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Abstract

This thesis develops and implements computationally efficient and accurate wind
farm coordinated control strategies increasing energy per area by mitigating wake
losses. Simulations with data from the Brazos, Le Sole de Moulin Vieux (SMV) and
Lillgrund wind farms show an increase of up to 8% in farm production and up to
6% in efficiency. A live field implementation of coordinated control strategies show
that curtailing upstream turbine by up to 17% in full or near-full wake conditions can
increase downstream turbine’s production by up to 11%. To the best knowledge of
the author, this is the first practical implementation of Light Detection And Ranging
(LiDAR) based coordinated control strategies in an operating wind farm.

With coordinated control, upstream turbines are curtailed using coefficient of power
or yaw offsets in such a way that the decrease in upstream turbines’ production is
less than the increase in downstream turbines’ production resulting in net gain. This
optimum curtailment is achieved with on-line coordinated control which requires an
accurate and fast processing wind deficit model and an optimiser which achieves the
desired results with high processing speed using minimum overheads.

Performance evaluation of carefully selected optimisers was undertaken using an
objective function developed for increasing farm production based on coordinated
control. This evaluation concluded that Particle Swarm Optimisation (PSO) is the
most suitable optimiser for on-line coordinated control due to its high processing speed,
computational efficiency and solution quality.

The standard Jensen model was used as a starting point for developing a fast
processing and accurate wind deficit model referred to as the Turbulence Intensity
based Jensen Model (TI-JM), taking wake added turbulence intensity and deep array
effect into consideration. The TI-JM uses free-stream and wake-added turbulence
intensities for predicting effective values of wake decay coefficients deep inside the farm.
This model is validated using WindPRO and data from three wind farms case studies
as benchmarks.



iii

A methodology for assessing the impact of wakes on farm production is developed.
This methodology visualises wake effects (in 360°) by calculating power production
using data from the wind farms (case-studies). The wake affected wind conditions are
further analysed by calculating relative efficiency.

The innovative coordinated control strategies are evaluated using data from the
wind farms case studies and WindPRO as benchmarks. A live field implementation
of coordinated control strategies demonstrated that the production of downstream
turbines can be increased by curtailing upstream turbines. This field setup consisted
of two operating wind turbines equipped with modern LiDAR. Analyses of the high
frequency real time data were performed comparing field results with simulations. It
was found that simulations are in good agreement (within a range of 1.5%) with field
results.
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Chapter 1

Introduction

Interest in renewable energy systems is currently at the highest level for many reasons,
such as unlimited availability, global warming and hazards associated with nuclear
energy. Wind energy systems in particular have attained more attention in comparison
to other renewable energy sources. Wind is a safe, green and clean source of energy.
Cumulative capacity of wind energy systems has increased from 6.1GW to 432.4GW
over the last two decades [1]. Effective use of the latest technology, the ever increasing
size of wind turbines and the clustering of turbines in wind farms have made wind
energy more attractive and affordable as compared to other renewable energy sources
[1].

The large sized wind turbines and wind farms have helped in reducing cost of
energy per area, by taking advantage of economies of scale. However there is a price to
pay in terms of wake effects. The wake effects decrease farm production and increase
fatigue loading on the turbines. Mitigating and controlling these wakes optimally, can
increase overall farm production and reduce Operation & Maintenance (O&M) costs
by decreasing fatigue loads. Developing control strategies for increasing production
per area by optimally controlling wake effects is the main aim of this thesis which will
be discussed in subsequent chapters.

This chapter briefly introduces the growing interest in renewable energy systems
because of global warming and climate change in section 1.1. This is followed by a
discussion about historical growth and future projection about growth of wind energy
systems in section 1.2. Based on these objectives, a set of research questions is presented
in section 1.3. Structure of the thesis is given in section 1.4. The chapter ends with a
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presentation of original contributions in section 1.5. The structure of this chapter is
presented in Figure 1.1.

Figure 1.1 Structure of chapter 1

1.1 Global Warming and Energy Sources

The average global temperature has increased by 0.85°C from 1880 to 2012, oceans
have warmed, large amounts of snow and ice have diminished, and the sea level has
risen [2]. Global emissions of carbon dioxide (CO2) have increased by almost 50% since
1990 [2]. Hydro-carbon based fuels are the primary sources of global warming and are
responsible for more than 70% of greenhouse gas emissions [3]. This section presents a
brief overview of the impact of different energy sources on the environment.

A comparison of impact of different energy sources on the environment is presented
in Table 1.1 [4]. It is clearly visible that the impact of nuclear, solar and wind is low on
climate change and air pollution, as compared to fossil fuels. Carbon reduction can be
achieved by using sustainable and renewable energy sources efficiently [5]. Nuclear has
lower emissions but at the same time higher impact on land, water and planning, and
cost risks are associated with it. It is mentioned in [4] that the terms high, moderate
and low are inevitably subjective, as different kinds of impacts are weighed against
each other. A detailed description of these impacts and Table 1.1 is given in Appendix
A.

This impact of energy or power sources on Green House Gases (GHG) emission is
quantified in Figure 1.2. The emissions from manufacturing of the equipment used for
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power generation and combustion of fuel are reported separately in Figure 1.2. It can
be observed that the overall emissions from renewables are low as compared to the
traditional sources of energy. Renewable energy sources can help reduce emission of
greenhouse gases as they are green and sustainable. The United Nations (UN) report
on climate action suggests that it is still possible, using technological measures, to
limit the increase in global mean temperature to 2° C above pre-industrial levels [3].

Table 1.1 Comparing the environmental impact of energy sources [4]

Biomass Coal Nuclear Natural
Gas

Solar Wind

Planning and
Cost Risk

Moderate High High Moderate Low Low

Climate Change
Impact

Moderate High Low High Low Low

Air Pollution
Impact

Moderate High Low Moderate Low Low

Land Impact Moderate High High Moderate Moderate Moderate

Water Impact Moderate High High High Low Low

Noise and Vi-
sual Impacts

Moderate Moderate High Moderate Low Moderate

The environment-friendly nature of renewable energy sources is one of the major
reasons for the rapid growth of renewables as compared to traditional sources of energy
[6]. It is projected that the trend will continue in the future [6] as shown in Figure
1.3. Wind is currently, and will remain, the fastest growing renewable energy source
[6] as can be seen in Figure 1.4. The next section briefly discusses the history and
innovations in wind energy systems.

1.2 Wind Energy Systems

Wind is one of the most environment-friendly sources of energy. It can be seen in
Table 1.1 that the climate change, air pollution and water impact of wind is low.
As more wind farms are built offshore, the land, noise and visual impacts are also
reducing. Technological innovations have helped the wind industry grow by reducing
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Figure 1.2 Greenhouse gases emission from different energy sources [5]

the Levelised Cost of Energy (LCoE), though it still requires further reduction [7]. The
global wind power cumulative capacity for the past 20 years is shown in Figure 1.5.
The cumulative capacity has increased by almost 71% in the last twenty years [1]. It
is expected that LCoE of offshore wind energy will keep declining in the future [8] as
shown in Figure 1.6.

The higher LCoE remains one of the major hindrances in the growth of wind energy.
LCoE has to be reduced to less than £100/MWh in order to meet the EU renewable
energy targets for 2020 and beyond [7]. Therefore every effort shall be made to reduce
the LCoE. Clustering turbines together in wind farms is a good example of techniques
used for reducing LCoE, taking advantage of economies of scale as detailed in the next
section.
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Figure 1.3 World net electricity generation
by fuel (2012 - 2040) [6]

Figure 1.4 Projected world net electricity
generation by renewable energy sources [6]

Figure 1.5 Global wind power cumulative capacity from 1996 to 2015 [1]



6 Introduction

Figure 1.6 Historical and predicted reduction in LCoE of offshore wind energy [8]

1.2.1 Wind Farms

Wind farms mainly reduce civil engineering, grid connection and O&M costs by taking
advantage of economies of scale. A wind farm may contain from two to hundreds of
turbines. A wind farm layout may follow a pattern like a rectangular grid or turbines
may be installed in any other shape. The layout of a wind farm depends upon many
factors such as available area, number of turbines in the farm, wake effects, cable
connection topology and sometimes navigational issues [9].

The aerodynamic interactions, namely wake effects, created by the upstream
turbines in these farms can greatly decrease the total production compared to the
same number of turbines under free flow conditions [10–12]. The wind flow is the main
coupling between turbines in a farm [13] and wake is the main interaction [14].

Figure 1.7 shows wake effects in the Horn Rev wind farm. Wake effects reduce
production per area, decreasing farm production by up to 60% in the worst case
situation when turbines are under full wake effects [9]. It is always desired to reduce
wake effects in a wind farm.
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Figure 1.7 Wake effects at the Horn Rev wind farm [15]

A generic power curve of a wind turbine is shown in Figure 1.8. The region between
cut-in wind speed and rated wind represents the below rated wind conditions. Wake
effects are mainly noticeable in below rated wind conditions [9]. Cut-in wind speed
represents the wind speed at which the turbine starts operating. The coefficient of
power (CP ) increases from cut-in wind speed up to rated wind speed. At higher wind
speeds (above rated wind speed), the CP of a turbine decreases as it has more wind
to produce with. Hence wake effects are also negligible as wind speed is high and the
CP is low [9]. The wake recovers quickly, diminishing the wind deficit created by an
upstream turbine. The above-rated wind speed is around 12+m/s for modern wind
turbines [16, 17]. The turbine controller is designed in such a way that it automatically
(by default) chooses the optimum CP for the given wind speed, according to the
power curve of the turbine as shown in Figure 1.8. This is called Maximum Power
Point Tracking (MPPT) [12]. With an MPPT approach, a turbine maximises its own
production, ignoring the wake effects produced on downstream turbines. Wake effects
will be discussed in detail in Chapter 2.

Operating wind farms with coordinated control can reduce wake effects and hence
production losses as will be discussed in Chapter 2. Developing and implementing fast
processing and accurate on-line operating strategies based on coordinated control is
the main objective of this PhD work.
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Figure 1.8 Generic power curve of a wind turbine

A set of research questions has been generated for achieving this objective. These
research questions provide a step by step approach for achieving the aims of this work.
Coordinated control is also called cooperative control and global optimisation of the
wind farm in this thesis. Coordinated control of wind farms can be used for increasing
farm production in below rated wind conditions. If the available power production
(maximum a farm can produce for a given wind speed) is more than the production
required by the grid, then coordinated control can be used for minimising fatigue loads
on the turbines by distributing the required power production among the turbines
optimally.

1.3 Research Questions

The main goal of this PhD work is to develop fast processing and accurate coordinated
control strategies for wind farm production maximisation as discussed in section 1.2.1.
This goal is achieved by answering the following research questions.

RQ-1: What is the state of the art in coordinated control of wind farms? What are
the requirements for developing on-line coordinated control strategies?
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RQ-2: What are the key properties of the optimisation technique that enables on-
line coordinate control? Which optimisation technique is the most appropriate for
optimising wind farm power production using on-line coordinated control?

RQ-3: What is the most appropriate wind deficit model for on-line coordinated control,
which can achieve the required level of accuracy without compromising computational
efficiency? How the accuracy of CFD models and computationally efficiency of en-
gineering models can be combined for developing hybrid wind deficit models having
positive characteristics of both the models?

RQ-4: What is the most appropriate methodology / strategy for assessing impacts of
wakes on farm production and identifying wind conditions where coordinated control
can be beneficial for increasing farm production? How can Supervisory Control And
Data Acquisition (SCADA) data from wind farms be used effectively for visualising
and analysing wake effects on production?

RQ-5: How different control strategies (Conventional greedy, CP -based or yaw-based)
behave in different wind conditions? Which strategy is better considering full, partial
and no-wake conditions?

RQ-6: What is the best approach for practical implementation of coordinated control?

All these research questions are answered in detail in this thesis as explained in the
following section.

1.4 Structure of the Thesis

This thesis is structured to reflect the approach, methodology and results of the research.
As such, it is divided into chapters based on different areas of research.

This introduction, Chapter 1, has briefly discussed the basis for interest in wind
power. The concepts of wind farms, wake effects and coordinated control of wind farms
are briefly discussed. Based on this discussion six research questions are presented.
This chapter also shows the original contribution of this PhD work.

Chapter 2 answers RQ-1 and part of RQ-2 and RQ-3. The concept of wake effects is
discussed, detailing the adverse effects wakes can produce on wind farms by reviewing
previous studies. Different wake modelling techniques and models are also presented,
detailing their benefits and shortcomings. Previous studies regarding coordinated
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control are reviewed for explaining the concept and benefits of coordinated control and
identifying requirements of control strategies based on this concept.

Chapter 2 also defines the criteria for selecting an appropriate optimiser for on-line
coordinated control, partially answering RQ-2 , by identifying key properties of such
optimiser. The properties of a wind deficit model suitable for on-line coordinated
control are also identified using previous studies answering first part of RQ-3.

Chapter 3 answers RQ-2 by choosing a suitable optimiser for solving the coordi-
nated control problem. Previous studies are reviewed for selecting a set of heuristic
optimisation techniques fulfilling the criteria set in Chapter 2. An objective function
is developed using an artificial wind farm for evaluating performance of the selected
optimisers. A coordinated control strategy based on coefficient of power (CP ) is used
for evaluation. Yaw-based optimised control strategies are also explained. The evalua-
tion criteria are based on processing speed, success rate, computational efficiency and
accuracy.

Chapter 4 answers RQ-3 and RQ-4. First a fast processing and accurate wind
deficit model is developed for predicting the mean wind deficit inside the farm. A wake
assessment methodology is presented which is used for identifying wind conditions
where wakes significantly affect farm production and where coordinated control can
potentially bring improvement in farm production.

Chapter 5 contains results based on simulations using data from three wind farms
case studies. The wind deficit model developed in Chapter 4 is validated using real
time data from one of the wind farms case studies. The wake assessment methodology
is applied using data from the wind farms case studies. The wind farm coordinated
control strategies are simulated in different wind conditions and results are evaluated
using data from the farms case studies and WindPRO, answering RQ-5.

Chapter 6 presents field implementation of wind farm coordinated control strategies
answering the final RQ-6. This chapter is based on the collaborative work with the
French wind farm operator Maïa Eolis (now Engie Green). The CP -based and yaw-
based coordinated control strategies are implemented with a setup of two wind turbines
using state of the art LiDARs as part of the French Government SmartEOLE project.
Results based on real time data are compared with simulations.

Finally, Chapter 7 draws conclusions from this research. It also proposes possibilities
for further research based on experiences from this PhD project.
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The appendices contain a detailed description of Table 1.1, a summary of the
previous studies about wake effects, coordinated control and the performance evaluation
and implementation of optimisation techniques, the wind turbines’ characteristics
installed in the wind farms case studies and the submitted journal publications resulting
from this work.

1.5 Original Contribution

Coordinated control of wind farms has been an active area of research over the last few
years as will be discussed in Chapter 2. Researchers have used both Computational
Fluid Dynamics (CFD) and engineering models for understanding the aerodynamic
interactions using coordinated control. All these previous studies are based on simula-
tions or experiments based on scaled wind farms tested in wind tunnels. These studies
provide understanding and in-depth analysis of the aerodynamics. However, the field
implementation of coordinated control strategies is lacking. One major reason for this
is the lack of fast processing and accurate wake modelling and optimisation techniques.

