al., 2005), and its consistency across K+ concentrations. qRT-PCR reactions were 

conducted using a total volume of 20 µl and consisting of 10 µl 2 SensiFAST SYBR® No-ROX 

Mix, 0.4 µl of each 20 µM forward and reverse primer, 0.5 µl of diluted cDNA sample and 8.7 µl 

H2O. Reactions were run on a Rotor-Gene Q Machine, (QIAGEN®) as follows (Table 5): 

 Temperature (°C) Time 

Hold 95 2 min 

 95 5 s 

40  Cycles 58 10 s 

 72 10 s 

Melt curve 50 – 95 Increasing by 0.2°C every 5 s 

Table 2-5: Program used for Quantitative RT-PCR (qRT-PCR), run using a Rotor-Gene Q 

Machine, (QIAGEN®) 

 

Expression analysis was conducted using the Rotorgene Q Series software v1.7. Relative 

normalised levels of transcript of each gene was calculated relative to each housekeeping gene 
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and analysed by comparative quantification using an assumption-free, linear regression 

analysis approach (Ramakers et al., 2003).   

 

 

2.9 Gel electrophoresis 

 

After completion of PCR reactions, DNA samples were separated by size using gel 

electrophoresis to identify PCR products. Agarose Multi-Purpose (Bioline) was dissolved in 1 

TAE buffer (diluted 1 in 10 from 10 TAE Buffer: 242 g Tris, 37.2 g Na2EDTA.2H2O, 57.1 ml 

glacial acetic acid, in 5 L) to produce a 1% w/v gel. Ethidium bromide was added to a 

concentration of 0.5 µg/ml. 5 DNA loading buffer (Bioline) was mixed with PCR product and 

loaded into the gel with a separate lane for appropriate Hyperladder. The gel was run for c. 40 

min at 80 V. Gels were imaged using a BioRad Gel-Doc 1000 (BioRad).  

 

 

2.10 Bioinformatic analysis  

 

2.10.1 Analysis of RNA-Seq data 

Results from the Illumina HiSeq 2500 were processed using the following steps (Fig. 2-3); 

Trimmomatic (Bolger et al., 2014) was used to cut down and remove low quality reads, 

TopHat2 (Kim et al., 2013) was used for the alignment of reads against TAIR10 

(EnsemblePlants), SAMtools (Li et al., 2009) indexed and sorted the binary sequence alignment 

files (BAM files) then converted them into readable (SAM) files. HTSeq 0.6.1 (Anders et al., 

2015) was used to estimate gene counts, then EdgeR (Robinson et al., 2010; McCarthy et al., 

2012) normalised gene counts and estimated differential expression between sample groups. 

A P-value of ≤ 0.5 and a log fold change ≥0.5 were selected to identify differentially expressed 

genes (DEGs) (Fig. 2-3).  
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Fig. 2-3: Workflow of RNA-Seq data analysis.  

 

2.10.2 Bioinformatic analysis of transcriptomic data 

Online bioinformatics tools were used for the analysis of the RNA Seq data. Listed in table 

below (Table 2-6).  

 

Tool Reference / Website Function 

BioVenn (http://www.biovenn.nl/index.php) 

(Hulsen et al., 2008)   

Comparison and visualization 

of biological lists using area-

proportional Venn diagrams 

AgriGO 

 

(http://bioinfo.cau.edu.cn/agriGO/) 

(Du et al., 2010; Tian et al., 2017)  

Gene Ontology analysis tool 

REViGO (http://revigo.irb.hr/) (Supek et al., 

2011) 

Summarization and 

visualization tool for long lists 

of gene ontology terms  

Plant reactome (http://plantreactome.gramene.org/) 

(Naithani et al., 2017) 

Database of plant metabolic 

and regulatory pathways, 

allowing analysis of gene sets 

AtTFDB- 

Arabidopsis 

(http://arabidopsis.med.ohio-

state.edu/AtTFDB/) (Davuluri et al., 

2003; Yilmaz et al., 2011) 

Identification of transcription 

factors & links to interaction 

tools (GRG-X) 



34 
 

transcription 

factor database 

 

GRG-X- Grassius 

Regulatory Grid 

eXplorer 

(http://arabidopsis.med.ohio-

state.edu/grgx/) 

Visual assessment of 

regulatory networks of 

transcription factors 

STRING (https://string-db.org/) (Szklarczyk et 

al., 2017) 

Database of known and 

predicted protein-protein 

interactions 

DAVID (Database 

for Annotation, 

Visualization and 

Integrated 

Discovery)  

(https://david-

d.ncifcrf.gov/home.jsp) (Huang et al., 

2009a,b) 

Comprehensive set of 

functional annotation tools for 

investigators to understand 

biological meaning behind 

large list of genes. 

(Used in this thesis mostly for 

gene ID conversion) 

TAIR (The 

Arabidopsis 

Information 

Resource) 

 

(https://www.arabidopsis.org/) 

 

Database of genetic and 

molecular biology data for the 

model higher plant Arabidopsis 

thaliana 

UniProt (http://www.uniprot.org/) 

 

Comprehensive, high-quality 

and freely accessible resource 

of protein sequence and 

functional information. 

Table 2-6: Online bioinformatics tools used for analysis of transcriptomics data. Name, website 

link, reference (where appropriate) and function stated.  

 

2.11 Microscopy 

 

2.11.1 Compound light microscopy  

Histological tissue sections were examined using a Zeiss Axioskop compound microscope (Carl 

Zeiss, Cambridge, UK), equipped with a QImaging Retiga-2000r camera (Photometrics, Marlow, 

UK) using a 20 objective.  

 

2.11.2 Confocal scanning laser microscopy (CSLM) 

To reveal cell organization, roots were stained in 0.5 µg/mL propidium iodide (PI) solution for 1 

min 30 s, then washed for the same time in sdH2O. Roots were then mounted on slides in 

sdH2O, a 1.5-mm cover slip was placed on top, secured by MicroporeTM tape and imaged using 

the Leica SP5 TCS confocal microscope (www.leica-microsystems.com) using either 40 or 63 

oil immersion objectives. Excitation of flurophores was performed as follows: GFP 488 nm 

using the Argon laser, YFP  514 nm using the Argon laser, propidium iodide 548 nm using the 

HeNe laser.  
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2.11.3 Analysis of confocal images 

Images were originally opened in LAS AF Lite software (v2.63 build 8173 http://www.leica-

microsystems.com/products/microscope-software/life-sciences/las-af-advanced-

fluorescence/). Images were exported in Tiff form and opened in Image J for analysis. Images 

were taken from at least six individual roots for each analysis. Analysis was conducted as 

follows: 

 

2.11.3.1 Analysis of meristem size: 

The straight-line tool was used to draw a line and measure from the quiescent 

centre (QC) to the end of the meristem (defined as the first cell that was twice 

the length of the immediately preceding cell; González-García et al., 2011).  

 

2.11.3.2 Analysis of pDR5rev::3XvenusN7 & proRGA::RGA::GFP lines: 

The polygon tool was used to draw around the meristem of the LRs and the 

mean green channel intensity was calculated using the colour histogram tool. 

Background was measured and subtracted from the value.  

 

2.11.3.3 Analysis of aux1-7 x 35S::DII-VENUS-N7,  aux1-7 x proPIN2::PIN2::GFP & WOX5::GFP 

lines: 

Images were analysed by eye for general pattern, presence or absence of 

fluorescence.  

 

2.11.4 Stereo microscopy 

Seedlings were imaged through the Petri dish lid to avoid contamination of the samples. The 

Leica M165 FC Fluorescent Stereo Microscope was used and images were taken using a Leica 

DFC 420C camera.  

 

Images of the ROS reporter HyPer line (Belousov et al., 2006) were analysed using the ImageJ 

software by drawing a line from the place where the LR meets the PR down to the tip of the 

LR. The plot profile tool was used to calculate the grey value for each point down the length of 

the measured line. The grey value indicates the brightness of each pixel, used as a measure for 

HyPer fluorescence. The LRs measured were not equal lengths and therefore the data needed 

transforming for comparison. Distance along the root was therefore transformed into relative 

distance along the LR, 0 representing the LR to PR junction and 100 the LR tip.  
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Chapter 3 Characterization of the root architectural changes in response 

to K+ starvation 

 

3.1 Introduction 

When plants are faced with nutrient starvation in the soil they adapt the architecture of their 

root systems to utilise their remaining resources to search for more favourable soil 

environments. The root architectural changes, and the signalling pathways involved in 

mediating these changes, have been extensively investigated in response to nutrients such as 

phosphate and nitrate (see Shahzad & Amtmann, 2017 for a review). However, the 

mechanisms causing changes to root architecture in response to potassium starvation are less 

well understood (Shahzad & Amtmann, 2017).   

 

Kellermeier et al. (2013) recently described a phenotypic gradient of root architectural 

responses to K+ starvation in Arabidopsis accessions (Fig. 1-4). This gradient results from a 

trade-off between the primary root (PR) growth and lateral root (LR) growth, with some 

accessions displaying reduced LR growth accompanied by increased PR growth, and others 

maintaining LR growth with an attenuation in PR growth (Kellermeier et al., 2013). The 

Arabidopsis accession Columbia (Col-0) was identified as compromising LR growth in favour of 

PR growth (Kellermeier et al., 2013). Col-0 was chosen for all analyses presented here in order 

to maintain consistency in architectural phenotypes and because there are extensive genetic 

resources available for this accession.  

 

The work in this chapter describes the characterization of the response of root architecture to 

low K+ in Col-0; first to verify the results described in Kellermeier et al. (2013) and second, to 

pinpoint the developmental stage at which the low K+ signalling pathway acts. The role of K+ in 

the root architectural trait of gravitropism will then be investigated through the use of 

agravitropic mutants, and the roles of hormones in this response will be characterized. 

 

3.2 Results  

 

3.2.1 Root phenotypic growth changes of the PR and LRs in response to K+ starvation  

3.2.1.1 Col-0 maintains PR growth but reduces LR growth in response to K+ starvation  

The analysis of root system architecture (RSA) traits revealed that in response to 8 d low K+, 

Col-0 seedlings showed a reduction in the length of the PR (Fig. 3-1A), reduction in the number 

of LRs (Fig. 3-1B) and a reduction in the length of the LRs (Fig. 3-1C). To further characterize 
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the growth response over time a time-course experiment was set up in which seedlings were 

grown for 7 d on ½ MS10 media then transferred to K+ treatment media (2 mM of 0.005 mM). 

Seedlings were photographed from 7 days after germination (DAG) to 12 DAG to observe the 

pattern of growth on the control and K+ starved media. The results of this experiment showed 

that the number of LRs under both 2 mM and 0.005 mM K+ increased gradually over the 6 d, 

with a larger total number of LRs under the unstressed (control) conditions (Fig. 3-2B). 

However, the growth of the LRs under low [K+], in contrast to the control conditions, did not 

increase over time, instead staying at a very low rate throughout (Fig. 3-2A). Under K+ stress PR 

growth was maintained at a reduced but constant rate throughout the 6 d of analysis (Fig. 3-

2C). These data support the Col-0 phenotype described by Kellermeier et al. (2013) of a 

maintenance of PR growth, with attenuation of LR growth.  

 

3.2.1.2 LR density is not changed in response to low K+ 

To further investigate the reduction in LR number (Fig. 3-1B) in response to low K+, light 

microscopy was used to characterise LR development pre-emergence from the PR (Fig. 1-

3A,B). Auxin accumulation occurs at the sites of new LRs (Benková et al., 2003) and by using 

the auxin-responsive DR5::GUS reporter line, visualization of the early stages of LR 

development (stages 0–5) (Fig. 1-3A,B) can be seen as characteristic blue staining along the PR 

(Fig. 3-4B). Seedlings were grown for 4 d on ½ MS10 followed by 8 d on either high or low K+ 

media, and by counting auxin maxima and LRs at all stages of development, it was found that 

there was still a reduction in the number of LRs under K+ stress compared with control 

conditions (Fig. 3-3A); however, the reduction in number was less than that seen when 

counting only emerged LRs (Fig. 3-1B). Density of LRs was calculated by dividing the LR number 

by the PR length and no difference between the two K+ conditions was observed (Fig. 3-3B), 

suggesting that the difference in LR number was an artefact of the reduced PR length. These 

data suggest that low K+ was causing an attenuation of LR growth at an early stage of 

development. 
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Fig. 3-1: Typical root architecture seen in Arabidopsis thaliana wild type accession Col-0, grown 
for 4 d on horizontal ½ MS10 agar plates followed by 8 d on vertical agar plates supplemented 
with either 2 mM and 0.005 mM K+. (A) Primary root length, (B) emerged lateral root number, 
(C) average lateral root length. Values are averages of at least 14 individual seedlings per 

treatment  SE, n≥14. Letters indicate significance with independent samples t test (P-value 
<0.05) (A) P= 0.009, (B) P= 0.000, (C) P= 0.000. (D) Typical root architectural 2 mM (left) and 
0.005 mM (right).  
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Fig. 3-2:  Root growth analysis of Col-0 seedlings grown for 7 d on ½ MS10 media before being 
transferred to media with either 2 mM or 0.005 mM [K+]. (A) Average lateral root growth over 
24 h, (B) number of emerged lateral roots after each day, (C) primary root growth over 24 h. 

Values are averages of at least 5 individual seedlings per treatment  SE, n≥5. Asterisks 
indicate significance between 2 mM and 0.005 mM at each point calculated using the 
independent samples t test (P-value <0.05).  
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Fig. 3-3: Lateral root analysis of seedlings grown for 4 d on ½ MS10 followed by 8 d on either 
high or low K+ media. Light microscopy and the auxin-responsive DR5::GUS reporter line allows 
all lateral root primordia and lateral roots to be counted along the length of the primary root. 
(A) Average number of lateral root primordia and lateral roots per seedling. (B) Average LR 
density (PR length/ total lateral roots) per seedling. Values are averages of at least 10 

individual seedlings per treatment  SE, n≥10. Letters indicate significance with independent 
samples t test (P-value <0.05); (A) P= 0.013, (B) P= 0.167.   
 

 

3.2.1.3 K+ starvation is causing a reduction in LR elongation 

LR development is a complex process controlled at every step by interactions between 

different hormones (discussed in the introduction section 1.7). It was therefore important to 

characterize the stage at which development was inhibited by low K+. Using the light 

microscope and the DR5::GUS reporter line, the number of LRs and LR primordia (LRP) were 

counted at each stage of development along each PR after 8 d growth on high and low K+ 

conditions (Fig. 3-4). The average number of LRs at each stage of development remained 

roughly the same between the two conditions until after emergence from the PR (Fig. 3-4A). 

Following emergence, the number of LRs longer than 1 mm was significantly higher in the high 

K+ treatment than in the low K+, with a larger number of the LRs in the low K+ treatment in the 

200 µm to 1 mm categories (Fig. 3-4A).  

 

The transition from lateral root primordia (LRP) to LR occurs after the formation of the 

functional LR meristem, at which point the LR grows via cell divisions at the LR root apex as 

opposed to division of the basal cells as in earlier stages (Malamy & Benfey, 1997). The 

transition corresponds to a length of LR of c. 100–200 µm (Fig. 1-3Ae). The results here suggest 
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that LR development remains normal throughout LRP development and that interference by 

low K+ takes place after the development of the LR meristem. The elongation of the LRs 

appears to be affected by the low K+ treatment as there was an accumulation of LRs in 

categories < 1 mm, whereas under control conditions, most LRs elongate further than 1 mm 

(Fig. 3-4A).  

 

Fig. 3-4: Lateral root (LR) progression analysis. Light microscopy and the auxin-responsive 
DR5::GUS reporter line allow all LR primordia and LRs to be counted along the length of the PR. 
Col-0 seedlings analysed 12 DAG, 8 d of K+ treatment (2 mM or 0.005 mM). Primordial stage as 
defined in Malamy & Benfey, (1997). (A) Average number of LRs in each stage of development 
on each PR, dotted line indicates point of emergence from the PR. (B) Typical DR5::GUS 
staining pattern of LR development, stages shown are (left-right) 1-4, 5, 6, 7, 0-100 µm, 300 

µm-1 mm, >1mm. Scale bars = 100 µm. Values are averages of at least 10 individual seedlings  
SE, n≥10. Stars indicate significance with independent samples t test (P-value <0.05). 
Categories and associated P values; 1-4 (P= 0.361), 5 (P = 0.049), 6 (P = 0.806), 7 (P = 0.584), 1-
100 µm (P = 0.340), 100-200 µm (P = 0.246), 200-300 µm (P = 0.045), 300 µm- 1 mm (P = 
0.000), >1 mm (P = 0.000).  
 

 

3.2.1.4 LR meristem size is reduced under K+ starvation  

The growth of the LR, as in the PR, is maintained by the rate of cell division, differentiation and 

elongation in the meristem. A reduction in LR growth in response to low K+ could therefore be 

regulated by a modulation of meristem activity. Confocal imaging was used to investigate 
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meristem size in LRs grown in control or low K+ conditions. The meristem size was calculated as 

the region of isodiametric cells extending from the quiescent centre (QC) to the cell that was 

twice the length of the immediately preceding cell (González-García et al., 2011). The 

boundary of the transition zone is different in each cell type therefore in all analyses 

undertaken here, the cortex cell file was used to define the boundary. The length of the 

meristematic zone in the LRs was reduced after 8 d low K+ stress (Fig. 3-5).  

 

 

Fig. 3-5: (A) Typical LR meristems of Col-0 seedlings grown for 4 d ½ MS10 then 8 d on 2 mM 
[K+] (left) or 0.005 mM [K+]. Images taken using confocal microscopy, cell walls stained using 
propidium iodide stain. Arrows denote meristem size. Scale bar = 50 µm. (B) Average length of 
LR meristems of LRs between 300 µm and 1 mm in length. Meristem border defined as region 
of isodiametric cells from the QC up to the cell that was twice the length of the immediately 
preceding cell (calculated from the cortex cell layer). Values are averages of at least 18 LRs 

taken from at least 15 individual seedlings  SE, n≥18. Letters indicate significance with 
independent samples t test (P -value <0.05) (P =0.000).  
 

 

3.2.1.5 Identity of the QC is maintained in LRs under K+ starvation  

A reduction in the size of the LR meristem in response to low K+ could be caused by a 

reduced/impaired stem cell niche activity, a reduced meristematic cell division potential or a 

change in the rate of elongation/differentiation in the elongation/ transition zone. These were 

therefore investigated using light and confocal microscopy. 
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If the pool of stem cells at the tip of the LR are not maintained then the cells at the tip will 

terminally differentiate and stop the growth of the LR. To investigate if the activity of the LR 

stem cell niche was still maintained under 8 d low K+ stress, the promoter activity of the QC-

specific marker lines QC25::GUS and WOX5::GFP were investigated using  histochemical 

staining and fluorescence microscopy, respectively (Sabatini et al., 2003; Sarkar et al., 2007). 

Histochemical staining of QC25::GUS showed a higher percentage of LRs with QC25 promoter 

activity under low K+ in the 300 µm–1 mm LR length, and no difference between treatments in 

LRs over 1 mm (Fig. 3-6 B,C). Promoter activity of WOX5 was investigated using the stereo 

microscope and showed fluorescence in all LRs of all seedlings (n=9) over 200 µm, under both 

stressed (low K+) and non-stressed (control) conditions. Confocal microscopy was used to 

investigate the expression pattern of WOX5 within the LR meristems and no difference was 

found between the different K+ conditions (Fig. 3-6A). WOX5 acts to initiate and maintain 

identity of the QC (Forzani et al., 2014) therefore its continued promoter activity, as well as the 

activity of QC25, in the QC after 8 d of stress, suggests that the identity of the QC is maintained 

under low K+ conditions.   

 

Starch granules are a marker of differentiation in columella cells while inactivity of the QC can 

lead to early differentiation of cells in close proximity to the QC (van den Berg et al., 1997). 

Lugol staining identifies starch grains through their post staining dark blue/black colour under 

the light microscope. In this study lugol staining was carried out to investigate the 

differentiation of the cells of the LR meristems under high and low K+ (Fig. 3-6D). No difference 

was observed between the K+ treatments (2 mM or 0.005 mM) (Fig. 3-6D) after 8 d growth, 

further supporting the presence of a functional root meristem.   

 



44 
 

 

 
Fig. 3-6: Lateral root (LR) meristem activity of seedlings grown for 4 d on ½ MS10 followed by 8 
d on high (2 mM) or low (0.005 mM) [K+]. (A) Representative images of WOX5::GFP expression 
in LRs over 200 µm, [K+] 2 mM (left) and 0.005 mM (right). Scale bars = 50 µm. (B) Typical GUS 
staining pattern of QC25::GUS in LR tips when grown on high and low [K+] (upper and lower, 
respectively). Scale bars = 100 µM. (C) The average % of LRs on each QC25::GUS seedling with 
visible blue GUS staining. Values are averages of at least 10 individual seedlings per treatment 

 SE, n≥10. Letters indicate significance with independent samples t test (P -value <0.05). (D) 
Typical lugol staining pattern of LRs grown on high (upper) and low (lower) [K+] Scale bars = 50 
µm.  
 

 

3.2.1.6 Cell division is reduced in LR meristems under K+ starvation  

Meristematic cell division in the LRs was investigated under high and low K+ conditions using 

the CYCB1;2:GUS marker. Mitotic cyclins such as CYCB1;2 are only expressed from the G2 to M 

transition of the cell cycle; therefore, when fused with a reporter gene such as glucuronidase 

(GUS) they can be used as markers for cell division (Bulankova et al., 2013). The root systems 

of CYCB1;2:GUS seedlings were stained for GUS activity, and the distance from the first stained 
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cell nearest the LR tip, to the one furthest from the tip was measured. This measurement gives 

an estimate of the proximal meristem as further support for the confocal image analysis (Fig. 

3-5). A count of stained cells in the LR meristems was also made as a measurement of the 

number of dividing cells. A reduced area of cell division was observed in response to low K+ at 

all stages of LR growth over 100 µm (Fig. 3-7C), and a reduced number of dividing cells in 

response to low K+ was observed in LRs of between 300 µm–1 mm and also over 1 mm in 

length (Fig. 3-7B). This suggests that the reduced growth of the LRs is, at least in part, due to a 

reduced cell division potential in the meristematic zone of the LRs.  

 

 

Fig. 3-7: CYCB1;2:GUS line grown for 4 d ½ MS10 followed by 8 d K+ treatment (2 mM or 0.005 
mM). (A) Typical GUS staining pattern of CYCB1;2:GUS; the staining shows a reduced area of 
cell division in low [K+]. Scale bars = 50 µm. (B) Average number of dividing cells recorded as 
cells stained blue in CYCB1;2:GUS line. (C) Average length of meristem size measured as the 
length of area with dividing cells (stained blue in CYCB1;2:GUS line). Values are averages taken 
from at least 32 LRs taken from at least 10 individual seedlings  SE, n≥32. Letters indicate 
significance with a Tukey Pairwise comparison P < 0.05.   
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3.2.1.7 Cell elongation in the transition zone of LRs is unaffected by K+ starvation  

After undergoing division in the meristematic zone of the root, cells enter the 

transition/elongation zone where they begin to elongate. The length of the first seven cells of 

the elongation zone were measured in order to investigate the elongation rate in response to 

low K+. No significant difference was seen in the length of the first seven cells between the 

high and low K+ conditions after 8 d growth (Fig. 3-8) suggesting that elongation rate is not 

affected by the low K+ treatment.  

