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Abstract 

Ageing describes the decreased functionality and inability to resist physiological 

stress exhibited by all tissues as they get older. The skin is no exception to this rule; 

experiencing both intrinsic and extrinsic ageing which results in the remodelling of 

the entire tissue through degradation of extracellular matrix (ECM) proteins. In 

recent years, advancements in 2D cell culture and 3D bioengineered skin models 

have begun to help us better understand the workings of human skin. However, 

there is a need for the development of an ‘aged’ skin model, which would offer an 

innovative opportunity to further explore the ageing process, in a realistic, 

reproducible and readily available format. A key aspect of any ageing model, is that 

it must exhibit changes in biomarkers that have been linked to in vivo skin ageing. 

With this in mind, this project aims to identify key biomarkers of ageing through 

analysis of both mRNA and protein levels; specifically focusing on the dermal 

compartment.  
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1. Introduction 

The process of ageing is characterised as a decrease in functionality due to a 

failure to maintain homeostasis in response to physiological stress; causing the 

body to gradually decline. Research suggests that there is no one cause; genetics, 

exposure to environmental stresses and build-up of reactive oxygen species (ROS), 

all having been linked to resulting in the ageing phenotype (Mancini et al., 2014). 

Like all tissues, skin can age intrinsically; resulting in thinning of the dermis, build-up 

of senescent keratinocytes, and break down of collagen and elastic fibres; however, 

it also has a separate ageing process known as extrinsic ageing. The phenotype of 

wrinkled skin derived from extrinsic ageing is thought to be caused by exposure to 

UVB; with the effects being superimposed onto those seen in intrinsic ageing to 

accelerate the ageing process (Naylor et al., 2011).  

Skin’s primary function is to act as a barrier; both keeping pathogenic organisms out 

of the body, and preventing heat and water loss from within. As it ages, this barrier 

function is compromised; subject to the physiological changes skin undergoes 

during its lifetime (Proksch et al., 2008). Skin is composed of two distinct layers; the 

avascular epidermis, made up of keratinocytes, and the vascular and relatively 

acellular dermis, made up of fibroblasts. These two layers are joined at the DEJ, 

where the epidermis is anchored to a collagen IV-rich basement membrane via 

hemidesmosomes, and the dermis is bound through fibrillin-rich microfibril bundles 

and collagen VII fibrils (Naylor et al., 2011). The extracellular matrix (ECM) 

components of the dermis are thought to be secreted by dermal fibroblasts, and it is 

the changes in this ECM that characterises skin ageing (Brun et al., 2015). 

Collagens I and III are the most abundant ECM proteins in the dermis, and co-

polymerise to provide the tissue’s tensile strength. In addition, skin elasticity 

(resilience and compliancy) is provided by the presence of an elastic fibre system; 

fibrillin-rich oxytalan fibres at the DEJ, perpendicularly merging with elastin in the 

reticular dermis to provide a complex architecture that enables the skin to deform 

and recoil. Finally, the group of carbohydrates, collectively referred to as GAGs help 

to maintain skin hydration (Naylor et al., 2011). Unlike the majority of other tissues, 

skin undergoes both an intrinsic and extrinsic ageing process. 

Ageing biomarkers are biological parameters that can be used to predict the rate of 

ageing within a tissue (Johnson, 2006). There are currently several established 

biomarkers of skin ageing, that vary depending on UV exposure. Intrinsic ageing of 
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the skin over time, results in the gradual degradation of collagens I, III and IV, and 

elastic fibres, and the loss of oligosaccharides, which impacts the skin’s ability to 

retain water. In conjunction, these changes produce the aged phenotype of 

wrinkled, stiffened skin that is less able to recoil. Extrinsic ageing is triggered as a 

result of exposure to UV radiation, and results in a distinctly different remodeling 

event; including both catabolic and anabolic mechanisms (Takeuchi and Rünger, 

2013). These events are dose dependent; severe photoageing resulting in the 

additional loss of collagen VII at the dermal-epidermal junction (DEJ), and the 

increase and redistribution of glycosaminoglycans (GAGs) to co-localise with the 

elastic fibre system. This network is also remodeled; severe photoageing leading to 

the accumulation of disorganised elastic fibre proteins in the reticular dermis (Kohl 

et al., 2011). 

However, it is not just UVB which may have an impact on skin ageing. The effects 

of UVA are poorly understood and have been previously linked to the production of 

ROS. However, a study by Takeuchi and Rünger (Takeuchi & Rϋnger, 2013), 

revealed that exposing primary human fibroblasts (HFP) to long-term doses of UVA 

led to an increased expression of progerin. Progerin is the truncated form of the 

protein lamin A produced by sufferers of Hutchinson Gilford Progeria Syndrome 

(HGPS); a disease in which the ageing process is accelerated. Studies such as that 

carried out by Scaffidi and Misteli (Scaffidi & Misteli, 2006), have shown that 

progerin may play a part in cell senescence and the normal ageing process of skin; 

raising the question as to whether progerin could be used as a biomarker for human 

skin ageing.  

The development of 3D biosynthetic skin models, could enable us to gain a better 

understanding of the ageing process in skin. Currently, there are two main types of 

skin substitute; those grown from tissue samples, and those grown from cells. The 

former are primarily used for skin grafts in burns patients who only have small 

amounts of undamaged skin available (Jean et al., 2011). However, this method 

relies on the availability of tissue biopsies, and is not realistic in terms of research 

due to poor cost-effectiveness and the limited availability of donors. Consequently, 

researchers have begun to experiment with developing full thickness skin models 

grown from fibroblasts and keratinocytes. This is termed the ‘self-assembly’ 

approach; fibroblasts are cultured on a scaffold for several days, then keratinocytes 

are seeded on top and the scaffold is raised to the air liquid interface (Dos Santos et 

al., 2015). Traditionally, these scaffolds are formed using a collagen matrix (Brohem 

et al., 2011). However, a new leading player in the production of 3D scaffolds is 
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Alvetex®; a polystyrene, highly porous membrane on which cells are able to interact 

with each other in a way that mimics cell behaviour in vivo (Knight et al., 2011). 

 

1.1  Skin ageing 

1.1.1 Intrinsic ageing 

Ageing is a progressive process that leads to loss of the physiological function and 

structural integrity of a tissue. Over time, the skin undergoes ageing as a result of 

internal factors that impact its organization and mechanical veracity; this is known 

as intrinsic ageing. Intrinsically aged skin is characterized by extracellular atrophy in 

both the epidermis and the dermis, loss of rete ridges, and a decrease in cell 

number; particularly fibroblasts and mast cells in the dermal compartment 

(Baumann, 2007). As previously mentioned, a large component of skin is the dermal 

ECM, which is comprised of collagen fibres, elastic fibres, and GAGs (Mancini et al, 

2014), and respectively provide skin with its structural integrity, elasticity, and 

hydration. During ageing, these ECM components are gradually degraded (Figure 

1), which contributes to the appearance of aged skin; specifically wrinkling, drying, 

and increased fragility, as well as inferior wound healing (Jenkins, 2002). In intrinsic 

ageing, these changes are attributed to a decrease in the proliferation of skin cells, 

decreased dermal synthesis of ECM proteins, and an increase in the expression of 

collagen-degrading enzymes (Jenkins, 2002).  

A key factor in the inducement of these changes, is cellular senescence; a natural 

phenomenon in which cells enter an irreversible state of cell cycle arrest following a 

set number of population doublings (von Zglinicki et al., 2005), locking them in the 

G1 phase of the cell cycle. Key biomarkers of senescence, include repression of 

genes required for progression out of the G1 phase, and upregulation of negative 

growth regulators such as p21 and p16. In senescent fibroblasts, genes such as c-

Fos proto-oncogene, ID1 and ID2, and E2F transcription factor components, are 

down-regulated, whilst in keratinocytes an age-related reduction in receptor 

phorphorylation and epidermal growth factor (EGF) binding is observed (Jenkins, 

2002). Moreover, senescent cells are also known to secrete chemokines, cytokines, 

and growth factors; collectively known as senescence-associated secretory 

phenotype (SASP) factors. These SASP components, have been found to have a 

paracrine effect on local cells; ultimately inducing cellular senescence via a 

mechanism known as the bystander effect (Tasdemir & Lowe, 2013). As 
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senescence provides an immunity to apoptosis, intrinsic ageing is thus associated 

with a gradual accumulation of senescent cells (Jenkins, 2002). The main effect of 

having a high number of senescent cells in skin, is that it changes the balance of 

collagen turnover. In presenescent cells, expression of collagen-degrading MMPs is 

relatively low, whilst MMP inhibitors TIMPs are expressed at a relatively high level 

(Jenkins, 2002). However, in senescent cells this is reversed; resulting in an 

increase in collagen degradation due to MMP upregulation (Rodier & Campisi, 

2011). The combination of a reduced cell number, and an increase in senescent 

cells, results in both a decrease in ECM production, and an increase in collagen 

breakdown; ultimately facilitating the process of intrinsic ageing (Mancini et al., 

2014). 

Cellular senescence can arise as a result of the cell reaching its Hayflick limit; an 

inbuilt cut off point in its capacity to divide (Shay & Wright, 2000). Nontheless, one 

of the most prevalent causes of premature senescence, is exposure to oxidative 

stress, and the subsequent DNA damage (Poljšak et al., 2012). Oxidative stress 

occurs as a result of an imbalance between antioxidative activity, and production of 

ROS. Most ROS are produced as a byproduct of respiration in the mitochondria, 

and as cells age, these mitochondria become ‘leaky’; enabling more ROS to escape 

(Poljšak et al., 2012). Exposure to ROS has been linked to decreased proliferation, 

and premature senescence in dermal fibroblasts (Stöckl et al., 2006). Consequently, 

combined with a natural decrease in the efficiency of DNA damage repair 

mechanisms, oxidative stress has been hallmarked as the most important 

contributor in chronological skin ageing (Poljšak et al., 2012).  

1.1.2 Extrinsic ageing 

Extrinsically aged skin describes areas such as the face, chest, arms and hands, 

which are exposed to the sun, and thus subjected to prolonged dosage of UV 

radiation (UVR). Physically, these areas appear different to non-exposed, 

intrinsically aged skin which tends to be relatively unblemished and smooth, with 

slight lining (Baumann, 2007). However, extrinsically aged skin is characterised by 

obvious wrinkles, changes to the pigmentation, and loss of elasticity combined with 

increased fragility of the tissue (Baumann, 2007). At a structural level, photoageing 

results in both anabolic and catabolic remodelling of the ECM; with a significant loss 

of both dermal collagens, and collagen VII at the DEJ, combined with an increase in 

dermal GAG content, which co-localises with abundant and disorganised elastic 

fibres (Figure 1, Naylor et al., 2011).  
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Figure 1: Remodelling of the ECM in intrinsically and extrinsically aged skin 

ECM remodelling is a key feature of ageing in skin tissue. Intrinsic ageing is characterised 

by a decrease in collagen expression (A – collagen shown in red), decreased elastic fibres, 

particularly fibrillin (B – elastin shown in blue and fibrillin in green), and reduction of GAGs 

(C – hyaluronic acid shown in orange and chondroitin sulphate glycosaminoglycan side 

chains shown in brown and green). Extrinsic ageing exhibits both anabolic and catabolic 

changes, with a significant loss of dermal collagen, and anchoring fibrils at the DEJ (A). 

Elastic fibres are remodelled and redistributed in disorganised aggregates (B), whilst GAG 

levels are increased, and components are redistributed across the dermis to colocalise with 

elastic fibres (C). Figure adapted from Naylor et al. (2011).  
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The connection between oxidative stress and skin ageing has already been alluded 

to with regards to chronological ageing. However, oxidative stress also plays a 

significant role in extrinsic ageing as a consequence of UVR exposure. UVR 

triggers the production of ROS, and once their level exceeds the antioxidant 

capacity of the body, oxidative stress occurs. As UVR promotes the production of a 

greater number of ROS than would be produced intrinsically, onset of oxidative 

stress occurs much sooner than would be observed in photoprotected regions of 

skin. As a result, the DNA damage associated with oxidation begins to accumulate 

at an earlier age in photoexposed skin; explaining the differences in severity of the 

ageing process (Poljšak & Dahmane, 2012). When UVR comes into contact with 

cells, it is absorbed by DNA which subsequently leads to the inactivation of DNA 

functions due to the production of photoproducts such as thymine and pyrimidine 

dimers (Calleja-Agius, 2013). In keratinocytes, UVR increases superoxide 

production by upregulating the activity of xanthine oxidase (Halliday, 2005). 

Moreover, UVR also triggers a decrease in the activity of enzymatic antioxidants 

such as catalase; leading to an increase in ROS, but a diminished ability to degrade 

them (Poljšak & Dahmane, 2012).  

In addition to increasing ROS production, UVR also leads to inflammation of the 

skin by augmenting blood flow; resulting in an influx of leukocytes. This is primarily 

promoted by lipid peroxidation, which leads to an increase in prostaglandin 

production (Tsoureli-Nikita et al., 2006). In addition, UVR has also been linked to 

increased levels of interleukin-1α (IL-1α) and tumour necrosis factor (TNF); both of 

which promote an inflammatory response (Halliday, 2005). The recruited leukocytes 

secrete further ROS; increasing the levels of oxidative stress within the tissue 

(Reuter et al., 2010). One effect of this, is the activation of growth factor receptors 

and cytokines, which activates the mitogen-activated kinase pathway (MAPK). The 

MAPK pathway induces activator protein 1 (AP-1) transcription, which subsequently 

upregulates the MMP genes (Tsoureli-Nikita et al., 2006). Parallel to this process, 

ROS also act to deactivate TIMPs; thus increasing the amount of collagen 

degradation in photoexposed skin, compared to intrinsically aged tissue. In a final 

mechanism, loss of collagen in the dermis, effects the stimuli being received by 

fibroblasts; resulting in altered gene expression that results in less collagen being 

produced by the cells (Fisher et al., 2009). 