This PhD work addresses the coordinated control problem from a different angle,
looking at both the aerodynamics and optimisation. Performance evaluation of carefully
selected heuristic optimisation techniques is performed using coordinated control in
Chapter 3.

A fast processing and accurate wind deficit model (TI-JM) is developed
in Chapter 4. This model combines the accuracy of CFD models with computational
efficiency of engineering models presenting a new methodology for developing wind
deficit models.

An assessment methodology for analysing the impact of wakes on farm
production is presented in Chapter 4. This methodology uses data from wind
farms for visualising and analysing wake effects as detailed in Chapter 5. This method-
ology can be used for analysing wake effects in wind farm with any layout. These are
significant contributions of this work.

The experimental setup presented in Chapter 6 is the first of its kind
in the history of wind energy for analysing wind farm coordinated control
strategies in an operating wind farm using modern Light Detection And
Ranging (LiDAR). The CP -based and yaw-based coordinated control strategies are
implemented in the field given the operational limitations.
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To summarise, fast processing, computationally efficient and accurate wind farm
coordinated control strategies are developed for on-line field implementation. Imple-
mentation of the coordinated control strategies in an operating wind farm stands up
as an important contribution to the renewable energy community.



Chapter 2

Literature Review

This chapter presents motivation for this research by conducting a detailed literature
review of wake effects and mitigating these wakes using coordinated control in an
operating wind farm.

One of the most important areas of research in wind energy is to reduce the LCoE.
This can be achieved by increasing production per area and reducing Operations and
Maintenance (O&M) costs. Therefore, wind turbines are clustered together in the
shape of wind farms for efficiently utilising areas with sustainable wind resources using
economies of scale. This reduces civil engineering, grid connection and maintenance
costs. However, wind turbines extract kinetic energy from the wind leaving less energy
for downstream turbines’ production. This decreases the wind speed making the wind
more turbulent because of momentum loss - this is called the wake effect [18]. The
increase in turbulence intensity occurs due to wind shear (from the velocity reduction)
inside the wake affected area and blade rotation.

Wake effects created by turbines in a wind farm can greatly decrease the total
production compared to combined production of the same number of turbines under
free flow conditions [10–12]. Wakes result in lower wind speed and increased turbulence
intensity for the shadowed turbines. This results in lower production and increased
fatigue loading [10, 11, 19, 20]. It is always desirable to reduce wake effects in a wind
farm.

One possible way of reducing wake effects is to install the turbines as far as
possible from one another with an optimised layout by ensuring the turbines are not
aligned in the prevailing wind direction. Many researchers have worked on wind farm
layout optimisation [21–24]. Due to space and economic constraints it is impossible to



14 Literature Review

completely diminish these interactions (even with an optimised layout) [25] as wakes
can prevail for a distance of 5 - 20 km [11]. Other constraints such as navigational
issues also result in close spacing between the turbines in a wind farm [9]. For example
the proximity to the fairway for the ships through Öresund and proximity to the Danish
border resulted in close spacing (3.5D to 4.5D) between the turbines in the Lillgrund
wind farm [9].

Another way of reducing wake effects is to operate a wind farm with coordinated
control, which is the main topic of this thesis. In this type of control, upstream turbines
are curtailed for increasing production of the downstream turbines. This is achieved
by reducing coefficient of power (CP ) of upstream turbines or using yaw offsets on
upstream turbines. With the CP control, it is the coefficient of thrust (CT ) which is
driving the wake and the control of CP is an indirect way of adjusting CT . This will
be further explained in section 3.1.3. The wind farm is operated in such a way that
decrease in upstream turbines’ production is less than increase in downstream turbines’
production, hence increasing net production.

This chapter presents a detailed literature review of wake effects, wake modelling
techniques and mitigating wakes in an operating wind farm. The concept of coordinated
control is discussed answering RQ-1 by describing how coordinated control can be
implemented and what the main requirements of this type of control are. RQ-2 and
RQ-3 are also addressed by identifying characteristics of the optimiser and wind deficit
model required for coordinated control.

The structure of this chapter is given in Figure 2.1. A description of wakes and
impacts of wakes on the wind farm is given in section 2.1. This is followed by a literature
review of different wake modelling techniques in section 2.2. Studies regarding wind
farm coordinated control strategies are summarised in section 2.4. Conclusion of this
chapter is presented in section 2.5.

2.1 Wake Effects

A turbine is in the wake of an upstream turbine when the wake produced intersects
the swept area of the downstream turbine [18] as illustrated in Figure 2.2. Wake
effects decrease with increasing downstream distance, completely diminishing after
some distance behind the wake producing turbine. The distance at which the wake
diminishes depends upon several factors such as turbine diameter, wind characteristics
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Figure 2.1 Structure of chapter 2

and the surface roughness. The distance at which a wake is diminishes is directly
proportional to the distance from the wake producing turbine. Wakes recover quickly
in above rated conditions as explained in section 1.2.1. Wakes recover relatively quickly
in high turbulent wind conditions than in low turbulence conditions [26, 27]. Wake
effects diminish quickly when surface roughness is high, such as onshore wakes recover
relatively quickly as compared to offshore wakes [26, 28].

As a compromise, industry best practice tends to concentrate on prevailing wind
directions by installing turbines with increased spacing between them in this direction,
termed as downwind. For non-prevailing wind directions spacing between the turbines
is low, termed as crosswind [11]. For example, the spacing between wind turbines in
the Brazos wind farm in the prevailing wind direction is more than 7 rotor diameters
(7D) but the spacing in non-prevailing wind direction is as low as 2D for some of
the rows [29]. Lillgrund, an offshore wind farm, has spacing equivalent to 4.4D and
3.3D in downwind and crosswind directions respectively [30]. When wind flows in the
crosswind direction, wake losses can reach a significant level and can be as high as 60%
in the worst case situation [9] mainly at the centreline of the wake [31]. A wake will
primarily disturb the wind flow inside a farm producing the following two main affects
downstream.

1. Reduced wind speed resulting in decreased power production of downstream
turbines as wind speed is decreased [10, 11, 28, 31–33]. Power produced is
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proportional to the cube of the wind speed so this significantly affects economic
performance of the farm [19, 34].

2. The loss in momentum increases turbulence intensity as wind from surroundings
flows for making the loss in momentum [28, 35, 36]. Increased turbulence intensity
added by wakes is one of the major causes of dynamic fatigue loading [20, 28, 31].
This reduces turbines’ life considerably and also results in increased O&M costs
[19, 20, 25, 28, 32, 34, 36]. The turbulence is primarily shear generated due to
the reduction in wind speed within the wake, relative to the free-stream outside
the wake.

Figure 2.2 Illustration of wake effects [37]

Wake effects are more noticeable offshore than onshore. Sea surface has less
roughness and therefore wind takes more time to recover [18, 28, 42]. Large offshore
wind farms can produce long distance wakes [43]. Wind farms not only suffer from
wakes inside the farm but also neighbouring farms, if present [44]. It can be seen in
Table 2.1 that wake losses can be as high as 60%, depending upon the wind farm layout
and wind characteristics.
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Table 2.1 Wake Powers losses in wind farms with references

Ref Type of wind farm considered and conclusion Estimated %
Power Losses

[9] Maximum power losses in full wake conditions in Lillgrund
wind farm (medium size farm)

50 - 60

33% on average in below rated wind conditions and 23%
in all wind conditions

23 - 33

[25] Wake losses are significantly affected by wind conditions 20 - 45

[28] Averaged over different directions in small wind farms 5 - 8

Full wake conditions in small wind farms 30 - 40

[29] Wake losses can severely affect economic performance of
dense wind farms where turbines are closely spaced

20 - 50

[34] Wake losses depend upon layout and wind conditions 5 - 10

[38] Average power losses in large offshore wind farms 10 - 20

[39] Losses with spacing of 8D ×4D 5 - 15

[40] This study is conducted considering a large offshore wind
farm

10 - 20

[41] Results are based on original data from offshore wind
farms

10 - 50

In the past decades, wake effects were not that significant because turbines were
smaller, which is not the case now as turbines are getting larger [11] as can be seen
in Figure 2.3. As turbine size has increased, it is often hit by turbulence which is
smaller than rotor size; these smaller turbulence structures can cause extreme damage
as compared to a one larger than the rotor [11]. The fatigue loading on the shadowed
turbines can increase by up to 80%, shortening turbines’ life time [25]. The small cracks
in the structure created by fatigue loading increase in size with the passage of time
leading to major failures. Wake affected turbines usually require regular maintenance
preventing them from producing any useful power when switched off, increasing O&M
costs [45].
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Figure 2.3 Growth in Size of Commercial Wind Turbines [46]

2.2 Wake Modelling

Accurate wake modelling is important for design, development and assessment of wind
energy projects [28, 47, 48]. Accurate and fast wake models can also be used for wind
farm coordinated control, as will be discussed in section 2.4.

By convention, wakes are divided into a near and far wake regions as shown in
Figure 2.4. The near wake persists between 2D and 5D (normally) behind the rotor
where the wind speed deficit is maximum [49, 50]. The pressure recovery is about 1D

downstream. Far wake is just beyond the near wake where rotor characteristics become
negligible and atmospheric flow effects are dominant [51]. There is a gradual transition
from near to far wake. Modelling of the actual rotor is less important in far wakes
because the main focus in this area is on wake interference, turbulence intensities and
turbine influence on each other [41, 49, 52]. Far downstream, the wake effect vanishes
because of turbulent diffusion [49]. Wake effects can be neglected if turbines are spaced
apart by 10D or more [41].

Wind flow can be considered as the main coupling among the turbines in a wind
farm while wake is the main interaction [13, 14]. Wind flow depends upon many
variables such as turbulence intensity, wind shear and terrain characteristics. These
parameters are not generally available with any degree of certainty because of the
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stochastic nature of wind [53, 54]. This makes wind and wake modelling a complex
task.

Near Wake Far Wake

1D

Wind

Figure 2.4 Near and far wake regions

Wake models can generally be divided into two categories: Complex Computational
Fluid Dynamics (CFD) models and simplified engineering models [14, 28, 39, 40, 55–57].
Following is a detailed description of these models.

2.2.1 Computational Fluid Dynamics (CFD) Models

Wind is a complex fluid as a number of parameters affect the wind flow such as
boundary layer conditions, wind shear, turbulence intensity and terrain characteristics
[49]. Complex fluids can be considered homogeneous at the macroscopic (or bulk) scale,
but are disordered at the “microscopic” scale, and possess structure at an intermediate
scale [58]. CFD models and solves the fluid flow considering space (in three dimension)
and time. The key elements of CFD modelling are the grid or mesh generation,
algorithm development and turbulence modelling. The higher the resolution of the
mesh, the higher will be the computational requirements. Mathematical theories
exist for grid generation and algorithm development but turbulence modelling is a
complex problem. Turbulence is three-dimensional and time dependent, a great deal
of information (from friction to turbulence fluctuation) is required for accurately
describing the whole flow mechanics. Generally CFD modelling requires the following
steps [28, 59–63].

1. Wind flow is modelled mathematically with partial differential equation (PDEs).
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2. It is ensured that laws of conservation of mass, momentum and energy stay valid
throughout the volume of interest.

3. Forces which cause and influence the wind flow are identified and wind properties
are modelled empirically.

4. Reasonable assumptions based on the first three steps are made to simplify the
problem. These assumptions depend upon the CFD model used. For example
in Large Eddie Simulation (LES), the eddies containing most of the energy are
solved while eddies with lesser energy are modelled. This modelling of smaller
eddies is based on solution of the larger eddies. A filter is applied to differentiate
between smaller and larger eddies and reasonable assumptions has be made for
deciding on the filtering criteria.

5. Initial and boundary conditions are provided.

6. The mesh grid is generated by dividing the volume of interest into cells by
applying numerical techniques for discretisation.

7. General conservation equations of mass, momentum and energy are discretised
into algebraic equations using techniques such as Finite-Difference method and
Finite-Volume method.

8. Software tools are used for solving systems of equations.

9. The solution is post-processed for extracting quantities of interest.

The accuracy and computational efficiency of CFD models has an inverse relationship.
Accuracy depends upon the grid resolution and problem setup and is reflected by the
way in which turbulence is modelled. The PDEs are complex and difficult to solve [59].
Solving the whole flow field and turbulence requires high computational resources and
efforts [28, 38, 56, 64].

CFD models can be divided into different types based on the way the turbulence
and flow field is described and solved. It can range from simple empirical models where
the magnitude of the flow and turbulence is modelled rather than explicitly resolved
to models where the whole area of interest is mathematically solved. The kinematic
models are also often based on CFD based models as discussed in [65, 66]. Complexity
of CFD model depends upon the number of equations used [62]. This can range from
simple algebraic zero-equation models to models with five PDEs [49, 62]. Details of
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some of these CFD models are given in sections 2.2.1.1, 2.2.1.2, 2.2.1.3, 2.2.1.4 and
2.2.1.5.

2.2.1.1 Reynolds Averaged Navier-Stokes Equations (RANS)

The Navier-Stokes (NS) equation is based on Newton’s second law of motion for
fluids which is about conservation of momentum [61]. It is yet to be proved that a
complete solution exists for these equations [59]. Velocity fluctuations in wind flow in
all directions add to the complexity of NS.

The three general forces acting on wind flow are gravity (Fgrvt), pressure (Fprsr)
and viscosity (Fvisc). The NS equation is the sum of these three forces equals to mass
(m) times acceleration (ac) as given in equation (2.1) [61]. Usually time (t) average
is taken to reduce the complexity of NS and the resulting equation is called RANS
as given in equation (2.2) [61]. Substantial time derivative is the rate of change for a
moving fluid particle. Local time derivative is the rate of change at a fixed point. The
three dimensions are represented by (x), (y) and (z) and (v) represents velocity of the
fluid (wind).

Fgrvt +Fprsr +Fvisc = mac (2.1)
∑

F = mac = D(mv)
∂t

= ∂mv

∂t
+ ∂mv

∂x

∂x

∂t
+ ∂mv

∂y

∂y

∂t
+ ∂mv

∂z

∂z

∂t
(2.2)

The term (D(mv)
∂t ) represents substantial derivative. The local derivative is denoted

by (∂mv
∂t ) while convective derivative is represented by the term (∂mv

∂x
∂x
∂t + ∂mv

∂y
∂y
∂t +

∂mv
∂z

∂z
∂t ). When simply RANS are used in a CFD model, the equations are not completely

solved for turbulence. Only the average motion is computed and the effect of fluctuation
is modelled [63]. All the turbulence is modelled estimating their dynamics based on
experiments. RANS gives a prediction of the mean velocity and the mean level of
turbulent quantities [67]. RANS based CFD wind models are the most practical
CFD tools because of the reasonable computational requirements [28, 63, 68]. The
computational time can be in hours for a single wake case [59]. Fuga wake flow software
uses RANS [67]. The actuator disk model in [56] is based on NS equations.

2.2.1.2 Eddy Viscosity Model

This model is based on the eddy-viscosity concept, which assumes that, in analogy to the
viscous stresses, turbulent stresses are proportional to the mean velocity gradient [50].
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Turbulent eddies are treated in a similar way that molecules are treated and analysed
in kinetic theory. Here, eddies are the carrier of thermal energy and momentum, in
place of molecules.

