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Abstract

I employ a forward modelling approach to create and study mock observables, us-
ing the Evolution and Assembly of GaLaxies and their Environments suite of hydrody-
namical simulations (EAGLE, described in chapter 2). The majority of this analysis
focuses on a subset of 30,145 simulated galaxies, selected to have stellar masses
M, > 1.81 x 10® Mg, from the largest fiducial volume at z = 0.1. The philoso-
phy behind this approach is that, ultimately, our galaxy formation models should
predict observables if we are to claim that they reproduce the data. The forward
modelling approach allows us to address a number of overarching questions, in
particular; i) How well can cutting-edge simulations, such as EAGLE, reproduce fun-
damental observables over cosmic time?, ii) What are the systematic effects that come
about when translating between the observable and physical properties of galaxies? and

iii) What physical processes lead to the distributions of galaxy properties we observe?

To this end, optical colours, luminosities, spectra and images are generated, where
dust is modelled to either be absent, in a foreground screen or to trace the ISM us-
ing radiative transfer in chapters 3 and 5. Mock colour-mass and luminosity dis-
tributions are compared with data, revealing a broad agreement that is improved
when dust is included and best for radiative transfer models. Chapter 4 shows
how the z = 0.1 bimodal colour distribution that is found in both the data and the
mock EAGLE photometry becomes established, along with the quenching mech-
anisms and timescales involved. In addition, chapters 5 and 6 investigate the
accuracy of star formation activity proxies and mass recovery techniques, respec-
tively. Detailed summaries are provided in each chapter, and compiled alongside

conclusions in chapter 7.
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Chapter 1

Introduction

In the mid-18"™ century, Thomas Wright supposed that the faint nebular struc-
tures he observed could be systems of stars external to our own Milky Way, later
to be termed Island Universes by Immanuel Kant (Wright, 1750; Kant, 1755). While
provenance for the understanding that our Milky Way is merely a single instance
in a greater population of ‘galaxies’ can be traced back to the Enlightenment period,
general acceptance of this concept is less than a century old. It was the detection
of Cepheid stars in Andromeda (Hubble, 1926) that provided the first conclusive
distance measurement of a galaxy and confirmed its extragalactic status, settling
contemporary debate on the nature of the spiral nebulae (Shapley & Curtis, 1921).
This discovery has tremendous implications for our understanding of the uni-
verse and our place within it, and founded the fields of extragalactic astronomy
and modern galaxy formation theory.

Today’s astronomers inherit a vast and growing repository of data on galaxies.
Decades of focused observation of individual objects and the recent explosion of
data from galaxy redshift surveys put strong constraints on the nature of galax-
ies, the prevalence of different galactic phenomena and their various evolution-
ary pathways. Galaxies themselves act as beacons in the distant Universe; trac-
ing greater cosmic structures and shedding light on the unseen Universe around
them. Great advancements in extragalactic observation demand a richer galaxy
formation theory, and a reappraisal of how galaxies are thought about and mod-

elled.
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This thesis is concerned with using modern computational techniques to model
the formation of galaxies in a cosmological context, and how we might reconcile
theoretical predictions with observation. In particular, I consider the translation
between the physical properties that drive galaxies and those that are observed,
using ‘forward modelling’ to compare simulations to observations directly. In this
section I provide context for the original work presented in the thesis. In par-
ticular, I will focus on modern galaxy formation theory, the role of simulations
in understanding how galaxies form and reconciling theoretical predictions with
observations. As a detailed review of the field is beyond the scope of this sec-
tion, I focus on the areas most relevant to this body of work, and summarise the

structure of the thesis in section 1.5.

1.1 Key Observations of Galaxies

To motivate features of contemporary galaxy formation models, I first describe
some of the key observations that have informed them. While a raft of diverse
observations shape current theories, I focus on just a few select observables and
how they may be compiled. In particular, observations from galaxy redshift sur-
veys (e.g. SDSS, York et al. 2000; 2dF, Colless et al. 2003; GAMA, Driver et al. 2009)
provide strong statistical constraints, afforded by the large number of objects they
sample. Distributions of measured properties are a useful way of characteris-
ing this observed population, providing clear targets that successful formation
models should aim to reproduce. The diversity of galaxy redshifts, luminosities,
colours and morphologies captured observationally are exemplified by the Hub-
ble Ultra Deep Field (HUDEF), shown in Fig. 1.1. Conspicuous differences can be
seen between the galaxies of the HUDF, and the measurement and relevance of
these particular properties are detailed below.

Redshift (2) itself is a key measurement, used to infer the distances to ob-
served galaxies and thus how long ago the light we observe was emitted (e.g.
Hogg, 1999). Redshifts and angular positions from galaxy surveys have been

used to map the spatial distribution of local galaxies (¢ < 0.2) in great detail, re-
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vealing the characteristic filamentary structure of the cosmic web (see e.g. Springel
et al., 2006) and yielding precise galaxy clustering statistics (e.g. Zehavi et al.,
2011). Redshifts also enable us to to partition galaxies into roughly contempora-
neous populations, in order to examine the evolution of galaxy properties. Red-
shifts are obtained using galaxy photometry (e.g. Bolzonella et al., 2000; Brammer

et al., 2008) or, more reliably, spectra (see Baldry et al., 2014).

Luminosities can then be inferred with knowledge of the redshift. The num-
ber density of galaxies at a given luminosity, or luminosity function (LF), is a fun-
damental characteristic of the galaxy population (e.g. Blanton & Moustakas, 2009;
Johnston, 2011). Rather than bolometric luminosities, which require panchro-
matic observations, luminosities are typically measured in wavelength bands or
by integrating emission features. For optical broad-bands the LF primarily tells
us about the stellar component of galaxies, with bluer bands probing younger
stellar populations. The LF is commonly well-fit by a Schechter (1976) function,
featuring an asymptotic slope towards dim galaxies and a sharp cut-off above a
characteristic luminosity’ that varies between bands.

Estimating luminosity functions can be tricky. Uncertainties in intrinsic UV-
optical luminosities are compounded by dust in target galaxies, which may ab-
sorb ~ 40% of emitted light at these wavelengths in the local star-forming pop-
ulation (e.g. Viaene et al., 2016b). The complex nature of the dust-light interac-
tion means dust corrections are often highly idealised. In addition, luminosity-
dependent volume and completeness corrections are necessary to convert num-
ber counts into number densities (e.g. Baldry et al., 2012). Corrections should also
be made for the fact that variations in redshift lead to different regions of the rest-
frame galaxy spectral energy distributions (SEDs) being sampled by a given band
("k-corrections’, e.g. Blanton & Roweis, 2007), and that galaxies evolve between

their redshift of observation and the redshift that the LF is being constructed for

lEmission associated with the youngest stars (such as ultraviolet, Ha, far-infrared emission
Kennicutt, 1998a) may be better fit by a Saunders et al. (1990) function with a shallower bright-
end slope (e.g. Gunawardhana et al., 2013).
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(“e-corrections’, e.g. Norberg et al., 2002). These two corrections can be minimised
by selecting galaxies over a narrow range in redshift, but there is a trade-off with
lower number counts and stronger inhomogeneity effects due to the smaller sam-
pled volume (e.g. Blanton & Moustakas, 2009). The integration of a galaxy’s light
and sky subtraction also lead to uncertainties, that can introduce systematic dif-
ferences at the bright end (Bernardi et al., 2013).

Despite these difficulties, LFs probing stellar emission have been well-studied
locally (Blanton et al., 2001; Norberg et al., 2002; Loveday et al., 2012) and con-
strained out to z < 10, revealing evolution in how galaxy luminosities are dis-
tributed (e.g. Kauffmann & Charlot, 1998b; Zucca et al., 2009; Bouwens et al.,
2015).

Colours, representing the ratio of luminosities in different bands, are a basic
measure of the shape of galaxy spectra. The colour-magnitude diagram combines
the LF and colour distribution, providing a key diagnostic for the observed pop-
ulation. Colours in the UV and optical are primarily driven by the recent star
formation activity and star formation histories in galaxies (the presence of hot,
massive stars in young stellar populations makes galaxies appear bluer), but can
also be strongly influenced by dust content and affected by stellar metallicities. In
early data sets, a narrow ‘red sequence’ of galaxies was already clearly evident (e.g.
Sandage & Visvanathan, 1978; Larson et al., 1980; Bower et al., 1992). The step-
change in sample size afforded by the likes of the Sloan Digital Sky Survey (SDSS,
York et al. 2000) revealed ‘blue cloud” population, establishing a distinct bimodality
in local galaxy colours (Strateva et al., 2001; Bell et al., 2004; Baldry et al., 2004).
Evidence for colour bimodality has been observed out to z < 3 (Franx et al., 2003;
Faber et al., 2007; Whitaker et al., 2011). A two component model of the colour
distribution? appears to provide a good fit for optical bands (e.g. Baldry et al.,
2004; Taylor et al., 2015). However, UV-optical colours have an enhanced sensi-
tivity to young stars and reveal a significant ‘green valley’ population between the

two peaks (e.g. Wyder et al., 2007; Martin et al., 2007). With luminosity and colour

2Fitting two Gaussian distributions to the red and blue peaks
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Figure 1.1: The three colour composite image of the Hubble Ultra Deep Field
(HUDEF, Beckwith et al., 2006) illustrates the diversity of galaxy properties re-
vealed by modern telescopes. Within this small patch of sky (2.4 x 2.4 arcmin),
~ 10* galaxies have been identified, spanning redshifts covering most of the his-
tory of the universe. Sizes, shapes and colours vary dramatically between galax-
ies, reflecting both intrinsic differences in galaxy properties as well as redshift
and projection effects. Image credited to NASA, ESA, H. Teplitz and M. Rafelski
(IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University),
and Z. Levay (STScI).



1.1. Key Observations of Galaxies 6

indicative of a galaxy’s star formation history, the evolving colour-magnitude di-
agram clearly encodes a great deal of information about the physical evolution of
the galaxy population.

Morphology, pertaining to the surface brightness distribution in galaxies, is
another important global property. While morphology has long been a conspicu-
ous feature of galaxies, and visual classification schemes such as the Hubble tun-
ing fork remain prevalent today, obtaining objective or quantitative measures of
morphology is challenging. Fitting radial light profiles of galaxies with idealised
functional forms® has proven a popular parametric approach (e.g. Peng et al.,
2010), and allows us to decompose galaxy light profiles into contributing compo-
nents such as centrally concentrated spheroids and extended discs. This approach
can be used to provide very useful decompositions for large galaxy samples (e.g.
Simard et al., 2011; Haufler et al., 2013), but the underlying assumptions about
galaxy light profiles may not be representative of some galaxies and introduce
systematic effects (e.g. Benson et al., 2002; Conselice, 2014). Non-parametric mea-
sures have been developed to avoid this limitation. While these do not provide
direct decompositions, they quantify morphology via concentration, clumpiness
and asymmetry (e.g. Conselice, 2003) and the Gini and M, parameters (see Lotz
et al., 2004). An alternative is to embrace human classification, and reduce sub-
jectivity by appealing to a large number of distinct classifiers. The pioneering
Galaxy Zoo project (Lintott et al., 2011) has proven a successful implementation
of this, employing ~ 10° citizen scientists to obtain statistically robust classifi-
cations of ~ 10° galaxies (e.g. Willett et al., 2013). These different approaches
to obtaining morphologies may be appropriate in different scenarios, or used in

combination.

In addition to the colour-magnitude relation, other interrelationships between
these properties have been widely explored. A strong morphology-colour rela-

tion has long been established (e.g. Larson et al., 1980), and more recently put

3Commonly exponentially declining, de Vaucouleurs or generalised Sérsic profiles
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on a detailed, statistical footing using human classification (Schawinski et al.,
2014; Smethurst et al., 2015) and numerical methods (e.g. Driver et al., 2006).
Morphologies, like colours, show bimodality with luminosity locally (e.g. Kelvin
etal., 2014) and evolve with redshift (e.g. Conselice et al., 2005). In addition, these
intrinsic properties of galaxies correlate with the environment in which they re-
side, yielding a generic picture of the local galaxy population as red ellipticals in
dense groups and clusters, and blue spirals in the field (e.g. Dressler, 1980; Balogh
et al., 2004; Ball et al., 2008; Tempel et al., 2011; Alpaslan et al., 2015).

It seems plausible that common physical processes, arising from how galax-
ies form and evolve, drive the strong relationships between these observations.
Indeed, these observables are widely used to estimate physical properties such
as stellar mass and star formation history. For large samples of galaxies, these
are derived using proxies or by fitting spectral or photometric measurements of
galaxies with templates (e.g. Kennicutt, 1998a; Walcher et al., 2011), discussed
further in section 1.4. The new generation of Integral Field Unit (IFU) instru-
ments are also beginning to provide kinematic information for galaxy samples
(e.g. KMOS Wisnioski et al. 2015; SAMI Allen et al. 2015; MaNGA Bundy et al.
2015). Details of the conversion between the physical and observable domains is
discussed further in section 1.4. In the following section, we first review galaxy

formation theory and its relation to these observations.

1.2 Galaxy formation within the ACDM paradigm

1.21 The ACDM Cosmology

The current concordance model of our Universe is the ACDM framework, the
main facets of which are empirically motivated. Here, CDM references ‘cold dark
matter” as the primary mass component of the cosmos, with a cosmological con-
stant, A, dominating the present day energy density. Evidence for a significant
‘dark” (non-emissive) matter component was first postulated in 1933 by Fritz

Zwicky, who found that the large velocities of galaxies in the Coma cluster could
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not be reconciled by luminous matter alone (see Zwicky, 2009, for a translation of
the original article). Evidence for a significant dark matter component, favoured
to comprise weakly interacting and massive particles (WIMPs e.g. Peebles, 1982),
has since arrived from a number of quarters, including galaxy kinematics and
gravitational lensing (e.g. Rubin et al., 1980; Brainerd et al., 1996). Measurements
of clustering in large samples of galaxies (see section 1.1) can also be reconciled
by invoking CDM (e.g. Springel et al., 2006).

ACDM incorporates a hot big bang cosmogony, where the Universe has ex-
panded and cooled from an initial state of extreme density and temperature.
When the Universe first cools to the point where hydrogen atoms form, photons
that were initially coupled to baryons and leptons are able to propagate freely as
the mean free path for Thomson scattering becomes large. Relic radiation from
the decoupling of the photon-baryon fluid is redshifted as the Universe expands,
and observable today as the cosmic microwave background (CMB, Penzias &
Wilson, 1965).

Perhaps the strongest constraints on the ACDM model come from detailed
CMB measurements. Temperature anisotropies in the CMB have been measured
and mapped at increasing fidelity via the COBE (Smoot et al., 1992), WMAP (Ko-
matsu et al., 2011), and Planck (Planck Collaboration et al., 2014) satellites. These
anisotropies are indicative of density perturbations in the early Universe, consis-
tent with inflationary models where quantum fluctuations are blown up to large
scales, which appear to have sufficient amplitude to have seeded present day
structure through gravitational collapse.

The angular power spectrum of temperature fluctuations also encodes infor-
mation about a number of cosmological parameters. Peaks in the power spec-
trum correspond to acoustic modes propagating through the primordial baryon-
photon fluid. The fundamental mode represents oscillations with a period twice
as long as the time between their sound horizon entry and recombination, such
that the fluid is maximally compressed or rarefied when photons and baryons
decouple (see e.g. Hu & Dodelson, 2002). Comparing the amplitude of the first

to that of the second peak (corresponding to one full oscillation before recom-
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bination) constrains the cosmic baryon density at recombination. The relative
amplitude of higher order modes then indicates the dark matter density at this
time. Matter is found to comprise 31.5% of the present cosmic energy density
in the Planck data, of which 4.5% is in baryons and the rest is in dark matter
(e.g. Planck Collaboration et al., 2014). The remaining 68.5% of the cosmic en-
ergy budget is deemed to be dark energy, which is represented by A in the ACDM
model, and observed as an acceleration term in the expansion history of the Uni-
verse today. Aside from dark energy, alternative explanations for the accelerated
expansion of the Universe have also been theorised, many appealing to modifi-
cations to the behaviour of gravity from that of general relativity on large scales
(see e.g. Koyama, 2016, for a review).

Once photons decouple from baryons, the pressure driving oscillations van-
ishes, and overdense shells of a characteristic scale are preserved about central
dark matter overdensities*. These Baryon Acoustic Oscillations (BAO), and this
resultant overdensity configuration, are a key prediction of the model. The im-
print of the BAO was first detected as enhanced clustering of galaxies on these
scales (~150 Mpc at z ~ 0), as galaxies form in these overdensities (e.g. Cole
et al., 2005), and measured using galaxy redshift surveys (see section 1.1). We re-
view the general picture of how structure collapse and galaxy formation proceeds

in cosmic overdensities in the following section.

1.2.2 Galaxy Formation within Halos

The concept that galaxies form within the centre of dark matter ‘halos” has en-
dured from the pioneering work of White & Rees (1978). In the lexicon of ACDM,
halos form when matter overdensities become nonlinear and undergo gravita-

tional collapse, decoupling them from the expansion of the Universe’. These

“Central overdensities are maintained as dark matter does not feel pressure forces.
Peebles (1982) showed that dark matter particles must be relatively cold (massive with low

streaming velocities) so that the anisotropies seen in the CMB collapse and are not erased by free-
streaming. However, relatively warm dark matter (WDM) models appear feasible, where erasure

of overdensities by free streaming can occur on small scales (e.g. Lovell et al., 2014).
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bound structures form in a hierarchical fashion: smaller scale overdensities col-
lapse first, and grow through mergers and accretion of material®. This result can
be inferred from simple linear evolution of a Gaussian random density field and
idealised spherical collapse models, first formalised by Press & Schechter (1974)
and extended to include effects of mergers (Bond et al., 1991; White & Frenk, 1991,
e.g.). These halos acquire their spin through tidal torques as they form (White &
Rees, 1978; Fall & Efstathiou, 1980).

Gas is subject to the same gravitational forces as dark matter, and as such
initially traces the same structure and rotation, giving halos a baryon fraction
roughly equivalent to that of the Universe as a whole. As gas falls into halos,
either initially or as it is accreted later, it gets shocked and its kinetic energy be-
comes thermalised. The thermal pressure supports this gas against further gravi-
tational collapse and sets the gas halo into quasi-hydrostatic equilibrium. Radia-
tion can dissipate this energy and allow the gas to condense deeper into the halo
potential. While thermal emission effectively dissipates thermal energy, much of
the angular momentum is conserved during the further collapse of baryons. This
leads to proto-galactic gas discs forming near the potential minima of halos’.

This gas must then form stars to be observed as a galaxy, and thus included
in the galaxy statistics discussed in section 1.1. Star formation is a complex and
multi-scale process, many aspects of which remain mysterious. Mercifully, strong
empirical relationships between gas measurements and star formation rates have
been observed. The Kennicutt-Schmidt law (Kennicutt, 1998b) shows that the
inferred surface density of star formation follows a super-linear power law in in-
ferred gas surface density. It has been suggested that this relationship is driven by
the cooler molecular gas, and that refined measurement of molecular gas surface
densities yield a tighter, linear relationship with star formation rate (e.g. Bigiel

et al., 2011). Estimates of molecular gas content generally rely on CO emission as

®Note that a free streaming scale is evoked in WDM models, corresponding to the first halos

that form, with halos on larger and smaller scales forming later
"Later-stage mergers may also augment and redistribute angular momentum in galaxies

(Barnes & Efstathiou, 1987)
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a tracer, but the fraction of molecules represented by CO can be ambiguous, not
least due to its dependence on gas metallicity.

Metal enrichment of the gaseous inter-stellar medium (ISM) is of key impor-
tance to galaxy evolution in general. Metals are synthesised inside stars, and are
typically returned to the ISM through the strong winds of AGB stars or the explo-
sion type II and Ia supernova (SNa). These metals may be returned in a gaseous
state, or as agglomerated dust grains. Metal line emission becomes an important
cooling channel when the ISM is enriched, and dust grains provide vital sites for
the formation of molecular gas, catalysing further star formation. The lifecycle
and distribution of dust grains in the ISM is itself highly complex (see e.g. Draine
2003 for a review).

It may seem from this picture that star formation is an efficient, even runaway,
process in galaxies. However, comparing the shape and normalisation of the ob-
served NIR LF or galaxy stellar mass function (GSMF) with the halo mass func-
tion (HMF) suggest relatively low and mass-dependent star formation efficien-
cies in halos (e.g. White & Frenk, 1991; Benson et al., 2003). Feedback processes
that disrupt star formation are invoked to explain this difference. It is thought
that star formation could have been completely shut down in the smallest halos
by the photoionising background after cosmic reionisation (e.g. Rees, 1986; Ef-
stathiou, 1992; Thoul & Weinberg, 1995; Okamoto et al., 2008). It has also long
been speculated that energy injected by supernovee inhibits star formation in low
mass galaxies (Larson, 1974; Dekel & Silk, 1986). Now the term ‘stellar feedback’
is used generally to include photoionisation, photoheating and stellar winds as
additional important feedback mechanisms associated with star formation. Com-
bining these processes may lead to very little to no star formation in low mass
halos, and naturally explain the divergence of the mass function of galaxies and
of halos at the faint end (e.g. Sawala et al., 2014).

By contrast, at higher galaxy masses it is speculated to be the feedback from
accreting super-massive black holes (SMBHs) that introduces a near exponential
cut-off in the GSMF (Bower et al., 2006; Croton et al., 2006). Accreting black holes

are identified with the observed phenomena of Active Galactic Nuclei (AGN, see
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e.g. Netzer, 2015). Indirect observations provide strong evidence that most (per-
haps all) galaxies contain a SMBH; nuclear velocities inferred from stars, gas and
water masers are suggestive of extremely massive and compact central objects
(Kormendy & Richstone, 1995). Some of the tightest galaxy scaling relations are
also attributed to SMBHs (e.g. Magorrian et al., 1998; Gebhardt et al., 2000).

It is speculated that stellar and AGN feedback must drive large-scale outflows
in order to be effective. These outflows move gas out of galaxies, where it might
have formed stars, and into the circumgalactic environment. There is much ob-
servational evidence to suggest that outflows are prevalent in galaxies (see e.g.
Veilleux et al., 2005). Outflows are observed to correlate with star-formation ac-
tivity, and often the outflow rates exceed those of infall and star formation (Mar-
tin, 1999; Weiner et al., 2009; Kornei et al., 2012). This is suggestive that outflows
play a crucial role in regulating star formation. Strong winds driven by AGN
have also been shown to be energetically feasible, and are supported by cavities
observed in the X-ray profiles of clusters (e.g. King & Pounds, 2003; Rafferty et al.,
2006). In addition, galactic outflows are often observed to be dusty (e.g. Heckman
etal., 2000), and its believed that radiation pressure on this dust may help to drive
them (e.g. Veilleux et al., 2013).

Above I have described some of the key mechanisms of modern galaxy for-
mation theory and how they relate to observation. Below, I review the insights
we may gain from galaxy modelling. In particular; how do these complex, com-

peting mechanisms drive the complex evolution of galaxies?

1.3 The Simulation Approach

Cosmological simulations have become instrumental to our understanding of
cosmic structure formation and how competing physical processes shape galax-
ies. It is useful to split the simulation problem into two key questions?;

1) what would be the evolution of our Universe if it comprised only the dark sector”?,

8This formulation is similar to Naab & Ostriker (2016).
Dark matter and dark energy.
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2) how do baryonic processes alter this picture to yield the Universe we inhabit?

The first question has largely been answered by the use of N-body simula-
tions, that follow the growth of cosmic structure by gravity alone, which have
played a crucial role in establishing the cold dark matter paradigm (e.g. Davis
et al., 1985; Frenk et al., 1988). These simulations provide a coherent and conver-
gent picture where gravity dominates, from linear large-scale structure to non-
linear halo regimes (Springel et al., 2005b). They also have been used to suggest
a universal profile for halos (Navarro et al., 1997), and characterise the substruc-
tures within them for CDM and alternative dark matter models.

These N-body simulations provide valuable insight into answering the sec-
ond question. They place strong constraints on the growth of different environ-
ments, how halos are distributed and on accretion and merger rates of halos.
However, the complex and multi scale nature of galaxy formation and baryonic
physics in general means that the second question remains highly challenging.
Fig. 1.2 demonstrates this complexity and dynamic range, showing a three level
zoom between simulated baryon structure on cosmic and galaxy scales. A num-
ber of simulation-based approaches have been developed to tackle the problem
of modelling galaxy formation.

‘Serial” approaches to galaxy formation take the solution to cosmic structure
formation provided by N-body simulations, and afterwards model how galaxies
might occupy the dark matter halos. The Halo Occupation Distribution (HOD)
approach (Jing et al., 1998) assigns observed galaxies to simulated halos by some
mapping between galaxy and halo properties. SubHalo Abundance Matching
(SHAM) is a related approach. In its simplest form, this assumes a positive
monotonic relationship between galaxy luminosity (or mass) and subhalo mass
(Hearin et al., 2013). HOD, and particularly SHAM, approaches have been ex-
tensively used to produce mock catalogues for survey comparison. Despite these
successes, they do not provide insight into the physical origin of these galaxies.

Another serial approach is that of Semi-Analytic Models (SAMs). These gen-

0The EAGLE simulations shown here are introduced in detail below.
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Figure 1.2: [llustration of the large range of scales needed for cosmological galaxy
formation simulations, using the simulated baryon structure of the EAGLE sim-
ulations. The largest image is a 100 x 100 comoving Mpc projection of the sim-
ulated gas distribution, with density indicated by the brightness, and coloured
from blue to red by increasing gas temperature. The smallest inset image shows
a virtual 3 colour image of an EAGLE galaxy. Filamentary structures on scales
of ~ 10 Mpc (the cosmic web) connect overdense halos, which provide the sites
for galaxy formation on ~ kpc scales. Simulating baryonic processes over this
dynamical range has only recently become a computational reality, and resolu-
tion limitations for simulations covering these scales still remain a considerable

source of uncertainty. Figure reproduced from Schaye et al. (2015).
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erally aim to represent macroscopic galaxy formation and evolution processes
as systems of differential equations that balance inflows, outflows, sources and
sinks. Model parameters, such as those associated with feedback, are typically
calibrated to reproduce a target observable or set of observables. While simple,
SAMs can elucidate how important different modelled physical processes (such
as feedback mechanisms) may be, by parametrising them and comparing the re-
sultant galaxy populations with observations (e.g. Bower et al., 2006; Henriques
et al., 2014; Lacey et al., 2016). SAMs have a considerable advantage in their low
computational cost and flexibility; model variations and parameter space can be
extensively explored using both reasoned trial-and-error and formalised MCMC
methods (see Somerville & Davé, 2015, for a comprehensive review of the SAM
approach). However, SAMs and other serial approaches are limited by the lack
of insight they can provide into the baryon dynamics, and do not account for any
back reaction by baryons on the dark component.

The “parallel” approach, where baryons and the dark sector are modelled to
evolve simultaneously, is commonly realised by hydrodynamical simulations.
The more detailed physical modelling of hydro simulations may lead to processes
emerging naturally that are approximated or missed by SAMs, but this advantage
comes at great computational expense. Modes of gas accretion on to galaxies, ram
pressure stripping of satellites falling into larger halos and the complex evolution
of merging systems are among the processes that hydrodynamical simulations
can aim to follow in detail.

While hydrodynamical simulations of galaxies may resolve internal galaxy
structure and gas dynamics that SAMs do not, the scales at which SNe and
SMBHs inject energy remain far from reach. These simulations are thus unable to
compute the net efficiency of the resulting feedback a priori. Simulations therefore
need to rely on a phenomenological description of crucial processes occurring on
unresolved (‘subgrid’) scales, using observations to calibrate the parameters that
appear in the subgrid modules. It is then important to quantify the uniqueness
and degeneracies in such modelling (Schaye et al., 2010, 2015; Crain et al., 2015),

while at the same time using very high-resolution simulations (e.g. Hopkins et al.,
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2011; Creasey et al., 2013, 2015; Martizzi et al., 2014; Rosdahl et al., 2015) to try and
bridge the gap between numerically unresolved and resolved scales.

Hydrodynamical simulations of the cosmos have been performed for over 35
years (e.g. Efstathiou & Eastwood, 1981), and long struggled to match observ-
ables at the level of contemporary SAMs when calibrated (e.g. Katz et al., 1996;
Benson et al., 2003; Crain et al., 2009). Cosmological simulations including hy-
drodynamics have by now matured to such an extent that they show good agree-
ment between simulated and observed galaxies for a wide range of properties
(e.g. Vogelsberger et al., 2014; Murante et al., 2015; Schaye et al., 2015; Davé et al.,
2016). This maturation can be ascribed to a more nuanced understanding of the
behaviour of subgrid models, particularly that feedback from forming stars and
accreting black holes are implemented in such a way that they act very efficiently.
Improvements in the hydrodynamics scheme have also helped to push the simu-
lations forward (Springel, 2005, 2010; Hopkins, 2015; Schaller et al., 2015b).

With the details of the subgrid modelling proving crucial to reproduce real-
istic galaxy populations, their role and calibration must be carefully considered.
For some subgrid models, the calibration is relatively direct; star formation rates
can be related to local gas properties and calibrated to reproduce the empirical
Kennicutt (1998b) relation (e.g. Schaye & Dalla Vecchia, 2008), and gas cooling
rates may be parametrised for a large range of physical conditions using pho-
toionisation codes such as CLOUDY (Ferland et al., 1998). The correct choice of
subgrid modelling and parametrisation of feedback is more ambiguous, with a
diversity of different approaches having developed. Feedback energy may be
injected in a number of ways, and vary with local properties and redshift (see
Rosdahl et al., 2017, for a comparison of implementations for SNee). Mechanisms
other than stellar and AGN feedback, such as cosmic rays and radiation pressure,
may also play a role. Feedback implementations differ in philosophy; ranging
from heuristic approaches that relate feedback to indirect proxies such as halo
mass (e.g. Gabor & Davé, 2012) to those that aim for a more physical model de-
spite the lack of resolution (e.g. Sijacki et al., 2007). Generally, all these feedback

models have free parameters that are used to calibrate global galaxy distributions
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or scaling relations (see section 1.1), and thus limit some of the predictive power
of simulations. As the choice of feedback implementation can be decisive for the
evolution of simulated galaxies (e.g. Scannapieco et al., 2012), subgrid modelling
remains an important area of uncertainty in hydrodynamical simulations.

While hydrodynamical simulations are subject to many challenges, they can
provide unique insight into galaxy evolution. How relationships between galaxy
properties (and the associated scatter) emerge in simulations is particularly in-
formative, with the caveat that certain galaxy properties are calibrated. The fol-
lowing section broaches the subject of exactly how we can compare simulated

galaxies back to observations.

1.4 Inverse and Forward Modelling

While recent cosmological simulations claim a number of successes, comparison
to data is relatively indirect due to simulations predicting physical properties
(such as galaxy stellar mass or star formation rate) that are not directly observ-
able. Any comparison between simulations and data then relies on a translation
between the physical and observable domains. This may be achieved by either
deriving physical properties from observations for direct comparison to theory,
inverse modelling, or predicting observables from theory to compare directly with
data, forward modelling.

There are common assumptions shared by both of these approaches. The stel-
lar initial mass function (IMF) is one such assumption, representing the fraction
of stars born at a given mass. As main sequence stellar temperatures are primarily
determined by their masses, the form of the IMF has strong implications for the
mass to light ratio in different bands. Unfortunately, the IMF cannot currently be
predicted with reliability from first principles in galaxy-scale simulations, nor can
it be observed directly in external galaxies. A form for the IMF was first derived
empirically by Salpeter (1955) from the luminosities of Milky Way (MW) stars,
and extrapolating the power law he derived for log,,(Msar/Mp) in the range [-

0.4,1] is often termed the Salpeter IMF. Subsequently, a reduction in the number of
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low mass stars was favoured in MW observations, resulting in segmented power
law (Kroupa IMF, Kroupa et al., 1993) or log-normal (Chabrier IMF, Chabrier,
2003) parametrisations. It is common to assume one such form for the IMF as
universal when modelling or interpreting galaxy observations, but the validity of
this assumption remains a topic of vigorous debate (see e.g. Bastian et al., 2010,
for a contemporary review). The effects of IMF variation are not directly explored
in this thesis.

It is also necessary to model how populations of stars evolve in order to relate
stellar formation and enrichment histories to the light we observe. This evolution
is encapsulated by stellar population synthesis (SPS) models which provide spec-
tra for simple stellar populations; parametrised by a single starburst age, metal-
licity and initial stellar mass. These spectra can then be superposed to create
composite populations of differing age and metallicity. Notable differences ex-
ist between SPS models in the coverage of parameter space, the evolutionary
tracks of stars through temperature-luminosity diagram, and the treatment of
certain stellar phases and binaries. For stellar phases in particular, representation
of thermally-pulsing asymptotic giant branch (TP-AGB) stars prove a decisive
difference between some SPS models, exemplified by a comparison between the
Bruzual & Charlot (2003) and Maraston (2005) models. While the TP-AGB treat-
ment is relatively unimportant for optical bands and evolved populations, it may
drive differences in the NIR for intermediate-age stellar populations. Conroy
et al. (2009) provide SPS models where the IMF and contribution of certain stellar
phases can be varied, recognising their uncertainty. Again, SPS model variation
is not directly explored in this work. The choice of SPS model is discussed further

in chapter 3.

1.4.1 Inverse modelling of physical properties

‘Inverse modelling” of physical properties from observed fluxes of real galaxies
has lead theory for decades, constraining galaxy formation physics. This ap-
proach allows distributions of observables, such as those detailed in section 1.1,

to be converted to their physical analogues. Stellar masses are often derived from
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photometry given an assumed IMF and SPS model, alongside assumed templates
for the star formation, enrichment histories and dust effects. This is exemplified
by the analysis Li & White (2009) applied to the 7th data release (Abazajian et al.,
2009a) of spss(York et al. 2000), or the analysis by Baldry et al. (2012) applied
to the Galaxy And Mass Assembly (GAMA, Driver et al. 2009) survey. Of course,
such analysis makes necessarily bold simplifications, for example assuming expo-
nential star formation histories, uniform stellar metallicities and a screen model
for dust. Mitchell et al. (2013) demonstrated how this methodology suffers from
degeneracy between the star formation history, metallicity and dust properties of
galaxies using SAMs.

Modelling is also needed to infer star formation rates or passive fractions.
The strength of the Ha recombination line is sensitive to recent star formation,
as it probes UV-continuum emission from stars that are <10 Myr old (Kennicutt,
1998a). However, a significant fraction of the Ha flux in star forming galaxies is
emitted by dusty Hil regions (e.g. Zurita et al., 2000), and therefore the conversion
from flux to star formation rate requires a model to account for obscuration (e.g.
James et al., 2004; Best et al., 2013; Gunawardhana et al., 2013). Similarly, the
continuum strength on either side of the 4000A break, depends on the relative
contribution to the flux of old versus younger stars, and hence is a useful proxy
for the specific star formation rate of a galaxy (e.g. Kauffmann et al., 2003a; Balogh
et al., 1999). However, the amplitude of the break may also be affected by dust,
and hence the inferred passive fraction depends on the assumed dust properties.

Full spectroscopic data may provide more power to constrain the underlying
physical properties of galaxies. In particular, detailed spectroscopy can be used to
infer non-parametric star formation histories with many more associated free pa-
rameters than exponential models. This fossil record analysis allows the fraction of
stellar populations in separate bins of age and metallicity to be individually con-
strained. Heavens et al. (2004) used the fossil record method to determine star
formation histories for ~ 10° galaxies in the SDSS sample at z ~ 0.1, and showed
that the recovered evolution in cosmic star formation rate density is consistent

with the instantaneous star formation rates measured using multiple tracers ob-
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served at various redshifts. This remarkable result demonstrates the power of the
technique. Despite this, the availiability of good quality spectra and degeneracies
between age, metallicity and dust content still limits the insight fossil record anal-
ysis can provide for individual galaxies.

Degeneracies between the dust and stellar content of galaxies that arise in
inverse modelling of optical data may be alleviated to some extent by appealing
to FIR observations. Stellar light emitted at UV-optical wavelengths is absorbed
by interstellar dust in galaxies and then re-emitted to dominate the IR portion
of the rest-frame SED. While the FIR hump can be used to constrain the dust
mass and the amount of absorption in galaxies, panchromatic data is limited to
a relatively small samples of galaxies. There are also ambiguities associated with
the shape of attenuation curves, dust temperatures and outstanding problems
with the dust-energy balance in spiral galaxies (e.g Baes et al., 2010) that make
parameter estimation difficult.

One insight that inverse modelling provides is how different the fractional
contributions of mass and light appear to be for different baryonic components.
Approximately half of the radiation measured from galaxies comes directly from
stars, with ~ 45% coming from starlight that is absorbed by dust and re-radiated
in the FIR (e.g. Finke et al., 2010). Despite their dominance of the light budget,
stars contribute a mere 3.5% of the local baryon density (Li & White, 2009) and
the contribution of dust mass is negligible. By comparison, atomic and molecular
gas in local galaxies contribute ~ 2% of the local baryon density, and ionised gas,
primarily outside of galaxies, comprises the remaining ~ 95% of baryons at the
present day (Fukugita et al., 1998). Despite making a marginal contribution to
the overall baryon mass budget, accreting black holes also make a non-negligible
contribution to the cosmic luminosity density over the history of the universe
(Hopkins et al., 2007). Appreciating the difference between the mass and light
contributions of different components gives some indication of the intrinsic dif-
ficulty in comparing observations to physical models, and why we might also

appeal to a forward modelling approach for further insight.
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1.4.2 Forward modelling of observables

In addition to inverse modelling, it should be possible to apply the ingredients
of the inverse models to the simulated galaxies instead, and compare mock fluxes
to the observations. Such ‘forward models” have many potential advantages. For
example, the star formation histories of simulated galaxies are more detailed and
diverse than the parametric models often used in inverse modelling. Similarly,
the simulated - and presumably also the observed stars in any galaxy - have a
considerable spread in metallicity, rather than a single uniform value. These as-
sumed priors may introduce biases in the inferred properties of galaxies (see e.g.
chapter 4). Notwithstanding any practical considerations, surely the ultimate aim
of simulations should be to predict observables.

Detailed forward modelling analyses are common in large-scale SAMs (Gonzélez
et al., 2009; Henriques et al., 2014; Cowley et al., 2015), but appear less prevalent
for hydrodynamical simulations of large cosmological volumes. This could be
attributable to the more detailed and complex properties of hydrodynamically
simulated galaxies, and their historical inability to reproduce salient galaxy prop-
erties simultaneously for the overall galaxy population. However, pioneering
work has been carried out where hydrodynamical simulations of single isolated
and merging galaxies are subject to detailed forward modelling (e.g. Wuyts et al.,
2009a,b; Jonsson et al., 2009; Hayward & Smith, 2015; Feldmann et al., 2016), pro-
viding insights into the conversion between physical and observable properties.
The latest generation of large-volume hydrodynamical simulations are promising
from a forward modelling perspective. Model observables have been produced
and analysed for the contemporary simulation suites of ILLUSTRIS (Torrey et al.,
2015), MUFASA (Davé et al., 2017), and EAGLE. The primary analyses of EAGLE
comprises the studies consolidated into this thesis.

In practice there are still formidable challenges associated with forward mod-
elling, and inverse and forward modelling approaches are largely complemen-
tary. Inverse modelling is useful to assess how distinct physical quantities may
contribute to observables and elucidate discrepancies between real and mock ob-

servations, while insights gained from a forward modelling approach can inform
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and improve our inverse models. For instance, generating mock galaxy obser-
vations with attenuation and re-emission by dust can be used to demonstrate
how numerous degeneracies in SED inversion can be lifted by incorporating FIR
observations (e.g. Hayward & Smith, 2015). A forward modelling approach is
adopted and explored throughout the following chapters.

1.5 Thesis outline

In this thesis I focus on the forward modelling of hydrodynamically simulated
galaxies, and what can be learned from this analysis. In particular, I develop
panchromatic models for galaxies taken from the EAGLE simulations (Schaye
et al., 2015; Crain et al., 2015), applying different approaches for modelling dust.
I then explore optical to NIR properties of EAGLE galaxies and use them to assess
how well physical properties can be derived for galaxies given common assump-
tions.

In chapter 2 I first provide a short review of the simulations relevant to our
modelling, and some of the modelling techniques I employ. The presentation of
my own research begins in chapter 3, in which I focus on the optical properties of
EAGLE galaxies at low redshift, particularly colour distributions and luminosity
functions, and develop a simple screen model to account for dust attenuation at
z = 0.1. Chapter 4 then looks at the evolution of intrinsic optical properties of
EAGLE galaxies, particularly the colour-mass relation, and the mechanisms that
drive the build up of the distinct red sequence and green valley populations.
In Chapter 5, I adopt a more physical radiative transfer approach for modelling
the dust and explore the effects that dust has on the optical properties of EAGLE
galaxies. I use this to assess how simplistic assumptions about dust reddening
may introduce systematics in SED inversion and proxies for star formation activ-
ity. In chapter 6 I then conduct a focused study of fitting EAGLE SEDs, and com-
paring the fitted parameters back to their input values, to investigate how well
commonly adopted techniques can recover galaxy star formation rates and stellar

masses. The final chapter discusses overarching conclusions from this work, and
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the future projects that may emerge from it. Additional information and figures

supporting the main chapters are provided in the Appendices.



Chapter 2

The EAGLE Simulations and

Comparison Data

The Evolution and Assembly of GaLaxies and their Environments (EAGLE) project is
a suite of hydrodynamical simulations that follow the formation and evolution
of cosmic structure and galaxies in cosmologically representative cubic volumes,
and were completed in January 2014. EAGLE is a unique resource, reproducing
a number of calibrated and uncalibrated properties of the observed population
to unprecedented accuracy for a large sample of hydrodynamically simulated
galaxies (detailed below). EAGLE is the simulation analysed exclusively in this
thesis. Full details of the EAGLE simulations can be found in Schaye et al. (2015)
and Crain et al. (2015) (hereafter S15 and C15 respectively); here I provide only
a brief review of the aspects of EAGLE most relevant to the collaborative and in-
dependent studies presented in this thesis. I also describe the standard analysis
tools we use to identify structures in EAGLE, as well as the observational data
used for comparison in chapters 3-5. The aim of this chapter is to provide a suf-
ficient grounding on the common EAGLE simulations and datasets employed in

the later chapters of this thesis.
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Table 2.1: Numerical parameters of the simulations of the EAGLE suite that are
used in this thesis. From left to right: simulation identifier, side length of cubic
volume L in co-moving Mpc (cMpc), initial mass m, of baryonic particles, Plum-
mer equivalent gravitational softening ¢, at redshift = = 0 in pkpc, where I use

‘pkpc’ to denote proper kiloparsecs.

Name L Mg €prop

cMpc My  pkpc
Ref-L025N0376 (Ref-25) 25 1.81x10° 0.70
Ref-L025N0756 (RefHi-25) 25 226 x10° 035
Recal-L025N0752 (Recal-25) 25 2.26 x 10°  0.35
Ref-L100N1504 (Ref-100) 100 1.81 x 10° 0.70

2.1 The EAGLE simulations

The cubic EAGLE volumes are treated as periodic, and the evolution of structure
within them is simulated using a modified version of the GADGET-3 TreeSPH
code (which is an update of the GADGET-2 code last described by Springel et al.
2005a). Simulations were performed for a range of volumes and numerical res-
olutions. We concentrate on the ‘reference” model in what follows, but also use
simulations with different resolutions and model calibration to assess conver-
gence properties. The free parameters that enter the feedback modules for the
reference model were calibrated using the redshift = = 0.1 galaxy stellar mass
function, the z = 0.1 stellar mass-size relation, and the » = 0 stellar mass - black
hole mass relation (see Crain et al. 2015 for motivation and details).

In this thesis, We make use of volumes L100N1504, L025N0376 and L025N0752
from table 2, and Recal from Table 3 of S15. In Table 2.1, and throughout, I refer
to these simulations as Ref-100, Ref-25, RefHi-25 and Recal-25 respectively. The
EAGLE suite assumes a ACDM cosmology with parameters derived from the ini-
tial Planck (Planck Collaboration et al., 2014) satellite data release (£2;,, = 0.0482,
Qaark = 0.2588, Q) = 0.693 and h = 0.6777, where Hy = 100 h km s™! Mpc™1).
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Some simulation details are also listed in Table 2.1, and the z = 0.1 galaxy stellar
mass functions that emerge in the Ref-100 and Recal-25 volumes are shown for
reference in Fig. 2.1.

I focus primarily on the Ref-100 simulation volume. The 100* Mpc® volume
and mass resolution of 1.2x10°M, in gas for Ref-100 provides a sample of ~30,000
galaxies resolved by > 1000 star particles at redshift = = 0.1, with ~3000 galaxies
resolved by > 10,000 star particles. In addition to this primary sample of galax-
ies, we also use the higher-resolution RefHi-25 and Recal-25 simulations to test
the level of ‘strong” and ‘weak’ convergence. These concepts are coined by S15
and discussed fully therein; in essence, strong convergence refers to how well sim-
ulated properties agree when only resolution is changed and weak convergence
refers to the level of agreement between resolutions when feedback parameters
are allowed to be recalibrated. While strong convergence represents the popu-
lar definition of convergence, weak convergence acknowledges that the feedback
modules represent processes that are far from resolved, and that the efficiency
of feedback and cooling in the implemented models are explicitly tied to resolu-
tion. In this way, strong convergence tests convergence properties for a certain
parametrisation of a given feedback model, whereas weak convergence is more a
test of the model implementation itself.

The RefHi-25 and Recal-25 volumes have a factor 2 (2*) superior spatial (mass)
resolution than Ref-100. As RefHi-25 uses the same fiducial model at high reso-
lution (with the same initial phases and amplitudes of the Gaussian field), it may
be used to test the strong convergence of galaxy properties. The feedback effi-
ciencies adopted by Recal-25 were recalibrated to provide better agreement with
the z = 0.1 galaxy stellar mass function at high resolution and to test the weak
convergence (see also C15). In addition, the Ref-25 simulation can be compared
to Ref-100 to isolate volume effects; differences caused by the inability of smaller
volumes to capture large scale power in the density distribution and to form the
most massive halos.

The initial conditions of all EAGLE simulations were generated appropriately

for a starting redshift of z = 127 using an initial perturbation field generated with
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Figure 2.1: Galaxy stellar mass functions for the Ref-100 and Recal-25 EAGLE vol-
umes at z = 0.1. The comoving number density of galaxies per dex in stellar mass
is potted as a function of log,,(M, /M), using dashed lines to indicate when the
number of simulated galaxies in a bin falls below 10 and dotted lines to show
the regime where resolution effects are deemed important. For comparison, the
mass functions of Li & White (2009) and Baldry et al. (2012) (derived from ob-
servations) are also plotted. For galaxy stellar masses well represented (in terms
of number and resolution) by EAGLE, the mass function generally reproduces
the observations well. However, a consistent ~ 0.2 dex underprediction of the
observed number density is noted around the ‘knee’. Figure reproduced from

(Schaye et al., 2015), refer to their text for details.
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the PANPHASIA code described by Jenkins & Booth (2013). Smoothed particle
hydrodynamics (SPH) is implemented as in Springel et al. (2005a), but using the
pressure-entropy formulation of Hopkins (2013), including artificial conduction
and viscosity (Dehnen & Aly, 2012), a time-step limiter (Durier & Dalla Vecchia,
2012), and the C2 kernel of Wendland (1995). These modifications to the standard
GADGET-3 implementation are collectively termed as ANARCHY (Dalla-Vecchia,
in prep., summarised in Appendix A of S15). Schaller et al. (2015a) show that
these ANARCHY modifications are important in the largest EAGLE halos, but have
minimal effect on galaxies of stellar mass M, < 10"Mg, . To represent important
astrophysical processes acting on scales below the resolution of EAGLE, a number
of subgrid modules are also employed in the code. Relevant modules include
schemes for star formation, enrichment and mass loss by stars, photo-heating,
radiative cooling and thermal feedback associated with accreting black holes and
the formation of stars, as described below.

A crucial aspect of EAGLE is that the parameters describing the subgrid mod-
ules have been calibrated on the observed z ~ 0.1 GSMF and galaxy sizes. This
good agreement extends to many other observables that were not considered dur-
ing the calibration, such as specific star formation rates (515), the evolution of the
GSMF (Furlong et al., 2015), molecular hydrogen fractions (Lagos et al., 2015b),
and absorption by intergalactic metals and neutral hydrogen (S15, Rahmati et al.,

2015).

21.1 Subgrid Modules

Star formation is treated stochastically in EAGLE. Star formation rates (SFRs) are
calculated for individual gas particles using a pressure-dependent formulation of
the empirical Kennicutt-Schmidt law (Kennicutt, 1998a; Schaye & Dalla Vecchia,
2008), with a metallicity-dependent density threshold below which star forma-
tion rates are zero (Schaye, 2004). Gas particles therefore may have some proba-
bility of being wholly converted into a star particle at each time step, inheriting
the initial element abundances of their parent particle. The gravitational soften-

ing scales listed in Table 2.1 provide a practical limit on spatial resolution. Cold,
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dense gas (T' < 10* K, ny > 0.1 cm™?) with Jeans lengths below these scales
is thus unresolved, and any corresponding gas would artificially fragment in
the simulation. To ensure that the Jeans mass of gas is always resolved (albeit
marginally), a pressure floor is enforced via a single-phase polytropic equation of
state, Pgog o< p®s, maintaining ISM gas at 7' 2 104 K,.

Once formed, star particles are treated as coeval simple stellar populations
(SSPs), assuming a universal Chabrier (2003) stellar initial mass function (IMF)
over the mass range [0.1,100] Mg. It is assumed that all the stars represented
by the SSP inherit the metallicity of the converted gas particle, with a single age
corresponding to the expansion factor at which the gas particle was converted.
These SSPs lose mass and enrich neighbouring gas particles according to the pre-
scription of Wiersma et al. (2009b), accounting for type Ia and type II supernovae
and winds from massive and AGB stars. Eleven individual elements (H, He, C,
N, O, Ne, Mg, Si, S, Ca, and Fe) are followed, as well as a ‘total” metallicity (the
mass fraction in elements more massive than He), Z.

Two types of abundances are tracked for the gas in EAGLE, a particle abun-
dance that is changed through direct enrichment by star particles and a smoothed
abundance that smooths particle abundances between neighbours using the SPH
kernel (see Wiersma et al., 2009b). Diffusion is not implemented in the simula-
tion, therefore no metals are exchanged between gas particles. This may occa-
sionally lead to individual particles exhibiting extreme values as well as large
variations in metallicity, even for close neighbours. Although the SPH smooth-
ing is not strictly representative of metal diffusion, it does mitigate extreme val-
ues and reduces stochasticity in the metal distribution. For this reason we adopt
the smoothed metallicities throughout this thesis, which were also used to compute
cooling rates and nucleosynthetic yields during the simulation.

The energy that stellar populations inject into the inter-stellar medium (ISM)
through supernovae, stellar winds and radiation is collectively termed stellar feed-
back. Stellar feedback is implemented per star particle (and is separate from
enrichment) using the thermal feedback scheme described by Dalla Vecchia &

Schaye (2012). This implementation sets a temperature change ATgp, the temper-
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ature by which stochastically sampled gas particle neighbours of stars are heated.
The value of ATsp = 107°K is chosen for the reference model; this is high enough
to mitigate catastrophic numerical losses, while low enough to prevent the prob-
ability of heating for neighbouring gas particles, psr, from becoming small and
leading to poor sampling (see S15). The psr value depends on both ATgr and
the fraction of energy that couples to heat the ISM. The latter fraction is allowed
to vary with local gas properties and is calibrated to reproduce observed local
galaxy sizes, as detailed by C15.

Black holes are seeded in halos with mass exceeding 10'°A~*M,, following
Springel et al. (2005a). The most-bound gas particle is then converted to a black
hole particle with a subgrid mass of 10°h2'Mg, and is systematically moved to
the position of the most bound neighbouring particle of its host halo at each
timestep while its mass is below 100m,. The black hole grows in mass by sub-
grid Eddington-limited accretion of gas, while accounting for the gas angular
momentum as detailed in S15 and Rosas-Guevara et al. (2015). Black holes may
also grow by merging with each other, following Springel (2005) and Booth &
Schaye (2009). A fixed 1.5% of the rest-mass energy in accreted material provides
the energy budget for black hole feedback. This is implemented using a similar
stochastic scheme as used for injecting stellar feedback, but with a higher heat-
ing temperature (ATgy = 10%°K for the reference models, and 10°K for Recal-25).
Note that the AGN feedback in EAGLE is single mode, as opposed to a popular
approach of implementing distinct quasar and radio modes with different be-
haviours (e.g. Bower et al., 2006; Sijacki et al., 2007)

Photo-heating and radiative cooling are also implemented; this follows the
prescription method of Wiersma et al. (2009a), based on the 11 elements traced.
This model assumes that gas is optically thin and in photo-ionisation equilibrium

with the cosmic UV+X-ray background as calculated by Haardt & Madau (2001).

2.1.2 Structure Finding

Dark matter halos are identified using the ‘friends-of-friends’ algorithm (FOF,

Davis et al. 1985). A length of 0.2 times the mean inter-particle separation (Lacey
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& Cole, 1994) is used to link particles in regions that are overdense by a factor
of ~ 200 into FOF halos. Other particles are assigned to the same halo (if any)
as the nearest dark matter particle. The mass of the halo is characterised by its
Moo erit value. This is the mass enclosed within a sphere of radius Ry «rit, centred
on the location of the particle with minimum gravitational potential in the halo.
The radius is chosen such that the mean density within this sphere is 200 times
the critical density, given the assumed cosmology. Subhalos are identified with
the SUBFIND algorithm (Springel et al., 2001; Dolag et al., 2009).

SUBFIND identifies self-bound substructures within halos which are associated
with galaxies. The ‘central” galaxy is the galaxy closest to the centre of the parent
FOF halo; this is nearly always also the most massive galaxy in that halo. The
other galaxies in the same halo are its satellites. Particles in a halo not associated
with a bound substructure (i.e. satellites) are assigned to the central galaxy. Cen-
tral massive galaxies (M, > 10" Mg, say) then have an extended halo of stars
around them, usually referred to as intra-group or intra-cluster light. Determin-
ing the mass or indeed luminosity of such a large galaxy is ambiguous, both in
simulations and in observations. For this reason an aperture is imposed on the
definition of a galaxy: I follow Schaye et al. (2015) and calculate masses and lumi-
nosities for every subhalo, excluding material that is outside a 30 pkpc spherical
aperture centred on the subhalo potential minima as well as material that is not
bound to that subhalo. The 30 pkpc aperture has been shown to mimic an ob-
servational Petrosian aperture, and reduces intra-cluster light in massive centrals
while lower mass galaxies are unaffected (Schaye et al., 2015). This aperture defi-
nition of galaxies is used throughout this thesis for consistency, and the choice of
aperture is discussed further in chapters 3 and 5.