In terms of changes to elastin, intrinsic ageing is shown to result in a slow 

degradation of elastic fibres over time. However, in photoexposed skin, elastin 

levels are observed to increase and form disorganised aggregates (Naylor et al., 
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2011). Studies have shown that, unlike the collagens, UVR exposure induces an 

increase in elastin expression in the skin (Seite et al., 2006). In conjunction with 

this, it has also been found that areas of elastin that experience UV damage, are 

subsequently bound by lysozymes, which act to protect elastin from degradation 

(Seite et al., 2006). Consequently, UVR induces both an upregulation of elastin 

production, whilst damaged elastin fibres are unable to be cleared; explaining the 

abnormal elastic fibre deposition observed in extrinsically aged skin. Finally, dermal 

GAG content has also been observed to increase in photoageing; however, the 

mechanism behind this is still poorly understood (Oh et al., 2011). 

 

1.2  Ageing biomarkers of the skin 

In 1988, Baker and Sprott stated that, “A Biomarker of Aging (BoA) is a biological 

parameter of an organism that either alone or in some multivariate composite will, in 

the absence of disease, better predict functional capability at some late age, than 

will chronological age” (Baker and Sprott, 1988). However, in reality, this statement 

is very broad, and fails to take into account that each organ ages differently and 

thus will exhibit different biomarkers. In terms of skin, both intrinsic and extrinsic 

mechanisms take place during ageing, and therefore even in this one tissue, there 

are multiple different biomarkers depending on which area of the body is examined.  

1.2.1 Biomarkers of ECM degradation 

In the previous discussion on skin ageing (1.1), the majority of the key ageing 

biomarkers in both intrinsic and extrinsic ageing have already been introduced. 

Most significant, are those changes in ECM components such as the collagens, 

elastic fibres and GAGs; all three elements decreasing in intrinsic ageing, whilst in 

extrinsic, collagen degradation is accelerated, and elastin and GAG content 

increases (Mancini et al., 2014). In addition, proteins such as MMPs and TIMPs, 

which play a key role in controlling collagen turnover are important biomarkers, with 

MMPs increasing with age, and TIMPs decreasing; this being exacerbated in 

photoexposed skin (Fisher et al., 2014). Furthermore, it has also been mentioned 

that skin ageing is characterised by accumulation of senescent cells, and thus 

biomarkers of senescence such as p16INK4a, p21 (Ressler, 2006) and senescence-

associated β-galactosidase (SA-β-Gal) could also be biomarkers of tissue-wide 

ageing (Debacq-Chainiaux et al., 2009). Finally, another significant component of 

ageing is oxidative stress, and thus inflammatory cytokines and enzymes involved 
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in antioxidation have been targeted as biomarkers of skin ageing; an example being 

TNF-α; a marker of inflammation that has been observed to increase with age 

(Gonzalo-Calvo et al., 2010).  

1.2.2 Progerin as a potential ageing biomarker 

The LMNA gene is located on chromosome 1, and encodes the A-type lamins; 

predominantly the major isoforms lamin A and lamin C. However, it is highly prone 

to mutation; as observed in sufferers of HGPS, where a de novo mutation in codon 

608 of exon 11, changes nucleotide 1824 from a cysteine to a thymine. This 

introduces a cryptic splice site, which produces a truncated form of lamin A known 

as progerin (Meredith et al., 2008). Lamin A is part of the nuclear envelope scaffold 

that maintains the integrity and structure of the nucleus, and is targeted to the 

nuclear membrane through the post-translation addition of a farnesyl group. This 

farnesyl group is then cleaved by an endoprotease, ZMPSTE24; enabling lamin A to 

migrate and interact with lamins B and C to form the scaffold. However, in the 

truncated progerin, the endoprotease cleavage site has been lost, meaning that 

progerin becomes trapped at the nuclear membrane and cannot join the scaffold 

(Cao et al., 2011). In addition, it exerts a dominant negative effect on lamin A by 

interacting with it so it cannot move from the membrane.  

In HGPS, the expression of progerin results in an accelerated ageing phenotype, 

due to early apoptosis of cells as a result of the abnormal nuclear structure. In light 

of this, it is logical to question whether progerin expression plays a part in normal 

human ageing. In 2006, Scaffidi and Misteli looked at human skin fibroblasts taken 

from young (3 - 11yrs) and old (81 – 98yrs) donors. Using reverse transcriptase 

polymerase chain reaction (RT-PCR) with primers for exons 9 and 12, the team 

were able to amplify a truncated product. DNA sequencing confirmed it to be Δ50 

lamin A (progerin). To validate this, a splicing reporter was transfected into cells 

from young and old donors; revealing that there was sporadic use of the cryptic 

splice site in healthy cells. However, no difference in the amount of progerin mRNA 

was observed between the young and the old donors; suggesting that there is no 

positive correlation between increased age and use of the cryptic splice site 

(Scaffidi & Misteli, 2006).  

One possible explanation for this could be the proposed connection between 

progerin and the von Hippel-Lindau protein (pVHL); a component of a ubiquitin-

ligase E3 that degrades targeted cellular proteins. In renal cancers where the VHL 
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gene is mutated, progerin protein levels are elevated (Jung et al., 2013). 

Immunoprecipitation of pVHL and progerin has confirmed direct binding between 

the two, and pVHL levels have been found to be inversely correlated with progerin 

half-life (Jung et al., 2013). Whilst the link between pVHL and progerin in an ageing 

context is yet to be explored; if pVHL levels do change with age, the fact it regulates 

post-translation, could explain why Scaffidi and Misteli (Scaffidi & Misteli, 2006) 

found no difference in mRNA levels between donors. 

In a similar study, McClintock et al. (2007) examined progerin levels in fibroblasts 

taken from skin biopsies Samples included newborn foreskin, and skin from donors 

aged 22 to 97 years. As with the Scaffidi study, McClintock et al. found that when 

they carried out RT-PCR analysis, Δ50 cDNA was detected in all samples, but with 

no age-related difference observed. Nevertheless, the team then carried out a 

Western blot analysis to measure the levels of protein present in the cell. They 

found that there was no progerin detected in young samples, despite the evidence 

that mRNA was being produced. However, progerin was detected in samples from 

elderly donors, with the amount actually seeming to increase the older the donor. 

These results seem to consolidate the theory that pVHL may have a role in age-

related progerin elevation. Moreover, whilst the current evidence is inconclusive, it 

does appear that levels of progerin protein increase correlatively with age.  

As mentioned previously, skin can be extrinsically aged through exposure to UV 

radiation. To explore the effects sun-exposure has on age-related progerin 

expression, Takeuchi and Rünger (Takeuchi & Rünger, 2013) irradiated fibroblasts 

(young, aged in vivo and aged in vitro) with both short-wave UVB and long-wave 

UVA Historically, UVB has been viewed as the main cause of photoageing. 

However, recent studies have shown that UVA is in fact a major factor; being more 

abundant, penetrating deeper into the dermis and having the ability to travel through 

glass (Battie et al., 2014). Takeuchi and Rünger (Takeuchi & Rünger, 2013) 

observed this; both high dose acute exposure, and low dose chronic exposure to 

UVA resulting in increased progerin production. Results revealed that UVA 

exposure led to higher levels of progerin mRNA but not of lamin A; suggesting that 

the damage caused by UVA irradiation results in increased usage of the cryptic 

splice site. However, the induction of progerin following low dose exposure was only 

observed in the aged cells (in vivo and in vitro); suggesting that prolonged exposure 

to UVA is of greater detriment to older individuals and cells reaching senescence; 

perhaps due to a reduced ability to repair DNA damage. Whilst previous studies 
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have tried to link progerin to intrinsic skin ageing, Takeuchi and Rünger (Takeuchi & 

Rünger, 2013) provide compelling evidence that progerin is actually produced as a 

result of extrinsic ageing Whilst this negates the concept that the HGPS phenotype 

is a direct example of inherent accelerated ageing, it does provide a possible role 

for progerin as a biomarker for photoageing in skin. 

 

1.3  Skin models 

Whilst our knowledge of the skin is expansive, it is by no means complete.  For 

example, it is not fully understood how elastic fibres impact skin elasticity, and whilst 

it is accepted that dermal fibroblasts play a major role in ECM production, the 

changes undergone during ageing are still to be fully explored (Naylor et al., 2011). 

In order to help target these gaps in our knowledge, scientists have begun to 

investigate the development of synthetic skin models in vitro. Not only would this 

allow an exploration into the mechanism behind skin ageing, it could also be used to 

look at various diseases such as psoriasis, eczema and melanoma and test 

possible drug treatments without the need for animal testing.  

1.3.1 Current skin models 

As mentioned previously, there are currently two main approaches to producing skin 

models; growing a skin substitute from tissue, or combining fibroblasts and 

keratinocytes on a scaffold (Jean et al., 2011). The latter is rapidly gaining 

momentum as a technique for in vitro analysis of skin. Whilst 2D culture is a 

relatively easy method of investigating cells in vitro, it provides no information on the 

structure of a living tissue, and the behaviour of cells within it. In order to grow a 

skin model, fibroblasts are first cultured in 2D before being seeded onto a scaffold 

where they are cultured for around 7 days; enabling the cells to form a dermal 

compartment. Keratinocytes are then seeded on top of this dermis and the model is 

cultured at the air liquid interface to allow the epidermis to form (Dos Santos et al., 

2015). In some older skin models, fibroblasts were cultured without the use of a 

scaffold; being left to grow in the presence of ascorbic acid until they formed sheets 

of fibroblasts that layered on top of one another (Michel et al., 1999). Whilst this 

technique is positive in that it does not involve the use of synthetic materials, it is 

not very physiologically accurate. The dermis is composed primarily of collagen and 

elastic fibres which ultimately provides skin tissue with its pliability and resilience 

(Naylor et al., 2011). As a result, there are relatively few fibroblasts in comparison to 
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the amount of ECM. If skin models are grown without a scaffold, the resulting 

dermis will have an extremely high cell density in comparison to the in vivo tissue 

and as such this is perhaps not the most physiologically relevant simulation. 

Traditionally, the scaffolds used in skin models are created from a collagen matrix 

populated by fibroblasts (Brohem et al., 2011). However, this too has its issues in 

that it prevents study into the ECM deposition of the fibroblasts under different 

conditions and thus hinders investigation into cell behaviour within the tissue. This 

has begun to lead to the development of scaffolds that are not formed from 

biological materials; enabling the tissue models to mature and deposit their own 

ECM. 

1.3.2 Alvetex® technology 

3D cell culture scaffolds are widely used in the production of skin models, as they 

enable cells to grow in a more physiological environment. As mentioned previously, 

some skin models are created to be utilised in a skin graft, and as such require a 

biodegradable scaffold (Jean et al., 2007). However, for models that are to be used 

for routine cell culture and laboratory analysis, synthetic scaffolds offer a more 

controlled and robust environment that will not interfere with investigations into the 

tissue’s ECM.  

Alvetex® 3D scaffolds are formed of rigid polystyrene and are created by 

polymerisation in high internal phase emulsion (Knight et al., 2011). The scaffold 

itself is only 200 µm thick, therefore ensuring that all cells within the scaffold receive 

an equal flow of nutrition, waste and gas exchange (Maltman & Przyborksi, 2010). 

Moreover, the polystyrene is highly porous, with a void size of around 40 µm. These 

voids allow cells to interact with each other in a way that enables them to produce 

tissue-like structures within the scaffold (Knight & Przyborksi, 2014). This in vivo-like 

interaction between cells provides the optimal environment to induce realistic gene 

expression. Consequently, using Alvetex® 3D scaffolds to explore ageing 

biomarkers, presents a favourable opportunity to develop a robust model of skin 

ageing. 

1.3.3 Ageing skin models 

One significant bonus of the self-assembly model, is that it can be manipulated to 

mimic aged skin and different pathogenic phenotypes. Dos Santos et al. (Dos 

Santos et al., 2015) created an aged skin model through prolonged culture. Using 

fibroblasts and keratinocytes from young donors (1 - 2 years), samples were taken 
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at 42, 60, 75 and 120 days. They then measured thickness of the epidermis, and 

expression of proliferation marker Ki67, and epidermal differentiation markers 

p16INK4A, involucrin, filaggrin, loricrin and transglutaminase. Results showed that 

at day 120, the epidermis was significantly thinner than at day 42, and the number 

of Ki67 expressing cells had decreased.  Moreover, comparison of keratinocyte 

proliferation marker expression with that of skin from young and old donors clearly 

suggested that day 120 samples exhibits an aged phenotype (Dos Santos et al., 

2015). 

This ability to produce a model of aged skin provides scientists with the opportunity 

to begin exploring possible treatments and drugs to slow or reverse the ageing 

process. In terms of cosmetics, this is highly significant. In a recent study, Kim et al. 

(Kim et al., 2015) grew young and senescent fibroblasts under 3D culture 

conditions. They observed that senescent fibroblasts had a lower migration rate and 

basal contractility than young cells. However, treatment of the aged cells with 

recombinant human epidermal growth factor (rhEGF) led to an increase in both their 

rate of migration and contractility, to a level similar and sometimes even higher than 

that of the young cells (Kim et al., 2015).  

Another promising study was carried out by Heise et al. (Heise et al., 2006). There 

is strong evidence that all-trans retinoic acids (RA) have a reparative effect on UV-

damaged skin when applied topically (Watson et al., 2001). In the skin, all-trans Ras 

are metabolised into 4-oxo-RA, which has been shown to have pharmacological 

properties with regards to skin cells (Baron et al., 2005). A key enzyme involved in 

the formation of this metabolite is cytochrome P450 26 (CYP26), and Heise et al. 

(Heise et al., 2006) aimed their study at investigating its expression in human 

keratinocytes and dermal fibroblasts; comparing this directly to human skin 

samples, and 3D skin models. Fascinatingly, they observed that monolayer 

keratinocytes and fibroblasts expressed only minimal levels of CYP26, whilst 3D 

skin models were perceived to express significantly greater levels of the protein. 

Moreover, expression was localised to the basement membrane of the epidermis, 

which is where it is observed in human skin (Heise et al., 2006). Consequently, this 

shows that basic 2D culture greatly limits our ability to study tissue behaviour in 

vitro. It is therefore clear that the future of cell culture lies in the development of 3D 

tissue equivalents, which replicate the in vivo environment. 
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1.4  Aims and objectives 

The aim of this thesis is to identify key skin ageing biomarkers, and compare their 

changes in expression both in vivo, and in vitro, in both 2D and 3D culture. The 

main objectives of the project are:  

1. To identify potential ageing biomarkers using mircroarray data provided by 

Proctor and Gamble (P&G).  

2. To identify whether those biomarkers show similar changes in young and old 

human skin samples.  