The Ainslie wake flow model [50] is a simple eddy viscosity model which is also
a part of WindPRO (one of the industry standard software for wake modelling) [48].
WindFarmer (a widely used commercial software in wind energy projects and research)
also uses the Eddy viscosity model for wake effects prediction [69]. The foundation of
the wake deficit model used in the Dynamic Wake Meandering Model (DWM) is the
eddy viscosity model [56].

2.2.1.3 k − ε Model

This model uses two PDEs and therefore is a two equation model [59]. The k − ε

model focuses on the mechanisms that affect the turbulent kinetic energy (per unit
mass). It is based on the solution of equations for the turbulent kinetic energy (k) and
the turbulent dissipation (ε). Following are the general form for k and ε as given in
equations (2.3) and (2.4) respectively [61, 70, 71].

∂k

∂t
+kc = kd + ∂kprod

∂t
−

∂kdsp

∂t
(2.3)

∂ε

∂t
+ εc = εd + ∂εprod

∂t
−

∂εdsp

∂t
(2.4)

where transport of k by convection is denoted by (kc), (kd) represents transport of k

by diffusion, rate of production of k is given by (∂kprod

∂t ) and rate of dissipation of k is
denoted by (∂kdsp

∂t ). Transport of ε by convection is denoted by (εc), (εd) represents
transport of ε by diffusion, rate of production of ε is given by (∂εprod

∂t ) and rate of
dissipation of ε is denoted by (∂εdsp

∂t ). A CFD model based on k −ε is presented in [70].
k − ε is the industry standard CFD model and is widely used in wind energy research
[36, 62].

2.2.1.4 Large Eddy Simulation (LES)

In LES models, turbulence is divided into large and small eddy turbulences. LES
solves the large eddies and models the smaller ones, making it more accurate as



2.2 Wake Modelling 23

compared to RANS and k − ε models but the computational requirements are much
higher [47, 49, 59]. Solving the large eddies makes it relatively computationally less
efficient; massive parallel computing is required. Large scale eddies contain most of
the energy and are significantly affected by the flow configuration [68]. First a filter is
applied to differentiate between the important eddies: energy-containing eddies and
not so important eddies: containing lesser energy [59, 62]. Large eddies are explicitly
calculated while smaller ones are parametrised and modelled based on the behaviour
of the large scale eddies [59].

Complexity of the model is somewhere in the middle of RANS and a complete
numerical solution as only part of the turbulence is solved [63, 64]. RANS models
the whole flow field as was discussed in section 2.2.1.1 while numerical simulations
solve the whole flow field mathematically. LES falls in the middle and the complexity
of the model depends upon the filtering criteria. If most of the eddies are solved
mathematically and less are modelled, complexity and computational requirements are
high and vice versa. As compared to RANS the computational time of LES increases
to days for a single wake case using the same computational resources [59]. Details of
the computer used in [59] are not given. LES can require about 1000 times greater
computational resources as compared to RANS [59]. Simulator for Offshore / Onshore
Wind Farm Application (SOWFA) wake model is based on LES [72, 73].

2.2.1.5 Direct Numerical Simulation (DNS)

DNS presents the most complex, accurate and computationally demanding CFD models.
The wake flow is not modelled empirically, as the whole flow is solved mathematically.
Unlike LES, no filtering is applied to differentiate between large and small eddies
[64]. Solving of the whole flow field mathematically requires large computational
resources [59, 62, 63, 68]. Models using DNS provide detailed and valuable information
for verifying and revising turbulence models [59]. Due to the large computational
requirements it can be said that DNS is not a practical tool and is not feasible
[59, 62, 63, 68].

2.2.2 Engineering Wind Deficit Models

These models use empirical or analytical expressions for predicting wind deficit in a
wind farm. This makes them computationally efficient but relatively less accurate as
compared to CFD models. These models contain simple models for turbulence and
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surface roughness and can provide quick and accurate solution for mean wind flows [68].
Engineering models are useful for predicting mean wind deficit inside the wind farm
and for estimating wind farm efficiency but they do not provide details of the wake flow
process [50]. These models can be easily executed on a standard Personal Computer
(PC). Despite their simplicity, engineering models can be highly effective for predicting
power production if the parameters are tuned well [74] as will be discussed in detail
in sections 2.3 and 4.2. As engineering models do not provide information about the
whole flow-field, these are also referred to as wind deficit models. The flow-field is not
the area of interest in this thesis, hence the two terms "wind deficit models" and "wake
models" are used synonymously.

The Jensen model [75, 76], Larsen model [77] and Frandsen model [78] are examples
of engineering wake flow models. A brief overview of these models is provided in the
following sections 2.2.2.1, 2.2.2.2 and 2.2.2.3 respectively.

2.2.2.1 Jensen Model

The Jensen model is the simplest but sufficiently precise and reliable wake flow model
and has widely been used for wind energy research because of its high computational
speed [11, 18, 29, 36, 42, 56, 75, 76, 79–81]. This model is based on law of conservation of
momentum [75]. Wind flow is considered to be ideal i.e. frictionless and incompressible
[75] which means that deep array effect and wake added turbulence intensity are ignored.
Deep inside the wind farm, the turbines act as roughness generators, increasing the
turbulence intensity and resulting in quick wake recovery, this is called deep array
effect [11, 80]. These assumptions and limited number of parameters required for wind
deficit estimation (equation (2.5)) make it the simplest model.

The downstream decrease in wind speed (ux) depends upon free-stream wind speed
(u0), rotor diameter (r0), distance at which the wake is calculated (x), thrust coefficient
(CT ) and wake decay coefficient (kJensen) as given in equation (2.5) [75, 76]. Wake
decay coefficient shows how quickly the wake diffuses in the far wake region and depends
upon hub height of the wake generating turbine (z) and the surface roughness length
(z0) as given in equation (2.6) [75, 76]. Surface roughness length depends upon terrain
characteristics [75, 76]. Wake expands linearly (hat-shaped) behind the wake generating
turbine, starting with a diameter equal to the rotor diameter and is proportional to x.
Radius of the wake (rx) can be found with equation (2.7) [75, 76].
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The Jensen model is a part of many commercial wind modelling software such as
WindPRO [48] and WindFarmer [69]. The model is also called Park, Park Jensen or
Jensen Park at times. In case of multiple wakes, the total velocity deficit is achieved
by taking the linear sum of deficits created by all upstream turbines [76].

ux = u0

1−

 1−
√

1−CT[
1+ kJensenx

r0

]2

 (2.5)

kJensen = 1/[2 ln(z/z0)] (2.6)

rx = r0 +kJensenx (2.7)

2.2.2.2 Larsen Model

The Larsen model is a stationary semi-analytical model based on the Dynamic Wake
Meandering (DWM) model [82]. The model is based on a two order system. The
first order system is achieved using an approximate solution [83]. The second order
system also provides an approximate solution by adding a term to the axial velocity
field from the first order problem. The wake flow is assumed to be incompressible and
axis-symmetric [84]. A detailed mathematical description of the model is given in [83].
Wind deficit ux at any distance (x) can be found with the following equation (2.8) as
given in [36, 84].

u0 −ux = −u0
9 (CT Ax−2)1/3

[
r3/2(3c2

l CT Ax)−1/2 − (35/2π)3/10(3c2
l )−1/5

]2
(2.8)

Rotor swept area is denoted by (A) and (cl) is the non-dimensional mixing length.
Radius of the wake (r) can be found with the following equation (2.9).

r = [35/2π]1/5 (3c2
l )1/5(CT Ax)1/3 (2.9)

As compared to the Jensen model, the Larsen model provides more details about the
wake, such as turbulence intensity but this also makes it computationally less efficient
as compared to the Jensen model. The Larsen model is also a part of WindPRO [84].
In case of multiple wakes, the total velocity deficit is achieved by taking the linear sum
of deficits created by all upstream turbines [40].
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2.2.2.3 Frandsen Model

This is also an analytical model first presented in [78] and is adopted in the Storpark
Analytical Model (SAM) [41]. This model is valid for offshore wind farms with regular
shape of straight rows with equidistant spacing between the turbines [36, 78].

The model works in three different regimes. First wake flow is presented ignoring
interaction between neighbouring wakes. In the second regime the neighbouring wakes
interact. Wake expansion is limited only in vertical direction. When the wake flow is
in balance with planetary boundary layer, the third regime starts. Wind speed deficit
inside wake is assumed to be hat-shaped, same as in the Jensen model [41].

The wake diameter in the first regime (Dinitial) can be found as given in the
following equation (2.10) [36, 41, 78, 85, 86]. The wake expansion parameter is denoted
by (B) and can be found with equation (2.11) [41, 86] where turbine swept area is
denoted by (A) while swept area affected by the wake is given by (Aw)..

Dinitial = B ×A (2.10)

B = 1
2

1+
√

1−CT√
1−CT

(2.11)

The wind speed deficit (ux) at any position (x) in the wake can now be found with the
following equation (2.12) [41, 86].

ux = u0
2

[
1±

√
1−2 A

Aw
CT

]
(2.12)

The wake expansion (Dwake) at any position can now be found with the following
equation (2.13) [41, 86].

Dwake = Dinitial max(BkF randsen/2+αF x)1/kF randsen (2.13)

According to [41] the typical values of wake decay coefficient kF randsen and wake
decay constant (αF ) are 2 and 0.7 respectively and usually are set experimentally [86].
As discussed in [36, 78] the model provides detailed wake flow estimation but it has
some major flaws as it is applicable only to offshore wind farms with regular (grid)
shapes and equidistant turbines.
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2.2.3 Conclusion

It is concluded from sections 2.2.1 and 2.2.2 that there is a trade-off between accuracy
and computational efficiency of wake flow models. If detailed wind flow information is
required with no computational and time constraints then the high level CFD models
(LES and DNS) are the appropriate options. If there is a constraint on processing
time and only limited information is required (such as the mean wind speed), then
engineering models are a better option. Available parameters for modelling wake flow
also have an impact on selection of the wake model as CFD models require many
parameters.

It is also discussed in sections 2.2.1 and 2.2.2 that many commercial wake modelling
software have both the engineering and CFD models available. A comparison of the
engineering and CFD models can give a better idea of their performance in different
environments and wind conditions. This performance comparison is presented in
the next section by reviewing previous studies evaluating performance of CFD and
engineering wake models in different conditions.

2.3 Performance Comparison of Engineering and
CFD Wake Models

Researchers have reported different results when comparing performance of CFD and
engineering models. There is no consensus if one is better than the other. Wake
models such as SOWFA [72] calculates the complete wake flow behind the turbine.
On the other hand simplified assumptions such as ideal and incompressible wind flow
make engineering models computationally efficient but less accurate as discussed in
section 2.2.2. A choice has to be made between accuracy and computational efficiency
while choosing a wake model. This section presents a literature review of performance
comparison of different wake models.

Coordinated control of wind farms requires a wind deficit model as will be discussed
in section 2.4. Therefore, previous studies which have compared wind deficit models
for farm control are also discussed in this section.

The Jensen Park model, variations of DWM model, Actuator Disk Model and
SOWFA are evaluated for wind farm control in [56]. Simulations show that the Jensen
model is the fastest wake model requiring minimum input parameters and is suitable
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for wind farm feedback control systems. Implementing DWM for farm control is not
feasible because of its complexity and slow processing speed. The actuator disk model
can also be used in dynamic feedback control systems, however the parameters and
processing time required for wake modelling is greater than the Jensen model making
the DWM unsuitable for wind farm coordinated control [56]. SOWFA can be used
for testing realistic wind farm control strategies but a large amount of computing
resources is required. When the kJensen in the Jensen model was tuned, it produced
almost the same results as SOWFA in the far wake region. Details of this tuning
is not provided. However, it is mentioned that the standard value of kJensen must
be varied according to the conditions for better wake estimation. These results are
summarised in Table 2.2. The Park, DWM and Actuator Disk models were run on a
desktop computer (details of this desktop computer are not given). SOWFA was run
on 256 cores at the Minnesota Supercomputing Institute. The terms (low, medium,
high) for computing resources required in Table 2.2 are relative to each other and no
quantification is provided for differentiating among these terms [56]. The Jensen model
requires the minimum resources among all the evaluated models, hence the term low
is used. SOWFA, even on 256 cores took 30 hours to process a single wake for two
turbines, hence computational resources required are high. The DWM model estimates
the flow field for each turbine over its entire simulation time, hence the computational
requirements are medium and it is harder to implement. The NS equations are used
for implementing the Actuator Disk model in [56] as discussed in section 2.2.1.1, hence
the complexity level is termed medium as is the case for model based on NS equations.

The work in [12] concludes that even the most sophisticated, computationally
expensive models do not always accurately predict the wake effects in a wind farm. It is
also concluded that for simple terrains, engineering models have the same accuracy and
significantly high computational efficiency as compared to CFD models. It is discussed
in [12] that the Park Jensen model can give sufficiently accurate results for velocity
deficits in a wind farm and this model is a better option for feedback control systems.

Six different CFD and engineering models are compared using different experiments
in [39]. It is concluded that engineering models perform as good as CFD models despite
their simplicity. The Jensen model, an advanced version of the Larsen model (based on
RANS) and Fuga CFD model are compared using data from two offshore wind farms in
[40]. This study concludes that the three models provided accurate predictions within
a 1.5% error margin for a 30° directional bin. It is also mentioned that the Jensen
model over-predicted production with the current recommended settings for offshore
wind farms i.e. (kJensen = 0.04).
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Table 2.2 Summary of wake models used for coordinated control for 1000 seconds
simulation [56]

Model Computation
Time

Computing
Resources
Required

Feasibility for farm control

Jensen
Park

5 seconds Low Most suitable because of speed
and accuracy

DWM 8 minutes Medium Not feasible because of com-
plexity

Actuator
Disk

25 seconds Medium Can be used in feedback con-
trol systems, computationally
expensive

SOWFA 30 hours High Not feasible as the model is
computationally very expensive

One engineering and three CFD models are compared using data from a large
offshore wind farm in [27]. It is concluded that engineering models have a tendency to
under-predict wake losses while CFD based models over-predict them. Engineering and
CFD wake models are used in [87] for modelling the impact of wakes on power output
of the Horns Rev and the Nysted wind farms. It is concluded in this study [87] that
all the models predicted farm efficiencies accurately in most of the wind conditions.

The Jensen, Ainslie and Larsen wake models are compared for predicting the
efficiency of two wind farms in [80]. This study [80] concludes that if the standard
kJensen in the Jensen model is tuned according to the wind conditions (by increasing
value of kJensne inside the wind farm) then despite simplicity of the model, it produces
more precise and reliable results than Ainslie and Larsen models.

An overview of six commercial and research engineering and CFD wake models for
large offshore wind farms (Horns Rev and Nysted) is presented in [67]. It is shown
that the Park Jensen accurately predicted the wake within the first 2-3 turbines in a
row but can significantly underestimates wake losses after that. A reason for this is
the constant value of kJensen. As turbulence increases inside the wake, effective values
of kJensen shall also increase creating a wider wake. CFD models performed relatively
better in this study [67].
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Performance of different engineering and CFD models is evaluated in [57] with data
from offshore wind farms. None of the models predicted the wakes accurately. All the
models overestimate wake losses in neutral atmospheric conditions. It is concluded in
this study [57] that wake models needs further improvement for multiple wake situations.
FLaP-Jensen (Farm Layout Program-Jensen), FLaP-Ainslie and the FarmFlow model
are compared for power prediction in single and double wake situations using data from
the wind farm Alpha Ventus in [44]. It is concluded in this study [44] that reliabilities
(accuracy in different cases) of FLaP-Ainslie and FarmFlow (both CFD) are of equal
order and higher than FLaP-Jensen (engineering).

