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Abstract

The primary goal of this thesis will be to explore the ‘model space’ of Weakly

Interacting Massive Particle (WIMP) Dark Matter (DM), using simplified models

in order to make some general statements on the allowed parameter space and to

guide future detection efforts. The context for this thesis is a time in which many

experiments are attempting, either directly or indirectly, to pin down the interactions

of DM with the very precisely measured standard model. So far no robust signals

have been found.

Depending on your particular tastes, you may hold out for one particular realization

of Beyond the Standard Model (BSM) physics (e.g. Supersymmetry) and explore

its rich phenomenology to ever increasing precision. But as time marches on, with

diminishing confidence in discovery despite concerted efforts, you may instead look

for ways in which to explore all possible realizations at once, a bottom-up approach,

to help guide future searches and model building efforts. This is the utility of

simplified models.

We will show that much of the parameter space of a neutral thermal WIMP (with

arbitrary spin, spanning a complete set of simplified models) is heavily constrained

by a combination of indirect/direct searches.

Inevitably, carrying out such a study requires many assumptions, not all of them

sound all of the time. To test the robustness of the study we will take an in-depth

phenomenological look at a more detailed model, tackling many of the assumptions

of simplified models (such as minimal flavour violation and gauge-invariance).

We will take several detours along the way. We will show that the next generation
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of direct detections machines will be sensitive detectors for light (sub GeV) new

particles in the neutrino sector.

We will also consider how heavy flavour observables might be impacted by the

breakdown of the assumption of quark-hadron duality, rather than from genuine

new physics.
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Chapter 1

Dark Matter

1.1 The Evidence for Dark Matter

It is widely accepted that Dark Matter (DM) is omnipresent in our universe; evidence

has been steadily building since the seminal application of the virial theorem to

galaxy clusters by Fritz Zwicky in the 30s [32]. We now understand that dark

matter is instrumental in cosmology, forming the largest structures from galaxies to

their clusters. We will briefly review the observational evidence for the existence of

dark matter.

1.1.1 Spiral Galaxies

In rotating spiral galaxies like the Milky Way, the rotation (or ‘circular’) velocity

of stars vc(r) is radially dependent, and can be derived by simply requiring the

gravitational potential to be responsible for the circular orbit (i.e. gravity provides

the centripetal force)

vc(r) =

√
GM(r)

r
, (1.1.1)

where the mass contained within radius r is given by

M(r) =

∫
ρ(r, θ, φ)r2 dφ d cos θ dr, (1.1.2)

and ρ(r, θ, φ) is the total matter density. Assuming ρ(r) to be spherically symmetric,

M(r) = 4π
∫
ρ(r)r2dr. It is possible to measure the mass distribution of luminous

1
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matter, infer the circular velocity and compare with direct measurements based on

doppler shifts of spectral lines.

It was first noticed in 1970 [33] for the Andromeda galaxy, and confirmed in

later studies through the 80s and 90s (see for example [4], replicated in Fig.1.1)

that the rotational velocity in the spiral galaxies was too large to be accounted for

by the luminous matter alone, and that an extra halo of matter must exist. As

shown in Fig.1.1 the rotational velocity is approximately flat at large radii, and

from Eq.(1.1.1)-(1.1.2) this implies the DM density ρ(r) ∝ r−2 in its outer regions.

1.1.2 Elliptical Galaxies

The presence of DM may also be inferred from elliptical galaxies; which are usually

a triaxial shape with chaotic stellar motions, compared with the ordered rotation

of spiral galaxies. They have a compact central density of stars, and a much more

extended density of ionized gas with a roughly uniform temperature T .

The temperature, T , of the gas can be inferred from its X-ray emission, leading

to an estimate of the velocity dispersion via σ2 = kBT/µmp, this would be of similar

size to the stellar velocity dispersion, σ∗, if the gravitational potential is dominated

by the gas and stars. The stellar velocity dispersion may be measured and compared

with the assumption T ∝ σ2
∗.

It is found that T ∝ σ1.45
∗ in a sample of 27 ellipticals [34], and that this result

is consistent with a dominant dark matter halo which increases the gravitational

potential felt by the gas, and heats it up.

1.1.3 Galaxy Clusters

The largest observed structures in the universe are galaxy clusters, large gravita-

tionally bound groups of O(101 − 103) galaxies. The dominant luminous matter

component (around 10−15% compared to a few percent from stars) comes from ex-

tremely hot (T ∼ 106−107 K) X-ray emitting gas [35]; and this provides a handle on

the mass of the visible baryonic matter since the X-rays produced by Bremsstrahlung

radiation scale ∝ n2 where n is the electron number density.
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Figure 1.1: An example of galaxy rotation curves from [4]. The expected profile from the visible

matter and gas in the disks (long-dashed and dotted lines respectively) clearly does not fit the

data unless an additional halo of invisible matter (dot-dashed lines) is included to give the total

contribution (solid line).
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The velocity of galaxies in the cluster (measured using Doppler shifts) leads

to the so called dynamical mass, v(r)2/2 = GM(r)/r. This can be compared to

the masses of clusters derived by other means, for example using luminosity-mass

relations; it was found that the dynamical mass far exceeds the mass inferred from

luminosities; without dark matter the clusters would not be gravitationally bound.

This was in fact the very first observational hint for dark matter in 1937 [32].

With the theory of general relativity comes a phenomenon which can also be used

to measure the mass of galaxy clusters. When light from a bright, distant galaxy

travels to earth, it is bent under the gravitational influence of any intervening mass,

if a large enough mass (say, a cluster) lies between us and the distant galaxy, the

bending of the light can be very distinctive, resulting in very elongated concentric

distortions and at the extreme of the effect, a point source of light can be lensed

to appear as a perfect annulus (an Einstein ring). Effects like this are usually

termed strong lensing to discriminate them from weak lensing which uses statistical

information from many lensed galaxies when the effect is much weaker [36].

Ultimately, the mass of the lensing galaxies may be measured, and does not rely

on the matter being visible, only that it gravitates. In this way gravitational lensing

should include dark matter, and indeed it is observed that the mass inferred from

lensing far exceeds that which is measured from X-ray emission. Even the X-ray gas

itself demonstrates the existence of DM, since without the large gravitational well

provided by the DM, the hot gas would dissipate.

A particularly striking example is given by the Bullet Cluster, which is actually

the result of a collision between two clusters. The baryonic matter is visible from

the X-ray emission, and the total mass is inferred from lensing; the resulting super-

position of the data is shown in Fig.1.2 and shows that the baryonic matter (gas)

has a smaller separation, as the frictional heating has slowed the gas. On the other

hand, the weakly interacting dark matter is not impeded and has moved further

apart than the baryonic matter.
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Figure 1.2: The bullet cluster from [5], the green contours (left and right) map the total mass

as inferred from gravitational lensing. The red and blue (right) shows the distribution of X-ray

emission from hot gas.

1.1.4 The CMB

Evidence for DM arises also at larger scales than the largest visible structures. Af-

ter the Big Bang, initial density perturbations in the universe evolved according to

coupled fluid equations which include the expansion of the universe [37, 38]. The

Thomson scattering of photons from electrons left the universe opaque up until the

recombination of electrons and ionized matter (at a redshift of around z ∼ 1100, or

∼ 380, 000 years from the Big Bang), at which point the photons free-stream until

their detection today1. The cosmological expansion has red-shifted these photons

to microwave energies and they are referred to as the Cosmic Microwave Back-

ground (CMB), hypothesised in 1948 [39] and first discovered in 1964 [40]; recent

measurements by Planck have yielded an unprecedented accuracy [41].

The three main components of the universe which dominate its evolution before

recombination are dark matter, baryons (taken to mean all visible matter) and pho-

tons. Before recombination, Thomson scattering keeps baryons and photons tightly

coupled, whereas the dark matter couples only gravitationally. The competing ef-

fects of the inward collapse of gravity created by baryons and dark matter, with

the outward photon pressure permit sound waves in the baryon-photon fluid with a

velocity cs ∼ c/
√

3 which is termed Baryon Acoustic Oscillation (BAO).

1Free streaming occurs if the gravitational potentials are flat, which they almost are. Deviations

from this assumption may be caused by any remnant radiation perturbations for example.
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Figure 1.3: The CMB temperature power spectrum from [6].

The resulting spherical sound waves oscillate once they enter the horizon (the

expanding causal ‘edge’ of the universe, i.e. the maximum distance travelled by light

since the Big Bang), but are frozen in at recombination. For a given perturbation

(denoted by its wavenumber, k, in a Fourier decomposition of the true perturbation)

if the freeze in occurs at a maximum (minimum) of oscillation, then the resulting

overdensity (underdensity) will create a peak in the CMB at angular scales which

correspond to k.

The first peak in the CMB is thus formed from a perturbation which enters the

horizon and oscillates to its first maximum. Higher peaks of the CMB have spent

longer inside the horizon and completed more oscillations. Note that peaks alternate

between overdense and underdense perturbations, thus we expect that the peaks

corresponding to underdense perturbations are smaller, since due to the gravity of

DM and baryons these regions tend to reduce their perturbation, compared with

overdensities which will increase. Additionally higher peaks are damped by the

photon fluid; high peaks correspond to small distances, which are washed out by the

photons which have a finite mean-free path. The density perturbation present at

recombination are manifest as tiny temperature fluctuations in the CMB photons,

∆T (θ, φ)/T (with T = 2.75), which is then decomposed into spherical harmonics of
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multipole order l. The CMB spectrum itself is shown in Fig.1.3 from the Planck

mission [6], the location and sizes of the peaks reveal a huge amount of information

about our universe. The location of first peak (l ∼ 200) is an indication of the

curvature of the universe, consistent with k = 0 (flat). The height of the second

peak determines the amount of regular matter in the universe ∼ 5%. The third

peak can be used to determine the amount of DM, ∼ 26.8%, a relic density (to be

defined shortly) Ωch
2 = 0.1199± 0.0027 [6].

1.1.5 Big Bang Nucleosynthesis

Big Bang Nucleosynthesis (BBN) is the study of how light elements formed from

the primordial plasma of the Big Bang. At the time of the Big Bang, the universe is

extremely hot and dense and any complex nuclei which are formed are immediately

destroyed by high energy photons. However, below z . 108 (roughly a few minutes

after the Big Bang)2, nuclei may be formed.

First, neutrons and protons form at T � 1 MeV and the number densities are

kept in equilibrium by the weak force, below T . 1 MeV the small mass difference

between the two nucleons means equilibrium is no longer maintained and the neu-

trons freeze-out and roughly 85% decay to protons. Next, deuterium forms (T ∼ 0.1

MeV) via n+ p→ D+ γ followed by helium and lithium [42–44], reaction rates are

too low to produce heavier elements (which are produced ultimately by stars and in

supernova).

Theoretical studies into BBN began in 1940 [45] showing that these primordial

abundances depend sensitively on the baryon-to-photon ratio η = nb/nγ, which itself

gives the baryon fraction of the universe Ωbh
2. The measurement of these primordial

elements (hydrogen, helium, deuterium D and lithium 7Li) [46] shows remarkable

agreement3 with the theoretical prediction if the baryon fraction is Ωbh
2 ≈ 0.022.

The situation is summarized in Fig.1.4.

2In standard cosmology one can track the age of the universe by time t, scale factor a, redshift

z, or temperature of the thermal bath T .
3With the exception of the measured Lithium abundance, which currently is not consistent with

the others, see [47] for a recent review.
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Comparing the inferred baryon fraction Ωbh
2 ≈ 2.2% to the independently mea-

sured total matter fraction Ωmh
2 ≈ 14% [6] gives strong evidence of a non-baryonic

component of the universe, dark matter.

Figure 1.4: The various nuclei formed during BBN, as a function of the baryon fraction Ωbh
2 (or

equivalently the photon to baryon ratio), the measured fractions are indicated by yellow rectangles.

The CMB measurement of Ωbh
2 [6] is indicated by the blue band, and agrees well with the BBN

concordance range (the purple band). Figure taken from [7].

1.2 Relic Density via Thermal Freeze-Out

We now turn to the question of how dark matter obtained its currently measured

density. The most popular method is thermal freeze-out, where we remain agnostic

to the creation of dark matter at the Big Bang and simply require it to be in thermal

equilibrium initially. It also is required to interact with the particles of the standard
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model, and the observed relic density provides a constraint on the nature and size

of these interactions.

There are alternative mechanisms which generate the relic density, see for ex-

ample [48]. Thermal freeze-in is closely related to freeze-out, but instead of being

in equilibrium the DM has very weak interactions and cannot reach thermal equi-

librium in the early universe before the expansion freezes the number density. In

this case we would find Ωh2 ∝ 〈σv〉 (the latter quantifies the size of the interac-

tions and will be explained in detail in the following section). The DM could also

have such small interactions that it cannot be produced thermally at any stage, this

non-thermal DM would have a relic abundance equal to the abundance that it was

produced with.

We will now explain how to calculate the relic density through a freeze-out mech-

anism, as this calculation underpins a ubiquitous constraint on the DM parameter

space throughout this thesis.

1.2.1 Cosmology Basics

We review some basic facts about cosmology which will be useful in what follows.

The starting point for cosmology is the Friedman-Robertson-Walker (FRW) metric

used to describe the evolution of the universe 4,

ds2 = −dt2 + a(t)2
(
dx2 + x2dθ2 + x2 sin θ2dφ2

)
, (1.2.3)

where x is the comoving radial coordinate (i.e. a particle which expands with the

metric above sits at fixed comoving distance), and a(t) is the scale factor which

describes the expansion of the universe at time t, it is conventionally equal to 1 at

present day, t0.

The scale factor is related to the redshift via 1 + z = a(t)−1. The expansion rate

of the universe, or Hubble rate, is given by H(t) = ȧ/a. The universe is composed of

various fluids each with the usual fluid parameters of density and pressure evolving

4This is the FRW metric for a flat (curvature k = 0), homogeneous and isotropic universe. We

will make this assumption, which is consistent with the measurement by Planck [6].
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according to,

ρ̇+ 3H(t)(P + ρ) = 0 . (1.2.4)

For cold non-relativistic matter (i.e. dark matter), P = 0, and thus ρ ∝ a−3. For

relativistic radiation P = ρ/3, and ρ ∝ a−4. For vacuum energy P = −ρ, and

ρ = const.

The Friedman equation for a universe of curvature k reads,

H2 =
8πGρ

3
− k

a2
. (1.2.5)

The critical density ρc is defined as the density required for a spatially flat (k = 0)

universe,

ρc ≡
8πG

3H2
, (1.2.6)

then the dimensionless density parameter is defined as Ω ≡ ρ/ρc, and the various

components of the universe should add up to the critical density,

Ωm + Ωr + ΩΛ = 1 , (1.2.7)

where Ωr,0 ∼ 0 is the radiation, Ωm,0 ∼ 0.3 is the cold matter (both baryonic and

dark matter) and ΩΛ,0 ∼ 0.7 is dark energy. The subscript 0 indicates that these

quantities are the present day values.

Each of the components evolves over the history of the universe. The universe

was initially radiation dominated (after a period of inflation), by a combination of

photons and neutrinos. At a redshift zeq ∼ 3×103 the matter and radiation densities

become equal, after that the universe becomes matter dominated and this continues

to the present day. We are currently entering a phase of vacuum energy domination

which began at z ∼ 0.7.

1.2.2 Calculation of Relic Density

All the observational evidence for dark matter (DM) presented in the previous sec-

tion relies on the gravitational influence of DM with itself and with baryonic matter

and radiation. Of course there is no a priori reason to suspect that it should interact
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through any of the forces of the Standard Model (SM), however we should hope that

it does. Under the assumption that this is the case; then the couplings between DM

and the SM particles influence its cosmological evolution.

The DM candidate, χ, may self-annihilate or decay, and in thermal equilibrium

these processes balance the production of dark matter from the thermal bath of SM

particles,

Ann. : χ̄ χ↔ SM SM , (1.2.8)

Dec. : χ↔
∑

SM . (1.2.9)

The measured abundance of DM in the universe today, Ωh2 = 0.1199, is an im-

portant quantity to be explained by any DM model. A DM particle which interacts

with nothing would simply be diluted by the expansion of the universe, maintaining

a fixed comoving number density, equal to its initial value. On the other hand, a

massive particle which remains strongly coupled to the thermal bath would have

no abundance today, having rapidly annihilated or decayed away once it became

non-relativistic.

If the DM couples to the SM and we wish it to achieve the measured relic density,

then the true picture of its evolution is somewhere between these two extremes.

A DM candidate which interacts with the SM can undergo a process known as

thermal freeze-out, obtaining a fixed value of Ωh2 dependent upon the strength of

its interactions.

The basic picture of thermal freeze-out is as follows (depicted in Fig.1.5): DM is

assumed to be in thermal equilibrium in the very early universe, sharing a common

temperature with the thermal bath of SM particles coupled by their interactions5.

Therefore the DM initially maintains an equilibrium distribution. As the universe

expands the number density is diluted, but equilibrium is maintained up until the

point at which the interaction time, (nσv)−16 of the DM is roughly the same size

5It is further assumed that the DM is stable (it does not need to be absolutely stable, a weaker

requirement is that its lifetime τ > t0 the age of the universe). The initial abundance of particle

and anti-particle should also be equal, but this will be the case if the DM is in thermal equilibrium.
6For DM number density n, cross section σ and velocity v.



1.2. Relic Density via Thermal Freeze-Out 12

10
0

10
1

10
2

10
3

10
-3

10
-2

10
1

10
4

10
7

10
10

Figure 1.5: The DM comoving number density (mχ = 500 GeV). The equilibrium number

density is shown as a dashed line, and rapidly drops as the DM transitions from relativistic to

non-relativistic (x ∼ 1 − 10). However the DM does not stay in equilibrium, as the expansion

of the universe causes the interactions (annihilation of DM in this case) to cease, thus fixing the

number density (the measured value is the dotted line). If the interactions are stronger, then the

freeze-out occurs later (higher x) as the annihilation remain efficient for longer.

as the expansion time H(t)−1. The DM then decouples from the thermal bath, and

its comoving number density is frozen in to a fixed value, since no interactions are

capable of reducing the number density. The relic density is very sensitive to the

interaction rate, a large cross section leads to a later decoupling, and the equilibrium

number density is a steeply falling function of temperature once the DM becomes

non-relativistic (at T < mχ).

1.2.3 The Boltzmann Equation

Freeze-out is a non-equilibrium process dealing with coupled fluids and is therefore

mathematically described by an appropriate Boltzmann equation. The derivation

of this from a few basic assumptions can be found in cosmology textbooks [37, 38].

Following these references, we arrive at a simple form for the Boltzmann equation
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for a massive DM particle which annihilates into pairs of SM particles,

∂n

∂t
+ 3H(t)n = −〈σv〉 (n2 − (neq)2) , (1.2.10)

where n ≡ n(t) is the average DM number density and neq is the DM number

density assuming thermal equilibrium, H(t) is the Hubble parameter and 〈σv〉 is

the thermally averaged annihilation cross section (see Sec.1.2.5), summed over all

kinematically allowed final states X,

〈σv〉 =

[
1

2

] ∑
i,j,k,l

〈σv〉χiχ̄j→XkXl , (1.2.11)

which allows co-annihilations if i 6= j [49], the factor of 1/2 is present only for non

self-conjugate particles. However we will work under the assumption of a single DM

candidate χ (i = j = 1). Since H(t) = ȧ/a, where a(t) is the expansion parameter,

we can rewrite Eq.(1.2.10)

∂(na3)

∂t
= −〈σv〉 (a3n2 − a3(neq)2) . (1.2.12)

It is useful to change variables to Y (t) = n(t)/s, the ratio of the DM number density

to entropy density, s (and s ∝ a−3), which leads to ,

dY

dt
= −s 〈σv〉

(
Y 2 − Y 2

eq

)
, (1.2.13)

then using the following result for the variable x ≡ m/T

dx

dt
= −dT

dt

m

T 2
= −x

2

m

dT

dt
= Hx , (1.2.14)

since T ∝ a−1 (we are assuming freeze out occurs in the radiation dominated era),

then we can change the time variable in Eq.(1.2.13) to a temperature variable via

the dimensionless variable x and the Boltzmann equation is written

dY

dx
=
dY

dt

dt

dx
= − s

Hx
〈σv〉

(
Y 2 − Y 2

eq

)
. (1.2.15)

We can parameterize the energy density and entropy as

ρ = geff(T )
π2

30
T 4, s = heff(T )

2π2

45
T 3 , (1.2.16)
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where geff , heff are the effective energy density and entropy degrees of freedom (see

Sec.1.2.4). The Hubble parameter may be written

H =

√
8

3
πGρ . (1.2.17)

Then Eq.(1.2.15) becomes,

dY

dx
= −mχπ

x2

√
g∗(x)

45G
〈σv〉 (Y 2 − Y 2

eq) , (1.2.18)

where we define
√
g∗(T ) ≡ heff(T )/

√
geff(T ). To find the DM density in the universe

today, i.e. its ‘frozen out’ density, the DM must freeze out at some temperature

T = TF (x = xF ). In the limit x � xF (i.e. long after freeze-out), the equilibrium

yield Yeq is negligible due to an exponential suppression,

Yeq(x) =
neq
s

=
45gi
4π4

x2K2(x)

heff(T )

≈ 45

4
√

2π3.5
x

3
2 e−x,

this form for Yeq can be found from the Boltzmann equation by setting n = neq.

Following [8], the Boltzmann equation Eq.(1.2.18), is written in terms of ∆ =

Y − Yeq,

d∆

dx
+
dYeq
dx

= −m
x2

√
g∗(x)π

45G
〈σv〉 (∆2 + 2∆Yeq) , (1.2.19)

neglecting the x derivative of ∆ (the true DM density tracks its equilibrium value

well while interactions are efficient) the freeze out temperature TF may be defined

as the point at which ∆ = δYeq, with δ some number δ ≈ O(1), which leads to,

dYeq
dx

∣∣∣∣
x=xF

= −m
x2
F

√
g∗(xF )π

45G
〈σv〉 δ(δ + 2)Yeq(xF )2 . (1.2.20)

Note that 〈σv〉 is also a function of xF through any velocity dependence. Inserting

Yeq into the above equation leads to an equation for xF only,√
g∗(xF )π

45G

45g

4π4
mχ 〈σv〉 δ(δ + 2) =

K1(xF )

K2(xF )2
, (1.2.21)
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which, given the asymptotic form of the modified Bessel functions of the second

kind,

K1(x) = K2(x) ≈
√
π

2

e−x√
x

(x→∞) ,

leads to the approximate result for non-relativistic particles

exF =

√
45g∗(xF )

8G

mχδ(δ + 2) 〈σv〉
2π3
√
xF

. (1.2.22)

Solving Eq.(1.2.22) numerically gives xF . After freeze-out, the DM density scales as

a−3 diluted only by the expansion. Thus Yeq rapidly drops to zero as (x� xF ) and

can be neglected, allowing Eq.(1.2.15) to be integrated∫
dY

Y 2
= −

∫
mχπ

x2

√
g∗(x)

45G
〈σv〉 dx , (1.2.23)

where the integral runs from freeze out, x = xF , Y = Y (xF ) to the present day

x =∞, Y = Y∞ we have,

− 1

Y∞
+

1

Y (xF )
= −mχ

√
π2

45G

∫ ∞
xF

√
g∗(x) 〈σv〉
x2

dx .

The yield at freeze out is much larger than at the present day Y (xF )� Y∞ and we

can let 1/Y (xF ) ≈ 0, 〈σv〉 ≈ const, and g∗(T ) = g∗

1

Y∞
= mχ

√
π2

45G

∫ ∞
xF

√
g∗(x)

x2
〈σv〉 dx ≈ √g∗

mχ 〈σv〉
xF

√
π2

45G
, (1.2.24)

under the approximation that both 〈σv〉 and g∗ are independent of x. Once a value

of xF is established, Eq.(1.2.24) gives the present day yield. From this we find the

number density, and thus mass density ρ0 = mχY∞s. The relic density is calculated

from

Ωh2 =
ρ0

ρc,0
h2 =

mχs0Y∞h
2

ρc
. (1.2.25)

The present day entropy density is s0 = heff(T0)2π2

45
T 3

0 ≈ 35 K3, and the present day

critical density ρc,0 = 3h2/(8πG) leading to,

Ωh2 =
heff(T0)

g∗(TF )

16π3

9

T 3
0 xF
〈σv〉

√
G3

5
. (1.2.26)
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Eq.(1.2.26) is a central result, allowing the calculation of the DM relic density from a

general particle physics model (which determines 〈σv〉). It provides the well known

scaling Ωh2 ∝ 1/ 〈σv〉, since large cross sections lead to a DM which decouples later,

allowing its number density to drop further before freeze-out.

We will now elaborate the discussion to a few of the important quantities that

enter into the calculation.

1.2.4 Effective Degrees of Freedom

The solution to a Boltzmann equation always produces a phase space function, f(θi),

that describes the fluid, and which depends on some kinematical variables θi (for

example position and momentum), and which has the interpretation of the fractional

number of particles with variables in the range θi + dθi. A relativistic particle has

six degrees of freedom from its position r and momentum p, in equilibrium the

solutions to the Boltzmann equation in vacuum yield the familiar Fermi-Dirac (FD)

and Bose-Einstein (BE) distributions,

feq(r,p) =
1

eβE ± 1
, (1.2.27)

where the + is the FD, and − is the BE distribution describing fermions and bosons

respectively. If the particles are non-relativistic then E ≈ m and β = (kBT )−1 � m,

then the exponential dominates in the above expression and both distributions ap-

proximate to the Boltzmann distribution f(p) = e−βE, with E(p) =
√
m2 + |p|2.

All thermodynamic quantities can be found once the phase space distribution is

known. A particular quantity O, for example density or pressure, is found in the

usual way as the expectation value, integrated over all states,

〈O〉 =

∫
d3p

(2π)3
O(p)f(p) . (1.2.28)
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In particular number density, energy density, and pressure are given by,

n ≡ 〈1〉 = g

∫
d3p

(2π)3
f(p) , (1.2.29)

ρ ≡ 〈E〉 = g

∫
d3p

(2π)3
Ef(p) , (1.2.30)

P = g

∫
d3p

(2π)3

|p|2
3E

f(p) , (1.2.31)

where g is the degeneracy of the particle (the number of spin states). For relativistic

particles in equilibrium P = ρ/3, entropy density s = (ρ+P )/T = 4ρ/3T , and from

Eq.(1.2.27) we derive,

Bosons


ρ = g π

2

30
T 4

n = g ζ(3)
π2 T

3

s = g 2π2

45
T 3

Fermions


ρ = g 7

8
π2

30
T 4

n = g 3
4
ζ(3)
π2 T

3

s = g 7
8

2π2

45
T 3

. (1.2.32)

The energy density and entropy may be more generally defined by,

ρ = geff(T )
π2T 4

30
; geff(T ) =

∑
c,d

gc(T ) + gd(T ),

s = heff(T )
2π2T 3

45
; heff(T ) =

∑
c,d

hc(T ) + gd(T ), (1.2.33)

where the sum extends over all particle species (c) which are coupled and therefore

in thermal equilibrium sharing a common temperature T , and those which have

decoupled (d).

Once a particle decouples at temperature Tdi (its interaction rate drops below

the expansion rate of the universe, in exactly the same way that DM freezes out),

its temperature Ti will differ from the thermal bath. The decoupled species will

nonetheless maintain an equilibrium distribution of temperature Ti which evolves as

Ti ∝ a−1, a−2 for massless and massive particles respectively.

If a particle becomes non-relativistic (Ti . mi), then its behaviour changes

drastically, in particular its number density exponentially decreases. Although not

necessarily decoupled, a particle that becomes non-relativistic will no longer con-

tribute to the effective degrees of freedom. It is reasonable also to take T ∼ mi/20
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for the temperature at which a particular species becomes non-relativistic.

For relativistic particles in thermal equilibrium with common temperature T (i.e.

coupled) and internal degrees of freedom7 gi,

gc(T ) =
∑

bosons

gi +
7

8

∑
fermions

gi . (1.2.34)

We also include any species which decouple at a temperature Tdi > T , which modifies

the result by a factor (Ti/T )4 to account for the dilution of density,

gd(T ) =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

. (1.2.35)

For relativistic particles in thermal equilibrium P = ρ/3, then from the definition

of entropy density s = (P + ρ)/T we find that hc = gc for the coupled species and

so g∗ =
√
geff . However for relativistic decoupled particles we have,

hd(T ) =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

, (1.2.36)

and the scaling behaviour with temperature prevents a simple definition of g∗.

In the Standard Model (SM) before any particles decouple, geff(T & 300 GeV) ≈
heff = 106.75, below T ∼ 1.0 MeV the neutrinos are decoupled, but geff(T .

1.0 MeV) = 3.38 remains constant with T since the neutrino temperature tracks

the photon temperature Tν = (4/11)1/3T (also heff(T . 1.0MeV) = 3.94 due to the

T 3 temperature dependence). The temperature dependence of g∗(T ) is shown in

Fig.1.6.

1.2.5 Thermally Averaged Cross Section

The thermally averaged annihilation cross section, 〈σvrel〉, is a central quantity in

the calculation of DM relic density, and the interactions of DM in a cosmologi-

cal setting which may lead to indirect signals for its detection. It can be tricky to

7For fermions gi = 2, for spin-1 particles such as the photon gi = 3 and for spin-0 particles

gi = 1
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Figure 1.6: The effective degrees of freedom g∗(T ) = h2
eff/geff as defined in Eq.(1.2.33). Assuming

heff = geff gives the red dashed line. The blue lines are taken from [8] and are more accurate;

including the full temperature dependence of heff and also accounting for the QCD phase transition

at T = 150 MeV (upper line) or 400 MeV (lower line). The actual quantity that appears in the

formulae is
√
g∗ and so the approximate curve is sufficiently accurate. At the highest temperatures,

all the SM degrees of freedom are coupled to the thermal bath, as the universe cools these decouple

at T ∼ m until only the photons and neutrinos remain.
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calculate without making some sensible approximations, we review these briefly now.

We begin by recalling the general formula for the cross section of a 2 → n

annihilation,

σvrel =
1

4E1E2

∫
dΠ 〈|M|2〉 , (1.2.37)

where E1 and E2 are the fixed energies of the incoming particles with relative velocity

vrel = |v1 − v2|, 〈|M|2〉 is the spin-averaged and squared matrix element of the

process, integrated over the Lorentz invariant phase space which is given by,

dΠ =
n∏
i

d3pi
(2π)32Ei

(2π)4δ4

(
p1 + p2 −

n∑
i

pi

)
. (1.2.38)

For n = 2 final state particles with masses m3,4 and momentum p3,4, and two

incoming, identical particles of mass mχ and momentum p1,2 the cross section can

be written (in the centre of mass, ‘COM’ or ‘CM’, frame),

dσ

dΩ
=
〈|M|2〉
64π2s

|p3|
|p1|

. (1.2.39)

The differential quantity depends on two independent variables, which are conve-

niently taken to be the s, t Mandelstam variables. In the centre of mass frame these

variables may be expanded in the velocity v of one of the incoming particles,

s = 4m2
χ(1 + v2) +O(v4), (1.2.40)

t = (m2
f −m2

χ) + 2mχ cos θv
√
m2
χ −m2

f − 2m2
χv

2 +O(v3). (1.2.41)

The integration in angles Ω thus yields σv to the desired order in v = v(CM)

rel /2. One

then inserts the thermally averaged value of velocity, 〈vnrel〉 to obtain an approximate

value of 〈σvrel〉. For example, in the cosmological context and the calculation of relic

density 〈v2〉 ≈ 3
2x

and 〈v4〉 ≈ 15
8x2 (recall x = m/T ),

〈σv〉 = 〈σv〉s +
3

2x
〈σv〉p +

15

8x2
〈σv〉d + · · · . (1.2.42)

The subscripts on the terms in this expansion indicate the nomenclature; s-wave

annihilation has no velocity dependence, p-wave annihilation is proportional to v2,

d-wave to v4 and so on. Alternatively, in the galactic center at the present day
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vrel ∼ 10−3 (in reality, the radially dependent DM distribution causes a radially

dependent velocity, but the approximation of constant velocity will be acceptable

for our purposes). For relic density calculations, the cross section is evaluated at

freeze-out and thermal averaging of Eq.(1.2.37) may be written as8

〈σvrel〉 =

∫∞
0
dvrv

2
r(σvr)e

−v2
r/4x∫

dvrv2
re
−v2

r/4x
. (1.2.44)

A typical value for freeze-out is xF ∼ 20 − 30, which leads to velocities vrel ∼ c/4

and thus relativistic corrections may become important. A more rigorous treatment

is given in [8]. Eq.(1.2.37) is valid for particles with fixed incoming energies, the

thermal averaging arises because the incoming energies are not fixed, but instead are

described by the phase space distribution that comes from the solution of the Boltz-

mann equation. Using the Maxwell-Boltzmann distribution leads to Eq.(1.2.44),

using a generic phase space function f modifies Eq.(1.2.37) to

〈σvrel〉 =
1

n1n2

∫
d3p1

E1

d3p2

E2

f(p1)f(p2)

∫
dΠ 〈|M|2〉 , (1.2.45)

where ni =
∫
d3pif(pi). Since the DM is non-relativistic at decoupling, it is suitable

to use the Maxwell-Boltzman distribution, f(p) ∝ exp(−E/T ), rather than Fermi-

Dirac or Bose-Einstein. After some algebra this yields an equation,

〈σvrel〉 =
1

8m4
χTK

2
2(mχ/T )

∫ ∞
4m2

χ

σ(s− 4m2
χ)
√
sK1(

√
s/T )ds . (1.2.46)

This is especially useful for cross sections near to a resonance (i.e. when the cross

section is enhanced at s = 4m2
χ), resonances are commonly seen in models with

s-channel annihilation via a single mediator, and this is one of the contexts in which

they appear in this thesis. Mediators with large decay widths have suppressed res-

onances, and in those cases Eq.(1.2.44) provides a suitable approximation.

8 The relevant distribution is Maxwell-Boltzmann [50] with relative velocity vr,

fMB(vr) =
x3/2

√
4π
v2
re
− v

2
rx

4 , (1.2.43)

however in reality the distribution is only approximately Maxwell-Boltzmann, due to deviations

from spherical symmetry of the DM distribution in the galaxy.
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We make one final note, the correct velocity to use in the thermal averaging is

known the Møller velocity defined by (for two incoming particles of different mass)

[8, 50]9

vmol =

√
(p1 · p2)2 −m2

1m
2
2

E1E2

, (1.2.47)

the advantage of this definition is that it is Lorentz covariant, and thus applies in the

centre of mass frame and lab frames. The relative velocity (defined in any frame)

is vrel = |v1 − v2|, in the CM frame v(CM)

rel = 2v where v is the velocity of one of the

particles, whereas in the lab frame v
(lab)
rel = v. On the other hand the Møller velocity

is v(CM)

mol = 2v and v
(lab)
mol = v in the CM and lab frame respectively. Thus the relative

velocity in the lab and CM frames are equivalent to the Møller velocity.

An additional constraint that occurs for models with thermal freeze-out is the

partial wave unitary of the scattering matrix [51], this is model independent and

sets mχ . 100− 500 TeV. We will generally not consider such large masses.

1.3 Outline of this Thesis

This thesis is split into three distinct themes, the first body of work covers Chapter

2-5 and covers a broad analysis of dark matter models using the low energy probes of

indirect and direct detections. The second theme involves the study of new physics

in the neutrino sector, specifically for the future generation of direct detection ex-

periments. The third theme deviates from dark matter, and instead explores the

idea of duality violation in the context of heavy flavour physics.

Content summaries can be found at the start of the respective chapters but we

provide a very brief summary here also.

9or equivalently,

vmol =
√
|v1 − v2|2 − |v1 × v2|2,

where pi = γimivi and Ei = γimi with γi = (1− |vi|2)−1/2.
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In Chapter 2 we will provide an introduction to the study of simplified models

of dark matter, which provide a very useful framework for comparing constraints on

DM models, without the rigour and complexity of theoretically motivated models

such as the Minimal Supersymmetric Standard Model (MSSM). We will provide a

list of assumptions on such models and then a complete list of such models which

will be considered in the following four chapters.

In Chapter 3 we will examine indirect detection constraints on simplified mod-

els. We provide a detailed description of the calculation for one important such

signal, gamma-rays from the galactic centre. We conclude by summarizing the most

powerful constraints in the literature.

In Chapter 4 we review and collate in detail the full calculation of direct detection

signals of dark matter. We work with the effective field theory limit of the simplified

models and give a detailed calculation of the matching procedure between the two.

We conclude by analysing a set of relevant Direct Detection (DD) experiments and

some example bounds.

In Chapter 5 we present the results of applying the bounds from indirect and

direct searches to the simplified models and discuss the remaining parameter space

which may be explored in future, by collider searches for example.

In Chapter 6 we will build on the work in Chapter 4 and consider the application

of DD experiments to neutrino physics, the mediating particles used in simplified

models of Dark Matter may in general couple independently to neutrinos, thus giving

the possibility of new neutrino interactions with matter that could be detected in the

upcoming generation of DD machines. We explore these ideas and present concrete

constraints on some general models that can be expected in future.

In Chapter 7 we will investigate a simplified model in depth, tackling each of the

assumptions that are made in Chapter 5.

Finally, in Chapter 8 we take a detour from the discussion of Dark Matter to

investigate another phenomenon, which arises in heavy flavour physics. There are

many precision measurements and also many discrepancies with the SM present in

the heavy flavour sector, with so much effort put into explaining these with some
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new BSM physics (dark matter among the explanations), we instead investigate the

idea that the explanation lies in the methods we use to perform the calculations,

perhaps the assumption of duality between the low energy (hadronic) and high

energy (quarks and gluons) level is violated by some degree. After a careful analysis

we present limits on the size of duality violation that might either explain some

discrepancies (for example the lifetime of the neutral charm meson D0) or else violate

some precision measurements (for example the heavy neutral B0 meson lifetimes).



Chapter 2

Simplified Models of Dark Matter

In this short chapter, we briefly motivate the use of simplified models in the frame-

work of dark matter (Sec.2.1), and provide a list of conditions we impose on the

models in Sec.2.2. With this in mind, we construct a list of 16 models to consider

in this study in Tab.2.4.

2.1 The Paradigm of Simplified Models

In the modern era of experimental particle physics, the search for new physics from

a theoretical perspective proceeds in two complementary ways. One may pursue a

top-down approach, whereby a well motivated concrete model is constructed. Such

a model is often sufficiently complex to require many assumptions, to reduce the

parameter space to a manageable size and thus direct experimental searches into a

narrow enough scope to detect or falsify the model. Examples of ‘complete’ models

include the Minimal Supersymmetric Standard Model (MSSM) [52, 53], Little Higgs

models [54], or Universal Extra Dimensions [55] to name only a few.

An alternative approach is bottom-up. One tries to remain agnostic as to the

correct realisation of the physics, and with a few basic assumptions, builds a simple

set of models which capture the relevant phenomenology at detectors, whilst leav-

ing the parameter space sufficiently small to make definite statements about the

detectability of the models. In essence, one sacrifices motivation and theoretical

25
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rigour and clarity for a broader approach which simultaneously covers many com-

plete realizations but which stands less chance of missing interesting phenomenology

and thus maximizes the utility of the experimental data.

Effective Fields Theories (EFTs) are a common bottom-up approach, these are

distinct from simplified models because they contain non-renormalizable operators

(those with mass dimension higher than 4), whereas simplified models are UV com-

plete, in the sense that the theory is renormalizable and does not require the addition

of any new physics below a sufficiently high scale Λsimp. Then if one matches the

simplified model onto an EFT, an operator of mass dimension n > 4 is suppressed

by some energy scale Λ4−n, this scale parametrizes roughly the energy scale of pro-

cesses for which the effective theory breaks down, for energies E < Λ the EFT gives

a good approximate description of the theory but for E > Λ there must be some new

physics which can no longer be ignored and which invalidates the EFT prediction,

and UV completes the model. In simplified models Λ is identified with the mass of

a heavy particle.

In simple situations Λ = mX is the mass of some new particle X. A classic ex-

ample is that of the weak interactions, whose Lagrangian includes the EFT operator

responsible for four-lepton interactions

Oweak = GF L̄γ
µLL̄γµL , (2.1.1)

which has mass dimension 6 and is therefore suppressed by two powers of the W-

boson mass, Λ−2 ≡ m−2
W . At low energies (for example in β-decay) the above oper-

ator describes the process very well. This is not the case for high energy processes,

such as very high energy electron-electron scattering (where s > m2
W with s the

centre of mass energy squared) for which one must include the W explicitly.

In simplified models, the DM does not interact directly with the SM, it belongs

to the hidden sector which is connected to the SM sector via some mediating sector

which in its most simple guise is a single particle. The mediator mass, mmed, is

generally very large and so an appropriate EFT description follows from integrating
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out the mediator. The EFT thus provides a very good description of the theory if

the new particles which UV-complete the model are very heavy, or at least heavier

than the typical energy scales involved in the process. This is very often true for

direct detection since the DM is highly non-relativistic, the momentum exchanges

involved in scattering are q ∼ O(100) keV and the EFT remains valid for mediator

masses above the GeV scale, similarly in indirect detection through the annihilation

of DM the total energy available to the annihilation products is E ∼ 2mDM and

so the EFT is valid so long as mmed � mDM. EFTs have been widely used for

their simplicity and easy application to wide ranges of signals[56, 57]. The EFT

approximation can break down if the new physics is at a sufficiently low scale as to

become comparable to energy scales of a particular experiment. This would be most

pronounced at high-energy collider experiments like the LHC, which is why simpli-

fied models recently received so much attention in this context [58–61] (see [62] for

an extensive list of references). If the new particles are light (sub-GeV, which we

consider in Chapter 6) they will show up at even lower energy detectors.

Therefore, even though one may use EFTs for indirect and direct searches, they

cannot be compared with collider searches unless one specifies the UV completion.

Simplified models therefore provide the basis for such a comparison. Each UV com-

plete model gives a unique matching to EFT operators for use in low-energy signals.

Another advantage of simplified models is that they are a simple example of

many important and ubiquitous phenomenological considerations for the aspiring

model builder. Using them emphasises the aspects of the phenomenology that may

be applied generally to particular classes of models (for example, all models with

a heavy neutral vector mediator coupling to quarks), which may not be elucidated

when considering more complete, more rigorous and thus more complex models.

They serve to inform the experimental community of the important search regions,

without encumbering them with unnecessary details of particular models.

Early attempts at building such a framework began by considering collider
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bounds [63, 64], questioning the validity of EFTs and concluding that such an

approach can lead to inaccurate results [65–68]. Recently, the models have been

developed and applied more broadly, allowing comparison of bounds from all avail-

able energy scales [58, 69, 70]. More recently still, the ability for such models to

be obtained from UV-complete models without the introduction of important new

effects has been called into question [71–74].

In order to lay down the basic ground rules for building simplified models, we

borrow from [75] and adhere to the following criteria1:

1. The DM candidate is stable. This means preventing any DM decay, which

can often be achieved by the addition of a Z2 symmetry under which the DM is

charged oppositely to one of its potential decay products. In the models with

s-channel annihilation there is no allowed decay; in models with t-channel an-

nihilation we impose that the mediator mass is larger than the DM to prevent

a decay DM→ MED + SM.

2. The Lagrangian contains all terms consistent with Lorentz invariance and

renormalizability.

3. Operators from (2) should not violate any exact or accidental symmetries of

the SM.

The final point necessarily includes the SM gauge symmetries, the global baryon

and lepton number symmetries. The approximate flavour symmetry in the quark sec-

tor should also be respected to avoid bounds from precision flavour observables; this

restriction can be relaxed using the minimal flavour violation (MFV) assumption

[76, 77], which allows flavour breaking operators, as long as they are proportional to

the quark Yukawa matrices, or CKM matrix since this is the origin of flavour break-

ing in the SM. MFV is not a necessary requirement, but is commonly implemented

1In reality, both (2) and (3) are frequently broken to some extent, the four-scalar (e.g. media-

tor or DM self-interactions or Higgs couplings) and four-vector operators are generally neglected

and MFV and SU(2)L are explicitly broken in our examples. Both of these represent potential

inaccuracies in the model, and we address them for a specific model in Chapter 7.
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to avoid bounds from flavour physics on flavour-violating effects, which can be quite

strong.

This list is certainly not exhaustive, and as we provide more details of the models

we will make many more working assumptions, each of which will be mentioned in

this chapter.

2.2 Simplified Models for this Study

Since no direct measurement of DM outside of its gravitational effects has been

made, the spin of the DM is unconstrained. The criteria of simplified models then

dictates that we consider all possible spins, although we require the spin to be ≤ 1

since all known particles fulfil this criteria. Spin-3/2 DM has been considered in the

context of EFTs in [78].

We thus focus on three general types of dark matter particles, namely a spin-

0 (which we will refer to as scalar or pseudoscalar, depending on their coupling

structure, and which also may be real or complex), spin-1/2 (fermionic DM may be

either Dirac or Majorana, the fermionic equivalent of a real particle), and finally we

may consider a massive spin-1 vector boson (which may be real or complex). This

exhausts all possibilities for spin less that 3/2.

Strong constraints exist for DM which is charged under the SM gauge group of

U(1)Y ⊗ SU(2)L ⊗ SU(3)c (hypercharge, weak isospin and color charge), and it is

therefore safe to assume that the DM is a gauge singlet. Of course, it is still possible

to allow the DM to have a small SM charge, see for example the “milli charged dark

matter” class of models [79–83]. In the case of neutral DM, couplings must be to

SM gauge singlet fields or field combinations.

In order to couple the DM sector to the SM sector we introduce one further par-

ticle which we refer to as a mediator, since it mediates an interaction between the
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SM and DM. Like the DM, the mediator has arbitrary spin, and we do not impose

that it must be neutral under the SM gauge group; however we are dealing with

low energy probes in this work (direct and indirect detection, compared with say,

LHC signals which could be sensitive to physics above the EW scale), the relevant

gauge group below the electroweak scale is U(1)EM⊗SU(3)c. Using this gauge group

simplifies the model building, but it should be noted that above the EW scale an

SU(2)L invariant simplified model should be used which is then matched to our set

of models, this may not be trivial and it may not be possible to uniquely match

between the models in a 1-1 fashion2. This limitation to our approach is analogous

to that between our models and the conventional set of EFT operators, and we do

caution that as pointed out very recently, the requirement of gauge invariance above

EWSB does restrict the parameter space in non-trivial ways [72].

In principle we can construct models with multiple DM candidates and multi-

ple mediators, but we will consider individual models which contain a single DM

and single mediator. For each of these DM candidates, we will consider interac-

tions through: a neutral or charged spin-0 scalar (denoted S and S± respectively)

a neutral or charged spin-1 vector (denoted V or V ±), or finally a charged fermion

denoted F±. We let the DM interact with only one of these mediators at a time,

thus avoiding interference terms between different mediators (such interference terms

can lead to very different phenomenology; see e.g. [84]). The precise set of available

mediators is dictated by the constraints of Lorentz invariance and renormalizability

(mass dimension less than or equal to four) in the Lagrangian terms of the simplified

model. This leads to 4 spin-0 DM models, 6 spin-1 and 6 spin 1/2 models. These

are discussed in more detail in the following sections.

We have in mind the production of the DM relic density through thermal freeze-

2The models with neutral mediators can easily be extended to be SU(2)L invariant (however

they necessitate a coupling to both up and down type quarks), however for the charged mediator

models it is a little trickier, since for LH fermions the DM or mediator must become an SU(2)L

doublet, and this introduces additional particles to the model.
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out as per Chapter 1; this allows for the possibility of either decaying DM (with

interactions of the form DM → ∑
SM) or annihilating DM (DM DM → SM SM).

We will deal with the latter type and with SM being fermions (i.e. leptons and

quarks), thus requiring for processes like annihilation and scattering that the DM

interact with the SM in pairs.

2.2.1 Fermionic DM Couplings

Commonly, DM candidates have spin-1/2, which we denote χ. Many concrete the-

ories like supersymmetry allow for such DM (for example the Majorana neutralino

[85] or axino [86, 87] DM). Dirac DM arises in a phenomenological setting in for

example, [88, 89].

The basic building block for Lorentz invariant Lagrangian operators is a bilinear

ψ̄1Γψ2, where Γ is a matrix in spinor-space, i.e. a 4×4 matrix which can be written

as a linear combination of the 16 basis matrices :

Γ ∈ {1, γ5, γµ, γµγ5, σµν} , (2.2.2)

where σµν = i/2 [γµ, γν ], these may also be contracted with the Levi-Civita ten-

sor εµνσρ or derivatives. However, neither can give renormalizable theories since

the derivative adds a mass dimension and the Levi-Civita tensor has two or more

uncontracted indices. Since the fermion bilinear has mass dimension 3, each renor-

malisable Lagrangian term can only contain a single bilinear (it is not possible to

have a fermionic DM and fermionic mediator coupled to SM fermions). These basic

buildings blocks are listed in Tab.2.1.
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Dirac Fermion Majorana Fermion

Γ
(i)
χ χ̄χ , χ̄iγ5χ χ̄χ , χ̄iγ5χ

Γ
(i),µ
χ χ̄γµχ , χ̄γµγ5χ χ̄γµγ5χ

Γ
(i),µν
χ χ̄σµνχ, χ̄iσµνγ5χ χ̄iσµνγ5χ

Table 2.1: Operators involving Dirac or Majorana fermion fields of mass dimension ≤ 4. Note

that the Dirac equation for free fields may be used to reduce tree level operators, i/∂χ = mχ,

however couplings with derivatives are not included since they are dimension 4, and thus do not

allow any couplings to the mediator or SM fields.

The above bilinears all couple to objects with mass dimension 1, i.e. a scalar or

vector boson, except for the tensor bilinear which cannot couple in a renormalizable

way3.

The kinetic and mass terms read,

Lkin = χ̄i/∂χ−mχχ̄χ+
1

2
χ̄mi/∂χm −

1

2
mχmχ̄mχm

+ (DµS)†DµS −m2
SS†S −

1

2
X †,µνXµν +m2

XX †,µXµ

+ (∂µS)†∂µS −m2
SS
†S − 1

2
X†,µνXµν +m2

XX
†,µXµ , (2.2.3)

where we denote the Majorana field with a subscript, the S and X µ are complex

scalar and vector mediator fields charged under the SM gauge group and S, Xµ are

the corresponding neutral particles. Eq.(2.2.3) leads to a possible set of interactions

for Dirac fields,

Lint = χ̄
(
gs + igpγ

5
)
χS + χ̄γµ

(
gv + gaγ

5
)
χXµ

+
(
χ̄
(
g′s + ig′pγ

5
)
fS† + χ̄γµ

(
g′v + g′aγ

5
)
FX †µ + h.c.

)
. (2.2.4)

For Majorana fields the terms are identical but with gv = g′v = 0, the charged

mediators couple to SM fermions f and therefore have the same electric and color

charges. The couplings gs,p,v,a must all be real, whilst g′s,p,v,a are in general complex.

3Except to a tensor field Tµν , which we do not consider here. However spin-2 mediators are

considered in [90, 91]



2.2. Simplified Models for this Study 33

Vector mediators Xµ naturally arise for example in kinetic mixing scenarios

[80, 92–94], or gauged B-L models (for a review see [95]). Although mediator self-

interactions are possible S3, S4 and (XµXµ)2, (X µXµ)2 these will not impact the

signals considered in this thesis.

2.2.2 Scalar DM Couplings

Spin-0 DM candidates, denoted φ if φ† = φ (i.e. a real field) or Φ for a complex

field, have received much attention in the literature [96–99]. A good example of

a concrete model is the axion [100, 101], originally proposed as a solution to the

strong CP problem in QCD [102, 103].

The building blocks of Lagrangians involving scalar fields (and their derivatives)

are listed below in Tab.2.2 separated into Lorentz scalars, vectors and tensors.

Real Scalar Complex Scalar

Γ
(i)
φ,Φ φn, n ≤ 4 Φ†Φ , (Φ†Φ)2 , Φ(†),n, n ≤ 4

Γ
(i),µ
φ,Φ φ∂µφ Re(Φ†∂µΦ) , iIm(Φ†∂µΦ)

Γ
(i),µν
φ,Φ ∂µ∂νφ , φ∂µ∂νφ , ∂µφ∂νφ Re/iIm(Φ∂µ∂νΦ†) , Re/iIm(∂µΦ†∂νΦ)

Table 2.2: Operators involving real or complex scalar fields of mass dimension ≤ 4.

Other operators of mass dimension 4 or less will reduce to those above from a

combination of integration by parts, and the Klein-Gordan equation ∂µ∂µφ = m2φ.

Operators of mass dimension 4 cannot couple to other particles, those of mass di-

mension 3 can couple to another scalar (for Γ
(2)
φ ) or a vector (for Γ

(1),µ
φ , Γ

(1,2),µ
Φ ).

Those of mass dimension 2 may couple to another operator of dimension 2.

The scalar DM have kinetic and mass terms,

Lkin =
1

2
∂µφ∂

µφ− 1

2
m2
φφ

2 + ∂µΦ†∂µΦ−m2
ΦΦ†Φ , (2.2.5)
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and the renormalizable interaction Lagrangian is,

Lint = gχΛφφS + igχIm(Φ†∂µΦ)Xµ +
(
φF̄ (gs + igpγ

5)f + h.c.
)

+ φ2S2 + φ3S + Φ†ΦS2 + φ2XµXµ + Φ†ΦXµXµ , (2.2.6)

the terms coupling the scalar mediator S contain a scale Λ which is in principle

arbitrary, we let Λ = mφ, however this can always be modified by an appropriate

rescaling of gχ. The third term involves only a single DM, and couples to a fermion

bilinear which contains an SM fermion, f and a fermionic mediator F (necessarily

charged).

Finally, there are three-point (φSS, φXµXµ) and four-point interactions between

the DM and scalar or vector mediator. In general, when coupled to the SM, such

operators lead to scattering and annihilation cross sections which are loop suppressed

and we disregard these operators. Above the EW scale terms such as Φ†ΦH†H

may be present, where H is the SM Higgs SU(2)L doublet, a Higgs portal model

[99, 104, 105] will create the effective operator (mq/m
2
h)Φ

†Φq̄q, suppressed by powers

of the Higgs mass. Thus, we are neglecting some important phenomenology which

must be left to further studies, there is nothing explicitly wrong with this but it is

not in the spirit of simplified models.

2.2.3 Vector DM Couplings

Real or complex vector DM, denoted Bµ and Bµ respectively, has received com-

paratively little attention, perhaps because there are fewer complete models which

include them. However such models do exist, for example Minimal Universal Extra

Dimensions [106, 107], Randall-Sundrum models [108] or Littlest Higgs[109–111] or

as a gauge field [112–114] (see also [115] and references therein). In the context of

simplified models these also present the largest set of possible operators, and for

expository studies of general phenomenology it is much simpler to work with spin-0

or spin-1/2.

Tab.2.3 lists the relevant operators built from vector fields,
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Real Vector Complex Vector

Γ
(i)
B,B BµBµ BµB†µ

Γ
(i),µ
B,B

∂µ (BνB
ν) , Bν∂νB

µ ∂µ(B†νBν) , Re(Bν,†∂νBµ) , iIm(Bν,†∂νBµ)

Bµ , εµνσρBν∂σBρ B(†),µ , Re(Bν,†∂µBν) , iIm(Bν,†∂µBν)
εµνσρRe(B†ν∂σBρ) , iεµνσρIm(B†ν∂σBρ)

Γ
(i),µν
B,B ∂µBν , ∂νBµ ∂µBν , ∂νBµ

Table 2.3: Operators involving real or complex vector fields of mass dimension ≤ 4, listed by

their Lorentz indices. Note that ∂µBµ = 0 from the Proca equation.

The Lorentz vectors which are bilinear in the fields, Γ
(i),µ
B,B , may couple to a neu-

tral spin-1 mediator Xµ in a renormalizable way, and similarly Γ
(i)
B,B may couple

to a neutral scalar mediator S, however there can be no coupling to a single neu-

tral fermion, instead the fermion F is charged, and the vertex also includes an SM

fermion. When contracting with a vector Xµ, Γ
(2),µ
B and Γ

(2,5),µ
B are zero.

The kinetic terms for the massive vector fields are

Lkin = −1

4
BµνBµν +

1

2
m2
BB

µBµ −
1

2
B†,µνBµν +m2

BB†,µBµ, (2.2.7)

where Bµν = ∂µBν − ∂νBµ is the field strength tensor for Bµ, and similarly for Bµ.

The renormalizable interaction Lagrangian contains the terms

Lint = gBSΛSBµBµ + gBSΛSBµB†µ
+ gBX,1Re (Bν∂νB

µ)Xµ +
(
gBX,1Bν,†∂νBµXµ + h.c.

)
+ εµνσρ

(
gBX,3B†µ∂νBσ + h.c

)
Xρ + εµνσρ

(
gBX,3B

†
µ∂νBσ + h.c

)
Xρ

+ igBX,2Im(Bν,†∂νBµ)Xµ + igBX,2Im(Bν,†∂µBν)Xµ (2.2.8)

+
(
F̄ γµ(g

(f)
B,v + g

(f)
B,aγ

5)fBµ + h.c
)

+
(
F̄ γµ(g

(f)
B,v + g

(f)
B,aγ

5)fB†µ + h.c
)
,

where Λ is an arbitrary mass scale, and f an SM fermion. Models of this form have

been considered in several places [12, 113, 114, 116, 117]. Since we do not consider

complex and real vector DM simultaneously we will drop the B notation, and use B
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for both, implicitly referring to complex DM when hermitian conjugation is used.

As with the scalar DM case, four-vector operators may appear (B†µB
µ)(B†νB

ν), or

(XµXµ)(B†νB
ν), (S†S)(B†νB

ν), but we ignore them since they involve more than one

mediator. They generally lead to loop suppressed contributions to signals, however

could become relevant for processes in which the tree level contribution is small.

2.2.4 Standard Model Couplings to the Hidden Sector

We have already listed several operators which couple the SM and DM sectors di-

rectly, however there are several operators which couple the DM to the mediator,

and thus require couplings between the mediator and the SM.

In typical bounds considered in this thesis, detection energies are below the

electroweak (EW) scale, and thus the h, W±, Z, t are integrated out of the SM

Lagrangian; leaving the leptons l = e, µ, τ, νe, νµ, ντ and quarks q = u, d, s, c, b 4,

along with the photon and gluon fields Aµ and Gµ. The relevant gauge-invariant

operators are5,

Γ
(i)
SM = l̄l , q̄q , l̄γ5l , q̄γ5q,

Γ
(i),µ
SM = l̄γµl , q̄γµq , l̄γµγ5l , q̄γµγ5q , Dµ, (2.2.9)

Γ
(i),µν
SM = F µν , F̃ µν , Gµν , G̃µν , l̄σµνl , q̄σµνq ,

where F µν = ∂µAν − ∂νAµ (Gµν) is the photon (gluon) field strength, F̃ µν =

(1/2)εµνσρFσρ its dual field strength, and Dµ = ∂µ − ieQAµ − igsG
µ is the co-

variant derivative for a color triplet fermion with electric charge Q. The tensor field

strengths cannot form renormalizable couplings with scalar, fermion or real vector

DM, however with complex vector DM the possibility of tree level magnetic and

4We will not be considering neutrinos in this study, and the notation f will refer to quarks and

leptons (excluding neutrinos). The notation Q will refer to heavy quarks Q = c, b, t and q to either

light quarks or all quarks, depending on the context.
5Above the EW scale, the relevant fields are left handed quark and lepton doublets, right handed

lepton and quark singlets, the higgs doublet H, and hypercharge and SU(2)L gauge fields Bµ, W̄µ
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electric dipole moments exists B†µBνF µν and B†µBνF̃ µν respectively.

The couplings between charged mediators and SM fermions have already been

listed, the neutral spin-0 and spin-1 mediators couple to the SM as,

Lint = f̄
(
gf,s + igf,pγ

5
)
fS + f̄γµ

(
gf,v + gf,aγ

5
)
fXµ , (2.2.10)

with gf,i are all real, note that we take gf,(s,p) to be mass independent, but in line

with the MFV assumption it is required that they mimic the Yukawa couplings and

are thus proportional to the ratio of the fermion mass to some scale (which would be

the vev of S) [69], we do not make this assumption but in all of our results it is simple

to scale the couplings and recover the Yukawa-like behaviour if required. Combin-

ing Eq.(2.2.10) above, with the interaction Lagrangians Eq.(2.2.4), Eq.(2.2.6) and

Eq.(2.2.8), we produce a set of models which we will use in our study, and whose

Lagrangians are reproduced in Tab.2.4, and each of which are considered indepen-

dently.

When referring to our models we will use the notation “DM spin - mediator”.

Unstarred labels on the DM side refer to real DM particles (or Majorana fermion),

while in the starred case they are complex (or Dirac fermion). A ± superscript the

mediator on the right hand side means that the particle is charged under the same

gauge group as the SM fermions to which it couples.

2.3 Conclusions

The purpose of this chapter is to establish a basis of models of WIMP DM, which

can be used to explore the ‘model space’ of DM. We have done this from the ground

up, forming all possible renormalizable and Lorentz invariant interactions between

DM and SM fermions, with a single extra mediating field. The spin of the DM and

mediator have been left completely arbitrary, and both are allowed to be either real

or complex. The conditions of a hermitian Lagrangian, which is Lorentz invariant

and renormalizable (mass dimension four) is quite restrictive, and separating models

into those with single DM and mediator combinations leads to 16 models. With the
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DM Model Lint terms

Scalar
0-S, 0*-S

[
1
2

]
gχΛφ†φS + f̄

(
g

(f)
s + ig

(q)
p γ5

)
fS

0*-V gχ
(
iφ†∂µφ+ h.c.

)
Vµ + f̄γµ

(
g

(f)
v + g

(f)
a γ5

)
fVµ

(φ) 0-F±, 0*-F±
(
F̄
(
g

(f)
s + ig

(f)
p γ5

)
fφ+ h.c.

)

Fermion

1/2-S, 1/2*-S
[

1
2

]
χ̄ (gχ,s + igχ,pγ

5)χS + f̄ (gf,s + igf,pγ
5) fS

1/2-V, 1/2*-V
[

1
2

]
χ̄γµ (gχ,v + gχ,aγ

5)χVµ + f̄γµ (gf,v + gf,aγ
5) fVµ

1/2-S±, 1/2*-S±
(
χ̄
(
g

(f)
s + g

(f)
p γ5

)
fS† + h.c.

)
(χ) 1/2-V±, 1/2*-V±

(
χ̄γµ

(
g

(f)
v + g

(f)
a γ5

)
fV †,µ + h.c.

)

Vector

1-S; 1*-S
[

1
2

]
gχΛB†µB

µS + f̄
(
g

(f)
s + ig

(f)
p γ5

)
fS

1-V; 1*-V (V1)
[

1
2

] (
gχB

†
µ∂

µBν + h.c.
)
Vν + f̄γµ

(
g

(f)
v + g

(f)
a γ5

)
fVµ

1-V; 1*-V (V2)
[

1
2

] (
gχB

†
µ∂

νBµ + h.c.
)
Vν + f̄γµ

(
g

(f)
v + g

(f)
a γ5

)
fVµ

1-V; 1*-V (V3)
[

1
2

] (
gχε

µνσρB†µ∂νBσ + h.c.
)
Vρ + f̄γµ

(
g

(f)
v + g

(f)
a γ5

)
fVµ

(Bµ) 1-F±, 1*-F±
(
F̄ γµ

(
g

(f)
v + g

(f)
a γ5

)
fBµ + h.c.

)
Table 2.4: Each of the models considered in this study, along with their interaction Lagrangian

with the SM fermions, f , denoted by S
(∗)
DM − S

(±)
MED, where the DM spin SDM ∈ {0, 1/2, 1}, the

mediator spin SMED ∈ {S,F,V} (denoting spin-0, spin-1/2 and spin-1 respectively) and a star on

the DM spin (or ± on the mediator spin) indicates a complex DM/mediator field. Factors of
[

1
2

]
applying to the real DM only, keep the Feynman rules consistent between real and complex DM.
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conditions set, we will now proceed to consider the indirect and direct constraints

that may be set on the parameters of the models.



Chapter 3

Indirect Detection of Dark Matter

In this chapter we examine in moderate detail the methodology of indirect detection

(hereafter ID) constraints on DM originating from gamma ray signals from the

Galactic Centre (GC). We begin by briefly introducing cosmic rays in Sec.3.1, and

then outline the calculation of the prompt photon signal from DM annihilation

in Sec.3.2. We then consider the emission of secondary photons in Sec.3.3 which

involves the calculation of electron transport in the galaxy via a semi-analytical

method. We will conclude the chapter in Sec.3.4 by applying these techniques to

find the constraints on the DM model parameter space.

3.1 Cosmic Rays

The term cosmic ray generally refers to relativistic charged or neutral particles which

diffuse through the galaxy, and which when detected at earth can provide informa-

tion on the astrophysical process by which they are accelerated to energies as high

as 1021 eV. In this study we use cosmic rays as a probe of DM, a well established

branch of study which falls under the umbrella of indirect detection, which loosely

refers to a group of detection techniques in which the presence of DM would be in-

ferred by interactions which happen outside the boundaries of a terrestrial detector.

Cosmic rays are primarily protons, with a small amount of helium, and even

smaller abundances of heavy elements. There is an abundance of electrons and

40
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positrons. Electromagnetic (EM) radiation is also present, produced by sources

within the galaxy (e.g. stars, pulsars etc.) or from extragalactic sources like the

CMB.

Cosmic rays and EM radiation could be produced from DM annihilation or decay

within the galaxy. Even if the DM does not couple directly to a particular cosmic

ray species there may still be a detectable signal, produced during the hadronization

and/or decay of the annihilation/decay products to which the DM does couple. To

understand the flux of cosmic rays from DM annihilation or decay one must under-

stand how and where the comsic rays are produced, and how they are transported to

their point of detection. These questions are far beyond the scope of this work, and

to some extent open questions remain, we will dip into this vast field and use just

the particular elements of the theory necessary to describe the contribution from

DM.

3.2 Primary Gamma Rays from Dark Matter

Gamma rays, or high-energy photons in general, provide a very good target for the

detection of DM. First (and perhaps foremost), high energy photons suffer few en-

ergy losses during their propagation from the point of production, leading to a very

clean signal.

Several ‘smoking gun’ gamma ray signatures of DM exist, for example when

DM annihilates directly into two photons, or into one photon plus one Z, h for ex-

ample. These give very distinct spectral lines [118–121] and provide very strong

constraints; by kinematics the photon energy is Eγ ≈ mχ if two photons are pro-

duced, or Eγ = (s−m2
X)/2

√
s if a single photon is produced alongside a particle of

mass mX , with the annihilation centre of mass energy s ∼ 4m2
χ.

As an example, we take a spin-1/2 DM, χ, coupled to a neutral pseudoscalar

mediator, φ, which also couples to electrons (model 1/2-S with gf,s = gχ,s = 0). The
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resulting annihilation to two photons is shown in Fig.3.1, and assuming the centre

of mass energy s ≈ 4m2
χ � 4m2

e, then the cross section is 1,

〈σv〉γγ ≈
α2g2

χ,pg
2
f,p

4π4
log4

(
me

2mχ

)
m2
e

(m2
φ − 4m2

χ)2
, (3.2.1)

where gχ,p, gf,p are the DM-mediator and electron-mediator couplings. mφ is the

mass of the mediator, which is integrated out to give the EFT. At mχ = 100 GeV

the limits from line-searches of Fermi-LAT [121] are 〈σv〉γγ . 5.5 × 10−29 cm3s−1.

The tree-level annihilation cross section into electron positron pairs is given simply

by

〈σv〉ann. ≈ g2
χ,pg

2
f,p

m2
χ

2π(m2
φ − 4m2

χ)2
, (3.2.2)

and thus the one-loop diagram is smaller by a factor ∼ 1013 at mχ = 100 GeV, the

suppression is extremely large and compensates the stronger limit on 〈σv〉γγ com-

pared with 〈σv〉ann. . 5 × 10−27 cm3s−1 such that the latter provides the strongest

limits on the model parameter mφ. This is not necessarily the case in all mod-

els, since the electron final state has a particularly strong bound from tree level

annihilation, whereas for example a b̄b final state has bounds on 〈σv〉ann. up to

two orders of magnitude weaker at mχ = 100 GeV. Compare this to the bounds

from photon lines which arise from one-loop diagrams, the cross section Eq.(3.2.1)

scales with m2
f and would be enhanced by ∼ 5 − 7 orders of magnitude. Typically

〈σv〉γγ ∼ (10−4 − 10−1) 〈σv〉ann..

Several line searches have been performed. Theoretically the line spectrum is a

delta function in photon energy, however the finite energy resolution of a particular

detector turns this into a Gaussian distribution of width equal to the energy reso-

lution, σ(E), which is generally energy dependent. The H.E.S.S. collaboration have

performed a search (in the energy range E ∈ [0.5, 20] TeV with width σ ∼ 0.17E

at E = 0.5 TeV, and σ ∼ 0.11E at E = 10 TeV [122]), similarly Fermi-LAT

(E ∈ [5, 300] GeV [123]) set strong constraints. A line search with nearby galaxy

1The phase space is given by Π ≈ 1/(32π2m2
χ), the matrix element should include a loop factor

1/(16π2), the extra electron couplings α2 and a logarithmic factor.
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χ

χ̄

f̄

f
γ

γ

χ

χ̄

f̄

f
γ

X

Figure 3.1: Example diagrams for photon line spectra produced by DM annihilation, where the

DM couples directly to a fermion f = l, q (lepton or quark), on the left the DM annihilates into

two photons, each with energy mχ in the c.o.m. frame, on the right DM annihilates into a photon

plus a particle X, which could be for example a Z boson. The DM-fermion coupling is represented

by an effective vertex which includes all the simplified models listed in Chapter 2. The DM is

drawn as spin-1/2, but can be spin-0 or spin-1.

clusters as its target has recently been performed [124].

In our models outlined in Chapter 2 we do not consider a direct photon cou-

pling. The full photon energy spectrum has three components; firstly the line

spectra we have already seen, for both γγ and Xγ final states (X = Z, h) which

peak at Eγ = mχ and Eγ = mχ/(1 −m2
X/4m

2
χ) respectively. Secondly, low energy

Eγ/mχ � 1 photons are produced during the hadronization and subsequent hadron

decays of the annihilation products as an energy continuum. Thirdly, final state

radiation (FSR) of very hard (Eγ/mχ ∼ 1) photons from the annihilation products

f̄f produces a continuum with Eγ < mχ(1−m2
f/m

2
χ) [125]2. The photons which are

produced as a continuum spectrum at the point of annihilation are called prompt

photons.

To avoid using different astrophysical targets (for example other galaxies, galaxy

clusters or even supernovae) to constrain different DM mass ranges, we will only use

the observed galactic diffuse gamma ray emission spectrum. We make use of the fact

2In fact, as pointed out in [119] and seen clearly in Fig.3 of [126] the line spectra of photons is

always accompanied with a lower energy continuum, however the bounds are significantly weaker

when based on this continuum since it has a much lower photon number density. The continuum

is enhanced if a single photon is produced along with a Z or h boson and the bounds improve by

around an order of magnitude, but are still weaker than the line search.
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that for the Milky Way, gamma ray data spans from less than 1 MeV to several TeV.

Our ID limits could be further improved by adding data from additional gamma

ray sources, such as Dwarf Spheroidal Galaxies (dSph). We do not account for

extragalactic (e.g. CMB) emission, which nevertheless is a subdominant component

compared with the GC emission [126].

3.2.1 Dark Matter Density Profile

Using only the gravitational influence of galactic DM (so far the only way in which it

has been confirmed to interact) makes describing its distribution somewhat difficult,

and there are several possible models which fit the data, it is important to include

also a model of halo formation [127]. We will assume the density profile is spheri-

cally symmetric, however in reality simulations lead to mildly triaxial distributions

[128, 129], but the triaxiality is unlikely to make a difference to the results based on

the central regions of the galaxy.

The conventional distribution most often used is the Navarro, Frenk and White

profile (NFW) [130], which leads to a very sharp peak towards the centre of the

galaxy,

ρ(r) = ρs
rs
r

(
1 +

r

rs

)−2

, (3.2.3)

where rs and ρs are distance and density parameters fitted to simulation or data.

Other profiles such as Einasto assume a less peaked core and appear to provide a

good fit to DM only simulations [129, 131, 132],

ρ(r) = ρsexp

[
− 2

α

(
rα

rαs
− 1

)2
]
, (3.2.4)

where α ∼ 0.17 [126]. A more cored profile (i.e. a much shallower inner profile) is

preferred for fitting to galactic rotation curves [133], for example the Burkert profile

[134],

ρ(r) = ρs

(
1 +

r

rs

)−1(
1 +

r2

r2
s

)−1

. (3.2.5)
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In principle these various profiles parametrize the uncertainty in the shape of the

DM density profile, and this is an important effect, since although these models are

of similar radial behaviour near to the earth, they are drastically different towards

the centre of the galaxy, where the DM density is highest and where the most gamma

rays will be produced.

Many studies of DM density profiles are based on a wide range of spiral galaxies,

but since we are focusing on gamma ray emission from the Milky Way alone, which

displays a central excess and favours a cuspier profile, we use a modified NFW profile

[135]

ρ(r) = ρs

(
r

rs

)−γ (
1 +

(
r

rs

)α) γ−β
α

, (3.2.6)

with α = 1, β = 3 and γ = 1 for the conventional NFW profile, however a much

steeper inner profile γ = 1.2 appears to fit the Fermi-LAT GeV excess [136], despite

being ruled out by DM only simulations [129]. Even steeper profiles are considered

for so called spikes at the GC. We will conservatively take γ = 1.

The DM density profile in the very inner regions < 1 kpc of the Milky Way

(MW) is unknown, at some point the radial distance from the GC drops below the

numerical resolution of the simulations and predictions become uncertain. Addi-

tionally, the MW contains a supermassive black hole (SMBH) which dominates the

gravitational potential on the r ∼ O(pc) scale. It could be that a density spike is

created [137] with ρ ∝ r−γ and γ > 2, but others argue that a spike is unlikely

since such density spikes are observed in galaxies which undergo dissipative forma-

tion whereas those which form via mergers result in SMBH. The SMBH then injects

energy into the surrounding material, and washes out the DM spike [138]. Below

0.1 pc, we take a uniform DM density equal to its value at r = 0.1 pc, well above

the Schwarzchild radius of the SMBH (∼ 10−7 pc).

To fix the values of rs and ρs we follow a similar idea as [126]. With the free

parameters reduced to two, we can fix their values with two conditions:
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1. That the measured DM density at the location of the earth equals ρ� =

0.36 GeVcm−3 [139] 3. We take the location of the earth to be rE = 8.25 kpc

from the GC and;

2. That the enclosed mass within a radius of 60 kpc equals its measured value

M60 = 4.7× 1011 M�.

This gives for the NFW profile Eq.(3.2.6), for γ = 1, rs = 17.8 kpc and ρs =

0.36 GeVcm−3. For the Einasto profile Eq.(3.2.4) with α = 0.17; rs = 18.1 kpc and

ρs = 0.083 GeVcm−3 .

3.2.2 Prompt Emission

The gamma ray flux associated with prompt emission is obtained by integrating

the photon spectrum which results from the DM annihilation, dN/dEγ
4, along the

line-of-sight (l.o.s) distance s and over the solid angle Ω,

dφprompt

dEγ
=

(
1

2

)
1

4π

〈σv〉
2

(
ρ�
mDM

)2
dN

dEγ

∫
l.o.s

(
ρ(r)

ρ�

)2

ds dΩ, (3.2.7)

where the extra factor of 1/2 is only necessary if the annihilating particle is complex.

The flux is very centrally peaked towards the GC, therefore depending on the size

of the angular window, or if we are calculating the flux as a function of angular

distance, then accounting for the detector resolution is important. In our case we

are integrating the flux over the full angular window, which is much larger than the

resolution of the telescopes and thus the resolution can be safely neglected.

The gamma ray flux is thus given by Eq.(3.2.7), where the radial distance

from the GC, r, and angular position (θ, φ) are related to the line-of-sight by

s ≡
√
r2 + r2

� − 2r r� sin θ sinφ, 5 Eγ is the observed photon energy, ρ� the DM

energy density at the Sun position, ρ(r) the DM halo profile and 〈σv〉 the thermally

3The value of the local DM density is rather uncertain and takes values in the range ρ� ∼
[0.2, 0.85] [140].

4These spectra have been computed in [126], using the Pythia monte-carlo simulator.
5The two coordinate systems used frequently are the ‘Galactic coordinates’ s, b, l centered on

the earth where s is the l.o.s distance, b (l) is the galactic lattitude (longitude) with respect to the
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averaged self-annihilation cross section in the galaxy. The spectra dN
dEγ

, which in-

clude bremsstrahlung processes as well as the hadronization or decay of the final

state into photons, are taken from [126] while the DM halo density is assumed to

follow a NFW profile given by Eq.(3.2.6).

Eq.(3.2.7) is conventionally written,

dφprompt

dEγ
=

(
1

2

)
r�
4π

〈σv〉
2

(
ρ�
mDM

)2
dN

dEγ

∫
JdΩ, (3.2.11)

where the dimensionless J-factor is,

J =

∫
l.o.s

ds

r�

(
ρ(r)

ρ�

)2

. (3.2.12)

Notice that in Eq.(3.2.11) the particle physics (i.e. the model dependence) rests

entirely in 〈σv〉. Arguably the spectrum of photons produced in the annihilation to

a particular final state, dN/dEγ contains particle physics and model dependence.

However, these are calculated once and for all given a particular final state which

makes including them very simple.

We use observations of gamma rays spanning a large energy range, made from

data by several collaborations :

1. Fermi-LAT : The Fermi Large Area Telescope [141] began operations after

launch in 2008 aboard the Fermi satellite, as a successor to EGRET (see

below). One of its specific aims is to look for DM in the galaxy.

GC (with coordinates (r�, 0, 0)). A second coordinate system exploits the cylindrical symmetry of

the diffusion region and is centered on the GC with coordinates (r, z, φ), where r (z) is the radial

distance (vertical distance) parallel (perpendicular) to the galactic plane and φ is the azimuthal

angle. The two are related via;

s2 = r2 + z2 + r2
� + 2rr�cφ, (3.2.8)

tl = rsφ/(r� + rcφ), (3.2.9)

tb = z/
√
r2 + r2

� + 2rr�cφ, (3.2.10)

where cX , sX , tX are shorthand for cosX, sinX, tanX.
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2. EGRET : The Energetic Gamma Ray Experiment Telescope is a predecessor to

the Fermi telescope, aboard NASA’s CGRO satellite, and although relatively

old (1991-2000 [142]), it is a purpose built gamma ray detector and had an

upper energy limit higher than Fermi-LAT.

3. COMPTEL : The Imaging Compton Telescope was also aboard the CGRO, it

was sensitive to much lower energy photons.

4. INTEGRAL : Launched in 2002, the International Gamma Ray Astrophysics

Laboratory is currently operational, measuring softer gamma rays E . 8 MeV.

See [143] for details.

5. H.E.S.S. : The High Energy Stereoscopic System is a ground based telescope

array located in Namibia, detecting very high energy gamma rays by means of

Cerenkov light from atmospheric showers. At very high photon energies > 300

GeV, H.E.S.S. provides the most constraining GC gamma ray measurement

[144] of 〈σv〉 . 5× 10−25 cm3s−1. However at such large DM mass, large cross

sections are difficult to obtain within our models.

The relevant parameters to each of these data sets are summarised in Tab.3.1.

In the data used from Fermi-LAT, INTEGRAL, COMPTEL and EGRET the

observation window is defined by a square region in galactic latitude and longitude

(b, l), centred on the GC. The angular integration is then,

∆Ω = 4

∫ bmax

bmin

∫ lmax

lmin

db dl cos b. (3.2.13)

In the case of HESS, the observational window is an annulus of inner angle θmin =

0.3o and outer angle θmax = 1.0o, where θ is the angle subtended from the vector

joining the Sun and GC, in this case the integration is simply given by,

∆Ω = 2π

∫ θmax

θmin

sin θdθ . (3.2.14)

The astrophysical input (density profile) lies entirely in the J-factor, which de-

pends very sensitively on the halo profile used, by up to four orders of magnitude

in extreme cases of very cuspy vs. very cored profiles. Nonetheless, it is a matter
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lat. (b) long. (l) E (MeV) ref ∆Ω

Fermi-LAT 0o ≤ |b| ≤ 3.5o 0o ≤ |l| ≤ 3.5o 500− 103 [11] 1.5× 10−2

EGRET 20o ≤ |b| ≤ 60o 0o ≤ |l| ≤ 30o 30− 6000 [145] 1.1

COMPTEL 0o ≤ |b| ≤ 20o 0o ≤ |l| ≤ 360o 1− 15 [146] 4.3

INTEGRAL 0o ≤ |b| ≤ 15o 0o ≤ |l| ≤ 30o 0.02− 1 [143] 0.54

angle (θ)

H.E.S.S. 0.3 ≤ θ ≤ 1.0o 3× 105 − 3× 107 [144] 8.7× 10−4

Table 3.1: The data used to produce ID constraints, their observational window in galactic

coordinates, and the energy range of observed photons. In the case of Fermi-LAT data we used the

binned data presented in [11], which was extracted from the publicly available Fermi-LAT data.

of simple rescaling of the J-factor to move from a constraint on one halo profile to

another.

3.3 Secondary Gamma Rays from Dark Matter

3.3.1 Formalism for Cosmic Ray Propagation

To set the indirect detection limits, one first needs to predict the gamma ray emis-

sion expected from each of the DM models considered in this thesis. There are two

distinct gamma ray emission mechanisms. One originates from prompt emission

(emission of gamma rays directly from the point of annihilation) as discussed in

the previous section and the other from cosmic ray (specifically electron/positron)

propagation which we now turn to.

We very briefly motivate the macroscopic propagation model used for cosmic

rays in the galaxy, details can be found in [147, 148]. Cosmic rays are sufficiently

dilute to ignore correlations and consider a one-body phase space with ψ ≡ ψ(x, p)

denoting the cosmic ray density with four-position and four-momentum x = (t,x),

p = (E,p); a continuity equation for ψ(x,E) can be written as,

∂tψ + ∂EJ
0 + ∂iJ

i = Q−D , (3.3.15)
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where Q and D are the source and destruction terms respectively, where Q gives

the cosmic rays injected (by supernovae for example) and D are processes which

remove them (for example decay). The timelike and spacelike parts of the current

J are given by,

J0 = b(x, E)ψ −DEE(x, E)∂Eψ ,

J i = V i
c (x)ψ −K(x, E)∇iψ , (3.3.16)

where Vc(x) parametrizes the stellar wind (which pushes cosmic rays in the ±z-

direction away from the disc), K(x, E) is a diffusion coefficient which parametrizes

the microscopic source of diffusion (the scattering of cosmic rays on inhomogeneities

in the magnetic field of the galaxy). b(x, E) parametrizes energy losses, by inter-

action amongst the various cosmic ray species. Finally DEE(x, E) corresponds to

diffusive reacceleration, the momentum imparted on cosmic rays when the magnetic

fields vary with time.

We will only be considering electron/positron propagation. In this case, it is

acceptable to assume DEE = 0 and Vc = 0 [149]. The destruction term can also

be neglected since electrons are stable. We will not be modelling backgrounds, and

therefore the source term Q injects electrons entirely from the annihilations of DM.

Finally, even though all these parameters in principle depend on time, energy and

position; we can assume that the time dependence is negligible in all parameters

including the cosmic ray density ψ, which is the steady state approximation.

3.3.2 Electron propagation

Gamma rays are produced indirectly as a result of cosmic ray propagation addi-

tionally to those produced at the point of annihilation/decay (the prompt photons).

Here we focus on electron/positron propagation and neglect other cosmic ray species

6. Such electrons can be pair produced by the DM annihilation directly or originate

6For bounds obtained with antiprotons see [150, 151], these bounds are projected to be ex-

tremely sensitive, due to the low background of anti-protons. See [152] for electron positron excess



3.3. Secondary Gamma Rays from Dark Matter 51

from the decay/hadronisation of other annihilation products. The morphology of

the gamma ray flux and energy spectrum that results from these electrons depends

on how far the electrons can travel and the amount of energy they can lose, which is

fixed by the energy of the electrons at the moment of their injection and the material

in the interstellar medium.

To compute the electron spectrum after propagation, ψe ≡ ψe(x, E) (or num-

ber density per unit energy of electrons at position x in the galaxy) having units

cm−3 GeV−1, we solve the diffusion-loss equation from Eq.(3.3.15) and Eq.(3.3.16),

∂ψe
∂t
−∇(K(x, E)∇ψe)−

∂

∂E
(bT (x, E)ψe) = q(x, E). (3.3.17)

The electrons propagate in both space and energy according to the above equation,

and in principle time but we take the steady state approximation,

∂ψ

∂t
= 0. (3.3.18)

The second term in Eq.(3.3.17) accounts for spatial diffusion due to the turbulent

structure of the galactic magnetic field, and K(x, E) = K0(E/GeV)δ is the diffusion

coefficient, taken to be spatially uniform, but with an energy dependence character-

ized by δ. The third term describes energy losses, related to the total energy loss

rate bT (x, E) ≡ bT (E) also assumed spatially uniform to render the diffusion-loss

equation solvable, and measured in GeV s−1 (or GeV2). Finally on the right hand

side is the source term responsible for producing the electrons. In our model, DM

pair-annihilates to create a fermion anti-fermion pair and leads to a source term,

q(r, Ee) =

(
1

2

) 〈σv〉
2

(
ρ(r)

mDM

)2 [
dN

dEe

]
, (3.3.19)

where 〈σv〉 is the thermally averaged cross section of DM (with an extra factor of 1/2

if the DM is a complex field) annihilation into final state ff̄ with injection spectrum

of electrons dN/dEe. If the annihilation is directly into e+e− then dN/dEe = δ(Ee−

constraints. Both proton and electron constraints probe locally produced particles. Bounds on neu-

trinos from Ice-Cube [153] and Super-K [154] produce weaker constraints due to the low detection

rate for neutrinos
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mDM), otherwise it includes the effects of hadronization and decay. ρ(r) is the dark

matter density (given in Eq.(3.2.6)) and mDM the dark matter mass. The above

source term can be applied to real (Majorana) DM. For complex (Dirac) DM an

extra factor of 1
2

should be included.

Assuming spatially uniform losses, a steady state, and a spatially uniform diffusion

coefficient K(x, E) ≡ K(E), the diffusion equation then reduces to,

K(E) ∇2 ψe +
∂

∂E
(bT (E) ψe) + q(x, E) = 0, (3.3.20)

the diffusion zone is assumed to be an infinite slab of height 2L, with the galactic

plane in the middle. The details of the different steps to solve the diffusion equation

are recalled in the next subsection, following [10, 126, 136]. However the solution is

essentially given by

ψe(x, E) =
κ

bT (E)

(
ρ(r)

ρ�

)2 ∫ ∞
E

I(λD,x)
dN

dE
(Es)dEs , (3.3.21)

where κ =
(

1
2

)
(〈σv〉 /2)(ρ�/mDM)2, λD(E,Es) is the average diffusion distance of

the electron, and I is the halo function (defined in Sec.3.3.4) giving the efficiency of

the propagation. With ψe and the power spectrum (power emitted per unit photon

energy Eγ, for a given electron energy Ee) for the dominant sources of photon

emission, we can find the total emissivity of particular unit volume in the galaxy,

j(Eγ,x) = 2

∫ Emax
e

Emin
e

P (Eγ, Ee,x)ψe(Ee,x) dEe , (3.3.22)

then we integrate this over the observational window of the experiment, parametrized

in terms of the galactic latitude (b), longitude (l) and line of sight (which extends

from 0 to the edge of the galactic diffusion zone),

E2
γ

dn

dEγ
= Eγ

∫ ∞
0

∫
window

1

4πs2
j(Eγ, x̄)s2dsdΩ . (3.3.23)

A factor of E−1
γ is required to provide units of number of photons.

3.3.3 Solving the Diffusion Equation

Using the energy dependence of the diffusion coefficient given below Eq.(3.3.18), one

can rewrite Eq.(3.3.20) as,

K0ε
δ∇2ψe(x, ε) + E0

∂

∂ε
(bT (ε)ψe(x, ε)) + q(x, ε) = 0 , (3.3.24)
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where ε ≡ E/E0 and E0 ≡ 1 GeV, one can then solve the diffusion equation for

ψ̃ = bT ψe (we will drop the implicit position and energy dependence of bT , ψe and

q from now)

K0ε
δ

bT
∇2ψ̃ + E0

∂

∂ε
ψ̃ + q = 0 , (3.3.25)

and now make the substitution t̃ = εδ−1

1−δ , so that ∂t̃
∂ε

= −εδ−2, then

∂ψ̃

∂t̃
− K0ε

2

E0bT
∇2ψ̃ = q̃ , (3.3.26)

where q̃ = ε2−δq/E0. If we assume bT (ε) = b0E
2
0ε

2 (the behaviour of the dominant

losses at high energy, see Sec.3.3.5), then the factors of ε cancel,

∂ψ̃

∂t̃
− A0∇2ψ̃ = q̃, (3.3.27)

where A0 = K0/E
3
0b0. This is exactly the non-homogeneous diffusion equation for

an isotropic media in 3D. This equation has a Green’s function G̃(t̃,x; t̃s,xs) which

satisfies

∂G̃

∂t̃
− A0∇2G̃ = δ(x− xs)δ(t̃− t̃s) . (3.3.28)

For the above equation the Green’s functions are explicitly given by,

G̃(t̃,x; t̃s,xs) = θ(t̃)

(
1

4πA0t̃

) 3
2

e
−x

2+y2+z2

4A0 t̃ , (3.3.29)

we can neglect the Heaviside function θ(t̃), it is satisfied automatically since δ < 1

and ε > 0. If we let the halo function be defined by

Ĩ(Ee, Es,x) =

∫
dxs G̃(t̃,x; t̃s,xs)

(
ρ(xs)

ρ�

)2

, (3.3.30)

the electron spectrum can now be written in terms of Green’s functions (and we

substitute Eq.(3.3.19) for the source term in the second line),

ψ̃(x, t̃) =

∫
dt̃s

∫
dxsG̃(t̃,x; t̃s,xs)q̃(xs, Es)

=κ

∫
dEs

dN

dEs
Ĩ(Ee, Es,x), (3.3.31)

ψ(x, Ee) =
κ

bT (Ee)

(
ρ(r)

ρ�

)2 ∫
dEs

dN

dEs
I(Ee, Es,x) , (3.3.32)
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and finally I =
(

ρ�
ρ(x)

)2

Ĩ. We took for simplicity b(E) ∝ E2, however we would

like to allow a more general energy dependence. This is simple, in Eq.(3.3.25) we

introduce the new variable t̃ such that ∂E
∂t

= b(E)
K(E)

,

t̃(E) =

∫ E

0

K(E)

bT (E)
dE . (3.3.33)

Examining the Green’s function,

G̃(t̃,x; t̃s,xs) =

(
1

4π∆t̃

) 3
2

e−
∆r2

4∆t̃ , (3.3.34)

we see that the interpretation of ∆t̃ is that it is the variance of a Gaussian ‘proba-

bility’ distribution, 4∆t̃ ≡ σ2. The dependent variable is the distance between the

source and observer, the standard deviation has the units of length, and we identify

it as the diffusion length σ = λD,

λ2
D = 4

∫ Es

Ee

K(E)

b(E)
dE . (3.3.35)

Thus, we have exchanged the variables Ee, Es for single parameter λD(Ee, Es). As

a final note, the vertical boundary imposed by the diffusive region at z = ±L (at

which point the electron density is set to zero) requires a modified form of the

Green’s function, [136, 155],

G̃z(z, zs) =

1

L

∞∑
n=1

(
e−

λ2
Dk

2
n

4 sin (kn(L− |zs|)) sin (kn(L− |z|))

+e−
λ2
Dk
′2
n

4 sin (k′n(L− zs)) sin (k′n(L− z))

)
, (3.3.36)

with kn = (n−1/2)π
L

, and k′n = nπ
L

. This function can be derived using the method of

images [156, 157], whereby the source distribution is mirrored in the plane z = ±L.