3. To compare ageing biomarkers in human skin, with expression in control 

and irradiated neonatal human dermal fibroblasts, and young and old adult 

human dermal fibroblasts 

4. To compare progerin levels in control and irradiated neonatal human dermal 

fibroblasts, and young and old adult human dermal fibroblasts. 

5. To compare the results from 2D culture, with biomarker changes in control 

and irradiated neonatal human dermal fibroblasts grown in 3D on Alvetex® 

scaffolds. 
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2. Materials and Methods 

2.1   2D cell culture 

2.1.1 Human dermal fibroblasts, neonatal (HDFn) 

The HDFn (ThermoFisher Scientific, Cramlington, UK) were cultured in Medium 106 

(M106, ThermoFisher) supplemented with 10ml Low Serum Growth Serum (LSGS, 

ThermoFisher) and 1ml Gentamicin/Amphotericin (ThermoFisher), following the 

supplier’s instructions. Upon revival, 0.5x106 cells were seeded into a T175 flask 

(Greiner BioOne, Stonehouse, UK) containing 25ml pre-warmed medium. Flasks 

were incubated in a humidified atmosphere with 5% CO2 at 37°C, medium changed 

every 2 to 3 days and passaged at 100% confluency. Cells were frozen down in 1ml 

cryovials (Starlab) at approximately 2x106 cells per ml in 1ml Synth-a-freeze 

(ThermoFisher) and kept at -150°C for long-term storage. 

2.1.2 Human mammary gland/breast tissue carcinoma line MDA-MB-231  

The human mammary gland/breast tissue carcinoma line MDA-MB-231 were grown 

in Dulbecco’s Modified Eagle Medium (DMEM, Gibco™, ThermoFisher) 

supplemented with 10% Foetal Bovine Serum (FBS, Gibco™), 2mM L-glutamine 

(Lonza, Castleford, UK) and 1ml Penicillin/Streptomycin (Lonza). Upon revival, 

0.75x106 to 2.25x106 cells were seeded into a T75 flask (Greiner BioOne) 

containing 12ml pre-warmed medium. Flasks were incubated in a humidified 

atmosphere with 5% CO2 at 37°C, medium changed every 2 to 3 days and 

passaged at around 70 to 80% confluency. Cells were frozen down in 1ml cryovials 

(Starlab) at approximately 2x106 cells per ml in 1ml 90% FBS and 10% DMSO 

(Sigma-Aldrich) and kept at -150°C for long-term storage. 

2.1.3 Coriell Biorepository, human dermal fibroblasts 

Non-foetal human dermal fibroblasts were obtained from the NIGMS Human 

Genetic Cell Repository (Coriell Institute, Camden, USA). Six cell lines were utilized 

(see Table 1), all obtained from Caucasian male donors. 
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Cell line Harvest site Age (years) 

Passage split 

ratio 

GM03348 Inguinal area 10 1:6 

GM00323 Arm 11 1:3 

GM00316 Arm 12 1:3 

AG06292 Arm 82 1:2 

AG11651 Arm 82 1:3 

AG12443 Arm 82 1:3 

 

Table 1: Non-foetal human dermal fibroblasts lines obtained from the NIGMS Human 

Genetic Cell Repository (Coriell Institute, Camden, USA). 

 

As per the supplier’s instructions, GM03348 were grown in Minimal Essential 

Medium (MEM, Gibco™) containing Earle’s Salts and Non-Essential Amino Acids 

(NEAAs) and supplemented with 10% FBS (Gibco™) and 1ml 

Penicillin/Streptomycin (Lonza). GM00323 and GM00316 were grown in MEM 

containing Earle’s Salts and NEAAs and supplemented with 15% FBS (Gibco™) 

and 1ml Penicillin/Streptomycin (Lonza). AG06292, AG11651 and AG12443 were 

grown in MEM containing Hank’s BSS and L-glutamine (Gibco™) and 

supplemented with 15% FBS (Gibco™), 26mM Hepes and 1ml 

Penicillin/Streptomycin (Lonza). Upon revival, the entire contents of the cryovials 

were seeded into T25 flasks (Greiner BioOne) containing 7ml pre-warmed medium. 

Flasks were incubated in a humidified atmosphere with 5% CO2 at 37°C, medium 

changed every 2 to 3 days, and cells were passaged upon reaching 100% 

confluency. Cells were frozen down in 1ml cryovials (Starlab) at approximately 

2x106 cells per ml in 1ml of their usual medium, containing 10% DMSO (Sigma-

Aldrich), and kept at -150°C for long-term storage. 
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2.2   Irradiation of HDFn 

Prior to irradiation, HDFn were seeded into T75 flasks (0.2 x 106 per flask) and 

allowed to grow to approximately 70% confluency.  

All irradiation was carried out using a Gulmay CP320 X-ray generator. Flasks were 

removed from the incubator and carried to the irradiator in an insulated box to keep 

them at an ambient temperature. The flasks were irradiated one at a time, and 

placed at a distance of 18 cm from the beam. The machine was set at 320kV, 10mA 

and the time was adjusted according to the dose required. 

 

 

 

 

 

 

 

 

 

 

Table 2: Settings used on X-ray machine to achieve required dosage (Gy). 

 

Following irradiation, the flasks were immediately returned to cell culture and 

rescued with pre-warmed M106 medium to reduce exposure to free radicals. The 

cells were medium changed three times a week as usual, and a stable senescent 

phenotype was observed from 10 days post-irradiation. 

 

2.3   3D cell culture 

2.3.1 Alvetex® 3D dermal equivalents, HDFn 

Alvetex® in a 12-well insert (Reinnervate, Sedgefield, UK) were pre-treated by 

soaking in 70% ethanol for 2 to 5 minutes in a large petri dish. They were then 

washed with PBS, before being submerged in M106 medium until required. 

Standard dermal equivalents were made using passage 4 HDFn. The inserts were 

Time display Actual time Dose (Gy) 

3.3 3m 18s 20.44 

4.1 4m 6s 25.39 

4.9 4m 54s 30.35 

5.7 5m 42s 35.30 
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transferred to a 6-well plate (Greiner Bio-one) and 100µl cell suspension, containing 

0.5 x 105 cells, was seeded in a drop-wise manner onto each scaffold. The plate 

was incubated in a humidified atmosphere with 5% CO2 at 37°C for 60 minutes. 

M106 medium was supplemented with 1% ascorbic acid and 5ng/ml TGFβ1, and 

10ml of this medium was added to each well; ensuring not to pipette it directly onto 

the scaffold. The plate was again incubated in a humidified atmosphere with 5% 

CO2 at 37°C and grown for 28 days, with a full medium change every 3 to 4 days. 

 

2.4   Immunocytochemistry 

2.4.1 Immunocytochemistry 

13 mm coverslips were placed into a 24-well plate and cells were seeded onto them 

at low density and grown for two days in 1ml of their relevant medium, incubated in 

a humidified atmosphere with 5% CO2 at 37°C. Cells were fixed in 4% PFA for 15 

minutes at room temperature. The coverslips were then washed three times in PBS 

for 5 minutes each. Blocking solution was made up of 20% neonatal calf serum 

(NCS) in PBS with 0.4% triton X-100 (Sigma) to allow permeabilization. Blocking 

was carried out for one hour at room temperature. Coverslips were incubated with 

the primary antibodies at 4°C overnight, in a humid atmosphere. Coverslips were 

washed in PBS three times for 10 minutes each. Coverslips were incubated for 60 

minutes at room temperature with the secondary antibodies, then washed three 

times in PBS for 5 minutes each. They were then mounted onto slides using a drop 

of hard-set VECTASHIELD® anti-fade mounting medium with DAPI 

(VectorLaboratories). Slides were left to dry in a slide book at room temperature for 

15 – 20 minutes then kept at 4°C until ready to image. All slides were imaged within 

1 week of staining using an epifluorescent Zeiss Axioskop 40 microscope. 
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Antibody 
Code Manufacturer 

Species and 

Isotype 
Dilution 

Anti-Lamin A/C IQ332 ImmuQuest 
Mouse monoclonal, 

IgG1 
1:100 

Anti-Ki67 (Alexa 

Fluor® 488) 
ab154201 Abcam 

Rabbit monoclonal, 

IgG 
1:100 

 

Anti-Mouse 

(Alexa Fluor® 

488) 

A21202 ThermoFisher 
Donkey polyclonal, 

IgG (H + L) 
1:1000 

 

Table 3: Primary and secondary antibodies used in immunocytochemistry. All antibodies 

were diluted in blocking solution. 

 

2.5   Histology 

2.5.1 Paraffin embedding of Alvetex® 3D cultures 

Alvetex® scaffold membranes were unclipped from their inserts and transferred to a 

6-well plate using forceps. They were washed in PBS for approximately 2 minutes, 

then fixed in 4% PFA (Sigma-Aldrich) at 4°C overnight. Scaffolds were washed in 

PBS three times for 5 minutes, then dehydrated in 30%, 50%, 70%, 80%, 90% and 

95% ethanol for 10 minutes each. The scaffolds were then transferred to cassettes 

and placed in a beaker of 100% ethanol for 30 minutes. The ethanol was replaced 

with Histoclear (ThermoFisher) before being left for a futher 30 minutes. Half of the 

Histoclear (ThermoFisher) was emptied and replaced with molten paraffin wax 

(ThermoFisher) and the beaker was incubated in a 60°C oven for 30 minutes. 

Finally, the Histoclear:wax mixture was removed and replaced with 100% molten 

wax, and the beaker was incubated for a further 60 minutes in the 60°C oven. 

The membranes where removed from the cassettes and laid flat on tin foil to allow 

them to dry. Once hardened, a scalpel blade was used to cut each membrane in 

half. Molten wax was poured into a dispomould and the membranes were 

orientated, using forceps, so that the cut edge of the membrane was in contact with 

the wax. The cassette was then placed over the membranes and molten wax was 

poured over the top until the mould was full. These were left to set at room 
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temperature overnight. All wax blocks were sectioned at 7μm using a Leica 

RM2125RT microtome and mounted onto Superfrost plus microscope slides 

(ThermoFisher, 4951PLUS4). 

2.5.2 OCT embedding of Alvetex® 3D cultures 

Alvetex® scaffold membranes were unclipped from their inserts and transferred to a 

6-well plate using forceps then washed in PBS for approximately 5 minutes. A 

dispomould was filled with Optimal Cutting Temperature compound (OCT) and the 

membranes were cut in half using a scalpel. They were then inserted into the OCT 

using forceps, and orientated, so that the cut edge of the membrane was towards 

the bottom of the mould. The mould was then placed on a metal plate in a box 

containing liquid nitrogen. The block was left to set for 30 minutes then wrapped in 

tin foil and placed in a -80°C freezer until required. They were sectioned at 7μm 

using a cryostat, and mounted onto Superfrost plus microscope slides 

(ThermoFisher). After cutting, sections were left to dry at room temperature for 30 

minutes then placed in the -20°C freezer until needed. 

2.5.2 Haematoxylin and Eosin staining 

Slides were deparaffanised in Histoclear (ThermoFisher) for 5 minutes, then 

gradually rehydrated; first being submerged in 100% ethanol for 2 minutes, then 

moved to 95% ethanol, 70% ethanol and deionised water for 1 minute each. The 

slides were soaked in Mayer’s Haematoxylin for 5 minutes, then submerged in 

alkaline ethanol for 30 seconds. Samples were once again dehydrated through 

submersion in 70% ethanol and 95% ethanol for 30 seconds each. They were then 

soaked in eosin for 30 seconds and further dehydrated through submersion in 95% 

ethanol for two rounds of 10 seconds, 100% ethanol for 15 seconds, 100% ethanol 

for 30 seconds, then Histoclear (ThermoFisher) for two rounds of 30 seconds. 

Slides were mounted in DPX (VWR, Leicestershire, UK) using a glass coverslip and 

left to dry overnight at room temperature. Brightfield images were taken using a 

Leica ICC50HD microscope. 

2.5.3 Immunohistochemistry of paraffin embedded human skin samples 

Slides were submerged in Histoclear (ThermoFisher) for 10 minutes to deparaffinise 

them. Samples were then rehydrated for 5 minutes in 100% ethanol, 5 minutes in 

70% ethanol and 5 minutes in PBS. Antigen retrieval was carried out through 

submersion in citrate buffer for 20 minutes at 95°C. Slides were gradually cooled 
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then transferred to a humidified box and blocked for 60 minutes at room 

temperature. Blocking solution was made up of 20% neonatal calf serum (NCS) in 

PBS with 0.4% triton X-100 (Sigma-Aldrich) to allow permeabilisation. Slides were 

incubated with the primary antibodies at 4°C overnight. 

Slides were washed in PBS three times for 10 minutes each. Slides were incubated 

for 60 minutes at room temperature with the secondary antibodies, before being 

washed 3 times in PBS for 5 minutes each. Slides were mounted using hard-set 

VECTASHIELD® anti-fade mounting medium with DAPI (VectorLaboratories, 

Peterborough, UK) and a glass coverslip. Slides were left to dry in a slide book at 

room temperature for 15 – 20 minutes then kept at 4°C until ready to image. All 

slides were imaged within 1 week of staining using an epifluorescent Zeiss 

Axioskop 40 microscope. 

Antibody 
Code Manufacturer Species and Isotype Dilution 

Anti-Elastin ab77804 Abcam 
Mouse monoclonal, 

IgG1 
1:100 

 

Anti-Mouse 

(Alexa Fluor® 

488) 

A21202 ThermoFisher 
Donkey polyclonal, 

IgG (H + L) 
1:1000 

 

Table 4: Primary and secondary antibodies used in immunohistochemistry on paraffin wax 

embedded sections. All antibodies were diluted in blocking solution. 

 

2.5.4 Immunohistochemistry of frozen human skin samples 

Frozen human skin samples were provided by Proctor and Gamble (P&G, 

Cincinnati, USA) and sectioned using a cryostat. Slides were stored at -80°C and 

allowed to thaw at room temperature for 30 minutes before use. They were then 

washed for 10 minutes in PBS, before being fixed. 4% PFA fixation was carried at 

room temperature for 10 minutes. For acetone fixation, ice-cold acetone was used 

and fixation took place at -20°C for 10 minutes. Slides were then washed three 

times in PBS for 5 minutes each.  