Comparative analysis for evaluating performance of the Jensen, Larsen, Frandsen
and eddy viscosity models using data from the Sungsan onshore wind farm are per-
formed, considering single wake conditions in [36]. Results in this study [36] show that
Jensen model is the best in predicting velocity deficit while eddy viscosity and Larsen
model perform better in predicting the wake width and profile. It is concluded that a
wake model, suitable for all wind conditions cannot be selected (among the evaluated
models) [36].

A comparison of the DWM and LES with field data from the Egmond aan Zee
offshore wind farm is presented in [47] for predicting power losses and fatigue loading
caused by wakes. It is shown in this work [47] that both the models under-predict
power production and over-predict fatigue loads.

Six different models are used for modelling and measuring wake flow in the Horns
Rev wind farm in [38]. This study [38] confirms that engineering models require
modification for reducing under-prediction of wake losses while CFD models generally
over-predict wake losses. The work in [28, 88] concludes that CFD based model are
more reliable and accurate while engineering models underestimate wake losses.

The Jensen and Frandsen models are assessed for different scenarios using LES and
RANS in [89]. Simulations in different wake conditions show that no fixed value of
expansion factors fit well in all conditions [89]. These values must be tuned according
to the wind and wake conditions for increasing the wake expansion inside the wind
farm. Details of the tuning process are not given.

A review of wind turbine wake models with recommendations is presented in [74].
It is concluded in this study [74] that deep array correction is required for parameters
in engineering models as increased surface roughness is created by the wind turbines
under wakes in a wind farm. These simple models can be highly effective if parameters
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are tuned well [74]. It is also suggested that computationally expensive CFD models
should be used for tuning parameters and reducing complexity of other models [74].

The experiments in [29, 35, 90] conclude that parameters in engineering models
must be tuned according to wind conditions and terrain characteristic for accurately
predicting wake effects. These studies [29, 35, 90] also suggest that CFD based models
are accurate but computationally expensive. The studies discussed in this section are
also summarised in Appendix B in Table B.1.

2.3.1 Conclusion

The literature review in section 2.3 confirms that there is no consensus on superiority
of a specific wake flow model. However the following common points can be taken from
the literature review in section 2.3.

1. CFD models are complex, relatively accurate but computationally demanding.
In some cases, these models over-predict wake losses.

2. CFD models can provide detailed information about the wake flow.

3. CFD models require detailed input information such as boundary layer conditions
and mesh density.

4. Ainslie, (k − ε) and LES are the most widely used CFD models but processing
for estimating a single wake flow can take from hours to days using the same
computational resources [59]. However the computational resources used for
these calculations are not mentioned as discussed in section 2.2.1.4.

5. If there are no time and computational constraints then CFD models are the
appropriate option.

6. Engineering models are computationally efficient but have low accuracy relative
to CFD models. Generally these models under-predict wake losses.

7. Engineering models can provide mean wind speed for production calculation in
the farm but cannot provide detailed wake flow information.

8. Engineering models require limited number of parameters for wake flow modelling.
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9. Engineering models can provide better results if the standard parameters (wake ex-
pansion factors and coefficients) are tuned using wind farm data, wind conditions
or high fidelity CFD models.

10. The Frandsen model is valid only for regular (grid) shape offshore wind farms
with equidistant turbines.

11. The Jensen model is the most widely used engineering model because of its
simplicity, relatively accurate results and computational efficiency. The model is
most suitable for feedback control systems.

It is concluded that the choice of a suitable model depends upon user requirements
such as required accuracy of prediction, desired computational efficiency, available
parameters and the problem under consideration.

It is also concluded that if detailed wake flow information is not required then it
is better to combine the accuracy of CFD models with computational efficiency of
engineering models [29, 35]. The parameters such as wake decay coefficients and wake
expansion factors shall be tuned with reference to wind farm data or a higher order
CFD model as suggested in [29, 35, 38–40, 48, 67, 69, 74, 80, 91–93]. This can be
achieved by combining analytical expressions based on CFD models with engineering
models. The Jensen model is most suitable for feedback control systems, due to its
computational efficiency [11, 56].

Section 2.1 established the point that wake effects can significantly affect economic
performance and efficiency of wind farms. Power losses due to wakes can be as high
as 60% [9]. An operating wind farm will always lose some of its power due to wake
effects [11]. Coordinated control cannot only reduce these power losses but also reduce
fatigue damage to the turbines without incurring any major additional cost. This type
of control has recently been an active area of research. A detailed literature review
of optimised control strategies based on coordinated control is presented in the next
section 2.4.

2.4 Coordinated Control of Wind Farms

This section reviews previous research about wind farm coordinated control. The
concept of coordinated control is explained identifying basic requirements for such
control answering RQ-1.
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The current state of the art wind farm greedy control instructs every turbine to
produce the maximum power it can produce, neglecting wake effects on the downstream
turbines [11]. A turbine follows its MPPT curve, optimising its individual power [12].
This increases wind deficit for downstream turbines. Details of MPPT were provided
in section 1.2.1.

What if the farm is operated in a cooperative way where turbines in a farm
coordinate with each other for increasing net power production / farm output? In this
type of control the whole wind farm production is optimised rather than individual
turbine’s production. The aim is to curtail upstream turbines, hence reducing the
wake produced and leaving more wind for the downstream turbines. If this curtailment
is optimised in such a way that decrease in upstream turbine’ power production is
less than increase in downstream turbines’ power production then net production will
increase.

The concept of coordinated control was first presented in [94] almost three decades
ago. Simulation of an experimental wind farm in [94, 95] show that compensation of
aerodynamic interactions between wind turbines in a wind farm is beneficial. Reducing
these unfavourable interactions can maximise farm production and reduce fatigue loads
on the shadowed turbines.

Work in [12] uses the ideal case of two turbines for explaining the concept of
coordinated control as shown in Figure 2.5. The horizontal axis in Figure 2.5 represents
the axial induction factor (a) which is a measure of the slowing of the wind speed
between the free stream and the rotor plane. The upstream turbine produces maximum
power at a = 0.33, which is the theoretical maximum at Betz’ limit, capturing 59.3% of
the kinetic energy in the wind [12, 91]. However, the total production is maximum at
a = 0.20 where power production of upstream turbine is reduced from maximum. This
increases production of the downstream turbine as wake effect of upstream turbine
is reduced. The loss in upstream turbine’s production is compensated by increase in
downstream turbine’s production, hence a net gain in production. This study [12] also
suggests that the farm controller should be developed with intelligence or adaptive
learning.

Wind tunnel experiments in [96] suggest that wind farm production can be increased
by reducing axial induction factor of upstream turbines. The Heat & Flux and Active
wake control (Controlling Wind) patents [34, 97–102] perform numerical optimisation
using axial induction factor with WAKEFARM model or yaw misalignment achieving
a gain of maximum 2% with simulations on real time data.
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Figure 2.5 Coordinated control using an array of two ideal turbines in full wake conditions
[12]

The work in [19] concludes that coordinated control can increase wind farm pro-
duction and off-line lookup tables should be used for minimising computational efforts.
However wind conditions and turbines’ properties (such as switching off due to O&M)
in a wind farm vary; therefore going completely off-line is not always desirable.

The work in [20] also confirms that coordinated control of a wind park is beneficial
for reducing unavoidable disadvantages of operating wind turbines in a wind farm.
This work [20] discusses different operating conditions of a wind farm and shows how
coordinated control can be beneficial not only for the wind farm but also for the grid.

The farm controller in [103–105] uses CFD models and numerical optimisation for
exploiting the benefits of coordinated control. These control strategies can optimise
farm production and loads on the turbines but are computationally expensive making
them unsuitable for real time on-line operations [103–105].

Simulations of artificial wind farms consisting of two and three wind turbines in [12]
resulted in increased combined output with coordinated control. Numerical analyses
in [10] are used to show increase in combined production of a three turbine wind farm.
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The Jensen Park model is used in combination with numerical optimisation for
increasing farm production in [106]. Simulations show a clear potential for improving
the wind farm generation [106].

The farm control problem is distributed into sub-problems for analysing impact
on structural load on the wind turbines in [107–109]. Simulations are performed
using the SimWindFarm wind deficit model and numerical optimisation. This control
approach concludes that structural load reduction is possible using coordinated control
of wind turbines in a wind farm [107–109]. Simulations in [109] conclude that Damage
Equivalent load (DEL) can be reduced by up to 8% on the downstream turbine in a
two-turbine example array.

The work in [110] uses a modified version of the Park-Jensen model for increasing
energy capture using the extremum seeking control. It is concluded that coordinated
control can increase the energy captured in low turbulence intensity conditions, but
not in high turbulence intensity conditions [110].

Game theory has been used in [111] for coordinated control of a simple three
turbine wind farm. It is shown in this work [111] that coordinated control can
increase the farm output by 25% as compared to the conventional greedy control.
Another study in [112] uses game theoretic control with multi-agent systems for
optimising farm production using the Jensen model for wind deficit calculation. This
study [112] concludes that coordinated control can increase farm production by up
to 10% in suitable wind conditions. The survey and review of studies about wind
farm control in [112] emphasises fast processing of farm controllers for practical
implementation of coordinated control strategies for production maximisation and
fatigue load minimisation.

Cooperating static game approach using yaw offset angles is used for maximising
efficiency of a wind farm with numerical simulations [113]. However, most of the
assumptions about wind farm conditions are unrealistic. The unrealistic assumptions
include maximum ideal axial induction factor (0.33) which corresponds to maximum
ideal CP of 0.593 [11], invariant wind conditions and ignoring wake added turbulence
intensity inside the farm.

Studies in [35, 114–116] used a high-order wind farm model SOWFA and an
engineering model FLOw Redirection and Induction in Steady-state (FLORIS) for
coordinated control of an artificial wind farm. It is concluded that an adaptive
optimisation strategy would be beneficial for coordinated control of the wind farms
[35, 114–116]. The work in [114] simulates control strategies for a two turbine artificial
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wind farm using SOWFA. This work [114] suggests that production of the downstream
turbine can be increased significantly by properly curtailing or yawing the upstream
turbine.

The Work in [29, 79] 1 uses a modified version of the Park-Jensen model and
Particle Swarm Optimisation (PSO) for maximising farm production by up to 7%. It is
concluded in these studies [29, 79] that it is possible to optimise the farm production
on-line if the wind deficit model and the optimiser are accurate and fast enough. In
on-line coordinated control, the farm controller must optimise the whole wind farm
production, identifying power production or CP of each turbine, before the wind reaches
that specific turbine in the wind farm. This will be discussed in detail in section 2.4.2
and Chapter 3.

The work in [117] uses the Park model and a Genetic Algorithm (GA) for optimising
farm production. Details of the optimisation process are not provided. It is recom-
mended to use heuristic optimisation techniques for on-line coordinated control due to
their ability to solve complex optimisation problems and for increasing computational
efficiency. Heuristic algorithms are used (off-line) for maximising farm production using
the AEOLUS SimWindFarm model in [118]. This work concludes that the possible
energy gain depends upon the wake model used and can go up to 7%. Details of the
heuristic optimisation techniques and process are not provided. This will be further
discussed in Chapter 3.

The work in [119] presents a survey of wind farm control and optimisation studies.
Some other studies about wind farm control are presented in [120, 121]. A complete
list of studies of coordinated control with details is given in Appendix B in Table B.2.

Different optimisation techniques used in coordinated control studies are also
discussed in the above literature review and summarised in Table B.2. Numerical
optimisation [10, 94, 96, 103–109], game theoretic approach [112, 113, 116], hill climbing
algorithm [120], PSO [29, 79] and GA [95, 117] have been used for wind farm control
and optimisation. However, little or no information about the optimisation process are
provided in these studies as will be discussed in section 3.1.

It is suggested in [12, 19] that iterative learning control algorithms can improve
performance of the farm controller. Better and faster systems are required to help
optimise the wind farm control [122]. The work in [122] summarises work done
by different researchers and concludes that some of the open areas of research in

1Self-citations by the author are presented in bold
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coordinated control are faster systems and tools for optimisation and wake modelling.
If on-line coordinated control is required, the controller must optimise production of
the whole wind farm accurately before the wind reaches the turbines [122]. A LiDAR
can be used for measuring the free-stream wind speed and direction before it reaches
the front-row turbines [11, 122]. The controller can then optimise production of the
turbines in such a way that overall farm production is increased and instructs each
turbine to produce accordingly. The optimisation process must be in the order of
seconds as will be discussed in detail in section 2.4.2 and Chapters 3 and 5.

It is concluded from these studies [10, 94, 96, 103–109, 112, 113, 116, 120, 29,
79, 95, 117] that if properly implemented, coordinated control cannot only increase
farm production but also reduce wake added turbulence intensity and hence fatigue
loading on the shadowed turbines. The literature review conducted in this section
used for identifying wind conditions and other factors which can impact the benefits of
coordinated control as follows.

1. Terrain characteristics - Wakes can travel for longer distances in terrains with
low roughness such as offshore wind farms.

2. Wind conditions - This includes turbulence intensity, wind direction and speed.
In certain wind directions downstream turbines can be under full wakes, producing
the highest impact on farm production.

3. Layout of the wind farm - Farms with lesser spacing between the turbines
(denser farms) are affected more by wakes compared to farms with more spacing
between the turbines.

4. Number of turbines in a wind farm which can benefit from curtailing upstream
turbines.

Studies discussed in this section [10, 94, 96, 103–109, 112, 113, 116, 120, 29, 79,
95, 117] suggest that a controller based on coordinated control shall have two parts
- a wind deficit model and an optimiser. A generic farm controller is presented in
Figure 2.6. The optimiser generates different combinations of turbines’ productions
(trials) using the wind deficit model and selects the one which results in maximum farm
production. As discussed in Section 2.2, a trade-off has to be made between accuracy
and computational efficiency in the selection of a wind deficit model. The criteria for
selecting a wind deficit model and optimiser for on-line coordinated control strategies
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is defined in sections 2.4.1 and 2.4.2 respectively which are based on the discussion in
this section.

Figure 2.6 Generic model of a wind farm controller based on coordinated control

2.4.1 Selection Criteria for Wind Deficit Model for Coordi-
nated Control

Researchers have used different wind deficit models for coordinated control as discussed
in section 2.4 and summarised in Table B.2. The following criteria is defined for
selection of wind deficit model for on-line coordinated control.

1. Accuracy: The wind deficit model should be accurate. The accuracy should be
as high as possible; preferably within the range of ±0.5m/s [26, 87, 123].

2. Processing speed: The wind deficit model shall have high processing speed, in
order of seconds [11, 110].

3. Mean wind deficit: Coordinated control does not require detailed wind flow
information. Only mean wind deficit in the vicinity of each turbine is required
for production estimation [11, 19, 112].