As a rule of thumb, Eq.(3.3.29) can be used if r � L. We can now discuss the halo

function, Eq.(3.3.30), in more detail.

3.3.4 Halo Function

The halo function I(Ee, Es,x) ≡ I(λD,x), given by,

I(λD,x) =

∫
dxsG̃(λD,x,xs)

(
ρ(xs)

ρ(x)

)2

, (3.3.37)
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gives an indication of the efficiency of the propagation. It gives the fraction of

electrons at position x which are retained after propagation over a diffusion length

λD(Ee, Es), which describes the average distance over which electrons diffuse from

a source energy Es to energy Ee.

The diffusion length λD is fixed by the initial and final energies of the electron

(Es and Ee respectively) and is therefore vanishingly small when Ee ' Es. Hence

all the electrons that have an energy Ee ' Es stay close to where they have been

produced (this is just a convoluted way to say that electrons lose energy as they

propagate and therefore if they have the same energy that they started with, they

have not gone anywhere). This implies that the halo function in Eq.(3.3.37) above

be equal to unity. Indeed, since the Green’s function are Gaussian functions of width

σ = λD (see Eq.(3.3.34)), then as λD becomes arbitrarily small, the Green’s function

approaches a unit sized delta function δ(3)(x− xs). Feeding this delta function into

Eq.(3.3.37) thus leads to

I(λD → 0) =

∫
dxs δ(x− xs)

(
ρ(xs)

ρ(x)

)2

= 1 . (3.3.38)

Due to the Green’s function, the halo function will become vanishingly small on

distances far beyond the average diffusion distance, i.e. when the electrons have lost

all their energy. Hence there are two extreme regimes:

λD → 0, I(λD,x)→ 1,

λD →∞, I(λD,x)→ 0. (3.3.39)

I(λD) = 1 indicates that the electrons did not propagate and the point at which

I(λD) ∼ 0 gives an idea of the distance over which the electrons have lost all their

energy. Concretely this means that we do not expect any indirect detection signals

from the regions where I(λD,x) = 0.

It is worth noticing also that the halo function I(λD,x) can exceed unity, that

is, the local density of electrons exceeds what it would otherwise be without any

diffusion. This would happen to regions which were close to regions of high electron
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density, and in which there is a large amount of diffusion. In the galaxy, this

will happen when the electrons produced in the GC manage to travel to x, that

is when λD ≈ r (where r = |x|). This case however requires that the diffusion

zone be large enough L � r. Fig.3.2 shows the halo function, I(λD), for various

r = 0.1 kpc

r =1 kpc

r = 10 kpc

0.01 0.1 1 10 100

0.05
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0.50

1.00

5.00

Λ D @ kpcD

I� HΛ D
,r
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Figure 3.2: The halo function I(λD), for three radii from the GC in the disk (z = 0). The dashed

lines bound the region between the MAX (L = 15 kpc) and MIN (L = 1 kpc) parameters, and the

solid line is the MED (L = 4 kpc) set.

radial distances from the GC (and for z = 0), for the MAX/MIN/MED parameters,

which essentially probe only the half-height of the diffusion zone L (K0, δ only enter

through the definition of λD). Close to the GC, all the electrons are produced locally,

the vertical boundary then has little effect. Further out, and for λD > L the vertical

boundary can have a large effect, lowering L and thereby confining the electrons into

a smaller region increases the peak, and moves it to higher λD since the electrons

diffuse further radially. Note though that in the full signal I(λD) is accompanied by

a term (ρ(x)/ρ�)2 and regions at r > r� contribute very little to the total flux.

Fig.3.3 shows the propagated electron spectrum for DM annihilations into elec-

trons, for various distances from the GC and for a DM mass of 10 GeV. Very close

to the GC, the electrons diffusing from the center have lost little energy and appear

as a spike in ψe. The buildup of electrons of low energy is due to the bremsstrahlung

energy losses, which dominate at low energies and have a ∝ E dependence, so the

rate of energy loss for low energy particles is much less than that for high energy.

Regions close to the GC where the number of electrons is largest, and the density

gradient is steepest, are the most sensitive to the diffusion parameters and the cor-
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Figure 3.3: The electron spectrum ψe(Ee, r) after propagation, for a DM mass of 10 GeV,

for various radial distances from the GC (with z = 0) for annihilation purely into electrons,

χ̄χ → e+e−, and 〈σv〉 = 3 × 10−26 cm3s−1. The error incurred by the MIN/MAX diffusion

parameters is shown with dashed lines.

responding errors are largest. However, beyond a few kpc from the GC the diffusion

parameters have much less effect.
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3.3.5 Energy Losses
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Figure 3.4: The various contributions to the energy loss rate, bT (Ee), during propagation as a

function of the electron energy.

We now briefly collect the various relevant sources of energy loss for galactic electrons

and positrons. There are three main sources of energy loss; bremsstrahlung, Inverse

Compton Scattering (ICS) and synchrotron. The latter remains subdominant over

all energy ranges but we include it anyway. Fig.3.4 shows the energy loss coefficient,

bT (E) = bICS(E) + bBrem(E) + bSync(E), (3.3.40)

as a function of electron energy. At high energies ICS dominates (since bICS(E) ≈
E2) whereas bremsstrahlung controls the low energy behaviour (bBrem(E) ≈ E).

Due to their behaviour with energy, ICS and synchrotron (∝ E2) tend to steepen

the electron spectra ψe(E) at low energy, and bremsstrahlung tends to maintain the

spectral shape. The expression for each of the losses are as follows [126];

bICS(E) =
4

3

σT
m3
e

E2UISRF, (3.3.41)

bBrem(E) = nαr2
0E

(
4

3
φ1 −

1

3
φ2

)
, (3.3.42)

bSync(E) =
2σTB

2

3µ0m2
e

E2, (3.3.43)
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where UISRF (‘InterStellar Radiation Field ’) is the energy density of the photons in

the galaxy, injected from astrophysical sources (see Sec.3.3.8). The energy loss for

each component bi(E) is found from integrating the emission spectrum Pi(Eγ, Ee)

which appears in Eq.(3.3.22), over the photon energy,

bi(E) ≡ −dE
dt

=

∫
dEγ Pi(Eγ, Ee) . (3.3.44)

We now discuss each of these energy loss mechanisms in more detail.

3.3.6 Bremsstrahlung Losses

In classical physics it is known that charged objects radiate when they are acceler-

ated, this process of radiating photons is called Bremsstrahlung (roughly ‘braking

radiation’). In our case this will happen when an electron or positron is accelerated

in the Coulomb field of another charged object in the InterStellar Medium (ISM);

this will mostly be ionized Hydrogen (although electron-electron bremsstrahlung is

also possible).

A general expression for the bremsstrahlung cross section between an electron

and a charged particle is [158, 159],

dσ =
dEγ
Eγ

αr2
0

1

E2
i

(
(E2

i + E2
f )φ1 −

2

3
EiEfφ2

)
, (3.3.45)

where the initial (final) electron energy is Ei (Ef ), and by energy conservation

Ei = Ef + Eγ, and r2
0 = 3σT/8π. For a completely ionized target φ1 = φ2 = Z2φ

where,

φ = 4

(
log

(
2EiEf
E2
γ

)
− 1

2

)
. (3.3.46)

However, for a neutral or partially ionized atom, the atomic electrons provide a

shielding of the nuclear charge and necessitate the introduction of form factors.

Somewhat counterintuitively, very high energy incident electrons suffer maximum

screening on atomic targets. In the limit ∆ = 0 (∆ ∝ Eγ/Ei), the φi are [158],

φH1 = 45.79 , (3.3.47)

φH2 = 44.46 . (3.3.48)
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Those for He and H2 are roughly three and two times the values for H. The compo-

sition of the ISM is dominated by neutral atomic and molecular hydrogen [159, 160]

(HI and H2), the density of atomic helium is about ∼ 10% the density of HI; these

species are tightly constrained to the disc z . 0.2− 0.5 kpc, but within the disc ex-

tend to high radii r . 15 kpc. In order to derive the semi-analytical solution to the

diffusion equation (Eq.(3.3.15) in Sec.3.3) we assumed that the energy losses were

spatially homogeneous, we take the number density of HI to be nHI ∼ 1 cm−3 which

is suitable for the GC (the subdominant contribution from H+,He is neglected).

To qualify this assumption we note briefly several points; firstly bremsstrahlung

emission dominates over other loss mechanisms for very low energy electrons (Ee . 1

GeV), and is therefore mostly relevant for light DM, and will be a dominant con-

tribution in experiments which are sensitive to low energy photons. The elec-

trons and positrons diffuse very efficiently and so do not venture far from their

production point, which is concentrated toward the GC; this means the bulk of

the bremsstrahlung emission happens in the GC, and in the GC a homogeneous

n ∼ O(1) cm−3 is more justified.

The assumption of a homogeneous gas distribution in the galaxy is likely to over-

produce bremsstrahlung photons outside of the GC. We will find however that the

large majority of the DM parameter space is not in a regime where these photons

are the dominant ones.

For a single electron of energy Ee, and target of density nH = nHI+nH2 ∼ 3 cm−3,

nHdσ/dEγ gives the number of photons produced per unit energy with a given energy

Eγ. Then the energy loss coefficient is simply,

b(Ee) = −dEe
dt

= nH

∫
dEγEγ

dσ

dEγ
, (3.3.49)

where the photon energy Eγ ∈ [0, Ee]. The above integral reproduces Eq.(3.3.42),

and confirms the familiar b(Ee) ∝ Ee dependence. The emission spectrum in
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Eq.(3.3.44) may be written,

PBrem(Eγ, Ee) =
3nHασT

8π

[(
1 +

(
1− Eγ

Ee

)2
)
φH1 −

2

3

(
1− Eγ

Ee

)
φH2

]
, (3.3.50)

with σT the Thomson cross section.

3.3.7 Inverse Compton Scattering Losses

Compton scattering is the scattering of electrons by photons. In the ICS process the

electrons (produced by heavy DM annihilation) of energy Ee are highly relativistic

and give energy to low-energy photons (of energy Eγ) to upscatter them to high

energies.

The emission spectrum in Eq.(3.3.44) may be written[161],

PICS(Eγ, Ee) =
3σT
4γ2

∫ 1

1/4γ2

dq

(
1− 1

4qγ2(1− Ẽγ)

)
dnISRF(Eγ)

dEγ

1

q

×
(

2q log q + q + 1− 2q2 +
1

2

Ẽγ

1− Ẽγ
(1− q)

)
, (3.3.51)

where q = me/(γ(γme − Eγ)), Ẽγ = 4γEγ/me, and nISRF is the number density

of the InterStellar Radiation Field (ISRF) photons. If the energy of the incoming

photon is below the electron mass Eγ � me in the electron rest frame, then we are

in the Thomson limit and Eq.(3.3.44) is particularly simple,

b(Ee) =
4

3
σTγ

2

∫ ∞
0

dEγEγ
dnISRF

dEγ
(Eγ) . (3.3.52)

Thus the energy loss from ICS scales with E2
e (since γ ≈ Ee/me � 1 is the Lorentz

boost factor between the centre of mass frame and the electron’s rest frame). Note

that the maximum photon energy (in the electron rest frame) is 2γEγ,max.

The ISRF energy density UISRF is

UISRF =

∫
dnISRF(E,x)

dE
EdE , (3.3.53)

nISRF comprises CMB photons, IR as well as UV photons, each modelled as a grey-

body spectra. The spectral parameters can be found in [9, 10]. The resulting energy

spectrum is shown in Fig.3.5.
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Figure 3.5: The number density per unit energy of ISRF photons with parameters from [9, 10],

the leftmost peak corresponds to the CMB, the second is IR radiation from dust, the third optical

starlight, and the final three UV starlight.

3.3.8 Synchrotron Losses

Synchrotron emission occurs whenever relativistic electrons are present in a magnetic

field, radiating as they spiral around the field lines. Their emission spectrum can

be derived from classical arguments [158, 162],

PSync(Eγ, Ee) =
√

3
e3B

me

Eγ
EB

∫ ∞
Eγ/EB

K5/3(q)dq, (3.3.54)

and EB = 3eBE2
e

2m3
e

. In the limit of highly relativistic electrons, this may be approxi-

mately written as,

PSync ≈
1

6π
σTB

2

(
Ee
me

)2

.

The spectrum peaks at Eγ ∼ EB, and so(
Eγ

GeV

)
≈ 10−18

(
Ee

GeV

)2(
B

µG

)
, (3.3.55)

and so even for very heavy DM the photons have very low energy, well outside the

gamma ray range of the data we are considering. Nonetheless, the total energy loss

rate, b(E), is comparable to that from bremsstrahlung and ICS and thus should be
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included in the energy losses.

The synchrotron emission depends on the magnitude of the galactic magnetic

field, B, which we must assume to be homogeneous in line with our assumptions.

In reality the magnetic field is confined to z . 2 kpc and radially very extended,

peaking at around Bmax ∼ 11 µG at the GC and dropping to Bmin ∼ 5 µG at

the Earth’s position [163]. However these numbers are quite uncertain, and we

conservatively take B ∼ 3 µG since lower magnetic fields allow greater diffusion of

electrons from the GC.

3.3.9 Other Losses

There is also a Coulomb component to the energy loss rate, which depends loga-

rithmically on energy, and an ionization loss component which has a complicated,

but approximately logarithmic dependence on electron energy. However, both are

negligible for the high energies considered here [164].

3.3.10 Impact of the propagation parameters on the gamma

ray flux

Uncertainties in cosmic ray propagation (related to the characteristics of the dif-

fusion zone) are taken into account by considering three sets of values for the K0,

δ, and L parameters, namely MIN, MED and MAX [165–167]. Unless specified

otherwise, we assume the MED set of parameters with K0 = 0.0112 kpc2Myr−1,

δ = 0.7 and L = 4 kpc, the MIN/MAX set are (L,K0, δ)MIN = (1, 0.0016, 0.85) and

(L,K0, δ)MAX = (15, 0.0765, 0.46) in the same units.

The galactic diffusive region is taken to be an radially infinite slab of half height

L = (1, 4, 15) kpc for the (MIN,MED,MAX) set. The radial boundary at infinity is

not varied (a conventional value of 20 kpc is often taken), and has little or no effect

on the result [10], since radial boundary effects tend to be noticeable above L = 10

kpc. More importantly the density profile goes as ρ(r) ∝ r−3 in the outer regions
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and the corresponding signal is negligible.

Fig.3.6 shows an example of the flux for several values of mDM for the Fermi-

LAT observational window (7◦× 7◦ centred on the GC), along with the GeV excess

data. This assumes 〈σv〉 = 3 × 10−26 cm3s−1 (independent of mDM, of course this

is not the case when specific models are considered). However, Fig.3.6 shows many

features common to all cases. Widening the diffusion zone spreads more of the dif-

fused electrons outside the observational window, and thus decreases the total flux,

whilst maintaining the spectral shape, and so the lower dashed line corresponds to

the MAX set, and the upper dashed line corresponds to the MIN set. The diffusion

error band decreases at the high energy end of the spectra since high energy photons

with Eγ ∼ mDM must be produced from electrons that have diffused very little.

The spectrum of prompt emission from Eq.(3.2.7) is approximately governed

by the ratio (Eγ/mDM)2; the spectrum decreases gently from its peak at Eγ =

mDM, and its peak flux increases quadratically with DM mass (the same is true of

bremsstrahlung), since the flux is proportional to ρ(r)2 and ρ(r) ≈ nDM(r)mDM,

and so lowering the DM mass increases the DM number density, and with it the

annihilation rate. The energy spectrum of the prompt flux is heavily influenced by

the final state, since it is directly proportional to the injection spectrum of photons

produced in the annihilation (dN/dEγ in Eq.(3.2.7)). The b̄b spectrum is softer,

arising from pion decay, whereas the ēe final state also has a strong contribution

from initial or final state radiation.

The shape of the bremsstrahlung spectrum (in the lower plots of Fig.3.6) is highly

peaked at Eγ ∼ mχ, and the dependence on DM mass governed by ∼ m−2
χ , giving

a particularly large signal for low masses mχ < 10 GeV. The ICS spectra are in the

second row; the peaks of the ISRF photon sources from Fig.3.5 are clearly visible.

The highest energy peak is from the CMB photons upscattered to GeV energies.

The increase in flux for smaller DM masses is not as extreme as in bremsstrahlung

and prompt (∝ m−2
χ ) because the emission spectrum PICS has a dependence on
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mχ which partially cancels the increase from the number density. A very approxi-

mate electron spectrum scales as ψe ≈ bT (E)−1 and b(E) ∝ E2, then the emissivity

j ≈
∫ mχ P/bT (E), so that for bremsstrahlung, P ≈ E the emissivity has a logarith-

mic DM mass dependence, whereas for ICS P ≈ E2 and there is a linear DM mass

dependence, which cancels with the denominator ρ ∝ m−2
χ .

As can be seen in Fig.3.6 (which displays the Fermi-LAT excess data), it can

often be true that particular combinations of mχ, 〈σv〉 (the later only changes the

normalization) can lead to a signal which reproduces the Fermi-LAT gamma ray

excess [168], with a cross section which is thermal, these conclusions are highly

dependent on the choice of density profile and diffusion model. However, in the

majority of cases the shape does not reproduce the data, and instead we can place

a constraint on the annihilation cross section. This is done with a simple maximum

likelihood analysis, based on the likelihood for a single energy bin Ei,

Li = θ
(
Φth
i − Φi

)
exp

[
−(Φth

i − Φi)
2

2σ2
i

]
+ θ

(
Φi − Φth

i

)
, (3.3.56)

where Φi (Φth
i ) is the measured (predicted) flux in the ith energy bin (and σi its

error), given by Eq.(3.2.7) and Eq.(3.3.23), and is equivalent to using,

Li = exp

[
−θ
(
Φth

i − Φi

) (Φth
i − Φi)

2

2σ2
i

]
. (3.3.57)

Then the total likelihood is,

L =
∏
i

Li . (3.3.58)

This is normalized to 1 in the event of no signal, and any signal above the measured

flux suppresses the likelihood. The test statistic is

TS = −2ln

( L
Lbck

)
, (3.3.59)

where the background only hypothesis gives simply Lbck = 1 since we do not include

a background model, making the resulting constraints conservative. To find the 90%

Confidence Level (CL) in mMED we solve TS = 2.71,∑
i

θ
(
Φth
i − Φi

) (Φth
i − Φi)

2

2σ2
i

=
2.71

2
. (3.3.60)
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If we fix all couplings, and the DM mass, then the theoretical flux is a function of

the mediator mass φ(mMED) and this fixes the limit on mMED. In Fig.3.7 in the

next subsection we will show that the exclusion on 〈σv〉 (for various channels), in-

cluding propagation improves the constraint by several orders of magnitude in the

case of an electron final state. These electrons are produced directly (rather than

as a secondary product as radiation or during hadronization) and thus have a large

energy ∼ mDM (mDM > 10 GeV) and since energy losses into photons scale with E2
e

(Fig.3.4) the energy loss into photons is efficient in the measured energy range.

Other leptonic final states, i.e. µ̄µ and τ̄ τ , the secondary photon flux is much

smaller, since in the decay of the leptons only ∼ 1/3 (1/6) of the total energy of

the µ̄µ (τ̄ τ) pair is given to electrons, and additionally these electrons have a lower

energy causing them to produce fewer photons as they diffuse. The primary photon

spectrum is also lower for µ̄µ final states since the energy spectrum of the primary

photons is softer, however for the τ̄ τ final state, the energy spectrum of the photons

is shifted to higher energies plus a larger fraction of the annihilation energy goes

into photons and this may actually increase the primary flux compared with the ēe

final state.

For quark final states, the difference compared with electron final states is, again,

that a smaller proportion of the available annihilation energy, ∼ 2mDM, will go into

electrons (a larger proportion of the energy goes into primary photons), and these

electrons will be produced with an energy spectrum shifted to lower energy. This

makes the secondary photons produced by propagation of electrons a subdominant

source of photons, except for very large DM mass (where the electrons are energetic

enough to produce photons efficiently during diffusion), or rather small masses (< 5

GeV) where bremsstrahlung emission produces a large flux of low energy photons.

However, it is certainly a fair approximation to consider just prompt photons if the

final state is purely hadronic.
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Figure 3.6: The photon flux from prompt (first row), ICS (second row) and bremsstrahlung (third

row) gamma ray emission for DM annihilation to ūu (top row) ēe (left middle and left bottom) and

b̄b (right middle and right bottom). The fluxes are for the Fermi-LAT 7 degree window centred

on the GC, with an annihilation cross section 〈σv〉 = 3 × 10−26 cm3s−1, and for a range of DM

masses. In the case of ICS and bremsstrahlung emission, the shaded region between the dashed

lines corresponds to the error incurred by using the MIN and MAX diffusion parameters. The blue

data points are the Fermi excess, after background have been removed [11].
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3.4 Gamma Ray and Other Indirect Constraints

To summarize the relevant discussion so far, DM annihilation to SM particles pro-

duces photons directly, but also implies a continuing production of charged particles,

leading in turn to a potentially detectable secondary gamma ray signal. The DM

halo density in the Milky Way is expected to be strongly peaked towards the centre,

making the galactic centre (GC) an ideal target for the detection of DM.

The gamma ray emission from DM annihilations in the GC has essentially

two components; prompt emission (Sec.3.2.2) where photons are radiated from

charged particles or produced in the decays of hadrons formed from final state

quarks. The second component arises from Inverse Compton Scattering (ICS)

and bremsstrahlung emission of photons during the propagation of electrons and

positrons. The propagation of these particles can be modelled by a steady state

diffusion equation which we solve semi-analytically, with energy-losses from ICS,

bremsstrahlung and synchrotron radiation.

We set limits by comparing our theoretical estimates of the gamma ray flux ex-

pected in each of our models and for each of the SM final states to the Fermi-LAT,

EGRET, COMPTEL, INTEGRAL and H.E.S.S. data, see Table.3.1. We establish

our 90% CL by finding the value of mφ for each fixed (mχ, g) pair that yields

−2 ln(L/Lbck) = 2.71.

Since we are mostly interested in comparing the ID and direct detection lim-

its, we focus on the gamma ray predictions arising from DM pair annihilation into

quarks. However, it is worth remembering that annihilations into lepton pairs lead

to stronger ID constraints. This fact is illustrated in Fig.3.7 where we display the

exclusion limits that one gets when DM annihilates into electron-positron pairs. As

one can see from this figure, all thermal DM candidates which annihilate to electrons

and with a mass smaller than a few GeV are essentially ruled out.

For a given model, the results of Fig.3.7 can be translated into limits on the DM
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Figure 3.7: Galactic gamma ray exclusion region (left column, shaded) for a constant value of

〈σv〉 against DM mass, for DM annihilation into ēe (top row) and q̄q (middle) and b̄b (bottom)

where q = u, d, s (with mDM > 0.1 GeV for s̄s). We include propagation as described in the text

(blue shaded), and give the result with no propagation (green line). These are compared other

indirect detection limits from the literature (right column), see text for details.
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and mediator masses and couplings. Their strength and shape depend on the exact

nature of DM as well as the mediator. We show an example in Fig.3.8, for Dirac

DM coupled via a spin-1 mediator to a light quark final state (q = u, d, s are treated

the same with respect to ID limits for mDM > mq) in the mDM −mMED plane with

the couplings set to 1.

The effect of the diffusion parameters (the MIN and MAX set) on the exclusion

limit is very small for quark final states, which are mostly dominated by prompt

emission, which is not subject to diffusion. Even for leptonic final states the high

mass DM signal is dominated by prompt emission and for low masses, it is domi-

nated by bremsstrahlung emission, which peaks at a photon energy Eγ ∼ mχ, such

that the undiffused electrons dominate the signal.

Gamma ray limits from the GC can exclude DM candidates with masses up to

the tens of TeV scale. This is true even if they are coupled to TeV scale mediators,

provided that the coupling is sufficiently large (of O(1)).

We also combine our gamma ray constraints with several additional limits from

the literature, as shown in Fig.3.8 for the example of light quark (qq̄), heavy quark

(bb̄) and leptonic (eē) final states. Each signal suffers its own source of uncertainty,

but the DM halo profile, and propagation of cosmic rays are frequently the dominant

sources of errors. Indirect detection encompasses targets other than the GC, for

example galaxy clusters, dSph galaxies, or the CMB. It also includes the detection

of particles other than photons, for example electrons or anti-protons. We mention

the most powerful constraints only :

1. Dwarf Spheroidal galaxies (dSph) of the Milky Way offer an alternative

gamma ray target, these galaxies are around 7− 254 kpc away with J-factors

Jann. . 1019 GeV2 cm−5 sr [169] 7. The most recent Fermi-LAT data uses a

7The notation Jann. distinguishes this quantity from the J defined in Eq.(3.2.12), the difference

being that J is dimensionless, and Jann. = r�ρ
2
�J .
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sample of 25 dSph [170] to provide bounds for all fermionic final states (for bb̄ a

more recent analysis [171] combines MAGIC to marginally improve the bound),

see also [172]. Weaker limits have been set by MAGIC [173], VERITAS [174],

HAWC. [175], HESS [176] and DES [177]. The Large Megallanic Cloud (LMC,

s ∼ 50 kpc) or Small Megallanic Cloud (SMC, s ∼ 61 kpc) which are not

included in the dSph surveys already quoted also offer a potential target, the

bounds are found most recently in [178, 179] for gamma rays and [180] for

radio waves. Although the dSph constraints (the solid orange lines of Fig.3.8)

are often more powerful than the GC, to our knowledge, no constraint has

been set on light (sub-GeV) DM using dwarf galaxies apart from a pre-Fermi

study of Sagittarius [181]. Additionally, for p-wave suppressed annihilation,

the lower dispersion velocities of dwarf galaxies imply a large suppression of

the annihilation rate with respect to the GC [182].

2. Large scale structure such as Galaxy clusters also provide good gamma

ray and radio targets, but tend to perform worse than dSphs. Gamma ray

bounds have been set by MAGIC [183], HESS [184, 185], VERITAS [186] and

Fermi-LAT [187–190] whose most recent study of Virgo [191] seems to be the

best. Radio observations also provide similar sized bounds [192], with magnetic

fields typically 1− 10µG. The nearby galaxy Andromeda (s ∼ 780 kpc) has

a much higher central field of 50µG, and correspondingly the constraints are

much more competitive and can obtain 〈σv〉 < 10−27 [193]. The enhancement

of annihilation (or “boost factor”) in clusters of galaxies due to substructure is

not known with precision and therefore makes the prediction of dark radiation

in clusters of galaxies quite uncertain, shown by the shaded cyan region in

Fig.3.8.

3. The Galactic Centre can be measured in the radio band between 22MHz - 8

GHz and can provide good constraints [194–196], most recently [197] including

Planck data (30-70 GHz). The signal arises mainly from synchrotron radiation

from electrons and positrons, which in turn depends strongly on the magnetic

field at the GC, which is highly uncertain but with a lower limit B & 50µG
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[198]. The radio constraints (dashed purple in Fig.3.8) for ēe and b̄b are taken

from [197] who give both a conservative bound, and a progressive bound (the

more stringent) which includes astrophysical foregrounds (this source of un-

certainty dominates over propagation and density profile uncertainties). For

the q̄q channel, we use [195], with bands delineating two values of the central

magnetic field B = 10, 100 µG; and which are of similar strength to [197].

4. Antiprotons provide strong constraints for models with quark final states

(leptonic channels lead to weak constraints since less primary anti-protons are

produced), using the AMS-02 (E < 450 GeV, 2015) and PAMELA (E <

180 GeV) data. The propagation parameters for anti-protons are not well

constrained and lead to sizeable uncertainties on the DM signal, despite a

relatively low uncertainty on the background [199]. For the b̄b, ēe final state

see [199], for q̄q see [200] (AMS-02) or [150, 151, 198, 201] (PAMELA).

5. The positron flux and positron fraction as measured by AMS-02 and

PAMELA set extremely powerful constraints for leptonic channels, see for

example [202–204]. We use the constraints from [202] based on the AMS-02

data.

6. Other constraints include neutrino detection by Ice-Cube [205], and ANTARES

[206].

For s-wave cross sections, the GC constraints are competitive (often even sub-

dominant to) the constraints in the list above, and this emphasises the need to

consider bounds from various astrophysical targets (both in target location and tar-

get particle). We have targeted the GC gamma ray signal because it is ubiquitous

across all the models we are considering and thus allows a robust comparison in ID

bounds for each simplified model, this somewhat outweighs the potential for slightly

stronger bounds to be placed from other targets.

This is particularly true for p-wave suppressed processes, where we have a good

handle on the velocity of the DM in the GC [207]. Even though the dSph constraints

out-compete the GC for some s-wave annihilation channels, the DM velocity disper-

sion in dSph is very low σv ∼ 1−10 km s−1 [182], and these constraints are weakened
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compared with the GC (where σv ∼ 130 kms−1). In many of the searches the p-wave

suppression affects the signal in non-trivial ways (e.g. CMB), and specific searches

may not have been done.

3.5 Conclusions

We have reviewed and outlined a simple calculation of the gamma ray signal of DM

annihilation in the galactic centre, which arises both directly at the point of DM

annihilation and as a result of the transport of electrons and positrons through the

galaxy, which themselves have been produced by the DM. Although making many

approximations along the way, this method is useful as a quick (when compared

with the use of purpose-built software such as GalPROP [208] in broad searches

with several independent models) and model-independent bound, which spans the

full range of WIMP masses GeV . mχ . TeV. We have compared our bounds to a

collection of other ID searches from the literature. GC gamma ray constraints are

generally less powerful than the combined literature, and so our catalogue of limits

from the literature will be taken forward into later chapters. Nonetheless, having

control over the calculation of the signal allows a bound to be placed in scenarios

not covered in the literature, such as p-wave suppressed annihilation.



3.5. Conclusions 74

1�2*-V
DM DM ® e eFermi- LAT

EGRET

COMPTEL

INTEGRAL

ID H ExcludedL

10-2 10-1 100 101 102 103 104
100

101

102

103

104

105

106

mDM @GeVD

m
M

E
D

@G
e

V
D

0
*-F

±

DM DM ® e e Fermi- LAT

EGRET

COMPTEL

INTEGRAL

ID H ExcludedL

10-2 10-1 100 101 102 103 104
100

101

102

103

104

105

106

mDM @GeVD

m
M

E
D

@G
e

V
D

Fermi-LAT

EGRET

COMPTEL

INTEGRAL

ID H ExcludedL

10-2 10-1 100 101 102 103 104
100

101

102

103

104

105

mDM @GeVD

m
M

E
D

@G
e

V
D

0
*-F

±

DM DM ® u u Fermi- LAT

EGRET

COMPTEL

INTEGRAL

ID H ExcludedL

10-2 10-1 100 101 102 103 104
100

101

102

103

104

105

106

mDM @GeVD

m
M

E
D

@G
e

V
D

1�2*-V
DM DM ® b bFermi- LAT

EGRET

COMPTEL

INTEGRAL

ID H ExcludedL

10-2 10-1 100 101 102 103 104
100

101

102

103

104

105

106

mDM @GeVD

m
M

E
D

@G
e

V
D

0
*-F

±

DM DM ® b b Fermi- LAT

EGRET

COMPTEL

INTEGRAL

ID H ExcludedL

10-2 10-1 100 101 102 103 104
100

101

102

103

104

105

106

mDM @GeVD

m
M

E
D

@G
e

V
D

Figure 3.8: An example of the ID exclusion limits (hatched region) obtained in the case of DM

annihilation into ēe pairs (top row), ūu pairs (middle row, equivalent d̄d, and s̄s above 100 MeV),

and b̄b pairs (bottom row), where the grey shaded region forbids annihilation as mχ < mb. The left

column is for fermionic DM with a neutral vector mediator (an s-channel annihilation), the right

column a spin-1 DM with a charged fermionic mediator (a t-channel annihilation).The excluded

region is usually dominated by the Fermi-LAT data for mDM > O(1) GeV as one would expect

from Fig.3.7. Below 1 GeV the Fermi-LAT dat decreases in sensitivity and other data are more

constraining.



Chapter 4

Direct Detection of Dark Matter

In this chapter we review the current and most precise general determination of the

dark matter signal in terrestrial based Direct Detection (DD) experiments. We will

begin with some basics in Sec.4.1, and then proceed through the calculation of the

DD dark matter signal with a matching of the full theory (from Chapter 2) to an

appropriate EFT in Sec.4.2, then in Sec.4.3 we review the effects of nuclear structure

on the event rate, i.e. hadronic matrix elements. Lastly the non-relativistic limit of

the EFT is taken in order to match onto nuclear form factors in Sec.4.4. Finally,

we show how these calculations translate into constraints on DM models in Sec.4.5,

and in doing so summarize the most sensitive and relevant DD experiments of the

last few years.

4.1 Introduction

In the previous chapter we saw that if dark matter is a particle, and if it couples

to SM fields then we may detect its presence as it annihilates into stable detectable

particles such as electrons and photons.

If DM can annihilate, then it should be able to scatter also. As it scatters

from electrons and nuclei in a suitable target material, the energy released may be

detected. Experiments which aim to do this are usually termed Direct Detection

experiments. Detecting the energy recoil of a dark matter particle hitting a nucleus

75
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was first described in the 1980s [209] as a means to find evidence for dark matter

and as a way to characterise both its mass and the strength of its interactions.

Detection techniques have improved considerably since. Simple kinematics show

that detecting recoil energies in the range ER ∼ 0.1− 100 keV (a fair representation

of the present day capabilities) requires the DM mass to be in the range mχ ∼ 1−104

GeV. Current experiments are now sensitive to values of the elastic scattering cross

section between a DM particle and a nucleon as small as a few 10−45 cm2 for a DM

mass of about 20-30 GeV. Compare this to the gluon-fusion Higgs production fol-

lowed by decay to two photons σ ∼ 10−37 cm2, which was used to discover the Higgs.

Confronting theoretical expectations to experimental results is not very straight-

forward though. There are a few inherent difficulties associated with these calcu-

lations. First, to compute DM-nucleon interactions one has to match the full La-

grangian to a set of EFT operators and then use various phenomenological arguments

to obtain the DM-nucleon Lagrangian from the DM-quark Lagrangian. These must

then be matched to the appropriate non-relativistic (NR) operators which govern

elastic scattering at low energies. Finally, one needs to convolve the DM-nucleon

matrix element with the appropriate nuclear form factor, which describes the spatial

distribution of the nuclear current that the DM couples to.

Two specific form factor parametrisations have been extensively used in the lit-

erature so far: the “spin-independent” (SI) and “spin-dependent” (SD) form factors.

The former dominates if the DM couples coherently to all nucleons via the identity

operator 1, and is proportional to the atomic number squared (A2); whereas the

latter is important when the DM couples instead to the nuclear spin J , and goes

as J(J + 1). These form factors can be approximately computed with nuclear shell

models, or parametrized via empirical fits to electron and neutron scattering data.

It was recently pointed out [210, 211] that the DM does not necessarily couple

only through these operators, and that the nuclear response should differ as the DM
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couples to different currents in the nucleus; in this case a nuclear shell model must

be used. By keeping in the terms dependent on the relative DM-target velocity (v)

and momentum transfer (q), [211] lists 13 new form factors which could have a di-

rect impact on the DM direct detection signals. Some are dependent on the spin of

the nucleus while others are not, thus extending the notion of SI and SD interactions.

The full procedure from beginning (UV complete Lagrangian) to end (the form

factors and their coefficients) will be provided in this chapter and we now provide

a very terse summary. First, one rewrites the DM-quark Lagrangian as an effective

theory by integrating out heavy states, LDM−q =
∑

q C
(q) OEFT

q , where the C(q)

are the Wilson coefficients, depending on the masses and couplings of the particles

involved, and OEFT
q the effective operator which contains a DM and SM current in

the form OEFT
q ≡ JDMJSM. J may carry an explicit Lorentz structure via deriva-

tives (∂µ) or Dirac matrices (γ5, γµ). This matching must be done case-by-case: we

provide each of the C(q)’s for the models under consideration in Sec.4.2.

One then assumes that LDM−q (at quark level) is structurally equivalent to

LDM−N =
∑

N C
(N) OEFT

N (at nucleon level), and derive from non-perturbative

physics the C(N) coefficients in terms of the C(q) coefficients. This is shown in

Sec.4.3. Where they have been computed before, the results that we present are in

agreement with the literature (these are mainly summarised in [116, 126]) although

we have added several cases that were not covered before, mainly in vector DM

scenarios.

Once the C(N) coefficients are fully determined in terms of the masses and cou-

plings, it is relatively easy to identify the couplings to the different form factors

and compute the resulting differential cross section at the nucleus level. To do this,

one takes a non-relativisitc limit of all the fields and produces a set of coefficients

C
(N)
i where i is the index of a specific NR operator O(NR)

i with a corresponding form

factor; for example O(NR)

4 = Sχ · SN corresponds to the canonical spin-dependent
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operator. Once the C
(N)
i are found, the squared amplitude for the scattering is,

〈|M|2〉 =
15∑
i=1

∑
N,N ′=n,p

(
mT

mN

)2

C
(N)
i C

(N ′)
i F (N,N ′)

i,i , (4.1.1)

where F (N,N ′)
i,i are the different nuclear form factors (as listed in [211, 212]), and mT ,

and mN are the target (nucleus) and nucleon mass respectively. The differential

cross section for a particular target nucleus is then given by,

dσ

dER
=

1

32π2m2
χmT

1

v2
〈|M|2〉 , (4.1.2)

where mχ is the DM mass, mT the mass of the material in the detector, ER the

recoil energy, v the DM velocity.

The technique of simple event counting (the one which we use throughout) is the

most widely used; however it is possible to improve the signal-to-background ratio

significantly using directional detection [213] or annual modulation [214], and these

provide an interesting future search strategy.

It is also possible to consider scattering from electrons, which are either in atomic

orbitals (in the case of liquid scintillators) or in a semiconductor crystal (in Ger-

manium crystals in CDMS for example) [215–217]. This requires the involvement

of the bound electron wavefunction, since treating the electrons as free particles

yields the minimum velocity DM velocity to be vmin ∼
√
meER/2µ2 where µ is the

DM-electron reduced mass, and due to the smallness of me, vmin > vesc (the galactic

escape velocity) for thresholds above 1 eV and would lead to no observed events.

Correctly accounting for the binding of the electrons alleviates this problem, since

then the electron wavefunction can carry large momentum, creating an observable

recoil. Even so, the thresholds are still required to be very low, O(10) eV, and the

DM mass . 10 GeV. This provides a subdominant contribution to DD signals unless

the DM is leptophillic, coupling only to leptons.
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4.2 Step 1 : EFT Matching

The first step in calculating the scattering rate is to match the full theory (i.e. a

fully renormalizable Lagrangian such as those given in Chapter 2) onto an effective

theory in which heavy states are integrated out. This approximation is very good

if the heavy states are & O(10) GeV since the scattering energies are so small (the

typical direct detection experiment scales are� 1 GeV). The effective operators are

also easier to work with; especially when it comes to finding the hadronic matrix

elements necessary to fully describe their scattering.

The effective Lagrangian may be written,

LDM−q =
∑
i

C
(q)
i OEFT

q , (4.2.3)

where the C(q) are Wilson coefficients andOEFT
q the effective operators which contain

a DM and SM current in the form OEFT
q ≡ JDMJSM,q. J may carry an explicit

Lorentz structure via derivatives (∂µ) or Dirac matrices (γ5, γµ).

4.2.1 Heavy Quark and Gluon Operators

If the DM couples to heavy quarks, denoted Q = c, b, t, then a direct coupling to

nucleons would be heavily suppressed since the sea quark distributions for c, b, t are

extremely small. However at low energies, nucleon mass and spin receive large con-

tributions from gluons. Thus if the DM couples to gluons (which is always possible

as a quantum correction, for example via an intermediate loop of heavy quarks) then

the cross section may become measurable.

The DD interaction scale (µ ∼ 1 GeV) is much lower than the heavy quark mass

for Q = b, t, and so it is reasonable to integrate the Q out of the theory along with

the mediator (this is done at a scale µ = mQ and termed threshold matching ; for-

mally we are matching the full theory including heavy quarks to a one-loop effective

theory, at lowest order in the strong coupling gs). Technically one should integrate

out the heaviest particle first, the order does not affect the calculation for neutral
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Figure 4.1: An example of the gluon contribution to DM-nuclear scattering for a spin-1/2 DM

candidate coupled to heavy quarks via a charged mediator. Gluons may be emitted via both the

heavy quarks and mediator in the loops.

mediators if we neglect RG running effects and in the charged mediator case both

appear in loops and must be integrated out simultaneously. RG running effects are

only considered in cases where they dramatically effect the DD signal, and otherwise

the running between the mediator and heavy quark scales is not included.

For matching to gluon operators a distinction can be made between models with

charged mediators (necessarily charged under SU(3)c if coupled to heavy quarks, as

well as U(1)Q charge) and those with neutral mediators; charged mediators appear

inside the heavy quark loop (as in Fig.4.1), whereas they cannot if they are neutral

(Fig.4.2) 1.

1In principle the matching between the loop diagrams and the EFT can be done using conven-

tional Feynman rules; however one loses manifest gauge covariance during intermediate steps of

the calculation, and therefore for more involved calculations, techniques which preserve it are less

arduous. Indeed the background field technique [218] provides a suitable framework for dealing

with the neutral mediator case, and the Feynman-Schwinger gauge (developed in the same study

[218], but used for exactly our purpose more recently [219]) for the charged mediator case.
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Q
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Q

Figure 4.2: An example of the gluon contribution to DM-nuclear scattering for a spin-1/2 DM

candidate coupled to heavy quarks via a neutral mediator, which couple to nucleons dominantly

through a two-gluon operator (left). The only exception to the two-gluon coupling is a neutral

vector or tensor mediator, which couples via three gluons due to Furry’s theorem (right).

For the charged mediator models, Fig.4.1, the threshold matching of quark Q to

the leading gluon operator, O(Q)
GX , is dominated by loop momenta of roughly either

the heavy quark or mediator mass (rather than just the heavy quark mass as in

the neutral mediator models). Assuming mMED > mQ as is almost always the case,

the contributions from momenta ∼ mMED (mQ) are termed short distance (long dis-

tance). The long distance contributions are found with relative ease by integrating

out the mediator at tree level (as is done for in each model) and then calculating

the gluon contribution using the resulting EFT operators, as depicted in Fig.4.3.

Then, just as in the neutral mediated models, the Wilson coefficients are simply

C
(Q)
GXi ∼ C

(q)
Xi where X = S, F, V and with masses and couplings appropriated sub-

stituted. Because O(Q)
GXi and O(q)

Xi are assumed to lead to the same nucleon operator

O(N)
Xi the contribution to scattering from threshold matching of heavy quarks to glu-

ons and from light quark scattering is of the same form (in terms of ER dependence

and form factors) differing only in overall normalization from hadronic matrix ele-

ments. The short distance contribution is less relevant, except if mMED . mQ and

we mention it only for completeness.

The effective gluon operators are covariant, and are therefore built from the gluon

field/dual-field strength (Gµν , G̃µν) and the covariant derivative (Dµ). For each of
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Figure 4.3: The long distance contribution to χ (coupled to heavy quark Q) scattering with

nucleons through gluons can be found by integrating out the heavy mediator φ� mQ, and using

the effective operators denoted by a cross in the right diagram.

the models, we require only the dominant EFT operator (taking to be leading order

in m−nQ and αs); charged mediator models consistently lead to a contribution from

the operator JDM GµνGµν , however for neutral mediator models the operators can

appear quite obscure at first sight. We simply quote the results (which are also

stated in [210] except for the tensor current which can be found in [220]) 2,

2The photon and gluon are both vector bosons, and both with flavour diagonal quark couplings.

Unsurprisingly, matching the heavy quark currents onto two-photon operators yields almost iden-

tical results but with the gluon field strength replaced with the photon’s Fµν . Differences in the

matching arise due to the colour algebra. The two-photon operators are ignored however, since

their form factors are much smaller than for the gluons, and the matching is additionally suppressed

by α� αs at low energy (see for example [221]). Of course, unlike gluons (whose matching begins

at O(αs)) the photon matching begins at O(e) allowing single photon exchange, rendering the

two-photon operators as subleading.
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Q̄Q→ αs
12πmQ

GµνGµν ≡ GS, (4.2.4)

Q̄iγ5Q→ αs
16πmQ

G̃µνGµν ≡ GP , (4.2.5)

Q̄γµγ5Q→ αs
6πm2

Q

(
Gρν∂ρG̃µν + 2G̃µρ∂νG

νρ
)
≡ GµA, (4.2.6)

Q̄γµQ→ g3
s

45(4π)m4
Q

(
5∂αTr [Gστ{Gστ , Gαµ}]− 14∂αTr [Gµσ{Gστ , Gτα}]

)
≡ GµV ,

(4.2.7)

Q̄σµνQ→ g3
s

90(4π)m3
Q

(
15Tr [{Gµν , G

σρ}Gσρ]− 32Tr [Gµσ{Gστ , Gτν}]
)
≡ GµνT .

(4.2.8)

Each of these operators appear for heavy quarks coupled to particular neutral

mediators, but as already mentioned for charged mediators, GS is always present and

dominant. Note that the first three currents (scalar, pseudo-scalar and axial-vector)

contain two gluon fields, corresponding to diagrams as in Fig.4.2 (the single gluon

diagram is forbidden by gauge symmetry, and color conservation). For vector or

tensor currents Furry’s theorem forbids the two-gluon case also, and therefore there

must be three gluons emitted from the loop, which is why the gluonic operator

contains three field strengths (the vector current is also a total derivative as a con-

sequence of its conservation). It is also difficult to derive these via the background

field method, perhaps best using Feynman diagrams, as in [220].

We now present a list of the EFT operators, along with their Wilson coefficients,

C
(q,Q)
i , for each model, partitioning into sections according to the spin of the DM,

starting with spin-1/2. The gluonic operators are not listed explicitly but they are

identical to those with light quarks, denoted OXi, but using the replacements in

Eqs. (4.2.4)-(4.2.8), and will be denoted OGXi.

We make one final note regarding the operators in the EFT. When integrating

out the heavy quarks we will not just produce gluonic EFT operators, there will also

in principle be contributions from photons (as well as Higgs and Z-boson above the
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EW scale). Unlike for gluons, the DM can exchange a single photon with nuclei, and

these contributions can be described using multipole moments of the DM. Comput-

ing all these various contributions is beyond the scope of this work, however the DD

signal should not be considered complete unless these contributions are included.

However, the limits on the parameter space of each model would only be affected

when both the tree level scattering, and gluon scattering are suppressed. Indeed

these situations are uncommon but do occur amongst our models, in these further

study would likely present even stronger bounds.

Such studies including all DD signals are computationally expensive and only a

handful can be found in the literature.

4.2.2 EFT Matching : Fermion DM

The set of EFT operators has the form OF ≡ χ̄Γiχ q̄Γjq, where

Γi,Γj ∈ (1, iγ5, γµ, γµγ5, σµν , iσµνγ5)

are the scalar, pseudo-scalar, vector, axial-vector and tensor structures respectively

denoted “S,P,V,A,T,T′ ”. In all cases the i = j operators dominate over the i 6= j

in the non-relativistic limit.

The operators above are dimension six, dimension seven operators follow the

same structure but with the introduction of a derivative in the hermitian form

Re(ψ̄1∂µψ2) ≡ ψ̄1∂µψ2 + ∂µψ̄1ψ2 or Im(ψ̄1∂µψ2) ≡ ψ̄1∂µψ2 − ∂µψ̄1ψ2, which can

occur on the DM or quark bilinears. Many of these dimension seven operators are

equivalent through integration by parts and the Dirac equation, and due to their

extra mass suppression we will neglect them3. One exception to this is the inclusion

of so called twist-2 operators, which appear in the Wilsonian OPE of EM currents

into terms of fixed twist (defined as dimension - spin)[222], for quarks this operator

3The derivatives add a momentum dependence which adds further suppression in the NR limit
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is [219, 223, 224]

Oµν =
1

2
q̄

(
Dµγν −Dνγµ −

1

2
gµν /D

)
q , (4.2.9)

which has dimension four, and thus spin-2 (which requires two Lorentz indices as is

the case above), this creates a dimension seven or eight operator when contracted

with the DM fields (χ̄γµ∂νχ, χ̄∂µ∂νχ). Since the twist-2 operator contains a mq q̄q

piece, it is mixed with χ̄χq̄q, and so including it necessarily alters the Wilson coef-

ficient of the scalar-scalar dimension six operator. We will list these alterations as

appropriate.

With the structures σµν and iσµνγ5 we can build a set of four four-fermion

operators, denoted [X] [Y ] with the square brackets denoting some combination of

spinors. These four operators reduce to just two ([σµν ] [σµν ] and [σµνγ5] [σµν ]) using

the identity,

σµνγ5 =
1

2
εµνσρσσρ, (4.2.10)

and the contraction of the Levi-Civita tensor [225],

εµνσρεµναβ = −2(δµαδ
ν
β − δµβδνα), (4.2.11)

then [
σµνγ5

] [
σµνγ

5
]

= [σµν ] [σµν ] (4.2.12)[
σµνγ5

]
[σµν ] = [σµν ]

[
σµνγ

5
]
. (4.2.13)

We now present the Wilson coefficients for the dominant EFT operators, for

the cases of light quarks and heavy quarks4. These operators are listed in Tab.4.1,

operators OF1,F5 have unsuppressed (no q or v⊥ dependence as per Sec.4.4) spin-

independent interactions and thus dominate the event rate, similarly OF5,F8 have

unsuppressed spin-dependent interactions and provide a sub-dominant contribution.

4For each C
(q)
Fi 6= 0, there is a corresponding Wilson coefficient for heavy quarks denoted C

(Q)
GFi

corresponding to an operator with the same DM current as O(q)
Fi but with the heavy quark current

replaced according to Eqs.(4.2.4)-(4.2.8). This represents the leading threshold correction to gluons

when the heavy quark is integrated out of the theory.
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1/2-S, 1/2*-S

This cases applies to both Dirac and Majorana DM

C
(q)
F1 =

gq,s gχ,s
m2

MED

, C
(q)
F4 =

gq,p gχ,p
m2

MED

,

C
(q)
F2 =

gq,s gχ,p
m2

MED

, C
(q)
F3 =

gq,p gχ,s
m2

MED

. (4.2.14)

A single γ, Z exchange with the nucleus is impossible at 1-loop order. A single h

exchange contributes but only for true scalar mediators gq,s 6= 0. The contribution

is divergent at one-loop order, and thus runs giving a logarithmic term log (mq/Λ)

where Λ is a high scale. The Higgs couples to the partons in the nucleon, then

Yukawa couplings for the light quarks heavily suppress the contribution.

1/2-V, 1/2*-V

This case is again the same for Majorana or Dirac DM, except that for Majorana

DM the vector operators C
(q)
F5 = C

(q)
F7 = C

(q)
F9 = C

(q)
F10 = 0 :

C
(q)
F5 =

gq,v gχ,v
m2

MED

, C
(q)
F8 =

gq,a gχ,a
m2

MED

,

C
(q)
F6 =

gχ,agq,v
m2

MED

, C
(q)
F7 =

gχ,vgq,a
m2

MED

. (4.2.15)

Due to the propagator of V , gµν − qµqν/(m2
MED), the latter term (longitudinal polar-

ization) leads to OF4, but it is suppressed by m2
q/m

2
MED.

Contributions from Higgs exchange are zero, however there can be divergent 1-

loop contributions to photon and Z exchange (the former requires gq,v 6= 0). The

photon exchange is non-zero only for Dirac DM and may be described via the kinetic

mixing between the photon and vector mediator [226], this leads to an approximate

charge radius for the DM of,

bχ =
2gχ,vgq,v
m2

MED

e

24π2

∑
q

log
m2
q

Λ2
EW

. (4.2.16)

For the Z-boson, the vector couplings of the Z to the quark give roughly the same

contribution as the photon. However since the Z itself should also be integrated

out of the theory, the relevant diagram connects to a light quark bilinear, and thus
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the amplitude has a factor q2e2/m2
Z in the low energy limit and compared with the

photon contribution is negligible. The axial vector Z coupling gains a contribution

m2
qe

2/m2
Z for each quark, which can be somewhat larger for heavy quarks, but it

also enforces the presence of χ̄γµγ5χ (spin-suppressed) DM bilinear.

1/2-S±

The Wilson coefficients are 5,

C
(q)
F1 = C

(q)
F4 =

|g(q)
p |2 − |g(q)

s |2
4(m2

χ −m2
MED)

C
(q)
F2 = C

(q)
F3 =

g
(q)
s g

(q),†
p + g

(q)
p g

(q),†
s

4(m2
χ −m2

MED)

C
(q)
F6 =

i(g
(q)
s g

(q),†
p − g(q)

p g
(q),†
s )

4(m2
χ −m2

MED)

C
(q)
F8 =

|g(q)
s |2 + |g(q)

p |2
4(m2

χ −m2
MED)

. (4.2.17)

We can optionally include the dimension seven twist-2 operator, this modifies the

scalar coupling

C
(q)
F1 =

|g(q)
s |2 − |g(q)

p |2
2(m2

χ −m2
MED)

+
mχmq(|g(q)

s |2 + |g(q)
p |2)

8(m2
χ −m2

MED)2
,

C
(q)
TF1 = −mχ(|g(q)

s |2 + |g(q)
p |2)

2(m2
χ −m2

MED)
. (4.2.18)

When matching with Majorana DM, one will frequently find contributions to the am-

plitude of the operators which are zero in Tab.4.1, proportional to C ∼ mfmχ/m
4
MED.

These Wilson coefficients are formally 1/Λ4 (i.e. dimension-8), due to the inclusion

of a derivative in the quark and DM bilinears (and as such allowing the operator to

be non-zero) which projects out the mass of the particle in the low-energy limit. It

is incorrect to use these Wilson coefficients for the dimension six operators as the

hadronic matrix elements would be artificially inflated.

5Note that there is a factor of 1/2 in each of the Wilson coefficients in [219], we explicitly include

this factor in the operators in Table. 4.1.
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For heavy quarks there is an additional short distance contribution to CGF1

[219]6,

C
(Q,sd)
GF1 =

mχmQ

(
|g(Q)
s |2 + |g(Q)

p |2
)

8m2
MED(m2

MED −m2
χ)

, (4.2.19)

which is negligible given the 1/m4
MED suppression, unless mQ & mMED which is not

the case over most of the allowed parameter space.

For loop-level exchanges of Z, h we do not perform the calculation. Since we

have assumed all particles are SM singlets, SU(2)L is violated unless coupled to

RH quarks. Once the SU(2) symmetry is enforced then the h, Z contributions may

be safely calculated. Even so, the possible renormalizable interactions between the

Higgs and mediator have been neglected, if included these would dominate the Higgs

mediated scattering.

Both Z, h exchanges are mass/Yukawa suppressed relative to the photon contri-

bution. Photon couplings are limited to a suppressed anapole moment for Majorana

DM [226] however. Results for each of these may be found in Chapter 7 and so we

do not reproduce them here.

6Calculating this contribution requires evaluation of box diagrams in which the mediator mass

dominates the loop momentum (the one depicted on the left of Fig.4.1, the long distance con-

tribution) as well as those in which the quark mass dominates (the right of Fig.4.1, the short

distance contribution). Both contributions are of roughly the same size [223] and therefore one

cannot simply use the EFT insertions from Eq.(4.2.17) with an intermediate heavy quark loop.

This procedure would effectively set an upper limit of mφ for the loop momentum, and would thus

reproduce only the diagrams whose loop momenta are dominated by scales much lower than the

mediator mass (the long distance contribution).
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1/2*-S±

The Wilson coefficients include the appearance of all the Lorentz structures OF1−9,

C
(q)
F1 = C

(q)
F4 = 2C

(q)
F9 =

|g(q)
s |2 − |g(q)

p |2
4(m2

χ −m2
MED)

,

C
(q)
F2 = C

(q)
F3 = 2C

(q)
F10 =

g
(q)
s g

(q),†
p + g

(q)
p g

(q),†
s

4(m2
χ −m2

MED)
,

C
(q)
F6 = −C(q)

F7 =
i
(
g

(q)
s g

(q),†
p − g(q)

p g
(q),†
s

)
4(m2

χ −m2
MED)

,

C
(q)
F5 = −C(q)

F8 =
|g(q)
s |2 + |g(q)

p |2
4(m2

χ −m2
MED)

. (4.2.20)

The C
(q)
F1 and C

(q)
F5 dominate in the NR limit, and C

(q)
F5 dominates in the event that

gs = ±gp. With notation as in the previous case the short distance heavy quark

contribution is,

C
(Q,sd)
GF1 =

mχmQ

(
|g(Q)
s |2 + |g(Q)

p |2
)

8m2
MED(m2

MED −m2
χ)

. (4.2.21)

A full consideration of the scattering via γ, Z, h exchange can be found in Chapter

7 and we do not reproduce it here. The photon contribution is substantially larger

than for the gluon.
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1/2-V±

A Majorana DM exchanging a charged vector mediator is similar to a charged scalar

mediator,

C
(q)
F1 =

(
|g(q)
v |2 − |g(q)

a |2
)

m2
χ −m2

MED

(
1− m2

χ

4m2
MED

)
,

C
(q)
F2 =

i
(
g

(q)
v g

(q),†
a − g(q)

a g
(q),†
v

)
m2
χ −m2

MED

(
1 +

m2
χ

4m2
MED

)
,

C
(q)
F3 = −

i
(
g

(q)
v g

(q),†
a − g(q)

a g
(q),†
v

)
m2
χ −m2

MED

(
1− m2

χ

4m2
MED

)
,

C
(q)
F4 =

(
|g(q)
v |2 − |g(q)

a |2
)

m2
χ −m2

MED

(
1 +

m2
χ

4m2
MED

)
,

C
(q)
F6 =

(
g

(q)
v g

(q),†
a + g

(q)
a g

(q),†
v

)
2(m2

χ −m2
MED)

(
1− m2

χ

2m2
MED

)
,

C
(q)
F8 =

|g(q)
v |2 + |g(q)

a |2
2(m2

χ −m2
MED)

(
1− m2

χ

2m2
MED

)
, (4.2.22)

the extra multiplicative factors relative to the 1/2-S± case come from the vec-

tor propagator term qµqν/m2
MED, as the momenta contract with gamma matrices

and project out the DM mass from spinors, for example ū(p′)qµγµu(k) = (mχ −
mq)ū(p′)u(k).

Although the case for a charged scalar mediator has been discussed at length in

the literature, primarily because it appears in supersymmetric models where φ and

χ provide an analogy to squarks and the neutralino, the case of a charged vector

has received relatively little attention.

No full calculation of the relevant box diagrams necessary to include the gluonic

contribution from heavy quarks has been performed to my knowledge, however it is

possible to obtain an approximate result in the limit of heavy mediators by using

the EFT from above; this amounts to including diagrams in which the gluons are

emitted from fermion lines (i.e. the leftmost diagram of Fig.4.1).
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According to the EFT the result is accurate in the limit that m2
q/(m

2
χ−m2

φ)� 1

[223, 224, 227]. To find this ‘long distance’ contribution we can apply the Wilson

coefficients in Eq.(4.2.22), then the gluon scattering given by a triangle diagram with

a single EFT insertion of OF1 since only the scalar operator, OF1 = (1/2)χ̄χQ̄Q can

match to the dominant gluon operator (1/2)χ̄χGµνGµν . Then calculating the loop

integral, and matching (for which one can simply use Eq.(4.2.4)) we find,

C
(Q,ld)
GF1 =

(
|g(Q)
v |2 − |g(Q)

a |2
)

(m2
χ −m2

MED)

(
1− m2

χ

4m2
MED

)
. (4.2.23)

As with the charged scalar mediator, the Z, h exchange cannot be calculated

before first ensuring SU(2)L invariance, which is not present in our Lagrangian. The

γ coupling is restricted to an anapole moment by symmetries; but we find that this

contribution is also zero as the amplitudes for the two diagrams vanish.
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1/2*-V±

The matching is structurally similar to 1/2*-S±, but as with Majorana DM the

vector propagator accounts for the multiplicative terms,

C
(q)
F1 =

|g(q)
a |2 − |g(q)

v |2
(m2

χ −m2
MED)

(
1− m2

χ

4m2
MED

)
,

C
(q)
F2 =

i
(
g

(q)
v g

(q),†
a − g(q)

a g
(q),†
v

)
(m2

χ −m2
MED)

(
1 +

m2
χ

4m2
MED

)
,

C
(q)
F3 = −

i
(
g

(q)
v g

(q),†
a − g(q)

a g
(q),†
v

)
(m2

χ −m2
MED)

(
1− m2

χ

4m2
MED

)
,

C
(q)
F4 = −|g

(q)
a |2 − |g(q)

v |2
(m2

χ −m2
MED)

(
1 +

m2
χ

4m2
MED

)
,

C
(q)
F5 =

|g(q)
v |2 + |g(q)

a |2
2(m2

χ −m2
MED)

(
1 +

m2
χ

2m2
MED

)
,

C
(q)
F6 =

g
(q)
v g

(q),†
a + g

(q)
a g

(q),†
v

2(m2
χ −m2

MED)

(
1− m2

χ

2m2
MED

)
,

C
(q)
F7 =

g
(q)
v g

(q),†
a + g

(q)
a g

(q),†
v

2(m2
χ −m2

MED)

(
1 +

m2
χ

2m2
MED

)
,

C
(q)
F8 =

|g(q)
v |2 + |g(q)

a |2
2(m2

χ −m2
MED)

(
1− m2

χ

2m2
MED

)
,

C
(q)
F9 =

|g(q)
v |2 − |g(q)

a |2
8(m2

χ −m2
MED)

m2
χ

m2
MED

,

C
(q)
F10 =

i
(
g

(q)
v g

(q),†
a − g(q)

a g
(q),†
v

)
8(m2

χ −m2
MED)

m2
χ

m2
MED

. (4.2.24)

The matching to C
(Q)
GF1 is the same as for Majorana DM. The photon coupling is

different since Dirac DM can have a magnetic dipole moment and a charge radius

(as well as anapole moment),

µχ ≈
3mχ

32π2m2
MED

(
|g(q)
v |2 + |g(q)

a |2
)

+
mQ

2π2m2
MED

(
|g(q)
a |2 − |g(q)

v |2
)
. (4.2.25)

4.2.3 EFT Matching : Vector DM

If the DM is a real or complex vector then there are 20 EFT operators to consider;

plus the gluonic and twist-2 operators as shown in Tab.4.2. Some operators are zero,
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Dirac Majorana

OF1 χ̄χq̄q 1
2
χ̄χq̄q

OF2 χ̄iγ5χq̄q 1
2
χ̄iγ5χq̄q

OF3 χ̄χq̄iγ5q 1
2
χ̄χq̄iγ5q

OF4 χ̄γ5χq̄γ5q 1
2
χ̄γ5χq̄γ5q

OF5 χ̄γµχq̄γµq −
OF6 χ̄γ5γµχq̄γµq

1
2
χ̄γ5γµχq̄γµq

OF7 χ̄γµχq̄γ5γµq −
OF8 χ̄γ5γµχq̄γ5γµq

1
2
χ̄γ5γµχq̄γ5γµq

OF9 χ̄σµνχq̄σµνq −
OF10 χ̄σµνχq̄iγ5σµνq −
OTF1 χ̄i∂µγνχOTqµν 1

2
χ̄i∂µγνχOTqµν

OTF2 χ̄γµγνχOTqµν 1
2
χ̄γµγνχOTqµν

O(Q)
GF1

αs
12πmQ

χ̄χGµνGµν
1
2

αs
12πmQ

χ̄χGµνGµν

Table 4.1: EFT operators appearing for spin-1/2 DM candidates. The set of heavy quark opera-

tors are identical to OF1−10 but with the quark bilinears replaced according to Eqs.(4.2.4)-(4.2.8)

and denoted OGF1−10.

for example the tensor operator (B†µBν+B
†
νBµ)q̄σµνq is zero due to the antisymmetry

of σµν (equivalently for real vector DM), we must therefore have the antisymmetric

combination i(B†µBν − B†νBµ)q̄σµνq = 2iB†µBν q̄σ
µνq. A deliberate distinction has

been made between the real and imaginary components of operators with deriva-

tives; this is because they have different NR limits, and one must be careful as to

which of the operators appears (the difference in the Feynman rules amounts to a

relative sign between momenta). OV 1,5−2 are the only spin-independent operators

which are not either velocity or momentum suppressed; similarly OV 9,8 are unsup-

pressed spin-dependent operators.

For vector particles the combination of polarizations appearing in the amplitudes

εiεj should be decomposed into the symmetric and antisymmetric parts, the anti-

symmetric part, ε[iεj], is proportional to the spin of the particle. The symmetric
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component, ε(iεj), gives rise to new operators at the NR level, as pointed out in

[116], but in practice these are present alongside operators with a larger form factor.

Some degeneracies are present in the operators listed in Tab.4.2. Firstly, OV 5 = 0

and OV 6 is equivalent to OV 2 by integration by parts and the Dirac equation;

C
(q)
V 5 = 0, (4.2.26)

C
(q)
V 2 = −2mqC

(q)
V 6. (4.2.27)

1-S, 1*-S

The DM-mediator coupling depends on a mass scale Λ,

C
(q)
V 1 =

Λ g
(q,Q)
s gχ
m2

MED

, C
(q)
V 2 =

Λ g
(q,Q)
p gχ
m2

MED

. (4.2.28)

The amplitude is heavily suppressed in the case of gs = 0, since OV 2 is momentum

suppressed (and spin-dependent). The γ, Z cannot mix with the scalar mediator,

and so only single Higgs exchange is possible, for gs 6= 0.

1-V, 1*-V

There are in fact three independent vertices combining two DM vectors with a third

vector V

V1 = (gB†ν∂
νBµ + h.c.)Vµ, (4.2.29)

V2 = (gB†ν∂
µBν + h.c.)Vµ, (4.2.30)

V3 = εµνσρ(gB†µ∂νBσ + h.c.)Vρ. (4.2.31)

In each case above g may be complex. For V1,

C
(q)
V 3 =

g
(q,Q)
v Re(gχ)

m2
MED

, C
(q)
V 3−2 =

g
(q,Q)
v Im(gχ)

m2
MED

,

C
(q)
V 4 =

g
(q,Q)
a Re(gχ)

m2
MED

, C
(q)
V 4−2 =

g
(q,Q)
a Im(gχ)

m2
MED

. (4.2.32)

For V2

C
(q)
V 5 =

g
(q,Q)
v Re(gχ)

m2
MED

, C
(q)
V 5−2 =

g
(q,Q)
v Im(gχ)

m2
MED

,

C
(q)
V 6 =

g
(q,Q)
a Re(gχ)

m2
MED

, C
(q)
V 6−2 =

g
(q,Q)
a Im(gχ)

m2
MED

. (4.2.33)
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For V3

C
(q)
V 7 =

g
(q,Q)
v Re(gχ)

m2
MED

, C
(q)
V 7−2 =

g
(q,Q)
v Im(gχ)

m2
MED

,

C
(q)
V 8 =

g
(q,Q)
a Re(gχ)

m2
MED

, C
(q)
V 8−2 =

g
(q,Q)
a Im(gχ)

m2
MED

. (4.2.34)

1-F

There is only a single model with vector DM and a charged mediator (including both

real or complex DM), for real DM it gives rise to the following Wilson coefficients

C
(q)
V 1 =

mMED

(
|g(q)
a |2 − |g(q)

v |2
)

(m2
χ −m2

MED)
+
mq

(
|g(q)
v |2 + |g(q)

a |2
)

(m2
χ −m2

MED)
,

C
(q)
V 2 = −i

mMED

(
g

(q)
v g

(q),†
a − g(q)

a g
(q),†
v

)
(m2

χ −m2
MED)

,

C
(q)
V 7 = −1

2
C

(q)
V 4−4 =

(
g

(q)
a g

(q),†
v + g

(q)
v g

(q),†
a

)
(m2

χ −m2
MED)

,

C
(q)
V 8 =

1

2
C

(q)
V 3−4 =

(
|g(q)
v |2 + |g(q)

a |2
)

(m2
χ −m2

MED)
, (4.2.35)

the interaction is dominated by OV 1,V 8, and is suppressed by chiral couplings g
(q)
v =

±g(q)
a by a factor mq/mMED. We can include the twist-2 operator in this case as it is

suppressed only by (m2
χ −m2

MED)−2, this modifies the coefficient of OV 1,

C
(q)
V 1 = −

m2
MEDmq

(
|g(q)
v |2 + |g(q)

a |2
)

2(m2
χ −m2

MED)2
+
mMED

(
|g(q)
v |2 − |g(q)

a |2
)

(m2
MED −m2

χ)
,

C
(q)
TV = −

2
(
|g(q)
v |2 + |g(q)

a |2
)
m2
χ

(m2
χ −m2

MED)2
. (4.2.36)

For heavy quarks the long distance contribution is 7

C
(Q)
GV 1 =

mMED

(
|g(Q)
a |2 − |g(Q)

v |2
)

(m2
χ −m2

MED)
+
mQ

(
|g(Q)
v |2 + |g(Q)

a |2
)

(m2
χ −m2

MED)
. (4.2.37)

In the limit mMED →∞ we reproduce the results of [229].

7The full box diagrams, including the short distance contribution, are evaluated in the Fock-

Schwinger gauge in [219, 228].
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1*-F

For this case, we do not include the twist-2 operator since it appears with a (m2
χ −

m2
MED)−3 suppression,

C
(q)
V 1 = C

(q)
V 9 =

mMED

(
|g(q)
a |2 − |g(q)

v |2
)

(m2
χ −m2

MED)
+
mq

(
|g(q)
v |2 + |g(q)

a |2
)

(m2
χ −m2

MED)
,

C
(q)
V 2 = −1

2
C

(q)
V 10 =

imMED

(
g

(q)
a g

(q),†
v − g(q)

v g
(q),†
a

)
2(m2

χ −m2
MED)

,

C
(q)
V 4−2 = 2C

(q)
V 4−4 = −2C

(q)
V 6−2 = −2C

(q)
V 7 =

(
g

(q)
a g

(q),†
v + g

(q)
v g

(q),†
a

)
(m2

χ −m2
MED)

,

C
(q)
V 3−2 = 2C

(q)
V 3−4 = −2C

(q)
V 5−2 = 2C

(q)
V 8 =

(
|g(q)
v |2 + |g(q)

a |2
)

(m2
χ −m2

MED)
. (4.2.38)

Similarly with the real vector case, the dominant V 1 spin-independent interaction

is suppressed by mq/mMED in the limit gv = ga; however OV 5−2 is also present which

leads to a spin-independent interaction with mass dependence ≈ (mNmχ/m
2
MED),

which can become dominant for large mχ since for V 1 the mass dependence is

(mN/mMED)2. The heavy quarks lead to the same result as for real vector DM.

4.2.4 EFT Matching : Scalar DM

Scalar DM has the most restricted set of EFT operators, only two dimension five

and two dimension 6 operators appear in our models (plus four gluonic operators for

heavy quarks, and a single dim-7 twist-2 operator). There are no DM spin-dependent

couplings for scalar DM, however OS1,S3 provide a dominant spin-independent re-

sponse. The operator φ∂µφq̄γµq = 1
2
∂µ(φ2)q̄γµq is redundant since (via integration

by parts) this equals a total derivative plus ∂µ(q̄γµq) = −imq q̄q.

0-S, 0*-S

This is a t-channel scattering, and the matching is simple for light quarks,

C
(q)
S1 =

Λgχg
(q)
s

m2
MED

, C
(q)
S2 =

Λgχg
(q)
p

m2
MED

, C
(q)
S3,S4,TS = 0, (4.2.39)

and applies equally for real or complex DM.
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Real Complex

OV 1
1
2
BµBµq̄q B†µB

µq̄q

OV 2
1
2
BµBµq̄iγ

5q B†µB
µq̄iγ5q

OV 3
1
2
Bν∂νBµq̄γ

µq Re(B†ν∂
νBµ)q̄γµq

OV 3−2 − iIm(B†ν∂
νBµ)q̄γµq

OV 3−3 − Im(B†νBµ)Im(∂ν q̄γµq)

OV 3−4
i
2
BνBµIm(∂ν q̄γ

µq) iRe(B†νBµ)Im(∂ν q̄γµq)

OV 4
1
2
Bν∂νBµq̄γ

µγ5q Re(B†ν∂
νBµ)q̄γµγ5q

OV 4−2 − iIm(B†ν∂
νBµ)q̄γµγ5q

OV 4−3 − Im(B†νBµ)Im(∂ν q̄γµγ5q)

OV 4−4
i
2
BνBµIm(∂ν q̄γ

µγ5q) iRe(B†νBµ)Im(∂ν q̄γµγ5q)

OV 5
1
2
Bµ∂νBµq̄γ

νq Re(B†µ∂
νBµ)q̄γνq

OV 5−2 − iIm(B†µ∂
νBµ)q̄γνq

OV 6
1
2
Bµ∂νBµq̄γ

νγ5q Re(B†µ∂
νBµ)q̄γνγ5q

OV 6−2 − iIm(B†µ∂
νBµ)q̄γνγ5q

OV 7
1
2
εµνσρBµ∂νBσ q̄γ

ρq Re(εµνσρB†ν∂µBσ)q̄γρq

OV 7−2 − iIm(εµνσρB†ν∂µBσ)q̄γρq

OV 8
1
2
εµνσρBµ∂νBσ q̄γ

ργ5q Re(εµνσρB†ν∂µBσ)q̄γργ5q

OV 8−2 − iIm(εµνσρB†ν∂µBσ)q̄γργ5q

OV 9 − iB†µBν q̄σ
µνq

OV 10 − B†µBν q̄σ
µνγ5q

OTV 1
2
OµνT2,qB

ρ∂µ∂νBρ OµνT2,qB
ρ∂µ∂νB†ρ

O(Q)
GV 1

αs
24πmQ

BµBµG
νσGνσ

αs
12πmQ

B†µB
µGνσGνσ

Table 4.2: EFT operators appearing for Vector DM candidates. The set of heavy quark operators

are identical to OV 1−9 but with the quark bilinear replaced according to Eqs.(4.2.4)-(4.2.8) by a

gluon current, and denoted OGV 1−9. Operators OV 5,V 6 are redundant, but we include them in

this list for completeness. The notation Re(∂ν q̄γ
µq) ≡ (∂ν q̄)γ

µq + q̄γµ∂νq.
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For γ, Z, h exchange, the arguments are identical to the 1/2 − S model, only

the Higgs couples and only when gχ,s 6= 0. This contribution is extremely small

due to the Yukawa couplings of the light quarks; it can also introduce more model

dependence through couplings between the neutral scalar and Higgs.

0*-V

This is a t-channel scattering, and the matching is simple

C
(q)
S3 =

gχg
(q)
v

m2
MED

, C
(q)
S4 =

gχg
(q)
a

m2
MED

, C
(q)
S1,S2,T2 = 0, (4.2.40)

and exists only for complex scalar DM.

As for the EW sector, h exchange is not possible. For γ, Z exchange the contri-

bution is most easily found by considering the mixing between V and the photon or

Z. After integrating out the mediator the relevant Lagrangian is [226]

Leff =
∑
q

2ε(q)gχ
m2

MED

(
φ†∂µφ

)
∂µF

µν , (4.2.41)

where ε is the coefficient of the kinetic mixing operator and is approximately given

by,

ε(q) =
g

(q)
v NcQe

24π2
log

(
m2
q

Λ2
V

)
,

with ΛV ∼ 1 TeV a high scale. We will assume the Z-couplings are negligi-

ble compared with the photon case (the scattering cross section would go as ∼
m2
χm

2
q/m

2
φm

2
Z)

0-F±

The only scalar DM model with a charged (fermionic) mediator gives, for real DM,

C
(q)
S1 =

mMED

(
|g(q)
p |2 − |g(q)

s |2
)

(m2
χ −m2

MED)
−
mq

(
|g(q)
s |2 + |g(q)

p |2
)

(m2
χ −m2

MED)
,

C
(q)
S2 =

imMED

(
g

(q)
p g

(q),†
s − g(q)

s g
(q),†
p

)
m2
χ −m2

MED

, C
(q)
S3,S4 = 0. (4.2.42)
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We may optionally include the twist-2 operator, since there is a term ∝ (k·p)2/(m2
χ−

m2
MED) in the amplitude, this modifies the scalar coupling,

C
(q)
S1 =

mMED

(
|g(q)
p |2 − |g(q)

s |2
)

(m2
χ −m2

MED)
−
mq(m

2
χ − 2m2

MED)
(
|g(q)
s |2 + |g(q)

p |2
)

2(m2
χ −m2

MED)2
,

C
(q)
TS = −

(
|g(q)
s |2 + |g(q)

p |2
)

(m2
χ −m2

MED)2
. (4.2.43)

For heavy quark currents, the box diagrams contribute to the scalar gluon operator

φ†φO(Q)
GS1, and we limit ourselves to this (the dominant) operator 8,

C
(Q)
GS1 =

mMED

(
|g(Q)
p |2 − |g(Q)

s |2
)

(m2
χ −m2

MED)
−
mQ

(
|g(Q)
s |2 + |g(Q)

p |2
)

(m2
χ −m2

MED)
. (4.2.44)

Real scalar DM cannot posses any electromagnetic multipole moments (this forbids

single on-shell photon exchange). Two photon exchange is possible, but is sub-

dominant to the gluon contribution given above. Single h, Z exchange with the

nucleus is possible, but can only be calculated fully after producing an SU(2)L

invariant Lagrangian; the minimum realization of this would be an SU(2) singlet

(doublet) charged mediator coupled to qR (qL).

0*-F±

The complex scalar leads to the appearance of OS3 unlike the real scalar case. The

twist-2 operator is neglected due to a (m2
χ −m2

MED)−3 suppression,

C
(q)
S1 = −

mq

(
|g(q)
s |2 + |g(q)

p |2
)

m2
χ −m2

MED

−
mMED

(
|g(q)
s |2 − |g(q)

p |2
)

m2
χ −m2

MED

,

C
(q)
S2 =

imMED

(
g

(q)
p g

(q),†
s − g(q)

s g
(q),†
p

)
(m2

χ −m2
MED)

, C
(q)
S3 = −

(
|g(q)
s |2 + |g(q)

p |2
)

2(m2
χ −m2

MED)
,

C
(q)
S4 = −

(
g

(q)
p g

(q),†
s + g

(q)
s g

(q),†
p

)
2(m2

χ −m2
MED)

, (4.2.45)

the heavy quark matching, C
(Q)
GS1, is the same as for real DM. Complex scalar DM

can posses only a single multipole moment, the charge radius (or electric monopole)

8See [219] for both the long and short distance contributions. Note that our definition of GS

includes a factor αs/(12πmQ).
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Real Complex

OS1
1
2
SSq̄q S†Sq̄q

OS2
1
2
SSq̄iγ5q S†Sq̄iγ5q

OS3 - 1
2
i(S†∂µS − S∂µS†)q̄γµq

OS4 - i(S†∂µS − S∂µS†)q̄γµγ5q

OTS 1
2
OµνT2,qS∂µ∂νS OµνT2,qS

†∂µ∂νS

O(Q)
GS1

αs
24πmQ

SSGµνGµν
αs

12πmQ
S†SGµνGµν

Table 4.3: EFT operators appearing for scalar DM candidates. The set of heavy quark operators

are identical to OS1−4 but with the quark bilinear replaced according to Eqs.(4.2.4)-(4.2.8) and

denoted OGS1−4.

bφ,

L = ibφ∂µφ
†∂νφF

µν , (4.2.46)

which is approximately

bφ =
QNce

(
|g(q)
s |2 + |g(q)

p |2
)

8π2m2
MED

(
1 +

4

3
log

(
mQ

mMED

))
. (4.2.47)

This now concludes the matching procedure after the heavy quarks and mediators

are integrated out, leaving the light quarks, DM and gluons. We now move onto the

next step in the calculation.

4.3 Step 2 : Hadronic Matrix Elements

Now that our models are matched to EFT operators with a simple quark or gluon

structure, we can consider the implications of the fact that even though our model

is written in terms of fundamental degrees of freedom (i.e. quarks and gluons), at

the low energies of DD experiments the DM scatters from nuclei and so in order to

be able to calculate the nuclear form factors, we require a Lagrangian in which the

nucleons are the fundamental degrees of freedom.
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To account for this we must calculate the value of the hadronic matrix elements

for each of the EFT operators (from Tab.4.1, 4.2 and 4.3),

〈N |O(EFT)|N〉 , (4.3.48)

where |N〉 ≡ |n(k, s), p(k, s)〉 represents a neutron/proton state with momentum kµ

and spin sµ. All of the EFT operators are written in the factorized form O(EFT) =

ODMOq,G containing a DM bilinear and a quark or gluon bilinear, then the DM

bilinear factors out of the hadronic matrix element,

〈N | ODMOq,G |N〉 = ODM 〈N | Oq,G |N〉 . (4.3.49)

Thus we only need to consider matrix elements of quark bilinears of the form

O(q)
S,P,V,A,T,T ′ ≡ q̄{1, iγ5, γµ, γµγ5, σµν , iσµνγ5}q, which due to their symmetries, pre-

serve their Lorentz structure at the nucleon level 9,

C
(q)
i q̄Γiq → 〈N |C(q)

i q̄Γiq |N〉 N̄ΓiN = C
(N)
i N̄ΓiN, (4.3.50)

where N(k, s), N̄(k, s) are nucleon spinors, behaving just like quark spinors. The

nucleon-level couplings C
(N)
i are related to the quark-level Wilson coefficients C

(q)
i .

One way to think about these matrix elements is that each quark bilinear acts as

an operator which probes a particular property of the nucleon; for example i = S

probes the number density (mass) of both quark and antiquarks, i = P,A probes

the spin of quark and antiquark, i = T, T ′ probes the difference in spin between

quark and anti-quark, and finally i = V probes the valence quark number. The

9 The form of the nucleon bilinear is constrained by symmetries such as C,P, T . In reality

multiple operators of nucleon bilinears are present (not just those with the same dirac matrix

configuration), for example qµN̄σµνN , which contributes to the anomalous magnetic moment,

appears alongside N̄γµN [29], however all such operators are suppressed by momentum exchange

qµ and are neglected. The neglected operators would contribute to the momentum dependence of

the nucleon form factor F (q2), and our approximation amounts to taking F (0).
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exact correspondance is [230],

C
(N)
S =

∑
q=u,d,s

f
(N)
Tq

mN

mq

C
(q)
S , (4.3.51)

C
(N)
P =

∑
q=u,d,s

f
(N)
5,q

mN

mq

C
(q)
P , (4.3.52)

C
(N)
V =

∑
q=u,d,s

V(N)
q C

(q)
V , (4.3.53)

C
(N)
A =

∑
q=u,d,s

∆(N)
q C

(q)
A , (4.3.54)

C
(N)
T =

∑
q=u,d,s

δ(N)
q C

(q)
T , C

(N)
T ′ =

∑
q=u,d,s

δ(N)
q C

(q)
T ′ , (4.3.55)

where fTq are the expectation values of the mass distributions of valence quarks in-

side the nucleon, ∆q (δq) are the expectation of the sum (difference) of the quark/anti-

quark spin helicity distributions,

∆(N)
q =

∫ 1

0

dx(∆q(x) + ∆q̄(x)),

δ(N)
q =

∫ 1

0

dx(∆q(x)−∆q̄(x)).

We define the pseudo-scalar constant f
(N)
5,q (equivalent to f

(0)
5q,N in [29]), it is con-

structed from the SU(3) flavour singlet, triplet and octet form factors g0,3,8
A (which

are themselves defined in terms of ∆q).

As well as light-quark bilinears, the EFT operators may also contain 2-gluon or

3-gluon operators Gi. These originate from heavy quark bilinears Q̄ΓiQ, and so the

nucleon operators are constrained to have the same symmetry properties and are

essentially a rescaled copy of those in Eq.(4.3.51)-(4.3.55):

C
(Q)
GS
GS → C

(N)
GS

N̄N, (4.3.56)

C
(Q)
GP
GP → C

(N)
GP

N̄iγ5N, (4.3.57)

C
(Q)
GV
GµV → C

(N)
GV

N̄γµN, (4.3.58)

C
(Q)
GA
GµA → C

(N)
GA

N̄γµγ5N. (4.3.59)
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The nucleon couplings are related the gluon distribution in the nucleon,

C
(N)
GS

=
∑
Q=c,b,t

f
(N)
TQ

mN

mQ

C
(Q)
GS
, (4.3.60)

C
(N)
GP

=
∑
Q=c,b,t

f
(N)
5,Q

mN

mQ

C
(Q)
GP
, f

(N)
5,Q =

f
(N)
5,G

2mN

(4.3.61)

C
(N)
GA

=
∑
Q=c,b,t

∆
(N)
Q C

(Q)
GA
, (4.3.62)

C
(N)
GV

=
∑
Q=c,b,t

V(N)
Q C

(Q)
V . (4.3.63)

In the above results, the vector and axial vector constants arise dominantly through

RG running effects as we will discuss.

The scalar coupling Eq.(4.3.60) is well known [231] and can be derived using the

QCD scale anomaly, which directly relates f
(N)
TQ

to f
(N)
Tq

. However such a relation

is not possible in the other cases. The pseudo-scalar coupling often used [230] is

derived using a leading color approximation, under the assumption that the axial-

vector form factor g0
A(q2) = 0 for the flavour singlet current. The assumption g0

A = 0

gains 1
Nc

corrections and is estimated to be g0
A ≈ 0.34− 0.37 [232].

The matrix element of the heavy quark vector current can be extracted from

[233], but note that the gluonic operator, Eq.(4.2.8), is a total derivative and can be

written in the from ∂νT
νu, with T νµ antisymmetric to preserve current conservation.

There is thus suppression factor ∂µ → qµ contributing to nucleon form factors which

we have neglected for the other cases. One may proceed anyway and derive the

proton matrix element,

qµ 〈p|T µν |p〉 =
g3
s

45(4π)m2
Q

(
1

2

(αs
π

)3 5

18

(
3

2
ξ(3)− 19

16

))
×
∑

q=u,d,s

mqq
µ 〈p| q̄σµνq |p〉 ,

≡ C
(p)
V qµN̄σµνN.

The heavy quark mass is taken as the renormalization scale and αs ∼ 0.2, and the
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nulceon tensor charge δ
(p)
q ≡ 〈p| q̄σµνq |p〉 is δ

(p)
u ≈ 0.84, δ

(p)
d ≈ −0.23 [234],

C
(N)
V ≈ C

(Q)
V

α
9/2
s

m2
Qπ

5/2162

(
3

2
ξ(3)− 19

16

)∑
q

mqδ
(N)
q

≈ 10−7

(
C

(Q)
V

m2
Q

)
.

Clearly the contribution to the form factors is negligible, however as we will discuss

shortly there is the possibility that the heavy quark vector current mixes with light

quark vector currents as the scale is decreased towards µ = mQ. The interpretation

of the vector current matrix element is that it counts the number of quarks minus

the number of anti-quarks, this can be done explicitly with the quark parton density

functions (pdfs) q(x,Q2) as a function of x, the momentum of the parton as a

fraction of the nucleon’s momentum, and the momentum transfer Q2,

V(N)
q =

∫ 1

0

dx
(
q(x,Q2)− q̄(x,Q2)

)
.

The intrinsic charm and bottom pdf may be found in [235], although the common

assumption Q(x) = Q̄(x) gives V(N)
Q = 0.