Slides were transferred to a humidified box and blocked for 60 minutes at room 
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temperature. Blocking solution was made up of 20% neonatal calf serum (NCS) in 

PBS with 0.4% triton X-100 (Sigma-Aldrich) to allow permeabilisation. Slides were 

incubated with the primary antibodies at 4°C overnight. Slides were washed in 

TBST three times for 10 minutes each before being incubated for 60 minutes at 

room temperature with the secondary antibodies. Slides were washed 3 times in 

TBST for 5 minutes each, then mounted using hard-set VECTASHIELD® anti-fade 

mounting medium with DAPI (VectorLaboratories) and a glass coverslip. Slides 

were left to dry in a slide book at room temperature for 15 – 20 minutes then kept at 

4°C until ready to image. All slides were imaged within 1 week of staining using an 

epifluorescent Zeiss Axioskop 40 microscope. 

Antibody 
Code Manufacturer 

Species and 

Isotype 
Dilution Fixation 

Anti-Lamin A/C IQ332 ImmuQuest 
Mouse 

monoclonal, IgG1 
1:100 PFA 

Anti-Collagen 

IV 
ab6586 Abcam 

Rabbit polyclonal, 

IgG 
1:100 Acetone 

Anti-Collagen I ab34710 Abcam 
Rabbit polyclonal, 

IgG 
1:100 PFA 

 

Anti-Mouse 

(Alexa Fluor® 

488) 

A21202 ThermoFisher 
Donkey polyclonal, 

IgG (H + L) 
1:1000 

Anti-Rabbit 

(Alexa Fluor® 

488) 

A21206 ThermoFisher 
Donkey polyclonal,  

IgG (H + L) 
1:1000 

 

Table 5: Primary and secondary antibodies used in immunohistochemistry on OCT 

embedded sections. All antibodies were diluted in blocking solution. 
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2.6   Western Blot 

2.6.1 Preparation of lysates from flask cultures 

Protein lysates were made using 500µl RIPA buffer containing 5µl protease 

inhibitors. 

RIPA buffer: 

50 mM Tris 

pH 7.5 – 8  

150 mM NaCl 

0.1% SDS 

1% Nonidet P-40 

0.5% Sodium-deoxycholate 

1% Protease Inhibitors 

All lysates were taken from a T75 flask. Flasks were rinsed with PBS then 500 µl of 

RIPA buffer was pipetted onto the base of the flask, and a cell scraper was used to 

dislodge cells. The resulting lysate was sonicated for 30 minutes, then spun in a 

4°C centrifuge for 20 minutes at 13,000 rpm. The supernatant was removed and 

placed in a clean Eppendorf, before being stored in the -20°C freezer until required. 

 2.6.2 Preparation of lysates from Alvetex® cultures 

Protein lysates were made using 500 µl RIPA buffer containing 5 µl protease 

inhibitors. 

All lysates were taken from one whole Alvetex® scaffold. The scaffold disk was 

unclipped from the insert using forceps, and the membrane was rinsed in PBS 

before being transferred to an eppendorf containing 500 µl of buffer. Blunt forceps 

were used to break it up the scaffold, then the lysate was sonicated for 30 minutes, 

and spun in a 4°C centrifuge for 20 minutes at 13,000 rpm. The supernatant was 

removed (leaving the membrane behind) and the lysate was placed in a clean 

eppendorf, before being stored in the -20°C freezer until required. 

2.6.3 Sample and gel preparation 

A Bradford Assay was used to assess the protein concentration of each lysate, 

using protein standards of 1 mg, 0.75 mg, 0.5 mg, 0.25 mg and 0.125 mg (Biorad, 

Hemel Hempstead, UK), detergent compatible reagent, and RIPA buffer as a blank. 
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As per the manufacturer’s instructions, samples were left to incubate with the 

reagent at room temperature for 10 minutes. A plate reader was then used to 

calculate the absorbency of each sample. Absorbance was read at 595 nm. 150 µl 

of each sample was then diluted in 45 µl of Laemmli and 5 µl β-mercaptoethanol. 

The samples were then heated on a hot plate at 95°C for 10 minutes.  

Gels were made using the following recipes – each recipe makes two 1.5 mm gels: 

5% stacking gel: 

dH2O – 5.625 ml 

Prosieve acrylimide – 750 μl  

1.5 M Tris pH 6.8 – 1 ml 

10% SDS – 75 μl 

10% APS – 75 μl 

Temed – 7.5 μl 

8% resolving gel: 

dH2O – 11.4 ml 

Prosieve acrylimide – 3.2 ml 

1.5 M Tris pH 8.8 – 5 ml 

10% SDS – 200 μl 

10% APS – 200 μl 

Temed – 10 μl 

10% resolving gel: 

dH2O – 10.6 ml 

Prosieve acrylamide – 4 ml  

1.5 M Tris pH 6.8 – 5 ml 

10% SDS – 200 μl 

10% APS – 200 μl 

Temed – 10 μl 

2.6.4 Electrophoresis and electrotransfer  

Gels were loaded with 20 µg of protein, and run at 120 V. Transfer was carried out 

at 250 mA for approximately 90 minutes (for larger proteins, transfer was carried out 

at 4°C overnight using 15 V; increasing this to 30 V for 2 hours the next day). 
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Membranes were blocked for 60 minutes in 5% milk (semi-skimmed milk powder in 

TBST) and incubated with primary antibodies overnight in a 4°C cold room. The 

membrane was then washed three times for 10 minutes each in TBST before being 

incubated with the secondary antibody at room temperature for 60 minutes. The 

membrane was again washed three times for 10 minutes each in TBST.  

The membrane was treated using either the Biorad ECL kit (Biorad) or the 

Amershan ECL kit (GE Healthcare, Chalfont ST Giles, UK), depending on the 

antigen being investigated.  

 

 

Antibody 
Code Manufacturer 

Species and 

Isotype 
Dilution Gel Transfer 

Anti-Lamin 

A/C 
IQ332 ImmuQuest 

Mouse 

monoclonal, 

IgG1 

1:200 10% 105 mins 

Anti-

Progerin 
ab153757 Abcam 

Rabbit 

polyclonal, IgG 
1:250 10% 105 mins 

Anti-

Collagen I 
1310-01 SouthernBiotech Goat, IgG 1:1000 8% Overnight 

Anti-Elastin ab77804 Abcam 

Mouse 

monoclonal, 

IgG1 

1:1000 10% 105 mins 

Anti-p21 ab7960 Abcam 
Rabbit 

polyclonal, IgG 
1:250 14% 90 mins 

Anti-

p16INK4a 
ab108349 Abcam 

Rabbit 

monoclonal, 

IgG 

1:2000 14% 90 mins 

Anti-B actin ab8224 Abcam 

Mouse 

monoclonal, 

IgG 

1:10,000 - - 
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Anti-

Mouse 

HRP 

A4416 Sigma-Aldrich 

Goat 

polyclonal, IgG 

(H + L) 

1:3000 

Anti-

Rabbit 

HRP 

711035152 Stratech 

Donkey 

polyclonal, IgG 

(H + L) 

1:3000 

 

Table 6: Primary and secondary antibodies used in Western blot. All antibodies were diluted 

in 5% milk. 

 

2.7   RT-qPCR 

2.7.1 Preparation of lysates from flask cultures 

RNA extraction was carried out using the ReliaPrepTM RNA Cell Miniprep System 

(Promega, Southampton, UK). RNA lysates were made using 500 µl BL buffer 

containing 5 µl 1-Thioglycerol.  

All lysates were taken from a T75 flask. Flasks were rinsed with ice cold PBS then 

500 µl of BL buffer was pipetted onto the base of the flask, and a cell scraper was 

used to dislodge cells. The resulting lysate was stored in a -80°C freezer until 

required. 

2.7.2 RNA extraction 

As mentioned previously, the ReliaPrepTM RNA Cell Miniprep System (Promega) 

was used to extract RNA, following the protocol provided with the kit. 170 μl of 

isopropanol was added to each lysate before they were transferred into a 

Minicolumn, which was placed inside a Collection Tube and centrifuged for 30 

seconds at 14,000 x g. Liquid was disgarded from the Collection Tube, and 500 μl 

RNA Wash Solution was added to each Minicolumn and they were centrifuged for 

another 30 seconds. The Collection Tubes were emptied and the DNase I 

incubation mix was prepared fresh by combining 24 μl Yellow Core Buffer, 3 μl 0.09 

M MnCl2 and 3 μl DNase I enzyme per sample. 30 μl of this mix was added directly 

to the membrane inside the Minicolumn and left to incubate for 15 minutes at room 

temperature. 200 μl Column Wash Solution was then added to each Minicolumn 

and they were spun at 14,000 x g for 15 seconds. 500 μl RNA Wash Solution and 
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the Minicolumns were centrifuged again for 30 seconds. The Collection Tubes were 

disgarded and the Minicolumn were transferred to a new Collection Tube. 300 μl of 

RNA Wash Solution was added and the Minicolumns were centrifuged at high 

speed for 2 minutes. The Minicolumns were transferred to an Elution Tube and 

Nuclease-Free Water was added to the membrane; the volume of which was 

determined based on the approximate cell input range. The tubes were then 

centrifuged for a final time for 1 minute. The resulting RNA contained within the 

Elution Tube was then assessed for yield and quality using a Nanodrop. Samples 

with an A260/A280 ratio of 1.7 – 2.1, and an A260/A230 ratio of 1.8 – 2.2 were accepted 

and stored at -80°C until required. 

2.7.3 Reverse transcription 

Reverse Transcription (RT) was carried out using a High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, ThermoFisher). The 2x RT master mix was 

prepared as instructed in the kit’s protocol; 10 μl for each RNA sample. 10 μl of 

each sample was then added and the tubes were briefly centrifuged to ensure all 

liquid was at the bottom. The tubes were then placed in a 96-tube Eppendorf 

Mastercycler and run through the appropriate cycle: 10 minutes at 25°C, 120 

minutes at 37°C, 5 minutes at 85°C and then held at 4°C. The resulting cDNA 

samples were stored in a -20°C freezer until required. 

2.7.4 qPCR 

cDNA samples were diluted 1:5 to produce a concentration of 10 ng/µl, i.e. 80 µl 

RNase-free water was added to each 20 µl sample. The TaqMan Master Mix 

(ThermoFisher) was then prepared: 

Housekeeping Master Mix (n = 1) - for 15ng cDNA  

AB TaqMan Universal Master Mix 2 with UNG (#444031) – 10 µl 

TaqMan Primer – 1 µl  

RNase-free H20 - 7.5 µl 

 

Master Mix (n = 1) - for 60ng cDNA  

AB TaqMan Universal Master Mix 2 with UNG (#444031) – 10 µl 

TaqMan Primer – 1 µl  

RNase-free H20 – 3 µl  
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18S was used as the housekeeping gene. 18.5 µl of the relevant Master Mix was 

added to each well of a 96-well PCR plate (Starlab), then 1.5 µl cDNA was added. 

For the genes under analysis, 14 µl of Master Mix was added to each well, and 6 µl 

of cDNA. RNase-free water was used as a blank. The plates were centrifuged at 

1000 rpm for 3 minutes then the plate was placed in a PCR machine and a cycle 

was run. 

Gene Code 

18S HS03003631_g1 

COL1A1 HS00164004_m1 

COL4A1 HS00266237_m1 

FBN1 HS00171191_m1 

ELN HS00355783_m1 

MMP1 HS00899658_m1 

TIMP1 HS00171558_m1 

HAS2 HS00193435_m1 

  

Table 7: TaqMan (ThermoFisher) primers used in qPCR. 

 

Each cDNA sample was added to 3 wells, and the average ct value was 

calculated. This was then normalised to the housekeeping gene 18S, by subtracting 

the average housekeeping gene ct from the average ct of the gene being analysed, 

giving the Δct. The average Δct of each experimental group (i.e. irradiated HDFn) 

was normalised to the WT control group (i.e. untreated HDFn) using the equation 

1/POWER(2, aveΔctx-aveΔcty). 

 

2.8  Transcriptomic data analysis 

P&G provided raw probe data from GeneChips used in the P&G Multi-decade and 

Ethnicity Study, and a Photoageing Ageing Pilot Study. Both studies were 

independent of one another and were conducted 9 years apart. Samples were 

taken from the arm and buttock regions of women aged 20, 30, 40, 50, 60 and 
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70yrs. Samples were analysed on Affymetrix HG-U219 GeneChips, with the results 

from the Photoageing Study including data from HG-U133Plus2 GeneChips, which 

were also used. Separate data was provided for full thickness, epidermal and 

dermal compartments. For the purpose of this study, analysis was focused on 

expression changes in the dermis (taken from the P&G MDE Study), and a 

comparison was made between photoprotected and photoexposed sites. 

Biomarkers were selected based on both their prevalence in the literature, and 

whether they had a significant P and/or Q value (< 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

3. Results 

3.1   Analysis of irradiation-induced senescent phenotype 

HDFn exposed to a dose of 20.44 Gy were cultured in flasks for 10 days following 

irradiation, alongside untreated cells which were used as the control. Irradiation has 

been shown to cause irreversible cell cycle arrest which is ultimately the definition of 

cellular senescence. In order to assess the proliferative capacity of the irradiated 

HDFn, the cells were seeded onto a 6-well plate, and were counted every 2 days. 

This revealed that irradiated cells had a significantly lower proliferation rate than the 

control cells, and appeared to have stopped dividing altogether by day 15 post-

irradiation (Figure 2). 

To confirm what was happening at a molecular level, control and irradiated 

fibroblasts were seeded onto glass coverslips 10 days after irradiation, and stained 

for the proliferation marker Ki67 (Figure 3a). The percentage of Ki67 positive nuclei 

for control and irradiated HDFn was calculated, and it was found that irradiated cells 

express significantly less Ki67 than control (Figure 3b). However, a few Ki67 

positive cells were still present following irradiation. To see whether this was due to 

the X-ray dose, further HDFn were treated with 20.44 Gy, 25.39 Gy, 30.35 Gy and 

35.30 Gy and again stained for Ki67. Results revealed that following all X-ray 

doses, Ki67 positive cells were still present after 10 days (Figure 3c). As a result, it 

was decided to continue with a dose of 20.44 Gy for all future irradiation. 
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Figure 2: Change in cell proliferation after irradiation. 