 

 
Fig. 3-8: Length of the first seven cells of the elongation zone of lateral roots grown for 4 d ½ 
MS10 followed by 8 d on 2 mM or 0.005 mM [K+]. Measurements taken from at least 6 

different seedlings. n≥ 11 for all apart from 7, where n= 6. Values are averages  SE. 
Independent samples t test found no significance between [K+] at any of the cells (P < 0.05). 1 
(P = 0.597), 2 (P =0.1), 3 (P = 0.121), 4 (P =0.306), 5 (P =0.268), 6 (P = 0.695), 7 (P =0.953).  
 

 

3.2.3 Potassium and gravitropism 

The ability of a plant to sense and respond to gravity is essential in determining the root 

system architecture. Whilst some recent work has begun investigating the behaviour of LRs in 

response to this signal (Guyomarc’h et al., 2012), the trait has been studied extensively in the 

PR. A link between potassium and gravitropism has been made a number of times previously in 

the literature (eg. Vicente-Agullo et al., 2004; Ashley et al., 2006), therefore the role of 

potassium in the PR gravitropic response was investigated.  
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3.2.3.1 K+ starvation attenuates the level of agravitropism displayed in auxin transport 

mutants  

Vicente-Agullo et al. (2004), suggested a role for K+ in gravitropism through observations 

looking at TRH1, a K+ transporter that also behaves like an auxin efflux facilitator. Under 

control K+ conditions the trh1 mutant is severely agravitropic, but when grown on low [K+] the 

agravitropic phenotype is attenuated and the roots grow in a much more gravity-orientated 

way (Vicente-Agullo et al., 2004). The vertical growth index (VGI) (Fig. 2-2) was used to show 

that the same response was also seen in another two agravitropic mutants, the auxin transport 

mutants aux1-7 (Fig. 3-9B), and eir1 (otherwise known as pin2) after 8 d growth (Fig. 3-9D). A 

difference in gravitropic response between K+ treatments was not observed in the aux1-22 

mutant (Fig. 3-9C); however, this mutant is much less agravitropic when grown on standard 

growth medium, suggesting that low K+ has a limited effect in this mutant background. The VGI 

was also calculated for Col-0 plants, where it was found that K+ seems to have no effect when 

gravitropism is not impaired (Fig. 3-9A).  

 

3.2.3.2 The attenuation of the agravitropic nature of the mutants is not a general nutrient 

stress response 

To investigate whether this attenuation of agravitropic nature was a K+-specific response or a 

general response to nutrient deficiency, aux1-7 was grown on high and low phosphate (1 mM 

and 0.01 mM) (Jiang et al., 2007) (Fig. 3-9E) and high and low nitrate (10 mM and 0.005 mM) 

(Mounier et al., 2014) for 8 d (Fig. 3-9F). There was no significant difference in the gravitropic 

response between the phosphate conditions (Fig. 3-9E) or the nitrate conditions (Fig. 3-9F), 

suggesting that the attenuated agravitropic nature is a K+-specific response.  

 

3.2.3.3 Gravitropism is not rescued in the agravitropic mutants through addition of IAA or 

NPA 

Next the impact of different hormones on the aux1 gravitropic response was investigated. In 

previous work 80 nM IAA has been shown to rescue the agravitropic phenotype of the trh1 

mutant (Vicente-Agullo et al., 2004). However, in the current investigation, adding 200 nM IAA 

to the aux1-7 growth media did not rescue the gravitropic response under control conditions 

(2 mM K+) (Fig. 3-10C). To investigate whether low K+ restores the gravitropic response through 

restoration of polar auxin transport, the growth medium was supplemented with 10 µM of the 

auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This addition did not significantly 

reduce the VGI when grown on low K+ (Fig. 3-10C) this result suggests that that low K+ is not 

rescuing gravitropism by restoring polar auxin transport. 
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Fig. 3-9: Vertical growth index (VGI) calculated for seedlings following 4 d growth on ½ MS10 
then 8 d growth on high or low nutrient concentration treatments. Values are averages of (n) 

individual seedlings  SE. Letters indicate significance with independent samples t test (P -
value <0.05). (A) Col-0, P =0.653, n≥16, (B) aux1-7, P =0.001, n≥32, (C) aux1-22, n≥10, P = 
0.282, (D) eir1, n≥8, P = 0.008, (E) aux1-7 grown on high and low phosphate media (1 mM or 
0.01 mM) P = 0.242, n≥8, (F) aux1-7 grown on high and low nitrate media (10 mM or 0.05 mM) 
P = 0.124 n≥10. 
 

 

3.2.3.4 Ethylene signalling plays a role in the restoration of gravitropism in the agravitropic 

mutant aux1-7  

As there has been a documented increase in ethylene in response to low K+ in Arabidopsis 

(Jung et al., 2009), the role of ethylene in this gravitropic response was investigated here. The 

addition of the ethylene blocker silver thiosulphate (referred to as Ag2+) (1 µM) to the growth 

medium for 8 d led to a severe agravitropic response in aux1-7 under both high and low K+ 



49 
 

treatments, with no restoration of gravitropism (Fig. 3-10B). Supplementation with 200 nM of 

the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), restored gravitropism in 

the aux1-7 mutant under both high and low [K+] after 8 d (Fig. 3-10B). These two findings 

suggest a role for ethylene in the restoration of gravitropism in the agravitropic mutant aux1-

7.  

 

To determine the stage at which ethylene might influence the gravitropic response, the 

shorter-term effects of reorientation to gravity were investigated. aux1-7 and Col-0 seedlings 

were grown vertically on ½ MS10 for 7 d. They were then transferred onto treatment plates so 

that they were perpendicular to the direction of gravity. They were then left to grow for 72 h 

and the angle of growth of the PR away from horizontal was measured every 24 h (Fig. 3-11A).   

 

Compared with the WT, the reorientation to gravity of aux1-7 in all treatments was greatly 

impaired (Fig. 3-11B). The addition of ACC or Ag2+ to the media did not have any obvious 

effects on the reorientation angle in either high or low K+ conditions (Fig. 3-11B), suggesting 

that ethylene may be acting at a later stage in the response to gravity. However, due to the 

large variation in angle of growth, and the relatively small sample size (n=10 per treatment), it 

is difficult to determine conclusively whether ethylene has a role in the early response to 

gravity. 

 

3.2.3.5 Initial data do not suggest change in auxin localization or PIN2 distribution in the 

aux1-7 mutant in response to low K+ 

Auxin distribution is known to be impaired in the aux1-7 mutant and as ethylene is known to 

stimulate auxin biosynthesis and transport in Arabidopsis roots (Ruzicka et al., 2007; Swarup et 

al., 2007), it was hypothesised that an increase in ethylene may lead to an increase in tip-

derived auxin. To investigate this hypothesis aux1-7 plants were crossed with plants containing 

the 35S::DII-VENUS-N7 auxin reporter (Brunoud et al., 2012). AUX1 is known to act with the 

auxin efflux carrier PIN2 to coordinate auxin redistribution in response to gravistimulation 

(Marchant et al., 1999). The localization of PIN2 was investigated in the meristem of the PR by 

crossing the aux1-7 mutant with the proPIN2::PIN2::GFP protein fusion. Initial investigations 

(n≥4) did not observe differences in the auxin distribution (Fig. 3-12A,B) or the general PIN2 

localization pattern (Fig. 3-12C,D) in the aux1-7 mutant in response to low K+ treatment for 8 

d. It would be profitable in the future to carry out this experiment over shorter time periods, 

and to investigate the polar localization of PIN2. Previous reports have identified ectopic 

localization of PIN1 in agravitropic mutants (Rigas et al., 2013) and it would, therefore, be 

interesting to investigate the potential role of ethylene in this response.  
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Fig. 3-10: The influence of hormones in restoring the vertical growth index (VGI) of aux1-7 
grown for 4 d on ½ MS10 followed by 8 d vertically on media with high or low [K+] and 
supplemented with; 200 nM ACC, 1 µM Ag2+, 200 nM IAA, 10 µM NPA. (A) Typical root growth 
architectures of aux1-7 seedlings. Scale bars = 1 cm. (B, C) VGI of aux1-7 grown on 

supplemented media. Values are averages of at least 9 individual seedlings  SE, n≥9. Letters 
indicate significance with a Tukey Pairwise comparison P< 0.05.  
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Fig. 3-11: (B) Gravitropic response of Col-0 and aux1-7 seedlings after reorientation by 90° to 
perpendicular to the direction of gravity. Grown vertically on ½ MS10 for 7 d, then transferred 
onto treatment plates perpendicular to the direction of gravity. Media supplemented with 200 
nM ACC, 1 µM Ag2+. Measured as angular departure from the vertical (degrees). Length of bar 
indicates number of seedlings in each degree category. (A) displays experimental set up. n=10 
individual seedlings 
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Fig. 3-12: Representative confocal images of the primary roots of aux1-7 35S::DII-VENUS-N7 (A, 
B), and aux1-7 proPIN2::PIN2::GFP (C, D). White is propidium iodide stain, green is either 
VENUS (A & B) or GFP (C & D). Seedlings at a total of 12 d after germination (DAG), with 8 d 
growth on 2 mM (A,C), or 0.005 mM (B,D) [K+]. Scale bars = 50 µM.  
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3.3 Summary  

 

Work in this chapter has focussed on the characterization of the root architectural changes 

that occur in the Arabidopsis accession Col-0 in response to low K+. In response to K+ 

starvation, Col-0 maintains the growth of its PR but reduces the growth of its LRs. It was shown 

that the density of LRs remains the same under low K+ conditions, and that development of LRs 

is normal until after emergence from the PR. Low K+ was shown to lead to a reduction in the 

elongation of the LRs after the development of the LR meristem. Furthermore, the reduction in 

growth of the LRs under K+ starvation is then mediated through a reduction in cell division in 

the LR meristem.  The results in this chapter also identified a possible role for low K+ in 

gravitropism and that gravitropism is partially restored in the agravitropic mutants aux1-7 and 

eir1 when they are grown on low K+ (after 8 d of treatment). This attenuation was not 

observed after short time scales but further repeats need to be carried out to establish the 

short-term response more conclusively. Finally, the results in this chapter suggest a role for 

increased ethylene in the restoration of gravitropic response; however, the way in which 

ethylene performs this role was not investigated.   
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Chapter 4 RNA-Seq analysis investigating the effect of low K+ on gene 
expression  
 

4.1 Introduction  

 

In May 2008, a series of five papers were published introducing a novel method of mapping 

the transcribed regions of an organism's genome using next generation sequencing (NGS) 

technology. The technique was termed RNA Sequencing (RNA-Seq) (Cloonan et al., 2008; Lister 

et al., 2008; Mortazavi et al., 2008; Nagalakshmi et al., 2008; Wilhelm et al., 2008). Before the 

development of NGS, microarrays were used as the primary means of investigating high 

throughput gene expression profiling. Microarrays measure gene expression via hybridization 

of known gene sequences to fluorescently tagged probes – the stronger the fluorescence the 

higher the level of expression; however, NGS has several key advantages over microarrays. 

RNA-Seq does not use a probe sequence, it sequences the whole transcriptome and, therefore, 

does not rely on prior knowledge about the gene sequences, allowing, for example, the 

identification of microRNAs and alternatively spliced transcripts. This also makes it possible to 

use the technique on non-model species where little or no data have been previously collected 

(Wang et al., 2009). RNA-Seq also bypasses the problems caused by cross hybridization and 

noise that are issues in microarray analysis. Without these problems interpretation of results is 

much more straightforward (Chee-Seng et al., 2010).    

 

The experimental procedure of RNA-Seq involves the isolation of RNA from a tissue and 

generation of a double stranded cDNA by reverse transcription with either random hexamers 

or oligo (dT) primers. Fragmentation and attachment of adaptors to either one or both ends of 

the cDNA fragments is carried out and then the molecules are sequenced by a NGS platform. 

The reads are then aligned with a reference genome or assembled de novo by overlapping 

sequences (Nagalakshmi et al., 2008). 

 

This chapter describes the data collected from an RNA-Seq experiment conducted with the aim 

of elucidating changes in gene expression in response to low K+. The chapter will focus on 

uncovering hormonal signalling pathways that could provide the link between low K+ and the 

reduction in lateral root (LR) growth. The chapter will also aim to provide a general overview of 

the gene expression changes in response to low K+, and hypothesise about what could be 

resulting from these gene changes.  
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The first section of the chapter will describe the generation of the list of differentially 

expressed genes (DEGs). Gene ontology (GO) analysis will then be used to provide a general 

overview of the data. Other bioinformatics tools (methods section 2.10.2) are then used to 

investigate the data further and the remainder of the chapter describes hypotheses to account 

for the responses to low K+. Later chapters (Chapters 5 & 6) will describe how these 

hypotheses have been tested.  

 

 

4.2 Generation of the list of differentially expressed genes (DEGs) through RNA-Seq 

 

The aim of the RNA-Seq experiment was to document changes in gene expression, and to use 

these data to understand signalling pathways associated with the early stages of the K+-sensing 

and -signalling mechanism. For this reason, samples were taken from early timepoints (3 h and 

30 h) after K+ treatment (2 mM or 0.005 mM [K+]). RNA-Seq analyses were performed on three 

independent biological replicates for each treatment and timepoint. See the methods section 

(2.2.3, 2.7.3, 2.10., Fig. 2-3) for full growth conditions, library preparation and the steps 

conducted to process the data. A P-value of ≤ 0.5 and a log2 fold change (log2fc) ≥0.5 

(equivalent to 0.15 fold difference) were selected to identify differentially expressed genes 

(DEGs) between the high and low K+ conditions at each of the timepoints (Fig. 4-1A). In total, 

there were 187 upregulated genes and 206 downregulated genes after 3 h K+ starvation and 

416 upregulated genes and 195 downregulated genes after 30 h K+ starvation (Fig. 4-1B), with 

only 6 common downregulated genes between the treatments and 62 between the 

upregulated treatments (Fig. 4-1C).  

 

These low numbers of DEGs and relatively small fold changes (Fig. 4-1A,B), fit with previously 

published microarray data showing that, unlike nitrate or phosphate deficiency, K+ deficiency 

does not lead to major alterations in transcript abundance (Maathuis et al., 2003; Gierth et al., 

2005; Ma et al., 2012). A large increase in the number of DEGs from 3 h to 30 h (Fig. 4-1B) 

suggests that an increased transcriptional response to low K+ is stimulated over time. 
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Fig. 4-1: Genes differentially expressed in low K+ (0.005 mM) compared with control (2 mM) 
after 3 h and 30 h treatment identified through RNA-Seq. 3 independent biological replicates 
used per sample. P-value ≤ 0.5 and a log

2
 fold change (log

2
fc) ≥0.5. (A) Differentially expressed 

genes (DEGs) as estimated by the processing software EdgeR (Robinson et al., 2010). Red dots 
are significant DEGs, black dots are non-significant. CPM (counts per million). (B) Histogram of 
significant DEGs separated into up- and down-regulated genes at the two K+ time treatments. 
(C) Venn diagrams of common genes between the treatments separated into up- and down-
regulated genes, created using BioVenn (Hulsen et al., 2008).  
 

 

To verify the data produced by the RNA-Seq experiment, qRT-PCR was conducted on three 

DEGs identified from the RNA-Seq data. qRT-PCR was performed on three independent 

biological replicates (independent from the samples used for the RNA-Seq experiment) after 

30 h high and low K+ treatment. The genes chosen from the RNA-Seq experiment were HAK5, 

ERF6 and STZ (also known as ZAT10), all of which were selected because of their significant 
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log2fc upregulation after 30 h K+ starvation. HAK5 (2.60 log2fc), ERF6 (0.84 log2fc), STZ (0.79 

log2fc). qRT-PCR analysis of these genes corresponded with the RNA-Seq data for the 30 h 

timepoint, with all genes showing significant upregulation in response to low K+ (Fig. 4-2).  

 

 
Fig. 4-2: Relative normalised levels of transcript of HAK5 (A), ERF6 (B) and STZ (C) after 30 h K+ 
treatment (2 mM or 0.005 mM [K+]), determined by qRT-PCR. Normalised against AT1G13320. 

Values are means  SE. Three biological repeats and three technical repeats used. Letters 
indicate significance between 2 mM and 0.005 mM with independent samples t test (P-value 
<0.05). 
 

 

4.3 General overview of the data 

 

4.3.1 Gene ontology (GO) analysis of the DEGs 

In order to interpret the differential expression data collected from the RNA-Seq experiment, a 

gene ontology (GO) enrichment analysis was carried out using the online tool agriGO (Du et al., 

2010; Tian et al. 2017). This allows the identification of GO terms that occur frequently in the 

list of DEGs, to reveal the biological processes that are being regulated in response to low K+ 
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treatment. The outputs from GO analyses are often difficult to interpret and can be 

confounded by redundancies within the lists of GO terms (Supek et al., 2011). Therefore, the 

agriGO data was further analysed using the online tool REVIGO, which summarises the list of 

GO terms and reduces functional redundancies allowing the visualization of the data in easy to 

interpret formats (Supek et al., 2011). By grouping together semantically similar GO terms into 

clusters, then identifying a single GO term as a representative for that cluster, the long list of 

GO terms is reduced into a much more accessible format (Supek et al., 2011). The treemap 

outputs (Figs 4-3 to 4-6) display each cluster as a rectangle, then groups them further, based 

on colours, into superclusters, with the sizes of rectangles representing the P-values. Obsolete 

terms, defined as a term that is out of scope, misleadingly named or defined or describes a 

concept that would be better represented in another way, are still often included however, 

and must be viewed with caution. The agriGO and REVIGO analysis provides a quick overview 

of the data which then allows identification of potential pathways and processes.   

 

Fig. 4-3: Treemap output from REVIGO (Supek et al., 2011) of the genes identified as 
significantly upregulated after 3 h K+ starvation, following RNA-Seq experiment. P-value ≤ 0.5 
and a log2 fold change (log2fc) ≥0.5. Each rectangle represents a gene ontology (GO) term 
cluster and each colour represents a supercluster of related clusters. The superclusters are 
listed in the key below the treemap. Obsolete terms represent misleadingly named or defined 
terms. Sizes of rectangles reflect the –log10 P-value of each cluster.  
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Fig. 4-4: Treemap output from REVIGO (Supek et al., 2011) of the genes identified as 
significantly downregulated after 3 h K+ starvation, following RNA-Seq experiment. P-value ≤ 
0.5 and a log

2
 fold change (log

2
fc) ≥0.5. Each rectangle represents a gene ontology (GO) term 

cluster and each colour represents a supercluster of related clusters. The superclusters are 
listed in the key below the treemap. Obsolete terms represent misleadingly named or defined 
terms. Sizes of rectangles reflect the –log10 P-value of each cluster 
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Fig. 4-5: Treemap output from REVIGO (Supek et al., 2011) of the genes identified as 
significantly upregulated after 30 h K+ starvation, following RNA-Seq experiment. P-value ≤ 0.5 
and a log2 fold change (log2fc) ≥0.5. Each rectangle represents a gene ontology (GO) term 
cluster and each colour represents a supercluster of related clusters. The superclusters are 
listed in the key below the treemap. Obsolete terms represent misleadingly named or defined 
terms. Sizes of rectangles reflect the –log10 P-value of each cluster.  
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Fig. 4-6: Treemap output from REVIGO (Supek et al., 2011) of the genes identified as 
significantly downregulated after 30 h K+ starvation, following RNA-Seq experiment. P-value ≤ 
0.5 and a log2 fold change (log2fc) ≥0.5. Each rectangle represents a gene ontology (GO) term 
cluster and each colour represents a supercluster of related clusters. The superclusters are 
listed in the key below the treemap. Obsolete terms represent misleadingly named or defined 
terms. Sizes of rectangles reflect the –log10 P-value of each cluster.  
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4.3.2 Hypothesis generation from GO analysis 

The treemaps suggest that there is a strong upregulation of genes involved in the response to 

pathogens following transfer to low K+, as seen by ‘response to chitin’ being the largest 

supercluster in each of the upregulated treemaps (Figs 4-3, 4-5). Both upregulated DEG 

treemaps also hold superclusters referring to ‘immune system process’, ‘response to stimulus’ 

and ‘multi organism process’ (Figs 4-3, 4-5). The treemaps also identified that there was 

enrichment in the biosynthesis of the hormones ethylene (3 h up and 30 h upregulation) (Figs 

4-3, 4-5) and auxin (3 h downregulation) (Fig. 4-4). As hormones are key in the orchestration of 

many developmental processes and responses to biotic and abiotic stresses, the enrichment of 

these GO terms suggests that there could be increased hormone signalling in response to K+ 

starvation. GO terms relating to reactive oxygen species (ROS) were also enriched in the 

upregulated data. As ROS is known to be important in the response to many abiotic and biotic 

stresses, the overpresentation of ROS-signalling/generation genes in the DEGs suggest that 

ROS signalling may be activated in response to low K+. Genes involved in the ‘response to the 

iron ion’, and ‘iron ion homeostasis’, were also identified from the 30 h downregulated data 

(Fig. 4-6), suggesting a potential link between the Fe and K+ pathways. Additionally, the 

downregulation of photosynthesis was also suggested from the 30 h data (Fig. 4-6).  

 

GO analysis provides a very useful basis from which to generate hypotheses about the 

biological processes that may be being regulated in response to low K+ in Col-0. The next part 

of this chapter will use bioinformatics tools and literature analysis to investigate the gene 

expression changes associated with the enrichments identified by the GO analysis.  

 

  

4.4 Bioinformatic investigation into pathogens, photosynthesis and iron   

 

4.4.1 Response to pathogens 

An overlap in transcript profiles between K+ starvation and response to pathogen/herbivory 

has previously been identified (Armengaud et al., 2010), and together with a reversible 

increase in jasmonic acid (JA) levels (Armengaud et al., 2004; Cao et al., 2006), have been used 

to suggest that defence pathways are upregulated during K+-limiting conditions (Armengaud et 

al., 2010). The data presented here support this suggestion, showing upregulation of members 

of the JA biosynthesis pathway after 30 h (Fig. 4-7B). Interestingly, however, the early K+ 

deprivation timepoint shows a downregulation of members of the JA biosynthesis pathway 

(Fig. 4-7A), suggesting a transient repression to the initial stress response.  
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Fig. 4-7: Output from the plant reactome online analysis tool (Naithani et al., 2017) from 
analysis of RNA-Seq data identifying which genes in the jasmonic acid biosynthesis pathway 
are transcriptionally changed in response to low K+. Yellow boxes show where genes from the 
RNA-Seq data were identified in the JA biosynthesis pathway. (A) Identified genes from the 3 h 
downregulated genes AT1G17420 (LOX3), AT2G06050 (OPR3), AT4G15440 (CYP74B2). (B) 
Identified genes from the 30 h upregulated data AT3G25770 (AOC2), AT3G25760 (AOC1), 
AT3G45140 (LOX2).  
 

4.4.2 Photosynthesis 

The REVIGO treemaps identified downregulation in genes associated with the GO term 

‘photosynthesis’ (Fig. 4-6), and when the 30 h downregulated DEGs were run through the 

initial GO analysis (agriGO), photosynthesis had the lowest P-value of any GO terms (3.6e-23 

and FDR of 5.56e-20) (Appendix III) with 32 genes out of the 189 genes inputted with a 

significant photosynthesis GO term (Table in appendix III).  