The divergence of the axial vector heavy quark current can be written [236],

∂µj
Q
5,µ =

αs
48πm2

Q

∂µR
µ, (4.3.64)

where jQ5,µ = Q̄γµγ5Q, and,

Rµ = ∂µ

(
Ga
ρσG̃

ρσ
a

)
− 4 (DρG

σρ) G̃σµ, (4.3.65)

in the forward scattering limit ∂µ → qµ → 0 the first term in Rµ is suppressed with

respect to the second, which contributes to the axial form factor FA(q2). We can

use the QCD equation of motion for the gluon which reads,

DµG
µν = gs

nf∑
q

q̄taγνq, (4.3.66)

where the sum runs over all the nf remaining quarks in the theory, and so

αs
48πm2

Q

lim
q→0
〈N |Rµ |N〉 = − αs

12πm2
Q

nf∑
q

〈N | gsq̄G̃νµγ
νq |N〉 . (4.3.67)
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N = p N = n

f
(N)
Tu

0.018(6) 0.016(7)

f
(N)
Td

0.034(12) 0.038(13)

f
(N)
Ts

0.044(8) 0.044(8)

f
(N)
TQ

0.067(39) 0.067(38)

N = p N = n

∆
(N)
u 0.84(1) -0.43(1)

∆
(N)
d -0.43(1) 0.84(1)

∆
(N)
s -0.057(21) -0.057(21)

g
(N,0)
A 0.35(2) 0.35(2)

N = p N = n

δ
(N)
u 0.774(66) -0.233(28)

δ
(N)
d -0.233(28) 0.774(66)

δ
(N)
s -0.05 -0.05

f (2,N) -0.037 -0.013

N = p N = n

f
(N)
5,u 0.42 -0.41

f
(N)
5,d -0.85 0.86

f
(N)
5,s -0.0063 -0.45

f
(N)
5,Q 0.14 0.063

N = p N = n

V(N)
u 2 1

V(N)
d 1 2

V(N)
s 0.0 0.0

V(N)
b 0.0072 0.0

Table 4.4: The nucleon constants used in this study, all of which appear from nucleon matrix

elements of quark or gluon operators. These can be found in [29] following the methods described

in the text.
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The operator q̄G̃νµγ
νq has twist-4 (dimension 5 and therefore spin-1). Unsurpris-

ingly then, it’s matrix elements are defined as (see [237], p.368),

〈N | Q̄gG̃µνγ
νQ |N〉 = 2m2

Nf
(2,N)
q Sµ , (4.3.68)

and are proportional to the nucleon spin Sµ ≡ N̄γµγ5N . Therefore [236],

〈N | αs
48πm2

Q

Rµ |N〉 = 〈N | jQ5,µ |N〉 =
αs
6π

(
mN

mQ

)2

f (2,N)Sµ . (4.3.69)

We have defined f (2,N) =
∑nf

q=u,d,s,··· f
(2)
q ≈ f

(2,N)
u + f

(2,N)
d , which arises as a power

correction to the spin distribution function, and is f (2,p) ≈ −0.037 for protons and

f (2,n) ≈ −0.013 for neutrons [238]. For the charm quark,
∑

q=u,d,s f
(2,N)
q = f

(2,N)
S is

the flavour singlet contribution and the expression for Eq.(4.3.62) would be,

∆
(N)
Q =

αs
6π
f

(2,N)
S

(
mN

mQ

)2

. (4.3.70)

f
(2,N)
S can be calculated using an instanton method [239], obtaining f

(2,N)
S = 0.01, or

using QCD sum rules [238] f
(2,N)
S = 0.09. For the bottom quark we may assume the

same value for
∑

q=u,d,s,c f
(2,N)
q ≈ f

(2,N)
S due to negligible charm contribution, then

the coupling is roughly (mc/mb)
2 ∼ 0.09 times smaller (and even more suppressed

for the top quark). This calculation thus provides the intrinsic heavy quark contri-

bution to the first moment of the spin structure function ∆q(x, µ). The suppression

in this case of the effective nucleon coupling is not so harsh as for heavy-quark vector

currents, but still significantly lower than the scalar or pseudo-scalar currents.

This very naive treatment gives a rough estimate of the heavy quark contribution

to nucleon spin through the dominant operator arising from threshold matching.

However, it neglects the RG running and subsequent threshold corrections of other

heavy quark flavours (the axial current has an anomalous dimension). We can

instead try to find the intrinsic contribution to the nucleon spin, ∆
(N)
Q , including

these effects which turn out to be much less suppressed and will be discussed shortly.
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4.3.1 Further Discussion of Hadronic Matrix Elements

Scalar

The matrix elements of scalar quark currents are written

〈N |mq q̄q |N〉 ≡ mNf
(N)
Tq

. (4.3.71)

This is a reasonable result since q̄q acts as a number operator in the nucleon, counting

the number of quark q, so then f
(N)
Tq

represents the fractional contribution of quark

q to the nucleon mass mN . The light quark (q = u, d, s) scalar matrix elements may

be extracted from lattice calculations. The strange quark contribution is the largest.

The trace of the QCD energy momentum tensor is (at leading order in αs)[231],

θµµ =

nf∑
q=1

mq q̄q +
β0(αs)

4αs
Ga
µνG

µν
a , (4.3.72)

valid for nf = 6 quark flavours, the second term arises from the anomaly of the

classical QCD scale invariance to NLO order. At energy scales µ . 170 GeV, the

top quark is integrated out and nf = 5. At DD energy scales µ ∼ 1 GeV, the

Q = c, b, t quarks are all integrated out leaving nf = 3 flavours, and making the

replacement in Eq.(4.3.72),

mQQ̄Q = − αs
12π

Ga
µνG

µν
a +O(m−1

Q ), (4.3.73)

for the heavy quarks (this is the leading term in the heavy quark expansion) then

since β0(αs) = −(11 − 2
3
nf )

α2
s

2π
(nf = 3 for µ < mc), taking the nucleon matrix

element of Eq.(4.3.72) and letting 〈θµµ〉N = mN ,

− αs
12π
〈Ga

µνG
µν
a 〉N =

2

27
mN

( ∑
q=u,d,s

f
(N)
Tq
− 1

)
. (4.3.74)

The threshold matching of quark Q scalar current generates the LHS of the above

equation and thus defining 〈mQQ̄Q〉N ≡ f
(N)
TQ

mN we find,

f
(N)
TQ

=
2

27

(
1−

∑
q=u,d,s

f
(N)
Tq

)
, (4.3.75)
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then f
(p,n)
TQ
≈ 0.07. This treatment is approximate in several senses, firstly it is NLO

accurate in coupling and mass running. Secondly, the threshold matching considers

only the generation of OGS , but the light quark scalar currents are also generated

at two-loop level [231].

It is possible to calculate the heavy quark scalar matrix element 〈mQQ̄Q〉 for

Q = c, b, t using the matching conditions between the full theory (with nf + 1

flavours) and the theory with the heavy quark integrated out (with nf flavours

denoted by primed quantities). The threshold matching conditions are written as,

〈O′i〉 (µ) = Mji 〈Oj〉 (µ) +O(1/mQ),

where the matching takes place at some scale µQ which can be taken to be the

heavy quark mass µQ = mQ. The above equation shows that when integrating out

heavy quarks, multiple operators are generated with matrix elements Mij, where

i, j = Q, q, g; these can be calculated order by order in αs using Feynman diagrams.

For example, the matrix element MQg represents a Feynman diagram which connects

a Q̄Q current with GµνGµν which is a one-loop diagram with two external gluons

and one external scalar current, thus MQg begins at O(αs). Both MgQ and MqQ

begin at two-loop level and have been calculated to three-loop level in [240], and

using Eq.(4.3.72) one can derive

〈mQQ̄Q〉′ /mN = MqQλ+MgQ
2

β̃(nf )
(1− (1− γ(nf )

m )λ) , (4.3.76)

where λmN =
∑nf

q 〈mq q̄q〉, and the explicit nf dependence is highlighted with

superscripts, and which enters β̃ = β/gs and γm (the anomalous mass dimension) at

two-loop order. These expressions depend on α
(nf )
s (µ), which we must determine at

several scales, and thus we need to know the RG evolution and matching conditions

for it. The RG running of the strong coupling constant at NLO leads to,

α
(nf ),NLO

s (µ) =
2π

β0 log (µ/Λ)
, (4.3.77)

α
(nf )
s (µ) depends on the asymptotic scale Λ, which is determined using the boundary
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condition that the coupling at the Z mass is equal to α
(5)
s (mZ) = 0.118410 (in the

nf = 5 flavour theory since the top quark is much heavier than the Z). This gives a

value Λ = 211 MeV. Thus by use of Eq.(4.3.77), the strong coupling α
(5)
s (µ) is evolved

down from a scale µ = mZ to µ = mb = 4.18 GeV for which α
(5)
s (mb) = 0.2180;

roughly two times larger.

The nf = 5 flavour theory is matched to the nf = 4 theory at a scale µ = mb,

i.e. the b-quark is integrated out of the theory. The matching for the coupling is

given at O(α3) by [240],

α
(nf )
s (µ)

α
(nf+1)
s (µ)

= 1− α
(nf+1)
s (µ)

6
log

(
µ2

µ2
h

)

+ α
(nf+1)
s (µ)2

(
1

36
log

(
µ2

µ2
h

)2

− 19

24
log

(
µ2

µ2
h

)
+

11

72

)
, (4.3.78)

where µ is the matching scale (taken to be mb) and µh is the mass of the heavy

quark evaluated at a scale µ in the MS scheme11. Setting nf = 4, µ = 4.18 and

µh = 4.18 the logs disappear and α
(4)
s (mb) = 0.2318. Then repeating the process

and evolving down to µ = mc = 1.275 GeV, α
(4)
s (mc) = 0.4818 (with Λ = 354 MeV),

and then matching to the three flavour theory α
(3)
s (mc) = 0.5975.

The hadronic matrix element of the heavy quark scalar current, 〈mQQ̄Q〉N is

given up to O(α4
s) (three loop order) in Eq.(39) of [29], for brevity the NLO result

is,

〈mQQ̄Q〉
1

mN

=
1

3β
(nf )
0

(2− 2λ) +
α

(nf+1)
s (µQ)

π

(
57

2
− 321λ

2
+ 8nf

)
,

where λmN =
∑nf

q 〈mq q̄q〉. The right hand side is precisely f
(N)
TQ

, which may be cal-

culated sequentially for c, b, t. Firstly f
(N)
Tc

in the nf = 3 theory requires β
(3)
0 = 9/4,

α
(4)
s (mc) = 0.3981 and λ = 0.089 MeV, which gives f

(N)
Tc

= 0.078.

10To test the equations we can use the two fixed values α
(5)
s (mZ) = 0.118 and α

(4)
s (mτ ) = 0.36,

starting atmZ and evolving down, including the matching we find good agreement α
(4)
s (mτ ) = 0.32.

11The MS masses of the b and c quarks are m̄b(m̄b) = 4.18 and m̄c(m̄c) = 1.275 GeV [241].
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Next, for the b quark in the nf = 4 theory requires β
(4)
0 = 25/12, α

(5)
s (mb) =

0.2266 and λ = 0.089 + f
(N)
Tc

= 0.162 MeV, which gives f
(N)
Tb

= 0.071. These values

show good agreement with the result derived at the start of the section using the

energy-momentum tensor.

The values for the u, d contribution come from the observables,

σπN =
mu +md

2
〈ūu+ d̄d〉 ∈ [40, 60] MeV,

σn,p− = (mu −md) 〈ūu− d̄d〉 ∈ ± [0, 4] MeV.

σπN can be found from πN scattering data using Heavy Baryon Chiral Perturbation

Theory (HBChPT) [242, 243], or from lattice QCD calculations (see [244] for a world

average), these agree within 2σ and are in the range stated above. Following [245]

we take a conservative value of σπN = 50 ± 15 MeV to cover the literature. Using

the expressions in [29] with the latest values Rud = mu/md = 0.48±0.10 we produce

the values and errors stated in Tab.4.4. The strange quark contribution from lattice

calculations gives estimates in the range σs = mNf
N
Ts ∈ [40, 50] MeV with an average

of σs = 41.3± 7.7 MeV [245].

Pseudo-scalar

The nucleon matrix element of the pseudo-scalar operator q̄iγ5q between nucleon

states 〈N(k′)| and |N(k)〉 is parametrized in a similar way to the scalar operator

〈mq q̄iγ
5q〉 ≡ mNf

(N)
5,q . (4.3.79)

Note that in [232] (which we follow) the definition is instead Eq ≡ 〈q̄iγ5q〉 and so

Eq ≡ mN/mqf
(N)
5,q . Additionally one defines∑

q=u,d,s

〈q̄iγ5q〉 = κN̄iγ5N , (4.3.80)

i.e.
∑

q=u,d,s(mN/mq)f
(N)
q,5 = κ, where κ(q2, µ) is a scale dependent quantity.

The pseudo-scalar current matrix elements are related to those for the axial

vector through the axial anomaly. The axial vector bilinears are combined into
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singlet triplet and octet states under the SU(3) flavour symmetry,

A0
µ = q̄γµγ5T 0q = ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s ,

A8
µ = q̄γµγ5T 8q = ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s ,

A3
µ = q̄γµγ5T 3q = ūγµγ5u− d̄γµγ5d , (4.3.81)

where q = (u, d, s), and T i are the SU(3) Gell-man matrices. Rearranging Eq.(4.3.81)

ūγµγ5u =
1

3
A0
µ +

1

6
A8
µ +

1

2
A3
µ,

d̄γµγ5d =
1

3
A0
µ +

1

6
A8
µ −

1

2
A3
µ,

s̄γµγ5s =
1

3
A0
µ −

1

3
A8
µ. (4.3.82)

The divergence of the singlet current Aµ0 is anomalous, but the triplet and octet are

not. The axial anomaly equation is∑
q

〈∂µq̄γµγ5q〉 = 2
∑
q

mq 〈q̄iγ5q〉 − g2
snf

32π2
〈εµνσρGa

µνG
a
σρ〉

= 2mN

(∑
q

f
(N)
5,q −

g2
snf

64π2
f

(N)
G,5

)
,

3mNF
0 = 2mN

(∑
q

f
(N)
5,q − nff (N)

G,5

)
,

with the definition f
(N)
G,5 ≡ 〈(αs/8π)G̃µνGµν〉. The derivative can be used to reduce

the axial current to a pseudo-scalar one (∂µq̄γ5γµq → mq q̄iγ
5q). Accounting also for

the anomaly, one finds

∂µA0
µ = muūiγ

5u+mdd̄iγ
5d+mss̄iγ

5s+ 3
αs
8π
G̃G ,

∂µA8
µ = muūiγ

5u+mdd̄iγ
5d− 2msis̄γ

5s ,

∂µA3
µ = muūiγ

5u−mdd̄iγ
5d . (4.3.83)

Then taking nucleon matrix elements, defining 〈∂µAiµ〉 ≡ mNg
i
A(q2, µ) to be the

axial form factors,

gN,0A =
∑

q=u,d,s

f
(N)
5,q +

3

mN

〈αs
8π
G̃G
〉
,

gN,8A = f
(N)
5,u + f

(N)
5,d − 2f

(N)
5,s ,

gN,3A = f
(N)
5,u − f (N)

5,d , (4.3.84)
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measurements of the axial form factors at q2 = 0 for the proton yield (gp,0A , gp,3A , gp,8A ) ∈
(0.35 ± 0.02, 1.27, 0.52 ± 0.06). Lower values for the singlet and octet form fac-

tors are extracted from semi-leptonic hyperon decays [29], for which the notation

F
(N,3)
A (q2) ≡ 1

2
gN,3A (q2), F

(N,8)
A (q2) ≡ 1

2
√

3
gN,8A (q2), F

(N,0)
A (q2) ≡ 1

3
gN,0A (q2) is used.

From isospin invariance gp,0A = gn,0A and gp,8A = gn,8A , but gp,3A = −gn,3A picks up a

relative sign, the octet and triplet factors are scale invariant, but the singlet has a

mild scale dependence arising from the anomalous piece, which may be neglected.

Using the last two equations of Eq.(4.3.84) (plus Eq.(4.3.80)), one can derive the

f5,q(N) in terms of the octet and triplet form factors,

f
(N)
5,u m̄

−1 =
κ

mN

+
1

2

(
2

md

+
1

ms

)
gN,3A +

1

2

1

ms

gN,8A ,

f
(N)
5,d m̄

−1 =
κ

mN

− 1

2

(
2

mu

+
1

ms

)
gN,3A +

1

2

1

ms

gN,8A ,

f
(N)
5,s m̄

−1 =
κ

mN

+
1

2

(
1

mu

− 1

md

)
gN,3A − 1

2

(
1

mu

+
1

md

)
gN,8A , (4.3.85)

where we define

m̄ = (m−1
u +m−1

d +m−1
s )−1. (4.3.86)

Summing together these terms∑
q=u,d,s

f
(N)
5,q m̄−1 =

3κ

mN

+
1

2

(
1

md

− 1

mu

)
gN,3A +

1

2

(
− 1

mu

− 1

md

+ 2
1

ms

)
gN,8A .

(4.3.87)

Combining Eq.(4.3.84),(4.3.85),(4.3.87)〈αs
8π
G̃G
〉

=
1

2

mNm̄

mumdms

(
2

3

mumdms

m̄
g0
A +

1

3
ms(md −mu)g

3
A

+
1

3
(ms(mu +md)− 2mumd)g

8
A

)
− κm̄ . (4.3.88)

We can set κ ∼ 0 , which potentially receives 1/Nc corrections [232]. Since ms �
mu,d and mu ∼ md, we can approximately find f

(N)
5,q . Indeed f

(N)
5,d ∼ −1

2
gN,3A ∼

−0.64(0.64) for protons (neutrons) respectively, f
(N)
5,u ∼ −f (N)

5,d and f
(N)
5,s ∼ −1

2
gN,8A ∼
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−0.26 12.

For heavy quark pseudo-scalar currents, mQQ̄iγ
5Q, we use the fact that the

threshold matching atO(αs) picks up a contribution to a gluon operator (Eq.(4.2.8)),

defining 〈 αs
16π

G̃G
〉
≡ 1

2
f

(N)
5,G . (4.3.90)

Then from Eq.(4.3.84) we get

〈Q̄iγ5Q〉 →
〈

αs
16πmQ

G̃G

〉
=
f

(N)
5,G

2mQ

≈ 1

2

mN

mQ

1

3

(
g

(N,0)
A −

∑
q=u,d,s

f
(N)
5,q

)
, (4.3.91)

which gives numerically f
(p)
5,G ∼ 0.26 and f

(n)
5,G ∼ 0.12.

Axial Vector

We have preempted the matrix elements of the axial currents already in Eq.(4.3.84).

We define,

〈q̄γµγ5q〉 ≡ ∆(N)
q Sµ, (4.3.92)

where Sµ is the nucleon spin vector, and so ∆
(N)
q may be interpreted as the fractional

contribution to the spin of nucleon N from quark q13, and it is related to the axial

form factors F
(N,q)
A (q2, µ) at zero momentum transfer,

F
(N,q)
A (0, µ) =

∫ 1

0

(∆q(x, µ)−∆q̄(x, µ))dx, (4.3.93)

12For light quark masses we use the PDG values [246],

mu = 2.3± 0.6 MeV,

md = 4.8± 0.4 MeV, (4.3.89)

ms = 95± 5 MeV.

13Due to the axial anomaly this is not precisely true, and contributions from gluons are also

included.
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for quark helicity distributions ∆q and with F
(N,q)
A (q2, µ) ≡ 〈q̄γµγ5q〉Sµ, and thus

∆
(N)
q ≡ F

(N,q)
A (0, µ) are equivalent notations. Using Eq.(4.3.82) with the values of

given in the previous section yield; ∆
(p)
u = 0.84, ∆

(p)
d = −0.43, ∆

(p)
s = −0.06. Us-

ing the definition above, Eq.(4.3.93), with NNPDF sets yields similar numbers and

allows a determination of the scale dependence with amounts to . 1% change in

F
(N,q)
A between µ = 1− 2 GeV [29].

Heavy quarks also contribute to the spin with ∆
(N)
Q defined equivalently to light

flavours, these contributions are generated at the loop level with renormalization

group techniques [247, 248]. They are relevant for the axial charge for quark cou-

plings to the Z14 (for example in the measurement of the proton axial charge in νp

scattering [248]) which is

2g
(Z,p)
A =

∑
q=u,c,t

∆(p)
q −

∑
q=d,s,b

∆(p)
q , (4.3.95)

to arrive at the values of ∆
(p)
Q we will briefly review the technique. One begins with

the SM at a sufficiently high scale µ > mt as above; then the axial current Jµ,5 is

anomaly free and given by Eq.(4.3.94). One then performs a heavy quark expansion

(a Wilsonian OPE) to give an EFT expanded in inverse quark mass, m−nQ , for which

Eq.(4.2.7) provides the highest order term. Now that the theory contains nf = 5

flavours the axial current is anomalous, the anomalous dimension describes the RG

running down to the scale of the next largest quark µ = mb (in doing so logarithms

are generated for the axial current made from the remaining quarks), then the pro-

cedure is repeated integrating out the b, c quarks.

Thus in the end we are left with the gluonic operator (contributions from thresh-

old matching of each heavy quark, plus a negligible modification to the operator

from RG running), plus the RG modified light quark current, specifically the singlet

14The axial vector Z coupling to quarks depends on their weak isospin,

JZµ,5 =
∑
q

T3q̄γ
µγ5q, (4.3.94)

then one takes the hadronic matrix element of the above.
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current g0
A (the one that is actually anomalous). As it turns out the latter is the

dominant contribution by far since the suppression with quark mass is only loga-

rithmic, and not m−2
Q as for the gluonic operator. The earliest attempt in 1978 [249]

gives an estimate of ∆Q ∼ 0.05, then a decade later ∼ 0.04 [250], and finally the

more recent treatment [247].

The numerical values of ∆Q at LO are [247, 251],

∆
(p)
t = − 6

23π
α̃t

(
∆(p)
u + ∆

(p)
d + ∆(p)

s

)
≈ −0.0087, (4.3.96)

∆
(p)
b = − 6

23π
α̃b

(
∆(p)
u + ∆

(p)
d + ∆(p)

s

)
≈ −0.0058, (4.3.97)

∆(p)
c = − 6

27π
α̃c

(
∆(p)
u + ∆

(p)
d + ∆(p)

s

)
≈ −0.0029, (4.3.98)

using α̃c = 0.35, α̃b = 0.2, α̃t = 0.1, at NLO these quantities are modified to

∆
(p)
c = −0.0099, ∆

(p)
b = −0.0064 and ∆

(p)
t = −0.0031. The contribution for heavy

quarks is thus only relevant if the light quark couplings are absent. Lastly we can

take ∆
(n)
Q = ∆

(p)
Q .

Tensor

The tensor charges of nucleons cannot be probed directly as there are no spin-2

particles in the SM, however the charge itself relates to the transversality pdf, h1(x),

of quarks which is the difference between the pdfs of the two transversal polarisation

states of the quark inside a polarised nucleon target [252],

δq =

∫ 1

0

dx(h1(x)− h̄1(x)), (4.3.99)

which is therefore the number of transversely polarised valence quarks. These

charges have a mild scale dependence,

δ(µ2) =

(
αs(µ

2)

αs(µ0)2

) 4
33−2nf

δ(µ2
0), (4.3.100)

which amounts to only an ∼ 11% correction from µ0 = mZ to µ = mb and

nf = 5. The tensor charges for q̄σµνq and q̄iσµνγ5q are equivalent via the iden-

tity in Eq.(4.2.10). These may be taken from measurements by Hermes, COMPASS

and JLab HALL A (for a global analysis see [253] giving δu = 0.39(7)(11) and δd =
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−0.22(14)(8)), or from lattice QCD [254] δu = 0.774(66), δd = −0.233(28), δs =

0.008(9) giving also the strange quark contribution. Alternatively the Dyson Schwinger

formalism gives δu = 0.55(8) and δd = −0.11(2) [255–257]. See also [230, 234, 255]

for sets of tensor charges which have been used in DD calculations. We quote the

lattice values in Tab.4.4 for δu,d and the MicrOmegas value for δs.

Twist-2

The quark twist-2 operator

O(q)
Tw−2 =

1

2
q̄

(
iγ{µDν} − i

2
mqg

µν

)
q, (4.3.101)

has hadronic matrix element [29, 223],

〈O(q)
Tw−2〉 =

1

mN

(
pµpν − 1

4
m2
Ng

µν

)
f

(N)
q,2 , (4.3.102)

where f
(N)
q,2 is the first moment of the quark + anti-quark pdf,

f
(N)
q,2 (µ) =

∫ 1

0

dx x (q(x, µ) + q̄(x, µ)), (4.3.103)

which has a fairly strong scale dependence, we use the values quoted in [29] at

µ = 1 GeV (f
(p)
u,2 = 0.404(9), f

(p)
d,2 = 0.217(8), f

(p)
s,2 = 0.024(4) and f

(p)
c,2 = 0.036(1),

f
(p)
b,2 = 0.0219(4) with the latter two at µ = mW ) based on the MSTW pdf set. The

neutron constants are related as usual via isospin symmetry.

4.3.2 Renormalization Group Running

We have used an EFT approach to construct the quark level EFT, and then the nu-

cleon level EFT by finding the nucleon matrix elements. There are several scales in

this calculation, first there is the scale µUV at which the new physics process becomes

effective (i.e. the threshold at which the mediator is integrated out, µUV = mMED),

this may in general be above the EW scale µEW (the threshold at which W,Z,h,t

are all integrated out) or below, but we assumed µUV < µEW to avoid dealing with

chiral fermions. The lowest scale is µN = 1 GeV at which the scattering occurs.

Between the two scales µUV and µN the parameters of the theory (the operators,

Wilson coefficients and quark masses) run with energy, described as usual by the
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RG running equation. However this running has been neglected, as we will now

explain.

We first note that since the DM is a singlet under the SM gauge group, and

that we write each EFT operator as a product of a DM current and SM current

O(EFT) = JDMJSM; then the DM current does not participate in any RG running at

all. We need only consider the quark currents q̄Γq.

Consider the evolution under QCD corrections [29]. First the scalar current,

or quark mass term, mq q̄q. This is RG invariant when using MS scheme [219], its

anomalous dimension is therefore zero and it does not change under RG flow. At

leading order the vector, q̄γµq, and axial-vector, q̄γµγ5q15, currents are also con-

served and do not run. The pseudo-scalar does not evolve under RG flow, although

it does mix with the G̃G operator (the scalar current similarly mixes with GG).

For heavy quarks which are integrated out, the vector current can be neglected,

since its threshold matching begins at O(g3
s) (Sec.4.1) in the strong coupling gs, in

other words a three gluon operator. The scalar (GG) and pseudo-scalar (GG̃) oper-

ators evolve with a factor β̃(µl)/β̃(µh) ∼ 5.9 and αs(µl)/αs(µh) ∼ 5.016 respectively

between the low and high scale (µl,h), where β(µ) is the QCD β-function. The heav-

iest quark we consider is a b with mb ≈ 4.2 GeV, evolving the threshold matched

operators down to 1 GeV amounts to a smaller change than quoted above.

Turning away from QCD corrections and considering weak corrections impor-

tant effects are observed. In the cases where the DM couples only to a heavy quark

vector current, Q̄γµQ, the threshold matching at µQ = mQ leads to a signal which

is extremely suppressed. However, during the RG flow from µ� mQ to mQ (above

threshold) the heavy quark vector current mixes under RG flow with q̄γµq light

15The SU(3)flavour singlet combination of axial currents evolves weakly under RG due to the

axial anomaly.
16With β̃ = −β0(αs/4π) +O(α2

s) [29], and µl,h = mc,mZ .
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quark vector currents, this then allows a rather strong signal.

The mixing arises from diagrams involving (below the EW scale) a single photon

exchange between the heavy quark loop and the light quarks. Such a diagram is

not present for axial-vector (or for that matter scalar or pseudo-scalar) heavy quark

bilinears, instead, using the Fermi theory neutral current interactions (four fermion

interactions) one can still produce the q̄γµq at one-loop, suppressed by GF .

Thus the only specific example of RG running we need to consider is the op-

erator C
(Q)
F5 Q̄γ

µQ (with Q = c, b) which is evolved from µh = mZ ≈ 90 GeV

to µl = mc,mb ∼ 1, 5 GeV, resulting in C(u) = 0.0048C(b) − 0.0097C(c), and

C(d) = −0.0024C(b) + 0.0048C(c) [258]. These results will be applied in the next

chapter.

Although we consider couplings to strongly charged particles, it is possible for

DM to couple only to leptons and still produce a DD signal. If there is a coupling

at or above the EW scale of the form l̄γµl, then the RG running of the EFT op-

erator will mix with others of the same symmetries, including naturally q̄γµq [258]

which leads to strong DD signals. Such mixing occurs dominantly via diagrams with

a single photon exchange. The same mixing can also occur through a Fermi the-

ory four-fermion interaction JµJµ which also permits an axial-vector current l̄γµγ5l,

however these contributions are very suppressed by GF [226]. Below the EW scale

the W,Z, h, t are all integrated out, then there are no scalar or pseudo-scalar inter-

actions with leptons in the theory, removing any possible RG running at one loop.

Then [259] describes a means by which scalar bilinears l̄l may be incorporated, it

involves a two-loop process with two external photons. There are no pseudo-scalar

interactions in the SM EFT, so it is difficult to imagine where l̄γ5l bilinears would

contribute to nuclear scattering.
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4.4 Step 3 : Non-relativistic Limit

We have constructed an EFT in terms of nucleon spinors, accounting for the form

factors that parametrize the scattering from nucleons. This would accurately predict

scattering rates if the DM scattered from individual nucleons, if it were energetic

enough. However, DM is highly non-relativistic and the resulting smallness of the

scattering energy makes this approximation poorly justified for nucleons which are

bound inside a nucleus.

In the same way that the non-perturbative binding structure of quarks in nucle-

ons leads to the introduction of nucleon form factors, the non-perturbative binding

of nucleons inside the nucleus necessitates the introduction of nuclear form factors.

Luckily, a full consideration of nuclear form factors has been performed [211, 260].

This is done using a set of non-relativistic operators (the limit of small DM veloc-

ity, v); and so we must understand how to take the non-relativistic limit of our EFT.

Thus, the final step to construct the matrix element is to find the coefficients,

C
(N)
i of the NR operators. There are 18 linearly independent operators [116, 211,

260] if one restricts to at most one power of each of the DM velocity v, the DM spin

Sχ and the nuclear spin SN
17, although the latter two are imposed automatically

for our models,

LNR =
∑
N=n,p

18∑
i=1

C
(N)
i O(NR)

i . (4.4.104)

17We will use the notation p (p′) and k (k′) to label the incoming (outgoing) DM and nucleon

three-momenta respectively; working in the CM frame p = µv where v is the relative lab-frame

velocity and µ = mχmN/(mχ + mN ) is the DM-nucleon reduced mass. Only Galilean invariants

may be present, i.e. combinations of momenta and velocity, parametrized by v = vi − vf and

q = p − p′ = k − k′. Thus there are four independent Galilean vectors, and note that iq is

Hermitian whereas q alone is not. To see why consider the hermitian conjugate of a generic DM

bilinear (ψ̄(p′)Γψ(p))† = ±ψ̄(p)Γψ(p′) which is equivalent to q → −q. Usually v⊥ = v + q/2µ is

used rather than v because v⊥ · q = 0.
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We list the O(NR)

i in Tab.4.5 along with their discrete symmetries. Charge conjuga-

tion (C) is not a good symmetry in a non-relativistic theory (see Tab.4.6 rows 1 and

3 for an explicit example), however we can use parity (P) and time-reversal (T ) to

constrain which operators we expect to appear;

T : (iq,v⊥,Sχ,SN)→ (iq,−v⊥,−Sχ,−SN), (4.4.105)

P : (iq,v⊥,Sχ,SN)→ (−iq,−v⊥,Sχ,SN) . (4.4.106)

Recall that T is anti-unitary, i.e. T iT −1 = −i. Since the product of the symmetries

CPT is conserved in Lorentz invariant theories, knowledge of PT gives C.

Each operator in Eq.(4.4.104) corresponds to a term in the interaction hamilto-

nian, once sandwiched between the ingoing/outgoing states this gives an amplitude

which can be decomposed into six electroweak response functions (plus an extra two

which arise from interference) [211, 260], which can then be grouped according to

the original coefficients in Eq.(4.4.104) to create a form-factor F (N,N ′)
i,j (q2, v2) which

allows for interference between different NR operators i, j, and between the neu-

tron/proton interactions N,N ′. Since the interference between the operators are

always subdominant we will restrict to F (N,N ′)
i ≡ F (N,N ′)

(i,i) .

The form factors, F (n,n)
i (ER, v), are shown as a function of recoil energy in

Fig.4.4, and allow a quick judgement of the relative contributions from each NR

operator, they are shown for two DM masses (10 GeV and 1 TeV) as some form fac-

tors have a DM mass dependence. It is this step in the calculation which elucidates

which operators are momentum suppressed (q2), velocity suppressed (v2,v⊥,2), or

spin dependent (containing SN).

To make the transition between the relativistic theory (Tab.4.1, 4.2 and 4.3)

we need the expressions for non-relativistic spinors in the case of the nucleons and

spin-1/2 DM. These are computed in the Weyl basis, which is defined by,

γµ =

 0 σµ

σ̄µ 0

 , γ5 =

−1 0

0 1

 , (4.4.107)
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O(NR) P T PT = C Xe130 Xe129

O1 = 1 + + + SI 103 103

O2 = v⊥ · v⊥ + + + SI ≈ 10−6 † ≈ 10−6 †

O3 = SN ·
(

iq
mN
× v⊥

)
+ + + SD 10−6 10−6

O4 = Sχ · SN + + + SD 0 10−2

O5 = Sχ ·
(

iq
mN
× v⊥

)
+ + + SI 10−6 10−6

O6 =
(
Sχ · iq

mN

)(
SN · iq

mN

)
+ + + SD 0 10−9

O7 = SN · v⊥ - + - SD 0 10−7

O8 = Sχ · v⊥ - + - SI 10−3 10−3

O9 = Sχ ·
(
SN × iq

mN

)
- + + SD 0 10−5

O10 = iq
mN
· SN - - + SD 0 10−5

O11 = iq
mN
· Sχ - - + SI 10−1 10−1

O12 = Sχ · (SN × v⊥) - - + SD 100 100

O13 =
(
SN · iq

mN

) (
Sχ · v⊥

)
+ - - SD 0 10−17

O14 =
(
Sχ · iq

mN

)
(SN · v⊥) + - - SD 0 10−17

O15 =
(
Sχ · iq

mN

)(
iq
mN
· SN × v⊥

)
- - + SD 10−7 10−7

O17 = i q
mN
· S · v⊥ + - - SD 10−13 10−13

O18 = i q
mN
· S · SN - - + SD 10−11 10−11

Table 4.5: The NR operators considered in this study, along with their P-parity, T-parity, and

whether or not they are spin-dependent. A reasonable upper (lower) recoil energy is ER ≈ 50 (1)

keV, then |q̄| ≈ 0.1 (0.005) GeV (from q2 = 2mTER); for these energies the exponential suppression

factor common to each of the form factors is ≈ 1. The approximate size of the form factors for a

DM mass of 10 GeV and recoil energy of 1 keV is shown for two Xe isotopes in LUX.

† : The operator O2 is neglected due to velocity suppression (v2 ≈ 10−6), furthermore, it always

appears alongside an operator less suppressed contributing to the same form factor.
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Figure 4.4: The neutron form factors, F
(n,n)
i (ER) for the i = 1 − 15 operators considered in

Fig.4.5, for scattering on a 129Xe nucleus, for a DM mass of 10 GeV (Left) and 1 TeV (Right).

The DM velocity is taken to be vmin.
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where σµ = (1,−→σ ), σ̄µ = (1,−−→σ ) and σi are the Pauli matrices. The spinors can

be written as,

us(p) =

√p · σξs√
p · σ̄ξs

 , vs(p) =

 √p · σηs
−√p · σ̄ηs

 , (4.4.108)

where the spin operator is Ŝ = 1
2
−→σ and ξ1, η1 = (1, 0), ξ2, η2 = (0, 1) are con-

ventionally taken so that the spin is along the z-axis. The spin vector Ŝ arises from

combinations such as ξ†i
−→σ ijξj ≡ 2Ŝδij, but we will suppress the spin-conserving delta

function which is present in all cases. The various four-momenta pµi = (Ei,pi) for

the scattering χ(p)q(k) → χ(p′)q(k′) are parameterized by the momentum transfer

q = (p − p′) and the incoming DM velocity v = p/µ, with µ the reduced mass

of the DM-nucleon pair µ = (mχmN)/(mχ + mN). The velocity vector v may be

replaced with the transverse velocity,

v⊥ =
1

q2
q× (q× v). (4.4.109)

Then v⊥ ·q = 0, which simplifies the kinematics. Since the DM and SM particles

(as opposed to anti-particles) always appear, we only need the spinor configuration

ū(p′)Γu(p) for DM fermions, and ū(k′)Γu(k) for nucleons.

The following identity is useful,

√
σ · p =

(E +m)− σ · p√
2(E +m)

, (4.4.110)

√
σ̄ · p =

(E +m) + σ · p√
2(E +m)

. (4.4.111)

From which we get for arbitrary momenta p1, p2√
(σ · p1)(σ̄ · p2) =

1

2

√
(E1 +m1)(E2 +m2)

(
1 + σ ·

(
p2

E2 +m2

− p1

E1 +m1

)
− p1 · p2

(E1 +m1)(E2 +m2)
− i(p1 × p2) · σ

(E1 +m1)(E2 +m2)

)
.

Similar relations can be derived using this one, for example
√

(σ · p1)(σ · p2) is equiv-

alent under the replacement p2 → −p2. We also use the relation for Pauli matrices
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σaσb = δab + iεabcσc with εabc the totally antisymmetric Levi-Civita tensor in three

dimensions.

As an example calculation, the pseudo-scalar DM bilinear is

ū(p2)γ5u(p1) =
(
ξ†2
√
p2 · σ ξ†2

√
p2 · σ̄

) 0 1

−1 0

√p1 · σξ1

√
p1 · σ̄ξ1


= −ξ†2(

√
(p2 · σ̄)(p1 · σ)−

√
(p2 · σ)(p1 · σ̄))ξ1

≈ ξ†2
√

(E2 +m2)(E1 +m1)

(
σ ·
(

p2

E2 +m2

− p1

E1 +m1

))
ξ1,

then taking the non-relativistic limit Ei ≈ mi and m1 = m2

ū(p2)γ5u(p1) = ξ†1
√

(E1 +m1)(E2 +m2)

(
σ ·
(

p2

E2 +m2

− p1

E1 +m1

))
ξ2

≈ ξ†1σξ2 · (p2 − p1)

= −2q · Sχ.

For bilinears with γµ the identity σjσiσkpj1p
k
2 = σkpk2p

i
1 + iεjilσlσkpj1p

k
2 = σkpk2p

i
1 +

iεjikpj1p
k
2 − (σip1 · p2 − σjpj1pi2) is useful.

The remaining DM bilinears for scattering are given in Tab.4.6. The nucleon

bilinears are identical, but with the substitution (q,v⊥)→ −(q,v⊥) and (Sχ,mχ)→
(SN ,mN). These and similar expressions for other spinor configurations may also

be found in [117] with the exception of the σµνγ5 structure. These expressions may

be checked via the Gordon identity (and an equivalent identity including a γ5),

χ̄γµχ =
i

2mχ

χ̄σµνχQν +
1

2mχ

P µχ̄χ,

χ̄σµνγ5χQν = P µχ̄iγ5χ,

where P µ = (p′+p)µ = (2mχ, 2µv⊥) and Qµ = (p′−p)µ = (0,−q). Spin-dependence

arises in all bilinears, but is subdominant in all but the nucleon N̄γiγ5N . The least

suppressed interactions are χ̄χ and χ̄γ0χ.
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We turn now to the NR limit for spin-1 particles. The free dynamics of massive

spin-1 DM, Bµ, are governed by the Proca equation,

∂µBµν −m2Bν = 0, (4.4.112)

where Bµν = ∂µBν − ∂νBµ is the field strength of the vector field B; this leads

directly to the constraint ∂µBµ = 0, or in momentum space p · ε = 0 (the time-like

polarization ε0 = 0 since pµ = (m, 0) in the rest frame18) where εi is the polarization

three vector. The polarization relates to the spin via 19,

iεijkS
k
χ = ε†iεj − ε†jεi, (4.4.113)

if we choose εis = δis as a basis. As well as the above antisymmetric combina-

tion of polarizations, for certain models the symmetric combination of ε is present

(as pointed out in [210]) and leads to new form factors [116]. In the NR limit

the only non-zero spin-1 DM bilinears from Tab.4.2 are shown in Tab.4.7, where

Sij = ε†iεj + εiε
†
j is the symmetric combination of the polarizations, we also omit

the contracted polarizations ε1 · ε2 which arise when the vector fields are contracted

since they contribute 1. Spin-0 DM is trivial to reduce to NR form, since for any

scalar fields φ→ 1, these are shown in Tab.4.8.

Finally, similar calculations to the above can be found in [116], but using the

Bjorken-Drell normalization of the fields. To map between the two, multiply our

results by 1/
√
m, 1/

√
m, 1/

√
2m for spin-0, spin-1 and spin-1/2 fields of mass m

respectively.

In Tab.4.9 we list the matching between each of the relativisitic EFT operators,

and the NR operators. Once the coefficients are fixed, inclusion of the form factors

18Since we are explicitly breaking Lorentz invariance this argument does not hold, and we should

work consistently in the lab frame, this leads to ε0 = (p · ε)/m which is O(q, v⊥) and so can be

consistently neglected.
19The vector particle lives in the same representation of the Lorentz group as ordinary four-

vectors, for which the spin operator is Ŝi = 1
2εijkL

jk where Ljk are the spatial components of the

generators of the Lorentz group and (Ljk)lm = i(δilδ
j
m − δjl δim)
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DM Bilinear C P T CPT

χ̄χ 2mχ + i µ
mχ
q · (v⊥ × Sχ) + + + +

χ̄iγ5χ −2iq · Sχ + - - +

χ̄γ0χ 2mχ − i µ
mχ
q · (v⊥ × Sχ) - + + -

χ̄γ0γ5χ −4µv⊥ · Sχ + - + -

χ̄γiχ 2µv⊥,i + 2iεijkqjSχ,k - - - -

χ̄γiγ5χ −4mχS
i
χ − i µ

2mχ
εijkv⊥j qk + + - -

χ̄σ0iχ iqi − 4µεijkv⊥j Sχ,k - - + +

χ̄σijχ 4mχε
ijkSχ,k - + - +

χ̄σ0iiγ5χ −4mχS
i
χ + + + +

χ̄σijiγ5χ iεijkqk − 4µv⊥,[iS
j]
χ + - - +

Table 4.6: Non-relativistic limit of fermion bilinears, ū(p′)Γu(p) which are non-zero, and the CPT
symmetries for the relativistic operators in the leftmost column. Any C-odd structures are zero for

Majorana particles.

can be done according to [211],

〈|M |2〉 (v⊥, q) =
∑

N,N ′=n,p

15∑
i,j=1

C
(N)
i C

(N ′)
j

(
mT

mN

)2 (
F

(N,N ′)
i,j

)2

, (4.4.114)

where the possibility of interference between operators is allowed. From the squared

spin-averaged matrix element above, the next step is to find the differential cross

section with recoil energy ER,

dσ

dER
=

1

32πm2
χmT

1

v2
〈|M |2〉 . (4.4.115)

Finally the differential event rate per unit target mass (if nT is the number of target

particles per unit mass),

dR

dER
=
ρ�
mχ

nT

∫
d3v f(v)v

dσ

dER
, (4.4.116)

where f(v) is the DM velocity distribution in the Earth frame, taken as a truncated

Maxwell-Boltzmann and for isothermal density profile. The velocity expansion is

taken to O(v2) and thus has a v0 and v2 term, then the velocity integration can be

done analytically for the v0 and v2 terms as in [230].



4.4. Step 3 : Non-relativistic Limit 127

DM Bilinear C P T CPT

BµBµ = BµB†µ 1 + + + +

Re(Bµ†Bν) 2S ij + + + +

iIm(Bµ†Bν) εijkSχ,k - + - +

Re(Bµ†∂µB
i) µεijkv⊥j Sχ,k − i

2
qjSji + - + -

iIm(Bµ†∂µB
i) i

2
εijkqjSχ,k + µv⊥j Sji - - - -

iIm(Bµ†∂0Bµ) 2mχ - + + -

Re(B†µ∂0B
µ) 0† + + - -

iIm(Bµ†∂iBµ) 2µv⊥i - - - -

Re(B†µ∂iB
µ) iqi + - + -

Re(εµνσ0B†µ∂νBσ) −2µv⊥ · Sχ + - + -

Re(εµνσiB†µ∂νBσ) 2mχS
i
χ + + - -

iIm(εµνσ0B†µ∂νBσ) iq · Sχ - - - -

iIm(εµνσiB†µ∂νBσ) 0†† - + + -

Table 4.7: Non-relativistic limit of vector bilinears which are non-zero. Because B0 = 0 many of

the operators only have spatial components, for which the replacements are µ → i, ν → j. The

C-odd structures necessarily vanish for real DM.

†, †† : Using the DM velocity v rather than v⊥ the results are i q
2

2µ and −i q22µS
i
χ respectively.

DM Bilinear C P T CPT

φ†φ 1 + + + +

Re(φ†∂0φ) 0† + + - -

iIm(φ†∂0φ) 2mχ - + + -

Re(φ†∂iφ) iqi + - + -

iIm(φ†∂iφ) 2µv⊥i - - - -

Table 4.8: Non-relativistic limit of scalar bilinears which are non-zero, to lowest order in q, v⊥.

†: Using the DM velocity v rather than v⊥ the result is i q
2

2µ .
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Model F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1/2*-S

1/2*-V

1/2*-S±

1/2*-V±

1/2-S

1/2-V

1/2-S±

1/2-V±

Table 4.11: The matching from the simplified models, listed in Tab.2.4, to the EFT operators

from the spin-1/2 DM models, listed in Tab.4.1. Grey shading indicates the matching, the explicit

coefficients are given in Sec.4.2.2.

Model S1 S2 S3 S4

0-S

0-V

0-F±

0*-F±

Model V1 V2 V3 V3-2 V4 V4-2 V5 V5-2 V6 V6-2 V7 V7-2 V8 V8-2 V9 V10

1-S

1*-S

1(∗)-V : V1

1(∗)-V : V2

1(∗)-V : V3

1-F±

1*-F±

Table 4.12: The matching from the simplified models, listed in Tab.2.4, to the EFT operators (in

Tab.4.3 and Tab.4.2) from the spin-0 DM models (upper) and spin-1 DM (lower). The matching

coefficients can be found in Sec.4.2.4 and Sec.4.2.3.
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4.5 Direct Detection Constraints : Current and

Future Experiments

The benchmark cross sections in the literature are usually termed spin-independent

(SI) and spin-dependent (SD), which refers to interactions that do or do not depend

on the spin of the nucleus with which the DM scatters. This is by no means the full

picture (there are in fact at least 18 other coupling structures of which SI and SD

are a subset).

We recall the formula for the conventional SI and SD interactions,

dR

dER
= NTNχ

∫ vesc

vmin

dvf(v)
dσ

dER
, (4.5.117)

where NT,χ are the numbers of DM and target T, f(v) is the velocity distribution

of the DM. The differential cross section is given by

dσSI

dER
=
mT

2µ2
T

1

v2

(
σSIF

2
SI + σSDF

2
SD

)
, (4.5.118)

with µT the DM-target reduced mass and

σSI =
4µ2

T

π
(Zσp + (A− Z)σn)2 , (4.5.119)

σSD =
32µ2

T

π
G2
F

J + 1

J
(ap 〈Sp〉+ an 〈Sn〉)2 . (4.5.120)

We assumed the proton and neutron cross sections are the same, σp = σn. Thus

the overall SI cross sections is ∝ A2, a so called coherent enhancement where the

interactions with the nucleons add coherently, without interference. On the other

hand if the interaction depends on the nuclear spin, there is a lot of interference

since nuclear spins are J ∼ O(1) compared with O(A).

In principle 〈Sp〉 and 〈Sn〉 must be calculated using some sophisticated nuclear

model; the simple shell model gives a good intuition. In the shell model, nucleons fill

up energy shells in pairs (as they are fermions), and any pair of nucleons contributes

zero to the nucleus spin. Therefore the spin of the nucleus is carried by an unpaired

nucleon, and its value is given by the J quantum number of the shell in which the
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Figure 4.5: The differential recoil rate per kg · s (left) and exclusion limits (right, shaded region)

for two EFT operators describing the interaction between DM and nucleons; both vector (upper

panels) and axial-vector (lower panels) couplings which are roughly equivalent to the conventional

“Spin Independent” (SI) and “Spin Dependent” (SD) models respectively.

unpaired nucleon resides. Thus even-even nuclei (those with even numbers of pro-

tons and neutrons) are completely insensitive to SD interactions.

Both of these benchmark cross sections translate easily into the fuller picture of

simplified models. The SI cross section is approximately equal to an χ̄γµχN̄γµN or

χ̄χN̄N effective operator, and SD roughly equal to χ̄γµγ5χN̄γµγ
5N .

In the present treatment the event rate is given by Eq.(4.4.116), but with the
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differential cross section given as a product of the non-relativistic two-body phase

space and the matrix element as in Eq.(4.4.115). The matrix element is matched to

the non-relativistic nuclear form factors as in Eq.(4.4.114). Table 4.13 shows how

each of the simplified models couples to nuclei in the non-relativistic limit. The NR

operators are given explicitly in Table 4.5.

Although counting powers of q and v helps to give a rough indication of the

suppression of a particular operator compared with O(NR)

1 whose form factor scales

as ∼ A2, it is not always clear which operators dominate from the counting alone.

For example the canonical spin-dependent operator O(NR)

4 = Sχ ·SN is over an order

of magnitude smaller than O(NR)

11 ∝ q · Sχ and O(NR)

12 ∝ Sχ · (SN × v⊥), at recoil

energies around a keV and DM mass 10 GeV.

It is clear that the DM-quark scattering cross section is very sensitive to the

coupling choices imposed for a particular model, for example a coupling to γµ ver-

sus γµγ5 can drastically change the scattering cross section, the dominant operators

and their coupling dependence is shown in Fig.4.13. Only a few EFT operators

can yield the dominant A2 enhanced scattering: χ̄χq̄q, χ̄γµχq̄γµq for spin-1/2 (the

latter is not present for Majorana DM), φ†φq̄q and iIm(φ†∂µφ)q̄γµq for spin-0, and

B†µB
µq̄q and iIm(Bµ∂νB†µ)q̄γνq for spin-1 DM. This list does not include any opera-

tors containing γ5 since these all lead to spin-dependent interactions in the NR limit.

The observable of interest in DD, the total event count, is given by the integral

of Eq.(4.4.116) over recoil energy, and multiplied by the exposure of the detector (a

product of its mass and time length, conventionally in kg · day or ton · yr). If the

data are binned, then the count for each bin is computed over the energy range of

that bin. If the data are un-binned then the integral is over the complete energy

range of the data.

From an experimental perspective, there are a few broad detection techniques,

for a review as of 2015 see [261]. Noble liquid targets (primarily xenon, as in LUX,
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XENON, and LZ for example, although liquid argon and neon are proposed) rely on

the detection of scintillation photons from the excitation by collision, and subsequent

de-excitation of the target and also the detection of ionization electrons, which drift

to the top of the detection under the influence of an applied electric field. The de-

tection of these two signals allows the separation of electron recoil (ER) and nuclear

recoil (NR) events; this enables a significant background reduction, which comes

primarily from ER. The DM scattering may contribute to both ER and NR, but is

dominated by NR after backgrounds are removed for couplings to quarks. The high

density of the noble liquid offers good self-shielding, and the detectors are generally

larger in terms of target mass.

Germanium crystals allow the detection of phonons (heat) from collisions with

the crystal lattice (for example in CoGENT). These benefit from lower thresholds,

lower radioactivity levels and better energy resolution compared with noble liquid

scintillators, however the detectors are typically limited in size due to the ability to

grow the crystals.

Cryogenic bolometers use the same target crystals, but with the addition of an

applied eletcric field are able to measure the charge yield of each event; with this

additional signal the ER/NR events can be distinguished and the background re-

duced. Crystal targets are often germanium (CDMS, CDMSII, SuperCDMS, CDM-

Slite, EDELWEISS-II) and also silicon (CDMSII), or even calcium tungstate CaWO4

(CRESST, in this case the scintillation signal is measured rather than the charge).

It is necessary to consider several DD experiments, since no single experiment

provides the most powerful constraints over the full DM mass range. There are sev-

eral reasons for this, for example, lighter targets generally allow exclusions of lighter

DM compared with heavier targets, this comes from the minimum DM velocity to

produce a recoil, vmin =
√

2mTER/µ2
T with energy ER. In practice this limits the

reach of xenon experiments to DM masses & 5 GeV . However it is generally easier

to scale up the mass of certain target materials such as liquid xenon, making such
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experiments able to create larger exposures and therefore be more excluding. We

now list several experiments that we wish to consider in this study:

1. PICASSO : The Project In CAnada to Search for Supersymmetric Objects

is located in SNOLAB. The 32 detector modules contain emulsified droplets

of C4F10 in a superheated state, a charged particle traversing the droplet

which deposits energy above the threshold induces a rapid phase transition

which nucleates a bubble in the fluid which then creates an acoustic signal.

Varying the temperature of the target varies the energy threshold between

1.7 and 54.8 keV, defining 8 bins. The upper energy of each bin is 92 keV

(25oC). Data has been taken intermittently since late 2008, with an overall

exposure of 114.3 kg-days [230] across 10 of the 32 detectors selected for the

results. PICASSO is naturally suited to spin-dependent cross sections due

to its large proportion of fluorine. Dealing with the background is somewhat

convoluted; the 10 detectors each utilize the 8 temperature settings, for each

detector the average rate is calculated over the entire temperature range, R̄i,

then subtracted from the measured rate at each temperature, finally the data is

averaged across the detectors to give 8 data points. The observed rate in energy

bin k, Robs
k = ∆Rk+R̄, where R̄ = 14.9 per kg-day is the average of the average

rates R̄i, weighted by their exposures and ∆R are the published data points

(from Tab.3 and Fig.5 of [262] respectively), these values are shown in Tab.4.14

below. The measured event rate is linear with temperature, indicative of an α

particle induced background, and thus R̄ serves as the predicted background

rate in each bin. Since the event count is not known, only the rate, we use a

simple chi-squared statistic

χ2(M) =
∑
k

(Rth
k (M) + R̄−Robs

k )2

2δRobs
k

,

the exclusion on M is found such that χ2(Mexc) = χ2(Mmin) + ∆χ2, with

∆χ2 = 2.71 for the 90% confidence limit with one degree of freedom. χ2(Mmin)

is the minimized chi squared. The value of χ2 for the background only is 1.68,

and can generally be reduced by including some DM signal since some of

the data fluctuate below the expected background and the DM signal always
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Eth (keV) Robs (kg−1 day−1) δRobs (kg−1 day−1)

1.7 8.90 42.60

2.9 14.60 0.54

4.1 16.50 14.4

5.8 14.70 1.84

6.9 14.95 0.065

16.3 16.30 2.38

38.8 14.70 0.34

54.8 16.20 6.11

Table 4.14: The 8 energy bins for PICASSO; their threshold energy, observed rate and error.

increases the rate.

2. COUPP : The Chicagoland Observatory for Underground Particle Physics

is also located in SNOLAB, employing a similar technique of bubble nucle-

ation of 4kg of superheated liquid CF3I. The data was taken with three

nucleation thresholds [263], with varying exposures of ∼ 70 − 400 kg-days,

Eth = 7.8, 11.0, 15.5 keV and MT = 55.8, 70.0, 311.7 kg-days (including an

efficiency cut of 79.1%; there were a total of 13 observed events (2,3,8) and an

expectation of 4.5 (0.8,0.7,3.0) ).

3. PICO : Formed from a merger between PICASSO and COUPP, PICO is a

bubble chamber containing 2.9 kg of C3F8. The data consists of four operating

temperatures T = 14.2−11.6o C (or ER = 3.2−8.1 keV), with a total exposure

211.6 kg-days and 12 measured events (see Tab.I of [264]). However these 12

events are spurious and all are removed by applying a cut, while simultaneously

retaining 49− 63% of the exposure. We will conservatively use 49% with zero

observed and zero background events. A subsequent analysis by PICO-60L

[265], a CF3I bubble chamber, obtained 1335 kg-days of exposure, including

an overall acceptance of 48.2% due to cuts, no events are observed after cuts,

with an expected single-bubble background of 0.5 ± 0.2. The threshold is a

continuum between 7− 20 keV (Fig.3 of [265]), with the bulk of the exposure

between 10− 17 keV.
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4. SuperCDMS : The Super Cryogenic Dark Matter Search is also located at the

SNOLAB. The 15 detector modules are each a single 0.6 kg germanium crystal,

sensitive to both ionization and phonon signatures of energy deposition, the

total exposure of 577 kg-days was taken between 2012 and 2013 with 7 of the 15

detectors. A total of 11 events pass the selection criteria, with an expectation

of 6.1. It is necessary to include the efficiency curve (red) in Fig.1 of [266]

which lies between 10− 50%.

5. CDMSlite : The CDMS low ionization threshold experiment uses the same

detectors as SuperCDMS, but operated in ‘lite’ mode, sacrificing the ability to

discriminate NR events from ER but obtaining an extremely low threshold of

0.074 keV. The collaboration present the data for electron-equivalent energy

keVee, we describe how to convert this to nuclear recoil energy keVnr in Sec.6.5.

The data is split into 4 energy bins to remove dominant background from 71Ge

electron capture. Again, the efficiency must be included (the grey line in Fig.1

of [20])

6. LUX : The Large Underground Xenon detector is located in the Stanford

underground laboratory, the first data release in 2013 [267] was based on 85.0

days and 118 kg of exposure. An updated analysis of the same data was

presented in 2015 [268], but with an extra 10 days and 35 kg of exposure,

there are 591 observed events with an expected 589 background (primarily

from gamma rays), which reduces to 1 event with expected 1.1 when including

the effects of the cuts.

7. CRESST : The Cryogenic Rare Event Search with Superconducting Thermome-

ters is located in Gran Sasso, Italy. The detector is based on calcium tungstate

CaWO4 crystals cooled to mK temperatures, and measures both phonon and

scintillation signals. The recent publication [269] analyses 52.2 kg-days of data

with a threshold of 0.307 keV, with a binned spectrum up to 40 keV (Fig.6 of

[269]), which we assume to be entirely background.

We summarize the important quantities for each of these experiments in Tab.4.15.

The constraints are a 90% confidence limit produced by comparing binned or un-
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Experiment Enr Material Exposure ref. Nobs Nbck

(keVnr) (kg-days)

PICASSO 1.7 − 78 (Binned) C4F10 114.3 [230] ∼ 13500 -

COUPP 7.8 − ∞ (Binned) CF3I 437.5 [263] 13 4.5

SuperCDMS 1.6 − 10.0 Ge 577 [270] 11 8

LUX 2015 1.1 − 18.6 Xe 1.4× 104 [268] 591 589

LUX 2013 3.0 − 18.0 Xe 5046 [267] 1 0.64

CDMSlite 0.074 − 20.0 (Binned) Ge 70 [20] 936 -

CRESST 0.307 − 30.0 (Binned) CaWO4 52 [269] ∼ 1000 -

Table 4.15: Parameters of current generation DD experiments; the energy window in nuclear

recoil energy, the material, the exposure, and the total measured events along with their predicted

background given by each collaboration.

binned event counts (with the exception of PICASSO), and following the procedure

laid out in the next section.

This list is by no means complete, for an overview of past present and future

experiments see recent reviews [261, 271–274]. Often the PhD Theses of the larger

collaborations provide excellent summaries of experimental results.

In principle one should include detector effects to correctly model the DM signal;

the most important of which are detector efficiency and resolution. For the LUX

data we are using, we have checked that using the detector response given in [267]

gives almost identical results in our parameter space to integrating Eq.(4.4.116) be-

tween ER,min = Eth = 2 keV and ER,max = 30 keV.

4.5.1 Statistical Methods for Direct Detection

The statistical methods employed to construct the limits on DM models (via the

EFT operators) vary between authors. A full statistical treatment is usually left to

the experimental collaboration, and is prohibitively complicated for a study which

aims to include multiple experiments. Luckily there are several conservative treat-
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ments which are routinely employed to give accurate bounds which are within a

factor of ∼ 2 or better of the published limits (see Sec.7.6.5 where we make an

explicit comparison).

One is generally limited to the published data, which ranges from more complete

(each individual event is given alongside its energy, and a full background model is

included), for which one can obtain better limits, to less complete. For example,

the data may be unbinned, and may not have a background model. It is necessary

to employ a few different techniques to encompass these situations which we now

briefly explain (see [275] for a review).

For situations where we have both a measured event count, Nobs
k (binned into

energy bins labelled by k) and theoretical background Nbck
k , we can use the likelihood

ratio test, a method based on a bayesian hypothesis test between a background only,

and background+signal model20, with likelihoods L, Lbck respectively [230].

The likelihood of observing the data, D, assuming a particular set of parameters

{λ}, is denoted L(D|{λ}). The likelihood of each bin is a Poisson distribution

Poiss(Nobs, N th(λ)) where N th
k are the predicted number of signal events (including

background),

L(Nobs|{λ}) =
∏
k

(
N th
k

)Nobs
k

Nobs
k !

exp
[
−N th

k

]
, (4.5.121)

where N th(λ) = NDM(λ) + Nbck. The background only model is identical but with

N th = Nbck. Then the test statistic,

TS(λ) = −2 log

( L
Lbck

)
≈ 2

∑
k

(
N th
k −Nobs

k log

[
N th
k +Nbck

k

Nbck
k

])
, (4.5.122)

follows a χ2 distribution; the cumulative p.d.f of χ2(x) represents the probability

that we observe the data given the model parameters λ. The value of x such that

20DD collaborations often use this method, but with a profile likelihood to include uncertainties

is astrophysical and experimental parameters as nuisance parameters (frequentist approach) or by

marginalization over priors (bayesian approach)
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χ2(x) = C (i.e. the C% confidence limit), depends on the number of parameters

{λ}, in our case that is just one, then one can look up that χ2(2.71) = 0.9, which

means that the 90% confidence bounds on λ are given by TS(λ) = 2.71.

Note that this method is invariant under a change of variables, this is important

for example for PICASSO, whereby only the measured rates are given. But since

the observed event numbers all scale with exposure, then the event rates can be used

instead of event counts.

This method works as long as we have a good theoretical model of the back-

ground sources; if the likelihood of the background only hypothesis is sufficiently

small in Eq.(4.5.122), then it may not be possible to find the value χ2 = 2.71. This

is especially true if we do not know the background.

If the background model is unknown (or if the background distribution is known,

but not its normalization), then we can use the above method with the maximum

likelihood as the null hypothesis in place of Lbck.

Lbck → Lmax = L(Nobs|λ0) ≡ Max
(
L(Nobs|λ)

)
,

where λ is allowed to vary until a value λ0 is found which maximizes the likelihood.

This leads to a different interpretation, the null hypothesis is essentially the assump-

tion that the measured data are due to a detection of DM, and then this hypothesis

is rejected at 90% confidence. This is obviously not the intended interpretation but

nonetheless the method produces a conservative bound.

Note that Eq.(4.5.122) is not valid if N th = 0 for all λ. This can happen for

example if the DM is light enough that the velocity integral is zero. In such cases

we exclude any bins for which the DM will never give a measurable signal.

The most simple experimental situation occurs when only the total number of

events is measured (with an expected background), the single data point allows

a very simple computation of a 90% confidence limit, we require that the chance
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of measuring the observed number of events, Nobs, given an expected number of

events, µ = N th + Nbck, is P (n < Nobs|µ) = 0.1 (equivalently a certain fraction,

0.9, of a large number of identical experiments would measure more events over the

entire spectra than are actually measured). The probability is given by a Poisson

distribution,

P (n < Nobs|µ) =
Nobs∑
n=0

µne−µ

n!
= 0.1 . (4.5.123)

For example, LUX measures 1 event with an expected background of 1.1 and by

the application of the above equation we find that N th > 2.79 is excluded at 90%

confidence (compared with N th > 2.56 from Eq.(4.5.122)).

As Nobs becomes large Eq.(4.5.123) is numerically intensive, and it is quicker to

sum the probabilities of all events with n > Nobs by use of the identity,

P (n > Nobs|µ) =
∞∑

n=Nobs

(µ)n

n!
exp [−µ] =

∫ µ

0

dt
tN

obs

Nobs!
exp [−t] , (4.5.124)

which in the limit of large observed events approximates a Gaussian,

P (Nobs →∞|µ) =

∫ ∞
Nobs

1√
2πµ

exp

[
−(t−Nobs)2

2µ

]
dt . (4.5.125)

We obtain limits by letting P (n > Nobs|µ) = 0.9. This method does not require

any information on the background, and thus the limits are conservative. If the

background is known then better limits are obtained by letting µ = N th +Nbck.

For experiments which measure no events, or individual energy bins with no

events which are used to provide constraints, then Eq.(4.5.124) becomes N th =

− log (1− C) where C = 0.9 is the confidence level and then N th = 2.3.

A popular technique when the background is unknown is the maximum gap

method [276]. The measured event energies define gaps; energy windows between

each pair of events, and the ‘maximum gap’ is the gap in which the signal would

be largest, and thus the chance of not measuring an event in the gap is smallest.

This method is ideal for SuperCDMS, which has a low measured event count and
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publishes the energy of individual events. It is less useful for CDMSlite for which

Nobs ∼ 103 and individual event energies are not published. In this case, one uses

a more recent modified method called the high statistics optimum interval method

[277]. If the background is known, but not its distribution, one can use the Feldman-

Cousins method [278].

We use the likelihood ratio test for the LUX data, and the simple Poisson limit

for CMDSlite.

4.6 Conclusions

In this chapter, we have explored in depth the direct detection signal arising from

DM scattering with quarks (allowing the DM to be spin-0, spin-1/2, spin-1 and both

real/complex with all possible single mediators consistent with Lorentz invariance

and renormalizability). Such signals are ubiquitous across our simplified models, and

the procedure we have reviewed for calculating it can be applied to any model. We

have provided several summary tables for this purpose. We have proceeded through

the standard calculation of the DD signal, starting with an EFT matching at tree

level (and the loop level matching to gluon operators, as is appropriate for heavy

quarks coupled to the DM), then considered the hadronic matrix element of each

quark/gluon operator that can result. Finally we have performed a NR matching

to a set of nuclear form factors. Although many of the results are to be found in

the literature, one cannot find a consistent and self-contained ‘codex’ for the model-

independent calculation of the signal.

We have followed this with a brief review of the most sensitive current DD ex-

periments, their results, and a basic statistical treatment that can yield accurate

bounds for each of them. The resulting constraints are among the strongest that

can be placed on DM models, sometimes by several orders of magnitude, and this

warrants the detail in which we have considered them. We have now laid the ground-

work for the next chapter, in which we will apply all the constraints to each of the
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16 simplified models.



Chapter 5

Constraints on Simplified Models

In previous chapters, we have explored two of the primary search strategies for DM;

indirect detection (ID, Chapter 3) and direct detection (DD, Chapter 4) in a general

way which may be applied to all of our simplified models outlined in Chapter 2. We

are now ready to provide full constraints on each of the DM and mediator combina-

tions and coupling structures present for each of the simplified models. Our primary

motivation is to provide an illustration of what parameter space is available in the

global space of possible simplified models.

Each model contains several independent couplings and in most cases, different

combinations of non-zero couplings to the DM χ and the SM fermion f give rise

to very different constraints. For example if a coupling may be complex in gen-

eral, then the real and imaginary parts lead to different signals, especially if the

operator associated to the coupling contains a derivative. In all cases we set any

non-zero couplings equal to one another so that the resulting parameter space con-

sists of a single coupling, and the masses of the DM and mediator {mχ,mMED, g}.
For each model, we present constraints for a subset of the different coupling combi-

nations (for example axial-vector and vector combinations) in the two-dimensional

{mχ,mMED} plane, illustrating the correlation between these quantities. We then

provide for most combinations the effective 90% containment bands for mχ,mMED

and the nonzero coupling g in Tables 5.2, 5.4 and 5.5.

145
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Additionally, we fix the SM fermions to which the DM couples. We will take

the illustrative examples of a coupling to u (which represents a light quark, and is

very similar to d, s), b (representing a heavy quark, and approximately equivalent to

c, t) and finally e (representative of leptonic couplings e, µ, τ). In the latter case we

do not provide complete bounds, as the DD bounds require two-loop calculations

and are beyond the scope of this work [259], and results may be found elsewhere

[226, 259, 279]. It should be noted however that the ID and DD bounds from lep-

tophillic DM can still be very powerful.

In all of the figures we show the ID bounds with solid lines, where the hatched re-

gion beneath the lines is ruled out by Fermi-LAT, INTEGRAL, COMPTEL, EGRET

or H.E.S.S. data, along with the myriad of other indirect bounds given in Sec.3.4. DD

bounds from the experiments listed in Sec.4.5 (using only LUX at high mass mχ & 5

GeV, and CDMSlite at low mass 0.1 . mχ . 5 GeV) are shown with dashed lines

with dotted filling to denoted the parameters which are ruled out. In both cases, the

relic density is assumed to saturate the measured density: Ωχh
2 = Ωch

2 = 0.1198 [6].

We will actually weaken the relic density constraint so that χ makes up at least 90%

of the cosmological dark matter (but no more than 100%), conservatively allowing

for some other unspecified particles to dominate the relic density. If the relic abun-

dance falls below Ωch
2, the local density ρ� must of course be accordingly rescaled1,

not doing so would result in many parameters being excluded which should in fact

be allowed.

We provide these bounds for three choices of the nonzero coupling: g = 0.5, 1.0

and 3.0 (coloured green, blue and red respectively), the latter almost saturating the

perturbative limit for couplings (g < 4π). From a model-building point of view

these couplings may appear rather large, however they are of the right size to give

the correct relic density in the MeV-TeV mass range of DM, they also allow for

1The signals from ID and DD are proportional to ρ2 and ρ respectively, and thus scale as(
Ωh2/0.1198

)2
and

(
Ωh2/0.1198

)
. Note that collider bounds have no dependence on the DM

density since the DM is produced directly in the interaction.
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straightforward comparison with collider bounds (e.g. [280]) which frequently use

similarly high couplings. When readily available in the literature, collider bounds

are shown as dotted lines and discussed within the text.

In addition to these hard bounds, we present the results of a Markov Chain

Monte Carlo (MCMC) scan in the three-dimensional space of (mχ,mMED, g). We

allow the dark matter and mediator masses to vary from 1 GeV to several tens of

TeV. We allow for arbitrarily small couplings. The sample points are coloured red,

blue and green, corresponding to couplings 1 < g ≤ 3, 0.5 < g ≤ 1 and g ≤ 0.5

respectively.

Lighter DM candidates, mχ < 1 GeV, can in principle acquire the observed relic

density through annihilations into neutrinos, photons and potentially other SM par-

ticles if there is enough phase space. However predicting the associated ID signature

is difficult because cosmic ray propagation at low energies is challenging and one

does not have good estimates of the cosmic ray spectrum resulting from prompt

emission. Additionally since we are considering quark final states, multiple reso-

nances appear for E < 1 GeV, and the cross section deviates from the free quark

approximation. Since this is beyond the scope of this work, we restrict our analysis

to masses larger than 1 GeV.

For the b̄b final state, if mχ < mb then the gamma-ray signal must be gener-

ated by diagrams involving loops of quarks, this changes both the ID constraints

and the relic density calculation, so we restrict ourselves to tree level annhilation

into fermions and do not produce RD and ID bounds below mb. However, the DD

bounds are calculated from loop-diagrams in which the b is virtual, the bounds are

valid below mχ < mb. In most cases, the upper bound on the DM mass falls below

100 TeV due to the relic abundance requirement. In the cases that survive, one

must be careful not to violate the Kamionkowski and Griest unitarity mass bound

[51].
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In models for which DM annihilates via an s-channel resonance, the cross section

peaks at degenerate masses obeying mMED = 2mχ, this is visible in the plots as a

soft peak caused by the large mediator width Γ = mMED/3. Decreasing the width

would cause the peak to become more spiky, and we note that this could allow

degenerate models to provide the correct relic abundance for very large masses,

however as already mentioned this requires a more careful treatment of the relic

density calculation [8]. Additionally, if we were including a calculation of collider

bounds the width would have to be calculated for each model since the collider

signals are very sensitive to the width of s-channel resonances.

5.1 General points

We outline some very general features that apply across all models and allow some

rough estimations of the possible size of various constraints.

Relic Density and Indirect Detection

The allowed regions of parameter space are bounded by contours which represent

the DM achieving the correct relic density (the upper edges of the coloured regions).

When DM annihilations are s-wave, the contours of constant annihilation cross sec-

tion 〈σv〉 ≈ 3×10−26 cm3s−1 have the same shape as the ID constraints, since these

are based on the same cross section. This makes the ID constraints very efficient

at ruling out parameter space. However, the thermally-averaged cross section for

p-wave processes is suppressed by v2 ∼ 10−6 in the galaxy today (whereas in RD

curves, the suppression is much weaker, v ∼ O(0.1) since the velocity of the DM

was much larger at earlier cosmological times). This results in much weaker ID

constraints.

The thermally averaged cross section is essentially a non-relativistic expansion,

and following [117] quantum mechanical arguments may be used to determine whether

each model has an s-wave term in 〈σv〉. An s-wave term (v = 0) appears if the two-

particle DM state has orbital angular momentum L = 0. From the relativistic DM
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bilinear term in the Lagrangian one obtains charge (C) and parity (P) conjugation

rules; then quantum-mechanically such symmetries are given by C = (−1)L+S and

P = (−1)L for bosonic DM and C = (−1)L+S and P = (−1)L+1 for fermionic DM

(the difference arises because fermions and anti-fermions have an opposite internal

parity, see e.g. [281]). Hence one may determine the values of L and S; given that

S ≤ 2. The only bilinears that can give L = 0 are χ̄iγ5χ, χ̄γiχ, χ̄γ0γ5χ, χ̄σ0iχ

for fermionic DM, φφ† for scalar DM, and B†µB
µ, i(B†iBj − BiB

†
j ), B

ν∂νB
0 and

Im(εi0jkB†i ∂0Bj) for vector DM.

This is a necessary but not sufficient condition to produce an s-wave cross sec-

tion. For example, conservation of total angular momentum J may still not be

possible in an s-wave configuration, leading to a p-wave suppressed annihilation.

Similarly there may be a suppression which reduces the s-wave term, which may

arise for example from a quark mass insertion required to produce the correct final

state helicities.

For each model, we quote simple expressions for the annihilation cross sections for

χ̄χ→ f̄f , which reproduce the true cross section well, independently of the choice of

non-zero couplings. To avoid cluttering the expressions the width of the mediator, Γ,

is not shown; the width must be implemented for all s-channel resonances, commonly

via the Breit-Wigner prescription for which the propagator of the resonance in the

amplitude is modified,

M∝ 1

S −m2
→ 1

(S −m2) + imΓ
, (5.1.1)

then the cross section goes as ((S −m2) +m2Γ2)−1, in place of the singular denom-

inators which appear in our expressions. The expressions also assume the limits

mq � mχ,mMED. In the MCMC scan, and the figures of this Chapter, we use the

true cross section expanded up to p-wave (or d-wave in some cases for numerical

stability), and with full mass and width dependence. These results may be found in

Appendix B, suitable for numerical implementation.

In specific cases, we also consider the process of DM annihilation into mediator
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pairs which is possible if mχ > mMED (for all charged mediators this is inconsistent

with DM stability); in some cases this has a dramatic effect and in others only a very

small correction. The larger effects come from longitudinal modes of vector mediator

final states for which strong unitarity constraints are generically also present; and so

in these cases the large unconstrained parameter space provided by the cosmological

annihilations for mχ > mMED is unlikely to be truly ‘allowed’. For example, the

modification to the model which removes unitarity violation would potentially also

remove the dominant terms from the annihilation cross section.

Direct Detection

For DD, the presence of the operator O(NR)

1 in the non-relativistic limit always indi-

cates a strong constraint, and at low momentum transfers one may take F (N,N)
1,1 = N2

where N is the nucleon number. Many of the other operators still provide a con-

straint strong enough to exclude large regions of parameter space. A quick sugges-

tion of which operators can appear can be accomplished using again the P and C
symmetries and the requirement of CPT invariance. A contribution from O(NR)

1 is

forbidden if an effective operator is odd under P or T .

The annihilation cross section scales roughly with couplings as g4, and inversely

with mediator mass m−nMED or DM mass m−nχ in the limit that either dominates the

mass scales. The weaker the dependence on either mass the stronger the constraints.

A schematic cross section in the limit of heavy masses is σ ∼ g4mn
χm

m
MED/(m

4+l
MED)

with 4 + l −m− n = 2.

Perturbative Unitarity

In quantum field theory the S-matrix must be unitary. Violations of unitarity sig-

nify the breakdown of the theory (physically the probability of the process occurring

exceeds 1), and can be calculated by considering all scattering amplitudes (i.e. the

full S-matrix). Unitarity can be checked order-by-order in perturbation theory be-

ginning at tree level.
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Very roughly, the amplitude for a 2 → 2 scattering (i → f) in the COM frame

depends only on a single kinematic variable, the angle θ between the incoming and

outgoing momenta. The amplitude can be decomposed into partial wave amplitudes

T j (physically, into angular momentum states j = 0, 1, · · · with fixed initial/final

state helicities), with higher order terms being suppressed. Then the optical theorem

(derived from unitarity of the S-matrix) relates the imaginary part of this amplitude

to the total cross section [282], providing an upper limit on the size of the partial

wave (see Appendix A.5 for details),∑
f

βiβf |T ji→f (S)|2 ≤ 1, (5.1.2)

where S = 4E2 is the usual Mandelstam variable and E is the centre of mass energy,

and βi,f ∼ 12. The tree level amplitudes each have a single mediator which scales as

1/S in the S →∞ limit, the combination of external fields and vertices must then

conspire to give at least a single power of S to lead to any unitarity violations.

Thus, unitarity violations at tree level are present mostly within models which

contain massive spin-1 particles due to the longitudinal modes which scale as
√
S/m.

Naively, the more vectors present in the process the larger the dependence on S.

We therefore restrict unitarity considerations to models containing spin-1 vectors

(which are assumed to be longitudinally polarized), which nonetheless are most of

the simplified models under study.

There are several ways to use Eq.(5.1.2) to draw conclusions on the simplified

models. Ultimately, the existence of unitarity violation signifies a model which must

be supplemented with new physics. Nonetheless, the bound usually comes with an

explicit scale S (the centre of mass energy) which depends on the parameters of the

theory.

This scale has two interpretations: (a) that the effects of the new physics which

are added to the theory become relevant at and above this scale (for example, the

2For identical particles in the initial state or final state a factor of 1/2 is applied to β.
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mass m ∼ S for the new states) and the effects on low energy phenomenology is

suppressed by (Elow/S)n with n some positive number, and Elow the energy scale

of the process. This scale then indicates that signals with Elow < S are safe from

large corrections. (b) that at some fixed scale S, the parameters of the theory are

constrained so as not to violate unitarity, this can require the masses of the particles

to be very large in order to suppress the contributions.

For us (b) will be used to indicate which regions of parameter space violate uni-

tarity at collider energies
√
S = 8, 13 TeV. A summary of results is shown in Tab.5.1

including the scaling behaviour with S for each process within the relevant models.

If the scaling goes as S0 then the energy dependence disappears and instead the

constraint is applied directly to the parameters of the model and is valid at any

energy scale. Four of the simplified models have processes like this. If the scaling

goes as Sn with n ≥ 1 then the violation of unitarity sets in at the scale S which

depends on the parameters of the model, and which becomes lower as n increases;

if n = 2 the constraints are very strong, and even have the potential to impact low

energy phenomenology. There are three models in this category.

In both the 0*-V and 1-S models, the unitarity bound is evaded if the couplings

are small enough and the mass heavy enough. In the case of 1− V , the bounds are

simply too strong and new physics must be added before any robust conclusions can

be drawn. It is also possible that large unitarity violations appear for j = 1, 2, · · ·
partial waves, or at one-loop level; we have assumed these to be suppressed.

The details of the calculation, including the helicity representations of spin-1/2

and spin-1 particles in contained in Appendix A.5. It is necessary to move beyond

the EFT approximation to carry out these calculations, due to the potential dom-

inance of longitudinal modes exchanged through mediating massive vectors. This

would only be correctly captured if the EFT was calculated to two mass dimensions

higher than the lowest operator, since then the longitudinal modes would match to

operators with derivatives.
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Model Process |T 0|2

0*-V

χχ† → V V, q̄q → V V S2

χχ† → χχ† S0

q̄q → χχ† 0

1/2-V, 1/2*-V

χ̄χ→ V V, q̄q → V V S1

χ̄χ→ χ̄χ, q̄q → q̄q S0

q̄q → χ̄χ S0

1/2-V ±, 1/2*-V ±
χ̄χ→ V †V, q̄q → V †V S1

q̄q → χ̄χ S0

1-S; 1*-S
χχ† → χχ†, SS → χχ† S2

q̄q → χ†χ S1

1-F, 1*-F
q̄q → χ†χ, F̄F → χ†χ S1

q̄q → F̄F S0

1-V (V1,2,3) χ†χ→ χ†χ, χ†χ→ V V S3

Table 5.1: The simplified models containing a vector field and which may violate unitarity, along

with the tree-level 2 → 2 scattering processes containing at least one vector field. Assuming all

vectors to be longitudinally polarized the leading dependence on S is shown for the dominant j = 0

partial wave amplitude squared, in the limit S →∞.

A further important application of the principle of unitarity was made in the

well known paper by Kamionkowski and Griest [51]. The DM is assumed to be

thermal, and thus 〈σv〉 = 3 × 10−26 cm3 s−1, if the DM is sufficiently heavy then

unitarity is violated, the resulting bound mχ < 300 TeV is rather weak, however

it is model independent (a caveat to this statement is that the assumption of an

s-wave annihilation is made, this bound does not apply to velocity suppressed an-

nihilation). Unsurprisingly, since we already implement the constraint that DM is

thermal and does not overclose the universe directly, this bound does not actually

rule out further parameter space than is already ruled out but it is worth bearing

in mind that the thermal DM mass cannot be arbitrarily large.
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Finally, before moving on to the results themselves, it is expected that the pre-

vious chapters have been read. We will assume familiarity with the notation used

in those chapters to avoid large amounts of repetition of definitions.

5.2 Fermion Dark Matter

5.2.1 Neutral scalar mediator (1/2-S, 1/2*-S)

We can treat the spin-1/2 DM exchanging a neutral scalar mediator identically for

Dirac and Majorana DM, as the differences in the self annihilation cross section 〈σv〉
and the elastic scattering cross section σDD are negligible.

For DD, the EFT contains the scalar and pseudo scalar operators OF1,F4 (χ̄χq̄q

and χ̄iγ5χq̄iγ5q ) as well as the operators OF2,F3 which mix 1, γ5 couplings. If

gχ,s, gf,s 6= 0 the scalar operator χ̄χq̄q provides the only dominant spin-independent

contribution to O(NR)

1 . The pseudo scalar couplings gχ,p, gf,p 6= 0 cannot provide

this contribution because the bilinear χ̄iγ5χ is P-odd and T -odd. Pure pseudo

scalar couplings (gχ,p, gf,p 6= 0) lead to a strong (q/mN)4 suppression (going as

O(NR)

6 = iq · SN in the NR limit), significantly weakening the DD bounds. The

appearance of this suppression can be deduced since the only P-odd operators in

the NR limit are p · S (i.e. q · S or v⊥ · S), where p = {p, p′} is the either of the

incoming/outgoing DM momenta. The (q/mN)4 factor leads to a ∼ 10−12 suppres-

sion in σDD compared to pure scalar couplings. However, the cross section depends

strongly on mMED, σ ∝ m−4
MED, and so the constraints on mMED are ∼ 1012/4 = 103

times smaller.

Due to parity arguments (P-odd bilinears) a mixture of scalar and pseudo scalar

couplings (gf,s, gχ,p) or (gf,p, gχ,s) are suppressed in the NR limit going as O(NR)

10 ,O(NR)

11

which again weaken the DD constraint.

This continues to be true for heavy quark couplings to DM, with the EFT op-

erators containing bilinears Q̄Q and Q̄iγ5Q, and which once integrated out of the
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theory lead to the ‘scalar’ (and ‘pseudo scalar’) gluon bilinears GµνGµν and GµνG̃µν

respectively, and are suppressed by f
(N)
TQ

(
mN
mQ

)
and f

(N)
5,Q

(
mN
mQ

)
relative to the light

quark scalar and pseudo scalar bilinears, in addition to the NR operator suppression.

The dominant DD cross section is given by Eq.(4.1.1), with the couplings,

C
(N)
1 =4gχ,s

mχmN

m2
MED

( ∑
q′=q,Q

f
(N)
Tq′

gq′,s
mN

mq′

)
,

C
(N)
6 =− 4gχ,p

m2
N

m2
MED

( ∑
q′=q,Q

f
(N)
5,q′ gq′,p

mN

mq′

)
,

C
(N)
10 =4gχ,s

mNmχ

m2
MED

( ∑
q′=q,Q

f
(N)
5,q′ gq′,p

mN

mq′

)
,

C
(N)
11 =− 4gχ,p

m2
N

m2
MED

( ∑
q′=q,Q

f
(N)
Tq′

gq′,s
mN

mq′

)
. (5.2.3)

The ID constraints for all fermion flavours are strong if the DM pseudo scalar bilinear

gχ,pχ̄iγ
5χ is present, since this can couple to an L = 0 (s-wave) state, but gχ,sχ̄χ

cannot, so 〈σv〉 is p-wave suppressed in the event that gχ,p = 0. These arguments do

not apply to the quark final state and the cross section is proportional to g2
f,s + g2

f,p.

In the limit mf → 0 :

〈σv〉 ≈
∑
f

[
Ncm

2
χ

2π(m2
MED − 4m2

χ)2
g2
χ,p(g

2
f,s + g2

f,p)

+
Ncv

2m2
χ

(
g2
f,s + g2

f,p

)
8π(m2

MED − 4m2
χ)3

(
g2
χ,p(m

2
MED + 4m2

χ) + g2
χ,s(m

2
MED − 4m2

χ)
) ]

+ θ(mχ −mMED)
g2
χ,sg

2
χ,pmχ

√
m2
χ −m2

MED

2π(m2
MED − 2m2

χ)2
, (5.2.4)

the third line includes the annihilation to mediators which affects the RD (but

not the ID) constraints, and which provides a small correction above the thresh-

old mχ > mMED. Fig.5.1 (top left) shows the ID and DD bounds for equal ‘chiral’

couplings (gf,s = ±gf,p ≡ g and gχ,s = ±gχ,p ≡ g) to up-quarks, corresponding

to the strongest constraints, and shows that spin-1/2 DM coupled to light quarks

is completely excluded for mDM > 1 GeV (there is the possibility for degenerate

masses with mMED = 2mχ if the width of the mediator is small Γ � mMED/3, but

this requires a more careful treatment of the relic density). The parameter space
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is still completely excluded even when coupled only via scalar couplings due to the

strength of the DD constraint at low mass, from CDMSlite, despite the p-wave sup-

pression to the ID bound, as shown in Fig.5.1 (top right). The same conclusions can

be drawn for the other light quarks, d and s, since they only differ from the u quark

case by the nuclear constants f
(N)
Tq , the ID is very similar since mχ,mMED � mq.

For chiral couplings to b quarks, Fig.5.1 (bottom left), the low mass region

mχ < mb is kinematically inaccessible as we are limited to tree level annihilation,

however the loop-suppression of the DD constraints lead to an allowed region for

high mass DM and mediators. For scalar couplings to b-quarks, the allowed region

shrinks because the annihilation is p-wave suppressed and this affects the relic den-

sity, as shown in Fig.5.1 (bottom right).

The least excluded model is thus one where the DM couples to the mediator

via a scalar coupling (p-wave annihilation), but to the quark via a pseudo-scalar

coupling (momentum suppressed scattering). Fig.5.1 is sufficient to illustrate the

general behaviour of the constraints, and in Tab.5.3 we qualitatively compare the

strength of the constraints for different coupling choice, with the allowed range of

each parameters summarized in Tab.5.2.

Non-zero Couplings ID DD

(gχ,p, gχ,s, gf,s, gf,p) s-wave O(NR)

1

(gχ,p, gf,p) s-wave O(NR)

6 ((q/mN)2)

(gχ,s, gf,s) p-wave O(NR)

1

(gχ,s, gf,p) p-wave O(NR)

10 (q/mN)

(gχ,p, gf,s) s-wave O(NR)

11 (q/mN)

Table 5.3: The possible configurations of couplings which lead to distinct behaviour of the ID and

DD constraints for the models 1/2-S and 1/2*-S. The ID are either s-wave (〈σv〉 ∝ v0) or p-wave

suppressed (〈σv〉 ∝ v2). The dominant operator for DD scattering is shown with any suppression

in brackets.
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Figure 5.1: The regions in the mDM−mMED plane excluded by ID and DD (LUX and CDMSlite)

which are hatched and polka-dots respectively. A spin-1/2 Dirac or Majorana DM candidate

exchanging a neutral scalar mediator with a pair of SM fermions, ūu in the upper row, and b̄b in

the lower row. The exclusions depend on the value of the coupling (left column: gs = gp, right

column: gp = 0), taken to be g = 3, 1, 0.5 (Red, Blue, Green respectively). The allowed regions

are for 1 < g ≤ 3 (Red), 0.5 < g ≤ 1 (Blue) and g ≤ 0.5 (Green), using an MCMC which requires

a relic density Ωχh
2 ∈ [0.9, 1.0] Ωch

2.
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Gamma Ray Line: Since the χ̄χ bilinear cannot couple to an s-wave state,

then the cross section into two photons 〈σv〉γγ is p-wave suppressed unless gχ,p 6= 0.

In the latter case, the cross section is

〈σv〉γγ =
∑
f

1

32π2m2
χ

N2
c α

2g2
χ,pm

4
χ

π2(m2
φ − 4m2

χ)2

×

g2
f,s

(
4 + log

(
m2
f

4m2
χ

)2
)2

+ g2
f,p log

(
m2
f

4m2
χ

)4
 . (5.2.5)

The resulting constraints are slightly weaker than from 〈σv〉, for example take mχ =

100 GeV (and set all couplings to 1), the constraints 〈σv〉γγ,Fermi . 10−28 cm3 s−1,

which in the above equation corresponds to mφ ≈ 570 GeV which is around a factor

of 2 weaker.

5.2.2 Neutral vector mediator (1/2-V)

We now turn to the case of a neutral vector mediator, which has vector, γµ, and/or

axial-vector, γµγ5, couplings to the DM and the SM fermions. For DD, Dirac DM

candidates lead to the operatorsOF5,F8 (χ̄γµχf̄γµf and χ̄γµγ5χq̄γµγ
5q respectively),

as well asOF6,F7 althoughOF5,F7 are not present for Majorana DM since the bilinear

χ̄γµχ = 0. Of these, only OF5 can produce the dominant spin-independent operator

O(NR)

1 . About five orders of magnitude smaller are the form factors for O(NR)

4 (arising

for the vector and axial-vector quadrilinears OF5,F8 ) and O(NR)

8 (arising for mixed

vector and axial-vector OF6), and finally O(NR)

7,9 (arising for OF7), thus it is impossible

to heavily suppress the DD constraints for light quark scattering, but a mild sup-

pression occurs if one removes the vector coupling of either the quark or DM bilinear.