 

HDFn were irradiated with a dose of 20.44 Gy to induce premature senescence, and 

cultured under normal conditions for 10 days. Treated cells were then seeded onto a 6-well 

plate, alongside control HDFn and grown for 7 days. On days 3, 5 and 7, two wells were 

trypsinised and the cells were counted to assess proliferation. Control, Irradiated. Control 

HDFn proliferated rapidly across the 7 day period, whilst irradiated HDFn proliferated slowly 

until day 5 then stopped altogether. n = 2.  
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Figure 3: Analysis of Ki67 expression in control and irradiated HDFn 

(A) HDFn were irradiated with a dose of 20.44 Gy to induce premature senescence. After 10 

days, control and irradiated cells were seeded onto coverslips and stained for the 

proliferation marker Ki67 and the number of positively stained cells were counted. 100 cells 

A 

C 

B 
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were counted for each condition. Scale bar = 50µm. (B) A paired two-tailed T-test revealed 

there was a statistically significant difference in the percentage of ki67 expressing cells 

following irradiation (** P ≤ 0.01, **** P ≤ 0.0001). (C) HDFn were irradiated with increasing 

X-ray doses to assess whether the percentage of Ki67 positive cells could be decreased. 

One-way ANOVA analysis revealed that there was no statistical difference between 20.44 

Gy and higher doses of irradiation.  

 

 

3.2   Identifying ageing biomarkers  

 

Using the raw probe data obtained in P&G’s MDE study, the individual probes for 

each gene of interest were isolated, and the general trends in dermal expression 

between the ages of 20 and 70 yrs were summarised (Table 8). Changes were 

observed in all of the selected markers. For the in vitro component of this study, 

irradiation-induced senescence and adult HDF obtained from photoexposed sites 

were used. Whilst P&G provided probe data from both arm and buttock biopsies, it 

was decided that it would be more relevant to focus on data obtained from arm 

biopsies only. According to the probe data, collagens I and IV decreased with age, 

as did the  hyaluronic acid-producing enzyme, hyaluronan synthase 2. In 

conjunction with one another, MMP-1 expression was found to increase, whilst 

expression of TIMP-1 decreased. The cell cycle inhibitor p21 was increased with 

age, as were lamin A/C and the elastic fibres elastin and fibrillin 1 

Biomarker Photoprotected Photoexposed 

Collagen I (alpha 1)   

Collagen IV (alpha 1)   

Elastin   

Fibrillin 1   

p21   

Lamin A/C   

Hyaluronan synthase 2   

MMP-1   

TIMP-1   
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Table 8: Changes in ageing biomarker mRNA expression patterns in the dermis of young 

and old human skin samples 

Raw probe data obtained from the P&G MDA study.  Skin undergoes both intrinsic 

(photoprotected) and extrinsic ageing (photoexposed). Arrows indicate an increase or 

decrease in mRNA levels with age. Data is based on female donors in an age range of 20 

yrs to 70 yrs .  

 

3.3  Expression of ageing biomarkers in human skin 

The final stage of the ageing biomarker analysis, was to see whether the changes 

observed in the TXP data matched with the protein levels in young and old human 

skin. Human skin samples were provided by P&G, and were taken from women 

aged in their 20s and 60s. For the purpose of this study, analysis was carried out on 

samples obtained from the arm; enabling a direct comparison with the in vitro work, 

which contained both irradiated HDFn, and HDF taken from photoexposed sites.  

Initial H&E staining of the samples revealed clear changes in the appearances of 

young and old skin (Figure 4), such as alterations in dermal protein content, and 

appearance of the epidermis.The skin samples were then analysed via 

immunostaining, with sections being taken from three young and three old samples. 

Due to the time restraints of the project, it was only possible to optimise a limited 

number of antibodies for use on tissue sections, and as such the biomarkers 

assessed in the skin samples were elastin, collagen I, collagen IV and lamin A/C. 

Based on the TXP data, it was hypothesized that elastin and lamin A/C would 

increase with age, whilst collagen I and IV would decrease. Most of these predicted 

changes were observed; with the collagen content being lower in the old skin 

samples (Figure 6 and 6)., and the number of disorganised elastin fibres increasing 

(Figure 7). However, lamin A/C was found to decrease rather than increase (Figure 

8), which was more reminiscent of intrinsic ageing, rather than the extrinisic ageing 

associated with photoexposure. 
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Figure 4: H&E stains of human skin samples taken from the arm biopsies of young and old 

donors. 

Human skin samples taken from arm biopsies of female donors, provided by P&G. (A) 

Young skin showed extensive collagen expression throughout the entire dermis, indicated 

by the bright pink staining denoting high protein content. The epidermis is relatively thick, 

with distinctive rete ridges at the DEJ. (B) Old skin showed significant loss of collagen 

content, indicated by the pale staining in the dermal compartment. The epidermis appears 

thinner in some areas and there is clear loss of rete ridges.  Scale bars = 100 µm. PD = 

papillary dermis, RD = reticular dermis. 
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PD 

RD 
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Figure 5: Immunofluorescence analysis of collagen I expression in young and old human 

skin samples 

Human skin samples taken from arm biopsies of female donors, provided by P&G. OCT 

embedded sections fixed in PFA. Blue = DAPI, green = collagen I. (A) Young (21yrs) skin 

showed extensive collagen I expression throughout the entire dermis. (B) Old (63yrs) skin 

showed some collagen I staining in the papillary dermis, but the reticular dermis showed a 

significant loss of collagen fibres. Scale bars = 100 µm. PD = papillary dermis, RD = reticular 

dermis. n = 3. 
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Figure 6: Immunofluorescence analysis of collagen IV expression in young and old human 

skin samples 

 

Human skin samples taken from arm biopsies of female donors, provided by P&G. OCT 

embedded sections fixed in acetone. Blue = DAPI, green = collagen IV. (A) Young (21yrs) 

skin showed collagen IV expression along the entire epidermal basement membrane. (B) 

Old (65yrs) skin was found to have inconsistent, ‘patchy’ collagen V expression with some 

gaps (arrows). Scale bars = 100 µm. PD = papillary dermis, RD = reticular dermis. n = 3. 
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Figure 7: Immunofluorescence analysis of elastin expression in young and old human skin 

samples 

 

Human skin samples taken from arm biopsies of female donors, provided by P&G. Paraffin 

embedded sections fixed in PFA. Blue = DAPI, green = elastin. (A) Young (21yrs) skin 

showed a moderate level of elastin fibre expression throughout the dermis, with some 

individual fibres visible (arrows). (B) Old (61yrs) skin was found to have a significantly 

greater proportion of elastin fibres, which formed disorganized aggregates in the dermis 

(arrows). Scale bars = 100 µm. PD = papillary dermis, RD = reticular dermis. 
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Figure 8: Immunofluorescence analysis of lamin A/C expression in young and old human 

skin samples 

 

Human skin samples taken from arm biopsies of female donors, provided by P&G. OCT 

embedded sections fixed in PFA. Blue = DAPI, green = lamin A/C. (A) Young (21yrs) skin 

showed strong lamin A/C straining in the epidermis; particularly in the suprabasal layers. (B) 

Old (61yrs) again showed mainly suprabasal staining, but there appeared to be less than 

was observed in the young skin. Scale bars = 100 µm. PD = papillary dermis, RD = reticular 

dermis. n = 3. 
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3.4   Ageing biomarkers in irradiation-induced senescent 

HDFn 

3.4.1 Changes in gene expression   

In order to assess gene expression levels of the identified biomarkers, qPCR 

analysis was carried out. RNA lysates were generated from control and irradiated 

HDFn, 10 days after irradiation treatment. qPCR analysis was carried out, using 

TaqMan primers for biomarkers selected from P&G’s transcriptomic (TXP) data. 

Consistent with literature on extrinsic age-related changes, it was observed that 

collagen I decreased following irradiation, whilst elastin and hyaluronan synthase 2 

increased. However, fibrillin 1 expression was observed to decrease, as seen in 

intrinsic ageing. Moreover, MMP-1 expression decreased, and TIMP-1 and collagen 

IV increased (Figure 9); all changes that are not observed in either intrinsic or 

extrinsic ageing of skin. 
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Figure 9: qPCR analysis of biomarker expression in control and irradiated HDFn 

The average ΔCt of irradiated HDFn was normalised to that of the control HDFn using the 

equation 1/POWER(2, aveΔctx-aveΔcty). The Ct value was used to calculate the relative 

transcriptional difference compared to control HDFn (RLTD (control)). Error bars represent 

the standard error of the mean (SEM). Variations in the gene expression of some key 

biomarkers, appear to suggest that irradiation does induce several age-related changes.  

 

 

3.4.2 Changes in protein levels   

 

Protein was extracted from whole cell lysates 10 days after irradiation, and analysed 

by Western blot. Elastin and collagen I behaved as observed in the qPCR analysis. 

In addition, p21 and p16 levels increased following irradiation; consistent with 

reports in the literature. Lamin A/C was expected to increase, based on the data 

from P&G’s microarray analysis. However, lamin C was observed to decrease, and 

lamin A was entirely absent in irradiated HDFn (Figure 10). 
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Figure 10: Western blot analysis of biomarker expression in control and irradiated HDFn 

20µg of protein from each lysate was run through a gel at 120V, and transferred at 

250mA.Blocking was done in 5% milk, and β-actin was used as a loading control. Results 

suggest that irradiation does induce an ageing phenotype in HDFn. Changes observed in 

elastin, collagen I, p21 and p16 follow observations from the literature. The total loss of 

lamin A in irradiated cells was unexpected. Elastin = 68 kDa , collagen I = 139 kDa, (α-1) 

129 kDa (α-2), p21 = 18 kDa, p16INK4a = 17 kDa, lamin A/C = 74 kDa. 
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3.5   Ageing biomarkers in young and old HDF 

The cells were obtained from the Coriell Institute Biorepository, with three cell lines 

for young, and three for old; all obtained from photoexposed biopsy sites. As a 

result, it was hypothesized that the cells would exhibit changes in biomarkers 

associated with extrinsic ageing. 

3.5.1 Changes in gene expression 

In order to provide a more in vivo-like experimental group, HDF taken from young 

and old donors were also analysed. ‘Young’ cell lines were taken from donors aged 

10 to 12yrs, and ‘old’ cell lines were taken from donors aged 82yrs. All donors were 

male, and the majority came from biopsies of the arm. Changes in gene expression 

between the cell lines were analysed using qPCR. Due to problems with RNA 

extraction, only two cell lines from each age group were used; GM03348 and 

GM00323 (young) and AG12443 and AG11651 (old) (Figure 11). qPCR analysis 

was carried out, using TaqMan primers for biomarkers selected from P&G’s 

transcriptomic (TXP) data. Changes observed in elastin, fibrillin 1 and hyaluronan 

synthase 2 do not match those associated with extrinsic ageing in the literature.  
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Figure 11: qPCR analysis of biomarker expression in young and old HDF 

The average ΔCt of old HDF was normalised to that of the young HDF using the equation 

1/POWER(2, aveΔctx-aveΔcty). The Ct value was used to calculate the relative 

transcriptional difference compared to young HDF (RLTD (young)). Error bars represent the 

standard error of the mean (SEM). Changes were observed between young and old HDF for 

all biomarkers analysed. However, the changes reflected those seen in intrinsic ageing 

rather than extrinsic. The decrease observed in MMP-1 with age, does not reflect any known 

ageing phenotype. 

 

3.5.2 Changes in protein levels 

Western blots were used to analyse changes in protein levels between young and 

old HDF. Protein was extracted from whole cell lysates and a selection of 

biomarkers were assessed, based on those able to be optimised in the time frame 

of the project. Changes in protein level were a little harder to decipher than with the 

HDFn, due to wide variation between the cell lines. Cell cycle inhibitor, p21 was not 

found to be present in either the young or old cells. Moreover, Lamin A/C was so 

variable, that it was not possible to conclude if there was a change with age. Elastin 

HAS2 

MMP-1 TIMP-1 
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levels did appear to decrease with age, which coincided with the data obtained for 

gene expression. In addition, collagen I also seemed to decrease, though most cell 

lines did not produce a band for the α-1 chain, so this could not be directly 

compared to the qPCR analysis (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Western blot analysis of biomarker expression in young and old HDF 

20µg of protein from each lysate was run through a gel at 120V, and transferred at 

250mA.Blocking was done in 5% milk, and β-actin was used as a loading control. Results 

are rather ambiguous at first glance due to clear variation amongst different cell lines. It 

appears that old HDF possessed a slightly decreased level of elastin and collagen I. 

However, p21 and lamin A/C appeared to show no change between young and old cells. 

Arrows show labelling where two bands are expected to be seen. Elastin = 68 kDa , collagen 

I = 139 kDa, (α-1) 129 kDa (α-2), p21 = 18 kDa, lamin A/C = 74 kDa. 
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3.6  Progerin expression in HDF 

3.6.1 Nuclear circularity and abnormality 

Progerin is a truncated form of lamin A/C that is associated with accelerated ageing 

diseases, such as Hutchinson-Gilford Progeria Syndrome Abnormalities of the 

nuclear envelope have been associated with progerin expression as the nuclear 

scaffold becomes compromised. Consequently, the presence of nuclear 

abnormalities was assessed in control and irradiated HDFn and young and old 

HDF. Cells were seeded onto 12mm coverslips, and immunostained for lamin A/C 

which highlights the nuclear envelope. Two techniques were then used to assess 

abnormalities: calculating the nuclear circularity, and counting the number of 

abnormalities visible to the naked eye. Circularity was calculated using the 

computer program Image J, which utilises the equation 4π x area/perimeter², giving 

a circle a value of 1.0. The nuclear circularity of 100 cells for each group was 

calculated, and the average used to plot graphs (Figure 13 and Figure 14). Visible 

abnormalities were assessed by eye (Figure 15), with the percentage calculated 

from number of abnormal nuclei in 100 cells, for each group. The results for nuclear 

circularity did not follow the predicted pattern of irradiation/age inducing decreased 

circularity. However, visible abnormalities did show a positive trend with irradiation 

and age, despite not being statistically significant.  
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Figure 13: Lamin A/C staining revealed abnormalities in the nuclear envelope  

Cells were seeded onto 12mm coverslips and immunostained using an anti lamin A/C 

antibody and mounted with VECTASHIELD® containing the DNA stain DAPI. Above images 

show nuclei from control and irradiated HDFn. Scale bars = 10µm. DAPI = blue, lamin A/C = 

green. (A) (i) Untreated HDFn had mostly ‘normal’ nuclei, with the nuclear envelopes 

appearing to have a smooth surface. (ii) Irradiation of HDFn appeared to result in an 

increase in the number of ‘abnormal’ nuclei. These were characterised by invaginations and 

creases in the nuclear envelope. (B) Number of abnormalities was assessed visually: (i) 

nuclei with completely smooth edges and no apparent creases were labelled ‘normal’, (ii) 

nuclei where changes were only minor (?) were also labelled ‘normal’, (iii) nuclei with clear 

invaginations and creases (arrows) were labelled ‘abnormal’.  
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Figure 14: Nuclear circularity and visible abnormality analysis for control and irradiated 

HDFn 

HDFn were treated with an irradiation dose of 20.44Gy and cultured for 10 days before 

being seeded onto 12mm coverslips, alongside untreated HDFn. Cells were immunostained 

using an anti lamin A/C antibody and mounted with VECTASHIELD® containing the DNA 

stain DAPI. (A) ImageJ was used to calculate nuclear circularity using the equation 4π x 

area/perimeter², with a circle being given the value of 1.0. Observed a statistically significant 

increase in circularity after irradiation (**** P ≤ 0.0001). (B) Nuclei were visually assessed for 

abnormalities, as specified in Figure 12, and the percentage was calculated. Abnormalities 

were observed to increase after irradiation, but this was not a significant change. 
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Figure 15: Nuclear circularity and visible abnormality analysis of young and old HDF 

HDF taken from young (10 – 12yrs) and old (81yrs) donors were compared. Cells were 

seeded onto 12mm coverslips and immunostained using an anti lamin A/C antibody and 

mounted with VECTASHIELD® containing the DNA stain DAPI. (A) ImageJ was used to 

calculate nuclear circularity using the equation 4π x area/perimeter², with a circle being 

given the value of 1.0. Nuclear circularity was observed to increase with age, with statistical 

significance (** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001). (B) Nuclei were visually assessed 

B (ii) B (i) 

A (i) A (ii) 
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for abnormalities, as specified in Figure 13, and the percentage was calculated. 