CFD models are relatively more accurate as compared to engineering wind deficit
models as concluded in section 2.3.1. However, CFD models cannot be used for on-line
coordinated control because of their low processing speed (as discussed in section
2.3.1). Engineering wind deficit models have high processing speed as discussed in
section 2.3.1. It is concluded in [11, 56] that the Jensen model is most suitable for
feedback coordinated control when compared with other models. It was concluded in
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section 2.3.1 that accuracy of the Jensen model can be increased by tuning the kJensen

according to the wind conditions. The Jensen model must be modified for developing a
realistic farm controller to make the assumptions realistic, such as taking wake added
turbulence intensity into account for tuning the value of kJensen inside the wind farm.
This will be discussed in detail in chapter 4. The Jensen model can provide mean wind
deficit in the vicinity of each turbine for production estimation. Hence if the kJensen is
tuned according to the wind conditions, then it shall be used for developing on-line
coordinated control strategies.

The Frandsen model is valid only for regular (grid) shape offshore wind farms with
equidistant turbines installed in straight lines as discussed in sections 2.2.2.3 and 2.3.1.
However, wind farms do not necessarily have a regular layout and turbines may have
different spacing between them such as the Le Sole de Moulin Vieux (SMV) onshore
wind farm [29]. The model cannot be used for onshore conditions where terrain is
rough.

The Larsen model is based on the DWM model and is a semi-analytical model as
discussed in section 2.2.2.2. The model can provide detailed information about the
wind flow at the cost of processing speed. The Larsen model has low processing speed
as compared to the Jensen model as discussed in section 2.2.2.2. Hence, it is concluded
that the Jensen model shall be used for on-line coordinated control because of its high
processing speed. The model must be tuned for increasing its accuracy. This will be
further discussed in Chapter 4.

2.4.2 Selection Criteria for Optimisation Technique for Coor-
dinated Control

Researchers have used different optimisation techniques for coordinated control of wind
farms as discussed in section 2.4. Based on the discussion in section 2.4, the following
selection criteria for is set for choosing a suitable optimiser for on-line coordinated
control.

1. The optimisation process must be as fast as possible, in the order of seconds
for on-line coordinated control [11, 19, 122]. The controller must optimise the
wind farm production by estimating production or CP of each turbine before the
wind reaches the downstream turbines in the wind farm, allowing the turbine
controller to act accordingly as per the instructions from the farm controller
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when the wind reaches it. The time taken by the wind to move through the wind
farm depends upon the wind speed and distance between the turbines.

2. The optimiser must provide a solution which is as close as possible to the global
optimum [11, 110, 19, 122, 112]. The heuristic optimisation techniques do not
guarantee to find the global maximum of the total farm production but the result
must be an improvement (if possible) compared to the greedy control [118]. The
solution quality shows the accuracy of the optimiser.

3. The optimiser must use minimum overheads [112]. These overhead are the trials
made for achieving an optimum solution and the number of calls made to the
wind deficit model for evaluating different combinations of wind turbines’ power
productions.

4. The optimiser must have high success rate and should avoid the local optimum
achieving the desired results (acceptable solution) in different simulations (runs)
[112]. Heuristic optimisation techniques do not always guarantee that the achieved
optimal point is indeed the global optimum of the problem [121]. A high success
rate means that the probability of achieving an acceptable solution should be
as close to 100% as possible when multiple runs of the control (optimisation)
process are executed.

It is recommended that the heuristic optimisation techniques shall be used for solving
the coordinated control problem intelligently and iteratively [11, 19, 35, 117, 118, 122].
A suitable optimiser will avoid the local optimum for reaching or getting closer to the
global optimum value. This will be further discussed in Chapter 3.

2.5 Conclusion

This chapter presented a detailed literature review of impact and modelling of wake
effects in wind farms. Power losses due to wake effects can increase by up to 60% in
the worst case situation [9]. Wakes can also increase fatigue loading on the shadowed
turbines reducing their lifetime and increasing O&M costs. Accurate wake modelling
is important for design, development and assessment of wind energy projects. These
modelling techniques are broadly categorised as CFD and engineering models.

It was concluded that CFD-based wind models can give detailed information of
the wake flow with relatively better accuracy. However, many parameters are required
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for CFD models which are not easily available and these models are computationally
expensive. LES and DNS can accurately predict wake flow but the processing time
is in days. RANS and eddy viscosity models can predict wakes with less accuracy
whereas the computational time is in hours.

Engineering models on the other hand are based on simple analytical expression
and are highly computationally efficient. However, these models give little information
about wake flow and are relatively less accurate. If only mean wind speed inside
the farm is required with high processing speed then engineering models are a better
option.

A literature review of performance comparison engineering and CFD wake models
showed that researchers do not agree on the superiority of any specific model. It was
concluded that the choice of a suitable wake model depends upon requirements of
the problem under consideration such as desired accuracy, processing speed and time,
available parameters and computational efficiency. Previous studies suggest tuning the
parameters in engineering models, using wind conditions or CFD models. This way
CFD and engineering models can be combined for developing computationally efficient
and accurate wake flow models.

An operating wind farm always loses some power due to wakes (even with an
optimised layout) because of wake effects in certain wind conditions. Coordinated
control of wind farms can be used for increasing total wind farm production and
reducing fatigue loading on downstream turbines. This reduces LCoE and O&M costs.
In coordinated control, upstream turbines are curtailed optimally for reducing the
wake produced on downstream turbines in such a way that combined production is
increased.

A controller based on coordinated control requires a wind deficit model and an
optimiser as two main components. It was concluded that the Jensen model is the
most appropriate model for wind farm control. High processing speed, limited number
of input parameters and sufficient accuracy makes the Jensen model most suitable for
wind farm control; especially for on-line farm control. It was concluded that proper
tuning of parameters in the Jensen model can increase its accuracy making it the first
choice for wind farm coordinated control answering RQ-3.

For on-line control, the controller has to be fast (in order of seconds) and accurate
as the algorithm must calculate power of each turbine before the wind reaches the down-
stream turbines. It was concluded that farm control algorithms shall be developed with
intrinsic intelligence and iterative techniques for improved performance. Requirements
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for appropriate optimisation techniques for farm control are fast processing speed,
higher success rate and computational efficiency (using minimum trials (overheads))
producing accurate results - criteria for answering RQ-2.



Chapter 3

Selection of a Suitable Optimiser
and Developing Control Strategies

This chapter evaluates performance of different optimisation techniques based on the
criteria defined in section 2.4.2, answering RQ-2 which is selecting an appropriate
optimiser for solving wind farm coordinated control problem.

It was concluded in Chapter 2 that coordinated control strategies shall be developed
with iterative learning techniques having intrinsic intelligence. Heuristic optimisation
techniques are intelligent iterative algorithms and have successfully been used for
solving complex optimisation problems.

Wind farm coordinated control is a complex problem as each turbine’s output
affects output of downstream turbines (usually two - three) in a farm and the total
farm production. As the number of turbines increases in the wind farm so does the
complexity of coordinated control. Heuristic techniques are used and evaluated for
solving coordinated control problem for maximising wind farm production in this
chapter. These optimisers create different combinations of farm production, varying
production of upstream turbines in the farm, moving towards the combination resulting
in maximum farm production.

The methodology for selecting a suitable set of optimisers for solving the coordinated
control problem is presented in section 3.1. Previous studies, evaluating the performance
of different optimisation techniques by solving complex non-linear problems, are
summarised in section 3.1.1 for selecting a suitable set of optimisation techniques
for solving the coordinated control problem. An artificial wind farm of seven wind
turbines presented in section 3.1.2 is used for evaluating the selected optimisers using
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the objective function developed in section 3.1.3 based on CP -based control. Yaw-based
coordinated control strategies are explained in section 3.1.4. Details of the problem
formulation for performance evaluation of selected optimisers are given in section 3.2.
The Brute Force (BF) technique is used as a benchmark for finding global optimum
value as detailed in section 3.3.

A brief description of the selected optimisers (GA, Simulated Annealing (SA),
Ant Colony Optimisation (ACO) and PSO) is given in sections 3.4, 3.5, 3.6 and 3.7
respectively. Comparative analysis in section 3.8 concludes that PSO is the most
suitable optimiser for wind farm coordinated control. Detailed description of PSO is
provided in section 3.9. A comparison of PSO neighbourhood topologies (global best
or fully connected and circle or ring topology) is presented in section 3.9.10 which
concludes in section 3.10 that PSO with global-best topology is the most suitable
technique for optimising farm production answering RQ-2. Figure 3.1 depicts the
structure of this chapter.

Figure 3.1 Structure of chapter 3

3.1 Methodology

Previous research on wind farm coordinated control emphasises more on the aerody-
namics of the problem, providing little or no information of the optimisation process
as discussed in section 2.4. Wind farm coordinated control is a complex optimisation
problem as each individual turbine’s production is a dimension of the farm production
[79] 1. The greater the number of turbines in a wind farm, the greater the complexity
of the coordinate control problem will be, as the number of dimensions has increased.

1Self-citations by the author are presented in bold
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Numerical optimisation [10, 94, 96, 103–109], game theoretic approach [112, 113, 116],
hill climbing algorithm [120] and GA [95, 117] are some of the techniques used for
solving coordinated control problem as discussed in chapter 2 and summarised in Table
B.2. However, none of these previous studies evaluated performance of optimisation
techniques using coordinated control. The works in [117–121] mention the optimisers
used with the aim to improve computational efficiency. However no specific details
such as the optimisation time, overheads used, solution quality and success rate are
provided. Following is a detailed description of these [117–121] studies.

The work in [117] used GA for optimising (maximising) wind farm production.
However no information about the optimisation process (processing speed, overhead
and success rate) is provided. It is suggested in [117] that heuristic optimisation
techniques must be used for minimising computational efforts. No rationale is provided
for using GA for farm production maximisation in [117].

It is mentioned in [118] that the BF technique shall not be used for farm production
maximisation as this technique (BF) is computationally exhaustive. To address this
issue, the use of heuristic algorithm is proposed. It is mentioned that an iterative
heuristic algorithm is used for farm production optimisation [118], however name of
the optimisation technique is not mentioned. It is concluded in [118] that the optimiser
showed good performance and improved the farm production as compared to the greedy
control, however no quantification is provided about the performance of this optimiser,
optimisation process and increase in farm production.

The survey in [119] summarises previous studies about wind farm coordinated
control and makes some recommendations for practical implementation of this type of
control. The farm control problem is solved numerically in this study [119]. However
it is mentioned that computationally efficient and accurate intelligent optimisation
techniques (no specific names given) must be used for practical (on-line) implementation
of coordinate control [119].

The work in [120] uses the gradient-based (hill climbing) optimisation technique
to find the control settings that yield a maximum total power production of the wind
farm. The optimisation technique is a local optimisation technique and may converge
to a local maximum instead of a global maximum of the total production [120]. This
technique is used in order to improve the computational efficiency of the optimisation
[120]. No further information about the optimisation process is provided. Optimisation
time, overheads used and success rate are not mentioned.
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The work in [121] uses the sequential quadratic programming algorithm, imple-
mented in Matlab global optimisation toolbox [124]. An improvement of 2.85% is
achieved in farm production with simulations of coordinated control relative to the
normal operations with greedy control. It is mentioned that the optimisation prob-
lem is non-convex, both in the objective function and constraints [121]. There is no
readily available solver that can handle such optimisation problems and guarantee
that the achieved optimal point is indeed the global optimum of the problem [121].
It is mentioned in [121] that a global search is implemented in order to increase the
probability of finding the global optimum and several iterations (number of iterations
is not mentioned) are used to find the best solution. No further details about the
optimisation process are provided.

Performance evaluation of different optimisation techniques for coordinated control
has not been performed in these previous studies [10, 94–96, 103–109, 117, 120] as
discussed earlier. However, researchers have evaluated and compared performance of
different optimisers for solving complex discrete and continuous problems. These studies
are reviewed in section 3.1.1 for selecting a suitable set of optimisers for performance
evaluation, using the coordinated control problem. The aim is to select computationally
efficient and accurate optimisers with high success rate as discussed in section 2.4.2.
As heuristic optimisation techniques does not always guarantee to achieve the global
optimum point [121], the aim is to achieve an acceptable solution in multiple runs of
the control process, termed as success rate here.

An artificial wind farm of seven wind turbines is detailed in section 3.1.2, for
evaluating performance of the selected optimisers. An objective function (based on CP ,
yaw-offsets or both) for maximising overall farm production is developed in section 3.1.3.
This objective function is used for comparing performance of the selected optimisers
based on the evaluation criteria described in section 2.4.2.

3.1.1 Performance Comparison of Optimisers

Different Artificial Intelligence (AI) and Evolutionary Algorithms (EAs) have been
used for solving complex optimisation problems, for which traditional mathematical
techniques may fail [79, 125–131]. EAs are stochastic search methods that mimic
natural biological evolution and/or the social behaviour of species for solving non-linear
problems [125, 132]. Generally EAs solve complex problems iteratively and intelligently
by evaluating a fitness value for reaching an optimum value.
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Five evolutionary techniques, GA, Memetic Algorithms (MA), PSO, ACO, and
Shuffled Frog Leaping (SFL) are compared for optimising discrete and continuous test
problems in [125]. This study [125] concludes that PSO outperforms other algorithms
in terms of solutions quality and success rate for continuous problems. ACO is ranked
as the fastest algorithm but the success rate is low. SFL solution quality is as good as
PSO and ACO, better than GA but the processing speed is the least amongst all the
techniques. The behaviour of all optimisers is the same for all discrete problems.

GA, PSO, Artificial Bee Colony (ABC), Clonal Selection Algorithm (CSA), Bacterial
Foraging Optimisation Algorithm (BFO), Firefly Algorithm and ACO are compared for
optimal power flow and economic dispatch problem in [126]. Economic dispatch is the
short-term determination of the optimal output of a number of electricity generation
facilities, to meet the system load, at the lowest possible cost, subject to transmission
and operational constraints. It is concluded that PSO and BFO are the two fastest and
best techniques for finding optimum solutions for complex problems such as optimal
power flow and economic dispatch [126]. ACO has the same processing speed as PSO
but the success rate is lower [126].

GA, Tabu Search (TS) method, a Modified PSO (MPSO), numerical methods,
Artificial Neural Network (ANN) and different evolutionary programming approaches
are evaluated for solving the economic dispatch problem in [127]. MPSO produces much
better results than other techniques used for 3-generator and 40-generator systems,
satisfying all the given constraints [127]. MPSO success rate and processing speed is
the highest amongst all the techniques used in this work.

GA, PSO and differential evolution (DE) are evaluated for solving discrete and
continuous problems in [128]. These problems include job shop, flexible job shop, vehicle
routing, location-allocation and multi-mode resource constrained project scheduling. It
is found that GAs are more suitable for solving complex discrete problems while PSO
and DE can effectively solve continuous optimisation problems [128].

PSO and SA are used for real-time condition monitoring of induction motors in [129].
This work [129] concludes that PSO is suitable for real-time complex optimisation
problems because of high success rate and processing speed. The success rate of PSO
is reported to be 99% while for SA it is about 60%.

A comparison of the performance of GA, SA, Artificial Neural Network (ANN) and
TS for optimising the number of kanbans for Just in Time (JIT) systems is presented
in [130]. A kanban is a printed card describing the job information in JIT system. The
number of kanbans allocated to each job is an important decision problem as it can
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greatly affect the desired goals of JIT [130]. It is always desired to keep number of
kanbans at an optimum level. All the techniques produced same quality solution. In
terms of processing speed TS is the fastest, followed by SA, GA and ANN respectively
[130].