Merger trees are constructed to link halos and subhalos identified in differ-
ent snapshots by Qu et al. (2017), enabling individual structures to be followed
through time. This provides the basis for the EAGLE database described by McAlpine

et al. (2016)'; the database uses an SQL interface to simplify structure selection

"http://icc.dur.lac.uk/Eagle/database.php
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and merger tree traversal, such that the evolution of integrated halo and subhalo
properties (calculated from snapshot outputs) may be tracked easily. Chapter 4
exemplifies a study that uses the EAGLE database to follow the evolution of galax-

ies on an individual basis.

2.1.3 GAMA and SDSS survey data

Appropriate observational data sets are needed for comparison to the observable
quantities modelled for EAGLE galaxies in the following chapters. Here I very
briefly describe the data sets that are chosen for comparison.

The Galaxy and Mass Assembly (GAMA) survey (Driver et al., 2009; Robotham
et al., 2010; Driver et al., 2011) is a spectroscopic and photometric survey of 5 in-
dependent sky fields, undertaken at the Anglo-Australian Telescope, and using
the 2dF/ AAOmega spectrograph system. The 3 equatorial fields we consider fol-
low up targets from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7)
(York et al., 2000; Abazajian et al., 2009a) and the UK Infrared Digital Sky Survey
(UKIDSS), yielding a sample of ~ 190, 000 galaxies with SDSS ugriz and UKIDSS
Y JHK photometry (Hill et al., 2011; Taylor et al., 2011) and spectra covering the
wavelength range 3700A to 8900A, with a resolution of 3.2A (Sharp et al., 2006;
Driver et al., 2011). Details are provided on the targeting and star-galaxy sepa-
ration in Baldry et al. (2010) and on the GAMA-processed photometry, including
matched aperture photometry from u to K in Hill et al. (2011).

The GAMA survey strategy provides high spectroscopic completeness (Robotham
et al., 2010) and accurate redshift determination (using AUTOz; Baldry et al.,
2014) for galaxies, above an extinction-corrected r-band Petrosian magnitude limit
of 19.8. The galaxy stellar mass estimates and rest frame photometry for the
GAMA sample used in chapters 3 and 5 are taken from Taylor et al. (2015). The
high completeness and accurate redshifts of GAMA, which is volume limited and
has precisely known redshifts, is well suited for comparison with EAGLE.

Emission line indices in GAMA were measured assuming single Gaussian pro-
files, a common redshift for adjacent lines, and a stellar continuum correction

simultaneously fit to each spectrum around the measured lines, as described by
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Hopkins et al. (2003) and Gunawardhana et al. (2013, 2015). Emission line fluxes
are corrected for stellar absorption as described by Hopkins et al. (2003). Dust
corrections are obtained using the stellar absorption corrected Balmer emission
line flux ratios, also described by Hopkins et al. (2003). The uncertainties asso-
ciated with correcting Balmer lines for stellar absorption are discussed in both
Hopkins et al. (2003) and Gunawardhana et al. (2013).

Derived Ha luminosities and star formation rates are taken from Gunaward-
hana et al. (2013). Their emission line galaxies (ELGs) are initially selected to have
Ha fluxes above the detection limit of 25 x 1072° Wm™? and a signal-to-noise ratio
of > 3, with active galactic nuclei (AGN) identified and removed using standard
[NT1]A6584A /Ha and [O111]A\5007A /H/3 diagnostics (Baldwin et al., 1981). The
GAMA sample is supplemented with SDSS galaxies with detected Ha emission
and signal-to-noise >3 from the MPA-JHU catalogue?, as the brightest ELGs ob-
served by SDSS were not re-observed by GAMA.

Measurements of the 4000A break (D4000) are also used in this thesis. For
this, we compare to values measured directly from the SDsS DR7 data (Strauss
et al., 2002; Abazajian et al., 2009a). We compare a stellar mass-matched sample
of EAGLE galaxies to the publicly available sDss D4000 values measured for the
MPA-JHU'! catalogue using the code of Tremonti et al. (2004), with the index de-
fined as in Bruzual (1983). For SDSs data, we use the mass estimates of Kauffmann

et al. (2003a).

Zhttp:/ /www.mpa.mpa-garching.mpg.de/SDSS/DR7/



Chapter 3

EAGLE Photometry

This chapter comprises an edited version of the article: Colours and luminosi-
ties of z=0.1 galaxies in the EAGLE simulation, James W. Trayford, Tom Theuns,
Richard G. Bower, Joop Schaye, Michelle Furlong, Matthieu Schaller, Carlos S. Frenk,
Robert A. Crain, Claudio Dalla Vecchia, lan G. McCarthy published in MNRAS Sep.
2015, vol. 452 p. 2879, with appendices compiled in Appendix A.

3.1 Introduction

As described in chapter 2, the subgrid physics modules of the EAGLE simulation
suite (Schaye et al., 2015; Crain et al., 2015) are primarily calibrated using the
z ~ 0.1 Galaxy Stellar Mass Function (GSMF). The GSMF is not directly observ-
able, rather it is inferred from inverse modelling of observations (see chapter 1).
This requires corrections for distance, redshift and dust obscuration, and the use
of stellar population synthesis (SPS) models that involve assumptions about stel-
lar evolution, star formation histories, metallicity dependence of stellar emission,
etc. With simulations such as EAGLE, we can take a converse forward modelling
approach, attempting to reproduce the observational relations by inputting phys-
ical quantities tracked by the simulation. This has the advantage of allowing one
to use properties modelled self-consistently such as gas content, metallicity and
age to derive observable quantities, rather than treating them as free parameters

in ‘SED fitting’ (e.g. Walcher et al., 2011) to estimate physical properties from ob-
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servations. The colours of EAGLE galaxies are also an important test of the realism
of the fiducial EAGLE model.

In this chapter we examine to what extent mock luminosities computed from
EAGLE galaxies using SSP models and a simple correction for dust obscuration
reproduce the observed luminosity functions (in a range of broad bands), as well
as galaxy colours. The aim is twofold: to provide a test of the realism of EAGLE,
but also to test at some level whether the procedure of going from luminosity to
stellar mass is reliable, also investigated by Torrey et al. (2014) using SED fitting
of galaxies from the ILLUSTRIS simulation (Vogelsberger et al., 2014). It is per-
fectly possible that EAGLE galaxies have the wrong colours but the right stellar
masses and stellar ages if errors in dust modelling are severe. However, if masses
and colours agree with the data, then this increases the confidence that EAGLE is
useful to investigate, for example, the origin of the observed bimodality of galaxy
colours, or the nature of the galaxies that lie in between the red sequence and blue
cloud in a colour-magnitude diagram. These topics in particular are explored in
chapter 4.

The chapter is organised as follows. In §3.2 we detail the development of our
photometric model, concentrating on emission and absorption in §3.2.1 & §3.2.2
respectively. This model is applied to yield an optical colour-magnitude diagram
(CMD) and multi-band luminosity functions (LFs) for galaxies, which are plotted

and discussed in §3.3. We discuss our findings in §3.4 and summarise in §3.5.

3.2 Photometry

Here we compute luminosities and colours for the simulated EAGLE galaxies.
We begin by modelling luminosities of star particles, taking into account their
ages and metallicities using population synthesis (section 3.2.1), the photometric
system used to calculate magnitudes for direct comparison to observation (sec-
tion 3.2.1.3), and the effects of dust absorption (section 3.2.2). The results of this
section are summarised in Fig. 3.1, in which we plot histograms of g — r colours

of EAGLE galaxies in narrow stellar mass bins for different models, ranging from
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a simple emission model without dust, to a model including a multivariate treat-

ment for dust.

3.21 Source Modelling

We compute luminosities of EAGLE galaxies from the ultraviolet (UV) to the near
infrared (NIR). We limit this modelling to stellar emission, neglecting both nebu-
lar emission lines and light from AGN. Light absorbed by dust is assumed to be
re-emitted in the far infrared which we do not study in this chapter. As we also
neglect scattering by dust, we treat individual wavelength bands independently.
This approximation is supported by observations showing that scattering is a
negligible contributor to the observed attenuation curve in galaxies (eg. Fischera
et al., 2003).

Population synthesis models provide spectra for a discrete range of simple
stellar populations (SSPs) (e.g. Bruzual & Charlot, 2003; Maraston, 2005; Leitherer
etal., 1999). These SSPs represent populations of stars characterised by their total
initial mass, formation time, and composition while assuming some stellar IMF.
By decomposing the stellar component of an observed galaxy into a superposi-
tion of SSPs, the spectral energy distribution of an entire galaxy can be approx-
imated. In EAGLE, we treat each star particle as an SSP with given initial stellar
mass, metallicity and age. These values are set and held fixed from the instant a
star particle is formed, where the star particle inherits the gas particle mass and
metallicity at the time of formation. The parametrisation of the SSP models are

elaborated further below.

3.2.1.1 SSP Ingredients

Given the implementation of star formation, where gas particles are wholly con-
verted into star particles, the typical mass of an EAGLE star particle is ~ 10M.
Stars are assumed to form with a Chabrier (2003) IMF (for consistency with the
evolutionary models used in EAGLE), and they inherit the SPH-smoothed metal-

licity, Z, from their parent gas particle. The mass of a newly formed star particle
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is purely set by numerical resolution; the particle should not be thought of as
representing a star cluster. In fact, 10° My, is higher than the stellar mass formed
in giant HII regions (e.g. Relafio & Kennicutt, 2009; Zaragoza-Cardiel et al., 2014).
This poor sampling of star formation has the potential to adversely affect lumi-
nosities of EAGLE galaxies. Indeed, a single recently formed star particle can affect
the colour of a galaxy. We try to mitigate this numerical artefact by employing a
finer sampling of the star formation history of recently formed stars. We do this
by assuming that the star formation rate of gas particles is constant over the past
100 Myr, and randomly spawning star particles of mass 10* M, that on average
represent this constant star formation rate. We do the same for recently formed
star particles (age < 100 Myr), using the star formation rate of the progenitor gas
particle at the time of birth. We note that this typically has only a small effect for
optical colours and thus for the results presented here.

The metallicity of stars affects their colours resulting in the well-known age-
metallicity degeneracy (e.g. Worthey, 1994). In addition, Z affects stellar evolu-
tion leading to differences between models, particularly for the AGB phase (e.g
Inoue, 2012; Stancliffe & Jeffery, 2007). In addition, the metallicity of stars in EA-
GLE galaxies is set by the intricate interaction between enrichment of the ISM,
gas accretion, and the extent to which galactic winds transport metals into the
galaxy’s circum- and intergalactic medium. The details of such metal mixing are
still poorly understood and numerically challenging to model. Hence, there is no
a priori guarantee that EAGLE yields realistic stellar metallicities.

The stellar mass - metallicity (M, — Z,) relations provide a useful way of char-
acterising stellar abundances as a function of galaxy mass, and as shown in 515,
the Ref-100 model yields stellar and gas-phase metallicities consistent with ob-
servations (Tremonti et al., 2004; Gallazzi et al., 2005; Zahid et al., 2014) for stellar

masses M, > 10'"°M,. However, lower-mass galaxies in EAGLE tend to be more

~Y

metal-rich than observed, with numerical resolution playing a role: the higher-

resolution Recal-25 simulation agrees with the data for M, < 10°Mg. It should

Y

also be noted that there are large systematics on the observed mass-metallicity

relations (e.g. Kewley & Ellison, 2008). We investigate the impact of stellar metal-
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licity (Z,) on EAGLE colours in more detail in Appendix A.3. In our analysis,
we use the EAGLE SPH-smoothed metallicities (Wiersma et al., 2009b) for each

particle, which yield less noisy estimates of Z,.

3.2.1.2 Stellar Population Synthesis (SPS) Modelling

We adopt the GALAXEV population synthesis models of Bruzual & Charlot (2003),
which provide the spectral energy distribution (SED) per unit initial stellar mass
of a SSP for a discrete grid of ages (ranging from ¢t = 10° to 2 x 10'° yr) and
metallicities (ranging from Z, = 10 to 0.05). We compute the SED for each
stellar particle by interpolating the GALAXEV tracks logarithmically in age and
Z,, and multiplying by the initial stellar mass. The simulated stellar metallicities
reach higher values than the models of Bruzual & Charlot (2003) can represent,
with ~ 1.5% of star particles possessing super-enriched (Z, > 0.05) values. We
extrapolate the model to predict colours for the highest metallicities!. We note
that the more conservative approach of not extrapolating introduces a bias.

The GALAXEV spectra are based on stellar emission alone. These models are
widely used, and have been shown to fit the local galaxy population in the opti-
cal bands with reasonable star formation and enrichment histories when used in
conjunction with a dust model (e.g. Charlot & Fall, 2000; Cole et al., 2000). The
choice of population synthesis model has been shown to be largely unimportant
for low-redshift galaxy populations, especially in optical bands (e.g. Gonzalez-
Perez et al., 2014b). The effect of different models (e.g. Maraston, 2005; Conroy
et al., 2009), and in particular the more uncertain impact of thermally-pulsing
AGB stars (TP-AGB) on the SED, should however be considered when surveying
higher redshift (z 2 1) galaxy populations (e.g. Maraston, 2005; Gonzalez-Perez
et al., 2014a).

The Bruzual & Charlot (2003) models specify Z, values as absolute metal-

mass fractions, where Z, affects the colours of stars through its impact on stellar

'We find that the effect of extrapolating metallicities, as opposed to clipping metallicities to

that of the highest metallicity GALAXEV spectra, has a small (< 2%) effect on the optical colours.
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structure and evolution - for example via the opacity, equation of state and mean
molecular weight - and on stellar atmosphere models. Even so, the metallicity of
the Sun (Z) does enter the population synthesis models because some parame-
ters, such as the mixing length, are calibrated based on solar observables (Bres-
san et al., 1993). Recent literature determinations of Z have shown significant
variability, with a minimum of Z; ~ 0.0126 (e.g. Asplund et al., 2004) from the
traditional value of Z; = 0.02 assumed in Bruzual & Charlot (2003). Although
the EAGLE simulations do not make use of any particular solar abundance pat-
tern or Z; value, a relatively low value of Z; = 0.0127 (Allende Prieto et al,,
2001) has been assumed in analysis for consistency with Wiersma et al. (2009b)
(e.g. S15). The variation of Z;, generally results from a different determination of
the abundance of some important element, such as O, N, C or Fe which also im-
plies a variation of the abundance partition in the Solar model. In principle one
should use GALAXEV SSP models with an abundance partition consistent with
the assumed value of Z, and take into account effects arising from the different
mixing length calibration, to compute colours self-consistently. For now we ne-
glect any such changes and use the original GALAXEV SEDs, as the effects of this
change on broad-band colours are expected to be small, as long as one makes use

of the absolute value of the metallicity (Bressan 2014 private comm.)?.

3.2.1.3 Photometric System

Given the SED for each star particle in the simulation, and a model for attenu-
ation due to dust as a function of wavelength, we could compute the SED for
each galaxy, and calculate a broad-band magnitude by convolving with a broad-
band filter. Here we use a much simpler method, namely we first convolve the
GALAXEV spectra (for each value of age and metallicity) with broad-band filters
to obtain ‘un-obscured’ broad-band luminosities. We use these to obtain a broad-

band luminosity for an EAGLE galaxy. We only then take into account dust atten-

2We are grateful to S. Charlot and A. Bressan for their detailed explanation of the impact of Z,

on the GALAXEV model.
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uation (as described below). If, as we assume, the wavelength dependence of the
dust attenuation is not very strong (i.e. the optical depth does not vary strongly
over the wavelength extent of the filter), then these two approaches yield very
similar results. For the dust models discussed below, we verified that this is in-
deed the case (section 3.2.2).

We use the ugrizYJHK photometric system for optical and near infrared pho-
tometry, to enable a direct comparison to the GAMA survey (described in Driver
et al.,, 2011; Hill et al., 2011). The GAMA filter system is based on that of SDSS
(technical description in York et al., 2000) and UKIDSS, (technical description in
Lawrence, 2007). Note that when calculating photometry below, filter transmis-
sion curves include atmospheric absorption to enable a like-for-like comparison
of simulation and observation. All magnitudes are calculated as rest-frame and
absolute in the AB-system (Oke, 1974) in which the apparent magnitude mp is
defined as

map = —2.5log,(F,) — 48.6, (3.2.1)

where F, is the isophotal flux density (in cgs units) in a particular band (e.g.

Tokunaga & Vacca, 2005).

3.2.14 Choice of aperture

Individual EAGLE ‘galaxies” are identified as described in chapter 2. We select
galaxies with at least 100 star particles, whose stellar mass is reasonably well
converged numerically (S15). The line of sight is chosen consistently to lie along
an axis of our simulation coordinates, yielding an essentially randomised orien-
tation for each galaxy.

Massive galaxies (M, 2> 10'°°Mg) in EAGLE have up to ~ 40% of their stel-
lar mass in an extended halo beyond 30 pkpc of the galaxy centre (‘intra-cluster
light” since most of these massive galaxies are at the centre of a group or clus-
ter). Observationally, such galaxies also tend to have extended light distributions
and, unsurprisingly, the luminosity assigned to them depends on how such light
is taken into account (e.g. Bernardi et al., 2013). We apply a constant aperture of

30 pkpc centred on the minimum of the gravitational potential of each subhalo
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for measuring the total luminosity, L, of a galaxy, as discussed in chapter 2. The
luminosity and colour of a galaxy with a significant intra-cluster light component
do depend on whether we apply a 2D aperture or a 3D aperture. This change in
colour is due to colour gradients but also due to the inclusion or exclusion of
small blue satellite objects below the significance of those identified by SUBFIND.
This is a similar issue to that encountered when isolating galaxies in astronomical
data using software such as SEXTRACTOR (Jackson et al., 2010). We choose to ap-
ply a 3D spherical aperture, consistent with our previous analysis (515, Furlong
et al. (2015)). Such an aperture is shown in 515 to yield similar stellar masses to a
Petrosian aperture, often used in observational studies.

The aperture definition is not standardised in observations, and can make a
difference when a considerable fraction of stellar material lies outside the aper-
ture. This is illustrated for the Kron and Petrosian apertures in Driver (2012),
where luminous galaxies with high Sérsic indices yield different magnitudes.
Similarly, when analysing our simulations, the luminosities of EAGLE galaxies
with M, > 10"M,, are sensitive to the exact choice of aperture size. However,
this is not the case for lower mass galaxies, for which the fraction of light in an

extended halo is much lower.

3.2.1.5 Model N

The procedure for obtaining EAGLE galaxy photometry outlined above (sections
3.2.1.1-3.2.1.4) provides a model with no consideration of dust effects. This is
hereafter referred to as model N. Model N provides a basis for comparison with
photometry corrected for dust attenuation, as described below (sections 3.2.2.1-
3.2.2.3). Panel a) of Fig. 3.1 shows the g — r colour distribution of EAGLE galaxies

for this model.

3.2.2 Dust models

We develop a simple empirically calibrated model for dust absorption, as opposed

to a more physical modelling using ray-tracing, which I will present in chapter
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5. One advantage of such a model is that we can easily disentangle the effects of
dust from those of the SPS modelling on galaxy colours. In addition, if we model
dust attenuation using galaxy parameters that are provided by EAGLE but can
also be inferred through observation, then we may calibrate the reddening of EA-
GLE galaxy colours empirically to reproduce observed trends. Keeping our dust
model parametrisation independent of certain quantities, such as the gas distri-
bution, also allows us more freedom to investigate the extent to which certain
assumptions affect galaxy colours.

In our modelling, dust corrections are applied as a multiplicative factor that
reduces a given broad-band luminosity. This factor is estimated at the effective
wavelength of each filter (SDSS filter parameters taken from Doi et al. 2010,
UKIRT filter parameters taken from Hewett et al. 2006), for a given dust prescrip-
tion (neglecting changes in the dust opacity within a broad-band filter is a good
approximation provided the dust model has a smooth wavelength dependence).
In this way, dust obscuration depends on the subhalo properties of a galaxy alone,
and we avoid handling entire SEDs and generating a new interpolation grid for
each galaxy. This makes the analysis process very efficient. The approximation
that reddening can be applied after the spectrum has already passed through a
filter affects the g — r optical colours by < 0.02 mag over the whole interpolation

grid for the constant optical depth model discussed below.

3.2.2.1 Model GI: Galaxy-independent dust model

We begin by discussing the simplest dust model introduced by Charlot & Fall
(2000), hereafter referred to as CF. This model includes two contributions to the
dust optical depth in a galaxy (74): (i) a transient component due to dust in stellar
birth clouds (7y.), and (ii) a constant dust screen that represents dust in the ISM

(Tism)- The transmission 7" of this model is

—-0.7
eXp <_ [%bc + 7A_ism] (}%) ) fOI' tl S tdisp/

—0.7
exp <_7A_ism (%) ) fort' > tdisp-

Here, t' is the stellar particle’s age, tais, is the dispersal time of the stellar birth

T 1) (3.2.2)
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cloud, X is the wavelength of light, and 7, and 7. characterise the total dust
optical depth (due to ISM and birth-cloud, respectively), at wavelength \,. When
a model SED of a galaxy is fit to an observed galaxy, 7ism and 7, can be used as
titting parameters to model dust (e.g. da Cunha et al., 2008). Alternatively, these
parameters can be assigned constant values to model dust for a given popula-
tion of galaxies as in Bruzual & Charlot (2003), but this does then not allow for
variations between galaxies.

As a first approximation we simply take 7, and 7, to be constants,

The = 0.67

with A\, = 5500 A and tdisp = 107 y1, which were calibrated to fit starburst galaxies
and were used for the recent analysis of the ILLUSTRIS simulations (Vogelsberger
et al.,, 2014) by Genel et al. (2014) and Torrey et al. (2014). With the optical depths
fixed, the colours of an EAGLE galaxy will only depend on the SSP modelling.
Such an approximation was also used in the development of the GALAXEV model,
where it was shown to work well when SED fitting a subset of the SDSS survey
at z = 0.1 (Bruzual & Charlot, 2003). The effect of this simple dust model on g —r
colours can be seen by comparing panels a and b in Fig. 3.1, and is discussed in
more detail below.

In this simple model (model GI), the strength of the two screen components
are fixed for each galaxy (and hence do not depend on e.g. its gas mass or metal-
licity) and are also independent of orientation. We discuss refinements of the dust

model next.

3.2.2.2 Model GD: ISM-dependent dust model

To account for variations in metal enrichment in the interstellar medium (ISM)
of galaxies, we use the mass-weighted SPH-smoothed metallicity (Wiersma et al.,
2009b) calculated for star-forming gas in each EAGLE subhalo, Zsp. This metallic-
ity calculation is chosen to imitate observational measurement techniques (Tremonti

et al., 2004; Zahid et al., 2014). As demonstrated in 515, the mass-metallicity rela-
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tions in EAGLE are significantly affected by resolution, with the Recal-25 simula-
tion showing better agreement with the observed Z, — M, relation from Tremonti
et al. (2004) than Ref-100 for M, < 10'°M3>. Near the knee of the mass function,
however, the EAGLE mass-metallicity relation agrees well with observation (see
S15).

We take the analytic expression for the M, — Z;, mass-metallicity relation at
z = 0.1 of Zahid et al. (2014), Z714(M,), evaluated at the Milky Way stellar mass,
Myw = 6.43 x 10" My (McMillan, 2011), as the ISM metallicity represented by
the optical depth values of Eq. (3.2.2). Assuming optical depth is proportional to
metallicity, we then scale the optical depths 7. and 7isy that appear in Eq. (3.2.2)
by the factor

The — Zsr Th
¢ Zza(M, = Myw) ¢
Zsk

7A—isma
ZZl4(M* = MMW)

. (3.2.4)

~
Tism

for each EAGLE galaxy, using the optical depth values of Eq. 3.2.3.

Making the dust optical depth depend on metallicity is physically well moti-
vated, as it is indicative of the fraction of ISM mass in dust grains. Therefore, we
must also take account of the gas mass to quantify how much dust is available for
obscuration. We do so by making the dust optical depth dependent on the cold
gas mass - but still neglect how that gas is distributed.

We approximate the cold gas mass, Mgy, by the mass in star-forming gas,
which in EAGLE means gas above a given metallicity-dependent density thresh-
old and below a given temperature (see S15). We then scale the birth cloud and
ISM dust optical depths by the ratio of Mgy for the galaxy over the value for the
Milky Way (which we take to be 10 per cent of M,; Mo et al., 2010; McMillan,
2011). This scaling is derived from observations indicating that optical depths

approximately scale with the overall gas surface density (3,) of galaxies (e.g.

3Note, however, that the observed mass-metallicity relation suffers from calibration uncertain-
ties that exceed the difference between Tremonti et al. (2004) and Ref-100 (Kewley & Ellison, 2008)
and that the more recent re-analysis by Zahid et al. (2014) falls in between Ref-100 and Tremonti
et al. (2004) (see figure 13 of S515).
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Grootes et al., 2013; Boquien et al., 2013). By taking 3, as approximately o< Misy/R.>,
and since the z = 0.1 stellar mass-size relation is relatively flat for both EAGLE
(515) and observed galaxies (Shen et al., 2003), we approximate that 7 oc 3, o
Mism. Neglecting the R, 2 dependence maintains a relatively simple parametri-
sation, and appears to have little effect on galaxy colours, due to the limited mass
range over which reddening is significant.

Such a scaling has the desired effect of reddening gas-rich spiral galaxies more
than gas-poor elliptical galaxies at the same M,. The galaxy g — r colour distribu-
tions for the model including metallicity and gas fraction dependent reddening
(model GD) are shown in Fig. 3.1c. For comparison, we also show the g — r
colour distributions for EAGLE galaxies where the value of Z;4(M,) is used in
Eq. (3.2.4), instead of Zgr. Because low Mgy values provide low optical depths
for the stellar mass range where EAGLE and observed mass-metallicity relations

differ (M, < 10'°M), both treatments produce similar distributions.

3.2.2.3 Model GD+O: ISM-dependent dust model with orientation effects

Finally, we represent the dependence of obscuration on orientation with a simple
toy model. We assume the dust geometry to be an oblate spheroid, with major to
minor axial ratio of ¢ = b/a = 0.2. This ¢ value is commonly used to represent an
axial ratio typical of the intrinsic stellar distribution in disc galaxies (e.g. Tully &
Fisher, 1977). We assign to each EAGLE galaxy an orientation w = cos(¢), where
¢ is the angle between the galaxy’s minor axis and the line of sight. To obtain a
random orientation we randomly sample w from a uniform distribution over the

interval [—1, 1]. The line-of-sight depth through the dust spheroid is then

B q
l(w)=ua VROt (3.2.5)

We then scale 7ig\ as

A

Tism

% Tism 5 (3.2.6)

so that the mean optical depth does not change. This scaling reduces the amount

—

of dust obscuration for most galaxies by a small amount, yet increases 7 by a fac-

tor ~ 2 for a small number of ‘edge-on’ systems. We assume a value of ¢ that
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is appropriate for discs, but we note that elliptical galaxies - provided they have
little cold gas - are not strongly reddened anyway, hence this orientation correc-
tion is not important for them. The g — r colour histograms including orientation
effects are shown as model GD+O in Figure 3.1d. We also show the colour distri-
butions produced using more oblate geometries, with axial ratio values ¢ = 0.1

and ¢ = 0.02, for comparison.

3.3 Results

In this section we examine the effects of dust modelling on the colours, luminosi-
ties, and colour-magnitude diagrams of EAGLE galaxies taken from the Ref-100

and Recal-25 models at redshift z = 0.1.

3.3.1 Galaxy colours as a function of stellar mass

We contrast g — r colours for EAGLE galaxies in narrow (0.3 dex) bins of M, for
different models of dust absorption in Fig. 3.1 (panels a-d). In all panels, the blue
line corresponds to the observed distribution from the GAMA survey (Taylor
et al., 2015). Different panels show models with no dust (model N, panel a), a
dust model that is independent of galaxy type (model GI, panel b), a model in
which dust opacity depends on metallicity and gas fraction (model GD, panel
¢), and finally a model that in addition accounts for orientation effects (model
GD+O, panel d). All models are shown as histograms, normalised to have unit
integral. Models including dust are plotted as solid histograms, while the dashed
histograms represent model N in all panels. Ref-100 distributions for the fiducial
dust models are plotted in black, whereas Recal-25 distributions are plotted (for
the lowest mass bin) in red. Model variations are also plotted for Ref-100, with a
model using the observed mass-metallicity relation in panel c shown in green (see
section 3.2.2.2) and models with alternative ¢ values in panel d shown in green
and yellow (see section 3.2.2.3).

The observed g — r colours shift from very red massive galaxies (usually

termed the ‘red sequence’), to a broader distribution in colours for 10%% < M, /My, <
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Figure 3.1: Rest-frame g — r colour distributions for EAGLE galaxies at redshift

z = 0.1, using 4 different models (panels a-d) for four non-contiguous ranges in

stellar mass as indicated in the legend (top to bottom). Black lines indicate the

fiducial Ref-100 galaxy population while red lines indicate the higher-resolution

Recal-25 simulation. Dashed lines denote the unobscured SED (model N); these

are repeated in each panel for comparison. Blue lines represent observed galaxy

colours for the volume-limited sample of GAMA galaxies from Taylor et al. (2015).

Models shown above are: model N without dust (panel a, see §3.2.1.5), model GI

with galaxy independent dust (panel b, see § 3.2.2.1). {continued on next page...}
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Figure 3.1: {Continued from previous page...} Panels show model GD where the
dust obscuration depends on gas fraction and metallicity (panel ¢, § 3.2.2.2), and
model GD+O that in addition takes into account orientation effects (panel d,
§ 3.2.2.3). Here, green and yellow lines also show model variations in panels ¢
and d (see sections 3.2.2.2-3.2.2.3 for details). Overall, the figure shows the subtle
quantitative effects that our different dust models have on the colour distribu-

tions of EAGLE galaxies in various M, regimes, as is discussed further in the text.
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10'%%, and finally a blue population (usually termed ‘blue cloud’) at lower stel-
lar masses. There is little evidence for a strong ‘bimodality” in observed colours
even though the data has often been interpreted that way (e.g. Kauffmann et al.,
2003a). Such an interpretation is perhaps due to the bimodality seen at a fixed
optical magnitude, where blue galaxies are pushed into higher luminosity bins.

Before comparing the models to the data, we investigate the effects of dust
modelling, going from high- to low-mass galaxies (top to bottom rows in panels
a-d). The most massive galaxies (10" < M, /M, < 10", top rows) have a
relatively extended intrinsic colour distribution (model N). Including a model
with dust reddening independent of galaxy properties incorrectly reddens the
reddest galaxies even more (model GI) but taking into account the relatively low
cold-gas masses of these galaxies returns the colours to close to their intrinsic
values (model GD). The tail of bluer massive galaxies is significantly affected
by dust, yielding a mono-modal distribution in the highest-mass bin. Including
orientation effects (model GD+O) gives a slightly broader colour distribution for
the fiducial axial ratio value of ¢ = 0.2.

A similar trend is noticeable for galaxies in the second most massive bin (10'%% <
M, /Mg < 10'2, second row from the top). Though the fiducial value of ¢ = 0.2
for GD+O produces a similar distribution to GD in this bin, varying ¢ values ap-
pears to have the strongest effect here. Smaller ¢ values show a more pronounced
bimodality, as the majority of galaxies are subject to less reddening, while a mi-
nority of ‘edge-on’ galaxies are heavily reddened to g — r colours 2 0.8.

The third bin (10 < M, /M, < 10'%1, third row from the top) also behaves
similarly: the intrinsically bluest galaxies get reddened slightly more than the
intrinsically red galaxies with scatter due to orientation having a negligible effect.

Finally, the colour distribution for galaxies in the least massive bin (1057 <
M, /Mg < 107, bottom row) is also shown for the Recal-25 simulation. There is
a large difference in colours between Ref-100 and Recal-25 for the least massive
galaxies, which is predominately a resolution effect: at the resolution of Ref-100

the star formation rates in these low-mass galaxies is underestimated (S15) which

makes the simulated galaxies too red. This striking resolution dependence is not
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surprising. In Ref-100, galaxies of mass M, ~ 10°M are represented by only
~ 10% star particles, and for a typical cold gas fraction of 10 per cent, by only
100 star-forming gas particles. We demonstrate in Appendix A.2 that red and

0'*! range* are

blue sequence colours for galaxies across the 10°% < M, /M, < 1
quite similar in Ref-100 and Recal-25 - which gives us confidence that Recal-25
gives numerically converged answers for the bottom row of Fig. 3.1. However,
the different environments probed by the Ref-100 and Recal-25 models also con-
tribute to the difference in colours, in particular the strength of the red sequence,
because the larger volume contains a population of satellite galaxies in massive
halos. This is also shown in Appendix A.2 and discussed further in section 3.4.
Taking into account dust obscuration and orientation effects has little effect on
the colours in Recal-25 for these low-mass galaxies, with model GD+O and N
yielding nearly identical colour distributions.

We now turn to comparing the colours of EAGLE galaxies to the data, going
from top (most massive) to bottom (least massive) bins in stellar mass and focus-
ing on model GD+O, Fig. 3.1d). At the massive end, the observed red sequence
galaxies are about 0.05 mag redder in the data than in EAGLE. As the optical
colours of old (2 10 Gyr) stellar populations are dominated by metallicity effects
(Bell & Rodgers, 1969), this small colour difference is attributable to SSP metallic-
ities. The M, — Z, relation for EAGLE galaxies (S15) is seen to lie slightly below
(by less than 0.1 dex) observational data in galaxies with M, /Mg > 10'!, result-
ing in a slightly bluer red sequence colour. The data also has a tail to even redder
colours not present in EAGLE. In contrast, the most massive EAGLE galaxies have
a tail to bluer colours resulting from recent star formation. It could be that such
star formation is shielded more effectively in the data (i.e. the value of 7, used is
too low), or alternatively that our AGN feedback scheme does not quite suppress
star formation sufficiently. The higher than observed gas fractions for galaxy clus-
ters in EAGLE (S15) could also contribute to the enhanced SFR of some simulated
BCGs.

%A larger mass range is used in Appendix A.2 than in the third row of Fig. 3.1 so that Ref-25

and Recal-25 are sufficiently sampled.
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The red sequence of galaxies with 10'%® < M, /M, < 10'°® is very similar
in the data and the simulation, but in EAGLE there are significantly more blue
galaxies. The blue cloud starts to appear in the data for galaxies with 10°% <
M, /My < 10'%1) and its colour is very similar in EAGLE. However, in EAGLE
the blue peak is stronger and the red peak occurs at a slightly redder colour (g —
r = 0.75 compared to the observed value of 0.7). Using smaller values of ¢ in
GD+O0 does not improve agreement with observation here. Dust reddening and
orientation effects already play little role in setting the colours of EAGLE galaxies
in this mass bin. Finally, in the lowest mass bin, 10*7 < M, /Mg < 107, there is
excellent agreement in the colour distributions of simulation and data and once
more our dust reddening models are unimportant in setting EAGLE colours.

This level of agreement between galaxy colours in the simulation and the data
is encouraging. By including metallicity and orientation effects in our dust treat-
ment, we prevent the significant colour shift seen in the simple GI model. The
validity of our dust model is discussed further in section 3.4. Despite the good
agreement, there are some clear discrepancies between EAGLE and the GAMA
colour distributions. These can be seen in the widths and relative strengths of
red and blue populations. The latter discrepancy reflects the finding of S15 that
the transition from actively star-forming to passive galaxies occurs at slightly (by
a factor of ~ 2) too high mass in EAGLE.

The dependence of galaxy colours on stellar mass is further illustrated in
Fig. 3.2, where the number density of galaxies in EAGLE with given rest-frame
g — r colour (computed using model GD+O) and stellar mass is compared to a
volume-limited sample of GAMA galaxies taken from Taylor et al. (2015). Results
are plotted down to stellar masses of 10*"M,,, below which volume corrections
due to the influence of line-of-sight structure become increasingly uncertain in
the data (Taylor et al., 2015). The colour bar shows the point density of EAGLE
galaxies and how these map to the Taylor et al. (2015) contours.

The first panel shows the galaxies taken from simulation Ref-100. The simula-
tion reproduces the trend seen in the data from galaxies being red above a stellar

mass of M, ~ 10'%°M,, to being predominantly blue below that. However, as also
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Figure 3.2: Rest-frame g—r colour-stellar mass diagrams for Ref-100 EAGLE galax-
ies using photometry model GD+O at z = 0.1. Coloured points represent the point
density of EAGLE galaxies of given M, and g — r colour (see text). Contours rep-
resent the colour-, distribution for a volume-limited set of GAMA galaxies from
Taylor et al. (2015), with grey points representing individual galaxies. The masses
of observed galaxies are obtained through SED fitting, see Taylor et al. (2015).
The colour bar covers 2 dex in point density with a contour spacing of 0.28 dex,
with contours mapped to equivalent densities in the colour bar. The transition
of colours of observed galaxies, from the red-sequence at stellar masses above
M, ~ 10'5M,, to the blue cloud at lower stellar masses, is reproduced in the sim-
ulation, although the blue cloud extends to slightly higher ), and lower-mass

EAGLE galaxies appear too red. {continued on next page...}
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Figure 3.2: {Continued from previous page...}. As the previous panel, but where
a composite set of EAGLE galaxies obtained by combining the higher-resolution
model Recal-25 for galaxies with M, < 10° Mg and Ref-100 for M, > 10° Mg
(right panel), cross-fading the sampling probability of the two galaxy populations
linearly in log,,(M,/Mg) (see text for details). The high resolution simulation

better reproduces the observed colours at low mass.
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seen in the previous figure, there is a population of red (¢ — r ~ 0.7) low-mass
(M, ~ 10°M;) galaxies in EAGLE that is not seen in the data. These galaxies are
modelled using only ~ 1000 star particles; the second panel of Fig. 3.2 therefore
uses the higher resolution simulation Recal-25 for galaxies below 10°M, and Ref-
100 above 10°M,, cross-fading one simulation into the other. This is achieved
by interpolating the frequency at which galaxies are randomly sampled from
the simulations for our scatter plot linearly in log()/,) between two values at
10°M, and 10'°M,,. This is from 1 to 0 for the Ref-100 simulation and from 0 to
32 for Recal-25 simulation respectively®. With this we aim to show the colour-
mass distribution for a larger range of well-resolved galaxies (2 1000 star par-
ticles), while avoiding a discontinuity that renders the overall distribution less
clear. This cross-fading is only intended to help in visualising the overall distri-
bution of g — 7 colours in EAGLE, taking advantage of the higher resolution at
low mass end and of the larger volume run at the high mass end. A quantitative
analysis of the colour distribution of EAGLE galaxies is shown in Fig. 3.1 and 3.5,
and discussed below.

Combining these two resolutions, the colours of EAGLE galaxies at given M,
track the data from the GAMA galaxies (Taylor et al., 2015) well. Both display a red
sequence of massive galaxies which becomes redder with increasing stellar mass,
and g—r ~ 0.7 at M, ~ 10'°°M,. The simulation also reproduces the width of that
sequence, albeit with a shallower slope. A blue cloud of galaxies appears both in
EAGLE and GAMA below M, ~ 10'°°M,, with g — r ~ 0.45 at M, = 10'%5M,,.
At decreasing stellar mass, the location of the blue cloud becomes bluer, reaching

g—r ~ 0.35at M, = 10° M. Overall we find that EAGLE reproduces the mean

The sampling frequency of Recal-25 galaxies in this plot are weighted a factor of 64 higher
than Ref-100 galaxies to account for the smaller volume and a further factor of 2 lower to account
for the boosted number counts in Recal-25 caused by poor sampling of large scale power in the
smaller volume. This means that for masses < 10°M, each Recal-25 galaxy contributes a factor of
32 more to the point densities in Fig. 3.2 than a Ref-100 galaxy at mass > 10°Mg. This weighting
is chosen to yield approximately the same number of galaxies plotted per unit stellar mass in the

second panel of Fig. 3.2 as in the first.
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trends in galaxy colours well. Though the eradication of the faint red sequence
in this sample is at least partly due to improved sampling, it also comes about
because these galaxies are much less abundant in the higher resolution Recal-25
simulation (further discussion of the origin of this faint red population can be
found in Section 3.4 and Appendix A.2).

In addition to the mean location of galaxy colours, there are outliers in both
data and simulation. The GAMA data display a scatter to extremely red colours
(g —r > 1) at all stellar masses only seen for one high-mass outlier in EAGLE.
There is also a scattering of galaxies ~ 0.1 mag bluer than the main locus in GAMA
that appear in EAGLE as well. Finally, EAGLE has some very massive, relatively
blue galaxies (M, ~ 10''°My, g — r ~ 0.6); although there are such galaxies
in GAMA as well, they are more numerous in EAGLE, as is more easily seen in
Fig. 3.1. We suggested before that these either imply too little dust reddening
in star forming regions in EAGLE, or simply that some of these massive EAGLE
galaxies are undergoing too much star formation despite the inclusion of AGN

feedback.

3.3.2 Luminosity functions

Luminosity functions for model GD+O in rest-frame ugrizY JHK broad-band
filters are plotted using absolute AB magnitudes in Fig. 3.3. The simulations Ref-
100 and Recal-25 at redshift = = 0.1 are shown with Poisson error bars as solid
black and red histograms respectively, becoming dashed when there are fewer
than 10 galaxies per ~0.6 mag bin. For Recal-25 the bins are correlated, as can
be seen for example in the u-band for bins M — 5log(h) = —17.5 to —18.5, due
to poor sampling of large-scale modes in the small volume. There is generally
good agreement between the two runs, with Recal-25 typically less than a factor
of two (0.3 dex) higher at the faint end, and by much less for the redder bands.
Note that this higher-resolution simulation does not sample the exponential cut-
off at high luminosities because of its small volume. Differences in resolution are
most noticeable in bluer colours, particularly in u. As discussed before, in small

galaxies the stellar feedback events driving outflows are poorly sampled and the
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Figure 3.3: Rest-frame ugrizY JH K luminosity functions in the AB system, plot-

ted at

M - 5log;, b [mag]

M - 5log;o b [mag]

= 0.1 for the Ref-100 simulation in black and the Recal-25 simulation in

red using GD+O photometry. The Ref-100 function is plotted down to the faintest

magnitude bin at which most galaxies are represented by >100 star particles.

ugriz bands are compared to the GAMA survey luminosity functions taken from

Loveday et al. (2012), k-corrected to rest-frame magnitudes and plotted as circles.

{continued on next page...}
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Figure 3.3: {Continued from previous page...} The region bound by the Schechter fits
to the Driver (2012) and Loveday et al. (2012) luminosity functions is shaded in
grey. As these two luminosity functions are measured using Kron and Petrosian
magnitudes respectively, the grey area indicates the difference due to aperture
definition. Schechter fits for Y JH K luminosity functions are taken from GAMA
(Driver et. al. 2012) and from 6DF+2MASS (Jones et al., 2006) where available
Poisson error are plotted with dashed lines indicating bins containing < 10 galax-
ies. The EAGLE luminosity functions are similar to the observed fits across the

spectral range, with some discrepancies discussed in section 3.3.

Model Description r-band
2 a ~2.51og10(7#)

[A? cMpc~3 mag '] [AB mag]
N No dust 81759 x 1073 —1.2415:03 —21.0751
GI Galaxy-independent dust model 75700 x 1073 1251503 —20.7153
GD 7 and Mgy dependent 9.3t17 x 1073 1211503 —-20.7153
GD+O  GD with orientation dependence 9.5712 x 1073 1211502 —20.715-2
Data Loveday et al. (2012) 9:+0.7 x 1073 —1.26£0.01  —20.7£0.03

Table 3.1: Best-fitting Schechter function (Eq. 3.3.7) parameters for EAGLE AB-
magnitude luminosity functions in the r-band for different dust models in sim-
ulation Ref-100 at redshift = = 0.1, and the observed luminosity function from
Loveday et al. (2012). The EAGLE and observed luminosity functions are all fit
over the magnitude range —23.2 < r < —14.2, 1o errors on the best-fit parame-
ters were computed using jackknife sampling. Best-fit parameters to ugrizY JHK

luminosity functions can be found in Appendix A 4.
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star forming components are poorly resolved. As a result star formation rates
and thus intrinsic colours are subject to considerable resolution effects. We see
that the higher-resolution simulation yields higher star formation rates and hence
bluer colours. We again note that this is not just a resolution issue: the Ref-100
volume contains a population of faint red quenched satellites of massive galaxies,
which are simply not present in the much smaller Recal-25 volume, as discussed
further in Appendix A.2. LFs in longer wavelength bands are consistent in shape
between the two simulations (despite the small volume simulation being noisier).

Observed luminosity functions from Loveday et al. (2012) are plotted in each

of the ugriz bands, which we fit with a single Schechter (1976) function,

1 dn L\*“ dL
L_* 7 N (L—*) exp(—L/Ly) L_* : (3.3.7)

Single Schechter function fits are also taken from Driver (2012) and Jones et al.
(2006). For the ugriz bands these are shown as grey shaded regions which are
bounded by the fits to the observed luminosity function of Loveday et al. (2012)
and Driver (2012), both based on data from GAMA. The differences between these
observed luminosity functions result from the use of Kron and Petrosian magni-
tudes, respectively. The thickness of the grey band is thus a measure of how these
different aperture choices affect the Schechter fit. For the YJH K band, we plot
published Schechter fits, which are based on UKIDSS data.

There appears to be some discrepancy between Schechter fits from the obser-
vational papers and directly observed luminosity functions in the optical, as can
be seen by comparing the Loveday et al. (2012) data with the Schechter fits. In
particular, the data points appear systematically higher than the Schechter fit at
the faint end and below the fit at the bright end. This is most visible in the z-band
where the shaded region is narrowest. This could be a consequence of interme-
diate magnitude bins dominating the fit as this is where observational errors are
minimal. It also shows that the single Schechter function is not a good fit to the
observational data. In particular, it is unable to represent the observations at the
faint end accurately (e.g. Loveday, 1998). The Driver (2012) and Jones et al. (2006)
fits agree reasonably well, except for the faint-end slope in the K-band. The sin-

gle Schechter fits are used here as simple indicators of the shape, position and
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normalisation of the observed luminosity functions, but clearly their exact loca-
tion depends on details of how galaxies are identified in the data, and possibly
on the range and assumed errors used in the fitting procedure. We compare the
parameters of Schechter fits to EAGLE luminosity functions to observational fits
in Table 3.1.

From Table 3.1 we see that the dust treatment has little effect on the shape of
the r-band luminosity function. The effect of including dust using the GI model
makes the knee position, —2.5log;,(L,), 0.3 mag fainter and decreases the normal-
isation, ¢,. Scaling dust absorption by galaxy properties in GD serves to increase
¢, for the same L, value. The GD and GD+O model luminosity functions provide
L, and ¢ parameters that agree with the observational values within the errors.
The faint-end slope, o, shows some variation between dust models, but remains
within ~ 1o of the observational value. Information on the fitting and best-fit
parameters to each ugrizY JH K luminosity function for GD+O can be found in
Appendix A 4.

Comparing the GD+O EAGLE luminosity functions to the data in Fig. 3.3
shows a striking overall consistency from the UV to the NIR bands. The devi-
ations are mostly of the same order as differences in fits to the published lumi-
nosity functions of different authors. The agreement is particularly good in the
optical bands ugriz, where EAGLE tends to fall mostly inside the grey band that
represents the dependence of the luminosity function on the choice of aperture.
The excellent agreement over such a wide range of colours suggests that EAGLE
forms the correct number of galaxies of a given stellar mass and that those galax-
ies have realistic star formation histories and metallicities.

Comparing blue bands (u — g) to redder bands (J — K) at the faint end, we
notice that the EAGLE Ref-100 luminosity functions tend to be slightly low in blue
bands relative to the data, but high in the red bands. This is a consequence of Ref-
100 producing slightly too many low-mass galaxies (515) which have too low star
formation rates (Furlong et al., 2015). Resolution also plays a role: we plot galax-
ies with more than 100 star particles, where we know that the stellar feedback

events generating outflows and star formation rates at the faint end are poorly
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resolved. In addition, even fainter galaxies with high star formation rates cannot
scatter into the faint-end bins since we impose a cut in mass and not in magni-
tude.

The EAGLE luminosity function tends to drop below the observations at the
‘knee’ (L,) in the Schechter function, particularly in the bands red-ward of r. This
is consistent with a slight underestimate in the masses of more massive EAGLE
galaxies, as seen in the mass function plotted in S15.

The JHK bands also appear to have generally somewhat steeper faint-end
slopes (parameter ain Eq.3.3.7) in EAGLE than the Schechter fits to the data. How-
ever, the data itself also shows an upturn at the faint end relative to the Schechter
tits (circles in Fig. 3.3, see also Driver, 2012). Generally, the single Schechter func-
tion fit tends to underestimate the luminosity function at the faint end (Loveday,
1998). This is more pronounced in the JH K bands where the NIR sky is rela-
tively bright (e.g. Sivanandam et al., 2012), leading to large uncertainties in the

faint end data.

3.3.3 The g — r colour-magnitude distribution

The colour-magnitude diagram of model GD+O for EAGLE is plotted in Fig. 3.4.
As in the second panel of Fig. 3.2, we combined faint galaxies from the higher-
resolution simulation Recal-25 for galaxies with M, < 10°M, with galaxies from
simulation Ref-100 at higher masses. As before, colours represent the number
density of EAGLE galaxies in this plane, whereas contours show the correspond-
ing data from the volume-limited catalogue of GAMA taken from Taylor et al.
(2015). For both simulation and data, we only show galaxies with stellar mass
M, > 10®"M,,. Fig. 3.4 now contains only ‘observable’ quantities for GAMA galax-
ies®, and in particular does not require any SED fitting. The overall agreement
between EAGLE and the data is generally very good, exhibiting similar galaxy

densities across the colour-magnitude plane.

®In practice the diagram still depends to a small extent on the applied cut in stellar mass at the

faint end and on the choice of aperture to measure magnitudes.
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Figure 3.4: Rest-frame g —r colour as a function of r-band absolute magnitude for
EAGLE galaxies (colours) compared to a volume-limited sample of GAMA galax-
ies (Taylor et al., 2015, contour lines). Contours and point shading is the same as
in Fig 3.2, with the normalised contour levels indicated on the colour bar. EAGLE
photometry is obtained using the GD+O model. A composite EAGLE galaxy pop-
ulation is used, consisting of galaxies from Ref-100 at M/, > 10°M, and Recal-25 at
M, < 10°M, as in the second panel of Fig 3.2. There is general agreement between
EAGLE and GAMA in the location and slope of the red-sequence (¢ — r ~ 0.7 at
M, —5log,, h = —20), the appearance of a blue cloud of galaxies with g —r ~ 0.45
at that magnitude, which becomes increasingly blue (¢ — r ~ 0.3) for the fainter

galaxies with M, — 5logh ~ —17.5.
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Figure 3.5: Rest-frame g — r colour distributions for EAGLE galaxies at redshift
z = 0.1 for four non-contiguous ranges in r-band magnitude as indicated in the
legend (top to bottom). Black lines indicate the fiducial Ref-100 galaxy population
while red lines indicate the higher-resolution Recal-25 simulation. Dashed lines
denote the N photometry with solid lines representing the fiducial GD+O. Blue
lines represent observed galaxy colours for the volume-limited sample of GAMA

galaxies from Taylor et al. (2015).
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We also plot colour distribution histograms in Fig. 3.5 for a more quantitative
comparison, now in 0.5 mag bins of absolute r-band magnitude. The location
of the red-sequence is within ~0.1 mag of the observations in each panel. In a
similar manner to Fig. 3.1d, we measure a slightly shallower red-sequence slope
than observed with systematically redder colours at the faint-end. A transition
between a predominately red to predominately blue distribution occurs, but at
slightly brighter magnitudes than observed (M, — 5log(h) ~ —20.5). In the low-
est M, bin, the colours and magnitudes of EAGLE galaxies also agree generally
well with the data. To avoid the stellar mass cut affecting blue galaxies signif-
icantly, our faint end bin is chosen to have galaxies brighter than M, = —17.5.
The Recal-25 simulation does not appear to show superior agreement with ob-
servation relative to the Ref-100 simulation in this bin. It should be noted that
the number of galaxies in this bin are lower for both simulation volumes than in
the lowest mass bin of Fig. 3.1d. The g — r ~ 0.3 colours of the faint blue galax-
ies appears to be well reproduced. The bright blue population in EAGLE become
slightly more discrepant with data for the —21.9 < M, < —21.4 bin than in the
high-mass bin of Fig. 3.1d, due to the fact that bluer galaxies generally possess
brighter r-band magnitudes for the same M,.

The level of agreement between simulation and data in the colour-magnitude
diagram shown in Fig. 3.4 and Fig. 3.5 is remarkable and suggests that these EA-
GLE simulations provide a relatively realistic population of galaxies at low red-
shift, and that the modelling of emission and dust obscuration in model GD+O

works reasonably well.

3.4 Discussion

The EAGLE simulations were calibrated to reproduce the local GSMF and galaxy
sizes by appropriate choice of the parameters in the subgrid model for feedback.
As stellar mass is closely linked to NIR luminosity, the consistency of GSMF prox-
ies such as the K-band luminosity function shown in Fig. 3.3 is not surprising,

at least at z ~ 0. However, consistency with the luminosity functions in other
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broad band filters is not automatic because stellar mass, star formation history;,
metallicity and dust obscuration all play a role.

In Section 3.3, we focused on our GD and GD+O photometric models where
dust absorption is approximated by a simple two component screen, with opti-
cal depths that vary with galactic gas content, metallicity and orientation (GD+O
only). The colour distributions as a function of stellar mass and r-band mag-
nitude for model GD+O in Figs. 3.1, 3.2, 3.4 and 3.5 show a level of agreement
between simulated galaxies and observations that appears unprecedented for hy-
drodynamical simulations, and comparable to that achieved for semi-analytical
models (e.g. Gonzalez et al., 2009; Henriques et al., 2014). The EAGLE luminos-
ity functions also agree well with observations over a range in wavelengths from
optical to NIR (Fig. 3.3). The relatively good agreement for number density, lumi-
nosity and colour, suggests that in EAGLE each dark matter halo forms a galaxy
with stellar mass, age and metallicity close to those inferred from observation.
The similar level of agreement in observed colour-magnitude space also rules
out a potential circularity resulting from using the same photometric model to
infer stellar mass from observational data as is used in the simulations. Even
though the overall level of agreement is good between EAGLE and the data, there
are discrepancies.