Abnormalities were also observed to increase with age, but this was not significant. 

 

3.6.2 Progerin protein levels 

Western blot analysis of the control and irradiated HDFn, and young and old HDF 

was carried out to assess protein levels of progerin. Protein was extracted from 

whole cell lysates, and progerin levels were analysed. The breast cancer cell line 

MDA-MB-231 was used as a positive control, as it has been shown to express the 

truncated form of lamin A (Tang et al., 2010). However, whilst results showed that 

progerin was expressed in all of the cells used, there appeared to be no correlation 

between irradiation or age, and level of protein (Figure 16). Moreover, each 

technical and biological repeat produced a different result, further cementing the 

lack of a correlation. 

 

 

 

 

 

 

 

 

Figure 16: Western blot analysis of progerin expression in HDF 

Protein lysates were generated from control and irradiated HDFn, and young and old HDF. 

20µg of protein from each lysate was run through a gel at 120V, and transferred at 250mA. 

Blocking was done in 5% milk, and β-actin was used as a loading control. P = positive 

control (MDA-MB-231), C = control HDFn, I = irradiated HDFn. The bands observed clearly 

show that there is no apparent correlation between irradiation or age, and level of progerin 

protein. Progerin = 70 kDa. 
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3.7  Ageing biomarkers in irradiation-induced senescent 

HDFn grown on a 3D Alvetex® scaffold 

To compare ageing biomarkers in 2D cultured cells with those grown in a more ‘in 

vivo-like’ environment, HDFn were grown on an Alvetex® for 28 days. Half of the 

cells were then irradiated with a dose of 20.44 Gy and cultured for a further 10 days. 

Lysates were then obtained from the cells, and Western blot was used to assess 

the marker of interest. The results were found to be similar to those seen in the 2D 

analysis, though collagen I produced only one band, that was heavier than both 

alpha 1 and alpha 2; potentially making it a dimer. Following irradiation, the band 

appeared stronger; contrary to expectations (Figure 17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Western blot analysis of ageing biomarker expression in control and irradiated 

HDFn grown on a 3D Alvetex® scaffold 
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20µg of protein from each lysate was run through a gel at 120V, and transferred at 250mA. 

Blocking was done in 5% milk, and β-actin was used as a loading control. As observed in 

the 2D analysis, irradiation induced expression of p21, and a decrease in expression of 

lamin A. Instead of the alpha 1 and 2 chains being visible, only one band was visible for 

collagen I. At ~250 kDa, this could be a collagen I dimer, and it appeared to increase 

following irradiation; contradictory to the hypothesis. Progerin once again showed no 

correlation between irradiation and protein level. p21 = 18 kDa, collagen I = 139 kDa, (α-1) 

129 kDa (α-2), lamin A/C = 74 kDa, progerin = 70 kDa. 
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4. Discussion 

Ageing biomarkers are a vital component of the skin ageing process. It is changes 

in the expression and degradation of these proteins that are responsible for the 

familiar phenotypes of aged skin such as loss of elasticity, wrinkling, drying and 

increased fragility. Gene expression analysis of human skin, has enabled the 

identification of key biomarkers involved in the ageing process. These data have 

been compared with immunofluorescence analysis of human skin samples; as well 

as used to examine the behaviour of cells in vitro, with the aim of creating an aged 

skin model that mimics tissue as closely as possible. 

In this investigation, comparisons were made between three different experimental 

groups. HDFn were irradiated to induce a senescent phenotype, and thus compared 

to untreated HDFn to provide an in vitro model of young versus old fibroblasts. In 

addition, cells obtained from the Coriell Institute were also analysed; with three 

‘young’ and three ‘old’ cell lines being used in the comparisons. Finally, human 

tissue samples provided by P&G enabled in vitro findings to be directly evaluated 

alongside human skin samples taken from young and old donors. The aim of this 

was to determine the best technique to be used in the future development of an in 

vitro aged skin model that is as physiologically relevant as possible. 

 

4.1  HDFn irradiated and then cultured for 10 days still 

expressed Ki67 

Ki67 is a proliferation marker that was used to assess the proliferative capacity of 

HDFn, before and after treatment with an X-ray dose of 20 Gy. A key feature of 

senescence is irreversible cell cycle arrest (Leontieva et al., 2010), and thus, in 

order to say that irradiated HDFn have a senescent phenotype, the cells must not 

be proliferating. Irradiation has been shown to cause cell cycle arrest in previous 

studies, (Dalle Pezze et al., 2014) and indeed in this study, X-ray treatment 

significantly decreased the expression of Ki67. However, following all treatment 

doses, a small percentage of HDFn still stained positive for Ki67 (Figure 3c). A 

simple explanation for this, is that perhaps 10 days is not a long enough period for 

every cell to stop proliferating. Looking at the graph in Figure 2, the number of 

irradiated HDFn was still increasing up until day 5; suggesting that if Ki67 staining 
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had been carried out 15 days after X-ray treatment, the cells might no longer have 

been expressing it.  

In addition, on examination of the images taken from the Ki67 stained HDFn, it is 

clear that some of the staining is abnormal. Ki67 is expected appear as foci within 

the cell nucleus (Figure 3a); but some of the staining observed in the irradiated 

cells showed presence of the protein outside of the nucleus, with the foci appearing 

irregular (Figure 18). Ki67 is known to be expressed in the late G1, and all of the S 

and G2 phases of the cell cycle; with its peak being during mitosis, before it is 

rapidly degraded (Wu et al., 2000). Irradiation induces p53-mediated G1 arrest 

(Agami & Bernards, 2000), and thus it is possible that the cells found to contain 

abnormal Ki67 localisation were fixed whilst they were exiting the M-phase, and still 

degrading Ki67. This could explain the abnormal distribution and appearance of the 

protein in the immunofluorescent analysis. Whilst an explanation for cytoplasmic 

Ki67 has yet to be found (Faratian et al., 2009), it is observed in some cancers, and 

has been seen both in tissue and in vitro; suggesting a functional explanation. If the 

theory of degradation is correct, this further supports the idea that, had the cells 

been fixed several days later, the immunofluorescent analysis might have revealed 

the total loss of Ki67 that was initially expected. Nonetheless, as the percentage of 

Ki67 positive cells was less than 5% following irradiation, their presence was not 

deemed significant enough to have had any impact on the results obtained. As a 

result, we are satisfied that an X-ray dose of 20 Gy is sufficient to produce a 

reliable, and replicable senescent-phenotype in HDFn.  

 

 

 

 

 

 

Figure 18: Changes in Ki67 expression in irradiated HDFn 
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HDFn were irradiated with a dose of 20 Gy, then cultured for 10 days. Cells were then fixed 

and immunostained with an anti-Ki67 antibody. Ki67 usually appears as foci in the nucleus 

(*). However, some cells appeared to contain a large number of smaller foci, with some 

appearing in the cytoplasm (arrows). 

 

4.2  Changes in ageing biomarkers in irradiated HDFn 

differed from photoexposed TXP results 

4.2.1 Gene expression changes of ageing biomarkers 

From the TXP data provided by P&G, we were able to isolate a selection of ageing 

biomarkers to analyse; enabling us to assess whether irradiated HDFn truly 

mirrored the behaviour of ‘old’ cells. The first point of analysis was to see what was 

happening to the cells at a genetic level. As irradiation is a similar stress to UV 

exposure in terms of the DNA damage response, it was hypothesized that irradiated 

HDFn would follow a pattern of extrinsic ageing. However, it was observed that, 

whilst some gene responses were similar to those found in extrinsic tissue, others 

were more reminiscent of intrinsic ageing, and a couple did not match any ageing 

process at all.  

It is well documented in the literature, that ageing leads to the gradual degradation 

of collagens. This was observed in the TXP data; with both collagens I and IV 

decreasing in photoexposed skin. However, following irradiation, it was found that 

collagen IV expression increased slightly in HDFn, which is contradictory to the 

majority of irradiation studies (Hee Lee et al., 2004). However, investigations into 

the effects of radiation on tumours, have observed that collagens I, III and IV can 

increase in the first 24 hours, and even continue increasing for up to 14 days 

following irradiation (Znati et al., 2003 and Finkelstein et al., 1994). As a result, this 

could potentially explain why collagen IV expression was slightly elevated 10 days 

after irradiation treatment. Nevertheless, the more likely reason for this result is that 

the HDFn were cultured in a 2D environment. Collagen IV is the key component of 

the epidermal basement membrane; a structure for which fibroblasts grown in a 

plastic culture flask have no requirement. As such, it is likely that the gene 

expression of collagen IV in both control and irradiated HDFn, does not truly reflect 

the behaviour of the cells as it would be in vivo. 
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Another discrepancy in the HDFn qPCR results, is the expression of elastin and 

fibrillin 1. In the TXP analysis, both proteins were found to increase with exposure to 

UV radiation. Moreover, this is well documented in the literature; photoexposure 

leading to solar elastosis due to an increase in elastin and fibrillin expression (Park 

et al., 2010). In the results obtained from the HDFn analysis, it was found that 

elastin expression increased following irradiation, whilst fibrillin 1 decreased. In vivo, 

fibrillin-rich microfibrills co-localise with elastin fibres, and form a sheath around 

them; meaning that expression of both proteins usually correlates with the other 

(Naylor et al., 2011). The most likely explanation for the unusual observation in our 

results, is that the cells were cultured in a 2D environment. In vivo, the ECM plays a 

key role in providing mechanical stimulus to the cell; ultimately leading to control of 

gene expression by triggering internal pathways (Wu et al., 2011). When cells are 

cultured in a flask, the external stimuli are drastically different from the environment 

within a tissue; resulting in perturbation of gene expression within the cells 

(Birgersdotter et al., 2005). As such, had the HDFn been grown in a 3D 

environment, for example by using an Alvetex® scaffold, the qPCR results may have 

followed the predicted pattern associated with extrinsic ageing. Moreover, it is 

important to remember that qPCR only provides us with information on the mRNA 

levels; which does not necessarily reflect the amount of protein present within the 

cells (Koussounadis et al., 2015). 

In addition to the elastic fibres, MMP-1 and TIMP-1 also failed to follow the gene 

expression patterns associated with ageing; this time both intrinsic and extrinsic. It 

is well characterised that MMP-1 increases with age as a result of the build of ROS 

(Masaki, 2010). As TIMPs inhibit the behaviour of MMPs, a decrease in TIMP 

expression is also associated with ageing; the combination of both contributing to 

the increase in collagen degradation observed in both photoprotected and 

photoexposed ageing (Fisher et al., 2014). However, in the qPCR results, it was 

observed that following irradiation, HDFn expressed a decreased amount of MMP-1 

and a significantly increased amount of TIMP-1. Once again, a feasible explanation 

is that gene expression could have been altered as a result of the unnatural external 

environment provided by plastic cultureware (Edmondson et al., 2014). However, X-

ray radiation is not a natural source of stress, and so we cannot assume that it will 

trigger changes that entirely mimic UV exposure. A study by Yavas et al. (2014), 

looked at the effects of radiation on human gingival fibroblasts, and observed that a 

dose of as low as 6 Gy was enough to induce an increase in TIMP-1 mRNA levels. 

Moreover, in a study on rectal cancer patients receiving radiotherapy, Angenete et 
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al. (2009) observed that irradiation had no effect on the mRNA levels of MMP-1; 

though they did see an increase in other MMPs. Consequently, the unusual mRNA 

changes witnessed in HDFn following irradiation, could be due to the fact that cells 

respond differently to exposure to UV radiation, and X-ray radiation.  