For heavy quark (or strange quark) scattering, an axial vector coupling gQ,a leads

to a suppressed σDD by around two orders of magnitude. This comes from the nu-

cleon constants, ∆
(N)
Q , which arise dominantly through heavy quark axial currents

mixing with the light quark singlet current g0
A under RG evolution (with a subdomi-

nant contribution through heavy quark threshold matching to gluon operators). For

heavy quark vector couplings gQ,v, as outlined in Sec.4.3.2, RG running of the Wil-

son coefficient also dominates the contribution, leading to C
(N)
1 suppressed by only



5.2. Fermion Dark Matter 160

a few orders of magnitude. The heavy quark vector current strongly mixes with the

light quark equivalents under RG flow above the heavy quark mass scale (the vector

current is conserved and so the threshold matching is extremely suppressed, begin-

ning at O(g3
s)), leading to a nucleon constant for b quarks V(p)

b = 0.0072, V(n)
b = 03.

The dominant Wilson coefficients for any coupling choice are given by,

C
(N)
1 =4gχ,v

mχmN

m2
MED

[ ∑
q′=q,Q

V(N)
q′ gq′,v

]
,

C
(N)
8 =− 8gχ,a

mNmχ

m2
MED

[ ∑
q′=q,Q

V(N)
q′ gq′,v

]
,

C
(N)
4 =− 16gχ,a

mχmN

m2
MED

[ ∑
q′=q,Q

∆
(N)
q′ gq′,a

]
,

C
(N)
7 =8gχ,v

mχmN

m2
MED

[ ∑
q′=q,Q

∆
(N)
q′ gq′,a

]
,

C
(N)
9 =

mN

mχ

C
(N)
7 − C(N)

8 , (5.2.6)

the Wilson coefficients above can be found in Sec.4.3.2.

The ID constraints are strong as long as gχ,v 6= 0, since then the cross section

is s-wave. If however the DM is Majorana, or Dirac with gχ,v = 0 then the s-wave

term is suppressed by (mq/mχ)2 (due to a helicity suppression) and proportional

to only the axial coupling to quarks. For light quarks the mass suppression will be

large, enough for the s-wave to be of the same order as, or subdominant to, the p-

wave term, and this necessitates the inclusion of the d-wave expansion for numerical

stability around the resonant region 2mχ = mMED, and considerably suppresses the

3This result makes sense from an RG running perspective; for consistency we should run down

from the EW scale, below which the mixing occurs via photon exchange and so should only be

non-zero for scattering with charged particles. We do not have mixing between heavy/light quark

axial vector currents for the same reason, but we would find mixing above the EW scale due to

the axial Z coupling, however for consistency we ignore this.
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Non-zero Couplings ID DD

(gχ,a, gχ,v, gf,v, gf,a) s-wave O(NR)

1

(gχ,a, gf,a) s-wave (∝ m2
q) O(NR)

4

(gχ,v, gf,v) s-wave O(NR)

1

(gχ,v, gf,a) s-wave O(NR)

7,9 (v, q)

(gχ,a, gf,v) p-wave O(NR)

8 (v)

Figure 5.2: The possible configurations of couplings which lead to distinct behaviour of the ID

and DD constraints for the models 1/2-V and 1/2*-V (gχ,v = 0 for Majorana DM). The suppression

of DD operators is shown in brackets.

constraints

〈σv〉 =
∑
f

[
Nc

2π

(
2m2

χg
2
χ,v

(
g2
f,a + g2

f,v

)
(m2

MED − 4m2
χ)2

+ g2
χ,ag

2
f,a

m2
q

m4
MED

)]

+
Ncv

2m2
χg

2
χ,a

6π(m2
MED − 4m2

χ)2

(
g2
f,v + g2

f,a

) ]
+ θ(mχ −mMED)

(m2
χ −m2

MED)3/2

4πmχm2
MED(m2

MED − 2m2
χ)2

[
(g2
χ,v + g2

χ,a)
2(2m2

χ −m2
MED)

− 2(g2
χ,v − g2

χ,a)
2(m2

χ −m2
MED)

]
. (5.2.7)

Thus the most strongly excluded scenario occurs for vector couplings (gχ,v, gf,v) 6= 0.

The least excluded scenario occurs if only the axial DM coupling, and vector quark

couplings are present (gχ,a, gf,s) 6= 0.

The bulk of the ID constraints from the literature are based on the assump-

tion of an s-wave cross section; if gχ,v = 0 the helicity suppression competes with

the velocity suppression of the p-wave term and both are around the same size

for light quarks. The s-wave constraints still dominate over most of the parameter

space except for a region at mχ ∼ 10 − 100 GeV, where the resonance enhances

the p-wave contribution, but suppresses the s-wave contribution (which goes as

(m2
φ − 4m2

χ)2/((m2
φ − 4m2

χ)2 + Γ2m2
φ), see Eq.(2.0.7) in Appendix B), the resulting

constraints look a bit jagged.
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To illustrate this model the two scenarios (gχ,v = ±gχ,a = gf,v = ±gf,a) and

(gχ,a, gf,a) are shown in Fig.5.3, in (a) and (b) respectively. (c),(d) are the same as

(a),(b) but for a b̄b final state. The DD constraints are generally more powerful than

ID for light quark final states, but the opposite is true for heavy quark final states.

Fig.5.3 (c) shows that a lighter mediator is possible for a b̄b final state compared

with ūu, due to the suppression of the DD constraint; the combination of DD and

ID require large couplings g & 0.1. A summary of the allowed parameters for these

scenarios and the others from Fig.5.2 are shown in Tab.5.2.

LHC Bounds : A popular search avenue for DM at colliders is monojet searches

plus missing energy, q̄q → χ̄χj, since this process is well measured and is fairly uni-

versal within EFT’s for DM. Constraints are made on Λ, the heavy scale suppressing

the EFT operator which is Λ ∼ mMED in our case. Below mχ . 100 GeV 4 the col-

lider constraints on Λ are uniform since
√
s� mχ, above this scale the constraints

rapidly decrease since the COM energy is insufficient to produce a DM pair. The

constraints are around Λ < 1 TeV scale for both vector and axial-vector couplings,

enough to rule out some of the parameter space at low DM mass.

Perturbative Unitarity : As pointed out in [72] and confirmed in our calcu-

lation, this model requires a careful look at perturbative unitarity on self-scattering

processes f̄f → f̄f and χ̄χ → χ̄χ exchanging the new mediator in the s-channel

and leading to constraints,

mf .

√
π

2

mMED

gf,a
, (5.2.8)

mχ .

√
π

2

mMED

gχ,a
. (5.2.9)

For couplings to light quarks u, d, s, the first constraint sets a weak lower limit on the

mediator mass of mMED & (1−10) gf,a MeV. For couplings to b quarks mMED & 6 gf,a

GeV is more constraining.

4See for example [283].
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Figure 5.3: As for Fig.5.1 for a spin-1/2 Dirac DM (Majorana DM applies to the right column

also) candidate exchanging a neutral vector mediator with a pair of SM fermions, ūu in the upper

row, and b̄b in the lower row.
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The latter bound affects a large proportion of the parameter space as can be

seen in Fig.5.3, and arises from the longitudinal mode of the spin-1 mediator (in

the high energy limit this dominates over the transverse polarizations). In a gauge

theory this would correspond to the Goldstone boson of the gauge boson. Since

the bound does not depend on an energy scale for the process, it cannot be evaded

with the introduction of new physics at some high scale, and thus acts as a gen-

uine constraint on the theory, and as such we include it as a hard limit in the MCMC.

Gamma Ray Lines : If fermion vector couplings are present, gf,v, the χ̄χ→ γγ

cross section is zero due to Furry’s theorem. In the initial state, to produce an s-

wave cross section requires χ̄γiχ or χ̄γ0γ5χ (i.e. vector or axial vector couplings,

gχ,a, gχ,v), but it turns out that only gχ,a gives a non-zero cross section,

〈σv〉γγ =
∑
f

1

32π2m2
χ

8N2
c α

2g2
χ,ag

2
f,am

4
χ

π2(m2
MED − 4m2

χ)2

(
log

(
m2
f

4m2
χ

))2

. (5.2.10)

As with the neutral scalar mediated model, the constraint is slightly weaker than

from DM annihilation into fermions.

5.2.3 Charged scalar mediator (1/2-S±, 1/2*-S±)

We now address the first model which contains a mediator which is both EM and

colour charged, with these quantum numbers identical to those of the quarks that

they couple to. We begin with a word of caution: it should be kept in mind that

new charged states are very highly constrained up to masses of . TeV. Although

searches for such particles are normally done in the context of a supersymmetric

model, they should apply to generic charged mediators with very little modifica-

tion. New charged scalars behave very similarly to squarks and are subject to strict

n-jet constraints. Squarks coupled to light quarks are constrained mq̃ > 850 GeV

[30], whereas a coupling to b quarks places strong limits in the squark-neutralino

mass plane, restricting the squark mass to 100 GeV . mb̃ . 620 GeV, with a limit

of mχ̃0 > 100 GeV at the low end mχ̃0 > 300 GeV on the high-squark mass end

[284]. Once embedded in a full supersymmetric model, these constraints become
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even stronger; see e.g. [285] and references therein.

In principle the couplings are complex, we will assume they are real for simplicity,

but this does not change the dominant behaviour of any of the equations presented.

For DD, due to a Fierz transformation that is applied to the spinors, all of

the fermionic quadrilinears, OF1−9, appear. Thus we may limit ourselves to the

quadrilinears which lead to the dominant O(NR)

1 operator, that is, OF1,F5. The

coefficient of OF1 is ∝ (|gs|2−|gp|2) and thus vanishes for chiral couplings gs = ±gp,
however OF5 is proportional to the combination (|gs|2 + |gp|2) and does not vanish

unless the DM is coupled only to a combination of s, c, b, t quarks (although in

that case, RG running generates a contribution to the ūγµu, d̄γµd operators, see

Sec.5.2.2), then the dominant operator would be O(NR)

4 = Sχ ·SN (where Sχ,N are the

DM and nucleon spins). Since O(NR)

1 is always present for Dirac DM, the constraints

are always strong (the scalar quadrilinear OF1 gains a factor (mN/mq)
2 relative to

the vectorOF5 in the cross section, and so chiral couplings do reduce the constraints),

C
(N)
1 =

mNmχ

(m2
χ −m2

MED)

∑
q′=q,Q

[
f

(N)
TQ

(
|g(q′)
s |2 − |g(q′)

p |2
) mN

mq′
+ V(N)

q′

(
|g(q′)
s |2 + |g(q′)

p |2
)]

,

(5.2.11)

the heavy quark contribution to V(N)
Q arises from RG running effects. For Majorana

DM, by choosing chiral couplings it is possible to remove the dominant contribu-

tion from the scalar operator (since unlike for Dirac DM OF5 is not present), the

subdominant contribution is from a twist-2 operator, proportional to (|gs|2 + |gp|2)

but suppressed by mχmq/(m
2
χ − 2m2

MED) (which is still larger than the axial-vector

operator, OF8 → O(NR)

4 , by ∼ mχ/mN),

C
(N)
1 =

mNmχ

(m2
χ −m2

MED)

∑
q′=q,Q

f
(N)
Tq′

[(
|g(q′)
s |2 − |g(q′)

p |2
) 2mN

mq′

+
(
|g(q′)
s |2 + |g(q′)

p |2
) mNmχ

2(m2
χ −m2

MED)

]
. (5.2.12)

For ID, and Dirac DM the leading contribution to 〈σv〉 is s-wave and proportional

to mχ(|gs|2 + |gp|2) (there is a subleading piece proportional to mf (|gs|2 − |gs|2)),
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and so the constraints remain of uniform strength for any choice of couplings since

we always have mχ > mf ,

〈σv〉 =
∑
f

Ncm
2
χ

8π(m2
χ +m2

MED)2

(
|g(f)
s |2 + |g(f)

p |2
)2
. (5.2.13)

However, if the DM is Majorana then the leading s-wave piece is ∝ mχ(|gs|2− |gp|2)

(and the subleading ∝ mf (|gs|2 + |gp|2)), consequently the s-wave term is mf/mχ

suppressed for chiral couplings, this is a result of a helicity suppression from the

effective operator χ̄γµγ5χq̄γµγ
5 (explained in Sec.5.2.4),

〈σv〉 =
∑
f

Nc

8π(m2
χ +m2

MED)2

(
mχ(|g(f)

s |2 − |g(f)
p |2) +mf (|g(f)

s |2 + |g(f)
p |2)

)2
.

(5.2.14)

As shown in Fig.5.5 (a) and (b) for Dirac DM, the constraints are strong enough

to exclude all models in the mass window mχ,φ > 1 GeV. This true for pure scalar

couplings but for chiral couplings a small window opens at larger masses. For Ma-

jorana DM the model is also totally excluded for purely scalar or pseudo-scalar

couplings, Fig.5.5 (c) (as this case is equivalent to Dirac DM), however for chiral

couplings (Fig.5.5 (d)) the suppressions of both ID and DD lead to a large allowed

region. For heavy quark chiral couplings, there is a region of allowed parameters

mχ,mMED > 100 GeV requiring large couplings, as shown in Fig.5.5 (e), due to the

suppression of DD constraints. Any other choice of couplings yields the same con-

clusion. For non-chiral couplings Majorana DM also reproduces this result; however

for chiral couplings, the suppression of ID is much weaker than in the light quark

case. In fact the s-wave piece of 〈σv〉 still dominates and so the allowed RD region is

suppressed along with the ID constraint, leading to less available parameter space,

as shown in Fig.5.5 (f). These results are summarized in Fig.5.2.

Gamma Ray Lines : When dealing with charged mediators, the χ̄χ→ γγ pro-

cess involves the calculation of box diagrams with internal fermions and mediators.

The photons may be emitted both fermions and mediators in the loop.

Ignoring the photon emission from the scalar φ for the moment, we can calculate the
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EFT operator 〈σv〉γγ
V-V (F5) χ̄γµχf̄γµf 0 (Furry’s theorem)

A-V (F6) χ̄γµγ5χf̄γµf 0 (Furry’s theorem)

V-A (F7) χ̄γµχf̄γµγ
5f 0

A-A (F8) χ̄γµγ5χf̄γµγ
5f
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Figure 5.4: The annihilation χ̄χ → γγ process for various fermion DM EFT operators coupled

to fermions with charge Qf , note that the Wilson coefficients C have mass dimension −2.

remaining diagrams by simply taking the EFT limit5 (integrating the mediator out

as is done for the DD calculation). Then the χ̄χ→ γγ process is a triangle diagram

with a single insertion of a four-fermion operator (see Fig.3.1). The resulting cross

sections are shown in Tab.5.4 where,

β =
−√s+

√
s+ 4m2

f

√
s+

√
s+ 4m2

f

. (5.2.15)

Most of the EFT operators lead to very small or zero cross section. The largest

cross section is ‘A-A’, pure axial vector couplings, but even in this case the bounds

are weaker than from annihilation into fermions.

A possible caveat is for the case of Majorana DM, for which the operator OF8

appears unsuppressed in the EFT, and the annihilation into fermions is helicity sup-

pressed in the chiral limit. The gamma ray constraints become more excluding since

the helicity suppression applies only to f̄f final states, we incorporate the bounds

into Fig.5.5.

5See for example [118].
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We consider just the axial vector EFT operator, then the cross section is given

by the ‘A-A’ row of Tab.5.4 with,

C
(q)
F8 ≡

(
|g(q)
s |2 + |g(q)

p |2
)

2(m2
χ +m2

φ)
, (5.2.16)

the above matching differs from the one used for DD since the latter was derived

under the assumption ε = 2k · p/(m2
χ − m2

φ) � 1 with k and p the initial state

momentum. In the annihilation process k · p ≈ m2
χ and thus the EFT for DD is not

valid if mχ � mφ (although it remains valid if mφ � mχ); instead the EFT should

be derived under the assumption that v → 0 as in the expression above.

5.2.4 Charged vector mediator (1/2-V±, 1/2*-V±)

The charged vector mediator leads to roughly the same DD constraints as with

the charged scalar, however the EFT operators pick up extra multiplicative factors

∼ (mχ/mMED)n from the longitudinal modes of the vector. But since for DM stability

mχ < mMED, these factors tend to have little effect. Then just as with the charged

scalars, chiral couplings suppress the OF1 operator, but leave the OF5 which reduces

to the dominant O(NR)

1 operator in the NR limit. For Majorana DM OF5 is not

present, since χ̄γµχ = 0, and chiral couplings lead to the dominant operator OF8 ∝
O(NR)

4 = Sχ · SN in the NR limit. Thus the Dirac DM can be summarized by:

C
(N)
1 =

4mNmχ

m2
χ −m2

MED

(
1− m2

χ

4m2
MED

)[∑
q,Q

f
(N)
Tq,Q

(|g(q,Q)
v |2 − |g(q,Q)

a |2)
mN

mq,Q

]

+
2mNmχ

m2
χ −m2

MED

(
1 +

m2
χ

2m2
MED

)[∑
q,Q

V(N)
q,Q (|g(q,Q)

v |2 + |g(q,Q)
a |2)

]
,

C
(N)
4 =

8mχmN

(m2
χ −m2

MED)

(
1− m2

χ

2m2
MED

)[∑
q,Q

∆
(N)
q,Q (|g(q,Q)

v |2 + |g(q,Q)
a |2)

]
. (5.2.17)

The Majorana case is the same but without the contribution from V(N)
q . In the

Dirac DM case, the annihilation cross section 〈σv〉 is s-wave dominated in both the

chiral and non-chiral limits, since just as for DD there is always an operator in the

EFT which has a velocity independent NR limit

〈σv〉 ≈
∑
f

Ncm
2
χ

8π(m2
MED +m2

χ)2

(
(|g(f)

a |2 + |g(f)
v |2)2

(
2 +

m2
χ

m2
MED

)2

+ 2(|g(f)
v |2 − |g(f)

a |2)2

)
.

(5.2.18)
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Figure 5.5: As for Fig.5.1 for spin-1/2 DM exchanging a charged scalar mediator, the top (middle)

row applies to Dirac (Majorana) DM, to a ūu final state, and with chiral couplings (right) or scalar

couplings (left). The bottom row is for a b̄b final state with chiral couplings for a Dirac (Majorana)

DM on the left (right). The grey shaded region for mχ > mMED represents unstable DM candidates.
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For Majorana DM, chiral couplings lead to an (mq/mMED)2 suppressed s-wave cross

section, in which limit the p-wave term is of similar order or larger. This is best

explained using the EFT, where the only nonzero operator in the chiral limit, propor-

tional to (|gv|2 + |ga|2), is χ̄γµγ5χq̄γµγ
5q which allows an s-wave state L = 0, S = 0

through the time-like component of the axial-vector DM bilinear. For the state

S = L = 0, J = 0 and hence Jz = 0. Assuming the quarks are massless, then

chirality and helicity are equivalent. If the outgoing quark and anti-quark travel

along the ±z direction then they cannot be in a Jz = 0 state (with their spins in

opposite directions, i.e. with equal helicities), since the bilinear only allows the chi-

ralities χ̄Lγ
µγ5χL, χ̄Rγ

µγ5χR (recall that χ̄L is a RH state). For massive quarks it is

possible to reverse the helicity of one of the particles, at the expense of a factor mq

from a mass insertion into an outgoing fermion leg. The annihilation cross section

for Majorana DM is,

〈σv〉 =
∑
f

[
Nc

8πm4
MED(m2

χ +m2
MED)2

(
m2
χ(|g(f)

a |2 − |g(f)
v |2)2(m2

χ + 4m2
MED)2

+m2
q(|g(f)

a |2 + |g(f)
v |2)2(2m2

MED +m2
χ)2

)
(5.2.19)

+
4Nc(|g(f)

v |2 + |g(f)
a |2)2v2m2

χm
2
MED(m2

MED + 3m2
χ)

3π(m2
χ +m2

MED)4

]
,

the helicity suppressed s-wave term ∼ (mq/mχ)2 is comparable to the p-wave sup-

pression ∼ 2/3 v2 for light quarks; this often leads to a larger p-wave signal in

gamma-rays from the GC.

Perturbative Unitarity : The process qq̄ → χχ̄, via a t-channel vector

exchange, leads to an energy independent unitarity bound,

mV & mχ

(( |ga|
4π

)2

+

( |gv|
4π

)2
)1/2

(5.2.20)

which is redundant when one imposes DM stability which requires mV > mχ. How-

ever, the process χχ̄→ V †V leads to violations for energies,

E &
m2
V

mχ

(( |ga|
4π

)2

+

( |gv|
4π

)2
)−1

(5.2.21)
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which for ga = gv ∼ 1, and mV = mχ ∼ 1 TeV requires E . 1 TeV. Violations

of unitarity would be large at collider energies and the model could become a poor

approximation of a complete theory with regard to collider bounds.

Summary : Chiral couplings lead to the suppression of both ID and DD signals

if the DM is Majorana and thus is the least excluded scenario, leaving significant

free parameter space as shown in Fig.5.6 (d). This emphasises the role that choices

of couplings can have on the results, since pure vector (or chiral) couplings to Dirac

DM leads to an almost complete exclusion of all thermal DM candidates, as in

Fig.5.6 (a) and (b). The allowed regions are summarized in Fig.5.2.

5.3 Scalar Dark Matter

5.3.1 Neutral scalar mediator (0-S, 0*-S)

We begin with the simplest scalar DM model; coupling to a neutral scalar me-

diator. The DD cross section is fairly simple, matching only the EFT operators

OS1 = φφN̄N and OS2 = φφN̄iγ5N ; the latter is largely suppressed due to a

(q/mN)4 momentum suppression in σDD from O(NR)

10 . Heavy quarks match to the

same operators, with a suppression from loop factors and nuclear constants. Thus

the cross section is dominated by the SI scattering from OS1,

C
(N)
1 =

2gχΛmN

m2
MED

[ ∑
q′=q,Q

f
(N)
Tq′

g(q′)
s

mN

mq′

]
, (5.3.22)

C
(N)
10 =

2gχΛmN

m2
MED

[ ∑
q′=q,Q

f
(N)
5,q′ g

(q′)
p

mN

mq′

]
. (5.3.23)

The scale Λ gives the DM-mediator vertex the correct mass dimension; we take

Λ = mχ. The DD limits are strong if g
(q,Q)
s is present, but much weaker if only g

(q,Q)
p

is present.

For ID, the dominant s-wave term in 〈σv〉 is proportional to g2
s + g2

p, and thus

there is no choice of couplings which weakens the ID constraint. The appearance of

an s-wave term is trivial from the initial state φ2 or φ†φ since both are 1 in the NR
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Figure 5.6: As for Fig.5.1 for a spin-1/2 Dirac (top row) or Majorana DM (bottom row) candidate

exchanging a charged vector mediator with a pair of SM fermions, ūu, the left (right) column is

for vector (chiral) couplings. The grey shaded region for mχ > mMED represents unstable DM

candidates which decay
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EFT operator 〈σv〉γγ

S1 φ†φf̄f
Q2
fN

2
c α

2C2
S1m

2
f

16π4m2
χ

[
2 + (4m2

f − S)C0

]2

S2 φ†φf̄iγ5f
Q2
fN

2
c α

2C2
S2m

2
fS

2

16π4m2
χ

[
C0

]2

S3 iIm(φ†∂µφ)f̄γµf 0 (Furry’s theorem)

S4 iIm(φ†∂µφ)f̄γµγ
5f O(v2)

Figure 5.7: The annihilation χ̄χ→ γγ process for scalar DM EFT operators coupled to fermions

with charge Qf and coupling Ci. The loop factor C0 ≡ C0(0, 0, S,mf ,mf ,mf ) is given by C0 =

(1/2S) log(β)2 and β defined in Eq.(5.2.15).

limit,

〈σv〉 =
∑
f

[NcΛ
2g2
χ

(
g

(f),2
s + g

(f),2
p

)
4π(m2

MED − 4m2
χ)2

]
+ θ(mχ −mMED)

g4
χ

√
m2
χ −m2

MED

16πm3
χ(m2

MED − 2m2
χ)2

,

(5.3.24)

the second term arises from DM annihilation to mediator pairs, only affecting the

RD bounds, and only slightly increasing the cross section for mχ > mMED. Gamma-

ray line signals are fermion mass suppressed (see Fig.5.7) and subdominant to the

tree level ID constraints.

We do not include any collider constraints for this model6. Overall, for scalar

couplings to light quarks the DD constraint is the dominant source of exclusion

above mχ = 1 GeV, excluding almost all thermal candidates, as shown in Fig.5.8(a).

Weakening the DD constraints by around one order of magnitude by setting gs = 0

allows candidates with large couplings g & 0.1 and large masses mχ,mMED & 500

GeV, Fig.5.8(b). Couplings to heavy quarks lead to a larger allowed region, since

the contribution to C
(N)
1 is suppressed by ∼ 10−3, and the contribution to C

(N)
10 by

6Extracting LHC bounds is difficult for a purely ūu coupling to DM, since it is usually as-

sumed that DM couples in a flavour diagonal way. Conventionally Λ = mq in analogy to Higgs

couplings, then the Wilson coefficients of the relevant EFT operators (OS1,S2) are ∝ mq/m
2
φ and

thus dominated by heavy quarks.
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∼ 10−5. This leaves the DD constraints very weak (they still exclude small mediator

masses ), and the ID constraints dominant, excluding small DM masses together

with small couplings. This leads to the allowed region favouring both large masses

and couplings as shown in Fig.5.8 (c) and (d). These exclusions are summarized in

Tab.5.4

5.3.2 Neutral vector mediator (0*-V)

The DD cross section is simple for t-channel scattering via a neutral vector mediator,

leading to only the OS3 = iIm(φ†∂µφ)q̄γµq and OS4 = iIm(φ†∂µφ)q̄γµγ
5q operators;

OS3 (from vector quark couplings) leads to the dominant contribution from the SI

operator O(NR)

1 , and OS4 (from axial-vector quark couplings) leads to O(NR)

7 which

is velocity suppressed ∼ v2. Thus a large suppression occurs if the couplings are

purely axial-vector to the quarks. The Wilson coefficients are:

C
(N)
1 = 4gχ

mχmN

m2
MED

[ ∑
q′=q,Q

V(N)
q′ g(q′)

v

]
, (5.3.25)

C
(N)
7 = 8gχ

mχmN

m2
MED

[ ∑
q′=q,Q

∆
(N)
q′ g

(q′)
a

]
. (5.3.26)

For heavy quarks, the vector current ∝ g
(Q)
v does not contribute through threshold

matching (as already mentioned in Sec.5.2.2), instead it contributes via RG mixing

with the light quark vector currents, resulting in an overall suppression of the latter

by V(N)
Q . The heavy quark axial-vector current does however contribute due to both

a threshold matching and subsequent RG mixing (the latter is the dominant effect,

see Sec.4.3.1), picking up a further suppression at the NR level.

For ID, the cross section is purely p-wave. The leading term in 〈σv〉 is propor-

tional to (g2
v + g2

a) and is thus consistently weak for all values of the couplings,

〈σv〉 =
∑
f

g2
χNcm

2
χv

2

6π(m2
MED − 4m2

χ)2

(
g(f),2
a + g(f),2

v

)
+ θ(mχ −mMED)

g4
χmχ(m2

χ −m2
MED)5/2

πm4
MED(m2

MED − 2m2
χ)2

, (5.3.27)

this is due to the initial state bilinear iIm(φ†∂iφ) which is odd under parity ∂i → −∂i

and therefore since P = (−1)L, L cannot be zero (the timelike piece of the bilinear
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Figure 5.8: As for Fig.5.1 for a spin-0 DM candidate exchanging a neutral scalar mediator with

a pair of SM fermions, ūu (top row) or b̄b (bottom row). The left (right) columns are for chiral

(pseudo-scalar) couplings.
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vanishes, since its (C,P) symmetries are (−,+) which forbids a J = 0 state, which

is inconsistent with the requirement that the operator is a scalar under rotations).

The second term in Eq.(5.3.27) only applies to the relic density calculation, and

is the contribution from annihilation into mediator pairs when mχ > mMED; since

a DM is exchanged in the t-channel, the initial state operator is not the same as

annihilation to fermion pairs and does not suffer the p-wave suppression. The an-

nihilation rate is huge, due to the longitudinal polarization of the vector, which

scales as
√
S/mMED ∼ mχ/mMED. The cross section goes as σ ∼ (1/m2

χ)(mχ/mMED)4

and thus increases with mχ. This makes virtually the entire region mχ > mMED

‘super-allowed’, but forces the couplings to be extremely small to suppress the large

annihilation to mediators.

Perturbative Unitarity : Due to the presence of a neutral vector particle,

unitarity violation can occur when the vector is exchanged in the s-channel as a

consequence of the longitudinal polarization modes. If the vector couples to q̄γµγ5q

then the bounds from qq̄ → qq̄ become independent of the energy scale (and are

identical to Eq.(5.2.9)). The DM self scattering χ†χ → χ†χ leads to a bound

gχ .
√

4π (which is automatically included by our restriction of all couplings to

g < 3), and the process χ†χ→ V V leads to a limit on the energy of,

E &
1

5
mV

( gχ
4π

)−1

, (5.3.28)

which for gχ = 1 and mV ∼ 1 TeV leaves E & 2.5 TeV and thus the collider signals

would be sensitive to any new physics which corrects the unitarity violation, unless

the coupling gχ . 0.25.

LHC bounds : Bounds for operators OS3,S4 exist in the literature [283] for

mono-jet and mono-photon signatures, assuming flavour diagonal coupling and so

include couplings to all quark flavours. However, due to the high momentum trans-

fers involved, the pdfs for the quarks in the proton are dominated by the light quarks

(and unlike for the neutral scalar mediator, the EFT limit is not suppressed ∝ m2
q);

thus these bounds are applicable to the light quark final state and are plotted in
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Figure 5.9: As for Fig.5.1 for a spin-0 DM candidate exchanging a neutral vector mediator with

a pair of SM fermions, ūu (top row) or b̄b (bottom row). The left (right) columns are for vector

(axial-vector) couplings, and in the bottom row the exclusions from ID for couplings of 1.0 and 0.5

are too weak to be shown.



5.3. Scalar Dark Matter 179

Fig.5.9. However, since the EFT approximation is made the bounds are not reliable

for mφ . mχ, and they are not included in the MCMC. These bounds are likely to

rule out a lot of additional parameter space for purely axial vector couplings (Fig.5.9

(b)).

Gamma-ray lines : The tree level annihilation into fermion final states 〈σv〉f̄f
is p-wave suppressed by ∼ 10−5, which is a smaller than a generic loop suppression

(1/(16π2) 7). One might then be tempted to invoke gamma ray line constraints

from the one-loop processes φ†φ → γγ, γh, γZ. These involve the same s-channel

annihilation of the DM into a virtual mediator as for tree level; the DM-Mediator

vertex leads to the factor (p− p′)µ ∼ (0, 2mχv) (with p, p′ the incoming momenta of

the DM pair). Thus the gamma ray line processes are also velocity suppressed (or

zero if only gv is present due to Furry’s theorem).

Fig.5.9 gives a summary of these results. For light quarks, with a vector coupling,

gv, the DD bounds are strong enough to rule out the model (Fig.5.9 (a)) for mχ <

mMED. Replacing the vector with an axial vector causes a suppression of DD, and the

parameter space opens up (Fig.5.9 (b)), it is still likely that collider constraints can

rule out the range mDM & O(100) GeV. For heavy quarks and axial-vector mediator

both ID and DD are suppressed (5.9 (c), (d)).

5.3.3 Charged fermion mediator (0-F±, 0*-F±)

This case was first proposed as a theory of light dark matter in the non-chiral case,

since the annihilation cross section is independent of the DM mass in the low mχ

limit [96]. The caveat mentioned in Sec.5.2.3 applies, with strict collider constraints

forcing the charged mediator to mMED > 100 GeV. With our assumptions on the me-

diator width, this model is entirely excluded for light and heavy quark (c, b) states

by ID and DD signals alone.

7Or more accurately α/(16π2) ∼ 5× 10−5.
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After integrating out the mediator the dominant EFT operator is OS1, with the

same Wilson coefficient for both real and complex DM;

C
(N)
1 =

2m2
N

m2
χ −m2

MED

∑
q′=q,Q

f
(N)
Tq′

((
|g(q′)
s |2 + |g(q′)

p |2
)

+
mMED

mq′

(
|g(q′)
s |2 − |g(q′)

p |2
))

(5.3.29)

For chiral couplings gs = ±igp the cross section is suppressed by ≈ (mq/mMED)2.

For complex scalar DM, an additional contribution from the EFT operator OS3 is

present which does not become suppressed in the chiral limit and which contributes;

C
(N)
1 =

2mNmχ

(m2
χ −m2

MED)

( ∑
q′=q,Q

V(N)
q′

(
|g(q′)
s |2 + |g(q′)

p |2
))

, (5.3.30)

which is ∼ mN/mχ times the contribution from OS1 in the chiral limit. It is thus

not possible to remove the contribution to O(NR)

1 entirely, but it can be suppressed

by choosing chiral couplings.

For ID, and real or complex scalar DM, the dominant s-wave contribution to

〈σv〉 is suppressed by (mf/mMED)2 for chiral couplings gs = ±igp, but still remains

dominant over the p-wave term. The s-wave term arises purely from the φ†φq̄q

operator;

〈σv〉 =
Nc

4π(m2
MED +m2

χ)2

∑
f

∣∣∣∣(g(f)
p )2(mMED −mf ) + (g(f)

s )2(mf +mMED)

∣∣∣∣2.
(5.3.31)

If the couplings are not chiral, then the cross section scales as m2
MED/(m

2
χ +m2

MED)2

the powers of mediator mass in the numerator weaken the overall dependence on

mMED as mMED � mχ. This has the effect of improving the constraints at low DM

mass. It simultaneously favours much heavier mediators for the correct RD. This

same behaviour is replicated for DD, and we are able to exclude extraordinarily large

mediator masses (mMED < 108 GeV), although no thermal DM candidate would be

found with such a heavy mediator. Fig.5.10 (a) and (c) shows the configuration

(gs 6= 0) for ūu (equivalent to d̄d and s̄s) and b̄b final states respectively. Fig.5.10

(b) and (d) is the same but with chiral couplings (gs = ±igp). These are plotted for
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complex scalar DM, but real scalar DM leads to very similar plots as the dominant

terms in the ID and DD cross section are the same. Thermal candidates are still

ruled out even with chiral couplings, since the RD and ID constraints are suppressed

because 〈σv〉 is still s-wave dominated. Thus, surviving light DM candidates of [96]

must be of non-thermal origin.

5.4 Vector Dark Matter

5.4.1 Neutral scalar mediator (1-S, 1*-S)

The neutral scalar mediator leads to an s-channel annihilation and u-channel scatter-

ing. The EFT matching for the model leads only to the ‘scalar’ and ‘pseudo-scalar’

operators OV 1,V 2 (BµB†µq̄q and BµB†µq̄iγ
5q respectively). The former dominates

as it leads to O(NR)

1 , which produces the dominant coherent spin-independent in-

teraction. For heavy quarks, threshold matching (integrating out the Q) generates

BµBµG
µνGµν if gq,s is present, which produces a contribution toO(NR)

1 and dominates

the scattering,

C
(N)
1 =

gχΛmN

m2
MED

[ ∑
q′=q,Q

f
(N)
Tq′

g(q′)
s

mN

mq′

]
, (5.4.32)

where Λ is a mass scale associated to the DM-mediator coupling and we take Λ = mχ.

If only the pseudo-scalar quark coupling is present then the matching is heavily

suppressed to O(NR)

10 ,

C
(N)
10 =

gχΛmN

m2
MED

[ ∑
q′=q,Q

f
(N)
5,q′ g

(q′)
p

mN

mq′

]
, (5.4.33)

the suppression arises because the pseudo-scalar bilinear is a scalar with respect to

rotations, and with odd parity, thus in the NR limit it can only contain dot-products

involving a single spin-vector (i.e. p · Sχ or p′ · Sχ with p, p′ the incoming/outgoing

DM momentum), both of which contain a suppression. This is equally true for both

real and complex vector DM.

The ID cross section is s-wave, and the dominant piece is proportional to (g2
s+g

2
p),

thus it remains of uniform strength for any choice of couplings. This is because the
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Figure 5.10: As for Fig.5.1 for a spin-0 DM candidate exchanging a charged fermionic mediator

with a pair of SM fermions, ūu (top row) or b̄b (bottom row). The left (right) columns are for

scalar (chiral) couplings.
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(ū
u

)

  
g s

=
±
g p

g s
=

0

1-
S

(b̄
b)

  
g s

=
±
g p

g s
=

0

1-
V

(ū
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bilinear BµBµ appears in the initial state, which is even under charge and parity,

and so allows an S = 0, L = 0 s-wave state with J = 0. The final state q̄q and q̄γ5q

also have J = 0 and can couple to the initial state,

〈σv〉 =
∑
f

Ncg
2
χΛ2

12π(m2
MED − 4m2

χ)2

(
g(f),2
s + g(f),2

p

)
+ θ(mχ −mMED)

g4
χ(m4

MED − 4m2
MEDm

2
χ + 6m4

χ)
√
m2
χ −m2

MED

144πm7
χ(m2

MED − 2m2
χ)2

, (5.4.34)

the annihilation to mediators in the second line provides a small correction to the

RD calculation. Gamma-ray cross sections are fermion mass suppressed (Fig.5.11)

for this model and do not provide significant constraints.

Finally we add the collider constraints from [12], based on the
√
s = 8 TeV

LHC run, and for DM couplings to light quarks (shown as dotted lines in the plots).

The bounds are based on the same EFT operators that appear in the DD treatment

(Sec.4.2.3) and are extremely strong below mχ . 1 TeV, outperforming both ID and

DD limits (which nonetheless have already ruled out models with the correct relic

density), but decrease sharply with increasing DM mass and quickly drop below the

DD and ID limits. Additionally, the bounds stop at the point at which the EFT

approximation is no longer valid ∼ 1 TeV. We do not include the bounds in the

MCMC, however it is clear that some of the parameter space would be ruled out by

them.

Perturbative Unitarity : The dominant violations of unitarity arise from

the processes χχ→ χχ and SS → χ†χ and appear for energies exceeding,

E &
mχ

10

( gχ
4π

)−1

(5.4.35)

for a 100 GeV DM, gχ . 0.01 to avoid unitarity violations at LHC energies. These

violations must be corrected before a reliable comparison to collider bounds can be

made.

Fig.5.12 shows the constraints for light and heavy quark channels. From these

it is clear that if the scalar coupling g
(q)
s is present, then light quark final states
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EFT operator 〈σv〉γγ

V1 B†µB
µf̄f
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Figure 5.11: The annihilation χ̄χ→ γγ process for various vector DM EFT operators coupled to

fermions with charge Qf and coupling Ci, note that Ci has mass dimension −2. Operators which

are velocity suppressed or zero are not listed, and neither are the interference terms. The loop

factor C0 is identical to the one in Tab.5.7.

are completely excluded (Fig.5.12 (a)), and heavy quark final states are constrained

to high masses and couplings (Fig.5.12 (b)). Removing gs leaves the pseudo scalar

coupling, suppressing the constraints and opening up the parameter space (Fig.5.12

(c,d). These results are summarized in Tab.5.5.

5.4.2 Neutral vector mediator (1-V, 1*-V)

Due to the Lorentz indices on both mediator and DM, there are three independent

renormalizable coupling structures, which we denote V1,2,3, where two vectors Bµ

are the DM, and the third is the mediator V µ,

V1 = (gχB
†
ν∂

νBµ + h.c.)Vµ, (5.4.36)

V2 = (gχB
†
ν∂

µBν + h.c.)Vµ, (5.4.37)

V3 = εµνσρ(gχB
†
µ∂νBσ + h.c.)Vρ. (5.4.38)

In each case the coupling gχ may be complex. V2 with a real coupling results in

a total derivative plus the operator BµBµ∂
ν q̄γνγ

5q in the EFT limit, which has an

s-wave annihilation cross section, proportional to only ga (in fact, gv is totally absent

from the cross section due to a cancellation at the amplitude level). If any of the

couplings are purely imaginary, then the DM must be complex.
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Figure 5.12: As for Fig.5.1 for a spin-1 DM candidate exchanging a neutral scalar mediator with

a pair of SM fermions, ūu (left column) or b̄b (right column). The top (bottom) rows are for chiral

(pseudo-scalar) couplings. The dotted lines are LHC bounds from [12], see text. Although the

MCMC and ID limits are not valid below the mass threshold mb, the DD constraints are since

they are based on loop induced processes.
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Each of the three vertex structures leads to a different DD cross section. Firstly

for V1; a real DM coupling with either a vector or axial-vector quark coupling leads

to a very suppressed cross section (O(NR)

14 and O(NR)

12 respectively). An imaginary gχ

with a vector quark coupling gv gives a dominant contribution to O(NR)

5 (plus a q2

suppressed contribution to O(NR)

4 ), and with an axial-vector coupling to O(NR)

9 .

For V2, if the couplings are real, then there is a non-zero DD cross section only if

the quark coupling is axial-vector like, and then it is suppressed to O(NR)

10 . However

for imaginary couplings a vector quark coupling leads to a dominant O(NR)

1 interac-

tion (or O(NR)

7 for axial-vector, which is strongly suppressed).

For V3, real couplings lead to O(NR)

11,14 for vector and axial-vector couplings respec-

tively. Imaginary DM couplings and vector quark coupling lead to 4mχmN(O(NR)

9 +

O(NR)

8 ), which is dominated by O(NR)

8 . Imaginary DM couplings with axial-vector

quark couplings lead to O(NR)

4,5 , but dominated by O(NR)

4 .

Thus there is a large variety of cross section for models containing a triple vector

coupling, and in each there can be large differences depending on choices of cou-

plings. This is summarized in Tab.5.6 for light quarks. For heavy quark couplings gv,

the RG mixing between the EFT operator and the equivalent ones for light-quarks

leads to a sizeable contribution. Heavy quark ga couplings lead to a suppressed

scattering according to Eq.(4.3.62). The Wilson coefficients can be found from the

tables in Sec.4.2.3.

For ID, the vertex V1 leads to the same annihilation cross section in the low

velocity limit for real or imaginary couplings, which is always p-wave, despite the

fact that Bν∂νB
0 can couple to an L = 0, S = 0 state, because B0 → 0 in the NR
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limit,

〈σv〉V1
≈
∑
f

m2
χ(Re(gχ)2 + 2Im(gχ)2)Ncv

2

27π(m2
MED − 4m2

χ)2

(
g(f),2
v + g(f),2

a

)
+ θ(mχ −mMED)

(3Re(gχ)2 + Im(gχ)2)2
√
m2
χ −m2

MEDm
5
χ

4πm4
MED(m2

MED − 2m2
χ)2

. (5.4.39)

V2 allows imaginary couplings, and in the low velocity limits reproduces the

result for V1, since Bµ∂0Bµ couples to no (L, S) states and Im(Bµ∂iBµ) picks up

a velocity dependence from the derivative. As mentioned, V2 with real couplings

couples to only the axial-vector quark bilinear but leads to an m2
f suppressed s-wave

cross section,

〈σv〉V2
≈
∑
f

[
Re(gχ)2g(f),2

a Nc

m2
f

6πm4
φ

+
Im(gχ)2Ncv

2m2
χ

9π(m2
MED − 4m2

χ)2

(
g(f),2
v + g(f),2

a

) ]

+ θ(mχ −mMED)
6Im(gχ)4(m2

χ −m2
MED)5/2mχ

πm4
MED(m2

MED − 2m2
χ)2

. (5.4.40)

The vertex structure V3 also allows an unsuppressed s-wave piece proportional to g2
v

or g2
a if the DM coupling is imaginary, i.e. Im(εµνσρB†µ∂νBσ). Consider the 3-vector

component Im(εi0jkB†i ∂0Bj) which due to its charge and parity (-,+) it permits the

L = 0, S = 1 state. This J = 1 initial state can couple to the J = 1 final state three

vectors q̄γiq, q̄γiγ5q and leads to,

〈σv〉V3
≈
∑
f

[
2Ncm

2
χIm(gχ)2

3π(m2
MED − 4m2

χ)2

(
g(f),2
v + g(f),2

a

)
+

Re(gχ)2g
(f),2
a Ncv

2m2
f

3πm4
φ

]

+ θ(mχ −mMED)

[
Re(gχ)4m2

χ

2πm4
MED

+
Re(gχ)2Im(gχ)2

16m2
MED

+
29Im(gχ)4

128m2
χ

]
. (5.4.41)

Real couplings in V3, Re(εµνσρB†µ∂νBσ)Xρ, have the charge symmetry C = +. An

s-wave term cannot arise from the component Re(εi0jkB†i ∂0Bj)X0, for which P = +

(since L and S are then both even and with J = 1, L 6= 0). Alternatively, the

derivative picks up the term p0
1−p0

2 ≈ 0 in the NR limit. This leaves the component

Re(εikj0B†i ∂kBj) with P = −, C = + and therefore L = 1 which is velocity depen-

dent, in fact it cannot couple to the vector bilinear, q̄γ0q which permits no L, S

states, at all. Thus if the DM coupling is real then the axial-vector piece is p-wave,

and the vector piece d-wave.
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In all three cases, the annihilation of DM to mediator pairs above the threshold

mχ > mMED is huge, due to the dominant longitudinal polarization of the mediators

(this was discussed for model 0-V). This creates a huge allowed region which require

small couplings, for which there are no constraints and therefore we do not apply

the MCMC there and simply highlight the region in the plots. Even worse, the

longitudinal modes of the vectors lead to enormous perturbative unitarity violations

in processes such as χ†χ → χ†χ and χ†χ → V V (see Tab.5.1), which require new

physics even at the energies of indirect constraints (E ∼ mχ). Therefore one should

be hesitant about using the simplified model, and should at least check the effects

of the new physics on the bounds we have presented.

Gamma ray constraints can be derived from Fig.5.11, and are only sizeable for

operators OV 4,6, which arise from vertex V1,2 coupling to axial-vector mediators.

To avoid cluttering the discussion we will restrict ourselves to considering each of

the three vertices, assuming all couplings are present and equal, ie that gχ = g+ ig,

gv = ga = g, as this provides the dominant behaviour of ID and DD in each case,

and presents thus the smallest allowed parameter space, allowing future experiments

the opportunity to exclude these models entirely. These are plotted in Fig.5.13, and

show that ruling out such models is in some cases difficult but in some cases possible

through collider constraints .The projection of the allowed regions onto each of the

parameter ranges is shown in Tab.5.5.

5.4.3 Charged fermion mediator (1-F±, 1*-F±)

We conclude the list of models with a vector DM exchanging a charged fermionic.

In the case of complex vector DM, there is only a single diagram (u-channel for our

Lagrangian) for DD scattering, and it generates a large subset of the vector DM EFT

operators. The dominant ones are OV 1 = BµB†µq̄q and OV 5−2 = iIm(B†µ∂
νBµ)q̄γνq

since they lead to O(NR)

1 . The latter dominates by a factor mχ/mN , and thus the

DD constraints remain strong even in the chiral limit whereby OV 1 is suppressed by
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Figure 5.13: As for Fig.5.1 for a spin-1 DM candidate exchanging a neutral vector mediator

with a ūu pair, for the vertex structures V1,2,3, upper left, upper right, and bottom respectively.

Collider bounds shown as dotted line and taken from [12].
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Non-zero Coup. ID DD

Re(gχ), g
(f)
v p-wave O(NR)

14 (q, v⊥)

Re(gχ), g
(f)
a p-wave O(NR)

12 (v⊥)

Im(gχ), g
(f)
v p-wave O(NR)

5 (q, v⊥)

Im(gχ), g
(f)
a p-wave O(NR)

9 (q)

Non-zero Coup. ID DD

Re(gχ), g
(f)
v p-wave ≈ 0

Re(gχ), g
(f)
a s-wave (m2

f ) O(NR)

10 (q)

Im(gχ), g
(f)
v p-wave O(NR)

1 (1)

Im(gχ), g
(f)
a p-wave O(NR)

7 (v⊥)

Non-zero Coup. ID DD

Re(gχ), g
(f)
v d-wave O(NR)

11 (q)

Re(gχ), g
(f)
a p-wave O(NR)

14 (q, v⊥)

Im(gχ), g
(f)
v s-wave O(NR)

8 (v⊥)

Im(gχ), g
(f)
a s-wave O(NR)

4 (1)

Table 5.6: The possible configurations of couplings which lead to distinct behaviour of the ID

and DD constraints for the models 1-V and 1*-V, for the vertex structure (from top to bottom)

V1,2,3,. The suppressions of each of the NR operators by q or v⊥ is given in brackets.

mq/mMED. For the complex vector:

C
(N)
1 =

2m2
N

(m2
χ −m2

MED)

∑
q′=q,Q

(
f

(N)
Tq′

(
|g(q′)
a |2 − |g(q′)

v |2
) mMED

mq′
+ f

(N)
Tq′

(
|g(q′)
v |2 + |g(q′)

a |2
)

+2V(N)
q′

(
|g(q′)
v |2 + |g(q′)

a |2
) mχ

mN

)
. (5.4.42)

If the DM is real, thenOV 5−2 is absent and choosing chiral couplings one can suppress

the contribution to O(NR)

1 by mq/mMED,

C
(N)
1 =

2m2
N

(m2
χ −m2

MED)

∑
q′=q,Q

f
(N)
Tq′

((
|g(q′)
v |2 − |g(q′)

a |2
) mMED

mq′
+
(
|g(q′)
v |2 + |g(q′)

a |2
))

.

(5.4.43)

For heavy quarks the constraints are suppressed with respect to the light quarks due

to the heavy quark loop by ≈ 0.1mq/mMED. For ID, any choice of couplings retains

an unsuppressed s-wave contribution to 〈σv〉, for complex and real DM respectively,

〈σv〉 ≈
∑
f

Nc

((
|g(f)
v |2 − |g(f)

a |2
)2

(4m2
χ + 5m2

MED) + 32m2
χ|g(f)

a |2|g(f)
v |2

)
36π(m2

χ +m2
MED)2

, (5.4.44)

〈σv〉 ≈
∑
f

Nc

((
|g(f)
v |2 − |g(f)

a |2
)2

(4m2
χ + 3m2

MED) + 32m2
χ|g(f)

a |2|g(f)
v |2

)
9π(m2

χ +m2
MED)2

. (5.4.45)
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For chiral couplings gv = ±ga the cross section scales as 〈σv〉 ∝ m2
χ/(m

2
χ +m2

MED)2.

For non-chiral couplings, however, we find 〈σv〉 ∝ m2
MED/(m

2
χ +m2

MED)2 which weak-

ens the dependence on mMED and strengthens the constraints. This is the same

behaviour as for DD, since in the EFT the scalar operator (which dominates nu-

clear scattering) is also the operator which provides the s-wave contribution to 〈σv〉.
Since the constraints are fairly similar between real and complex DM, we show the

complex case only in Fig.5.14. Models coupling to light quarks are ruled out due to

the strength of the DD and ID constraints in both the chiral and non-chiral limits

(Fig.5.14 (a) and (b)). Models coupling to heavy quarks can produce thermal DM

candidates if the masses and couplings are large enough; the DD constraints are

suppressed but the ID limits are still strong, as shown in Fig.5.14 (c) and (d). Fi-

nally the allowed regions are projected onto each of the parameter dimensions and

shown in Tab.5.5.

Perturbative Unitarity : The process q̄q → F̄F leads to an energy indepen-

dent bound of,

mχ & mMED

(( |ga|
4π

)2

−
( |gv|

4π

)2
)1/2

+mq

(( |ga|
4π

)2

+

( |gv|
4π

)2
)1/2

, (5.4.46)

taking the largest allowed couplings, and including the stability of the DM, we

require masses 0.3mMED . mχ . mMED which certainly impacts the allowed param-

eter space, unless the couplings are chiral in which case the result is suppressed by

(mq/mMED). The bounds are displayed in Fig.5.14 but are not implemented into the

MCMC.

LHC Bounds : The dominant collider bounds come from couplings toOV1,V2,V5−2,V9[12].

If the DM is complex and gv 6= ga then all four operators are present. If the cou-

plings are chiral, gv = ga, then the contribution to OV 1 is suppressed by mq/mMED

but the contribution to OV 5−2 remains. These are shown for illustration in Fig.5.14

as dotted lines.
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Figure 5.14: As for Fig.5.1 for a complex spin-1 DM candidate exchanging a charged fermionic

mediator with a pair of SM fermions, ūu (top row) or b̄b (bottom row). The left (right) columns are

for chiral (vector) couplings. Dotted lines correspond to LHC bounds in the top row, or unitarity

bounds in the bottom row. The region to the left of the dotted lines in the bottom row leads to

perturbative unitarity violations. The region below the dotted lines in the top row is excluded by

LHC data.
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5.5 Conclusions

The task of the preceding chapters is a simple one, to consider how constrained the

parameter space of a WIMP DM is. This chapter quantifies that question; we have

produced a list of 16 UV complete simplified models which introduce a mediator to

connect the DM field to the SM fermions (Chapter 2). Subject to these assump-

tions we have then explored the constraints on each model in detail, focussing on

quark (rather than lepton) couplings since these lead to the cleanest DD signals.

A WIMP must be produced thermally with the correct relic density (according to

Chapter 1 Sec.1.2.5), it also must evade a large literature of indirect searches (out-

lined in Chapter 3), as well as gamma-ray line searches, and even more powerful

direct searches (outlined in Chapter 4). Although usually dominated by tree level,

Both ID and DD limits are calculated to the one-loop level as necessary.

Amongst the various constraints there is one conspicuous absence. We have

avoided a complete calculation of collider bounds; (although we have added illustra-

tive constraints for some models) this is sensible for models which are not SU(2)L

gauge invariant and which may violate perturbative unitarity, both of which are

more likely to be manifest at high energies. We have calculated the dominant viola-

tions of unitarity for the relevant models (those with vector fields), and considered

where this would lead to a model which is ‘too simplified’.

It is clear that there is as much variation in constraints in the particular choice

of couplings within a model, as there is between the models themselves. For each

model, and each choice of couplings, we have performed an MCMC scan over the

masses and coupling. It is difficult to summarise this into a single conclusion, and

our aim was not to. Instead, we have provided summarised plots of allowed regions,

finding that some models are ruled out entirely, and some evade almost all the con-

straints. These results are of use to any model builders, to give them a cursory idea

of how constrained a model might be.

Naturally, such a study will make several approximations. In Chapter 7, we will
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test the accuracy of the results presented here by tackling each of these assumptions

for the model 1/2-S±.



Chapter 6

Solar Neutrino Constraints from

Direct Detection

Direct detection of DM is a rapidly evolving field, and the next generation of ex-

periments are soon to begin operation with unprecedented sensitivity to DM-SM

scattering, so much so that they will hit the neutrino floor whereby neutrino scat-

tering presents a background. In this study, we will demonstrate that this sensitivity

allows for the measurement of neutrinos which will improve the precision of neu-

trino fluxes, and provide very robust and powerful constraints on generic new physics

which couples to the neutrino sector.

6.1 Neutrinos from the Sun

Experimental studies of solar neutrinos began in 1968 [286] with the measurement

of the total flux by Ray Davis Jr, a third of what was expected by the Standard

Solar Model (SSM) at the time [287]. In the subsequent decades the theoretical and

experimental predictions have vastly improved and the discrepancy resolved, indeed

we now know that neutrinos have mass [288], and that this mass causes them to os-

cillate into a mixture of the three neutrino flavours, which can have dramatic effects

in matter (the MSW effect) [289–292].

To understand the origin of neutrinos in the Sun, Fig.6.1 shows the normaliza-

196
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tions and errors of the various solar neutrino fluxes, and Fig.6.2 shows their energy

spectra. Neutrinos are predominantly produced through the pp-chain which is re-

sponsible for fusing Hydrogen in the Sun (and stars of similar mass),

p + p → d+ e+ + νe . (6.1.1)

These neutrinos are very low energy (Eν . 400 keV) and the remaining ∼ 10% of

neutrinos produced via other reactions have higher energies. Deuterium is also pro-

duced via p+e−+p→ d+νe (the pep neutrinos), which is kinematically less probable

than Eq.(6.1.1), and which also produces mono-energetic neutrinos (Eν ∼ 1.4 MeV).

The deuterium fuse to produce 3He, and these fuse to produce 4He. A small amount

of neutrinos are produced by 3He + p →4 He + e+ + νe (the hep neutrinos). Two

Helium isotopes may fuse to produce 7Be, which may then produce neutrinos via

electron capture 7Be + e− →7 Li + νe which results in two line spectra at 0.86 MeV

and 0.38 MeV in the ratio 9 : 1. The 7Be may form 8B by combining with a proton,

and the 8B subsequently decays to produce the boron-8 neutrinos 8B→8 Be+e++νe

with Eν . 15 MeV.

Hydrogen fusion may also take place via the CNO cycle, which accounts for only

1% of fusion in the Sun, but is more important in heavier stars. This mechanism

gives rise to the so-called 13N, 15O, 17F neutrinos with energies Eν . 1 MeV.

Flux Source Flux (cm2s−1) Error (%)

pp 6.03× 1010 0.6

pep 1.47× 108 1.2

hep 8.31× 103 30

7Be 4.56× 109 7.0

8B 4.59× 106 14

13N 2.17× 108 14

15O 1.56× 108 15

17F 3.40× 106 16

Figure 6.1: Normalizations (with errors) for the theoretical solar neutrino fluxes, taken from the

AGSS09-SFII standard solar model [13].
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Figure 6.2: Energy spectrum of solar neutrinos, with normalizations as in Fig.6.1.

At the present time only four of these contributions to the solar neutrino flux

have been measured, the 8B , pp, pep, and 7Be. The latter three have all been mea-

sured by the Borexino Collaboration [14, 293], and the 8B by the Sudbury Neutrino

Observatory (SNO) [294].

The neutrino energies that an experiment is sensitive to depend strongly on the

mass of the target particles from which the neutrinos scatter. In this way, DD

experiments, which are tailored to nuclear recoils (and possibly electron recoils),

offer a tantalizing prospect to measure both solar neutrino-nuclear scattering and

the unmeasured CNO neutrinos for the first time.

6.2 New Physics in the Neutrino Sector

Many regard the neutrino sector as a likely place in which we might encounter

physics beyond the standard model (BSM). The neutrino masses themselves are not

strictly BSM, since one can accommodate for them in the same way as for other

fermions by the addition of a singlet, right handed νR, but why are they so small?
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Much experimental effort is yet to come, pinning down among other things the exact

fermionic nature of neutrinos (whether Dirac or Majorana fields), a measurement of

the Dirac CP phase, the mass hierarchy, and a more precise determination of their

mixing angles.

By now, a plethora of models exist which introduce new physics in the neutrino

sector [295]. However, since this is a phenomenological study, with the reasonably

narrow scope of DD and neutrino detectors, we do not intend to build a detailed

and complete model. Instead, since we wish to have an observable signal inside

terrestrial experiments we simply require that the lepton sector is coupled with the

new physics (leading to neutrino-electron scattering), or that the quark sector is

coupled also (leading to neutrino-nucleus scattering).

In order to keep the theory renormalizable, any new couplings in the Lagrangian

must have mass dimension < 4. This makes a direct coupling between neutrinos and

electrons or quarks which also preserves the SM gauge symmetries impossible, and

we must introduce at least one new particle to the theory. Since the SM contains

left-handed neutrinos only, one immediately constructs the Lagrangian,

Lnp =− 1

4
ZµνZµν +mZ′Z

′µZ ′µ + gν,Z′ ν̄Lγ
µνLZ

′
µ

+ Z ′µ
(
gl,v l̄γ

µl + gl,al̄γ
µγ5l

)
+ Z ′µ

(
gq,v q̄γ

µq + gq,aq̄γ
µγ5q

)
, (6.2.2)

where l = e, µ, τ and Zµν ≡ ∂µZ ′ν − ∂νZ ′µ is the field strength of the Z ′. The

mediator Z ′ is similar in its couplings to a SM Z boson, hence the notation. It is

sometimes also denoted a dark photon. When gl,a = 0 (gl,v = 0) the particle is

known as a vector (axial vector) mediator.

In principle we can allow couplings to a spin-0 boson, φ, however since ν̄LνL =

ν̄Lγ
5νL = 0, we must also introduce an inert right-handed neutrino νR in order to

have viable couplings;
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Lnp = ∂µφ†∂µφ+m2
φφ
†φ

+ gν,φ (ν̄LνRφ+ h.c.) + φ
(
gl,sl̄ l + igl,pl̄γ

5l
)

+ φ
(
gq,sq̄ q + igq,pq̄γ

5q
)
, (6.2.3)

where gl,s = 0 (gl,p = 0) the particle is known as a scalar (pseudo-scalar) medi-

ator.

Eq.(6.2.2) and Eq.(6.2.3) represents the simplified models we will be using for

the rest of the study, but note that a final possibility which we do not consider

here is a spin-2, or tensor, mediator, T , which would introduce a neutrino coupling

ν̄LσµννLT
µν .

6.3 Neutrino Detection in Direct Detection Ex-

periments

Direct Detection (DD) experiments are primarily designed to look for weakly inter-

acting dark matter. The technology for DD has been steadily improving since the

pioneering paper by Goodman and Witten [209] in 1985. They all share similar prin-

ciples, in that they attempt to measure the small amount of energy release (∼ O(1)

keV) when a DM particle scatters from either an electron or nuclei (referred to as

electron recoil and nuclear recoil), this may be through a phonon and ionization

signal in the case of CDMS [270], or through scintillation in the case of XENON,

LUX [267, 296], and plenty of other detections mechanisms exist.

The primary obstacle to such a search is the expected number of signal events,

which can be as low as one per year. A vast background reduction must be achieved

in order to stand a chance, and so most DD experiments are built far underground,

extremely radio pure, with shielding and fiducial volume cuts to reduce background

from radioactive materials.
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However, one can never shield an experiment from neutrinos. In general, neu-

trinos do not provide a background simply because they are too low energy and

scatter so rarely. This may not be so in the current era of DD technology, as was

first noticed as early as 1985 [297–299]. The irreducible neutrino background is now

referred to as the neutrino floor. It was noticed recently that the neutrino spec-

tra can even mimic a DM candidate with a mass of around 6 GeV [300], although

directional detection techniques may help to break the degeneracy, since neutrinos

originate primarily from the Sun, whereas the DM flux is homogeneous in the vicin-

ity of the earth to a good approximation.

As the reader may have anticipated, we do not wish to view neutrinos as a back-

ground to the search for DM, but instead pose the question of how well such neu-

trinos may be measured. The motivations for considering this question are twofold,

1. A detection of neutrinos scattering from nuclei, often referred to as coherent

neutrino scattering, is a long standing theoretical prediction (1974) [301, 302],

but is yet to be experimentally measured. Thus, DD would provide the first

verification of this important prediction.

2. If new physics is lurking in the neutrino sector, then DD machines provide an

excellent place to detect this new physics. At the very least, it is important

to quantify how new physics would manifest itself, and the extent to which

bounds may be placed.

6.3.1 Neutrino Interaction Cross Sections

We briefly review some approximate formulae for neutrino scattering in both the

SM, and with the additions of Lagrangians Eq.(6.2.2) and Eq.(6.2.3).

Neutrino-Electron Scattering (SM)

In the case of electron scattering, the cross section is lepton-flavour dependent; all

neutrino flavours scatter via a t-channel neutral-current diagram, but νe scatters
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also via an s-channel charged-current diagram.

dσSM

dER

∣∣∣∣
µ,τ

= −meG
2
F

2πE2
ν

(
−Eν2

(
8sW

4 − 4sW
2 + 1

)
+ 8EνERsW

4 (6.3.4)

+2ERsW
2
(
−2ERsW

2 + 2mesW
2 −me

))
,

dσSM

dER

∣∣∣∣
e

= −meG
2
F

2πE2
ν

(
−Eν2

(
8sW

4 + 4sW
2 + 1

)
+ 8EνERsW

4 (6.3.5)

+2ERsW
2
(
−2ERsW

2 + 2mesW
2 +me

))
,

where ER and Eν are the energies of the recoiling electron and incoming neutrino

respectively. Since ER/Eν � 1 these expressions may be simplified,

dσSM

dER

∣∣∣∣
µ,τ

≈ G2
Fme

2π
(8s4

W − 4s2
W + 1) , (6.3.6)

dσSM

dER

∣∣∣∣
e

≈ G2
Fme

2π
(8s4

W + 4s2
W + 1) , (6.3.7)

and the differential cross section is approximately constant with energy.

Neutrino-Electron Scattering (BSM)

The interaction with the spin-0 mediator φ, Eq.(6.3.8), gives rise to a lepton-flavour

independent cross section,

dσBSM

dER

∣∣∣∣
e,µ,τ

≈
g2
ν,φmeER

2πE2
ν

(2g2
l,sme + g2

l,pER)

(2meER +m2
φ)2

, (6.3.8)

since me � ER. For a spin-1 mediator Z ′, there are also interference terms with

the SM neutral-current diagram (this interference term also introduces a flavour

dependence of the interaction),

dσBSM

dER

∣∣∣∣
e,µ,τ

=
g2
ν,Z′me

2πE2
ν (2ERme +m2

Z′)
2

(
2(2E2

ν + E2
R − 2EREν)

(
g2
l,a + g2

l,v

)
−4(E2

R − 2EνER)gl,agl,v + 2ERme

(
g2
l,a − g2

l,v

))
≈

2g2
ν,Z′me

π (2ERme +mZ′
2) 2

(
gl,a

2 + gl,v
2
)
. (6.3.9)
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The cross terms (necessarily flavour dependent) are,

dσZ−Z′

dER

∣∣∣∣
e

=
1

4πE2
ν

√
2megν,Z′GF

(2ERme +m2
Z′)

(
2(gl,v + gl,a)

(
E2
ν(1 + 2s2

W )−meERs
2
W

)
+(gl,v − gl,a)

(
ERme(1 + 2s2

W )− 4s2
W (Eν − ER)2

))
≈

√
2megν,Z′GF

2π(2ERme +m2
Z′)

(gl,v + gl,a(1 + 4s2
W )) , (6.3.10)

dσZ−Z′

dER

∣∣∣∣
µ,τ

= − 1

4πE2
ν

√
2mlgν,Z′GF

(2ERml +m2
Z′)

(
2(gl,a + gl,v)

(
E2
ν(1− 2s2

W ) +mlERs
2
W

)
+(gl,a − gl,v)

(
ERml(1− 2s2

W ) + 4s2
W (Eν − ER)2

))
≈ −

√
2mlgν,Z′GF

2π(2ERml +mZ′)

(
gl,a + gl,v

(
1− 4sW

2
))

. (6.3.11)

We see from Eq.(6.3.9) that the case of a vector or axial vector coupling are

identical. This degeneracy is broken by the cross terms in Eq.(6.3.11), however these

are subdominant, and in the end we expect axial vector and vector interactions to

be indistinguishable in electron recoils.

Neutrino-Nucleus Scattering (SM)

Neutrino scattering from nuclei is considerably more complicated than electron scat-

tering, because the bound-state structure of the nucleus must be accounted for. At

the quark level, we have introduced the Lagrangians in Eq.(6.2.2) and Eq.(6.2.3),

however since the energy of the scattering is so low (or equivalently, the Compton

wavelength of the neutrino so large), quarks are not the relevant degrees of freedom,

instead the neutrino scatters from nucleons.

In order to account for the scattering from nucleons, one must take the hadronic

matrix elements of the quark Lagrangian, which introduces nucleonic form factors,

and replaces quark spinors with nucleon spinors. This procedure is covered in Chap-

ter 4, Sec.4.3.

The Lagrangian is now written in terms of nucleon currents N̄ΓN where Γ =

{1, iγ5, γµ, γµγ5} gives the spinor structure of the interaction, but the bound state

structure of the nucleons within the nucleus must also be accounted for. This in-
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troduces a second set of nuclear form factors. In this case, the so called Helm form

factor [303] fits the energy dependence of the form factor well, and we simply use a

different normalization for each interaction.

Coherent neutrino-nucleus scattering occurs for a scalar or vector coupling (i.e

N̄N or N̄γµN ), in this case the matrix elements of the scatterings with each indi-

vidual nucleon add coherently (with no relative phase), and so the interaction with

the nucleus is ∝ A and thus σ ∝ A2. This is a significant enhancement for heavy

nuclei such as Xenon (A2 ∼ 104).

On the other hand, other interactions such as pseudoscalar and axial vector (i.e

N̄γ5N or N̄γµγ5N ) are not coherent. Instead, for an axial vector interaction, the

nuclear interaction is sensitive to the nuclear spin Jnuc, and σ ∝ J2
nuc. In order to

find Jnuc we use values from a simple shell model, where the nuclear spin is approx-

imately given by the J quantum number of any unpaired nucleon (thus nuclei with

even A are completely insensitive to axial vector interactions).

In the SM, the neutrino-nucleus scattering is given by a coherent vector interac-

tion via a Z,

dσSM

dER

∣∣∣∣
nuc

= F 2(ER)
mnG

2
F

2π

(
1− ER

Eν
+
E2
R

2E2
ν

− mnER
2E2

ν

)
≈ F 2(ER)

mnG
2
F

2π

(
1− mnER

2E2
ν

)
, (6.3.12)

where F 2(ER) ≡ A2F 2
helm(ER) is the form factor squared, and mn is the mass of the

nucleus. There is also an axial vector contribution but it is neglected since Jnuc � A.

Neutrino-Nucleus Scattering (BSM)

For a neutral spin-0 mediator, the interaction is coherent and the cross section is,

dσBSM

dER

∣∣∣∣
nuc,φ

≈ 9A2ERmn (gν,s
2 + gν,s

2)

4πE2
ν(2mnER +m2

φ)2

(
ERgq,p

2 + 2g2
q,smn

)
, (6.3.13)
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and as with the electron scattering there are no interference terms with the SM. For

vector mediator Z ′,

dσBSM
dER

∣∣∣∣
nuc,Z′

=
mn (gν,v

2 + gν,a
2)

2πE2
ν(2mnER +m2

MED)2

(
9A2g2

q,v(2E
2
ν + E2

R + ER(mn − 2Eν))

+9g2
q,a 〈S〉 (2E2

ν + E2
R + ER(mn − 2Eν))

)
+

3GFQWmn

2
√

2πE2
ν(2mnER +m2

MED)
(gq,agν,a 〈S〉ER(ER − 2Eν)

−Agq,vgν,v(2E2
ν + E2

R − ER(2Eν +mn))
)

≈9g2
νmn(2E2

ν + ERmn)

πE2
ν(2mnER +m2

Z′)
2

(
A2g2

q,v + g2
q,a 〈Sn〉2

)
− 3

√
2gνGFQWmn

4πE2
ν(2mnER +m2

Z′)

(
2gq,a 〈Sn〉EREν + Agq,v(2E

2
ν − ERmn)

)
,

(6.3.14)

where we have included the interference with the SM and the spin of the nucleus

〈S〉 (equivalent to Jnuc).

6.4 Event Rates for Direct Detection

Now that we have the individual differential cross sections for scattering, dσ/dER,

we review the calculation of the total event rate (or ‘recoil rate’) in a detector. The

total recoil rate (per unit energy) is given by,

dR

dER
= ε

∑
T

1

mT

∫
Eν,min

dEν
dφ

dEν

dσT
dER

, (6.4.15)

where the sum extends over all targets T (both electron and nuclear) with mass

mT per particle, with an exposure ε (conventionally in kg-days or ton-years). The

integral over the incoming neutrino energy runs from the highest accessible energy

to its minimum,

Eν,min =
1

2

(
ER +

√
E2
R + 2mTER

)
. (6.4.16)

The incoming neutrino flux spectrum dφ/dEν is plotted in Fig.6.2, and the differ-

ential cross sections for scattering with target T , dσT/dER, are given in the previous
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section.

The behaviour of the electron recoil cross section, dσe/dER, is shown in Fig.6.3,

against mediator mass. The dependence is simple and arises from the propagator of

the mediator so that,

dσe
dER

∝ (2meER +mφ,Z′)
−2 . (6.4.17)

From Eq.(6.3.9) the vector and axial vector interactions are approximately de-

generate (neglecting the subdominant cross terms of Eq.(6.3.11)), and far larger

than both the scalar and pseudo-scalar interactions, Eq.(6.3.8). The SM result is

reproduced in the limit of heavy mediators mX & 100 MeV. The scattering with νe

is enhanced compared to νµ,τ .
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Figure 6.3: Differential cross sections, per target particle, including the SM contribution for a

neutrino energy of Eν = 10 MeV (8B and pp ν for NR and ER, right and left panel respectively)

and recoil ER = 1 keVer,nr. The mediator is scalar, pseudoscalar (φ) vector or axial-vector (Z ′), a

coupling g ≡ gν,φ = ge,i where i = s, p, v, a respectively.

The behaviour of the scattering rate is similar for nuclear recoils. We show in

Fig.6.3 the behaviour of the cross sections for electron nuclear recoil against the

coupling combination gν,{φ,Z′} · gq,{s,p,v,a}, for different materials used in DD experi-
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ments. The SM result is reproduced in the limit g → 0 or mφ,Z′ →∞.

The sensitivity from different target materials is fairly simple; the coherence ef-

fect σ ∝ A2 in vector and scalar interactions favours heavier targets. On the other

hand, the axial vector interaction is far weaker, as it is not coherent σ ∝ 〈S〉 ∼ O(1).

In addition, some materials have no isotopes with a non-zero angular momentum

and hence are completely insensitive to axial vector interactions.

A useful way to compare different detector set-ups is to consider the total event

count, NTOT, against the threshold energy, Eth, as shown in Fig.6.4. We consider

both ER (left panels) and NR (right panels). Firstly, following Eq.(6.4.16), ER are

sensitive to the huge flux of pp neutrinos, since mT ∼ 0.5 MeV, ER ∼ 1− 100 keV

and so Eν,min ∼ 16− 217 keV. NR have mT ∼ 10− 100 GeV, ER ∼ 1− 100 keV and

Eν,min ∼ 2 − 70 MeV, so they are mainly sensitive to 8B neutrinos (along with a

higher flux of neutrinos from the CNO cycle, if the target mass and/or recoil energy

is sufficiently low).

Each representative detector we have chosen contains a different target material.

For electronic recoils the material dependence is very weak, essentially scaling with

the number of electrons per unit mass of the detector (proportional to Z/A). For

the nuclear recoils (right panels of Fig.6.4), the material dependence is more signif-

icant. The rightmost curve in each plot comes from the 8B neutrino spectra, and

each material becomes sensitive to the CNO neutrinos at a different energy, since

Eν,min ∝
√
mN . 1 MeV, lower mass targets become sensitive to CNO neutrinos at

a higher threshold.

The shape of the ER curves is simpler, for heavy mediators (independent of

particular interactions) the cross section is dσ/dER ∝ (ER)n with n ≥ 0, then the

threshold has very little effect. For light mediators however, the propagator con-

tributes an (ER)−2 and then dσ/dER ∝ (ER)n with n < 0, now the event rate is

very sensitive to the threshold, the degree of sensitivity depends on the number of
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ER factors in the numerator.

The same is true in the case of NR (right panels), however the trend is more

difficult to see. Another difference has been illustrated in the fourth panel; the

coupling has been chosen in such a way that the Z-Z ′ interference term (which is

negative) is of similar size to the SM contribution. The event rate is reduced, and

this is especially noticeable at very low threshold. This effect is unique to the vector

mediator across the models we have chosen.

6.5 New Physics in Current Generation Experi-

ments

We have seen how various detector parameters affect the sensitivity to neutrinos,

and shown how this differs for ER and NR. Electron recoils are sensitive to the lowest

energy neutrinos, and so decreasing the detector threshold yields no improvement

in the SM event count below Eth ∼ 5 keV since no extra neutrino flux is accessed.

Instead, since electron recoils often have larger statistics compared with NR, the

detector exposure has the largest effect1.

For NR, the sensitivity depends on the material chosen (favouring lighter nuclei),

the exposure, and the threshold, since a sufficiently low threshold accesses more 8B

neutrinos, and for very light nuclei, neutrinos from the CNO cycle.

It is important to consider two additional detector effects: efficiency and energy

resolution. The efficiency ε(ER) < 1 is an energy dependent normalization applied

to the event rate, which includes the effects of various cuts applied to the detector

to reduce background (for example to remove ER backgrounds). The detector res-

olution σ(E) accounts for the error induced in the inferred energy when counting

1Depending on the relative size of the background the sensitivity will scale with the exposure

(if the background is zero) or as the square root of the exposure (if the background is large)[271].
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Figure 6.4: Electron e − ν recoil (left) and nuclear n − ν recoil (right) integrated rates as a

function of the threshold energy Eth. Electron recoils are normalised to 132Xe while nuclear recoils

are plotted for a variety of target materials. Top row: scalar coupling; middle row: vector; bottom

row: axial-vector. coupling.
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individual quanta (electrons or photons) which have a natural Poisson distribution

(allowing the number of quanta to fluctuate upwards or downwards).

Whilst the efficiency certainly decreases the total event rate, the detector reso-

lution can actually increase the total number of events passing the threshold cut. If

the distribution of events is sharply increasing with decreasing recoil energy, then

there will be more events which randomly upscatter from below the threshold, than

those which downscatter from above the threshold, and thus an overall gain of events.

These effects are included in the following modification of Eq.(6.4.15),

dR

dER
= ε(ER)

∫
dE ′

dR

dE ′
1√
2πσ

exp

[
−(E ′ − ER)2

2σ2

]
. (6.5.18)

As an illustration of the present status, we consider several important current

DD detectors;

1. The LUX collaboration recently updated their results [268], achieving an en-

ergy threshold of Eth = 1.1 keV to nuclear recoils, and an exposure of 1.4 · 104

kg-days. We take the efficiency from Fig.1 of [268], and an energy resolution

of σ(ER) = 0.2E 0.6
R , from a fit to Fig.12 of [304].

2. The SuperCDMS collaboration [266] provide data on a WIMP search with

an exposure of 577 kg days, and threshold of Eth = 1.6 keVnr. We take

the efficiency from Fig.1 of [266], and neglect the energy resolution since it is

very small. In total 11 events were detected. ER events are removed as they

constitute a large background, hence SuperCDMS is only sensitive to NR.

3. Finally we consider the very recent results of CDMSlite [20], which achieved

an extremely low energy threshold of 0.056 keV to ER, with an exposure of 70

kg-days. In this case spectral information is available as the data are split into

four energy bins. We modify the likelihood ratio analysis to include multiple

bins (see Sec.4.5.1). Since CDMSlite cannot distinguish ER from NR, we can

consider constraints on both ER and NR.
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These parameters are summarized in Tab.6.1, along with approximate number

of SM events for ER and NR, both with and without the efficiency cut.

The signals from ER and NR inside detectors are usually different, in that they

produce different amounts of electrons or photons per unit recoil energy. Thus the

signal from the detector actually defines two energy measures, those for an electron

recoil of energy Eer, in units keVee and those for a nuclear recoil of energy Enr is units

of keVnr. For a given window in Enr, the corresponding window in Eer is usually

at lower energies. We will now provide some approximate formuale for converting

between the two.

In SuperCDMS and CDMSlite, the total phonon energy is given by,

ET = ER +NeheVb , (6.5.19)

where ER ≡ Enr,er is the recoil energy of either electron or nuclear recoils, Vb = 69

V is the voltage across the detector, and Neh is the charge collection, given by

Neh = ERY (ER)/εγ, and 1/εγ = 0.3 eV−1 is the number of charges collected per

unit energy. For electron recoils the ionization yield Y = 1, whereas for nuclear

recoils it parametrises the quenching,

Y (Enr) =
kg(ε)

1 + kg(ε)
, (6.5.20)

where k = 0.133Z2/3A−1/2 ∼ 0.157 is the Lindhard factor for Germanium, ε =

11.5(Enr/keV)Z−7/3, and g(ε) = 3ε0.15 + 0.7ε0.6 + ε. In SuperCDMS the energy win-

dow Enr ∈ [1.6, 10] keV is equivalent to Eee ∈ [0.3, 2.4] keV.

For liquid scintillator experiments such as LUX, the electron recoil and nuclear
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LUX SuperCDMS CDMSlite

Ref. [268] [266] [20]

E
(NR)
R (keVnr) 1.1-25 1.6-10 0.37-63

E
(ER)
R (keVee) 0.17-5.8 0.3-2.4 0.056-20

Exposure (kg·days) 1.4× 104 577 70

N
(SM,ER)
TOT (pp ν) 0.74 (4.9× 10−5) 0.012 (3.7× 10−4) 0.013 (6.5× 10−3)

N
(SM,NR)
TOT (8B ν) 2.8 (0.081) 0.098 (0.0091) 0.039 (0.020)

N (obs) - 11 0

Table 6.1: Parameters of current generation experiments; the energy window is given for both

electron equivalent energy and nuclear recoil energy. Also given; the exposure, and the total SM

event yield for ER (pp neutrinos) and NR (8B neutrinos), the numbers in brackets include the

efficiency ε(ER) which has a substantial effect.

recoil deposited energies are given by [166, 305] 2,

Eer = w(nγ + ne) , (6.5.21)

Enr = w(nγ + ne)/L . (6.5.22)

The Lindhard factor L is the same as the ionization yield in Eq. (6.5.20) and

is interpreted as the fraction of nuclear recoil energy transferred to electrons or

‘quenching’ of the NR signal, generally this is very low < 20% and most of the recoil

energy is lost as heat. We find the electron equivalent energy Eer = L × Enr using

the same Lindhard model as for CMDS.

2An ‘event’ in the detector is characterized by the signals S1, S2. The production scintillation

photons (nγ = S1/g1) and ionization electrons (ne = S2/g2) from collisions with the liquid xenon

requires an average energy of w = 13.7± 0.2 eV.
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6.6 New Physics in Future Generation Experi-

ments

The next decade will be an exciting time for DD experiments, with the next gener-

ation soon to be built and begin data taking. We have created an idealized set of

second generation (G2) and future generation (beyond G2) detectors, defined simply

by their material, exposure, and threshold. These are listed in Tab.6.2.

Since many of the results are strongly dependent on the energy threshold for

nuclear recoil events, we allow for an optimistic threshold as well as a nominal one.

Our idealized Ge and Si experiments are representative of SuperCDMS [20], our

idealized G2-Xe is similar to LZ [306], with a possible upgrade to Future-Xe, the

Future-Ar is similar to DARWIN [307] and finally we explore the possibility of a very

light target (Neon) which could have an extremely low threshold if the technology

becomes feasible.

The constraints are plotted in the plane mφ,Z′-g. Since we consider each coupling

gl,i={s,p,v,a} separately, g ≡ √gf,igν,X where f = q, l and X = φ, Z ′. These results

are summarized in Fig.6.5.

The first thing to notice is that constraints based on ER tend to be stronger,

due to their dominant statistics, since they are sensitive to pp neutrinos. However,

despite the fact that nuclear recoils are sensitive to the much lower flux of 8B neu-

trinos, the coherent enhancement (∝ A2 ∼ 104) in the case of vector and scalar

mediators does compensate somewhat for the loss of neutrino flux.

The shape of the exclusion limits in Fig.6.5 can be understood again from the

propagator σ ∝ (2mTER + m2
X)−2; for heavy mediators the event rate scales as

NTOT ∝ (g/mX)4, and the constraint is linear in the log g − logmX plane. On the

other hand when the mediator is light, the mass can be neglected in the event rate

since it appears only in the propagator. Then NTOT ∝ g4 the constraint is a plateau
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Figure 6.5: Electron recoil (left) and nuclear recoil (right) limits. Top: scalar coupling; middle

row: vector coupling; lower panels: axial-vector coupling.
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in the log g − logmX plane,

mX �
√

2mTER : NTOT ∝
(

g

mX

)4

, (6.6.23)

mX �
√

2mTER : NTOT ∝
(

g√
mTEth

)4

. (6.6.24)

The two regions meet at m2
φ,Z′ ≈ 2mTEth, and so for electron recoils this occurs

at a lower mass. Consequently the NR constraints can be more powerful at higher

masses.

Since at low mass NTOT ∝ E−2
th , the depth of the plateau is controlled by the

threshold energy of the experiment. In electron recoils there is little sensitivity to

decreasing the threshold, because even for moderate threshold values the lowest en-

ergy solar neutrinos are already accessible. Since the constraints are controlled by

the large statistics of the ER, the most powerful detectors are those with the largest

exposure; in this case the large liquid scintillator experiments.

On the other hand, nuclear recoils are extremely sensitive to the threshold choice,

and the coloured bands which represents the region between nominal and optimal

thresholds is much larger. For many materials, reducing the threshold allows ex-

periments to access CNO neutrinos, and since the event rate rises very steeply with

decreasing energy, the detectors with the lowest thresholds tend to lead to more

powerful constraints.

One must be careful when considering the vector interaction, as there are certain

parameter choices in which the interference between the Z-Z ′ cancels the contribu-

tion from the Z ′ diagram. This can be seen clearly in the silicon NR (purple band),

where a thin strip of parameter space cannot be excluded.

To put these results in context we list a number of other existing constraints

from the literature,

1. Electron or Muon Magnetic Moment; The anomalous magnetic moment
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of the electron or muon, ae,µ
3, is obtained from the one-loop correction to

the QED vertex. If a coupling of the new mediator to leptons is present

(independent of any neutrino coupling) then it contributes at the one loop

level. Formulae for the contribution for each of our models can be found in

[308], and this allows us to produce bounds for each model. The bounds are

quite strong due to the impressive precision of the measurements [241, 309]

aexp
e = 0.00115965218073(28) , (6.6.25)

aexp
µ = 0.00116592091(54) . (6.6.26)

2. Solar Constraints [310]; If the new mediator is spin-1, then mixing with

the SM photon can lead to production of Z ′ in the Sun, particularly resonant

production by plasmons for mZ′ ∼ 100 eV, the observed solar luminosity then

limits the possible energy loss from Z ′. These constraints rely on a tree level

kinetic mixing εF µνZ ′µν and thus do not require couplings to the lepton or

quark sector. Wherever the Z ′ couples to charged fermions the kinetic mixing

operator is generated at 1-loop. The scalar and pseudo scalar mediators cannot

mix with the photon and in these cases the constraints are absent.

3. Atomic Physics [311]; Electron transitions in atoms can safely be described

using non-relativistic (NR) physics, and dominated by a Coulomb potential

which can be derived from the NR limit of QED electron-electron scattering,

V (r) =
e2

4πr

(
1 + βe−r/λ

)
, (6.6.27)

β, λ arise from new physics effects and can be searched for in precisely mea-

sured electron transitions. In our models β = ge,{s,v}/e
2 and λ = 1/mX with

X = φ, Z ′. Axial vector and pseudoscalar interactions lead to different r de-

pendence than that considered above, and consequently the bounds apply only

to scalar and vector mediators.

3This is the deviation of the magnetic moment from its tree level value a = (g− 2)/2 where the

Dirac equation gives g = 2, currently the measured anomalous muon magnetic moment deviates

from its SM prediction by several σ.
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4. Supernovae [312]; During a supernova, energy may be lost by the production

of Z ′ (via bremsstrahlung from protons, since the mediators couple to charged

particles only) which subsequently escape the explosion. The luminosity of

the Z ′ should not exceed the luminosity in neutrinos (which has been mea-

sured from supernova 1987a). Large couplings are not excluded, since the Z ′

rapidly decays to SM particles which remain in the supernovae, or the Z ′ itself

is trapped. Although derived with kinetic mixing in mind, ultimately these

bounds only require a coupling to quarks.

5. Fixed Target [313], A1 [314], APEX [315]; In electron-positron colliders, an

electron beam dump can produce both φ and Z ′, which are radiated by an

electron passing near a proton. The radiated boson may then decay into an

electron-positron pair, whose invariant mass produces a resonance feature at

the mass of the boson. It should be noted that these constraints are based

on formulae which are valid for spin-0 as well as spin-1 bosons, however one

should be careful with the high coupling end of the limits [316], since these

depend on the total width of the boson, and assume a 100% BR into electrons,

gν,Xge,i =
ε2e2

BR(X→ e+e−)
, (6.6.28)

where X = φ, Z ′, and since these limits are based on the formalism of [313],

they apply equally well to i = s, p, v, a.

6. Fixed Target e+e− Collider: The BaBar experiment [317] produce bounds

on the process e+e− → γZ ′, Z ′ → e+e− , µ+µ−, for which the cross section

σ ∝ Br(Z ′ → l+l−) where l = e, µ. We can rescale the given constraints on

the kinetic mixing coupling, ε by,

gZ′,νge,Z′ =

∑
l Br(Z ′ → l+l−)∑

l Br(Z ′ → l+l−)kin.

e2ε2 . (6.6.29)

where the denominator assumes only the kinetic mixing operator is present,

the width can be approximated by

Γkin. = αχ2mZ′

(
3 · 1

3
+R

1

3

)
, (6.6.30)

ΓZ′ = mZ′
(
3 · g2

l,v +Rg2
q,v + 3g2

ν,Z′

)
. (6.6.31)
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In kinetic mixing the ν-Z ′ interaction is highly suppressed since it arises from

loop diagrams, in general (as in our models) there may be a tree level contri-

bution. Then we may apply additional bounds from BaBar which are derived

in [318] for a mono-photon plus missing energy search f(e+e− → γ /E) where

the missing energy comes from the decay of the Z ′ to light Dark Matter states,

but this is equally applicable to neutrino states. The bounds are on ge and

may be converted to our couplings via

g2
e = ge,Z′gν,Z′Br(Z ′ → νν̄), (6.6.32)

since the Z ′ is assumed to have a 100% branching ratio (BR) into DM. In our

models we must take the BR into neutrinos only, and isBr(Z ′ → νν̄) ∼ 1/9−1.

Constraints show little variation between a spin-0 or spin-1 mediator.

7. Borexino [14, 319] : Borexino is a liquid scintillator neutrino detector lo-

cated in Gran Sasso, Italy, measuring ER (and thus requiring a coupling to

electrons), with a good sensitivity to the recoil energy, along with a published

spectrum of backgrounds (mostly from β-decay of radioactive elements). The

energy window ER ∈ [165, 590] keV is mostly sensitive to 7Be neutrinos, with

a small sensitivity to the high energy tail of the pp neutrinos. The fiducial

volume (mass) is 86 m3 (75.5 ton), and the material is roughly 100% 1,2,4-

trimethylbenzene (C9H12, 120.19 g/mol). For the detector resolution we take

σ(E) = 0.86
√
E with E in keV, from Chapter 5 of [320] (Eq.(5.138)). In

Fig.6.7 we show the expected event rate and background sources for the most

recent analysis [14] (408 live days between 2012-2013), for the SM and with

a Z ′. The predicted rate does not quite match the data since we are using

flux normalizations from simulations, whereas Borexino fits the normalization

to the data. The resulting constraints for each of the mediators are shown

below. These show a significant improvement over previous studies [15] which

use earlier data [321], plus do not use spectral information (requiring only an

overall increase in the total event yield above the SM of < 8%).