There is an excess of bright (M, — 5log,,h < —20) blue (¢ — r < 0.6) EA-

GLE galaxies relative to data, apparent in e.g. Fig. 3.5. Such an excess is seen in
all our photometric models (see Fig. 3.1), but is least apparent for model GD+O
where the recent star formation, that is the root cause of the blue colours, is most
strongly obscured by dust. This parallels the findings of S15, that the fraction of
passive EAGLE galaxies is too low at the high-mass end, relative to observations.
It may be that massive EAGLE galaxies are too highly star forming, perhaps as a
consequence of insufficient suppression of star formation by AGN. The colours
of these galaxies can be sensitive to a low level of recent star formation. A 10
Gyr population requires a specific star formation rate of ~0.025 Gyr~! over a 0.1

Gyr period to move from g — r ~ 0.8 to 0.6 at a fixed metallicity of Z = 0.02,
corresponding to 2.5 Mgyr~! for a galaxy of M, = 10*. Whether the good agree-
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ment in the colour of the blue cloud, despite the underestimate of the median
star formation rates at these masses (515), suggests underestimated reddening is
discussed further below.

The EAGLE red sequence, at g — r ~ 0.75, is flatter than observed, both when
plotted as a function of stellar mass (Fig. 3.2) and when plotted as a function of
absolute magnitude (Fig. 3.4). The flatter slope may be attributable to the de-
pendence of stellar metallicity on galaxy mass, Z,(M/,); although stellar metal-
licities of EAGLE galaxies agree well with the data at the massive end, they fall
less rapidly with decreasing stellar mass compared to the observational data of
Gallazzi et al. (2005), as shown in S15. Numerical resolution may play a role here,
because the Z,(M,) of the higher-resolution simulation Recal-25 does agree with
the data; see S15.

There is an abundant population of red (g — r ~ 0.7), low-mass (M, ~ 10°My)
galaxies in simulation Ref-100 that is not observed (see Fig. 3.2a). The compar-
ison of simulations Ref-25 and Recal-25 in Appendix A.2 shows that this is at
least partially due to a lack of numerical resolution. Indeed, star formation and
outflows driven by feedback in these galaxies are poorly resolved and poorly
sampled, leading to too low values of the specific star formation rate (and cor-
respondingly too high passive fractions) and too high metallicities (see S15). We
include a re-sampling technique, described in section 3.2.1.1, in all models to try
to mitigate poor sampling. Although this goes some way towards improving the
modelling, it does not eliminate the discrepancy. Because the re-sampling is a
post-processing step, it cannot help with the poor sampling of stellar feedback
in these low-mass systems within the simulation. Related resolution problems
are more intractable, and higher-resolution simulations are required to alleviate
them.

Comparing simulations Ref-100 and Ref-25 that have identical numerical res-
olution (and the associated poor sampling of star formation in M, ~ 10°Mg
galaxies), yet differ in simulated volume size, allows us to isolate the effects of
environment (see Appendix A.2). Although on average the colours of galax-

ies agree well between these simulations, the presence of faint red galaxies is
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much more pronounced in the larger volume. This is because many of these
galaxies are satellites of more massive systems that are absent in the smaller vol-
ume. The fraction of satellites increases at lower stellar masses, and in the range
10%"My < M, < 10°Mg comprises ~ 46% of the galaxy population in the Ref-
100 simulation and ~ 33% in Ref-25. Evidently, satellites contribute significantly
to the colour distribution at low masses. At present we cannot verify whether
improved resolution will also reduce the suppression of star formation in, or
decrease the metallicities of, small satellite galaxies, which would improve the
colours of M, ~ 10°M, galaxies compared to data. We conclude that the redder
colours of low-mass galaxies in EAGLE relative to data is at least partially a result
of resolution, stemming from poor sampling of star formation and feedback. The
improved agreement with the data that comes about from using a composite sam-
ple of Recal-25 and Ref-100 galaxies relative to using the Ref-100 sample alone is
thus mainly due to improved numerical resolution, but also to the exclusion of
red satellite galaxies that are not present in the smaller volume. The relationship
between galaxy colours and environment in EAGLE is clearly an important test of
the simulation, and will be explored further in future work.

The level of agreement between EAGLE colours and the data also depends on
the realism of our dust reddening model. Fig. 3.1 illustrates how dust reddening
depends on the assumptions made in models N (no reddening) to model GD+O
(gas metallicity, gas mass, and orientation-dependent reddening). Differences be-
tween these models are typically of order A(g — r) ~ 0.1. A dust model that is
independent of galaxy properties (such as GI) incorrectly reddens red galaxies.
A reddening model that takes into account the gas mass (GD) resolves this in-
consistency, with most of the remaining effects of reddening affecting blue bright
galaxies. Overall, we find that the details of the dust treatments make relatively
little difference to galaxy colours so that differences with observations are more
likely due to the ages and metallicities of the stars rather than dust obscuration.
This may be due to the relatively small effect of dust at redshifts z ~ 0.1. We
leave the investigation of evolution of colours and luminosities in EAGLE to a

future work.
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Taken at face value, the specific star formation rates of star-forming galaxies
in EAGLE are lower than inferred from observations by ~ 0.2 dex (515). The fact
that the colours of those same galaxies nevertheless agree with the data might
imply that we underestimate dust reddening. Indeed, an underestimate of the
gas fraction would lead to both an underestimate of the specific star formation
rate and, at fixed metallicity, the attenuation. Lagos et al. (2015b) have shown
that at M, ~ 10'°M, the median H, fraction in EAGLE is about 0.2 dex lower
than observed, and that this discrepancy goes away at higher masses and for the
higher-resolution Recal-25 model.

Systematically lower attenuation for faint galaxies could thus be attributable
to their low gas masses in the simulations. However, more complex models yield
non-zero levels of attenuation even for very low gas surface densities (e.g. Bo-
quien et al., 2013). The realism of mixed screen models as used here has been
shown to break down when screens are optically thick (e.g. Disney et al., 1989).
As dust optical depths are expected to be higher in blue bands, our dust prescrip-
tion may be too crude to reproduce the data at higher levels of obscuration. This
could contribute to the bluer colours of massive galaxies in EAGLE.

However, it is also possible that the levels of obscuration are realistic, but that
star formation rates are overestimated in the data due to the absolute calibration
of observed tracers of star formation. The calibration of star formation rates from
tracers rely on assumptions about the intrinsic UV continuum (from population
synthesis modelling) and absorption at short wavelengths, as well as an assumed
form for the IMF (e.g. Kennicutt, 1998a). The cumulative build-up of stellar mass
in EAGLE is lower than observed by about 0.1 dex, whereas the star formation rate
is lower than that observed by 0.2-0.4 dex, depending on redshift (Furlong et al.,
2015). This slight tension may suggest a small overestimate of the observationally
inferred star formation rates. Estimating intrinsic properties from observables of
simulated galaxies (such as star formation rates) may help to clarify these issues,
see e.g. the recent study by Torrey et al. (2014).

The dust model we developed here was designed to be as simple as possible,

yet to avoid unrealistic levels of reddening. The model assigns a single value of
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reddening per galaxy without taking into account the non-uniform distributions
of dust apart from that assigned to birth clouds. It is possible to make much more
detailed estimates of reddening using 3D radiative transfer (RT) calculations (e.g.
Baes et al., 2005; Jonsson et al., 2009). We postpone comparisons of the current
simple model to those obtained with the radiative transfer code SKIRT (Baes et al.,

2005) to chapter 5.

3.5 Summary & Conclusions

We have calculated broad band luminosities of simulated galaxies taken from
the EAGLE (Evolution and Assembly of GaLaxies and their Environments) suite
of hydrodynamic simulations (515, C15), and compared them to observations of
the redshift = ~ 0.1 galaxy population. The model uses simple stellar popula-
tion modelling based on the GALAXEV population synthesis models of Bruzual &
Charlot (2003). To marginally reduce sampling noise arising from single young
star particles in poorly resolved galaxies, we use a re-sampling procedure for
the young stellar component. In all models, galaxy luminosities are found by
summing the particle luminosities within a 30 pkpc radius spherical aperture for
consistency with previous analysis (S15, Furlong et al., 2015), which has been
shown to mimic Petrosian apertures. Absolute magnitudes are presented in the
AB system.

We compare and contrast three models of dust obscuration and to model N
which neglects dust. Model GI, inspired by Charlot & Fall (2000), includes contri-
butions to the dust optical depth from the birth clouds of young stars and from a
constant dust screen, with parameters that are independent of the galaxy proper-
ties. Applying a single diffuse dust correction to all galaxies incorrectly reddens
ellipticals and we avoid this with model GD in which dust reddening depends
on gas phase metallicity as well as gas mass. Finally, model GD+O uses a simple
geometric model to account for orientation effects, which are however small.

These simple models allow us to investigate the dependence of galaxy colours

on stellar metallicities and ages, gas metallicities, and dust obscuration. Our main
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conclusions are as follows:

e The GI dust prescription which applies a reddening that is independent of
galaxy properties, and was used by e.g. Torrey et al. (2014), excessively
reddens the red-sequence population of galaxies. As a consequence, g — r
colours of massive (M, > 10'°M,) EAGLE galaxies are ~ 0.1 mag redder
than observed, in spite of having ages and stellar metallicities that are sim-
ilar to those inferred(Fig 3.1b). Scaling dust optical depths with cold gas
mass and gas metallicity, as in model GD, is more realistic and improves

agreement with observation (Fig 3.1c and 3.1d).

e The red sequence in EAGLE is ~ 0.1 mag bluer in g — r than observed for
M, Z 10'2M, and has a shallower dependence on stellar mass than ob-
served (Fig. 3.1). This is most likely a consequence of the dependence of

colour on stellar metallicities.

e The appearance of a faint red sequence in the Ref-100 simulation run (M, <
10°™Mg, 0.6 < g —r < 0.8, see first panel of Fig 3.2) that is not observed,
is largely an effect of numerical resolution. Star formation and outflows are

not well resolved in galaxies of such low mass.

e A ‘blue cloud’ of star forming galaxies appears in EAGLE below M, ~ 10'%°My,
with g — r colour in agreement with the GAMA data from Taylor et al. (2015)

(first panel of Fig 3.2).

e There is an excess of bright (M, — 5log,, h S —20) blue (¢ —r < 0.6) galaxies
in EAGLE relative to the data. This may be caused by an underestimate of
the reddening in star forming regions, or an overestimate of the star forma-
tion rates in these massive galaxies due to insufficient suppression of star

formation by AGN.

e The z = 0.1 galaxies taken from EAGLE transition from mostly red (g —
r ~ 0.7) above M, ~ 10'%°M to mostly blue (ranging from g — r ~ 0.5 at
M, ~ 10'%5M becoming bluer with decreasing mass to g —r ~ 0.35 at M, ~

10°M) at lower masses, follows the colours of GAMA galaxies from Taylor
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et al. (2015) (see Fig.3.2). However the blue cloud persists to higher than
observed stellar masses, consistent with a similar trend in passive fractions

shown in S15.

e The z = 0.1 galaxy luminosity functions constructed from the EAGLE pop-
ulation agree well with data from UV to NIR bands, with differences of the
order of the difference between using Kron and Petrosian magnitudes in
the data (Fig. 3.3). This level of agreement is similar to the agreement be-
tween the EAGLE and observed stellar mass functions. In particular, there is
a slight underestimate in the number density of galaxies close to the knee of
the Schechter fit, and the faint-end tends to be slightly steeper than observed
in most bands. We note, however, that the faint-end of the luminosity func-
tion is uncertain, especially in NIR bands, and single Schechter fits tend
to underestimate the faint-end slope (Loveday, 1998). Good agreement was
not surprising in the NIR where luminosities are dominated by stellar mass,
whereas the good agreement in other bands suggests that the star formation

histories and metal enrichment in EAGLE galaxies are relatively realistic.

e The z = 0.1 g — r colour versus M, magnitude diagram for galaxies with
M, Z 10°Mg, yields a level of agreement with data that is comparable to
that of current semi-analytic models (Fig. 3.4; Gonzélez et al., 2009; Hen-
riques et al., 2014). The similar colour distributions of N and GD+O pho-
tometry (Fig. 3.1d) suggests that the dust model plays only a minor role in
this agreement. This further attests to the relatively realistic evolution of the

EAGLE galaxy population.

The general agreement in the colour and luminosity of EAGLE galaxies and
observed galaxies suggests that the simulated galaxies have similar star forma-
tion histories, metal enrichment processes, and current star formation rates as ob-
served galaxies. This makes the EAGLE suite well-suited to investigate the physi-

cal processes that shape galaxies through cosmic time.



Chapter 4

Colour Evolution in EAGLE

This chapter comprises an edited version of the article: It’s not easy being green:
the evolution of galaxy colour in the EAGLE simulation, James W. Trayford, Tom
Theuns, Richard G. Bower, Robert A. Crain, Claudia del P. Lagos, Matthieu Schaller,
Joop Schaye published in MNRAS Aug. 2016, vol. 460 p. 3925.

4.1 Introduction

In Chapter 3 we model the colour distributions of simulated EAGLE galaxies at
low redshift (z = 0.1). We find that these distributions exhibit a bimodality com-
parable to what is observed, which is retained when a simple dust-screen model
is applied. We also discuss the properties of blue cloud and red sequence galax-
ies arising in the simulations. It is difficult to determine how these sequences
are established or quite how individual galaxies evolve in colour space using
observations alone. This is because both star formation and galaxy destruction
by mergers change the number density of galaxies of given mass across time.
Faber et al. (2007) noted that the number density of blue galaxies remains ap-
proximately constant below redshift z ~ 1 whereas that of red galaxies increases
markedly. This led them to propose a model in which one or more mechanisms
operate that decrease the star formation rate of blue galaxies, with such ‘quench-
ing” making galaxies redder until they join the red sequence. Bell et al. (2012)

showed that there is significant scatter in the properties of quenched galaxies.
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One correlation that stood out in their sample, is that quenched galaxies usually
exhibit a prominent bulge, by association suggesting a super-massive black hole.

A model in which an accreting super-massive black hole quenches star for-
mation in its host galaxy appears very attractive. This is because black hole mass
increases rapidly as a function of bulge mass (e.g. Haring & Rix, 2004; McConnell
& Ma, 2013), hence such a model might explain why most massive galaxies are
red - as observed. Unfortunately the evidence that star formation in galaxies host-
ing X-ray bright AGN is indeed suppressed appears inconclusive. Several studies
have found no correlation between star formation rate and X-ray luminosity for
an X-ray selected sample of AGN (e.g. Rosario et al., 2012; Harrison et al., 2012;
Stanley et al., 2015). However a close to linear correlation has been observed for
galaxies selected in the infrared (e.g. Delvecchio et al., 2015). The fact that the
luminosity of an AGN likely varies on a range of time-scales (from hours to Myrs)
might explain the apparent disparity (Hickox et al., 2014; Volonteri et al., 2015).
Powerful radio galaxies associated with the centres of groups and clusters do ap-
pear to disrupt the inflow of cold gas (McNamara & Nulsen, 2012).

Another well-documented process that quenches star formation in a galaxy
is restriction of its supply of gas by either ram-pressure stripping of disc gas
(e.g. Gunn & Gott, 1972) or removal of halo gas (e.g. strangulation Larson et al.,
1980), as the galaxy traverses a region of higher gas pressure associated with a
group or cluster. The quenching of star-formation turns these satellites red (e.g.
Knobel et al., 2013). Originally suggested by Gunn & Gott (1972), the efficiency
of these mechanisms have been investigated using simulations by many groups
(e.g. Quilis et al., 2000; Roediger & Briiggen, 2007), with more recently Bahé et al.
(2013) pointing out that galaxies may be stripped before they become satellites, by
the gas in the outskirts of massive systems. McCarthy et al. (2008) presented a
theoretical framework that improves upon the simple analysis by Gunn & Gott
(1972), and describes their simulation results well.

Observational confirmation that environmental quenching indeed operates is
evidenced by the fact that red galaxies preferentially reside in regions of high

galaxy number density (Dressler, 1980), or equivalently that red galaxies are more
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strongly clustered than blue galaxies, even at fixed mass (e.g. Zehavi et al., 2005),
and that the clustering amplitude of red galaxies depends little on mass (in con-
trast to that of blue galaxies, e.g. Coil et al., 2008). This is compatible with a
model where red galaxies reside close to, or even inside, more massive and hence
strongly clustered halos that cause the quenching. Trends between the environ-
ment and gas content of galaxies provide further evidence, with galaxies residing
in clusters seen to be deficient in both HI and H, gas relative to the field (e.g.
Cortese et al., 2011; Boselli et al., 2014). Particularly convincing is the similar-
ity of the trails of HI gas seen to be emanating from gas rich galaxies in clusters
(e.g. Chung et al., 2007; Fumagalli et al., 2014) and of the ram-pressure stripped
gas behind simulated galaxies that fall onto a cluster (e.g. Roediger & Briiggen,
2008).

Even though observations suggest two empirical models of quenching (i.e.
AGN and environmental), models of galaxy formation have struggled to repro-
duce simultaneously the detailed distribution of galaxies in the colour-magnitude
diagram and the different clustering properties of red and blue galaxies. This
is true of semi-analytical models, which use phenomenological prescriptions to
describe the physical processes that lead to quenching (e.g. Font et al., 2008;
Lacey et al., 2015); for example, Henriques et al. (2015) compare the Munich
semi-analytical L-GALAXIES model to SDSS data. Although in many aspects this
model reproduces the observations better than its predecessors, limitations re-
main. For example, L-GALAXIES” u — r colours are considerably more bimodal
than observed.

Hydrodynamical simulations can, in principle, model many physical pro-
cesses self-consistently, but lack of numerical resolution and other limitations of
the hydrodynamical integration may limit their realism. Fortunately, relatively
small changes to the basic hydrodynamics scheme (e.g. Price, 2008; Hopkins,
2013) seem to resolve most numerical issues, such that the dominant uncertainties
in hydrodynamical simulations become associated to the implementation of un-
resolved subgrid processes rather than the details of the hydrodynamics scheme

(Scannapieco et al., 2012; Schaller et al., 2015b).
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The huge dynamic range required to simulate a cosmologically representative
volume with the required resolution to follow the hierarchical build-up of galax-
ies, presents a major challenge to numerical simulations. Until recently, such
simulations did not reproduce the galaxy stellar mass function well, let alone the
detailed colours/clustering of galaxies. A red/blue bimodality appears in the
zoomed-simulations of Cen (2014) even though these do not include AGN. How-
ever, the r—band luminosity function of these simulation contains many more
massive galaxies than observed. Gabor & Davé (2012) include the effects of AGN
using a heuristic prescription of heating gas, where cooling is simply switched
off in halos deemed massive enough to host AGN. They illustrate how this pro-
cess builds-up a red sequence below redshift z ~ 2; initially lower-mass satellites
and more massive quenched centrals appear in heated halos, with a character-
istic dip in the abundance of red galaxies of stellar mass M, ~ 10'° M, that is
more prominent at higher z. While this simulation may provide valuable insight
into the build up of the red sequence, the heuristic nature of the halo heating lim-
its their practical applicability. For lower mass galaxies, Sales et al. (2015) show
that the ILLUSTRIS simulation (Vogelsberger et al., 2014) broadly reproduces the
colours of satellites, which they attribute to the relatively large gas fractions of
satellites at infall.

The EAGLE reference model was calibrated to the z = 0.1 stellar mass function,
black hole masses and sizes of galaxies and is currently the only hydrodynamical
simulation that reproduces these observations, as detailed in chapter 2. EAGLE
also reproduces many independent galaxy observations, such as the content and
ionisation state of gas (Bahé et al., 2016; Lagos et al., 2015c), mass profiles (Schaller
et al., 2014) and evolution in stellar mass, star formation rate and size (Furlong
et al., 2015, 2017). The clustering of galaxies as a function of colour is investi-
gated in a companion paper to this study (Artale et al., 2016). Chapter 3 showed
that EAGLE reproduces the g — r — M, colour magnitude (and the g — r — M,)
relation from the GAMA spectroscopic survey (Driver et al., 2011) very well. In-
cluding a model for dust-reddening computed using the SKIRT radiative transfer

scheme (Baes et al., 2005; Camps & Baes, 2015) improves the quantitative agree-
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ment further (see chapter 5). With low-redshift (z ~ 0.1) galaxy colours in EAGLE
appearing to be realistic, studying how they have arisen given the physical feed-
back model of the simulation may provide new insight. The evolution of EAGLE
galaxy colours is also afforded credibility by the reasonable evolution of the EA-
GLE galaxy population in terms of the stellar mass function (Furlong et al., 2015).

In section 4.1.1 I describe the photometry used in this chapter. In section 4.2
I investigate the evolution of the galaxy population across the colour-mass dia-
gram and correlate colour changes with galaxies becoming satellites or hosting
an AGN. In section 4.3 we expound these processes by analysing the behaviour
of individual galaxies, using galaxy merger trees. Typical time-scales associated
with colour transition are presented in section 4.3.2. We show that the colour evo-
lution of most galaxies can be described well in terms of three generic tracks and
quantify the fraction of galaxies that follow each path. Finally, our findings are
summarised in section 4.4. Throughout this chapter we refer to dust-free, rest-
frame colours as ‘intrinsic” colours, and we take Z; = 0.0127 for the metallicity of
the Sun (Allende Prieto et al., 2001). Note that while the Z, value affects the nor-
malisation of metallicities in solar units, colours are unaffected by the assumed

Zg (see chapter 3).

4.1.1 Galaxy colours

The colours used throughout this chapter were obtained via the modelling de-
scribed in chapter 3 applied to galaxies at multiple epochs, and summarised be-
low. The stellar population properties (age, metallicity & assumed IMF) of an
EAGLE galaxy are combined with the Bruzual & Charlot (2003) population syn-
thesis model to construct an SED for each star particle. Summing spectra over
all stars within the aperture described in Chapter 2. and convolving with a fil-
ter response function yields broad-band colours, which we compute using the
ugrizYJHK photometric system for optical and near infrared photometry (taken
from Doi et al., 2010; Hewett et al., 2006). We express these absolute magnitudes
in the AB-system, see chapter 3 for more details.

It is well known that dust can alter the optical colour of a galaxy significantly,
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particularly for gas-rich discs seen edge-on. We described a simple model for dust
reddening in the previous chapter, and consider a model that uses ray-tracing to
account for the patchy nature of dust clouds enshrouding star-forming regions
described in the following chapter. However, here we use the ‘intrinsic’ (i.e. rest-
frame and dust-free) colours of galaxies to examine the changes arising purely
from the evolution of their stellar content. To simplify the interpretation we al-
ways quote rest-frame colours: there is therefore no ‘k’-correction needed to com-
pare galaxies in the same band at different redshifts. We concentrate here on u*-r*
colours (with the * referring to intrinsic colours) rather than g*-*, because the u
band is more sensitive to recent star formation, leading to more clearly separated
blue/red colour sequences. Indeed, the u*-r* index traverses the 4000A break,
often used as a proxy for star formation activity (e.g. Kauffmann et al., 2003a).
The photometry is presented here without dust effects, comparison is possible
with various observational data where dust corrections have been estimated (e.g.

Schawinski et al., 2014).

4.2 Colour evolution of the ensemble galaxy popula-
tion

Figure 4.1a shows that a scatter plot of EAGLE galaxies in a colour-stellar mass
diagram, (u*-r*) vs M,, exhibits strong bimodality in colour at redshift z ~ 0. The
well defined red sequence resides at u*-r*2 2.2 with colours becoming redder
with increasing M,. The blue cloud is at v* — r* ~ 1.3, with a slope similar to
that of the red sequence. These two sequences are indicated by red and blue
lines to guide the eye, respectively, obtained by a spline fit to the maxima in the
probability distribution of u*-r* in bins of M,. We keep the location of these lines

fixed in Fig. 4.1b-d to facilitate comparison at higher 2. We clearly see that:

(i) The red sequence becomes bluer and less populated with increasing z. It is
in place at z ~ 1 but has mostly disappeared by z ~ 2. A gap in the red

sequence is noticeable at z ~ 1 for M, ~ 10°7 M.
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Figure 4.1: Colour evolution of EAGLE galaxies. Top row: u*-r* vs M, colour-
mass diagram at four redshifts (z = 0.1, 0.5, 1 and 2, left to right). Individual
galaxies are plotted as points, coloured by median stellar metallicity, using the
colour bar in the top row. The locations of the red sequence and blue cloud at
z = 0.1 (red and blue lines, respectively) are repeated in panels b-d to guide the
eye. Filled red squares show u*-r*versus M, for a 10 Gyr old stellar population
with metallicity Z, equal to the median metallicity at that M,; filled circles are the
same, but assuming an exponential distribution of stellar metallicities with the
same median. Bottom row, panels e and g: dependence of u*-r*colour on specific
star formation rate (sSFR, M, /M,) for galaxies with 10 < log,,(M,/My) < 10.5
(the grey band in panel a, and galaxies with )M, between the two grey lines in
panel d) at redshift = = 0.1 and z = 2, respectively. The olive line indicates the
median u*-r* as a function of sSFR at z = 0.1 for comparison at z = 2. Panel f:
u*-r* versus median stellar metallicity for the galaxies of panel e; galaxies with
sSFR< 107*® Gyr~!, appearing in the green box in panel e, are plotted as green

dots.
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Figure 4.2: The impact of satellite fraction on the evolution of the u*-r*vs M,
colour-stellar mass relation. Top panels: Each square corresponds to a bin in
colour and M, and is coloured according to the median normalised satellite frac-
tion in that bin, such that higher satellite fractions correspond to redder colours
(see the colour bar). The satellite fraction is normalised to the average satellite
fraction at that stellar mass (bottom panel), removing trends of satellite fraction
with stellar mass and redshift. At z = 2, most red galaxies with M, < 1019 M, are
satellites (red colour in satellite fraction). This trend persists to z = 0, although
it becomes weaker as galaxies classified as centrals also get quenched. Bottom
panels: Fraction of galaxies classified as satellites as a function of M,. At red-
shift z = 0, the satellite fraction is nearly constant at just below 50 per cent below
M, = 10'°M,, and decreases above that mass. At higher z the satellite fraction

decreases for all M,.
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Figure 4.3: The impact of black hole mass on the evolution of the w*-r* vs M,
colour-stellar mass relation for central galaxies. Top panels: Each square corre-
sponds to a bin in w*-r* and M,, and is coloured according to the median black
hole mass, M,, in that bin, such that larger values of M, correspond to redder
colours (see the colour bar). The median black hole mass in each square is nor-
malised to the median black hole at that stellar mass (bottom panel), removing
trends of M, with M, and redshift. At z = 2 there is a trend for redder galaxies
to have more massive black holes. This trend is particularly striking for galaxies
with M, ~ 10'°M and becomes less pronounced at higher masses. There is no
obvious correlation at lower stellar mass. These trends persist to lower z but be-
come weaker. Lower panels: The median black hole mass, M,, as a function of
stellar mass is plotted in solid black. Dashed black lines represent the 16th and
84th percentiles. M, is nearly independent of M, below M, ~ 10'°M, and in-
creases with )M, above this characteristic mass. This trend is almost independent

of redshift.
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(1) The blue sequence becomes bluer with increasing z, and exhibits decreasing

scatter.

The main features of the galaxy population that drive these trends are illus-
trated in the bottom panels of the figure. Figs. 4.1e & g show that for a narrow
stellar mass range around M, = 10'%? M that u*-r* is strongly anti-correlated
with the specific star formation rate, sSSFR = M, /M,, provided the galaxy is star-
forming (log,,(sSFR/Gyr) 2 —2). This is not surprising since the light in the u*
filter is dominated by emission from massive and hence young stars, while r* is
dominated by the older population. Galaxies in this plot follow a very tight re-
lation at a given z, sliding along a narrow locus in colour that becomes bluer at
higher z. At z = 2, the galaxies follow almost the same relation in u*-r* versus
sSFR as at z = 0, with just a small but noticeable offset towards redder colours
(= 0.1 mag) for log,((sSFR/Gyr) 2 —1.25. This is a result of the redder pop-
ulation being younger on average and hence brighter for a z = 2 star-forming
galaxy, compared to a star-forming galaxy at = = 0. For lower star formation
rates (log,,(sSFR/Gyr) < —1.25) the old population has more influence on u*-r*,
and the younger average stellar age of z = 2 galaxies causes an offset to blue
colours.

With w*-r* colour so strongly correlated with sSFR, the colour vs M, diagram
of Fig. 4.1 is one view of the “fundamental plane of star-forming galaxies’, dis-
cussed recently by Lagos et al. (2015a). These authors showed that EAGLE galax-
ies from different redshifts fall onto a single 2D surface when plotted in the 3D
space of M, — M, and gas fraction (or metallicity), which they attributed to self-
regulation of star formation. Lagos et al. (2015a) also showed that observed galax-
ies follow very similar trends. The increasingly bluer colours of the blue cloud
towards higher = is a consequence of the increased star formation activity at fixed
M...

The scatter in colour at fixed M, on the red sequence is mostly due to metallic-
ity, Z, as is clear from examination of the u*-r* distribution of galaxies at a given
M, with low sSFR < 10~ Gyr~?, plotted as green points in Fig. 4.1f. The colour
of star-forming galaxies with sSFR > 107 Gyr~' (black points) also depends on



4.2. Colour evolution of the ensemble galaxy population 81

Z, but from comparison of these panels it is clear that this effect is much smaller
than the dependence of colour on sSFR itself - it induces the small scatter in u*-r*
in panel e, on top of the main trend with sSFR.

As discussed by many others, the slope of the red sequence demonstrates the
dependence of colour on Z for galaxies: more massive galaxies are more metal
rich and hence redder (see chapter 3). Because the mass- and light-weighted
metallicities are not equivalent, the internal metallicity distribution for stellar
populations in a galaxy may also affect the normalisation of the red sequence.
To illustrate this, we calculated the median metallicity, Z,,.q4(1,), in bins of stel-
lar mass. We then calculated u*-r* colours for a 10 Gyr old population with that
dependence of Z on M,, and plot the resulting «*-r* colour as a function of M,
in Fig. 4.1a as red squares. Although this sequence has the same slope as the
red sequence in EAGLE, it is systematically redder by ~ 0.25 magnitudes. This is
not an age effect, but a consequence of stellar populations exhibiting a spread in
metallicity within an EAGLE galaxy. In fact, the metallicity distribution function
of stars in an EAGLE galaxy is fairly well described by an exponential distribu-
tion. We therefore generated another comparison toy model for the red sequence
colour, in which we impose an exponential metallicity distribution and again as-
sume a coeval 10 Gyr old population. The exponential metallicity distribution
is defined by a mean value at fixed mass, given by the Z,,.q(M,) dependence of
EAGLE galaxies. This model is plotted as filled red circles and it reproduces the
EAGLE red sequence very well. This simple exercise shows that the assumption
that all stars have the same metallicity results in systematic errors in the metallic-
ity from broad-band colours.

The consistent red sequence slope between the toy model and EAGLE suggests
that any changes in the internal stellar Z distribution of EAGLE galaxies with mass
are not strong enough to bias the median colours of red galaxies. We note that the
slope of u* — r* relation as a function of J, in the blue cloud is set by the sSFR-
M, relation and not by metallicity effects. Therefore, the similarity between the

slopes of the blue and red lines is coincidental.
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4.2.1 Satellite colours

The extent to which satellite galaxies are preferentially red relative to the general
population is illustrated in Fig. 4.2. We divide colour vs mass diagrams at differ-
ent redshifts into equal bins of u*-r* and log,,(M,/Mg). The satellite fraction in
each bin is computed and normalised by the total satellite fraction for all galaxies
in the same stellar mass range. Bins containing > 10 galaxies are shaded by the
log,, normalised satellite fraction, such that positive values indicate a higher than
average satellite fraction for that mass, while negative values indicate a lower
than average value. The satellite fraction as a function of stellar mass in EAGLE is
plotted for each redshift in the bottom panels.

Galaxies with M, < 10'°M, that are red are predominately satellites, seen
most strikingly at z ~ 2. At lower z there is still a trend for low-mass red galaxies
to be satellites, but the trend is less pronounced because some galaxies classified
as centrals are also red. To some extent this may be a consequence of galaxies
being quenched by ram-pressure stripping in the outskirts of more massive halos,
before they are classified as being a satellite (e.g. Bahé et al., 2013). Indeed, they
may not be part of the FOF halo (yet). Another possibility is that some of these
galaxies were stripped as satellites when they fell inside a massive halo but have
travelled out again, the so-called backsplash population (Balogh et al., 2000).

At redshift z ~ 0, the fraction of satellites is ~ 50 per cent at M, ~ 10°M,
decreasing slowly to 30 per cent by M, ~ 10'*°M,, and then dropping rapidly
towards higher M/, . Satellite fractions decrease slowly at all M, with increasing =z
to z =~ 1, and then drop much faster to below 30 per cent at all masses by z = 2.
This rapid drop in the satellite fraction with increasing z is the reason that the red

sequence disappears at low M, < 10"°M, for 2z > 2.

4.2.2 AGN host colours

The effect of feedback from accreting black holes on galaxy colours is illustrated
in Fig. 4.3. We only plot central galaxies to disentangle satellite quenching from ef-

fects induced by AGN. The figure is analogous to Fig. 4.2, with median black hole
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mass replacing satellite fraction. The median black hole mass (},) as a function
of M, is plotted for each redshift as the bottom panels in Fig. 4.3.

At redshift = = 2, there is a very strong trend for red galaxies with M, ~
10'% Mg, to exhibit unusually high black hole masses, more than 4 times the me-
dian black hole mass at that stellar mass. This trend persists but becomes weaker
at higher M,, and is completely absent at lower masses. This correlation between
the residuals of the M, — M, relation and the colour of the galaxy is still mostly
present at z = 1, but begins to be washed out at later times.

The trend for galaxies with high black hole masses to be predominantly red
when M, 2 10'° My is likely related to the largely redshift independent charac-
teristic halo mass, M, ~ 10'2 M, above which black holes start to grow rapidly in
EAGLE, fed by the growing hot halos around them (Bower et al., 2017). The accret-
ing black hole then quenches star formation in its host galaxy, turning it red. A
corollary of the existence of this characteristic halo mass, is that black holes only
start to grow significantly when the galaxy’s stellar mass is ~ 10'° M, (Fig. 4.3,
bottom panels). The scatter in the M, — M, relation results in the transition be-
tween dormant and rapidly growing black holes being less well-defined in the

M, — M, relation in comparison to a M, — M,, plot.

4.2.3 Colour transformation mechanisms

Combining the results of Figs. 4.2 and 4.3 enables us to understand the origin of
the evolution in the u*-r* vs M, diagram of Fig. 4.1: galaxies with M, < 10'° M
tend to become red when they become satellites, whereas galaxies above this
characteristic mass are quenched by their AGN. This reasoning also explains why
the red sequence starts to build-up from both the low-mass and the high-mass
ends, leaving initially a noticeable scarcity of red galaxies at M, ~ 10°"M,, at
2z ~ 1. Such galaxies are too low mass to host a vigorously accreting black hole,
yet too massive to be satellites in the typically lower-mass groups at that higher 2.
It is not until redshifts z < 1 that the more massive halos that host M, ~ 101 M,
satellites appear.

The extent to which EAGLE predicts the characteristic stellar mass above which
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AGN quenching occurs, and the evolution of the under-abundance of intermediate-
mass red galaxies, not only depends on the details of the subgrid physics but also
on the volume that is simulated. This is because massive clusters are under-
represented or simply absent due to missing large-scale power in the density
field, and poor sampling of rare objects in the relatively small, periodic EAGLE
volume of 100° cMpc®. However we believe that the relevant physics described
here is robust, and corroborates the similar conclusions of Gabor & Davé (2012)
who used an ad-hoc model for quenching in massive galaxies, as opposed to our
physically motivated subgrid scheme for the EAGLE simulations that are imple-
mented on smaller (sub-kpc) scales.

A corollary of satellite quenching for lower-mass galaxies, and AGN quench-
ing for more massive galaxies, is that these low- and high-mass red galaxies tend
to inhabit the same dark matter halos. The more massive red galaxy is the cen-
tral galaxy of this halo and is quenched by its AGN. Conversely, the lower-mass
red galaxies are the satellites of a massive central red galaxy. As a consequence,
the low- and high-mass red galaxies have similar clustering strengths, with both
clustering more strongly than blue galaxies. EAGLE reproduces the observed
clustering as a function of colour and luminosity well, as is discussed by Artale
et al. (2016). We next investigate how, and at what rate, individual galaxies move

through the u*-r* vs M, diagram.

4.3 Colour evolution of individual galaxies

4.3.1 The flow of galaxies in the colour-1/, plane

Fig. 4.4 illustrates how galaxies move through the (u*-r*, M,) plane. Selecting
galaxies in equal bins of u*-r* and log,,()/,) at one redshift, we measure the me-
dian difference in w*-r* and log,,(M,) for their descendant galaxies at a second
redshift. We plot these differences for galaxies over an equal time period at high
(2 = 1) and low (z = 0) redshift. This is achieved by using two consecutive snap-

shots (z = 1.3 and z = 1) for the right panel, corresponding to a time interval
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Figure 4.4: The flow of galaxies in (u*-r*, M,) space between two redshifts, z; to
%y. Right panel shows the galaxy flow between z; = 1.3 and 2z, = 1 snapshots, a
period of = 0.9 Gyr. The left panel shows the galaxy flow interpolated between
the z = 0.1 and z = 0 snapshots to yield the same time period, with z; = 0.07
and z, = 0. Black circles represent the mean location of galaxies at z;, selected in a
bin of u*-r*- M,; the size of the circle is proportional to the logarithm of the total
stellar mass in galaxies in that bin. Black vectors represent the mean motion of the
galaxies in that bin between z; and z,. Orange vectors (purple vectors) are for those
galaxies that at redshift 2z, belong to halos with virial mass Msg i > 10*M,
(Mago it < 10Mg). Centre coordinates and vectors sampling fewer than 10
galaxies are not plotted. The overall distribution at the later redshift is plotted as
grey contours for comparison. We do not take into account galaxies merging into
hosts that are more than four times their mass, illustrating such mergers in more

detail in Fig. 4.8.
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of =~ 0.9 Gyr, and interpolating the galaxy vectors between the lowest redshift
snapshots (z = 0.1 and z = 0) to match the same time period. Descendants that
grow in M, by a factor > 4 through merging into a more massive host galaxy are
eliminated from the measurement, to prevent them contributing extreme vectors
to their bin.

For both redshift ranges, it is clear that the colours of galaxies generally be-
come redder, with vectors pointing in the positive v*-r* direction. Exceptions can
be seen on the red sequence, in which some red galaxies become star-forming
following a gas-rich merger - we discuss the fraction of such ‘rejuvenated” galax-
ies below. Red sequence galaxies show little change in u*-r*, but in general those
with M, < 10'7M, lose mass, with only the most massive red sequence galaxies
showing mass growth. Considering that we do not count mergers into hosts of
factor > 4 higher ), this suggests that red sequence galaxies are being stripped
prior to a dry merger with a massive central. We also see evidence of ‘mass
quenching’, with the vectors for blue-cloud selected galaxies becoming steeper
with increasing stellar mass. For M, > 10'"M, this is attributable to the presence
of AGN (Fig. 4.3).

Another notable behaviour seen in Fig. 4.4 is that the bluest galaxies (u*-r*
~ 0.5, right panel) tend to change their u*-r*colour more than the average blue
galaxy, to the extent that they end-up on the red side of the blue sequence at the
later redshift. The strong reddening and mass increase of these galaxies suggests
that they are starbursts triggered just prior to a merger. Such a scenario is consis-
tent with the fact that a higher proportion of satellites are found at these colours
than at the centre of the blue peak (see Fig. 4.2). Note that this effect is only ob-
served for the high redshift panel, partially due to the bluest bins failing to meet
the minimum galaxy count criterion of 10. These extreme starbursts are clearly
rarer at low redshift.

For each redshift range, we see that galaxies in more massive halos (orange
vectors) have a stronger median shift in v*-r* than their low-mass halo counter-
parts (purple vectors), suggesting that they have a higher likelihood of quench-

ing.Galaxies in massive halos also generally exhibit more mass loss than the over-
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all population, showing the role of environment in how galaxies evolve in the

(u*-r*, M,) plane.

4.3.2 Evolution of colour populations in EAGLE

To track the evolution of galaxies selected to be red, blue or green, we must first
define these populations. To do this we apply cuts that evolve with redshift » for

red and blue galaxies.

(u* = )rea > 0.210g;p(M,/Mo) = 0.25 2% 4 0.24

(w* — 1 )pe < 0.210g,o(M,/Mg) — 0.252°¢ — 0.3 (4.3.1)

The green galaxies are taken to be those that are not included in either set. These
cuts are defined in an ad-hoc way to divide the galaxies into three populations
at each redshift. This is a similar procedure to that used by many observational
studies, with authors adopting differing functional forms and normalisations (see
e.g. the discussion in Taylor et al. 2015). The exact form of the colour cuts is
unimportant for our qualitative analysis, but is considered when we discuss our
quantitative results.

The evolution of the u*-r* colours of galaxies, selected by colour either at high
redshift (2 = 0.5) or low redshift (z = 0.1), is illustrated in Fig. 4.5. We bin galaxies
in the three colour bins described above and plot the colour distribution of the
descendants and main progenitors (odd and even rows, respectively) of galaxies
selected to be red, green or blue (top two, middle two, and bottom two rows,
respectively). We use the galaxy merger trees to identify descendants and main
progenitors via the EAGLE database (McAlpine et al. 2016, see chapter 2). For
each panel, the u*-r* colour distribution of all galaxies at the indicated redshift,
with M, > 10'°M, is plotted in grey.

From the top two rows it becomes clear that most galaxies that are red at
z = 0.5 stay red to z = 0, whereas a substantial fraction of galaxies that are
red at = = 0 were green at z = 0.1 or even blue at z = 0.5. Galaxies that are green
at z = 0.5 predominantly become red at z = 0, but a fraction of green galaxies

becomes blue (third row). Galaxies that are green at z = 0 had a range of colours
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Figure 4.5: Grey histograms: u*-r* colour evolution of all galaxies from redshift
z = 0.5 to z = 0, with redshift decreasing from left to right in each row; each panel
is labelled with the corresponding redshift. Only galaxies with M, > 10*°M, are
included. Colour selections are made using Eq. 4.3.1 and are as follows: top row:
we select red galaxies at z = 0.5 (red histogram) and plot the colour distribution
of their descendants at low z as a red histogram. Second row from top: we select
red galaxies at z = 0 (red histogram), and plot the colour distribution of their
main progenitors as a red histogram at higher z. Rows 3 and four from the top: as
above, but for green galaxies. Bottom two rows: as above, but for blue galaxies.
The background colour of the panel in which galaxies were selected is coloured

grey for ease of reference.
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Figure 4.6: Top left panel: Distribution of the average rate of colour change over
the redshift interval z = 0.5 — 0, A(u*-r*)/At, for galaxies with mass M, >
10'°Mg,; vertical arrows (top and bottom) denote the median rate. Other panels:
As the top left panel, but for galaxies selected at z = 0.5 to be blue, red, and
green (clock wise from top right). In each panel, black lines refer to all selected
galaxies, purple lines to the fraction that at z = 0.5 are satellites, orange lines to the
fraction whose central black hole has grown by at least a factor of 1.5 between
z = 0.5 and z = 0. The rate of change of the median colour is typically small,
but individual galaxies can change colour more dramatically over this period,
—0.2 < A(u*-r*) < 0.25 up to |A(u* — r*)/At| = 0.25 Gyr™!, particularly for green

and blue galaxies.
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at z = 0.5, although they were bluer than average (fourth row). The similar and
dominant blue (red) fractions in the two green progenitor (descendant) panels
suggests that the typical time to transition through the green valley is shorter
than the redshift intervals used here. Finally, galaxies that are blue at = = 0.5
have a large range of colours at z = 0 with a distribution that is similar to that
of the population as a whole (fifth row), whereas galaxies that are blue at z = 0
were mostly blue at z = 0.5 as well (bottom row).

The rate at which galaxies with stellar mass M, > 10'°M,, at z = 0.5 change
u*-r* colour over the redshift range z = 0.5 to z = 0 (elapsed time At ~ 5 Gyr) is
quantified in Fig. 4.6. We identify the z = 0 descendant for all galaxies with M, >
10'°M at z = 0.5, compute the change in colour, A(u*-r*), and plot a histogram
of rates, A(u*-r*)/At. We also identify if a galaxy is a satellite at z = 0.5, or if
the mass of its central black hole increases by a factor > 1.5. This threshold is
chosen to represent an above average black hole growth, while still providing a
significant sample of galaxies.

The rate of change of the median colour of galaxies is small, A(u*-r*)/At ~
0.08 mag Gyr~! to the red, but is larger for galaxies whose black hole grows
more than average (A(u*-r*)/At ~ 0.09 mag Gyr') or those that are satellites
(A(u*-r*)/At = 0.12 mag Gyr'). Galaxies that are red at z = 0.5 typically change
little in colour to z = 0, (A(u*-r*)/At =~ 0.03 mag Gyr—!), except for the occa-
sional outlier that becomes blue. The rate of change of the median colour is larger
for galaxies that are green or blue at z = 0.5, with individual galaxies changing
colour more rapidly, both to the red and to the blue. Galaxies that are satellites
can undergo rapid changes to the red, A(u*-r*)/At 2 0.2 mag Gyr—!, whether
blue or green at z = 0.5. Note that this rate is averaged over a considerable pe-
riod (= 5 Gyr), and instantaneous rates of colour change for galaxies can be much

higher, as explored below.

4.3.3 Colour-mass tracks of individual galaxies

We have examined a large number of tracks of individual galaxies in (u*-r*, M,)

space and have identified three generic tracks of central galaxies that we illustrate
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Figure 4.7: Tracks illustrating the change in mass, colour and morphology, of
a quiescently star-forming galaxy (thick blue curve & filled circles), a rapidly
quenched galaxy (thick red curve & filled triangles), and a rejuvenated galaxy
(thick green curve & filled squares). Thin tracks show merging satellites (see
caption of Fig. 4.8). Left and middle panels: tracks in the (u*-r*, M,) plane (left
panel) and colour as function of time and redshift (middle panel), from redshift
2z = 4to z = 0. Symbol colour corresponds to cosmic time as per the colour
bar. Background contours in the left panel correspond to the z = 0 colour-M/,
distribution. Grey tracks in the middle panel depict the colour evolution of a
passively-evolving coeval starburst (indicated with an arrow). Each burst is as-
sumed to be composed of stars with an exponential distribution of metallicities
with given mean. The width of the grey region corresponds to varying this mean
metallicity over the range of [1/3,3] times solar (Z; = 0.0127). Right panel: edge-
on gri-composite image of side length 40 pkpc, calculated using ray-tracing to
account for dust (described in chapter 5), for the z = 0 galaxy and its 2 = 0.5 and
z = 1 main progenitor. The corresponding symbol for each track is indicated on

galaxy images.
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Figure 4.8: Same as Fig. 4.7, but for a massive galaxy (green track & filled circles)
and galaxies that merge with it (thin tracks). Tracks for merging galaxies (merg-
ing with M, > 10° M) are coloured purple when they are centrals, and orange
when they are satellites as indicated in the legend; a star identifies the last snap-
shot before the satellite merges with the massive galaxy, and the track is linked to
that of the massive galaxy at the following snapshot by a dashed line. The right
panel shows edge-on gri-composite images of the central galaxy of side length 40

pkpc, at various redshifts labelled in each separate panel.

Table 4.1: Properties of the galaxies plotted as main tracks in Figs. 4.7-4.8. The
Symbol/Figure is given to identify the galaxies on the figures. For each galaxy
we quote the unique galaxy identifier (GalaxyID) taken from the EAGLE public
database (McAlpine et al., 2016), the z = 0 black hole mass (//,), and indicate

whether a galaxy was ever classified as a satellite (y) or not (n).

Sym./Fig. GalaxylD  M,/Mg  Satellite
Circle/4.7 18169630  7.09 x 10° n
Square/4.7 15829793 1.03 x 10® n
Triangle/4.7 14096270 6.00 x 107 n
Circle/4.8 15197399  1.84 x 108 y
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Figure 4.9: u*-r* colour distribution for M, > 10'°M,, galaxies at z = 0. Galaxies
identified as ‘quiescently star-forming "are plotted in purple, while those that un-
derwent a rapid colour transition to the red are plotted in orange. The combined
distribution is plotted in black. We see that the quiescently star-forming galaxies
predominately inhabit the present-day blue cloud, but with a tail to red colours.
Galaxies that underwent a rapid reddening (A(u*-r*) > 0.8 in 2 Gyr) are predom-
inately red at z = 0, but the distribution has a blue tail resulting from recent star

formation.
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Figure 4.10: Histograms of the time interval galaxies spent crossing the green
valley from being blue to becoming red, Aty e (see text). The black histogram
is for all galaxies in the current mass selection, purple histogram for galaxies that
are satellites at z = 0, orange histogram for galaxies whose black holes grew by
more than a factor of 1.5 while crossing the green valley. Median values for the
selections are plotted as dashed lines with the corresponding colour. This panel
shows galaxies selected in the z = 0 mass range 10'® < M, /M, < 10'%°. Satellite
galaxies dominate in both mass ranges. The transition time-scale for a blue galaxy
to turn red is typically < 2 Gyr, which corresponds to the time a blue population

of stars reddens passively, as seen in Fig.4.7. {Continued on next page}
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Figure 4.10: {Continued from previous page} As the previous panel, now corre-
sponding to the 10'%° < M, /M, < 10'. The typical timescales are very similar

for both mass ranges.
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in Fig. 4.7. In Fig. 4.8 we also show the track of a central galaxy that is very
massive at z = 0 (M, ~ 10M,), to illustrate individual tracks of satellites that
merge with it. More details of the four galaxies tracked in these panels are given
in Table 4.1. The time-scale over which galaxies transition to the red sequence
is compared to that of a passively evolving population, by plotting (single) star-
burst tracks initiated at different times (grey curves in middle panels).

The blue track in Fig. 4.7 is for a galaxy that remains in the blue cloud down
to z = 0, forming stars in a blue disc that grows in time. As its sSFR decreases
with time, and the contribution of an older population of stars becomes more
important, it slowly reddens, with A(u*-r*) ~ 0.2 from z = 1 to z = 0 (elapsed
time ~ 8 Gyr). We see from Table 4.1 and Fig. 4.3 that the black hole mass is
~ 0.6 dex lower than the median value for its stellar mass (at approximately
the 3rd percentile of galaxies for that 1/,), suggesting low levels of black hole
feedback in the galaxy’s history.

The red track in Fig. 4.7 corresponds to a galaxy that becomes red more rapidly,
reddening by A(u*-r*) ~ 1 in =~ 2 Gyr, joining the red sequence at z = 2. From
then on, its colour or stellar mass hardly changes; it has been a very compact
elliptical galaxy since at least 2 = 1, maintaining a stellar half-mass radius of
< 2.3 pkpc. The similar rate of colour transition for this galaxy to that of an in-
stantaneous starburst suggests rapid quenching of star formation. Considering
the black hole mass in Table 4.1 and the bottom-left panel Fig. 4.3 shows that the
galaxy has a central black hole mass ~ 0.6 dex higher than the median black-hole
stellar mass relation (at approximately the 99th percentile of galaxies for that M,),
suggestive of black hole quenching.

The thick green track shows a galaxy that reddens at a similar rate (A(u*-r*) ~
1.5 in ~ 2 Gyr) at z ~ 1, after undergoing a near-equal mass merger (thin green
line indicates the track of the other galaxy) leading to significant AGN growth.
It then changes morphology from being a disturbed disc to a compact ellipti-
cal at z = 0.5. At redshift z = 0.25, it starts forming stars again, turning blue
(A(u*-r*) =~ —1) over ~ 2 Gyr. By z = 0,it has grown significantly in size, with

a prominent bulge and an extended distribution of stars around it. The value of
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M, in Table 4.1 puts the black hole mass at approximately the 75th percentile of
galaxies for that stellar mass.

Note that the black hole masses for galaxies selected in Fig. 4.7 (and listed
in Table 4.1) are all in the upper or lower quartiles for their stellar mass. While
galaxies with average black hole masses have diverse histories, more extreme M,
values can be indicative of the certain types of track represented here. The quies-
cently star forming and quenched galaxies are both associated with particularly
low and high levels of black hole growth respectively. The rejuvenated galaxy
has a high black hole mass, though less extreme. The black hole growth is asso-
ciated with a quenching event at z ~ 1, but the galaxy re-accretes gas and is able
to recommence prolonged (> 2 Gyr) star formation in spite of its high black hole
mass. We saw in Fig. 4.3 that for = = 0 and at these masses the overall correlation
between galaxy colour and the residuals of the M,-)/, relation is rather weak.

The massive z = 0 galaxy in Fig. 4.8 is a blue star-forming disc until just be-
low z = 1, after which it becomes red and evolves into an elongated elliptical.
Thin lines show the tracks of five galaxies that merge with it, with the line colour
changing from purple to orange while these galaxies become satellites. Examina-
tion of these tracks reveals that while some galaxies become red when they are
still centrals, most galaxies quench after being identified as satellites. This sug-
gests that satellite identification is a good predictor of colour change in EAGLE,
particularly for galaxies falling into a more massive halo. The satellite tracks ex-
hibit a characteristic shape of rapid quenching followed by stellar mass loss, as
the galaxy is stripped and eventually merges. We also see that the central galaxy
exhibits quite a stochastic colour evolution compared to those in Fig. 4.7. This
is perhaps due to the higher frequency of satellite interactions and mergers for
the higher mass halo represented in Fig. 4.8, with only the rejuvenated track of
Fig. 4.7 showing (two) mergers with satellites of M, > 10°M,.

The heterogeneous colour evolution of galaxies illustrated in Fig. 4.7 and 4.8
are consistent with observations that the green valley population is diverse (e.g.
Cortese & Hughes, 2009; Schawinski et al., 2014). In particular, Cortese & Hughes

(2009) also find examples of galaxies moving off the red sequence through re-
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accretion of gas reminiscent of the green track in Fig. 4.7.

To quantify the fraction of galaxies that undergo a rapid colour transforma-
tion, we trace the main progenitors of all galaxies with mass M, > 10'°M, at
%z = 0 back in time (a sample of ~ 3000 galaxies). We find that the fraction
of galaxies with at least one A(u*-r*) > 0.8 change over any 2 Gyr period in
their history is ~ 40 per cent. We will refer to such galaxies as rapidly redden-
ing galaxies; they tend to follow a track similar to the red track in Fig.4.7. Of the
galaxies that redden quickly, ~ 1.6 per cent undergo a colour change to the blue
of A(u*-r*) < —0.8 over a 2 Gyr period. We will refer to this small fraction of
galaxies as ‘rejuvenated’; they follow a track similar to the green track in Fig. 4.7
Galaxies that do not ever undergo such a rapid reddening event make-up 60 per
cent of the sample. We will refer to these as ‘quiescently star-forming” galaxies;
they follow a track similar to the blue track in Fig.4.7.