 

Of the 32 genes highlighted by GO analysis, a number are known to play important roles in the 

photosynthetic machinery. With three Photosystem II reaction centre proteins (PSBC, PSCD 

and PSBJ), four NADH dehydrogenases (NDHJ, NDHB, NDHC and NDHK), and a light-harvesting 

chlorophyll–protein complex II (LHB1B1) all showing downregulation of expression in response 

to low K+ (Fig. 4-8). The data here suggest that reduced photosynthesis could be partly 

controlled through the downregulation of genes associated with the photosynthetic 

machinery.   
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Fig. 4-8: (A) Schematic of the photosynthetic electron transfer chain adapted from (Queval & 
Foyer, 2012). (B) Schematic of the proteins making up photosystem II (adapted from 
(Calderone et al., 2003) and (Allakhverdiev et al., 2010). (C) Schematic of the NDH–PSI 
supercomplex in chloroplasts, based on a diagram in (Peng et al., 2011). Red squares identify 
genes downregulated in the RNA-Seq data after 30 h K+ deprivation.  
 

 

 

4.4.3 Iron ion homeostasis  

The REVIGO treemaps also identified GO terms relating to iron as two large superclusters in 

the downregulated 30 h data (Fig. 4-6). When the GO terms were investigated in more detail 

using agriGO, iron related GO terms were also found to be significant in the upregulated 30 h 

data, with ‘iron ion homeostasis’ having a P-value of 1.1e-7 and ‘cellular response to iron ion 

starvation’ having a P-value of 3.4e-7 (Appendix IV). Genes identified by agriGO, as well as 

literature searches, allowed a potential link between the K+- and Fe-pathways to be 

investigated further and genes with proven links to iron signalling were identified (Fig. 4-9B).  
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There was an upregulation of several genes involved in the Fe-deficiency pathway, including a 

set of bHLH genes (bHLH38, bHLH39, bHLH100 and bHLH101) (Fig. 4-9) known to be induced 

under low Fe (Yuan et al., 2008; N. Wang et al., 2013), as well as the FRO2/IRT1 and ZIF1 genes 

(Fig. 4-9), which act to reduce Fe(III) to Fe(II), transport Fe into the root and function in Fe 

homeostasis, respectively (Eide et al., 1996; Robinson et al., 1999; Henriques et al., 2002; 

Varotto et al., 2002; Vert et al., 2002; Haydon et al., 2012). Supporting a link between the K+-

starvation and Fe-deficiency pathway, there was also downregulation of Fer1 (Fig. 4-9B), a 

ferritin which acts in the sequestration of iron to avoid oxidative stress (Ravet et al., 2009). 

Fer1 is highly upregulated in response to iron- overload (Ravet et al., 2009), a downregulation 

of Fer1 in response to K+ starvation supports the potential Fe deficiency link. The NEET gene 

(Fig. 4-9B) has also been suggested to play a role in Fe homeostasis, with the At-NEET 

knockdown plants accumulating more Fe (Nechushtai et al., 2012) therefore suggesting a role 

for NEET in homeostasis under Fe excess instead of Fe deficiency.  

 

Downregulation of the FIT gene and upregulation of PYE and BTS (Fig. 4-9) do not fit with the 

suggested link between low K+ and Fe deficiency however, as PYE and BTS act as negative 

regulators of Fe deficiency (Long et al., 2010; Selote et al., 2015) whereas FIT is a positive 

regulator of the response to Fe deficiency (Colangelo, 2004; Jakoby et al., 2004; Yuan et al., 

2005). Therefore the trasncriptional regulation of these genes suggest a link between low K+ 

and an increased supply of Fe. Overexpression of FIT however, has been found to have no 

effect on the expression of the downstream targets in the Fe deficiency pathway, FRO2 and 

IRT1 (Yuan et al., 2008; N. Wang et al., 2013), and a number of the downstream genes have 

been upregulated despite negative regulation from PYE and BTS. This suggests that these 

genes are regulated through an alternative or additional mechanism. Together these data may 

suggest a partially conserved pathway between K+ and Fe deficiency, or some level of 

crossover, due to the high number of DEGs identified in the data.  
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Fig. 4-9: (A) Iron (Fe) deficiency pathway adapted from (Li et al., 2016) coloured boxes around 
gene names denote upregulation (red) or downregulation (blue) in response to 30 h K+ 
starvation RNA-Seq data set. (B) Genes with proven associated with Fe signalling identified 
from RNA-Seq data using agriGO and literature searching with log2fold change (log2fc) 
difference in RNA-Seq data after 30 h K+ starvation treatment.  
 

4.5 Hormone regulation, evidence from RNA Seq 

 

As described in Chapter 3, there is a reduction in the growth of the LRs in Col-O in response to 

low K+. Root architectural changes are often mediated by combinations of the actions of 

different hormones (see the Introduction section 1.4.1). The RNA-Seq data were therefore 

investigated in order to identify possible hormonal signalling pathways which are activated in 

response to low K+, and could therefore be mediating the reduced LR growth response.  

 

4.5.1 Auxin  

4.5.1.1 Regulation of auxin biosynthetic genes in response to low K+ 

GO analysis identified an enrichment of terms relating to auxin biosynthesis in the 

downregulated dataset after 3 h K+ starvation (Fig. 4-4). As auxin is essential to the regulation 

of root growth and LR development (see Overvoorde et al., 2010 for a review), its regulation in 
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response to low K+ was investigated further. GO analysis as well as the plant reactome online 

tool (Naithani et al., 2017) were used to identify genes involved in the auxin biosynthetic 

pathway, with both upregulation and downregulation of genes observed in response to K 

starvation (Fig. 4-10).  

 

Despite IAA being discovered in the 1930s, its biosynthesis is still not fully understood. There is 

thought to be both tryptophan (Trp)-independent and -dependent pathways, of which the -

dependent pathway has been much better characterized. There have been four proposed Trp-

dependent routes to produce IAA: the YUCCA (YUC) pathway, the indole-3-pyruvic acid (IPA) 

pathway, the indole-3-acetamide (IAM) pathway and the indole-3-acetaldoxime (IAOx) 

pathway (Fig. 4-10A) (Mashiguchi et al., 2011), with the YUC pathway recently identified as the 

main biosynthetic pathway in Arabidopsis (Mashiguchi et al., 2011). As the main pathway, 

genes involved in the conversion of Trp to IAA via IPA (Fig. 4-10A) were sought in the RNA-Seq 

data. Data presented here identified a downregulation of the auxin biosynthesis gene YUC8 

(Hentrich et al., 2013) after 3 h K+ starvation. YUC8 has also been shown to be highly expressed 

in the vasculature of young LRs (Hentrich et al., 2013). As data in this thesis identified that LR 

growth is reduced under K+ starvation, it could be hypothesised that this K+ treatment could be 

causing a downregulation of YUC8 in the young LRs, causing a local reduction in auxin 

biosynthesis and, therefore, a reduction in growth.  

 

Gene expression changes were also identified in response to low K+ in the IAOx auxin 

biosynthesis pathway (Fig. 4-10). Two cytochrome P450 genes involved in the conversion of 

Trp to IAOx (Zhao et al., 2002) were downregulated after 3 h (CYP79B3 & CYP79B2) (Fig. 4-

10C). However, the most highly upregulated gene after the 30 h treatment (CYP71A12) (2.68 

log2fc) was identified by the plant reactome online analysis tool as acting in this pathway in the 

conversion of IAOx to indole-3- acetonitrile (IAN) (Fig. 4-10B). The IAOx pathway (which these 

genes are thought to be part of) has been suggested to be less important than other pathways 

in the biosynthesis of IAA, as IAN levels (Fig. 4-10A) have been shown to be more than 100-fold 

higher than IAA levels in Arabidopsis (Sugawara et al., 2009), and overexpression of nitrilises, 

which hydrolyze IAN to IAA, does not lead to an increased auxin phenotype (Normanly et al., 

1997). The IAOx pathway has also been shown to be important in the production of defence 

related metabolites such as camalexin and indole glucosionlates (IGs) (Zhao et al., 2002; 

Glawischnig et al., 2004; Sugawara et al., 2009; Sønderby et al., 2010). As defence related 

genes exhibit significant changes in expression in response to low K+, it is possible that gene 

expression changes in the IAOx pathway reflect a general stress response rather than a specific 

up- or downregulation of auxin biosynthesis. Further bioinformatic and literature based 
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investigation into the prominence of CYP71A12 in the auxin biosynthesis pathway conducted 

here also suggests that this P450 is more involved with the production of camalexin as a 

pathogen defence mechanism (Müller et al., 2015) rather than auxin biosynthesis.  

 

 

 

Fig. 4-10: (A) Main IAA biosynthesis pathway in plants, as proposed by Mashiguchi et al. 
(2011). Figure taken and adapted from Mashiguchi et al. (2011). The dotted square denotes 
the IAOx pathway. (B, C) Stylised image of the output from the plant reactome online analysis 
tool (Naithani et al., 2017) from analysis of RNA-Seq data identifying which genes in the IAA 
biosynthetic pathway genes are transcriptionally changed in response to low K+. (B) Yellow box 
shows where CYP71A12 was identified in the IAA biosynthesis pathway, upregulated after 30 h 
K+ starvation. (C) Yellow box shows where CYP79B3 & CYP79B2 was identified in the IAA 
biosynthesis pathway, these genes were downregulated after 3 h K+ starvation. Indole-3-
acetaldoxime and Indole-3-acetonitrile refer to IAOx and IAN respectively in (A). (Further 
abbreviations see Mashiguchi et al. (2011).  
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4.5.1.2 Regulation of auxin signalling genes in response to low K+ 

Due to the complex nature of the auxin biosynthesis expression data, a GO analysis was used 

to identify auxin-responsive genes, and to identify any evidence for a response to changes in 

auxin levels in response to low K+. Once again genes associated with auxin signalling were both 

up- and downregulated. There was downregulation of a number of auxin-responsive genes 

(Saur20, Saur24, Saur22, Saur63 and IAA29) after 3 h, however this downregulation was not 

seen after 30 h. The IAA-METHYLTRANSFERASE-1 (IAMT1) gene, which is known to play a role 

in auxin homeostasis in converting IAA into the non-polar inactive form of IAA, methyl-IAA 

(MeIAA) (Qin et al., 2005; Li et al., 2008), was also downregulated.  

Auxin-responsive genes that were shown to be upregulated in response to K+ starvation 

include, PINOID BINDING PROTEIN 1 (PBP1), a calcium binding protein known to interact with 

PINOID (a key component of auxin signalling), and which is known to be upregulated by auxin 

(Benjamins et al., 2003), was upregulated after 3 h (0.87 log2fc) and again, but to a lesser 

extent (0.64 log2fc), after 30 h. The genes encoding the BTB and TAZ domain proteins 2 and 5 

(BT2 and BT5) were upregulated after 3 h and 30 h, respectively, and these have also been 

linked to auxin responses. However, these genes are also known to be involved in responses to 

many abiotic and hormonal signals (Hammer et al., 2009; Mandadi et al., 2009; Canales et al., 

2014), making it difficult to link them directly to auxin in this case.   

As auxin is essential for many processes in the plant, the auxin-related gene expression 

changes identified by the GO terms are likely to be involved in many different responses; these 

potentially range from perception of K+ through to architectural changes, as well as in a 

general stress response throughout the whole plant. This wide involvement might explain why 

there seems to be contradictory up- and downregulation of genes here. Overall the data 

suggest that there are changes in the regulation of auxin in response to K+ starvation, but 

significant additional work is needed in order to identify which pathways, and which parts of 

the plant, these changes are associated with.  

 

4.5.2 Ethylene 

4.5.2.1 Regulation of ethylene biosynthesis in response to low K+ 

The hormone ethylene has been identified as a key hormone in the K+-deprivation pathway, 

with evidence to suggest upregulation in response to low K+ (Jung et al., 2009), and 

downstream regulation of K+ transporters and ROS (Jung et al., 2009; Nam et al., 2012). 

However, its role in the reduced LR phenotype has not been investigated; therefore, the RNA-

Seq data were investigated here for evidence of ethylene-related transcriptional changes.  
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GO analysis showed enrichment, in the upregulated data, of a number of ethylene-related 

terms from the RNA-Seq data, including ‘ethylene biosynthesis’ (3 h and 30 h) (Figs 4-3, 4-5), 

‘ethylene-activated signalling pathway’ (3 h), ‘response to ethylene’ (3 h and 30 h) and ‘cellular 

response to ethylene’ (30 h). Therefore, the transcriptional regulation of the ethylene 

biosynthesis pathway was investigated using the Plant reactome database. A key enzyme in 

the ethylene biosynthetic pathway (1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE 6 

(ACS6)) (Fig. 4-11) was upregulated by 0.71 log2fc after 3 h low K+ treatment, suggesting that, if 

these transcript changes also represent protein activity, that ethylene biosynthesis is being 

upregulated within a very short time after the transfer to low K+ (3 h). The expression of this 

biosynthesis gene, however, is not significantly different from the control conditions after 30 

h, suggesting that the upregulation of ethylene is a very fast and transient reaction to low K+ 

treatment.  

 

 
Fig. 4-11: Stylised image of the output from the plant reactome online analysis tool (Naithani 
et al., 2017) from analysis of RNA-Seq data identifying which genes in the ethylene 
biosynthetic pathway are transcriptionally changed in response to low K+. Yellow box shows 
where ACS6 was identified in the ethylene biosynthesis pathway. ACS6 was upregulated after 3 
h K+ starvation.  
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Table 4-1: List of genes both upregulated by K+ starvation (either after 3 h or 30 h, or both) and 
also identified by gene ontology (GO) analysis as relating to ethylene signalling (various GO 
terms associated with ethylene signalling collated together). Gene names obtained from TAIR.  
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4.5.2.2 Regulation of ethylene signalling genes in response to low K+ 

A number of ethylene response factors (ERFs) known to be induced by ethylene treatment are 

also upregulated in response to K+ starvation; ETHYLENE-RESPONSIVE ELEMENT BINDING 

FACTOR ERF5 (3 h), ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 1 (ERF1) and 

ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 2 (ERF2) (30 h) (Table 4-1). The ERFs are 

known to be involved in ethylene signalling (Fujimoto et al., 2000), however they can also act 

through ethylene independent pathways during abiotic stresses (Fujimoto et al., 2000). Their 

altered expression is, therefore, not necessarily a clear indication of a downstream response 

regulated by ethylene. Other upregulated genes identified by the GO analysis as relating to 

ethylene signalling were several WRKY and NAC transcription factors (TFs) (Table 4-1). WRKY 

TFs, are generally associated with pathogen defence, but expression levels are known also to 

change upon hormone treatments (Chen & Chen, 2002; Xu, 2004; Zhang et al., 2004; Xie et al., 

2006). NAC TFs have been identified as playing a role in the ethylene dependent salt stress 

signalling pathway (He et al., 2005) as well as in many aspects of ethylene induced fruit 

ripening (Tigchelaar, 1978; Giovannoni, 2007; Shan et al., 2012; Kou et al., 2016).  

 

 

4.5.2.3 Identification of downstream ethylene-related targets of transcription factors (TFs)  

To look at the potential downstream ethylene targets of the TFs identified by agriGO which 

relate to ethylene signalling, the Agris AtTFDB- Arabidopsis transcription factor database was 

used (Davuluri et al., 2003, Yilmaz et al., 2011). Despite having ethylene-related GO terms, no 

interactions with ethylene-related genes were identified by Agris. Therefore, the search was 

expanded to look at all the highly upregulated TFs to search for possible TFs in the ethylene 

signalling cascade. This search identified ORA47 (AT1G74930), an AP2-EREBP TF (upregulated 

by 1.28 log2fc after 30 h K+ starvation) as having 17 total direct interactions, many of which 

were hormone signalling related (Fig. 4-12). Of these interactions two ethylene genes were 

identified; 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 8 (ACS8) and CONSTITUTIVE 

TRIPLE RESPONSE 1 (CTR1). ACS8 encodes an auxin inducible ACC synthase, and CTR1 is a 

negative regulator of the ethylene signal transduction pathway, interacting with the putative 

ethylene receptors ETR1 and ERS (Clark et al., 1998; Zhang et al., 2017). The upregulation of 

ORA47 may, therefore, lead to a downstream change in regulation of ethylene responses.  
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Fig. 4-12: (A) Output from Agris AtTFDB Arabidopsis transcription factor database (Davuluri et 
al., 2003; Yilmaz et al., 2011) identifying 17 total direct interactions between ORA47 
(AT1G74930) and other proteins. ORA47 an AP2-EREBP transcription factor upregulated by 
1.28log2fc after 30 h K+ starvation. (B) Table of 10 of the genes identified as interactors with 
ORA47 selected due to their known roles in ABA and ethylene signalling. Blue lines represent 
activation, red lines represent repression, grey lines are uncharacterized but proposed 
interactions.   
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In conclusion, RNA-Seq data suggests that ethylene biosynthesis is rapidly and transiently 

upregulated in response to K+ starvation and there is evidence to suggest that there are 

changes in the ethylene signalling pathway. This upregulation of ethylene following K+ 

starvation fits with previously published data suggesting that ethylene is involved in the 

primary response to K+ deprivation, acting in the upregulation of the high affinity K+ 

transporter HAK5 (Jung et al., 2009). However, the role of ethylene in the reduced LR 

phenotype in response to K+ starvation has not been investigated. Increased ethylene 

biosynthesis and activation of TFs could act high up in a cascade to change LR morphology, 

thereby increasing the K+ scavenging potential. Further experimental work is needed in order 

to investigate a role for ethylene in the change in architecture, seen in response to low K+. 

 

4.5.3 Gibberellin  

 

When investigating the interactions of TFs in the role of ethylene signalling, several pieces of 

evidence suggested that gibberellin (GA) may be playing a role in the K+-signalling pathway 

which was not initially identified by GO analysis. For example, the majority of the upregulated 

TFs associated with ethylene GO terms had interactions with AGL15 (uncharacterised 

interactions, only suggested through identification of targets using chromatin 

immunoprecipitation (ChIP)) (Zheng et al., 2009). AGL15 is known to directly regulate the 

expression of GA2ox6, an enzyme involved in GA catabolism (Wang et al., 2004). The TF ERF6, 

which is transcriptionally upregulated strongly at both 3 h and 30 h has also been suggested to 

activate GA2ox6 (Dubois et al., 2015). These data suggest that GA levels could be altered in low 

K+ stress. 

 

Further evidence that this might be the case comes from data on the NAC TF (NAC42/JUB1). 

Although identified by GO analysis as being involved in ethylene signalling (Table 4-1), the 

analysis also suggested that JUB1 might be involved in the regulation of GA. The Agris AtTFDB 

(Arabidopsis TF database) suggested that JUB1 interacts with a number of gibberellin-related 

genes (Fig. 4-13). For example, JUB1 is known to repress GIBBERELLIN 3 BETA-HYDROXYLASE 1 

(GA3ox1) (Fig. 4-13), a gene involved in the later steps of the gibberellic acid biosynthetic 

pathway. JUB1 is also suggested to activate the negative regulators of GA responses, RGL1 and 

GAI (Fig. 4-13). Both encode members of the DELLA family of proteins that are known to 

restrain cell proliferation and expansion (from DAVID) (see Achard & Genschik, 2009 for a 

review). A GA biosynthesis gene GIBBERELLIN-3-OXIDASE 2 (GA3ox2) was also found to be 

downregulated after 30 h K+ starvation (-0.51 log2fc). These data suggest that after 30 h there 



75 
 

is a downregulation of a GA biosynthesis gene and the potential upregulation of TFs involved in 

the activation of GA degradation and, therefore, reduced GA signalling. This suggests that 

there may be activation of GA signalling, specifically through reduction in the levels of GA, 

which could result in the stabilisation of DELLA proteins that might lead to the reduced 

elongation of LRs in response to low K+.  

 

 

Fig. 4-13: (A) Output from Agris AtTFDB Arabidopsis transcription factor database (Davuluri et 
al., 2003; Yilmaz et al., 2011) identifying interactions between JUB1 (NAC42) (AT2G43000) and 
other proteins. JUB1 is a H2O2 induced NAC transcription factor upregulated by 1.33log2fc after 
30 h K+ starvation. (B) Table of three of the genes identified as interactors with JUB1 selected 
due to their known roles in gibberellin signalling. Blue lines represent activation, red lines 
represent repression, grey lines are uncharacterized but proposed interactions.   
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4.5.4 ABA  

The TF ORA47 (previously mentioned in relation to ethylene; upregulated by 1.28 log2fc after 

30 h) was also identified as activating a suite of genes involved in ABA signalling, (Fig. 4-12). 

This suite includes key enzymes in the ABA biosynthesis pathway, NCED9 and NCED3, and 

members of the PYR/PYL/RCAR family of proteins that have been shown to act as ABA 

receptors (PYL5, PYL13 and PYL7) (Fig. 4-12) (Ma et al., 2009; Park et al., 2009; Cutler et al., 

2010). Two protein phosphatases (PP2Cs) ABI1 and ABI2, which bind to the PYR/PYL/RCAR 

receptors (Fig. 4-12), and which act as inhibitors of ABA responses (Fujii et al., 2009; Ma et al., 

2009; Park et al., 2009) were also identified. A negative regulator of ABA signalling HB6, which 

acts downstream of ABI1 (Himmelbach et al., 2002) was also identified. However, searches 

within my data using online tools such as agriGO and Plant reactome did not identify any key 

components of the ABA-biosynthesis or signalling pathways. This could suggest that the ORA47 

TF could be the first in the signalling pathway to stimulate the ABA genes, and that later 

timepoints after K+ starvation may see an increase in ABA signalling. Alternatively, it could be 

that the ABA pathway is not involved in the developmental response to K+ deficiency.  

 

4.5.5 Reactive oxygen species (ROS) 

An increase in ROS after 6 h K+ starvation has previously been reported and this is associated 

with an upregulation of the HAK5 potassium transporter (Jung et al., 2009). However, due to 

the many different roles that ROS plays in response to abiotic and biotic stresses it is possible 

that ROS may be functioning in a number of different ways in response to low K+. The GO 

treemaps identified ROS/H2O2/O2 metabolism in both of the upregulated DEG data sets (Figs 4-

3, 4-5). However, because ROS signalling is involved in many different responses, many genes 

were identified, which makes interpretation of the data complex. A significant amount of work 

has been carried out to elucidate pathways of ROS production and scavenging within the plant. 

Therefore, in order to investigate if there is imbalance in the equilibrium between production 

and scavenging, these documented pathways were investigated within the RNA-Seq data. 

 

4.5.5.1 Transcriptomic changes in ROS production in response to K+ starvation  

Previous reports have categorised ROS accumulation from three major sources: metabolic 

background ROS – produced through metabolic processes such as photosynthesis and 

respiration; ROS produced through metabolic imbalances – caused by changes in 

environmental conditions; and active ROS production – regulated by specific ROS producing 

enzymes (see Vaahtera et al., 2013 for a review). Of these categories, active ROS is the easiest 

to investigate using gene expression data. GO analysis identified ‘regulation of H2O2 

metabolism’ as being significantly upregulated at 3 h and 30 h (Figs 4-3,4-5), suggesting an 
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increase in ROS might be a response to low K+. However, none of the key ROS producing RBOH 

genes was up- or downregulated in either of the data sets. Nevertheless, three of the ‘NADPH 

oxidase-like’ genes identified in a list of the main ROS genes (Mittler et al., 2004) were 

upregulated in response to K+ starvation (FRO2, FRO3 and FRO5). However, there have been 

no reports that link the FRO genes to ROS production, and so their possible role in the low K+ 

response remains unclear.  