8. SuperKamiokande III (SK) [322] : The SK experiment (Japan) is a neu-
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Figure 6.6: Constraints (90% confidence limits) on new physics from the Borexino neutrino

detector, calculated using a ∆χ2 method.

trino detector, phase III was completed between 2005-2007.4 We use data

from phase III (from Fig.8.6 of [324]), which has been corrected for efficien-

cies. Comparing theory to data requires including the detector resolution to

achieve a sufficient accuracy; this is given by [322],

σ(E)

[MeV]
= −0.123 + 0.376

√
E + 0.0349, (6.6.33)

as with Borexino, only the electron scattering contributes to the signal, which

is shown in Fig.6.8. The resulting exlcusions (below, Fig.6.9) are weaker than

those from Borexino by an order of magnitude.

To put these constraints on a solid theoretical footing, we will use the well stud-

ied gauged B-L model because it is a trivial extension of our simplified model. In

the SM there are large flavour symmetries in the quark and lepton sector (U(5)4),

which are broken by the mass (Yukawa) terms for the fermions. However there still

remains the global U(1) symmetries Baryon number (B) and Lepton number (L),

in which all the quarks are assigned the same B-number (conventionally 1/3) and

zero L; and the leptons are assigned the opposite L number to their corresponding

neutrinos and zero B charge.

4more recent studies have been published since the completion of this work [323]).
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Figure 6.7: The expected neutrino event rate (cyan line) in Borexino for the SM (left) and for a

benchmark set of parameters in the Z ′ model (right). The dominant backgrounds (dashed lines)

are taken from [14], the signal (solid lines) are separated according to the neutrino source, and the

experimental data shown as black dots without the rather small error bars.

In principle one may gauge these symmetries, however gauging B or L individu-

ally introduces anomalies and thus leads to a sick theory. However, the combination

B-L is anomaly free and thus can be gauged; leading to the introduction of a new

vector gauge boson which couples to the B-L charge and which thus permits the

nuclear-ν and electron-ν scattering. The gauge boson is identical to our Z ′ with

couplings to quarks a factor of 3 smaller than to leptons.

Many of the constraints listed above apply to the B-L model, and these are

shown in Fig.6.10, alongside the ER and NR constraints for Xe and Ge targets (from

Fig.6.5). We also show the current generation DD constraints from Fig.6.5. The

constraints are competitive with the existing constraints which detect the neutrino

scattering5, and actually rule out new parameter space at ∼ 100 MeV masses.

5Note that the Borexino constraints are from Ref.[15] and are weaker than those derived in this

section.
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Figure 6.8: The expected neutrino event rate (solid green) in SuperKamiokande for the SM (left)

and for a benchmark set of parameters in the Z ′ model (right). The signal (dashed lines) are

separated according to the neutrino source, and the experimental data shown as black dots with

error bars with background and efficiencies removed.

6.7 Conclusions

In this study, we have analysed the discovery potential for a broad range of BSM

physics which might couple the neutrino sector of the SM to the rest of the fermions

(leptons and quarks), by exploiting the scattering of neutrinos in future generation

Direct Detection (DD) experiments. We simultaneously analyse the exclusions pro-

vided by the current generation of experiments.

Following discussions in Chapter 2, we have used simplified models in which

we model the new physics as simply as possible (as neutral scalar like and vector

like mediators). We have clarified under what conditions each type of new physics is

most detectable, or conversely, which of the future experiments is best suited to each

case. For example, electronic recoils (ER) provide much greater sensitivity across all

experiments at low mass mediators compared with nuclear recoils (NR). This rather

general statement emphasises that recording of electronic recoils not only reduces

background significantly (its main goal), but allows some powerful constraints to be

imposed.
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Figure 6.9: Constraints (90% confidence limits) on new physics from the SK III data, calculated

using a ∆χ2 method.

Fig.6.10 highlights many of these results in a concrete model (gauged B-L), show-

ing the complimentary exclusion regions from the electronic recoil (ER) and nuclear

recoil (NR) along with other constraints which can be found in the literature includ-

ing self-made constraints for current generation DD experiments LUX, SuperCDMS

and CDMSlite which we take as representative of the most constraining current DD

data.

The future generation, and even current generation DD experiments can uniquely

exclude some part of parameter space, and complimentarily exclude others. They

have the novel aspect of excluding arbitrarily small mediator masses, unlike many

other techniques. This work demonstrates that the neutrino floor, far from being an

impenetrable background to limit the search for dark matter, can yield interesting

bounds on new physics, and even be used to improve knowledge of the solar neutrino

fluxes [1].
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Figure 6.10: Projected 90% CL constraints on the B-L model for nuclear recoils (solid lines) and

electron recoils (dashed) in the optimistic scenarios for G2 germanium (red), G2 xenon (blue) and

future xenon (green). We also show approximate bounds derived from the current SuperCDMS (red

line), CDMSlite (brown solid and dashed lines), and LUX data (blue shaded region). Our bounds

are overlaid on existing constraints. To translate these bounds to the other possible scenarios, one

should keep in mind that some bounds (intermediate grey) only apply when the new mediator

couples to leptons. The supernova bound (brown) only applies to couplings to baryons, while

B-factory bounds (pink) require both. The fifth force constraint (dark grey) applies in either case.

The grey regions, the neutrino scattering bound and the pink region, and the supernova limits are

respectively taken from [15–17].



Chapter 7

Charming Dark Matter

Whereas previous chapters have focussed on breadth of models covering a large

group of DM candidates, we now focus more deeply into one particular model (this

will be closely related to the model 1/2*-S± of Chapter 2).

This chapter will improve on many aspects which were not addressed in the

general model analysis of Chapters 2-5. In particular :

• We explore a model which is fully invariant under the SM gauge symmetries,

in particular SU(2)L meaning that the model is valid above the EW scale.

• The model contains some interesting new phenomenology, including a triplet

of DM candidates coupled to the three quark generations. We parametrize the

breaking of the SM flavour symmetry explicitly.

• We explore several additional constraints, including gamma ray lines, elec-

troweak precision observables (EWPO), decay widths of EW particles, mixing

and rare decay flavour bounds and collider bounds. The latter requires the

full width of the mediator.

One important aspect that we did not specifically address was the usage of sim-

plified models in which the DM couples only to a single flavour of quark, explicitly

breaking the assumption of minimal flavour violation (MFV). Given the remarkable

agreement between the SM and experimentally measured flavour observables it is

225
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natural for new physics models to enforce the MFV assumption to suppress large

NP effects. This assumption limits any quark flavour breaking terms to be at most

proportional to the Yukawa couplings, which are responsible for the small violation

of the flavour symmetry in the SM. This suppresses Flavour Changing Neutral Cur-

rents (FCNCs) and avoids strong constraints from rare decays and neutral meson

mixing. Nonetheless, many such observables are not reproduced by SM calculations

and then allow room for violations of MFV, for example D0 mixing.

Recent studies of simplified models have begun to go beyond the MFV assump-

tions. This has been done in the context of down-type couplings [325, 326], leptonic

couplings [327], and more recently top-like couplings [328]. There is yet to be a

study of up-type couplings. Such models allow a continuous change from the MFV

assumption to strong MFV breaking and can quantify the degree of breaking per-

mitted by the flavour constraints.

Our aim in this chapter is to investigate Dark Minimal Flavour Violation (DMFV)

in the context of up-type couplings, thus extending the work of [326, 328], and to

present statistically robust bounds based on a markov chain monte carlo (MCMC)

approach. By violating the MFV assumption in the up-type quarks we would expect

to find constraints from neutral charm meson (D0) mixing as well as rare decays of

the charm meson, as well as strong constraints from direct and indirect detection

and collider searches. After outlining the details of the models in Sec.7.1, we will

present some important aspects of the model which arise due to the multiplet of DM

such as the decay widths and mass splitting generated through RG effects (Sec.7.2),

before moving on to a robust calculation of bounds:

• Relic Density, Sec.7.3 : We calculate the relic density of all three DM parti-

cles, including their widths and coannihilations and by solving the Boltzmann

equation explicitly. The discussion supplements Chapter 1.

• Flavour Constraints, Sec.7.4 : We provide bounds on the model from D0

mixing, ensuring that the new physics does not exceed 1σ of the experimental

measurement of the mass difference between the heavy and light state of the
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D0. We assess the possibility for constraints on rare decays but find that the

NP is essentially unconstrained in the region of interest.

• Indirect Detection, Sec.7.5 : We include a large collection of constraints

from the literature on the thermally averaged annihilation cross section 〈σv〉
for annihilation into photons, electrons, protons etc. . We also include a study

of gamma ray line searches, generated through loop diagrams, however these

do not provide strong bounds.

• Direct Detection, Sec.7.6 : We calculate the event rate for the most exclud-

ing DD experiments (LUX and CMDSlite) covering the full DM mass range,

including all relevant contributions up to one loop order (including gluon,

photon, Z and h exchange) and matching to a full set of non-relativistic form

factors.

• Collider Searches, Sec.7.7 : We perform a robust simulation of the dominant

signals for a series of monojet, dijet and stop searches for ATLAS and CMS.

• Other Constraints, Sec.7.8 : We compute several other constraints which

are not found to be powerful, for example perturbative unitarity for the 2→ 2

scattering process between the DM and mediator states, electroweak precision

observables (i.e. the constribution of the NP to the Z,W parameters of the

SM), Higgs and Z decay widths.

Including the various constraints named above we can carry out an MCMC scan

over the parameter space, extending the scans to several possible future scenarios.

Results are collected in Sec.7.9.

7.1 DMFV : The Model

The SM (without Yukawa couplings) has a flavour symmetry amongst the quarks,

there are no flavour violating effects such as Flavour Changing Neutral Currents

(FCNC) at tree level. Including the Yuakwa terms, which give the fermions their

mass, breaks this symmetry since it mixes LH and RH fields, and thus flavour chang-

ing effects are proportional to the quark masses. Minimal flavour violation (MFV)
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is then the statement that the only flavour symmetry breaking terms in the BSM

model are either absent or proportional to the Yukawa terms [329].

In the model of Dark Minimal Flavour Violation (DMFV) originally proposed

in [325], the SM flavour symmetry is increased by the inclusion of a U(3) symmetry

in the dark sector,

Sflavour = U(3)QL × U(3)uR × U(3)dR × U(3)χ, (7.1.1)

the U(3)χ symmetry is then broken by the inclusion of a single complex 3×3 coupling

matrix, λ, which also breaks one of the SM U(3) flavour symmetries. The charges

of all the fields are given in Fig.7.2. In the original work U(3)dR was broken [325].

In this work we break instead U(3)uR , and leave the U(3)QL symmetry unbroken to

avoid introducing non-trivial transformations for the new fields under SU(2)L. The

interaction Lagrangian reads1,

Lint = −(λijūR,iχjφ+ h.c.) , (7.1.2)

with Feynman rules in Fig.7.1. Using a singular value decomposition λ may be

written as,

λ = UλDλVλ, (7.1.3)

the 18 free parameters of λ (9 real and 9 complex phases) are accounted for by the

diagonal matrix D with real positive entries (3) and the unitary matrices U, V (3

real and 6 complex phases each).

Three of the phases of U (or V ) may be removed by a rephasing. Additionally,

the U(3)χ symmetry produces an invariance under χi → Uχ
ijχj with Uχ a unitary

matrix, this can be used to completely remove V leaving 6 real parameters and 3

phases,

1The kinetic and mass terms are the same as in Eq.(2.2.5),(2.2.3)
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Uλ =


c12c13 s12c13e

−iδ12 s13e
−iδ13

−s12c23e
iδ12 − c12s23s13e

i(δ13−δ23) c12c23 − s12s23s13e
i(δ13−δ12−δ23) s23c13e

−iδ23

s12s23e
i(δ12+δ23) − c12c23s13e

iδ13 −c12s23e
iδ23 − s12c23s13e

i(δ13−δ12) c23c13

 ,

(7.1.4)

Dλ =


D11 0 0

0 D22 0

0 0 D33

 . (7.1.5)

The presence of complex couplings (δij 6= 0) creates a violation of CP symmetry,

this is also permissible in the MFV assumption, so long as the complex phases are

flavour-blind[329]. Due to the stringent constraints from electric dipole moments

(EDM) in the presence of CP violation we will set δij = 0 throughout.

Since Dλ is diagonal, with real positive entries, and Uλ is unitary then,

λ†λ = (DλU
−1
λ )(UλDλ) = (Dλ)

2, (7.1.6)

is diagonal, however λλ† is not diagonal unless D11 = D22 = D33.

In total we have a 10 dimensional parameter space

{mχ1 ,mχ2 ,mχ3 ,mφ, θ12, θ13, θ23, D11, D22, D33} , (7.1.7)

with degenerate DM masses (or relations amongst the masses) this reduces to 8.

The masses are unbounded, but for a perturbative theory we require λij < 4π given

that θij vary between 0 (no mixing) and π/4 (maximal mixing) this places limits on

Dii,

θij ∈ [0, π/4] , Dii < 4π, (7.1.8)

we will additionally focus on models where mχ,mφ & 1 GeV, so that the DM is a

conventional WIMP candidate and the mediator is sufficiently heavy to decay to at

least the up and charm quarks.
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χj qi

φ
: −i(λ)ijPL

qi χj

φ
: −i(λ∗)ijPR

Figure 7.1: Feynman rules for the DMFV interaction (Eq.(7.1.2)).

U(3)uR U(3)χ SU(3)c U(1)Q U(1)Y

uR,i 3 1 3 2/3 2/3

χi 1 3 1 0 0

φ 1 1 3 2/3 2/3

λij 3 3̄ 1 0 0

Figure 7.2: The representation for the relevant symmetries of the particles introduced in the

DMFV model. All of the particles are singlets under SU(2)L and the other flavour symmetries not

listed.

Although the masses of the DM fields and mediator field are in principle arbi-

trary free parameters, one must impose mχ,min < mφ + mq (with mq the lightest

quark coupled to minimal mass χ) to prevent a tree level decay mχ → φ+ q which

would quickly remove the DM relic abundance. In models coupled only to the top

mχ & 170 GeV. In models coupled to u, c then mφ & mχ. Similarly we must have

mφ > mχ,min + mq, where mq is the lightest quark to which mχ,min couples; this

ensures the mediator is prevented from obtaining a relic abundance and itself being

a DM candidate.

It can be shown that a residual Z3 symmetry exists in the model [77, 325], which

prevents either χ or φ to decay purely into SM particles. This useful symmetry

argument ensures the relic DM (the lightest of the three) is completely stable subject

to the condition in the previous paragraph. It is possible for the heavier χ fields to

decay to the lightest χ (DM), this would only be relevant at cosmologically early

times, before thermal freeze out occurs and it will be shown that the rate of such
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decays is large enough to erase the relic density of the heaviest two DM.

7.2 DMFV : Renormaliation and Mass Splitting

7.2.1 Particle Widths

It is important to consider the decay widths of the DM and mediator. We ensure

that the mediator is unstable and undergoes a two-body decay to at least one of

the DM candidates, this is important to prevent a stable φ acquiring a relic density,

it is also important to have an accurate determination of the width for the collider

signals which arise from the on-shell production and decay of the φ.

The heavy DM particles may undergo a three body decay into a lighter χ plus

a quark anti-quark pair. This is an important effect in the relic density calculation

in which ‘large’ decay widths leave only a single stable relic DM, but ‘small’ widths

may allow the relic density to be distributed across two or three candidates. The

resulting relic densities strongly influence direct and indirect signals, and so we seek

to quantify the effect of the decay width by including it in the Boltzmann equation

which yields the relic density.

The two-body decay width for a particle of mass M (into particles of mass m1,2)

is given by [330],

Γ =
|p̄|

32π2M2

∫
|M|2dΩ, (7.2.9)

with the outgoing momentum p̄ =
√

(M2 − (m1 +m2)2)(M2 − (m1 −m2)2)/2M .

Mediator Width

The scalar mediator φ may decay to DM-quark pairs, with squared matrix element,∫
|M|2dΩ = −N2

c π
∑
ij

λjiλ
†
ij

(
m2
χi
−m2

φ +m2
q,j

)
, (7.2.10)
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and width,

Γ =
N2
cmφ

128π

∑
ij

λjiλ
†
ij

(
1− δ2

χi
− δ2

Q,j

) (
1− δ4

χi
− δ4

Q,j + 4δχiδQ,j + 2δ2
χi
δ2
Q,j

)1/2
,

(7.2.11)

with δχi = mχi/mφ and δQ,i = mQ,i/mφ. This implies that (Γ/mφ) . 9
128π

, which is

a very narrow resonance, similar in magnitude to the Z-boson.

The mediator width becomes relevant wherever the mediator is exchanged in

the s-channel and can go on-shell. For indirect detection and the relic density

calculation the exchange is t-channel, only for direct detection and some collider

processes is the mediator exchanged in the s-channel. In the former, the COM

energy S ≈ (mχ −mq)
2, and so for |mχ −mq| ∼ mφ the mediator can go on shell

and the width should be accounted for. This can be done using the Briet-Wigner

prescription for the s-channel propagator,

i

S −m2
φ

→ i

S −m2
φ + imφΓ

, (7.2.12)

which is a good approximation so long as Γ/mφ � 1 [331, 332]. When the width

becomes large the Briet-Wigner form of the propagator no longer holds and instead

a ‘fully kinetic’ propagator is used

i

S −m2
φ

→ i

S −m2
φ + i S

mφ
Γ(S)

. (7.2.13)

Dark Matter Width

As we have mentioned, the existence of a Z3 symmetry in the DMFV model ensures

the absolute stability of the lightest DM candidate. However, the heavier candidates

may undergo a three body decay, an example diagram is shown in Fig.7.3.

The DM width can be approximated by (where quark masses are neglected)[246]

Γij =
32

(2π)3m3
i

∑
lm

|λliλ∗mj|2θ(mi −mj −mql −mqm)

∫ (m2
i−m2

j )

0

dz

[√
2∆−(∆− −∆+)

+
1

2
(∆+ − 2m2

φ) log

(
∆+ − 2m2

φ − z −
√

2∆−(∆− −∆+)

∆+ − 2m2
φ − z +

√
2∆−(∆− −∆+)

)]
,
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χi

χj

qi

q̄j

φ

Figure 7.3: The dominant three body decay diagram for the heavy DM flavours.

where ∆± ≡ (m2
i ±m2

j). In the limit that ∆− � ∆+,

Γij ≈
64∆5

−

15(2π)3mi∆4
+

|Dii|2(λλ†)jj , (7.2.14)

where the sum runs over all kinematically allowed final state quarks. If mj =

mi(1 + ε) with mass splitting ε < 1 we can further approximate the decay rate,

Γij ≈ mi
16

15π3

ε5

(1 + ε)4
|Dii|2(λλ†)jj . (7.2.15)

7.2.2 Renormalization and Mass Splitting

In the Lagrangian Eq.(7.1.2) the DMFV hypothesis imposes a U(3)χ symmetry

amongst the DM candidates, in particular for the mass term to be invariant the

tree-level masses must be degenerate.

It is possible to keep the symmetry and still split the masses by an operator

∝ λ†λ = (Dii)
2; since the Dii ≤ 4π by perturbativity, this splitting can be made

enormous, if the couplings are set differently for each quark generation. The de-

generacy may also be broken by hand by directly inserting U(3)χ violating terms or

assuming the existence of DMFV breaking terms at a high scale; again the splitting

can be made arbitrarily large.

Even if we do not add Lagrangian terms by hand, it is inevitable that we will

generate a mass splitting by quantum effects. Any symmetries imposed at tree level

are liable to be broken at loop level unless they are gauge symmetries. The resulting
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splitting can be most easily found by calculating the one-loop renormalization of the

theory via the MS scheme. The masses acquire a scale dependence and run with

energy, by assuming that the masses are degenerate at a high scale then they will

be split by a possibly large amount at low energies.

The DMFV model introduces parameters mφ,mχi and couplings λij as well as

the associated fields. Each of these must be renormalized, and the quark masses and

fields will also receive new contributions. We first briefly recall the primary features

of the two most common renormalization schemes.

Renormalization : MS vs On-shell Scheme

We begin with a Lagrangian written in terms of bare quantities, including masses

mB, which are divergent at one loop2. After renormalization the finite renormalized

mass, mR, replaces it. No matter which renormalization scheme one chooses, the

physical mass of the particle should not change. This physical, measurable, mass

is also called the pole mass, mP , since it corresponds to the pole in the propagator

(/p −mP )−1. To renormalize the mass at one loop one computes the 1PI two-point

function Σ2(/p), which is schematically Σ2 = A/p+BmR, where A,B have in general

both finite and divergent parts. Including counter terms for the mass and field

renormalization, the complete 1PI amplitude is,

Σ2(/p) = /p−mR + Σ2(/p)− (δZ + δm)mR + /pδZ .

In the on-shell scheme we choose the counterterms so that the renormalized mass

mR is the pole of the propagator (i.e. the pole mass), this means the counter terms

will include finite as well as divergent pieces. Because the physical (pole) mass is

mR, there is no mass running.

Alternatively, we can work in the MS scheme, which is defined by the requirement

that the counter terms absorb only the divergent parts of the 1PI amplitude, and

thus the propagator would be written Σ2 = /p −mR + Σ2,finite(µ), and the physical

2A subscript B will be used to denote bare quantities.



7.2. DMFV : Renormaliation and Mass Splitting 235

χi χj

qk

φ

Figure 7.4: The one-loop contribution to the DM self-energy from the DMFV model.

(pole) mass does not coincide with the renormalized mass mR, there is an extra

finite term which has some scale dependence, and thus the mass runs

mP,on−shell = mR ,

mP,MS = mR − Σ2,finite(µ) .

We now carry out renormalization on the DMFV parameters. For the DM field we

will use both schemes as an example, but restrict to MS from then on. Divergences

will be calculated using dimensional regularization in D = 4− 2ε dimensions.

DM Field : (1) On-shell Scheme

Counter-term renormalization proceeds by defining χi = (Zij
χ )−1/2χj,B and mi =

(Zij
mχ)(Zij

χ )−1mj,B for the renormalized parameters in terms of the bare parameters

(denoted with a B) allowing a mixing between the kinetic and mass terms. The

renormalized DM Lagrangian is written

L = iχ̄i/∂χi −miiχ̄iχi − iδijχ χ̄i/∂χj + δijmmijχ̄iχj, (7.2.16)

where i, j = 1, 2, 3 and with,

δijm = (δij − Zij
m) , δijχ = (δij − Zij

χ ),

these can be found by computing the two-point function for the DM, iΣ2(/p) 3, as

shown in Fig.7.4 over the k quark flavours

Σ2
ij(/p) =

Nc

64π2

∑
k

(λ†)jkλki /p

((
1

ε
+ log

µ2

m2
φ

)
+ finite

)
.

3Equivalent to the standard amplitude but with external spinors stripped away.
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The couplings can be simplified using unitarity,∑
k

(λ†)ikλkj = (λ†λ)ij = (D†U †UD)ij = δij|Dii|2,

where |Dii|2 is the i’th diagonal of D2 (no summation implied), this therefore ensures

the absence of any mass or kinetic term mixing amongst the DM candidates, the off

diagonal mass/kinetic terms vanish due to the unitarity of U ,

Σ2
i (/p) =

Nc

64π2
|Dii|2 /p

(
1

ε
+ log

µ2

m2
φ

)
+ finite . (7.2.17)

The counter terms produce the amplitude Mc.t. = /pδiχ + miδ
i
m, and the renormal-

ization conditions are,

Σ2
i (−mi) = 0,

d

d/p
Σ2
i (/p)

∣∣∣∣
/p=−mi

= 0. (7.2.18)

So then δim = 0 and δiχ = Nc|D|2ii/(64π2) and thus,

Zi
χ = 1 +

1

ε

Nc

64π2
|Dii|2 + finite +O(ε−2) , (7.2.19)

Zi
mχ = 1 +O(ε−2) . (7.2.20)

Now we carry out the mass renormalization in the MS scheme, the masses will be µ

dependent and run with energy.

DM Field : (2) MS Scheme

In the MS scheme, the bare mass and field parameters are normalized as,

χB,i = (Zij
χ )1/2χj , (7.2.21)

mB,i = Zij
mmj , (7.2.22)

allowing again for a mixing between flavours. Thus the bare Lagrangian becomes

L = iZij
χ χ̄i/∂χj + Zij

mZ
lm
χ mijχ̄lχm , (7.2.23)

and where Zij
m = δij+δijm and Zij

χ = δij+δijχ for the counterterms, which will be purely

divergent according to the MS prescription. The two point function is identical to

Eq.(7.2.17) (we reproduce only the divergent piece and include the counter terms),

Σ2
ij(/p) =

1

ε

Nc

64π2
|Dii|2δij/p+ /pδ

ij
χ −mij(δ

ij
m + δijχ ) ,
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χj qi
qk

φ

γ, g, Z

qi χj

qk

φ

γ, g, Z

Figure 7.5: The one-loop contribution to the DM coupling, λij (left) and λ∗ij (right), from the

DMFV model.

because Σ2
ij is diagonal in DM flavours, there is no mixing at one loop and using the

same renormalization conditions as for the on-shell scheme Eq.(7.2.18) (but simply

absorbing only the pole),

Zi
χ = 1− Nc|Dii|2

64π2

1

ε
+O(ε−2) , (7.2.24)

Zi
m = 1 +

Nc|Dii|2
64π2

1

ε
+O(ε−2) , (7.2.25)

the Z are independent of the mass, and so ultimately depend on scale µ only through

the couplings λij.

Coupling Renormalization : MS Scheme

To calculate the β-function for couplings λij we define the renormalized coupling,

Lint = λij q̄R,iχjφ+ (Zij − 1)λij q̄R,iχjφ+ h.c., (7.2.26)

defining δij = Zij − 1, then we may calculate the one-loop amputated vertex

function Γ(1)({pi}) with the renormalization condition of external legs on-shell,

Γ(1)(p2
i = m2

i ) = −iλij.

The diagrams which arise at one loop consist of exchanging vectors V = g, γ, Z

between the scalar and quark lines, see Fig.7.5, because of this there are no quark-

flavour changing diagrams and the matrix Zij is diagonal in the couplings, i.e. there

is no mixing between different λij. We work in unitary gauge, in Feynman gauge
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qi qj

χk

φ

Figure 7.6: The one-loop contribution to the quark self-energy from the DMFV model.

the diagrams should include contributions from goldstone bosons.

The massless internal gauge bosons (γ, g) lead to IR divergences which are

present in the matrix element. These IR divergences are independent of the UV

divergences of the RG running, and in the end cancel to all orders. To avoid this

problem we can give the photon and gluon arbitrary masses, and in the end the

UV divergences are mass independent and the limit m → 0 can be taken. The

amputated vertex function up to one loop is then,

Γ(p2
i = m2

i ) = −iλij − i
1

ε
δλijλij +

1

ε
Γ(1)(p2

i = m2
i )
∣∣
ε

= −iλij, (7.2.27)

with4,

Γ(1)(p2
i = m2

i )
∣∣
ε

= −iλij
(
Q2α

8π
+

(Nc − 1)αs
16π

− Q2s2
Wα

8c2
Wπ

)
, (7.2.28)

which leads to,

Zij = 1− 1

ε

(
Q2α

8π

(
1− s2

W

c2
W

)
+

(Nc − 1)αs
16π

)
. (7.2.29)

Note that s2
W/c

2
W ∼ 0.3 and the Z contribution is smaller than for the photon,

Zij = 1− 1

ε

(
α

18π

(
1− s2

W

c2
W

)
+
αs
8π

)
. (7.2.30)

Quark Field : MS Scheme

The counter-term Lagrangian reads,

L = iq̄i/∂qi −mqi q̄iqi + iδijq q̄i/∂qj − δijmqmq,ij q̄iqj, (7.2.31)

4The color factor for the gluon exchange is (tata)ij = 1
2 (Nc − 1)δij where i, j are the color

indices of the quark and scalar respectively.
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where i = 1, 2, 3 for q = u, c, t. In general, the interactions may mix fields of different

flavour since the coupling structure (λλ†)ij appears .

On top of the SM, the quark two-point function, Σq(/p), receives additional con-

tributions from the DMFV model where the DM and φ run in the loop as in Fig.7.6,

using the same renormalization conditions as for the DM field, we find,

Σq(−mq)|ε =
1

64π2
(λλ†)ij, (7.2.32)

Σ′q(−mq)
∣∣
ε

= 0, (7.2.33)

which leads to Z functions

Zq,ij = δijZ
(SM)
q,i +

1

ε

1

64π2
(λλ†)ij, (7.2.34)

Zmq ,ij = δijZ
(SM)
mq ,i
− 1

ε

1

64π2
(λλ†)ij, (7.2.35)

where the SM Z parameters are [330],

Z
(SM)
q,i = 1 +

1

ε

αs
4π

13

3
, (7.2.36)

Z
(SM)
mq ,i

= 1 +
1

ε

αs
4π

16

3
, (7.2.37)

unlike for the DM fields, the coupling combination λλ† is not diagonal and so the

renormalization mixes quark flavours.

Scalar Field : MS Scheme

The renormalized scalar field kinetic and mass terms read (with m2
φ,B = Zmφm

2
φ and

φB =
√
Zφφ)

Lφ = ∂µφ†∂µφ−m2
φφ
†φ+ (Zφ − 1)∂µφ†∂µφ− (ZmφZφ − 1)m2

φφ
†φ , (7.2.38)

with Zφ = 1 + δφ, Zmφ = 1 + δmφ . The scalar field receives more contributions to its

one-loop self energy, Π(p2), than the DM due to its charges as shown in Fig.7.7. In

unitary gauge :
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Figure 7.7: The one-loop contribution to the charged scalar self-energy from the DMFV model.

Π(−m2
φ)
∣∣
ε

=m2
φ

(
Q2α

4π
+
αs
3π

+
Q2s2

Wα

4c2
Wπ

(
3

4
+
m2
φ

m2
Z

+
3

4

m2
Z

m2
φ

))
− 1

16π2

∑
i

(2m2
χi

+ 2m2
q,i +m2

φ)|Dii|2 − εm2(δmφ + δφ), (7.2.39)

Π′(−m2
φ)
∣∣
ε

=− 2αs
3π
− Q2α

2π
− Q2αs2

W

πc2
W

(
m2
φ

m2
Z

+
3

4

)
+

1

16π2

∑
i

|Dii|2 + εδφ,

(7.2.40)

where |Dii|2 = (λ†λ)ii =
∑

j λ
∗
jiλji. The mass dependence arises due to the scalar

couplings to fermions,

Zφ =1 +
1

ε

(
Q2αs2

W

πc2
W

(
3

4
+
m2
φ

m2
Z

)
+
Q2α

2π
+

2αs
3π
− 1

16π2

∑
i

|Dii|2
)

+O(ε−2),

(7.2.41)

Zmφ =1 +
1

ε

(
−3Q2αs2

W

4πc2
W

(
m2
Z

m2
φ

)
− Q2α

4π
− αs

3π
− 1

8π2m2
φ

∑
i

(m2
χi

+m2
q,i)|Dii|2

)
+O(ε−2). (7.2.42)
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RG Evolution

The fields, masses and couplings are renormalized using the following substitutions,

Fields


χi= (Zχ,i)

−1/2χi,B

qR= (Zq)
−1/2qR,B

φ= (Zφ)−1/2φB

, Masses


mχ,i=

1
Zmχ,i

mχ,i,B

mq=
1

Zmq
mq,B

m2
φ= 1

Zmφ
m2
φ,B

, (7.2.43)

Coupling : λij = µ−2ε

√
Zχ,iZqZφ

Zλ,ij
λij,B ≡ µ−2εZ−1

ij λij,B , (7.2.44)

we have seen that Zχ,i and Zij are diagonal.

In general, each Z is a function of the renormalized parameters {λ,m}, scale

dependence enters through both λ ≡ λ(µ) and m ≡ m(µ). In the MS scheme

which is a mass independent scheme, the Z depend only on the couplings, which are

the source of the scale dependence. The β-function for the couplings, anomalous

dimension for fields, and anomalous mass dimension for masses, may be defined as,

β =
∂λij
∂ log µ

∣∣∣∣
B

, γm =
1

m

∂m

∂ log µ

∣∣∣∣
B

, γ =
∂ logZ

1/2
F

∂ log µ

∣∣∣∣∣
B

, (7.2.45)

where the bare parameters are kept fixed. Each of these depends on the couplings

{g} = {λij, α, αs}.

Beta Functions

We will assume the form of the renormalized coupling λij = µ−2εZ−1
ij λij,B and sup-

press the two indices into one (so that λi ≡ λij), and then,

βi = µ

(
∂λi
∂µ

)
λi,B

= µ

(
∂

∂µ
Z−1
i µ−2ελi,B

)
λi,B

= −2λiε−
λi
Zi

∑
j

βj
∂Zi
∂λj

, (7.2.46)

but j = i is included in the sum on the RHS, so then

βi = λi

(
−2ε− 1

Zi

∑
j 6=i

βj
∂Zi
∂λj

)(
1 +

λi
Zi

∂Zi
∂λi

)−1

, (7.2.47)

as we have seen Zij contains only the α, αs couplings of the SM from the vertex

correction, but acquires a λij dependence through the field renormalizations. The
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beta function contains at most one power of ε, i.e.;

βi = β
(0)
i + εβ

(1)
i , (7.2.48)

by equating coefficients of εn, n = 0, 1, in Eq.(7.2.47) we can determine β
(1)
i = −2λi,

and,

β
(0)
i (λi) = −λi

∑
j

β
(1)
j

∂Z
(1)
i

∂λj
. (7.2.49)

We can for simplicity assume that the DMFV model does not affect the QCD or

QED beta functions (in reality they are modified at one-loop)5 and so they run in

the conventional SM way, with fixed points αs(m
2
Z) = 0.1182 and α(m2

Z) = 1/137;

αs(µ
2) =

αs(µ
2
0)

1− 7
4π
αs(µ2

0) log (µ2/µ2
0)
, (7.2.52)

α(µ2) =
α(µ2

0)

1 + 2
3π
α(µ2

0) log (µ2/µ2
0)
. (7.2.53)

If βi ∝ λij = β0λij, for β0 constant (no µ dependence) we would find

λij(µ) = λij(µ0)

(
µ

µ0

)β0

,

however β0 depends on α, αs and so has implicit scale dependence and the correct

result is;

λij(µ
2) = λij(µ

2
0) exp

[
−
∫ log µ0

logµ

β0 d log µ

]
. (7.2.54)

Eq.(7.2.47) suggests that the beta functions for the six independent parameters

of λ form a simultaneous set of equations which must be solved for each of the βλij .

We will not calculate these results, but instead move on to the mass running which

is our main interest for the DMFV model.

5To one loop in the SM the QED and QCD beta functions are,

βQCD(αs) = −α
2
s

4π

(
11− 2

3
Nq

)
− εαs

π
, (7.2.50)

βQED(α) =
2α2

3π
− εα

π
. (7.2.51)
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Anomalous Mass Dimension

For the anomalous mass dimension assuming mi = Z−1
i mi,B

γm = − 1

Zi

(∑
j 6=i

∂Xj

∂ log µ

∂Zi
∂Xj

)(
1 +

mi

Zi

∂Zi
∂mi

)−1

, (7.2.55)

where Xj are the mass and coupling parameters. Using the ansatz for β (Eq.(7.2.48))

and equating powers of ε (γm is finite) we get

γm = −
∑
j

β
(1)
j

∂Zi
∂λj

. (7.2.56)

For the DM masses and using the MS-scheme mi = (Zi
m)−1mi,B (Eq.(7.2.25))

and thus Xj ∈ {λij} as the Z are mass independent, and

γm(mχ,i) =
∑
j,k

(
λjk

∂Zmχ,i

∂λjk
+ λ∗jk

∂Zmχ,i

∂λ∗jk

)

=
Nc

32π2

∑
j,k

(
λjk

∂|Dii|2
∂λjk

+ λ∗jk
∂|Dii|2
∂λ∗jk

)

=
Nc

32π2

∑
j

(
λjiλ

∗
ji + λ∗jiλji

)
=

Nc

16π2
(λ†λ)ii , (7.2.57)

assuming β(λ) = β0λ. We have used the result

∂|Dii|2
∂λjk

= δikλ
∗
ji ,

∂|Dii|2
∂λ∗jk

= δikλji . (7.2.58)

The running of the masses requires the solution of the equation,

γm(µ) =
µ

m(µ)

dm(µ)

dµ
, (7.2.59)

which is,

m(µ) = m(µ0)exp

[ ∫ µ

µ0

dµ′

µ′
γm(µ′)

]
. (7.2.60)

We will fix the DM mass at a high scale and run it down to an appropriate scale for

RD constraints, µ ∼ mχ/25 (or µN = 1 GeV for indirect/direct detection).
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Expanding in (λ†λ)/16π2 � 1 we recover the form of the mass in [325],

mi(µN) = mi(µ0)

(
1 +

Nc

16π2
(λ†λ)ii log

(
µN
µ0

)
+O((λ†λ)2

ii)

)
, (7.2.61)

the mass splitting is then given by

∆mij = mΛ
Nc

16π2
log
(µN

Λ

) (
D2
ii −D2

jj

)
(7.2.62)

∼ 0.35
(
D2
ii −D2

jj

)
,

where Λ is a high scale and mΛ is the universal mass at that scale. The mass

differences are completely captured by differences in Dii between two flavours. If

the Dii are all equal then we recover the MFV assumption, the degree of MFV

violation essentially gives the degree of mass splitting. Given that typically the

freeze-out occurs at T ∼ m/25, the above splitting is reduced to ∼ 0.28(D2
ii −D2

jj)

for a 1 TeV WIMP for the RD calculation, a small change which we ignore in the

calculation.

7.3 DMFV : Relic Density with Coannihilation

and Decay

The measured relic density (RD) of DM is an extremely important parameter that

must be reproduced by any self-respecting DM model. It is currently measured to

a very high accuracy by the Planck collaboration [6].

There are many mechanisms by which the DM may acquire the current measured

relic density. These may broadly be defined as thermal and non-thermal produc-

tion, in other words via equilibrium or non-equilibrium processes. The most common

thermal production mechanism is thermal freeze out [37, 38], in which the DM is

initially in thermal equilibrium, and its number density is depleted by (a) the expan-

sion of the universe and (b) interactions of the DM. The comoving number density

(the number density for a unit comoving volume, which expands at the same rate as

the universe) is therefore affected only by (b), as the universe evolves eventually the

expansion rate exceeds the interaction rate and the interactions stop, thus “freezing



7.3. DMFV : Relic Density with Coannihilation and Decay 245

out” the DM density.

In our model we have a fermionic triplet of DM particles, which are neutral

but which interact with the SM through a coloured and electrically charged scalar

mediator. The dominant interactions which deplete the DM particles are,

χ̄iχi → SM ,

χ̄iχj → SM , i 6= j , (7.3.63)

which occur at tree level, and which are referred to as annihilation, co-annihilation

respectively. Freeze out occurs at a temperature Tf ∝ mχi , and so the heavier

DM particles freeze-out first. Then the coannihilation process allows the heavy DM

to decay away, if the masses are widely separated this may completely remove the

heavy particles.

We can ignore particles which are much heavier than the lightest particle. Heavy

particles decouple earlier (since Tf ∼ mχi/25), and if stable may have a relic density

comparable to the lightest DM candidate. However, in scenarios like DMFV these

are likely to decay (or coannihilate) to the lightest particle (DM) very quickly (even

via loop suppressed processes) before the light DM itself freezes out, and thermal

equilibrium of the light DM during the decay of heavier states ensures decays will

have no effect on its eventual relic density.

In a scenario with DM which have no coannihilations, scattering or decays (as

in Sec.1.2), the partial relic density is simply,

(Ωh2)i ∝
1

〈σv〉ii
, (7.3.64)

where 〈σv〉ii is the thermally averaged annihilation cross section for the process

χiχ̄i → SM, from the tree level t-channel exchange of φ. This then gives an es-

timate 〈σv〉ii ∼ 3 × 10−26 cm3s−1 for Ωh2 = 0.1198. The situation is depicted in

Fig.7.8, where we consider single-flavour scenarios in which only one DM particle

has a coupling to a single quark flavour.
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Figure 7.8: RD ‘bounds’ (the shaded region is allowed) for single flavour DM. Since Ωh2 ∝
(〈σv〉)−1 ∝ m4

φ/|Dii|4, the bounds scale roughly as Dii.

If, however, the DM particles have similar masses the co-annihilation processes

can become important and should be taken into account. It was shown in [49] that

the thermal freeze out calculation can approximately be treated in exactly the same

way as with the single-flavour annihilation process, but with the replacement of 〈σv〉
by

〈σv〉eff =
∑
i,j

〈σv〉ij
gigj
g2

eff

(1 + ∆i)
3/2(1 + ∆j)

3/2e−x(∆i+∆j) ≡ aeff + beffv
2 , (7.3.65)

〈σv〉ij =
∑
kl

〈σv〉χiχ̄j→qk q̄l ≡ aij + bijv
2 , (7.3.66)

where ∆i = (mi −m1)/m1 (m1 being the mass of the lightest DM candidate), and

gi are the degrees of freedom (spin, colour, etc.) which is gi = 2 for the DM and

quarks (we include the colour d.o.f. of quark in the cross section) and geff is,

geff(x) =
N∑
i=1

gi(1 + ∆i)
3/2e−x∆i . (7.3.67)

In the limit of degenerate mass fermions geff = 2N , and the factor gigj/g
2
eff ∼ 1/9.

From Eq.(7.3.65) we see that the coannihilation channels only contribute signifi-

cantly if the masses of the two coannihilating particles are very similar. The Boltz-

mann suppression ensures that for widely separated masses the coannihilation pro-
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cesses are negligible.

The case of 2-flavour DM with equal masses is shown in Fig.7.9, the total relic

density can be written approximately as

Ωh2 ∝ 1
1
4
(〈σv〉11 + 2 〈σv〉12 + 〈σv〉22)

, (7.3.68)

which reproduces the correct limit (Eq.(7.3.64)) if 〈σv〉12 = 0 and 〈σv〉11 = 〈σv〉22,

and also shows that the total relic density is approximately halved with equal sized

annihilations/coannihilations. Fig.7.9 also provides the partial densities.

To compute the relic density, one first finds the freeze-out temperature xf ≡
m/Tf by solving the equation [8, 333, 334],

exf =

√
45
8
geffmχ1cMpl 〈σv〉eff

2π3g
1/2
∗
√
xf

, (7.3.69)

for Mpl = G−1/2 the Planck mass, g∗ the number of relativistic d.o.f and c = 1 an

order 1 number. The relic density itself can then be written [8, 333, 334],

Ωh2 = 2× 1.04× 109 xf√
g∗Mpl (a11Ia + 3b11Ib/xf )

, (7.3.70)

where a11 and b11 are the s-wave and p-wave terms of 〈σv〉11 (the cross section for

the relic, plus any particles with degenerate mass) and,

Ia =
xf
a11

∫ ∞
xf

x−2aeffdx ,

Ib =
2x2

f

b11

∫ ∞
xf

x−3beffdx . (7.3.71)

If all the DM particles have the same mass then Ia = Ib = 1. For the Lagrangian

defined in Eq.(7.1.2) the s-wave term of 〈σv〉ij is written (for arbitrary masses),

〈σv〉ij = Nc

∑
f1,f2

|λf1iλ
∗
f2j
|2

√
mimj

(
(mi +mj)

4 − (m2
f1 −m2

f2)2
)

64π(mi +mj)3(m2
f2mi +m2

f1mj − (mi +mj)(m2
φ +mimj))2

×
√
m4
f1 + (m2

f2 − (mi +mj)2)2 − 2m2
f1(m2

f2 + (mi +mj)2), (7.3.72)

where mf1,f2 are the final state fermion masses, mi,j are the initial state DM masses.

We include the p-wave term but do not reproduce it here since the expression is
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Figure 7.9: Top : partial relic densities for a 2-flavour DM model with fixed annihilation cross sec-

tion, and a varying coannihilation, assuming no decays or scattering. Bottom : the corresponding

RD bounds for the case of 〈σv〉ij = 〈σv〉ii, but varying the relative sizes of the annihilations.
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lengthy6. If the fermion masses can be neglected then this approximates to,

〈σv〉ij ≈ |Dii|2|Djj|2
3(mi +mj)

√
mimj

64π(mimj +m2
φ)2

, (7.3.73)

and the annihilation is not very sensitive to the mixing angles.

The most precise measurement of the DM relic density has been made by Planck

[6],

Ωh2 = 0.1198± 0.0015 . (7.3.74)

Fig.7.9 shows an example of the constraints that this imposes on the DMFV model.

In contrast to conventional constraints, the lower the couplings the larger the effect

and the more excluded the model. This also means that there is a lower limit on

the size of couplings, below which no combination of the other parameters can lead

to an allowed model. For example, single flavour DM coupled to u, c (t) and with

mφ > 10 GeV, requires Dii & 0.1 (0.4).

Assume coannihilations are absent. If the DM are all degenerate in mass, and

with equal couplings, then the DM coupled to the c, t effectively just increase the

total degrees of freedom of the relic by 2. This causes the freeze out temperature to

increase (xf decreases, see Eq.(7.3.69)) and the DM decouples earlier, but due to the

lower cross section the relic density increases compared with a single-flavour scenario.

In the DMFV model the multiplet of N DM are approximately degenerate in

mass, and additionally have roughly equal sized annihilation/coannihilation. Then,

〈σv〉eff ≈
1

N2

N∑
i,j

〈σv〉ij , N ≤ 3 . (7.3.75)

If the cross sections are all equal (〈σv〉ij ≡ σ) then 〈σv〉eff = σ and Ia,b = 1, the

multiplet act as a single particle but with geff = 2N degrees of freedom. The overall

6Although conventionally the p-wave term is dropped due to a large velocity suppression as the

DM is highly non-relativistic at the present day, this has more of an effect in the early universe

where typically v ∼ c.
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change to the relic abundance from a single flavour scenario comes entirely from the

lower freeze out temperature, and at most changes the relic abundance by ∼ 5%

(depending logarithmically on N). Naively one would expect that with N identical

particles the relic density would be N times as large7; this is only true when there

are no coannihilations, since with coannihilations the overall rate of DM depletion

increases.

The larger the coannihilation rate, the larger 〈σv〉eff and consequently the freeze

out occurs earlier. The DM is depleted far more by the larger annihilation rate, than

compensated for by the earlier freeze-out time. The relic density is thus lowered.

7.3.1 Annihilation and Scattering

We have discussed the process of thermal averaging in Sec.1.2.3, for the case of

the cross section. To a sufficient accuracy of < 10% one can simply calculate the

cross section as usual, and expand in the non-relativistic velocity of the annihilating

particles using the lab frame. The thermally averaged decay width is defined in a

very similar way,

〈Γ〉 =
1

n
(eq)
i

∫
Πk

d3pk
(2π)3

1

2Ek

∑
spin

|M(χi → χjX)|2δ(4)(p1 − p2 − p3)e−E1/T , (7.3.76)

and it may be approximated by [335],

〈Γ〉 = Γ0
K1(x)

K2(x)
,

where Γ0 is the zero-temperature decay width (in the decaying particle’s rest frame),

the Bessel functions K1(x) ≈ K2(x) in the limit x � 1 relevant for thermal freeze

out of annihilations and so the thermal decay width is given approximately by the

normal width of the particle.

7Switching off coannihilation, 〈σv〉eff ≈ σ/N , Tf is unchanged and the relic density scales as

Ωh2 ∝ N and so the naive guess is correct.
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The differential cross section (a function of s, t Mandelstam variables) is most

easily written

dσ = |M|2dΠ =
1

64πs|p|2 |M|
2dt , (7.3.77)

where the limits of integration are

t
(lab)
max,min = m2

1 +m2
2 −

1

2s
(s+m2

1 −m2
3)(s+m2

2 −m2
4) ,

± 2

√
s2 + (m2

1 −m2
3)2

4s
− 1

2
(m2

1 +m2
3)

√
s2 + (m2

2 −m2
4)2

4s
− 1

2
(m2

2 +m2
4) .

(7.3.78)

and finally the velocity expansion is made from s in the lab frame s(lab) = (m1 +

m2)2 + v2m1m2. The momentum/mass assignments are as shown in Fig.7.10. The

matrix element for 2→ 2 scattering via a t-channel scalar is given by

M = Cλ
3(m2

1 +m2
3 − t)(m2

2 +m2
4 − t)

4(m2
φ − t)2

, (7.3.79)

where Cλ is the appropriate combination of couplings. There are two relevant cross

sections; 〈σv〉ij denoting χ̄iχj → q̄lqm, summed over l,m. There are also 〈σv〉′ij
denoting the scattering process χiql → χjqm (t-channel) and χiq̄l → χj q̄m (s-channel,

with amplitude as in Eq.(7.3.79) but t↔ s), again summed over l,m. 〈σv〉ij , 〈σv〉
′
ij

differ only in the momentum assignments and give the approximate result (in the
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limit of zero quark mass and DM velocity)8,

〈σv〉ij =
3

64π

∑
l,m

|λliλ∗mj|2fann(ml,mm)

≈ D2
iiD

2
jj

3m2
i

16π(m2
i +m2

φ)2
, (7.3.80)

〈σv〉′ij,t−chan =
3

64π

∑
l,m

|λliλ∗mj|2ft(ml,mm)

≈ D2
iiD

2
jj

3ε2m2
i

8π(m2
i +m2

φ)2
, (7.3.81)

〈σv〉′ij,s−chan =
3

64π

∑
l,m

|λliλ∗mj|2fs(ml,mm)

≈ D2
iiD

2
jj

3ε2m2
i

8π(m2
i −m2

φ)2
, (7.3.82)

where mj = (1+ ε)mi and the quark masses have been neglected in the approximate

expressions, and the scattering process is suppressed relative to annihilation by the

mass splitting.

The decay term in the Boltzmann equation is significantly larger than the anni-

hilations, which means decay processes will be effective during freeze-out.

8 The quark mass dependent functions are,

ft(m1,m2) =
(
(m2 +mi)

4 − (m2
1 −m2

j )
2
)

×
[
((mi +m2)2 − (m1 +mj)

2)(−(mi +m2)2 + (m1 −mj)
2)

]1/2

×
[
(m2 +mi)

2((m2
φ +mim2)(m2 +mi)−m2

1m2 −mim
2
j )

2
]−1

,

fs(m1,m2) =
(
(m1 +mi)

2 − (m2
2 −m2

j )
)

×
[
((mi +m1)2 − (m2 +mj)

2)((m1 +mi)
2 − (m2 −mj)

2)

]1/2

×
[
(m1 +mi)

2(m2
φ − (m1 +mi)

2)2
]−1

,

fann(m1,m2) =
(
(mi +mj)

4 − (m2
1 −m2

2)2
)

×
[
((mi +mj)

2 − (m1 −m2)2)((mi +mj)
2 − (m1 +m2)2)

]1/2

×
[
(mi +mj)

2((m2
φ +mimj)(mi +mj)−m2

2mi −m2
1mj)

2
]−1

.
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Figure 7.10: The momentum assignments for 2→ 2 scattering.

7.3.2 Boltzmann Equations for DMFV

So far, we have outlined a procedure to calculate the total relic density for the DM,

ΩT . This needs refinement for several reasons: firstly, we must be precise about what

the DM is. The DM candidate is the lightest of the three χi when their mass split-

ting is large, since the heavier particles freeze-out with a lower abundance and/or

rapidly decay to the lighter particles before they leave thermal equilibrium. How-

ever, if the mass splitting is small/zero, then, in principle all three χi may obtain a

stable relic density Ωi and contribute to the total abundance. This situation would

not be correctly captured by the approximate method of the last section, since it

implicitly assumes that the heavier states decay before freeze-out.

Finding the partial densities Ωi is an important consideration when looking at

DD and ID signals, which scale as Ωi and Ω2
i respectively, and thus a χi with a low

partial relic density has suppressed signals and thus the bounds on its parameters

should be weakened. Calculating the total relic abundance is possible following [49]

and the previous section, or can be accomplished with the MicrOmegas or MadDM

codes [335, 336]; however the partial relic densities are not so easy (the two particle

case can be handled by MicrOmegas).

The three particles evolve according to a non-linear Boltzmann equation, coupled

via the coannihilation, decay and scattering processes. These equations may be
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written [49, 335]9

dni
dt

=− 3Hni −
∑
j

(1 + δij) 〈σv〉ij (ninj − n(eq)
i n

(eq)
j )

−
∑
j 6=i

〈Γij〉 (ni − n(eq)
i ) +

∑
j 6=i

〈Γji〉 (nj − n(eq)
j )

−
∑
j 6=i

(
〈σv′〉ij

(
ni − n(eq)

i

)
nX − 〈σv′〉ji

(
nj − n(eq)

j

)
nX

)
, (7.3.84)

where ni,X are the number densities of the DM and quarks respectively, and n
(eq)
i

are the equilibrium number densities which can be assumed to follow a Maxwell-

Boltzmann distribution, and Γij represents the decay χi → χj + X. We neglect

DM self-interactions χ̄iχj ↔ χ̄kχl, since such processes are loop suppressed in our

model. On the third line are the DM-flavour changing scattering processes, which

are enhanced relative to the annihilation due to nX . We will refer to the lightest of

the three DM as mχ1 . Mapping Eq.(7.3.84), into the variables

Yi =
ni
s
, x =

mχ1

T
,

Z
(′)
ij =

s(x = 1)

H(x = 1)
〈σv〉(′)ij = Mplmχ1

√
g∗π

45
〈σv〉(′)ij ,

Wij =
1

H(x = 1)
〈Γij〉 , (7.3.85)

with entropy density s and Hubble parameter H [337],

s =
2π2g∗

45
T 3 , H =

√
4π3g∗

45

T 2

Mpl

, (7.3.86)

then the Boltzmann equation can be written in a simplified form for numerical

9To recover the method of the previous section one simply finds the total number density of

DM n′ =
∑
i n
′
i, then the scattering and decay terms cancel and one is left with,

dn

dt
= −3Hn−

∑
i,j

〈σv〉ij (ninj − n(eq)
i n

(eq)
j ) . (7.3.83)
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evaluation

dYi
dx

=− 1

x2

∑
j

(
Zij

(
YiYj − Y (eq)

i Y
(eq)
j

))
− 1

x2

∑
j 6=i

(
Z ′ij

(
(Yi − Y (eq)

i )− (Yj − Y (eq)
j )

)
Y

(eq)
X

)
− 1

x

∑
j 6=i

(
Wij(Yi − Y (eq)

i )−Wji(Yj − Y (eq)
j )

)
, (7.3.87)

and finally, the equilibrium yield is given by

Y
(eq)
i =

45

2π4g∗
x2
iK2(xi) , (7.3.88)

where xi ≡ (mχi/mχ1)×x in terms of the second Bessel function of the second kind

K2(x) ≈ √π
2
x−1/2e−x. The differential equation is solved according to the bound-

ary condition that Yi = Y
(eq)
i at x = 1, meaning that before the particle becomes

non-relativistic the DM is in thermal equilibrium.

With three DM candidates with similar mass, the equilibrium distributions are

the same, which means the number densities of the χi are the same right up to

freeze out (regardless of their interaction strengths), which can be seen for example

in Fig.7.12, right panel.

Without coannihilation scattering or decay, the DM candidates do not communi-

cate with each other, the Boltzmann equations decouple and their relic densities are

independent. Then the higher mass DM lead to a higher xf (higher Tf ) which causes

an increase in Ωh2 (Eq.(7.3.70)), although this effect is extremely weak and easily

overcome by any changes in the cross section from the increase in mass. Including

even extremely small decay widths (Γ & 10−42 GeV) to lighter particles completely

removes the relic abundance for the heavy particles by the present day. In the DMFV

model we have coannihilations which are of similar size as the standard annihilations,

and this dramatically affects the resulting relic densities. Fig.7.11 summarizes the

behaviour of the partial relic densities in the three-flavour DM scenario with both

coannihilation and mass splitting.
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mχ= 200 GeV , 〈σv〉11 = 1×10-8 GeV-2

〈σv〉22 / 〈σv〉11 = (1.00)4, 〈σv〉33 / 〈σv〉11 = (1.00)4

〈σv〉22 / 〈σv〉11 = (0.95)4, 〈σv〉33 / 〈σv〉11 = (0.90)4

〈σv〉22 / 〈σv〉11 = (0.90)4, 〈σv〉33 / 〈σv〉11 = (0.85)4
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Figure 7.11: Partial relic densities for a 3-flavour DM model with fixed annihilation cross section,

and a varying coannihilation (left) or mass splitting (right) for various benchmark scenarios which

serve to illustrate the principle trends associated to coannihilation and decay in the DMFV model.

Scattering is assumed to be absent, to illustrate some of the features discussed in the text.

Fig.7.12 shows the effect of decay on the partial relic densities of the DM in the

absence of scattering. For very small widths (top left panel), the DM decay does

not affect the calculation and the freeze-out depends only on annihilation channels,

although the heavy particles will eventually decay by the present day. If the width is

sufficiently large (bottom right panel), the decay progresses rapidly enough to wash

out the relic density of the decaying particles during freeze-out.

From Eq.(7.3.87), the correct relic density corresponds to Yi(∞) = 4.4 × 10−10,

then the decay term becomes larger than the annihilation at Γ ∼ 10−12 GeV, and

this is the approximate scale at which the decays dominate the behaviour. Thus

clearly for ‘normal’ decay widths such as those in the SM Γ/m ∈ [10−4, 10−1] the

decays can safely be assumed to remove the heavier particles completely. This is

not the case for our model, since the decay widths are so strongly dependent on

the mass splitting, that widths of 10−12 or less occur naturally. It follows that the

widths should be implemented explicitly to correctly capture the behaviour.

Since nX/ni ∼ 109 (X = u, c, t) at freeze-out, the scattering term is sub-
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Figure 7.12: An illustration of thermal freeze out for three DM candidates (red blue green in

ascending order of mass), with m1 = 200 GeV and ∆m2,3 = 10%, 20% for a fixed annihilation

cross section 〈σv〉 = 10−8 GeV−2, without scattering 〈σv〉′ = 0, and varying the annihilation

Γ = Γ31 = Γ32 = Γ21 showing the effects of a low decay width (no effect) and a large width which

can completely wash out the relic abundance of the decaying particles.
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stantially larger than the annihilation and decay. The high temperatures ensure

〈σv〉′ij ≈ 〈σv〉
′
ji

10 meaning that the DM flavours are kept strongly in thermal equi-

librium with each other. However it is the annihilations which still control freeze-out,

since the scattering does not alter the total DM number density. Due to the sup-

pression of the decay processes, the scattering does not allow efficient decay until

it has itself frozen out. The scattering with t quarks freezes out at T ∼ 30 GeV,

whereas with c, u it is much later, approximately at the QCD transition T ≈ 150

MeV, given that mχ > 1 GeV, it is possible that the top quark decays away before

DM freeze out, but this doesn’t affect the relic abundance.

If we introduce a mass splitting ∆m2,3 & 4.6 MeV (the threshold for decay to the

lightest ūuχ1 final state), then χ2,3 decay away during freeze-out even if the width

Γ2,3 is extremely small (Γ & 10−13 GeV). The only relic is the lightest of the three

DM. For a 100 GeV DM the degeneracy only needs to be broken by 0.004% to satisfy

this condition, therefore it is difficult to imagine a scenario in which the degeneracy

remains intact, particularly because a mass splitting is inevitably generated through

RG running. To gather an idea of the size of the decays for the DMFV model we

refer to Fig.7.13.

To summarize the discussion we can follow two regimes;

1. The masses are truly degenerate, or equivalently a degeneracy which is suffi-

ciently small to prevent decay, i.e. ∆m ≤ 4.6 MeV. The scattering is heavily

suppressed, but not zero, and still manages to keep the DM in equilibrium

until after freeze out. The three DM each obtain an equal relic abundance.

Since the mass splitting is a result of flavour-breaking, we must have Dii all

equal to preserve the degeneracy, then each DM acquires an identical relic

density which must be 1/3 of the measured value.

2. A mass splitting, ε, exists; the widths and scattering are Γij ∝ ε5 and 〈σv〉′ ∝
ε2, the latter keep the DM in thermal equilibrium and the former cause the

10The average energy of a particle at temperature T is E ∼ 3T = 3m/x.
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Figure 7.13: The decay width of χi into χ1 (with the hierarchy mχ1 < mχ2 < mχ3) as a function

of the mass splitting (as a percentage of mχ1
).

heavier particles to decay. Only the lightest candidate is left, coannihilations

may significantly impact the resulting relic abundance and the calculation can

be done according to Sec.7.3.

These two cases are summarized in Fig.7.14, comparing the approximate method

detailed the previous section to the full Boltzmann equation solution.

7.4 DMFV : Flavour Bounds

7.4.1 Mixing Observables

Since the DMFV introduces couplings to the up type quarks, we would expect new

physics effects in the charm sector; specifically the neutral D meson, D0 = (ūc)

with a mass of mD0 ∼ 1.86 GeV. Mixing is observed in all neutral meson systems.

Theoretically, mixing effects are related to the off diagonal terms of the D0 − D̄0

mixing matrix Γ12 and M12 (see Sec.8.1 for a physical definition of these quantities).

These are related to the observable quantities ∆Γ and ∆M which are the decay

width and mass differences between the heavy and light mass states of the D0 meson.



7.4. DMFV : Flavour Bounds 260

100 101 102 103 104

10-5

10-3

10-1

101

103

105

107

109

x

(Ω
h
2
) i

100 101 102 103 104

10-5

10-3

10-1

101

103

105

107

109

x

(Ω
h
2
) i

100 101 102 103 104
101

102

103

104

mDM [GeV]

m
ϕ
[G
e
V
]

m
χ
=
m
ϕ

m
χ
=
m
ϕ
+
m
t

100 101 102 103 104
101

102

103

104

mDM [GeV]

m
ϕ
[G
e
V
]

m
χ
=
m
ϕ

m
χ
=
m
ϕ
+
m
t

Figure 7.14: Illustration of the RD bounds for degenerate mass DM (left column) solving the

coupled Boltzmann equations, or with mass splitting (right column) calculated with the approxi-

mate method of Sec.7.3. The top panels illustrate the partial densities of the three candidates in

the first moments after the Big Bang, and serve to illustrate the effects of annihilation, scattering

and decay mentioned in the text. The bottom panels show the regions (hatched) for which the

DMFV models allows the correct relic abundance.
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The current experimental measurements are [338],

x ≡ ∆M

Γ
= (0.63 +0.19

−0.20) % , (7.4.89)

y ≡ ∆Γ

2Γ
= (0.75± 0.12) % . (7.4.90)

On the theory side however, things are not so well developed. There are two

methods to go about the calculation of mixing parameters – inclusive, where we

assume quark-hadron duality and sum quark level diagrams, or exclusive, where

individual decay channels that contribute to D0 mixing are calculated. In the ex-

clusive approach (e.g. [339, 340]), values of x and y on the order of 1% are believed

to be possible.

However, a real calculation is hindered by the the fact that the D0 meson is not

sufficiently light to have its decay dominated by a small number of channels. On

the inclusive side, we work within the HQE formalism. An early NLO calculation

gives xNLO ≈ yNLO ≈ 6× 10−7 [341]. As described in that paper, in this calculation

physics conspires to cancel relatively large contributions at the first two orders in

an expansion in m2
s/m

2
c , while also a large CKM suppression of the b quark contri-

bution and suppression from chiral symmetry breaking related to md 6= ms further

reduce the final result. More recently, a calculation with SU(3) breaking dimension

nine contributions in the HQE gives x ≈ 6× 10−5, y ≈ 8× 10−6 [338] - still missing

the experimental results by two or three orders of magnitude.

While there is still a serious question to be answered on whether the HQE is

valid for charm system, various calculations [342, 343] have suggested that it could

hold with corrections of no more than 50%. It has also recently been suggested [3]

that a small breakdown in quark-hadron duality could enhance the value of y by

three orders of magnitude to its experimental value.

In light of this, we neglect the SM contribution when calculating our theoretical

prediction for ∆M . We convert this to a value of x using the PDG value for the D0

lifetime.
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Figure 7.15: Neutral meson mixing : loop diagrams contributing to M12 for the DMFV model,

where the external momentum are assumed to vanish.

Effective Hamiltonian and M12

The mixing of neutral mesons arises from diagrams as in Fig.7.15 (for both SM and

DMFV); M12 arises as the dispersive part of the loop integral and is sensitive to

heavy internal states (in the SM this is predominantly from internal W, t).

In order to connect the perturbative loop amplitudes to the non-perturbative

hadronic physics we need to take hadronic matrix elements. The conventional way

to do this is by matching the perturbative amplitudes to an effective four-quark

hamiltonian in which the heavy internal states are integrated out. Hadronic matrix

elements of this effective Hamiltonian can be taken from lattice calculation.

The effective Hamiltonian is given by,

Heff =
∑
i=1,2

CiOi ,

O1 = (ūaγ
µ(1 + γ5)ca)(ūbγµ(1 + γ5)cb) , (7.4.91)

O2 = (ūaγ
µ(1 + γ5)cb)(ūaγµ(1 + γ5)cb) , (7.4.92)

where a, b denote colour indices. In order to find the Wilson coefficients Ci we begin

by computing the amplitudes in Fig.7.15
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iM =

∫
d4k

(2π)4

[
ū · −iλ1i(1− γ5)

i(/k +mχi)

k2 −m2
χi

· −iλ∗2i(1 + γ5)c

×ū · −iλ1j(1− γ5)
i(/k +mχj )

k2 −m2
χj

· −iλ∗2j(1 + γ5)c
i

k2 −m2
φ

· i

k2 −m2
φ

]
= 4λ1iλ

∗
2iλ1jλ

∗
2j

(
ūγµ(1 + γ5)c

) (
ūγν(1 + γ5)c

)
×
∫

d4k

(2π)4

kµkν

(k2 −m2
φ)2(k2 −m2

χi)(k
2 −m2

χj )

= λ1iλ
∗
2iλ1jλ

∗
2j

(
ūγµ(1 + γ5)c

) (
ūγµ(1 + γ5)c

)
×
∫

d4k

(2π)4

k2

(k2 −m2
φ)2(k2 −m2

χi)(k
2 −m2

χj )
.

After doing the loop integral, we get the following contribution from a single dia-

gram:

iM =
i

(4π)2
λ1iλ

∗
2iλ1jλ

∗
2j

(
ūγµ(1 + γ5)c

) (
ūγµ(1 + γ5)c

)
× 1

(m2
χi −m2

χj )(m
2
χi −m2

φ)2(m2
χj −m2

φ)2

×
[
m2
φ(m2

χi −m2
χj )(m

2
χi −m2

φ)(m2
χj −m2

φ) +m4
χim

4
χj ln(m2

χi/m
2
χj ) +m4

χim
4
φ ln(m2

χi/m
2
φ)

−m4
χjm

4
φ ln(m2

χj/m
2
φ)− 2m4

χim
2
χjm

2
φ ln(m2

χi/m
2
φ) + 2m2

χim
4
χjm

2
φ ln(m2

χj/m
2
φ)

]
.

Defining xi = m2
χi
/m2

φ, we can simplify this to:

iM =
i

(4π)2
λ1iλ

∗
2iλ1jλ

∗
2j

(
ūγµ(1 + γ5)c

) (
ūγµ(1 + γ5)c

)
× 1

m10
φ (xi − xj)(xi − 1)2(xj − 1)2

×m8
φ

×
[
(xi − xj)(xi − 1)(xj − 1) + x2

ix
2
j ln(xi/xj) + x2

i ln(xi)− x2
j ln(xj)

− 2x2
ixj ln(xi) + 2xix

2
j ln(xj)

]
.

Simplifying again we find,

iM =
i

(4π)2

1

m2
φ

λ1iλ
∗
2iλ1jλ

∗
2j

(
ūγµ(1 + γ5)c

) (
ūγµ(1 + γ5)c

)
×
[

1

(1− xi)(1− xj)
+

x2
i lnxi

(xi − xj)(1− xi)2
− x2

j lnxj

(xi − xj)(1− xj)2

]
︸ ︷︷ ︸

F (xi,xj)

, (7.4.93)

where F (xi, xj) is the same function as defined in Eq. (C.1) of [325].
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We can read off the Wilson coefficients from Eq.(7.4.93),

C1 =
∑
i,j

1

32π2m2
φ

λ1iλ
∗
2iλ1jλ

∗
2jF (xi, xj) , (7.4.94)

C2 =
∑
i,j

1

32π2m2
φ

λ1iλ
∗
2iλ1jλ

∗
2jF (xi, xj) , (7.4.95)

hence the effective Hamiltonian, summing over all DM flavours i and j, multiplying

by two to account for the second diagram, and dividing by four to account for

identical operators, is given by:

H∆C=2
eff =

−1

32π2

1

m2
MED

(
ūγµ(1 + γ5)c

) (
ūγµ(1 + γ5)c

)∑
i,j

λ1iλ
∗
2iλ1jλ

∗
2jF (xi, xj).

(7.4.96)

With the Wilson coefficients determined, one must calculate the hadronic matrix

elements between meson states, parameterized as,

〈D̄| O1 |D〉 ≡
8

3
f 2
DBDM

2
D . (7.4.97)

The parameter M12 is given by

M12 =
1

2mD

C1 〈D̄| O1 |D〉 =
−1

24π2

1

m2
φ

f 2
DBDMD

∑
i,j

λ1iλ
∗
2iλ1jλ

∗
2jF (xi, xj), (7.4.98)

which may be compared with experiment. Since the SM contributions to ∆M

and ∆Γ are poorly known, constraining the BSM contribution by comparison to

experiment is not straightforward. One possibility [344] is to require that

xNP
D =

2|MNP
12 |

ΓD

(7.4.99)

falls within the 1σ experimental value reported by HFAG, Eq.(7.4.90). This limit

would be derived if we assume the NP and SM contributions have roughly the same

phase, so that

|MNP
12 +MSM

12 | = |MNP
12 |+ |MSM

12 |, (7.4.100)

i.e. they add purely constructively.
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Figure 7.16: Excluded regions (hatched) for which the value of M12 from Fig.7.15 exceeds the

+1σ contour of the experimental result. The bounds are the most constraining possible given the

quoted limits on Dii, but can be made arbitrarily small by adjusting the relative values of the Dii

(for example with equal values the constraints disappear completely).

Results

The primary result of the previous section is the expression for M12, Eq.(7.4.98).

The mass parameters xi = mχi/mφ ∈ (0, 1), the mass dependent function F does

not vary strongly F (xi, xj) ∈ (1/3, 1). In the limit mχi � mφ, F (0, 0) = 1 and

M12 ∝ ((λλ†)12)2 and the constraints are primarily sensitive to the value of (λλ†)12.

The matrix (λλ†) is diagonal if Dii are all equal, or if θij = 0 (no mixing between

quark flavours) and then the flavour constraints disappear.

Coupling purely to one flavour of quark completely evades the constraints from

meson mixing (and this was precisely the way we coupled the DM in the previous

chapters). Coupling the same DM candidate to several quarks at once (non zero

mixing angles) then introduces the bounds. Even with non-zero mixing the con-

straints may still be avoided by setting Dii all equal.
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Using the upper 1σ value of the experimentally measured xD leads to bounds

as shown in Fig.7.16, these bounds can be very strong and significantly exclude al-

most all masses m & 1 TeV for couplings λ & 0.1 unless one fine-tunes the model

to remove (λλ†)12. The figure also emphasises the interplay between the various

parameters is not trivial. For example if D11 ∼ D22 the mixing is suppressed more

than if D11 ∼ D33.

This all assumes degenerate DM masses; in practice one can allow for DM masses

which are split by some small amount but this does not drastically alter the be-

haviour. Given the extraordinarily strong bounds from mixing, virtually none of

the parameter space allows for DM with the correct relic density unless the model

is tuned in a particular way such that (λλ†)12 ≈ 0 due to

1. The mixing angles are zero, θij = 0.

2. The Dii are equal to within . 1%.

3. The Dii are extremely small.

7.4.2 Rare Decays

We consider the semileptonic decay of the neutral D-meson to a lepton pair, D0 →
π0l̄l, whose short distance (perturbative) contribution comes from the quark level

decay c → ul̄l. In the standard model the contribution comes from EW penguin

diagrams [345],

H(SM)
eff = −2GF√

2

α

4π

A

s2
W

ūγµ(1− γ5)cl̄γµl, (7.4.101)

with A ∼ 0.065, the result is both loop and GIM suppressed (|V ∗cbVub| ∼ 1.46×10−5),

and thus we expect this rare decay to have good sensitivity to new physics. In the

DMFV model contributions arise at the one-loop level, as photon and Z penguins.

We follow the standard procedure of matching the full theory to the effective
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hamiltonian;

Heff = −4GF√
2

∑
i=7,8,9,10,S,P

CiOi, (7.4.102)

in which heavy particles are integrated out, and with effective operators [18] 11

O7 = − α

4π

2m2
c

q2
ūiσµνqνPRcl̄γµl, (7.4.104)

O11 = − α

4π

2m2
c

q2
ūiσµνqνPRcl̄γµγ

5l, (7.4.105)

O9 =
e2

(4π)2
ūγµPLcl̄γµl , O10 =

α

4π
ūγµPLcl̄γµγ

5l, (7.4.106)

OS =
α

4π
ūPRcl̄γ

5l , OP =
α

4π
ūPRcl̄γ

5l. (7.4.107)

For each operator there is a partner (denoted by a prime) differing only by an

opposing projector within the quark bilinear (i.e. O′P would be ūPLcl̄γ
5l). We have

added two extra operators O11,O′11 in order to fully account for all the amplitude

structure produced by the Z-penguin diagram, since the Z couples to both vector

and axial-vector currents. The following identities are useful,

ūiσµνqνPRcl̄γµl = −mcūγ
µPLcl̄γµγ

5l + 2ūPRcl̄/pul,

ūiσµνqνPRcl̄γµγ
5l = −mcūγ

µPLcl̄γµγ
5l + 2ūPRcl̄/puγ

5l +O(ml), (7.4.108)

assuming mu,ml = 0.

the Wilson coefficients Ci(µ) depend on the renormalization scale µ, and the

masses of the particles (we take mu ≈ 0, mc,ml 6= 0) and the momentum exchange

through the photon/Z,

q2 = (pc − pu)2 = (p3 + p4)2 , 0.04 . q2 . 3 GeV, (7.4.109)

where p3,4 are the four-momentum of the lepton and anti-lepton respectively. For

the process D0 → π0l̄l the maximum value of q2
max = (mD −mπ)2 ∼ 3.0 GeV, well

11Including dimension 7 operators we make the replacement,

mc

e
ūσµνPRcFµν = −mc

q2

(
2mcūγ

µcl̄γµl + 4ūPRcl̄/pul
)
. (7.4.103)
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Figure 7.17: The DMFV model contribution to the effective operators governing rare decays of

charm quarks, including explicit self-energy corrections to the external quark legs as explained in

the text. The γ, Z couple to a lepton pair.

within the perturbative regime, and the minimum value q2
min = (2ml)

2 . 0.04 GeV

for l = µ.

If mc is very heavy, or for small momentum exchange then q2 represents the

smallest scale in the problem and we can safely Taylor expand the result. Since we

will consider the low energy region, we can simply let q2 = 0 to a good approxima-

tion.

To compute the Ci we follow the procedure outlined in [346]. The one loop

penguin contribution to the D0 decay is divergent, and the theory should therefore

be renormalized to give a finite result. The external quarks have different flavour,

there is no tree level FCNC interaction and so the divergences which appear should

cancel against those arising from the flavour violating quark field renormalization,

which would appear as an insertion on the external quark legs of the tree level FCNC

diagram, as shown in Fig.7.17.

Dealing with the renromalization of the flavour changing self energies requires

some extra machinery beyond the scope of this work, and following previous cal-

culations [346] we explicitly include the self energy corrections to the external legs

as separate Feynman diagrams, this ensures the cancellation of divergences without

performing the renormalization. The self-energy diagrams contribute a finite piece

along with the divergences, using a pole mass renormalization scheme would include
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these finite pieces in the counter-term, whereas with MS scheme they would be con-

tained in the definition of the renormalized mass mpole = mR + Σfinite.

The largest wilson coefficients are C ′7, C
′
9 which arise for the photon and Z pen-

guins, although the Z-penguin corrects the results by O(1%) and can be neglected.

The Z penguin leads to additional contributions to C ′8, C
′
10, C

′
P . In the limit q2 = 0

the photon penguin contributions are

C ′7(µ) =
λuiλ

∗
ci

6m6
c

[
m2
c(m

2
c − 2(m2

χ −m2
φ)) + 2m2

c(m
2
φ −m2

χ)Λ(m2
c) + 2m4

cm
2
φC0(m2

c)

+ ((m2
χ −m2

φ)2 −m2
c(m

2
χ +m2

φ)) log

(
m2
χ

m2
φ

)]
, (7.4.110)

C ′9(µ) =
λuiλ

∗
ci

3m6
c

[
m2
c(m

2
c + 12(m2

φ −m2
χ)) + 8m2

c(−m2
χ +m2

φ)Λ(m2
c)

+ 2m2
c(2(m2

χ −m2
φ)2 −m2

c(m
2
χ − 2m2

φ))C0(m2
c)

+ 4((m2
χ −m2

φ)2 −m2
cm

2
φ) log

(
m2
χ

m2
φ

)]
, (7.4.111)

where Λ(m2) ≡ Λ(m2,mχ,mφ) and C0(m2) ≡ C0(0, 0,m2,mφ,mφ,mχ), the index

i refers to the DM and should be summed over using the appropriate masses mχi .

Due to the hierarchy in scales q2 ∼ m2
c � {m2

χ,m
2
φ} and mφ & mχ, we can make

the following approximations for the loop functions,

C0(s2
1, s

2
2, s

2
3,mφ,mφ,mχ) ≈ 1

(m2
χ −m2

φ)2

(
(m2

χ −m2
φ)−m2

χ log

(
m2
χ

m2
φ

))
,

Λ(s2,mχ,mφ) ≈ −1 +
1

2s2(m2
χ −m2

φ)
log

(
m2
χ

m2
φ

)[
s2(m2

χ +m2
φ)− (m2

χ −m2
φ)2

]
,

Λ(s2,mφ,mφ) ≈ −2 +
s2

6m2
φ

,

where si are all assumed to be small si � mχ,mφ.

In [18] the constraints are placed on C̃i = VubV
∗
cbCi ≈ 5.2× 10−5Ci, for a low and

high q2 region (q2 ∈ [0.0625, 0.276] and q2 ∈ [1.56, 4.00] GeV2 respectively).

Since the SM branching ratios for the D0 decay suffer from a strong GIM can-

cellation, we would expect strong constraints on the flavour breaking terms of the
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Figure 7.18: The upper limit on the Wilson coefficients from a D0 rare decay D0 → πl̄l. These

are found from Tab.II of [18], and correspond to the low q2 bin.
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Figure 7.19: Left : the modulus of the Wilson coefficients of operators from Eq.(7.4.107) for

various DM and mediator masses. With (λλ†)12 = 1, and in the q2 = 0 limit (except for C ′10 ∝ q2

for which q2 = 0.04 GeV2), note also that C ′8 = C ′10 and is not plotted. Right : the exclusions

from |C ′9| < 2.1 varying (λλ†)12.

DMFV model. As with the mixing observables, the rare decay process is a c → u

transition and as such is primarily sensitive to (λλ†)12 in the limit of degenerate DM

mass. In Fig.7.19 we show the Wilson coefficients |Ci(mχ)| for (λλ†)cu = 1, 2, 4. The

bounds on the individual Wilson coefficients are |Ci| . 1−3 (see Table 7.18) Media-

tors up to mφ ∼ 50 GeV can be ruled out for couplings Dii ∼ (λλ†)12 ∼ O(1). These

constraints are therefore substantially weaker than from meson mixing observables.
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7.5 DMFV : Indirect Detection

7.5.1 Tree Level Annihilation

The dominant annihilation channel for the DM is a tree-level, t-channel exchange of

the mediator, producing a quark anti-quark pair (of potentially different flavours)

and produces an annihilation cross section

〈σv〉χ̄iχj→q̄mql ≈
Ncm

2
χ

32π(m2
χ +m2

φ)2

(
λliλ

∗
mj

)2
+O(v2) , (7.5.112)

which is dominantly s-wave (the p-wave term can be safely ignored). The ID signals

for p-wave processes are suppressed by v2 ∼ 10−6 in the galaxy [207], this suppres-

sion is always subdominant to the s-wave in the GC, and may be even more severe

in other astrophysical targets such as dwarf spheroidal (dSph) galaxies [182].

There is a bounty of possible search avenues for this annihilation signal; the

energetic quarks will hadronize and decay into stable particles (electrons, protons,

photons and the anti-particles, usually referred to as cosmic rays), which can be

measured directly as they arrive at the earth (in the case of photons especially,

which suffer very little energy loss to galactic or inter-galactic material), or in-

directly through their influence on cosmic rays (for example photons produced by

electrons/protons). We also have great freedom in where to look; generally anywhere

where there is a cosmic overdensity of dark matter, close to home in the galactic cen-

tre or further afield in dwarf spheroidal (dSph) galaxies, galaxy clusters or the CMB.

Underlying all these is Eq.(7.5.112) and so ID constraints are frequently quoted

as confidence limits on the thermally averaged annihilation cross section 〈σv〉f̄f into

fermions of the same flavour, covering a mass range mχ ∼ 1 GeV− 100 TeV. If the

DM annihilates into only a single fermion species, these limits can be used directly

to place constraints on the model parameters. However in the event that the DM

annihilates into different fermions flavours, this is not possible since the ID signal
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would look like ∑
f=u,d,s,···

〈σv〉χ̄χ→f̄f Xf , (7.5.113)

where X is some fermion-flavour dependent function, for example the final state

radiation pattern from a pair of fermions produced in a single annihilation.

The ID signals from heavy quarks (q = c, b, t) are very similar (see [126] Fig.3

and 4), and it is uncommon to find constraints on c, t final states (more common is

the b). The primary spectra of electrons, positrons, anti-protons, deuteron and neu-

trinos are extremely similar between c, b, t quarks, and thus any constraints which

look for these particles from DM annihilations will be approximately heavy-flavour

independent. The situation is depicted in Fig.7.20. It should be noted that the

relative strength of these constraints is not robust, different authors use different

halo profiles, different astrophysical parameters and are subject to varying degrees

of uncertainty, some significantly larger than others, it is beyond the scope of this

work to accommodate all these effects and compare constraints on a like-for-like

basis and so what we present should be taken as representative but not precise. We

will use the b̄b final state as representative for constraints based on dSph [171] and

anti-proton measurements of AMS-02 [199] which dominate other constraints such

as those based on other particle targets, such as the positron fraction [202] or neu-

trinos [205] and also those based on the Galactic Center [19], or galaxy clusters [191].

It would be extremely resource intensive to compute each of the various observ-

ables from scratch, and thus be able to include all annihilation channels simultane-

ously. Instead we will compare the bounds on annihilation to u, c and t couplings

individually and take the strongest bound. This conservative treatment can still

provide strong limits as in Fig.7.21.

An interesting feature of the particular model we are considering is that if the DM

is Majorana, the thermally averaged annihilation cross section is helicity suppressed

by a factor (mq/mχ)2. This will suppress constraints fairly strongly unless the DM
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Figure 7.20: The constraints on 〈σv〉f̄f for f = q = u, d, s (left) and f = b (right), the latter is

representative of f = c, t for mχ > mc,t. The constraints are taken from many different sources

(dSph, galactic centre, clusters) and targets (gamma rays, radio waves, positron, anti-protons), see

text for details.
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Figure 7.21: The ID constraints on the DMFV model, with ‘maximal’ mixing θij = π/4 and

χ1 the lightest (left), or for couplings to top quarks only and χ3 the lightest (right). Bounds

are produced on individual final states, and therefore scale with the dominant annihilation chan-

nel, somewhat surprisingly the top quark channel gives stronger constraints due to the extremely

sensitive γ-ray search by H.E.S.S [19].
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is relatively light and couples strongly to top quarks.

7.5.2 Gamma Ray Lines

The previous section considered the tree level annihilation of dark matter. It is

sensible to assume the loop suppressed annihilations are subdominant to the tree

level and therefore can be safely ignored, with one exception. The direct production

of photons (rather than from the interactions of fermionic final states) leads to the

extremely clean signal of a line spectrum, the loop suppression in the cross section

is compensated by a significantly stronger limit from detectors.

The process χ̄χ→ γγ (and also χ̄χ→ γX with X some massive particle) leads

to a mono-energetic photon signal (smeared by detector resolution effects) and has

been analysed by the Fermi-LAT and H.E.S.S. collaborations [122, 123, 347] who

produce 95% confidence limits for 〈σv〉χ̄χ→γγ, the thermally averaged annihilation

cross section.

The relevant diagrams for annihilation into two photons in our model are box

diagrams. Rather than calculate the full result, we first perform the tree level match-

ing described in Sec.7.6.1 by integrating out the mediator. We then use this EFT

to calculate the photon production which is now a triangle diagram as shown in

Fig.7.22.

From Eq.(7.6.184), with the appropriate values gs = 1/2 and gp = −i/2 for the

DMFV model, the EFT contains operators OF5,6,7,8 with equal magnitude coeffi-

cients. We list in Tab.7.24 the cross section associated with the insertion of each of

the four fermion EFT operators. Then, only a single operator OF8 contributes to

the cross section,

〈σv〉γγ =
α2N2

cQ
4
f

1054(m2
χ −m2

φ)2π4
S

[
1 + 2m2

fC0

]2

, (7.5.114)

where S ≈ 4m2
χ is the centre of mass energy of the annihilating DM, and C0 is the
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Figure 7.22: The Feynman diagrams for DM annihilation into two photons γγ (left) and γX

where X = Z, h (right), we have not drawn the diagrams in which the final state lines are crossed

but these must be included in the calculation. A full set of independent four fermion EFT operators

are inserted at the cross.

scalar integral, where, for S,mf > 0 and S > mf we have that,

C0 ≡ C0(0, 0, S;mf ,mf ,mf ) =
1

2S

[
log

∣∣∣∣1 +
S

2m2
f

√1−
4m2

f

S
− 1

∣∣∣∣+ iπ

]2

.

(7.5.115)

As well as γγ final states, there will be γX final states where X = Z, h for exam-

ple and these also provide constraints (a single gluon or W± emission is prevented

by colour or charge conservation respectively). The presence of a massive particle

recoiling against the photon shifts the energy to Eγ = mχ(1 −m2
X/4m

2
χ), but still

creates a mono-energetic line signature. An example of the cross section is shown

in Fig.7.23, which shows that the constraints are slightly weaker than those from

tree-level annihilation.

We will present results for the spin averaged squared matrix element | 〈M〉 |2

which in general depend on the two Mandelstam variables S and t. The cross

section in the c.o.m frame can be derived from the expression,

σ =

∫
dΩ

1

2E12E2|v1 − v2|
|p3|

16π2Ecm

|M|2 (7.5.116)

=

∫
dΩ

1√
S − 4m2

χ

(S −m2
X)

64π2S3/2
|M|2 ≈ 1√

S − 4m2
χ

(S −m2
X)

16S3/2π
|M|2 , (7.5.117)

where E1 = E2 = Ecm/2 =
√
s/2, |p3| = (S −m2

X)/2
√
S and |v1 − v2| = 2|p1|/E1 =

2
√
S − 4m2

χ/
√
S. In the last line we have taken the approximation of low velocity
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Figure 7.23: The total cross section for χ̄χ → γX where X = γ, Z, h (red blue and green

respectively), with a scalar mass of 100 GeV (left) and 1 TeV (right), the DM is assumed for

simplicity to couple equally to u, c, t with couplings equal to 1. The Fermi-LAT and H.E.S.S.

limits are shown for 〈σv〉γγ and must be scaled appropriately for the Z, h final states, however this

does not drastically alter their size or position.

DM in which case the squared matrix element is approximately independent of θ.

To see this recall the low velocity limit of the Mandelstam variables,

S = 4m2
χ +O(v2) , t =

m2
X

2
−m2

χ +O(v cos θ) , (7.5.118)

and cos θ appears velocity suppressed in the matrix element, and this makes im-

plementing the integral is extremely simple, and each of the cross sections take a

simple form

〈σv〉γγ =
1

8πs
|M|2γγ , (7.5.119)

〈σv〉γZ =
(s−m2

Z)

8πs2
|M|2γZ , (7.5.120)

〈σv〉γh =
(s−m2

h)

8πs2
|M|2γh . (7.5.121)

We now give the analytic expressions for the squared matrix elements.
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Two Photon

The matrix element may be written

Mµν
γγ =

NcQ
2
fe

2

4π2

[
ΓµνS (gχ,s 〈1〉+ gχ,p 〈γ5〉) + 2iΓµνσV (gχ,v 〈γσ〉+ gχ,a 〈γσγ5〉)

]
,

(7.5.122)

the functions ΓS,V represent the vertex functions for the scalar like (OF1−4) and

vector like (OF5−8) EFT operators where the vertex functions are written,

ΓµνS = gQ,sf2(s)gµν + gQ,sf3(s)pν3p
µ
4 + gQ,pf4(s)εµνp3p4 , (7.5.123)

ΓµνσV = gQ,af1(s)εµνp3p4(pσ3 + pσ4 ) , (7.5.124)

with

f1(s) =
1

2s
(1 + 2m2

qC0) ,

f2(s) = mq(2 + (4m2
q − s)C0) ,

f3(s) =
2mq

s
(−2 + (s− 4m2

q)C0) ,

f4(s) = −2mqC0 . (7.5.125)

The two Ward identities pµ3Mµν = 0 and pν4Mµν = 0 lead to the relation,

f2(s) +
s

2
f3(s) = 0 , (7.5.126)

which is confirmed in our result. We present the squared matrix element (summed

over spins and polarizations) in Table.7.24 for the various EFT operator insertions.

Note that the χ̄χ initial state is p-wave suppressed (proportional to (S− 4m2
χ)),

and for small quark masses those with a χ̄γ5χ are suppressed by m2
q, leaving only

the operator χ̄γµγ5χq̄γµγ5q contributing significantly.

Z plus Photon

For the X = Z process, the Z possesses both vector and axial-vector couplings.