Fig. 4.9 shows the distribution of z = 0 colours for 10" < M, /M, < 105
galaxies classified as having undergone a rapid transformation to redder colour
(orange histogram), and those that never underwent such a rapid reddening (qui-
escently star-forming galaxies, purple histogram). A small fraction of galaxies
become red without ever experiencing a rapid reddening event: this is the tail of
the purple histogram towards red «*-r* colour. Similarly, there is a tail to blue u*-
r* colour in the orange histogram, representing galaxies that underwent a rapid
colour transition to the red, followed by more recent star formation turning them
blue once more. The fraction of these galaxies is much higher than the 1.6 per
cent of galaxies we classified as ‘rejuvenated”: the majority of galaxies that are
blue now but were red in the past (= 10% of total), became blue more gradually
than the A(u*-r*) = —0.8 over 2 Gyr that we used to define ‘rejuvenated galaxies’.

Galaxies must become blue rapidly or traverse the entire green valley to meet

these criteria. However, it is also interesting to note the probability that a galaxy

!Galaxies may also undergo slower colour transitions due to secular evolution, and the num-
ber density of galaxies does not remain constant because of mergers. These quoted fractions
therefore inevitably depend on how galaxies are selected. i.e. the colour choice we made in

Eq. 43.1.
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identified in the green valley is on a bluer trajectory in the colour-M, plane. We
identify this for green valley galaxies at z < 2, enforcing that a galaxy must un-
dergo a monotonic colour change of A(u*-r*) < —0.05 to be deemed significant
(above the level of photometric error, e.g. Padmanabhan et al., 2008). We find
that the EAGLE green valley galaxies have a 17% chance of being on a signifi-
cantly blue trajectory. Conversely, we find the probability of a green galaxy being
on a significantly red trajectory to be 75%, taking A(u*-r*) > 0.05 as the criteria
for being significant.

The tracks of individual galaxies enable us to characterise the colour transition
time-scale of a galaxy by the time interval, Atgcen, it spent in the green valley on
its way from the blue cloud to the red sequence. We calculate Atye., as follows:
using Eq. (4.3.1) we select red galaxies at = = 0 and trace their main progeni-
tors back in time to identify the earliest time they became red (¢;) and the last
time prior to ¢; that they were blue (¢;). Histograms of colour transition times,
Atgreen = t1 — to, for galaxies that at = = 0 have 10'° < M, /M, < 10'°° and
109 < M, /Mg < 10' are plotted in Fig. 4.10 (top and bottom panels, respec-
tively).

The mode of the colour transition time distribution is ~ 1.5 Gyr, with a median
of ~ 2 Gyr, mostly independent of whether quenching is likely due to becoming
a satellite or AGN activity (purple and orange histograms, respectively). This is
the time-scale for a passively evolving blue population of stars to turn red, as
can be seen from Fig.4.7. Strikingly, there is a very long tail to high values in the
distribution of At as inefficient quenching allows a small fraction of galaxies
to spend a long time in the green valley before eventually turning red, whether
due to becoming a satellite or hosting an AGN. Though quenched galaxies are
more prevalent in high-mass halos, the colour transition time-scales show little
dependence on halo mass. Despite this, the longest time-scales we measure are
for halo masses < 10'3 M.

The time-scales for colour transition and the quenching of star formation are
clearly linked, however colour transition times are longer due to the passive evo-

lution of stellar populations. This is illustrated by the grey curves in Fig. 4.7 and
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4.8, showing that the colour transition time for an SSP is ~ 2 Gyr. The quench-
ing time-scales of observed satellites presented by e.g. Muzzin et al. (2014) and
Wetzel et al. (2013) are significantly shorter, typically < 0.5 Gyr and < 0.8 Gyr
respectively. Although the u*-r* colour index alone is not sensitive enough to re-
solve these quenching times, the typical colour transition times of EAGLE galaxies
are consistent with such rapid quenching.

However, there are cluster studies in the 0 < z < 0.5 redshift range that in-
fer longer timescales (Z 1 Gyr, e.g. von der Linden et al., 2010; Vulcani et al,,
2010; Haines et al., 2013). Fig. 4.10 does show a tail to longer quenching times
for both AGN and satellites, though they are not typical at low redshift. Ulti-
mately, the different observational tracers and modelling used to infer quench-
ing times are still subject to significant systematics that may explain the different
measurements (McGee et al., 2014). In particular, colour transition and quenching
timescales are not equivalent, and galaxies may move between the red and blue
populations when observed in optical and UV colour (e.g. Cortese, 2012). As UV-
optical colours are more sensitive to the very youngest stellar populations (e.g.
Wyder et al., 2007), these provide a more sensitive probe of the physical quench-
ing timescale than u*-r*. Remaining at optical-NIR wavelengths, ‘super-colours’
may also prove a more sensitive probe to the quenching timescale; these are lin-
ear combinations of photometric bands optimised through principle component
analysis, and have been used to effectively separate post-starburst galaxies (Wild
et al., 2014). An analysis of the physical quenching timescale and its evolution,

using both simulated values and observable proxies, is left to a future study.

4.4 Conclusions

We have investigated the evolution and origin of the colours of galaxies in the
EAGLE cosmological hydrodynamical simulation (Schaye et al., 2015; Crain et al.,
2015). We apply the single population synthesis models from Bruzual & Charlot
(2003) to model galaxy colours in the absence of dust, as described in chapter 3.

We also use galaxy merger trees to trace descendants as well as main progenitors
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through time.

The u*-r* vs M, diagram is bimodal at redshift = = 0, with a clearly defined
red sequence of quenched galaxies, and a blue cloud of star-forming galaxies.
The scatter and slope of the red sequence are both determined mainly by stellar
metallicity, while the normalisation additionally depends on stellar age (Fig. 4.1).
The scatter in the blue cloud, in contrast, is mostly due to scatter in the specific
star formation rate at fixed stellar mass (sSFR = M, /M,). The slope of blue cloud
colours versus M, is similar to that of the red sequence, but as their origins are
different, this is coincidental. At higher z, both colour sequences become bluer,
and the red sequence becomes less populated until it has mostly disappeared by
z=2.

From studying the evolution of EAGLE galaxies in u*-r* and M, we note that

in general:

e Galaxies in EAGLE turn red either because they become satellites (mainly at
lower masses, see Fig. 4.2) or because of feedback from their central super-
massive black hole (mainly for more massive galaxies, see Fig. 4.3). As a
consequence, the red sequence builds-up from both the low-mass and high-
mass sides simultaneously, with the low-mass red galaxies being satellites
of the massive red centrals that are quenched by their AGN. This results
in a dearth of red galaxies at intermediate mass, M, ~ 10" M, atz ~ 1 -
such galaxies are too low mass to host a massive black hole, but too massive
for a large fraction of them to be satellites in the EAGLE volume. While we
believe the existence of such a deficit is unlikely to change with increased
simulation volume, it should be noted that the limited volume and lack of
large scale power in the EAGLE 100° Mpc® simulation may affect the depth
of the deficit.

e The colour evolution in the blue cloud is driven by the decrease in the sSFR

rates of star-forming galaxies with cosmic time.

e The characteristic time scale for galaxies to cross the green valley, from the

blue cloud to the red sequence (Fig. 4.10), is Atgeen =~ 2 Gyr, mostly inde-



4.4. Conclusions 102

pendent of galaxy mass and cause of the quenching. It is determined by
the rate of evolution of a passive population of blue stars to the red. This
timescale is consistent with rapid or instantaneous quenching of star for-
mation, as inferred from observations of satellite galaxies by Muzzin et al.
(2014). The distribution of Atg.ee, has an extended tail to ~ 10 Gyr: a small
fraction of galaxies remain green for a long time. However, most galaxies
spend only a short time, Atgeen S 2 Gyr, in the green valley - it is not easy

being green.

We identified three characteristic tracks that galaxies follow in the u*-r*vs M,
diagram (Figs. 4.7 and 4.8). Quiescently star-forming galaxies remain in the blue
cloud at all times, without sudden reddening episodes of A(u*-r*) > 0.8 in any
2 Gyr interval. Nearly 60 per cent of galaxies with stellar mass at z = 0 greater
than M, = 10'° M, fall into this category (see Fig. 4.9). The remaining 40 per
cent of galaxies do undergo such sudden episodes of star formation suppression.
The majority of these rapidly reddened galaxies move onto the red sequence per-
manently as per the evolutionary picture of Faber et al. (2007), however we find
that 1.6 per cent undergo an episode in which star formation causes the galaxy to
change colour to the blue again, having A(u*-r*) < —0.8 over a 2 Gyr period (e.g.
Fig 4.7). The fraction of such rejuvenated galaxies is thus very small. Nevertheless,
a much larger fraction of the galaxies that at z = 0 are blue were red in the past:
the rate of colour transition of galaxies to the blue is generally significantly slower
than the quenching timescale. We also find that the fraction of green valley galax-
ies on blue trajectories (where A(u*-r*) < —0.05) at a given instance from z < 2 is
larger still at 17%, implying that only a subset transition completely from red to

blue and remain there.



Chapter 5

Dust Radiative Transfer with SKIRT

This chapter comprises an edited version of the article: Optical colours and spec-
tral indices of z=0.1 EAGLE galaxies with the 3D dust radiative transfer code
SKIRT, James W. Trayford, Peter Camps, Tom Theuns, Maarten Baes, Richard G. Bower,
Robert A. Crain, Madusha L. P. Gunawardhana, Matthieu Schaller, Joop Schaye and
Carlos S. Frenk, preprint available (arXiv:1705.02331), accepted for publication
in MNRAS, with appendices compiled in Appendix B.

5.1 Introduction

The treatment of dust exemplifies a major area of uncertainty in forward mod-
elling. While dust represents a marginal fraction of the mass in galaxies and
simulations do not typically model an explicit dust phase (with exceptions, e.g.
Bekki, 2015; Aoyama et al., 2016; McKinnon et al., 2016), interstellar dust can play
an important role in processing the light we observe from galaxies.

On average, about a third of the UV plus optical starlight emitted in local star-
forming galaxies is absorbed by dust and re-radiated at longer wavelengths (e.g.
Popescu & Tuffs, 2002; Viaene et al., 2016b). The effect of dust attenuation intro-
duces various systematics, particularly for young stellar populations: the cross-
sections for absorption and scattering generally increase with the frequency of
incident light, such that the relatively blue emission from young stars is more

affected. But the impact of dust also depends on the morphology and orienta-
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tion of the galaxy: young stellar populations are typically found in a thin disc
and near the dense, dusty ISM regions from which they formed. These regions
are therefore likely to have relatively high dust obscuration, and, if this is not
accounted for, may affect inferred structural measures of galaxies such as scale
lengths /heights and bulge-to-disc ratios. Because young stars may be more ob-
scured than old stars, the attenuation curve (the ratio of observed over emitted
radiation as function of wavelength for the observed galaxy) of a galaxy differs
in general from the extinction curve that describes the wavelength dependence of
the photon-dust interaction. The modelling of dust is clearly an important aspect
of comparing models to observations, and is the subject of this chapter.

Anidealised dust model is that of an intervening dust screen with a wavelength-
dependent optical depth, the attenuation of which can be computed analytically.
The geometry of the dust distribution and some effects of scattering, can be ac-
counted for to some extent by making the attenuation curve ‘greyer’ (i.e. less
wavelength dependent) than the extinction curve (e.g. Calzetti, 2001), and/or by
using multiple screen components. Chapter 3 adopted the two component screen
model of Charlot & Fall (2000) to represent dust absorption in the EAGLE simula-
tions (Schaye et al., 2015) when generating broad-band luminosities and colours.
Absorption is boosted by a fixed factor for young (< 30 Myr) stars in this model,
and the overall optical depths depend on the gas properties of each simulated
galaxy with additional scatter to account for orientation dependence!.

Chapter 3 showed that optical colours and luminosities generated for EAGLE
galaxies are broadly compatible with the GAMA measurements, while exhibiting
some notable discrepancies. In particular, the modelling resulted in a more pro-
nounced bimodal distribution of colours at a given stellar mass than observed. In
particular, model colours exhibited bimodality amongst even the most massive
galaxies for which bimodality is absent in the data. A related discrepancy was
that the red and blue fractions were also somewhat inconsistent between model

and data, with the model yielding an excess of blue galaxies at high M,. The

'The GD+O photometry developed in chapter 3 is compared to the radiative transfer solution,

and referred to throughout this chapter.
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cause of these discrepancies was attributed to both differences between the intrin-
sic properties of the simulated and observed galaxy populations (higher specific
star formation rates in EAGLE), as well as uncertainties in the modelling of the
photometry (especially dust effects). Of particular concern was that lower than
observed average star formation rates in EAGLE galaxies (Furlong et al., 2015) and
underestimated reddening could have a compensatory effect, potentially yielding
a fortuitous agreement with GAMA colours.

The dust screen model applied in chapter 3 may not represent attenuation in
EAGLE galaxies well. Indeed, the effects of complex geometries cannot be cap-
tured by a screen (e.g. Witt et al., 1992): there are degeneracies between dust
geometry and dust content. Colours of galaxies where dust and stars are well
mixed can be confused with dimmer dust-free galaxies if a screen is assumed
(e.g. Calzetti, 2001; Disney et al., 1989). Screens also neglect scattering into the
line of sight, or attempt to account for it with approximative absorption. With
scattering being as important as geometry at optical wavelengths, and often pro-
ducing effects entirely dissimilar to absorption, a screen-based approximation is
often insufficient (Baes & Dejonghe, 2001; Byun et al., 1994)

While screen model parameters have been calibrated to yield average opti-
cal attenuations that are reasonable at low redshift (Charlot & Fall, 2000), how
this parametrisation should evolve and the model’s general applicability over
cosmic time is ambiguous. This is exacerbated by significant changes in galaxy
morphologies with redshift, away from the mature discs prevalent locally. As a
result, only the evolution of intrinsic colour was considered in chapter 4.

Fully accounting for dust in arbitrary geometries requires three-dimensional
radiative transfer calculations (e.g. Steinacker et al., 2013), and, given the lack
of symmetry, Monte Carlo radiative transfer (MCRT) (e.g Whitney, 2011) tech-
niques appear to be well suited. These follow the path of photons from sources
through the dusty ISM to a camera. A variety of MCRT codes are publicly avail-
able, such as SUNRISE (Jonsson, 2006) and SKIRT (Baes et al., 2003, 2011; Camps &
Baes, 2015). SUNRISE has been applied to zoomed galaxy simulations (e.g. Wuyts
et al., 2009a,b; Jonsson et al., 2010; Guidi et al., 2015), and by Torrey et al. (2015) to
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compute images of galaxies from the ILLUSTRIS simulation (Vogelsberger et al.,
2014). Note, however, that Torrey et al. (2015) did not actually include dust in
the SUNRISE models. SKIRT has been applied to galaxy models (e.g. Gadotti et al.,
2010; Saftly et al., 2015) but also to dust around AGN (Stalevski et al., 2012, 2016).
Full MCRT dust models of simulated galaxies in a cosmologically representative
volume are yet to be published.

Previous studies that apply MCRT dust modelling to galaxy zoom simula-
tions can provide insight into this approach. Scannapieco et al. (2010) use MCRT
to produce representative optical images and decompose them into bulge and
disc contributions, but find that dust effects are negligible due to low gas frac-
tions and metallicities in the simulations themselves. Simulations with more re-
alistic gas phase metallicities have also been processed with MCRT to produce
mock observables across the UV to sub-mm wavelength range (e.g. Jonsson et al.,
2009; Guidi et al., 2015; Hayward & Smith, 2015). The influence of galaxy orien-
tation and geometry on attenuation properties and recovered physical quantities
are explored by Hayward & Smith (2015), showing how the effective attenua-
tion curves vary with orientation and morphological transformation for idealised
merger Zooms.

In this chapter, we generate optical broad-band fluxes and spectra for EAGLE
galaxies using SKIRT, comparing mock fluxes to GAMA observations and to the
GD+O dust-screen model of chapter 3.

The simulation does not trace dust explicitly: we describe dust associated with
star forming regions using the MAPPINGS models by Groves et al. (2008), and
assume that the ISM dust/gas ratio depends on metallicity. This procedure was
developed for this work and for the companion study of Camps et al. (2016),
who looked at the FIR properties of present-day EAGLE galaxies. This chapter
compared SKIRT models to FIR observations of local galaxies to calibrate dust
models, showing that observed dust scaling relations can be reproduced. Camps
et al. (2016) uses dust parameters identical to those used in this chapter. The
influence of these parameters is discussed in section 5.2 and the Appendix.

Chapter 2 provides a summary of the EAGLE simulations used in this chapter,
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how we define galaxies in our simulated sample and the datasets we compare to.
This chapter is organised as follows: In section 5.1.1 we first give a brief appraisal
of the modelling and galaxy selection that produces the chapter 3 photometry,
which is taken for comparison in this chapter. Section 5.2 details the procedure
used to produce observables with SKIRT. We investigate the predicted photo-
metric colours in section 5.4 and compare the effects of dust to the GD+O screen
model. In section 5.5.1 we present novel measurements of spectral indices for EA-
GLE galaxies, and again quantify dust effects. We focus in particular on the star
formation proxies of Ha and the extent to which EAGLE reproduces the statis-
tics of, and the correlation in, the D4000 break. We summarise our findings and
conclude in section 5.6. Those only concerned with our main results may want
to read from section 5.4 onwards; outputs of the model are described in section
5.2.3.

The mock EAGLE observables used in this work, and additional data products
listed in section 5.2.3, are to be made available via the public data-base (McAlpine
et al., 2016). The modelling, described and tested at low redshift (z < 0.1), is also
used to provide these mock observables for galaxies taken from EAGLE simula-

tions and redshifts that are not considered in this work.

5.1.1 Previous photometric modelling and galaxy selection

Chapter 3 presented model photometry for EAGLE galaxies at z = 0.1. The model
adopted here is based on that implementation with some differences as described
below. In chapter 3, photometric fluxes were calculated in standard ugrizY JHK
broad-bands (Doi et al., 2010; Hewett et al., 2006). We use a similar approach here,
with full details provided in section 5.2.1.2. The GD+O screen model employed in
chapter 3 was based on the two component dust screen of Charlot & Fall (2000),
with the optical depth additionally depending on the gas properties and includ-
ing a prescription to account for orientation-dependent dust obscuration.

In this chapter we adopt many of the same surveying and modelling proce-
dures: individual subhalos are considered potential galaxy hosts, with the ‘galaxy’

comprising the bound material within a 30 pkpc spherical aperture centred on the
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subhalo’s baryonic centre of mass. This choice was initially made in S15 to rea-
sonably approximate a Petrosian aperture, and we adopt this galaxy definition
for consistency with prior measurements of various galaxy properties. In all but
the most massive galaxies, the bound mass excluded by the aperture is negligible
(see S15 for details). We find that in < 3% of cases more than 10% of the bound
baryons lie outside our aperture. While bound material outside of the aperture
could modify observable in some galaxies, this effect is insignificant in the major-
ity of galaxies. Primarily, a consistent choice of aperture allows us to isolate aper-
ture effects from other influences. Each galaxy is processed in isolation, therefore
there is no contribution from other structures along the line of sight. The same se-
lection of EAGLE galaxies is used as in chapter 3, processing galaxies with stellar

masses of M, > 1.81 x 10® M, (~ 100 star particles at standard resolution).

5.2 Dust Modelling with SKIRT

Given a set of sources and a dust distribution, the SKIRT Monte Carlo code (Baes
et al., 2003, 2011; Camps & Baes, 2015) follows the dust absorption and scatter-
ing of monochromatic ‘photon packets” until they hit a user-specified detector,
optionally calculating the heating and re-radiation of the dust grains including
non-equilibrium stochastic heating. The position on the detector and wavelength
of each arriving photon is registered, allowing a full integral field image of the
galaxy to be constructed. Convolving this data cube with a filter yields mock
fluxes.

The modular nature of SKIRT makes it straightforward to implement multiple
source components and absorbing media using arbitrary spectral libraries and
geometries. The choices and assumptions we make to represent the emissive and
absorbing components of EAGLE galaxies in SKIRT are detailed in sections 5.2.1
and 5.2.2. To represent the particle-discretised galaxies of EAGLE as continuous
matter distributions for radiative transfer, particles are smoothed over some scale.
For gas particles the SPH smoothing is used, while stellar smoothings are recal-

culated via a nearest neighbour search of star particles, as explained in Appendix
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B.1. While SKIRT is capable of very efficient processing, Monte Carlo radiative
transfer is fundamentally computationally expensive. We examine the issues of

spectral resolution and convergence in Appendix B.2.

5.2.1 SKIRT modelling: input SEDs

The spectrum of a star particle in the simulation is assigned using spectral energy
distribution (SED) libraries. Each particle is treated as a simple stellar population
(SSP) with a truncated Gaussian emissivity profile, parametrised by a position,
smoothing length and SED. SKIRT then builds a 3D emissivity profile through
the interpolation of these individual kernels. The point of emission of individual
photon packets are sampled from these kernels at user-specified wavelengths,
and photon packets are launched assuming isotropic emission. For the optical
wavelengths considered here, we neglect emission from dust and other non-
stellar sources. Our representation of the source component for EAGLE galaxies,
including sub-grid absorption for the youngest stars, is detailed in sections 5.2.1.1
and 5.2.1.2 below, and an example spectrum showing the different SED compo-
nents is plotted in Fig. 5.1. Input SEDs and broad band luminosities are stored

for EAGLE galaxies, as described in section 5.2.3.

5.2.1.1 Old stellar populations

Stellar populations with age greater than 100 Myr are assigned GALAXEV (Bruzual
& Charlot, 2003) SEDs, as described in chapter 3. Briefly, initial masses, (smoothed)
metallicities and particle ages are extracted directly from the simulation snapshot.
Absolute metallicity values, as opposed to those in solar units, are used to assign
SEDs for the reasons given in section 3.1.2 of chapter 3. Stars are assumed to form
with a Chabrier (2003) IMF covering the stellar mass range of [0.1,100] Mg, con-
sistent with what is assumed in EAGLE. Star particle coordinates are also taken
directly from the simulation output. Smoothing lengths specifying the width of
the truncated Gaussian profile are determined using a nearest neighbour search,

as detailed in Appendix B.1. Note that we do not explore alternative population
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synthesis models (e.g. Leitherer et al., 1999; Maraston, 2005; Conroy et al., 2009)
in this chapter; differences are expected to be small for the = = 0.1 galaxies at

optical wavelengths studied here (e.g. Gonzalez-Perez et al., 2014a).

5.2.1.2 Young stellar populations

The treatment of the young stellar component is more involved due to two limita-
tions of the simulation: (i) the relatively coarse sampling of star formation due to
the limited mass resolution (see Table 2.1), and (ii) the inability of resolving birth
cloud absorption associated with recent star formation. Though the diffuse ISM
dust can be traced by enriched cold gas, the birth clouds of stellar clusters exhibit
structure on sub-kpc scales (e.g. Jonsson et al., 2010), below the resolution limit of
EAGLE. Such birth clouds are thought to disperse on timescales of ~ 10 Myr (e.g.
Charlot & Fall, 2000). To treat birth cloud absorption, we use the MAPPINGS-III
spectral models of Groves et al. (2008), which track stars younger than 10 Myr,
and include dust absorption within the photo-dissociation region (PDR) of the
star-forming cloud, following the methodology of Jonsson et al. (2010). We there-
fore have two sources of dust: that associated with birth clouds which is modelled
using MAPPINGS-I1I, and ISM dust whose effects we model using SKIRT.

We use an extended version of the re-sampling procedure of chapter 3 to mit-
igate the effects of coarse sampling. Recent star formation is re-sampled in time
over the past 100 Myr, from both star-forming gas particles and existing star par-
ticles younger than 100 Myr, as follows. The stellar particle stores the gas density
of its parent particle, which is used to compute a star formation rate. We use this
rate for young stars, and the star formation rate of star-forming gas particles, to
compute how much stellar mass these particles formed on average over the past
100 Myr (assuming a constant star formation rate). We then randomly sample this
stellar mass in terms of individual star-forming regions, with masses that follow
the empirical mass function of molecular clouds in the Milky Way (Heyer et al.,
2001),

dN

T M™% with M € [700,10°] M . (5.2.1)

For each particle resampled, sub-particle masses are drawn from this distribu-
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tion until the mass of the parent particle is exceeded. Rejecting the last drawn
sub-particle, the masses of sub-particles are rescaled such that the sum of their
masses, Xm,, exactly matches that of the parent. Sub-particles are then stochas-
tically assigned formation times using the star formation rate of the star-forming
particle. In this way, we replace star-forming gas particles, and young star parti-
cles, by a distribution of star-forming molecular clouds with the same total mass
and spatial distribution as the original set of particles.

Stellar populations resampled with ages in the range 10 Myr < ¢,,. < 100 Myr
are assigned GALAXEV spectra, parametrised in the same way as in section 5.2.1.1.
They inherit the position and smoothing length of the particle from which they
are sampled. These smoothing lengths are assigned to parent star and gas parti-
cles differently, as described in Appendix B.1.

Those resampled to have ages in the age range ¢,,. < 10 Myr are assigned the
MAPPINGS-III spectra of Groves et al. (2008). One caveat with using these spectral
models is that the intrinsic spectra of stars used to model the spectra are specified
by the Leitherer et al. (1999) (SB99) population synthesis models. This leads to
some inconsistency in the modelling of the intrinsic stellar spectra, which come
from GALAXEV for older populations. However, these differences are small in the
optical ranges considered here (e.g. see Gonzalez-Perez et al., 2014a). Another
caveat is that a Kroupa (2001) IMF is assumed for these spectral models rather
than that of Chabrier (2003), though again the differences in optical properties
are minimal.

The MAPPINGS-III spectral libraries represent HiI regions, and their emerging
spectrum therefore already treats the reprocessing of star light by dust in the star-
forming region. In other words, birth cloud dust absorption and nebular emission
are included in the SKIRT input spectra before any SKIRT radiative transfer is per-
formed. We describe below how we avoid double counting dust in HII regions.

The MAPPINGS-III SEDs are parametrised as follows:

e Star Formation Rate (17,): The MAPPINGS-III spectra assume a given (con-
stant) star formation rate between 0 and 10 Myr, the star formation rate

assigned to a particle of initial mass m, is given by M, = 107 "m, yr=1, in
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order to conserve the mass in stars.

e Metallicity (2): The metallicities are specified by the SPH-smoothed abso-

lute values of the simulation snapshot.

e Pressure (/%): The ambient ISM pressure, I, is calculated from the den-
sity of the gas particle from which the sub-particle is sampled. This is
not directly accessible in EAGLE, but can be estimated using the polytropic
equation of state that limits the pressure for star-forming gas (Dalla Vecchia
& Schaye, 2012). Because the simulation snapshot contains the density at
which each star particle formed, this estimator can be used for re-sampling

both star-forming gas and young stellar particles.

e Compactness (log,, C): The compactness, C, is a measure of the density of
an HII region. This is calculated using the following equation from Groves
et al. (2008),

My 2 Py/kg

3
lOglO C = g loglo M_® + = (522)

5 0810 3K
where M, is the star cluster mass, taken to be the re-sampling mass m,, £
is the HII region pressure taken to be the particle pressure above, and kg is
Boltzmann’s constant. The parameter C' predominately affects the dust tem-
perature and thus the FIR part of the SED, and therefore has little effect on
the results presented here, see Camps et al. (2016) for a thorough discussion

on how C affects FIR colours of EAGLE galaxies.

e PDR Covering Fraction (fppr): The photo-dissociation regions (PDRs) as-
sociated with HII regions are influenced by processes well below the reso-
lution of EAGLE. PDRs disperse over time as O, B and A stars die out. We
assume a fiducial value of fppr = 0.1 for the PDR covering factor, which can
be compared to the ‘typical” value of fppr = 0.2 used by Groves et al. (2008)
and Jonsson et al. (2010), following the calibration presented by Camps et al.
(2016).

With the parameters of the STARBURST SEDs determined, the SKIRT source

emissivity profile is then set. As explained by Jonsson et al. (2010), the scale of
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the HII region emissivity profile should be set so as to enclose a similar mass
of ISM to that required to be consistent with the subgrid absorption. Doing so
avoids double-counting the dust in the subgrid absorption (which already affects
the source spectra) and dust absorption in the diffuse ISM modelled by SKIRT.
To approximate this, we assume a fixed mass for the re-sampled particles of
Mppr = 10M, (e.g. Jonsson et al., 2010), and set the corresponding size of the
region to be ryy = \S/WR/WP(; (for a cubic spline kernel), with p, the local gas
density, taken from the parent particle. This is taken to be the smoothing length
of MAPPINGS-III sources. As noted previously, the MAPPINGS-III model assumes
the presence of birth cloud dust and that needs to be accounted for to ensure that
the total dust mass is conserved. We budget for this additional dust using the
ISM dust distribution, as described in section 5.2.2.2. HII region positions are
sampled within a kernel of size ry = /72 — 7, with 2 being the parent kernel
smoothing length, and about the parent particle position. This is such that in the
infinite sample limit the net kernel of the HII regions is equivalent to that of the
parent. Again, the smoothing lengths of gas and star parent particles are obtained
differently, as explained in Appendix B.1. Finally, those sub-particles that are not
converted to either a stellar or HII region source over the re-sampling period are
reserved for the absorbing component to ensure mass conservation. Absorption

in the (diffuse) ISM is modelled as described in section 5.2.2 below.

5.2.2 SKIRT modelling: observed properties

Having detailed the parametrisation of the source components, we proceed to
describe the modelling of dust in the diffuse ISM. This dust component is mapped
to an adaptively refined (AMR) grid, for which the optical depth of each cell
is calculated at a given reference wavelength. Neglecting Doppler shifts, this
enables the computation of the dust optical depth at any other wavelength once
the wavelength-dependence of the dust attenuation is specified. Details of the
modelling of the dust and gas contents are given in sections 5.2.2.2 and 5.2.2.1,

respectively.
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5.2.2.1 Discretisation of the ISM

Dust in galaxies exhibits structure on a range of scales, from galaxy-wide dust
lanes to sub-kpc ‘dark clouds’, with significant absorption across the range, down
to the scale of molecular clouds (e.g. Hunt & Hirashita, 2009). We cannot resolve
sub-kpc dust structures in EAGLE, which is why we include such small-scale dust
via the source model of HII regions, as described in Section 5.2.1.2. We use the
gas particles in EAGLE galaxies to estimate how dust is distributed in the diffuse
ISM, and use SKIRT to calculate obscuration by this dust, as follows.

We discretise the gas density on the AMR grid using the octree algorithm
(Saftly et al., 2013). A cubic root cell of size 60 pkpc is created, centred on the
galactic centre of mass, to capture all galactic material (see section 5.1.1), and is
refined based on the interpolated dust density derived from the gas particles,
between a specified minimum and maximum refinement level. We increase the
refinement level until the photometry is converged. Clearly, the minimum cell
size should be smaller than the approximate spatial resolution of EAGLE to best
capture ISM structure in the simulated galaxies. We find that a maximum refine-
ment level of 9 (corresponding to a finest cell of extent 60 kpc/2° = 0.11 kpc or
~ 1/6 of the z = 0 gravitational softening), provides a grid structure that yields
converged results when combined with a cell splitting criterion® of 2 x 107%. We
therefore adopt a maximum refinement level of 9 for our analysis, together with a
minimum refinement level of 4. While we use a minimum cell size twice as large
as that of Camps et al. (2016), we have verified that this has a negligible effect
on our results in the optical and NIR, while increasing the speed of our SKIRT

simulations.

2This is the maximum fraction of the total dust mass that can be contained within a single dust
cell. If the cell contains a larger fraction and is below the maximum refinement level, the cell is

subdivided.
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5.2.2.2 Dust model

Dust traces the cold metal-rich gas in observed galaxies (e.g. Bourne et al., 2013).

Here we assume that the dust-to-metal mass ratio is a constant,

_ Pdust
dust =
Zpg

~0.3, (5.2.3)

where 7 is the (SPH-smoothed) metallicity, and pq,s and p, are the dust and gas
density, respectively. The numerical value was determined by calibrating FIR
properties of EAGLE galaxies by Camps et al. (2016), and is consistent within the
uncertainties of observationally inferred values (e.g. Dwek, 1998; Draine et al.,
2007). The assumption of a constant value of fj, is common and is observed
to apply to a wide variety of environments (e.g. Zafar & Watson, 2013; Mattsson
et al., 2014), though there are indications it can vary in some cases (e.g. De Cia
et al., 2013; Feldmann, 2015). We implement this constant ratio by assigning a
dust mass of maust = fausty, Where m, is the particle mass. We use the dust
model described by Zubko et al. (2004); a multi-component dust mix tuned to
reproduce the abundance, extinction and emission constraints on the Milky Way.
Following Camps et al. (2016), gas must be either star-forming (i.e. assigned a non-
zero star formation rate by the simulation or in the re-sampling procedure) or
sufficiently cold (with temperature 7" < 8000 K) to contribute to the dust budget.

To account for the dust mass already associated with birth clouds when using
the MAPPINGS-III source SEDs, we introduce ‘ghost” particles that contribute neg-
atively to the local dust density. These ghost particles are placed at the location of
each Hil region, have a mass of Mppg = 10m,, where m, is the stellar mass formed
in the star-forming region, and a smoothing length equal to three times that of the
Hii region. The assumption that the PDR mass, Mppg, is ten times that of the stel-
lar mass formed follows the recommendation of Groves et al. (2008), the greater
smoothing of the ghost contribution avoids negative dust densities. The creation
of ‘holes” in the dust distribution around HII regions may seem unphysical, as
observed HII regions are typically embedded in the densest (and dustiest) ISM.
However, we have tested an alternative implementation where the dust mass of

all contributing particles are downscaled to balance the additional dust invoked
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by the MAPPINGS-111 SEDs, and find little perceptible difference in the results pre-
sented here. We will see that ISM dust obscuration is still higher around young

stars, even in the presence of these ghost particles.

5.2.3 Data products

This section describes the data products that are generated by SKIRT. We reiterate
that we do not consider kinematics when using SKIRT, i.e. no Doppler shifts are
yet accounted for beyond any line broadening present in the input SEDs. We
perform a convergence test in Appendix B.2 to determine how to best sample
the SED, both in terms of wavelength sampling and photon-packet sampling.
We construct integrated spectra for all simulated galaxies in three orientations;
edge on, face on and randomly orientated with respect to the galactic plane. The
calculation of orientations for EAGLE galaxies is described in section 5.3 below.

The data products produced include the following;:

o Integrated spectra capture all the photon packets emanating from the mock
galaxy for the fixed list of specified wavelengths, and in a given direc-
tion. The standard resolution spectra consist of 333 wavelengths in the
range 0.28—2.5 um, chosen to sample the rest-frame ugrizY JHK photo-
metric bands (see Appendix B.2 for details). Spectra are produced with and
without ISM dust at redshifts 2 = 0 and redshift = = 0.1 (the snapshot
redshift from which the galaxies were selected). An example integrated
rest-frame SED of a star-forming galaxy and including dust attenuation is

plotted in Figure 5.1.

e Data cubes, or mock IFU data, consist of 256x256 spatial pixels, each with
a spectrum at standard spectral resolution. Given that the field of view cor-
responds to 60 pkpc on a side, this corresponds to 234 pc/pixel. Images are
produced in both the rest and observed frames, but only for dust attenuated
galaxies with M* > 10'°M,,. Again, these do not include kinematic effects,

which will be the focus of future work.
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Figure 5.1: Example integrated rest-frame galaxy SED including ISM dust effects,
generated for a late type (S) EAGLE galaxy taken from simulation Ref-100 (galaxy
ID=15814162 in the EAGLE database described by McAlpine et al. 2016). The green
line indicates the total SED in the presence of dust. Solid lines show the integrated
SED when the galaxy is observed along the z-direction of the simulation volume
(an inclination angle of 50.2°), while dashed and dot-dashed lines denote edge and
face-on views, respectively. The red and blue lines are the ISM dust-free contri-
butions from the old stellar population (t > 10 Myr) modelled using GALAXEV
(Bruzual & Charlot, 2003), and the young population (¢ < 10 Myr) modelled us-
ing MAPPINGS-III (Groves et al., 2008), respectively. Properties and images of this
galaxy can be found in Table 5.1 and Fig. 5.2 respectively. We see from the solid
lines that the MAPPINGS-III SED contributes relatively more flux in the UV, and

for some strong emission lines.
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Table 5.1: Properties of galaxies shown in Fig 5.2. All properties are extracted

from the EAGLE database (McAlpine et al., 2016), for a 30 pkpc aperture.

Type Galaxy ID. M, [Mg] SFR [Mg, yr]
Late (S) 15814162  9.94 x 101Y 3.96
Irregular (Irr) 14318126  1.34 x 10'*  4.60
Early (E) 19099219 2.05 x 101 0.0

e Broad-band photometry The fluxes through the ugrizY JH K filters and are
obtained by convolving the integrated spectra with the filter transmission
curves (transmission curves were taken from Doi et al., 2010; Hewett et al.,
2006). We compute both rest-frame and observed-frame photometry for the

entire galaxy sample both with and without ISM dust attenuation.

e Broad-band images are produced by integrating along the wavelength axis
of the data cubes. These are generated including dust for the ugriz SDSS
bands, and provided in 3 colour PNG (portable network graphic) format®
via the approach of Lupton et al. (2004). Figure 5.2 shows three-colour gri
images at z = 0.1 for three different galaxies and three orientations. We
picked a late-type, an irregular and an early-type galaxy. Some properties
of these galaxies are listed in Table 5.1. Structural features resembling spi-
ral arms and tidal tails are distinguishable for the late and irregular types,
respectively, while the early type exhibits a smooth, featureless light dis-
tribution. Star-forming HII regions appear pink due to Ho emission in the
MAPPINGS-1II SEDs for these z = 0.1 galaxies. We also observe scattering

and absorption by dust for the late and irregular types.

SNote that these images are initially intended for illustrative purposes only, as the detailed
light distributions are dependent on the somewhat ad-hoc choice of stellar smoothing (similarly
demonstrated by Torrey et al., 2014). While we find the influence of smoothing to be small for the
results presented in this chapter (see Appendix B.1), analysing the influence smoothing has on

morphologies is left to a future work.
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Data products are to be made available via the EAGLE public database (McAlpine
et al., 2016), with the exception of data cubes, which are available through collab-
oration with the authors*. We will below compare the output from the SKIRT
simulations to those with the same source model but without obscuration by ISM
dust. Note, however, that the MAPPINGS-III source model always includes dust
associated with the birth cloud. We will refer to the these models as ‘ISM dust-

free’ in what follows.

5.3 Attenuation Properties of SKIRT galaxies

In this section we focus on how attenuation depends on galaxy orientation at low
redshift (z = 0.1). This helps us to separate the effects of geometry and dust

content, and facilitates the interpretation of a comparison with observations.

5.3.1 Broad-band attenuation

The orientation of a galaxy can profoundly affect its measured colours, partic-
ularly in the case of thin spiral galaxies where the edge-on view is much more
affected by dust than the face-on view. Indeed, the reddest galaxies observed in
the local Universe are often edge-on spirals (e.g. Sodre et al., 2013). The SKIRT
modelling naturally accounts for this effect, as opposed to the two component
screen models presented in chapter 3 which relies on simple geometrical argu-
ments to account for this. To quantify orientation effects in disc galaxies, we use
3 lines of sight: parallel, perpendicular and randomly oriented with respect to
the galactic plane. This helps constrain orientation effects on dust extinction for
each galaxy individually, as well as providing a set of photometry with random
orientations used when comparing to data.

We assume that the disc of a galaxy is perpendicular to the spin vector, S, of

its stars. We calculate S by summing the spin vectors of all star particles within

*To access the database and receive updates on its content, register at

http://icc.dur.ac.uk/Eagle/database.php
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Figure 5.2: Observer frame true colour gri images of selected EAGLE galaxies

from Ref-100 at z = 0.1, including dust obscuration. The galaxy ID can be used

to identify each galaxy on the EAGLE database (McAlpine et al., 2016), see also

Table 5.1. Rows from top to bottom show a late type spiral (Hubble type S), an

irregular type (Irr) and an early type (E) galaxy, with columns from left to right

showing face-on view (parallel to the stellar angular momentum axis), edge-on

view, and the view along the z-axis of the simulation volume (‘random’).

{continued on next page...}
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Figure 5.2: {Continued from previous page} Images are produced using 4 x 10° pho-
ton packages at each of 333 wavelengths, spaced as described in Appendix B.2.
Hil regions appear pink in the colour scheme, due to strong Ha emission at ~6700
A red-shifted into the i-band, dust lanes are clearly visible in the S and Irr images.
The kinematic orientation works well for the spiral galaxy, but the disordered gas
distribution caused by an ongoing merger event in the Irr case yields more ab-
sorption in the face-one view than in the edge-on view. Images are 60 pkpc on a

side.

a shell with inner and outer radii of 2.5 pkpc and 30 pkpc, respectively, in the
centre-of-mass rest-frame of the galaxy. The outer radius corresponds to the aper-
ture radius of a galaxy assumed in chapter 2, the inner radius was chosen to avoid
a significant contribution from a bulge or regions strongly affected by gravita-
tional softening. We found that with this selection, S is generally dominated by
the dynamically cold rotating disc component, if present. We characterise the
orientation of a galaxy by its inclination angle ¢, such that face-on galaxies have
cos(f) = 1.

In Fig. 5.3 we plot the attenuation in the B-band, Ap, as function of orien-
tation, for all EAGLE galaxies from simulation Ref-100 with stellar mass M, >
10'°M,; points represent individual galaxies coloured by intrinsic u* — r* (* de-
notes intrinsic photometry). Two sequences are observed: (i) a broad sequence
of intrinsically blue (star-forming) galaxies where Ap increases with decreasing
cos(f) and (ii) a very tight sequence of intrinsically red (passive) galaxies show-
ing no orientation dependence. Such a dichotomy is of course unsurprising: red
galaxies typically have low cold gas fractions and therefore negligible dust at-
tenuation, whereas star forming (intrinsically blue) galaxies have relatively high
cold gas fractions, with gas distributed in a disc, hence dust obscuration is higher
and depends on orientation.

The median Ag of intrinsically blue galaxies with Ag > 0.05 in bins of cos()
is plotted as black squares in Fig. 5.3), with the grey region enclosing the 16th-

84th percentiles. The median attenuation Az of EAGLE galaxies increases from
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Figure 5.3: The Johnson rest-frame B-band attenuation, Ap, as a function of in-
clination angle; cosf = 1 corresponds to face-on. Points are individual EAGLE
galaxies from simulation Ref-100 at z = 0.1, with M, > 10'°M, coloured by ISM
dust-free u* — r* colour. Black squares indicate the median relation for galaxies
with Ag > 0.05, binned by cos(f). The grey, shaded region indicates the 16th-
84th percentile range in each bin. The red, solid line shows the best fit of the form
Eq. (5.3.4), which has ¢ = 0.396. The red, dashed line shows the same fit, except
with ¢ = 0.1 to represent a thinner discs, which follows the trend of the intrinsi-
cally blue galaxies better. Galaxies with Ag < 0.05 are typically red in v* —7* and
occupy a tight distribution in Ap ~ 0, independent of orientation. For compar-
ison we also overlay the observed relation from Driver et al. (2007) (D07 in the
legend) for the median attenuation curve of the disc component only, of galaxies

with bulge/total ratio smaller than 0.8.
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0.3 to > 0.6 from face-on to edge-on orientation but the scatter around the trend
is large (=~ 0.5 mag). We fit the angular dependence of the median relation using

the ellipsoidal dust model discussed in chapter 3,

q
Apg(cost) =a , 5.3.4
s ) V@& + (1 —q?)cos?0 ( )

where a is the edge-on obscuration and ¢ represents the axial ratio of the galaxy;
lower ¢ corresponds to thinner galaxies. We treat a and ¢ as free parameters in
the fit, and plot the fitted curve in red. The functional form fits the trend well for
an axial ratio of ¢ = 0.381. The scatter around the median likely originates from
both diversity in the ISM distribution in different galaxies, i.e. deviation from an
idealised disc, but also from errors in identifying the correct orientation of the
disc plane. Indeed, we showed in Figure 5.2 that the galactic plane is not always
easily defined, as evidenced by the irregular galaxy shown in the middle row.

Driver et al. (2007) use a sample of galaxies from the Millenium Galaxy Catalogue
(MGC) with estimated bulge-to-total (B/T") light ratios of B/T" < 0.8 to measure
the extent to which the location of the ‘knee’ in the B-band luminosity function
(Schechter, 1976) depends on inclination. They fit their results with the model
of Tuffs et al. (2004) to obtain the typical attenuation separately for bulge and
disc components. We plot the relation of Driver et al. (2007) for a typical disc
(B/T = 0) in Fig. 5.3 as a solid blue line.

The median EAGLE Ap values (black squares) and the fitted form of Eq. (5.3.4)
(red line), are consistent with those obtained by Driver et al. (2007) for nearly
face-on discs (cos(#) > 0.5), but are significantly lower for highly inclined discs.
While there is uncertainty in the absolute values measured for Ap, as discussed
by Driver et al. (2007), the difference between typical face- and edge-on Ap val-
ues is better constrained’ and clearly significantly larger in the data compared
to EAGLE. Note that the Driver et al. (2007) data is represented by a pure disc
(blue line) for simplicity. While EAGLE spirals clearly possess bulges (see e.g. Fig.

5.2), the difference between face-on and edge-on attenuation found by Driver et al.

SDriver et al. (2007) derive the relative attenuation directly by measuring how the knee posi-

tion of the luminosity function differs for edge-on and face-on galaxies.
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Figure 5.4: Johnson rest-frame B-band attenuation as function of orientation for

EAGLE galaxies, taken from simulations Recal-25, Ref-25 and RefHi-25 at z = 0.1

(left to right panels, see Table 2.1 for details). Thin curves show Ap for individual

galaxies as a function of inclination, the shaded circle represent the median trend,

and the grey region includes the 16th-84th percentiles. The dashed line approx-

imately overlying the circles represents the fit of Eq. (5.3.4); the best-fit value of

q is indicated in each panel. We see significant galaxy-to-galaxy variation in the

shape of the attenuation-inclination relation, with the highest attenuation values

in the higher-resolution galaxies, but little difference between the trend of the

median inclination as a function of cos().
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(2007) varies little with B/T. The blue line provides a guide curve to highlight
the smaller range in Az with inclination for EAGLE. Decomposition of SKIRT light
profiles into bulge and disc contributions is left to a future study.

The ¢ = 0.1 curve, which models thinner discs for the same dust content as the
titted curve, demonstrates much better agreement with Driver et al. (2007) than
the median EAGLE relation. This suggests that the discrepancy is likely due to
EAGLE galaxies not being as thin as observed galaxies. The fact that EAGLE galax-
ies are thicker than observed is not only due to numerical resolution. Indeed,
we compare the Ap(cosf) relation for galaxies taken from the three (25 Mpc)?
simulations listed in Table 2.1. These simulate the same volume, but at different
resolutions. The number of galaxies with M, > 10'°M in this smaller volume
is < 100, therefore the two-sequences in the Ap(cos#) relation are not well con-
strained if we simply use the mock photometry of randomly oriented galaxies
as we did in Fig. 5.3. We therefore calculate Ag(cos§) for all sufficiently massive
galaxies (M, > 10'°My) at 40 inclinations for each galaxy, equally spaced in cos(6),
and plot the resulting curves in Fig. 5.4. Equation (5.3.4) is fit to the median rela-
tion and plotted as a dashed coloured line. While higher values of Ay are seen in
the higher resolution RefHi-25 and Recal-25 samples, the difference with respect
to the median values of Ref-25 is small. Neither the plotted curves for individual
galaxies nor the fits using Eq. (5.3.4) to the median trend, show strong evidence
for Ap being more sharply peaked at improved numerical resolution.

The weaker inclination dependence and lower edge-on values of Ap in EAGLE
are instead likely a consequence of EAGLE’s subgrid physics, in particular the use
of an imposed Jeans-limiting, polytropic relation for star forming gas (chapter 2).
This relation yields a Jeans length at the star formation threshold of the ~1.5 kpc,
and EAGLE discs are unable to be much thinner than this. This relation is im-
posed to avoid numerical fragmentation below the resolution of the simulation,
as explained by S15. Dust discs in observed galaxies, on the other hand, are much
thinner, ~100-200 pc (e.g. Xilouris et al., 1999; De Geyter et al., 2014; Hughes et al.,
2015). In a thin disc seen edge-on, the dust optical depth to young stars will be

much higher than if the disc where thick, and this seems to be the main difference
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between observed and simulated galaxies.

This comparison demonstrates that the Ag(cosf) dependence displays both
strong and weak convergence behaviour, with increased numerical resolution not
changing the relation significantly - and not improving the agreement with the
data. We show in Appendix B.1 that reducing all star particles to point sources
only boosts the edge-on value of Ap by < 0.1 mag. We conclude from this that the
lower values for Ap for edge-on EAGLE galaxies are likely a result of the the simu-
lations being unable to represent cold gas; the high column densities and clumpy
structure of molecular gas observed in real disc galaxies is not reproducible in the
EAGLE simulations without realistic modelling of gas with T < 10*K. The influ-
ence that thicker discs (and thus lower edge-on attenuation) has on our results is

discussed further below.

5.3.2 Broad-band colour effects

The extent to which inclination affects the optical colour distribution of EAGLE
galaxies with 10"°M, < M, < 10"My is illustrated in Fig. 5.5, where we plot
intrinsic (ISM dust-free) g* — r* colour against g — r in the presence of dust. In the
left panel we shade regularly spaced colour-colour bins by the median value of
cos 6 of galaxies in that bin (provided the bin contains more than 10 galaxies). We
see a clear trend in attenuation with inclination, especially for intrinsically blue
galaxies of g* — r* < 0.6, with galaxies possessing median cos(¢) values of ~ 0.25
and =~ 0.65 for maximal and minimal offsets from the 1:1 relation, respectively.
For galaxies with redder intrinsic colours, the trend is less pronounced and the
maximal offset is lower, as expected for less dusty galaxies.

In the right panel of Fig. 5.5 we plot logarithmically spaced contours repre-
senting the number of galaxies per colour-colour bin. Intrinsically red (¢* — r* ~
0.75) galaxies follow the 1:1 relation closely with little offset, whereas intrinsically
blue (¢ — r* = 0.4) galaxies are offset to redder colours and show a large scatter.
Worth noting is the approximately constant median offset to the red of ~ 0.1 mag
for galaxies with g* — r* < 0.6, implying that a similar average reddening is ex-

perienced by star forming galaxies regardless of star formation rate.
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Figure 5.5: Comparison of ISM dust-free SDSS g — r colour to g — r including
ISM dust for EAGLE galaxies in the mass range 10 < log(M./Mg) < 11 atz =0.1;
the black dashed line indicates the 1:1 relation in both panels. In the left panel, the
median value cos(#) is plotted in regularly spaced bins in colour (only bins with
more than 10 galaxies are shown). The right panel shows the number density n
of galaxies per colour-colour bin as grey contours labelled by log(n). There is a
clear trend of increased reddening at higher cos(f) as expected. Some galaxies lie

marginally below the 1:1 line, the reasons for which are discussed in the text.
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Some galaxies lie marginally below the 1:1 relation. In most cases this is due to
uncertainty in the photometry (see appendix B.2), particularly in dust-free galax-
ies where the attenuation is small anyway, and these negative reddening mea-
surements are ~ 0.001 mag. However in rare instances, measured for higher
redshift EAGLE galaxies, significant negative reddening is observed. This can be
attributed to those galaxies demonstrating heavy obscuration in their central re-
gions, leading to higher contribution of young stars in the outskirts, conspiring

to produce bluer colours overall.

5.3.3 Attenuation curves

The extinction curve is an intrinsic property of a given dust grain population;
combining the wavelength dependent cross-sections of absorption and scatter-
ing. Our choice of dust mix thus sets the optical depth of dust cells modelled by
SKIRT. However, the extinction does not provide a direct mapping between the
intrinsic and observed SEDs, which additionally depends on the relative distri-
bution of stars and dust and the orientation of the galaxy along the line of sight.
This galaxy and line-of-sight specific mapping is referred to as the attenuation
curve. One example of why the curves may differ significantly is that the young
stars that dominate emission at short wavelengths are in general embedded in
dusty regions and hence their blue light is more strongly dust-attenuated.

As aresult, the attenuation curves may differ systematically in shape from the
extinction curve of the individual dust cells. The shape of the curve is also likely
orientation dependent, for example stars in a central bulge may be obscured in
edge-on but not face-on projections. As a result, the normalisation, shape and
orientation dependence of the attenuation curve are to some extent degenerate
in observed integrated spectra when an attenuation proxy such as the Balmer
decrement is used.

It is typical to assume a fixed shape of the attenuation curve to de-redden ob-
served SEDs. Using the SEDs we generate for EAGLE galaxies, we can explore the
typical attenuation curves that arise from our MCRT treatment, and how these

may vary systematically with orientation. While EAGLE galaxies appear to have
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thicker discs than observed (see section 5.3.1), we hope to provide an indication
of the ways in which real galaxy attenuation curves can vary from basic screen
models using the comparatively realistic and diverse morphologies that arise in
EAGLE galaxies. Studies of variation in galaxy attenuation curves have been per-
formed for observed galaxies assuming idealised geometries by (e.g. Byun et al.,
1994; Baes & Dejonghe, 2001; Wild et al., 2011; Kriek & Conroy, 2013) and for
small samples of zoomed galaxy simulations by Wuyts et al. (e.g. 2009a); Natale
etal. (e.g. 2015).

We plot the r-band luminosity-weighted average attenuation curves of intrin-
sically blue (u* — 7* < 2.0) EAGLE galaxies, normalised by the attenuation in the
V-band, in Fig. 5.6. Face-on, edge-on and random projections are plotted as blue,
red and green curves, respectively. Recall that dust in birth clouds is accounted
for in our models by the MAPPINGS-111 SEDs of Groves et al. (2008) for which we
do not have the analytical description of the intrinsic attenuation curve. There-
fore, we approximate the attenuation given the modelled dust content assuming
a foreground screen. Fortunately, the proportion of optical light attenuated in the
HII regions or associated PDR is small relative to the diffuse component, except
at some specific atomic transitions. Nevertheless, we find that the increased at-
tenuation visible in Fig. 5.6 at the Ha and Hj wavelengths is still clearly present
even when only the diffuse contribution is taken into account: this is because the
PDR are preferentially embedded in denser regions of the ISM, and it is this dif-
fuse ISM dust that causes the high attenuation. We emphasise that preferential
attenuation of young stars due to dust in a birth cloud screen is explicitly built
in to both the SKIRT and the Charlot & Fall (2000) model employed in chapter
3. The difference is due to additional preferential attenuation of the diffuse ISM
represented as a single screen in Charlot & Fall (2000).