Performance of a modified PSO (MPSO) is compared with several kinds of GA for
solving binary problems with specified characteristics in [131]. PSO outperforms GA
in solving complex problems [131]. Success rate of PSO is 100% and processing speed
is better than GA.

ACO, GA, SA, PSO and TS are evaluated for solving the path planning in robotics
in [133]. The robotic path planning is defined as the determination of a path of
robot from a starting point to the destination point while avoiding any collision from
obstacles in between [133]. One of the major difficulty in solving the path planning
problem is computational efficiency, which means that it should take optimal time for
finding a path avoiding collisions with obstacles [133]. SA and ACO outperformed
other techniques in terms of processing speed in this study [133].

An elaborative comparative analysis of ACO and TS is provided in [134]. It is
mentioned in this study [134] that if parameters are tuned according to the problem
under consideration then TS is a better option for local search while ACO is a better
option for global search. It is also mentioned that the processing speed, success rate
and solution quality differs for solving different problems [134].

3.1.1.1 Conclusion

It is concluded that the choice of a suitable optimisation technique is problem dependent.
Researchers have reported different results when comparing performances of different
optimisation techniques as discussed in section 3.1.1. Despite widespread success of
heuristics, there will always be questions related to the usefulness of a particular
heuristic technique for solving a wide rage of problems [135]. The optimisers discussed
in the studies reviewed in section 3.1.1 are evaluated as per the criteria given in
section 2.4.2 in Table 3.1. The aim is to select five different optimisers for performance
evaluation using coordinated control.

It can be concluded form the studies in section 3.1.1 that GA is one of the most
widely used optimisation technique for solving complex non-linear problems [125–
128, 130, 131, 133]. GAs are one of the most efficient heuristic techniques for solving
complex problems in control systems engineering [136]. Hence, GA is one of the
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optimisers selected for evaluation for solving coordinated control problem of wind
farms.

ACO and PSO are relatively new techniques but are faster with high success rate for
the problem under consideration in [125, 126, 128, 131, 133–135]. It can be observed in
Table 3.1 that the studies in [125–129, 131] have chosen PSO as the fastest optimiser
for the corresponding problem under consideration (as detailed in section 3.1.1). These
studies [125, 128, 129, 131] conclude that the solution provided by PSO is of the highest
quality. PSO has the highest success rate for the optimisation problems reported in
[125–129, 131]. Based on the performance of PSO, reported in the studies summarised
in section 3.1.1 and Table 3.1.1.1, PSO is the second optimiser chosen for evaluation
for solving coordinated control problem of wind farms.

The BF technique is selected as the third optimiser. This technique will be used as
the benchmark for finding the global optimum i.e. maximum achievable farm production.
The work in [133] also uses BF as the benchmark for evaluating performance of the
selected heuristic optimisers.

The studies in [126, 133, 134] selects ACO as the optimiser with the highest
processing speed for the particular problems under consideration. It is concluded in
[130, 134] that TS optimises the problems under consideration with high processing
speed (processing time is not given). SA is chosen as the optimiser with high processing
speed in [130, 133]. The work in [126] concludes that BFO is among the optimisers
with fastest processing speed and success rate. It is mentioned in [134, 135] that ACO
is more suitable for global optimisation while TS is suitable for local search. The aim
in this thesis is to find the global optimum (maximum achievable) farm production
with coordinated control using a suitable optimiser. Hence ACO is preferred over TS
for solving the coordinated control problem.

A review of previous studies regarding the problem-solving abilities of SA and TS
in [133, 135] prefers SA over TS for solving problems with many local minima. SA can
optimise problems with many local minima with high processing speed as compared to
TS [133]. The problem of coordinated control of wind farms has many local minima as
will be discussed in section 3.3. Hence, SA is preferred over TS. GA, SA and ACO are
all population based techniques. The selection of SA diversifies the optimisers set as
SA is a non-population based technique. Performance evaluation of other optimisation
techniques such as SA, BFO and ABC using coordinated control are left for the future
work as will be discussed in section 7.2.4. The full set of optimisers for performance
evaluation now includes BF, GA, SA, ACO and PSO.
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Table 3.1 Evaluation of the optimisers discussed in the studies in section 3.1.1, showing the
selected optimiser(s) as per the criteria established in section 2.4.2

Ref Optimisers com-
pared

Processing
Speed

Solution Qual-
ity

Success
Rate

[125] GA, PSO, ACO,
MA, SFL

PSO PSO, SFL PSO

[126] GA, PSO, ABC,
CSA, BFO, ACO,
Firefly

PSO, BFO, ACO Not given PSO,
BFO

[127] GA, TS, MPSO,
ANN, Evolutionary
Programming, Nu-
merical methods

MPSO MPSO MPSO

[128] GA, PSO, DE GA for discrete
problems. PSO
and DE for con-
tinuous problems

GA for discrete
problems. PSO
and DE for con-
tinuous problems

Not
given

[129] PSO, SA PSO PSO PSO
[130] GA, SA, ANN, TS TS, SA All are same Not

given
[131] GA, MPSO MPSO MPSO MPSO
[133] GA, ACO, SA,

PSO, TS
ACO, SA SA Not

given
[134] ACO, TS TS for local op-

timisation while
ACO for global
optimisation

TS for local op-
timisation while
ACO for global
optimisation

Not
given

3.1.2 Wind Farm Case Study

An artificial wind farm of seven NREL 5MW turbines [137], shown in Figure 3.2 is
assumed for evaluating performance of the selected optimisers. It is assumed that
turbines are installed in a straight line with 3D spacing between them as many farms
have turbines installed in straight rows (grid like shape) [9, 29, 98]. The minimum
spacing of 3D represents the industry standards accurately as many wind farms have
such spacing between the turbines, for examples the Brazos, SMV and Lillgrund wind
farms [9, 29, 138]. The Energy Research Centre Netherlands (ECN) Wind Turbine
Test Site Wieringermeer (EWTW) also has the same layout of turbines [98]. This site
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is widely used for wind energy research, protocol verification and certification [98, 101].
These are the bases for the layout of the assumed wind farm.

It is assumed that wind flow is parallel to the turbine array and that wind speed is
10m/s. The assumed wind conditions for the wind farm case study represent the worst
case situation where the wake effects in the farm are maximum. The assumption that
turbines are installed in a straight line and that wind flow is parallel to the turbine
array is to consider maximum wake interaction representing the worst case situation
which is most difficult to optimise. The optimiser has to evaluate a large number of
combinations of power productions for achieving the global maximum as will be further
discussed in sections 3.3 and 3.8. These assumptions do not influence the choice of
optimisation technique. If an optimiser can achieve the desired results in the worst
case scenario, then it will achieve the desired results in other cases as well. With more
spacing (≥ 3D) between the turbines, wake effects will reduce and the optimiser has to
evaluate lesser number of turbines’ power productions as the search or solution space
is reduced. The wind speed does not have any effect on the performance of selected
optimisers and any other wind speed other than 10m/s can be used for evaluation.

Figure 3.2 Case Study wind farm for performance comparison of selected optimisers

3.1.3 Objective Function

This section formulates the objective function for production maximisation of wind
farms using coordinated control. It was discussed in Chapter 2 that the controller
based on coordinated control generates different combinations of turbines’ powers using
a wind deficit model through a suitable optimiser, selecting the combination resulting
in maximum farm power output as shown in Figure 2.6. This is achieved with an
objective function aimed at maximising overall farm production.
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The standard Jensen model [75] is used for wind deficit calculation while developing
the objective function. The aim is to evaluate performance of the optimisers, hence the
standard Jensen model [75] is used because of its simplicity of implementation. The
Jensen model can be replaced by any other wind deficit model.

The total wind farm production is the sum of individual wind turbine’s production.
The power output of a single wind turbine is given by equation (3.1) [11].

PT urbine = 1
2ρAu3CP cos2 α (3.1)

where (PT urbine) is the output of an individual turbine, (ρ) is the air density, (A) is
turbine swept area, (u) is the wind speed and (CP ) is the coefficient of power of the
turbine. CP determines how much energy a turbine extracts from the wind [11]. Yaw
offset angle in degrees is denoted by (α). In normal operations and conventional greedy
control, CP is kept at maximum while α equals to 0°. The term cos2 α represents the
effect of yaw-offset on turbine’s power production. Researchers have used different
powers for the term cosα (in equation (3.1)) [119]. The power of cosα in equation
(3.1) can range from 1 to 5 depending on the CT or tip speed ratio and the farm
under consideration (study) [119, 11]. Different powers of cosα were evaluated in this
thesis. It was found that the power of "2" models the actual wind conditions and power
production more accurately as also discussed in [11, 118, 139, 140], hence the power of
"2" is used in this thesis. This will be further discussed in section 6.5.

A turbine controller following MPPT (greedy control) is intelligent and can vary
CP according to the wind conditions (following its standard power curve) or as directed
by the wind farm operator [141], as was discussed in section 1.2.1. CP is a function
of blade pitch angle (β) and Tip Speed Ratio (λ) [140]. CP can be found with the
following equation (3.2) using axial induction factor (a) [140]. Axial induction factor
is defined as the loss in momentum or measure of the slowing of wind speed between
free stream and the rotor plane [12, 96].

CP (β,λ) = 4a(1−a)2 (3.2)

Varying β or λ changes a. CP is related to coefficient of thrust (CT ) through a.
CT characterises thrust on a wind turbine and can be found using equation (3.3) [140].

CT = 4a(1−a) (3.3)
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The Jensen model uses CT for wind speed deficit prediction while power production
is calculated using CP . These two variables are correlated using a as given in equations
3.2 and 3.3.

Total wind farm power production is the sum of the power produced by all the
turbines in the wind farm as given in equation (3.4) where total number of turbines in
the wind farm is given by (N). Wind speed experienced by a particular turbine (i) in
the wind farm is given by u(i).

PF arm_W akes =
N∑

i=1
PT urbine(i) =

N∑
i=1

1
2ρAu(i)3CP (i)cos2 αi (3.4)

Usually all the turbines in a wind farm have the same configuration and characteristics
i.e. hub height, blade length, power curve and hence maximum CP given by (CP (max)).
If it is assumed that ρ remains constant inside the wind farm then the term (1

2ρA) is
constant in equation (3.4), denoted by Cn. Equation (3.4) can be rewritten as equation
(3.5).

PF arm_W akes = 1
2ρA

N∑
i=1

u(i)3CP (i)cos2 αi = Cn

N∑
i=1

u(i)3CP (i)cos2 αi (3.5)

If Cn in equation (3.5) is ignored then the control problem or objective function is to

maximise the expression
N∑

i=1
u(i)3CP (i)cos2 αi in equation (3.5).

Now if it is assumed that all the turbines are under no wake effects then all of them
will experience the same wind speed which is the free stream wind speed (u0) and α

becomes 0° (ideally). As the aim is to maximise the overall farm production, all the
turbines operate with their CP (max). In this case the maximum achievable farm output
is given by equation (3.6).

PF arm_F ree_F low = 1
2ρA

N∑
i=1

u3
0CP (max) = Cn

N∑
i=1

u3
0CP (max) (3.6)
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The control objective now is to minimise the difference between equation (3.6) and
equation (3.5).

min(PF arm_F ree_F low −PF arm_W akes)

= min

Cn

N∑
i=1

u3
0CP (max) −Cn

N∑
i=1

u(i)3CP (i)cos2 αi

 (3.7)

Ignoring Cn in equation (3.7), the objective function (f(Pmax,CP (max),αmax)) or
control problem for wind farm production maximisation can be formulated as equation
(3.8).

f(Pmax,CP (max),αmax) = min

 N∑
i=1

u3
0CP (max) −

N∑
i=1

u(i)3CP (i)cos2 αi

 (3.8)

The controller is aimed at minimising f(Pmax,CP (max),αmax) in equation (3.8) using
CP or α or both. It can be seen that if there are no wakes and α = 0°, farm production
is maximum, making f(Pmax,CP (max),αmax) equals to zero. The range of CT and
CP for the objective function are defined in section 3.4. The objective function is
under no constraints. The objective function has no units as Cn is ignored in equation
(3.8), if Cn is included in the objective function then the unit is Watt (same as power
production).

3.1.4 Yaw-based Optimisation

Coordinated control strategies for wind farm production maximisation are aimed at
optimally curtailing upstream turbines. This optimal curtailment can be achieved
using CP or yaw-offsets or both. This section explains coordinated control strategy
based on yaw-optimisation.

Yaw offset is denoted by α and the term cos2 α in equation (3.1) gives the impact of
yaw-offset on a turbine’s production. With the conventional greedy control, ideally a
turbine faces the wind with α = 0°. Yawing a turbine not only changes its production
but also the direction of the wake produced [100, 101]. This change in direction of
the wake is called skewing and the angle at which the wake is directed away from the
normal course is called skewing angle denoted by (γ).

The principle behind yaw-optimisation is that γ is greater than α, as given in
equation (3.9) [100]. A smaller α can skew the wake away from the downstream
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shadowed turbines. This reduces production of the upstream turbine but increases
productions of the downstream turbines. Hence optimal settings of yaw-offsets can be
used for increasing net power production of the wind farm.

The analytical relationship between α and γ given in [100] is used in this study as
shown in the following equation (3.9). This expression is developed using a series of
experiments in a scaled wind farm [100]. The expression clearly shows that for a yaw
offset of 1°, the wake is skewed by 1.2°. Equation (3.9) is developed using different
wind tunnel experiments and validated using real-time field data from wind farms with
different layouts in [98, 101, 140]. Equation (3.9) is also used and validated through
simulations in [113] using field data. The aim of this thesis is to develop and implement
fast processing and accurate real time on-line coordinated control strategies. Using the
analytical expression given in equation (3.9) provides a faster approach for estimating
γ as compared to solving the whole flow field and then estimating γ. Hence equation
(3.9) is used in this work for estimating γ.

γ = 1.20∗α (3.9)

3.2 Problem Formulation for Performance Evalua-
tion

This section is mainly based on the work in [79]. Performance of the selected optimisers,
for production maximisation with coordinated control, is evaluated using the case
study wind farm detailed in section 3.1.2 with the objective function given in equation
3.8. Evaluation criteria are based upon solution quality, processing speed, number of
overheads used and success rate for achieving an acceptable solution as described in
section 2.4.2.

The standard Jensen model [75] is used for wind deficit calculation because of
its simplicity, limited number of parameters required and simple implementation as
discussed in section 3.1.3. The selected optimisers use the Jensen model for generating
different combinations of turbines’ productions.

The decision variable can be either CP , α or both in the optimisation process.
Varying CP of an upstream turbine varies its power production and hence the wake
produced. It shall be noted that varying CP indirectly changes CT , which is the main
parameter affecting the strength of the wake. If optimal yaw offsets are applied on
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upstream turbines using α, wakes can be deflected away from downstream turbines, in-
creasing net production. The most appropriate optimiser will vary CP or α intelligently
achieving an optimum value with high processing speed using minimum overheads
i.e. number of trials made. The processing speed should be in the order of seconds as
was detailed in section 2.4.2. The overheads or trials show the different combinations
of power production evaluated by the optimiser for achieving an optimum solution.
The wind deficit model (the Jensen model) is used for creating these combinations of
productions. Using lower number of trials significantly increases the processing speed,
hence the optimiser should achieve the optimum solution with minimum number of
trials. This was detailed in section 2.4.2.