 

4.5.5.2 Transcriptomic changes in ROS scavenging in response to K+ starvation  

As ROS levels in the plant are regulated through a balance between production and 

scavenging, the levels of scavenging activity were then investigated in the data. A list of all the 

main ROS-scavenging genes were taken from Mittler et al. (2004), and were compared with 

the low K+ RNA-Seq data set. Eight ROS scavenging genes were downregulated in response to 

low K+, whereas only three were upregulated (Fig. 4-14A). Once again, due to the complex 

nature of the ROS production and scavenging system it is difficult to form a clear idea of ROS 

levels in the plants by simply looking at changes in gene expression of production and 

scavenging genes.  

 

4.5.5.3 Transcriptomic changes in ROS-responsive genes in response to K+ starvation  

Another way to investigate whether there are changes in ROS levels in the plant is by looking 

further down the signalling pathway. Gadjev et al. (2006) created a transcriptomic footprint by 

comparing gene expression changes after treatment with different kinds of ROS stress. By 

comparing this list with the low K+ data obtained here it was possible to investigate if specific 

ROS-signalling pathways may be stimulated in response to low K+ (Fig. 4-14B). The AT2G43510 

gene (upregulated by 1.14 log2fc after 30 h K+ starvation) was identified as one of the 

‘hallmarks for general oxidative stress’ from the ROS footprint data, as it was upregulated by 

more than 5-fold in at least 7 of the 8 experiments described by Gadjev et al. (2006). 14 genes 

upregulated after 3 h and 21 after 30 h were also identified from the ROS footprint data as 

being upregulated by over 5-fold in at least three of the ROS experiments (Fig. 4-14B) (Full list 

with expression data in Appendix V). Only the AT2G29460 gene was identified from the ROS 

footprint data as being downregulated in the K+ deprivation RNA-Seq data.  
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Fig. 4-14: (A) List of genes that act as reactive oxygen species (ROS) scavengers identified in the 
RNA-Seq data of differentially expressed genes in response to low K+ after 3 h and 30 h. Log2fc 
identified with P-value <0.05. List of scavenging genes from Mittler et al. (2004). (B) Output 
from BioVenn online tool (Hulsen et al., 2008) used to identify common genes between genes 
upregulated in response to 3 h or 30 h K+ starvation (RNA-Seq data) and genes identified as a 
ROS transcriptomic footprint (Gadjev et al., 2006). Gene list (Appendix V).  

 

The genes identified in the ROS transcriptomic footprint data have been suggested to respond 

to oxidative cellular damage (Gadjev et al., 2006), and with a large number also being 

upregulated in the dataset described here, it suggests that there may be elevated ROS 

responses to low K+. Levels of ROS in the plant reflect the balance between production and 

scavenging. However, with so many different types of ROS, and so many different means of 
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production, gene expression changes in production, scavenging or ROS-responsive genes 

cannot alone give a clear picture of the levels and the response to low K+. However, the 

overrepresentation of GO terms relating to ROS metabolism, a larger number of 

downregulated scavenging genes and upregulation of ROS-responsive genes, shown here 

might suggest that there is an increase in cellular levels of ROS in response to low K+. In order 

to understand the role that ROS may be playing in response to low K+, it is important to 

investigate further experimentally, and experiments are described in Chapter 5.  

 

4.6 Summary  

 

Work in this chapter has aimed to better understand the gene expression changes that occur 

in response to low K+ in the Arabidopsis accession Col-0. In order to do this, an RNA-Seq 

experiment was carried out and DEGs were identified between the low K+ and the control at 

two different timepoints after treatment (3 h and 30 h). GO analysis was utilised to provide a 

general overview of the data. Other bioinformatics tools and literature searches were used to 

further investigate the data. As the aim of the thesis is to understand the regulation of the 

architectural changes to low K+, the work in this chapter focussed on elucidating the possible 

regulation of hormonal signalling pathways, and other factors (such as ROS), which would be 

affecting the reduction in LR growth in response to low K+.  

 

Data from the RNA-Seq experiment suggested that, in response to low K+, there are; changes in 

the regulation of auxin, a rapid and transient upregulation of ethylene biosynthesis, and 

changes in the ethylene signalling pathway. It was also suggested that there are changes in GA 

signalling, specifically through reduction in the levels of GA, in response to low K+. Potentially 

there is a change in ABA signalling, and changes in the regulation and signalling of ROS levels. 

Data in this chapter also suggested that there is an overlap in transcript profiles between low 

K+ and iron signalling, as well as showing that, in response to low K+, a number of 

photosynthetic genes are downregulated, suggesting that a reduction in photosynthesis in 

response to low K+ may be mediated, in part, by regulation of gene transcription.  
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Chapter 5 Hormonal control of lateral root growth in response to low K+ 

 

5.1 Introduction 

 

The previous chapter described the use of transcriptomic data to identify gene expression 

changes in response to low K+. Bioinformatic analysis identified gene expression changes which 

suggested that in response to low K+ there were changes in ethylene, auxin, abscisic acid 

(ABA), reactive oxygen species (ROS) and gibberellic acid (GA) signalling (including metabolism 

of these stimuli). Changes in each of these pathways have been shown to lead to changes in 

root growth and development, however little work has been carried to link any of these factors 

to changes in root architecture in response to low K+.  Collation of data from chapter 4, and 

from the published literature has allowed the construction of (Fig. 5-1) showing pathways 

hypothesised to lead to reduced lateral root (LR) growth in response to low K+. Experimental 

work described in this chapter aimed to investigate the roles of each of these factors in the 

reduced LR growth phenotype displayed in Col-0 in response to low K+.    

 

 
Fig. 5-1: Pathways hypothesised to lead to reduced lateral root (LR) growth in response to low 
K+. Hypothesised routes generated from data from Chapter 4 (RNA-Seq experiment) and 
previously published literature (numbers), linking changes in hormonal signalling to changes in 
growth. Arrows, hypothesised positive interaction; T-bars, inhibition or a negative relationship. 
ABA, abscisic acid; GA, gibberellic acid; ROS, reactive oxygen species. Numbers refer to 
published literature: 1, Shin & Schachtman (2004); 2, Ruzicka et al. (2007); 3, Swarup et al. 
(2007); 4, Strader et al. (2010); 5, Street et al. (2015); 6, De Smet et al. (2003); 7, Achard et al. 
(2006); 8, Zentella et al. (2007); 9, Sun (2010); 10, Ko et al., (2006); 11, de Lucas et al. (2008); 
12, Feng et al. (2008); 13, Shin et al. (2007); 14, Dello Ioio et al. (2008); 15, Perrot-Rechenmann 
(2010); 16, Tsukagoshi et al. (2010).  
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In the work described in this chapter, the use of mutants and phytohormones was a means to 

manipulate signalling pathways, allowing investigation into their roles in the root architectural 

response. Gene expression was analysed using qRT-PCR in order to further the transcriptional 

information uncovered using RNA-Seq. Confocal and stereo microscopy were employed to 

reveal localization and expression levels of different signalling components in response to low 

K+. Together these techniques were used to shed light on the mechanisms that may lead to the 

reduced LR growth seen in response to low K+.  

 

5.2 Auxin 

Analysis of the RNA-Seq data suggests that there may be changes in auxin signalling and 

biosynthesis in response to K+ starvation. The data were not conclusive however, as genes 

associated with the biosynthesis and signalling pathways were found to be both up- and down-

regulated in response to low K+. Shin et al. (2007) identified a reduction in the concentration of 

free IAA and a reduction in basipetal auxin transport in the roots of seedlings subjected to K+-

stressed conditions. This result suggests that a reduction in auxin may play a role in the root 

architectural responses to low K+. Research in this chapter aims to further understand the role 

of auxin in the LR growth response to K+ starvation.    

 

5.2.1 Expression of IAA2 is unchanged in response to K+ starvation 

INDOLE-3-ACETIC ACID INDUCIBLE 2 (IAA2) is upregulated in response to auxin (Lee et al., 

2009) therefore its expression level was investigated following low K+ treatment using qRT-

PCR. After 72 h K+ starvation there was no difference in the expression levels of IAA2 between 

the low K+ and the control (Fig. 5-2). This suggests that auxin signalling levels are not 

significantly reduced in response to low K+. It must also be noted however, that both the qRT-

PCR and RNA-Seq experiments were carried out on whole seedling tissue, therefore it is not 

possible to identify localized changes in auxin signalling or accumulation through this method.  
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Fig. 5-2: Normalised relative level of transcript of IAA2 after 72 h K+ treatment (2 mM or 0.005 
mM) determined by qRT- PCR. Samples taken from seedlings 14 days after germination. 
Normalised against AT1G13320. Values are means  SE. Three biological repeats and three 
technical repeats used. Independent samples t-test determined there was no significant 
difference between treatments, as denoted by letters (P-value <0.05).  
 

5.2.2 Auxin distribution and levels in LR meristems are unaffected by low K+ 

The setting up and maintenance of an auxin maximum at the root tip is essential for root 

growth and development. A reduction in auxin signalling in the primary root (PR) meristem has 

been shown to reduce cell proliferation and promote early exit from the mitotic cell cycle 

(Blilou et al., 2005; Dello Ioio et al., 2008; Ishida et al., 2010; Moubayidin et al., 2010). It was 

hypothesised that a reduction in auxin reduces cell division in the LR meristem in response to 

low K+, thereby reducing meristem size and growth. It is possible to visualize auxin levels and 

distribution in the root using confocal microscopy imaging of the auxin-responsive pDR5rev 

promoter fused to three tandem copies of a rapidly folding YFP, VENUS (Heisler et al., 2005). 

No differences in the distribution of auxin (Fig. 5-3A), or level of fluorescence (Fig. 5-3B) were 

identified between high or low K+ conditions (2 mM or 0.005 mM) in the LR meristems of the 

pDR5rev::3xVENUS-N7 line after 8 d treatment (Fig. 5-3). This suggests that the auxin maxima 

are being maintained at the LR tips even under low K+ treatment, and that there are no visible 

changes in accumulation patterns or levels after 8 d low K+ treatment.   
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Fig. 5-3: (A) Representative fluorescence in lateral roots (LRs) under 1 mm in length of 
pDR5rev::3xVENUS-N7 seedlings after 4 d growth on ½ MS10 followed by 8 d grown on 2 mM 
(left) or 0.005 mM (right) [K+] Scale bar = 50 µm. White is propidium iodide stain, green is 
VENUS. (B) Relative mean fluorescence of LRs of each treatment measured using ImageJ. 
Images taken from at least 8 different seedlings per treatment, n≥14 (n denotes number of 

LRs). Values are means  SE. Letters indicate significance as calculated with an independent 
samples t test P=0.159. 
 

5.2.3 Addition of IAA and NPA are not able to restore LR growth under low K+ 

The role of auxin in the LR phenotype was further investigated by supplementing the media 

with exogenous auxin in the form of IAA, and blocking auxin transport by supplementing the 

media with NPA. It was hypothesised that if a decrease in auxin was causing a reduction in LR 

growth in response to low K+, then the addition of IAA to the media might restore LR growth. If 

the transport of auxin plays a key role in the reduced LR growth phenotype, then blocking 

transport with NPA should restore growth.   

 

LR growth was not restored under low K+ when the media was supplemented with 1 nM IAA, 

or 5 nM IAA over 3 d (Fig. 5-4A), or 10 nM IAA or 10 µM NPA over 10 d (Fig. 5-4B). 1 µM IAA 

supplementation also did not alter the distribution of developmental stages seen in a LR 

progression analysis (Fig. 5-4C) on the basis of using the DR5::GUS reporter to highlight LR 

primordia (LRP). Results show that addition of IAA does not alter LR development under low K+ 

when compared with the non-supplemented media (Fig. 3-4; Fig. 5-4C). LR elongation is still 

impaired under low K+ conditions after supplementing with IAA, and LRP development remains 

the same between K+ conditions throughout (Fig. 5-4C). LR growth was also not restored in the 

aux1-7 mutant (Fig. 5-5), suggesting that enhanced auxin transport is not playing an important 

role in the reduced LR growth response to low K+.  
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Fig. 5-4: (A) Average lateral root (LR) growth over 3 d following [K+] treatment (2 mM or 0.005 
mM), 12 days after germination (DAG). (B) Average LR length after 10 d treatment, 19 DAG. 

Values are averages of at least 8 individual seedlings per sample,  SE. Letters indicate 
significance with a Tukey Pairwise comparison P< 0.05. (C) Light microscopy and the auxin-
responsive DR5::GUS reporter line allow all lateral root primordia (LRP) and LRs to be counted 
along the length of the primary root (PR). Col-0 seedlings analysed at 12 DAG, 8 d of K+ 
treatment. Primordial stages as defined in Malamy & Benfey (1997). Media supplemented with 

1 µM IAA. Values are averages of at least 10 individual seedlings per sample  SE. Asterisks 
indicate significance with independent samples t test (P-value <0.05).  
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Fig. 5-5: Average lateral root growth after 8 d K+ treatment (2 mM or 0.005 mM), (12 d after 
germination (DAG) seedlings) of Col-0 and auxin mutant aux1-7. Values are averages of at least 

25 individual seedlings  SE, n≥25. Letters indicate significance with a Tukey Pairwise 
comparison P< 0.05.  
 

5.2.4 Addition of IAA does not restore LR meristem size under low K+  

The effect of auxin supplementation on cell division and meristem size was also investigated. 

The CYCB1;2:GUS line was used to identify cells undergoing cell division in the meristems of 

LRs grown on high and low K+ for 8 d. The length of the area of cell division was measured to 

give a proxy measurement of meristem size.  Addition of 1 nM or 200 nM IAA made no 

difference to the length of the LR meristems when compared with the control (Fig. 5-6). These 

results suggest that a decrease in auxin does not cause the reduction in cell division and 

meristem size in response to low K+.  

 

5.2.5 Auxin summary 

Collectively these data suggest that auxin does not play a role in the reduced LR growth 

phenotype in response to low K+, despite the observed changes in gene expression seen in the 

RNA-Seq data. As the RNA-Seq data represented transcript analysis for whole seedlings, an up- 

or down-regulation in auxin could be acting elsewhere in the plant in other K+-deprivation 

strategies. In conclusion, the evidence presented here suggests no clear role for auxin in the 

response of root development to low K+.  
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Fig. 5-6: Typical GUS staining pattern of CYCB1;2:GUS; the staining shows a reduced area of cell 
division in low [K+]. Scale bars = 50 µM. Average length of meristem measured as the length of 
area with dividing cells (stained blue in CYCB1;2:GUS line). Media supplemented with either 1 
nM IAA (A), or 200 nM IAA (B) for 8 d. Analysis carried out on seedlings 12 d after germination 
(DAG). Values in histograms are averages of measurements taken from at least 6 individual 

seedlings per treatment  SE, Letters indicate significance with a Tukey Pairwise comparison 
P< 0.05.   
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5.3 Ethylene  

 

RNA-Seq data showed that in response to low K+ there was an upregulation of ethylene 

biosynthesis genes and ethylene signalling genes. This suggested that ethylene may be playing 

a role in the response to low K+. Previous work has reported increased ethylene levels in plants 

starved of K+ (Shin & Schachtman, 2004), and a key role for ethylene in K+-stress tolerance has 

been identified in inducing the high affinity K+ transporter HAK5 (Jung et al., 2009). There has 

been less work on investigating whether there is a role for ethylene in the architectural 

changes to low K+. Jung et al. (2009) suggested a role for ethylene in the reduced PR growth in 

response to low K+; however, this work only looked at ethylene signalling mutants, and further 

investigation into the mechanism by which ethylene acts was not followed up. The 

experiments reported here were designed to investigate whether there was a role for ethylene 

in reducing LR growth in response to low K+.  

 

5.3.1 Ethylene signalling is increased in response to low K+ 

As the RNA-Seq analysis was carried out after short time periods of K+ starvation (3 h and 30 

h), qRT-PCR was used to investigate ethylene signalling after a longer period of low K+ 

treatment. RNA was extracted for qRT-PCR analysis from 14-d-old-seedlings, grown for 72 h on 

2 mM or 0.005 mM K+. The expression of ETHYLENE RESPONSE FACTOR 1 (ERF1) was 

significantly higher in seedlings grown on low K+ for 72 h, compared with the high K+ conditions 

(Fig. 5-7).  ERF1 is one of the immediate targets of EIN3 (Solano et al., 1998) and has been 

shown to be highly induced by high salt and drought stress (Cheng et al., 2013). The strong 

upregulation of ERF1 after 72 h (Fig. 5-7) suggests a continued stimulation of the ethylene 

signalling pathway even after 3 d K+ starvation.  

 

It is important to note that the ERF1 gene can also be rapidly activated by jasmonate (JA) 

(Lorenzo et al., 2003). It is therefore possible that this upregulation of ERF1 is, in part, due to 

increased JA in response to low K+ (Fig. 4-7) (Armengaud et al., 2004). Taken together with 

previously published data, and RNA-Seq data (Chapter 4), there is a compelling case for a rapid 

increase in ethylene biosynthesis followed by a prolonged increase in ethylene signalling in 

response to low K+.   
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Fig. 5-7: Normalised relative level of transcript of ERF1 after 72 h K+ treatment (2 mM or 0.005 mM [K+]). 
Samples taken from seedlings 14 days after germination Determined by qRT-PCR. Normalised against 
AT1G13320. Values are means  SE. Three biological repeats and three technical repeats used. Letters 
indicate significance with independent samples t test (P-value <0.05).  
 

5.3.2 Role of ethylene in LR growth in response to low K+  

Ethylene is known to inhibit root growth in both auxin dependent and independent ways. 

Ethylene is known to increase biosynthesis and transport of auxin leading to inhibition of cell 

elongation and cell proliferation (Ruzicka et al., 2007; Swarup et al., 2007; Strader et al., 2010; 

Street et al., 2015). Ethylene is also thought to regulate cell proliferation at the root meristem 

in an auxin-independent way, whereby ethylene treatment reduces cell proliferation and 

reduces meristem size in the PR (Street et al., 2015). Work in this thesis has identified a similar 

response in the LRs of seedlings grown on low K+, which display reduced cell division and 

meristem size. It was therefore hypothesised that an increase in ethylene signalling in 

response to low K+ could lead to the reduced growth of LRs.   

 

It is possible to investigate the role of ethylene in plant responses by blocking signalling and 

perception. This can be done using the ethylene-insensitive mutants ein2 and etr1-1 (Guzmán 

& Ecker, 1990; Chang et al., 1993), and with silver ions (Ag2+), which block the activity of the 

ethylene receptor complex (Rodriguez et al., 1999). To investigate how increased ethylene 

signalling and biosynthesis might affect LR growth in response to low K+, a LR progression 

analysis was used to count the LRs and lateral root primordia (LRP) at each stage of 

development when ethylene was blocked in the ein2 mutant (Fig. 5-8B) and by using Ag2+ (Fig. 
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5-8A) to block ethylene perception. Analysis of seedlings was conducted on Col-0 or ein2 

seedlings 12 d after germination (DAG), after a total of 8 d growth on K+ treatment (2 mM or 

0.005 mM). The growth medium of the Col-0 seedlings was supplemented with 1 µM Ag2+. In 

the WT with no supplementation, there was no difference in the numbers of LRs and LRP 

present in each developmental stage between high and low K+ conditions until after the LR has 

emerged from the primary root (PR) (Fig. 3-4). After emergence LRs under low K+ do not 

elongate to the same extent as they do under high K+ conditions. This translates to a larger 

number of LRs in the length categories from 100 µm to 1 mm, and more LRs in the high K+ are 

longer than 1 mm (Fig. 3-4). When ethylene signalling is blocked, either in the ein2 mutant, or 

by supplementing the media with (1 µM) Ag2+, this pattern is not altered, again displaying a 

larger number of LRs elongating past 1 mm in the high [K+] compared with the low [K+] (Fig. 5-

8A,B). This suggests that ethylene is not playing a role in reducing LR growth in response to low 

K+. To investigate this further, LR length was measured in the mutants ein2 and etr1-1 after 8 d 

growth on low K+. No difference was observed in the length of LRs on low K+ compared with 

the WT (Fig. 5-9).  

 

5.3.3 Ethylene summary  

These data suggest that there is an increase in ethylene signalling in response to low K+. 

However, blocking ethylene signalling through gene mutation, or supplementing the media 

with silver ions, was not able to rescue LR growth under low K+ conditions. This suggests that 

that reduced LR growth in response to low K+ is coordinated through an ethylene-independent 

mechanism.   
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Fig. 5-8: Lateral root progression analysis. Light microscopy and the auxin-responsive DR5::GUS 
reporter line (A) and lugol staining (B) allow all lateral root primordia (LRP) and lateral roots 
(LRs) to be counted along the length of the primary root (PR). Col-0 (A) or ein2 (B) seedlings 
analysed 12 d after germination (DAG), 8 days of K+ treatment (2 mM or 0.005 mM). Primordial 
stage as defined in Malamy & Benfey (1997). Media supplemented with 1 µM Ag2+. Values are 

averages taken from at least 7 individual seedlings (A) or 4 individual seedlings (B)  SE. 
Asterisks indicate significance with independent samples t test (P-value <0.05).  
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Fig. 5-9: Average length of lateral roots after 8 d K+ treatment (2 mM or 0.005 mM), (12 d after 
germination (DAG) seedlings) of Col-0 and ethylene mutants ein2 and etr1. Values are averages 

of at least 10 individual seedlings  SE. Letters indicate significance with a Tukey Pairwise 
comparison P< 0.05.  
 

 

5.4 Reactive oxygen species (ROS) 

 

5.4.1 Introduction 

The RNA-Seq experiment identified an overrepresentation of gene ontology (GO) terms 

relating to ROS metabolism (Figs 4-3,4-5), a larger number of downregulated scavenging genes 

(Fig. 4-15A) and upregulation of ROS-responsive genes (Fig. 4-15B). These data suggest that in 

response to low K+ there is an increase in ROS levels. Previous transcriptomic data also 

suggested an increased expression of ROS-related genes in low K+ conditions (Ma et al., 2012). 

ROS has been identified as playing a key role in the induction of the HAK5 K+ transporter in 

response to low K+ (Shin & Schachtman, 2004). ROS have also been implicated in the control of 

root elongation (Foreman et al., 2003; Renew et al., 2005), meristem size (Tsukagoshi, 2012), 

cell expansion (Hohl et al., 1995; Fry, 1998; Potikha et al., 1999; Ros-Barceló et al., 2002; 

Liszkay et al., 2004), and LR emergence (Manzano et al., 2014).  It was therefore hypothesised 

that changes in cellular ROS levels could be involved in reducing LR growth in Col-0 in response 

to low K+.  Work described in this section aimed to investigate this hypothesis. The role of ROS 

in the upregulation of the HAK5 transporter in LRs was also investigated in response to low K+.  
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5.4.2 ROS accumulates in LRs in response to low K+ 

Fluorescence microscopy was used to investigate whether low K+ induces changes in ROS 

levels in LRs. The fluorescent dye H2DCFDA has previously been used to identify increased 

levels of ROS in the PR of K+-starved seedlings (Shin & Schachtman, 2004). However, more 

recently a molecular probe, HyPer, has been developed to allow the live imaging of H2O2 

(Belousov et al., 2006). HyPer is a cell probe that works through a YFP inserted into an 

Escherichia coli H2O2-binding protein called OxyR. Exposure to H2O2 causes a shift in the YFP 

excitation peak but not in the emission peak, and this can therefore be used as a quantitative 

ratiometric biosensor (Belousov et al., 2006). As a transgenic line rather than a dye-based 

system, live imaging of seedlings can be conducted without disrupting their growth 

environment. HyPer has previously been used to measure H2O2 levels in the elongation zones 

of Arabidopsis roots (Hernandez-Barrera et al., 2015), thereby displaying its applicability for 

use in the low K+ system.  