In all cases, attenuation increases rapidly towards shorter wavelengths with
significantly higher attenuation at certain discrete wavelengths and a broad ab-
sorption feature at ~ 220 nm. For face-on galaxies, the slope is much steeper than
the intrinsic dust extinction law. The discrete wavelengths correspond to atomic

transitions at which star forming regions dominate emission, their boosted atten-
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Figure 5.6: Attenuation as a function of wavelength, normalised to attenuation in

the V-band at 550 nm. The luminosity-weighted average attenuation curves of

intrinsically blue (u* — r* < 2.0) EAGLE galaxies for face-on, edge-on and random

orientations are plotted as blue, red and green curves, respectively. {continued on
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Figure 5.6: {Continued from previous page...} The attenuation laws of Calzetti et al.
2000 and Charlot & Fall 2000 are plotted as solid and dashed black lines, respec-
tively, and the attenuation curve inferred for the galaxy M51 by De Looze et al.
(2014) and for M31 by Viaene et al. (2016a), are plotted as dashed and dotted grey
lines, respectively. The inclination of these galaxies is plotted in the legend. We
also plot the intrinsic extinction curve used by SKIRT, Zubko et al. (2004). The
bottom panel shows the residuals between the three EAGLE curves and the dust
extinction curve of Zubko et al. (2004), assumed by SKIRT. The shape of the at-
tenuation curve for EAGLE galaxies varies with orientation, with face-on galaxies

exhibiting a stronger wavelength dependence.

uation is due predominately to the increased diffuse dust around these regions®.

The feature at ~ 220 nm is intrinsic to the assumed dust extinction law.

The average edge-on attenuation curve is less steep, or ‘greyer’, than that of
face-on galaxies. This appears to be because the dust in EAGLE galaxies is spa-
tially correlated with star forming gas, therefore intrinsically blue stars are pref-
erentially obscured in the face-on view, while in the edge-on view that dust also
acts as a screen for older stars. The A, curve for the randomly oriented values
exhibits an intermediate steepness between the face-on and edge-on curves.

The extinction curve assumed by SKIRT when processing EAGLE galaxies is
that of Zubko et al. (2004). The extinction curve is plotted as a black dotted
line in the top panel (again normalised to 1 for the V-band), while in the bot-
tom panel we plot the residuals of the EAGLE attenuation curves once the V'-band
normalised extinction is subtracted, to isolate the influence of geometry and ori-
entation. We see that the EAGLE curves are steeper than the intrinsic extinction
curve, again a manifestation of the preferential obscuration of young stars, most

exaggerated for the face-on projection. We also see that the EAGLE curves lie

®Constructing ISM attenuation curves for the HII regions alone (see appendix B.5) yields
curves similar to the Calzetti et al. (2000) and Charlot & Fall (2000), with the Ha feature reduced
by ~ 90 %.
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above the extinction curve at NIR wavelengths. This can be ascribed to absorp-
tion overtaking scattering as the primary photon-dust interaction at wavelengths
longer than optical, leading to a smaller fraction of attenuated light being scat-
tered into the line of sight than at optical wavelengths. As a result, when curves
are normalised at optical wavelengths, the NIR attenuation appears boosted rel-
ative to the pure extinction curve.

For comparison, we plot the attenuation curves of the Calzetti et al. (2000)
and Charlot & Fall (2000) screen models. Comparing to the screen-model curves
we see that the attenuation curves for EAGLE are generally steeper at all orienta-
tions. The screen models are closest to the edge-on curve at short wavelengths,
due to dust behaving as a screen for many stars in an edge-on view. The Charlot
& Fall (2000) curve represents a two component screen model, accounting for ad-
ditional attenuation of young stars associated with stellar birth clouds. This age-
dependent attenuation model provides better agreement with the EAGLE curves
than the single screen Calzetti et al. (2000) model, laying closest to the edge-on
EAGLE curve. The fact that young stars are also preferentially attenuated by dif-
fuse ISM in our SKIRT modelling may explain why the EAGLE attenuation curves
are steeper still. It seems that the preferential attenuation of young stars may
be decisive to the sense of this result too; while we find geometric effects gen-
erally steepen attenuation curves relative to the input extinction, indiscriminate
mixed attenuation models can lead to significantly flatter attenuation than the
input model (e.g. Wuyts et al., 2009a). For simplicity, and consistency with our
previous work, the attenuation profile is kept the same for both ISM and birth
cloud attenuation in the Charlot & Fall (2000) model as described in Equation
3.2.2. However, some empirical studies advocate for steeper attenuation profiles
associated with the birth clouds about star forming regions, based on line-of-sight
measurements in the Milky Way (Wild et al., 2007; da Cunha et al., 2008). Adopt-
ing such a parametrisation could further steepen the effective attenuation and
modify the boosted emission line absorption represented by the Charlot & Fall
(2000) model.

We also plot attenuation curves derived for local galaxies M31 and M51 (from
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Viaene et al. 2016a and De Looze et al. 2014, respectively) M31 is a relatively edge-
on galaxy, with an inclination angle of # = 77° (Brinks & Burton, 1984), whereas
M51 is practically face-on at # = 10° (De Looze et al., 2014). The M31 attenuation
curve lies between the face-on and edge-on curves at wavelengths short-ward
of the V-band, residing closest to the random projection curve. The M51 curve
is steeper than any of EAGLE or screen-model curves. The M31 and M51 curves
are both steeper than the EAGLE curves for comparable galaxy orientations. They
also show more difference in slope than between the face-on and edge-on curves.
We suggest that this is because EAGLE galaxy discs are thicker, and smoother than
observed discs, both a consequence of limitations in the sub-grid physics. This
could indicate that the orientation dependence we identify in EAGLE galaxies may
become stronger if EAGLE galaxies possessed more realistic, thinner discs.
Observational studies have explored attenuation curve variation through SED
titting of low and high redshift galaxy samples and assuming screen-like attenu-
ation (e.g. Wild et al., 2011; Kriek & Conroy, 2013, respectively). Wild et al. (2011)
find a similar trend between attenuation curve slope and inclination for nearby
galaxies as we observe here. However, both Wild et al. (2011) and Kriek & Con-
roy (2013) find a slight weakening of the 2175A bump feature for face-on galaxies,
which is not apparent in EAGLE. As this feature and its variation is attributed to
poorly understood dust grain species that inhabit certain regions of galaxies, and
given our modelling does not include spatial variation of the dust mix, this is
perhaps unsurprising. A better understanding of the nature of these enigmatic
dust grains, and their location in galaxies, would allow us to incorporate this into

our modelling.

5.4 SKIRT colours of EAGLE galaxies

In this section we compare colours of EAGLE galaxies to GAMA data, as well as
to the fiducial GD+O model of chapter 3 (which we will refer to simply as the
GD+0O model below). We recall that our modelling, described in section 5.2, rep-

resents dust attenuation in two distinct ways; attenuation effects associated with
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Figure 5.7: Rest-frame z = 0.1 SDSS g — r colour distributions of galaxies in four
non-contiguous bins of stellar mass, labelled in each panel. EAGLE galaxies of
simulation Ref-100 are shown in black, where dashed lines neglect ISM dust, thin
solid lines indicate the GD+O colours of chapter 3, thick solid lines include ISM
dust modelled using SKIRT. Red lines (bottom panel only) are galaxies from the
higher resolution simulation Recal-25, processed with SKIRT. Blue lines show the

observed distributions of Taylor et al. (2015).
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HII regions are built into the MAPPINGS-III spectra, while dust in the diffuse ISM
is accounted for by the SKIRT radiative transfer calculation. We will sometimes
refer to models without ISM dust as ‘intrinsic” colours and to these galaxies as
‘dust free” but note that this only refers to ISM dust, not the dust associated with

the MAPPINGS-III source model.

5.4.1 Comparison with observations
5.4.1.1 Colour distribution at a given stellar mass

The distribution of rest-frame galaxy g — r colours at z = 0.1, in narrow (0.3 dex)
non-contiguous stellar mass bins, showing both z = 0.1 EAGLE galaxies and
GAMA data, is plotted in Fig. 5.7 (which can be compared to the simpler GD+O
dust-screen model, thin solid lines). Stepped lines represent the EAGLE colour his-
tograms, using black to denote simulation Ref-100 and red to denote simulation
Recal-25. These are either thin dashed to indicate colours without ISM dust, thin
solid to represent the GD+O model, or thick solid representing those obtained us-
ing radiative transfer with SKIRT. Continuous blue lines correspond to rest-frame
(volume-limited) GAMA galaxy colours without dust correction from Taylor et al.
(2015). Stellar masses for the GAMA galaxies, inferred through SED fitting, are
taken from Taylor et al. (2011). All distributions are normalised to unit area. Here
we compare the SKIRT to observed distributions, additionally comparing to the
GD+0O model in sections 5.4.1.2-5.4.2.2.

Comparing dashed to solid lines in the top panel demonstrates that dust red-
dening in massive (10'? < M, /M, < 10''%) blue galaxies is significant, with blue
galaxies redder in SKIRT compared to intrinsic colours by 0.1-0.2 mag in g — 7,
changing the bi-modal ISM dust-free colour distribution to a single red peak at
g — r ~ 0.75. The intrinsically blue colours of massive EAGLE galaxies are caused
by relatively low levels of residual star formation, not completely suppressed by
the AGN feedback. The dust content of these star forming regions is high, how-
ever, leading to significant dust-reddening when processed with SKIRT. At these

masses, about half of the galaxies on the SKIRT red sequence are dust reddened
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from an intrinsically bluer colour”.

Dust reddening also affects the g — r colour of galaxies with masses 10'%° <
M, /Mg, < 10'® strongly (second panel from top), shifting blue galaxies to higher
g —r by~ 0.1 mag, to g — r = 0.6, and changing the bi-modal colour distribution
into a single red peak with a tail to bluer colours. This blue tail, due to galaxies
with more moderate reddening, hints that the intrinsic colour distribution is in
fact bi-modal. At these masses, about a third of the ‘green valley” population with
g —r =~ 0.65 comprises dust-reddened galaxies. The remaining galaxies have
intrinsic colours that puts them in the green valley, and are typically transitioning
between the blue and red populations, as discussed in detail in chapter 4.

The second-lowest mass bin (10°®% < M, /M, < 10'%!) again contains a pop-
ulation of strongly-reddened galaxies. A distinct bi-modality remains after red-
dening, with the red peak stronger than the blue peak, opposite to the case of
intrinsic colours. Intrinsically blue galaxies appear less attenuated on average,
with the blue peak shifted by only ~ 0.05 mag relative to the ISM dust-free pho-
tometry, to g — r = 0.5. The “green valley’ population is also boosted relative to
the ISM dust-free photometry. Recalling Fig. 5.5, we see that the dust-boosted
red and green galaxy populations produced by SKIRT have a tail to significantly
bluer colours. The tail consists of galaxies that have little or no ISM dust as well
as dusty galaxies seen nearly face-on with ISM dust-free colours typical of the
star-forming population.

At the lowest stellar masses, 1057 < M, /M, < 10° (bottom panel), EAGLE
galaxies show very little reddening when processed with SKIRT. Indeed, compar-

ing the ISM dust-free and SKIRT g — r distributions separately for the Ref-100 and

"Note that while the dust attenuation in EAGLE appears to be systematically lower than ob-
served for edge-on galaxies (see section 5.3.1), increasing attenuation would not necessarily lead
to the EAGLE red sequence position shifting to even redder colours. Unlike in a screen model
where extreme reddening is possible, in our SKIRT modelling galaxies with high dust content
have colours that saturate to that of old stellar populations, as these populations are preferen-
tially unobscured by dust. If the dust clouds are made optically thick, the galaxy photometry is
essentially that of the unobscured population. More realistic attenuation values might, however,

lead to more galaxies appearing as members of the red sequence.
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Recal-25 simulations shows that dust effects are minimal.

In the most massive bin, observed colours from GAMA conform to a tight red
sequence centred at g — r ~ 0.7. The SKIRT distribution is similar but shifted by
~ 0.05 mag to the blue. The median stellar metallicity of EAGLE galaxies agrees
well with the observationally inferred values (515), and the stars in these galax-
ies are generally old. It is therefore somewhat surprising that the simulated and
observed colours do not agree better, since reddening is not important for these
galaxies anyway (either in our model, or in the GAMA data). In chapter 4 I show
that the metallicity distribution of star particles in EAGLE galaxies is nearly ex-
ponential, and it is the lower Z particles that make EAGLE galaxies bluer than
observed. A possible reason for the discrepant colours is thus that massive EA-
GLE galaxies have too low metallicities, even though the mass-weighted simu-
lation metallicity agrees well with the luminosity-weighted observed metallicity,
see chapter 4 for more discussion.

The second most massive bin shows striking consistency between SKIRT and
observed colours. The agreement with the data is in fact superior to that obtained
with the GD+O dust-screen model. In particular, the relative fraction of red and
blue galaxies is much closer to the observed ratio when using the SKIRT. The
reason for this is explored further below.

The second lowest mass bin shows similarly good agreement with the ob-
served distribution, with SKIRT colours systematically shifted to somewhat red-
der values (< 0.05 mag). Again, the colours conform better to observation than
those of chapter 3, with the latter’s dust-reddened colours in fact close to the
intrinsic EAGLE colours.

Finally, in the lowest mass bin, the Ref-100 colours show poor agreement with
observation. Furlong et al. (2015) showed that at these lower galaxy masses, nu-
merical effects and poor sampling in EAGLE cause the star formation rates to be
too low and too many galaxies to be quiescent. We therefore also show the colours
for the higher-resolution Recal-25 simulation (red). These agree well with GAMA.
The SKIRT colours of each of the simulations are very similar to those of GD+O,

which is understandable as both are very close to the intrinsic colours (i.e. are
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subject to minimal reddening) in this mass range.

5.4.1.2 Colour-mass diagram

The g —r colour versus stellar mass distribution of EAGLE galaxies is compared to
that obtained from GAMA in Fig. 5.8. As explained above, the star-formation rate
and hence colour of low-mass galaxies in Ref-100 is not well-resolved numeri-
cally (Furlong et al., 2015). We therefore combine the more massive EAGLE galax-
ies from Ref-100 with the low mass galaxies from the higher-resolution Recal-25
simulation, cross-fading between the two in the mass range 10"°Mg, to 10°Mg, as
in chapter 3. The observed GAMA contours are based on the analysis of Tay-
lor et al. (2015). Note that the cross-fading between two simulations (performed
as described in chapter 3) extends the mass range over which galaxies are well
resolved, but also introduces some inconsistencies, for example the different sim-
ulation volumes probe different environments. As such, this is intended only to
provide a qualitative comparison with the observations, with quantitative com-
parison facilitated by Fig. 5.7.

Similar to Fig. 5.7, we see that the EAGLE colours obtained with SKIRT gener-
ally show good agreement with the observed distribution. The blue cloud and
red sequence populations in EAGLE appear to be in approximately the observed
position and contain a roughly similar share of the galaxy population across the
mass range. The green valley population is enhanced relative to the GD+O pho-
tometry, in better agreement with GAMA data. The inconsistent surplus of blue
galaxies at the high-mass end, M, Z 10'°M,, is also largely suppressed with
respect to GD+O. This is attributable to the more representative treatment of the
spatial distribution of the dust in SKIRT, with the ISM dust enshrouding young
stars, rather than being distributed in a diffuse galaxy-sized disc as assumed in
chapter 3.

However, there are still some notable discrepancies between EAGLE and GAMA.
Across all masses the red sequence in EAGLE is flatter than observed, with slightly
bluer colours at high mass and redder colours at low mass. This is consistent with

the findings of chapter 3, and is symptomatic of the fact that the metallicity of EA-
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Figure 5.8: Rest-frame z = 0.1 SDSS g — r colour as a function of galaxy stel-
lar mass, for qualitative comparison of EAGLE and GAMA. Red Contours are for
randomly-oriented EAGLE galaxies, processed using SKIRT. The EAGLE sample
combines galaxies taken from simulation Ref-100 at high mass with galaxies from
simulation Recal-25 at lower stellar mass, to mitigate the poorer resolution of Ref-
100 (see text). Blue contours show the observed distribution taken from Taylor
et al. (2015). The contour levels from low to high exclude 3, 18, 48, and 93 percent

of the galaxies in each sample.
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GLE galaxies does not increase with A/, as steeply as observed. This is at least in
part due to insufficient numerical resolution, as shown by S15 (their Fig. 12). A
moderate surplus of blue galaxies relative to the observations can also still be
seen between ~ 10'"Mg and ~ 10'%°M,, likely due to a combination of lower
passive fractions and lower typical dust attenuation in the EAGLE galaxies rela-
tive to those observed. Differences between the observed and simulated stellar
mass functions also contribute to this discrepancy: the EAGLE simulation has a
deficiency of galaxies at the knee of the mass function (M, ~ 10'%°Mg, S15), such

that the contours are skewed to lower masses than in the GAMA distribution.

5.4.2 Comparison of SKIRT colours to dust-screen models

We now turn to comparing the GD+O photometry with that generated using
SKIRT. The screen modelling of chapter 3 employs several parameters, notably
Tpc, the dust optical-depth in the birth-clouds of stars, 7igy, the dust optical depth
in the ISM, and ¢ = b/a, the axial ratio of the oblate spheroid within which the
ISM dust is assumed to be distributed. The fiducial values of these parameters
were informed by observational studies, but they do not necessarily reflect the
ISM distribution in EAGLE. To test whether the radiative transfer photometry is
better reproduced with a different parametrisation of the GD+O model, we fit
the GD+O parameters to the SKIRT results. The parameter fits are obtained us-
ing Bayesian inference, where a Markov-chain Monte Carlo (MCMC) method is
used to find the maximum-likelihood parametrisation. We simultaneously find
the maximum-likelihood (ML) values of 7igy; and ¢, enforcing the constraint that
Tgc = 27gum as in the fiducial model of Charlot & Fall (2000). The application of
this constraint and full details of the MCMC procedure are given in Appendix
B.3.

The ML parameters from fitting the fiducial SKIRT model using the free pa-
rameters of GD+O are given in Table 5.2. We find that the ML 7g\ and ¢ values
needed to describe the SKIRT results for Ref-100 are ~ 10% lower than the fiducial
values of GD+O. This offset is small, implying similar typical attenuation val-

ues in both models. Because the values of mg\ and 3¢ used in chapter 3 come
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Table 5.2: Maximum likelihood parameters for the GD+O model of chapter 3 that
best describes the fiducial SKIRT photometry. These values are derived using an

MCMC approach, as detailed in Appendix B.3.

Model TisM  TBC q
Fiducial GD+O values 033 0.67 0.2
Ref-100 ML 0.301 0.602 0.556

from the original fitting by Charlot & Fall (2000) of the SDSS observations, it is
encouraging that they are recovered independently by fitting the SKIRT results:
this suggests that our SKIRT model yields realistic average optical dust attenua-
tions for galaxies of a given metallicity and gas fraction, and also that the relative
stellar and ISM geometries and our dust mapping are reasonable.

However, the ¢ parameter is significantly higher for the SKIRT model, imply-
ing less inclination dependence and lower edge-on attenuation in the model, as is
indeed seen in Fig. 5.3. This most likely reflects the artificially “‘puffed-up’ ISM in
simulated galaxies. We repeat that this higher disc thickness is partly set by nu-
merical resolution, but is mostly due to the assumed temperature-density relation
for star-forming (disc) gas in the EAGLE sub-grid model.

Overall, we find that the fiducial SKIRT model, which is based on physical
modelling of the EAGLE galaxies, produces typical dust attenuations at optical to
NIR wavelengths similar to the GD+O model. Although the f4.« and fppr pa-
rameters of the model were chosen to reproduce FIR observables by Camps et al.
(2016), this result is in fact independent of that calibration. To demonstrate this,
we apply our ML fitting procedure to an ‘uncalibrated” SKIRT model; produced
using the default literature values of fy.s and fppr. Similar levels of agreement
between the fiducial 75y, T8¢ and ¢ values of GD+O are recovered, as shown in
Appendix B.4. Given these findings, when comparing models we do not mod-
ity the parameters of the SKIRT and screen model from the published values of
Camps et al. (2016) and GD+O. The fiducial SKIRT model photometry and that of
the GD+O model are compared below.



5.4. SKIRT colours of EAGLE galaxies 142

5.4.2.1 Colour-colour distributions

To further explore the effects of dust-reddening, we compare colour-colour dis-
tributions for dust-free photometry of EAGLE galaxies from chapter 3, the GD+O
dust-screen model of chapter 3 and the full SKIRT modelling in Fig. 5.9. We plot
rest-frame u — g against g — J colours, analogous to the UV J diagram used by
Williams et al. (2009), to separate actively star forming but dust reddened galax-
ies from intrinsically red and passive galaxies. Data points are shaded from red
to yellow by point density, to indicate how galaxies are distributed. Thin green
lines indicate the mean reddening vectors for the two dust models relative to the
intrinsic photometry of chapter 3, in regular bins of ug.J intrinsic colour. These
are only plotted for bins with > 10 galaxies. The colour-colour bin centres from
which the vectors emanate are highlighted by green points. We over-plot the ug.J
cut used to separate active from passive galaxies by Schawinski et al. (2014) in
bold green. The passive fractions of EAGLE galaxies, as inferred from applying
this cut, are indicated in each panel.

The three photometric models produce qualitatively similar distributions, but
with some important differences. The dust-free model in the left panel exhibits
two well-defined peaks, a ‘blue peak’ at (v — g, g — J) ~ (1.2,1.0) and a ‘red
peak” at ~ (1.6, 1.6). The intrinsic distribution is relatively tight for galaxies with
M, > 10"M, with < 0.2 mag scatter in u — g for a given g — J colour. The passive
fraction is fpassive = 0.23 for galaxies with M, > 100/,

The middle panel, showing galaxy colours produced by the GD+O dust screen
model, exhibits a similar distribution in the passive region. From the lack of
visible lines at u — g > 1.4, we see that there is minimal reddening of galaxies into
or within this region. The recovered passive fraction of fp,ssive = 0.24 reveals that
indeed the passive region is < 5% polluted by the galaxies defined as active in the
dust-free (left) panel. The active region galaxies, however, exhibit more variation.
While the blue peak is similarly well defined relative to the dust-free colours, the
position of the peak is shifted to slightly redder colours by ~ 0.1 mag and is
broadened by scatter to redder colours, with many more star-forming galaxies

having g — J > 1.5. The mean reddening vectors are small relative to the distance



5.4. SKIRT colours of EAGLE galaxies 143

201 No Dust 1 GD+O Dust T SKIRT Dust

fpassivc =0.23 T fpassivc =0.24 T fpasaivc =0.27

v
S 1.2
1.0f
0.8
p — No Dust median y — No Dust median — No Dust median
o6 * ° M, >10"M, 1 M, >10"M + M, >10"M,
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
9-J 9-J 9-J

Figure 5.9: Rest-frame 2z = 0.1 ugJ colour-colour diagrams for different photo-
metric models. Points are EAGLE galaxies from simulation Ref-100 with stellar
masses > 10'°M, shaded from red to yellow to indicate local point density. The
dust-free photometry of chapter 3, the ML parametrisation of the GD+O dust-
screen model, and the SKIRT photometry including ISM dust and HII regions are
shown in the left, middle and right panels respectively. Thick, green lines show
the passive galaxy cut advocated by Schawinski et al. (2014), the corresponding
passive fraction of EAGLE galaxies using this cut is indicated in each panel. Black
curves indicate the median u — g values as a function of ¢ — J for the dust-free
photometry, these are repeated in each panel to guide the eye. Thin, green lines in-
dicate the mean reddening vectors of EAGLE galaxies in the dusty models relative
to the dust-free model. These emanate from green points, specifying the centre of
each bin from which a vector is computed. Note that vectors point from bottom-
left to top-right. The SKIRT model gives higher passive fractions than the intrinsic
and GD+O dust photometry, indicating significant pollution of the passive region

by star forming galaxies.
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between the peak and the most extremely attenuated active galaxies, which have
colours g — J 2 2.

The right panel, showing the SKIRT model colours, reveals some consistent
features. The passive region galaxies reveal a similar distribution as in the left
and middle panels, with a red peak in a very similar position. The active re-
gion galaxies also occupy a similar region of the ug.J plane to the GD+O (middle)
panel, with a blue peak shifted to slightly redder colours relative to the dust-free
model in the left panel. However, in detail there are some notable differences.
The blue peak is significantly depleted relative to the other panels, with the red
peak exhibiting a tail to bluer colours. Though the SKIRT model does not possess
the extremely reddened galaxies of the GD+O (middle) panel, the magnitude of
the mean reddening vectors are generally larger across the intrinsic distribution
and show less reduction with redder intrinsic © — g colour relative to GD+O.
We also see an enhanced ‘green’ population of galaxies with intermediate colours
1.25 < u—g < 1.5in the active region. The enhanced average reddening across the
distribution also results in a higher recovered passive fraction of fassive = 0.27.
This indicates that the passive region has a ~ 15% pollution by galaxies defined
as active in the dust-free (left) panel. The reddening of galaxies from the blue
peak to the red peak in the ugJ diagram corresponds to the significant boost (de-
pletion) of the red (blue) sequence population for the SKIRT photometry relative
to the dust-free colours seen in Fig. 5.7.

The differences between the GD+O and SKIRT panels in Fig. 5.9 can be at-
tributed to the nature of the dust modelling. The GD+O reddening vector is close
to parallel with the sloped boundary of the passive region, as illustrated by a tail
of extremely reddened active galaxies with g — J > 2. This is unsurprising, as
the screen model of Calzetti et al. (2000) is used by Schawinski et al. (2014) to
define the boundary between active and passive galaxies. This may explain why
few dusty galaxies move into the passive region when applying the GD+O screen
model. The SKIRT model, which exploits the 3D distribution of dust around stars,
yields generally steeper reddening vectors of higher magnitude, both of which

contribute to moving dusty star forming galaxies into the region where galaxies
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are deemed to be passive when using the Schawinski et al. (2014) colour-colour
cut. This is because nascent stellar populations embedded in dense ISM are effec-
tively shielded in the SKIRT model, leading to more active galaxies masquerad-
ing as passive. Again, the fraction of galaxies misclassified as passive could be
underestimated due to the lack of highly attenuated edge-on EAGLE galaxies, at-

tributable to the artificially ‘puffed-up’ ISM in the simulation.

5.4.2.2 Passive fractions

We use the colour-colour cut of Schawinski et al. (2014) from Fig. 5.9 to calculate
passive fractions as a function of mass for both SKIRT and ISM dust-free photom-
etry. The results are shown in Fig. 5.10, where we compare to the passive fractions
calculated directly from the aperture star formation rates (see S15, Furlong et al.,
2015). The value of the specific star formation rate sSFR = M, /M, below which a
galaxy is deemed passive is somewhat arbitrary. As we are using the Schawinski
et al. (2014) cut in ugJ for the colour cut, we use a value of 10~*° Gyr~! which
yields good agreement with the dust-free photometric estimates for numerically
well-resolved galaxies (M, Z 10'°My). Note that S15 and Furlong et al. (2015)
used a higher value of 1072 Gyr~'.

The differences between the photometric passive fraction estimates with and
without ISM dust become apparent at masses M, > 10%°M,. For better-resolved
galaxies, M, > 10'°M,, the passive fraction obtained when including dust red-
dening lies ~ 0.1 dex above the value estimated using intrinsic colours or calcu-
lated using the sSFR cut. This offset suggests that, using colours alone, ~ 15% of
the apparently passive population may be misclassified active galaxies for stellar
masses M, > 10'"°M. This fraction could be higher still if our mock photome-
try had levels of attenuation closer to observation (see Fig. 5.3). It is important
to note that the ugJ selection used here also represents a particularly stringent
passive cut, hence why we compare to a specific star formation rate cut of 107%?
Gyr~! rather than one at 1072 Gyr~'. We find that by relaxing the ug.J cut (a —0.1
shift in u— g to approximate a 10~2 Gyr~' selection) leads to a higher proportion of

active galaxies being misclassified as passive due to dust effects (=~ 38%). It seems
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Figure 5.10: Passive galaxy fractions for the Ref-100 EAGLE simulation in bins of
M,, equally spaced in log,, M, /Mg. The green line shows the values obtained us-
ing a M, /M, cut at 10~>® Gyr—'. Red and blue lines show the fractions obtained
using the photometry without and with ISM dust, respectively. Coloured, hatched
regions indicate the uncertainty for each line, corresponding to the fractional Pois-
son error on the number of galaxies in each bin. The diagonally hatched region
M, < 10'°Mg, indicates where the true passive fraction (green line) decreases with
stellar mass, due to resolution and volume effects. We see that the discrepancy
between the passive fractions obtained using intrinsic and dust attenuated pho-

tometry increases with stellar mass above 10"°M.
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that the use of a stringent cut minimises misclassification of passive galaxies to
the 15% level.

There is a striking divergence between the sSFR and photometrically defined
passive fractions for galaxies with M, < 10'°M,, apparent in Fig. 5.10. This oc-
curs in a region where star formation rates are subject to resolution and volume
effects, however it is the metallicities of these galaxies that is likely driving this
discrepancy. Indeed, a (passive) 10 Gyr old stellar population with a metallicity
of Z = 0.4Z will lie below the u — g = 1.5 threshold of Schawinski et al. (2014)
in the Bruzual & Charlot (2003) model - and hence is too blue to be classified as
passive. As the SDSS sample of Schawinski et al. (2014) is dominated by galaxies
of mass 2 10'° Mg, it is likely that only a few of the observed galaxies would be

affected by this.

5.5 Spectral Indices

We apply SKIRT modelling to compute two spectral indices that are often used as
proxies for star formation activity, the Ha luminosity, Ly, (e.g. Kennicutt, 1998a),
and the strength of the 4000 A break, D4000 (e.g. Kauffmann et al., 2003a). We
compare the indices for EAGLE galaxies to both theoretical and observed values
below, concentrating on the effects of dust, and test the correlation of these indices

with the intrinsic star formation rate of EAGLE galaxies.

5.5.1 Dust effects on the Ho flux

The Ha luminosity of a galaxy is thought to be a reliable proxy for its star for-
mation rate, basically because the recombining gas that emits the Ha photons is
thought to be photo-ionised by massive (> 10M) and hence recently (< 20 Myr)
formed stars (e.g. Kennicutt, 1998a). However, as we have seen, such star-forming
regions are typically dust obscured (not just by the dust in HII birth-clouds, but
by ISM dust as well), and the measured flux therefore needs to be corrected for
dust. Here we compare the intrinsic Ly, values, emanating only from HII regions

in our model, to those obtained using empirical corrections to observed spectra.
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Figure 5.11: Ha fluxes of EAGLE galaxies. In this panel, ISM dust-free Ha flux
from the MAPPINGS-III model compared to Ha flux computed from Eq. (5.5.5),
where M, is the instantaneous star formation rate within a 30 kpc aperture; the
value of M, is indicated on the right y-axis. Coloured dots are individual EAGLE
galaxies with M, > 10" M, with colour a measure of the point density of galaxies
in the plot; grey points represent galaxies of lower stellar mass. Galaxies where Ha
is not detected are clipped to log,,(Lua [W]) = 29.8; the green line indicates the 1:1

relation to guide the eye. {continued on next page...}
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Figure 5.11: Continued from previous page Same as first panel, but showing the Ha

fluxes computed using SKIRT i.e. including ISM dust; the dashed line is the best

linear fit to the coloured points (excluding undetected galaxies), and represents

the average dust attenuation factor. Ly, values measured from ISM dust-free

spectra generally recover those given by equation 5.5.5 very well, as expected,

with a relatively large scatter at low values ascribed to shot noise in the sampling

of HII regions. The dust attenuated values show an offset and large (~ 1 dex)

scatter.
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When measuring emission lines, we only use the HII region component of the
source spectra (the blue line in Fig. 5.1) to minimise the contribution (either in
emission or more likely in absorption) from the stellar continuum (a correction
that needs to be applied to observational data). This enables us to isolate the ef-
fects of dust on inferred line fluxes, which we can investigate with SKIRT, from
those caused by continuum fitting.

The relation between Ha line flux and star formation rate advocated by Mur-
phy et al. (2011) is

M, )
Lyo, i1 = (5.37 SETECRY yr1> ergs (5.5.5)

and is a recalibration of the relation from Kennicutt (1998a). The recalibration ac-
counts for the different IMFs assumed by Kennicutt (1998a) (Salpeter) compared
to Murphy et al. (2011) (Kroupa), and is thus consistent with the (Kroupa) IMF of
the MAPPINGS-III models that we use for young stars. For a like-for-like compar-
ison with Ly, values obtained with SKIRT, we use the instantaneous M, within a
30 pkpc aperture from the EAGLE database (McAlpine et al., 2016). This is calcu-
lated by summing over the M, values of gas particles within that aperture.

As a first test of our HII region prescription and subsequent measurement
procedure for calculating Ly,, we compare the values obtained using the ISM
dust-free spectra, Lyq, intrinsic, t0 L, M11 in the first panel of Figure 5.11. For this
comparison we over-plot galaxies with log,,(M,/Mg) > 10 coloured by the local
point density, with lower-mass galaxies under-plotted in grey. The green line
indicates the 1:1 relation to guide the eye.

The tight 1:1 correlation between the two values for high SER, M,

(LHa 2

~Y

> 0.1 Mg yr—t
10**W), is reassuring, implying that the re-sampling technique used to
parameterise HII regions (see section 5.2.1.2) reproduces the expected Ho mea-
surements. This good agreement is expected: the same population synthesis
models and a similar treatment of nebular components are employed in both the
MAPPINGS-III model that we use, and the model used by Murphy et al. (2011)
that yields the conversion factor given in Eq. 5.5.5.

At low SFR, the Ly, intrinsic/ Lo, m11 Tatio exhibits large scatter. This is due to
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HII regions being sampled stochastically from the mass function of Eq. (5.2.1),
yielding increased sampling noise for lower star formation rates. Galaxies with-
out Hil regions, and thus without Ha in our modelling, are plotted at Ly, intrinsic =
10%°® W in the figure. The right hand panel shows the corresponding plot for the
ISM dust attenuated spectra (without attempting to correct the Ha flux for dust
correction). We over-plot the 1:1 relation with a constant dust attenuation factor
of A = 0.47 (dashed green line, this corresponds to 0.82 mag extinction). This
factor is the mean offset between the measured (dust attenuated) and intrinsic
Ha luminosities, as determined using a least-squares fit for Ref-100 galaxies of
log,o(M,/Mg) > 10. The convergence of Hoa luminosities and A values are tested
for the other simulations listed in Table 2.1 in Appendix B.2.2. The observed av-
erage attenuation in local galaxies is ~ 0.4 (Kennicutt, 1992) (1 mag of extinction),
a factor of ~ 1.2 lower, but our value is still within the systematic uncertainty of
the average extinction inferred from Balmer decrement measurements at z < 0.5

(e.g. Ly et al., 2012).

5.5.2 The Ha luminosity function

Having shown that our implementation of mock Ha emission lines yields line
luminosities consistent with the underlying assumed SSP model, we now pro-
ceed to compute the Ha luminosity function and compare it to data. It is com-
mon practise to apply a constant dust correction to observed Ha fluxes obtained
from narrow-band surveys to infer ‘intrinsic’, ISM dust-free, luminosities (e.g.
Sobral et al., 2013). This yields an (intrinsic) Ho line luminosity function with a
Schechter form. However, the bright-end slope of the best-fit function that results
from applying a constant dust correction is steeper than when the dust correction
is performed using Balmer decrements (e.g. Gilbank et al., 2010; Gunawardhana
et al., 2013). This systematic difference is partially attributable to the star forma-

tion rate dependence of attenuation® (Brinchmann et al., 2004; Zahid et al., 2013).

8Poor sampling of the strongest Ha emitters, due to the small volume of narrow-band surveys,

may also contribute to a steeper bright-end.
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Figure 5.12: Redshift 2 = 0.1 dust corrected Ha luminosity functions of EA-
GLE galaxies compared to observations. Solid coloured lines are the ISM dust-free
EAGLE LFs for simulation Ref-100 for randomly oriented EAGLE galaxies with
M, > 1.81 x 10* Mg, using the Murphy et al. 2011 and Chang et al. 2015 (M11 and
C15 respectively, see text) ratio of M, /Lua, respectively, with the shading show-
ing the Poisson error range. The dot-dashed curves are the corresponding LFs
computed using SKIRT, dust corrected using the best-fit constant dust correction

to the attenuated spectra (4, see Fig. 5.11). {continued on next page...}
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Figure 5.12: {Continued from previous page...} The green curves are the ISM dust
free LF for simulation Recal-25 using the Murphy et al. 2011 ratio of M, /Lya,
for galaxies with M, > 1.81 x 10® My and M, > 2.26 x 10" M, shown as thin
and thick green lines, respectively. The hatched region marks where these deviate
by > 10%, indicating luminosities for which incompleteness is important for the
M, > 1.81 x 10® mass limit. Observational data is taken from Gunawardhana
et al. (2013), who use the Balmer decrement dust-corrected GAMA sample, for
redshift ranges z < 0.1 (star symbols) and 0.1 < z < 0.15 (squares). Error bars
indicate the statistical uncertainty on observed data points, but are too small to
be seen for all but the highest luminosities. The simulated LF using the Chang
et al. 2015 calibration is closer to the observed measurements; the intrinsic LFs

possess a broader knee than when a constant dust correction is applied.

Because SKIRT provides both the ISM dust-free and dust-attenuated SEDs, we
can compare with the ‘true” dust correction for our simulated galaxies at different
orientations and investigate this effect further.

A potential caveat for the realism of Ho luminosities computed for EAGLE
galaxies is that the simulated specific star formation rates may be low compared
to observations, both locally and at higher redshifts (Furlong et al., 2015). This
is in fact somewhat puzzling since the stellar mass functions do agree relatively
well. The observed SFRs are inferred from various proxies, including emission
lines, FIR and radio data. However, the calibration may rely on assumptions
about the UV continuum, which depends on the assumed IMF and population
synthesis model (see Kennicutt, 1998a). Some recent studies suggest that stellar
rotation and binary stars may contribute more to the UV continuum than previ-
ously thought, affecting this calibration (e.g. Hernandez-Pérez & Bruzual, 2013;
Horiuchi et al., 2013). When instead considering the Ho fluxes (including dust ef-
fects) the realism of galaxy attenuation and ISM also becomes important. Discrep-
ancies in star formation rates and ISM attenuation can have degenerate effects on
the Ha measurements. It is therefore important to consider the intrinsic Ha and

dust attenuated Ha measurements separately to isolate reasons for discrepancy
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or agreement.

Recently, Chang et al. (2015) performed SED fitting of galaxies with SDSS and
WISE photometry and obtained star formation rates for z ~ 0.1 star-forming
galaxies. Their values are systematically lower by ~ 0.2 dex compared to pre-
vious work such as that of Kennicutt (1998a), and in better agreement with those
predicted by EAGLE. If the lower M, values of Chang et al. (2015) point to a previ-
ous miscalibration of star formation rate indicators, then the Ly, values predicted
by Eq. (5.5.5), and thus present in the intrinsic EAGLE SEDs (see Fig. 5.11), may be
too low. To test the effect of such a change in normalisation when comparing to
the Ha luminosity function, we plot Ly, both with and without a 0.2 dex shift,
referring to this as the Chang et al. (2015) conversion’.

Figure 5.12 compares mock Ha luminosity functions to data. Comparing thick
and thin green lines, which use the same M, to Ha flux conversion, but corre-
spond to imposing a mass limit of M, > 2.26 x 107 M, (100 star particles at high
resolution) and M, > 1.81 x 10° M, respectively, enables us to estimate the level
of numerical convergence. A hatched region marks where these differ by more
than 10%, ie. where incompleteness effects become important for the higher mass
cut. We therefore focus on the model Ha luminosities above 10% W.

Up to luminosities of ~ 103 W, the solid green and solid blue curves (that both
use Eq. 5.5.5) differ by ~ 0.5 dex (a factor of three), indicating that the Recal-25
simulation predicts significantly higher values of ¢ than Ref-100, such that Recal-
25 is in better agreement with the data. As seen in Fig 5.11, below Ly, ~ 10%4W
the poor sampling of HII regions contributes to this resolution effect. For the
hatched region, Ly, < 10329 W, the discrepancy is driven by incompleteness due
the imposed mass limit for the Ref-100 simulation. However, at intermediate lu-
minosities this is due to real differences between the properties of the galaxies
in the high- and standard-resolution runs. Indeed, we recall from Fig. 5.7 that

these two simulations differ substantially in the lowest mass bin: Recal-25 galax-

Note that Chang et al. (2015) do not explicitly advocate such a correction, rather, this conver-
sion represents the case that the discrepancy they find exists due to previous miscalibration of

absolute SFR.
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ies tend to be intrinsically blue and star forming, whereas a significant fraction
of Ref-100 galaxies are intrinsically red and passive. This contributes to the boost
in the Recal-25 luminosity function at intermediate Ly, (10%° < Ly, < 103 W),
yielding better agreement with the observed luminosity functions. The higher
number density of galaxies at these intermediate Ha luminosities is due to the
similar contribution of volume and resolution effects. Volume effects and conver-
gence are discussed further in Appendix B.2.2. The offset between the blue and
green curves at lower luminosities is therefore, in part, a measure of numerical
convergence.

We next compare solid lines (intrinsic luminosities) to dot-dashed lines (SKIRT
dust-attenuated luminosities corrected using a constant dust correction), for ei-
ther blue or red lines. These agree well at the faint end (Ly, < 103 W) where
the luminosity functions are close to flat, but significant differences can be seen
for brighter galaxies, with the number of bright sources higher at the knee of the
constant dust correction luminosity function. A constant dust correction tends to
overestimate the true level of dust attenuation around the knee, and underpredict
it for the most Ha bright galaxies, resulting in a steeper bright end slope. Note
that the constant dust correction we use is essentially indistinguishable from the
common observational assumption of 1 mag in this plot.

Finally, we compare the intrinsic Ha luminosity function (solid lines) to the
observed result corrected for dust using the Balmer decrement (symbols). Al-
though similar at faint fluxes, Ly, < 10* W, the simulated luminosity function is
significantly below the observations at the bright-end when using Eq. 5.5.5 (blue),
with the difference much reduced when using the Chang et al. (2015) conversion
(red curve). The shape at the bright-end is so steep that even a small error in
the observed luminosity determination can make EAGLE and GAMA consistent.
In addition, the EAGLE stellar mass function is lower than observed around the
knee (S15), which will also contribute to the deficit at brighter luminosities.

In summary: the EAGLE Ha luminosity function is in relatively good agree-
ment with observations when applying the Chang et al. (2015) inspired” conver-

sion between M, and Ha luminosity. The effects of insufficient numerical reso-
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lution are apparent at lower luminosities (Ly, < 10** W). Applying a constant
correction to the EAGLE dust-attenuated Ha values does not reproduce the shape
of the underlying “true” EAGLE Ho luminosity function well, over-estimating the
star formation rates at higher Ha luminosities (L, 2 103* W). This comes about
due to the higher attenuation in more Ha luminous galaxies, shown directly in

Appendix B.2.2.

5.5.3 D4000 Index

The 4000 A break (D4000) was used by Kauffmann et al. (2003a) to analyse a large
sample of galaxies from the SDSS. In older stellar populations, the opacity due to
several ions in stellar atmospheres combines to induce a noticeable discontinuity
in the flux around 4000 A, which is mostly absent in hot stars. The size of the
discontinuity is hence a measure of the relative contribution of young hot stars to
the flux - and hence of the specific star formation rate of the galaxy (e.g. Bruzual,
1983). The D4000 index is the logarithm of the ratio of the red and the blue con-
tinuum, measured using narrow-band top-hat filters. We use [4050,4250] A and
3750, 3950] A to sample the red and blue continuum respectively, as defined by
Bruzual (1983). The D4000 index is commonly used to distinguish between ac-
tive (star forming) and passive populations, similar to the colour-colour plots of
Fig. 5.9. Indeed, D4000 can be thought of as a colour index (analogous to e.g.
u—1), but is generally considered robust against dust effects due to it being a dif-
ferential measure with a relatively small wavelength separation between bands.

The D4000 distribution used by Kauffmann et al. (2003a) and Kauffmann et al.
(2003b) are from a flux-limited selection of SDSS galaxies, and shows strong bi-
modality where massive galaxies have a high value of D4000, low-mass galaxies
have low values, with the transition mass around M, ~ 3 x 10'°M, see Fig. 1
of Kauffmann et al. (2003b). Even the largest, 100> Mpc?, EAGLE volume does
not have enough massive galaxies to allow for a direct comparison with these
measurements.

To make a comparison to data meaningful, we therefore create a sample of

SDSS galaxies mass-matched to the EAGLE population over the range 10''M; <
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Figure 5.13: Histogram of D4000 values for intrinsic and radiative transfer (SKIRT)
photometry of z = 0.1 galaxies with 10"°M, < M, < 10"Mg. The low and high
D4000 peaks are taken to represent active and passive populations respectively.
Blue indicates the intrinsic values, red after dust is applied. Values of D4000 mea-
sured for a mass-matched sample of SDSS galaxies are plotted in green. A con-
siderable difference in the active and passive peaks recovered with this technique

is observed when dust is applied.
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M, < 10"Mg, using the observed masses from Kauffmann et al. (2003a). The
corresponding broad-band (Bruzual, 1983) D4000 values are taken from the MPA-
JHU catalogue, released for SDSS DR7 (Abazajian et al., 2009a). We then compare
the D4000 distribution to that of EAGLE for both the intrinsic and dust-reddened
spectra in Fig. 5.13. Each distribution is normalised to integrate to unity. We
employ a cut at D4000=1.8 to separate the active and passive population, which
is near the minima of each histogram. We recover passive fractions of 32% and
41% for EAGLE galaxies using intrinsic and SKIRT spectra, as compared to 55% for
the SDSS sample.

We first compare the ‘intrinsic’, ISM dust-free, EAGLE distribution (blue) to
that produced using SKIRT (red). Both distributions exhibit a clear bi-modality,
with low and high D4000 peaks at ~ 1.5 and ~ 2 respectively. A stark difference
between the two distributions is that the population with low D4000, a common
proxy for the star formation, is significantly depleted when ISM dust is included
with SKIRT. There is also a shift of the low D4000 peak to higher values. The rela-
tive depletion of the low D4000 population in the SKIRT distribution corresponds
to a relative boost at intermediate and high D4000. This boost reduces in signifi-
cance for higher D4000 values, falling below 10% near the high D4000 peak of ~ 2.
Although there is little difference in overall attenuation between the two D4000
bands, including the preferential obscuration of light from young stars by dust
attributed both stellar birth clouds and the diffuse ISM via SKIRT leads to some
star-forming galaxies registering higher D4000 values, and even appearing com-
pletely passive in this proxy. This is the same effect seen for broad-band colours
in Fig. 5.7 and 5.9. We find that ~ 20% of EAGLE galaxies deemed to be passive
according to the D4000>1.8 criterion, are star forming.

We next compare the EAGLE distributions to the SDSS distribution (green). A
clear bi-modality can be seen in the SDSS distribution, exhibiting similar peak po-
sitions to EAGLE at D4000 ~ 1.5 and ~ 2. The SDSS peak positions agree more
closely with the SKIRT model distribution, which should be a fairer comparison.
The fraction of galaxies in the low D4000 (active) population for the SDSS sample

is smaller than for either EAGLE distributions, but agrees better with the SKIRT
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histogram. The high D4000 (passive) fraction is larger for SDSS than EAGLE, and
also closer to the dust reddened values of SKIRT. The inferred passive fraction
for sDss galaxies is 70% higher than inferred for the intrinsic EAGLE spectra, and
35% higher than for SKIRT. While the frequency of SDsS galaxies at intermediate
D4000 values (=~ 1.8) is under-predicted by the intrinsic EAGLE distribution, the
boost in the population seen for the SKIRT distribution over-predicts the number
density of galaxies by a similar factor. Generally the agreement with observation
is improved by the inclusion of SKIRT ISM dust modelling, but remains slightly
discrepant. While modelled dust effects can improve the inferred passive frac-
tions, an excess of high-mass active galaxies persists relative to observation. This
could reflect a genuine overproduction of active galaxies in EAGLE, as suggested
by Furlong et al. (2015).

Additionally we see that the SDSS distribution is broader than for EAGLE, with
tails extending to more extreme high and low values. These tails might be due to
outliers with unusually large photometric errors. The limited parameter coverage
of the populations synthesis models could also prevent the occurrence of the most
extreme values in the simulation.

We used the D4000 continuum band definitions of Bruzual (1983) rather than
the narrower band definition of Balogh et al. (1999) employed by Kauffmann et al.
(2003a). The reason for this choice is that D4000 is better converged at our stan-
dard spectral resolution for SKIRT. A caveat is that the broad band definition is
observed to be significantly more susceptible to dust effects than narrow bands
(Balogh et al., 1999; Kauffmann et al., 2003a; Wild et al., 2007), potentially leading
to larger dust uncertainties.

To test how well the measured D4000 predicts star formation activity for the
EAGLE spectra, we plot D4000 against specific star formation rate (sSFR) for z =
0.1 ‘active’ (M, > 0) EAGLE galaxies in Fig. 5.14. At log,,(sSFR/yr™!) > —12, and
despite a clear negative trend of D4000 with sSFR, we see that the median D4000
is higher for the SKIRT spectra (red circles) than for the spectra without ISM dust
(blue circles). The distribution of active galaxies in this plane also shows a signif-

icant tail to high D4000 when ISM dust is included (shaded squares), a significant
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Figure 5.14: D4000 index as a function of specific star formation rate (sSFR) for

z = 0.1 EAGLE galaxies with M, > 10'°M,. Circles indicate the median D4000
value in bins of log,,sSFR, with blue representing the intrinsic values and red in-
cluding dust (SKIRT). Shaded squares represent evenly-spaced bins in D4000 and
log sSFR. These are shaded by the fraction of active galaxies (SFR> 0) they con-
tain for the SKIRT values of D4000, and are only displayed within the 95% con-
tour of the active galaxy distribution. Galaxies outlying the 95% contour are rep-
resented individually as red points. D4000 histograms are also displayed as in
5.13, again blue represents intrinsic values and red SKIRT values. We see that,
despite the trend of D4000 with sSER for log,,(sSFR/yr™!) > —12, a significant
number of galaxies are scattered toward the high D4000 population when dust
is included. A few galaxies also exhibit relatively low D4000 despite low sSFRs
(logo(sSFR/yr™!) < —12)
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number of galaxies with log,,(sSFR/yr™!) > —11.5 have D4000 consistent with
the passive population. This suggests that dust effects are significant for this in-
dex when applied to the SKIRT spectra, and can be ascribed to star formation
being hidden by the dense, dusty ISM of some galaxies. Conversely, a few out-
lying galaxies (red points) show relatively low D4000 at log,,(sSFR/yr ') < —12.
This is due to these galaxies being relatively metal poor, analogous to the anoma-

lously blue passive galaxies identified in chapter 4 using u — r colour (their Fig.

1d).

5.6 Summary and Conclusion

We have made mock optical observations of galaxies simulated within the EA-
GLE suite of cosmological, hydrodynamical simulations, including the effects of
dust, utilising the public SKIRT!® code. SKIRT calculates three-dimensional radia-
tive transfer on each galaxy, and we used the cool, enriched gas as a tracer of dust
in the diffuse interstellar medium (ISM). To ameliorate limitations resulting from
limited numerical resolution, we apply a subgrid model to represent unresolved
HII regions and the associated dust attenuation by using the MAPPINGS-III model
of Groves et al. (2008). The full procedure is presented in section 5.2, and was de-
veloped in this work and in the companion work of Camps et al. (2016) (C16). The
dust modelling introduces extra parameters, such as the dust-to-gas ratio in the
ISM, and parameters of the MAPPINGS-IIT model such as the covering factor and
compactness of HII regions. These were chosen by comparing far-infrared mock
observations of EAGLE galaxies with observations of local galaxies, as described
by Camps et al. (2016). We apply no additional calibration in the optical regime.
To enable a detailed comparison of numerically resolved EAGLE galaxies to
observations from the GAMA survey (Driver et al.,, 2011), we selected galaxies at
redshift z = 0.1 above a stellar mass cut of M, > 1.81x10® M, (~ 100 star particles

at standard resolution). We focus on the largest fiducial EAGLE simulation, a 100?

Oyww. skirt .ugent.be
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Mpc? volume, which provides a sample of 30145 galaxies that satisfy this selection
criterion. Galaxies are defined and selected in the same way as in chapter 3,
to enable direct comparison with their dust-screen model. Integrated spectra,
broad-band magnitudes, broad-band images and mock IFU data were produced
for each galaxy for three orientations (face-on, edge-on and along the z-axis of the
simulation volume), with properties detailed in section 5.2.3. These will be made
available through the public EAGLE database (McAlpine et al., 2016).

In section 5.3 we studied the attenuation in the B-band as a function of incli-
nation, comparing to the observationally inferred relation of Driver et al. (2007).

We found that:

e The B-band attenuation-inclination relation for EAGLE galaxies, Fig. 5.3, ex-
hibits large galaxy-to-galaxy scatter, on top of a smooth trend of increasing
median attenuation for galaxies seen more edge-on. This trend is weaker
than observed, as is the level of the edge-on attenuation. We attribute this
to the fact that the stellar and gas disc in EAGLE galaxies is thicker than in
observed galaxies, a consequence of the artificial pressure floor imposed on
the simulated ISM (as opposed to being purely limited by numerical reso-

lution, see Fig. 5.4).

e Stacked attenuation curves of EAGLE galaxies at different orientations, Fig. 5.6,
reveal different profiles. Face-on galaxies show the steepest frequency de-
pendence as the youngest stars are preferentially dust obscured by the dif-
fuse ISM component. Conversely, the curve for edge-on galaxies shows a
weaker (or ‘greyer’) frequency dependence as both young and old stellar
populations are obscured by the diffuse dust disc, closer to a screen model.
We also see that nebular emission features (such as Ha) suffer from strongly
increased ISM attenuation (over and above the attenuation of the stellar birth

clouds), due to star-forming regions being embedded in denser and dusty

gas.

Comparing optical SKIRT photometry to ISM dust-free models, the GD+O

dust-screen model, and colours from the GAMA survey, we find that
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e Optical SKIRT galaxy colours match the data remarkably well, Fig. 5.7. In
fact, they match significantly better than the GD+O dust-screen model pho-
tometry of chapter 3. The SKIRT colours exhibit a mass-dependent boost of
the ‘green valley” and red populations compared to either intrinsic or dust-

screen colours.

e The improved agreement with observation demonstrated by SKIRT, relative
to the GD+O screen model, is attributable to the spatial distribution of dust
compared to that of young stars, and the better capturing of orientation
effects as compared to a screen model. Fig. 5.5 shows how highly-inclined

galaxies with intrinsically blue colours may scatter to the reddest colours.

e Dusty galaxies can confound simple star-formation activity proxies, such as
colour-colour cuts. Fig. 5.9 shows that a ugJ colour-colour cut can recover
passive fractions well when dust is modelled as a screen, but with the more
realistic SKIRT dust modelling a significant fraction of active galaxies mas-
querade as passive. For the M, > 10'°M range, we find that approximately
15% of galaxies with SKIRT colours that place them in the passive region are
classified as star forming when dust is neglected. We note that the ugJ cut
used in this chapter is relatively stringent, and more relaxed cuts may yield

significantly higher misclassification rates (see section 5.4.2.2 for details).