The decision variable for optimisation is assumed to be CP for evaluating the
performance of selected optimisers. It is assumed that the turbines are perfectly
aligned with the wind direction resulting in α = 0°. The wind speed bin is maintained
at 1m/s as suggested in [38, 87, 123]. With this bin size, it is assumed that the
wake effects remain the same over ±0.5m/s. This bin size is also used in most of the
standard power curves provided by manufacturers use a bin size of ±0.5m/s [16, 142–
144]. Decreasing the bin size increases complexity of the optimisation problem as more
combinations of power productions can be generated.

It shall also be noted that the last turbine in the array should be operated greedily.
The wake produced by this turbine does not impact the farm production. Hence, it
shall always produce the maximum it can. This also reduces one dimension of the
problem as the number of turbines’ productions to be optimised now is (N −1), which
makes it six for the example wind farm. The aim is to use the selected optimiser
for on-line real time farm control. Reducing a dimension reduces complexity of the
optimisation process, resulting in higher processing speed and reduced number of
overheads used.

When the wind turbines operate greedily, f(Pmax,CP (max),αmax) in equation
(3.8) become 6830. Any decrease in this value (6830) will bring an increase in farm
production as the objective is to minimise the difference between farm production
in no-wake conditions and the actual farm production. An explanation of how the
selected optimisers perform coordinated control of the example wind farm is given in
the following sections 3.3, 3.4, 3.5, 3.6 and 3.7.



3.3 Brute Force (BF) 57

3.3 Brute Force (BF)

The BF technique evaluates the whole solution space for finding global optimum value.
That’s why this technique is also called the exhaustive search or generate and test
technique [79]. All combinations of turbines’ power productions are generated and
evaluated according to equation (3.8). When a combination of productions is generated,
it is compared with the previous best value. This makes sure that the global optimum
value is achieved.

3.3.1 Results

A farm production array is generated which contains all combinations of power pro-
ductions that can be produced in the example wind farm in the given wind conditions.
This array is presented in Figure 3.3 with reference to the first two upstream turbines
(total dimensions are six). Figure 3.3 clearly exhibits the complexity of the coordinated
control problem. An optimiser has to avoid many local optima in order to reach closer
to the global optimum. The global optimum value for f(Pmax,CP (max),αmax) is 6532
corresponding to an increase of 4.5% in farm production relative to the greedy control
as the value of f(Pmax,CP (max),αmax) for greedy control is 6830 as discussed in section
3.2.

3.4 Genetic Algorithms (GAs)

GAs have proved to be useful at tackling problems that cannot be solved using
conventional methods [136, 145]. GA starts with a population of random chromosomes
which are potential solutions of the problem under consideration [146]. Selection,
crossover and mutation are used for generating better solutions from the existing
population in every iteration, if possible [136, 145, 146].

Crossover combines two individuals (parents), to form a new individual (child)
for the next generation [124, 146]. The new offspring created are put into the next
generation of the population. As population size is static, some of the weak individuals
(with low fitness values) will die. Mutation introduces some random modification
(random walk through solution space) to the new generation [136]. A portion of the
new individuals will have some of their bits flipped (mutated) to maintain diversity
and inhibit premature convergence. Mutation enables GA to search a broader space
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Figure 3.3 Power array with reference to first two upstream turbines

providing a chance to avoid local optima [124, 145]. The algorithm terminates when a
satisfactory solution is reached or when the loop terminates.

The objective function in equation 3.8 is optimised using GAs with the Matlab
global optimisation toolbox [124, 147]. The Matlab global optimisation toolbox has
widely been used for solving complex optimisation problems [124, 147]. The major
strength of Matlab global optimisation toolbox is that different functions are available
for defining the population size, selection, reproduction, mutation and crossover [124].
These different options were used and evaluated for solving the coordinated control
problem by tuning parameters for achieving accurate results with high processing speed
as detailed in Appendix C in section C.1.

3.4.1 Results

The flow chart in Figure 3.4 represents optimisation of the control process using
GA. Figure 3.5 shows how GA achieves the fitness value. The value achieved for
f(Pmax,CP (max),αmax) is 6632 which shows an improvement over the greedy control
(f(Pmax,CP (max),αmax) = 6830). However, the global optimum value (f(Pmax,CP (max),αmax)
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= 6532) is not achieved. This will be further discussed in section 3.8. Further informa-
tion about GAs can be found in [124, 136, 145–148].

Figure 3.4 GA flow chart for coordinated control problem

Figure 3.5 GA movement towards the optimum solution
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3.5 Simulated Annealing (SA)

SA is motivated by an analogy to annealing in solids [149, 150]. It provides a means
to escape local optima by worsening the value in objective function hoping that global
optimum may be reached [151]. Each iteration, the algorithm generates two values i.e.
the current solution and a newly selected solution. A comparison is made between the
solutions; improved (superior) solutions are accepted while some of the non-improving
(inferior) solutions are also accepted. These inferior solutions are used for escaping a
local optima [150]. The probability of accepting inferior solutions depends upon the
temperature [151]. The temperature parameter is defined initially and changes as the
algorithm runs through iterations. This approach (escape from local optima) gives a
better chance of not trapping in a local optima as more area of the solution space can
be searched [151].

The wind farm production optimisation problem is complex with many local
optimum as can be seen in Figure 3.3. SA is used in effort to escape those local
optimum for reaching the global optima. SA from the Matlab global optimisation
toolbox [124, 147] is used. The Matlab global optimisation toolbox has different
functions and parameters for SA, which were tuned for maximising farm production.
Details of evaluating and tuning of the parameters are given in section C.2.

3.5.1 Results

The flow chart in Figure 3.6 shows the complete process of SA solving coordinated
control problem. Same bounds of CT are used as with GA. Movement towards the
optimum solution is shown in Figure 3.7. The value achieved for f(Pmax,CP (max),αmax)
is 6632 which shows an improvement over the greedy control (f(Pmax,CP (max),αmax)
= 6830). However, the global optimum value (f(Pmax,CP (max),αmax) = 6532) is not
achieved. This will be further discussed in section 3.8. The algorithm terminates after
the specified number of iterations are executed. Further details of SA optimisation
process can be found in [124, 149–151].

3.6 Ant Colony Optimisation (ACO)

ACO is inspired by the food-seeking behaviour of real ants [152–155]. Ants move from
nest to food sources following different paths stochastically, leaving pheromone behind
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Figure 3.6 SA flow chart for coordinated control problem

Figure 3.7 SA movement towards the optimum solution

them. Other ants can detect these pheromones. With the passages of time, more
ants follow the shortest path making the pheromones trail stronger. In the meanwhile,
no ants follow the longer paths hence the pheromone evaporates and vanishes there.
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This way, ants use their combined knowledge to follow the shortest path to the most
abundant food source.

Figure 3.8 [156] represents different steps of ants travelling from nest towards food
source choosing the shortest path. It can be seen that there are different paths leading
to the food source. Initially ants travel through these paths leaving pheromones behind.
Ants travelling through the shortest path returns first, hence more ants follow that
path making the pheromone trail stronger. As the number of ants travelling through
the longer path decreases, the pheromone evaporates making that path less attractive
for other ants.

ACO uses ants as agents and food source as the potential solution for solving
complex problems [152]. In the coordinated control problem different ants represent
CT of turbines, while the optimised production (maximum farm production) is the best
food source. A prerequisite for designing an ACO algorithm is to have a constructive
method which can be used by an ant to create different solutions through a sequence
of decisions [157]. Every decision extends a partial solution by adding a new solution
component until a complete solution is derived. These different solutions are paths on
a graph. This graph is called construction graph [152, 154–157]. Construction graph
is used for generating artificial pheromones and partial solutions. That is why ACO
is mostly used for scheduling problems such as travelling salesman and scheduling
activities problems [133, 158].

Partial solutions were created using combination of CT and fitting them to the
objective function given in equation (3.8). Providing the scheduling information in the
construction graph for coordinated control problem makes it complex to implement
ACO for such problems as there are many different combinations of powers (paths
for ACO) and many local optima as shown in Figure 3.3. The algorithm terminates
when an acceptable (optimum) solution is achieved or when the number of loops is
terminated. Details of ACO implementation in Matlab are given in section C.3.

3.6.1 Results

Movement of ACO towards the optimum value of f(Pmax,CP (max),αmax) is shown
in Figure 3.9. ACO also achieved almost the same optimum value as GA and SA
for f(Pmax,CP (max),αmax), which is 6637. This shows an improvement over the
greedy control (f(Pmax,CP (max),αmax) = 6830). However, the global optimum value
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(f(Pmax,CP (max),αmax) = 6532) is not achieved. This will be further discussed in
section 3.8.

Figure 3.8 Ants moving towards food-source choosing shortest path using pheromones [156]

Figure 3.9 ACO movement towards optimum solution



64 Selection of a Suitable Optimiser and Developing Control Strategies

3.7 Particle Swarm Optimisation (PSO)

PSO consists of particles which are artificial agents but with no individual intelligence
[159]. These particles move through the solution space by creating collective intelligence
solving complex optimisation problems. Each particle is a potential solution in the
given solution space.

The algorithm keeps a record of each particle’s best fitness value achieved in different
iterations - called the local best of the particle. The best solution or best fitness value
among all the particles is also recorded - called the swarm’s global best. The particles
use their current position in the solution space, local best and global best to generate
a velocity for moving towards the best possible solution [159, 160]. The process is
iterative. Each iteration, the swarm builds up an organised movement and direction
towards the optimum value using a set of equations [79, 159, 160]. The algorithm
terminates when the required (acceptable) solution is reached or when the number of
iterations is completed.

PSO was implemented in Matlab as PSO is not a part of Matlab global optimisation
toolbox .In coordinated control, each swarm represents CT of an individual turbine.
The CT upper and lower bounds are same as for other optimisers. Detailed description
of tuning other variable is given in section 3.9 and summarised in Table 3.2.

3.7.1 Results

The control process using PSO is presented in Figure 3.10. Figure 3.11 shows the
movement of PSO finding the optimum value of f(Pmax,CP (max),αmax). PSO also
achieved the same optimum value as GA and SA for f(Pmax,CP (max),αmax), which
is 6632. This shows an improvement over the greedy control (f(Pmax,CP (max),αmax)
= 6830). However, the global optimum value (f(Pmax,CP (max),αmax) = 6532) is not
achieved. This will be further discussed in section 3.8.

3.8 Analysis and Discussion

This section discusses performance of different optimisers by analysing the results
given in Table 3.3 and is based on the discussion in sections 3.3, 3.4, 3.5, 3.6 and 3.7.
Performances of GA, SA, ACO and PSO are shown in Table 3.3 and evaluated in this
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Table 3.2 Evaluating the parameters in PSO as per the criteria in section 2.4.2

Parameter Values / Func-
tions evalu-
ated

Selected
value /
function

Reason for selection

Population 20 to 100 in a
step of 10

30 Achieves optimum solution
with higher computational
efficiency

Distribution
of randomness
generators

Gaussian, Uni-
form, Poisson,
Normal

Normal All the distributions have
the same processing speed
and solution quality. The
default Normal is used

Constants Different positive
values of the two
variables with a
sum equal to 4

2 and 2 Relatively better solution
quality

Inertia (global
search)

0.90 Supports
global
search

Relatively better solution
quality

Inertia (local
search)

0.20 Supports
local
search

Relatively better solution
quality

Inertia de-
crease rate

0.02 to 0.10 in a
step of 0.01

0.03 Relatively better solution
quality

Neighbourhood
topology

Global best, ring
best

Global
best

Relatively high processing
speed

Number of
particles in a
ring

3 to 9 with a step
of

5 Reaches optimum solution
with high processing speed

section as per the criteria describe in section 2.4.2. Evaluation criteria is based upon
number of iterations used for achieving the optimum (acceptable) solution, processing
time, number of overheads used, success rate and closeness to the global optimum farm
production, as describe in section 2.4.2. A total of 100 runs are used for getting these
results.

All the optimisers curtail the first four upstream turbines by reducing their CP .
The last three turbines are operated at their maximum capacity. It was discussed in
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Figure 3.10 PSO flowchart for solving coordinated control problem

Figure 3.11 PSO movement towards the optimum solution

section 3.2 that the last turbine in the array is operated greedily and is not considered
for optimisation.

The number of iterations, processing time and overheads used by BF techniques
shows the complexity associated with this technique. That is why it is used only as a
benchmark for finding the global optimum value i.e. maximum possible production of
the case-study wind farm. Hence, closeness to the global optimum (f(Pmax,CP (max),αmax)
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Table 3.3 Performance comparison of selected optimisers for wind farm coordinated control.
Value of the objective function for greedy control is 6830.

Variables Brute Force GA SA ACO PSO
CP 1 0.29 0.29 0.29 0.29 0.29
CP 2 0.33 0.33 0.33 0.33 0.33
CP 3 0.33 0.37 0.37 0.37 0.37
CP 4 0.41 0.43 0.43 0.43 0.43
CP 5 0.44 0.44 0.44 0.44 0.44
CP 6 0.44 0.44 0.44 0.44 0.44
Population size NA 50 NA 50 30
Success rate after
100 trials

NA 100% 100% 100% 100%

Value of the objec-
tive function

6532 6632 6632 6637 6632

Closeness to global
optimum

100% 98.5% 98.5% 98.5% 98.5%

Improvement over
greedy control

4.5% 3.0% 3.0% 3.0% 3.0%

Iterations 1.5625×1010 51 250 400 40
Processing time in
seconds

8400 0.51 2 3 0.33

Overheads (calls to
the wake model)

7.8×1011 85200 7854 26600 6654

= 6532) is 100%. BF shows that a maximum of 4.5% increase is possible in production
of the case study wind farm, in the given wind conditions, as compared to state of the
art greedy control as discussed in section 3.3.

The population sizes of GA, ACO and PSO were evaluated within a range of 20 to
100 according to the criteria given is section 2.4.2. It was found that a population size
of 50 (for GA and ACO) provided better results as compared to other population sizes.
When GA and ACO population size was reduced to 30, the processing time increased
because of extra iterations used and more overheads (trials) used for reaching the
optimum solution. The optimum population size for PSO for solving the coordinated
control problem was found to be 30. PSO was able to achieve the optimum solution
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with high processing speed using a population size of 30. These population sizes were
determined by simulating equation 3.8 in Matlab in 100 different runs.

GA, SA, ACO and PSO produced a solution of almost the same quality having the
same success rate. These optimisers are trapped in a local optimum (f(Pmax,CP (max),αmax)
= 6632) at a distance of 1.5% from the global optimum (f(Pmax,CP (max),αmax) =
6532). The difference in solution quality of BF and other optimisers is because of the
CP of Turbine3 and Turbine4. BF curtails them more as compared to other optimisers.
In the case of GA, SA, ACO and PSO, the last three downstream turbines have less
wind to produce with. This still results in an increase of 3% in farm production
as compared to the conventional control (f(Pmax,CP (max),αmax) = 6830) which is
acceptable.

Success rate of GA, SA, ACO and PSO for achieving the optimum (acceptable)
solution of the same quality is 100%. This means that all these optimisers obtained the
optimum (acceptable) solution (f(Pmax,CP (max),αmax) = 6632) in all the 100 runs.
Parameters in these optimisers were tuned to test if the local optima can be avoided
as discussed in section 3.7.1 and appendix C. With the optimum values for all the
corresponding variables in the optimisation techniques, the optimisers result in the
same solution quality during the 100 runs, being trapped in the same local optimum.
As this solution quality is acceptable, the success rate is 100%.