 

A fluorescence stereo microscope was used to investigate localization and levels of ROS in LRs 

of seedlings grown on low K+ for 30 h, 54 h and 8 d (seedlings 12, 13 and 12 DAG respectively). 

Images were analysed by drawing a line down the centre of the LR and the average grey profile 

was plotted using ImageJ (Fig. 5-10A). The grey value indicates the brightness of each pixel, 

used as a measure for HyPer fluorescence. This produced a profile of the average levels of ROS 

at different points along the length of the LR (Fig. 5-10). LRs were grouped into size classes and 

profiles were transformed to give an average fluorescence value per relative distance from PR 

(see methods for details on the normalisation).   

 

The profiles, in general, followed the same trend, irrespective of the length of the LR, with a 

high level of fluorescence in the PR at the site of attachment of the LR, then a decrease to a 

semi constant low level along the LR, with an increase at the tip (Figs 5-11–5-13). Despite 

variation in the different lengths of the LRs and at different time points, H2O2 levels were 

either similar, or increased in the LRs of plants grown on low K+ compared with control 

conditions (Figs 5-11–5-13). Higher levels were not seen in the seedlings grown on control 

conditions for any of the timepoints tested. A region of increased H2O2 was also observed 

between approx. 20–50 % of the distance down the LR from the PR, in a number of the size 

categories at various timepoints (Figs 5-11B,C; 5-12C,D; 5-13C,D)(Fig. 5-10B,C), suggesting an 

area of accumulation along the LR. This region of accumulation was not seen in all length 

categories, or at all timepoints, and there appeared to be no cohesive pattern.  
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Results from HyPer analysis suggest that there may be increased levels of ROS in the LRs of 

seedlings grown on low K+, with some showing an increase in accumulation in a region 

between the oldest part of the LR and the central region.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 5-10: Fluorescence stereo microscopy was used to investigate localization and levels of 
reactive oxygen species (ROS) in lateral roots (LRs) of seedlings grown on high or low K+

 
using 

the transgenic molecular probe HyPer (Belousov et al., 2006). (A) Diagram of the method of 
analysis of images. Image opened in ImageJ, a line drawn down the centre of the LR starting at 
the centre of the primary root (PR) and ending at the LR tip. The average grey value (brightness 
of each pixel) measured at every point and normalised into LR size groups, so that profiles 
along the LRs could be compared with similar sized LRs. (B, C) Representative images of HyPer 
fluorescence in LRs of seedlings grown for 8 d on 2 mM (B) or 0.005 mM (C) [K+]. Scale bars = 
100 µm.  
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Fig. 5-11: Fluorescence stereo microscopy was used to investigate localization and levels of 
reactive oxygen species (ROS) in lateral roots (LRs) of seedlings grown for 11 d ½ MS10 
followed by 30 h on high or low K+

 
using the transgenic molecular probe HyPer (Belousov et al., 

2006). (See Fig 5-10 for analysis method.) (A-D) Average grey values (defined as the brightness 
of each pixel) of HyPer along the length of LRs, normalised for each LR length category; (A) 
0.04-0.08 cm, (B) 0.08-0.1 cm, (C) 0.1-0.25 cm, (D) >0.25 cm. Points are averages of at least 5 

individual seedlings  SE.   
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Fig. 5-12: Fluorescence stereo microscopy was used to investigate localization and levels of 
reactive oxygen species (ROS) in lateral roots (LRs) of seedlings grown for 11 d ½ MS10 
followed by 54 h on high or low K+

 
using the transgenic molecular probe HyPer (Belousov et al., 

2006). (See Fig. 5-10 for analysis method.) (A-D) Average grey values (defined as the brightness 
of each pixel) of HyPer along the length of LRs, normalised for each LR length category; (A) 
>0.08 cm, (B) 0.08-0.1 cm, (C) 0.1-0.2 cm, (D) >0.25 cm. Points are averages of at least 5 

individual seedlings  SE.   
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Fig. 5-13: Fluorescence stereo microscopy was used to investigate localization and levels of 
reactive oxygen species (ROS) in lateral roots (LRs) of seedlings grown for 4 d ½ MS10 followed 
by 8 d on high or low K+

 
using the transgenic molecular probe HyPer (Belousov et al., 2006). 

(See Fig. 5-10 for analysis method.) (A-D) Average grey values (defined as the brightness of 
each pixel) of HyPer along the length of LRs, normalised for each LR length category; (A) >0.08 
cm, (B) 0.08-0.1 cm, (C) 0.1-0.25 cm, (D) >0.25 cm. Points are averages of at least 5 individual 

seedlings  SE.   
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5.4.3 Inhibition of ROS does not restore LR growth under low K+  

A change in the localization of ROS accumulation in the LR exposed to low K+ may suggest that 

ROS is playing a role in reducing LR growth. ROS can be produced in plants from a multitude of 

different sources but the best studied is through the NADPH oxidases, otherwise known as 

respiratory burst oxidase homologs (Rbohs; see Sagi & Fluhr, 2006 and Marino et al., 2012 for 

reviews). Arabidopsis has 10 NADPH oxidase catalytic subunit genes, designated AtrbohA–J. 

The AtrbohD and AtrbohF genes were selected for investigation in this study as they have been 

identified as playing a role in the regulation of ABA-mediated repression of PR growth (Kwak et 

al., 2003; Jiao et al., 2013) as well as the regulation of LR formation (Li et al., 2015a). Analysis 

using the Arabidopsis eFP Browser at bar.untoronto.ca (Winter et al., 2007) also identified 

higher expression of the AtrbohD and AtrbohF genes in developing LR primordia than the other 

Atrboh genes. These data highlighting a role for AtrbohD and AtrbohF in root development and 

specifically LR growth.  

 

The LR growth of the atrbohD and atrbohF mutants was measured after 8 d growth on high or 

low K+ (Fig. 5-14A,B). The double mutant atrbohDF was also analysed (Fig. 5-14A), based on 

previously reported levels of partial redundancy (Kwak et al., 2003). Mutating these genes did 

not rescue LR growth under low K+ (Fig. 5-14A,B) suggesting that ROS derived from these 2 

NADPH oxidases is not required in the reduction of LR growth in response to low K+. It is not 

possible to conclude that NADPH oxidases are not playing a role however, as there may be 

redundancies between other members of the family in response to low K+. Inhibiting ROS using 

the inhibitor of NADPH oxidase and other flavoenzymes, diphenylene iodonium (DPI; Bolwell & 

Wojtaszek, 1997) dramatically reduces the growth of the PR (Appendix VI) supporting work 

done by Foreman et al. (2003). However, DPI does not restore LR growth in low K+ conditions 

(Fig. 5-14C). This suggests that the DPI-sensitive ROS pathway is having no effect on the LR 

growth reduction in response to K+ starvation. Interestingly, the data suggest that ROS is 

needed for LR growth under normal conditions, as seen by the reduction in LR growth under 2 

mM K+ when grown on 1 µM and 200 nM DPI (Fig. 5-14C). However, in the atrbohDF and 

atrbohD mutants (but not atrbohF) there is an increase in LR growth under control conditions 

compared with WT (Fig. 5-14A,B), suggesting complex pathways of control in root growth.  
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Fig. 5-14: Average lateral root (LR) length after 4 d growth on ½ MS10 followed by 8 d K+ 
treatment (2 mM or 0.005 mM) of Col-0 and reactive oxygen species (ROS) mutants atrbohD 
and atrbohDF (A), and atrbohF (B). Average LR growth over 3 d following treatment when 
media supplemented with 200 nM or 1 µM DPI (C). Values are averages taken from at least 12 

individual seedlings (A,B) and at least 6 seedlings (C)  SE. Letters indicate significance with a 
Tukey Pairwise comparison P< 0.05. 
 

5.4.4 ROS and HAK5 activation 

ROS has been shown to accumulate in a region of active K+ uptake in the PR in response to low 

K+ (Moritsugu et al., 1993; Shin & Schachtman, 2004). As ROS is known to act in the 

upregulation of the HAK5 K+ transporter in response to low K+ (Shin & Schachtman, 2004; Kim 
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et al., 2012), it has been suggested that this ROS accumulation leads to the upregulation of 

HAK5 in a specific region of the PR, distal to the elongation zone. It was hypothesised that this 

could also be occurring in the LRs, potentially explaining the accumulation of ROS seen using 

the HyPer line in response to low K+ (Fig. 5-10C). Studies investigating the localization of the 

HAK5 transporter have described an increase in promoter activity of HAK5 in the LRs in 

response to K+ starvation (Fig. 5-15A) (Gierth et al., 2005). Images of LRs expressing the GUS 

reporter (pAtHAK5::GUS/GFP) suggested that this region of HAK5 accumulation may overlap 

with the region of ROS accumulation found in this thesis (Fig. 5-15A; 5-10). To investigate the 

link between ROS accumulation and HAK5 in the LRs in response to low K+ the 

pAtHAK5::GUS/GFP line described in Gierth et al. (2005) was used. The pAtHAK5::GUS/GFP line 

was imaged using confocal microscopy.  However the expression pattern of HAK5 in the PRs 

did not correspond with the localization shown in the Gierth et al. (2005) paper (Fig. 5-15A3,B). 

Specifically, HAK5 localized mainly to the stele and cortex (Fig. 5-15B), rather than the 

epidermis as was reported in the paper (Fig. 5-15A3). The localization in the LRs corresponded 

better with the published data with high expression in the epidermal cells at the base of the LR 

(Fig. 5-1514,C). The fluorescence of GFP in the LRs of the pAtHAK5::GUS/GFP line increased 

after 3 d K+ starvation (Fig. 5-15E), however no difference was seen in the PR after 3 d (Fig. 5-

15D). The reporter was not sufficiently sensitive to see changes after short time periods. As 

HAK5 is upregulated very quickly after K+ starvation (3 h Fig. 6-3), investigating its upregulation 

would require a more sensitive reporter. In the future a luciferase marker driven by HAK5 (Kim 

et al., 2012) may allow the system to be probed further.   

 

5.4.5 Conclusion 

The work presented here suggests that ROS does not play a key role in the reduction in LR 

growth seen in response to low K+, as blocking ROS through mutants and DPI is not able to 

restore LR growth under low K+. Despite this, work here has identified that there is a small 

increase in ROS accumulation in LRs in response to low K+. Comparing this accumulation 

pattern with previously published literature suggests that there may be a link between ROS 

and HAK5 upregulation in the LRs in response to low K+. This would fit with previously 

published work investigating the PR; however, further work needs to be conducted to identify 

whether the same effect occurs in the LRs under K+ starvation. The accumulation pattern 

observed in the LRs in response to low K+ is also not consistent across LR lengths or low K+ time 

treatments, and again, more work must be conducted to establish if this is a low K+ response.   
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Fig. 5-15: Roots of transgenic plants expressing the GUS and GFP reporter gene driven by 
the AtHAK5 promoter, pAtHAK5::GUS/GFP. (A) Figure adapted from Gierth et al. (2005). (A1,2) 
GUS activity in lateral roots (LRs) of seedlings grown on low K+ (A1) and after resupply with K+ 
(A2). (A3,4) Confocal microscopy identifying the GFP localization in the primary root (PR) and 
LRs of K+ starved roots. (B) pAtHAK5::GUS/GFP fluorescence in the PR after 3 d low K+ (0.005 
mM) showing different localization compared with (A3). (C) pAtHAK5::GUS/GFP fluorescence in 
a LR where it meets the PR. White is propidium iodide stain, green is GFP. (D, E) Relative mean 
fluorescence of pAtHAK5::GUS/GFP in the PR (D) or the LR (measurements taken from the 
epidermis and cortex cell files) (E) of seedlings grown for 3 d on either 2 mM or 0.005 mM K+. 

Values are averages taken from at least 6 individual seedlings  SE. Letters indicate significance 
with a Tukey Pairwise comparison P< 0.05. (D) P=0.161, (E) P=0.009. 
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5.5 Gibberellin (GA) and DELLA signalling 

 

Analysis of the RNA-Seq data suggested that in response to low K+ there is downregulation of a 

GA biosynthesis gene, GA3ox2. Transcription factors (TFs) with known roles in GA degradation 

and reduced GA signalling were also identified as being upregulated in response to low K+.  

From these data, it was hypothesised that there is a reduction in GA in response to low K+ and 

this was investigated in the following experiments. 

 

5.5.1 Increased transcription of GA2ox6 in response to low K+  

5.5.1.1 Selection of genes for further transcriptional analysis 

GA homeostasis is controlled through biosynthesis and deactivation, with three families of 

dioxygenase genes, namely the GA3oxs, GA20oxs and the GA2oxs, playing a key role in the 

regulation of this pathway in response to many developmental and environmental cues 

(Colebrook et al., 2014). To investigate further if K+ starvation is causing a reduction in GA, the 

expression levels of the GA biosynthesis genes GIBBERELLIN-3-OXIDASE 2 (GA3ox2), and 

GA3ox1, and the GA deactivation gene GIBBERELLIN-2-OXIDASE 6 (GA2ox6) were quantified 

using qRT-PCR, after 30 h, 54 h and 72 h of K+ starvation (samples taken from seedlings 12, 13 

and 14 DAG respectively). GA3ox2 was chosen due to its downregulation after 30 h K+ 

starvation in the RNA-Seq data, and GA3ox1 was chosen because it is known to be 

downregulated by the TF JUB1, which was upregulated in the RNA-Seq data (Shahnejat-

Bushehri et al., 2016) (Fig. 4-14). The GA2ox genes deactivate bioactive GAs (Thomas et al., 

1999) and the upregulation of GA2oxs has been reported in response to a number of abiotic 

stresses (Achard et al., 2008a; Magome et al., 2008; Dubois et al., 2013; Colebrook et al., 

2014). Of these GA2ox genes, GA2ox6 was selected for analysis in the qRT-PCR due to its 

upregulation in response to many abiotic stresses and also because it is known to be 

transcriptionally induced by the TF ERF6, which was upregulated in the RNA-Seq data (Dubois 

et al., 2013) (Table 4-1).  

 

5.5.1.2 qRT-PCR analysis of GA2ox6, GA3ox2 and GA3ox1 

qRT-PCR was used to investigate the expression levels of GA dioxygenase genes in response to 

low K+. RNA was extracted from seedlings grown for 11 d on ½MS10 media followed by 30 h, 

54 h or 72 h K+ treatment (2 mM or 0.005 mM). qRT-PCR revealed that the expression of the 

GA deactivation gene, GA2ox6, was upregulated after 54 h and 72 h of low K+ treatment (Fig. 

5-16A). This suggests an increase in the deactivation of bioactive GAs in response to low K+. 

The GA biosynthesis gene GA3ox2 was found in the RNA-Seq data to be downregulated after 

30 h (-0.51 log2fc). However, the qRT-PCR data showed no significant difference between the 
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expression level of this gene at any timepoint following transfer to low K+ media (Fig. 5-16B). 

qRT-PCR analysis of the GA3ox1 biosynthesis gene, showed a small upregulation after 54 h and 

72 h low K+ treatment (Fig. 5-16C).  

 

 
Fig. 5-16: Normalised relative level of transcript of GA2ox6 (A), GA3ox2 (B), and GA3ox1 (C) 
after 30 h, 54 h and 72 h K+ treatment (2 mM or 0.005 mM) determined by qRT-PCR. Seedlings 
grown for 11 d on ½ MS10 followed by movement to K+ treatment. Normalised against 

AT1G13320. Values are means  SE. Three biological repeats and three technical repeats (A,C), 
6 biological repeats and 6 technical reps (B). Letters indicate significance with a Tukey Pairwise 
comparison P< 0.05 (A,B). Asterisks indicate significance with independent samples t test (P-
value <0.05) (C).  
 

 

5.5.2 Low K+ induces DELLA stabilization in LR meristems   

A decrease in GA levels is known to lead to the stabilization of DELLA proteins (see 

introduction section 1.7.3), and consequently levels of DELLA in LRs were investigated using 

the DELLA reporter line proRGA::GFP:RGA and confocal microscopy. Seedlings were grown for 

9 d on ½MS10 media followed by 3 d K+ treatment (2 mM or 0.005 mM), before being imaged. 

Average relative fluorescence levels of proRGA::GFP:RGA were higher in LRs that had been 

exposed to low K+ for 3 d compared to the control seedlings (Fig. 5-17A,B). This suggests that a 
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decrease in GA levels leads to a stabilization of DELLA proteins. Interestingly the increase in 

DELLA levels was not seen after 8 d K+ treatment (2 mM or 0.005 mM) (Fig. 5-17C). Gene 

expression changes of the DELLAs were not investigated as it has been found that most DELLA 

genes are not upregulated at the transcriptional level in response to stress (Colebrook et al., 

2014).  

 

 

Fig. 5-17: (A) Representative confocal images of proRGA::GFP:RGA in lateral roots (LRs) grown 
for 9 d on ½ MS10 followed by 2 mM (left) or 0.005 mM (right) [K+] for 3 d. Scale bars = 100 
µm. Relative mean fluorescence of RGA GFP LRs after 3 d K+ treatment (2 mM or 0.005 mM) 
(B), after 8 d K+ treatment (2 mM or 0.005 mM) (C). Images taken from at least 6 different 

seedlings, n represents individual LRs analysed. Values are means  SE. (B) n≥18 (C) n≥14. 
Letters indicate significance from independent samples t test P< 0.05.  
 

 

5.2.3 Supplementing the medium with GA restores the length of LR meristems under low K+  

DELLA proteins are known to be involved in the reductions in growth by restraining cell 

proliferation and expansion (Peng et al., 1997, 1999; Fleet & Sun, 2005). It was therefore 

hypothesised that the reduction in LR growth in response to low K+ could be due to a reduction 

in GA leading to a stabilization of DELLAs. This was investigated by measuring meristem size 

using CYCB1;2:GUS expression as a proxy, in seedlings grown for 4 d on ½ MS10 followed by 8 
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d on K+ treatment (2 mM or 0.005 mM) medium containing either GA or the GA inhibitor 

paclobutrazol (PAC). In the LRs of length over 1 mm, the application of 10 µM GA restored the 

size of the LR meristem under low K+ (Fig. 5-18A), and application of 0.1 µM PAC reduced LR 

length under the control conditions (Fig. 5-18A). These results were also seen in the lateral 

roots 100 µm–1 mm, however the differences were less prominent and were not statistically 

significant (Fig. 5-18B).   

 

 

 
Fig. 5-18: Typical GUS staining pattern of CYCB1;2:GUS; the staining shows a reduced area of 
cell division in low [K+]. Scale bars = 50 µM. Average length of meristem measured as the 
length of area with dividing cells (stained blue in CYCB1;2:GUS line). (A) Lateral roots (LRs) >1 
mm, (B) LRs 100 µm-1 mm. Media supplemented with either 10 µM GA or 0.1 µM PAC for 8 d. 
Analysis carried out on seedlings 12 d after germination (DAG). Values are averages of 
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measurements taken from at least 6 individual seedlings per treatment  SE, Letters indicate 
significance with a Tukey Pairwise comparison P< 0.05.   
 

 

5.2.4 Supplementing the medium with GA restores LR growth under low K+ 

To investigate this further, the average LR growth was measured in roots grown on media 

supplemented either with 10 µM GA or 0.1 µM PAC. Seedlings were grown on ½MS10 for 9 d, 

then transferred to K+ treatment media (2 mM or 0.005 mM) for 3 d. These results were 

essentially the same as for the previous experiment, with root growth restored with the 

addition of GA, and root growth restricted in the control conditions when PAC was added (Fig. 

5-19). Blocking GA deactivation in the ga2ox quintuple mutant (Rieu et al., 2008) partially 

restored LR over 3 d of low K+ treatment (Fig. 5-20A); however, this did not result in the 

restoration of growth over an 8-d low K+ treatment (Fig. 5-20B). The 8-d growth analysis needs 

to be repeated because the WT was measured in a separate experiment.  

 

 

 

 
Fig. 5-19: Average lateral root growth over 3 d growth on high or low K+ treatment (2 mM or 
0.005 mM). Seedlings grown for 9 d on ½ MS10 before movement to K+ treatment. Values are 

averages taken from at least 17 individual seedlings per treatment  SE. Letters indicate 
significance with a Tukey Pairwise comparison P< 0.05.   
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Fig. 5-20: Average lateral root (LR) growth of Col-0 or ga2ox quintuple mutant (Rieu et al., 
2008) grown on 2 mM or 0.005 mM K+ for 3 d (A) or after 8 d (B). Seedlings all 12 days after 

germination. Values are averages of at least 10 individual seedlings per treatment  SE. Letters 
indicate significance with a Tukey Pairwise comparison P< 0.05. Control for 8 d analysis (B) 
taken from another experiment.  
 

 

5.2.5 GA and DELLA signalling summary 

These data suggest that in response to K+ starvation, there is an increase in GA deactivation, 

through the upregulation of the GA deactivating gene GA2ox6. This then reduces the levels of 

GA in the LRs which leads to the stabilization of DELLA proteins, as was seen using the 

proRGA::GFP:RGA reporter line. DELLA protein accumulation is known to lead to reduced cell 

division and growth. In this chapter it was shown that the addition of GA to the medium 

restores the meristem size under low K+ conditions. Overall these data suggest an important 

role for GA and DELLA signalling in the reduced LR growth response to low K+.  

 

5.6 Summary  

 

Work in this chapter has investigated the roles of hormones and ROS in reducing the LR growth 

in response to low K+. Transcriptomic analysis and literature searches provided the basis for 

the hypotheses that the hormones auxin, ethylene and GA, as well as ROS, may be playing a 

role in the reduced LR growth response to low K+ (Fig. 5-1). The work in this chapter has 

systematically investigated each of these hypotheses experimentally.  
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The results reported in this chapter show that the hormones ethylene and auxin, as well as 

ROS signalling, do not play a significant role in the reduction of LR growth in response to low 

K+; disrupting their signalling, genetically, through the addition of phytohormones or the use of 

chemical inhibitors, was unable to restore the LR growth under low K+. It was shown that 

accumulation of ROS in the LRs may be linked to the upregulation of the HAK5 K+ transporter in 

response to low K+. However, further work is needed to establish the significance of any link. 

This chapter reported data suggesting that in response to low K+ there is a reduction in GA 

levels, which leads to the stabilization of DELLA proteins in the LRs. It has been hypothesised 

that this increase in DELLAs in the LRs causes the reduction in cell division, meristem size and 

growth in the LRs in response to low K+.  
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Chapter 6 Upstream signalling of LR response 

 

6.1 Introduction 

 

Results in previous chapters in this thesis have shown that in response to low K+, lateral root 

(LR) growth in the Arabidopsis accession Col-0 is reduced. Further, it has been suggested that, 

in part, this is due to reduced gibberellic acid (GA) and increased stabilization of DELLA 

proteins in the LRs. This final experimental chapter will investigate the possible upstream 

factors which could result in reduced GA levels and stabilized DELLAs. The RNA-Seq data 

(Chapter 4) were revisited and analysed with the intention of seeking signals and genes that 

are capable of influencing GA/DELLA levels in response to low K+. The factors chosen for 

further analysis were the hormone abscisic acid (ABA) and the transcription factors (TFs) CBF1 

and ERF6. Genes were also chosen due to their significant upregulation after both 3 h and 30 h 

low K+ treatment. Specifically, these were WRKY40, STZ, and a probable calcium binding 

protein AT5G39670. 