Finally, we investigated spectral indices often used as proxies for star forma-
tion activity, such as the Ha line flux and the 4000A break (D4000). We plotted the
Ho luminosity functions (¢) and compared directly to the function computed for
the GAMA sample by Gunawardhana et al. (2013) in Fig. 5.12. Given that the star
formation rates of EAGLE galaxies are typically 0.2 dex lower than reported for ob-
servations using the Kennicutt (1998a) calibration (Furlong et al., 2015), and that
the conversion from M, to Ha follows the standard Kennicutt (1998a) relation (see
Fig. 5.11), it is unsurprising that the EAGLE luminosity function is systematically
low at the bright end. However, the recent study of Chang et al. (2015) argued
that absolute M* values should be normalised ~ 0.2 dex lower, so we also plotted

¢ using Ha boosted by this factor. The D4000 distributions were compared to
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a mass-matched sample of SDSS galaxies in the range 10'°M, < M, < 10''M.

From studying these indices, we found that:

e The bright end of the recalibrated, intrinsic Hoe luminosity function (Ly, >
10*+°W) agrees reasonably with observations, particularly when using the
Chang et al. (2015) calibration. Applying a constant dust correction to the
SKIRT Ha predictions distorts the shape of the luminosity function, appear-
ing more Schechter-like with a steeper bright end than seen in either the

intrinsic or observed LFs.

e D4000 values produced by SKIRT show similar distributions to a mass-matched
SDsSs sample over the range 10'°M, < M, < 10"Mg, Fig. 5.13, but with
somewhat fewer galaxies at high D4000. Dust reddening significantly boosts
the high D4000 population relative to the intrinsic distribution, analogous
to the red sequence boosting observed in Fig.5.7. This leads to higher in-
ferred passive fractions, with the light from young stars preferentially ex-
tinguished by dust. The scattering of galaxies to high D4000 by dust, for a

given specific star formation rate, is characterised in Fig. 5.14.

Including dust radiative transfer effects with SKIRT allows us to model the in-
homogeneous dust distribution and how that is correlated with regions of recent
star formation, while improving the level of agreement of mock fluxes with obser-
vations compared to the GD+O dust screen model. However, there are clear lim-
itations. In particular, the edge-on attenuation of disc galaxies is lower than ob-
served. Improving this would likely require higher-resolution simulations with
an explicit cold phase, allowing us to resolve thin molecular gas discs on scales
< 100 pc

It is perhaps surprising that despite these limitations, the attenuation com-
puted using SKIRT profoundly influences colours, improving agreement with
data. This can be ascribed to the effects that geometry and scattering have on
the optical attenuation of galaxies that cannot be captured by screen models.
The localised nature of the dusty ISM around young stars is effective at hiding

their blue light, leaving the older populations to contribute relatively more to the
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fluxes. Despite invoking similar mean attenuation values (see section 5.4.2, ap-
pendix B.4), a screen model yields more apparently blue galaxies because their
star forming regions are relatively much less shielded by dust.

Throughout this chapter we focus on using a forward modelling approach to
compare simulated and real galaxies in the observable domain. While we discuss
many benefits of this approach, we note that forward modelling has the potential
to obscure the reasons for discrepancy (or agreement) if the influence of individ-
ual physical properties are not well understood. An example where such caution
is needed would be in our Ha measurements, influenced by both the ISM struc-
ture and star formation rates of EAGLE galaxies. We emphasise that it is therefore
important to analyse our forward modelling results in the context of comparison
studies in the physical domain (such as Schaye et al., 2015; Furlong et al., 2015,
for EAGLE galaxies). We have attempted to provide such context in this work.

We hope that the more realistic observables produced by SKIRT provide a use-
ful resource, opening new avenues of investigation for comparing observations to
the simulations. Mock observational data presented in this chapter will be made
accessible via the public EAGLE database (McAlpine et al., 2016, for updates regis-
ter at http://icc.dur.ac.uk/Eagle/database.php). Our mock observables are
also provided for additional redshifts and EAGLE simulations that are not dis-

cussed in this work.



Chapter 6

Estimating Galaxy Stellar Masses
from EAGLE Mock Photometry

This chapter represents a study currently in progress, investigating galaxy stellar
masses and star formation rates estimated using resolved and unresolved EAGLE

photometry, both with and without the dust effects described in chapter 5.

6.1 Introduction

Stellar masses (M *) are a fundamental property of galaxies, and the accurate de-
termination of M* from observations is a subject of great interest. M* encodes
the history of star formation in galaxies (modulo stellar mass loss), and repro-
ducing the galaxy stellar mass function (GSMF) is a typical touchstone for many
theoretical models of galaxy formation (e.g. Vogelsberger et al., 2014; Khandai
et al., 2015; Schaye et al., 2015). With stars being so readily observable, quantify-
ing stellar content is often the first step in understanding galaxies in the physical
domain, and can be paired with lensing or dynamical measurements to infer the
presence of dark matter.

The luminosity of a galaxy is measurable provided an accurate distance is
known, so the unknown when determining M * becomes the ratio of stellar mass
to light, M*/L. This M*/L is typically calculated in terms of a given photomet-

ric band, due to the impracticality of measuring bolometric luminosities, and can

166
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be derived for resolved and unresolved photometry. The simplest assumption
is a universal M*/L, often made when using NIR bands, such as K, which are
deemed to be less affected by stellar ages or dust (e.g. Rix & Zaritsky, 1995; Mc-
Gaugh et al., 2000). However, this is often too simplistic when comparing diverse
galaxies; from knowledge of stellar populations alone, M*/L is predicted to have
a strong dependence on galaxy colour (Bell & de Jong, 2001). Colour dependent
M*/L values have been derived using a variety of approaches, and have been
found to mitigate many of the problems of a universal M*/L (e.g. Bell et al., 2003;
Zibetti et al., 2009; Taylor et al., 2011). Taking the idea of considering multiple
photometric bands further, multi-band photometric fitting of the galaxy’s SED
has become a commonplace approach for estimating M*/L (e.g. Sawicki & Yee,
1998; Taylor et al., 2011; Maraston et al., 2013). A wealth of different codes are
now available to fit SEDs photometrically and recover M* alongside many other
salient galaxy parameters (e.g. da Cunha et al., 2008; Kriek et al., 2009; Acquaviva
etal., 2011).

Even with advances in photometric fitting, much uncertainty remains in de-
riving the M*/L. There are a number of assumptions that imply significant sys-
tematic uncertainties for absolute M*/ L values. Differences between the assumed
stellar IMFs and stellar population models can themselves contribute significantly
(by 2 0.3 dexin M*) to the error budget (e.g. Conroy et al., 2009). The application
of apertures or extrapolation of galaxy light profiles also contributes, particularly
at the bright end (e.g. Bernardi et al., 2013). Even with these properties fixed, con-
siderable uncertainty remains due to the different methods with which M*/L is
derived. Kannappan & Gawiser (2007) found considerable (~ 0.3 dex) differences
between colour-based and SED fitting M*/L methods at z ~ 0. The uncertainties
due to the assumptions within the SED fitting itself, such as assumed priors about
star formation histories and dust, have been explored in a number of studies (e.g.
Wuyts et al., 2007; Marchesini et al., 2009; Maraston et al., 2010).

Without knowing the true M* values, it is a challenge to constrain the ap-
propriate AM*/L and thus choose an appropriate methodology. Obtaining inde-

pendent, dynamical masses from observations provide limits on M*/L and may
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go some way towards constraining them (e.g. Taylor et al., 2010). Insights may
also be gained by appealing to model galaxies, where the physical parameters
are known. By forward modelling mock observations of these galaxies, one can
directly assess how robustly A/*/L and other parameters are recovered using dif-
ferent methods. Mobasher et al. (2015) present a comprehensive investigation in
this vein; assessing various combinations of mock photometry and fitting proce-
dures by tasking different working groups to derive M* values for provided pho-
tometry in a blind test. Of course, the usefulness of such an approach is subject
to the realism of the model galaxies. This analysis has been performed for semi-
analytic models (e.g. Mitchell et al., 2013), idealised hydrodynamical simulations
(e.g. Wuyts et al., 2009a; Hayward & Smith, 2015) and large volume hydrody-
namical simulations (e.g. Torrey et al., 2015).

In this chapter I investigate photometric M* recovery as an application of the
EAGLE galaxy modelling presented in previous chapters. Using the SKIRT pho-
tometry provides a novel opportunity to test statistically how well standard pro-
cedures cope with the complex star formation histories, enrichment histories, and
implied star-dust geometries that emerge in hydrodynamically simulated galax-
ies. I limit this study to optical photometry (ugriz) and focus on the z = 0.1 Ref-
100 sample (~ 30,000 galaxies). While panchromatic spectra and higher redshift
data are generated, their analysis is left to a future work which can build on any
insights that are gained here. The chapter is organised as follows: section 6.2 in-
vestigates colour-based empirical estimators of M*/L. Initially, I test the accuracy
of M* estimates for integrated photometry (the net broad-band flux measured for
a galaxy) with and without dust. I then analyse how discrepancies build up with
resolved photometry (i.e. the galaxy surface brightness profile is sampled by mul-
tiple pixels), by first looking at SSP properties in an idealised way (section 6.2.2)
and then using the realistic SKIRT imaging for archetypal galaxies (section 6.2.3).
I then turn to photometric SED fitting using the FAST code (Kriek et al., 2009)
to derive M* alongside other galaxy properties (e.g. SFR) in section 6.3, initially
developing a fiducial set up loosely based on that of Torrey et al. (2015) (sec-
tion 6.3.1). I then analyse the z = 0.1 FAST results by looking at typical mass off-
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sets and residual trends, and comparing theoretical plots (particularly the GSMF)
constructed using simulated and galaxy properties recovered using FAST. How
well the best-fit star formation histories represent those that emerge in EAGLE is
assessed in section 6.3.3, and the influence of the SKIRT dust modelling on the
mass errors are discussed in section 6.3.4. Finally, the findings are summarised
and conclusions are compiled in section 6.4. Additional material supplementing

this chapter is provided in appendix C, and referenced when relevant.

6.2 Colour-corrected stellar M/L ratios

Fitting the spectral energy distributions (SEDs) of galaxies with model templates is
a challenging problem, and the results are contingent on a number of choices and
assumptions that are made when setting up the fitting procedure. This complex-
ity renders it difficult to compare fitting procedures.

It has been found that the stellar masses recovered via optical SED fitting are
reproduced well on average by a linear combination of an optical broad-band
absolute magnitude and an optical broad-band colour (e.g. Taylor et al., 2011).
This can be thought of as a constant stellar mass-to-light ratio (1/*/L) with some
colour correction, primarily accounting for the effect that hot young stars that
give galaxies their blue appearance also contribute disproportionately to other
optical bands, such that intrinsically blue galaxies are typically less massive for
a given optical luminosity. This empirical relation has been explored for both in-
tegrated photometry (e.g. Bell et al., 2004; Taylor et al., 2011; Baldry et al., 2012)
and resolved photometry (e.g. Zibetti et al., 2009), with galaxy stellar masses ex-

pressible as

logo (M7, /Me) = —=0.4Mx + a(My — Mz) + 0, (6.2.1)

where My is a broad-band optical magnitude, My — M7 is an optical colour

*

measurement, and M7 is the estimated galaxy stellar mass. Here, a and b are em-

C

pirical factors chosen to minimise the differences between SED template masses

(Mggp) and M. The scatter between Mg, and M

ol

is relatively small compared
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Table 6.1: Various calibrations of Eq. 6.2.1. Top section tabulates empirical fits to
observational data in AB magnitudes, bottom section are fits to the EAGLE data

in this work.

Study a b Band Colour Resolution
(Mx) (My — Mz)

Zibetti et al. (2009, Z09) 1.032 0.856 i g—1i ~100 pc

Taylor et al. (2011, T11) 0.7  1.15 ? g—1 unresolved

Baldry et al. (2012, B12) 0.75 1.23 i g—1i unresolved

This work 0.7 1.33 i g—1 unresolved

to systematic uncertainties in mass estimation: Taylor et al. (2011) find that Mg,
is reproduced for GAMA galaxies with a 1o scatter of only 0.1 dex. A number of
these empirical fits are tabulated in Table 6.1'.

Clearly, there are many fewer parameters in Equation 6.2.1 than can be con-
sidered in SED inversion procedures; these M rely on the effect that factors that
make galaxies redder (bluer) also tend to make them optically dimmer (brighter),
such as increasing (decreasing) stellar ages, metallicities and dust attenuation.
The best fit a and b attempt to account for all these nuisance parameters.

The utility of the empirical relationship of equation 6.2.1 is that it enables
broad comparison of different SED fitting outputs relatively easily, and provides a
simple way to approximate how well SED fitting approaches reproduce the ‘true’
masses of EAGLE galaxies from the model photometry of previous chapters. A
caveat to this approach is that it adds a layer of abstraction to the mass predic-
tion, rendering it difficult to determine why discrepancies arise; disentangling the

influence of different fitting methods and input models from differences between

data and galaxy properties is not straightforward. By combining insights from

'These are converted to AB-magnitudes from M*/L; ratios assuming ic = 4.54 via

http://mips.as.arizona.edu/"cnaw/sun.html



6.2. Colour-corrected stellar M/L ratios 171

this method of mass estimation (below) with those obtained via full SED fitting

(see section 6.3), one can begin to isolate the source of any discrepancies found.

6.2.1 Integrated Photometry

In order to demonstrate how well these empirical relationships predict masses,
I first examine the logarithmic offset (in dex) of M}, estimated from integrated
model EAGLE photometry, from the ‘true” value (M., the value taken directly
from the simulation). Three empirical calibrations of Eq. 6.2.1 are chosen for
comparison; Zibetti et al. (2009), Taylor et al. (2011) and Baldry et al. (2012), de-
tailed in table 6.1. The Taylor et al. (2011) and Baldry et al. (2012) calibrations
are chosen to represent differing apertures for the low redshift integrated GAMA
photometry. As in previous chapters the GAMA sample is taken to be a useful
comparison set for EAGLE, owing to its precise spectroscopic redshifts and high
completeness (see chapter 2). Employing two different calibrations for GAMA
gives an idea of differences that come about due to different photometric mod-
elling and the choice of subsamples. The Zibetti et al. (2009) calibration is instead
designed for resolved photometry of nearby galaxies, using imaging from the
SDSS DRY (Abazajian et al., 2009b). This calibration is used on the integrated EA-
GLE photometry as for the GAMA calibrations, to compare how the results differ
and for reference when resolved photometry is investigated (in section 6.2.3).
Before comparing the results of these estimators, it is worthwhile considering
some of the key features and differences between how they are derived and how

the underlying SED modelling is performed, for example:

e IMF: For all models a Chabrier (2003) stellar IMF is assumed, consistent

with what is assumed for EAGLE.

e SPS model: The stellar population model choice of Bruzual & Charlot (2003)
(BCO3) assumed by Baldry et al. (2012) (B12) and Taylor et al. (2011) (T11)
is consistent with EAGLE?, but Zibetti et al. (2009) (Z09) assume the ‘CB07’

2Except for HII regions in the SKIRT modelling which use the MAPPINGS-III Groves et al. (2008)
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update to the BCO3 model. CB07 was intended to account for longer lived
TP-AGB stars. However, it may overestimate the TP-AGB contribution and
BCO03 is often preferred (e.g. Zibetti et al., 2013). Z09 find that the primary ef-
fect of their CB07 modelling is to assign lower M*/L ratios for bluer colours
relative to BC0O3 (e.g. to underestimate masses from model galaxy colours

generated using BCO03).

e Star formation histories: The common assumption of smooth, exponen-
tially declining histories is built into both GAMA estimators. Z09 assume
the same form of the histories, but allowing for randomly superimposed
bursts. All estimators use fixed metallicity histories for the standard BC03

metallicity grid.

e Dust: GAMA estimators assume a Calzetti et al. (2000) screen attenua-
tion law, whereas Z(09 use the two component Charlot & Fall (2000) model,
where the birth cloud and ISM distribution are allowed to vary indepen-

dently.

o Galaxy selection: T11 consider galaxies at z < 0.2 and uses Sersic magni-
tudes, B12 consider galaxies at z < 0.06 using Petrosian apertures. The EA-
GLE photometry approximates a Petrosian aperture using a 30 pkpc spher-
ical aperture (see chapter 2.1.2). Z09 consider a small set of nearby (<

26 Mpc) galaxies using pixel-by-pixel (‘resolved’) photometry.

e Mass fitting: The mass fitting employed to derive the GAMA estimators
is the same, using a fully Bayesian likelihood-weighted integral over the
posterior distribution. In Z09 no fitting is employed; the median M*/L is
computed for their template library in g — ¢ colour bins and fit with a power

law.

Fig. 6.1 plots the offset log,, (M, /M) against M, . for the different estima-

true

tors. The median logarithmic offset (in dex) is determined in uniform logarithmic

SEDs
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Figure 6.1: {See following page for caption }
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Figure 6.1: {See previous page for figure.} The logarithmic offset (in dex) of EA-
GLE galaxy stellar mass estimates using the empirical relation of Eq. 6.2.1 from
the simulated (or ‘true’) value, plotted as a function of that mass. Empty symbols
are median offsets in stellar mass bins; green triangles, red circles and blue squares
representing the empirical calibrations of Baldry et al. (2012), Zibetti et al. (2009)
and Taylor et al. (2011), respectively. Error bars signify the 16th-84th percentile
range, with contours enclosing 99% of galaxies for each calibration, using the same
colouring. I also plot horizontal lines to indicate the average offset for each cal-
ibration, defined as the mass weighted mean logarithmic offset, again adopting
the same colour scheme. Panels from top to bottom show the offsets obtained
using different photometry sets; without dust (model ND from chapter 3), with
SKIRT photometry in box projection (i.e. randomly oriented galaxies) and edge-
on projection (see chapter 5). It can be seen that the empirically calibrated relation
underestimates EAGLE masses by a calibration-dependent factor, on average. The

offset is largely independent of the true stellar mass and dust effects.

bins of M*

true

and plotted as empty symbols, with the overall offsets plotted as hor-
izontal lines, respectively. All the empirical calibrations of Eq. 6.2.1 consistently
underestimate the masses of EAGLE galaxies on average. For dust free photom-
etry (top panel, ND in chapter 3) the estimated masses are typically 0.1-0.2 dex
below their true values. The error bars indicate the 16-84 percentile range in log-
arithmic offset. The systematic offset is larger than the scatter at the 1o level,
except for the B12 estimator where the offset is ~ 1.

All the empirical estimators account for dust in their modelling. An arguably
fairer comparison is thus shown in the middle panel where the box-projected
SKIRT photometry (chapter 5) is used. This does little to improve the mass re-
covery, however, with only a 0.02 dex (5%) improvement registered for the mass
weighted mean offset of the (Zibetti et al., 2009) estimator. This is perhaps unsur-
prising: the effect of dust on the overall photometry is small for the majority of
galaxies, as low mass and passive galaxies have low dust content, as discussed in

chapter 5. A more extreme scenario is also plotted in the bottom panel where all
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EAGLE galaxies are observed edge-on. This actually makes the mass prediction
marginally worse, with the average M/, underestimated by a further few per-
cent. The most dust attenuated galaxies in fact yield the strongest underestimates
at high masses, these comprise the extended tail to low values in the contours
around 10.5 < log;((M{./Ms) < 11.5 in the bottom panel.

Despite the simplicity of these estimators, it is apparent from the binned aver-
ages that there is very little mass dependence of the offset for each estimator. This
is perhaps surprising, as there are many significant correlations between galaxy
properties and galaxy stellar mass which could affect how well masses are de-
termined for galaxies of a given mass. A number of EAGLE galaxy properties
do appear to show less stellar mass variation than observed, with a flatter than
observed metallicity relation (Schaye et al., 2015) and a passive/red fraction that
persists to lower masses (Furlong et al. 2015, chapter 3). It is also possible that
the contribution of different factors produces a fortuitous constancy in the mass
offset with stellar mass. To confirm that this result is convergent between EAGLE
resolutions, the same plot is produced for Recal-25 galaxies in appendix C.1 with
very similar results. The origin of the mass offset is explored further in the next
section.

The existence of a systematic offset in the mass predicted with these estimators
was first identified for a small sample of EAGLE galaxies by Camps et al. (2016). In
that paper we studied local FIR properties of EAGLE galaxies using the full SKIRT
model. Having shown that the discrepancy remains for the complete sample
and is remarkably independent of dust effects and stellar mass, we proceed by

investigating the origin of the discrepancy.

6.2.2 CSP effects on photometric mass estimators

An EAGLE galaxy represents a composite stellar population (CSP); a superposition
of SSPs with differing age and metallicity that yield a complex overall star forma-
tion and enrichment history. There is no clear physical reason why these should
conform to the common parametric models of star formation and enrichment typ-

ically assumed in SED fitting (from which colour estimators are derived), and in-
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deed EAGLE star formation histories are typically highly stochastic (e.g. McAlpine
etal., 2017).

In Fig. 6.2 the offset in the mass estimator and its build up with age is inves-
tigated for 1000 randomly selected EAGLE galaxies. In panels a-c the estimator
offset for Z09 is plotted as a function of integrated physical properties, with each
galaxy coloured by their status as members of the intrinsically red, green or blue
population, defined via Eq. 4.3.1.

Panel a demonstrates the remarkable constancy in mass offset with stellar
mass, but shows that the underlying red and blue populations exhibit very dif-
ferent typical offsets. The largest offsets are associated with intrinsically blue

galaxies. The relatively constant average offset with M, is indicative of a rela-

true
tively constant intrinsic red and blue fraction over this mass range in EAGLE. The
EAGLE colour bimodality persists over a greater mass range than inferred from
the data, as described in chapter 3, which may contribute to this effect. The trend
between colour and offset foreshadows the relatively tight relation between offset
and specific star formation rate (sSFR) that is shown in panel b.

The mass underestimate becomes stronger with increasing specific star for-
mation rate, from ~ —0.1 dex for redder, passive galaxies (SSFR< 107'!* yr™!) to
~ —0.4 dex for bluest, most rapidly star forming galaxies (~ 107%® yr~'). This
can be understood in terms of the outshining etfect identified in previous stud-
ies of photometric and spectroscopic SED fitting (Gallazzi & Bell, 2009; Maraston
etal., 2010; Pforr et al., 2012; Sorba & Sawicki, 2015). Outshining occurs due to the
dominance of hot young stars at optical wavelengths in galaxy SEDs, effectively
blinding fitting procedures to dim older stellar populations that may comprise
a large fraction of the total stellar mass. In theory, this is indicative of signifi-
cant differences between the fitting forms of star formation histories and those
that actually emerge within galaxies. An example of this may be recurrent star
formation histories, where the optical SED is dominated by the most recent star

formation event, and the mass contained in earlier bursts may be missed®. For

3In practice even mock observations modelled using exponential histories may not be recov-

ered correctly, as the presence of young stars can yield similar photometry for very different histo-
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Figure 6.2: Plots illustrating how biases in mass estimation build up for the com-

posite stellar populations (CSPs) of 1000 randomly selected EAGLE galaxies, using

Eq. 6.2.1 for integrated, dust-free photometry. {continued on next page...}
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Figure 6.2: {Continued from previous page...} The top row shows the mass offset for
EAGLE galaxies as a function of physical properties, where galaxies are coloured
by their status as red, green or blue (defined as in chapter 4, equation 4.3.1). Pan-
els a, b and c are functions of stellar mass, sSFR and initial mass weighted stellar
metallicity, Z*, respectively. Panel c also shows a power law fit to highlight the
tight relation for red sequence galaxies. The middle row shows the offset in mass
estimated cumulatively for stellar populations younger than a given age. Panel
d shows this offset where the integrated light for all SSPs younger than a given
age are used to compute masses, whereas panel e shows where the masses for
each SSP are estimated individually and summed. Thin, grey lines indicate indi-
vidual galaxies computed using Zibetti et al. (2009) (Z09), with thick, solid lines
showing medians for different calibrations indicated using the colour schemes of
Fig. 6.1. The bottom row is the same as the middle row, but showing the red se-
quence galaxies only, and are cumulative in stellar metallicity. In panel f we also
plot the end points for each galaxy as a black dot to indicate the maximum stellar
metallicity and overall mass offset. We see that resolving SSPs reduces offsets
due to age effects, but not due to metallicity effects, see text for further details

and discussion.
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low sSFR (< 10719 yr~1) the sSFR dependence of the offset is very small, so

0711.65

yrt.

Panel c then plots the offset as a function of the stellar metallicity, computed

galaxies are clipped to 1

as the fraction of the stellar initial mass in heavy elements. We see that it is the
red galaxies that demonstrate a dependence between metallicity and mass offset,
with larger offsets at lower Z*. A power law is fit to the red galaxies to show how
the mass underestimate increases for lower metallicity passive galaxies. Notably,
the underestimate persists for galaxies at (and above) ‘solar metallicity’, Z* =
0.02, which is a commonly assumed Z* value when fitting SED templates.

The build up of mass offset with stellar age is investigated in panels d and e
of Fig. 6.2. In panel d the light of all stars younger than a given age is summed

cumulatively to evaluate M,

col

(< tage), and the offset from the true mass of all stars
younger than that age is calculated to yield MZ,. In panel e, M, is instead cal-

culated for each SSP individually before being summed cumulatively, and again

the offset from M*

true

is computed. This elucidates how differently aged SSPs con-
tribute to mass offset in the integrated (panel d) and completely resolved (panel
e, all SSPs are separate) case. The thin lines correspond to individual galaxies.
These exhibit much more scatter in offset at all but the very youngest ages for
integrated photometry compared to the resolved case. Median lines show that
the average total underestimates (rightmost points) are significantly reduced in
the resolved case for all estimators, and that the B12 calibration actually slightly
overpredicts the average galaxy mass (but is still closer in dex than for the in-
vestigated case). It is apparent that the underprediction of mass in young stars
(~ 30 Myr) persists to the total underestimate in the integrated case (panel 4), but
is corrected for in the resolved case (panel e).

The build up of the mass offset is investigated in panels f and g, but now
cumulative in stellar metallicity and only for red galaxies (selected via equation
4.3.1). It is clear that galaxies display a large spread in metallicity, and that there

is a tight relation between mass offset and the metallicity up to which the stellar

ries, and photometric errors can result in the wrong history being recovered (e.g. Sorba & Sawicki,

2015).
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mass is truncated. The small spread in this relation is visible for the Z09 cal-
ibrations, and all estimators echo this trend. The underestimate is as large as
~ —0.4 dex for ~ 0.1Z; (Z* ~ 10-2#®), but the typical overall offset for red galax-
ies is only ~ —0.1 dex (panel a). This is because red EAGLE galaxies typically
have Z* distributions extending to ~ 2 — 3Z, as indicated by the end points
(black points) of the cumulative functions plotted in panel f. Metallicities trun-
cated at Z, (Z* = 107'%) would yield an offset of ~ 0.2 dex. The correlation
between Z* and log,,(MZ,/M,.) exists because while low metallicity stars ap-
pear bluer for the same stellar mass, the colour-dependence of M*/L may not
reflect this trend well. This is related to the findings of chapter 4; the SSPs inter-
nal to EAGLE galaxies are roughly exponentially distributed in Z*, with a long tail
of stars towards high Z*. It was shown that this yields bluer than observed red
sequence colours at high mass, despite the fact that the EAGLE mass-weighted Z*
values are similar to the Z* values obtained from observed galaxy spectra at the
bright end. This is because low metallicity stars are bluer, and are more optically
luminous than high metallicity stars of the same mass. The internal metallic-
ity distributions of stars in red EAGLE galaxies may therefore explain their typ-
ically underestimated masses; red sequence EAGLE galaxies have bluer colours
than their observed counterparts, so are predicted to have less mass for the same
brightness.

This metallicity effect is not equivalent to the outshining effect from young
stars, as the offset due to metallicity effects is not mitigated by resolution, and
the relations and scatter are remarkably similar in panels f and g. It is common
to assume single metallicity templates when modelling SEDs for simplicity, but
it seems plausible that the more complex internal metallicity distributions that
emerge in EAGLE are more representative of galaxies. If this were true, then real
galaxies could have higher than assumed stellar metallicities (in a mass weighted

sense) to yield the redder red-sequence colours that are observed. It is difficult

41f, for a reduction in metallicity, the stars become bluer more rapidly than they brighten rel-
ative to the assumed M*/L colour dependence, the low metallicity stellar masses are underesti-

mated.



6.2. Colour-corrected stellar M/L ratios 181

0.8 ‘ ' T T T T T
~
10g10(Mpaary 112/ Mimye) =—0.01
0.6 1 Trx *\ _ No dust |
B 0210(Mzivetsi + 09/ Mirye) =—0.06
~
- 1OglO(]\jTaylor +11/Mt:ue) =-0.14
— 0.4p |
g 0.2} |
3
E 0.0 f——t—
N—"
o N ) |
i
o0 N | = ——
S -0.2b
—-0.4+ |
_06 L L I | | | )
8.5 9.0 9.5 10.0 10.5 11.0 11.5
*
loglo(Mtrue/MG)

Figure 6.3: As the top panel of Fig. 6.1, but now where SSP masses of individual
star particles are estimated separately and summed to yield total masses. While
masses remain underestimated on average, median offsets are significantly re-
duced relative to the integrated photometry plotted in Fig. 6.1. The smallest av-
erage offset is found for the Baldry et al. (2012) calibration, only 0.01 dex (~2%).

to predict how, if at all, this would affect predicted masses when single metallic-
ity templates are assumed for SED fitting, and this issue is further discussed in
section 6.3.

It is useful to see how the improved mass estimation for resolved photometry
of blue galaxies, seen in the rightmost points of Fig. 6.2e, affects the overall recov-
ery of EAGLE stellar masses and cosmic stellar mass density. For this reason the
top panel of Fig. 6.1 is remade in Fig. 6.3, where mass estimates are obtained by
instead predicting SSP masses for each star particle individually and summing
them. We see that, unsurprisingly, the overall mass underestimate is reduced to
S 0.1 dex, and is within = 2 % for the B12 estimator. Of course, this is a highly ide-

alised model of resolved photometry, where SSPs can be observed separately and
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there are no dust effects. In resolved observations a pixel still represents a mixed
column of stars and dust, and, in addition, may be contaminated with light ema-
nating from outside the column due to PSF smoothing and scattering effects. For
passive galaxies this is unlikely to make much difference as they typically have
negligible dust masses, and even resolving SSPs perfectly makes an impercepti-
ble change in recovered masses from the integrated case (Fig. 6.2f and g). These
effects could, however, be important for star forming galaxies. Indeed, Sorba &
Sawicki (2015) find smaller differences between resolved and integrated mass es-
timators using resolved photometry, and a weaker sSFR dependence plotted in
Fig. 6.2b. More representative resolved photometry is tested in the following

section, using the SKIRT imaging of chapter 5.

6.2.3 Resolved photometric mass estimators

As discussed in the previous section, resolution can strongly influence how well
masses are recovered. In particular, the outshining effect can lead to biases in
recovered masses, and differences between the true and fitting forms of star for-
mation histories (e.g. Sorba & Sawicki, 2015). It has also been asserted that dust
lanes can cause significant differences between resolved and unresolved photo-
metric estimates (e.g. Zibetti et al., 2009).

To investigate these effects, and improve on the simple model of resolved pho-
tometry of 6.2, I employ the SKIRT imaging described in chapter 5 and appendix
B. This builds the effects of stellar population alignment by projection, smooth-
ing, pixelisation, sampling noise, and the 3D geometric effects of absorption and
scattering into the mock resolved photometry. As imaging is only obtained for a
small subset of EAGLE galaxies, and dealing with images is much more compu-
tationally expensive than integrated photometry values, I focus on just 3 archety-
pal EAGLE galaxies. These are the same galaxies chosen in Fig. 5.2 (chapter 5)
to represent three systems that are resolved with > 50, 000 star particles, but are
morphologically diverse, exemplifying disc (S), elliptical (E) and irregular (Irr)
types.

In Fig. 6.4 the dependence of logarithmic M7 offset on resolution itself is ex-

col
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Figure 6.4: The offset in recovered stellar mass using Eq. 6.2.1 for resolved pho-
tometry as a function of pixel side length for 3 archetypal galaxies (chosen in
chapter 5, table 5.1). The maximal resolution images cover 60 pkpc on a side,
with 10242 pixels. Images are then degraded sequentially by re-binning light into
a factor 2* fewer pixels (ie. doubling pixel side lengths), until the field is rep-
resented by a single pixel. This yields the integrated result for that galaxy. The
panels in the left and right columns are produced for imaging without and with
dust respectively, with rows from top to bottom corresponding to face-on, box,
and edge-on aspects of the galaxies. Each panel shows mass offset with resolu-
tion for the S, E and Irr type galaxies as solid, dashed and dotted lines respectively,

using the Z09 calibration. {continued on next page...}



6.2. Colour-corrected stellar M/L ratios 184

Figure 6.4: {Continued from previous page...} Grey shading indicates pixel scales
below the EAGLE intrinsic resolution scale of 0.5 kpc. Three colour grz thumbnail
images are also shown above the plots for each galaxy (S, E and Irr types from
top to bottom) and corresponding to each resolution in the x-axes. We see that the
underestimate grows along with pixel size above the EAGLE resolution limit for
types S (solid line) and Irr (dotted line) in all cases, but stays remarkably constant

for the E type (dashed line).

plored for SKIRT images. Here, only the Z09 estimator is used in order to sim-
plify the plots, and also because this estimator is intended for resolved photome-
try. The left column of plots/images uses completely dust-free imaging to isolate
stellar effects®, while the right column uses the full stellar and dust treatment of
chapter 5. The intrinsic spatial resolution of EAGLE is ~ 0.5 kpc, and smaller pixel
scales are shaded grey to indicate where structure is unresolved. I begin with
imaging a 60 pkpc? field about the galaxy centre with 10242 pixels, and degrade
resolution as described in the figure caption. This approach is used instead of
sequential smoothing, as it preserves the flux within the same field. The overall
colours are redder and light is less concentrated when dust is included for the
S and Irr types, while neglecting dust makes no difference to the two sets of E
images.

Beginning with the dust-free imaging, I first consider the offset-resolution re-
lations for each type projected in the simulation zy-coordinates (box projection,
middle row). The E-type galaxy shows an underestimate of 0.1 dex with little to
no dependence on resolution. This is consistent with the finding from Fig 6.2g:
resolution does very little to improve intrinsic underestimates in masses of red
EAGLE galaxies, with metallicity effects dominating the offset. For both the S and
Irr types, the galaxy mass underestimate gets progressively larger with poorer

resolution above the EAGLE resolution scale®, with a marginally larger varia-

%ie. no ISM dust, replacing the MAPPINGS-111 templates with GALAXEV that do not account for

nebular absorption and emission.
®below this scale, stochastic effects due to limited numbers of photon packets in SKIRT affect
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tion and integrated mass underestimate registered for the S type (~ 0.1 dex and
~ 0.3 dex respectively).

Now I look at the differences between offset-resolution relations for differing
galaxy projections. In the dust-free case these come about due to the different
combinations of SSPs sampled along the line of sight of each pixel. The most
extreme comparison conceptually is between the face and edge on projection of
the S type at small pixel sizes; for face on discs these pixels bin light from SSPs in
close proximity (within ~ the disc thickness), whereas for edge-on cases one pixel
could bin light emanating from stars in the bulge and across the entire width of
the disc. For pixel side lengths near the intrinsic EAGLE resolution of ~ 0.5 kpc
the difference appears maximal, leading to a ~ 0.05 dex lower mass prediction for
the edge-on case relative to the face-on case. This is consistent with the idea of
outshining; in the edge-on case old bulge stars are binned into pixels together with
relatively young disc stars and their mass contribution may be missed, whereas
in the face-on case the bulge and disc stars typically appear in separate pixels.
Apart from this case, it is apparent that differences in the offset-resolution curve
are marginal relative to the variation with resolution itself.

Now turning to the imaging with the full SKIRT model dust treatment I again
focus on mass offset-resolution relations for the box-projected photometry, which
are nearly identical to the face-on projections. We see that the effect of dust for
these projections appears to actually increase the mass estimates for the S and
Irr, reducing the underestimate at all resolutions. When the pixel scale matches
EAGLE resolution the mass estimates are most accurate, underestimated within
0.1 dex for the S type. Interestingly, Z09 identify that the M*/L for blue colours
obtained with their CB07 SEDs is lower than if BCO3 is used instead, finding a
~ 0.1 dex typical offset. The choice of BCO3 is consistent with EAGLE, which
could account for the rest of the offset for the S type galaxy. Again no change is
observed for the E type, as it has negligible dust content. Given the Z(09 analysis
of E type NGC4552, a similar 0.1 dex offset may also be reconciled for the E type

this relation.
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Figure 6.5: Inspecting resolved mass maps recovered for 3 archetypal galaxies
(chosen in chapter 5, table 5.1) using the Zibetti et al. (2009) (Z09) calibration of
Eq. 6.2.1. Rows from top to bottom show the S type galaxy in face and edge-on
projection and the Irr type galaxy in box projection, respectively. The maps from
left to right are then the “true’ mass map of the galaxy, the reconstructed mass
map from the dust inclusive imaging and the residual map showing the offset on
a pixel-by-pixel basis. Colour bars are shown to quantify shading values. [ use the
standard SKIRT images of chapter 5, and apply an additional uniform smoothing
of ~ 0.5 kpc. We see that masses are recovered within 0.2 dex (~ 25 %) for the
face-on S type and box-projected Irr type galaxy, but underestimated by 0.5 dex (a
factor 3) for the edge-on S type. It is apparent that heavily dust obscured regions

contribute much of this offset.
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by the choice of SPS model. However, only one E type galaxy is examined in that
study.

The assertion of Sorba & Sawicki (2015) that the difference between resolved
and unresolved mass estimates is typically larger for galaxies with higher sSFR
also holds true for these three galaxies when dust is included. The degree of
variation between resolved and unresolved offset can be compared directly to
that found by Sorba & Sawicki (2015); using their relation recovers a ~-0.03 dex
difference for both the S and Irr types, which is accurate for the Irr type but sig-
nificantly underpredicted for the S type. Differences from Sorba & Sawicki (2015)
may be attributable to that study employing full SED fitting at each resolution,
rather than a single colour-dependent M*/L ratio, and fitting different histories
than those used to derive the Z09 estimator used here. They also note a con-
siderable jump to lower predicted masses at a resolution of ~ 3 kpc which is not
apparent for EAGLE galaxies, however this jump is attributed to the scale of spiral
arm features that are not expected to be well resolved in EAGLE galaxies.

The story is the same for the edge-on projected E and Irr, but is significantly
different for the S type. Here, the galaxy mass estimate similarly decreases with
degraded resolution, but is already ~ 0.3 dex underestimated at the EAGLE res-
olution pixel scale, growing to a factor of 2-3 underestimate in the integrated
photometry. This EAGLE galaxy has strong edge-on attenuation and clear dust
lanes, which appear to drive the strong underestimation. This is the largest un-
derestimate and overall difference between resolved-integrated mass estimates.
Z09 note that their estimator may be confounded by strong dust lanes, and simi-
larly find that the largest resolved-unresolved variation in estimated mass occurs
for galaxies with prominent dust lanes.

True, estimated and residual mass maps are plotted directly in Fig. 6.5 to show
the regions that contribute to the overall mass offset in the resolved case. In
addition to the underlying stellar smoothing in the SKIRT modelling, I apply a
constant smoothing of 500 pc to limit the image resolution to approximately the
physical resolution scale of the Ref-100 galaxies. The S type in face and edge-on

projection and the Irr type in box projection are chosen as useful examples (the
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E type shows negligible spatial variation). From inspecting the residual maps,
the face-on S type has stellar masses recovered well in the bulge region, but with
systematic underestimates of ~ 0.2 dex in the outer disc that contribute to a net
0.13 dex underestimate. Dust columns are low for the face-on view (overall A, of
0.5). For the edge-on case, however, dust attenuation is much stronger (overall A,
of 1.3), and masses are underestimated in the dust lane region by > 0.6 dex. This
leads to the net underestimate of 0.43 dex. Similar results to the two S type ori-
entations are found for the Irr type; central dust lanes and dense peripheral dust
clouds are significantly underestimated, and a less dramatic but more extended
underestimate is just visible for the star forming tidal tails, roughly aligned with
the y = —x line in this orientation.

As noted for Fig. 6.4, the addition of dust actually improves mass recovery
(ie. increases mass estimates) for resolved photometry for low and intermediate
(A, < 0.4 mag) overall attenuation. This suggests that dust attenuation is not
simply hiding mass in all cases, but that diffuse and dusty star forming portions
of galaxies may lead to relatively subtle large-scale underestimates visible in the
face-on and Irr residual map. While the combined effects of differences between
the histories and dust model assumed by Z09 and those that emerge in the EAGLE
model could contribute to these differences, it is also plausible that these underes-
timates are again related to the differences between the ‘CB07” stellar population
model assumed by Z09 and the BC03 model assumed for EAGLE. The CB07 mod-
elling is shown to assign lower M */L ratios for bluer colours relative to BC03 in
709, with typical total galaxy offsets of ~ 0.1 dex. However for high attenuations
(A4 2 1 mag), stronger underestimates are clearly visible. These cannot be recon-
ciled by SPS model differences alone, and are clearly related to the screen model
assumption of Z09 being unable to represent the EAGLE attenuations well when
dust becomes optically thick. Z09 acknowledge that dust lane galaxies are par-
ticularly uncertain in terms of mass recovery, and that the employed modelling
of Charlot & Fall (2000) struggles to represent strong dust features. Qualitatively,
the mass underestimation along the dust lane is clearly visible in the resolved

mass map for the edge-on S type (middle panel). These dust-aligned deficits do
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not appear to be as prominent in the mass maps of galaxies obtained by Z09. This
could point to the Charlot & Fall (2000) dust modelling being a better fit to real
galaxies than to EAGLE galaxies, even suggesting tension between dust effects
in galaxies and those obtained with EAGLE. However, there are no fully edge-
on galaxies in the Z09 sample where galaxies have dust lanes of similar optical
depth for comparison, and these deficits are only conspicuous for the edge-on
S type case. The S type we choose is a particularly dusty and massive spiral in
EAGLE, and the underestimate is anomalously high compared to the general pop-
ulation (see Fig. 6.1), suggesting that this virtual galaxy image is an extreme case.
Such strong, dust-driven mass underestimates are uncommon in EAGLE at low
redshift (z < 0.1). Dust effects are assessed quantitatively below.

Empirically calibrated M*/L ratios of Eq. 6.2.1 provide insight into how well
EAGLE stellar masses can be recovered photometrically, while indicating the as-
sociated limiting factors. However, it is difficult to isolate the sources of discrep-
ancy using these measures. In particular, it is not clear how far discrepancies can
be ascribed to model EAGLE observables being different from the observational
samples, or failures in SED fitting techniques used to derive these relations. As
a result, average offsets observed for different estimators are not particularly in-
formative; it is the residual trends that are most interesting. Taking what can be
learnt from the above analysis, I now turn to full SED fitting for a more direct
analysis of how well assumed histories fit EAGLE, and whether the best fit his-
tories to EAGLE model observations differ from those of observations. Conduct-
ing the SED fitting affords more control over modelling assumptions and more
insight into the physical origin of any discrepancies, which may allow average

stellar mass offsets to be better understood.

6.3 SED fitting

With the popularity of SED fitting techniques, a large number of SED inversion
and fitting codes have become publicly available. I use the SED fitting code FAST

(Kriek et al., 2009) to derive stellar masses and star formation rates. FAST is a
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straightforward code that constructs a grid of template SEDs corresponding to
a discrete set of redshifts, stellar metallicities, levels of attenuation and param-
eters characterising star formation history. FAST then allows the SED normal-
isation (representative of the present stellar mass) to scale freely, and identifies
the parameter set that minimises x? for a set of input fluxes and flux errors as
the fitting solution. The default parametric star formation histories are charac-
terised by a star formation timescale (7) defining the duration of the burst, and
an age (faq) defining when star formation commences (with t' = t,ze — tiookback)-
FAST provides exponential (M, oc exp(—t'/7) for t' > 0), ‘delayed exponential’
(M* x t'exp(—t'/7) for ' > 0) and constant (M* x 1 for 0 < ¢ < 7) functional
forms.

Here, I focus on the integrated EAGLE spectra, including dust effects and
nebular emission as described in chapter 5. I fit broadband fluxes measured in
rest-frame ugriz, and assume fractional errors consistent with SDSS photometry
(taken from Padmanabhan et al. 2008). The initial FAST parameter grid that was

constructed to fit the EAGLE SEDs is chosen to be:

e log(7/yr) € [7,10.2] in steps of 0.1 dex
o 10g(tage/yr) € [7,10.2] in steps of 0.1 dex
e 7 €[0.004, 0.008,0.02,0.05]

e Ay €[0,3] in steps of 0.1 mag

where the redshift, z, is held fixed at 107 to approximate the rest frame’. In
addition the template SEDs assume the Bruzual & Charlot (2003) SPS model, a
Chabrier (2003) IMF, and the attenuation law of Kriek & Conroy (2013).

This set up is similar to that of Torrey et al. (2014), with some significant differ-
ences. The time parameter ranges are truncated to 10'%? yr as this exceeds the age
of the Universe in the Planck cosmology (Planck Collaboration et al., 2014). Most

importantly, I use the radiative transfer photometry including dust and allow

"The neglected k-correction has negligible effect on the fitting results
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FAST to fit for dust attenuation, whereas Torrey et al. (2014) conduct the fitting

for intrinsic fluxes (i.e. dust-free, without nebular emission).

6.3.1 Initial SED fitting and the failure population

The first attempt at photometric SED fitting using the parameter grid detailed
above provides reasonable stellar mass estimates (within ~ 0.1 dex) for the major-
ity of galaxies, but yields a significant population (=5%) of galaxies with strongly
underestimated stellar masses, as seen in Fig. 6.6.

Fig. 6.6a shows the offset-mass relation, as plotted in Figs. 6.1 and 6.3, for in-
tegrated photometry and shaded from dark to light by point density. The median
offset found using FAST is significantly reduced compared to that obtained us-
ing colour-dependent M, /L estimators shown in Fig. 6.1, and will be discussed
in the following section. However, the sub-population of galaxies where FAST
underestimates masses by ~ 1 dex is not present for the estimators explored in
section 6.2. I refer to these galaxies below as ‘failures’, and take them to be galax-
ies with mass offsets of < —0.7 dex. Failure and non-failure galaxies are shaded
using blue and orange colours, respectively.

In panel b, it can be seen that these galaxies are distinguishable by a certain
parametrisation of the assumed histories. Failure galaxies (blue contours) are
almost exclusively fit by very young (~ 10 Myr) histories relative to the over-
all population (grey shading). They also show a strong preference for similarly
short star formation timescales (7), but with a tail extending to 7 < 10 Gyr. For
the delayed exponential histories I assume, timescales longer than the age (tage)
actually yield rising histories. Such rising (or ‘inverted-v’) histories have been
found to fit model galaxies well at high redshift (2 ~ 2, Maraston et al., 2010).
To characterise these galaxies in terms of model observations, panel ¢ then shows
where the failure galaxies lie in the ugJ colour-colour plane, utilising the same
blue shading as in panel a. It is clear that the failures occupy a certain region of
the plane, bordering the low (blue) u — g edge of the overall distribution for rel-
atively blue g — J colours (g — J < 1.3). I identify a blue ‘wedge’ region in ug.J
space (g —J < 1.3 A 0.45(g — J) — (u — g) < 0.445) that encloses a majority of
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Figure 6.6: Results of the initial SED fitting calibration using FAST (Kriek et al.,

2009) for integrated EAGLE photometry, and identifying a failure population

where recovered masses are underestimated by a factor of ~10. Panel a shows

mass offset as a function of mass for individual galaxies. The failure population

is well separated by an offset of more than —0.7 dex (grey line). The failure and

non-failure populations are coloured blue and orange respectively, and shaded

by the logarithmic point density. Panel b shows the histories recovered for EAGLE

galaxies, in terms of age and timescale. The frequency of recovered parameter

combinations for the overall population is indicated by grey shading, with blue

contours denoting the failure population. {continued on next page...}



6.3. SED fitting 193

Figure 6.6: {Continued from previous page...} Panel c shows a ugJ diagram employ-
ing the same colouring and shading as panel g, revealing that the failure popu-
lation generally occupy the bluest u — g colours for a given g — J value where
g —J < 1.3. This region is demarcated by the dashed line. Panel d then shows
the stacked SF histories of galaxies in the demarcated region of panel c (blue line),
relative to all galaxies (black line), both normalised to unit integral. Overall, we
see that FAST recovers anomalously young ages for failure galaxies (by 2 2 dex),
and that their actual histories are characterised by more recent star formation
than average. In particular, the failure galaxies tend to exhibit a recent burst of

star formation.

the failures. Despite being dominated by these failures, the wedge still comprises
42% non-failure galaxies, showing that galaxies with these colours are not always
assigned highly underestimated ages. Panel d shows normalised histories of blue
wedge galaxies (blue) compared to the general population (black). Wedge galax-
ies typically have younger ages and higher recent star formation rates (double
the average over the last ~ 2 Gyr). A small but significant uptick in very recent
(< 100 Myr) star formation can also be seen for the wedge population, suggesting
that many of these galaxies are actually undergoing bursts at the time of selection.

As bursts cannot be represented in the decaying portion of 7 models, and
young stars can dominate optical fits due to outshining, it seems that the fitted
histories are favouring young bursts or rising histories to fit the light from very
young stars at the expense of older stars that may comprise as much as ~ 90%
of the stellar mass. As an example of how such discrepant histories can be found
to be the ‘best’ fits, I compare the SED fitting results of similar failure and non-
failure galaxies in Fig. 6.7.

The two galaxies selected for comparison in Fig. 6.7 are highlighted by empty
circles in Fig. 6.6. This is the highest mass failure galaxy (left panel), and a similar
mass galaxy where the FAST recovered mass is within ~ 5% of the true value
(right panel). The SKIRT photometry fed to FAST (blue circles) and SEDs from

which they are derived (blue lines, offset from photometry for clarity) are qual-
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Figure 6.7: Comparing the recovered and SKIRT SEDs of EAGLE galaxies in the
cases of a failed (left) and successful (right) mass recovery. Red and blue lines plot
the best fit and SKIRT SED for each galaxy, respectively, with points of the same
colour indicating the associated ugriz photometry sets. The photometry sets are
offset below the SEDs for clarity. The selected galaxies are the highest mass ‘fail-
ure’ galaxy and a similar mass galaxy where the true mass is recovered within
5 % (highlighted by black circles in Fig. 6.6a). The failed and successful recovery
instances are shown in the left and right panels respectively. We see that while
both galaxies show relatively good agreement between the FAST-fit and SKIRT
modelled photometry, the detailed SEDs deviate for the failed fit, particularly at
A longer and shorter than the ugriz photometry set considered by FAST.
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itatively very similar for the two example galaxies®. However, the best fit SEDs
chosen by FAST (red lines) display vastly different shapes for the two galaxies at
lower and higher . The best-fit SED for the failure case is that of a rising history
caught near its peak, with strong optical attenuation of Ay = 2.6. Strong attenu-
ation causes the fitted SED to drop towards UV wavelengths, diverging dramati-
cally from the rising SKIRT SED. The SEDs also diverge toward NIR wavelengths,
due to the large mass underestimate, with the fit SED dropping more quickly
than SKIRT towards longer wavelengths. Looking in detail, SEDs also reveals
stark differences; the fit SED is largely smooth with sharp Balmer absorption fea-
tures, whereas the skirt SED shows complex absorption features indicative of
older, metal enriched populations. For the non-failure galaxy, the SEDs are in
much better agreement. The NIR continuum levels match very well, and both
SEDS display good agreement between detailed absorption features. The NUV
fluxes also agree much better, but are slightly (0.1 dex) overpredicted by FAST,
which may be attributable to the single screen dust model that lacks dedicated
birth cloud absorption. As no nebular emission is built into the FAST templates,
there are also large differences between SEDs for both galaxies at certain transi-
tion wavelengths, e.g. Ha.

Despite these two galaxies showing very different levels of agreement be-
tween their SKIRT and best fit SEDs, the input and recovered photometry agree
well in both cases. This is because the SEDs are broadly similar for the wave-
lengths sampled by ugriz at z ~ 0, and any detailed differences between SEDs
are averaged out across broad bands. It is clear that the dramatic failure to re-
cover masses comes about due to degeneracy in the model parameters; the ex-
tremely young, dusty starburst provides a similar photometry set to this older
star forming galaxy with a less dramatic recent burst. With the actual fit to pho-
tometric bands being relatively good for the failure case (i.e. having x? similar
to that of the non-failure case), it is unclear that incorporating similar histories

superimposed with bursts would reliably remove this population (extreme rising

8 A subtle difference in shape is that the failure galaxy has a slightly boosted NUV (A ~ 150 nm)

flux and emission line features.
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starbursts may still provide the best fit in some cases). Instead, such degeneracy
could be broken by including UV (e.g. GALEX) or NIR (e.g. UKIRT) photometry
in the fitting, or even by high signal-to-noise spectroscopic fitting over the ugriz
range, given the detailed differences between the optical portions of the SEDs.

The temprementality of the fit could also be exacerbated by the reduced x*
fitting approach employed by FAST; slight variations in photometry can lead to
vastly different fitting parameters between models with similar x2. To test this,
300 different realisations of the ugriz photometry are re-fit where random Gaus-
sian perturbations (scaled by the uncertainty) are applied to each broad-band flux
for both galaxies’ shown in Fig. 6.7. It is found that the failure galaxy is only a
failure in 12% of cases, and that the non-failure galaxy becomes a failure in 2%
of the realisations. Not surprisingly, the histogram of recovered masses is multi-
modal and dispersed such that the median mass offsets is —0.4 dex. T11 discuss
the effect of biases and other problems in the y? fitting, and (along with B12) cir-
cumvent this by instead integrating over the posterior distribution of recovered
values. Assuming a similar, fully Bayesian approach could help eliminate failures
by reducing the viability of extreme templates.

Even though a similar procedure to Torrey et al. (2014) is followed here, the
failure population I find is not present in their analysis of the ILLUSTRIS simula-
tion. While it is technically possible that this is caused by the differing properties
of the two simulated populations, it seems unlikely that similarly bursty histories
do not occur in ILLUSTRIS. Otherwise, the key difference must be in the fitting
procedure; either the chosen histories or inclusion of dust. Repeating the fitting
using pure exponential histories (as in Torrey et al. 2014) yields a similarly off-
set population of failure galaxies, albeit halved in number density. Using dust
free photometry and forcing Ay = 0 in FAST eliminates these failures completely.
These offset-mass plots are shown appendix C. This result confirms that the dust
fitting is the key factor causing these failures; strong dust attenuation is needed

to make extremely young bursts look similar to older EAGLE galaxies photomet-

“This is similar to the approach of Sorba & Sawicki (2015).
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rically.