Furry’s theorem still applies for the vector Z coupling and forces the cross section

for OF5,6 to depend only on the axial Z coupling, and OF7,8 on the vector Z coupling.
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The relevant Lagrangian for DM annihilation to γZ is,

L = q̄γµ(gqZ,v + gqZ,a)qZ
µ + eQf q̄γµqA

µ +
∑
i,j

gi,jχ̄Γiχq̄Γjq . (7.5.127)

In [121] (see also [348]) the amplitude for the process Z ′σ → Zµγν is shown,

where Z ′ is a vector boson. Given the form of Eq.(33) of [121] we do not reproduce

the expression, however there are two identities (derived from the Schouten identity)

which may be employed to reduce the 5 non-zero amplitudes down to 3:

εµνσρpρ4 =
2

s−m2
Z

(
m2
Zp

ρ
3ε
µνσρ + pµ4ε

νσρτpρ3p
τ
4 + pσ4ε

µνρτpρ3p
τ
4

)
, (7.5.128)

εµνσρpρ3 =
2

s−m2
Z

(pν3ε
µσρτpρ3p

τ
4 − pσ3εµνρτpρ3pτ4) , (7.5.129)

at which point our results agree. The matrix element may be written

Mµν
γZ =

NcQfe

4π2

[
ΓµνS (gχ,s 〈1〉+ igχ,p 〈γ5〉) + iΓµνσV (gχ,v 〈γσ〉+ gχ,a 〈γσγ5〉)

]
,

(7.5.130)

where the vertex functions are

ΓµνS = gZ,vgQ,sf4(s)

(
1

2
(m2

Z − s)gµν + pν3p
µ
4

)
, (7.5.131)

ΓµνσV = −f1(s)εµσp3p4pν3 + εµνp3p4 (f2(s)pσ3 − f3(s)pσ4 ) , (7.5.132)

with12

f1(s) =
4m2

Z

(s−mZ)3

[
Afg

f
A

(
sΛ(m2

Z)− sΛ(s) + (m2
Z − s)(1 + 2m2

QC0)
)

+Bfg
f
V

(
sΛ(m2

Z)− sΛ(s) + (m2
Z − s)(1 + 2m2

Q

s

m2
Z

C0)

)]
,

f2(s) =
2

(s−mZ)3

[
Afg

f
A

(
m2
Z(m2

Z + s)(Λ(m2
Z)− Λ(s)) + (3m4

Z − 4m2
Zs+ s2)(1 + 2m2

QC0)
)

+Bfg
f
V

(
m2
Z(m2

Z + s)(Λ(m2
Z)− Λ(s))

+ (3m4
Z − 4m2

Zs+ s2)(1 + 2m2
QC0) + 2(m2

Z − s)2C0

)]
,

f3(s) =
2

(m2
Z − s)2

(
Afg

f
A +Bfg

f
V

) (
m2
Z(Λ(m2

Z)− Λ(s)) + (m2
Z − s)(1 + 2m2

QC0)
)
,

f4(s) =
2mq

(s−m2
Z)2

(
2m2

Z(Λ(m2
Z)− Λ(s)) + (m2

Z − s)(2 + (4m2
q +m2

Z − s)C0)

)

12The couplings are defined as Af = 1/2(gLH + gRH), Bf = 1/2(gLH − gRH), referring to the

LH/RH couplings to the Z.
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where we define,

Λ(x) ≡ Λ(x,mQ,mQ) ,

C0 ≡ C0(0,m2
Z , s,mQ,mQ,mQ) . (7.5.133)

Using the notation of [121],

f1(s) = Bf
6 +

2

s−m2
Z

Bf
2 −

2m2
Z

s−m2
Z

Bf
3 ,

f2(s) = Bf
8 −

2m2
Z

s−m2
Z

Bf
3 +

2

s−m2
Z

Bf
2 , (7.5.134)

f3(s) = Bf
7 +Bf

3 .

As with the two photon case, the Ward identity pµ3Mµν = 0 is satisfied.

The squared matrix element for each of the four-fermion operators is shown in

Tab.7.25. As expected, the operators with a χ̄χ initial state are p-wave suppressed

(proportional to (S − 4m2
χ)).

Higgs + Photon

Lastly we focus on the case of DM annihilation χ̄χ → γh. The SM Higgs couples

to the fermions through the interaction L = yq q̄qh with yq = mq/v where v ≈ 246

GeV is the Higgs vev. For t the Higgs coupling is around an order of magnitude

larger than that for the Z and γ, for c, b quarks it is around the same size and for

light quarks it is much smaller.

Given the full set of EFT operators, only those with a vector-like quark coupling

are non-zero (due to Furry’s theorem). Additionally the cross section for axial-vector

DM couplings is velocity suppressed and therefore only a single operator leads to

the hγ final state, the vector operator χ̄γµχq̄γµq as shown in Table.7.26.

The matrix element may be written,

Mµ
γh =

NcQfeyq
4π2

[
ΓµσV (gχ,v 〈γσ〉+ gχ,a 〈γσγ5〉)

]
, (7.5.135)
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EFT operator |M|2γγ

F1 χ̄χf̄f 2y′g2
χ,sg

2
Q,sm

2
q(s− 4m2

χ)

[
2− (s− 4m2

q)C0

]2

F2 χ̄iγ5χf̄f 2y′g2
χ,pg

2
Q,sm

2
qs

[
2− (s− 4m2

q)C0

]2

F3 χ̄χf̄ iγ5f 6y′g2
χ,sg

2
Q,pm

2
qs

2(s− 4m2
χ)|C0|2

F4 χ̄γ5χf̄γ5f 6y′g2
χ,pg

2
Q,pm

2
qs

3|C0|2

F5 χ̄γµχf̄γµf 0 (Furry’s Theorem)

F6 χ̄γµγ5χf̄γµf 0 (Furry’s Theorem)

F7 χ̄γµχf̄γµγ
5f 0

F8 χ̄γµγ5χf̄γµγ
5f 3

2
y′g2

χ,ag
2
Q,am

2
χs

[
1 + 2m2

qC0

]2

Figure 7.24: The squared matrix elements for the annihilation χ̄χ→ γγ for various fermion DM

EFT operators coupled to fermions with charge Qf and coupling g, note that g has mass dimension

−2. C0 ≡ C0(0, 0, s,mq,mq,mq) and y′ = (4Q4
fN

2
c α

2)/(π2).

with,

ΓµνσV = gQ,vfh,1(s)

(
1

2
(m2

h − s)gµσ + pµ4p
σ
3

)
, (7.5.136)

and,

fh,1(s) = − 2mq

(m2
h − s)2

[
2s(Λ(s)− Λ(m2

h)) + (m2
h − s)(−2 + (m2

h − 4m2
q − s)C0)

]
.

(7.5.137)

As a final note, although the line-like nature of signals generated from processes

such as χ̄χ→ γγ, γZ, γh are spectrally distinct from the smooth continuum emission

of photons from fermionic final states; there is still a source of continuum emission

which is produced in the line-like processes by final state radiation and decay of the

final state particle [119]. However this continuum emission is inevitably subdominant

to the primary continuum emission due to loop and coupling suppressions. What

it can offer is a constraint at very large DM masses beyond the upper energy reach

of the experiment, since the observed photons have a much smaller share of the
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EFT operator |M|2γZ

F1 χ̄χf̄f yg2
χ,sg

2
Q,sg

2
Z,v

m2
q(s−4m2

χ)

4(s−m2
Z)2

[
2m2

ZΛm + (s−m2
Z)(2 + (4m2

q +m2
Z − s)C0)

]2

F2 χ̄iγ5χf̄f yg2
χ,pg

2
Q,sg

2
Z,v

m2
qs

4(s−m2
Z)2

[
2m2

ZΛm + (s−m2
Z)(2 + (4m2

q +m2
Z − s)C0

]2

F3 χ̄χf̄ iγ5f
3
4yg

2
χ,sg

2
Q,pg

2
Z,vm

2
q(s− 4m2

χ)(s−m2
Z)2|C0|2

F4 χ̄iγ5χf̄iγ5f
3
4yg

2
χ,pg

2
Q,pg

2
Z,vm

2
qs(s−m2

Z)2|C0|2

F5 χ̄γµχf̄γµf 3yg2
χ,vg

2
Q,vg

2
Z,a

(8m2
χ+m2

Z)

4m2
Z(m2

Z−4m2
χ)2

∣∣4m2
χm

2
ZΛm − (4m2

χ −m2
Z)(m2

Z + 8m2
χm

2
QC0)

∣∣2
F6 χ̄γµχf̄γµγ

5f yg2
χ,ag

2
Q,vg

2
Z,v

3(8m2
χ+m2

Z)

4(m2
Z−4m2

χ)2

∣∣4m2
χΛm + (4m2

χ −m2
Z)A

∣∣2
F7 χ̄γµγ5χf̄γµf

yg2χ,ag
2
Q,vg

2
Z,a

9π3m2
Z(4m2

χ−m2
Z)2

[
− 32m6

χ

(
|A|2(4m2

χ −m2
Z)2 +m4

Z |Λm|2

+m2
ZRe(AΛ†m)(4m2

χ −m2
Z)

)
+ 8(4m2

χ −m2
Z)2

[
Re(A)m4

χ(4m2
χ −m2

Z)

+ Re(Λm)m4
χm

2
Z + 1

32 (4m2
χ −m2

Z)2(3m3
Z − 8m2

χ)

]]
F8 χ̄γµγ5χf̄γµγ

5f
yg2χ,ag

2
Q,ag

2
Z,v

4π3(4m2
χ−m2

Z)2

[
− 32m4

χm
2
Z

(
4m2

χ|Λm|2 + Re(ΛmA
†)(4m2

χ −m2
Z)

)
+ |A|2(4m2

χ −m2
Z)2

(
3(4m2

χ −m2
Z)2 − 8m2

χm
2
Z

)]

Figure 7.25: Squared matrix elements for the annihilation χ̄χ→ γZ process for various fermionic

DM EFT operators, coupled to fermions with charge Qf . We define Λm = Λ(s) − Λ(m2
Z) and

A = 1 + 2m2
QC0 and the constant y = (Q2

fN
2
c α)/(π3).

EFT operator |M|2γh

F5 χ̄γµχf̄γµf 2yg2
χ,vg

2
Q,v

m2
χm

2
q

(m2
h−4m2

χ)2

[
− 8m2

χΛm + (4m2
χ −m2

h)(2 + (4m2
χ −m2

h + 4m2
q)C0)

]2

Figure 7.26: Squared matrix elements for the annihilation χ̄χ→ γh process for various fermionic

DM EFT operators, coupled to fermions with charge Qf . We define Λm = Λ(s)− Λ(m2
h) and the

constant y = (Q2
fN

2
c αy

2
q )/(π3).
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available annihilation energy, on the other hand such large masses O(10 − 100)

TeV run into difficulties with perturbative unitarity bounds. The continuum is

dominantly generated by the decay of the Z, h, which decay similarly to fermions

and thus result is a very similar continuum.

7.6 DMFV : Direct Detection

7.6.1 Tree Level

The calculation of the scattering rate in a DD machine is done via an effective the-

ory, whereby heavy states are integrated out. This includes the mediator, the EW

particles (W,Z, h) and potentially the c, t quarks. The relevant Feynman diagrams

for the scattering of DM with nuclei appears at tree level via the exchange of φ

if the underlying scattering is with valence (u) or sea quarks (c, t). The φ is then

integrated out and the theory matched to a set of DM-quark EFT operators.

Only a single four-fermion operator (dimension six) appears in the matching,

from a single diagram at tree level with φ exchanged in the u-channel. We will limit

the scattering amplitudes to those in which the incoming and outgoing DM (and

quark) are the same flavour. This avoids the (possibly unknown) computation of

the hadronic matrix elements of quark currents q̄iΓqj for i 6= j. The matching is

given by,

LEFT = C
(ij)
t (µ)χ̄iγµPLχ

iq̄jRγµq
j
R , (7.6.138)

the vector currents arise due to the Fierz transformation required to bring the quarks

and DM into separate bilinears. The Wilson coefficient is

C
(ij)
t (µ) =

λjiλ
∗
ji

2((mχ −mq)2 −m2
φ)
. (7.6.139)

The scattering with nucleons then proceeds through both vector and axial-vector

quark currents. To find their contribution it is necessary to take hadronic matrix

elements of the operators, this does not affect the DM bilinear and so this amounts

to a computation of 〈q̄γµq〉N and 〈q̄γµγ5q〉N for N = n, p. The latter probes the
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spin distribution of quark q in the nucleus, and as such is suppressed relative to the

vector current which probes the valence quark content.

The spin contribution of the charm and top quarks are naturally extremely small,

and even worse for the conserved vector current they are zero (as is the case for any

sea quark). It would appear that the direct detection limits will be extremely weak

for charm and top couplings. This however is far from true when one considers the

effects of RG running.

The Wilson coefficient Eq.(7.6.139) is generated at the scale of the mediator mass,

assumed to be high. The various quark currents coupled to the DM will mix with

all the other currents, through loop diagrams which have anomalous dimensions.

The scale is first lowered from µ = mφ towards the scale of the Z mass µ ∼ mZ

with mixing through loop diagrams involving the hypercharge boson and Higgs,

then a threshold matching is computed as the EW particles are integrated out of

the theory. Then the scale is lowered to the nuclear scattering scale µn ∼ 1GeV

leading to further mixing with photon and quark mediated loop diagrams. The

relevant calculations have been performed in [258] for which the running and mixing

are simply computed using a 16 × 16 matrix and a basis of operators including

Eq.(7.6.138),

C(µn) ≈ exp

[
− γ(0)

belowEWtn

]
· Umatch · exp

[
− γ(0)

aboveEWtΛ

]
C(Λ), (7.6.140)

where γ(0) is the anomalous dimension matrix, with running of SM couplings ne-

glected (see the Appendices of [258]) both above and below the EW scales. The

logarithmic factors tΛ = log (Λ/mZ) and tn = log (mZ/µn). Finally Umatch gives the

matching at the EW scale; although this primarily just expands the chiral basis (RH

and LH fermion couplings) into the Dirac basis (vector and axial-vector couplings).

In particular, the heavy quark vector current Q̄γµQ mixes with the light quark
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q̄′q̄

q q′
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q̄′

γ
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Figure 7.27: The divergent loop diagrams responsible for mixing between the quark vector and

axial vector currents (χ̄Γχq̄Γq) above the EW scale (top) and below (bottom). The most important

aspect is the mixing of high-scale heavy quark currents q = c, t onto light quark vector currents

q′ = u, d, thus enabling a strong scattering cross section with nuclei.

vector current (and vice versa) leading to a replacement;

ūRγ
µuR → Ruuūγ

µu+Rudd̄γ
µd , (7.6.141)

c̄Rγ
µcR → Rcuūγ

µu+Rcdd̄γ
µd , (7.6.142)

t̄Rγ
µtR → Rtuūγ

µu+Rtdd̄γ
µd , (7.6.143)

where the high scale is taken to be Λ = mφ. If the mediator mφ < mZ then the EW

matching should be neglected, and only the running between mφ and µN included.

The effect of running is depicted in Fig.7.28, clearly for mφ & mZ the mixing is

strongest; below this scale the t is integrated out (preventing mixing and requiring

a matching to loop induced operators), and the running for the c is slightly weaker.

This presents two scenarios in which the DD bounds are weakened:

1. mφ < mt + top-coupling only : The top is integrated out of the theory

(considered in the next sections), leading to a loop suppressed scattering, which

also does not benefit from the mixing. However, this situation violates our

assumption of an unstable φ and so does not appear in our results unless a

coupling to the lighter quarks is present, allowing a φ decay channel.

2. mφ < mZ + charm-coupling only : If the mediator is sufficiently light and
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Figure 7.28: The effect of the RG running from a high scale Λ = mφ down to the nuclear

scattering scale µN = 1 GeV, the running is slightly different above (right) and below (left) the

EW scale (taken to be mZ).

couples only to charm quarks, then the RG running effect is suppressed by up

to ∼ 10−3 (about the same level as the loop effects). The DD bounds on mφ

scale roughly by 10−3/2 and are therefore significantly weakened.

Generally a null result in DD data requires mediators with large masses, which

then induce a mixing of the heavy quark current with suppression, RQ,u, RQ,d ∼ 10−2,

compared with the light quark current. The cross section scales approximately as

σheavy ∼ R2
Qu/m

4
φ and the constraints then decrease by only an order of magnitude,

still sufficiently strong to rule out most of the available parameter space.

To match onto a theory which contains nucleons as fundamental degrees of free-

dom we take hadronic matrix elements of the quark operators. The hadronic matrix

elements are extremely simple 〈ūγµu〉p = 〈d̄γµd〉n = 2 and 〈ūγµu〉n = 〈d̄γµd〉p = 1

due to the conserved vector current. Next, the non-relativistic limit of the opera-

tors are taken and matched to a set of nuclear form factors; this step justifies our

approximation of including only the vector-vector operator χ̄γµχq̄γµq, since it is the

only one which matches to the largest form factor (which scales as A2, where A is

the atomic number of the target nucleus).
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Then, the tree level scattering rate is substantial, even for couplings to the

heavy quarks unless the mediator is sufficiently light to prevent the generation of

light quark operators through RG running effects, but this requires fine tuning of

the mass.

Despite the apparent dominance of the tree level scattering, there are several

contributions to scattering which arise at one loop. To present a thorough discus-

sion we will explore these in more detail.

In order to calculate the total event rate in the detector, first one calculates the

spin-averaged, squared matrix element for the scattering;

1

2jχ + 1

1

2jN + 1

∑
spin

|M|2 =

(
mT

mN

)2∑
i,j

∑
N,N ′=p,n

C
(N)
i C

(N ′)
j F

(N,N ′)
ij (v2, q2),

(7.6.144)

where the form factors F
(N,N ′)
ij can be found in Appendix A.2 of [211]. The differ-

ential cross section is then given by,

dσ

dER
=

1

8πm2
χmTv2

1

2jχ + 1

1

2jN + 1

∑
|M|2. (7.6.145)

This is then used to calculate the differential rate,

dR

dER
= NTnχ

∫
v>vmin

dσ

dER
vfE(v)d3v, (7.6.146)

where the DM number density nχ = ρχ/mχ. The differential rate involves an inte-

gral over the velocity vector, weighted by |v̄|fE(v̄), between the minimum velocity

and the escape velocity of the galaxy, where fE is the velocity distribution of the

DM, in the Earth’s frame and normalized to 1. Since we are not concerned with

annual modulation effects, to a good approximation the velocity distribution may be

taken as an isotropic Maxwell-Boltzmann. This has the advantage that the integral

can be performed analytically.

The cross section according to our prescriptions will in general contain terms

proportional to vn with n = 0, 2 the result for the integrals (termed J0 and J1) are
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given in Appendix A of [230].

In the DMFV model, at tree level we find

C
(p),i
1 = 4mimN

∑
j

(2Rju +Rjd)C
(ij)
t , (7.6.147)

C
(n),i
1 = 4mimN

∑
j

(2Rjd +Rju)C
(ij)
t , (7.6.148)

where RQj (RQj) gives the magnitude of the running of operator q̄jRγ
µqjR onto ūγµu

(d̄γµd). i and j run over the DM and quark flavours respectively.

7.6.2 Loop Level : Gluonic Operators

As well as the tree level scattering of DM, we consider the scattering of the DM with

nuclei via its coupling to gluons. To preserve color this requires the exchange of two

gluons, arising at the one-loop level as box diagrams. We will use the following

Lagrangian to perform the calculation13;

Lint = χ̄(gs + igpγ
5)Fφ† + F̄ (g†s + ig†pγ

5)χφ . (7.6.149)

There are four sets of Feyman diagrams as shown in Fig.7.30, which we calculate

explicitly using the Mathematica package PackageX [349], and cross checking results

using a combination of FeynRules, FeynArts and FormCalc [350–352].

The low energy, zero-momentum transfer limit is taken to simplify the result and

match to a small set of EFT operators which are listed in the next section. This

calculation has been done several times in the literature [219, 224, 353], however

we seek to provide some extra details as in practice using the packages mentioned

above the results are difficult to obtain without using some identities.

13The factor of i on the γ5 ensures that the Feynman rule does not change the sign of gp.
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Figure 7.29: The DD bounds for three coupling choices, for a model in which χ1 couples to u

quarks only with strength D11. Bounds for LUX and CMDSlite are solid (dashed), and the filled

region shows the allowed parameters which give the correct relic abundance. Constraints are based

on the dominant tree level contribution to scattering.
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Figure 7.30: The Feynman diagrams for DM-gluon scattering in the DMFV model denoted

(a)-(d) (from left to right).

Effective Gluon Operators

We consider in order of mass dimension the operators which lead to DM gluon scat-

tering. These must contain a DM bilinear χ̄Γχ. The amplitudes for each operator are

also shown at s = u = m2
χ and t = 0 (i.e. the low energy, zero momentum-transfer

limit). We will restrict to on-shell gluons for which ∂µGµν = 0 and ∂2Gµν = 0.

Dimension 4, 5, 6

The only dimension four operator is the DM kinetic term, χ̄i /Dχ, which does not

have a gluon coupling for color neutral DM. Due to gauge invariance, this remains

true to all orders of perturbation theory.

At dim-5 the structure χ̄Γχ can only be contracted with Gµν , i.e. χ̄iσ
µνtaijχjG

a
µν

which is only possible for color charged DM. At dimension 6 we can include a

derivative, but still cannot create a color singlet combination.
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Dimension 7

At dim-7 it is possible to include two gluon field strengths, with either two or no

free indices. The non-zero operators are,

OG,s = χ̄χGµν,aGa
µν : Mµν = 8 (qµqν) 〈ū(p′)u(p)〉 , (7.6.150)

OG,s′ = χ̄χG̃µν,aGa
µν : Mµν = 4(qσQρ)εσρµν 〈ū(p′)u(p)〉 , (7.6.151)

OG,p = χ̄iγ5χG̃µν,aGa
µν : Mµν = 4(qσQρ)εσρµν 〈ū(p′)|iγ5|u(p)〉 , (7.6.152)

OG,p′ = χ̄iγ5χGµν,aGa
µν : Mµν = 8(qµqν) 〈ū(p′)|iγ5|u(p)〉 (7.6.153)

including both the field strength and its dual G̃µν ≡ 1
2
εµνσρGσρ. These operators

provide the dominant contribution from the matching.

Dimension 8,9

Many more operators can appear at dimension 8, by the addition of a derivative

∂GG has five lorentz indices and so can only couple to currents with an odd number

of lorentz indices,

OG,8 = (gχ̄γµ∂νχ+ g†∂ν(χ̄)γµχ)Gµρ,aGa
ρν (7.6.154)

: Mµν = iIm(g) 〈ū(p′)|/Q|u(p)〉 (qµpν − pµqν) , (7.6.155)

OG,8′ = (gχ̄γµ∂νγ5χ+ g†∂ν(χ̄)γµγ5χ)Gµρ,aGa
ρν (7.6.156)

: Mµν = iIm(g) 〈ū(p′)|/Qγ5|u(p)〉 (qµpν − pµqν) , (7.6.157)

the amplitudes for operators χ̄γµχGνρ,a∂µG
a
ρν , χ̄γ

µγ5χGνρ,a∂µG
a
ρν and (gχ̄γµγ5∂νχ+

g†∂ν(χ̄)γµγ5χ)Gµρ,aGa
ρν are all zero. At dimension 9 a single operator is non-zero

for on-shell gluons;

O9,1 = χ̄σµν∂ρχGσν∂σG
µρ : M = −4mχ 〈ū3|/Q|u1〉 (qµpν1 − pµ1qν) ,

which is equivalent to OG,8. The operator O9,2 = −χ̄∂µ∂νχGµρGρν is zero.

We use the Lagrangian laid out in [224] with dim-8,9 terms which do not mix
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with the dim-7;

Ldim−7 = (BS +BD)χ̄χGµν,aGa
µν , (7.6.158)

Ldim−8 = 2 [B2Sχ̄i∂µγνχ+ h.c.]Gµρ,aG ν,a
ρ , (7.6.159)

Ldim−9 = [(B1D +B1S)χ̄∂µ∂νχ+ h.c.]Gµρ,aG ν,a
ρ , (7.6.160)

and then BS +BD = CG,s, B2S = CG,8. The dim-9 operator requires a matching at

O(t) (off shell gluons) and thus we ignore its contribution. We find the dominant

contribution,

BD +BS =
αs

12πm3
φ(1− r2)ε

[
1 +

ε

2r3(1− r2)

(
r2(−3− 2r2 + r4)

− 4r4 log ε+ (−3 + 6r2 + r4) log (1− r2)

)]
+O(ε) .

(7.6.161)

Computing the Feynman diagrams in Fig.7.30, the Wilson coefficients of the

dimension 7 operators are as follows (to leading order in the quark mass);

CG,s =
αs

48πm3
φε

[
(g2
s − g2

p) +
ε(g2

s + g2
p)r(13 + 8 log ε)

4

]
+O(ε0) ,

CG,s′ = 0 ,

CG,p =
iαs

192πm3
φε

2

[
r(g2

s + g2
p) + 3ε(g2

s − g2
p)

]
+O(ε0) ,

CG,p′ =
αsgsgpr

96πm3
φ

[
9 + 8 log ε

]
+O(ε0) , (7.6.162)

where r ≡ (mχ/mφ) and ε ≡ (mQ/mφ). The dim-8 operators have Wilson coeffi-

cients,

CG,8 =
αs(g

2
s + g2

p)

192πm4
φr

4(1− r2)2

[
r2 + 3r4 + (1− 2r2 − 3r4) log (1− r2) + 4r4 log ε

]
+O(ε1) ,

(7.6.163)

CG,8′ =
2αsgsgp

192πm4
φr

4(1− r2)2

[
r2 + 3r4 + (1− 2r2 − 3r4) log (1− r2) + 4r4 log ε

]
+O(ε1) .

(7.6.164)

Twist-2 Operator

Rather than classify operators purely on their mass dimension, it can be useful to

perform an OPE in the twist parameter (dimension minus spin). At lowest order
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the dimension 7 operator, χ̄χGµνGµν , appears, at next order the gluonic ‘twist-2’

operator is [219],

OTw2 =
g

(Q,1)
G

Λ
(iχ̄∂µγνχ+ h.c.)OGµν −

g
(Q,2)
G

Λ2
(χ̄∂µ∂νχ+ h.c.)OGµν , (7.6.165)

OGµν = GµρG
ρν +

1

4
gµνGσρGσρ ,

which contains dim-8,9 operators defined in Eq.(7.6.160). The twist-2 operator

contributes an amplitude (at t = 0 and s = m2
χ), 14

MTw2 =
4g

(Q,1)
G

Λ
ū3

[
1

2
/Q (qµpν1 − pµ1qν)−mχq

µqν
]
u1 −

4g
(Q,2)
G

Λ2

[
m2
χū3u1q

µqν
]
,

then the twist-2 coupling, Eq.(7.6.165) can be found with the replacements

g
(Q,1)
G = ΛB2S, (7.6.166)

g
(Q,2)
G = Λ2(B1D +B1S), (7.6.167)

f
(Q)
G = (BS +BD)− 1

4
mχB2S, (7.6.168)

and for on shell gluons, the only contribution to the twist-2 comes from g
(Q,1)
G .

14In [353] the amplitudes of g
(Q,{1,2})
G are the same. In order to derive this result it is claimed

that χ̄Γγµχ = χ̄Γi∂µχ, which becomes χ̄Γpµ1χ, then Q · p1 = S −m2
χ and the amplitudes are the

same.

The full amplitudes are

M(g
(1,Q)
G ) = −4mχq

µqν 〈1〉 − 2(m2
χ − S) (qµ 〈γν〉 − qν 〈γµ〉) + 2 〈/Q〉 (qµpν1 − pµ1 qν + (m2

χ − S)gµν),

M(g
(2,Q)
G ) = −4m2

χq
µqν 〈1〉+ 4(m2

χ − S)(qµpν1 − pµ1 qν) 〈1〉+ 2(m2
χ − S)2gµν 〈1〉 ,

then using the replacement rule γµ → pµ1/mχ,

M(g
(1,Q)
G ) =

[
− 4mχq

µqν − 4(m2
χ − S) (qµpν1 − pµ1 qν)− 2(m2

χ − S)2gµν
]
〈1〉 ,

M(g
(2,Q)
G ) =

[
− 4m2

χq
µqν + 4(m2

χ − S)(qµpν1 − pµ1 qν) + 2(m2
χ − S)2gµν

]
〈1〉 .
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Amplitude of the EFT

We assign momentum as χ(p1)q(p2)→ χ(p3)q(p4), then defining (by eliminating p3

from overall momentum conservation p1 + p2 = p3 + p4)

qµ ≡ (p1 − p3)µ = (p4 − p2)µ,

Qµ ≡ (p2 + p4)µ, (7.6.169)

pµ ≡ pµ1 .

We express the amplitudes in terms of p, q,Q. We take the t = (p1 − p3)2 = 0 (zero

momentum transfer) limit, as well as the static limit of the DM (s = m2
χ). The

various scalars are then,

p · q = 0 , p ·Q = s−m2
χ , q ·Q = 0 ,

p2 = m2
χ , q

2 = 0 , Q2 = 0 . (7.6.170)

The amplitude includes one of the five basis vectors of spinor-space, 〈ū(p3)|Γ|u(p1)〉;
Γ = {1, iγ5, γµ, γµγ5, σµν}, as well the various spinor-space scalars in with 0,1,2,4

Lorentz indices {1, pµi , gµν , εµνσρ}.

The polarizations of the gluons can be split from the full amplitude M =

Mµνξ
µ
2 ξ
∗,ν
4 we get qµ = Qµ and qν = −Qν from transversality of the gluon. The

amplitude may be written,

Mµν =Mµν
S +Mµν

P +Mµν
V +Mµν

A +Mµν
T ,

With the contribution from each current being linearly independent from the rest.

For scalar and pseudoscalar currents for example,

Mµν
S = χ̄χ

[
s1g

µν + s2p
µ
1p

ν
1 + s3q

µqν + s4p
µ
1q

ν + s5q
µpν1 + εµνσρ (s6q

σQρ + s7p
σ
1q

ρ + s8p
σ
1Q

ρ)

]
,

Mµν
P = χ̄iγ5χ

[
p1g

µν + p2p
µ
1p

ν
1 + p3q

µqν + p4p
µ
1q

ν + p5q
µpν1 + εµνσρ (p6q

σQρ + p7p
σ
1q

ρ + p8p
σ
1Q

ρ)

]
.

Since the gluons are self-conjugate, the amplitudes must be symmetric under ex-

change of the gluons, i.e. under µ ↔ ν and p2 ↔ −p4 (Q → −Q and p, q → p, q)



7.6. DMFV : Direct Detection 294

this leads to the constraints,

s4 = s5 , s7 = 0,

v7 = v11 = v12 = 0 , v13 = −v14 .

The amplitude must also satisfy two ward identities, but for QCD the Ward identities

are quite involved and depend on the polarizations of the gluons, there will be two

such relations and therefore two amplitudes would be removed. Finally hermiticity

imposes constraints from the fermions µ↔ ν and p1 ↔ p3, p2 ↔ p4 and i→ −i, so

that the scalar current has a simple form,

Mµν
S = χ̄χ

[
s1g

µν + s2q
µqν
]

+ χ̄iγ5χ

[
p1g

µν + p2q
µqν
]

+ χ̄ /Qχ

[
v(pµ1q

ν − pν1qµ)

]
.

Identities

There are several identities which prove useful for the calculation of the traces of

the box diagrams.

The Gordon identity reduces operators with a σµν via the Dirac equation

〈σµνqµξνi 〉 = −2imχ 〈/ξi〉+ i (2p− q) · ξi 〈1〉 , (7.6.171)

〈σµνqµξνi γ5〉 = i (2p− q) · ξi 〈γ5〉 , (7.6.172)

〈σµνpµξνi 〉 = −imχ 〈/ξi〉+ ip · ξi 〈1〉 , (7.6.173)

〈σµνpµξνi γ5〉 = imχ 〈/ξiγ5〉+ ip · ξi 〈1〉 , (7.6.174)

although operators with Qµσµν contractions are not reducible in this way. There

are several identities related to Levi-Civita tensor derived using the relation

εµνρσγσγ
5 =

1

2
(σµνγρ + γρσµν) , (7.6.175)

for example,

〈γσγ5〉 εqQξiσ = −i(2p1 − q) · ξi 〈/Q〉 , (7.6.176)

〈γσγ5〉 εp1Qξiσ = −ip1 · ξi 〈/Q〉+mχ 〈σQξi〉 , (7.6.177)

〈γσ〉 εqQξiσ = −i(2p1 − q) · ξi 〈/Qγ5〉+ 2mχ 〈σεiQγ5〉 , (7.6.178)

〈γσ〉 εp1Qξiσ = −ip · ξi 〈/Qγ5〉 −mχ 〈σQξiγ5〉 (7.6.179)
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and using the Schouten identity one can prove,

2εQξ2ξ4σγσγ
5 = − 1

mχ

γ5εqQξ2ξ4 +
1

mχ

[
(2p1 − q) · ξ4σ

Qξ2 − (2p1 − q) · ξ2σ
Qξ4

]
,

(7.6.180)

and

〈γργ5〉 ερqQξ4(q · ξ2) = 〈γργ5〉 ερqQξ2(q · ξ4)−mχ 〈γ5〉 εqQξ2ξ4 , (7.6.181)

〈γργ5〉 ερqQξ4(p · ξ2) = 〈γργ5〉 ερqQξ2(p · ξ4)− 2mχ 〈γ5〉 εqQξ2ξ4 . (7.6.182)

(7.6.183)

Approximate Result

Since we are working with a general coupling structure χ̄i(gs + igpγ
5)qjφ, we will

present the tree level matching for this form. We match to a set of four-fermion

operators in Tab.7.1.

Dirac Majorana

OF1 χ̄χq̄q 1
2
χ̄χq̄q

OF2 χ̄iγ5χq̄q 1
2
χ̄iγ5χq̄q

OF3 χ̄χq̄iγ5q 1
2
χ̄χq̄iγ5q

OF4 χ̄γ5χq̄γ5q 1
2
χ̄γ5χq̄γ5q

OF5 χ̄γµχq̄γµq −
OF6 χ̄γ5γµχq̄γµq

1
2
χ̄γ5γµχq̄γµq

OF7 χ̄γµχq̄γ5γµq −
OF8 χ̄γ5γµχq̄γ5γµq

1
2
χ̄γ5γµχq̄γ5γµq

OF9 χ̄σµνχq̄σµνq −
OT1 χ̄i∂µγνχOTqµν χ̄i∂µγνχOTqµν
OT2 χ̄γµγνχOTqµν χ̄γµγνχOTqµν

Table 7.1: EFT operators in the DMFV model for a DM-quark scattering processes.

We will ignore the twist-2 contribution due to the dimensional suppression of
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the operators, for the remaining nine operators the Wilson coefficients are;

C
(q)
F1 = C

(q)
F4 = −2C

(q)
F9 =

|gp|2 − |gs|2
4((mχ −mq)2 −m2

φ)
,

C
(q)
F8 = −C(q)

F5 =
|gp|2 + |gs|2

4((mχ −mq)2 −m2
φ)
,

C
(q)
F2,3 = − i(gsg

†
p + gpg

†
s)

4((mχ −mq)2 −m2
φ)
,

C
(q)
F6,7 =

i(gsg
†
p − gpg†s)

4((mχ −mq)2 −m2
φ)
. (7.6.184)

For our model the couplings are RH (gs = igp = λji) and note that then OF1,2,3,4,9

each disappear leaving only the vector/axial vector currents OF5,6,7,8 (and thus re-

producing Eq.(7.6.138)).

It is possible to obtain an approximate result for each of the gluonic Wilson

coefficients Cs,s′,p,p′ by using the four-fermion EFT generated after integrating out

the mediator. This then reduces the box diagrams to a triangle diagram with a

single EFT insertion as below.

χ χ

q

This matches to just dim-7 operators with the following Wilson coefficients if

the vertex is scalar CF1,2,3,4

C
(q)
G,s = −1

8

(
αsC

(q)
F1

3mqπ

)
, C

(q)
G,s′ = −1

8

(
αsC

(q)
F3

2mqπ

)
, (7.6.185)

C
(q)
G,p =

1

8

(
αsC

(q)
F4

2mqπ

)
, C

(q)
G,p′ =

1

8

(
αsC

(q)
F2

3mqπ

)
. (7.6.186)

or if it is vector CF5,6,7,8

C
(q)
G,p =

αsmχC
(q)
F8

12m2
qπ

, (7.6.187)
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inserting the Wilson coefficients to the above expression reproduces the leading terms

from the calculation of the full loop diagrams, Eq.(7.6.162), except for the CG,p′ and

second term in CG,s. The terms which are not reproduced by the tree level results

contain a larger mass suppression (going as r/m3
φ), which suggests they arise from

higher dimensional operators; indeed they would be reproduced if we had included

a matching to the twist-2 quark operators in the tree level EFT.

Cross Section

We now show how to arrive at the cross section using the gluon EFT of Eq.(7.6.160)

and just the scalar operator OG,s. Firstly the hadronic matrix element of the gluonic

part of the operator, Gµν,aGa
µν , is taken15,

〈 αs
12π

Gµν,aGa
µν〉 = − 2

27
mNf

(N)
TG ,

where 〈· · ·〉 ≡ 〈N (k, s)| · · · |N (k′, s; )〉 represents the nucleon momentum states. The

resulting EFT now includes the nucleon spinors, N

L = − 2

27
mNf

(N)
TG C

(Q)
G,s

(
χ̄χN̄N

)
, (7.6.188)

now we take the NR limit and match the amplitude onto a set of NR operators as

defined in [211]. In this case the matching is simple as χ̄χN̄N n.r.
= 4mχmNO1, where

O1 ≡ 1 is the identity operator. Thus we find the Wilson coefficient C1 which may

be plugged in Eq.(7.6.146) to give the cross section,

C
(N)
1 = − 8

27
mχm

2
Nf

(N)
TG

∑
Q=c,t

C
(Q)
G,s . (7.6.189)

7.6.3 Loop Level : Photon Penguins

DM may scatter with nuclei via photon exchange. Whereas a single gluon exchange

is forbidden by color conservation, no such restriction applies to EM charge, and

the resulting single photon exchange can be phrased in the language of electromag-

netic multipole moments. Unlike for the gluon case, the dominant contribution to

15The constant f
(N)
TG =

(∑
q f

(N)
Tq
− 1
)

for quarks q = u, d, s and its numerical value can be

found in chapter 4.
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scattering comes from the exchange of an off-shell photon and hence we will assume

∂µFµν 6= 0.

The possible interactions between the DM and photon are parametrized by the

Lagrangian (see for example [354, 355]),

L = χ̄γµ(bχ + aχγ
5)χ∂νFµν +

µχ
2
χ̄σµνχFµν +

eχ
2
χ̄σµνχF̃µν , (7.6.190)

which are equivalent to various multipole moments in the non-relativistic limit. µχ

parametrises the magnetic dipole moment (MDM), eχ the electric dipole moment

(EDM), bχ the charge-radius and aχ the anapole moment, all of which are real

numbers. The MDM and EDM are static EM moments, which are non-zero for

on-shell photons, whereas the anapole and charge-radius are non-static and require

an off-shell photon. The matrix element of Eq.(7.6.190) for Dirac DM is,

M = (2mχµχ − q2bχ) 〈ū(p′)| /ξ |u(p)〉+ q2aχ 〈ū(p′)| γ5/ξ |u(p)〉+ 2µχε · p 〈ū(p′)|u(p)〉

+ 4eχp · ξ 〈ū(p′)| γ5 |u(p)〉 , (7.6.191)

where p, p′ are the incoming and outgoing DM momenta and q2 is the momentum

exchange through the photon (i.e. the amount by which the photon is off-shell) with

polarization ξ. For Majorana DM Eq.(7.6.191) only contains a contribution to aχ.

For our model, Dirac DM possesses non-zero µχ, bχ and aχ (the EDM is CP-odd and

would therefore be proportional to δij, the CP violating phases of the DMFV model).

The contributing Feynman diagrams are shown in Fig.7.31. Each amplitude

contains a factor QfNc from the photon vertex, and color sum. We define q = p−p′,
then

p2 = p′2 = m2
χ , p · p′ = m2

χ −
q2

2
, p · q = −p′ · q =

q2

2
, (7.6.192)

we then expand to first order in q2 and match to Eq.(7.6.191).

Results : Multipole Moments

We now present the result of the calculation, which is in agreement with the litera-

ture (see for example [259, 354, 356, 357]), again using the generalized Lagrangian
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χ χ

φ φ

Q

χ χ

Q Q

φ

Figure 7.31: The Feynman diagrams for DM-photon scattering in the DMFV model, denoted

(a), (b) (from left to right).

Eq.(7.6.149). The two diagrams in Fig.7.31 lead to a charge-radius of,

bχ =
QfNce

48m2
φπ

2∆3/2µ3/2

[
(|gs|2 − |gp|2)

√
ε

(
− 2
√

∆µ(ε− 1) + ∆3/2 log (ε)

− 2(ε− 1)(∆ + µ(−1− ε+ µ)) log

(
1 + ε− µ+

√
∆

2
√
ε

))
+

(|gs|2 + |gp|2)

4
√
µ

(
− 4
√

∆µ(4∆ + µ+ 3εµ− µ2)−∆3/2(8− 8ε+ µ) log (ε)

− 2(8∆2 + ∆µ(9 + 7ε− 9µ) + 4µ2((µ− 1)2 − ε(5 + µ)) log

(
1 + ε− µ+

√
∆

2
√
ε

))]
≈ QfNce

48m2
φπ

2µ3/2(µ− 1)

[
(|gp|2 − |gs|2)

4
√
µ

(
8µ− 6µ2 + (8− 7µ+ 3µ2) log (1− µ)− 2µ2 log (ε)

)
+

√
ε(|gs|2 + |gp|2)

(µ− 1)

(
2µ+ (2− 4µ) log (1− µ) + µ2 log (ε)

) ]
+O(ε),
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where µ = (mχ/mφ)2, ε = (mq/mφ)2 and ∆ = ε2 + (1 − µ)2 − 2ε(1 + µ). For the

magnetic dipole moment,

µχ =
QfNce

32mφπ2
√

∆µ3/2

[
(|gs|2 − |gp|2)

(√
∆εµ log (ε) + 2

√
εµ(1− ε+ µ) log

(
1 + ε− µ+

√
∆

2
√
ε

))
(7.6.193)

+ (|gs|2 + |gp|2)

(
−2µ
√

∆ +
√

∆(ε− 1) log (ε)− 2(∆ + µ(1 + ε− µ)) log

(
1 + ε− µ+

√
∆

2
√
ε

))]
(7.6.194)

≈ −QfNce

16mφπ2µ3/2

[
(|gp|2 − |gs|2)(µ+ log (1− µ)) (7.6.195)

+

√
µε(|gp|2 + |gs|2)

(µ− 1)
((1 + µ) log (1− µ)− 2µ log ε)

]
+O(ε).

(7.6.196)

For Majorana DM, both µχ and bχ would be zero. There is a contribution to the

anapole moment,

aχ =
iQfNce(gsg

†
p − g†sgp)

96m2
φπ

2

1

µ
√

∆

(
− 3
√

∆ log (ε) + 2 (3ε− µ− 3) log

(
1 + ε− µ+

√
∆

2
√
ε

))
≈ iQfNce(gsg

†
p − gpg†s)

96m2
φπ

2µ(µ− 1)

(
(3 + µ) log (1− µ)− 2µ log ε

)
+O(ε), (7.6.197)

requiring non-chiral complex couplings (note that this expression is identical for

Dirac or Majorana DM).

These expressions may be simplified even further (under the assumption mq �
mχ � mφ),

aχ =
QfNce(gsg

†
p − g†sgp)

32m2
φπ

2

(
1 +

4

3
log

(
mq

mφ

))
, (7.6.198)

bχ =
QfNce(|gs|2 + |gp|2)

32m2
φπ

2

(
1 +

4

3
log

(
mq

mφ

))
, (7.6.199)

µχ =
QfNce(|gs|2 + |gp|2)

32mφπ2

mχ

mφ

. (7.6.200)

Thus for light quarks (or heavy DM and mediator) the magnetic dipole moment

is insensitive to the quark mass, however the charge radius and anapole receive

logarithmic enhancements for light quarks.
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Discussion on Operators

We will now show that a general complex fermion may possess only four independent

couplings to the photon. These are the mulitpole moments; electric and magnetic

dipoles, charge-radius and anapole moment.

The loop diagrams of Fig.7.31 lead to an effective photon vertex function Γµ(Q, q),

where we have removed the photon polarization. The most general vertex function

includes the momenta qµ = (p1 − p3)µ and Qµ = (p1 + p3)µ16 and the various Dirac

structures. It may be written,

Γµ = 〈ū3|
(
s1q

µ + s2Q
µ + p1γ

5qµ + p2γ
5Qµ + v1γ

µ + a1γ
µγ5 + t1σ

µνqν + t2σ
µνQν

)
|u1〉 ,

Γµε = εµνσρ 〈ū3|
(
v2q

νQσγρ + a2q
νQσγργ5 + t3q

νσσρ + t4Q
νσσρ

)
|u1〉 , (7.6.201)

the transversality of the photon leads to qµ → 0 (and thus s1 = p1 = 0 in the

amplitude). The vertex function can be reduced by using the Gordon identity for

on-shell DM to eliminate t1,2

〈qνσνµ〉 = 2imχ 〈γµ〉 − iQµ 〈1〉 ,

〈Qνσ
νµ〉 = −iqµ 〈1〉 . (7.6.202)

Using :;

ξµp
ν
1q
σεµνσρ 〈γργ5〉 = 2imχp1 · ξ 〈1〉 −

i

2
(t+ 4m2

χ) 〈/ξ〉 ,

ξµp
ν
1q
σεµνσρ 〈γρ〉 =

i

2
t 〈/ξγ5〉 , (7.6.203)

we can remove v2 and a2
17. Similar identities will remove t3,4. Finally the Ward

16The notation p, p′ and p1, p3 are equivalent, the latter allowing for a shorthand spinor notation

ui ≡ u(pi).
17A note of caution, here we are carrying out a matching to order O(q2), to remain consistent

we should neglect all terms of order O(q3) and higher, and implement any identities up to order

O(q2). For example, Eq.(7.6.202) can be multiplied by q2 to give

q2p1 · ξ 〈1〉 = mχq
2 〈/ξ〉+O(q3) , (7.6.204)

and also q2Q · ξ 〈γ5〉 is O(q3) and can therefore be neglected.



7.6. DMFV : Direct Detection 302

identity for the photon; qµΓµ = 0 gives (using q ·Q = 0),

〈ū3|
(
s1q

2 + q2p1γ
5 + 2mχa1γ

5
)
|u1〉 = 0 , (7.6.205)

so then s1 = 0 and 2mχa1 = −q2p1, removing p1 and leaving 4 couplings;

Γµ(Q, q) = 〈ū3|
(
s2Q

µ + p2γ
5Qµ + v1γ

µ + a1γ
µγ5
)
|u1〉 . (7.6.206)

For a self-conjugate (Majorana) DM, the vertex function should obey a symmetry

under exchange of the DM (represented by p1 → −p3 and p3 → −p1, or Q→ −Q),

note that the spinors themselves are swapped and swapping them back using the

reality of the Majorana field introduces a charge conjugation transformation of the

Dirac matrix between the spinors;

〈ū1|Γ |u3〉 = 〈ū3|Γ′ |u1〉 ; Γ′ = C−1ΓC = ηiΓ , (7.6.207)

with ηi = +1 for Γ = 1, iγ5, γµγ5 and η = −1 for Γ = γµ, σµν . This forces

s2 = p2 = v1 = 0 leaving only the a1 coupling which is the anapole moment.

We will now show how these vertex structures appear from the DM-photon La-

grangian. Following the choice of vertex structures in the preceding discussion we

consider the vector, axial vector and tensor DM bilinears defined by,

OµνV = gV χ̄γ
µ∂νχ+ h.c.,

OµνA = gAχ̄γ
µγ5∂νχ+ h.c., (7.6.208)

OµνT = gT χ̄σ
µνχ,

where gV,A are in general complex; giving a total of 5 free parameters (one is degen-

erate as we shall see shortly). To manifest single photon scattering, these contract

the photon field strength, F µν or its dual F̃ µν which creates a total of 10 operators

(again six of these are degenerate).

Two operators are automatically zero; for real gV,A the derivative can be shifted

off the DM bilinear using integration by parts, if the contraction is with the photon

dual then ∂νF̃
νµ = 0,

Re(OµνV )F̃µν = 0 , Re(OµνA )F̃µν = 0 . (7.6.209)
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Several of the operators are not independent and may be related using identities 18

(
gχ̄γµγ5∂νχ+ h.c.

)
F̃µν = −i

(
gχ̄γµ∂νχ− g†∂νχ̄γµχ

)
Fµν −

im

2
(g − g†)χ̄σµνχFµν ,

(7.6.212)

which leads to two relations (depending on whether the coupling is real or imagi-

nary),

iIm(OµνA )F̃µν = Re(OµνV )Fµν +mOµνT Fµν ,

Re(OµνA )F̃µν = −iIm(OµνV )Fµν . (7.6.213)

using the dirac equation for the DM, i/∂χ = mχ and i∂νχ̄γ
ν = −mχ. Similarly,

(gχ̄γµ∂νχ+ h.c.) F̃µν = −i
(
gχ̄γµγ5∂νχ− g†∂νχ̄γµγ5χ

)
Fµν +

m

2
(g + g†)χ̄σµνχF̃µν ,

(7.6.214)

again, real or imaginary couplings lead to different relations

iIm(OµνV )F̃µν = Re(OµνA )Fµν ,

Re(OµνV )F̃µν = −iIm(OµνA )Fµν +mOµνT F̃µν . (7.6.215)

Thus we may eliminate six of the ten operators via Eq.(7.6.209),(7.6.213),(7.6.215)

leaving four independent; Re(OµνV )Fµν (charge radius), Re(OµνA )Fµν (anapole), OµνT Fµν
(magnetic dipole) and OµνT F̃µν (electric dipole).

Contribution to Scattering Cross Section

We now review the general method for converting the analytical expressions for

the multipole moments, Eq.(7.6.196)-(7.6.197), into a cross section. Firstly, a non-

relativistic limit is taken. The DM momentum (incoming p, outgoing p′) are defined

18We use the identites [225],

iεµνσργµγ
5 = gνσγρ + gσργν − gνργσ − γνγσγρ, (7.6.210)

σµνγ5 = − i
2
εµνρσσρσ . (7.6.211)
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in the NR limit as,

pµ = (mχ, p̄) , p
′µ = (mχ, p̄

′), (7.6.216)

where q0 = 0, q̄ = p̄ − p̄′ and Q0 = 2mχ, Q̄ = p̄ + p̄′, we define 2p̄ − q̄ ≡ 2µv⊥ so

then

p̄ =
1

2
q̄ + µv⊥ , p̄′ = −1

2
q̄ + µv⊥ . (7.6.217)

From the plane wave expansion of a Dirac fermion field [330], the derivative opera-

tors are ∂µχ→ −ipµu(p) and ∂µχ̄→ ip′µū(p′).

Classically electromagnetism is phrased in terms of E and B fields, in QFT

these are packaged into the field strength of the photon F µν (and its dual F̃ µν =

1/2εµνσρFσρ
19), in the NR limit these reduce to the classical fields in the following

way

F 0i = Ei , F̃ 0i = Bi, (7.6.218)

F ij = −εijkBk , F̃ ij = εijkEk , (7.6.219)

or alternatively, Bi = −1
2
εijkF jk. Note that F0i = −F 0i.

The relativistic four-vector relation ∂νF̃µν = 0 in the NR limit has a timelike

piece, q · B = 0, accounting for the absence of magnetic monopoles. The spacelike

piece ∂0B
i − εijk∂jEk = 0 gives q × E = 0 when mapping to momentum space,

q̄ → −i∇.

When the matching to the photon EFT is complete one may proceed in two

ways;

19One must be very careful when dealing with the Levi-Civita tensor. In Minkowski space (with

metric gµν = gµν = diag(+,−,−,−)) we define the totally antisymmetric Levi-Civita tensor by

ε0123 = +1, this means that ε0123 = −1; due to the metric we have εµνσρ = −εµνσρ for any

µ, ν, σ, ρ ∈ 0, 1, 2, 3. We may similarly define a 3 dimensional Levi-Civita tensor by ε123 = +1, then

the 3×3 submatrix of the Minkowski LC reduces to the 3D, ε0ijk = εijk and ε0ijk = εijk but since

the reduced metric has negative sign ηij = ηij = (−,−,−) then we have the relation εijk = −εijk.

Making sure all three-vector indices are superscripted avoids errors with the minus signs.
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1. To match the result to a DM-quark Lagrangian using diagrams exchanging a

photon in the t-channel. Clearly only the q̄γµq current can appear in operators.

2. To consider the vertex function Γµ(q,Q) (which represents the DM-photon

scattering amplitude without the photon polarisation ξµ) coupled to the EM

current of the nucleus JµEM.

We will use the latter method following [358] closely, and begin by writing the

electromagnetic current for protons and neutrons,

JµEM = p̄

(
(k + k′)µ

2mN

+
gp
2

iσµνqν
2mN

)
p+ n̄

(
gn
2

iσµνqν
2mN

)
n, (7.6.220)

where p, n represent the proton/neutron spinors with incoming momentum k and

outgoing momentum k′. Eq.(7.6.220) includes both the charge term for the proton,

and the magnetic dipole of the proton and neutron (gn,p); this will allow both X-

charge and X-dipole type interaction where X is a DM multipole moment. The NR

limits are,

J0
EM = 2mN ,

J iEM = (k + k′)i − igpεijkqjSkp − ignεijkqjSkn .

An immediate problem is that the vector component is not Galilean invaraint under

v → v + β, then,

(k + k′)i = −mN(viN,in + viN,out)→ (k + k′)i − 2mNβ
i,

(p+ p′)i = −mχ(viχ,in + viχ,out)→ (p+ p′)i − 2mχβ
i,

so then J iEM → J iEM − βiJ0
EM. Therefore a boost invariant quantity is defined,

jEM = J iEM −
1

2mχ

(p+ p′)iJ0
EM . (7.6.221)

The EM current JµEM four vector contains the charge (timelike piece) and three

vector current (spacelike piece); along with Maxwells equations ∇ · E = J0
EM and

∇×B = J iEM one may derive (as q̄ ≡ −i∇, and thus q · JEM = 0),

E = iqiJ0
EM

1

q2
, Bi = i

1

q2
(q × JEM)i, (7.6.222)
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because J0
EM is boost invariant, so is the E field, however the B field is not and one

defines a boost invariant version,

Bi = Bi − 1

2mχ

εijkEj(p+ p′)k = i
1

q2
q × jEM . (7.6.223)

From the NR reduction of the relativistic operators we will find that the boost in-

variant magnetic fields arises naturally, as they should. It is worth anticipating this

result however as the algebraic manipulations are not always trivial.

With the NR limit of spinor bilinears from Sec.4.4 combined with Eq.(7.6.219)

we can work out the NR limit of the multipole moment operators, for example the

magnetic moment operator 20,

χ̄σµνχFµν = −2χ̄σ0iχF0i + χ̄σijχFij

= −2iχ̄γ0γiχF0i + iχ̄γ[iγ,j]χFij

= −2iEi
(
qi + 4iµεijkv⊥,jSk

)
− iεijkBk

(
−4imχε

ijlSl
)

= −2iq · E − 8mχ

(
S ·B − µ

mχ

S · (E × v⊥)

)
,

there is also a charge-radius term q ·E which contributes at higher order in q and can

thus be ignored, we thus recover the classical magnetic dipole moment operator S ·B
in terms of the Lorentz invariant magnetic field. The various multipole moments in

the NR limit are,

µχ
2
χ̄σµνχFµν

n.r.
= −4µχmχ (S · B) +O(q) , (7.6.224)

bχχ̄γ
µχ∂νF

µν n.r.
= 2bχmχ (iq · E) +O(q, v⊥) , (7.6.225)

aχχ̄γ
µγ5χ∂νF

µν n.r.
= 4aχmχ (S · iq × B) = −4mχ (S · JEM) . (7.6.226)

The NR multipole operators are themselves expressed in terms of q, v⊥, S using

the EM current from Eq.(7.6.220) and the mapping between fields and currents in

20Note the definition of γ[iγ,j] = (1/2)(γiγj − γjγi) includes a factor of 1/2
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Eq.(7.6.222) ;

iq · E → −2mNO1, (7.6.227)

B · S → gNm
2
N

q2
O6 − gNO4 −

2m2
N

q2
O5, (7.6.228)

E · S → 2mχmN

q2
O11, (7.6.229)

S · JEM → 2mχmNgNO9 − 4mχmNQNO8, (7.6.230)

where N = n, p, gN is the gyromagnetic ratio and QN is the charge and the opera-

tors Oi are defined in Sec.2.2 of [358].

In order to proceed from the coefficients of the multipole moment operators to

the cross section, one may use form factors associated to the mulitpole operators as

in [354], or instead perform the full NR reduction of the operators into a basis of

standard form factors, as we do :

µχ
2
χ̄σµνχFµν =2mχµχ

(
2gp
q2

(m2
NO6 − q2O4)− 4m2

N

q2
O5

)
p

+ 2mχµχ

(
2gn
q2

(m2
NO6 − q2O4)

)
n

,

bχχ̄γ
µχ∂νFµν =− 4mχmNbχ (O1)p ,

aχχ̄γ
µγ5χ∂νFµν =2mχaχ (−4mNO8 + 2gpO9)p + 2mχaχ (2gnO9)n ,

which are then inserted into Eq.(7.6.146). Then the NR Wilson coefficients can be

summarized as:

Charge− radius : C
(p)
1 = 4mχmNbχ,

MDM :


C

(N)
4 = 4mχgNµχ

C
(N)
5 = 1

q2 8mχm
2
Nµχ

C
(N)
6 = 1

q2 4mχgNm
2
Nµχ

,

Anapole :

 C
(p)
8 = 8mχmNaχ

C
(N)
9 = 4mχgNaχ

.
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7.6.4 Loop Level : Z, h Penguins

As well as single photon scattering, the model may posses single Z and single Higgs

scattering. It was shown in [354] that both contributions scale as m2
q, making them

important for couplings to the third generation quarks. It was noted that the Higgs

contribution is always subdominant.

In the single Higgs exchange, the loop level process leads to the operators

(gχ,h/v)χ̄χH†H and g5
χ,hχ̄iγ

5χH†H, the latter may be ignored since it leads to a

velocity suppressed scattering. We consider the quark-level scattering mediated by

the Higgs as shown in Fig.7.32 leading to an amplitude21

Mχ,h =

( ∑
q=u,c,t

g
(q)
χ,h

)
yq′

m2
h

〈1〉χ 〈1〉q′ =

( ∑
q′,q=u,c,t

f
(N)
Tq′

g
(q)
χ,h

mN

vm2
h

)
〈1〉χ 〈1〉N ,

(7.6.231)

where yq =
√

2mq/v is the Yukawa coupling and v2 = (
√

2GF )−1 the Higgs’ vev. In

the second expression the hadronic matrix elements have been taken. The DM-higgs

coupling is,

g
(q)
χ,h =

Ncmχε(gsg
†
p − g†sgp)

64π2v
√

∆µ3/2

[√
∆(2µ− (ε− 1) log (ε))

+ 2(∆ + (1 + ε− µ) log

(
1 +
√

∆ + ε− µ
2
√
ε

)]
,

(7.6.232)

with the definitions µ = (mχ/mφ)2 and ε = (mq/mφ)2. For the coupling to RH

quarks as used here the amplitude is finite, however it is divergent if (gsg
†
p+gpg

†
s) 6= 0.

This matches to the NR coefficient C1:

C
(N)
1 = 4

mχm
2
N

vm2
h

fQ
∑
q=u,c,t

g
(q)
χ,h , (7.6.233)

21This reproduces the expression of [354] with the replacement

〈1〉q →
∑
q

mN

mq
f

(N)
Tq
〈1〉N
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χ χ
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q′ q′
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φ

q

χ χ

q′ q′

h

Figure 7.32: The Feynman diagrams for DM-nuclear scattering via a single higgs exchange in

the DMFV model. On the r.h.s we indicate that we take the EFT limit of the DM-h vertex and

then consider the tree-level scattering.

where fQ =
∑

q f
(N)
Tq
∼ 0.09.

For the Z boson we follow the same procedure, considering the Z-mediated quark

scattering as shown in Fig.7.33. The Z has both vector and axial-vector couplings

to quarks; however the dominant scattering between the DM and quark currents

is vector-vector (the ones involving the axial-vector coupling are velocity or spin

suppressed) and leads to an amplitude;

MZ =
∑
q=u,c,t

g
(q)
Z,eftg

(q′)
Z,v

m2
Z

〈γµ〉χ
(
gµν − 1

m2
Z

qµqν
)
〈γν〉q′ ≈

∑
q=u,c,t

g
(q)
Z,eftg

(q′)
Z,v

m2
Z

〈γµ〉χ 〈γµ〉q′ ,

(7.6.234)

to find the scattering amplitude with nucleons we can make the replacement,

g(q) 〈γµ〉q → (2g(u) + g(d)) 〈γµ〉p + (2g(d) + g(u)) 〈γµ〉n , (7.6.235)

which effectively takes into account only the valence quarks (due to the fact that

the vector current is conserved).
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Figure 7.33: The Feynman diagrams for DM-nuclear scattering via a single Z exchange in the

DMFV model. On the r.h.s we indicate that we take the EFT of the DM-Z vertex and then

consider the tree-level scattering.

The Z boson couples to quarks via,

LZ−q = −q̄γµ
(
gZ,v + gZ,aγ

5
)
qZµ, (7.6.236)

gZ,v =
e

2sW cW

(
T3 −Qs2

W

)
,

gZ,a =
e

2sW cW
T3,

thus the couplings for up-type quarks are gZ,v = gZ (1/2− 4/3s2
W ) and gZ,a = gZ/2

with gZ = −e/2cW sW , these couplings are summarized in Tab.7.34.

We write the effective amplitude for χ̄γµχZµ in the form,

Mµ = Apν3σ
νµ +Bγµ +

(
terms with γ5

)
,

making use of the Gordon identity to remove terms ∝ pν3, then g
(q)
Z,eft = B. As it

turns out, B has no dependence on Qf through the Z-coupling and depends only on

T3, making the result identical for up and down-type quarks,

g
(q)
Z,eft = (λαqλ

∗
αq)

T3NcgZ
32π2

ε

[
log
(µ
ε

)
+ 2∆−1/2(ε− 1− µ) log

(−1 + ∆1/2 + ε+ µ

2
√
εµ

)]
,

(7.6.237)

for DM flavour α. For the DMFV model the NR coupling for DM flavour α to the
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ψ (gZ,v/gZ) = T3 −Qs2
W (gZ,a/gZ) = T3

νL 1/2 1/2

νR 0 0

eL −1/2 + s2
W −1/2

eR s2
W 0

uL 1/2− 2/3s2
W 1/2

uR −2/3s2
W 0

dL −1/2 + 1/3s2
W −1/2

dR 1/3s2
W 0

proton 1/2(1− 4s2
W ) 1/2

neutron −1/2 −1/2

Figure 7.34: SM couplings to the Z boson, L = (e/2sW cW )Zµf̄γ
µ(gZ,v − gZ,aγ5)f .

operator O1 reads

C
(N)
1 = 4mχmN

∑
i=u,c,t

λ†αiλiα

√
2NcGFg

(N)
Z,v

64π2
εi

[
log

(
µ

εi

)

+ 2∆−1/2(εi − 1− µ) log

(−1 + ∆1/2 + εi + µ

2
√
εiµ

)]
, (7.6.238)

using the relation (gZ/mZ)2 =
√

2GF , and g
(p)
Z,v = 1/2(1− 4s2

W ), g
(n)
Z,v = −1/2.

There are several sources of suppression in this expression, firstly since the pro-

cess is Z-mediated there is a m−2
Z mass suppression. Secondly, there is a m2

f sup-

pression in the case of light quarks (however for tops the reverse is true and this

can significantly enhance the scattering). Lastly, for the case of protons there is an

accidental suppression from the Z-coupling since gp = 1− 4s2
W ∼ 0.08.

7.6.5 Constraints

We have calculated for the DMFV model, the tree level contribution to scattering

from u, c, t quarks (the heavy quark scattering arising from RG effects). For the

heavy quarks we have computed the leading contribution arising from integrating

the quark out of the theory, these result in single γ, Z, h, and two gluon exchange.



7.6. DMFV : Direct Detection 312

The situation is depicted in Fig.7.35, the tree level scattering of u is almost

always dominant; next the multipole moments tend to be slightly larger than the

tree level scattering from RG mixing. Lastly the gluonic contribution is extremely

small. For very degenerate masses (mχ ≈ mφ) the relative sizes change considerably,

and the loop contributions play a significant role.

Setting Limits

Now we have accumulated the expressions to describe the scattering rate of DM

particles with nuclei, including the dominant loop-level contributions, we can pro-

duce constraints on the parameters of the model. To do this requires us to connect

the theoretical event rate to the experimental data, which is usually a total yield of

events over a particular exposure.

Unlike for ID, there is in general no single observable (equivalent to 〈σv〉) for

which one can find constraints once and for all, and then map the constraints onto

the parameter space of a particular model. The reason is that each EFT operator

leads to a scattering with a unique energy dependence, which is then integrated over.

However, the form factors F
(N,N ′)
i,j (ER, v) (which encapsulate the energy and ve-

locity dependence of the cross section) do in some sense form a complete basis of

all the possible energy dependences of the cross section, each cross section being a

linear sum with model dependent coefficient. One can then derive a bound on a

benchmark model, and simply scale by appropriate functions to translate the bound

to other models or other detectors. This is the method employed in [230], for several

experiments. We will nonetheless compute our bounds explicitly using the proceed-

ing discussion.

The statistics employed by the experimental groups are often very involved, and

require the mapping of the theoretical recoil energy onto the particular experimental

observable which is unique to each experiment. A much simplified strategy does not

carry out the mapping and instead accounts for the dominant experimental effects
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Figure 7.35: The differential scattering rate in recoil energy for DM-nuclear scattering from

a xenon (top row, LUX) or a germanium (bottom row, CDMSlite) target. Each of the quark

contributions are plotted separately, u, c, t indicated by red, blue and green lines. The rates are

also separated according to the way in which they scatter; via quarks at tree level, via two gluon

exchange, or via photon exchange (the magnetic monopole, charge-radius and anapole moments

are separately plotted). The right column represents a model with very degenerate masses.
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of energy resolution and efficiency,

NTOT =

∫ ER,max

ER,min

dER ε(ER)

∫ ∞
0

dE ′
dN

dE ′
1√

2πσ(E ′)
exp

(
−(E ′ − ER)2

2σ(E ′)2

)
,

(7.6.239)

where ε is the efficiency, σ(E) is the energy resolution and dN/dE is the nuclear

recoil spectrum of Eq.(7.6.146) multiplied by the exposure.

There are many experimental efforts towards direct detection with a vast range

of different target materials. We only need to employ enough of these experiments

to yield the dominant constraints at each DM mass; LUX in particular sets the

strongest bounds at large DM mass. However at low DM mass, it is experiments

like CDMSlite which are able to set the strongest bounds. These experiments are

discussed in more detail in chapter 4.

LUX

LUX is a dual-phase liquid scintillation detector. The principle of detection is the

measurement of a WIMP-nucleus scattering producing prompt scintillation photons

(S1) and ionization photons (S2) which are produced as ionized electrons drift to

the top of the detector under the applied electric field. The resulting position re-

construction allows a volume fiducialization.

LUX is located in the Stanford underground laboratory, the first data release in

2013 [267] was based on 85.0 days and 118 kg of exposure. An updated analysis

of the same data presented in 2015 [268], but with an extra 10 days and 35 kg

of exposure (a total of 1.4 × 104 kg days), there are 591 observed events with an

expected 589 background (primarily from gamma rays), which reduces to 1 event

with expected 1.1 when including the effects of the acceptance cuts (99.81%)22, the

22Fig.4 of [267] shows the same data, the solid red line represents the mean of the NR band

created from the neutron calibration source. This motivates an approximation that the WIMP NR

band is essentially the same, and so one can multiply the theoretical event rate by 1/2 to include

the events below the line, where only a single measured event remains.
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Figure 7.36: The exclusion on σSI (the standard WIMP-nucleon cross section) for LUX (dashed

black line), compared to a likelihood ratio test applied to the method described in the text.

constraints are limited to mχ & 4 GeV due to kinematics, and are shown in Fig.7.36.

The efficiency ε(E) can be read off from the solid black line of Fig.1 in [268].

A further scaling of 97.5 ± 1.7% is applied on top of the efficiency. We do not

include resolution effects, but to understand their size we could assume a Gaussian

smearing of width
√
nσPMT, where n is the number of photoelectrons produced in

the PMT and σPMT is the PMT resolution in photo electrons (phe). We assume

the signal S2 = 0 and that S1 ∝ ER, using the endpoints of the sensitivity region

(S1 = 2, ER = 1.1 keV to give the proportionality constant S1 = 1.8ER), then the

energy resolution is σ = 0.67
√
ER assuming σPMT = 0.5. Thus the resolution can

be significant at the low energy end of the measured spectrum.

Confidence Limits

For situations where we have both a measured event count, Nobs
k (binned into energy

bins labelled by k) and theoretical background Nbck
k , we can use the likelihood ratio

test, a method based on a frequentist hypothesis test between a background only,
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and background+signal model23, with likelihoods L, Lbck respectively [230].

The likelihood of observing the data, D, assuming a particular set of parameters

{λ}, is denoted L(D|{λ}). The likelihood of observation in each bin is a Poisson

distribution Poiss(Nobs,Nth(λ)) where N th
k are the predicted number of signal events

(including background),

L(Nobs|{λ}) =
∏
k

(
N th
k

)Nobs
k

Nobs
k !

exp
[
−Nth

k

]
, (7.6.240)

where N th(λ) = NDM(λ) + Nbck. The background only model is identical but with

N th = Nbck. Then the test statistic,

TS(λ) = −2 log

( L
Lbck

)
≈ 2

∑
k

(
Nth

k − Nobs
k log

[
Nth

k + Nbck
k

Nbck
k

])
, (7.6.241)

follows a χ2 distribution; the cumulative p.d.f of χ2(x) represents the probability

that we observe the data given the model parameters λ. The value of x such that

χ2(x) = C (i.e. the C% confidence limit), depends on the number of parameters

{λ}, in our case that is just one, then one can look up that χ2(2.71) = 0.9, which

means that the 90% confidence bounds on λ are given by TS(λ) = 2.71.

In other words, if the true value of λ were to be outside the allowed range, then

the experiment would have a 90% chance to have detected the DM. In the above, it

is implicitly assumed that all parameters included in the theoretical predictions and

experimental results are known to perfect accuracy. In reality, many parameters

have an uncertainty, and this should have an effect on the confidence limit for which

we exclude the models; the less well known the inputs, the less confident we should

be and the weaker the bounds.

Including the effects of the uncertainty on parameters can be done using a pro-

file likelihood ratio test, we multiply the likelihood in Eq.(7.6.240) with a product

23DD collaborations often use this method, but with a profile likelihood to include uncertainties

is astrophysical and experimental parameters as nuisance parameters (frequentist approach) or by

marginalization over priors (bayesian approach) to give the posterior distribution.
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of likelihoods of each parameter which has an uncertainty. Then for the null and

signal hypothesis the parameters are varied to maximize the likelihood, aside from

this modification the method is the same as before.

In order to check the method, we implement it using the standard differential

event rate used by the collaboration themselves (see for example [359] ),

dR

dER
=

(
ρ�
mχ

)
MNT

∫ inf

vmin

σ

dEr
vf(v)dv, (7.6.242)

where M is the mass of the target material and NT is the total number of target

particles per kg,

NT =
∑

i

ξi
1

(Zimp + (A− Zi)mn)
, (7.6.243)

and ξi is the abundance of isotope i with proton number Zi. Then the differential

cross section is given by,

dσ

dEr
=

1

v2

mN

2µ2
σSIFhelm(ER, A)2 , σSI = σn

(
µ

µn

)2
1

f 2
n

(fpZ + (A− Z)fn)2 = σn

(
µ

µn

)2

A2 .

(7.6.244)

Putting this all together,

1

M

dR

dER
=

(
ρ�
mχ

)
NT

σnmN

2µ2
n

A2F 2
helmJ0(ER) , J0 =

∫ inf

vmin

1

v
f(v)dv. (7.6.245)

CDMSlite

Although the LUX collaboration set the strongest limits for moderate DM masses

mχ & 5 GeV, the use of a liquid xenon target makes scattering for mχ . 5 GeV

kinematically forbidden; in which case detectors with lighter targets are able to set

limits (since the minimum accessible recoil energy scales roughly with atomic num-

ber A). We include CDMSlite [20], a germanium detector, since their constraints

appear to be the strongest currently available for masses 1.6 < mχ < 5.5 GeV,

peaking at σn < 5× 10−42 cm2.

The CDMSlite data consists of four energy bins, with energy ranges given in

electron equivalent energy, which must be converted to nuclear recoil energy as
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Eee [keV] Enr [keV] nobs

Bin 1 0.056-0.14 0.47-0.82 96+48
−47

Bin 2 0.2-1.2 1.13 - 5.49 76± 13

Bin 3 1.4 - 10 6.3- 34.9 603± 36

Bin 4 11 - 20 37.9 -63.3 189± 19

Figure 7.37: The data for CDMSlite, from Tab.1 of [20] for an exposure of 70.10 kg days.

given in Tab.7.37 using the expression [20],

Enr = Eee

(
1 + eVb/εγ

1 + Y (Enr)eVb/εγ

)
, (7.6.246)

where Vb = 70 V is the voltage across the detector, 1/εγ = 0.3 eV−1 is the number

of charges collected per unit energy, and Y (E) is the ionization yield for nuclear

recoils (for electron recoils Y = 1), which is given by the Lindhard model,

Y (Enr) =
kg(ε)

1 + kg(ε)
, (7.6.247)

where k = 0.133Z2/3A−1/2 ∼ 0.157 is the Lindhard factor for germanium, ε =

11.5(Enr/keV)Z−7/3, and g(ε) = 3ε0.15 + 0.7ε0.6 + ε.

The energy resolution is quite small (∼ 11% at Eee = 0.16 keV, dropping to

< 1% at the upper end of the energy range) and can approximately be ignored,

however the efficiency includes a fiducial volume cut and is significant, reaching a

maximum of 0.5 (see Fig.1 of [20]).

Due to the general behaviour of the signal, the first two energy bins are likely

to dominate the constraint, the third and fourth will generally contain less signal

events, and also have large backgrounds. For a quick estimate, we can take each

energy bin, assume the entire yield is due to some background, and repeat the like-

lihood method used for LUX, eventually choosing the best constraint from the four

energy bins. The result is shown in the left plot of Fig.7.38.
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Figure 7.38: The exclusion on σSI (the standard WIMP-nucleon cross section) for CDMSlite

(dashed black line), compared to a likelihood ratio test applied to each energy bin (left) or a

Poisson probability test (right), see text for details. The shaded bands include the uncertainty on

the event counts from Tab.7.37.

Clearly, assuming that the measured events are all known background is not

a conservative treatment as some will be an unknown background. The commonly

used conservative statistical method when one does not know the background model

is the optimal interval method [276, 277].

A more conservative method uses the statement that the 90% confidence limit is

such that there is a probability of 0.9 that if the model were true, then the experiment

would have measured more events, n, than have been measured nobs, using the Poisson

distribution this probability is,

P (n > nobs|µ) =
∞∑

n=nobs

µn

n!
exp(−µ) ≈

∫ ∞
nobs

1√
2πµ

exp

(
−(t− µ)2

2µ

)
dt = 0.9,

(7.6.248)

the approximation arises in the limit nobs � 1, this can be further simplified,

P (n > nobs|µ) =
1

2

(
Erfc

(
nobs − µ√

2µ

))
= 0.9, (7.6.249)

this equation is numerically solvable for µ giving a required signal µ = 109+51
−50, 88±14,

635±37 and 207±20 for bins 1 to 4 respectively. Clearly this is conservative since a
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large portion of the measured events are background, and the corresponding limits

are weaker than those given by the collaboration. The result of this method is shown

in the right plot of Fig.7.38.

Both of the previous methods do not make use of the spectral information (i.e.

treat the bins effectively as uncorrelated experiments). The best constraint will not

necessarily come from a single energy bin, but a range of energies covering multiple

bins such that the signal to background ratio is maximized.

7.7 DMFV : Collider Searches

A large number of experimental searches fall under the umbrella of collider searches,

which generically cover any searches based on collider data, this could be from e+e−

collisions (LEP), p̄p (Tevatron and its experiments D0, CDF) or pp (LHC and its ex-

periments ATLAS and CMS), generally the latter will provide the strongest bounds

when DM couples to the quark sector.

A generic and simple analysis of the data simply counts a total number of events

passing a set of selection criteria (e.g. an upper limit on pT ), Nobs, and compares

this to an expected number (usually also given by the experimental collaboration)

including all SM processes NSM. This is then combined with the expected number

of events from the DM model, Nχ, and an 90% CL is extracted using a simple χ2

test. The limit can be made equally well on Nχ or the cross section σ.

For a given signal (e.g. jet plus missing ET ), the expected number of events are

calculated from the basic quark/gluon initiated process (the partonic cross section),

convoluted with the pdf’s of the proton (if using Tevatron or LHC searches) and

finally multiplied by an overall efficiency ε which is calculated by running a simu-

lation of parton showering, hadronization and detector effects and calculating the

ratio of the events which pass the selection cuts to events given by the partonic level

cross sections.
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This basic technique does yield fairly accurate bounds, however more involved

treatments utilize histograms of events with the available data, using both normal-

ization (total event yield) and shape to provide tighter constraints. This requires

the use of purpose built event generator codes, and a full understanding of all SM

backgrounds and their systematic uncertainties and is generally avoided in broad

phenomenological studies of multiple DM models.

As for the searches themselves, there are many. Most popular are mono-X plus

large missing ET searches, in this case a high energy jet, photon, Z, W or other par-

ticle is tagged leaving a large missing energy (the dark matter pair). It is a very clear

signal, and is easily calculated from a theoretical perspective. Many studies utilized

a dark matter EFT which is used for direct detection bounds, since the partonic

cross sections are very simple[21, 360, 361]. This allows for very quick computation

of the bounds for our model, with matching to the EFT similar to Eq.(7.6.184).

However, by now it is clear that the EFT approach to collider searches is often

unreliable. The UV completion (in our case the introduction of the mediator at a

scale equal to its mass) of the EFT operator is commonly around the EW scale,

∼ O(1) TeV, which is close to the energy scale of the collisions, this makes the

heavy states likely to produce important effects in the process, and indeed the EFT

treatment has been shown to give incorrect results when compared with a simple

UV completion (see next section). Nonetheless, so long as one is careful about the

regions of validity of the EFT, no problems should arise.

7.7.1 EFT Limit

Following [362] and the EFT operators in Table 7.1, operators OF1−F4 lead to weak

bounds Λ . 20 GeV, OF5−8 give very similar results, Λ . 300 GeV, where Λ is the

mass suppression scale of the operator. The best constraints however come from the

tensor operator OF9. The analysis assumes equal couplings to q = u, d, s, c, but due
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to the small charm and strange contribution to the proton pdf these results can be

approximately applied to the χ− u couplings.

To provide some simple estimates, we scan over the three DM up-quark couplings

taking the EFT operators individually, computing the bound, and selecting the

strongest. Since particular operators (OF9) provide substantially stronger bounds,

taking the EFT operators individually is likely a good approximation; however if

λij is such that each quark couples to the DM with roughly equal strength, then

stronger bounds would be found by including all the quark flavours simultaneously.

The matching to the EFT operators listed in Tab.7.1 is different that for scat-

tering processes (for the process χiχ̄j → qlq̄m),

C
(q)
F8 = −C(q)

F5 = −λliλ
∗
mj

2m2
φ

, C
(q)
F6,7 =

iλliλ
∗
mj

2m2
φ

, (7.7.250)

in which the limit mφ �
√
u is taken, with u the usual Mandelstam variable repre-

senting the momentum exchange through the mediator. This condition needs careful

attention, since it is very easily violated given the large collision energies involved

at the LHC.

Following [22], the matching procedure looks schematically like,

g2

u−m2
φ

≈ − g2

m2
φ

(
1 +

u

m2
φ

+ · · ·
)
≡ 1

Λ2
, (7.7.251)

where Λ sets the mass scale of the EFT operator, on which constraints are based.

However, given a bound on Λ it is impossible to know whether u < mφ holds (since

the coupling g can be arbitrarily small to offset the increase from a degeneracy be-

tween u and m2
φ).

One immediate constraint on the validity of the EFT approximation that can

be inferred uses the perturbative limit of the coupling g ≤ 4π, giving the limit

u ≤ m2
φ ≤ (4πΛ)2. The lower the value of g, the stronger the ‘bound’ becomes

and the smaller the region of validity of the EFT. This treatment applies equally
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Figure 7.39: ATLAS monojet bounds from [21] (solid lines) for a range of couplings to the up

quark. The EFT approximation breaks down beneath the dashed lines (which are the RΛ = 0.5

contours with g . 4π from [22]), and so only the shaded regions between the solid and dashed lines

can robustly be excluded using the EFT.

well to the direct detection EFT, the difference being that u can be very large at

the LHC, but the equivalent kinematic factor for direct detection is extremely small.

In [22] the validity of the EFT approximation is quantified by RΛ, the ratio

between the cross section with the constraint u < Λ2 applied, to the total cross

section (i.e. the total proportion of the cross section which is valid under the EFT

assumption). The lines of RΛ = 0.50 are plotted alongside the EFT limits of [362]

in Fig.7.39 (the RΛ contour assumes |η| < 2 and pT < 2 TeV, the EFT limits

assumed the same range of η, but allow pT . 1.2 TeV). It is worth noting that

[22] produce results with the limit g . 1, the bounds become significantly weaker

by using g . 4π which then permit a small region of validity as shown in Fig.7.39.

The EFT assumption breaks down entirely for g . 1. Thus the EFT approximation

cannot be justified in our analysis and we turn to the simulation of the full cross

section.
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7.7.2 Processes for the LHC

There are several tree-level processes for monojet and dijet searches. Monojet

searches veto three-jet events but still allow (one,two)-jet plus missing ET to which

all of the following processes apply;

1. pp → χχ̄j, processes involve both s and t-channel mediator exchange. qq̄

initial states require t-channel φ and a gluon jet. qg initial states (benefitting

from the enhanced gluon pdf) allow for an s-channel φ and a quark jet.

2. pp→ χχ̄jj some processes are equivalent to (1) with additional QCD radiation

and are thus suppressed by ∼ αs. Additional diagrams include processes

with two φ exchanged in the s-channel, the cross section is dominated by the

mediators going on-shell (and subsequently decaying) and therefore can be

resonantly enhanced, but off shell production is also included. The former

processes must be matched with (1) to avoid the double counting, when for

example one of the jets becomes very soft. The latter are not matched since

they are of a different order in the couplings.

3. pp → φ†φ. The mediators are produced on-shell and subsequently decay (ac-

cording to the NWA); this is a 2-jet plus missing ET process, which nonetheless

contributes to the monojet signal. This process is actually double counted in

(2) and thus the on-shell phase space region of (2) should be vetoed if these

processes are to be generated separately.

4. pp → φ†φj, if the mediators are on shell then they can contribute to missing

energy, so long as they live long enough to escape the detector, however even

for extremely small widths of Γ = 1 eV the average decay length is ∼ 0.2 µm.

The experimental collaborations veto three or more jets with pT > 30 GeV

but this still allows for one or two soft jets to be produced by the decay of

the mediators. In this case the contribution should only be significant when

mφ ∼ mχ which produces the soft jets. There is also a double counting with

(3) which requires a matching.
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5. pp → φ†χ with φ on shell. This is double counted with (1), but adding an

on-shell veto for the mediator in (1) will correct for this

To include all these processes in MadGraph one must consider separate samples

for the on-shell production of two, one or zero mediators, and for the latter two, veto

all on-shell phase space for internal mediators to avoid a double counting amongst

the samples [363].

Additionally, when using a parton shower the (0,1,2)-jet events must be merged

within each sample, to correctly account for the production of jets between the hard

matrix elements and parton shower. There is a double counting between the inclu-

sive 1-jet events and inclusive 2-jet events and so on, and merging the two accounts

for this. However this statement assumes that the 2-jet process is simply a QCD

correction (radiation of a jet) from the 1-jet processes; any 2-jet processes which are

not of this type (for example pp→ φ†φ→ (χj)(χ̄j)) do not double count and their

cross section can simply be added to the total 1-jet cross section.

The processes with two s-channel mediators contribute to the dijet signal (and

give the dominant contribution to 2-jet events [364]) are subdominant to the 1-jet

events. The simplest way to deal with the φφ† final states is to use the narrow width

approximation (NWA),

σpp→χ̄χjj = σpp→φ†φ × BR(φ→ χ̄j)× BR(φ† → jχ), (7.7.252)

in which the mediator width is assumed to be very small Γ/mφ � 1, and the φ are

produced on shell[363].

In conclusion, to balance accuracy with efficiency we use the following method-

ology. We calculate the total cross section of the following two samples

1. pp→ χ̄χj

2. pp→ φ†φ→ χ̄χjj, with φ on-shell, using the NWA.
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and add them together, without the addition of parton showers (the total inclusive

cross section would not be affected anyway) and detector simulations. There is no

need to veto any phase space as there is no double counting. The addition of extra

jets to process (1) correspond to QCD corrections αs ∼ 0.1, plus non QCD correc-

tions which do not require matching (the production of s-channel φ) but which can

have a large impact since λij & αs in the regions of interest and (2) represents the

dominant contribution to these.

Since the mediator φ is an SU(2) singlet, mono-W signals should be suppressed,

however models which extend the DMFV to LH fields require φ to be an SU(2)

doublet and to acquire a coupling to W±. Even in this case though the electroweak

couplings should make such signals (along with mono-photon) negligible compared

to QCD coupled processes like monojets and dijets [365].

The cross section for each process pp→ X is found according to

σ =
∑
a,b

∫
dx1dx2 (fa(x1)fb(x2) + fa(x2)fb(x1)) σ̂, (7.7.253)

where σ̂ is the partonic cross section for ab → X with a, b partons with pdfs f(x),

depending on the fraction x of the proton momentum. We will generate results

numerically using MadGraph, but it is worth noting that in [22] the appendices give

all the relevant analytic formula for the phase space in terms of pT , η for our model.

The matrix elements are given for the EFT, however the simplified model simply

gives additional factors (Q−m2
φ) from the propagators. The only diagram not ac-

counted for by the EFT would be the internal bremsstrahlung from the mediator.

In the studies we refer to which use the simple cut and count strategy, limits are

provided on the visible cross section defined as,

σvis. = σ × A× ε; (7.7.254)

the parton level production cross section (Eq.(7.7.253)) times acceptance A times

efficiency ε. The acceptance arises from the kinematic cuts that are applied to each

event, and the efficiency accounts for the detector effects.



7.7. DMFV : Collider Searches 327
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(b) The s-channel φ resonance is responsible for (1) and (3) dominating over (2), and the additional

enhancement due to the gluon pdf over (a) makes these the overall dominant monojet contribution.

For very heavy mediators (1) is suppressed due to the two propagators.

Figure 7.40: The dominant diagrams contributing to the pure monojet process. Each processes

scales as σ ∝ α′2αs where α′ ∼ λλ† and can become extremely large if λ > 1. The cross section is

dominated by the diagrams containing a heavy φ resonance.

7.7.3 Analysis : Monojet

In the DMFV model the monojet plus missing energy signal comes dominantly from

the processes listed in Fig.7.40.

The most recent monojet search by ATLAS [23] uses the Run 2 data (
√
s = 13

TeV and L = 3.2 fb−1). The event selection cuts are |η| < 2.4 and pT > 250 GeV for

the leading jet (plus an allowance of up to four jets with pT > 30 GeV and |η| < 2.8

and an angle ∆φ > 0.4 between the jet and missing energy vertex), along with a
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missing energy cut ET > 250, 300, 350, 400, 500, 600, 700 GeV defining seven signal

regions. The efficiency is ε ∼ 100%[23].

A similar analysis was performed by CMS [24] with the Run 1 data (
√
s = 8

TeV and L = 19.7 fb−1 of integrated luminosity). The dominant event selection

criteria are |η| < 2.4 and pT > 110 GeV for the hardest pT jet (and |η| < 4.5,

pT > 30 GeV for a possible second jet which must be widely separated from the

first jet with ∆φ > 2.5), leading to bounds σvis < 0.0078 − 0.2289 pb for cuts on

ET > 250, 300, 350, 400, 450, 500, 550 GeV defining again seven signal regions.

Fig.7.41 shows the total cross section for a benchmark scenario, along with the

ATLAS and CMS constraints in Fig.7.42. The processes which contribute to this

signal are shown in Fig.7.40 (single jet processes) and Fig.7.44 (two jet processes).

The width of the mediator has a substantial effect on the cross section (as shown

in Fig.7.43); several of the 1-jet and 2-jet processes involve the s-channel exchange

of φ and are enhanced by the resonance if the width is particularly narrow, which is

the case throughout most of the parameter space since we couple the mediator only

to the three DM candidates. We ensure that the correct width is implemented for

each choice of parameters. This gives the cross section a noticeable peak.

Due to the large missing energy cut, the cross section is insensitive to DM masses

below mχ ∼ O(100) GeV. Above mχ ∼ 1 TeV, the cross section disappears since the

DM is absolutely stable and thus requires at least s > 4m2
χ centre of mass energy

to produce a pair, and this reaches the energy limit of the beam. The minimum jet

pT requirement further reduces this limit.

For a given DM mass, the upper mφ limit is set by the size of the production

cross section for the φ times the total branching ratio into jets. The lower limit on

mφ is either set by hand by the requirement that mφ & max(mχi), or may be set

by the suppression of the cross section by the mediator’s width. For example, if the
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Figure 7.41: Total cross section for the seven signal regions of the ATLAS monojet search [23]

(top left) for two DM masses. Comparison to the CMS monojet search (top right) [24]. Also shown

is the behaviour of the cross section with D33, the top-quark coupling (bottom).
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Figure 7.42: Exclusion regions (shaded) for the seven signal regions in the ATLAS (left) and

CMS (right) monojet analysis, for no mixing (θij = 0) and equal couplings Dii = 2. The strongest

constraint comes from the ET > 450 GeV bin.
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Figure 7.43: The total cross section for the 1,2-jet process (left, right respectively) with varying

DM mass and mediator width, the cuts are those for the CMS monojet search with ET > 250

GeV, the corresponding limit is shown in grey.
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mediator decays to two or three flavours of DM, then the branching ratio approaches

0 as mφ → mχ for the heaviest DM.