 

 

6.2 The regulation of GA signalling in response to low K+  

 

6.2.1 The role of ABA in regulating reduced GA/ increased DELLA in response to low K+ 

On the basis of the existing literature, it was hypothesised that ABA might be playing a role in 

the reduced LR phenotype at two different stages of the response. The first possibility is that 

ABA acts upstream of the GA response and causes a reduction in GA levels in response to low 

K+. This possibility was suggested because ABA treatment has been shown to inhibit GA-

induced degradation of the GFP-RGA protein (Achard et al., 2006) and to upregulate GA2ox6 

and downregulate GA20ox1 (Zentella et al., 2007). The second possibility is that ABA action is 

downstream of the GA response. It has been suggested that GA inhibits ABA biosynthesis 

(Zentella et al., 2007) and that DELLA proteins can lead to ABA accumulation through the 

putative DELLA target XERICO (Ko et al., 2006; Zentella et al., 2007). It was therefore 

hypothesised that reduced GA and increased DELLA could lead to increased ABA and ABA-

mediated responses. WT plants grown on ABA have been shown to display a phenotype similar 

to the low K+ LR phenotype: lateral root primordia (LRP) form and LRs emerge from the 

primary root (PR), but do not elongate (De Smet et al., 2003). In addition, ABA is also known to 

regulate (LR) growth (Signora et al., 2001; Ariel et al., 2010; Van Norman et al., 2014). Analysis 

of the RNA-Seq data did not identify changes in the expression of characterised ABA 
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biosynthesis genes in response to low K+. However, the transcription factor (TF) ORA47 

(upregulated 1.28 log2fc 3 h), was identified by Agris AtTFDB, as being associated with a suite 

of ABA signalling genes (Fig. 4-13). This suggests that there may be changes in ABA signalling 

and possibly changes in biosynthesis after periods of K+ starvation longer than 30 h. Together 

these results suggest that increased ABA in response to low K+ could lead to reduced LR 

growth. A role for ABA in the reduced LR phenotype in response to low K+ was therefore 

investigated by supplementing the growth media with 0.1 µM ABA, 1 µM ABA or 0.1 µM of the 

ABA biosynthesis inhibitor fluridon. Seedlings were grown for 9 d on ½ MS10 then LRs were 

measured upon transfer to the supplemented media and then again after 3 d growth. If the 

reduction in LR growth in response to K+ starvation is due to ABA, then blocking ABA synthesis 

with fluridon would restore LR growth under low K+. This is not seen however, and blocking 

ABA has no effect on LR growth compared with the control (Fig. 6-1). Addition of ABA to the 

growth medium reduces LR growth (Fig. 6-1) which supports the results of De Smet et al. 

(2003). However, ABA is not able to restore LR growth under low K+ conditions (Fig. 6-1). These 

results suggest that reduced LR growth in response to low K+ is occurring through an ABA-

independent mechanism. Interestingly, the ethylene-responsive gene ERF1 has also been 

shown to be negatively regulated by ABA (Cheng et al., 2013), and so the significant increase in 

ERF1 expression (Fig. 5-7) supports the view that there is no early increase in ABA signalling in 

response to low K+.  

 

 

Fig. 6-1: Average lateral root growth per root over 3 d following K+ treatment (2 mM or 0.005 
mM), of Col-0 seedlings grown on media containing 0.1 µM ABA, 1 µM ABA or 0.1 µM fluridon. 
Seedlings grown for 9 d on ½ MS10 before transferral to K+ treatment.  Values are averages of 

at least 8 individual seedlings  SE. Letters indicate significance with a Tukey Pairwise 
comparison P< 0.05.  
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6.2.2 The role of CBF1 in regulating reduced GA/increased DELLA in response to low K+ 

The C-repeat-binding factor (CBF)/dehydration-responsive element-binding factor (DREB1) 

family are a small family of TFs known to regulate cold acclimation through the activation of 

COR (Cold On-Regulated) genes. There are three CBF/DREB1 proteins, two of which are 

represented in the RNA-Seq data. CBF3 (DREB1A) is downregulated after 3 h K+ starvation (-

0.93 log2fc), whilst CBF1 (DREB1B) is upregulated (0.80 log2fc), and CBF2 is not found. The CBF1 

and CBF3 genes are both known to act in the reduction of GA and increase of DELLAs in 

response to cold (Achard et al., 2008a; Zhou et al., 2017), though they act in different ways. 

CBF3 has been shown to reduce GA responses through upregulation of GA2ox7 and RGL (Zhou 

et al., 2017) and CBF1 is known to reduce GA through increasing the expression of GA2ox3, 

GA2ox6 and also through the increase in transcript levels of the DELLA gene RGL3 (Achard et 

al., 2008a). As one CBF gene displayed upregulation whilst another displayed downregulation 

in response to low K+, downstream targets of the CBF regulon were investigated in response to 

low K+, in order to gauge if there is an overall upregulation or downregulation of the pathway. 

The COR genes are known downstream targets in the CBF regulon. Therefore, changes in 

expression of these genes were investigated in the RNA-Seq data set. COR15A and COR15B are 

both downregulated after 3 h K+ starvation (-0.75, -0.69 log2fc, respectively) and upregulated 

after 30 h K+ starvation (0.70, 0.71 log2fc, respectively). COR15A and COR15B are known to be 

CBF3 target genes (Seki et al., 2002; Maruyama et al., 2004), and Novillo et al. (2007) identified 

that COR15A needed simultaneous expression of both CBF1 and CBF3 for activation under 

cold. The upregulation of both COR15A and COR15B after 30 h K+ starvation may suggest an 

overall upregulation of the CBF regulon, as the downstream COR genes are activated. It may 

also suggest however, that these genes are regulated differently in response to K+ starvation 

than previously documented in response to cold.  

 

As CBF1 was found to be upregulated in response to low K+, and its target GA2ox6 was also 

found to be upregulated, the role of this gene in the reduced LR growth phenotype was 

investigated further. The SENSITIVE TO FREEZING6 (SFR6) protein, otherwise known as MED16, 

is known to act downstream of CBF1 translation to recruit the core Mediator complex to cold-

regulated genes in the activation of cold-responsive genes (Knight et al., 2009; Hemsley et al., 

2014). It was hypothesised that in the sfr6-1 mutant (Knight et al., 1999), the activation of 

GA2oxs and DELLAs by CBF1 may be blocked in response to low K+. The reduction in LR growth 

in response to low K+ is partially attenuated in the sfr6-1 mutant when LR growth is measured 

over 3 d low K+ treatment (Fig. 6-2A). An attenuated LR growth response was also seen after 8 

d growth (Fig. 6-2B). However, this 8 d experiment needs to be repeated before any firm 

conclusions can be drawn because the WT was measured in a separate experiment. This 
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attenuation of the reduced LR growth response in the sfr6-1 mutant may suggest a role for 

CBF1 and SFR6 in the regulation of LR growth in response to low K+. SFR6 (MED16) has also 

been shown to function in the regulation of iron uptake gene expression (Yang et al., 2014; 

Zhang et al., 2014) therefore it could suggest a possible pathway for the iron and K+ starvation 

transcriptional profile overlap.  

 

Fig. 6-2: Average LR growth over 3 d K+ treatment (A,C,E) and LR length after 8 d K+ treatment 
(2 mM or 0.005 mM) (B,D,F). Mutant seedlings of sfr6-1 (A,B), SALK_087356 (mutant in the 
ERF6 gene) (C,D) and erf5 erf6 double mutant (E,F) compared with WT (Col-0). Seedlings grown 
for 9 d (A, C, E) or 4 d (B, D, F) on ½ MS10 before transferral to K+ treatment. Values are 

averages taken from at least 9 individual seedlings  SE. Letters indicate significance with a 
Tukey Pairwise comparison P< 0.05. Control for 8 d analysis (B,D,F) taken from another 
experiment.  
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6.2.3 The role of ERF6 in regulating reduced GA/ increased DELLA in response to low K+ 

ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 6 (ERF6) is a member of one of the largest 

families of plant transcription factors, the APETALA2/ETHYLENE RESPONSE FACTORs (AP2/ERF) 

superfamily.  Characterized as containing the AP2/ERF DNA binding domain, the ERFs contain 

only 1 AP2/ERF domain and make up 122/147 AP2/ERF superfamily in Arabidopsis (Moffat et 

al., 2012). The ERFs act as downstream components of the ethylene signalling pathway and are 

known to act as regulatory hubs integrating crosstalk between many hormone and signalling 

components in response to abiotic and biotic stresses (Müller & Munné-Bosch, 2015). ERF6 

was identified from the differentially expressed data in response to low K+ due to its 

upregulation after both 3 h and 30 h K+ starvation (3 h; 0.93 log2fc, 30 h 0.84 log2fc) (Fig. 6-3). 

Enhanced ERF6 expression has been shown to inhibit cell proliferation and leaf growth through 

transcriptional induction of GA2ox6 and a stabilisation of DELLAs (Dubois et al., 2013). This has 

been proposed as a pathway linking ethylene with reduced growth, as ERF6 is phosphorylated 

by MPK3 and MPK6 (P. Wang et al., 2013), which are both downstream of the ACC-

independent of EIN2 signalling pathway (Yoo et al., 2008).  

 

Data in this thesis show that in response to low K+ there is an increase in the transcription of 

GA2ox6 (Fig. 5-16A) and an accumulation of DELLA proteins (Fig. 5-17). It was therefore 

proposed that the transcriptional increase of ERF6 in response to low K+ (Fig. 6-3) could lead to 

reduced GA, stabilised DELLAs, and therefore reduced LR growth. This hypothesis was 

investigated by conducting growth analyses with a SALK mutant (SALK_087356) which has an 

insertion in the exon of the ERF6 gene (Fig. 6-4). The double mutant erf5 erf6 was also 

investigated because of known redundancies between the ERF5 and ERF6 genes (Moffat et al., 

2012) and because ERF5 was also upregulated in the RNA-seq data (3 h 0.52 log2fc).   
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Fig. 6-3: (A) All genes upregulated after 3 h and 30 h K+ starvation treatment, above 0.75 log2 
fold change (log2fc) represented as a graph showing fold changes after both time points. (B) 
Table of genes selected for further analysis, as explained in text, with log2 fold changes (log2fc). 
HAK5 K+ transporter included for comparison.  
 

LR growth was not restored under low K+ treatment (after 3 d or 8 d) in either the SALK-

_087356 or the erf5 erf6 mutants (Fig. 6-2C–F), suggesting that these genes do not play a role 

in the reduced LR growth phenotype in response to low K+. The 8-d growth analysis needs to 

be repeated for further verification because the WT was measured in a separate experiment. 

However, these preliminary results support previous work in this thesis suggesting that 

ethylene does not play an important role in the reduced LR growth response to low K+ (see 

section 5.3).  
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Fig. 6-4: Schematic representation of the T-DNA insertion sites for the selected genes. Sites 
were obtained from TAIR. Dark blue boxes represent the exons, blue lines represent introns, 
light blue boxes represent 5’ and 3’ untranslated regions (UTRs), and red triangles mark the 
insertion sites.  
 

 

6.3 Early signalling candidates identified from the RNA-Seq data 

 

6.3.1 Selection of candidate genes 

As well as the TFs with known roles in GA signalling, the RNA-Seq data were mined for other 

genes that could be playing key roles in the early signalling response to low K+. The HAK5 high 

affinity K+ transporter gene stood out immediately in the RNA-Seq data, with an increase of 

0.92 log2fc after 3 h and 2.60 log2fc after 30 h, making it the second most upregulated gene 

after 30 h. This is not unexpected as HAK5 is well documented for its upregulation after 

exposure to low K+ conditions (Shin & Schachtman, 2004; Gierth et al., 2005). Upregulation 

after only 3 h demonstrates that the drop in K+ has been perceived, and signalling initiated, 

before the 3 h timepoint. It was proposed that the early signal perception and transduction 

machinery may be within the small number of differentially expressed genes found at both the 

3 h and 30 h timepoints.  
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The Venny2.1.0 online tool was used to identify genes that were upregulated after 3 h as well 

as after 30 h. 17 genes were found to be upregulated over 0.75 log2fc after both 3 h and 30 h 

of low K+ treatment (Fig. 6-3A).  It was decided that a smaller number of these genes would be 

studied in more detail. Those chosen were: WRKY40, STZ, ERF6, and a probable calcium 

binding protein AT5G39670 (Fig. 6-3B). AT5G39670, was selected because it displayed a similar 

expression profile to HAK5 in the RNA-Seq data (Fig. 6-3A), and WRKY40, STZ and ERF6 were 

selected due to their previously characterized functions in abiotic stresses. To investigate the 

function of these genes in the low K+ pathway, insertional mutants were identified and 

ordered from NASC (Fig. 6-4). Plants were genotyped and homozygous lines for the mutations 

(Fig. 2-1) were selected for WRKY40, ERF6, STZ and AT5G39670. Analysis of ERF6 has been 

described in the previous section (6.2.3).  

 

6.3.2 The role of WRKY40 in reduced GA/increased DELLA in response to low K+ 

The WRKY family of plant DNA-binding transcription factors are one of the largest families of 

transcriptional regulators in plants, Arabidopsis having 72 members (Bakshi & Oelmüller, 

2014). They are known to play important roles in the plant defence response. They are also 

involved in many other biological processes, including the response to abiotic stress, nutrient 

deprivation and hormonal control and development (see Bakshi & Oelmüller, 2014 for a 

review). The WRKY40 gene displayed strong upregulation after both 3 h (1.11 log2fc) and 30 h 

(1.29 log2fc), suggesting a strong and prolonged activation in response to low K+. As well as a 

known role in ABA signalling (Chen et al., 2010; Shang et al., 2010; Geilen & Böhmer, 2015), 

WRKY40 has also been shown to bind to promoters of multiple stress inducible TFs including 

DREB1A (CBF3), repressing its expression (Shang et al., 2010). The strong upregulation of 

WRKY40 after 3 h K+ starvation may therefore explain the downregulation of CBF3 at the same 

timepoint.  WRKYs have also been associated with reduced GA signalling and interactions with 

DELLAs under several conditions; OsWRKY70 is a negative regulator of GA biosynthesis during 

herbivore attack (Li et al., 2015b), and WRKY26 has been shown to interact with the DELLA 

protein RGA in planta (Helen Riordan thesis 2015). OsWRKY71, which when compared to other 

known WRKY proteins from other species, shares the highest amino acid sequence similarity 

with the Wild Oat ABF2 gene and Arabidopsis WRKY40 (Zhang et al., 2004), has been shown to 

act in the repression of GA signalling in aleurone cells in rice (Zhang et al., 2004; Xie et al., 

2005). This suggests that WRKY40 may have a role in the GA response to low K+. Mutation of 

the WRKY40 gene (SM 3.3287.2) (Fig. 6-4) did not restore LR growth when seedlings were 

grown on low K+ for 3 d or 8 d (Fig. 6-5A,B), suggesting that: (1) WRKY40 does not play an 

important role in this process; (2) that there are redundancies in the pathway; or (3) that the 

mutation does not block gene function because the insertion site is in an intron (Fig. 6-4).  
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Fig. 6-5: Average lateral root (LR) growth over 3 d K+ treatment (2 mM or 0.005 mM) (A,C,E) 
and LR length after 8 d K+ treatment (B,D,F). Mutant seedlings of SM 3.3287.2 (mutant in the 
WRKY40 gene) (A,B), SALK_05092 (mutant in the STZ gene) (C,D) and SALK_127471 (mutant in 
the CML46 gene) (E,F) compared to WT Col-0 (control). Seedlings grown for 9 d (A, C, E) or 4 d 
(B, D, F) on ½ MS10 before transferral to K+ treatment. Values are averages of at least 9 

individual seedlings  SE. Letters indicate significance with a Tukey Pairwise comparison P< 
0.05. Control for 8 d analysis (B,D,F) taken from another experiment.  
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6.3.3 The role of STZ in reduced GA/ increased DELLA in response to low K+ 

SALT TOLERANCE ZINC FINGER (STZ), also known as ZAT10, is a member of the C2H2 zinc finger 

family of TFs and is known to be involved in biotic and abiotic stress signalling (Sakamoto et al., 

2000; Sakamoto, 2004), stress tolerance, and attenuating detrimental reactive oxygen species 

(ROS) effects (Mittler, 2002; Davletova et al., 2005; Miller et al., 2008). Overexpression of STZ 

has been shown to cause a reduced growth phenotype in Arabidopsis rosette stage plants 

(Park et al., 2015), therefore it was hypothesized that STZ could be playing a role in reduced 

growth of LRs in response to low K+. The SALK mutant (SALK_05092) was used to investigate 

the role of STZ in the low K+ response. LR growth was measured after 3 d and 8 d in the low K+ 

treatment. The LRs were longer in the mutant under low K+ than the WT, suggesting an 

attenuation in the reduced growth response (Fig. 6-5C,D). After 8 d growth, the PR length was 

also reduced under low K+ in the SALK_05092 mutant (Appendix VII).  This was the opposite 

phenotype to the WT; with the mutant showing reduced PR and longer LRs, compared with the 

WT maintenance of PR and reduction of LRs. This suggests that the STZ gene may be important 

in regulating the root architectural response to low K+. It is necessary however to complete 

further repeats on the 8 d treatment as the control was conducted in a separate experiment.   

 

6.3.4 The role of AT5G39670 CML46 in reduced GA/increased DELLA in response to low K+ 

The intrinsic role of the calcium ion (Ca2+) in the regulation of the cellular response to abiotic 

and biotic stress is well established (reviewed by Dodd et al., 2010), with documented cell 

type-specific responses to cold, osmotic and salt stress in the Arabidopsis root (Kiegle et al., 

2000). Calmodulin (CaM) and CaM-like (CML) proteins are a family of EF-hand Ca2+ sensors in 

plants (Bender & Snedden, 2013). Considerable work has been carried out characterizing the 

roles of CaMs as Ca2+ sensors, whereas less has been done looking at the large CML family, 

which has 50 members in Arabidopsis (McCormack & Braam, 2003).  

 

The AT5G39670 gene was identified from the RNA-Seq data as showing an increased level of 

expression after 3 h and 30 h low K+ treatment (Fig. 6-3). The gene encodes a probable calcium 

binding protein defined by UniProt as CML45 but by McCormack & Braam, (2003) as CML46. 

Many of the gene ID numbers and CaM nomenclature do not match between UniProt and 

McCormack & Braam (2003), and the TAIR database has not been updated with a gene name; 

it will hereby be referred to as CML46. There is also discrepancy between the number of EF-

hand domains associated with the gene; however, all agree that this gene is likely to be 

associated with calcium binding and is a member of the CML family. McCormack & Braam 

(2003) identified, through expressed sequence tags (ESTs), that CML46 is only expressed in 
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roots (of the tissues analysed) and in response to stress and/or hormones. It was therefore 

hypothesized that CML46 could be a component of a root-specific low K+ stress response. 

 

The activated GID1 receptor has been shown to trigger an increase in cytoplasmic Ca2+ 

concentrations in aleurone cells (Gilroy & Jones, 1992), and McCubbin et al. (2004) identified a 

Ca2+-dependent protein kinase which they suggested mediated Ca2+ dependent events in the 

GA response. These studies indicate that there may be some level of interaction between the 

GA/DELLA signalling pathways and Ca2+ signalling. CML46 may also be playing a role in the 

perception or early signalling of K+ starvation, as many external signals are sensed by the plant 

through rapid changes in calcium levels in the cytosol (Luan et al., 2002; Dodd et al., 2010). The 

phenotype of the SALK_127471 mutant, which has an insertion in the CML46 gene (Fig. 6-4), 

was investigated in response to low K+. It was found to have no effect on LR growth (Fig. 6-

5E,F), in response to low K+, when compared with the WT response. This suggests that CML46 

may not be playing a major role in the root architectural changes in response to low K+, or that 

there are functional redundancies because of closely related members of the gene family. 

 

6.4 Conclusion 

 

Analyses described in this chapter have aimed to improve understanding of the upstream 

signalling components that cause the hormone level changes and root architectural changes in 

response to low K+. A number of potential pathways to reduced GA, increased DELLA were 

identified from the RNA-Seq data, and literature and gene expression data were used to link 

previously published work to the experimental evidence presented here. More work should be 

carried out on all genes to conclusively identify whether they have a role in the low K+ 

pathway. However, mutations in the SFR6 and STZ genes cause an attenuated reduced LR 

growth phenotype in response to low K+, suggesting that they may be important in this 

response. SFR6 acts downstream of CBF1 which was upregulated in response to low K+, and is 

also known to reduce GA levels through modulating gene expression. Therefore, the 

attenuated growth response of the sfr6-1 mutant suggests that there could be a role for this 

regulon in the reduction of LRs in response to low K+. STZ has not been linked in the literature 

to reduced GA signalling. Therefore, the attenuated response in the SALK mutant 

(SALK_05092) may suggest that there is an alternative pathway also reducing growth of LRs, 

acting through STZ.  
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7 Discussion 

 

7.1 Introduction 

 

K+ starvation is a major limitation of crop yields worldwide and the root systems of plants are 

essential for the uptake of K+ from the soil (Maathuis & Sanders, 1994). Understanding how 

plants respond to reduced K+ levels could be important to allow manipulation of root systems 

for increased crop production in the future. The primary aim of the work described in this 

thesis was first to characterise the root architectural growth response to low K+.  Subsequent 

work was focused on understanding the mechanisms by which these changes (specifically the 

reduction in lateral root (LR) growth) occur. The approach was to use RNA-Seq to identify 

transcriptomic changes in response to low K+. Using these data, hypotheses were constructed 

for the potential involvement of the ethylene, gibberellin (GA), auxin and reactive oxygen 

species (ROS) pathways in the control of changes in root architecture in response to low K+. 

These hypotheses were tested experimentally in the plant, revealing a role for GA and DELLA 

signalling in the reduction in LR growth in response to low K+.  The final experimental chapter 

returns to the RNA-Seq data and uses previously published literature to construct hypotheses 

relating to the identity of possible upstream signalling modules involved in the control of the 

hormone-mediated responses.  

 

The objectives of the current chapter are to highlight important aspects of the research in this 

thesis, to discuss the wider implications of the work and to suggest ideas for further 

investigation. The hypotheses generated from work in this thesis and analysis of published 

literature has allowed the construction of (Fig. 7-1), a model of hypothesised pathways 

resulting from exposure to low K+. This figure will be referred to throughout this chapter and 

the supporting data and rationale behind each hypothesis will be discussed in greater detail in 

the text.  
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7.2 Phenotypic response to low K+   

 

Through measurements of primary root (PR) and LR growth, it was established that, in 

response to low K+, Col-0 maintains the growth of the PR. By contrast, the growth of LRs is 

reduced (Figs 3-1 to 3-3). It was established that LR initiation, LR primordia (LRP) development, 

LR emergence and LR meristem establishment were all unaffected by low K+. However, the 

elongation of the LRs was impaired by K+ starvation (Fig. 3-4). Confocal microscopy and GUS 

reporter studies were utilised to show that the LR meristems remain functional under low K+, 

but cell division was reduced and a reduction in meristem size was observed (Figs 3-6, 3-7).  