The final gene of interest that did not match the TXP data, was HAS2. Hyaluronan 

synthase 2 is a membrane bound enzyme that produces the ECM component 

hyaluronan (HA) (Siiskonen et al., 2015). In the P&G TXP data, HAS2 mRNA levels 

decreased in both photoprotected and photoexposed skin, so on this basis it was 

hypothesized that the HDFn qPCR results would reveal a decrease following 

irradiation. However, instead HDFn were observed to produce a significantly greater 

amount of HAS2 mRNA after X-ray treatment. Whilst this contradicts the TXP 

results, in the literature it is well documented that dermal HA increases in response 

to UV exposure (Naylor et al., 2011). It has been found that exposing nude mice to 

UV radiation, for as short a period as 5 minutes, is enough to induce an increase in 

HA synthesis (Papakonstantinou, 2012). However, chronic UV exposure is 

associated with a decrease in HA; fragments of degraded collagen having being 

linked to a reduction in HAS2 synthesis, due to their ability to inhibit the ROCK 

signalling pathway (Röck et al., 2011). Consequently, it is likely that the qPCR 

results differ from the TXP analysis due to the differences in exposure time between 

the HDFn and the skin samples. The HDFn were exposed to one dose of irradiation, 

which clearly triggered a significant upregulation of HA synthesis, whilst not 

inducing enough collagen degradation to provide inhibition. However, the skin 

samples obtained for the TXP analysis, had come from photoexposed sites that had 

undergone prolonged UV exposure; explaining the decrease in HAS2 mRNA. As a 

result, were the experiment to be repeated, and the HDFn exposed to several doses 

of radiation to mimic chronic exposure, it could be hypothesized that a decrease in 

HAS2 would be observed. However, this does not alter the fact that the increase in 

HAS2 expression observed in this instance is exceptionally dramatic. Consequently, 

it does throw into question the validity of the result and it should not be relied upon 

without the support of further qPCR repeats and additional Western blot analysis; 

both of which would strengthen the reliability of this observation. 

4.2.2 Changes in protein level of ageing biomarkers 

Western blot analysis of untreated and irradiated HDFn revealed that X-ray 

treatment did induce age-related changes in the biomarkers of interest. Elastin was 
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clearly observed to increase, following irradiation; which coincides with the qPCR 

results and also the TXP data and current literature on extrinsic ageing which refers 

to significant elastogenesis following UV exposure (Farage et al., 2008). In addition, 

the cell cycle inhibitor p21 (CDKN1A) was expressed in HDFn after X-ray treatment, 

which again matches with the TXP analysis. Moreover, p21 is well established as 

having a key role in inducing cellular senescence in vivo, and it is known to increase 

following UV exposure (Stoyanova, 2012); making it a key component of extrinsic 

ageing. 

Collagen I was also assessed via Western blot, and it was observed that following 

irradiation, the amount of alpha 2 chain had decreased slightly. However, the alpha 

1 chain produced barely visible bands in both control and irradiated HDFn, and 

looked as though it might have increased slightly following X-ray treatment. This is 

interesting, as collagen I molecules are composed of two alpha 1 chains, and one 

alpha 2 chain; meaning that, if anything, we would have expected to observe slightly 

more alpha 1 chain than alpha 2 (Rossert et al., 2000). Possible explanations for 

the weakness of the band, could be that there was not much alpha 1 collagen I 

extracted from the lysate, or perhaps the use of 5% milk for the antibody diluent was 

blocking the antigen (Mahmood & Yang, 2012). If that latter was the case, this could 

perhaps have been rectified by reducing the percentage of milk used, or diluting the 

antibody in bovine serum albumin (BSA). As a result of this uncertainty, it is likely 

that the slight increase in the alpha 1 chain following irradiation, is merely due to 

more antigen being extracted from the lysate, or more antigen being available for 

antibody binding. As such, it would be unwise to take this result as evidence of a 

collagen I alpha 1 chain increase following X-ray treatment. 

The final biomarker assessed was lamin A/C, which the TXP data showed to 

increase with age following UV exposure in human skin samples. This correlates 

with some of the literature on lamin A; studies showing that MMPs may have a role 

in protecting lamin A from degradation (Limb et al., 2005), and also findings linking 

lamin A to the DDR due to its role as a binding site for inactive 53-BP1 (Gibbs-

Seymour et al., 2015). As UV exposure both increases MMP levels, and DNA 

damage, it is logical that lamin A would undergo less degradation, and perhaps be 

overexpressed to enable increased recruitment of 53-BP1. Nonetheless, Western 

blot analysis revealed that irradiating HDFn led to a decrease in lamin C, and a 

complete loss of lamin A. Once again, these findings seemed to match more closely 

with photoprotected ageing; lamin A/C having been found to decrease in the TXP 
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analysis. At this stage, it is again necessary to draw attention to the fact that X-ray 

radiation does not necessarily produce the same effects as UV radiation, and 

therefore the decrease in lamin A/C could be attributed to this distinction. In 

addition, as mentioned earlier, TXP analysis only provides information on gene 

expression levels, which does not always match with how much protein is present 

within a cell (Koussounadis et al., 2015).  

However, despite this, the complete loss of lamin A was still unexpected, and its 

occurrence in all of the repeats discounted the possibility of it being an anomalous 

result. The role that lamin A has in the normal ageing process is still poorly 

understood. Whilst mutations in the LMNA gene have been associated with 

premature ageing diseases such as HGPS (Ragnauth et al., 2010), there is very 

little literature on changes in lamin A/C expression with regard to intrinsic or 

extrinsic ageing. Some studies have found evidence that progerin is produced in 

healthy individuals, and that expression increase with age (McClintock, 2007). If 

true, this could explain a decrease in lamin A protein, as increased use of the 

cryptic splice site with age would tip the balance of the lamin A:progerin ratio. 

However, this does not correlate with the findings of this study, as progerin 

expression was not found to increase following irradiation in HDFn. However, other 

studies have begun to link accumulation of prelamin A with the ageing process 

(Ragnauth et al., 2010); observing a correlation between ageing and an 

overexpression and accumulation of prelamin A. Moreover, build-up of prelamin A 

has also been associated with an increase in ROS, and accelerated onset of 

cellular senescence (Sieprath et al., 2015). This could potentially explain the 

discrepancies between the TXP data and the Western blot result for irradiated 

HDFn. If prelamin A is overexpressed as cells age, then the gene expression of 

LMNA would increase; as shown in the TXP analysis on photoexposed skin. 

However, this would not result in an increase in the levels of mature lamin A protein, 

and only the immature prelamin A would accumulate. Nonetheless, as exciting as 

this potential theory is, it is in no way conclusive; primarily because the exact 

specificity of the lamin A/C antibody used in this study is unknown, and it is likely 

that both prelamin A and mature lamin A were detected in the Western blot. 

Consequently, it is not currently possible from the literature available, to conclude 

why lamin A levels were entirely depleted following irradiation. Further analysis 

could perhaps shed more light on the findings; for example, qPCR would help to 

ascertain whether loss of lamin A occurred due to gene expression changes, or 
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post-translational modifications; and use of a prelamin A-specific antibody would 

enable potential accumulation to be detected. 

 

4.3  Changes in ageing biomarkers in young and old HDF 

differed from photoexposed TXP results 

In order to study a more “in vivo-like” experimental group, young and old HDFs were 

obtained from the Coriell Institute Biorepository. Three young and three old cell lines 

were used for the analyses, and as all of the old cells were taken from a 

photoexposed biopsy site, it was hypothesised that changes to ageing biomarkers 

would follow an extrinsic ageing pattern.  

4.3.1 Gene expression changes of ageing biomarkers  

As mentioned previously, it is well established that collagens within the skin 

degrade with age as a result of increased MMP and decreased TIMP production 

(Fisher et al., 2014). In addition, collagen synthesis decreases as a result of 

reduced mechanical stimulus from the ECM (Varani et al., 2006). This was 

observed in the TXP analysis; where both photoprotected and photoexposed skin 

saw a decrease in the expression of collagens I and IV with age. qPCR analysis of 

the young and old HDF revealed that both collagen I and collagen IV expression 

were downregulated in the old cells compared to the young. Whilst collagen I had 

very clearly diminished, collagen IV had only decreased slightly, and the error bars 

were very large. However, this did not cause too much concern, because, as has 

been previously mentioned, collagen IV’s role is in the epidermal basement 

membrane. As the HDFs were grown in a 2D environment, a basement membrane 

was not a required structure, and so it is unlikely that the cells would express 

collagen IV in an in-vivo-like manner. 

As the young and old HDF were expected to follow the same pattern as 

photoexposed skin, it was predicted that both elastin and fibrillin 1 expression would 

increase with age; as shown in the TXP data. Moreover, in the literature, increased 

expression of elastic fibres is associated with exposure to UV radiation (Langton et 

al., 2010). However, in the young and old HDF, both elastin and fibrillin 1 

expression were observed to decrease with age; following the pattern associated 

with intrinsic ageing. The potential explanation for these results is that the cells had 
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been in culture for so long that their biopsy site was no longer relevant. The effects 

of UV radiation on the skin are very rapid, and dependent on length of exposure 

time (Seite et al., 2006). The HDF used in this study, were isolated from 

photoexposed biopsy sites, but then stored and cultured away from UV radiation for 

a number of years. During this time, without constant exposure to UV, any changes 

in gene expression or protein levels could only be attributed to processes within the 

cell; and therefore it is not overly surprising that elastin and fibrillin 1 gene 

expression changes were observed to follow a pattern associated with 

photoprotected skin.  

Finally, gene expression for HAS2 and TIMP-1 were found to decrease with age, 

which coincided with the TXP results. However, MMP-1 was shown to decrease 

dramatically in the old HDF; contradicting both the TXP data, and the majority of 

literature on ageing and MMP production (Kohl et al., 2011). The likely explanation 

for this, again draws on the fact that the cells had been in culture for a long time, 

and the 2D culture environment does not promote gene expression as it would be 

found in vivo. During culture, the old HDF grew very poorly and had to undergo 

several passages in order to gain enough cells for the required experiments. As a 

result, they were exposed to an unnatural external environment for a prolonged 

period of time; much longer than the young HDFs which grew quite rapidly. In 

human skin, the value given for the Young’s Modulus varies depending on 

technique, but tends to range between low kPa to low MPa (Zahouani et al., 2008). 

However, plastic tissue cultureware has a Young’s Modulus of E = 0.6 – 3.3 GPa, 

depending on the material composition (Cambridge Engineering Department, 2003); 

up to a staggering 1 million times stiffer than the in vivo environment. The rigidity of 

the ECM can influence gene expression, and culturing cells in a 2D environment 

has been linked to gene expression perturbation (Birgersdotter et al., 2005). As 

such, as the old HDF were cultured on a stiff plastic surface for a prolonged period; 

it is not overly unforeseen that the gene expression patterns do not match with 

those observed in found in the tissue environment.  

4.3.2 Changes in protein level of ageing biomarkers 

Western blot analysis was also carried out on young and old HDF, to assess the 

protein levels of ageing biomarkers. One of the issues that immediately stands out 

when assessing the results, is the variability between each of the cell lines. The vast 

heterogeneity of human cells makes them difficult to work with, in that a very large 
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sample group is required to cancel out the effects of their natural diversity (Rouhani 

et al., 2014). It is clear that in this study the sample group was much too small to be 

able to observe clear changes between young and old HDFs. However, the time 

constraints of the project meant that the pool of useable cells was limited to what 

was already available, and had been previously worked with. Heterogeneity is 

affected by both the genetic history of the individual, and also the environmental 

factors that a person may have been exposed to (Griffiths et al., 2000). In this study, 

the role of UV radiation is extremely important in influencing the changes in ageing 

biomarkers between young and old cells. In the analysis, it is assumed that all of the 

cells were exposed to the same level of UV radiation, but in reality the level of sun 

exposure would have varied between individuals.  

If we put aside the variation within the young and old cell lines, it is possible to 

identify a few patterns from the Western blot analysis. Firstly, it would appear that 

levels of elastin decreased slightly in the old cells, which correlates with the qPCR 

analysis. Moreover, there also seems to be a decrease in the amount of both alpha 

1 and alpha 2 chains of collagen I. However, the cell cycle inhibitor p21, was not 

found to be expressed in any of the cell lines. Whilst the TXP data revealed that p21 

increased in both intrinsic and extrinsic ageing; it is in reality a marker of cellular 

senescence (Passos et al., 2010), and protein lysates were extracted from cells that 

were still proliferative at the time of harvest. As a result, it is not overly surprising 

that p21 was not observed in the cells. The final biomarker assessed, was lamin 

A/C which, according to the TXP analysis, decreases in intrinsic ageing and 

increases in extrinsic ageing. However, from the Western blot results there does not 

appear to be any change in lamin A/C levels with age. Once again, a potential 

explanation for this is the 2D environment that the cells were exposed to. As 

previously mentioned, the ECM stiffness of the dermis increases slightly with age 

(Phillip et al., 2015), which has an impact on gene expression within fibroblasts 

(Solon et al., 2007). However, the young and old HDFs used for this study were 

cultured for a prolonged period in plastic flasks; meaning that all cell lines were 

exposed to the same mechanical stimuli; thus potentially explaining why the 

expected expression changes were not observed. In addition, the potential role of 

accumulated prelamin A in ageing (Casasola et al., 2016), referred to previously, 

could explain why TXP results showed an increase in LMNA expression, whilst the 

Western blot results revealed no change in lamin A levels. However, the issues with 

antibody specificity remain, and this cannot be concluded. 
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4.4  Nuclear abnormalities were observed in irradiated and 

old HDF, but progerin levels showed no change 

In the pursuit of fully understanding the ageing process, scientists have begun to 

investigate links between disease phenotypes, and ageing. A key example of this, is 

the accelerated ageing disease HGPS; which is caused by a mutation in the LMNA 

gene, leading to a truncated form of prelamin A known as progerin (Ragnauth et al., 

2010). Progerin lacks the cleavage site required for the enzyme ZMPSTE24 to 

remove the protein’s farnesyl group; allowing it to be released from the nuclear 

envelope and form part of the nuclear scaffold (Ragnauth et al., 2010). The 

presence of progerin in HGPS cells, results in abnormalities in nuclear morphology 

(Glynn & Glover, 2005), and it has been observed that fibroblasts from old 

individuals, exhibit similar irregularities in the nuclear envelope (Scaffidi & Misteli, 

2006). Further investigation, revealed that progerin is expressed in normal human 

dermal fibroblasts, and appears to accumulate with age (McClintock et al., 2007).  

4.4.1 Nuclear circularity was a poor indicator of nuclear abnormalities 

With the literature providing compelling evidence that progerin could have potential 

as an ageing biomarker, it seemed appropriate to include it in this study; assessing 

any changes in expression either through age, or exposure to irradiation. Firstly, 

nuclei were assessed for nuclear abnormalities that could indicate the presence of 

progerin with the cells. Two methods were utilised for this analysis; a nuclear 

circularity measurement, and a count of visible irregularities of the envelope. 

Nuclear circularity calculates the shape of the nucleus using the equation 4π x 

area/perimeter², where a circle = 1.0. It was predicted that irradiation and age would 

result in a decrease in nuclear circularity; however, results revealed that circularity 

actually increased in old HDF. In a study into the effects of lamin A mutations on 

nuclear plasticity, De Vos et al. (2010) observed that high passage HDFs from 

HGPS sufferers actually had better circularity than normal low passage HDFs. 