As it is SED fitting with integrated ugriz SKIRT photometry that I am inves-
tigating, I continue fitting for dust attenuation, but attempt to mitigate the fail-
ure population by limiting the ages of histories to t,, > 10%° yr (reasonable at
z ~ 0.1). This reduces the failure population to ~ 0.4%. The following section
looks at the recovered properties of EAGLE galaxies on adopting this modified
titting procedure and compares them to observationally derived scaling relations
obtained through inverse modelling. The modified set-up is hereafter referred to

as the ‘fiducial’ FAST model

6.3.2 SED fitting results at = = 0.1

With a fiducial set-up for FAST established, the fitting results and recovered pa-
rameters may now be explored. Residual trends between the true and FAST
masses are first described and discussed by returning to the familiar offset-mass
relation in Fig. 6.8. In general, it is apparent that the full FAST fitting provides
better mass recovery than the simpler empirical estimators of Fig. 6.1; masses
are still underestimated on average, but only by ~ 0.07 dex (~ 20%) on aver-
age rather than the 0.1-0.2 dex obtained using different calibrations of Eq. 6.2.1.
This suggests that some part of the systematic underprediction originally found
for Fig. 6.1 may be attributable to intrinsic shortcomings of broad-band optical
SED fitting across the ugriz range, but that it may also arise from fundamental
differences in the photometric properties of EAGLE galaxies or disparate fitting
approaches in independent studies. Interestingly, the stellar mass range where
masses are best recovered is around the ‘knee’ of the mass function; these galax-
ies contribute most strongly to the cosmic stellar mass density. Larger underesti-
mates are found for the highest mass EAGLE galaxies.

First looking at the v — r plot of Fig. 6.8 (top left), it is apparent that underes-
timated galaxies are typically red in v — r for My, > 10°Mg. As seen in chapter
5, galaxies appearing red in the SKIRT photometry are either passive or exhibit
strong dust attenuation. The fraction of dusty and passive galaxies on the red

sequence only become comparable at high mass with SKIRT (~ M}, > 10" Mg,
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Figure 6.8: Mass offset as a function of the true stellar mass obtained for SKIRT
photometry using our fiducial FAST set-up. Residual trends between the true
and estimated masses are explored by binning galaxies in uniform, logarithmic
offset-mass bins and colouring them by median parameter or property values for

bins containing > 10 galaxies. {Continued on the next page...}
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Figure 6.8: {Continued from previous page.} Colour maps are provided above each
panel to signify which trends are being shown, and quantify their values. A num-
ber of significant trends are displayed, which are discussed further in the text.
Black squares again indicate the median offset in stellar mass bins. The average

offset is found to be 0.07 dex

Fig. 5.7), so these red galaxies are predominately passive over the majority of this
mass range. This may be related to metallicity effects previously described in
chapter 4.2 and section 6.2; EAGLE galaxies have exponentially distributed inter-
nal metallicity distributions, yielding slightly bluer colours than the observed red
sequence, and driving a disparity between the mass and light weighted metallic-
ities. The commonly assumed single metallicity templates used by FAST may not
be able to represent these more complex enrichment histories, leading to compen-
sation by other parameters and resulting in mass underestimation. This situation
is likely not helped by the coarse metallicity coverage of many SPS models, in-
cluding BC03 assumed here. The metallicity panel (top right) shows that, while a
general trend of increasing metallicity with stellar mass is recovered by FAST, the
majority of galaxies with Mz, > 10°Mg are fit by ‘solar metallicity’ (Z* = 0.02)
template. The underestimate in red galaxy masses at ~ 0.1 dex is at a similar level
to that found using the Z09 estimator in Fig. 6.2, suggesting they are impervious
to both resolution and a full SED fitting treatment. It is plausible that composite
metallicity SED templates would be able to reproduce masses for passive galaxies
in EAGLE better, and also may be a more reasonable physical model in any case.
Even simply interpolating between the coarse BC03 metallicities to yield a finer
metallicity grid may help (implemented by e.g. T11 and Mitchell et al. 2013). It is
interesting to note that apparently blue galaxy masses are well recovered, or even
marginally overpredicted (discussed further below).

The middle row of Fig. 6.8 shows the time parameters of fitted histories, with
age (tage, left) and star formation timescale (7, right). A remarkable trend is re-
covered between the offset and the age, with the most underestimated galaxies

assigned the youngest ages. This is perhaps counter-intuitive to what we saw in
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the v — r panel; that red galaxies are preferentially underestimated. Turning to
the 7 plot, however, shows that underestimated galaxies are also assigned much
shorter timescales, such that .. /7 is generally larger for underestimated galax-
ies and therefore have lower fitted sSFR relative to their true value. This is then
consistent with the v — r colour trend.

The bottom row of Fig. 6.8 focuses on dust. The left panel is the true, ISM
g-band dust attenuation, whereas the right panel gives the Calzetti et al. (2000)
Ay value fit by FAST. Blue star-forming galaxies will generally have more dust
attenuation than red passive galaxies, so it is perhaps unsurprising that the atten-
uation is generally higher for overpredicted than underpredicted galaxies given
the trends identified above. What is more surprising is that this trend is then
reversed for the best fit Ay value. Comparing the recovered and true attenua-
tion values suggests that attenuation is overpredicted for galaxies with underes-
timated mass. This may appear strange considered in isolation; overestimating
the amount of light being blocked by dust would intuitively lead to an overesti-
mate in the amount of stars in a galaxy. However this effect happens in concert
with the other strong correlations between offset and the properties discussed
above, such as stellar ages and sSFR, where the dust is often sub-dominant. The
apparent discrepancy could also be related to the different attenuation curves ob-
served for SKIRT relative to the Calzetti et al. (2000) law (as was shown in Fig. 5.6).
The role of dust in the mass error is explored further in section 6.3.4.

Overall, it seems that red galaxies are typically assigned short timescale, in-
termediate age bursts by FAST and are assumed to have dust attenuation. Con-
versely, blue galaxies are assigned older but more slowly decaying histories. The
typical theoretical expectation is that galaxies form earlier in massive halos, an
effect termed ‘cosmic downsizing’. Given that the truncated star formation histo-
ries of red galaxies imply higher halo mass for a given stellar mass, the recovered
younger ages of red galaxies seem to go against expectation. The true star for-
mation histories of red galaxies in EAGLE do exhibit shorter formation times than
their blue counterparts, but tend to begin forming stars earlier than estimated

by FAST, the stellar age distribution appearing peaking at ~ 9 Gyr for both red
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and blue galaxies. This is demonstrated in appendix C.4, better in line with the
theoretical picture. Typical star formation histories implied by FAST are further
compared to those that emerge in EAGLE in section 6.3.3.

We now explore how the EAGLE galaxy stellar mass function (GSMF) is mod-
ified if M}, ¢ values are used instead of M{, ., which is of particular interest. The
z = 0.1 mass function is the primary calibrator of subgrid parameters for the
EAGLE simulations (Schaye et al. 2015, Crain et al. 2015), but this calibration is
between the actual masses formed in the simulations and masses estimated from
observations. It is arguably more appropriate to instead compare the derived
Mnsr'® GSMF to the GSMF similarly derived for real galaxies. The M., Mg,
and GAMA Baldry et al. (2012) mass functions are compared in Fig. 6.9.

As noted in Schaye et al. (2015), the M, . mass function (blue line) is generally
consistent with that of GAMA (Baldry et al. 2012, black line) with a significant un-
derestimate (~ 0.1 dex) around the knee. In Fig. 6.9 I first compare the derived
Mg mass function (red solid line) to the M, and GAMA mass functions. At
M, ~ 10"°M the M, qp and M, functions are indistinguishable, as expected
from the very small offset at this mass noted in Fig. 6.8. Turning to the lower

masses (M, < 10'°My), the level of agreement with GAMA remains very similar

for the Mz qr and My, GSMFE. Even though the average FAST mass underesti-
mate grows to ~ 0.1 dex for stellar masses lower than 10'°M, the shallow nature
of the GSMF slope below the knee means adjacent bins have similar values, such
that small shifts in M, make little difference to the mass function. For the massive
end (M, = 10'°M), the Mg GSMF underpredicts that of M . increasingly
towards higher masses (up to 0.2-0.3 dex). Although FAST underestimates EAGLE
masses for high mass galaxies to a similar level as the lowest mass galaxies on av-
erage (~ 0.1 dex), the steep form of the GSMF at the high mass end means that
small shifts can lead to large differences in high mass galaxy number counts. The

observationally derived M}, ¢ GSMF exacerbates disagreement with the GAMA

mass function around and above the knee region, 10'%* < M, < 10'°Mg, as

Derived from the representative SKIRT photometry of chapter 5
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Figure 6.9: Galaxy stellar mass functions (GSMF) constructed for a variety of M,
measurements of EAGLE galaxies, and compared to the GAMA mass function of
Baldry et al. (2012). Solid blue line shows the ‘true’ EAGLE GSMEF, using 30 pkpc
aperture stellar masses taken directly from the simulation output (M{;,.). Solid
red line instead uses masses derived using the fiducial FAST SED fitting model
(Mpjast)- The dotted red line instead uses M, (Eq. 6.2.1), using the Baldry et al.
(2012) (B12) calibration. For comparison, the GAMA survey GSMF of Baldry
et al. (2012) is plotted in black. We see that while the EAGLE GSMFs agree well
for M, < 10'°M,, estimated stellar masses underpredict the true EAGLE GSMF at
the bright end and degrade agreement with GAMA.
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much as doubling the deficit in number counts. I also plot the GSMF constructed
using B12 calibrated M, values (dotted red line). This is the best performing
estimator in Fig. 6.1, and is arguably the most appropriate for EAGLE, being cal-
ibrated for integrated Petrosian photometry at z ~ 0. The M, underestimate
(green points in middle panel Fig. 6.1) is similar to that of M},qp for massive
galaxies, and as a result the two mass functions appear very similar.

The result that emulating a photometric SED fitting approach actually de-
grades agreement between the model and observed GSMF has been found before
in the comprehensive Mitchell et al. (2013) study of photometric SED fitting for
the GALFORM semi-analytic models. The degradation they find is worse for the
same redshift, as analysed below. They attribute the degradation to highly at-
tenuated, compact galaxies around the knee of the mass function. Mitchell et al.
(2013) also find a ~ 0.1 dex overprediction of galaxy masses on average, but this
can be ascribed to the Kroupa et al. (1993) and Salpeter (1955) IMFs assumed in
the model photometry and SED fitting templates, respectively. It is known that
the SKIRT photometry does not reproduce the most attenuated, highly-inclined
disc galaxies that are observed at low redshift due to the pressure floor that is
imposed in EAGLE yielding ‘puffed-up” disc thicknesses (e.g. Fig. 5.3). Whether
higher edge-on attenuations in EAGLE would provide a similar underestimated
population is discussed further in section 6.3.4. The influence of such mass fitting
discrepancies is just one of host of uncertainties affecting the massive end of the
observational GSMF, from stellar population effects to how galaxy luminosities
are determined (e.g. Bernardi et al., 2017).

An advantage that the full SED fitting results have over colour based estima-
tors is that they simultaneously recover the full star formation history, and thus
present day SFR, of a galaxy. In Fig. 6.10 I plot stellar mass functions as in Fig. 6.9,
now weighted by stellar mass (top panel) and instantaneous star formation rates
(bottom panel). For the ‘true’ functions this is computed from the stellar masses
and SFRs output by the simulation, while for FAST these are the masses and SFRs
derived from SED fitting. The integral of these plots provide the cosmic density

of the weighted property, and as such they are useful to visualise how differ-
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Figure 6.10: EAGLE mass functions weighted by M, and SFR at z = 0.1, the inte-
grals of which yield cosmic stellar and star formation rate densities, respectively

(these values annotate the plot). {Continued on the following page...}
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Figure 6.10: {Continued from the previous page...} Top and bottom panels are M,
and SFR weighted, respectively. Red lines are plotted using galaxy properties
(SFR, M,) derived by fitting SEDs to SKIRT ugriz photometry using FAST (Kriek
et al., 2009), Blue lines are plotted using the galaxy properties that are directly
output by the simulation. For the FAST SFR weighted plot, the heavily M,-
underestimated (‘failure’) galaxies are simultaneously assigned highly overesti-
mated SFRs, and are highlighted as a hatched region. It is apparent that the M,
weighted function is underestimated increasingly for My, > 10'*°M, whereas

the SFR weighted is systematically low for M . > 10°M, but higher at the low-

true

est masses.

ent mass ranges contribute to differences in the cosmic density of stellar mass
(px) and star formation rate (p,) calculated using the true and FAST recovered
properties. It can be seen that the M/* weighted functions agree very well un-
til M,

true

~ 10'9°M, where the FAST values are progressively underestimated,
while the SFR weighted FAST function is systematically low for M. > 10°M,
but higher at the lowest mass. This low mass boost can be attributed to the small
population of failure galaxies that persist in the fiducial fitting model being as-
signed erroneously high SFRs, and those can be removed from the integral. The
calculated p values are inset in each plot, and were first calculated using the true
properties in Furlong et al. (2015). When calculating these, I add a correction fac-
tor to account for the fraction of the total EAGLE stellar mass found outside of the
30 pkpc apertures or within galaxies of My, < 1.2 x 10°M, at z = 0.1, ie. the
fraction of the EAGLE cosmic stellar mass missed in my simulated galaxy sam-
ple, which is only ~ 0.06 dex. We see that the cosmic mass density is 0.06 dex
underpredicted using FAST, which again increases the discrepancy from the very
good agreement found by Furlong et al. (2015). The star formation rates have
a similar underestimate when the whole population is considered (~ 0.07 dex),
but neglecting the small percentage of failure galaxies that persist in the fiducial
model increases the underestimate to ~ 0.09 dex.

For completeness, I show the SFR-M, plot for star-forming galaxies in Fig. 6.11,
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Figure 6.11: The SFR-M, relation for EAGLE galaxies at z = 0.1, visualising the
‘main sequence’ (MS) of star forming galaxies. Red and blue colour elements are in-
dicative of FAST recovered and simulation output galaxy properties respectively.
Points with error bars indicate the median SFR of galaxies in bins of J,, not in-
cluding passive galaxies (SFR< 10~*M, yr—!), with errors showing the 16-84 per-
centile range. Contours are plotted to show the underlying distribution, enclosing
bins of 10, 10%? and 10*® galaxies or more. Light grey points also indicate the
‘true’ values for individual galaxies. For comparison, the linear MS fit of Wuyts
et al. (2011) is shown as a grey dashed line, and the median MS values of Chang
et al. (2015) are plotted as grey dot-dashed lines. The FAST and true value plots
appear to agree well within the scatter, although the median MS SFRs estimated

by FAST appear low at a given mass.
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revealing a ‘main sequence’ (MS) of star forming galaxies (SFR< 10™*Mg yr™1).
The median SFR value of the MS calculated by FAST (red points) appear to agree
well with the true values at low masses, but deviate by up to 0.1 — 0.2 dex at
M*

true

~ 10"Mg, incidentally where mass estimates are most accurate (Fig. 6.8).
Any deviations are small compared to the scatter. The MS scatter is similar for
M*

true

< 10'%%°M,, but appears larger for true EAGLE SFRs at the high-mass end,
which scatters to lower values than inferred by FAST. This is likely related to
low sSFRs being poorly constrained by optical photometry, and therefore not re-
covered by the fitting. Furlong et al. (2015) found that EAGLE MS star forma-
tion rates were ~ 0.2 — 0.4 dex lower than the observed normalisation, as repre-
sented by the Wuyts et al. (2011) linear MS fit plotted over the applicable range
(Mg < 10'°Mg). As discussed in chapter 5, the study of Chang et al. (2015)
found a lower MS normalisation by including MIR WISE bands in their fitting,
also plotted in Fig. 6.11. This is in better agreement with both the FAST and true
EAGLE MS (within 0.1 — 0.2 dex over the same range). Whether the Chang et al.
(2015) result is an anomaly in the literature remains inconclusive.

Overall, I find similar underestimates in both 1/, and SFR values using FAST.
As a result, the ratio between the FAST-recovered z ~ 0.1 cosmic star formation
rate density (p.) and cosmic stellar density (p,) is the same as is found using the
simulated values. This then maintains an apparent tension between simulations
and observation; that the p, values are ~ 0.2 dex lower than observed while p,
is < 0.1 dex lower than observed, possibly indicative of inconsistencies between
stellar mass and SFR measurements (Furlong et al., 2015). The star formation
histories and M, values of EAGLE galaxies are of course self consistent by con-
struction, for both sets of data measured from the simulation and sets inferred
from the templates fit by FAST. However, it is not common practice to use pho-
tometric optical SED fitting to obtain SFRs; observers commonly turn to more
direct tracers of recent star formation such as UV continuum, emission line and
FIR measurements to estimate global star formation rates (Walcher et al., 2011).
Therefore, the evolution of the total star formation rate and stellar mass formed

are not necessarily self consistent for observations (e.g. Salim et al., 2007). Emu-
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lating observational techniques that are used to obtain masses and star formation
rates at differing epochs with mock EAGLE observers could provide further in-
sight into this apparent tension, and is planned for future work. In order to illus-
trate to what extent FAST star formation rate histories agree with those obtained

by FAST, I now turn to comparing the histories.

6.3.3 Recovered histories at z = 0.1

To gain further insight into the FAST SED fitting results, I now investigate the star
formation histories implied by the best fit FAST SEDs!'!. While FAST M, and SFR
estimates are found to recover their simulated values to a reasonable level, this
does not ensure that these idealised histories are a good representation of those
in EAGLE. In Fig. 6.12 the cosmic star formation history (‘Madau’) plot is shown,
and compared to observational data. This figure is very similar to that of Furlong
et al. (2015), with the same comparison data sets and symbol choices, but plotted
linearly in cosmic time. As in Furlong et al. (2015), the simulated EAGLE p, evolu-
tion and a 0.2 dex boosted curve show that EAGLE uniformly underestimates the
cosmic SFRD inferred from the data at different epochs.

The composite p, evolution inferred using FAST (red line) is averaged in coarse
~ 500 Myr bins to mitigate the artificial effects of coherence in the best-fit FAST
histories. This coherence is caused by the fact that the ages and star formation
timescales of EAGLE galaxies are discretised in logarithmically spaced bins, which
leads to sharp peak features in the instantaneous p, corresponding to the aligned
star formation peaks of a large number of galaxies. The FAST curve is quite differ-
ent to both that of the actual EAGLE evolution, and the observationally derived p,
evolution. The FAST Madau plot predicts much younger stellar ages on average,
peaking at ~ 7 Gyr (2 ~ 0.6) instead of the ~ 3 Gyr (z ~ 2) peak found in both the
true EAGLE data inferred by multiple observational data sets. While the contem-

porary z = 0.1 FAST star formation rates agree with the true EAGLE by better than

1A slight modification is made to the FAST code to output the total initial stellar mass to scale

histories by, instead of the final mass which includes stellar mass loss.
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Figure 6.12: The evolution of p, with cosmic time, or ‘Madau’ plot, for true and
FAST derived EAGLE values and observational data. Black line shows the true
EAGLE p, evolution, derived for a random subset of the EAGLE star particles. Ob-
servational data are plotted as in Furlong et al. (2015), using the same symbol
choices. In addition, the red line p, derived by summing the histories fit by FAST
to EAGLE galaxies with M} . > 1.2 x 103M, at z = 0.1. To mitigate the coherent
histories in FAST introducing artificial features in this plot, the history is plotted
in broad ~ 500 Myr averaged bins (see text). As for the Fig. 6.10 integrals, I add
a correction factor of 0.06 dex to account for the fraction of the total EAGLE stellar
mass found outside of 30 pkpc apertures and within M}, < 1.2 x 10®M,, galaxies
at this redshift (see text for details). The 30 Myr averaged star formation rates at
z = 0.1 are also plotted with the red cross marker. We see that the p, evolution
inferred using FAST is quite different from the true evolution as well as the data,

peaking at ~ 7 Gyr (2 ~ 0.6) as opposed to ~ 3 Gyr (z ~ 2).
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0.1 dex, the discrepancy grows rapidly with look-back time, such that the star for-
mation rates 2 Gyr prior to the z = 0.1 snapshot are over predicted by ~ 0.5 dex.
In short, photometric ugriz SED fitting does a poor job of predicting the true stel-
lar mass build up in EAGLE galaxies. UV-NIR photometry of observed galaxies
were used by Walcher et al. (2008) to compare the stellar mass build up inferred
using best-fit SFHs to those using instantaneously measured star formation rates,
in order to compare the derived GSMF evolution at higher redshift. This fitting
is more sophisticated than is presented in this study, and includes detailed priors
on galaxy parameters, but there are still difficulties reconciling fitted star forma-
tion histories with instantaneously measured masses at higher » (Walcher et al.
2008'2), as well as discrepancies between SFRs measured from emission lines and
SED fitting in some galaxies (Salim et al., 2007).

It is interesting to investigate how this discrepancy in the global star formation
histories comes about for the FAST fitting, by examining how well histories are
recovered for differing EAGLE galaxies. In Fig 6.13, the real star formation histo-
ries of EAGLE galaxies with M. > 10°M, galaxies are calculated and re-binned
in stretched and scaled time units, such that the best-fit history is represented by
the black line. The idea of this is to represent the “typical” (or perhaps expected)
star formation histories of EAGLE galaxies, in a way that can be compared to the
titting form. Given the knowledge that FAST yields different mass offsets for dif-
ferent EAGLE galaxies, separating galaxies into offset bins reveals mismatches and
trends in the histories that may drive the incorrect mass recovery. In general, it is
clear that the expected EAGLE histories are more dispersed than the FAST histo-
ries; in each case star formation begins before the fitting history assumes it does,
and a low-level residual probability of star formation continues after FAST star
formation rates essentially decay to zero. Part of this dispersion may be driven
by the fact that fitting ages and timescales are discrete in nature, i.e. represent
‘nearest’ values, and may be reduced if histories were allowed to be continuous.

However, it seems plausible that this is predominately a real effect, due to a more

2Discrepancy between instantaneous galaxy SFRs and those inferred from histories of succeed-

ing populations is taken to be indicative of the role of mergers
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Figure 6.13: Comparison between the real form of EAGLE star formation histories

(normalised to unit integral) and their fitted form in bins of logarithmic offset of

the My, g values from the M{: .. Galaxy histories are binned for each galaxy in-

dividually in time units shifted and stretched by the best fitting age and timescale

values (/7 = (tage — tiookback)/T). In these units, the best fit delayed exponential

history (M, o< t' exp(—t'/7) for t' > 0) is always represented by the solid black line.

Galaxy histories are binned by their FAST mass offset, as indicated by the leg-

end, and summed together to yield composite histories that can be compared to

the fitted form. In general EAGLE histories are more dispersed in time, and more

underpredicted galaxies (redder curves) consistently show more star formation

prior to when the FAST galaxies estimate SF to commence, at ¢’ = 0.
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gradual initial build-up of star formation, and the possibility of star formation
events at late times. The star formation probability of EAGLE galaxies appear to
drop more rapidly than FAST assumes in the range 7 < t'/7 < 10, butis overtaken
and remains higher than assumed for ¢'/7 £ 10. Comparing the function repre-
senting different bins in offset, a clear trend can be seen in star formation prior
to ¢’ = 0; more underestimated galaxies have more of their stellar mass formed
before the fitted history assumes it to start. This can be considered an example of
‘outshining’ (Gallazzi & Bell, 2009; Maraston et al., 2010; Pforr et al., 2012; Sorba &
Sawicki, 2015); residual star formation at late times that can dominate the optical
SEDs and the inability of the delayed exponential to represent the non-idealised
EAGLE histories, may lead to a considerable fraction of the mass in old stars being
missed at early times. The star formation probability in galaxies that have their
masses overestimated appears to peak at a later time than FAST assumes them
to. The older stellar populations assumed by FAST would generally need more
mass for the same brightness, hence the underestimation.

Given the correlation between colour and offset found in Fig. 6.8, and the
very different properties of red and blue galaxies in general, in Fig 6.14 I remake
Fig. 6.13 for red and blue galaxies separately. For blue galaxies (top panel), the
histories show very similar behaviour to that of Fig. 6.13, if slightly less dispersed
and with a more steady, exponential increase in star formation for ¢ < 0. The star
formation histories for ¢’ > 0 are fit reasonably well by the delayed exponential,
but the EAGLE SFRs appear to decay over a shorter period. The overpredicted
stellar mass contribution at ¢ > 0 somewhat mitigates the underpredicted stellar
mass contribution at ¢’ < 0.

For red galaxies, however, the histories look very different. Red galaxies
show a much more significant offset in when the star formation rate probability
peaks from the assumed history, with underestimated galaxies (the majority of
red galaxies), showing peaks occurring ~ 10 timescales before the FAST history
assumes it to. Red composite galaxy histories also seem generally much more
dispersed than the short bursts that are fit by FAST. Note that this does not reflect

the true red EAGLE galaxy histories being particularly broad relative to the gen-
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Figure 6.14: As Fig. 6.13, but with galaxies now split into red and blue popula-

tions (at z = 0.1) using the intrinsic v — g vs. M}

true

cut of Eq. 4.3.1. We see that the
red and blue galaxies in the same offset bins relate differently to the FAST best-fit

star formation history.
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eral population: as shown in appendix plot Fig. C 4, they in fact form the majority
of their mass over shorter periods than blue galaxies on average. This dispersion
may instead be attributed to the 7 values recovered by FAST for red galaxies be-
ing even shorter than those that emerge in EAGLE (recovering 7 ~ 100 Myr in
Fig. 6.8), combined with uncertainty in ¢,,, caused by age-metallicity degeneracy,
and discretisation of possible ages fit by FAST".

Overall, the vast underprediction of star formation rates at the true peak (z ~
2) by FAST can be ascribed to more slowly rising histories contributing more old
stars in the overall galaxy population, and that red galaxies form much earlier
than predicted by the best-fit histories. A potential cure for this problem would
be to build a more gradual onset of star formation into the fitting histories and,
as discussed before, allow composite metallicity SEDs that give a better fit to
the ages of red galaxies with extended internal stellar metallicity distributions.
Although it is informative to compare histories in this way, it does not tell us
about the role of dust; a novel element to this study of SED fitting with a large
volume cosmological simulation. In the next section the influence of dust on

recovered masses is explored.

6.3.4 Influence of dust on SED fits

Another key uncertainty in fitting SEDs is the effects of dust. As was shown
in section 6.3.1, dust is an important source of degeneracy, which can lead to
catastrophic errors in the broad band optical fitting. With the SKIRT photometric
model for EAGLE galaxies developed in chapter 5, the effect of assuming a much
simpler single-screen dust prescription can be tested.

In Fig. 6.15 the logarithmic FAST mass offset is plotted as a function of the
SKIRT g-band ISM dust attenuation, A,, for EAGLE galaxies. A clear median
trend is observed here: unattenuated galaxies typically show systematic underes-
timates of ~ 0.15 dex. The accuracy of the FAST mass estimation improves with

Ay, peaking at A; ~ 0.4. The underestimate then begins to increase again, such

BThere is typically ~ 300 Myr between t,4. grid points at the recovered red galaxy ages.
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Figure 6.15: The logarithmic mass offset of My, ¢ from M{, . as a function of the

true
‘true’ g-band ISM dust attenuation arising in the SKIRT model photometry, A,.
Shaded points show individual EAGLE galaxies for redshifts z < 0.2, shaded from
dark to light by point density. Orange shading indicates intrinsically red galaxies
(via the Eq. 4.3.1 definition), whereas blue shading indicates bluer intrinsic colours.
the median values in A, bins are shown using black points, with error-bars indi-
cating the 14-86 percentiles. Dotted lines are used to roughly demarcate the region
where the ‘failure” population (Fig. 6.6) resides. A clear median dependence is

found with ~ 0.2 dex scatter; the accuracy of the FAST mass estimate peaks at

Ay ~ 0.4, decreasing towards both lower and higher levels of attenuation.
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that by A, ~ 1 galaxies are again underestimated by ~ 0.15 dex. The numbers
of galaxies with higher attenuations in EAGLE is low at z = 0.1, so it is hard to
constrain whether this trend would continue from this plot. From initial exami-
nation of the SKIRT photometry generated at different epochs, this trend appears
to be largely redshift independent. The Fig. 6.15 plot for all EAGLE galaxies with
z S 2 can be found in appendix C.3 (Fig. C.3), probing A, to higher values and
improving number counts at high values. This reveals that the mass discrepancy
continues increasing to higher A,, along with the overall mass offset scatter.

The result that accuracy actually improves with A, for low attenuation values
is related to the perhaps counter-intuitive finding that the fitted attenuation in
less underestimated or even overestimated mass galaxies is lower than the true
attenuation, as seen in the bottom row of Fig. 6.8. This effect can be attributed
to the more selective attenuation and redder attenuation curves found for the
SKIRT modelling, relative to screen models such as the Calzetti et al. (2000) at-
tenuation law assumed by FAST. As discussed at length in chapter 5, selective
absorption due to geometry, particularly in relatively face-on or lower inclination
galaxies, can effectively hide young stars and make galaxies appear redder and
more passive in colour-colour space. By assuming a single Calzetti et al. (2000)
screen model, FAST cannot reconcile this selective absorption, and instead finds
the galaxies to be less star forming and hence more massive than they really are.
This is also evidenced by the reduced SFRs recovered with FAST. Overall, in the
low attenuation (4, < 0.4) regime that dominates at z = 0.1, selective dust ef-
fects counteract those of ‘outshining’ in integrated photometry by reducing the
dominance of young stars in the integrated SED.

In the higher attenuation regime (A4, £ 0.4) the increasing accuracy with A,
trend is reversed. As was shown in Fig. 5.6, more edge-on galaxies, which repre-
sent the highest attenuations (Fig. 5.3), have integrated attenuation profiles that
are significantly greyer and hence are closer to the Calzetti et al. (2000) law as-
sumed by FAST. This may explain why these galaxy underestimates are closer to
the unattenuated galaxies on average. The continuation of this trend at higher

attenuations is seen in the appendix plot Fig. C.3, suggesting that the attenua-
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tion profile may become greyer still as attenuation increases, leading to much
larger mass underestimates. Individual sight-lines through dust lanes demon-
strate higher attenuation than the overall integrated values, and have their masses
strongly underestimated in the resolved mass maps of Fig. 6.5. This could again
be down to behaviour not captured by single screen models, and the break down
of the screen approximation for the optically thick regime. To test this hypoth-
esis, further investigation of the attenuation properties of high-redshift EAGLE
galaxies is needed.

In the dust-inclusive (via a Calzetti et al. 2000 screen) SED fitting of Mitchell
et al. (2013), a significant population of galaxies with underestimated masses are
found at z = 0, and these are found to correspond to highly attenuated, particu-
larly compact discs. Such a population of galaxies is not found for EAGLE. This
appears to be due to the fact that with the SKIRT dust modelling, and in the low
attenuation regime that dominates at low redshift, dust improves the fit. The ide-
alised dust disc model used in GALFORM reaches higher observed attenuations
that the “puffed-up’ geometries of EAGLE galaxies do not allow. If the EAGLE
galaxies were thinner, perhaps a significant population of highly inclined EAGLE
galaxies would appear with large mass underestimates, following the higher at-
tenuation trend of Fig. 6.15.

The effect of geometry on attenuation profile and mass recovery was also in-
vestigated in the detailed study of Wuyts et al. (2009a), which utilises idealised
hydrodynamical simulations of major mergers at higher redshift (z ~ 2). This is
achieved through a more sophisticated analytic model than a single screen that
accounts for geometry; each star particle uses enriched gas to compute the dust
column computed towards an observer. This dust column is used to scale a fore-
ground Calzetti et al. (2000) screen. Intriguingly, Wuyts et al. (2009a) find greyer
than Calzetti et al. (2000) integrated attenuation profiles. This may also be true
of EAGLE in the high attenuation regime and at similarly high redshifts, pending
investigation as discussed above. However it could also come about in Wuyts
et al. (2009a) from the initially uncorrelated nature of stars and dust. Mixing stars

that see extincting screens of different strength yields an attenuation curve greyer
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than that of the extincting screen, which is effectively built in to the Calzetti et al.
(2000) attenuation profile itself to model starburst galaxies (e.g. Fischera et al.,
2003). The geometric effect of mixing stars and dust is therefore arguably ‘double-
counted’ in the modelling to some extent if the Calzetti et al. (2000) screen is used.
Wuyts et al. (2009a) begin to recover the effect of preferential reddening of young
stars as the simulations evolve and star particles form in enriched gas. They find
that this indeed makes their integrated attenuation curves steeper, approaching
Calzetti et al. (2000), and this improves mass recovery. It could be argued that at-
tenuation profiles of EAGLE galaxies should be greyer than they are to account for
small scale fluctuations in column density that cannot be resolved at EAGLE reso-
lution, as currently dust and stellar distributions are treated as perfectly smooth
below the resolution scale with the exception of birth clouds in the MAPPINGS-III

SEDs. Investigating this effect is left to future work.

6.4 Summary and Conclusions

I have examined the recovery of galaxy properties from optical photometry of
EAGLE galaxies, with a focus on galaxy stellar mass. I compare empirical M*/L
ratios using different calibrations of Eq. 6.2.1 by assessing how well they recover
the true stellar masses of EAGLE galaxies from different sets of integrated EAGLE
photometry'* (Fig. 6.1). The effects of resolution on the accuracy of the mass es-
timates are constrained without dust for an idealised comparison of integrated
photometry and completely separable SSPs. Such a comparison allows the con-
tribution of SSP properties to integrated and resolved mass offsets to be directly
characterised. Full SKIRT images of 3 archetypal galaxies are then used to ex-
plore the influence of SSP alignment and dust on recovered masses at differing
resolutions.

Some of the key findings when investigating the colour-dependent M*/L es-

timators are:

4The ND prescription of chapter 3 and the full SKIRT model of chapter 5 are used.
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e Eq. 6.2.1 M*/L estimators are shown in Fig. 6.1 to yield a remarkably mass
independent and convergent (Fig. C.1 in appendix) underestimate of ~ 0.1—
0.2 dex on average. The Baldry et al. (2012) (B12) calibration is arguably the
most appropriate for integrated EAGLE photometry, and indeed proves the

most accurate (~ 0.1 dex underestimated).

e Comparing idealised resolved and integrated photometric mass estimates
in Fig. 6.2 suggests that EAGLE mass underestimates are driven by star for-
mation in blue galaxies and the internal distribution of SSP Z* values in red
galaxies when dust is neglected. While outshining (Gallazzi & Bell, 2009;
Maraston et al., 2010; Pforr et al., 2012; Sorba & Sawicki, 2015) due to young
stellar populations can be mitigated by improving resolution, the effects of
the underlying metallicity distribution prove impervious to the benefits of

resolution.

e The accuracy of the Zibetti et al. (2009) (Z09) mass estimator applied to real-
istic dust-inclusive SKIRT images is revealed to vary for 3 archetypal EAGLE
galaxies (of type S, Irr and E) at differing resolutions and viewing angles
(Fig. 6.4). The accuracy of the estimator is found to generally improve with
resolution above the intrinsic EAGLE resolution of ~ 500 pc. While differ-
ences between the CBO07 stellar population model assumed by Z09 and the
BCO03 model assumed by EAGLE may account for the typical offsets at EA-
GLE resolution, the highly attenuated edge-on S type cannot be reconciled
by this effect and is underestimated by ~ 0.3 dex even when resolved. Dust
lanes are seen to contribute large mass underestimates in the Z09 estimated

mass maps (Fig. 6.5).

e The difference between resolved and unresolved mass estimates in Fig. 6.4
is reproduced well using the sSFR-dependent relation of Sorba & Sawicki
(2015) for the E and Irr type (0 and ~ 0.03 respectively), but this still under-
estimates the difference found for the S type galaxy (~ 0.1 dex).

Building on the insights attainable from simple empirical estimators of mass, I

employ the FAST code (Kriek et al., 2009) to perform full SED fitting on integrated
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ugriz SKIRT photometry at z = 0.1. Initial testing shows that adopting a similar
FAST set-up to Torrey et al. (2014) leads to a small population of galaxies with
catastrophically underestimated masses (termed failures) when dust is included
in the fitting. This is mitigated by employing a higher minimum age of 10*® yr for
z = 0.1 galaxies, limiting failures to < 1% of the population, in the fiducial FAST
set-up. The offsets in fiducial FAST-predicted masses from their true values are
characterised, and residual trends between offset and galaxy properties are ex-
plored. I compare the simulated and FAST-derived forms of theoretical plots to
assess the systematic effects of SED fitting and modelling photometry in EAGLE.
Finally, I explore how FAST mass offsets are influenced by fitting complex EA-
GLE star formation histories and SKIRT dust attenuation with simpler parametric
models.

Key results from investigating the optical photometric SED fitting with FAST

include:

e The failure population arises due to the similarity between the rest-frame
ugriz photometry of regular SF galaxies and extremely young, vigorous and

dusty starbursts (Fig. 6.7).

e The fitting of blue galaxies can be highly temperamental in the reduced x?
approach of FAST, which could be mitigated by instead integrating over a
posterior distribution of fitting probabilities, as advocated by e.g. Taylor
et al. (2011).

e The FAST recovered mass estimates are generally superior to those obtained
from Eq. 6.2.1 M*/L estimators of Fig. 6.1, with an average underestimate

of ~ 0.07 dex (marginally better than the B12 estimator).

e The SED fitting leads to an underestimate in high mass number counts for
the GSMF. This may contribute to the bright-end systematic error along-
side uncertainties associated with SPS models and galaxy definition (e.g.
Bernardi et al. 2017), and bias due to random errors (demonstrated for EA-

GLE by Furlong et al. 2015).
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e The ‘main-sequence’ in the SFR-M* relation recovered by FAST is very simi-
lar to the true EAGLE relation; both stellar mass and SFR are underestimated

to a similar degree by FAST, and the main sequence is close to linear

e Red galaxy masses are typically underestimated with FAST (top right panel,
Fig. 6.8). This appears to be related to a systematic underestimate in their
ages. The fitting bias is attributed to skewed internal metallicity distribu-
tions that yield bluer red sequence colours than observed, and composite

metallicity templates are suggested as a possible solution.

e Masses of blue galaxies tend to be more accurate or even overestimated,
despite having underestimated ~ 500 nm attenuations (Fig. 6.8). This is
ascribed to the assumed Calzetti et al. (2000) law having a ‘greyer” attenua-
tion profile than exhibited by the SKIRT modelling of EAGLE for galaxies at
the typically low effective attenuations found in the z = 0.1 sample (section
6.3.4). Fig. 6.15 shows that for higher than typical attenuations (4, £ 0.4)
galaxy masses again become more underestimated, consistent with what is

seen for the edge-on S type of Fig. 6.4.

e The star formation histories inferred by FAST are highly discrepant with
those of EAGLE galaxies (section 6.3.3); more so than the quality of mass
and SFR estimates might suggest. The FAST cosmic star formation history
plot of Fig. 6.12 peaks at z ~ 0.6 rather than the z ~ 2 peak found for
the true EAGLE histories. This difference can be ascribed to SED fitting un-
derestimating the ages of red galaxies (mentioned above), and missing the
gradual initial mass build up in the general galaxy population (Fig. 6.14).
In addition to composite metallicity templates, parametric histories with a

slower build up in their early stellar mass are offered as a solution.

Overall, it is reassuring to see how well SED fitting with very simple assump-
tions can recover stellar masses of the EAGLE z = 0.1 galaxy population on av-
erage, despite the relative complexity of the simulated galaxy star formation his-
tories. Still, the EAGLE analysis does suggest a number of potential systematic

effects and trends that may also appear in the data. It is already known that
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a plethora of degeneracies make it difficult to constrain star formation histories
photometrically (e.g. Maraston et al., 2010; Mitchell et al., 2013). Where more data
is available, UV-FIR broad-band or spectral fitting have been found to break de-
generacies between effects of dust, star formation rate and metallicities, yielding
improved parameter recovery (e.g. Hayward & Smith, 2015). Panchromatic SED
fitting is something that could be explored using the SKIRT model for EAGLE in a
future work; appealing to FIR properties of galaxies that we detail in Camps et al.
(2016).

Having tested this analysis at low redshift (z = 0.1) where data is generally
better constrained, these insights can be carried over to study EAGLE galaxies at
higher redshifts, particularly around the cosmic noon, z ~ 1.5 — 3. Here, more
extreme properties of galaxies (e.g. in terms of SFR, dust attenuation) and higher
uncertainties in the observations and modelling may manifest larger systemat-
ics in the recovered properties of galaxies (e.g. Wuyts et al., 2009a,b; Maraston
et al., 2010). It is also important to note that SFRs are not typically derived si-
multaneously with stellar masses, as they are here; it is more common to appeal
to a variety of observable SFR indicators that give a more direct measure of star
formation. Another potential EAGLE investigation could look at deriving these
indicators for their appropriate epochs, and investigating how this may affect
the shape and normalisation of the derived evolution of the cosmic star forma-
tion rate. Planned improvements in the simulations (e.g. higher resolutions and
more realistic ISM properties) and in observational data sets are poised to fur-
ther strengthen the relationship between observation and theory, opening many

exciting new avenues of study.



Chapter 7

Conclusions

In this chapter conclusions are drawn about the results found in this thesis, the
potential limitations of the adopted approach and the future studies that may
be accessible by building upon this work. I first summarise my findings in sec-
tion 7.1. Section 7.2 then critically assesses the forward modelling approach I
have adopted and suggests potential future improvements. Finally, potential fu-

ture studies are outlined and discussed in section 7.3

7.1 Summary of findings

In this thesis I have applied a forward modelling approach to the simulated galax-
ies of the EAGLE suite of cosmological simulations, in order to produce mock ob-
servables that may be compared more directly to data. Through this comparison
I have examined how well the simulations reproduce the data, and attempted to
understand the physical properties that cause agreements and discrepancies. Ex-
ploiting the traceable evolution of simulated galaxies, I also predicted how galaxy
colours and colour bimodality evolve. Mock observations are produced as a use-
ful resource for future studies, and initial attempts are made to re-derive physical
properties and assess inverse modelling procedures by following observational
techniques.

Such forward modelling analysis of simulations and semi-analytic galaxy for-

mation models is by no means a new approach, and was inspired by a procession
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of important works in the literature (e.g. Kauffmann & Charlot, 1998a; Font et al.,
2008; Wuyts et al., 2009a,b; Jonsson et al., 2010; Mitchell et al., 2013; Torrey et al.,
2014; Hayward & Smith, 2015). Some novel aspects of the work presented here
derive from the use of EAGLE (described in chapter 2), which has been shown to
reproduce a number of important characteristics of the observed population well
(e.g. Schaye et al., 2015; Furlong et al., 2015; Lagos et al., 2015¢; Bahé et al., 2016;
Artale et al., 2016), and the application of radiative transfer to a large sample of
hydrodynamically simulated galaxies.

I first provided a general review on the topic of galaxy observations and for-
mation theory in chapter 1, and then a more specific grounding on the EAGLE
simulations and datasets that I use in chapter 2. Chapters 3-6 then detailed the
original research of this thesis. Individual summaries of these chapters are de-

tailed below.

Chapter 3 summary: In chapter 3, I presented a first look at the predicted
colours and luminosities of z = 0.1 EAGLE galaxies produced using the Bruzual &
Charlot (2003) SEDs alongside different analytic dust models, primarily compar-
ing to data from the GAMA survey (Taylor et al., 2015). A simple fiducial model
(termed GD+O) to account for dust effects was developed: a two-component
Charlot & Fall (2000) screen model accounting for attenuation by the ISM (ap-
plied to all stars) and birth clouds around young stars (applied to stars younger
than 30 Myr), with optical depths scaled by the estimated dust mass in galaxies
and a factor to account for the effects of random orientation. The g — r colour
vs. mass distribution for galaxies (Fig. 3.1) and broad-band luminosity functions
(Fig. 3.3) were found to agree with GAMA at a level of consistency that had not
been seen for cosmological simulations, and are competitive with contemporary
semi-analytic models.

Despite this, there are clear discrepancies between EAGLE and the data. The
red sequence is 0.1 mag bluer than observed at high mass (M, 2> 10'"*M;) with
a flatter slope towards lower masses, which I attributed to discrepancy between

the EAGLE and observationally-derived stellar mass-metallicity relation (Schaye
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et al., 2015). The red sequence also persists to lower mass (M, < 10%7M) than
is seen in the data; this appears to be at least partially due to poor resolution
of star formation and feedback in low mass galaxies, but is difficult to test as
many of the faint red galaxies are in large halos missed by the small volume high
resolution simulations. A blue cloud population was also recovered, and found
to peak at ¢ — r =~ 0.4 in good agreement with GAMA at intermediate masses
(M, ~ 10'°Mg). This conversely extends to higher masses than are seen in the
data. It was speculated that the high mass blue galaxies could reflect low lev-
els of star formation not sufficiently quenched by the black hole implementation,
but also that it could be an artefact of our photometric modelling; particularly
the treatment of dust in galaxies with geometries atypical of most star forming
systems. Overall, the mass-dependent colour distribution generally agrees with
observations, transitioning from being blue to red dominated at around the ob-
served mass, despite the bimodality continuing over a broader mass range than
is observed.

A similar level of agreement was found for luminosity functions in bands from
near UV to NIR. The discrepant low galaxy number counts at the knee of the red-
der luminosity functions are reflective of a general underprediction registered for
the galaxy stellar mass function (GSMF) itself (Schaye et al., 2015). It was found
that while the GD+O dust model improves agreement with data, the majority of

these results are also recovered if dust is neglected completely (the ND model).

Chapter 4 summary: Dust free modelling was then used in chapter 4 to in-
vestigate how intrinsic galaxy colours evolve to yield the bimodal distribution
observed at low redshift (z ~ 0.1), with a particular focus on ‘green’ galaxies
transitioning from one population to the other. It is found that EAGLE galaxies
turn intrinsically red either due to interactions as they become satellites or due to
the influence of AGN feedback processes, that dominate at low and high mass,
respectively. The red sequence builds up from high and low mass ends as a re-
sult, with a ‘hole’ in the red sequence seen most clearly at M, ~ 10'°M, for z ~ 1.

The typical transition time for galaxies to turn from blue to red was found to be
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~ 2 Gyr, consistent with passive evolution. This suggests a rapid shut down of
star formation, consistent with instantaneous quenching. Even without star for-
mation being explicitly disrupted, star forming EAGLE galaxies become redder
over cosmic time as the sSFRs, M* /M*, decrease.

Around 40% of galaxies with M, > 10'°M, exhibit rapid colour transitions
(A(u*-r*) > 0.8 mag over any 2 Gyr interval), with the remaining galaxies exhibit-
ing a more gradual transition. Most galaxies remain on the red sequence, with
those that exhibit similarly rapid transitions from red to blue comprising only
1.6% of the M, > 10'°M, sample. However, a larger fraction of EAGLE galax-
ies evolve to become measurably bluer than they were in the past (A(u*-r*) <
—0.05 mag), with a 17% chance that a random EAGLE galaxy observed in the in-
terval 0 < z < 2 is becoming bluer. While these results provide insight into
the evolution of galaxies and the main mechanisms driving colour transition, the
lack of dust could lead to significant differences in the trends and distributions
that are measured, particularly at high redshift. The choice to neglect dust was
due to uncertainty about how the empirically calibrated screen prescription used

at z = 0.1 should evolve with redshift.

Chapter 5 summary: A more representative dust model was pursued in chap-
ter 5; full dust radiative transfer is performed on each EAGLE galaxy using the
simulated 3D distributions of stars and enriched gas that emerge for each system.
In addition, sub-resolution scale attenuation in HII regions is accounted for using
the MAPPINGS-11I SEDs for young stars (Groves et al., 2008). As in chapter 3, this
analysis took place at z = 0.1, but data products were generated at all redshifts.
While an increase in attenuation naturally emerges for high inclination EAGLE
galaxies with this approach, edge-on galaxies were found to be less attenuated
than observed, ascribed to EAGLE discs being too thick. This is a clear limitation
of the modelling, but only manifests major differences in the optical properties
of edge-on discs and has little bearing on the overall results presented. Despite
the problems with disc thickness, the typical attenuation profile is examined at

differing inclinations and the result that edge-on galaxies have less frequency de-
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pendent (greyer) attenuation profiles is recovered.

Direct comparison of optical colours were conducted against the GAMA data
and that of chapter 3, with some key differences found; SKIRT photometry boosts
the green valley and red sequence populations relative to that of GD+O and
brings colour distributions into better agreement with the GAMA data. ugJ plots
showed explicitly that the SKIRT modelling was more effective at hiding young
stellar populations such that some active galaxies appear passive, similarly re-
flected in the D4000 spectral index measurements. Ho measurements are used as
a direct proxy of SFR, and the dust effects were investigated. The Ha luminos-
ity function was found to be discrepant, as expected from Furlong et al. (2015),
though this may be reconciled by revised SFR calibrations (e.g. Chang et al., 2015).
The bright end was also found to be intrinsically shallower than a constant dust

correction suggests, similar to the findings of Gunawardhana et al. (2013).

Chapter 6 summary: Testing the inference of physical properties from syn-
thetic optical observations was continued in chapter 6, with a particular focus
on galaxy stellar masses, M*. As a colour-dependent mass to light ratio (A//L) is
often taken to be a good approximation of empirical M/* estimates, I investigated
how well they can reproduce simulated M* values from the EAGLE photome-
try of chapters 3 and 5. Empirical estimators applied to integrated photometry
were found to generally underpredict EAGLE masses by a uniform 0.1-0.2 dex
over the modelled mass range, depending on the calibration used. It was found
that appealing to resolved photometry may help this situation for blue galax-
ies dominated by age effects, but does not improve the prediction for red galaxies
dominated by metallicity effects. Generally, including dust was found to improve
mass estimation at z = 0.1, except for the highest attenuations and densest dust
columns, where it leads to strong underestimates.

For more physical insight than the abstract colour-)//L relations provide,
photometric SED fitting is investigated using the FAST code (Kriek et al., 2009).
A similar set-up to Torrey et al. (2014) was used, but including dust. The dust

inclusion is found to induce degeneracies, with some star forming galaxies being
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fit as extreme starbursts. These recover much lower AM* and much higher SFR
values than simulated (both by a factor ~5-10). Extreme fitting failures were mit-
igated by increasing the minimum age of template starbursts (leading to a < 1%
incidence of failures). Plots in the physical domain (i.e. M* and SFR) were con-
structed using both simulated values and those re-derived from SED fitting the
EAGLE photometry, then compared alongside those derived from observations. It
is found that using FAST-derived M* values reduces number counts at the bright
end of the GSMF relative to the simulated values, which then increases the dis-
crepancy with Baldry et al. (2012). This was recognised as but one of many po-
tential systematic effects on the bright end that are not investigated in this thesis.
The M~*-SFR plot changes little due to both SFR and M* being underestimated.
On comparing star formation histories in EAGLE to those fit by FAST, it was
suggested that more gradually rising star formation histories with composite
metallicities could provide better fits to EAGLE. A clear relationship was also
found between mass offset and dust, where mass estimation is optimal for A, ~
0.4, indicating that varying the attenuation profile with obscuration may help
mass recovery for the SKIRT photometry. Systematic effects due to stellar popu-
lation models, IMF, etc are neglected in this investigation, as these are fixed for
the EAGLE photometry that has been modelled. This study is a first step towards
investigating how well properties are recovered with more sophisticated spectral

titting, larger wavelength ranges and higher redshift samples in EAGLE.

Overall, it is found that model observables generated for the EAGLE simula-
tions generally reproduce data well at low redshifts (z ~ 0.1), and may provide
insight into both the evolution between galaxy populations observed at differ-
ent epochs, and the influence of common observational techniques and assump-
tions. Despite this it is important to critically assess the inherent problems of this
approach, and, more fundamentally, how informative applying a forward mod-

elling approach to simulations actually is.
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7.2 Assessment of the methods used in this thesis

The feedback parameters used in the EAGLE simulations are calibrated to repro-
duce certain relations derived from observational data. These relations include
the galaxy stellar mass function at z = 0.1, the black hole mass (Mpy) vs. M*
relation and the size vs. M* relation for galaxies (Schaye et al., 2015; Crain et al.,
2015). Clearly, these relations cannot then be considered predictions of the sim-
ulations as they emerge by construction, thus limiting the physical insight they
can provide. Complex relationships exist between galaxy properties in EAGLE,
and the influence of calibration on all results should be considered. Luminosities
are often driven by stellar mass content, particularly in redder optical and NIR
bands. As a result, it is hardly surprising that the luminosity functions show a
similar level of agreement with the observed galaxy luminosity functions as is
found for the GSMFE. However, agreement at shorter wavelength bands (e.g. u-
band) relies more on dust effects and the mass in young stars. In a similar vein,
optical colours are less directly dependent on calibrated properties, and predom-
inately influenced by the ratio of young to old stars, stellar metallicities and dust
effects. However, the relationship between black hole growth and stellar mass
that manifests the Mpy-M™ relation and the break in the GSMF also ensures that
star formation is disrupted in massive galaxies to a large extent. Furthermore, en-
suring realistic galaxy sizes profoundly influences the stellar and gas geometries
of galaxies, and thus the results obtained for dust modelling. It remains difficult
to gauge how far we might be validating our prejudices by focusing on simula-
tion results that are shaped by our calibration and assumptions. Still, calibration
far from guarantees that features such as the observed red/blue galaxy fraction
are reproduced as well as is found.

Another limitation is simulation resolution. The standard physical resolu-
tion of EAGLE is ~ 0.5 kpc, meaning that structure on smaller scales is missing.
The resolution limitations also necessitate the pressure floor that limits cooling to
~ 10* K in the EAGLE ISM. One effect of this missing structure may be on dust

attenuation, where neglected small scale ‘clumpiness’ of the ISM may potentially
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lead to systematic effects not accounted for in our modelling. Indeed, this effect
has been suggested as a potential contributor to the discrepancy between the ob-
served and modelled UV J (or ugJ) distributions at high redshifts (1.5 < z < 3,
e.g. Wuyts et al. 2009b). It also affects macroscopic scales; as has been shown, the
gas discs in EAGLE are artificially “puffed-up” leading to particularly underesti-
mated edge-on attenuations in discs. In addition, features such as tidal arms that
affect the age-dependent configurations of stars and dust may also be diminished.
Aside from spatial resolution, mass resolution also plays a role. At ~ 10°M, star
particles are more massive than typical bound stellar clusters and GMCs (e.g.
Relafio & Kennicutt, 2009). This results in artificial stochasticity in the stellar
component, which may affect colours systematically unless this is mitigated us-
ing something like our resampling approach, and which may influence feedback
and enrichment, carried out on a coarse particle-by-particle basis. While appeal-
ing to galaxies resolved by more particles may mitigate many of these problems,
observations blue-ward of optical wavelengths may be dominated by a few very
young particles, even at higher AM/*. The EAGLE team is currently developing
a successor simulation with better spatial and mass resolution, that allows gas
to cool to ~ molecular phase temperatures. This aims to provide a significant
improvement in the resolution of small scale and macroscopic scale features of
galaxies. Repeating the analysis of this thesis using such improved simulations
could provide more realistic mock observables and evolution.