 

7.3 The reduction in LR growth seen in response to low K+ requires gibberellin (GA) 

and DELLA signalling 

 

As hormonal signalling is essential for growth and developmental patterning, the role of 

hormones was investigated in the reduced LR growth phenotype seen in Col-0 in response to 

low K+. Work in this thesis suggests an important role for GA and DELLA signalling in this 

reduced LR growth response.  

 

7.3.1 Reduced GA levels and increased DELLA in response to low K+ 

Gene expression studies using RNA-Seq and qRT-PCR identified an increase in the expression of 

the GA deactivation dioxygenase gene GA2ox6 (Fig. 5-16A), as well as an initial downregulation 

of a GA biosynthesis gene GA3ox2 (Fig. 5-16B), suggesting that there is a reduction in the GA 

levels in response to low K+. A reduction in GA levels was further supported by the increased 

levels of the DELLA protein RGA in the LRs of seedlings grown under K+-starved conditions (Fig. 

5-17A,B).  As DELLAs are known to be stabilized by reduced levels of GA, this further supported 

a reduction in GA levels in the LRs in response to low K+. These findings were further supported 

by the restoration of LR growth, and cell division under low K+ conditions by the 

supplementation of GA to the growth media (Figs 5-18, 5-19). Together these data suggest that 

in response to K+ starvation, there is a decrease in bioactive GA levels, which leads to the 

stabilization of DELLA proteins in the LRs, which then reduces cell division and growth in the LR 

meristems, producing the reduced growth phenotype (Fig. 7-2).  
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Fig. 7-2: A model for how low K+affects lateral root growth through GA and DELLAs in the 
Arabidopsis accession Col-0. Arrows indicate a positive interaction, T-bars indicate inhibition or 
a negative relationship. Scale bar = 50 µm.  
 

 

7.3.1.1 Mediation of reduction of GA levels  

The data presented here suggest that the reduction in GA is being regulated at a number of 

levels. The first is through increased GA deactivation, as shown through increased expression 

of GA2ox6 after 54 h and 72 h K+ starvation (Fig. 5-16A). The second level is through reduced 

biosynthesis of GA; however the data presented here are not conclusive. An initial reduction in 

biosynthesis was seen in the RNA-Seq data, with a downregulation of the GA3ox2 biosynthetic 

gene after 3 h. However, qRT-PCR studies did not identify a difference in expression levels of 

GA3ox2 between the high and low K+ conditions at any of the timepoints investigated (Fig. 5-

16B). Data on the expression levels of GA3ox1 showed a small increase in expression levels 

after 54 and 72 h K+ starvation (Fig. 5-16C). Increased DELLA activity had been found to 

increase expression of GA20ox1 and GA3ox1 and decrease levels of GA2ox through a feedback 
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mechanism (Hedden & Kamiya, 1997; Cowling et al., 1998; Thomas et al., 1999; Xu et al., 

1999). GA3ox1 is a known direct target of DELLA proteins (Zentella et al., 2007), therefore this 

could suggest the reason why an increase is seen in GA3ox1 expression in response to low K+. 

This suggests that GA levels could also be being controlled through a feedback loop with DELLA 

proteins in response to low K+.  

 

7.3.2 Linking low K+ to reduced GA levels and increased DELLA protein levels 

The level of regulation of this downregulation of GA and increased DELLAs is still very 

speculative. The final results chapter (Chapter 6) amalgamated data from previous results 

chapters, bioinformatic studies and literature searches to propose hypotheses for ways in 

which this GA/DELLA pathway may be being regulated in response to low K+. Only very basic 

phenotyping experiments were carried out to investigate proposed pathways, and further 

repeats are needed on the 8-d studies; however it did go some way to suggest some promising 

routes for further analysis.  

 

7.3.2.1 The role of the CBF regulon  

The CBF1 transcription factor was identified from the RNA-Seq data due to its upregulation 

after 3 h low K+ treatment (0.80 log2fc), and due to its known role in reducing GA and 

increasing DELLA signalling (Achard et al., 2008a). SFR6 is known to act downstream of CBF1, 

post translationally, and a mutation of the SFR6 gene (sfr6-1) partially restored the LR growth 

under low K+ stress (Fig. 6-2A,B). This suggests that CBF1 and SFR6 may be important in the LR 

growth reduction in response to low K+. This is further supported by the upregulation of one of 

the CBF1 target genes GA2ox6 in response to low K+ (Fig. 5-16A). SFR6 is targeted to the 

nucleus, and has been hypothesised to have a direct role on the modulation of gene 

expression (Knight et al., 2009). Therefore, it could be through SFR6 that CBF1 is activating GA 

deactivation genes. CBF1 is also known to increase the transcript level of the DELLA gene RGL3 

(Achard et al., 2008a), therefore it would be interesting to analyse the gene transcriptional 

levels of RGL3 in response to low K+ (see Fig. 7-1, box 1). It would also be interesting to look at 

CBF1 target gene transcription in response to low K+ in the sfr6-1 mutant, to suggest whether 

SFR6 is also acting downstream of CBF1 in response to low K+. Recent advances in CRISPR/Cas9 

technology (Bortesi & Fischer, 2015) has also allowed the production of cbf single, double and 

triple mutants (Jia et al., 2016; Zhao et al., 2016; Shi et al., 2017). It would be interesting to 

characterize root architectural phenotypes of these mutants in order to identify if LR growth is 

still impaired in response to low K+ or if the mutations block the GA/DELLA mediated growth 

reduction. 
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7.3.2.2 The role of the transcription factor STZ  

A mutation in the STZ gene (SALK_05092) led to an attenuation of the reduced LR growth seen 

in the WT in response to low K+ (Fig. 6-5C,D). The mutant also displayed a reduction in the 

growth of the PR in response to low K+ (Appendix VII). Genetic complementation and the 

creation of multiple mutant alleles need to be completed to verify that it is the STZ gene that is 

causing the phenotype observed. However, these preliminary data suggest that STZ could play 

a role in reducing LR growth in response to low K+. Although overexpression of STZ has 

previously been linked to reduced growth phenotypes, the growth response was thought to be 

independent of GA/DELLA signalling, as expression of GA2ox3, GA2ox6 and RGL3 were 

unchanged in the overexpressor (Park et al., 2015). As the experiments reported in this thesis 

have shown that a mutation in this gene restores some LR growth in response to low K+, this 

may suggest that in the WT, STZ acts in the reduction of LR growth in response to low K+, in a 

GA/DELLA independent pathway. To investigate this further, gene expression levels of 

GA/DELLA regulating genes could be analysed in the mutant and compared with their levels in 

the WT.  

 

Interestingly, it was shown in this thesis that in response to low K+, the SALK_05092 mutant 

(mutation in the STZ gene), appears to display a root architectural phenotype more similar to 

Arabidopsis accessions such as Oystese-0 (Oy-0), rather than to its background accession Col-0 

(Kellermeier et al., 2013) (Fig. 1-4). The SALK_05092 mutant displayed a reduction in PR 

growth, but a maintenance of LR growth (Fig. 6-5C,D; Appendix VII), rather than reduced LR 

growth and maintained PR growth seen in Col-0 (Kellermeier et al., 2013). It could therefore be 

hypothesised that STZ is an important gene in defining the root architectural response to low 

K+ across different Arabidopsis accessions. It would be interesting to complete a sequence 

alignment of the STZ gene between different Arabidopsis accessions, and to also analyse the 

gene expression profiles in response to low K+. By conducting these experiments, it might be 

possible to identify differences or patterns that are specific to different architectural responses 

to low K+.    

 

7.3.2.3 The role of ERF6, WRKY40 and CML46 in the low K+ architectural response  

The role of other genes in the reduced LR growth response to low K+ were also investigated in 

this thesis. ERF6, WRKY40 and CML46 were all investigated because of their known roles in the 

reduction of GA levels, or due to their strong upregulation in response to both 3 h and 30 h K+ 

starvation. Each gene was investigated through literature searching and LR growth analysis of 

an insertional mutant associated with the gene. In each case, the insertion was not able to 
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restore LR growth when the mutant was grown on low K+, therefore suggesting that the gene 

does not play a key role in the LR growth response (Figs 6-2C–F, 6-4A,B,E,F). It is not possible, 

however, to rule out the involvement of the genes in the LR growth response as there may be 

other factors which are preventing the phenotype from being observed. For example, there 

may be redundancies in the pathway, which mask the role of the gene. In the case of WRKY40, 

the insertion is in the intron of the gene, and consequently the protein may still remain 

functional even with the insertion present. Therefore, there are many reasons why the roles of 

these genes cannot be discounted in the architectural response to low K+, however work in this 

thesis has not provided any evidence to suggest they are playing a role.  

Another transcription factor (TF) upregulated in response to low K+, and with known roles in 

DELLA accumulation and reduced GA biosynthesis, was JUNGBRUNNEN1 (JUB1), a H2O2-

induced NAC TF (Wu et al., 2012; Shahnejat-Bushehri et al., 2016) (30 h, 1.33 log2fc; Fig. 4-14). 

A mutant in this gene was not obtained for the work in this thesis, but the role of JUB1 could 

be investigated in the future.  

 

7.4 Investigating the roles of other hormones and ROS in the K+-starvation response  

 

The data presented in this thesis did not identify roles of other hormones or ROS in the 

reduced LR growth response to low K+; however, the transcriptomic data suggests the levels of 

these hormones and ROS may be being affected by low K+. As the RNA-Seq experiment was 

carried out on whole seedlings, responses of the whole plant to low K+ are represented in the 

transcriptomic data. In this next section, I will discuss briefly the role of the hormones auxin 

and ethylene, and the role of ROS in the LR growth response through an overview of the data 

presented here. I will touch briefly on the potential roles that they may be having in the plant 

in response to low K+.  

 

 

7.4.1 Auxin 

7.4.1.1 Auxin signalling is not sufficient to reduce LR growth in response to low K+ 

Auxin is known to have important roles in the maintenance of meristem size and activity, 

however data in this thesis suggest that auxin signalling is not sufficient to cause the reduced 

LR growth phenotype in response to low K+. No changes were observed when the media were 

supplemented with IAA, or NPA, or when the auxin mutant aux1-7 was investigated. There was 

also no observed change in auxin distribution in the LRs in response to low K+. This suggests 

that auxin signalling is unaffected in the LRs under low K+, and that cell division in the LRs is 
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being modulated by an auxin-independent system. Although data in this thesis do not support 

a role for auxin in the reduced LR growth response to low K+, a reduction in free IAA 

concentration has been identified in response to low K+ (Shin et al., 2007). Auxin is known to 

promote the GA-mediated deactivation of DELLAs (Fu & Harberd, 2003), and as a result 

reduced auxin might not be essential in the reduction of LR growth in response to low K+, 

however it may contribute to the stabilization of DELLAs and therefore contribute to the 

overall response (see Fig. 7-1, box 2). It is also possible that changes in auxin signalling is 

important in the maintenance of PR growth in response to low K+. It would be possible to 

investigate this hypothesis by measuring PR growth in response to low K+ on media 

supplemented with IAA or with NPA.    

 

7.4.2 Ethylene 

7.4.2.1 Ethylene signalling is not sufficient to reduce LR growth in response to low K+  

Another hormone that was suggested to act in the reduction of LR growth in response to low 

K+ was ethylene. Data in this thesis do not support an important role for ethylene in the LR 

growth reduction in response to low K+. This was demonstrated as despite an increase in 

ethylene signalling in response to low K+ (Fig. 5-7), blocking ethylene signalling using Ag2+ and 

the use of ethylene signalling mutants did not restore LR growth under low K+ conditions (Figs 

5-8, 5-9). Ethylene is known to inhibit root growth; however it has been documented that it 

does so primarily through its effect on cell elongation, rather than affecting cell division and 

meristem activity (Ruzicka et al., 2007). As the reduction in LR growth in response to low K+ 

was shown in this thesis to be through a reduction in cell division (Fig. 3-7) rather than a 

reduction in cell elongation (Fig. 3-8), this fits with the suggestion that ethylene is not playing a 

key role in the reduced growth phenotype.   

 

An increase in ethylene levels is a well characterized response to low K+ (Shin & Schachtman, 

2004; Jung et al., 2009). Ethylene is also known to inhibit the GA induced degradation of GFP-

RGA (Achard, 2003) it is possible that an increase in ethylene may also be contributing to the 

higher levels of DELLA in response to low K+ (see Fig. 7-1, box 3). Hormonal crosstalk is very 

complex and so it is difficult to rule out the influence of hormones such as auxin and ethylene 

in a role in the reduced LR response to low K+. However, data in this thesis suggest that their 

individual involvement is not sufficient to create the reduced LR growth response that is seen 

here.  
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7.4.3 ROS  

7.4.3.1 ROS production is not sufficient to reduce LR growth in response to low K+  

Data from this thesis suggest that an increase in ROS does not play an instrumental role in the 

reduced LR growth response to low K+. This was indicated by growth of the LRs under low K+ 

being unable to be restored in the ROS rboh mutants or when ROS was blocked using DPI (Fig. 

5-14). Work has already identified a role for ROS in the upregulation of K+ transporters in 

response to low K+ (Jung et al., 2009) but work in this thesis was unable to identify whether 

ROS was also acting in a similar role in the regulation of uptake transporters in the LRs in 

response to low K+.  

 

7.4.3.2 DELLA reducing ROS accumulation as a stress tolerance mechanism 

DELLA proteins have been shown to reduce stress induced ROS accumulation by acting on the 

ROS scavenging system (Achard et al., 2008b). It has been proposed that this is through the 

elevated expression levels of ROS detoxification enzymes, such as Cu/Zn-superoxide 

dismutases (CSDs) and catalases, which reduces ROS accumulation (Achard et al., 2008b). It is 

possible therefore that there is not a large increase in ROS levels in the LRs in response to low 

K+ due to the increased DELLA accumulation (see Fig. 7-1, box 4). It is suggested that this could 

be a stress tolerance mechanism, and might explain why the LR meristems remain functional, 

even under prolonged severe K+ starvation. To test if DELLAs are acting to restrain ROS in 

response to low K+ the HyPer line (Belousov et al., 2006) could be used to visualize ROS levels 

in LRs. If DELLAs act to restrain ROS accumulation in response to low K+, then addition of GA to 

the growth medium should cause the degradation of DELLAs and therefore an increase in ROS, 

because the restraint has been lifted. 

 

7.5 Links between other stress pathways 

 

A reduction in GA levels leading to DELLA accumulation and inhibition of growth has also been 

identified as a key response to salt, cold, osmotic stress and low phosphate signalling (Achard 

et al., 2006, 2008a,b; Jiang et al., 2007; Magome et al., 2008; Dubois et al., 2013; Rowe et al., 

2016). Each pathway identifies GA deactivation as a key point of control, with increased 

transcriptional regulation of GA2ox genes in each pathway (Jiang et al., 2007; Achard et al., 

2008a; Magome et al., 2008; Dubois et al., 2013) (Fig. 7-3). Work in this thesis has identified 

another abiotic stress response mediated by reduced GA and increased DELLA action, leading 

to a reduction in growth (Fig. 7-3). This thesis presents a model where growth is being 

restricted specifically in the meristems of LRs in response to low K+.   
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Fig. 7-3: Upregulation of members of the GA2ox family of GA deactivating genes and the RGL3 
DELLA gene in response to various abiotic stresses; low P (Jiang et al., 2007), osmotic stress 
(Dubois et al., 2013), salt stress (Magome et al., 2008), cold (Achard et al., 2008a) and low K+ 
(data presented in this thesis). Transcription factors known to upregulate these genes (red 
rectangles). Regulation of GA3oxs and GA20oxs not included. Arrows indicate positive 
interactions, T-bars indicate inhibition or a negative relationship. Figure adapted from 
Colebrook et al. (2014), with data incorporated from Jiang et al. (2007), Achard et al. (2008a), 
Dubois et al. (2013), Magome et al. (2008) and data from this thesis.  
 

 

7.5.1 Cold stress and K+ starvation have overlapping transcript profiles 

Data in this thesis suggest a link between the response to low K+ and the response to cold, due 

to the upregulation of cold-responsive transcription factor CBF1, as well as a number of COR 

genes. A downregulation of a number of COR genes has previously been noted following the 

resupply of K+ to K+-starved seedlings (Armengaud et al., 2004), further suggesting a link 

between the pathways.  Interestingly, data in this thesis identified that, despite an 

upregulation of the CBF1 gene in response to low K+, there was a downregulation of another 

CBF gene, CBF3 after 3 h K+ starvation. The two genes have been grouped together in the past 

because they are regulated and function differently to the other member of the family CBF2, in 

response to cold (Novillo et al., 2007); however in response to low K+ they seem to be 

regulated differently. Despite this contradictory regulation, investigation of the downstream 

COR genes suggests that the pathway is being activated as both COR15A and COR15B are 
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upregulated after 30 h K+ treatment. A previous report has suggested that upregulation of 

both CBF1 and CBF3 is required for the regulation of these genes under cold stress (Novillo et 

al., 2007). As CBF3 is downregulated after 3 h K+, but not found to be differentially expressed 

from control conditions at 30 h, it could be hypothesised that after initial downregulation, the 

transcription is reactivated, and it just is not yet possible to observe this at the 30 h timepoint.  

 

It would be interesting to look at the transcriptional regulation of the CBF genes and COR 

genes at later timepoints following K+ starvation, to allow a larger picture of the potential 

integration of the two stresses, K+ starvation and cold. Conducting root architectural analysis 

as well as K+ starvation tolerance experiments on the cbf single, double and triple mutants (Jia 

et al., 2016; Zhao et al., 2016; Shi et al., 2017) would provide clues about the roles of these 

genes in the K+ response, and the links between the two pathways. These papers also 

conducted RNA-Seq analyses using the cbf mutants (Jia et al., 2016; Zhao et al., 2016; Shi et al., 

2017), and it would be interesting to conduct bioinformatic analysis comparing the 

transcriptional profiles with the low K+ regulated genes to identify more overlap/differences. It 

would also provide more information about the differences in the regulation of the three CBF 

genes and how they mediate and participate in stress responses.  

 

7.5.2 Iron and K+ starvation transcriptional profile overlap 

A link between iron (Fe) and K+ deprivation was also identified in the RNA-Seq experiment 

conducted in this thesis; there was upregulation of a whole suite of genes known to be 

involved in in the Fe deficiency pathway in response to low K+ (Fig. 4-9). The differentially 

expressed genes were not conclusive, however, as there was also downregulation of genes 

known to be positive regulators of the deficiency pathway, and upregulation of a number of 

negative regulators of Fe deficiency (Fig. 4-9).  

 

K+ addition is known to ameliorate the toxicity effects of Fe (Trolldenier, 1973; Becker & Asch, 

2005), and this effect has been proposed to be as a result of reducing Fe uptake and 

translocation in the plant (Li et al., 2001). It could be hypothesised that K+ deficiency leads to a 

release on the inhibition of Fe uptake, thereby stimulating the Fe deficiency (or uptake) 

pathway. Alternatively, it could suggest that there is some level of conservation between the 

Fe and K+ deficiency pathways, which has been identified within the low K+ data as a 

stimulated Fe deficiency pathway. GA and DELLA activity has recently been shown to control 

the expression of iron regulated TFs and to limit growth in response to low Fe (Wild et al., 

2016), suggesting a possible link between low K+ and low Fe, and SFR6 (MED16) was also 
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suggested in this thesis as a possible link between the pathways due to its known roles in gene 

regulation of iron homeostasis (Yang et al., 2014; Zhang et al., 2014). The interactions between 

different micro- and macro-nutrients are very complex and further work is required to 

investigate this proposed link between Fe and K+.  

 

 

7.6 Potassium and gravitropism 

 

A link between potassium and gravitropism has been made a number of times in the literature 

(eg. Vicente-Agullo et al., 2004; Ashley et al., 2006), although the mechanistic details of the 

interaction are unknown. The work presented here, and previous analyses, provide more data 

to support the link. The agravitropic mutants aux1-7 and eir1 were shown here to display 

partially restored gravitropism in response to prolonged growth on low K+ (Fig. 3-9B,D). Work 

here also identified a link between increased ethylene and increased degree of gravitropic 

growth (Fig. 3-10B). Although the work here was not able to establish a mechanism by which 

this is occurring, appropriate genetic resources for future study (in the form of crosses) were 

generated to allow further investigations into the link between K+ and gravitropism.  

 

7.6.1 Data in this thesis suggests that exogenous application of auxin is unable to restore 

gravitropism in agravitropic mutants 

Vicente-Agullo et al. (2004) identified that supplementation of 80 nM IAA was sufficient to 

restore gravitropism in the trh1 auxin mutant, however, results presented here show that 

application of 200 nM IAA was not able to restore gravitropism in aux1-7 (Fig. 3-10C). It is 

possible that 200 nM was too high a concentration for the mutant. However, previous studies 

have suggested that the low diffusion rate of IAA is unable to overcome the severely disrupted 

auxin transport of the aux1-7 mutant, and therefore is unable to restore the gravitropic nature 

(Marchant et al., 1999). Gravitropism has been shown to be restored in the aux1-7 and trh1 

mutants through the addition of 1-NAA (Marchant et al., 1999; Vicente-Agullo et al., 2004), 

which is likely due to the fact that its distribution does not require polar auxin transport 

(Marchant et al., 1999). It would be interesting to investigate whether the addition of 1-NAA 

would restore gravitropism in the aux1-7 mutant, and how this would affect the impact of K+ 

on the restoration of gravitropism.  

 

7.6.2 Role of ethylene in the restoration of gravitropism in low K+ 

The known upregulation of the hormone ethylene in response to low K+ (Jung et al., 2009) led 

to its investigation in this gravitropism response in this thesis. By blocking ethylene action 
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using Ag2+, and supplementing the media with an ethylene precursor (ACC), it was possible to 

reveal a role for ethylene in this restoration of gravitropism. After 8 d treatment, it was shown 

that ACC restores gravitropism under both high and low K+, whereas Ag2+ abolishes the 

restoration under both K+ concentrations (Fig. 3-10B). Ethylene is upregulated under low K+, 

therefore it is reasonable to hypothesise that the restoration of gravitropism under low K+ is 

due in part to the increase in ethylene.   

 

The role of ethylene in root gravitropism is controversial. Some results report a negative role 

for ethylene (Buer et al., 2006; Ma & Ren, 2012), whilst others report a positive role (Huang et 

al., 2013). All previous investigations have used different time points, different ways to 

simulate increased/decreased ethylene and different ways of characterizing the gravitropism 

response, and consequently it is difficult to form a clear picture of what is occurring. The 

previous analyses were conducted after 8 d K+ treatment, however, when looking at a shorter 

timescale (Fig. 3-11B) a role for ethylene was not observed. The attenuated agravitropic 

phenotype under low K+ was also not observed at this shorter timescale, (Fig. 3-11B) which 

suggests that the low K+ and ethylene responses are working together at a later stage of the 

gravitropic response.  