Moreover, Choi et al. (2011) also found that nuclear circularity was slightly higher in 

HGPS cells, compared to normal nuclei. Both studies noted that normal nuclei 

tended to have a more elongated shape, whilst HGPS nuclei were smaller and 

rounder. When examining the images taken of young and old HDF in this study, it 

appeared that older nuclei followed a similar pattern of losing their ovular shape in 
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favour of a rounder morphology. This therefore explains why circularity was found to 

increase in old cells; contrary to expectations. However, despite this, assessment of 

visual abnormalities revealed that both irradiated HDFn and old HDFs possessed 

more abnormal nuclei than the control or young cells. As the nuclear circularity was 

calculated from 2D images, often irregular folds in the envelope were not detected 

as they occurred across the upper surface of the nuclei, facing the camera. 

Consequently, it was concluded that nuclear circularity was not an appropriate 

method of assessing nuclear abnormalities. 

4.4.2 The number of nuclear abnormalities did not correlate with 

progerin levels 

Assessment of visible nuclear abnormalities in HDFn and young and old HDFs 

revealed that irradiated HDFn and old HDFs possessed a greater number of 

irregular nuclei. As such, it was hypothesized that higher levels of progerin would be 

observed in these experimental groups. However, Western blot analysis revealed 

that, whilst progerin was expressed in all cell lines, there was no correlation 

between irradiation treatment or age, and amount of protein. The presence of 

increased abnormalities with irradiation and age, suggest that some mechanism is 

occurring to distort the nuclear envelope. In a study into vascular ageing, Ragnauth 

et al. (2010) observed that in vitro, vascular smooth muscle cells (VSMCs) 

overexpressed and accumulated prelamin A as they aged. Rather than being 

cleaved by ZMPSTE24, the prelamin A remained at the nuclear envelope and did 

not migrate to form part of the lamina scaffold. The phenotype observed in HGPS 

nuclei, is caused by progerin remaining bound to the nuclear envelope by its 

farnesyl group (Skoczyńska et al., 2015); and thus a build-up of prelamin A would 

result in the same deformation of the nucleus. Prelamin A accumulation has been 

associated with accelerated onset of senescence (Ragnauth et al., 2010), and 

knockdown of the ZMPSTE24 gene leads to an increase in ROS levels and thus 

ultimately cellular senescence (Sieprath et al., 2015). Consequently, it appears that, 

rather than progerin being the cause of the nuclear abnormalities observed in 

irradiated and old HDFs, it could be that prelamin A accumulation was taking place; 

contributing to the ageing process by hastening the onset of cellular senescence. 

This potential scenario seems even more pertinent, when we compare the TXP data 

for LMNA expression, with the Western blot results for lamin A/C protein levels; 

referred to in sections 4.2 and 4.3.  



64 

 

However, this does not resolve the issue as to why previous studies have identified 

an increase in progerin with age, yet this was not detected in the irradiated HDFn 

and old HDFs. Firstly, X-ray irradiation does not have the same wavelength as UV 

radiation; with UV ranging from 400 nm to 10 nm, whilst X-rays have a wavelength 

of less than 10 nm (Kusky, 2010). In a study by Takeuchi and Rünger (2013), it was 

discovered that irradiating HDFs with UVB radiation had no effect on progerin 

expression; however, treating cells with UVA radiation, induced progerin production. 

Also observed, was that an initial low dose of UVA was not enough to stimulate 

progerin expression in young cells, only in old; instead, chronic exposure was 

required before progerin was upregulated in young fibroblasts. Therefore, these 

data suggest that progerin is only upregulated as a result of exposure to a very 

specific wavelength; which may explain why irradiating HDFn did not have an effect 

on progerin levels in the Western blot analysis. Moreover, young cells may require 

chronic irradiation in order to trigger progerin expression; as this study used 

neonatal cells that were given a single dose of X-ray, this could also explain why no 

change in progerin was observed. 

Finally, there are some potential explanations as to why old HDFs did not exhibit 

increased progerin expression. Firstly, we can refer back to the issues that have 

been discussed previously; such as the long-term culture of the cells on an artificial 

surface, and the role of mechanical stimuli in controlling gene expression. In other 

studies, cells have been isolated straight from tissue samples for the purpose of the 

experiment; therefore minimising the likelihood of changes in cell behaviour as a 

result of a prolonged period out of the body (Scaffidi & Misteli, 2006 and McClintock 

et al., 2007). Nevertheless, critical analysis of these reports, does reveal potential 

weaknesses in the results. For example, McClintock et al. (2007) provided a 

Western blot in which they demonstrated that progerin expression increases with 

age. However, upon examination, the loading control, β-actin, also appears to 

increase in the older samples; suggesting that the stronger band for progerin could 

be due to unequal loading, rather than an actual increase in protein level. 

Additionally, whilst Scaffidi and Misteli (2006) observed that lamin A/C began to 

accumulate at the nuclear envelope with age; a feature that could be attributed to 

progerin’s dominant negative effect on lamin A; they did not actually find any 

evidence of progerin expression increasing with age. Moreover, in a later study, 

Cao et al. (2011) assessed the cause-and-effect relationship of progerin expression 

in normal ageing, and observed no correlation between age of donor and progerin 

levels. Consequently, it would appear that the role progerin plays in the normal 
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ageing process is still very ambiguous, and further study is required before 

conclusions can be made.   

4.5  HDFn cultured on Alvetex® scaffolds exhibited some 

differences in ageing biomarkers compared to 2D cultures 

As has been discussed during the analysis of the ageing biomarker data for 2D 

cultures; growing cells on plastic cultureware is known to differentially activate 

signalling pathways, and put cells under a great deal of stress (Edmondson, 2014). 

Consequently, in an effort to provide a more in vivo-like environment, HDFn were 

grown on Alvetex® scaffolds to create a dermal equivalent. After 28 days of culture, 

half of the scaffolds were irradiated with a dose 20 Gy, and the cells were cultured 

for a further 10 days before being harvested to form lysates. Western blot analysis 

was then carried out, to assess levels of ageing biomarkers. For both p21, and 

progerin, the results looked very similar to those observed in the 2D irradiated cells. 

Firstly, p21 was not expressed in untreated HDFn, but was present in irradiated 

cells; fitting with the senescent-phenotype known to be produced. Moreover, 

progerin was again observed to be expressed in both control and irradiated cells, 

but there appeared to be no correlation between irradiation and level of protein. It 

has already been mentioned that increased use of the cryptic splice site has been 

found to be triggered by a specific UV wavelength (Takeuchi & Rünger, 2013), so it 

is likely that no increase in progerin was observed, as X-rays have too short a 

wavelength to incur a change.  

4.5.1 Irradiated 3D cultured HDFn still expressed lamin A 

Lamin A/C was also analysed via Western blot for 3D cultures. In the 2D cultures, 

irradiation induced a decrease in lamin C and a complete loss of lamin A, which 

could not be explained by any of the current literature. The TXP analysis revealed 

that expression of lamin A/C increases in photoexposed skin, and decreases in 

photoprotected skin. In irradiated HDFn cultured on Alvetex®, lamin C did not 

appear to change, whilst lamin A decreased slightly. The removal of the cells from a 

stiff plastic surface, into a porous scaffold, means that it is unlikely to be the effect of 

the external stimuli that are causing this decrease in expression. A potential 

explanation might be that the TXP data is not actually representative of the protein 

level following UV exposure. As mentioned previously, mRNA levels do not always 

match with protein levels, due to the potential for post-translational modifications 

and degradation (Maier et al., 2009). It has been documented that lamin A acts as a 
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binding site for the DNA damage repair protein 53BP1 (Gibbs-Seymour et al., 

2015). In the absence of lamin A, 53BP1 is destabilised (Redwood et al., Aug. 

2011); a process that has been linked to the role lamin A has in supressing the 

cysteine protease cathepsin L (CTSL) (Redwood et al., Nov. 2011). In the absence 

of lamin A, CTSL is upregulated; resulting in increased degradation of 53BP1 

(Redwood et al., Nov. 2011). Consequently, it could be hypothesised that in 

response to the DNA damage caused by UV exposure, lamin A expression is 

upregulated in order to decrease CTSL levels; thus maximising the available 

53BP1.  

However, at a protein level, lamin A has also been associated with ROS. Pekovic et 

al. (2011) observed that lamin A contains unique cysteine residues that form 

disulphide bonds following exposure to mild oxidative stress; resulting in temporary 

growth arrest without changes in nuclear morphology, or increased expression of 

(SA)-β-gal. However, following exposure to severe levels of ROS, disulphide bonds 

did not form, and cells entered cellular senescence; accompanied by a significant 

increase in the number of abnormal nuclei. Consequently, this suggests that there is 

some mechanism that takes place following excessive oxidative stress, that 

prevents lamin A from carrying out its seemingly protective role, and pushes cells 

into full senescence. As the results of this study showed lamin A decreasing 

following irradiation, it could perhaps have something to do with a diminished level 

of lamin A protein. However, lamin A’s true part in the ageing process is still very 

poorly understood. Nevertheless, the fact that lamin A was entirely lost in irradiated 

HDFn grown in 2D, but only decreased in 3D cells, suggests that 3D culture 

potentially providesd an environment that enabled the cells to better resist the 

impact of external stresses; perhaps because they were in a healthier state when 

first exposed to irradiation. 

4.5.2 3D cultured HDFn produced a single band for collagen I in 

Western blot analysis 

Collagen I is formed of a triple helix comprised from two alpha 1 chains, and one 

alpha 2 chain (Brosky & Persikov, 2005). These alpha chains are both detected by 

the antibody used, and are observed as two separate bands in the 2D Western blot 

analysis for both HDFn and young and old HDF. However, in the 3D Western blot 

result, only one band was observed in both control and irradiated HDFn. At first, it 

was considered that this could be the alpha 2 chain, as the alpha 1 chain was very 
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faint, or even absent in some of the 2D data. However, the band was not the correct 

weight for this; being approximately 250 kDa, whilst alpha 1 is 139 kDa, and alpha 2 

is 129 kDa. As this antibody has been shown to work previously, the most logical 

explanation is that the band found in the results, represents a protein dimer. 

The chains of the triple helix are initially joined by disulphide bonds, which are 

usually broken down in Western blots by the addition of reducing agents such as 

mercaptoethanol (2.6.3). However, in order control the pH of the samples during the 

stacking and resolving stages, the buffer Laemmli is added. The pH values 

promoted by this buffer can lead to the creation of new disulphide bonds; and 

therefore, it is important that the balance between buffer and reducing agent is such 

that bonds cannot form (Boster, undated). It is possible that the cause of the band 

observed in the results, was due to not enough mercaptoethanol being added to the 

samples; resulting in some disulphide bond formation. However, one issue with this 

theory, is the absence of any other bands on the gel; if a dimer had been formed, 

the remaining chain from the original trimer should still appear. Moreover, the band 

was observed to be stronger following irradiation; contradicting current literature, the 

TXP data, and all other results obtained in this study regarding collagen I. 

Consequently, the origins of the band remain inconclusive, and repetition of the 

experiment, followed by further analysis, would be required in order to make any 

conclusions. 

4.6 Analysis of human skin samples revealed the same 

changes in biomarkers as observed in vitro  

The final aspect of this study, was to compare the results achieved in vitro, with 

human skin samples; in order to see whether ageing biomarkers could truly be used 

to help in the development of an aged skin model. Whilst the TXP data was 

obtained from human skin; due to the risk of mRNA levels failing to represent the 

amount of protein (Koussounadis et al., 2015), it was important to assess changes 

in ageing biomarkers through another mechanism. Human skin samples from young 

and old donors (provided by P&G), were immunostained for the biomarkers 

collagen I, collagen IV, elastin, and lamin A. Strikingly, the changes observed in old 

skin, were identical to the results obtained for irradiated HDFn, with the exception of 

the qPCR result for collagen IV, which was discussed earlier. Both collagens I and 

IV were seen to decrease in old skin samples; whilst elastin levels increased and 

fibre aggregation was observed. In addition, lamin A/C levels also appeared to 



68 

 

decrease, which was again consistent with the results seen for HDFn in vitro. 

Consequently, it seems pertinent to suggest that irradiated HDFn are a good model 

of skin ageing; and as such could be used to make a tissue model. Moreover, the 

young and old HDFs also showed some similar changes to human skin; elastin 

increasing slightly, whilst collagen I decreased. As such, with newer cell lines, the 

use of young and old also fibroblasts could also make a reliable skin model; though 

the culture time would be significantly increased in comparison to an irradiated 

model.  
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5. Conclusions and Future Directions 

Human dermal fibroblasts, taken from young and old donors and grown in vitro, 

exhibit tissue-like changes in the expression of ageing biomarkers. Moreover, 

irradiating HDFn with a dose of 20 Gy, induces a senescent state that also reflects 

in vivo ageing. Occasional discrepancies in biomarker expression, could be 

attributed to the use of plastic cultureware; future work should be continued in 3D, in 

order to promote development of an aged skin model. Where the cells did not match 

the TXP data obtained from human skin, they did match the expression observed in 

immunostained skin samples. This suggests a potential post-translational 

mechanism between mRNA and protein; necessitating that future investigations 

should consist of both qPCR and Western blot analysis for every biomarker 

assessed. Whilst this study was focused on investigating the dermal compartment 

of skin, in order to truly create a physiologically relevant model, a similar study into 

ageing biomarkers should be completed on epidermal equivalents. The eventual 

development of a full thickness aged model of skin, would be the final step in 

enabling in vitro ageing analysis. 

All cells were observed to express a low level of progerin; revealing that the cryptic 

splice site is occasionally utilised by healthy cells. However, there was no observed 

correlation between irradiation or cell donor age, and level of progerin; thus 

meaning that it was not possible to conclude that progerin is an ageing biomarker. 

Nonetheless, this could be further investigated by using a splice reporter to monitor 

how often the cryptic splice site is employed; thus ruling out any potential post-

translational interference. In addition, some literature suggests that it is potentially 

prelamin A accumulation that causes the dysmorphic nuclear shape observed in old 

cells. This could be assessed by the use of a specific prelamin A antibody; which 

would provide information on its potential as an ageing biomarker. 
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