Along with the lack of a molecular gas phase, there is no explicit dust com-
ponent or model for dust grain creation or destruction in EAGLE. Dust is entirely
post-hoc in the modelling, using the enrichment properties of cool gas and a con-
stant metal-to-dust ratio to imply its distribution in the ISM. While a constant
metal-dust ratio is thought to be reasonable in many cases, it clearly is not ap-
plicable in all environments, and currently redshift evolution is not considered.
Another motivation for an explicit dust component is that radiation pressure on
dust has been posed as a potentially important mechanism to drive outflows (e.g.
Veilleux et al., 2013). This may in turn influence dust attenuation in self-consistent

modelling; Wuyts et al. (2009b) suggest that dusty outflows could act as fore-
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ground screens, and help reproduce the reddest observed galaxies in the z ~ 2
ugJ (or UV J) diagram. Building the lifecycle of dust and its role in driving out-
flows into simulations has been attempted by others (e.g. Bekki, 2015; Aoyama
et al., 2016; McKinnon et al., 2016), and could provide a more physical model for
the ISM dust distributions in future EAGLE-like simulations.

It may also be possible to improve the self consistency and realism of the SKIRT
modelling without modifying the simulations themselves. To account for sub-
resolution dust effects, the SKIRT model currently relies on the MAPPINGS-III HII
region SEDs of Groves et al. (2008). While these build in modelling for HII dust
and gas radiative transfer, the dust attenuation is averaged both spherically and
over the age of the HII region. Properly accounting for dust represented in the
HII region models from the overall budget (a constant fraction of the metal mass
in enriched ISM gas) is therefore somewhat ambiguous. They are also built on
the Leitherer et al. (1999) population models, which could lead to some inconsis-
tencies for the small fraction of stars in HiI regions. Perhaps a more consistent
approach would be to model HII regions internally within SKIRT using a single
stellar population library, and allowing it to model an anisotropic dust screen
around young stellar populations that gradually disperses with the population
age. This could be paired with a resampling approach that also accounts for re-
alistic stochastic sampling of the IMF and cluster mass function (CMF) of stellar
populations on those mass scales, as built in to some modern stellar population
codes such as SLUG (da Silva et al., 2012). Such variations could lead to a more
self-consistent model, where the influence of stochasticity and sub resolution dust
are more tractable.

Various other assumptions in the modelling are not investigated directly in
this thesis. As detailed in chapter 2, the modelling in chapters 3-5 consistently
uses a Chabrier (2003) IMF and the Bruzual & Charlot (2003) population synthe-
sis model for the majority of stars, considering all self-bound material within a
30 pkpc spherical aperture. In the M* derivation of chapter 6, the fitting and

indicators use the same Bruzual & Charlot (2003) population synthesis model
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with a Chabrier (2003) IMF!, and any aperture effects are marginalised over by
comparing the masses derived using 30 pkpc spherical aperture photometry to
the true 30 pkpc spherical aperture M* values. This was originally chosen for
simplicity and consistency, assuming that population model differences are rela-
tively small for the optical wavelengths and low redshift focused on here (z ~ 0.1,
e.g. Gonzalez-Perez et al. 2014a). However, to get a better idea of how large the
uncertainties and discrepancies that we identify are in the context of these unex-
amined systematic uncertainties, especially at higher redshifts, future work could
test IMF variations and stellar population variations using models such as Con-
roy et al. (2009) which allow these assumptions to be changed. It is important to
test these effects in concert with the dust, as demonstrated by Wuyts et al. (2009b).
A separate analysis of aperture modelling effects would be similarly useful, and
could be tested using SKIRT imaging of bright-end galaxies to replicate observa-

tional techniques.

7.3 Future work

As well as various modifications that could be made to the approach taken in this
thesis, there are also a host of applications of this work going forward. The broad-
band SKIRT imaging developed in chapter 5 itself provides a number of possible
applications, particularly for investigating the morphologies and morphological
evolution of EAGLE galaxies. Using this mock data, observational image anal-
ysis techniques could be emulated to measure morphologies, and compared to
kinematic metrics (e.g. Abadi et al., 2003; Sales et al., 2010). The influence of dust
on morphological measures could also be characterised. To this end, a pipeline
to reduce the mock images and to emulate instrumental noise and seeing is in
development. This analysis will be used to characterise when discs and bulges
emerge in the simulations, and study progenitors of present-day early and late

types. Image analysis of EAGLE galaxies could also prove very informative for

lwith the exception of Zibetti et al. 2009 who use the 2007 update to Bruzual & Charlot 2003
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Figure 7.1: Inverted three colour Herschel PACS-like images of EAGLE galaxies of
60 pkpc on a side, produced using the SKIRT modelling described in chapter 5
and Camps et al. (2016). From left to right, a central starbursting galaxy, a spiral
galaxy and a clumpy galaxy are selected from redshifts z ~ 2 — 4. The diversity

of modelled EAGLE dust morphologies can be seen.

weak lensing studies, in preparation for upcoming missions such as Euclid. These
studies primarily aim to decouple the influence of cosmic shear in galaxy images
from their intrinsic morphologies and alignments. The EAGLE imaging data then
provides a unique resource for such analysis, comprising a large sample of hydro-
dynamically simulated galaxies with non-idealised morphologies imaged using
dust radiative transfer. For instance, a cosmic shear signal could be applied to
each EAGLE galaxy image, and its recovery could be tested for accuracy and pre-
cision.

Extending this analysis to new wavelengths and redshift ranges may also pro-
vide a number of new opportunities. A potential study, mentioned in chapter 6.4,
would be to model and measure a variety of proxies for galactic star formation
rate that are accessible observationally at different redshifts. Reconstructing the
star formation rate density evolution plot from this would enable an assessment
of systematic effects, and a consideration of how different methods of inferring
SFR with redshift can modify the perceived star formation history of the universe.
In addition, reproducing the observed UV J diagram at 1.5 < z < 3 could prove
a challenging test for the radiative transfer dust modelling, so far analysed at

z ~ 0 (Wuyts et al., 2009b). This may provide insight into any modifications to
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the SKIRT procedure that might be appropriate at higher redshift.

Another study, following initial tests of high redshift dust modelling, would
be to characterise sub-millimetre properties of galaxies in EAGLE and EAGLE-like
simulations. Sub-millimetre observations reveal a population of enigmatic, ultra-
luminous galaxies at high redshift (SMGs). The broad consensus is that these
are dusty, star-forming systems, but their nature and origin remain poorly un-
derstood. Using the radiative transfer modelling of SKIRT at longer wavelengths,
as explored by Camps et al. (2016), emergent SMG analogues can be selected
from the simulation on their FIR flux. Initial investigation reveals a population of
candidates. Resolved FIR images reveal these galaxies to have diverse morpholo-
gies, with concentrated nuclear emitters, extended discs and clumpy asymmetric
structures. This is demonstrated in Fig. 7.1. It would be informative to classify
this heterogeneous population and quantify the fraction of galaxies of each type,
comparing their various statistics. The processes that drive the SMG analogues
could then be considered (e.g. whether they are predominately late-stage merg-
ers) and identify the properties of their low-redshift descendants. Such a theoret-
ical study of SMGs would complement the growing data from facilities such as
ALMA.

In addition, the instrument modelling could be extended to produce and anal-
yse mock data for the new generation of surveys. IFU observations are of particu-
lar interest with instruments such as SAMI, MaNGA, SAURON, MUSE or KMOS
all now probing the kinematic properties of galaxies. Mock IFU data produced
using the non-idealised virtual galaxies of EAGLE are particularly sought-after to
test IFU reduction pipelines. Functionality to include Doppler shift has already
been built into SKIRT, and initial IFU-like cubes have been constructed for EA-
GLE galaxies®. We can also match our observations to detectors across the UV-FIR
range, for example making predictions for the MIRI instrument of the upcoming
JWST mission. Ultimately, the goal is to develop an interface that allows users to

generate customised mock data easily by applying the modelling of this thesis to

2An example animated figure of an SKIRT IFU cube of an EAGLE galaxy can be found at

http://icc.dur.ac.uk/ " wmfw23/img/figures/dustscroll.gif
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EAGLE and other simulations.

New components could also be included in the radiative transfer, to open new
potential avenues for investigation. The EAGLE simulations model accretion and
feedback by AGN, and their growth and relationship to their host galaxies have
been investigated in the physical domain (Bower et al., 2017; McAlpine et al.,
2017). Including AGN as a source component in the SKIRT modelling would al-
low AGN contamination effects to be studied, and AGN observations to be em-
ulated. In particular, the stark effects of galaxy selection on the SFR vs. black
hole accretion rate relation inferred for observations, and identified in EAGLE
by McAlpine et al. (2017), could be reappraised using mock observations. The
FIR contribution of AGN would also be an important consideration for the SMG
study mentioned above. In addition to AGN, a longer term goal would be to
include gas as both an absorbing and emitting component in the radiative trans-
fer, alongside the calculations performed for dust. This would provide emission
lines and line diagnostics for EAGLE galaxies, and potentially enable the study of
Lyman-o emitters and their properties. The problem of 3D line transfer is diffi-
cult due to the complexity of photoionisation, the importance of scattering and
the need to account for relative motions of emitting and attenuating media.

A final application is for the development of simulations themselves. As men-
tioned above, the successor to the EAGLE simulation is in development as of writ-
ing, and aims to provide an explicit cold gas phase alongside a step change in res-
olution. EAGLE and contemporary simulations such as ILLUSTRIS (Vogelsberger
etal., 2014) already produce GSMFs calibrated to agree with observation at a level
comparable to semi-analytic models. However, as seen in chapter 6, this level of
agreement is similar to the systematic uncertainties in mass derivation from ob-
servations. By instead emulating observational techniques such as SED fitting as
closely as possible (i.e. using the same underlying assumptions and modelling),
many of the same systematic effects and offsets that may be present in the obser-
vational analysis could be built into the simulation data. As a result, it is perhaps
more appropriate to calibrate directly to an observable target (such as the NIR

luminosity function) or via masses re-derived from mock observations. This idea
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can be extended to other calibrators, such as galaxy sizes and black hole scaling
relations. There is thus potential for forward modelled galaxy properties to in-
form and even calibrate the next generation of cosmological simulations, as we
strive to gain a deeper understanding of the physics of galaxies and their evolu-

tion.
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Appendix A

EAGLE photometry

A1 Re-sampling

Young stellar populations are optically much brighter and bluer than older pop-
ulations, due to the presence of O, B and A type stars. As such, the convergence
of optical magnitudes and colours depend on wavelength and star formation in
a complex way. Coarse sampling of young star particles is expected to introduce
Poisson scatter in the colour distribution of low-mass galaxies. The standard res-
olution particle mass of m, = 2 x 10°M is ~2 orders of magnitude larger than
individual HII regions (Zaragoza-Cardiel et al., 2014; Relafio & Kennicutt, 2009),
so this scatter may be artificially high in the simulations compared to observed
galaxies.

To mitigate this effect, we re-sample recent star formation in the simulation
outputs at finer mass resolution than the simulation gas particle mass. The re-
sampling procedure assumes that the galactic star formation rate is constant over
the previous 100 Myr of galaxy evolution. The general procedure is outlined
below.

Gas particles with non-zero star formation rates and star particles that formed
within the past 100 Myr are first identified. Star formation rates of progenitor gas
particles are then obtained for the selected star particles. We calculate the star
formation rates for star particles using the stored gas density at birth and initial

particle masses (see Schaye, 2004), and assume that the progenitor particles lie on
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Figure A.1: Demonstration of the re-sampling technique for the stellar compo-
nent of an example EAGLE galaxy from the 50° Mpc?® box at redshift = = 0.1. This
panel shows particle SSP g — r colours as a function of starburst age for an indi-
vidual EAGLE galaxy as points coloured from blue to magenta indicating low to
high metallicity. The black line indicates the cumulative galaxy colour when in-
cluding particles with increasing age (from left to right) so that the far right point

of the line gives the total galaxy colour. {continued on next page...}
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Figure A.1: {Continued from previous page} This panel shows the same galaxy after
star particles of age < 100 Myr have been re-sampled. These particles (black stars;
only one in this example) are removed from the photometry calculation and the
re-sampled stars (grey points) are included. This changes the cumulative g — r

indicated by the black line, and yields a different overall colour.
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the equation of state (see S15). We then take the sum of the star formation rates
found for the gas and young stars to be the galactic star formation rate.

We then use some discretisation mass, mgis, to represent the mass of re-sampled
star particles. Each selected star or gas particle is split into the integer number of
equal-mass subparticles yielding a subparticle mass closest to mg;;. We also ob-
tain the ratio of subparticle mass over progenitor particle star formation rate and
interpret this as a conversion timescale for each subparticle to become a star par-
ticle. We then randomly sample individual conversion times ¢ for subparticles
using an exponential distribution of the appropriate timescale. If ¢ < 100 Myr, a
subparticle is deemed to be converted into a star particle with t,,c = ¢;, @ mass
equal to the subparticle mass and the Z, value inherited from the parent particle.

For our analysis we use mg;s = 10* M, as our target re-sampling mass resolu-
tion. This represents a more reasonable HII region mass, to better reproduce the
discretisation in observed galaxies. To illustrate the effect of re-sampling, the first
panel of Figure A.1 shows the g — r colour and age of individual star particles
in an actively star-forming EAGLE galaxy. We also plot the cumulative colour of
the galaxy by star particle age as a black line. This shows the influence that the
few youngest star particles can have on the colour of the entire galaxy. The first
and second panels show the result with and without re-sampling respectively,
yielding different overall colours for the galaxy (seen as the rightmost point of
the black line). The presence of a single very young star particle in the simula-
tion output causes this galaxy to appear ~ 0.2 mag bluer than with re-sampling.
Though re-sampling can have a significant effect on individual galaxy colours,
the colour distributions for the entire EAGLE population are only marginally af-
fected. At the low-mass end, the re-sampling generally serves to tighten the g —r
colour distribution, move the blue peak to slightly bluer colours (~ 0.05 mag)

and to suppress extremely blue outliers.
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A.2 Colour Convergence

As simulation Recal-25 has a factor of 8 finer mass resolution than the fiducial
model Ref-100, the stellar mass threshold above which galaxies are considered
well resolved is pushed to lower masses. By comparing colour distributions of
the Ref-100, Ref-25 and Recal-25 simulations (Table 2.1, S15) for galaxies within
a certain mass range, we attempt to decouple the effects of simulation volume
and resolution on the colours of low-mass galaxies in EAGLE. In Figure A.2 we
compare colour distributions for galaxies of mass 9.45 < log(M,/My) < 10.05
and 8.7 < log(M,/Mg) < 9.3 in the first and second panels respectively. The
histograms for differing simulation volumes have different y axis ranges, with
the 25 Mpc simulation axis range a factor of 64 smaller to account for the differing
simulation volumes.

In the 9.45 < log(M../Mg) < 10.05 mass range, the position of the red and blue
peaks appear roughly the same in the different simulations. However, the rela-
tive strengths of the red and blue populations differ, with the red sequence being
significantly weaker than the blue cloud in the high-resolution Recal-25 model
compared to Ref-100 and Recal-25. This is consistent with the lower passive frac-
tions in the high resolution simulation at z = 0.1 shown in S15.

The 8.7 < log(M,/My) < 9.3 range shows less consistency, with the red se-
quence becoming practically absent in the Recal-25 model while remaining in
the Ref-100 and Ref-25 models. The redder colour and larger scatter of the blue
population in the reference model is attributable to poor sampling of star form-
ing gas in these galaxies. The lower star formation rates in the fiducial volume
may also account for the different colours. However, we also see a larger differ-
ence between Ref-25 and Ref-100 here, particularly in the relative contributions
of the red and blue populations. We attribute the higher contribution of the red
sequence in the Ref-100 model to the presence of large cluster environments in
the Ref-100 simulations, and thus quenched satellite galaxies, that are not sam-
pled by the Ref-25 box. This suggests that volume effects also contribute to the

weaker red sequence seen in the Recal-25 box. In both plots the greater area un-
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der the Recal-25 histogram is indicative of the systematic shift in galaxy number

densities between the simulations, also seen in Figure 3.3.

A.3 SSP Parameter Influence

As intrinsic galaxy colours are sensitive to star formation histories and elemental
abundance patterns, comparing EAGLE model colours directly to observed galaxy
colours is a difficult way to disentangle the influence of different SSP parameters
and to identify the source of any discrepancies.

To go some way towards assessing how the EAGLE stellar metallicities and star
formation histories influence our mock photometry, we use the simple photomet-
ric model without dust (N). Two sets of photometric data are first generated for
the simulated galaxy sample using simulation output for one parameter while us-
ing empirical relations for the other. The galaxy metallicities and light-weighted
ages (LWAs) as functions of stellar mass presented by Gallazzi et al. (2005) are
used to provide the empirical input. For the LWA values, we include a Gaus-
sian scatter about the median values of the published width, which is assumed
to be uncorrelated with metallicities. Clearly the assumption that galaxies may
be treated as a single starburst and that the metallicity and age parameters are
uncorrelated are poor, so the amount of information that can be drawn from this
type of analysis is limited. Rather, this comparison serves as a basic qualitative
illustration of the influence of different SSP parameters on galaxy colours.

The colour distributions in four M, bins are plotted for the simulation-empirical
hybrid photometry models, and are compared to the EAGLE photometry in Fig-
ure A.3. The black lines indicate distributions of Ref-100 simulation galaxies. The
distributions using the raw emission model with EAGLE ages and metallicities are
plotted as solid histograms. The photometry models using observed LWA and Z,
values are plotted as the dashed and dotted lines, respectively. The observational
data of Taylor et al. (2015) are also plotted in blue for comparison.

We see that the age parameter has the biggest influence on the colour distri-

bution, with the empirical ages introducing a generally larger spread than metal-
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Figure A.2: Comparison of g — r colour distributions of the Ref-100, Ref-25 and
Recal-25 simulations (see table 2.1) to assess the weak convergence and volume
effects on model colours. Ref-100 and Ref-25 have the same resolution, while
Recal-25 has a resolution 8 times finer. This panel panel shows the galaxy stellar
mass range of 9.45 < log(M../Mg) < 10.05, respectively. Blue and red histograms
represent the counts per colour bin in the 100 Mpc and 25 Mpc simulations re-
spectively. The Ref-100, Recal-25 and Ref-25 simulations, are plotted as solid,
dotted and dashed lines respectively. Separate y-axes are labelled and coloured
to correspond to the 100 Mpc (left) and 25 Mpc (right), with their ranges scaled by

a factor of 64 to account for the differing box volume. {continued on next page...}
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Figure A.2: {Continued from previous page} As previous panel, now for lower
galaxy stellar masses in the range 8.7 < log(M,/Mg) < 9.3. Both resolution and
box size appear to significantly effect the colour distributions of low-mass EAGLE

galaxies.
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licities, when compared to the pure EAGLE photometry. We have verified that
this is still the case when we include the scatter on observed metallicity values.
Figure A.3 shows that giving galaxies a single age stellar population using the
observational LWA data of Gallazzi et al. (2005) (dashed line) works reasonably
well in the two most massive bins where stellar populations are old. However in
the lower-mass bins where galaxies are generally younger they provide a poor fit
to the observed colours, inferior to our model photometry using the complex star
formation histories of EAGLE (solid line).

The bimodality seen for the full EAGLE photometry in the two most massive
bins, but not for the observational LWA model, shows that the EAGLE populations
are intrinsically bimodal in age. This supports the assertion that there is an excess
of star forming galaxies in this regime relative to the observed population. The
bluer than observed high-1/, red sequence in the observational LWA model could
be a result of the lower metallicities of high-)M, galaxies. The inferior agreement
of the observational LWA model relative to the full EAGLE model in the lower-
mass bins suggests that the complex star formation histories of EAGLE reproduce
the data better than an empirical model assuming a single age population.

The observational Z model reveals a poor fit to observation for the two highest-
mass bins. The red sequence is also much less prominent than seen in the obser-
vations and the other models across the M, range.

The systematic effect of assuming uncorrelated scatter between the age pa-
rameter may also account for the fact that the colour distributions are broader
and flatter than observed for this model, especially in the low-mass bins.

The resolution effects that drive much improved agreement between observed
low-mass colours and Recal-25 relative to Ref-100 are noted in section 3.3 and
appendix A.2. In the lowest-mass bin of Figure A.3, we see that using observed
metallicities has less impact on EAGLE colours than using observed LWAs. This
indicates that star formation rate resolution is the primary resolution effect on
colours, with metallicity resolution secondary to this. The presence of a faint red
sequence is due to lower star formation rates and higher stellar ages than found

in low-mass Ref-100 galaxies, whereas the position of the red sequence is redder
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Band | ¢. [A® cMpc— mag~!] a —2.5logyo(L+/h?) [mag] | Range [mag]
u 13.7718 x 1073 —1.11%5:93 ~18.8%52 [-14.0,-21.0]
g 11.1173 x 1073 —1.1715:03 —20.1153 [-14.0,-22.5]
r 9.571% x 1073 ~1.2175:04 —20.7152 [-14.2,-23.2]
i 7.6708 x 1073 ~1.261092 —21.2%0 [-16.0, -24.0]
z 6.7798 x 1073 ~1.2875:02 —21.6703 [-16.0, -24.0]
Y 6.2707 x 1073 -1.2975:03 —21.9703 [-16.0, -24.5]
] 5.979-6 % 1073 ~1.297052 ~22.0703 [-16.0, -24.5]
H 55108 x 1073 —~1.3015:02 —22.3%52 [-16.0, -24.5]
K 5.670% %103 ~1.2975:0 —-22.0703 [-16.0, -24.5]

Table C1: Best-fitting Schechter function (Eq. 3.3.7) parameters for EAGLE AB-
magnitude luminosity functions in ugrizY JH K using the GD+O photometry for
simulation Ref-100 at redshift = = 0.1. The EAGLE luminosity functions are fit
over the magnitude range indicated in the final column. Errors on the best-fit

parameters were computed using jackknife sampling.

by ~ 0.1 due to the higher than observed metallicities at these masses. The star
formation rate resolution is also the main contributor to the redder than observed

blue cloud position in Ref-100.

A.4 Schechter fits

Table C1 provides best-fit Schechter function parameters for the GD+O ugrizY JHK
EAGLE luminosity functions. Each luminosity function is fit over a range indi-
cated in the final column using x* minimisation. In the fitting, Poisson errors are
assumed for the ¢ values of each bin and additionally weighted by the median
bin luminosity. This weighting causes bins close to L, to most strongly constrain

the fit, similar to observed luminosity functions.
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Figure A.3: g — r colour distributions for EAGLE galaxies for the dust-free model.
The 4 panels show colour distributions for 4 bins of stellar mass, as indicated by
the legend. The solid, dotted and dashed lines show the EAGLE SSP values and
the EAGLE SSP values with Gallazzi et al. (2005) metallicities and ages respec-

tively. {continued on following page...}
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Figure A.3: {Continued from previous page} Gallazzi metallicities and ages are as-
signed to each galaxy, based on the median parameter values at the galactic stellar
mass. Z values are simply taken as the observed median value. The LWA values
are sampled from a normal distribution with standard deviation taken from Gal-
lazzi et. al. (2005), assuming that the scatter in age and metallicity is uncorrelated.
We see that the complex star formation histories of EAGLE provide a better match
to the observed colour distributions than a single SSP model using empirical val-

ues for age and metallicity.



Appendix B

Radiative Transfer

B.1 Smoothing Lengths

Star and gas particles in EAGLE function as tracers of the baryonic mass. Because
particles are the smallest resolution elements in the simulations, the distribution
of the material represented by a single particle is unresolved. However, some 3D
form for the traced material needs to be assumed to facilitate radiative transfer
with SKIRT. A kernel distribution is thus used to set the density profile of the
stars and gas. A truncated Gaussian distribution is used to approximate the cubic
spline kernel used by the EAGLE simulations in SKIRT (Altay & Theuns, 2013; Baes
& Camps, 2015). As this is isotropig, it is parametrised solely by a position and a
smoothing length.

Smoothing lengths are tracked by EAGLE for baryonic particles on the fly (see
S15, appendix A). These values are derived using the distance to the weighted
Nth nearest neighbouring gas particle, to facilitate SPH interaction between gas
and chemical enrichment of gas by stars. As such this kernel size represents the
spatial smoothing of gaseous material well, but implies that for star particles the
smoothing is entirely dependent on their proximity to gas.

For resolved disc galaxies in EAGLE this stellar smoothing is reasonable as the
galaxies have high gas fractions, with star and gas particles being well mixed.
However for a minority of gas-poor elliptical galaxies, the smoothing values may

become extremely large (up to ~ 70 kpc). This distorts the surface brightness
271
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Figure B.1: The difference between r-band attenuation in EAGLE galaxies when
using no smoothing (A%;) and employing the standard nearest neighbours
smoothing used in this work (Ag) plotted as a function of inclination, cos(¢). The
panels from left to right represent simulations Recal-25, Ref-25 and RefHi-25, and
are also coloured blue, red and green respectively. Thin Lines represent A; — Ap
values of individual galaxies taken from their respective simulations at 40 incli-
nations evenly spaced in cos(f). Shaded circles represent the median A%; — Ap value
of galaxies at each cos(#) value, with grey shading illustrating the 16th-84th per-
centile range. We see that not using stellar smoothing leads to a slightly stronger
inclination dependence for orientation, with increased attenuation for edge-on
galaxies. The maximal difference is seen for edge-on galaxies in the Ref-25 simu-

lation, AAp = 0.1, with typical values for edge-on galaxies of AAp =~ 0.05.



B.1. Smoothing Lengths 273

profiles to become kernel-shaped, and renders them much more extended than
the actual stellar surface density.

To alleviate this problem, we re-compute more appropriate smoothing lengths
for EAGLE star particles within each galaxy. There is no unique smoothing scale
for star particles that can be defined, as they do not interact with each other us-
ing an SPH kernel. Using the same smoothing length calculation between star
particles as between gas particles also results in significantly smaller smoothing
lengths, due to a higher fraction of galaxy mass being in stars than gas, and such
small smoothing lengths yields unrealistic granularity in galaxy images. For this
reason we use a somewhat ad-hoc method of ‘morphological convergence’, ob-
serving galaxy images smoothed on a variety of scales, in a similar vein to Torrey
et al. (2014).

We use a kd-tree algorithm (Maneewongvatana & Mount, 2001) to identify
nearby star particles. This is performed for each galaxy as it is extracted from the
simulation data. We find that using as a smoothing length the distance to the 64th
nearest neighbouring star particle works well, in the sense that this yields reason-
able galaxy images, avoiding both unrealistic granularity and over-smoothing.
Using the re-computed or simulation smoothing lengths make only marginal dif-
ference to the scientific results presented in this work. Intrinsic properties (i.e.
without dust effects) are of course unaffected, as all light emitted by material
within the 30 pkpc aperture is measured for consistency with previous chapters.
The effect on dust attenuated properties is small because the smoothing lengths
differ most in large galaxies where there is minimal gas and thus minimal atten-
uation.

To constrain the effect of stellar smoothing on the attenuation measured for
EAGLE galaxies, we compare attenuation measured for EAGLE galaxies without
any smoothing of sources (i.e. treating star particles as point sources) to those
measured using the re-computed smoothing lengths. Fig. B.1is set out in a similar
way to Fig. 5.4, except we plot the difference between the r-band attenuation with-
out smoothing (A;) and with smoothing (Ap) on the y-axis. The thin coloured

lines show the residuals for individual galaxies at different orientations, and the
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data points show the median residuals. Again, all galaxies of mass M, > 10"°M,
are included for each of the Ref-25, Recal-25 and RefHi-25 simulations.

We see that, in general, treating stellar particles as point sources leads to a
stronger dependence of attenuation on inclination, with more attenuation for
edge on inclinations. This can be understood as a higher fraction of the stellar
emission emanating from near the disc plane when no smoothing is applied, as
the smoothing effectively thickens the emissivity distribution of the stellar disc.
Although this effect is measurable, the difference is < 10% for the galaxies in this
sample, suggesting that even an extreme choice in stellar smoothing has only a
marginal effect on the integrated dust reddening for these galaxies. The differ-
ence is most pronounced for the low resolution Ref-25 galaxies, because this has
lower stellar particle resolution and larger smoothing lengths for the same mass

range of M, > 10°M.

B.2 Resolution and Convergence

B.2.1 Radiative Transfer

Here we test the convergence of photometry results with respect to the sampling
of photon packages. We look at both the spectral resolution used to represent
SEDs, and the number of photon packets sampled at each wavelength. In order
to test this efficiently for our fiducial model, we randomly select a test sample
of galaxies in 9 contiguous and logarithmically spaced mass bins, over the range
9 < logyo(M,/Mg) < 11.6. 200 galaxies are randomly selected from each mass
bin, except in the two highest mass bins where all the galaxies are sampled due
to insufficient counts. The highest and second highest bins contain 23 and 64

galaxies respectively.

B.2.1.1 Sampling Noise

SKIRT tracks an equal number, N, of photon packets per wavelength bin. The

stochastic emission and absorption of these photon packets introduces Poisson
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Figure B.2: SDSS ugriz and UKIRT Y JHK absolute magnitude convergence

properties for sample EAGLE galaxies (section B.2) varying the number of pho-

ton packets launched per wavelength bin, IV,, at a constant spectral resolution.

SKIRT simulations with low, medium and high N, values of 2!, 2!* and 2'° re-

spectively are run for each galaxy. The top and bottom panels of each column

then show the comparison of the low and medium N, simulations with the high

value respectively. The left panel shows the median absolute magnitude differ-

ence in each bin for the 9 photometric bands, the right panel shows the maximum

difference.
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Figure B.3: As Figure B.2, but now exploring convergence as a function of con-
tinuum spectral resolution, N, at fixed N,. SKIRT simulations with low, medium
and high N, values of 27, 2° and 2 respectively are run for each galaxy. Again,
the low and medium resolutions are compared to the high resolution in the top

and bottom panels of each column respectively.

noise into the photometric measurements. The degree of this variation depends
not only on N, but also on the emissivity at each wavelength, and the complex
distribution of sources and dust in the galaxy. A natural target level of conver-
gence is variation comparable to photometric errors in SDSS observations, on the
order of ~ 0.01 mag for griz and ~ 0.02 mag for the u-band, dominated by un-
certainty in the un-modelled atmospheric effects at Apache Point (Padmanabhan
et al., 2008).

We test photometric convergence by running separate SKIRT simulations launch-
ing N, = 2" 213 and 2' photon packets per wavelength bin on each of our test
sample galaxies. We then compare the variation in ugrizY JH K photometry be-
tween the N, = 2'° run and the lower N, runs. Figure B.2 shows this level of
variation. Both the median and maximum variations are below the threshold

0.01 mag uncertainty for ugriz with N, = 2, the number we used in chapter 5.
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B.2.1.2 Spectral Resolution

To sample SEDs, SKIRT performs radiative transfer for a grid of wavelengths. The
number of wavelengths we choose is a trade-off between spectral resolution and
computational expense. For our purposes we want to resolve the continuum well
enough to capture the overall shape of the SED and produce accurate photometry
in arbitrary optical broad-bands, as well as focusing on certain spectral indices of
interest. After some initial experimentation, we begin with a superposed grid of

wavelengths:

1. 2% (256) logarithmically spaced wavelengths to sample the continuum be-

tween 280 nm and 2500 nm

2. 33 wavelengths to sample the peak and continuum either side of 11 promi-

nent spectral lines in emission line galaxies (Stoughton et al., 2002)
3. 22 evenly spaced wavelengths to better sample the Ha and O11 line profiles

4. 10 logarithmically spaced wavelengths from 150 nm to 280 nm to sample

the UV slope
5. 12 additional wavelengths about the 4000A break.

We test numerical convergence by measuring the variation between individ-
ual galaxies when different spectral resolutions are used. We vary the continuum
wavelength grid resolution, (i), using the standard value of 2% as medium reso-
lution and 27 and 2° as low and high resolution respectively and comparing the
standard and low resolutions to the high resolution in each plot. Figure B.3 shows
this level of variation.

We find that the median variation is < 0.01 mag for all bands at standard
resolution, N, = 2%. When looking at the most extreme outliers in each bin we
see that the most extreme differences are ~ 0.015 mag in the lowest mass bin. We

decide this to be sufficient resolution for our purposes.
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Figure B.4: As Fig. 5.12, but excluding C15 recalibrated lines and including the
Ref-25 and RefHi-25 Ha luminosity functions. The Ref-100, Recal-25, RefHi-

25 and Ref-25 luminosity functions are represented as grey, green, red and blue

lines respectively, with Poisson error indicated by the shaded regions of the same

colour.



B.2. Resolution and Convergence 279

B.2.2 Convergence of H, Luminosity and Flux

Here we investigate the convergence properties of the Ha line fluxes, by compar-
ing between all the simulations listed in Table 2.1 in Fig. B.4. Comparing Ref-100
and Ref-25 simulations, plotted as grey and blue lines respectively, isolates the ef-
tects of volume because the sub-grid calibration and resolution are the same. We
see that the Ref-25 LF agrees better with Ref-100 than any of the other 25° Mpc?
boxes. However the Ref-25 LF is still between 0 and 0.3 dex higher at all lumi-
nosities sampled. The higher number density of Ha-emitting galaxies is likely
due to a 25° Mpc® being too small to represent large scale modes in the density
distribution, and thus does not sample massive halos. As was shown in chap-
ter 4, star formation is significantly suppressed within these environments in the
EAGLE simulation. This could lead to the lower normalisation of the LF in the
Ref-100.

Comparing the Ref-25 and Recal-25 LFs instead tests ‘weak” convergence (de-
fined by S15) with resolution. The Recal-25 LF is in general higher still, typically
by ~ 0.2 dex. The higher normalisation of the Recal-25 LF is attributable to the
effect of resolution on passive fractions of galaxies. As was discussed in chapter
3, coarse sampling of feedback events paired with the resolution of the star form-
ing component of galaxies contributes to the surplus of passive galaxies seen at
(M,/Mg) < 10 in the lower resolution simulations. Because these resolution ef-
fects become significant at a factor of ~ 8 lower mass at higher resolution, the
proportion of star forming galaxies at relatively low mass is more realistic. This
contributes to boosting the Recal-25 LF closer to observations.

We also investigate the attenuation of the Ha line by the diffuse dust compo-
nent, A(Ha, ISM), using the simulations listed in Table 2.1 in Fig. B.5. We look
specifically at the ISM attenuation here, as this is controlled by the ISM structure

that may vary with resolution. Taking
A(Ha, ISM) = 2.51log,o(L#a, skirr/ Liia, intrinsic) (B.2.1)

we plot A(Ha, ISM) as a function of star formation rate for individual galaxies

with log,((M,/Mg) > 8.5 from each simulation as grey points, over-plotting the
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average attenuation in bins of star formation rate for each simulation in differ-
ent colours, and indicating the scatter using the 16th-84th percentile ranges. We
see that attenuation generally increases with star formation rate but exhibits a
large scatter, skewed to high values. This is consistent with general observational
trends. (e.g. Gunawardhana et al., 2015). We notice that the typical attenuation
values are similar for all the simulations, and consistent with each other within
the scatter, suggesting A(Ha) converges with resolution. This is consistent with
what we find for Fig. 5.4, that attenuation is limited by the artificial pressurisation
of the EAGLE ISM rather than resolution, and attenuation would likely increase if

gas were able to cool to lower temperatures.

B.3 fitting SKIRT results using the GD+0O model

To make a detailed comparison between the radiative transfer photometry pre-
sented in this work and the GD+O photometry of chapter 3, we calibrate the dust-
screen parameters used in chapter 3 to the results obtained with SKIRT. Compar-
ing these parameters to the fiducial GD+O values helps us understand how the
models differ. This can be achieved by finding the ML parameter values using an
MCMC approach.

The flux density for an EAGLE galaxy measured in a certain band using the

GD+0O model, F;p4o, can be expressed as

Fepro = (Fo + Fye_fBC) e~ T15mO(0]a)
where
T = >‘el‘f -0.7
TsM = TISMfoZ (550nm) ) (B32)
2 —0.7
o =Teofufz (som) (B.3.3)

Here, fy and f7 are the star forming gas mass and metallicity in units of the
Milky Way value, respectively, A is the effective wavelength of the filter, and F,
and £} are the intrinsic flux densities for star particles older and younger than

10 Myr, respectively. The O(f|q) term accounts for galaxy orientation, as detailed
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Figure B.5: Plot of A(Ha, ISM) (Eq. B.2.1) as a function of star formation. Indi-
vidual galaxies with log,,(M,/Mg) > 8.5 from each simulation of Table 2.1 are
plotted as grey points. Average values for each simulation are over-plotted as
coloured points, with error bars indicating the 16th-84th percentile ranges. We
see that the attenuation generally increases as a function of star formation rate,
exhibiting large scatter skewed towards high values. The average relations agree
between simulations within errors, suggesting that A(Ha, ISM) is well converged

in our modelling.
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in section 3.2.3 of chapter 3. The free parameters of the GD+O model which we
tit for, are iy, Tpc and g, representing the typical ISM optical depth, birth cloud
optical depth and dust disc axial ratio.

The attenuation applied for GD+O is deterministic, apart from the randomised
orientation term, O(6|q), where the disc inclination angle is sampled uniformly in
cos(f). However, as we store the inclination angle of each SKIRT image, the ex-
pected Fpio value corresponding to a particular SKIRT galaxy observation, Fy,
is fully deterministic.

Clearly, no parametrisation of the simple GD+O model can provide perfect
agreement with the SKIRT photometry. The inclination also has an associated
uncertainty. So that any possible Fg has a finite likelihood of being observed
with a particular GD+O parametrisation, we build in a Gaussian observational
tolerance. This contributes to the log-likelihood as:

n

1
In E(F | FGD+Q, O') =C—-— (E - FGD+O,i)2 s (B34)

202 4
=1

where C'is a constant, o is a fixed uncertainty, and we sum over each randomly
oriented ugrizY JHK observation of an EAGLE galaxy sample. The constant o
value means that better resolved galaxies generally provide stronger constraints
on the model, so the likelihood is effectively luminosity weighted. The exact
value of o we use is unimportant as we aim to maximise [, but should be compa-
rable to the observations to avoid numerical errors. We use the 5™ percentile of
all Fs values as 0. For simplicity, we do not explicitly incorporate an additional
uncertainty on our input inclination angles.

With an imperfect model, the galaxies we use to constrain our fit will affect
the recovered ML parameters. However, using all galaxies may not provide the
best parametrisation for those where dust is effective. For insufficiently resolved
galaxies, the SKIRT dust modelling is itself unreliable, and dust effects are any-
way minimal. For the most luminous galaxies the simple geometric assumptions
of GD+O are inappropriate and do not help constrain the parameters. For this
reason we select a sample in stellar mass . To capture sufficiently resolved galax-

ies over which the disc geometry assumption is appropriate, we select galaxies in
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the range 1097 < M, /Mg < 10

Initially we assume uniform prior distributions for each parameter and fit si-
multaneously, with the conservative ranges ¢ € [0,1), 7s¢ € [0,10) and 7ism €
[0,10). However, we found that the 73¢ parameter tends to ~ 10. Indeed, relax-
ing the prior to T3¢ € [0, 1000) yields a median ~ 800, such that F, contributes
effectively nothing to Fopio. The reason for this may be that the spectra rep-
resenting stellar populations younger than 10 Myr are intrinsically different in
the models, and the clearing timescale for birth clouds is longer in Charlot &
Fall (2000) (30 Myr). While GD+O uses the GALAXEV spectra (Bruzual & Char-
lot, 2003), the SKIRT model uses the MAPPINGS-III spectra (Groves et al., 2008).
While both models account for birth-cloud reddening, the MAPPINGS-III spec-
tra include emission lines and a different ionising spectrum (from Leitherer et al.,
1999) than GALAXEV.

As a second approach, we try fixing 7pc = 27igMm, as suggested in the fiducial
Charlot & Fall (2000) model and GD+O, while assuming the same priors for g
and ¢. The 7p¢ parameter has only marginal influence on the photometry, as
it only affects a small fraction of stars, and the fiducial GD+O value of ~ 0.67
already significantly reduces their contribution. We therefore expect that fixing
Tsc = 27gm rather than allowing it to freely vary over the range [0,1000) has
minimal influence on the other parameters, such that all parameter values remain
physically plausible. We find that including this constraint yields ML ¢ and g\
values only ~ 8% and ~ 11% higher respectively. We therefore use this second
approach as our default procedure.

With this set-up we recover ML values for the three parameters, which are
encouragingly very close to the values assumed in chapter 3, as discussed in sec-
tions 5.4.2 and 5.6. Figure B.6 shows the posterior distribution constructed for the
GD+0 model parameters given the SKIRT data, with the ML listed in table 5.2. We
use 1 x 10° samples, employing a burn-in of 1 x 10* samples and a thinning factor
of 5. The results of this are presented in Table 5.2, and discussed in section 5.4.2.

The first panel of Fig. B.6 shows the constructed posterior distribution.
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Figure B.6: Shaded maps of likelihood for GD+O 7ig\m and ¢ values fitting the
SKIRT photometry of galaxies from the Ref-100 simulation. The 7 parameter is
fixed to be 275\ Where the normalised log,,-likelihood falls below -1.5, the in-
dividual Markov-chain samplings are plotted. This panel represents the fiducial
SKIRT model. The white dotted lines indicate the median value for each parame-

ter. {continued on following page}
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Figure B.6: {Continued from previous page} This panel represents the ‘uncali-
brated’SKIRT model discussed in Appendix B.4. These are generated by con-
structing the posterior distribution using an MCMC method, as described in sec-
tion 5.4.2. The ML parameter values for both panels are taken from the three

dimensional distribution in parameter space, and listed in table 5.2.
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B.4 Comparing fiducial and uncalibrated SKIRT mod-

els

The fqust and fppr parameters are the two values in our dust model that are not
assigned using the simulation output. These effectively scale the optical depths
in the diffuse and birth cloud components respectively. The parameters of our
fiducial SKIRT model were calibrated using local dust scaling relations, indica-
tive of dust mass and temperature, presented in the companion study of Camps
et al. (2016) (C16). This is desirable as it allows the same model to be consistent
with observations over a large spectral range, from optical to FIR wavelengths.
FIR measurements also provide a more direct measurement of dust mass than
optical attenuation, which depends strongly on star formation histories and the
geometries of stellar and ISM distributions. The C16 calibrated values used in
our fiducial model are fq.¢ = 0.3 and fppr = 0.1. Without FIR constraints, we
would default to the best literature values for our assumed dust parameters.

In order to test the effect our choice of dust parameters has on our results,
we also generated results using literature values for the parameters of f4,s = 0.4
(Draine & Li, 2007) and fppr = 0.2 (Groves et al., 2008), hereby referred to as
the ‘uncalibrated” SKIRT model. For comparison we apply the ML fitting proce-
dure presented in Appendix B.3 to the uncalibrated model and plot the posterior
distribution as the second panel in Fig. B.6.

Comparing the posterior distributions of the fiducial and uncalibrated SKIRT
models reveals that the ML values for 7y are ~ 10% below and above their chap-
ter 3 values respectively. The ¢ values for both models are ~ 0.4 dex higher than
in chapter 3, with the uncalibrated model giving a ¢ value ~ 10% higher than

fiducial'. Overall, a similar level of agreement with the fiducial GD+O parame-

!This comparison also highlights incompatibility between the screen and SKIRT models; the ¢
parameter that independently describes geometry in GD+O has different ML values for two SKIRT
models with identical geometries but re-scaled dust optical depths. However the dependence of
g on optical depth is relatively weak. The change in gy is ~ 10 times larger in terms of the

marginalised parameter uncertainty.
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Figure B.7: As Fig. 5.9, except using the uncalibrated SKIRT model with values of
fawst = 0.4 and fppr = 0.2. We see that this model marginally improves agree-

ment with the observed blue and red fractions for masses M, > 10'°M,.

ters is achieved for both the uncalibrated and fiducial SKIRT models.

To exhibit the effects of the calibration on the overall photometry, we also plot
ugJ colour-colour distributions in Fig. B.7. This is the same plot as Fig. 5.9, except
using the uncalibrated rather than fiducial SKIRT model. We see that the higher
optical depth normalisation has a small effect on the colours, shifting galaxies
to marginally redder colour in both indices. It seems that the effects on passive
fractions are relatively minor, with only a ~ 7% change in the passive fractions

compared to 5.9.

B.5 Differential Attenuation

A way to directly show the preferential ISM attenuation of young stars discussed
throughout chapter 5 is to compare representative attenuation curves for certain
stellar populations to the overall attenuation. A natural population to choose for
this purpose, given the data produced in our modelling, is the HiI region particles
represented by MAPPINGS-I1I SEDs. Fig. B.8 is similar to Fig. 5.6, comparing the
total galaxy attenuation to that seen by the MAPPINGS-III particles alone (ie. stars
<10 Myr old). Here the birth cloud absorption built into MAPPINGS-11I SEDs are

not included in the plots, so we are seeing purely the difference due to differential
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Figure B.8: Composite ISM attenuation curves for randomly projected EAGLE
galaxies, normalised to 1 for the V-band attenuation of all stars. The blue line
indicates the effective attenuation curve of all stars from the overall galaxy SEDs,
as in Fig. 5.6, whereas the red line is the effective attenuation experienced by HII
regions alone. We see that due to preferential ISM attenuation, the MAPPINGS-III
attenuation is boosted, and appears greyer, closer to a Calzetti-like attenuation
curve. We see features in the blue attenuation curve due to the preferential red-
dening of HII regions in general. We attribute features in the red curve to the
environmental (ISM pressure) dependence of line strengths in the MAPPINGS-
III SED templates, which also scales with ISM attenuation.
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ISM absorption. Both curves are normalised to the integrated galaxy attenuation
at 5500 A to show any boost in ISM attenuation that might be seen by the young
stars relative to the overall population at a given wavelength

We see that these young stars indeed have boosted ISM attenuation (vertical
offset). They also exhibit a different attenuation curve shape, that appears to be
more consistent with Calzetti (greyer profile). This is perhaps unsurprising, as
the Calzetti law assumes that the dust and sources are well mixed, which is likely
the case for the MAPPINGS-III particles as they are largely co-spatial. We attribute
features in this attenuation curve to the MAPPINGS-11I SEDs having different line

strengths in gas of differing density and metallicity.

B.6 Investigating a ‘negatively reddened’ galaxy

A population of galaxies with negative reddening (i.e. dust effects making galax-
ies appear bluer in a given colour index) are identified in the SKIRT photometry,
as discussed in section 5.3.2. For the low redshift sample discussed here, this
effect is very small and can be attributed solely to random photometric errors
(appendix B.2). However in the data produced for all epochs, rare instances of
significant negative reddening are observed. The two explanations for this effect
are either attenuation that predominately obscures the redder stars, perhaps due
to high centralised attenuation, or the effects of scattering into the line of sight
making galaxies appear bluer in some scenarios (e.g. Baes & Dejonghe, 2001).

In Figure B.9 we analyse an example object displaying this behaviour at z =
0.9. This galaxy has an intrinsic g — r colour of 0.4, but with dust effects is mea-
sured to have a g — r colour of 0.3. We use the capabilities of SKIRT to identify
the fraction of the emitted light at each wavelength that is directly transmitted
(medium grey) and that is scattered into the line of sight (light grey), compared
to the overall received flux (black line). It is apparent that the bluer colours are
contributed predominately by the directly measured starlight, with a secondary
contribution from scattered light. The broad band attenuations (also plotted) sup-

port this, indicating strong overall attenuation with the strongest absorption in
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Figure B.9: Plot of the ratio of total intrinsic flux contributions (left hand y-axis) by
different components for a negatively reddened EAGLE galaxy at z=0.9 as a func-
tion of redshift. Black line shows total transmitted light fraction, medium grey
line shows contribution of transmitted light that comes directly from sources,
light grey line shows the contribution by light scattered into the line of sight.
Coloured bands indicate the 5-95 percentiles of ugriz bands from left to right.
Coloured squares indicate the attenuation in each band via the right hand y-axis
scale. We see that the attenuation is actually lower in the bluer bands, which ap-
pears to be contributed by direct light, suggesting more blue light is escaping the
galaxy. This appears to be due to heavy dust obscuration in the central regions,
such that blue stars in the outskirts dominate the transmitted light. Scattered light

also contributes to this effect, but this contribution is marginal.
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redder bands. This is suggestive that, at least for this example, negative redden-
ing is caused by dense dust clouds strongly obscuring the older central bulge,
such that less obscured light from star forming regions in the outer regions dom-
inates the measured flux. Inspecting the galaxy image supports this conclusion.
Whether this is a physically plausible scenario, or is indicative of a breakdown of

the dust modelling in this case, is as yet unclear.



Appendix C

SED Fitting

C.1 Mass estimators at higher resolution

To indicate convergence with resolution, the Fig. 6.1 plot is remade for galax-
ies taken from the Recal-25 simulations in Fig. C.1. The typical Recal-25 off-
sets appear remarkably similar to that of Ref-100; suggesting convergent, mass-

independent offsets for each estimator.

C.2 The Failure Population

It is important to understand why the SED fitting of section 6.3.1 recovers vastly
underestimated masses for a sub-population of galaxies that are not found by
Torrey et al. (2014), despite similar fitting approaches. To test how procedural
differences influence this result, the offset-mass relation of Fig. 6.6a is reproduced
for slightly different FAST set-ups. In the left panel, it can be seen that fitting pure
exponential histories (as in Torrey et al. 2014) approximately halves the number
of failure galaxies. Unlike delayed exponential histories, the pure exponentials
have no rising portion, and thus cannot approximate young ‘inverted-r” histories
(Maraston et al., 2010). The reduction in failures may be related to this; when fit-
ting bursting galaxies there are no rising histories to compete with more realistic
older histories in the fitting. Still, it seems that very young exponential histories

can still provide the best fits for some EAGLE galaxies.

292



C.2. The Failure Population 293

- IOglO(Méol, Baldry+/MtFue) =0.10
""" IOglO(MEoI, Zibetti +/MtFue) =0.24

qé 044 === IOglO(MEoI,Taylor+/Mt:‘ue)=0'23

No dust

o6l 10910(Meo, paiary + /Mie) = 013 Box — projected (SKIRT)

""" IOglO(M::oI, Zibetti +/Mt:‘ue) =0.24
=== IOglO(MEoI, Taylor+/Mt;ue) =0.25

)

*
rue
o
N

/M,

*
col

log19(M
A
Y
|

—0.4 -
-0.6
06 == IOglO(Méol, Baldry+/MtFue) =0.16 Edge — on (SKIRT)

""" 10910(M¢o), Zivetti + /Mirue) = 0.27

qé 044 === IOglO(IVIEoI,Taylor+/l\/’t;ue)=0'29

8.5 9.0 9.5 10.0 10.5 11.0 11.5

|Oglo(Mt;ue/M (O] )

Figure C.1: As Fig. 6.1, but for galaxies taken from the Recal-25 simulation. The

finding of a nearly mass independent mass underestimation appears convergent.
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Figure C.2: As Fig. 6.6a, but for modified SED fitting procedures from the initial
approach plotted there (see section 6.3). In the left panel, the initial approach
is modified to fit pure exponential (¢ o< e~*/7) rather than delayed exponential
(1) o te~'/7) histories. In the right panel, the initial approach is changed to fit
intrinsic (ie. Ay = 0) SEDs to the dust-free (ND, chapter 3) EAGLE photometry.
It shows that using exponential histories halves the number of failures, whereas

fitting to dust free SEDs eliminates them completely.

In the right panel, we instead fit dust-free photometry with intrinsic (A, = 0)
SEDs. This completely eliminates the failures, showing that significant dust at-
tenuation is needed to make these very young starbursts look similar to EAGLE
galaxies photometrically. The offset-mass distribution seen here also appears
very similar to that of Fig. 9 in Torrey et al. (2014), with a similar subpopulation

of underestimated galaxies at offsets of ~ —0.2 dex.

C.3 The effect of dust on predicted masses

As discussed in chapter 6.3.4, a characteristic median relation in the offset be-

tween Mf,qp from M . is observed with A, but is limited by the small number

true

counts of galaxies, particularly at high attenuations. In C.3 this is extended to

2 S 2 EAGLE galaxies, using the same rest frame ugriz photometric fitting (i.e. no
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Figure C.3: As Fig. 6.15, now for EAGLE galaxies with M} . > 1.2 x 103M,, at
z 5 2 (~ 420,000 galaxies). Probing higher attenuations and with higher number
counts than at z = 0.1, the decreasing accuracy of FAST mass estimates with A,
for high attenuations (4, £ 0.4) is seen to continue for A, > 1 while exhibiting

increasing scatter.
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redshifting or IGM absorption effects are included in the SEDs). A very similar
trend to Fig. 6.15 is observed at attenuations of A, < 1, but is seen to continue

with increasing scatter to higher A, values.

C.4 True histories of red and blue galaxies

As seen in chapter 6.3, the FAST code fits red galaxies to have short burst star
formation histories, typically found to commence after their blue counterparts.
To show how this picture compares with the true formation histories of red and
blue EAGLE galaxies, Fig C.4 compares properties of the red and blue population.

The upper panel of Fig C.4 shows the composite distributions of SSP ages for
red and blue galaxies selected at z = 0.1 using Eq. 4.3.1 with M}, . > 10°°M. Itis
clear that the true star formation histories of red EAGLE galaxies do not commence
after the blue galaxies, and contain a higher fraction of star particles at the oldest
ages than found in the blue galaxies. The lower panel of Fig C.4 then compares
the true duration of the star formation history for red and blue galaxies selected
in the same way, by comparing histograms of the time interval between when
a galaxy has formed 5% and 95% of its stellar mass for both populations. It is
clear that the true star formation histories of red galaxies are typically shorter in

duration than those of blue galaxies.
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Figure C.4: Comparing stellar mass assembly properties of red and blue EAGLE
galaxies selected at z = 0.1 with Eq. 4.3.1, and having M. > 10°°M. Top panel
compares the distributions of star particle ages in red and blue galaxies, coloured
red and blue respectively. Bottom panel compares the distribution of the star
formation timescales in red and blue galaxies, represented by the logarithm of
the period over which a galaxy forms between 5% and 95% of its stellar mass.
Red galaxies begin forming at a similar time to blue galaxies, both peaking at

z ~ 9 Gyr, but form stars over a shorter period.
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