 

7.6.3 A mechanism for ethylene action in gravitropism was not established  

In the response to gravity, root bending is known to be caused by a differential accumulation 

of auxin on the different sides of the root (Friml et al., 2002b). Ethylene has been shown to 

modulate auxin transport through upregulation of auxin transporters such as PIN2 and AUX1 

(Ruzicka et al., 2007), therefore it was hypothesised that ethylene may be causing the 

redistribution of auxin through transporters that lead to the restoration of gravitropic bending 

in mutants such as aux1 and eir1. Studies in this thesis looking at the accumulation of auxin 

and PIN2 localization in PR tip of the aux1-7 mutant in response to low K+ using the aux1-7 

35S::DII-VENUS-N7 auxin reporter and aux1-7 proPIN2::PIN2::GFP (Fig. 3-12) did not show 

changes in accumulation or localization pattern. However, the sample size for each was small 

(n ≥ 4), and analysis was only carried out after 8 d K+ treatment. Further investigation is 

needed to fully investigate the hypothesis that an increase in ethylene is causing a 

redistribution of auxin leading to changes in root bending. Shorter time periods need to be 

examined and the cell polarity of PIN2 will need to be analysed. Previous reports have also 

identified ectopic localization of PIN1 in agravitropic mutants (Rigas et al., 2013) and therefore 

it would be interesting to investigate the potential role of ethylene in this response by 

analysing localization following ethylene treatments such as ACC and Ag2+. 
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7.7 Reduced photosynthesis in response to low K+ 

 

Previous studies on various crop species have observed a reduced photosynthetic rate in 

response to K+ deficiency (Tomemori et al., 2002; Jin et al., 2011). Potassium affects 

photosynthesis at a number of levels; it is important in the synthesis of ATP, the activation of 

photosynthetic enzymes and acts as the dominant counterion to the light-induced H+ flux 

across the thylakoid membranes (Marschner, 1995). There have been numerous studies linking 

K+ deficiency to reduced photosynthetic rates (Bednarz et al., 1998; Bednarz & Oosterhuis, 

1999; Zhao et al., 2001; Weng et al., 2007), with links between reduced chlorophyll content, 

poor chloroplast ultrastructure, restricted saccharide translocation (Zhao et al., 2001) reduced 

stomatal conductance (Bednarz et al., 1998) and reduced photosynthetic enzyme activity 

(Weng et al., 2007). 

 

7.7.1 Downregulation of photosynthetic genes in response to low K+ 

The data presented in this thesis (Chapter 4, section 4.4.2) suggest that reduced 

photosynthesis could be partly controlled through the downregulation of genes associated 

with the photosynthetic machinery (Fig. 4-8). Previous work also identified photosynthetic 

gene expression changes in response to salt stress and drought (Chaves et al., 2009), 

identifying downregulation in genes relating to ATP synthesis, proton transport, light reactions 

and the xanthophyll cycle (Chaves et al., 2009). Overexpression of STZ is also known to 

downregulate photosynthesises and carbohydrate metabolism genes (Maruyama et al., 2004); 

therefore, the upregulation of STZ in response to low K+ shown in this thesis (Table 4-1), could 

be leading to the downregulation of the photosynthesis genes identified in the RNA-Seq data 

(Fig. 4-8, Appendix III) (see Fig. 7-1, box 5). As a SALK mutant identified with an insertion in the 

STZ gene is available (Fig. 6-4), photosynthetic gene expression levels could be analysed in the 

mutant and compared with the WT, to determine whether the STZ gene is instrumental in 

modulating photosynthetic gene expression.  

 

7.8 Ecological significance  

 

7.8.1 Ecological significance of Col-0 root architectural change to low K+ 

In response to low K+ Col-0 maintains PR whilst compromising the growth of its LRs. It has been 

suggested that LRs are more important than the PR in the uptake of immobile nutrients, such 

as phosphorus and manganese, from the soil (Liu et al., 2013) while a deeper root system is 

more important for taking up mobile nutrients such as potassium and nitrogen (Maeght et al., 
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2013). As potassium is such an essential nutrient for growth and functioning of a plant, this 

might explain the trade-off between PR and LR, utilising remaining resources to grow in a way 

more likely to find the mobile nutrient potassium, deeper in the soil.   

 

 The work by Kellermeier et al. (2013) described a gradient of root architectural responses to 

low K+ in different Arabidopsis accessions. Some accessions displayed similar responses to Col-

0, maintaining PR growth but reducing LR growth, while other accessions reduced PR growth 

and increased LR growth (Fig. 1-4). The ecological significance of the phenotypic gradient 

within the Arabidopsis species has not been investigated, and could be an interesting direction 

for further work. Over 7000 Arabidopsis accessions have been identified worldwide, and most 

live within characterized geographical boundaries (Weigel, 2012). By looking at the locations in 

which the accessions evolved, and the root architectural responses that they display to K+ 

deprivation, causal factors such as typical soil type, precipitation and temperature may be 

identified. Links between the ecological niche that an accession inhabits, and the phenotypic 

response to potassium starvation, might provide clues as to why there is such variation in root 

architectural responses to an environmental factor within a single species.  

 

7.8.2 Ecological significance of the reduced activity but maintained functionality of the LR 

meristem 

The results in this thesis show that in response to low K+, LR growth is reduced through 

modulation of meristem activity (cell division) rather than a loss of quiescent centre (QC) 

identity. It was also shown that LR meristem functionality is maintained even following an 8 d 

treatment of severe K+ starvation (Fig. 3-6). Following the resupply of K+, seedlings were able 

to regain growth of the LRs (Appendix VIII). Further experiments characterizing LR growth after 

resupply of K+ need to be carried out in which LR growth after movement from low K+ to high 

K+ and high K+ to low K+ are investigated. These should be accompanied by control treatments 

to establish the level of plasticity allowing the LRs to continue growth. It would also be 

interesting to investigate meristem size following resupply of K+ to determine whether the 

meristem is able to regain its size or if the period of K+ starvation results in the presence of a 

lasting reduction in the size of the meristem. The ability to regain growth following periods of 

K+ starvation would be likely beneficial to the survivability of the plant. Due to the many 

variables in the soil affecting K+ availability (Jung et al., 2009), it is likely that plants often 

experience periods of K+ starvation in the field. It can be speculated that maintaining LR 

density, but not expending resources on LR growth and elongation, potentially allows the plant 

to conserve the limited K+ available. It then allows the plant (in the case of Col-0) to use these 

remaining resources for the maintenance of downward growth of the PR. Following the lifting 
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of the K+ deprivation, the LRs would then be able to continue normal growth, increasing the 

root surface area and increasing foraging ability of other nutrients and water.  

 

Although not investigated in this thesis it would be interesting to examine the impact of 

localised areas of K+ starvation on the root architectural growth. Classical experiments (Drew, 

1975) showed that, unlike most nutrients, localized supply of K+ to the plant did not lead to a 

localized proliferation of LR in the area of high [K+]ext. This may suggest that localized depletion 

zones of K+ may not lead to reductions in LR growth in specific root zones. Investigating this 

further may shed more light onto the means of perception of K+ starvation, and the signalling 

pathways following on from the sensing event.  

 

7.8.3 Selective advantage of reduced growth response to abiotic stress 

Work in this thesis shows that in response to low K+, Col-0 reduces its LR growth through a 

DELLA-mediated pathway. In the case of salt and cold, the growth restriction mediated by 

DELLAs has also been linked to an increased stress tolerance (Magome et al., 2004; Achard et 

al., 2006, 2008a,b). To test the role of DELLAs in long-term stress tolerance, it would be 

interesting to investigate the growth of ga2ox quintuple mutant plants compared with the WT 

over a prolonged period of time. It would also be interesting to look at the tolerance of DELLA 

mutants; however, the creation of DELLA mutants (rga gai) in Col-0 causes complete male 

sterility (Plackett et al., 2014), therefore making them difficult to work with. The advent of 

CRISPR/Cas9 (Bortesi & Fischer, 2015) may allow the rapid creation of GA/DELLA mutant 

resources in the Col-0 background.  

 

7.9 Notes on experimental design  

 

Through analysis of this LR growth response to low K+ it became apparent how important 

experimental design is when investigating the developmental responses of LRs. Initial analyses 

conducted for this thesis, as well as previously published work investigating the LR response to 

low K+, identified a reduced number of LRs in response to low K+ (Fig 3-1B; Shin et al., 2007; 

Kellermeier et al., 2013). However, further characterization of this LR response (Chapter 3) 

identified that in contrast to the work by Shin et al. (2007), there was no observed reduction in 

LR density. The reduced number of LRs observed in initial investigations reported here (Fig. 3-

1B) was shown to be due to the method of counting, which was not sensitive enough to 

observe the developed but not elongated roots. LR development is a very complex process and 

consequently it is difficult to form (well supported) conclusions concerning the influence of 
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external factors on root architecture if the stage of development has not been accurately 

characterized. For example, in the paper by Shin et al. (2007) a reduced LR density in Col-0 is 

observed in response to low K+, and this in turn was attributed to changes in auxin signalling. 

However, auxin is known to act at every stage of LR development (from priming the initials 

through to the emergence from the PR; Lavenus et al., 2013) therefore characterizing LR 

density in auxin signalling mutants is unlikely to accurately characterize the role of auxin in the 

low K+ response. The role of auxin in the reduced LR density response to low K+ was identified 

by Shin et al. (2007) through observations of reduced LR density in auxin signalling mutants 

such as tir1-1. However, the tir1-1 auxin mutant was also shown to display significantly lower 

LR density under nutrient sufficient conditions, suggesting that the reduced density observed 

by Shin et al. (2007) was a general auxin response and not a nutrient specific response. Work 

in this thesis did not observe a role for auxin in the reduced LR elongation response (Chapter 5, 

section 5.2). It is difficult to suggest reasons why the investigations reached different 

conclusions without further characterization of LR development, as both used different [K+] 

and different auxin signalling mutants. The current study therefore highlights the importance 

of experimental design when conducting LR experiments. It shows that recording the 

presence/absence of a visible LR does not give sufficient information to present an accurate 

picture of what is a complex response. The work in this thesis shows that it is important to 

conduct experiments such as LR progression analyses, to determine at what stage 

development is being influenced by the stress or stimulus.  

 

7.10 Future prospects and further work 

 

7.10.1 K+ perception 

Although not investigated in this thesis, the mechanisms of external K+ perception are still 

unknown. As was highlighted in the Introduction (Chapter 1, section 1.2) there are a number of 

potential mechanisms but the K+ channel AKT1 is the current focus of much research. There is 

a growing body of work suggesting a role for AKT1 in K+ perception (see the Introduction, 

Chapter 1), however, despite these recent advances there is still much that is unknown. A 

better understanding of how plants sense external K+ levels would be an invaluable tool to 

allow the further investigation of the response of the plant to low K+. 
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7.10.2 Further verification of GA/ DELLA levels in response to low K+  

7.10.2.1 Analysis of GA concentration levels  

Despite work in this thesis presenting compelling evidence to suggest a reduction in GA in 

response to low K+ (discussed above), it was not possible to quantify cellular levels of GA. 

Liquid chromatography-mass spectrometry (LC-MS) can be used to measure concentrations of 

plant hormones (Crozier & Moritz, 1999) but attempts to do this here produced inconsistent 

results across biological repeats (results not shown). Another confounding factor in the 

measurement of GA concentrations was the need for large amounts of tissue. In response to 

low K+, work in this thesis predicted a reduction in GA levels in the LRs of seedlings but not in 

the plant overall, due to the maintenance of PR growth. As the LRs are very short when 

subjected to low K+, it was not possible in this study to collect enough tissue to complete 

analysis on LRs only. Further experiments could therefore focus on determining a full picture 

of the gene expression changes of the dioxygenase genes (GA3oxs, GA20oxs and the GA2oxs) 

in order to gain more evidence for reduced GA levels.  

 

7.10.2.2 Further characterization of the DELLA accumulation response of LRs  

It would also be good to investigate further the changes in DELLA levels in response to low K+. 

Western blot analysis of protein levels may face the same problems as the LC-MS in the 

inability to look at only LR DELLA levels, therefore further confocal microscopy might be the 

best means of investigation. The recent advances in light sheet fluorescence microscopy 

(LSFM; Maizel et al., 2011) could provide an exciting opportunity for further investigation of 

the DELLA response. LSFM allows the live imaging of a growing Arabidopsis root, and recent 

advances have led to the development of elegant protocols to allow the time-lapse recording 

of Arabidopsis LR growth over 17 h growth (Von Wangenheim et al., 2017). Utilising the 

proRGA::GFP:RGA line in this system would allow the visualization of DELLA levels over 

prolonged periods of time following low K+ treatment, allowing the investigation of the 

dynamic system. 

 

7.10.3 How DELLA accumulation leads to reduced cell division  

The mode by which DELLAs lead to growth changes is still poorly understood; however it is 

thought likely that DELLAs do not bind directly to DNA, but instead regulate transcription 

through the binding of TFs. Work looking at hypocotyl elongation in response to light 

demonstrated that DELLA proteins bind to bHLH TFs PIF3 and PIF4 (PHYTOCHROME 

INTERACTING FACTOR 3 &4), inhibiting binding to target promoters. PIFs are known to activate 

genes involved in cell elongation, DELLAs act to repress growth in this system (de Lucas et al., 

2008; Feng et al., 2008). Similar mechanisms have also been demonstrated in the control of 
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fruit patterning and hypocotyl elongation with DELLAs binding to the bHLH TFs ALCATRAZ 

(ALC) and SPATULA (SPT) preventing activation of target genes (Arnaud et al., 2010; Josse et 

al., 2011), and in jasmonate (JA) signalling, with DELLAs repressing the activity of the JA ZIM-

domain 1 (JAZ1) protein (Hou et al., 2010).  

 

As well as excluding TFs from promoter regions, DELLAs are also able to modulate gene 

expression by acting as transcriptional co-activators. In the root meristem, an interaction 

between cytokinin and DELLA signalling has been identified in the regulation of cell division. 

Cytokinin-responsive gene expression is known to be regulated by type-B ARABIDOPSIS 

RESPONSE REGULATORS (ARRs) transcription factors, such as ARR1 (Sakai et al., 2000; Mason 

et al., 2005). In the root meristem DELLAs have been shown to be recruited by ARRs to form 

transcriptionally active complexes to regulate cytokinin regulated gene expression (Marín-de la 

Rosa et al., 2015). The presence of DELLA proteins has also been shown to be essential for the 

function of ARR1 in reducing cell division and meristem size in the PR meristem (Moubayidin et 

al., 2010; Marín-de la Rosa et al., 2015). 

 

7.10.3.1 A role for cytokinin in DELLA action in response to low K+? 

The role of cytokinin in the root architectural response to low K+ was not investigated in this 

thesis; however, it could be hypothesised that the DELLA-induced reduction of cell division in 

the LR meristem in response to low K+ might be mediated through the interaction between 

DELLA proteins and TFs, such as ARR1 (see Fig. 7-1, box 6). It would therefore be interesting to 

investigate this interaction within the LRs of the low K+ system. The DELLA-mediated process of 

cotyledon opening has been shown to be completely suppressed in the arr1 arr12 double 

mutant (Marín-de la Rosa et al., 2015). It would therefore be interesting to measure the LR 

growth response to low K+ in this double mutant, to determine whether these response 

regulators are also necessary for DELLA action in this system. The use of the conditional 

ARR1ΔDDK:GR allele under the 35S promoter (Sakai et al., 2001) may also be utilised to 

investigate whether ARR1 is acting with DELLAs to reduce root growth in response to low K+. 

Treatment of ARR1ΔDDK:GR with dexamethasone (DEX) causes ARR1ΔDDK to translocate to 

the nucleus and regulate gene transcription (Sakai et al., 2001). If ARR1 is necessary for the 

reduced growth response to low K+, then LR growth will not be reduced if the translocation of 

ARR1ΔDDK is blocked by not treating seedlings with DEX.  
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7.10.3.2 Post translational modification of DELLAs 

It has also started to come to light that post translational modifications are also important in 

the regulation of DELLA action. For example, SUMOylation of DELLAs is known to be important 

in the restraint of growth in response to salt stress (Conti et al., 2014), and DELLAs have also 

recently been shown to be regulated through glycosylation by SPINDLY (SPY) and SECRET 

AGENT (SEC) (Zentella et al., 2016, 2017). Post translational modifications add another layer of 

complexity into a system where there is still much that is unknown.  

 

7.10.4 Gravitropism 

7.10.4.1 A role for ROS in low K+ mediated gravitropic bending?  

Joo et al. (2001) have suggested a role for ROS in the gravitropic response. An asymmetrical 

accumulation of ROS on the lower cortex was observed upon a reorientation of gravity 

stimulus and the root bending was prevented through scavenging ROS using N-acetyl-cysteine. 

These data suggest that ROS acts as an inhibitor of growth in the gravitropism response (Joo et 

al., 2001). Ethylene has been shown to act upstream of ROS in response to low K+ (Jung et al., 

2009), therefore it is possible that ethylene is mediating gravitropic bending through ROS. It 

would be interesting to carry out vertical growth index analyses and root reorientation studies 

with application of H2O2 and ROS blocker DPI to investigate a potential role for ROS in the 

pathway.  

 

7.10.4.2 The use of microscopy for future analysis of gravitropic effect  

The recent advances in LSFM (Maizel et al., 2011) might provide an exciting opportunity for 

investigating this gravitropic response. LSFM allows the live imaging of a growing Arabidopsis 

root. This would allow the visualization of dynamic processes such as auxin accumulation to be 

analysed (Ovecka et al., 2015) using DII-VENUS or R2D2 Liao et al. (2015). This would also allow 

localization of proteins such as with proPIN2::PIN2::GFP to be observed in the response to a 

change in gravity stimulus. Visualization of these reporters in the PR following gravistimulation 

would make the elucidation of their importance in the process much easier. Light sheet 

technology also allows the possibility of chemical or hormonal treatments to the growth media 

to be carried out during imaging (Von Wangenheim et al., 2017), and it could, therefore 

provide the perfect way to identify the role of ethylene in gravitropism through the addition of 

ethylene precursors or blockers.  

 

7.10.5 Clues for the regulation of ethylene biosynthesis in response to low K+  

Despite an increase in ethylene levels and increased biosynthesis in response to low K+ being a 

well characterized response, the mechanisms for this increase have not been identified. 
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Although not investigated in this thesis, the data presented from the RNA-Seq data did identify 

the WRKY TF WRKY33 as a possible candidate for activation of the ACS6 gene expression 

changes. Upregulated strongly after only 3 h, then to a lesser extent after 30 h K+ starvation, 

the transcription profile matches the rapid transient upregulation of ACS6. WRKY33 has also 

been shown through a chromatin-immunoprecipitation assay to directly bind to the W-box in 

the promoter of ACS6 in vivo and act in the induction of ethylene in response to pathogen 

attack (Li et al., 2012) (see Fig. 7-1, box 7). Looking at ACS6 expression levels in the WRKY33 

mutant in the early K+ stress response may link this TF to the ethylene response to low K+.  

 

7.10.6 Integration of stress pathways and construction of models 

In the soil, the plant is faced with many different abiotic and biotic stress signals concurrently. 

The means by which these signals are integrated is of great importance in the regulation of 

growth conditions to increase yield of crops of the future. As discussed earlier, a reduction in 

growth mediated through a reduction in GA levels and subsequent stabilization of DELLAs is a 

common response to stresses, occurring in response to low K+ (data shown in this thesis), salt 

stress (Magome et al., 2008), osmotic stress (Dubois et al., 2013), cold (Achard et al., 2008a) 

and low phosphate (Jiang et al., 2007) (Fig. 7-3). Understanding the specific regulation of each 

of these pathways is essential in uncovering the complex growth plasticity plants demonstrate 

to the ever-changing environment. Together, knowledge of the regulation of gene 

transcription, interactions with TFs and the importance of post translational modifications can 

be accumulated and incorporated into models. The rise of mathematical/computer modelling 

provides an exciting platform around which these models may be constructed. Manipulation of 

these models can then be undertaken in order to generate hypotheses about how multiple 

stress signals converge and the way in which the plant responds. Highlighting new areas of 

investigation in the future.   

 

7.11 Concluding remarks 

 

The work presented in this thesis has aimed to uncover the hormonal control of root 

architectural responses to low K+ in the Arabidopsis accession Col-0. Together, the findings 

have identified a pathway controlling a reduction in LR in response to low K+, as well as 

increasing the knowledge about differential expression changes in the early response to low 

K+. Work here has identified many avenues for further research, to expand the knowledge of 

hormonal control of root architecture, as well as increasing the understanding of the stress 

tolerance responses to low K+.   
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Appendix II Analysis of RNA quality for use in RNA-Seq experiment 
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Appendix II: Analysis of the quality of the RNA Samples used in the RNA-Seq experiment. 
Results obtained from samples run on an RNA ScreenTape. Figure shows composite of results, 
run on different tapes. (A) Gel- like image of total RNA sample. (B) Full sample metrics. (C) 
Electropherograms showing quality of RNA levels. (D) Representative electropherogram 
detailing regions indicative of RNA quality. Figure from Mueller et al., (2016). 
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Appendix III Photosynthetic gene changes in response to low K+ 
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Appendix III: (A) Gene ontology analysis (agriGO) of genes dowregulated after 30 h K+ 
deprivation treatment. Significant GO term ‘Photosynthesis’ selected and graphed. (B) Table of 
genes identified in the AgriGO analysis with gene expression changes in response to 30 h low 
K+, identified by RNA-Seq.  
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Appendix IV Fe related gene expression changes in response to low K+ 

 

 

 

Appendix IV: Gene ontology analysis (agriGO) of genes upregulated after 30 h K+ deprivation 
treatment (from RNA-Seq experiment). Significant GO term ‘Iron ion homeostasis’ and ‘cellular 
response to iron ion starvation’ selected and graphed.  
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Appendix V Genes upregulated in response to low K+ and various ROS 
stimuli  
 

 

 

 
 
Appendix V: (A) 21 genes upregulated after 30 h K+ starvation (blue) also upregulated by over 
5-fold in at least 3 of the ROS experiments in the ROS transcriptomics footprint Gadjev et al. 
(2006). (B) 14 genes upregulated after 3 h K+ starvation (blue) also upregulated by over 5-fold 
in at least 3 of the ROS experiments in the ROS transcriptomics footprint (red) Gadjev et al. 
(2006).  
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Appendix VI Effect of DPI on primary root growth 
 

 

 

 

 

Appendix VI: Average primary root growth over 3 d following treatment when media 
supplemented with 200 nM or 1 µM DPI. Values are averages taken from at least 6 individual 

seedlings  SE. Letters indicate significance with a Tukey Pairwise comparison P< 0.05. 
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Appendix VII SALK_05092 primary root growth on low K+ 

 

 
 
 

 
Appendix VII: Primary root length after 8 d K+ treatment (2 mM or 0.005 mM) of Col-0 and 

SALK_05092. Values are averages taken from at least 16 individual seedlings  SE. Letters 
indicate significance with a Tukey Pairwise comparison P< 0.05. Control taken from another 
experiment.  
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Appendix VIII Restoration of growth following resupply of K+ 

 
 
 
 
 

 

 

Appendix VIII: Preliminary data: representative images of growth response after 12 d growth 
on either 2 mM or 0.005 mM [K+], then swapped to the opposite [K+] and a further 5 d growth. 
(A) Grown for 12 d on 2 mM then moved to 0.005 mM for 5 d. (B) Grown for 12 d on 0.005 mM 
then moved to 2 mM for 5 d. Scale bar = 1 cm. n = 5 individual seedlings for each treatment.   
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Appendix IX Differentially expressed gene list 
 

The following file can be found on the enclosed CD-ROM. 

Appendix IX DEGs Excel spreadsheet: 

Page 1: Genes upregulated by at least 0.5 log2fc in response to 3 h K+ 
starvation 

Page 2: Genes downregulated by at least 0.5 log2fc in response to 3 h K+ 
starvation 

Page 3: Genes upregulated by at least 0.5 log2fc in response to 30 h K+ 
starvation 

Page 4: Genes downregulated by at least 0.5 log2fc in response to 30 h K+ 
starvation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