The constraints based on monojet analyses are predominantly sensitive to the

u, c quark couplings; the φ− t coupling is neglected (except in the calculation of the

φ width) since the production of t is followed by the decay t→ Wb producing either

three jets (vetoed in the event) or leptons (also vetoed).

The size of the initial state pdf’s for the c, t, and the fact that d, s, b do not

couple directly to the new particles means that the only initial states to consider

are gg, gu, uū. For pure monojet processes there are no gluon fusion contributions,

the gluon bremsstrahlung (ūu initial state) is subdominant to associated production

gu; for which at high mφ the processes with a single on-shell φ are dominant, but

at low mφ the process with two φ are the largest.

The 2-jet contribution to the monojet analysis (Fig.7.44) can be larger than the

1-jet contribution. For example, looking at Fig.7.44 (b) the LH diagram scales as

(λλ†) with no αs suppression at all (compared with the 1-jet processes which have

at least one factor of αs), for large DMFV couplings this diagram will significantly

dominate the others for a “narrow” range of masses for which the various pT , ET

constraints are satisfied.

7.7.4 Analysis : Dijet

In our model there is no tree level contribution to a pure dijet process, as the two jets

are always associated with some missing energy carried by the DM. Such searches

are usually performed in the context of SUSY. The relevant processes are summa-

rized in Fig.7.44.

A Run 1 search by ATLAS [30] (
√
s = 8 TeV and integrated luminosity L =

20.3 fb−1) looks for multiple jets plus missing energy; we restrict to the 2-jet searches

which should provide the strongest constraint. The pp → φφ → χ̄χjj process pro-
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(b) The left (right) process is σ ∝ α′2 (α2
s) and so the dominance depends on the size of the new

couplings, for couplings which are large enough to be excluded it is usually the LH diagram which

dominates.

Figure 7.44: The dominant processes contributing to the production of on-shell φ, which decay

φ→ qiχj producing a dijet signal. In monojet analyses, this provides a subdominant contribution

compared with pure monojet processes (Fig.7.40) in most of the parameter space.
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SR Nobs NSM Nn.p. σ (fb) σobs (fb)

tjl 12315 13000± 1000 15− 704 0.78− 35 60

tjm 715 760± 50 15− 59 0.75− 2.9 4.3

tjt 133 125± 10 22− 50 1.1− 2.4 1.9

SR Nobs NSM Nn.p. σ (fb) σobs (fb)

tjl 263 283± 24 12− 37 3.8− 12 16

tjm 191 191± 21 15− 58 4.6− 18 15

tjt 26 23± 4 10− 22 3.2− 6.8 5.2

Table 7.2: Top : Lower limits (at 95% CL) on the visible cross section for the Run 1 ATLAS

dijet plus missing ET search [30], for
√
s = 8 TeV and L = 20.3 fb−1 and three signal regions (SR).

Bottom : ATLAS dijet search from Run 2 [31].

vides the dominant contribution to this signal. The results are presented as a total

SM background estimate, and a total measured event count; using the same simple

event count statistics from Sec.4.5.1 to give the 95% CL we find a limit for the ±1σ

background count and compare this to the observed cross section quoted by the

collaboration (Tab.7.2, top rows).

The main selection cuts that are applied are; missing energy Emiss
t > 160 GeV,

transverse momenta of the two jets pT,(1,2) > 130, 60 GeV, azimuthal separation

between each of the two jets and the missing momentum ∆φ > 0.4. The cuts also

include a minimum requirement for meff and ET/
√
HT defined as,

HT = |pT,1|+ |pT,2|, (7.7.255)

meff = HT + ET , (7.7.256)

implemented via Fortran code into MadGraph, the three signal regions are meff >

800, 1200, 1600 GeV, ET/
√
HT > 8, 15, 15 for tjl, tjm, tjt respectively denoting

‘loose’, ‘medium’ and ‘tight’ jet constraints.

In the 2-jet signal we do not need to consider production of a top (or t̄t pair)

in the final state, since this will yield a b-jet plus a W which will either decay

leptonically (leptons are vetoed) or hadronically (producing 2 additional jets and
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contributing to the 3 or 4-jet signal). The t − χ coupling therefore enters only

through the branching ratio of φ to the other quark flavours.

We also include a more recent search by ATLAS [31] using Run 2 data (
√
s = 13

TeV and integrated luminosity L = 3.2 fb−1). The constraints from both analyses

are included in Fig.7.45, the reduced luminosity of the Run 2 study weakens the

bound, but is overcome by the enhancement from the additional CM energy.

7.7.5 Analysis : Stop Search

Lastly, a study in 2014 (Run 1, L = 20 fb−1 and
√
s = 8 TeV) by ATLAS [25]

considers a set of cuts optimized for the detection of stops, which in our case

would be sensitive to the φ − t coupling D33, dominated by on-shell φφ† pro-

duction pp → φφ† → t̄tχ̄iχj. The signal consists of a lepton in the final state

along with four or more jets (originating from a leptonic and hadronic top decay

t → Wb → {νll, qq̄′}b to a lepton, jets and missing energy). The analysis is per-

formed using a SUSY framework and considering stop decay channels which have

no analogy in the DMFV model, for example t̃→ bχ̃± into charginos.

There are four relevant signal regions “tN diag”, “tN med”, “tN high”, “tN boost”,

each requiring a single lepton with plT > 25 GeV, and cuts in Tab.7.3 below 24.

The production of the φ pair is dominated by t-channel χ exchange and s-channel

gluon exchange; the photon and Z mediated diagrams are neglected. The jet and

lepton pT cuts ensure that the lepton and u, d, s, c, b quark masses can be neglected;

assuming also a diagonal CKM matrix the cross section is approximately,

σ(pp→ 4j + l) ≈ 2× 2× σ(pp→ (b̄b)(ud̄) + e−), (7.7.257)

24We do not include the cuts on the parameters amT2 and mτ
T2. From the published cut flows

it can be seen that the effect of these cuts is of the order ∼ 10%, 2% respectively (although the

former cut can have a more pronounced effect ∼ 30% on the “tN med” cut choice).
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Figure 7.45: Top : The visible dijet cross section assuming ε = 100%; for three DM masses and

for the three signal regions from Tab.7.2 (for both
√
s = 8, 13 TeV, left and right respectively),

grey lines correspond to the experimental limits. Bottom : Dijet bounds for the analyses discussed

in the text, showing also the region excluded by relic density (shaded) for a benchmark set of

parameters.
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Cut “tN diag” “tN med” “tN high” “tN boost”

Emiss
T (GeV) 100 200 320 315

pjT,i (GeV) (60, 60, 40, 25) (80, 60, 40, 25) (100, 80, 40, 25) (75, 65, 40, 25)

mT (GeV) 60 140 200 175

∆R(b, l) 0.4 0.4 0.4 0.4

∆φ(j1,2, p
miss
T ) 60 140 200 175

Bound σvis (fb) 1.8− 2.9 0.4 0.3 0.3

Table 7.3: The four relevant signal regions from the ATLAS 2014 stop search [25] along with the

cuts that are implemented.

calculated with MadGraph in the narrow width approximation. Although the cross

section is predominantly controlled by the size of D33, the light quark couplings

D11, D22 have a mild affect by reducing the branching ratio φ → t̄χi and suppress-

ing the cross section.

At threshold for on-shell top production (mφ = mt+mχ), if the φ couples only to

tops then the branching ratio will be 1, meaning that the cross section is essentially

just given by the production cross section for φφ† and hence remains finite; however

if even a small coupling to the other quarks exists then the BR rapidly decreases at

the threshold.

At the high mφ edge of the exclusion region, the constraint is essentially inde-

pendent of the DM mass and the cross sections scales with mφ only. Since the top

coupling was assumed to be zero in the light squark search, the limits in Fig.7.46

are not comparable to those in Fig.7.41, instead Fig.7.41 is replaced by Fig.7.46 in

the event that the φ couples predominantly or entirely to the third generation.

7.7.6 Collider Constraints within DMFV

We have now looked at three classes of analysis; monojet searches, dijet searches,

and searches optimised for a stop. Within our model we have couplings to u, c, t
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Figure 7.46: Left: the visible cross section assuming ε = 100% for the ATLAS stop search [25].

Dashed grey lines denote the top production threshold. Right : constraint for the three signal

regions and for ε = 50%. Since the coupling matrix λ is diagonal (θij = 0), the mediator must be

heavy mφ > mχ,3 +mt.

(denoted λu,c,t) and the relative strengths of these dictate which signals will be dom-

inant.

Compared to λu, the monojet and dijet processes are suppressed if only λc is

non-zero (by pdf’s), but generally are enhanced by mixtures of λu,c. The coupling

λt reduces the signals since they come from s-channel φ resonances and thus the

branching ratio to u, c jets will go as Br(φ→ χu, c) ∝ (D33)−2 if D11,22 � D33.

The stop search only becomes relevant for large λt with λt/λu,c � 1. Increasing

λu,c suppresses the signal by the branching ratio Γφ ∝ (D11 +D22)−2 if D11,22 � D33.

The sensitivity of the collider searches may be roughly categorized as:

• Mostly up-type : The dominant signal will come from the monojet processes

which have the least QCD suppression and which require a u in the initial state.

Dijet searches are also sensitive but it tends to be the monojet which sets the

better constraint.

• Mostly charm-type : The monojet processes are enhanced by the presence of
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charm coupings, however as the up coupling is reduced the monojet processes

become suppressed by the charm pdf by around O(10−1 − 10−2). The dijet

processes are very similar as for u quarks but the largest contributing diagram

is again suppressed by the charm pdf. Both searches provide constraints

• Mostly top-type : The monojet signal depends primarily on λu,c, only

indirectly on λt though the widths. λt can be probed through stop searches

with jet multiplicities of ≥ 4.

Colliders provide very powerful exclusions (up to the TeV scale in mediator mass

Fig.7.46,7.45 and 7.42), and are sensitive to all three couplings Dii, although can be

significantly weakened by, for example, strong top couplings. The DM is produced

on-shell, and so the constraints are comparatively weak at high DM mass when com-

pared with searches which depend on the cosmic abundance of DM; on the other

hand the fact that the DM is produced in the collider releases any dependence on

its relic abundance, thus allowing more powerful constraints on the χ which decay

away in the early universe. Sensitivity of colliders to low mass DM is much better

than for high mass, whereas the most powerful astrophysical probe (direct detec-

tion) cannot detect below the GeV scale due to kinematics, providing a valuable

complementarity between collider and astrohpysical searches.

When compared with the most powerful direct detection limits, the collider lim-

its are not as constraining, and this is not likely to change in the future, even with

more luminosity and higher energy beams.

It is very difficult for a given parameter choice to determine the strongest bound

from colliders amongst the various signals, and one should therefore check all avail-

able searches. Due to the interplay between 1,2-jet processes, there is no obvious

scaling behaviour of the cross section with the coupling parameters, these factors

make implementing collider searches in an MCMC scan extremely difficult/slow as

each cross section must be numerically computed at each point in phase space. How-

ever, we have checked explicitly that the remaining phase space of the model after
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other constraints are applied is not impacted significantly by the collider bounds.

7.8 DMFV : Other Bounds

7.8.1 Electroweak Precision Observables

In our model, since the scalar carries non-zero hypercharge, it can affect various

electroweak precision observables (EWPO). For certain kinds of new physics above

the weak scale, a simple parameterisation of these effects comes in the form of the

Peskin-Takeuchi S, T, U parameters [366, 367]. The S, T, U parameterisation of new

physics contributions have the following underlying assumptions:

• That the electroweak gauge group is the standard (SU(2)L ⊗ U(1)Y ).

• That the new physics appears at a scale high enough above the weak scale

that the corrections can be expanded to first order as a power series in q2/ΛNP,

where q2 is around the weak scale.

• That the new physics has suppressed couplings to light fermions compared to

the gauge bosons.

The first of these is obviously true in our model – we have not added any new gauge

symmetry. The mass of our new scalar is not a priori above the weak scale, but we

will nonetheless find that low masses do not lead to appreciable constraints. The

most questionable is the suppressed couplings to light fermions. The photon and

Z coupling to φ is of the order of 0.1, whereas the coupling to the up quark is of

the order of the diagonal elements D11, D22, D33. The light quark coupling could

therefore be large, but in much of the parameter space we are within the regime

where the Peskin-Takeuchi parameters well describe electroweak corrections.
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The S, T, U parameters can be simply thought of in terms of corrections to the

Z and W masses, and the Z-γ mixing. They are defined as,

αS = 4s2
W c

2
W

[
AZZ(m2

Z)− AZZ(0)

m2
Z

− ∂Aγγ
∂q2
|q2=0 −

c2
W − S2

W

cW sW

∂AγZ
∂q2
|q2=0

]
(7.8.258)

αT =
AWW (0)

m2
W

− AZZ(0)

m2
Z

(7.8.259)

αU = 4s2
W

[
AWW (m2

W )− AWW (0)

m2
W

− c2
W

AZZ(m2
Z)− AZZ(0)

m2
Z

− s2
W

∂Aγγ
∂q2
|q2=0 + 2cW sW

∂AγZ
∂q2
|q2=0

]
(7.8.260)

where the A(q2) functions come from the two-point correlations functions Πµν
XY (q2) =

A(q2)gµν + B(q2)qµqν and qµ is the four momentum of the incoming/outgoing par-

ticle.

Since our new scalar is an SU(2) singlet, the W boson does not couple to it and

AWW (0) = 0, since AZZ(0) = 0 also, T = 0. The expressions for the S and U

parameters in our model are

S = −U = Nc
2s4

W

27π

(
−16

3
+ 16

m2
φ

m2
Z

− 6
m2
Z − 4m2

φ

m2
Z

Λ(m2
Z ,mφ,mφ)

)
(7.8.261)

where

Λ(m2
Z ,mφ,mφ) =

√
m2
Z − 4m2

φ

mZ

log

2m2
φ − 2m2

Z +mZ

√
m2
Z − 4m2

φ

2m2
φ

 (7.8.262)

as long as mφ > mZ/2.

The expressions for the contributions from a singlet charged scalar were also

calculated in [368], which matches the above result once a factor of Nc is included

to account for our scalar being an SU(3) triplet. Since these are good EWPO above

the weak scale, we use the calculation of S for scalar masses above 200 GeV. In this

region, |S| . 10−4 in comparison the Gfitter group currently gives an experimen-

tal limit of S = 0.05± 0.11 [369].
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7.8.2 Higgs Decay

In our model the corrections to the decay width of the Higgs appear at one loop

level, in the process h → φ†φ, χ̄iχj. The total SM width is ΓSM,tot = 4.07 × 10−3

GeV [246, 370] from which one may derive the bounds,

RI =
ΓDM

ΓDM + ΓSM,tot

< 0.17 . (7.8.263)

For decay to DM states the squared matrix element is,

|M|2χ̄iχ =
9y2

1024π4

m2
q

(m2
h − 4m2

χ)

[
2m2

χ(Λ(m2
χ,mφ,mq)− Λ(m2

h,mq,mq))

+ (m2
χ +m2

φ −m2
q) log

m2
q

m2
φ

+ 2m2
χ(m2

χ +m2
q −m2

φ −
1

2
m2
h)C0

]2

(7.8.264)

with C ′0 = C0(m2
h,m

2
χ,m

2
χ,mq,mq,mφ), this loop suppression is far too large to

contribute to the decay width and produce constraints. For decay to mediator

states it is25,

|M|2φ†φ =
3y2

128π4
m2
q

[
B0(m2

φ,mχ,mq) +B0(m2
h,mq,mq) + (m2

χ +m2
q −m2

φ)C ′0

]2

(7.8.265)

with C ′0 = C0(m2
h,m

2
φ,m

2
φ,mq,mq,mχ). This is a divergent integral, the divergence

arises due to a possible tree level coupling of the Higgs to the scalar field, above the

EW scale this is, when the Higgs acquires a vev,

L = λH,φφ
†φHH† , H =

1√
2

 0

v + h

 (7.8.266)

which induces a coupling λH,φvφ
†φh and a width,

Γ =
1

64π2m2
h

v2λ2
H,φ

√
m2
h − 4m2

φ (7.8.267)

which using Eq.(7.8.263) rules out the entire kinematically allowed region mφ <

mh/2 for O(1) couplings, but below couplings λH,φ ∼ 0.03 the bounds on mφ disap-

pear.

25There are also diagrams which involve the tree level coupling of φ and the SM Z boson, but

these are equally suppressed.
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We now consider the consequences of the divergent contribution to the h→ φ†φ

process. This provides a contribution to the only renormalizable operator between

the Higgs and mediator L = λH,φφ
†φH†H; we have set λH,φ = 0 at tree level, if it

had been non-zero then its counterterm could absorb the divergence. Thus it is not

consistent to let λH,φ = 0, which is not protected by any symmetries. Due to its

divergence, λH,φ ≡ λH,φ(µ) runs with energy scale, and so even if we set it equal to

zero at some scale, at all other scales the radiative corrections drive it to finite values.

In general, the divergence is proportional to the Yukawa coupling of the quark

which runs in the loop, for the u, c this will lead to large suppressions and a very

small λH,φ, however the top yukawa yt ∼ 1 and this can drive large corrections.

We will assume λH,φ(Λ) = 0 at some high scale Λ, and then run down to µ = mφ

at which point the mediator is integrated out of the theory. At µ = mφ the EFT

operator Eq.(7.8.266) is generated with

λH,φ(mφ) =
yt

8π2
(λλ†)33 log

(
Λ2

m2
φ

)
+O(yu, yc) (7.8.268)

solving the Euler-Lagrange equations for φ:

(p2 −m2
φ)φ = λijūR,iχj, (p2 −m2

φ)φ† = λ†jiχ̄iuR,j (7.8.269)

which are used to integrate out the mediator

Leff =
λH,φ
m4
φ

λijλ
†
lmūR,iχjχ̄luR,mH

†H

=
λH,φ
m4
φ

λijλ
†
lmχ̄iγ

µχlūjγµumH
†H (7.8.270)

where a Fierz transform is made in the final line. When the Higgs acquires a

vev, this leads to the same four-fermion interaction Eq.(7.6.138), but suppressed by

λH,φv
2/m2

φ if mφ & v ∼ 246 GeV.

7.8.3 Z decay

The limit on the Z decay to invisible states is [370],

RZ =
ΓDM

ΓDM + ΓSM,tot

< 0.2
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with ΓSM,tot = 2.4952± 0.0023 GeV [246] and arises from loop level processes Z →
φ†φ, χ̄iχj for masses mφ < mZ/2 and (mχi + mχj) < mZ . However, since the

mediator is given a hypercharge, it picks up a direct coupling to the Z and thus

creates a tree level coupling

|M|2tree =
16απs2

W

c2
W

(m2
Z − 4m2

φ) (7.8.271)

however the resulting width is still far too small to give constraints. Clearly then

the loop level decay to DM states will also be too small.

7.8.4 Perturbative Unitarity

Perturbative unitarity derives from the necessary condition on any field theory that

the scattering matrix (S-matrix) is unitary, that is the probability of any scattering

process is less than 1. This must be the case order by order in perturbation the-

ory, and generally the strongest constraints come from the lowest order contribution.

One first makes a partial wave decomposition of the amplitude for a particular

process or class of processes, for example we can simply choose all 2→ 2 scatterings

with initial state i and final state f , this forms a matrix of amplitudes Mif . Due

to the partial wave decomposition, each process has a specific spin configuration

(unlike conventional amplitudes we do not sum over the particle spins). Following

[72] a simple bound may be derived on self-scattering processes for which i = f ,

|Re(Mii)| ≤
1

2
(7.8.272)

We thus consider the tree level 2→ 2 self-scattering processes present within the

DMFV model (where the initial state and final state consists of particles and their

corresponding anti-particles),

1− loop : χ̄iχj → χ̄iχj (7.8.273)

tree : φφ† → φφ† , χ̄iχj → φφ† , q̄iqj → φφ† , q̄iqj → q̄iqj (7.8.274)

the DM self-scattering occurs at one loop level and is ignored, the rest occur at tree

level.
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The Jth partial wave matrix element is given by,

MJ
if =

1

32π
βij

∫
d cos θdJµµ′Mif (S, θ), (7.8.275)

dJµµ′ are Wigner d-functions, and for J = 0 are d0
µµ′ = δµ0δµ′0 where µ, µ′ are the

total helicities of the initial and final state,

M0
if =

1

32π
δµ0δµ′0

∫
d cos θMif (S, θ) . (7.8.276)

Perturbative unitarity may be violated at low energies in theories which con-

tain massive vector bosons, due to the scaling behaviour of the longitudinal modes

ξ ∼
√
S/m. Since the DMFV model does not contain new vectors, there are unlikely

to be bounds from unitarity considerations. This turns out to be the case, as we

have checked explicitly for all tree level 2→ 2 processes involving the fields χi, φ in

our model, where the initial (final) state is a particle anti-particle pair of the same

field.

For further details and applications of perturbative unitarity, see Appendix A.5

or Chapter 5.

7.9 DMFV : Summary, Results and Conclusions

7.9.1 Summary

We have explored a simplified model for DM, dark minimal flavour violation or

DMFV, which as the name suggests is a model which quantifies the degree of quark

flavour violation. It does so by the introduction of a triplet of DM candidates χi

which couple to the RH up-type quarks via a matrix λ parametrized in terms of three

mixing angles θij (analogous to those of the CKM matrix), and three couplings Dii

which give the size of the coupling of χi to the three generations of quark.

Despite being a simplified model, DMFV overcomes many of the issues that are

commonly faced by models which are over-simplified; it is both SU(2) gauge in-

variant and UV-complete, and does not lead to any violations of unitary. We have
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addressed some theoretical issues by computing the RG running effects, which leads

to mass splitting between the χi and operator mixing between operators of the low-

energy effective theory.

The strategy is simply to understand the allowed parameter space of the model,

and so we now summarize the various bounds that we have computed :

• Relic Abundance : We have calculated the relic abundance explicitly

using the coupled Boltzmann equations including coannihilations, scattering

and decay. The relic abundance of the heavy χ is strongly influenced by any

mass splitting, since 〈Γ〉ij ∝ ε5 where mχj = mχi(1 + ε), and a such a decay

(even if extremely suppressed), along with any χi + X → χj + Y scattering

processes, will wash out the relic abundance of the heavier candidates. This

in turn prevents indirect and direct detection signals from the heavy particles,

which scales as Ω2 and Ω respectively. Because of this sensitivity we have

explicitly performed a one-loop RG running of the DM mass parameters and

shown that splittings can be as large as ∼ O(35%). Signals from colliders and

flavour observables include production of real (on-shell) or virtual DM states

respectively, and are therefore unaffected by the relic abundance.

• Collider : We have checked several ATLAS and CMS analyses (for both

Run 1 and Run 2 data of the LHC) including monojet, dijet, and stop searches

(the latter is a weaker bound, since it requires a 6-body final state but is

included to provide bounds in which the coupling to tops is dominant since

then monojet and dijet searches are weak) which have the largest sensitivity to

the DMFV model. We have included cuts and efficiencies from the analyses,

and performed a simple cut-and-count method to give exclusion limits. The

resulting bounds on the mediator are strong mφ . O(TeV) for λ ∼ 2, but

do not extend to high DM mass mχ . O(100 − 500GeV) which must be

pair produced on-shell. One advantage is that very light DM is powerfully

excluded. The limits do not have a strong dependence of the size of mixing,

or mass splitting, however depend sensitively on the ratios of Dii.
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• Indirect Searches : We have compiled a list of relevant indirect detections

bounds on 〈σv〉 which can be applied to the model, the tree-level cross section

χ̄iχj → (ūu, c̄c, t̄t) is then compared to these limits. The limits are strong, and

very efficient at excluding parameter space since the cross section is the same

as for relic density calculation, the latter providing a lower limit on 〈σv〉 and

the former an upper limit. We have also included the loop-suppressed photon

line searches for the processes χ̄χ → γγ, γZ, γh including limits from Fermi-

LAT and HESS, which tend to provide substantially weaker bounds than for

the tree level searches.

• Direct Searches : We have explored the tree level and one-loop level

contribution to nuclear scattering. We have found in particular that a strong

RG running effect is present which mixes the quark currents and provides

extremely strong bounds which cannot be avoided by coupling predominantly

to heavy quarks, unless mφ < mZ ,mt (since the running is strongest above

this scale). The loop contributions are small and may be neglected in practice,

unless one suppresses the tree level contribution. These bounds do not depend

sensitively on the mixing angles or mass splitting per se, but scale as Ωi, and

therefore have no sensitivity to the decaying DM candidates.

• Flavour Bounds : We have checked the effect of violating the MFV as-

sumptions through its affect on heavy flavour observables, in particular the

rare decays and mixing of the D0. Underlying these processes is a c→ u tran-

sition, and the constraints depend primarily on the size of (λλ†)12. The rare

decay constraints are weak but the mixing constraints are extremely strong,

since in the SM a strong GIM cancellation leaves the mixing parameters very

small. To remove the mixing contribution either the mixing angles are zero

θij = 0, or Dii all equal.

• Other : We have computed the DMFV contribution to various observables,

which lead to extremely weak bounds; including the electroweak precision

observables (EWPO), as well as the Higgs and Z decay widths at one loop.

The possibility of violation of perturbative unitary has been checked explicitly
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by computing the helicity amplitudes of all tree-level 2→ 2 processes.

7.9.2 Results and Conclusions

We have aimed to produce a robust statistical analysis of the eight dimensional

parameter space of the DMFV model, using the Bayesian inference tool MultiNest

[371, 372] with 5000 live points per scan. We have collected a basic review of the

statistical concepts that are used to present the results in Appendix A.7. The mo-

tivation for carrying out this analysis is twofold, firstly from a practical standpoint

it utilizes very quick and efficient algorithms for scanning a large dimensional pa-

rameter space, allowing us to include all parameters in one analysis. Secondly, a

rudimentary “hit-or-miss” analysis leaves a large region of parameter space allowed,

which is not surprising given the flexibility of 8 free parameters, with a statistical

result we can quantify the regions of parameter space which are allowed but very

improbable given the errors of the experimental data. For clarity, we represent

the allowed parameters as contours containing credible regions, using the method of

[373] and the posterior probability density function (pdf). The 1, 2σ contours give an

indication of the allowed parameter range, with containment probabilities of 68, 95%

respectively.

Regarding the use of priors : We make one note of caution regarding the

results; the credible regions depend sensitively on the choice of priors for the param-

eters. This is not surprising since our constraints allow large regions of parameter

space to be equally well allowed, and so the use of priors which bias the parameters

to lower values (i.e. log-uniform compared with linearly uniform) is reflected in the

final result, which can be up to a factor of 2 − 5 on the endpoints of the credible

region. Nonetheless, we are careful to limit the statements made in the text to

those which are independent of the choice of priors. In all figures, unless specified

otherwise, the log-uniform priors have been used for the masses and for Dii, as this

represents the more conservative choice. The ranges and priors for the parameters

of the scan are summarized in Tab.7.4 below.



7.9. DMFV : Summary, Results and Conclusions 348

Parameter Range Prior

mχ [GeV] 1− 105 Log-Uniform

mφ [GeV] 1− 105 Log-Uniform

θij 0− π/4 Uniform

Dii 10−2 − 4π Log-Uniform

Table 7.4: Allowed ranges for the parameters used in the MCMC scan, along with the assumed

prior likelihood, which is uniform on either a linear or logarithmic scale.

Our results are summarized in Fig.7.47, 7.48 and 7.49 as 1σ, 2σ contours. We

consider three separate samples in which the DM (the lightest χ) is the first, second

and third member of the triplet (denoted ‘up’, ‘charm’ and ‘top’ DM and coloured

red green and blue respectively). Within each sample we present a low and high

mass splitting (∆m/mχ = 2% and 15%), which primarily distinguish the effect of

coannihilation in the calculation of relic density, but affect all other bounds to some

extent as we have explicitly included the mass dependence of each.

Additionally, we produce for each parameter a 1D posterior marginalized over

the remaining 7 parameters. From this distribution we find the 1σ credible interval.

The results are shown in Fig.7.5, 7.6 and 7.7. Each contains results for both uniform

and log-uniform priors on Dii, mχ and mφ; when the two cases are discrepant by

> 1σ this is due to an almost flat posterior, and using the 2σ band instead the two

would agree.

The masses of the DM and mediator are both required to be in the TeV range,
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with upper limits in the hundreds of TeV, see Fig.7.4726. The DM and mediator

masses are strongly correlated with the Dχ (where Dχ is the coupling Dii associated

to the DM), as in Fig.7.47, due to the relic density and mixing bounds which both

scale approximately as (D/m)4 in the high mass limit. Masses in the TeV range

favours the Dii to be O(1). The mixing angles are not well constrained in general;

θij = 0 is favoured, but the full range of angles are usually allowed with 1 − 2σ

credibility.

The Dii themselves can become correlated from the mixing constraints which

depend on (λλ†)12 which is,

(λλ†)12 ≈
(
s13s23(D2

22 −D2
11) + s12(D2

33 −D2
11)
)
, (7.9.277)

and so we see D11 ∼ D33 (and less strongly D11 ∼ D22) to minimise the contribu-

tion to D0 mixing. Because the correlation between D22, D33 is less pronounced,

the RD bound controls the behaviour and produces an anti-correlation, since the

annihilation cross section scales like

〈σv〉eff ∝ (D2
11 +D2

22 +D2
33)2 ∼ 3× 10−26 cm3s−1

due to coannihilations, as such the trend is most pronounced for small mass splitting.

This is seen for example in the range of D22 for the small splitting data, Fig.7.48.

In most cases increasing the mass splitting reduces the available parameter space

in the masses and couplings of the DM since the coannihilations and annihilations of

the heavy particles have a reduced effect on the relic density (scaling with a Boltz-

mann factor exp(−∆m)). This allows less flexibility in the DM parameters whilst

26The region mφ . mχ is disallowed because the mediator becomes stable, the contours overlap

slightly into this region due to the specific kinematic bounds which depend on quark mass mq,

mχ < mφ + max(mq) ,

mφ > min(mχ +mq) ,

where min/max correspond to the values for which a coupling exists .
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opening up the allowed parameters of the heavy particles, since their couplings are

out of reach of the astronomical constraints (indirect and direct searches) which are

proportional to the relic density of the lightest χ (scaling as Ω2 and Ω respectively).

This effect can be clearly seen in the right panels of Fig.7.47, where the 2% splitting

allows much smaller DM couplings compared with the 15% splitting, contrastingly

in Fig.7.48 (lower panels) the non DM coupling space opens up with a larger split-

ting.

Top quark threshold effects are absent in the MCMC scan, due to the high masses

(mχ & mt). Since mχ,mφ � mt the three quarks are kinematically equivalent, and

so the bounds are not strongly dependent on the flavour of DM. The main differ-

ences arise due to the quarks SM interactions which impact the DD and ID limits.

As described in Sec.7.7, we have studied collider bounds on our model, but these

were not directly incorporated into our MultiNest routine as these bounds are much

more computationally intensive than the others. However, as we see from Fig.7.42,

7.45 and 7.46 the collider bounds only rule out sub-TeV scale masses, even at large

couplings and so we do not expect that a full likelihood function incorporating the

LHC constraints would give significantly different results. As a test, we checked

a sample of the points inside our 68% confidence intervals and found only a small

minority (of order 1%) that would be excluded by collider data.

Constrained Scenarios

We consider two extensions to previous results:

1. In Sec.7.2.2 we found that the mass splitting which is generated through RG

running of the DM self-energy is approximately proportional to D2
ii, this mo-

tivates us to consider a scenario in which the couplings Dii are correlated with

the masses (thus introducing a coupling splitting ∆Dii/Dχ = 2, 15%). The

reduced parameter space enforces almost degenerate couplings which leads to

two important effects; firstly, it subjects all three χ to the astrophysical con-
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Figure 7.47: Credible regions (2σ contours, corresponding to 95% containment) in the mχ −mφ

plane (left column) and Dii −mχ (right panels) where Dii is the coupling associated to the DM

candidate which may be χ1 (top row), χ2 (middle row) or χ3 (bottom row). Two values of a mass

splitting are chosen 2, 15% which are shown with solid and dashed contours respectively.
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Figure 7.48: As for Fig.7.47 but for the D11 −D22 plane (left) and D11 −D33 (right), for both

2, 15% mass splitting (dashed shaded, and solid darker shaded respectively).
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Figure 7.49: As for Fig.7.47 but for the D22 −D33 plane.
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straints of indirect and direct detection, despite the heavier particles having

no relic density. Secondly, because the Dii are equal the mixing effects are

naturally small and as a result the mixing angles are much less constrained as

they do not need to be small to counteract flavour effects.

This scenario is representative of a model in which MFV is broken only slightly,

since the couplings to quark flavours are roughly equal, differing due to the

mixing angles and the small differences in the Dii. It is actually only slightly

less constrained in both mass and couplings than models in which flavour

violation is allowed, which counteracts the naive assumptions that MFV is

necessary to protect models from being excluded by flavour observables.

2. When compared with the down-type quark sector, flavour effects do not show

up in the precisely measured B meson sector, but instead in the less well

constrained D sector. We further weaken the constraint in our conservative

treatment in which we assume the SM contribution to D0 mixing is zero and

the experimental value comes entirely from the new physics. This is not en-

tirely unreasonable, since short distance calculations of the observable are

known to be very discrepant, nor is it completely reasonable, since long dis-

tance calculations are able to bring the SM into good agreement. To cover this

caveat we consider a future scenario in which the SM calculation reproduces

the experimental number (but the precision of the measurement stays at its

current value).

This is also conservative, since any interference terms between the SM and

DMFV amplitude are likely to be large. The constraints on the mixing angles

are more pronounced.

We compare the full 9-dim results to constrained scenario (1) and (2) above, in

Fig.7.50, and the 1σ intervals in Tab.7.6, 7.7.

Given the current level of data, the model we examine of flavoured DM coupling

to up-type quarks has large sections of its parameter space still allowed, so long as

large enough masses are considered. Even without collider searches, the lower mass,

phenomenologically interesting, regions of parameter space (mχ . 1 TeV) are ruled
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Figure 7.50: Comparison between 2σ contours of the full MCMC scan and two extensions dis-

cussed in the text, for a mass splitting of 2% (left) or 15% (right). The top right plot does not

include scenario (2) as there is no allowed phase space.
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out by flavour, relic density, and direct detection considerations.

The MFV assumption is frequently invoked in simplified models in order to evade

potentially large flavour-violating effects. The level of robustness of this assump-

tions varies considerably between up-type and down-type quarks; for RH down-type

quarks strong flavour bounds do ensure that the assumption is a good one[325].

However for couplings to RH up-type quarks we have seen that in fact the flavour

bounds are avoided in a large region of MFV-breaking parameter space.

One particular future development could alter this picture however - if a precise

theoretical prediction of D-mixing observables could be obtained then either (a) A

significant discrepancy requiring new physics is present, or (b) The SM predictions

are reproduced with a high precision. The former would motivate the exploration

of models which go beyond MFV, and the latter would make the MFV assumption

a necessary assumption of the DMFV simplified model if one wants to avoid some

fine-tuning.
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Chapter 8

Quark-Hadron Duality Violation

or : On The Ultimate Precision of

Meson Mixing Observables

In this chapter we deviate slightly from constraints on dark matter, for which we

have considered constraints coming from heavy flavour observables, and consider an

alternative explanation for deviations seen in these observables, the idea of quark-

hadron duality violation.

We propose a simple model of duality violation, and tightly constrain its possible

size using inclusive decay widths and lifetimes for the B0
s and B0

d mesons, based on

the Heavy Quark Expansion (HQE). We then observe that a duality violation of

around 20% is sufficient to correct the discrepancy between theory and experiment

for lifetimes in the D0 system which we have encountered in Chapter 7.

8.1 What is Quark-Hadron Duality Violation?

In essence, quark-hadron duality is the statement that long-distance, hadronic, pro-

cesses (necessarily those which are measured experimentally) can be accurately de-

scribed by theoretical calculations involving only quarks and gluons, the short dis-

tance degrees of freedom.

360
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To understand duality in more depth, we briefly review some of the theoretical

tools which bridge the gap to theory.

Ultimately we are interested in the decay rates and lifetimes of heavy hadrons

HQ, this is calculated using the optical theorem to relate the decay width, Γ, to the

HQ → HQ amplitude, or the two point correlation function of HQ.

We consider the illustrative and simpler example of scalar fields φ. The two-

point correlation function in position space, Π(x), may be written (see for example

[330, 374]),

Π(x) ≡ 〈Ω| T {φ(x)φ(0)} |Ω〉 , (8.1.1)

where Ω is the fully interacting vacuum, and T is the usual time-ordering operator.

By a complete insertion of states, including the vacuum and multiparticle states one

can define the Källén-Lehmann spectral representation,

〈Ω| T {φ(x)φ(0)} |Ω〉 =

∫ ∞
0

ds

2π
ρ(s)DF (x, s),

for the physically observable spectral function ρ(s)1. This is the experimentally

measured quantity, ρexp(s).

Fourier transforming the two point function to momentum space, the function

Π(q) has poles at the physical mass q2 = m2 and at any bounds states. It also

contains a branch cut for q2 > 4m2. The singular structure necessitates the trans-

formation from the Minkowski geometry to the Euclidean domain, Q2 = −q2. The

evaluation of Π(Q) at Q → ∞ (the extreme Euclidean domain) is then completed

using the Wilsonian Operator Product Expansion (OPE) which converts the non-

local two-point function into a sum of local operators with singular coefficients.

1 ρ(s) is a delta function at s = m2 and for any bound states s < 4m2, and is nonzero above

the 2 particle threshold s > 4m2.
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The OPE will require the trunctation of two independent series. Firstly the sum

over local operators is infinite, with each successive term being further suppressed

by powers of Q and must be truncated at some order. Secondly, for each local op-

erator, one must calculate its corresponding Wilson coefficient perturbatively (i.e.

using Feynman diagrams, whereby higher order terms correspond to QCD correc-

tions) and of course the perturbative expansion must be truncated at some finite

order in αs(Q).

Once Π(Q) is calculated, the truncated series is analytically continued, term-by-

term, into the Minkowski domain and one may finally arrive at the spectral function

ρtheor(s). Then quark-hadron duality is the statement that ρtheor(s) = ρexp(s) (up

to corrections of one order higher in the truncated OPE).

Duality violation can arise from singularities which are not correctly captured by

the OPE [375] in the limit x2 → 0; for example singularities in the limit x2 → −ρ2

(or alternatively ρ2 → −∞) manifest as exp(−Qρ) (exp(−Q2ρ2)) in the Euclidean

domain and are therefore suppressed and neglected by the OPE, however in the

Minkowski domain they oscillate as sin (−
√
q2ρ) (sin (−|q2|ρ2)) and are not neces-

sarily small (unless suppressed by powers of (q2)−n which happens to generally be

the case).

8.1.1 Inclusive Decay Rates

The inclusive decay rate of hadron H may be written [376],

Γ(H → X) =
1

2mH

∑
X

∫
dΠX(2π)4δ(pH − pX)| 〈X|H |H〉 |2, (8.1.2)

with phase space ΠX . To simplify this we recall the optical theorem [330],

−i [M(a→ b)−M∗(b→ a)] =
∑
X

∫
dΠXM∗(b→ X)M(a→ X), (8.1.3)

for the special case of a = b (forward scattering) Eq.(8.1.2) becomes,

Γ =
1

2mH

〈H|T |H〉 , T = Im

(
i

∫
d4xT {H(x)H(0)}

)
, (8.1.4)
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which can now be calculated according to Sec.8.1 using the Wilsonian OPE. Thus

we can see that duality violation could be manifest in the lifetimes and decay rates of

heavy hadrons. To be more explicit, terms in the OPE of the form exp(−Q/ΛQCD)

(as we have motivated in the previous sections) are exactly zero when Taylor ex-

panded about the small parameter (ΛQCD/Q) .

Naively one expects the relevant large mass scale to be Q2 = −q2 ∼ −m2
b , re-

lated to the decay of the free b quark, leading to an expansion parameter ΛQCD/mb.

However, upon explicit calculation one realises that in fact the correct expansion

is ΛQCD/
√
m2
i −m2

f where mi,mf are the initial state and final state masses. In

Fig.8.1 we give some numerical estimates of the size of duality violation in such

terms, the effect can be up to 30% the size of the expansion parameter2.

The OPE leads to a decay rate which may be written,

Γ = Γ(0) +

(
Λ

mb

)
Γ(1) +

(
Λ

mb

)2

Γ(2) + · · · , (8.1.5)

where each Γ(i) are expanded to some order in αs(Q). We will first consider the B

mesons, which are mesons containing a valence b anti-quark. The neutral B0 mesons

are Bs (b̄s), Bd (b̄d), and the charged B mesons are B+ (b̄u) and B+
c (b̄c).

The B mesons decay both semi-leptonically B → Xlνl and hadronically B →
X1X2 where X are mesons. The hadronic B decays are primarily due to the b→ c

transition, those decaying via the CKM suppressed b → u transition are known as

rare decays.

Generally speaking, nonleptonic decays lead to larger duality violations than

semileptonic decays since the former tend to have larger corrections [377]. We will

2We use the notation ΛQCD as a placeholder for some scale in the range [0.2, 2] GeV, and

should not be confused with the hadronization scale which is ∼ 200 MeV. The stated range of

ΛQCD comes from explicit calculation of hadronic matrix elements, which come for example from

lattice calculations.



8.1. What is Quark-Hadron Duality Violation? 364

Channel Expansion Parameter x x Duality Violation

b→ cc̄s Λ√
m2
b−4m2

c

≈ Λ
mb

(
1 + 2m

2
c

m2
b

)
0.054-0.58 9.4 · 10−9 − 0.18

b→ cūs Λ√
m2
b−m2

c

≈ Λ
mb

(
1 + 1

2
m2
c

m2
b

)
0.045-0.49 1.9 · 10−10 − 0.13

b→ uūs Λ√
m2
b−4m2

u

≈ Λ
mb

0.042-0.48 4.2 · 10−11 − 0.12

Figure 8.1: The possible size of duality violations, exp(−1/x), for several exclusive decay modes

of a B meson, we vary the masses mb ∈ [4.18, 4.78] GeV and mc ∈ [0.975, 1.67] GeV and the

hadronic scale Λ ∈ [0.2, 2.0] GeV. In reality Λ is determined through an explicit calculation and

the range we select represents the approximate range of values across the different observables.

thus focus on the nonleptonic case, and indicate the range in size of possible duality

violation in some exclusive decay channels.

8.1.2 Neutral Meson Mixing

The phenomenon of meson mixing is analogous to the mixing of neutrinos in the

lepton sector. However, instead of mixing between flavours of neutrinos, the mixing

occurs between neutral mesons and their anti-particles (necessarily neutral so that

the particle and anti-particle possess the same quantum numbers). The weak inter-

action mediates the interactions between the neutral mesons.

The description of mixing can be described quantum mechanically using the

Schrodinger equation for the two states,

i
∂

∂t

B(0)
q

B̄
(0)
q

 = H

B(0)
q

B̄
(0)
q

 =

M11 − i
2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

B(0)
q

B̄
(0)
q

 , (8.1.6)

where Mii, Γii are the masses and decay widths of the meson/anti-meson respec-

tively (note that the meson and anti-meson have identical masses and decay widths

in the flavour basis due to CPT invariance). The off diagonal terms arise from pro-

cesses bq̄ → b̄q, which in the SM are box diagrams with virtual W, q. To move from

the flavour basis (mesons defined in terms of valence quarks) to the mass basis we

diagonalise H. This results in a heavy and light state with masses MH and ML

respectively.
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We define the decay rate and mass differences of the heavy and light states as

follows [378],

∆M = MH −ML, (8.1.7)

∆Γ = ΓH − ΓL, (8.1.8)

which can be written in terms of Γ12 and M12 as follows,

∆M = 2|M12|
(

1− 1

8

|Γ12|2
|M12|2

sin (θ)2 + · · ·
)

≈ 2|M12|, (8.1.9)

∆Γ = 2|Γ12| cos θ

(
1 +

1

8

|Γ12|2
|M12|2

sin (θ)2 + · · ·
)

≈ 2|Γ12| cos θ, (8.1.10)

with θ = arg(−M12/Γ12). To actually calculate M12 and Γ12 requires the evaluation

of loop diagrams for the process b̄q → q̄b, M12 given by the real part (aka disper-

sive part), and Γ12 from the imaginary part (aka absorptive part). The primary

observables of interest are,

∆Γq
∆Mq

= −Re

(
Γq12

M q
12

)
, (8.1.11)

aqsl = Im

(
Γq12

M q
12

)
. (8.1.12)

The latter is called the semileptonic asymmetry, and is experimentally measured for

the Bs system (limits can be placed for the Bd system). Additional measurements

have been made for ∆M and ∆Γ individually for both Bs and Bd systems.

The actual calculation of Γ12 follows the general outline given in Sec.8.1.1, given

by the imaginary part of the Bq → Bq scattering diagram as shown in Fig.8.2, and

takes the analytic form,

Γq12 =
Λ3

m3
b

(
Γ
q,(0)
3 +

αs
4π

Γ
q,(1)
3 + · · ·

)
+

Λ4

m4
b

(
Γ
s,(0)
4 + · · ·

)
+ · · · , (8.1.13)

the series begins at third order in the expansion parameter (Λ/mb), since the lowest

order operator in the OPE is a four quark operator (dimension 6), the next terms
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b

q̄ b̄

q

ȳ

x

Figure 8.2: The function Γ12 for the B0
q system arises from the imaginary part of the one loop

diagram formed from the double insertion of the effective Hamiltonian, indicated by the cutting of

the internal quark lines.

in the series are thus dimension 7 and contain extra derivatives. It is sufficient to

consider the lowest order, dimension 6, operators which are written as follows3

Γq12 = −
∑
x=u,c

∑
y=u,c

λqxλ
q
yΓ

q,xy
12 , (8.1.14)

where x, y denote the quarks that propagate inside the loop (note that the top quark

is integrated out of H and so does not propagate in the loop), and recall that ulti-

mately these represent the decay b̄→ qxy.

The off-diagonal mass M12 is given by the same UV diagram that leads to Fig.8.2,

but the real part of the loop integral. The imaginary part of the diagram, Γ12, is

related to on shell intermediate states (the products of the physical decay), the real

part, M12 thus relates to the off-shell intermediate states and so the top quark can

contribute. In fact, the top quark contribution dominates and we can write,

M12 = λ2
tM̄

q
12, (8.1.15)

for both the Bs and Bd systems. The origin of this simple result lies in the fact that

the loop integral results in a dominant mass-independent term, plus a suppressed

mass dependent term, the combination of all the intermediate states results in a

3The coupling λ denotes the appropriate CKM factors,

λqx ≡ VxqV ∗xb.
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Observable SM Experiment

∆Ms (ps−1) 18.3± 2.7 17.757± 0.021

∆Γs (ps−1) 0.088± 0.020 0.082± 0.006

assl (2.22± 0.27) · 10−5 (−750± 410) · 10−5

∆Γs/∆Ms 48.1(1± 0.173) · 10−4 46.2(1± 0.073) · 10−4

∆Md (ps−1) 0.528± 0.078 0.5055± 0.0020

∆Γd (ps−1) (2.61± 0.59) · 10−3 0.66(1± 10) · 10−3

adsl (−4.7± 0.6) · 10−4 (−15± 17) · 10−4

∆Γd/∆Md 49.4(1± 0.172) · 10−4 13(1± 10) · 10−4

Figure 8.3: The theoretical predictions (left, [26, 27]) and experimental measurements (right,

[28]), for various mixing quantities associated to the Bs and Bd systems.

strong GIM suppression of the constant term, the remaining mass dependent term

increases with quark mass.

In the SM, M12 is calculated at NLO in αs [379–381], with the dominant uncer-

tainty coming from the lattice parameters. The experimental situation is as follows

(see [26]). The decay width and mass differences are measured [28], however ∆Γd

is poorly constrained, and thus so is ∆Γd/∆Md, the semileptonic asymmetries are

measured but the error bar is large. The situation is summarized in Tab.8.3

8.2 Duality Violation in the Bs and Bd Systems

We have seen that the decay rate difference of neutral B mesons can be related to

the decay of a b quark into light quarks x, y = u, c via the quantity Γq,xy12 where

q = s, d for the Bs,d systems. This is where we would expect duality violation to

show up and we parametrize it simply by an overall multiplicative factor.

Motivated by the expectation that duality violation should be stronger as the

available phase space of the decay becomes smaller, the x = y = c contribution
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should produce the largest violation. It thus makes sense to introduce a duality

violation which is proportional to the available phase space of the decay b→ x̄yq;

Model 1


Γq,cc12 →Γq,cc12 (1 + 4× δ)
Γq,uc12 →Γq,uc12 (1 + 1× δ)
Γq,uu12 →Γq,uu12 (1 + 0× δ)

, (8.2.16)

this allows us to place constraints very simply since there is only one free parameter,

however we would also like to examine a more general case in which each final state

has an independent duality violation

Model 2


Γq,cc12 →Γq,cc12 (1 + δcc)

Γq,uc12 →Γq,uc12 (1 + δuc)

Γq,uu12 →Γq,uu12 (1 + δuu)

, (8.2.17)

however, we restrict these to the hierarchy δcc ≥ δuc ≥ δuu and with all the δs having

the same sign.

We may now derive bounds on the δs. For Model 1 we can input the SM pa-

rameters and derive the following numerical values for the two mixing observables

of Eq.(8.1.12) (Tab.8.4), For model 1 the values are shown in Tab.8.4 as a function

Observable B0
s B0

d

∆Γq/∆Mq 48.1(1 + 3.95δ) · 10−4 49.5(1 + 3.76δ) · 10−4

∆Γq (ps−1) 88.0(1 + 3.95δ) · 10−3 2.61(1 + 3.76δ) · 10−3

aqsl 2.225(1− 22.3δ) · 10−3 −4.74(1− 24.5δ) · 10−4

Figure 8.4: Theoretical mixing observables for the Bq systems for Model 1 of duality violation.

Note that ∆Γq is found from the first column multiplied by the ∆Mq of the SM given in Tab.8.3.

of δ, for model 2 the values are,

∆Γs
∆Ms

= 48.1 (1 + 0.982δcc + 0.0187δuc − 0.000326δuu) · 10−4, (8.2.18)

∆Γd = 26.1 (1 + 0.852δcc + 0.350δuc − 0.202δuu) · 10−4 ps−1, (8.2.19)

assl = 2.225 (1− 7.75δcc + 8.67δuc + 0.0780δuu) · 10−5, (8.2.20)

adsl = −4.74 (1− 8.52δcc + 9.60δuc − 0.0787δuu) · 10−4. (8.2.21)
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Using the values of the experimental ∆Γs/∆Ms from Tab.8.3 we derive a 2σ

limit on δ for the Bs meson,

δ ∈ [−0.06, 0.04] . (8.2.22)

Therefore the largest duality violation allowed is −23.3%,+15.2% in the cc channel.

Given this level of violation, we allow values of the semileptonic asymmetry in the

range,

assl ∈ [0.34, 5.12] · 10−5, (8.2.23)

which is within 2σ of the experimental result. Given the large experimental error

it is not completely unreasonable to imagine that an experimental and theoretical

agreement of assl could be reached at the same level as for ∆Γs/∆Ms (i.e. 22%), this

would push the limits on δ to the sub percent level.

In the Bd system it is unwise to carry out the same procedure since ∆Γd is not

experimentally measured, just bounded, and the constraints on δ would be extremely

weak. Instead when examining the numerical values of Γ
(s,d),xy
12 we find that they

are very similar. The hadronic decays of Bs and Bd mesons do not have large phase

space differences when compared to the phase space differences caused by different

x, y. Thus the duality violation derived from the Bs system should approximate

well to the Bd system. This being the case, we derive the range of values for the Bd

system from Eq.(8.2.22),

adsl ∈ [−11.5,−0.326] · 10−4, (8.2.24)

∆Γd ∈ [2.04, 2.98] · 10−3. (8.2.25)

The semileptonic asymmetry and ∆Γd are both within the large experimental bounds,

however if the experimental uncertainty decreases and the central value lies outside

the range of Eq.(8.2.25), this could be an indication of new physics effects.

Now moving to Model 2, it is clear from Eq.(8.2.21) that the mixing observables

we are considering are insensitive to the uu channel, and we can ignore its contri-

bution. However for ∆Γd the uu contribution can be more significant, but we have
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Figure 8.5: The 90% and 95% confidence limits (shaded blue and red respectively) on δcc −
δuc for duality violation Model 2, for the Bs system showing the allowed region stemming from

the experimental measurement of (∆Γs/∆Ms). The modification factors assl/a
s,SM
sl are shown as

straight grey lines.

checked that it affects the bounds by no more than 20%.

In Fig.8.5 we show the allowed regions of duality violation in the δcc− δuc plane.

Duality violations are limited to at most ∼ 60% in the cc and uc channels, and

even though the semileptonic asymmetry can deviate significantly from its current

theoretical level (up to a factor of ∼ 5.5) this is not enough to confront the poorly

constrained experimental measurement.

Given the forms of assl and adsl in Eq.(8.2.21), the maximum (minimum) values

occur for δuc = 0 and δcc < 0 (δuc > 0) and these lead to bounds on the observables,

assl ∈ [−2.48, 8.32] · 10−5, (8.2.26)

adsl ∈ [−19.0, 6.28] · 10−4, (8.2.27)

∆Γd ∈ [1.52, 3.45] · 10−3 ps−1, (8.2.28)
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Future Scenario
SM
Duality Violation
Experiment

-0.005 0.000 0.005

ΔΓd

asl
s,exp

asl
s,SM+DV

asl
d,exp

asl
d,SM+DV

asl
d,future

-0.005 0 0.005
-0.005

0

0.005

asl
d

a s
ls

SM

Figure 8.6: Left : comparison in the size of ∆Γd experimental limits (blue) which allows for

sizeable contributions on top of the SM result (green). The inclusion of a duality violation that

does not also show up in the Bs system (yellow) does not exceed the experimental limit, unless the

experimental error shrinks in the future (orange). Right : the SM value of a
(s,d)
sl are well known

(black dot), but their experimental values less so (green and blue), with duality violation (red)

there are bounds on adsl, which can become important if in future the experimental error shrinks

(purple).

the range of ∆Γd is well within the uncertainties of the experimental result, it would

take a significant improvement to begin to draw conclusions on duality violations so

we turn instead to the semileptonic asymmetries and depict the situation graphically

in Fig.8.6 for clarity.

Up to now, we have based our constraints entirely on the measurement of ∆Γs

in the Bs system, and compared the resulting bounds to analogous observables for

Bd, finding bounds from ∆Γd only if the experimental uncertainty shrinks, the same

conclusion applies to adsl. The question arises as to whether there are other data

which can be used to tighten these constraints, and we begin with the well measured

value of the lifetime ratio.
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b

q̄ q̄

b

ȳ

x

Figure 8.7: The diagram leading to the calculation of the lifetime (Γ−1
B ) for the B0

q system arises

from the imaginary part of the one loop diagram formed from the double insertion of the effective

Hamiltonian, indicated by the cutting of the internal quark lines.

8.3 Duality Violation in Lifetime Ratios

The decay width (inverse lifetime Γ = 1/τ) of a B0
q meson may be found using the

HQE following Eq.(8.1.4) with the effective Hamiltonian given by 4,

Leff =
GF√

2

(∑
q=u,c

Vcq(C1Q1 + C2Q2)− Vp
6∑
j=3

CjQj

)
,

Q2 = (c̄ibi)V−A(d̄juj)V−A, (8.3.29)

Q1 = (c̄ibj)V−A(d̄jui)V−A , (8.3.30)

where Q2 appears at tree level from integrating out the W-exchange diagrams, and

Q1 arises from first-order QCD corrections to Q2 (one loop diagrams with gluon ex-

change between the quark legs). The rest of the operators Q3−6 arise from penguin

contributions.

Performing the Wilsonian OPE on Eq.(8.1.4) with a double insertion of Eq.(8.3.29)

between external meson states bq̄ (shown in Fig.8.7) results in an expansion in in-

verse powers of the heavy quark scale mb, which multiply hadronic matrix elements

of operators with successively higher dimensions and which scale roughly as Λn
QCD.

The resulting width may be written as [376],

Γ =
G2
Fm

5
b

192π3
|Vcb|2

[
c3
〈B| b̄b |B〉

2mB

+
c5

m2
b

〈B| b̄gsσµνGµνb |B〉
2mB

+
∑

Γ

cq6
m3
b

〈B| (b̄q)Γ(qb̄)Γ |B〉
mB

]
,

(8.3.31)

4The V-A (S-P) notation refers to the γµ(1− γ5) ((1− γ5)) structure in the fermion bilinear.
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this series is truncated at dimension 6, which generates four-fermion effective oper-

ators of the form,

Qq = (b̄q)V−A(q̄b)V−A, (8.3.32)

Qq
S = (b̄q)S−P (q̄b)S−P , (8.3.33)

T q = (b̄taq)V−A(q̄tab)V−A, (8.3.34)

T qS = (b̄taq)S−P (q̄tab)S−P . (8.3.35)

The origin of the various terms in Eq.(8.3.31) is as follows; c3 arises from the

double insertion of the four-fermion effective operator, contracted to leave the spec-

tator quark free. The second term c5 is gluon condensate term, the same diagram

as c3 but with a gluon emitted from an internal line (and coupled to the vacuum).

Lastly the dim-6 c6 contribution arises from a one-loop diagram in which the spec-

tator quark couples to the EFT insertions.

The state of the art for this prediction is NLO for c3 [382, 383] (for LO see [384]),

LO only for c5 [384], NLO for several of the cq6 (q = u, d, s) [385]. We use the NLO

(LO) values c3 = 6.88 (5.29) [376, 386], and the LO value c5 = −7.9.

The non-perturbative matrix elements can be defined as 5,

〈B| b̄b |B〉 = 1− µ2
π − µ2

G

2m2
b

, (8.3.36)

〈B| b̄gsσµνGµνb |B〉 = µ2
G , (8.3.37)

〈B| (b̄q)Γ(qb̄)Γ |B〉 = cΓf
2
BmBBΓ , (8.3.38)

the latter relation covers the various four-fermion structures which appear, and in

Eq.(8.3.31) these are absorbed into the definition of the new coefficient c̃6,

c̃6 =|Vud|2 (F uB1 + F u
SB2 +Guε1 +Gu

Sε2)

+ |Vcd|2 (F cB1 + F c
SB2 +Gcε1 +Gc

Sε2) . (8.3.39)

5These expressions are derived using Heavy Quark Effective Theory and are subject to m−1
b

corrections.
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For explicit expressions for the F s and Gs see [376].

Inserting the hadronic matrix element definitions Eq.(8.3.38) we may write the

decay width as,

Γ(Bd) =
G2
Fm

5
b

192π3
|Vcb|2

[
c3

(
1− µ2

π

2m2
b

)
+ cG

µ2
G

2m2
b

+
16π2f 2

BMBd

m3
b

c6

]
, (8.3.40)

the rate is dominated by the b→ c transition, and hence is proportional to V 2
cb (the

b→ u transition has instead Vub ∼ 0.4λVcb, with λ ∼ 0.2).

The difference in decay rates between the B0
s and B0

d mesons is mildly affected

by the dim-3 and dim-5 operators since µπ and µG differ by at most 10% between

the two mesons, it is far more strongly affected by the dim-6 operators in which

differences arise from CKM elements, the bag parameters and the meson mass.

The lifetime ratio may then be written as,

τ(Bs)

τ(Bd)
= 1 +

Γs − Γd
Γs

= 1 +
µ2
π(Bd)− µ2

π(Bs)

2m2
b

+
cG
c3

µ2
G(Bs)− µ2

G(Bd)

2m2
b

+
c6(Bd)

c3

〈Bd|Q |Bd〉
m3
bMB

− c6(Bs)

c3

〈Bs|Q |Bs〉
m3
bMB

. (8.3.41)

One useful aspect of considering the lifetime ratios as shown above is that several

sources of large uncertainty cancel, such as the bag parameters fB, and only the

differences in µ2
π and µ2

G are needed (and which are small).

This lifetime ratio is found experimentally by HFAG [28] (globally averaged over

all measurments) and this can be compared to the numerical value of Eq.(8.3.41)

above,

(
τ(B0

s )/τ(B0
d)
)

exp.
= 0.990± 0.004 , (8.3.42)(

τ(B0
s )/τ(B0

d)
)

theor.
= 1.0005± 0.0011 , (8.3.43)

and thus theory and experiment are discrepant by around ∼ 3σ. We now investi-

gate how much duality violation is required to bring the theory into agreement with
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experiment.

Our model of duality violation is based essentially on phase space arguments,

such that the phase space of the cc̄ intermediate state is larger than the uc̄ which

is larger than the uū, and Fig.8.7 makes clear that these arguments should apply

equally well to the lifetimes as for Γ12, and the substitutions given in Eq.(8.2.16)

and (8.2.17) can be easily implemented given the form of Eq.(8.3.39).

By explicit calculation of the lifetimes of the Bs and Bd mesons it can be shown

that the latter is dominated by the uc̄ intermediate state, and the former by the cc̄.

This useful result contradicts the naive expectation that the duality violating effects

would roughly cancel in the lifetime ratio.

The theoretical prediction for the lifetime ratios in model 1 and model 2 are,(
τ(B0

s )

τ(B0
d)

)
Model 1

= 1 + 0.0005 (1− 45.0δ) , (8.3.44)(
τ(B0

s )

τ(B0
d)

)
Model 2

= 1 + 0.0005 (1− 13.4δcc + 8.92δuc) . (8.3.45)

The experimental measurement (Eq.(8.3.43)) leads to bounds on Model 1,

δ ∈ [0.13, 0.80] , (8.3.46)

the fact that this range of values does not allow for zero duality violation is a result

of the disagreement between experiment and theory of around 2.5σ. These large

allowed values of δ are well outside the range found for ∆Γs and would leave theory

and experiment discrepant in the Bs sector.

Thus it seems that the discrepancy for the lifetimes ratios cannot be reconciled

by duality violation. However, we consider two possible future scenarios;

1. Scenario 1 : The central value of the experimental measurement does not

change, but the error is reduced to 0.001,(
τ(B0

s )

τ(B0
d)

)
Scen.I

= 0.990± 0.001 , (8.3.47)
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Current experiment
Scenario I
Scenario II
Theory
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Figure 8.8: Bounds on the duality violating parameter δ, the lifetime ratio of the Bs, Bd mesons

varies with δ (red band). The current experimental error band (blue) is compared with two future

scenarios outlined in the text in which the error band shrinks (purple), or the central value shifts

towards 1 and the error shrinks (green).

then the allowed range of δ shrinks to δ ∈ [0.34, 0.60], then duality violation is

unable to explain the discrepancy in the lifetime ratios without also creating

one in the Bs mixing measurements. We would conclude that some new physics

affect is responsible.

2. Scenario 2 : The central experimental value matches the theoretical one, and

the error is simultaneously reduced to 0.001,(
τ(B0

s )

τ(B0
d)

)
Scen.II

= 1.000± 0.001 , (8.3.48)

the range of allowed duality violation now includes zero since there is no re-

quirement to explain a discrepancy δ ∈ [−0.11, 0.15]. However the bounds on

δ are still weaker than found for mixing observables.

These various scenarios are depicted in Fig.8.8. If the experimental errors shrink,

then the potential of duality violation to reconcile theory and experiment becomes

weaker. If however the measure lifetime ratio shifts towards 1, then duality violation

is not required, but the bounds on it are consistent with those found in theBs system.

Similar conclusions to those above may be drawn for Model 2, since the bounds

become even weaker. This is because there is a mild cancellation which occurs
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between the ūc and c̄c intermediate states in the lifetime ratio, this cancellation is

less pronounced in Model 1 since the c̄c channel gains a factor of 4 compared with ūc.

There are many parameters which enter into the calculation of the lifetime ratios,

not all of them known precisely. To enable our numerical results to be reproduced,

and to catalogue the presently known precision of the various hadronic parameters

we list the central values, their errors, and their individual contribution to the total

error on τ(B0
s )/τ(B0

d) in Tab.8.1, which appears at the end of the section for clarity.

8.4 Duality Violation in the D0 System

We have so far focussed on the heavy B0 meson mixing, however mixing in the D0

(ūc) sector is presently (as of 2014) measured with a reasonable precision [28],

x ≡ (∆M/Γ) = (0.37± 0.16) · 10−2, (8.4.49)

y ≡ (∆Γ/2Γ) = (0.66 +0.07
−0.10) · 10−2, (8.4.50)

since experimentally (Γ)−1 = τ(D0) = 0.4101 ± 0.0015 ps (see [246] p.44) we can

use the definitions in Eq.(8.4.50) above to give,

∆MD =
x

τ(D0)
= 0.00902 ps−1, (8.4.51)

∆ΓD = 2
y

τ(D0)
= 0.0322 ps−1, (8.4.52)

thus the experimental side is well understood and the errors are under control. We

now turn to the theory side, as in Sec.8.1.2 we may use the HQE but now for a

heavy charm quark rather than heavy bottom quark. As it turns out, this approach

produces a prediction for x, y which are orders of magnitude below the experimental

measurements (∆MD ≈ (1.4 − 5.3) · 10−5 ps−1 [387], ∆ΓD/ΓD ≤ few × 0.01 [388]).

There are several possible reasons for this;

(1) Perhaps the HQE breaks down for the charm system, despite its success in

the B system. Going to higher orders might then alleviate the issues, since the

expansion in m−nc gives less suppression compared to m−nb , and it is possible that
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the GIM cancellation which is responsible for the smallness of the first order terms

in the expansion is lifted in higher orders. To rule this out would require the calcu-

lation of the higher order terms. To counter this point one may look at the lifetime

ratios of D mesons, and find that for example τ(D+)/τ(D0) at NLO QCD there is

agreement between theory and experiment [343].

(2) A second possibility is that new physics effects dominate the SM contribu-

tion, and bounds on potential models can be found in [389].

(3) The third and most relevant possibility is that no new physics is necessary,

and the discrepancy is entirely due to a large duality-violating effect. The HQE is

a quark level calculation representing the short distance contribution to the mixing

observables, however it is possible to calculate x, y using an exclusive (hadron level,

and thus long distance) approach [339, 340]. This method reproduces x, y well and

thus adds weight to either (2) or (3) as a solution to the problem.

We will thus investigate whether duality violating effects can be responsible for

matching theory to experiment within the framework we have established. To do

this we must find both Γ12 and M12 for the D0 system, the latter is presently not

calculated and a calculation of it is beyond our scope. We have access only to Γ12

and make use of the theoretical lower bound [3],

|Γ12| >
1

2
∆ΓD , (8.4.53)

and then the value of |Γ12| which reproduces the experimental data is a conservative

lower bound. It can be written as [390],

Γ12 = λ2
sΓ

ss
12 + λsλdΓ

sd
12 + λ2

dΓ
dd
12 , (8.4.54)

where down-type quarks propagate in the loop of the diagram in Fig.8.2 (the heavy

internal b-quark does not contribute to the imaginary part of the loop integral). In

the above λx ≡ VcxV
∗
ux. We can eliminate λd using CKM unitarity;

λs + λd + λb = 0 , (8.4.55)
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this is done so that Γ12 displays a hierarchy of CKM factors

Γ12 = λ2
s(Γ

ss
12 − 2Γsd12 + Γdd12) + 2λsλb(Γ

sd
12 − Γdd12)− λ2

bΓ
dd
12 , (8.4.56)

which is best shown by the numerical values of the CKM factors;

λ2
s = 4.81733 · 10−2 − 3.00433 · 10−6i, (8.4.57)

2λsλb = 2.49872 · 10−5 + 5.90908 · 10−5i, (8.4.58)

λ2
b = −1.48814 · 10−8 + 1.53241 · 10−8i . (8.4.59)

The result for Γx,y12 will include a mass independent contribution, and a piece de-

pending on the ratio z ≡ (ms/mc)
2 (md is assumed to be zero, and the masses

mx ≡ mx(mx) are the MS scheme masses, evaluated at the relevant mass scale).

Numerically,

Γss12 = 1.8696− 5.5231z − 13.8143z2 + · · · O(z3) , (8.4.60)

Γsd12 = 1.8696− 2.7616z − 7.4906z2 + · · · O(z3) , (8.4.61)

Γdd12 = 1.8696 + · · · O(z3) , (8.4.62)

this result may be found in [390], and includes the dimension 6 and 7, ∆C = 1, 2,

operators, with NLO QCD corrections (accounting for a ∼ 26% correction to the LO

result). The result is written in a way which clearly shows the GIM mechanism at

work. Recalling the simple duality violation models we employ, we will also clearly

see how the duality violation lifts the GIM suppression.

For duality violations of Model 1 (identical to Eq.(8.2.16) but for c → s and

u→ d) Eq.(8.4.52) becomes,

∆ΓD = 2
√

1.26523 · 10−11 + 1.10168 · 10−6δ + 0.0297794δ2 . (8.4.63)

For this to match the central experimental value requires a duality violation as low

as δ = +9.3%. As we have seen in the Bs system, if this level of violation were

present for c̄c internal quarks it would be excluded, producing an over-estimate of

(∆Γs/∆Ms).
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δdd = 0

δdd = -0.04

δdd = -0.08

δdd = 0.04

δdd = 0.08

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

δ
ss

δ
s
d

0.18 0.190.17

0

0.01

Figure 8.9: The 95% confidence limits on the duality violating parameters δss, δsd for fixed values

of δdd arising from the comparison of ∆ΓD between theory and experiment for the D0 system.

For Model 2 (again identical to Eq.(8.2.17) but for c→ s and u→ d) Eq.(8.4.52)

is used to identify the values of δss, δsd which reproduce the experimental value,

with values of δdd = 0,±0.04,±0.08, and the result is shown in Fig.8.9. Due to

cancellations which can occur for specific values of the δs, we can make δss, δsd

arbitrarily large, but the minimum possible values are δss > 0.18, δsd = 0. It is

interesting to find that such a moderate duality violation of ∼ 20% can produce an

agreement between experiment and the inclusive theory calculation.

8.5 Summary and Conclusions

In this work we have explored the possibility of duality violations in heavy meson

decays. The study of such effects has a long tradition in flavour physics. Since the

direct measurement of ∆Γs in 2012 by the LHCb collaboration huge duality violat-

ing effects have been excluded by experiment. But there is still space for duality

violating effects of the order of 20%. Because of the constantly improving experi-

mental precision in flavour physics it is crucial to consider corrections of the order
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of 20% and to investigate whether, and how, such a bound can be improved.

To do so, we introduced a simple parameterisation of duality violating effects,

see Eq.(8.2.16),(8.2.17) that relies solely on phase space arguments: the smaller

the remaining phase space is in a heavy hadron decay, the larger duality violations

might be. In such a model, decay rate differences, ∆Γq, depend moderately on

the duality violating parameter, δ, whereas semi-leptonic asymmetries, asl, have a

strong δ dependence, see Eq.(8.1.12). Currently we get the strongest bound on δ

from, (
∆Γs
∆Ms

)Exp

(
∆Γs
∆Ms

)SM
= 0.96± 0.19, |δ| . 0.1 . (8.5.64)

If the semi-leptonic asymmetries were to agree with a similar precision between

experiment and theory then the bound on δ would go down to |δ| . 0.009. Unfor-

tunately, the semi-leptonic asymmetries have not been observed yet, and we only

have experimental limits. The same is true for the decay rate difference ∆Γd. Thus

we use our bounds on δ from ∆Γs to determine the maximal possible size of aqsl and

∆Γd, if duality is violated. These regions are compared with current experimental

ranges in Fig.8.6. Any measurement outside the region allowed by duality violation

is a clear signal for new physics. We also show a future scenario in which the duality

violation is further constrained by more precise values of ∆Γs both in experiment

and theory.

Duality violations would also affect the still unsolved problem of the dimuon

asymmetry measured by the D0 collaboration, since it depends on adsl, a
s
sl and

∆Γd. We found, however, that an agreement between experiment and theory for

the dimuon asymmetry would require values of δ in the region of −0.4 to −1.9,

which is considerably outside the allowed region found above. Taking only allowed

values of δ we find that the theory prediction including duality violation is still an

order of magnitude smaller than experiment. Hence duality violation cannot explain

the value of the dimuon asymmetry. We have shown that the duality violating pa-

rameter δ will also affect the lifetime ratio τ(B0
s )/τ(B0

d) where we currently have a
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deviation of about 2.5 standard deviations between experiment and theory. Looking

at the historical development of this ratio depicted in Fig.1 one might be tempted

to assume a statistical fluctuation.

Taking the current deviation seriously, it is either a hint for new physics or for

a sizeable duality violations of the order of δ ∼ 0.5, which is inconsistent with our

bounds on δ derived from ∆Γs. Here a future reduction of the experimental error

of τ(B0
s )/τ(B0

d) will give us valuable insight. We have studied two future scenarios

in Fig.8.8, which would either point towards new physics and duality violations or

stronger bounds on duality violation. It is very important to note here that the the-

ory prediction has a very strong dependence on almost unknown lattice parameters.

In particular, we can see from our error budget for the lifetime ratio in Fig.8.1 that

any new calculation of the bag parameters 1,2 would bring large improvements in

the theory prediction for τ(B0
s )/τ(B0

d).

We finally focus on the charm-system, where a naive application of the HQE

gives results that are several orders of magnitude below the experimental values.

We found the unexpected result that duality violating effects as low as 20% could

solve this discrepancy. Such a result might have profound consequences on the

applicability of the HQE. As a decisive test we suggest a lattice calculation of the

matrix elements arising in the ratio of charm lifetimes. This ratio is free of any GIM

cancellation, which are very severe in mixing.
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xi 〈xi〉 δ(xi) ∂τ/∂xi Error Budget

m̄b(m̄b) [GeV] 4.248 0.05 +8.08× 10−4 4.00× 10−5

m̄c(m̄b) [GeV] 0.997 0.01989 +3.68× 10−4 7.26× 10−6

MBd [GeV] 5.27955 0.00026 +9.63× 10−4 2.53× 10−7

MBs [GeV] 5.3667 0.0004 −1.36× 10−3 5.51× 10−7

fBd 0.1905 0.0042 +5.36× 10−2 2.26× 10−4

fBs 0.2277 0.0045 −6.46× 10−2 2.92× 10−4

|Vub|/|Vcb| 0.0862278 0.00442474 −2.28× 10−6 1.02× 10−8

|Vcb| 0.04117 0.00114 +2.49× 10−2 2.56× 10−5

δCKM 1.17077 0.0378736 −7.33× 10−7 2.03× 10−8

|Vus| 0.22548 0.00034 −5.40× 10−5 2.76× 10−8

B1 1.1 0.2 +6.98× 10−4 1.41× 10−4

B2 0.79 0.1 −9.95× 10−4 1.01× 10−4

ε1 -0.02 0.02 +3.53× 10−2 7.13× 10−4

ε2 0.03 0.01 −5.03× 10−2 5.08× 10−4

µ2
π(Bs)− µ2

π(Bd) 0.09 0.01 +2.31× 10−2 2.34× 10−4

µ2
G(Bs)/µ

2
G(Bd) 1.07 0.03 +9.29× 10−3 2.81× 10−4

µ2
G(Bd) 0.35 0.07 +1.86× 10−3 1.31× 10−4

c3 (NLO) 6.88 0.74 3.02× 10−4 2.26× 10−4

cG -7.9 0.814 −8.23× 10−5 6.77× 10−5

τBs [ps] 1.505× 10−12 0.004× 10−12 2.18× 10−16 1.34× 10−6

µ 4.248 +2.124
−8.496 5.13× 10−5 1.77× 10−4

GF [GeV−2] 1.166378× 10−5 - - -

αs(mZ) 0.1185 - - -

C1(mb) -0.240787 - - -

C2(mb) 1.10333 - - -

mW [GeV] 80.385 - - -

Table 8.1: Values and errors for the various physical parameters used throughout this chapter.

The source for these values can be found in the text. We also give the relative contribution of each

parameter to the total error on the lifetime ratio τ(Bs)/τ(Bd) to compliment the discussion in the

text.
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Appendix A

Background Material

A.1 Furry’s Theorem

Throughout this thesis, Furry’s theorem is frequently invoked when working with

loop diagrams containing external vector particles. The theorem simply states that

the amplitude for a fermion loop with n external vector emissions is zero if n is odd,

although there are actually more general statements that can be made. To show

this, consider a fermion loop with n external legs (for generality we will denote the

vertex between the fermions and external bosons, which may be scalar or vector, by

Γi where i = 1, · · ·n indexes the external particle). There are always two possible

diagrams corresponding to the two directions of fermion flow around the loop (these

account for the crossing of external legs). In general the trace structure emerging

from the loop is an alternating product of vertices, Γ, and Dirac propagators :

M1 = Tr [Γ1SF (p1)Γ2 . . .ΓnSF (pn)] , (1.1.1)

where we neglect the loop integral and propagator denominators; in the above

SF (p) = /p + m is the usual fermion propagator and pi is the momentum flowing

between point i and i+ 1. The second amplitude is then

M2 = Tr [SF (−pn)Γn . . .Γ2SF (−p1)Γ1] , (1.1.2)

we next use the identity (proof below),

Tr (γµγν . . . γσγρ) = Tr (γργσ . . . γνγµ) , (1.1.3)

385
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to reverse the ordering of the second amplitude,

M2 = Tr [Γ∗1SF (−p1)Γ∗2 . . .Γ
∗
nSF (−pn)] (1.1.4)

and Γ∗ is Γ but with the reversed indices. We then use the result

SF (−pi) = γ5SF (pi)γ
5, (1.1.5)

to write M2 in the same form as M1,

M2 = Tr
[
Γ̄1SF (p1)Γ̄2 . . . Γ̄nSF (pn)

]
, (1.1.6)

but with modified vertices Γ̄i = γ5Γ∗i γ
5. Because Γ̄ = ±Γ we can impose selection

rules on the loop diagrams. If Γ = +Γ̄ the amplitudes are equal, if Γ = −Γ̄ the the

total amplitude is zero if (−1)n = 1.

The Dirac matrices Γ = {1, iγ5, γµγ5} all obey Γ̄ = +Γ; and Γ = {γµ, σµν} obey

Γ̄ = −Γ. Therefore Furry’s theorem applies equally to vector and tensor couplings,

and does not depend on the number of axial-vector, pseudoscalar or scalar couplings,

nor on the masses of the fermions in the loop.

Proof of Trace Identity

Consider a string of matrices Γ = γµ1 . . . γµn and take the Hermitian conjugate

(recall γµ, † = γ0γµγ0)

Γ† = γ0γµnγ0 . . . γ0γµ1γ0

= γ0Γ∗γ0, (1.1.7)

where Γ∗ is defined as above, and when taking the trace the γ0 cancel. If the string

of gamma matrices also contains γ5, the result includes a factor (−1)N where N is

the number of γ5, since

(γµγ5γν)† = −γ0γνγ5γµγ0, (1.1.8)

however by inserting a factor of i for each γ5 the result is the same.
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A.2 CPT Symmetries

For a recent easy to read review of this topic see [391]. The combined CPT symmetry

is implement by the unitary matrix Θ. The CPT theorem for a field theory states

Θ†L(x)Θ = L†(−x) , (1.2.9)

for a Lagrangian L in position space. The Lagrangian is assumed to be a Lorentz

scalar, but not necessarily Hermitian. In our discussion we have, without loss of

generality, ensured operators are hermitian, but not necessarily Lorentz invariant,

and the CPT condition for operators O is

Θ†Oµν···(x)Θ = ±Oµν···(x) . (1.2.10)

First one can construct the CPT symmetries of Lorentz covariant operators, using

the general transformation of complex fields,

Θ†φ(x)Θ = φ†(−x) , (1.2.11)

Θ†χ(x)Θ = −γ5(χ†)T (−x) , (1.2.12)

Θ†Bµ(x)Θ = −B†µ(−x) , (1.2.13)

for spin-0,1/2,1 fields respectively. Derivatives are invariant under CPT ; ∂µ → ∂µ,

as are the Levi-Civita and metric tensors. This then determines the CPT properties

of the various structures, which obey a simple rule; operators with an even (odd)

number of Lorentz indices are even (odd) under CPT .

The individual symmetries of a fermion field are most simply calculated for field

bilinears (see for example [330] or any introductory field theory textbook). A scalar

particle has trivial symmetries (all +), for vectors they may be recovered explicitly

using the results for polarization vectors ελµ(−p) = −ελµ(p) and ε−λµ (p) = −ελµ(p)

(which can be shown using a Lorentz transformation from −p to p). The individual

symmetries for scalar and vector bosons are summarized in Tab.A.1.
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C P T

φ(x) φ†(x) φ(P µ
νx

ν) φ(T µνx
ν)

Bµ(x) Bµ†(x) P µ
νB

ν(P µ
νx

ν) T µνB
ν(T µνx

ν)

Table A.1: CPT transformations of scalar (φ) and vector (Bµ) fields. Internal parity and

time symmetries are taken to be ηP,T = +1. The matrices P = diag(1,−1,−1,−1) and

T = diag(−1, 1, 1, 1).

A.3 Non-relativistic Limit of Fields

We briefly recall some details for calculating the non-relativistic limit of the effective

operators for fermion, scalar and vector DM.

A.3.1 Fermion Dark Matter

In order to determine the NR operators that appear for operators containing spin-

1/2 particles and their derivatives, we recall the standard field theory definitions of

Dirac fermion fields in terms of their creation and annihilation operators,

χ(x) =

∫
d3q

(2π)3

1√
2Eq

∑
s

(
us(q)asqe

−iq·x + vs(q)b†,sq eiq·x
)
,

χ̄(x) =

∫
d3q

(2π)3

1√
2Eq

∑
s

(
ūs(q)a†,sq eiq·x + v̄s(q)bsqe

−iq·x) , (1.3.14)

where as,†p (bs,†p ) creates a particle (anti-particle) of momentum p and spin s, and

asp (bsp) destroys one. Thus acting on the vacuum 〈0| as,†p = 〈0| bs,†p = 0 and asp |0〉 =

bsp |0〉 = 0. The scattering process χ(p) → χ(p′) requires the evaluation of the

expression

〈χ(p′, s′)| · · · |χ(p, s)〉 =
√

2Ep

√
2Ep′ 〈0| as

′

p′ · · · a†,sp |0〉 , (1.3.15)
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by commuting the creation/annihilation operators to annihilate the vacuum, in do-

ing so using the commutation relations1,[
asp, a

s′†
q

]
= δss

′
(2π)3δ(3)(p− q), (1.3.16)[

bsp, b
s′†
q

]
= δss

′
(2π)3δ(3)(p− q), (1.3.17)[

asp, b
s′†
p

]
=
[
as†p , b

s′

p

]
= 0. (1.3.18)

The matrix element is conventionally found from

i(2π)4δ(4)(p− p′)M =

∫
d4x 〈X(p′)| O(x) |X(p)〉 , (1.3.19)

which produces an amplitude in terms of spinors and Dirac gamma matrices, which

can then be reduced to the standard NR form according to Sec.4.4.

Operators containing single derivatives of fermions (such as those in the vector

DM EFT) may be written

Rµν ≡ Re (∂νχ̄γµχ) = (∂νχ̄)γµχ+ χ̄γµ∂νχ,

Iµν ≡ iIm (∂νχ̄γµχ) = i(∂νχ̄)γµχ− χ̄γµ(i∂νχ), (1.3.20)

within the matrix element Eq.(1.3.15) we can make the replacements ∂µχ(p, s) →
−ipµus(p) and ∂µχ̄(p′, s′)→ ip′µūs′(p

′). The momenta are defined as,

pµ = (mχ,
1

2
qi + µv⊥,i),

p′µ = (mχ,−
1

2
qi + µv⊥,i), (1.3.21)

see Sec.4.4 footnote 14. Then the NR matrix elements are

〈R00〉iM = 〈R0i〉iM = 0,

〈Ri0〉iM = −iqiū(p′)γ0u(p),

〈Rij〉iM = −iqiū(p′)γju(p),

1Almost identical expressions hold for other spins, but with a 1, δλλ
′

in place of δss
′

for scalar

and vector particles respectively.
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and

〈I00〉iM = −2mχū(p′)γ0u(p),

〈I0i〉iM = −2mχū(p′)γiu(p),

〈I i0〉iM = −2µv⊥,iū(p′)γ0u(p),

〈I ij〉iM = −2µv⊥,iū(p′)γju(p),

which can be fully reduced using Tab.4.6. For nucleon bilinears one makes the

replacement (qi, v⊥,i)→ −(qi, v⊥,i).

A.3.2 Scalar Dark Matter

A complex scalar field φ and its conjugate φ† can be written in the standard way in

terms of creation/annihilation operators

φ(x) =

∫
d3q

(2π)3

1√
2Eq

(
aqe
−iq·x + b†qe

iq·x) ,
φ†(x) =

∫
d3q

(2π)3

1√
2Eq

(
a†qe

iq·x + bqe
−iq·x) , (1.3.22)

where Eq =
√

q2 +m2. The scattering process φ(p) → φ(p′) comes from the ex-

pression,

〈φ(p′)| · · · |φ(p)〉 =
√

2Ep

√
2Ep′ 〈0| ap′ · · · a†p |0〉 , (1.3.23)

inserted into Eq.(1.3.19). Since (∂µφ)† = ∂µφ†, the scalar vertex with a derivative

is written

gφ†∂µφAµ + h.c. = (gφ†∂µφ+ g†φ∂µφ†)Aµ,

= iIm(g)
(
φ†∂µφ− φ∂µφ†

)
Aµ + Re(g)(φ†∂µφ+ φ∂µφ†)Aµ ,

= iIm(g)
(
φ†∂µφ− φ∂µφ†

)
Aµ , (1.3.24)

the last line follows from integration by parts and ∂µAµ = 0 from the Proca equation,

thus the coupling in Eq.(1.3.24) must be purely imaginary. The Feynman rule can

be read off noting from Eq.(1.3.22) that φ (φ†) creates an anti-particle (particle)

of momentum p or annihilates a particle (anti-particle) of momentum −p. For
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scattering φ(p)→ φ(p′) the matrix element for the operator iIm(g)
(
φ†∂µφ− φ∂µφ†

)
(with Feynman rule i(p+ p′)µ) is,

iIm(g)((−ipµ)− (ip′µ))→ Im(g)(p+ p′)µ.

In the NR limit, φ and φ† simply reduce to 1. Since (p+ p′)µ = (2mχ, 2µv
⊥), we

get for contraction with a vector nucleon bilinear 2 :

〈i(φ†∂0φ− φ∂0φ
†)N̄γ0N〉M = 2mχ

(
2mN − i

µ

mN

εijkqiv
⊥
j SN,k

)
= 4mχmNO(NR)

1 − 2mχµO(NR)

3 ,

〈i(φ†∂iφ− φ∂iφ†)N̄γiN〉M = 2µv⊥i
(
−2µv⊥,i − 2iεijkqjSN,k

)
= −4µ2O(NR)

2 + 4µmNO(NR)

3 ,

where ∂µ = (∂0,−∇). Similarly for the axial-vector nucleon bilinear

〈i(φ†∂0φ− φ∂0φ
†)N̄γ0γ5N〉M = 2mχ

(
4µv⊥ · SN

)
= 8µmχO(NR)

7 ,

〈i(φ†∂iφ− φ∂iφ†)N̄γiγ5N〉M = 2µv⊥i

(
−4mNS

i
N − i

µ

2mN

εijkv⊥j qk

)
= −8µmNO(NR)

7 .

Then for operators OS3,S4 we find,

〈OS3〉M ≈ 4mχmNO(NR)

1 + 4m2
NO(NR)

2 − 2mχmNO(NR)

3 , (1.3.26)

〈OS4〉M ≈ 8mχmNO(NR)

7 . (1.3.27)

A.3.3 Vector Dark Matter

The plane wave expansion of a complex vector field may be written,

Bµ(x) =

∫
d3q

(2π)3

1√
2Eq

∑
λ

(
ελµ(q)aqe

−iq·x + ελ†µ (q)b†qe
iq·x) , (1.3.28)

B†µ(x) =

∫
d3q

(2π)3

1√
2Eq

∑
λ

(
ελ†µ (q)a†qe

iq·x + ελµ(q)bqe
−iq·x) . (1.3.29)

2We will use the shorthand 〈X〉M to denote

〈X〉M ≡ −i(2π)3δ3(p+ k − p′ − k′) 〈χ(p′)N(k′)|X |χ(p)N(k)〉 , (1.3.25)

which is the matrix element M.
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For the scattering process B(p, λ)→ B(p′, λ′) we require the expression

〈Bµ(p′, λ′)| · · · |Bν(p, λ)〉 =
√

2Ep

√
2Ep′ 〈0| aλ

′

p′ · · · aλ†p |0〉 , (1.3.30)

and then the matrix element is found from Eq.(1.3.19).

From the Proca equation kµελµ = 0. We choose the polarizations so that ελ0 = 0

and ελi = δλi and normalize them according to ελ · ελ′ = −gλλ′ , and also ελµε
λ
ν = gµν

with summation on λ implied 3.

The spin three-vector Sk is a matrix in ‘polarization space’ given by i
[
Sk
]λλ′

=

εijkελ,†i ελ
′
j and hence

ελ,†i ελ
′

j − ελ,†j ελ
′

i = iεijk(S
k)λλ

′
. (1.3.31)

We may also define a linearly independent symmetric combination of polarizations,

ελ,†i ελ
′

j + ελ,†j ελ
′

i ≡ 2(Sij)λλ
′
, (1.3.32)

then for example the coupling structure i(B†µBν − B†νBµ) leads to the operator

i
(
ελ,†i ελ

′
j − ελ,†j ελ

′
i

)
, and is therefore purely spin-dependent. The symmetric combi-

nation Re(B†µBν) is equivalent to Eq.(1.3.32).

There are three vertices with a derivative Vµ1,2,3 defined in Eqs.(4.2.29)-(4.2.31),

we begin with Vµ1 which is split into real and imaginary parts,

Vµ1,I = i
(
Bν∂νB

µ,† −B†ν∂νBµ
)

(1.3.33)

3We can choose the momentum of the vector pair to be in the ±z-direction. The basis of

polarization vectors is conventionally chosen as ε1
µ = (0, 1, 0, 0) and ε2

µ = (0, 0, 1, 0) which represent

the transverse polarizations, and ε3
µ = (p/m, 0, 0, E/m) which is the longitudinal polarization. It

is convenient to choose ε3
µ = (0, 0, 0, 1) in the rest frame of the particle as we have done (equivalent

to the longitudinal mode in the limit v → 0).
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and leads to the amplitude,

〈V i1,I〉M = (pjελ
′

j ε
λ,i,† + p′jελ,†j ελ

′,i),

=
1

2
(p+ p′)jε

λ′{i,(ελj})† − 1

2
(p− p′)jελ

′[i, (ελj])†,

= 2µS ijv⊥j +
i

2
εijkqjSχ,k.

The real equivalent of Eq.(1.3.33) is, Vµ1,R =
(
Bν∂νB

µ,† +B†ν∂
νBµ

)
and leads to the

amplitude,

〈V i1,R〉M = i
(
pjε

λ′j,†ελi − p′jελjελ
′i,†
)
,

=
i

2

(
(p+ p′)jε

λ′†,[j ελ i] + (p− p′)jελ
′,†[j ελ i]

)
,

= µεijkv⊥j Sχ,k + iqjS ij,

these can contract with a vector or axial vector nucleon bilinear N̄γµN , N̄γµγ5N ,

〈Re(Bν∂
νB†µ)N̄γµN〉M = −

(
iqjSji

)
(−2µv⊥,i − 2iεilmqlSN,m)

−
(
µεijkv

⊥,jSkχ
)

(−2µv⊥,i − 2iεjlmqlSN,m),

≈ 2µmN

(
iq

mN

· S · v⊥
)

+ 4µmN(v⊥ · SN)

(
iq

mN

· Sχ
)
,

= 2µmNO(NR)

17 + 4µmNO(NR)

14 , (1.3.34)

〈Re(Bν∂
νB†µ)N̄γµγ5N〉M = −

(
iqjSji

)(
−4mNS

i
N − i

µ

2mN

εiklv⊥k ql

)
−
(
µεijkv

⊥,jSkχ
)(
−4mNS

i
N − i

µ

2mN

εilmv⊥l qm

)
,

≈ 4m2
N

(
iq

mN

· S · SN
)

+ 4mNµ
(
v⊥ · (Sχ × SN)

)
,

= 4m2
NO(NR)

18 + 4µmNO(NR)

12 . (1.3.35)

Thus this vertex structure leads to a very suppressed spin-dependent scattering cross

section. To check the consistency of this result recall, for example, the CPT sym-

metries of Re(Bν∂νB†i ) are (+−+) and for q̄γiq are (−−−), and so the combined

symmetries are (−+−) for Eq.(1.3.34), which are perfectly consistent with the PT
symmetries of the NR operators (see Tab.4.5)4.

4A note of caution: the symmetries of a particular bilinear may not match between relativistic
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We now turn to the operator Vµ2,I = i(B†µ∂
νBµ −Bµ∂νB†µ),

〈Vν2,I〉M = i
(
ελ
′†
µ (−ipν)ελ,µ − ελ,µ(ip′ν)ε

λ′†
µ

)
,

= (p+ p′)ν
(
ελ
′† · ελ

)
, (1.3.36)

suppressing the trivial spin-conserving delta function then the axial-vector and vec-

tor contractions are,

〈iIm(B†µ∂νB
µ)N̄γνN〉M = 2mχ

(
2mN + i

µ

mN

q · v⊥ × SN
)

− 2µv⊥i ·
(
−2µv⊥,i − 2iεijkqjSN,k

)
,

= 4mχmNO(NR)

1 + 4µ2O(NR)

2 − 2µmχO(NR)

3 − 4µmNO(NR)

3 ,

(1.3.37)

〈iIm(B†µ∂νB
µ)N̄γνγ5N〉M = 2mχ

(
4µv⊥ · SN

)
− 2µv⊥i

(
−4mNS

i
N − i

µ

2mN

εijkv⊥j qk

)
,

= 8mχmNO(NR)

7 . (1.3.38)

The vertex Vµ2,R = (B†µ∂
νBµ + Bµ∂νB†µ) is, i(p′ − p)ν(ελ′† · ελ) which contracts to

give,

〈Re(B†µ∂νB
µ)N̄γνN〉M = −iqi(−2µv⊥,i − 2iεijkqjSN,k) = 0 (1.3.39)

〈Re(B†µ∂νB
µ)N̄γνγ5N〉M = −iqi

(
−4mNS

i
N − i

µ

2mN

εijkv⊥j qk

)
= 4m2

NO(NR)

10

(1.3.40)

Finally we consider the vertex Vρ3 = εµνσρ(gB†µ∂νBσ + h.c.) with imaginary cou-

plings, Vρ3,I ≡ iεµνσρIm
(
B†µ∂νBσ

)
, the amplitude is ∝ (p− p′)ν = (0, q), since ε0 ≈ 0

only V0
3,I is nonzero:

εikj0ε
λ,i(p)ελ

′j(p′)(p− p′)k = εijkε
λ,i(p)ελ

′,j(p′)qk = iq · Sχ, (1.3.41)

where we relate the Levi-Civita tensor between four and three dimensions ε0ijk ≡ εijk.

The couplings to vector and axial-vector bilinears (EFT operators OV 7−2,V 8−2), are

and NR limit if the bilinear is not a Lorentz scalar. Only Lorentz invariant combinations of bilinears

will yield matching symmetries between the two regimes. For example, the bilinear χ̄γ0χ ≈ 2mχ

in the NR limit for scattering; the T and C symmetries do not match.
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then quite simple

〈iIm(εµνσρB†µ∂νBσ)N̄γρN〉M ≈− 2m2
NO(NR)

11 + µmNO(NR)

15 , (1.3.42)

〈iIm(εµνσρB†µ∂νBσ)N̄γργ
5N〉M ≈4µmNO(NR)

14 , (1.3.43)

thus OV 7−2 is dominated by O(NR)

11 which has only a single q suppression, and OV 8−2

is dominated by O(NR)

14 .

For real couplings in Vρ3,R ≡ εµνσρRe
(
B†µ∂νBσ

)
the amplitude is ∝ i(p + p′)ν =

i(2mχ, 2µv
⊥) in the NR limit and thus the non-zero components are,

iεi0jkε
λ,i(p)ελ

′,j(p′)(p+ p′)0 = 2mχS
k
χ (1.3.44)

iεikj0ε
λ,i(p)ελ

′,j(p′)(p+ p′)k = 2iµvkελ,i(p)ελ
′,j(p′)εijk = −2µ(Sχ · v⊥) (1.3.45)

leading to the NR expansion of EFT operators OV 7,V 8

〈Re(εµνσρB†µ∂νBσ)N̄γρN〉M = −4µmN(Sχ · v⊥) + 2mχS
i
χ · (−2µv⊥,i − 2iεijkqjSkN),

= −4mχmNO(NR)

8 + 4mχmNO(NR)

9 (1.3.46)

〈Re(εµνσρB†µ∂νBσ)N̄γργ
5N〉M = −8µ2(v⊥ · SN)(v⊥ · Sχ)

+ 2mχS
i
χ

(
−4mNS

i
N − i

µ

2mN

εijkvjqk
)
,

= −8µ2O(NR)

7 O(NR)

8 − 8mNmχO(NR)

4 + µmχO(NR)

5 .

(1.3.47)

This concludes our discussion of the NR limit of spin-0,1/2,1 fields for direct

detection. When calculating the amplitudes appropriate for perturbative unitarity

constraints, the helicity basis is required for all the fields (for the scalar field there is

no difference, but the field expansions for fermion and vector fields stated previously

are for spin states), and so we now review the expressions for the states of fixed

helicity for fermions and vector bosons.

A.4 Helicity Basis for Spinors and Vectors

In this section we will elaborate on the calculation of partial wave amplitudes which

requires the field of the theory to be in helicity eigenstates. For scalar fields this is
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trivial, since they only have heliciy 0, but for spin-1/2 and spin-1 fields more detail

is required.

We will work with a 2 → 2 scattering process, with labels 12 → 34, we will

assume m1 = m2 ≡ mi and m3 = m4 ≡ mf and the total helicity of the initial/final

state will be denoted µ, µ′. The momenta of the incoming/outgoing particles in the

COM frame are,

pµ1 =

(√
S/2, 0, 0,

√
S − 4m2

i

)
,

pµ2 =

(√
S/2, 0, 0,−

√
S − 4m2

i

)
,

pµ3 =
(√

S/2, sin θ
√
S − 4m2

f , 0, cos θ
√
S − 4m2

f

)
,

pµ4 =
(√

S/2,− sin θ
√
S − 4m2

f , 0,− cos θ
√
S − 4m2

f

)
, (1.4.48)

where θ is the scattering angle between the initial and final state.

The polarization of external state vectors are denoted ξµ,∗λ (pi) for helicity λ =

0,±1. Longitudinal polarizations (λ = 0) are only present for massive vector fields.

The polarization vector has four degrees of freedom, but for any massive vector

particle we have the Lorentz invariant condition,

pµξµ(p) = 0, (1.4.49)

reducing the four free parameters of ξ to three. Explicitly, one can use the rest frame

to let ξ0 = 0 and the three remaining ξi are split into transverse and longitudinal
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modes which may be written for momenta in the (θ, φ) direction as 5,

ξµ+ =
1√
2

(0,− cos θ cosφ+ i sinφ,− cos θ sinφ− i cosφ, sin θ, 0) ,

ξµ− =
1√
2

(0, cos θ cosφ+ i sinφ, cos θ sinφ− i cosφ,− sin θ, 0) , (1.4.50)

ξµL =
1

m
(E cos θ, E sin θ sinφ,E sin θ cosφ, p) .

The subscripts +/− denote the helicity of the transverse states, the helicity of the

longitudinal mode is 0. To show this one can use the spin operator Si = εijkSjk/2,

(Sσρ)µν = i(g µ
σ gρν − g µ

ρ gσν) (1.4.51)

the helicity operator is then λ = p̂ · S 6. In the processes considered here the vec-

tor are always in back-to-back pairs, since the polarization is a Lorentz vector, one

can simply rotate the definitions given above by 180o to give the polarization of the

partner particle. We use the convention that the subscripts of the polarizations refer

to the helicity in the particles own frame, so that if we make some global definition

of helicity (say with p in the z-direction) the + state for the particle moving in −p
direction has a negative helicity. Thus, the spin-1 helicity combinations which give

µ = 0 are −−, LL and ++ where the ±, L represents the helicity in the particles

own frame (according to the definitions above). Similarly, +L,L− (−L,L+) repre-

sent the µ = 1 (µ = −1) states.

For spin-1/2 particles we follow the same convention, defining spinors of definite

helicity in the (θ, φ) = (0, 0) z-direction and then rotating them into the (θ, φ)

direction for the partner; this again enforces the convention that a ++ or −− state

5 Explicitly for vectors in the initial and final state:

ξµ1,L =
1

m1


p

0

0

E

 , ξµ2,L =
1

m2


p

0

0

−E

 , ξµ3,L =
1

m3


p

E sin θ

0

E cos θ

 , ξµ4,L =
1

m4


p

−E sin θ

0

−E cos θ

 .

6For consistency the helicity operator should have eigenvalues ±1/2 for fermions and 0,±1 for

spin-1 particles.
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has total helicity 0 (+,− refer to a physical helicity ±1/2). Again, this may be

checked with the correct spin operator for fermions, Si = εijkSjk/2, with

Sµν =
1

2
σµν =

i

4
[γµ, γν ] . (1.4.52)

The spinors may be written explicitly once one decides whether they are states

of definite spin (the conventional choice uσ, vσ with σ = ±1/2 along the z-axis), or

definite helicity (uλ, vλ, λ = ±1/2). The basis choice for the gamma matrices must

also be specified (either Dirac or Weyl are the conventional choices, see Sec.A.6).

The four solutions of the Dirac equation are split into two positive energy, u(p),

and two negative energy, v(p). We impose the standard normalization (inner prod-

uct), and spin sum (outer product) relations,

ūλ(p)uλ′(p) = 2mδλλ′ , (1.4.53)

v̄λ(p)vλ′(p) = −2mδλλ′ , (1.4.54)

and, ∑
λ

uλ(p)ūλ(p) = /p+m, (1.4.55)

∑
λ

vλ(p)v̄λ(p) = /p−m. (1.4.56)

The standard representation of spinors consists of writing spin states in the Dirac

basis;

us(p) =
√
E +m

 χs
σ·p
E+m

χs

 , vs(p) =
√
E +m

 σ·p
E+m

χ̄s

χ̄s

 , (1.4.57)

the two component spin vector χs is an eigenvalue of the spin operator S = σ/2, so

that for example if we quantize spin in the +z direction (S = σ3/2) then χ↑ = (1, 0)

and χ↓ = (0, 1). Since the v-spinors live in the conjugate spin-1/2 representation,

χ̄s = εχ∗s, so that χ̄↑ = (0, 1) and χ̄↓ = (1, 0).

Note that the spin-quantization axis (that defines χs and χ̄s) is independent from
the momentum direction, since one can boost into a frame in which the spin along
the quantization axis is reversed (i.e. helicity is not Lorentz invariant). It is simplest
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to quantize along the z-axis so that χ1/2 = (1, 0), χ−1/2 = (0, 1) and similarly for χ̄s.
If we now choose momentum in the +z direction, the spin states and helicity states
should coincide;

u+(p) =


√
E +m

0
√
E −m

0

 , u−(p) =


0

√
E +m

0

−
√
E −m

 , v+(p) =


0

−
√
E −m

0
√
E +m

 , v−(p) =


√
E −m

0
√
E +m

0

 ,

then we can transform these to the Weyl basis using the standard unitary transfor-

mation (see Sec.A.6),

u+(p) =


√
E + p

0
√
E − p

0

 , u−(p) =


0

√
E − p

0
√
E + p

 , v+(p) =


0

√
E − p

0

−
√
E + p

 , v−(p) =


√
E + p

0

−
√
E − p

0

 ,

(1.4.58)

thus, physically, u1/2 (u−1/2) describes a fermion travelling in the +z direction with

spin up (down). Similarly v1/2 (v−1/2) describe anti-fermions travelling in the +z

direction with spin up (down).

The helicity spinors may be written generally in the Weyl basis choice defined

by Eq.(1.6.106)7

uλ(p) =

√E − λ|p|χλ(p̂)√
E + λ|p|χλ(p̂)

 , vλ(p) =

−λ√E + λ|p|χ−λ(p̂)
λ
√
E − λ|p|χ−λ(p̂)

 (1.4.60)

where in this case χλ(p) are interpreted as two-component helicity spinors, solutions

to the equation,

(σ · p̂)χ±(p) = ±χ±(p) . (1.4.61)

so then χ+(+z) = (1, 0), χ−(+z) = (0, 1), χ+(−z) = (0, 1), χ−(−z) = (−1, 0) and

this recovers Eq.(1.4.58).

7Note the following identity,

√
E ± p =

1√
2

(√
E +m±

√
E −m

)
. (1.4.59)
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A.5 Perturbtive Unitarity Violations

For any process i→ f , the unitarity bound can be phrased as [12, 72, 392–394],∑
f

βiβf |T ji→f |2 ≤ 1, (1.5.62)

in our models both i and f are 2-particle states8, and the amplitude T has definite

helicity assignments (there is no interference between different helicity contributions,

but one adds all the relevant helicity combinations in the sum). where

βi =
1

S

√
(S − (m1 +m2)2)(S − (m1 −m2)2), (1.5.63)

is a kinematic factor, and T j is the jth partial wave of the amplitude, found by

projecting the usual amplitude9,

T ji→f,µµ′(S) =
1

32π

∫ 1

−1

d cos θ dJµµ′(θ)Mif (S, θ), (1.5.64)

where dJµµ′(θ) are the Wigner d functions, and µ, µ′ represent the total helicity of

the initial/final state.

Unitarity violations at tree level are present mostly within models which con-

tain massive spin-1 particles due to the longitudinal modes which scale with CM

energy as
√
S/m. Naively, the more vectors present in the process the larger the

dependence on S. We therefore restrict to models containing spin-1 vectors, which

nonetheless are most of the simplified models under study.

Since the violations stem from the longitudinal modes we will ignore the trans-

verse polarizations and then initial (final) state boson pairs have µ = 0 (µ′ = 0).

This leaves the possibility of a final (initial) state with µ = 0, 1. The µ = 1 state can

only occur for spin-1/2 fermion pairs with opposite helicity. In such cases the total

8For identical particles in the initial state or final state a factor of 1/2 is applied to β in

Eq.(1.5.62).
9We will use the notation T jµµ′ where µ, µ′ = 0,++,−− for scalar/vector and fermion fields

respectively.
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helicity change by one unit leads to a mass insertion (which will cause a suppression

if the fermions are light).

The relevant Wigner d functions for the restricted set of amplitudes we consider

are,

J = 0 : d0
00 = 1 ,

J = 1 : d1
00 = cos θ, d1

−10 = −d1
10 =

1√
2

sin θ , (1.5.65)

J = 1 : d1
00 = cos θ, d1

01 = −d1
0−1 =

1√
2

sin θ .

We now consider each model in turn to quantify the extent of unitarity violation.

In our analysis, several models include vectors; 1/2− V and 1/2− V ± for fermionic

DM; 0− V for scalar DM and 1− S, 1− V , 1− F± for vector DM. We will present

expressions to leading order in the CM energy S.

Fermionic DM : 1/2-V, 1/2*-V

The relevant processes are (1) χ̄χ → χ̄χ (equivalently χχ → χχ), (2) q̄q → q̄q, (3)

q̄q → χ̄χ, (4) χ̄χ→ V V and (5) q̄q → V V .

(1), (2) : Firstly, we can consider DM and quark self-scattering, with an s-

channel mediator exchange. The zero helicity combinations of four fermions are

(++,++),(−−,−−),(++,−−) and (−−,++). For χχ→ χχ10,

T 0
++,−− = T 0

−−,++ =
g2
χ,am

2
χ

πm2
V

(1.5.66)

with T 0
++,++ = T 0

−−,−− = 0 leading to,

βiβf
(
|T 0

++,−−|2 + |T 0
−−,++|2

)
=

[
2g4

χ,am
4
χ

π2m4
V

]
≤ 1 . (1.5.67)

The process χ̄χ→ χ̄χ leads to

T 0
++,−− = T 0

−−,++ ≈
g2
χ,am

2
χ

πm2
V

, T 0
++,++ = T 0

−−,−− ≈
g2
χ,am

2
χ

2πm2
V

, (1.5.68)

10The process χχ→ χχ and χχ̄→ χχ̄ give the same result in the S →∞ limit.
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Model Process |T 0|2

0*-V

χχ† → V V, q̄q → V V S2

χχ† → χχ† S0

q̄q → χχ† 0

1/2-V, 1/2*-V

χ̄χ→ V V, q̄q → V V S1

χ̄χ→ χ̄χ, q̄q → q̄q S0

q̄q → χ̄χ S0

1/2-V ±, 1/2*-V ±
χ̄χ→ V †V, q̄q → V †V S1

q̄q → χ̄χ S0

1-S; 1*-S
χχ† → χχ†, SS → χχ† S2

q̄q → χ†χ S1

1-F, 1*-F
q̄q → χ†χ, F̄F → χ†χ S1

q̄q → F̄F S0

1-V (V1,2,3) All S3

Table A.2: The simplified models containing a vector field, along with the tree-level 2 → 2

scattering processes containing at least one vector field. Assuming all vectors to be longitudinally

polarized and restricting to the dominant J = 0 partial wave, the leading dependence on S is

shown when S →∞ is the largest scale.
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and for Majorana DM the extra u-channel diagram increases the leading term by a

factor of 5/2. Including only the longitudinal modes:

T 0
++,−− = T 0

−−,++ ≈
3g2

χ,am
2
χ

2πm2
V

, T 0
++,++ = T 0

−−,−− ≈
g2
χ,am

2
χ

2πm2
V

. (1.5.69)

The quark self scattering results in the same bound as for Dirac DM, but with the

coupling and mass changed appropriately.

(3) : Next we consider quark-DM scattering which is not tremendously different

to the self-scattering since the dominant s-channel diagram is the same; only the

axial couplings are present and the result is helicity suppressed,

T 0
++,++ = T 0

−−,−− = T 0
++,−− = T 0

−−,++ ≈
gχ,agf,amfmχ

2πm2
V

, (1.5.70)

leading to,

βiβf
∑

µ=µ′=0

|T 0
µµ′ |2 ≈

[
m2
fm

2
χg

2
χ,ag

2
f,a

π2m4
V

]
≤ 1 (1.5.71)

the results are identical for Majorana DM.

(4), (5) : Lastly we consider quark or DM scattering to vector (q̄q, χ̄χ)→ V V .

Once again finds that only the axial couplings are present, alongside a helicity mass

factor,

T 0
++ = −T 0

−− = −g
2
χ,a

√
Smχ

8πm2
V

(
2 + log

(
S

m2
χ

))
(1.5.72)

and the resulting bound,

βiβf (|T 0
++|2 + |T 0

−−|2) =

[
g4
χ,am

2
χS

2π2m4
V

]
≤ 1. (1.5.73)

The result is identical for Majorana DM, and for quark initial states with the cou-

plings and mass changed appropriately.

The two S independent bounds lead to,

mV & mXgX,a

√
π

21/2
, (1.5.74)
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where X = χ, f (similar expressions arise for Majorana DM). Eq.(1.5.73) combines

several parameters, but can be written as a lower bound on the mediator mass for

fixed mχ, gχ,a

mV & 29/4
√
π
√
mχE

(gχ,a
4π

)
(1.5.75)

which can be as high as ∼ few TeV for LHC energies and heavy DM. This bound is

easily evaded at low energies.

Fermionic DM : 1/2-V ±

Three processes are relevant : (1) χχ̄→ V †V (2) qq̄ → V †V and (3) χ̄χ→ q̄q. With

the conventional factor of 1/2 in front of the Lagrangian couplings, the results are

identical between Majorana and Dirac DM.

(1) : With mediators in the final state, we can have a J = 0 annihilation for the

process χχ̄→ V †V with a t-channel quark. The final state vector are longitudinally

polarized and so only the ++,−− initial state helicities are relevant [392],

T 0
++ = −

√
S

8πm2
V

(
|ga|2(mf +mχ) +mf (gag

†
v − gvg†a) + |gv|2(mχ −mf )

)
,

T 0
−− =

√
S

8πm2
V

(
|ga|2(mf +mχ) +mf (gvg

†
a − gag†v) + |gv|2(mχ −mf )

)
, (1.5.76)

leading to a bound

βiβf (|T 0
++|2 + |T 0

−−|2) ≈
[

Sm2
χ

32π2m4
V

(
|ga|2 + |gv|2

)2
]
≤ 1. (1.5.77)

(2) : The t-channel q̄q → V †V process is almost identical (differing only in the

replacement of mq ↔ mχ in Eq.(1.5.76), in the mq → 0 limit) and results in

βiβf (|T 0
++|2 + |T 0

−−|2) ≈
[

Sm2
χ

32π2m4
V

(
|ga|2 − |gv|2

)2
]
≤ 1 . (1.5.78)

(3) : The quark scattering to DM, qq̄ → χχ̄ involves the t-channel exchange of the

mediator, the restriction to longitudinal modes is accomplished via the replacement

of the propagator

1

t−m2
V

(
gµν − kµkν

m2
V

)
→ − kµkν

m2
V (t−m2

V )
(1.5.79)
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assuming that the initial state mass in negligible then only the ++,−− and −−,++

helicity amplitudes are non-zero in the S → ∞ limit (up to logarithmic terms

log (S/m2
V ) from the non-longitudinal propagator),

T 0
++,−− = T 0

−−,++ =
m2
χ (|ga|2 − |gv|2)

8πm2
V

+O(S−1), (1.5.80)

from which the bound is,[
((mf +mχ)2|ga|2 − (mf −mχ)2|gv|2)

2

32π2m4
V

]
≤ 1 . (1.5.81)

a factor of four is applied to the above expression for initial or final state Majorana

fermions to to an extra u-channel diagram, but this is cancelled by the conventional

factor of 1/2 applied to the interaction term.

This provides an energy independent bound on the mediator mass,

mV & mχ

(( |ga|
4π

)2

−
( |gv|

4π

)2
)1/2

(1.5.82)

with chiral couplings, the bound is weaker and easily evaded. Since for this model

mV & mχ for stability of the DM this bound is redundant. Not so easily evaded is

Eq.(1.5.77),

mV &
√
mχE

(( |ga|
4π

)2

+

( |gv|
4π

)2
)1/2

(1.5.83)

which is far more constraining since E > mχ.

Scalar DM : 0*-V

There are several processes : (1) χχ → χχ (2) q̄q → χ†χ (3) χ†χ → V V and (4)

q̄q → V V . This model does not permit real scalar DM, and so χ is a complex field

throughout.

(1) : The simplest process is DM self-scattering, χχ → χχ (or equivalently

χ†χ → χ†χ which is four times smaller), since the scalar DM pair must have µ =

µ′ = 0; there are both s and t-channel vector exchanges, dominated by the s-channel.
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The longitudinal modes contribute a factor of S on the numerator; thus overall the

S dependence cancels in the S →∞ limit,

T 0
00 =

|gχ|2
4π

(
1− 2 log

(
S

m2
V

))
+O(S−1), (1.5.84)

the logarithmic term causes very light mediators to violate unitarity for

βiβf |T 0
00|2 ≈

|gχ|4
16π2

(
1− 2 log

(
S

m2
V

))2

≤ 1 . (1.5.85)

(2) : Next we can consider the q̄q → χ†χ scattering. The DM final state has

µ′ = 0. The J = 0 partial wave is absent since the quark bilinear couples only to

J = 1 states; then we can have helicity 0,±1 in the initial state,

T 0
++ = T 0

−− = 0

T 1
++ = −T 1

−− =
gχgv
6π

mq

√
S − 4m2

χ

S −m2
V

T 1
+− = −T 1

−+ =

√
2

12π

gχ
√
S − 4m2

χ

S −m2
V

(
gv
√
S + ga

√
S − 4m2

q

)
The S dependence cancels and leaves a bound on couplings which is negligible unless

the couplings are near to their non-perturbative values.

(3) : Lastly, the vector mediator may appear in the final state. For χ†χ→ V V

via a t,u-channel diagram with an exchanged DM. The amplitude depends only on

the DM parameters. In this case unitary can easily be violated since M ∝ S, for

LHC energies only very heavy mediators can give a sensible model,

T 0
00 =

g2
χ

4π

(
1− S

2m2
V

)
+O(S−1) , (1.5.86)

leading to,

βiβf |T 0
00|2 ≈

[
g2
χ

4π

(
1− S

2m2
V

)]2

≤ 1 . (1.5.87)

(4) : For the process q̄q → V V the strong S dependence from the external

vectors is compensated by a helicity suppression in the quark state,

T 0
++ = T 0

−− =
g2
amq

√
S

8πm2
V

(
2 + log

(
S

m2
q

))
, (1.5.88)



A.5. Perturbtive Unitarity Violations 407

leading to

βiβf
(
|T 0

++|2 + |T 0
−−|2

)
≈
[
g4
aSm

2
q

2π2m4
V

]
≤ 1, (1.5.89)

the J = 1 amplitudes are zero at the same order in S.

The first bound, (1), gives gχ .
√

4π which is below the conventional perturba-

tive limit of 4π below which any loop expansion becomes meaningless. Process (3)

bounds the mediator mass,

mV & 2
√

2π
( gχ

4π

)
E (1.5.90)

which requires an extremely heavy mediator to evade collider bounds. The last

bound from (4),

mV & 29/4π1/2
√
mfE

( ga
4π

)
(1.5.91)

is safely evaded due to the small quark mass, and weaker E dependence. For indirect

searches of the highly nonrelativistic DM, E ∼ mχ and we bound mV & mχ for

couplings of O(1).

Vector DM : 1-S

There are three relevant processes involving the vector DM (1) χχ → χχ (2)

SS → χ†χ and (3) q̄q → χ†χ.

(1) : The DM self scattering process contains four external vectors and the

amplitude should scale as M∝ S if all four are longitudinally polarized, then only

the µ = µ′ = 0 combination appears leading to a bound (this result is twice as large

as χ†χ→ χ†χ)

T 0
00 =

g2
χ

32πm2
χ

(
4(m2

χ −m2
S)− S

)
, βiβf |T 0

00|2 ≈
S2

m4
χ

( |gχ|4
1024π2

)
≤ 1, (1.5.92)

if the DM is real, then the extra u-channel diagram leads to a cancellation of the

dominant term, and

T 0
00 =

3g2
χm

2
V

8πm2
χ

, βiβf |T 0
00|2 ≈

[
9g4

χm
4
V

64π2m4
χ

]
≤ 1 . (1.5.93)
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(2) : The mediator S may scatter with the DM, via a u,t-channel DM exchange

(identical between real or complex DM), and ends up scaling in the same way as DM

self-scattering due to the longitudinal modes of the mediating DM. This amplitude

is very similar to DM self-scattering and thus also bounds only the DM mass,

T 0
00 = − g2

χS

32πm2
χ

+O(logS), βiβf |T 0
00|2 ≈

S2

m4
χ

( |gχ|4
1024π2

)
≤ 1. (1.5.94)

(3) : Lastly, quark-DM scattering with an s-channel scalar has a weaker de-

pendence on S due to only two vectors in the process. Nonetheless, it provides

a bounds which includes the quark scalar and pseudo-scalar couplings. Only the

++,−− helicity combinations are necessary

T 0
++ = −T 0

−− = −
√
S

16πmχ

(gs + igp) (1.5.95)

leading to,

βiβf (|T 0
++|2 + |T 0

−−|2) ≈
[
S

m2
χ

( |gχ|2(g2
s + g2

p)

128π2

)]
≤ 1 (1.5.96)

there are no other tree-level, 2→ 2 processes containing the vector DM.

The strongest bound from process (1) or (2) leads to a lower DM mass

mχ & 4
√

2π
( gχ

4π

)
E (1.5.97)

and so unless the couplings are very small, the DM mass must be large to compen-

sate. The third bound may also be written as a lower limit on the DM mass,

mχ & 2
√

2πE
( gχ

4π

)(( gs
4π

)2

+
( gp

4π

)2
)1/2

(1.5.98)

which is slightly weaker than the previous bound if the quark couplings are below

the perturbative limit. Thus, for low energy searches the model will evade unitarity

as long as the DM mass exceeds the energy scale of the experiment.

Vector DM : 1-F±, 1∗-F±

The 1-F± model is an analogue to 1/2∗-V with the roles of mediator and DM

swapped (for complex vector DM the analogy is not possible). There are three pro-

cesses (1) q̄q → χχ, (2) F̄F → χχ and (3) q̄q → F̄F .
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(1) : For the F̄F → χχ process, T 0
++ = T 0

−− and :

βiβf (|T 0
++|2 + |T 0

−−|2) =

[
S ((mF +mq)|ga|2 + (mF −mq)|gv|2)

2

8π2m4
χ

+O(S0)

]
≤ 1 .

(1.5.99)

For complex DM, the result is four times smaller than above.

(2) : The process q̄q → χχ is identical to (1) under the replacement mq ↔ mF

:

βiβf (|T 0
++|2 + |T 0

−−|2) =

[
S ((mF +mq)|ga|2 + (mq −mF )|gv|2)

2

8π2m4
χ

+O(S0)

]
≤ 1 ,

(1.5.100)

if the DM is complex the result is again a factor of 4 smaller.

(3) : Lastly, the process q̄q → F̄F is essentially identical to the quark-DM

scattering in the 1/2-V ± with appropriate mass replacements,

T 0
++,++ = T 0

−−,−− =
|ga|2 − |gv|2

4π
log

(
S

m2
V

)
,

T 0
++,−− = T 0

−−,++ =
(|ga|2(mf +mF )2 − |gv|2(mf −mF )2)

8πm2
V

, (1.5.101)

leading to,

βiβf |T 0
00|2 ≈

[
(|ga|2(mf +m2

F )2 − |gv|2(mf −mF )2)
2

32π2m4
χ

]
≤ 1. (1.5.102)

The dominant constraints comes from processes (1) and (2),

mχ & 27/4π1/2
√
mFE

(( |ga|
4π

)2

+

( |gv|
4π

)2
)1/2

(1.5.103)

requiring heavy DM. For low energies when E ∼ mχ this requires the DM to be

heavier than the mediator (unless very small couplings are present). The third

bound leads to

mχ & mF

(( |ga|
4π

)2

+

( |gv|
4π

)2
)1/2

(1.5.104)

which is weaker than the first since by assumption E > mF . Eq.(1.5.103) removes

all the interesting parameter space at LHC energies since mχ < mF for stability of

the DM; even at low energies Eq.(1.5.104) leaves only a small window of parameters

at mχ ∼ mF , opening up as the couplings decrease.
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Vector DM : 1-V

Quark self-scattering, qq̄ → qq̄, and qq̄ → V V are both present and identical to the

0-V and 1/2-V cases respectively, however the largest violations of unitarity come

from processes where the external and internal states are all vectors, χ†χ → V V

and χ†χ → χ†χ. With the external vectors longitudinally polarized, M ∝ S2,

and this may be further enhanced by the mediating vector to M ∝ S3, leading to

unitarity violation over almost all of the phenomenologically interesting phase space.

It is likely that the massive states required to alleviate the violation of unitarity

are light enough to impact the DD and ID signals. This model cannot be considered

as a sensible approximation until such new physics is added. Thus the LHC bounds

on the EFT [12] which appear in several of our plots should be treated with cau-

tion. The EFT operators would appear alongside other operators which alleviate

the unitarity violation, and in doing so remove the dominant contribution to the

signal, reducing the contraint.

These amplitudes are familiar in the SM, as massive gauge boson scattering; in

those cases diagrams involving Higgs exchange cancel the unitarity violating ampli-

tudes. This is enforced essentially by relations between SM couplings derived from

spontaneous symmetry breaking; if a form of SSB is employed to give the DM and

mediator their masses this could prevent unitary violation.

A.6 Conventions

The Dirac basis is defined as,

γ0 =

1 0

0 −1

 , γi =

 0 σi

−σi 0

 , γ5 =

0 1

1 0

 . (1.6.105)

The Weyl basis is defined as,

γ0 =

0 1

1 0

 , γi =

 0 −σi

σi 0

 , γ5 =

1 0

0 −1

 . (1.6.106)
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One may transform between these bases (in terms of spinors χ and Dirac matrices

γ) according to,

γD = UγWU
−1 , χD = UχW, U =

1√
2

1 1

1 −1

 . (1.6.107)

There is a further convention often used for which the γi and γ5 pick up a global

minus sign relative to the definitions given above, to implement this we can use the

unitary matrix UU ′ where

U ′ =

0 1

1 0

 . (1.6.108)

A.7 Statistics

The central function in parameter inference is the Likelihood L(θi) for an n-dimensional

parameter space θi. In the frequentist approach L ∈ (0, 1) represents the probabil-

ity of finding values θi, given the data, in an infinite ensemble of experiments. In

the Bayesian approach, the likelihood is multiplied by prior probability densities or

‘priors’ π(θi) which represent the probability for a particular set of parameters in

the absence of data (in other words they quantify our prior beliefs about the pa-

rameters), the resulting probability density function is called the posterior pdf, and

represents the probability that measured parameters θi are equal to their true value.

The full posterior pdf can be reduced to a smaller number of dimensions, treating

the unwanted dimensions as nuisance parameters. These are called marginal poste-

riors, for example the two dimensional posterior, integrated over all n−2 remaining

parameters, would be given by

p(θn−1, θn) =

∫ n∏
i

L(θi)π(θi)dθ1 · · · dθn−2. (1.7.109)

In our results, we restrict to 1D and 2D marginalized posteriors for visual clarity.

The result of parameter inference may be to find a best fit value, or more generally

to find a credible region, which as the name suggests is a region of phase space

which has a particular probability of containing the true values of the parameters.
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To calculate it one looks for the region R which contains a fixed 1 − α fraction of

the total probability (assuming p(x, y) is normalized to 1). This can be computed

following [373] by finding a value of p(x, y), pcrit such that∫
p>pcrit

p(x, y)dxdy = 1− α . (1.7.110)

To work in the frequentist philosophy one requires the profile likelihood, this is

the likelihood reduced in dimension by setting the value of the nuisance parameters

equal to their maximum likelihood value, rather than marginalizing over them. This

is done on a bin-by-bin basis, taking the maximum likelihood across all points within

the bin. Then the frequentist confidence intervals can be found according to a

maximum likelihood analysis (where the maximum likelihood is across all bins),

then for each bin the log-likelihood must obey,

log (L) ≥ log (Lmax)−∆ log (L) (1.7.111)

where ∆ log (L) is a constant, which depends on the desired level of confidence. This

method can have problems when the errors are not Gaussian[395].

The frequentist confidence regions are significantly larger in our MCMC results.

This is because there are large regions of allowed parameter space which are equally

likely with L ∼ 1 (this is expected from an analysis which does not aim to precisely

fit the parameters); therefore any bins with allowed points in them become accepted,

and not biased by whether they have few or many points. The resulting 1, 2, 3− σ
contours are roughly equal (with containment probabilities around & 90%), and

these confidence intervals approach the naive hit-or-miss treatment.

Then Bayesian credible regions are much more useful for understanding the al-

lowed parameter space, taking into account the most probable regions. However,

these regions are inevitably biased by the subjective choice of prior. There is no rea-

son a priori to select a log-uniform distribution other than that it is as agnostic as

possible11. Uniform priors are also taken to be agnostic, however both uniform and

11This is not quite true, since the Jeffry’s prior is rigorously defined as the prior of most ignorance

on a particular parameter. This is computationally expensive and not implemented in MultiNest.
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log-uniform are not invariant under transformations, and transforming one into the

other demonstrates that the log-uniform is biased towards lower values compared

with uniform. Ideally, the choice of priors should have no effect on the result when

there is no reason to prefer any particular value. In our results this is not the case,

and the two priors can lead to dramatically different results. Fortunately, the log-

uniform priors are consistently more conservative (uniform priors generally favour

higher values across all variables), and we present all results with these. When

parameters are most well constrained, we find much closer agreement between the

prior choices. This discussion is visualized in Fig.A.1.

Credible Region in 1D : One simple way to find the credible interval is

to look for an interval for which the mean lies in the centre (although in practice

this may not be possible for very skewed distributions), this works for highly sym-

metric distributions, but not so well for the mixing angles and coupling posteriors

which tend to be very peaked and asymmetrical. Another possibility is to look for

the smallest possible interval, which contains the mode of the distribution if highly

peaked. This gives more sensible results in our case, although one should bear in

mind that these numbers can be subject to modification up to factor of 2, since the

distributions are often rather flat.
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Figure A.1: The posterior distributions for D11, D22 for both uniform and log-uniform priors,

showing the credible 68% region (1σ). The log-uniform distribution favours low values compared

to the uniform, and this can affect the results significantly. See Sec.7.9 for more details.



Appendix B

Annihilation Cross Sections

Within Chapter 5 the thermally averaged annihilation cross section, 〈σv〉, of DM

into fermion pairs is presented in simplified form. Here we present the complete

expressions with full mass dependence, expanded up to O(v2) in the DM velocity.

We present the expression in a manner appropriate for implementation numeri-

cally. To improve the readability we write the cross sections in the schematic form,

σv = N1

√
1−m2

f/m
2
χ

P 2

(∑
i,j

gigjSij(x, y) +N2v
2
∑
i,j

gigjPij(x, y)

)
, (2.0.1)

where Sij and Pij are some polynomials in the dimensionless variables x = mf/mMED

and y = mχ/mMED, gi,j are the couplings of the model in question, N1, N2, P are

mass dependent functions. The EFT limit is thus given by x, y → 0. Kinematically

y > x, and for charged mediator models the DM is stabilized if y < 1, and this

implies also x < 1. However, for neutral mediators x and y can take any values.

For this reason we provide complete expressions for s-wave and p-wave annihilation1.

Since all of the coloured mediators are colour triplets, the colour factor for the

1These expressions may be checked against those in [168]. We include several additional models,

and for each model we allow complex couplings where possible; several operators in [168] are not

hermitian, and one must be careful to take the correct limit to match our expressions.

415
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cross section is extremely simple, in each case given by∑
i,j

δij = Nc,

where i, j are the colour indices of the external quarks. The spin-averaging produces

a factor of 1/4, 1/9 in the cross section for fermionic or vector DM respectively.

Writing amplitudes by hand for Majorana particles requires modified Feynman

rules, which can be found in [396].

B.0.1 Fermionic DM

Dirac DM : Neutral Scalar Mediator

χ

χ̄

f

f̄

χ

χ̄

f

f̄

Figure B.1: Dirac (left) or Majorana (right) annihilation into fermions via a neutral scalar

mediator φ.

A Dirac or Majorana fermion DM candidate annihilates via the diagram in

Fig.B.1, giving a matrix element,

M =
1

s−m2
φ

ū(p3)
[
gf,s + igf,pγ

5
]
v(p4) v̄(p2)

[
gχ,s + igχ,pγ

5
]
u(p1). (2.0.2)

Using this matrix element gives a cross section,

σv =

√
1− x2/y2

2πm2
φ (1− 4y2)2

[
g2
f,pg

2
χ,pSp,p + g2

f,sg
2
χ,pSs,p + g2

f,pg
2
χ,sSp,s + g2

f,sg
2
χ,sSs,s

− v2

8(1− 4y2)(y2 − x2)

(
g2
f,pg

2
χ,pPp,p + g2

f,sg
2
χ,pPs,p + g2

f,pg
2
χ,sPp,s + g2

f,sg
2
χ,sPs,s

) ]
,

(2.0.3)

where the s-wave terms are

Ss,s = Sp,s = 0 , Ss,p = y2 − x2 , Sp,p = y2 , (2.0.4)
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and the p-wave terms are

Ps,s = 2(y2 − x2)2(4y2 − 1) ,

Pp,s = −2y2(4y2 − 1) ,

Ps,p =
(
x4(1− 20y2) + x2(y2 + 28y4)− 2y4 − 8y6

)
,

Pp,p =
(
x2(y2 + 12y4)− 2y4 − 8y6

)
. (2.0.5)

Dirac DM : Neutral Vector Mediator

χ

χ̄

f

f̄

χ

χ̄

f

f̄

Figure B.2: Dirac (left) or Majorana (right) annihilation via a neutral vector mediator V .

A Dirac or Majorana fermion may annihilate via the exchange of a massive

neutral vector boson as shown in Fig.B.2, this gives a matrix element,

M =
1

s−m2
V

ū(p3)γµ
[
gf,v + gf,aγ

5
]
v(p4) v̄(p2)γν

[
gχ,v + gχ,aγ

5
]
u(p1)

×
(
gµν − 1

m2
V

(p1 + p2)µ(p1 + p2)ν
)
. (2.0.6)

The cross section may be written,

σv =

√
1− x2/y2

4πm2
V (1− 4y2)2

[
g2
f,ag

2
χ,aSa,a + g2

f,vg
2
χ,aSv,a + g2

f,ag
2
χ,vSa,v + g2

f,vg
2
χ,vSv,v

− v2

6(1− 4y2)(y2 − x2)

(
g2
f,ag

2
χ,aPa,a + g2

f,vg
2
χ,aPv,a + g2

f,ag
2
χ,vPa,v + g2

f,vg
2
χ,vPv,v

) ]
,

(2.0.7)

where the s-wave terms are

Sv,v = x2 + 2y2 , Sa,v = 2(y2 − x2) , Sa,a = x2(1− 4y2)2, (2.0.8)
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and the p-wave terms are

Pv,v = −(x4(68y2 − 5) + 4x2(8y4 + y2)− 8(8y6 + y4)) ,

Pv,a = 4(4y2 − 1)(x4 + x2y2 − 2y4) ,

Pa,v = 2(x2 − y2)(x2(68y2 − 5)− 4(8y4 + y2)) ,

Pa,a = −(4y2 − 1)(x4(144y4 − 72y2 + 17) + x2(−96y6 + 48y4 − 22y2) + 8y4) .

(2.0.9)

Dirac DM : Charged Scalar Mediator

χ

χ̄

f

f̄

Figure B.3: Dirac DM exchanging a charged scalar mediator, φ. Majorana DM includes an extra

u-channel diagram.

The matrix element is,

M =
1

t−m2
MED

ū(p3)
[
g†s + ig†pγ

5
]
u(p1) v̄(p2)

[
gs + igpγ

5
]
v(p4) , (2.0.10)

which leads to a cross section,

σv =

√
1− x2/y2

8πm2
φ (1− x2 + y2)2

[
|gp|4Sp,p + |gs|4Ss,s + 2|gs|2|gp|2Ss,p

+
v2

24(y2 − x2)(1− x2 + y2)2

(
|gp|4Pp,p + |gs|4Ps,s + 2|gs|2|gp|2Ps,p

) ]
,

(2.0.11)

where the s-wave terms are,

Ss,s = (x+ y)2, Ss,p = (y2 − x2) , (2.0.12)
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and the p-wave terms are,

Ps,s = (x+ y)2

(
11x6 − 2x4

(
15y2 + 11

)
+ 16x3y + x2

(
27y4 + 46y2 + 11

)
− 16x

(
y3 + y

)
− 8y2

(
y4 + 3y2 − 1

)))
,

Ps,p = 2(y2 − x2)

(
7x6 − 2x4

(
11y2 + 7

)
+ x2

(
23y4 + 38y2 + 7

)
− 8y2

(
y4 + 3y2 − 1

))
, (2.0.13)

finally, note that Sp,p(x, y) = Ss,s(x,−y) and Pp,p(x, y) = Ps,s(x,−y).

Dirac DM : Charged Vector Mediator

χ

χ̄

f

f̄

Figure B.4: Dirac DM exchanging a charged vector mediator, V µ. Majorana DM includes an

extra u-channel diagram.

If the vector mediator is exchanged in the t-channel as in Fig.B.4 the matrix

element is

M =
1

t−m2
MED

ū(p3)γµ
[
g†v + g†aγ

5
]
u(p1) v̄(p2)γν

[
gv + gaγ

5
]
v(p4)

×
(
gµν − 1

m2
V

(p1 − p3)µ(p1 − p3)ν
)
. (2.0.14)

The cross section, σv, can be written as Eq.(2.0.11),

σv =
Nc

√
1− x2/y2

8πm2
V (1− x2 + y2)2

[
|ga|4Sa,a + |gv|4Sv,v + 2|gv|2|ga|2Sa,v

+
v2

192(y2 − x2)(1− x2 + y2)2

(
|ga|4Pa,a + |gv|4Pv,v + 2|gv|2|ga|2Pa,v

) ]
,

(2.0.15)
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with,

Sv,v =

(
x6 − 2x5y − x4y2 + 4x3

(
y3 + y

)
− x2

(
y4 + 4y2 − 2

)
(2.0.16)

− 2xy
(
y4 + 2y2 + 2

)
+ y2

(
y4 + 4y2 + 6

))
,

Sa,v = −(x2 − y2)

(
x4 − 2x2(y2 + 2) + 4y2 + y4 + 2

)
,

Pv,v =

(
11x12 − 22x11y − x10

(
41y2 + 46

)
+ 8x9y

(
13y2 + 11

)
+x8

(
46y4 + 136y2 + 105

)
− 2x7y

(
98y4 + 164y2 + 85

)
+x6

(
6y6 − 108y4 − 269y2 − 116

)
+ 4x5y

(
46y6 + 114y4 + 117y2 + 29

)
+x4

(
−49y8 − 32y6 + 231y4 + 332y2 + 46

)
−2x3y

(
43y8 + 140y6 + 213y4 + 122y2 + 6

)
+x2y2

(
35y8 + 74y6 − 75y4 − 232y2 − 86

)
+ 16xy5

(
y6 + 4y4 + 8y2 + 8

)
− 8y4

(
y8 + 3y6 − y4 − 2y2 − 8

))
,

Pa,v =

(
− 7x12 + x10(26 + 43y2)− x8(61 + 128y2 + 110y4)

− 8y6(−6− y2 + 3y4 + y6) + x6(72 + 175y2 + 252y4 + 150y6)

+ x2y2(30− 24y2 + 37y4 + 122y6 + 47y8)− x4(30 + 96y2 + 159y4 + 248y6 + 115y8)

)
,

where Sa,a(x, y) = Sv,v(x,−y) and Pa,a(x, y) = Pv,v(x,−y).

Majorana DM : Charged Scalar Mediator

χ

χ̄

f

f̄

χ

χ̄

f

f̄

Figure B.5: Majorana DM and charged scalar mediator annihilation involving both t-channel

and u-channel
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The matrix element is,

M =
1

t−m2
MED

ū(p3)
[
g†s + ig†pγ

5
]
u(p1) v̄(p2)

[
gs + igpγ

5
]
v(p4)

− 1

u−m2
MED

ū(p3)
[
g†s + ig†pγ

5
]
u(p2) v̄(p1)

[
gs + igpγ

5
]
v(p4), (2.0.17)

the cross section can be written as Eq.(2.0.11) with,

σv =

√
1− x2/y2

8πm2
φ (1− x2 + y2)2

[
|gp|4Sp + |gs|4Ss +

(
(g†p)

2g2
s + (g†s)

2g2
p

)
Ssp

+
v2

24(y2 − x2)(1− x2 + y2)2

(
|gp|4Pp + |gs|4Ps +

(
(g†p)

2g2
s + (g†s)

2g2
p

)
Psp + |gs|2|gp|2P ′sp

) ]
,

(2.0.18)

where,

Ss = (x+ y)2, Ssp = (y2 − x2), (2.0.19)

Ps = (x+ y)2

(
23x6 − 8x5y − 2x4

(
21y2 + 23

)
+ 16x3y

(
y2 + 3

)
+ x2

(
15y4 + 62y2 + 23

)
− 8xy

(
y4 + 6y2 + 5

)
+ 4y2

(
y4 − 4y2 + 5

))
,

Psp =

(
x8 + x6

(
9y2 − 2

)
+ x4

(
−33y4 − 12y2 + 1

)
+ 5x2y2

(
7y4 + 6y2 − 1

)
− 4y4

(
3y4 + 4y2 − 1

))
,

P ′sp = 8

(
x8 − x6(7y2 + 2) + x4(15y4 + 4y2 + 1)− x2y2(13y4 + 2y2 + 5) + 4(y8 + y4)

)
,

finally Sp(x, y) = Ss(x,−y) and Pp(x, y) = Ps(x,−y).

Majorana DM : Charged Vector Mediator

Majorana DM can annihilate via a t-channel charged vector mediator, as in Fig.B.6,

and picks up a u-channel term from the crossing of the DM legs,

M =
1

t−m2
MED

ū(p3)γµ
[
g†v + g†aγ

5
]
u(p1) v̄(p2)γν

[
gv + gaγ

5
]
v(p4)

×
(
gµν − 1

m2
MED

(p1 − p3)µ(p1 − p3)ν
)

− 1

u−m2
MED

ū(p3)γµ
[
g†v + g†aγ

5
]
u(p2) v̄(p1)γν

[
gv + gaγ

5
]
v(p4)

×
(
gµν − 1

m2
MED

(p2 − p3)µ(p2 − p3)ν
)
. (2.0.20)
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χ

χ̄

f

f̄

χ

χ̄

f

f̄

Figure B.6: Majorana DM and charged vector mediator, V µ, annihilation involving both t-

channel and u-channel.

The cross section can be written as Eq.(2.0.15) with

Sv,v =
(
x3 − x2y − x

(
y2 + 2

)
+ y

(
y2 + 4

))2
, (2.0.21)

Sa,v =
(
x6 − x4

(
3y2 + 4

)
+ x2

(
3y4 + 12y2 + 4

)
− y2

(
y2 + 4

)2
)
,

Pa,a =

(
23x12 + 54x11y − x10

(
49y2 + 162

)
− 40x9y

(
5y2 + 8

)
+x8

(
−30y4 + 456y2 + 419

)
+ 2x7y

(
130y4 + 568y2 + 311

)
+x6

(
150y6 − 348y4 − 1139y2 − 444

)
− 4x5y

(
30y6 + 372y4 + 459y2 + 101

)
+x4

(
−125y8 − 72y6 + 1009y4 + 1164y2 + 164

)
+2x3y

(
−5y8 + 424y6 + 903y4 + 458y2 + 24

)
+x2y2

(
27y8 + 174y6 − 277y4 − 816y2 − 328

)
+ 16xy5

(
y6 − 11y4 − 37y2 − 32

)
+ 4y4

(
y8 − 12y6 − 3y4 + 24y2 + 56

))
,

Pa,v =

(
3x12 − x10

(
43y2 + 58

)
+ x8

(
170y4 + 404y2 + 47

)
− x6

(
310y6 + 1040y4 + 437y2 − 68

)
+ x4

(
295y8 + 1276y6 + 1161y4 − 4y2 − 60

)
− x2y2

(
143y8 + 758y6 + 1199y4 + 352y2 − 120

)
+ 4y4

(
7y8 + 44y6 + 107y4 + 72y2 − 24

))
,

where Sa,a(x, y) = Sv,v(x,−y) and Pa,a(x, y) = Pv,v(x,−y).
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Φ

Φ†

f

f̄

Figure B.7: Scalar DM exchanging a scalar mediator.

B.0.2 Scalar DM

Scalar DM : Scalar Mediator

A real or complex scalar can exchange a neutral scalar mediator with a pair of

fermions as shown in Fig.B.7. The matrix element is very simple,

M =
1

s−m2
MED

Λgχū(p3)(gs + igpγ
5)v(p4), (2.0.22)

then the cross section may be written as,

σv =
g2
χΛ2
√

1− x2/y2

4πm4
φ(1− 4y2)2

[
g2
sSss + g2

pSpp +
v2

8(1− 4y2)

(
g2
sPss + g2

pPpp
)]
. (2.0.23)

The interference terms ∝ gsgp are zero, the remaining functions are,

Sss = 1− x2/y2, Spp = 1, (2.0.24)

and for the p-wave contributions

Pss =
1

y2

(
x2(3− 28y2) + 16y4

)
,

Ppp =
1

y2 − x2

(
x2(1− 20y2) + 16y4

)
. (2.0.25)

Scalar DM : Vector Mediator

Φ

Φ†

f

f̄

Figure B.8: Scalar DM exchanging a neutral vector mediator.
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Scalar (both real and complex) DM can annihilate to fermions via a neutral

vector mediator, as shown in Fig.B.8, which leads to a matrix element,

M =
gχ

s−m2
MED

ū(p3)γµ(gv + gaγ
5)v(p4) (pν1 − pν2)

×
(
gµν − (p1 + p2)µ(p1 + p2)ν

m2
MED

)
. (2.0.26)

The cross section is purely p-wave and can be written,

σv = v2g2
χ

√
1− x2/y2

6πm2
MED(1− 4y2)2

(
g2
vPv + g2

aPa
)
, (2.0.27)

with

Pv = x2 + 2y2, Pa = 2(y2 − x2). (2.0.28)

Scalar DM : Fermion Mediator

A real scalar DM annihilates via both t and u channel diagrams, whereas a complex

DM annihilate only via t-channel, as shown in Fig.B.9

Φ

Φ†

f

f̄

Φ

Φ†

f

f̄

Figure B.9: A scalar DM exchanging a charged fermion mediator in the t or u-channel. Complex

scalar annihilate via t-channel, real scalar annihilate via both t and u-channels.

Complex DM

M =
1

t−m2
MED

ū(p3)
[(
g†s + ig†pγ

5
)(
/p3
− /p1

+mMED

)(
gs + igpγ

5
)]
v(p4). (2.0.29)

The cross section is written,

σv =

√
1− x2/y2

4πm2
χ(1− x2 + y2)2

[ (
|gs|4Sss + 2|gs|2|gp|2Ssp + |gp|4Spp + ((g†a)

2g2
v + (g†v)

2g2
a)S

′
sp

)
+

v2

24(1− x2 + y2)2

(
|gs|4Pss + 2|gs|2|gp|2Psp + |gp|4Ppp + ((g†a)

2g2
v + (g†v)

2g2
a)P

′
sp

) ]
,

(2.0.30)
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with,

Sss = (x+ 1)2(y2 − x2), (2.0.31)

Ssp = x2(1 + y2 − x2),

S ′sp = y2, (2.0.32)

Ppp =

[
9x8 − 18x7 − x6

(
32y2 + 9

)
+ 4x5

(
13y2 + 9

)
+ x4

(
41y4 + 36y2 − 9

)
− 2x3

(
25y4 + 50y2 + 9

)
+ x2

(
−22y6 − 35y4 + 44y2 + 9

)
+ 16xy4

(
y2 + 4

)
+ 4y4

(
y4 + 2y2 − 5

) ]
,

Psp =
1 + y2 − x2

x2 − y2

[
9x8 − 18x6

(
2y2 + 1

)
+ x4

(
53y4 + 50y2 + 9

)
− 2x2y2

(
17y4 + 20y2 + 3

)
+ 8

(
y8 + y6

) ]
,

P ′sp = − y2

x2 − y2

[
4x8 − x6(16y2 + 11) + 2x4(12y4 + 15y2 + 5)

− x2(16y6 + 27y4 + 38y2 + 2) + 4y4(y4 + 2y2 + 7)

]
,

(2.0.33)

with Spp(x, y) = Sss(−x, y) and Ppp(x, y) = Pss(−x, y).

Real DM

M =
1

t−m2
MED

ū(p3)
[(
g†s + ig†pγ

5
)(
/p3
− /p1

+mMED

)(
gs + igpγ

5
)]
v(p4)

+
1

u−m2
MED

ū(p3)
[(
g†s + ig†pγ

5
)(
/p3
− /p2

+mMED

)(
gs + igpγ

5
)]
v(p4), (2.0.34)

and cross section,

σv =

√
1− x2/y2

πm2
χ(1− x2 + y2)2

[ (
|gs|4Sss + 2|gs|2|gp|2Ssp + |gp|4Spp + ((g†a)

2g2
v + (g†v)

2g2
a)S

′
sp

)
+

v2

24(1− x2 + y2)2

(
|gs|4Pss + 2|gs|2|gp|2Psp + |gp|4Ppp + ((g†a)

2g2
v + (g†v)

2g2
a)P

′
sp

) ]
,

(2.0.35)
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the S are identical to the complex scalar

Pss = (x+ 1)

[
9x7 + 9x6 − 2x5

(
17y2 + 9

)
− 2x4

(
13y2 + 9

)
+ x3

(
41y4 + 50y2 + 9

)
+ x2

(
25y4 + 42y2 + 9

)
− 16xy4

(
y2 + 2

)
− 8y4(y2 + 3)

]
,

Psp =
x2

x2 − y2

[
9x8 − x6

(
43y2 + 27

)
+ x4

(
75y4 + 100y2 + 27

)
− x2

(
57y6 + 119y4 + 63y2 + 9

)
+ 2y2(8y6 + 23y4 + 18y2 + 3)

]
,

P ′sp =
y2

y2 − x2

[
3x6 − 2x4(7y2 + 3) + x2(19y4 + 30y2 + 2)− 8y4(y2 + 3)

]
, (2.0.36)

with Spp(x, y) = Sss(−x, y) and Ppp(x, y) = Pss(−x, y).

B.0.3 Vector DM

Vector DM : Scalar Mediator

Vector DM can annihilate through a scalar mediator, as in Fig.B.10, with matrix

element,

Bµ

B†,µ

f

f̄

Figure B.10: Vector DM exchanging a neutral scalar mediator.

M =
gχΛ

s−m2
MED

ū(p3)(gs + igpγ
5)v(p4)ε(p1) · ε(p2), (2.0.37)

and cross section,

σv =
g2
χΛ2
√

1− x2/y2

12πm4
MEDy

2(1− 4y2)2

[ (
g2
sSss + g2

pSpp

)
− v2

24(1− 4y2)(y2 − x2)

(
g2
sPss + g2

pPpp

) ]
,

(2.0.38)
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where Λ is the mass scale associated to the DM-mediator vertex, Sss = y2 − x2,

Spp = y2 and,

Pss = (y2 − x2)
[
x2(52y2 − 1)− 8(2y4 + y2)

]
,

Ppp = y2
[
x2(5 + 28y2)− 8y2(1 + 2y2)

]
. (2.0.39)

The interference terms are both zero Psp = Ssp = 0.

Vector DM : Vector Mediator

The three possible Lorentz contractions of the triple vector vertex all lead to ampli-

tudes as in Fig.B.11,

Bµ

B†,µ

f

f̄

Figure B.11: Vector DM exchanging a neutral vector mediator.

The coupling structure Bµ,†∂µB
ν leads to,

M =
1

s−m2
MED

ū(p3)γµ(gv + gaγ
5)v(p4)

(
gµν − 1

m2
MED

(p1 + p2)µ(p1 + p2)ν
)
εσ(p1)ερ(p2)

× ((Re(gχ) + iIm(gχ))gνσpρ1 + (Re(gχ)− iIm(gχ))gνρpσ2 ) . (2.0.40)

In this case there is no s-wave term, the p-wave term is,

σv = v2(Re(gχ)2 + 2Im(gχ)2)

√
1− x2/y2

27πm2
V (1− 4y2)2

(
g2
vPvv + g2

aPaa

)
, (2.0.41)

with,

Pvv = 2y2 + x2, Paa = 2y2 − 2x2. (2.0.42)

The coupling structure Bµ∂νB†µ leads to,

M =
1

s−m2
MED

ū(p3)γµ(gv + gaγ
5)v(p4)

(
gµν − 1

m2
MED

(p1 + p2)µ(p1 + p2)ν
)

× (Re(gχ)(p1 + p2) + iIm(gχ)(p1 − p2))ν ε(p1) · ε(p2). (2.0.43)
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In this case there is no s-wave term, the p-wave term is

σv =

√
1− x2/y2

3πm2
V

[
Re(gχ)2g2

a(x
2) (2.0.44)

+
v2

12(1− 4y2)2(y2 − x2)

(
Re(gχ)2g2

aPr,a + Im(gχ)2g2
vPi,v + Im(gχ)2g2

aPi,a
) ]
,

(2.0.45)

with,

Pr,v = 0,

Pr,a =
1

2
x2(8y2 − 5x2)(1− 4y2)2,

Pi,v = (2y4 − x2y2 − x4),

Pi,a = 2(x2 − y2)2. (2.0.46)

Finally, the coupling structure εµνσρB†µ∂νBσ leads to,

M =
1

s−m2
MED

ū(p3)γτ (gv + gaγ
5)v(p4)

(
gτµ − 1

m2
MED

(p1 + p2)τ (p1 + p2)µ
)

× εµνσρ (Re(gχ)(p1 + p2)ν + iIm(gχ)(p1 − p2)ν) εσ(p1).ερ(p2). (2.0.47)

The s-wave term appears only for imaginary couplings

σv =
2
√

1− x2/y2

9πm2
MED(1− 4y2)2

[
Im(gχ)2

(
g2
vSi,v + g2

aSi,a
)

+
v2

24(1− 4y2)(y2 − x2)

(
Re(gχ)2g2

aPr,a + Im(gχ)2g2
vPi,v + Im(gχ)2g2

aPi,a
) ]
,

(2.0.48)

with,

Si,v = x2 + 2y2, (2.0.49)

Si,a = 2(y2 − x2),

Pr,a = 6(x2 − y2)x2(4y2 − 1)3,

Pi,v = −(x4(44y2 + 1) + 2x2y2(4y2 + 5)− 4y4(4y2 + 5)),

Pi,a = 2(x2 − y2)(x2(1 + 44y2)− 2y2(4y2 + 5)).
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Vector DM : Fermion Mediator

When the mediator is a charged fermion, it matters whether the DM is real or

complex, as shown in Fig.B.12, since a real DM has an extra diagram. We consider

these two cases separately.

Bµ

B†,µ

f

f̄

Bµ

B†,µ

f

f̄

Figure B.12: A vector DM exchanging a charged fermion mediator in the t or u-channel. Complex

vector annihilate via t-channel, real vectors annihilate via both t and u-channels.

Complex DM

Complex vector DM scatters through either a t-channel or u-channel diagram,

M =
1

t−m2
MED

ū(p3)
[
γµ
(
g†v + gdaagγ

5
)(
/p3
− /p1

+mMED

)
γν
(
gv + gaγ

5
)]
v(p4) εµ(p1)εν(p2).

(2.0.50)

We will assume for simplicity that ga,v are both real, or both imaginary. Then the

cross section may be written,

σv =

√
1− x2/y2

36πm2
χ(1− x2 + y2)2

[ (
|gv|4Svv + 2|gv|2|ga|2Sav + |ga|4Saa + ((g†a)

2g2
v + (g†v)g

2
a)S

′
av

)
+

v2

24(1− x2 + y2)2

(
|gv|4Pvv + 2|gv|2|ga|2Pav + |ga|4Paa + ((g†a)

2g2
v + (g†v)g

2
a)P

′
av

) ]
,

(2.0.51)
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with

Svv = (y2 − x2)(5x2 − 6x+ 4y2 + 5), (2.0.52)

Sav = −(x4 + x2(7y2 − 9)− 8y4),

S ′av = 4x4 − 4x2(2y2 + 1) + y2(4y2 − 5),

Pvv =

[
53x8 − 78x7 − x6

(
188y2 + 61

)
+ 12x5

(
17y2 + 13

)
+ x4

(
237y4 + 300y2 − 37

)
− 6x3

(
29y4 + 74y2 + 13

)
+ x2

(
−122y6 − 327y4 + 80y2 + 45

)
+ 48xy2

(
y4 + 6y2 + 2

)
+ 4y2

(
5y6 + 22y4 + 23y2 + 12

) ]
,

Pav =
1

x2 − y2

[
25x10 − x8(149y2 + 131) + x6(337y4 + 600y2 + 187)

− x4(367y6 + 951y4 + 697y2 + 81) + 2x2y2(97y6 + 313y4 + 403y2 + 27)

− 8y6(5y4 + 18y2 + 37)

]
,

P ′av =
1

x2 − y2

[
− 28x10 + 92x8(y2 + 1)− x6(88y4 + 193y2 + 100)

+ x4(−8y6 + 54y4 + 158y2 + 36) + x2y2(52y6 + 103y4 + 146y2 − 57)

− 4y4(5y6 + 14y4 + 51y2 − 12)

]
,

with Saa(x, y) = Svv(−x, y) and Paa(x, y) = Pvv(−x, y). It is sufficient to include

only the s-wave terms for any choice of coupling2 .

Real DM

The matrix element for the process is given by contributions from t and u-channel

diagrams,

2If the couplings are complex, then instead of |gv|2|ga|2Sa,v we get,

−2|gv|2|ga|2(x4 − 8y4 + x2(−9 + 7y2)) + ((gvg
†
a)2 + (g†vga)2)(4x4 − 5y2 + 4y4 − 4x2(1 + 2y2))
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M =
1

t−m2
MED

ū(p3)
[
γµ
(
g†v + g†aγ

5
)(
/p3
− /p1

+mMED

)
γν
(
gv + gaγ

5
)]
v(p4) εµ(p1)εν(p2)

+
1

u−m2
MED

ū(p3)
[
γµ
(
g†v + g†aγ

5
)(
/p3
− /p2

+mMED

)
γν
(
gv + gaγ

5
)]
v(p4) εµ(p2)εν(p1).

(2.0.53)

This leads to

σv =

√
1− x2/y2

36πm2
χ(1− x2 + y2)2

[ (
|gv|4Svv + 2|gv|2|ga|2Sav + |ga|4Saa + ((g†a)

2g2
v + (g†v)g

2
a)S

′
av

)
+

v2

24(1− x2 + y2)2

(
|gv|4Pvv + 2|gv|2|ga|2Pav + |ga|4Paa + ((g†a)

2g2
v + (g†v)g

2
a)P

′
av

) ]
,

(2.0.54)

with,

Sss = (y2 − x2)(3x2 − 2x+ 4y2 + 3), (2.0.55)

Ssp = x4 + 3x2 − 9x2y2 + 8y4,

S ′sp = 4x4 − 8x2y2 + 4y4 − 3y2,

Pvv =

(
11x8 + 6x7 − x6

(
14y2 + 19

)
− 4x5

(
19y2 + 3

)
+ x4

(
−61y4 + 48y2 + 5

)
+ 2x3

(
67y4 + 18y2 + 3

)
+ x2

(
120y6 + 51y4 + 70y2 + 3

)
− 8xy2

(
8y4 + 3y2 + 3

)
− 8y2

(
7y6 + 10y4 − 3

))
,

Pav =
1

y2 − x2

(
17x10 − x8(143y2 + 31) + x6(439y4 + 196y2 + 11)

+ x4(−629y6 − 459y4 + 37y2 + 3) + 2x2y2(214y6 + 227y4 − 64y2 + 3)

− 16y6(7y4 + 10y2 − 5)

)
,

P ′av =
1

y2 − x2

(
28x10 − 56x8(3y2 + 1) + x6(392y4 + 215y2 + 28)− 2y2x4(224y4 + 171y2 + 15)

+ x2y2(252y6 + 263y4 − 78y2 + 15)− 8y4(7y6 + 10y4 − 10y2 + 3)

)
,

with Saa(x, y) = Svv(−x, y) and Paa(x, y) = Pvv(−x, y).
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[18] S. Fajfer and N. Košnik, “Prospects of discovering new physics in rare charm

decays,” Eur. Phys. J. C75 no. 12, (2015) 567, arXiv:1510.00965

[hep-ph].

[19] H.E.S.S. Collaboration, V. Lefranc and E. Moulin, “Dark matter search in

the inner Galactic halo with H.E.S.S. I and H.E.S.S. II,” PoS ICRC2015

(2016) 1208, arXiv:1509.04123 [astro-ph.HE].

[20] SuperCDMS Collaboration, R. Agnese et al., “New Results from the

Search for Low-Mass Weakly Interacting Massive Particles with the CDMS

Low Ionization Threshold Experiment,” Phys. Rev. Lett. 116 no. 7, (2016)

071301, arXiv:1509.02448 [astro-ph.CO].

[21] ATLAS Collaboration, G. Aad et al., “Search for new phenomena in final

states with an energetic jet and large missing transverse momentum in pp

collisions at
√
s =8 TeV with the ATLAS detector,” Eur. Phys. J. C75

no. 7, (2015) 299, arXiv:1502.01518 [hep-ex]. [Erratum: Eur. Phys.

J.C75,no.9,408(2015)].

[22] G. Busoni, A. De Simone, T. Jacques, E. Morgante, and A. Riotto, “On the

Validity of the Effective Field Theory for Dark Matter Searches at the LHC

Part III: Analysis for the t-channel,” JCAP 1409 (2014) 022,

arXiv:1405.3101 [hep-ph].

[23] ATLAS Collaboration, M. Aaboud et al., “Search for new phenomena in

final states with an energetic jet and large missing transverse momentum in

pp collisions at
√
s = 13 TeV using the ATLAS detector,” Phys. Rev. D94

no. 3, (2016) 032005, arXiv:1604.07773 [hep-ex].

[24] CMS Collaboration, V. Khachatryan et al., “Search for dark matter, extra

dimensions, and unparticles in monojet events in proton–proton collisions at

http://dx.doi.org/10.1103/PhysRevC.94.045805
http://dx.doi.org/10.1103/PhysRevC.94.045805
http://arxiv.org/abs/1511.09136
http://dx.doi.org/10.1140/epjc/s10052-015-3801-2
http://arxiv.org/abs/1510.00965
http://arxiv.org/abs/1510.00965
http://arxiv.org/abs/1509.04123
http://dx.doi.org/10.1103/PhysRevLett.116.071301
http://dx.doi.org/10.1103/PhysRevLett.116.071301
http://arxiv.org/abs/1509.02448
http://dx.doi.org/10.1140/epjc/s10052-015-3517-3, 10.1140/epjc/s10052-015-3639-7
http://dx.doi.org/10.1140/epjc/s10052-015-3517-3, 10.1140/epjc/s10052-015-3639-7
http://arxiv.org/abs/1502.01518
http://dx.doi.org/10.1088/1475-7516/2014/09/022
http://arxiv.org/abs/1405.3101
http://dx.doi.org/10.1103/PhysRevD.94.032005
http://dx.doi.org/10.1103/PhysRevD.94.032005
http://arxiv.org/abs/1604.07773


BIBLIOGRAPHY 435

√
s = 8 TeV,” Eur. Phys. J. C75 no. 5, (2015) 235, arXiv:1408.3583

[hep-ex].

[25] ATLAS Collaboration, G. Aad et al., “Search for top squark pair

production in final states with one isolated lepton, jets, and missing

transverse momentum in
√
s =8 TeV pp collisions with the ATLAS

detector,” JHEP 11 (2014) 118, arXiv:1407.0583 [hep-ex].

[26] M. Artuso, G. Borissov, and A. Lenz, “CP violation in the B0
s system,” Rev.

Mod. Phys. 88 no. 4, (2016) 045002, arXiv:1511.09466 [hep-ph].

[27] LHCb Collaboration, R. Aaij et al., “Measurement of the CP asymmetry in

B0
s −B0

s mixing,” Phys. Rev. Lett. 117 no. 6, (2016) 061803,

arXiv:1605.09768 [hep-ex].

[28] Heavy Flavor Averaging Group (HFAG) Collaboration, Y. Amhis

et al., “Averages of b-hadron, c-hadron, and τ -lepton properties as of

summer 2014,” arXiv:1412.7515 [hep-ex].

[29] R. J. Hill and M. P. Solon, “Standard Model anatomy of WIMP dark matter

direct detection II: QCD analysis and hadronic matrix elements,” Phys.Rev.

D91 (2015) 043505, arXiv:1409.8290 [hep-ph].

[30] ATLAS Collaboration, G. Aad et al., “Search for squarks and gluinos with

the ATLAS detector in final states with jets and missing transverse

momentum using
√
s = 8 TeV proton–proton collision data,” JHEP 09

(2014) 176, arXiv:1405.7875 [hep-ex].

[31] ATLAS Collaboration, M. Aaboud et al., “Search for squarks and gluinos in

final states with jets and missing transverse momentum at
√
s = 13 TeV

with the ATLAS detector,” Eur. Phys. J. C76 no. 7, (2016) 392,

arXiv:1605.03814 [hep-ex].

[32] F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,”

Astrophys. J 86 (Oct., 1937) 217.

http://dx.doi.org/10.1140/epjc/s10052-015-3451-4
http://arxiv.org/abs/1408.3583
http://arxiv.org/abs/1408.3583
http://dx.doi.org/10.1007/JHEP11(2014)118
http://arxiv.org/abs/1407.0583
http://dx.doi.org/10.1103/RevModPhys.88.045002
http://dx.doi.org/10.1103/RevModPhys.88.045002
http://arxiv.org/abs/1511.09466
http://dx.doi.org/10.1103/PhysRevLett.117.061803
http://arxiv.org/abs/1605.09768
http://arxiv.org/abs/1412.7515
http://dx.doi.org/10.1103/PhysRevD.91.043505
http://dx.doi.org/10.1103/PhysRevD.91.043505
http://arxiv.org/abs/1409.8290
http://dx.doi.org/10.1007/JHEP09(2014)176
http://dx.doi.org/10.1007/JHEP09(2014)176
http://arxiv.org/abs/1405.7875
http://dx.doi.org/10.1140/epjc/s10052-016-4184-8
http://arxiv.org/abs/1605.03814
http://dx.doi.org/10.1086/143864


BIBLIOGRAPHY 436

[33] V. C. Rubin and W. K. Ford, Jr., “Rotation of the Andromeda Nebula from

a Spectroscopic Survey of Emission Regions,” ApJ 159 (Feb., 1970) 379.

[34] D. S. Davis and R. E. White, III, “Rosat temperatures and abundances for a

complete sample of elliptical galaxies,” Astrophys. J. 470 (1996) L35,

arXiv:astro-ph/9607052 [astro-ph].

[35] S. W. Allen, D. A. Rapetti, R. W. Schmidt, H. Ebeling, G. Morris, and

A. C. Fabian, “Improved constraints on dark energy from Chandra X-ray

observations of the largest relaxed galaxy clusters,” Mon. Not. Roy. Astron.

Soc. 383 (2008) 879–896, arXiv:0706.0033 [astro-ph].

[36] R. Massey, T. Kitching, and J. Richard, “The dark matter of gravitational

lensing,” Rept. Prog. Phys. 73 (2010) 086901, arXiv:1001.1739

[astro-ph.CO].

[37] S. Dodelson, Modern Cosmology. Academic Press, Amsterdam, 2003. http:

//www.slac.stanford.edu/spires/find/books/www?cl=QB981:D62:2003.

[38] E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys. 69 (1990)

1–547.

[39] V. S. Alpher, “Ralph A. Alpher, George Antonovich Gamow, and the

Prediction of the Cosmic Microwave Background Radiation,”

arXiv:1411.0172 [physics.hist-ph].

[40] A. A. Penzias and R. W. Wilson, “A Measurement of Excess Antenna

Temperature at 4080 Mc/s.,” ApJ 142 (July, 1965) 419–421.

[41] Planck Collaboration, R. Adam et al., “Planck 2015 results. I. Overview of

products and scientific results,” arXiv:1502.01582 [astro-ph.CO].

[42] K. A. Olive, G. Steigman, and T. P. Walker, “Primordial nucleosynthesis:

Theory and observations,” Phys. Rept. 333 (2000) 389–407,

arXiv:astro-ph/9905320 [astro-ph].

http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/310289
http://arxiv.org/abs/astro-ph/9607052
http://dx.doi.org/10.1111/j.1365-2966.2007.12610.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12610.x
http://arxiv.org/abs/0706.0033
http://dx.doi.org/10.1088/0034-4885/73/8/086901
http://arxiv.org/abs/1001.1739
http://arxiv.org/abs/1001.1739
http://www.slac.stanford.edu/spires/find/books/www?cl=QB981:D62:2003
http://www.slac.stanford.edu/spires/find/books/www?cl=QB981:D62:2003
http://arxiv.org/abs/1411.0172
http://dx.doi.org/10.1086/148307
http://arxiv.org/abs/1502.01582
http://dx.doi.org/10.1016/S0370-1573(00)00031-4
http://arxiv.org/abs/astro-ph/9905320


BIBLIOGRAPHY 437

[43] S. Sarkar, “Big bang nucleosynthesis and physics beyond the standard

model,” Rept. Prog. Phys. 59 (1996) 1493–1610, arXiv:hep-ph/9602260

[hep-ph].

[44] D. N. Schramm and M. S. Turner, “Big bang nucleosynthesis enters the

precision era,” Rev. Mod. Phys. 70 (1998) 303–318,

arXiv:astro-ph/9706069 [astro-ph].

[45] R. A. Alpher, H. Bethe, and G. Gamow, “The origin of chemical elements,”

Phys. Rev. 73 (Apr, 1948) 803–804.

http://link.aps.org/doi/10.1103/PhysRev.73.803.

[46] R. Ichimasa, R. Nakamura, M. Hashimoto, and K. Arai, “Big-Bang

Nucleosynthesis in comparison with observed helium and deuterium

abundances: possibility of a nonstandard model,” Phys. Rev. D90 no. 2,

(2014) 023527, arXiv:1404.4831 [astro-ph.CO].

[47] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh, “Big bang

nucleosynthesis: Present status,” Rev. Mod. Phys. 88 (Feb, 2016) 015004.

http://link.aps.org/doi/10.1103/RevModPhys.88.015004.

[48] P. S. Bhupal Dev, A. Mazumdar, and S. Qutub, “Constraining Non-thermal

and Thermal properties of Dark Matter,” Front. Phys. 2 (2014) 26,

arXiv:1311.5297 [hep-ph].

[49] K. Griest and D. Seckel, “Three exceptions in the calculation of relic

abundances,” Phys. Rev. D43 (1991) 3191–3203.

[50] M. Cannoni, “Relativistic < σvrel > in the calculation of relics abundances: a

closer look,” Phys. Rev. D89 no. 10, (2014) 103533, arXiv:1311.4494

[astro-ph.CO].

[51] K. Griest and M. Kamionkowski, “Unitarity Limits on the Mass and Radius

of Dark Matter Particles,” Phys. Rev. Lett. 64 (1990) 615.

[52] S. P. Martin, “A Supersymmetry primer,” arXiv:hep-ph/9709356

[hep-ph]. [Adv. Ser. Direct. High Energy Phys.18,1(1998)].

http://dx.doi.org/10.1088/0034-4885/59/12/001
http://arxiv.org/abs/hep-ph/9602260
http://arxiv.org/abs/hep-ph/9602260
http://dx.doi.org/10.1103/RevModPhys.70.303
http://arxiv.org/abs/astro-ph/9706069
http://dx.doi.org/10.1103/PhysRev.73.803
http://link.aps.org/doi/10.1103/PhysRev.73.803
http://dx.doi.org/10.1103/PhysRevD.90.023527
http://dx.doi.org/10.1103/PhysRevD.90.023527
http://arxiv.org/abs/1404.4831
http://dx.doi.org/10.1103/RevModPhys.88.015004
http://link.aps.org/doi/10.1103/RevModPhys.88.015004
http://dx.doi.org/10.3389/fphy.2014.00026
http://arxiv.org/abs/1311.5297
http://dx.doi.org/10.1103/PhysRevD.43.3191
http://dx.doi.org/10.1103/PhysRevD.89.103533
http://arxiv.org/abs/1311.4494
http://arxiv.org/abs/1311.4494
http://dx.doi.org/10.1103/PhysRevLett.64.615
http://arxiv.org/abs/hep-ph/9709356
http://arxiv.org/abs/hep-ph/9709356


BIBLIOGRAPHY 438

[53] A. Signer, “ABC of SUSY,” J. Phys. G36 (2009) 073002, arXiv:0905.4630

[hep-ph].

[54] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, “Electroweak symmetry

breaking from dimensional deconstruction,” Phys. Lett. B513 (2001)

232–240, arXiv:hep-ph/0105239 [hep-ph].

[55] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, “Bounds on universal

extra dimensions,” Phys. Rev. D64 (2001) 035002, arXiv:hep-ph/0012100

[hep-ph].

[56] M. Blennow, P. Coloma, E. Fernandez-Martinez, P. A. N. Machado, and

B. Zaldivar, “Global constraints on vector-like WIMP effective interactions,”

JCAP 1604 no. 04, (2016) 015, arXiv:1509.01587 [hep-ph].

[57] S. Liem, G. Bertone, F. Calore, R. Ruiz de Austri, T. M. P. Tait, R. Trotta,

and C. Weniger, “Effective field theory of dark matter: a global analysis,”

JHEP 09 (2016) 077, arXiv:1603.05994 [hep-ph].

[58] J. Abdallah et al., “Simplified Models for Dark Matter and Missing Energy

Searches at the LHC,” arXiv:1409.2893 [hep-ph].

[59] LHC New Physics Working Group Collaboration, D. Alves, “Simplified

Models for LHC New Physics Searches,” J. Phys. G39 (2012) 105005,

arXiv:1105.2838 [hep-ph].

[60] J. Alwall, P. Schuster, and N. Toro, “Simplified Models for a First

Characterization of New Physics at the LHC,” Phys. Rev. D79 (2009)

075020, arXiv:0810.3921 [hep-ph].

[61] ATLAS Collaboration, M. Aaboud et al., “Search for new phenomena in

events with a photon and missing transverse momentum in pp collisions at
√
s = 13 TeV with the ATLAS detector,” JHEP 06 (2016) 059,

arXiv:1604.01306 [hep-ex].

http://dx.doi.org/10.1088/0954-3899/36/7/073002
http://arxiv.org/abs/0905.4630
http://arxiv.org/abs/0905.4630
http://dx.doi.org/10.1016/S0370-2693(01)00741-9
http://dx.doi.org/10.1016/S0370-2693(01)00741-9
http://arxiv.org/abs/hep-ph/0105239
http://dx.doi.org/10.1103/PhysRevD.64.035002
http://arxiv.org/abs/hep-ph/0012100
http://arxiv.org/abs/hep-ph/0012100
http://dx.doi.org/10.1088/1475-7516/2016/04/015
http://arxiv.org/abs/1509.01587
http://dx.doi.org/10.1007/JHEP09(2016)077
http://arxiv.org/abs/1603.05994
http://arxiv.org/abs/1409.2893
http://dx.doi.org/10.1088/0954-3899/39/10/105005
http://arxiv.org/abs/1105.2838
http://dx.doi.org/10.1103/PhysRevD.79.075020
http://dx.doi.org/10.1103/PhysRevD.79.075020
http://arxiv.org/abs/0810.3921
http://dx.doi.org/10.1007/JHEP06(2016)059
http://arxiv.org/abs/1604.01306


BIBLIOGRAPHY 439

[62] A. De Simone and T. Jacques, “Simplified models vs. effective field theory

approaches in dark matter searches,” Eur. Phys. J. C76 no. 7, (2016) 367,

arXiv:1603.08002 [hep-ph].

[63] J. Goodman and W. Shepherd, “LHC Bounds on UV-Complete Models of

Dark Matter,” arXiv:1111.2359 [hep-ph].

[64] H. Dreiner, D. Schmeier, and J. Tattersall, “Contact Interactions Probe

Effective Dark Matter Models at the LHC,” Europhys. Lett. 102 no. 5,

(2013) 51001, arXiv:1303.3348 [hep-ph].

[65] G. Busoni, A. De Simone, E. Morgante, and A. Riotto, “On the Validity of

the Effective Field Theory for Dark Matter Searches at the LHC,” Phys.

Lett. B728 (2014) 412–421, arXiv:1307.2253 [hep-ph].

[66] G. Busoni, A. De Simone, J. Gramling, E. Morgante, and A. Riotto, “On the

Validity of the Effective Field Theory for Dark Matter Searches at the LHC,

Part II: Complete Analysis for the s-channel,” JCAP 1406 (2014) 060,

arXiv:1402.1275 [hep-ph].

[67] O. Buchmueller, M. J. Dolan, and C. McCabe, “Beyond Effective Field

Theory for Dark Matter Searches at the LHC,” JHEP 01 (2014) 025,

arXiv:1308.6799 [hep-ph].

[68] P. Harris, V. V. Khoze, M. Spannowsky, and C. Williams, “Constraining

Dark Sectors at Colliders: Beyond the Effective Theory Approach,” Phys.

Rev. D91 (2015) 055009, arXiv:1411.0535 [hep-ph].

[69] D. Abercrombie et al., “Dark Matter Benchmark Models for Early LHC

Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum,”

arXiv:1507.00966 [hep-ex].

[70] G. Busoni et al., “Recommendations on presenting LHC searches for missing

transverse energy signals using simplified s-channel models of dark matter,”

arXiv:1603.04156 [hep-ex].

http://dx.doi.org/10.1140/epjc/s10052-016-4208-4
http://arxiv.org/abs/1603.08002
http://arxiv.org/abs/1111.2359
http://dx.doi.org/10.1209/0295-5075/102/51001
http://dx.doi.org/10.1209/0295-5075/102/51001
http://arxiv.org/abs/1303.3348
http://dx.doi.org/10.1016/j.physletb.2013.11.069
http://dx.doi.org/10.1016/j.physletb.2013.11.069
http://arxiv.org/abs/1307.2253
http://dx.doi.org/10.1088/1475-7516/2014/06/060
http://arxiv.org/abs/1402.1275
http://dx.doi.org/10.1007/JHEP01(2014)025
http://arxiv.org/abs/1308.6799
http://dx.doi.org/10.1103/PhysRevD.91.055009
http://dx.doi.org/10.1103/PhysRevD.91.055009
http://arxiv.org/abs/1411.0535
http://arxiv.org/abs/1507.00966
http://arxiv.org/abs/1603.04156


BIBLIOGRAPHY 440

[71] D. Goncalves, P. A. N. Machado, and J. M. No, “Simplified Models for Dark

Matter Face their Consistent Completions,” arXiv:1611.04593 [hep-ph].

[72] F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, “Implications of

unitarity and gauge invariance for simplified dark matter models,” JHEP 02

(2016) 016, arXiv:1510.02110 [hep-ph].

[73] C. Englert, M. McCullough, and M. Spannowsky, “S-Channel Dark Matter

Simplified Models and Unitarity,” Phys. Dark Univ. 14 (2016) 48–56,

arXiv:1604.07975 [hep-ph].

[74] M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, “How

to save the WIMP: global analysis of a dark matter model with two

s-channel mediators,” JHEP 09 (2016) 042, arXiv:1606.07609 [hep-ph].

[75] J. Abdallah et al., “Simplified Models for Dark Matter Searches at the

LHC,” Phys. Dark Univ. 9-10 (2015) 8–23, arXiv:1506.03116 [hep-ph].

[76] G. D’Ambrosio, G. F. Giudice, G. Isidori, and A. Strumia, “Minimal flavor

violation: An Effective field theory approach,” Nucl. Phys. B645 (2002)

155–187, arXiv:hep-ph/0207036 [hep-ph].

[77] B. Batell, J. Pradler, and M. Spannowsky, “Dark Matter from Minimal

Flavor Violation,” JHEP 08 (2011) 038, arXiv:1105.1781 [hep-ph].

[78] R. Ding and Y. Liao, “Spin 3/2 Particle as a Dark Matter Candidate: an

Effective Field Theory Approach,” JHEP 04 (2012) 054, arXiv:1201.0506

[hep-ph].

[79] A. Y. Ignatiev, V. A. Kuzmin, and M. E. Shaposhnikov, “Is the electric

charge conserved?,” Physics Letters B 84 (July, 1979) 315–318.

[80] B. Holdom, “Two U(1)’s and Epsilon Charge Shifts,” Phys. Lett. B166

(1986) 196–198.

http://arxiv.org/abs/1611.04593
http://dx.doi.org/10.1007/JHEP02(2016)016
http://dx.doi.org/10.1007/JHEP02(2016)016
http://arxiv.org/abs/1510.02110
http://dx.doi.org/10.1016/j.dark.2016.09.002
http://arxiv.org/abs/1604.07975
http://dx.doi.org/10.1007/JHEP09(2016)042
http://arxiv.org/abs/1606.07609
http://dx.doi.org/10.1016/j.dark.2015.08.001
http://arxiv.org/abs/1506.03116
http://dx.doi.org/10.1016/S0550-3213(02)00836-2
http://dx.doi.org/10.1016/S0550-3213(02)00836-2
http://arxiv.org/abs/hep-ph/0207036
http://dx.doi.org/10.1007/JHEP08(2011)038
http://arxiv.org/abs/1105.1781
http://dx.doi.org/10.1007/JHEP04(2012)054
http://arxiv.org/abs/1201.0506
http://arxiv.org/abs/1201.0506
http://dx.doi.org/10.1016/0370-2693(79)90048-0
http://dx.doi.org/10.1016/0370-2693(86)91377-8
http://dx.doi.org/10.1016/0370-2693(86)91377-8


BIBLIOGRAPHY 441

[81] S. A. Abel and B. W. Schofield, “Brane anti-brane kinetic mixing,

millicharged particles and SUSY breaking,” Nucl. Phys. B685 (2004)

150–170, arXiv:hep-th/0311051 [hep-th].

[82] B. Batell and T. Gherghetta, “Localized U(1) gauge fields, millicharged

particles, and holography,” Phys. Rev. D73 (2006) 045016,

arXiv:hep-ph/0512356 [hep-ph].

[83] E. Gabrielli, L. Marzola, M. Raidal, and H. Veermäe, “Dark matter and
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