PSO uses the minimum number of iterations (40) for achieving the optimum result.
GA requires 51 iterations for achieving the same solution as PSO. While SA and
ACO require 250 and 400 iterations respectively for achieving the optimum result.
The number of iterations has an impact on processing speed and processing time.
Processing speed decreases and processing time increases with the increase in number
of iterations. Hence PSO has the highest processing speed, with GA second, SA at the
third and ACO at fourth place. PSO and GA complete the optimisation in less than
one second while SA takes two seconds and ACO takes three seconds for completing
the optimisation process.

PSO outperformed GA, SA and ACO in terms of number of calls (trials) made to
the wake model which represents the number of overheads used. SA is rated second in
terms of number of overheads used with GA at third and ACO at fourth place. GA
used almost 13 times more overheads than PSO and 11 times more than SA. The
number of overheads used along with processing speed shows computational efficiency
of the optimisers. The processing speed of both GA and PSO is under one second,
however PSO has lower overheads which increases its computational efficiency. The
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number of overheads becomes significant if the wind deficit model takes more time for
processing. Lower number of overheads means lower number of calls made to the wind
deficit model and evaluating fewer combinations of turbines’ productions for reaching
an optimum solution.

3.8.1 Conclusion

These analyses show that GA, SA, ACO and PSO produce the same solution quality
and have the same success rate for achieving this solution. All these optimisers produce
an improvement of 3.0% (f(Pmax,CP (max),αmax) = 6632 with coordinated control
as compared to f(Pmax,CP (max),αmax) = 6830 with greedy control) in farm power
production relative to conventional greedy control as detailed in section 3.4, 3.5, 3.6
and 3.7. PSO is computationally more efficient than GA and SA as processing speed
is higher and the number of overheads used is lower. Hence PSO is more suitable for
coordinated control of wind farms. Detailed explanation of PSO is given in the next
section 3.9.

3.9 Particle Swarm Optimisation (PSO)

PSO is a population based Swarm Intelligence optimisation technique. Particles in a
swarm mimic birds in a swarm or fish in a school [159]. Birds fly in swarms with no
specific leader but they communicate with each other, creating a collective intelligence
moving towards a food source. Each bird searches individually for a food source and at
the same time communicate with other birds about the food sources already discovered
by them. All the birds in the swarm move towards the bird that discovers the richest
food source and at the same time keep an eye on the food source it has discovered on
its own. This way an individual bird benefits from both the food sources. This process
continues until all the given or specified area is searched for potential food sources. In
the end all the birds reach the richest available food source.

This birds’ swarm analogy is applied to particles in a swarm for solving complex
optimisation problems. Particles in a swarm represent the birds. The richest food
source represents the global optimum solution available. Other richer food sources are
represented by local optima. The particles fly through the solution space searching for
the best available solution.
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This optimisation process is iterative. Each iteration, the particles create a direction
moving towards the global optimum with a velocity (Vi). This Vi of a given particle (i)
is determined using equation (3.10) [159, 161]. The position (xi) of the particle i at
time (t+1) is simply the sum of particle i current position at time (t) and the velocity
for moving towards the next positions as given in equation (3.11) [159, 161].

Vi(t+1) = R1Vi(t)∗ ζ + c1R2 ∗ (pi(t)−xi(t))− c2R3 ∗ (pg(t)−xi(t)) (3.10)

xi(t+1) = xi(t)+Vi(t+1) (3.11)

(R1, R2 and R3) are randomness generators, inertia is denoted by (ζ) which controls
velocity of the particles, (c1, c2) are constants used for controlling movement towards
local and global best respectively, (pi) is personal best of the ith particle in all previous
t iterations, (pg) is the global best of the swarm and (xi) is current position of the ith

particle in the solution space. The values of these variables depend upon the specific
problem under observation. Detailed description of these variables is given in the
following sections.

3.9.1 Velocity (Vi)

Velocity is the rate of change of movement or jump that a particle has while moving
towards the optimum solution [131, 159, 162, 163]. Velocity is determined and updated
each iteration using equation (3.10) [159, 164]. Velocity is always kept at a nominal
rate according to the problem under consideration, depending upon values of other
variables, given in equation (3.10) and varies in each iteration accordingly. If it is
too high the particles may miss the optimum solution. Lower velocity may result in
trapping of a particle in a local optima. Some researchers have termed velocity as
habit or momentum [165, 166]. Movement of some random particles (PSO-global best)
towards the optimum CP s is shown in Figure 3.12 considering the artificial wind farm
detailed in section 3.1.2. The CP values of each turbine in Figure 3.12 corresponds to
the CP values (for PSO) given in Table 3.3. The optimum CP value for turbine1 to
turbine6 (upstream to downstream) is 0.29, 0.33, 0.37, 0.43, 0.44 and 0.44 respectively
as can be observed in Figure 3.12 and Table 3.3.
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Figure 3.12 Movement of some random particles towards Optimum CP

3.9.2 Position (xi)

This shows the current position (fitness) of a given particle in the given solution space.
In the start of the algorithm all the particles are initialised randomly within the given
limits [159, 160]. Position of a particle represents a potential solution of the given
problem. Position of each and every particle is determined each iteration using equation
(3.11). If the position determined at time t+1 is better than position at time t (fitness
of this solution outperforms the previous one) then the position of that particular
particle is updated according to equation 3.11.

3.9.3 Random Variables (R1,R2,R3)

Randomness in the search is introduced by (R1,R2,R3). The randomness controls
Vi and hence xi of a given particle i [159, 160, 164]. The randomness or stochastic
behaviour improves the chances of avoiding a local optima. Previous studies do
not suggest any particular distribution for randomness generators. Different data
distributions namely Gaussian, uniform, Poisson and normal distributions were used
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and evaluated for solving equation (3.8) and no impact was found on the results. The
default "Normal distribution" available in Matlab [124] is used in this work.

3.9.4 Constants (c1, c2)

The constants (c1, c2) in equation 3.10 are termed as acceleration constants [159].
Randomness generator control the velocity, constants accelerate the particles’ velocities
for achieving an optimum solution. Higher values of c1 and c2 mean more acceleration,
this is good for exploring new areas of the solution space but particles may diverge
[160–164, 166, 167]. Lower values of c1 and c2 limit the acceleration which may lead
to refined search around the optimum solution [160–162, 164, 166]. Previous research
suggests that a value of c1 +c2 = 4 shall be used for giving the particles a better chance
for exploring all the solution space [160, 162]. Equal weight is given to c1 and c2 in
this work, keeping their values equal to 2 as given in Table 3.4.

3.9.5 Inertia (ζ)

Inertia weight (ζ) is used for avoiding high velocity of the swarm [165, 167]. If velocity
is too high for the problem under consideration, the particles may miss the global
optimum moving towards a local optimum value. The particular high and low limits of
velocity depends upon the problem under consideration (objective function) and other
variables as was discussed in section 3.9.1. A large value of ζ (up to 0.90) is good for
a global search while small values (up to 0.20) facilitate local search [162, 164, 168].
Researchers recommend a higher ζ up to 0.90 initially and then reducing it up to 0.20
[160, 162]. This allows a global search initially and once the solution space is confined,
a local search is performed. This gives the swarm a better chance to find an optimum
solution.

It is suggested in [160, 162, 164] that this rate of reduction should be linear for
achieving better results. This recommendation is adopted in this work for solving
the coordinated control problem. Each iteration the value of ζ was reduced by 0.03,
starting from 0.90 to a minimum of 0.20, after that (ζ = 0.20), ζ is kept constant at 0.20
as recommended by [160, 162, 164]. Other values, for reducing ζ, were also evaluated in
the range of 0.02 to 0.10 (in a step of 0.01) and it was found that success rate is better
when ζ is reduced by 0.03 each iteration. When ζ was kept constant or when other
values for ζ reduction (other than 0.03) were used, success rate decreased as sometime
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PSO was trapped in worst local optima (worst than the f(Pmax,CP (max),αmax) =
6632). When the rate of decrease of ζ was kept at 0.03, the success rate for achieving
the optimum value (6632) of f(Pmax,CP (max),αmax) is 100% in 100 runs. This means
that this optimum value (f(Pmax,CP (max),αmax) = 6632) was achieved in each run.

3.9.6 Personal Best (pi)

Personal best (pi) records particle i’s best fitness value achieved up to current time t

[159]. Each particle in the swarm has its own personal best which is evaluated and
updated (if required) each iteration accordingly.

The term (pi(t)−xi(t)) in equation (3.10) represents the individual intelligence of
the particle achieved with help from the swarm [159]. From the perspective of Newton’s
first law of motion, this term is the action of a particle [160]. This term has been
referred to as self-knowledge, self-learning, local memory, remembrance and nostalgia
of an individual particle [159, 160, 162, 165–167, 169]. This term mimics behaviour of
an individual bird searching for a food source and pi is the richest food source found
by the bird i up to time t.

3.9.7 Global Best (pg)

Global best (pg) is the best solution achieved by the whole swarm up to time t [159].
In other words, it is the best pi among all the particles in the swarm. Each particle’s
pi is compared to pg each iteration and updated if a pi is better than pg. This means
that the whole swarm has a single pg. The aim is to converge all the particles to pg

when the algorithm terminates - which is the highest quality solution achieved.

The term (pg(t)−xi(t)) in equation (3.10) represents the cooperation in the swarm.
From the perspective of Newton’s first law of motion, this term is the reaction of the
term (pi(t)−xi(t)) [160]. If action and reaction are equal, there is no force, hence the
particle is static and does not change its position (in absence of other variables, such
as (ζ) and randomness generators). This is true for the particle i whose pi is equal
to pg. As the solution achieved by this particle i is the best solution achieved by the
swarm, there is no need to change its position and the velocity of this particle remains
zero. The particular particle i is called leader of the swarm at time t [167]. Researchers
have referred to the term (pg(t)−xi(t)) as social intelligence, experience sharing, group
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learning, cooperation, social knowledge, group knowledge and information sharing in
the swarm [159–162, 164–167, 169].

3.9.8 Population Size

PSO is a population based algorithm as discussed in section 3.1.1.1. The number of
particles in a swarm represents the population size. For a multi-dimensional problem
each dimension is represented by a separate swarm. Hence the number of swarms is
equal to the number of dimensions to be optimised.

The algorithm optimises all these dimensions using the fitness value (objective
function). Relatively larger population sizes are recommended for higher-dimensional
complex problems but this increases processing time [159, 160]. There is no specific
size of population as it depends upon the problem under consideration [170]. Different
population sizes within a range of 20 to 100 with a step size of 10 were evaluated. It
is found that a population size of 30 particles is suitable for wind farm coordinated
control as was given in Table 3.4.

3.9.9 Iterations

The number of iterations determines how many chances a particle has to update its
position [159]. Usually termination criterion of the algorithm is represented by the
number of iterations [160, 170]. There is no fixed criterion for determining the number
of iterations [161, 162, 164]. Higher number of iterations increases chances of achieving
a better solution but this also increases the processing time. The number of iterations
depends upon complexity of the problem, desired accuracy and processing time required.
It is found with (around 100) simulations that PSO can successfully find the optimum
solution for wind farm coordinated control in a maximum of 40 iterations as given in
Table 3.4 and shown in Figure 3.12.

3.9.10 Neighbourhood Topologies

The way particles communicate with each other for finding the optimum value depends
upon neighbourhood topology in the swarm. The neighbourhood topology represents
how particles are connected. In the original (global-best) version of PSO [159], a
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particle communicates with every other particle in the swarm (fully connected) as
shown in Figure 3.13a.

Researchers [160, 162, 164, 169, 171] have used other neighbourhood topologies for
reducing chances of getting trapped in local optimum such as the fully connected swarm,
ring or circle neighbourhood, star or wheel neighbourhood, pyramid neighbourhood and
Von-Neumann neighbourhood as shown in Figure 3.13. Detailed description of these
topologies is provided in [169, 171]. Performances of these neighbourhood topologies
are evaluated using complex optimisation functions in [161, 169, 171]. It is concluded in
these studies [161, 169, 171] that the algorithm converges faster with the fully connected
swarm (Figure 3.13a) and ring or circle neighbourhood topology (Figure 3.13b) as
compared to the other neighbourhood topologies, with relatively better success rate
and better solution quality. It is also recommended in [161, 169, 171] that if faster
optimisation is required then fully connected or ring topology must be used as the
other topologies reduces computational efficiency of the algorithm. As processing
speed is one of the main criteria for solving the coordinated control problem, these
two neighbourhood topologies (fully connected and ring) are evaluated in this work for
maximising farm production.

Figure 3.13 Different neighbourhood topologies in PSO [169, 171, 172]
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Table 3.4 Performance comparison of fully connected and ring topology PSO

Variables Global-best Ring-best
Population size 30 30
Iterations 40 1000
c1 and c2 2 2
Processing time in seconds 0.25 6
Overheads (calls to the wake model) 6654 6654
Success rate after 100 trials 100% 100%
Closeness to global optimum 98.5% 98.5%

The ring topology is implemented and evaluated using the artificial wind farm
detailed in section 3.1.2. Different number of particles in a ring (3 to 9) neighbourhood
were evaluated in [79] for coordinated control of wind farms and it was found that
a neighbourhood (ring) of five particles achieves the optimum solution with highest
processing speed. This means that every five neighbouring particles exchange infor-
mation with each other for finding their ring best value. Every particle exchanges
information with its two immediate neighbours on both sides, keeping the particle
under consideration in the middle.

The fully connected PSO was chosen as the most suitable optimiser for wind farm
coordinated control in section 3.8. Performances of PSO with global best and ring
topologies are evaluated and results are presented in Table 3.4. This shows the impact
of the two neighbourhood topologies on performance of PSO for solving the coordinated
control problem.

The neighbourhood topologies do not change behaviour of the swarm and only
change the way in which particles exchange information with each other. Both the
neighbourhood topologies produce the same quality solution and with the same success
rate. However, fully connected PSO outperforms the ring topology based PSO in terms
of processing speed. With higher processing speed and 25 times fewer iterations, fully
connected PSO is the first choice for optimising wind farm coordinated control.
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3.10 Conclusion

This chapter selected a suitable optimiser for solving coordinated control problem
answering RQ-2 which is about selection of an appropriate optimiser for coordinated
control problem and defining its characteristics. It was discussed in Chapter 2 that
previous coordinated control studies emphasise more on the aerodynamics of the
problem than the optimisation. This chapter filled this gap by evaluating performances
of a set of carefully selected optimisers using coordinated control.

Previous studies suggest that the a suitable optimiser for coordinated control of wind
farms shall reach an acceptable solution with high processing speed using minimum
overheads. Heuristic techniques have been used by researchers for solving complex
non-linear problems. These techniques are iterative with intrinsic intelligence, fulfilling
the criteria established in section 2.4.2 for choosing a suitable optimiser for coordinated
control. The literature review in section 3.1.1 concluded that BF, GA, SA, ACO and
PSO make a suitable set of optimisation techniques for evaluation, solving wind farm
coordinated control problem.

Performances of the selected optimisers were evaluated using an artificial wind farm
of seven NREL 5MW wind turbines, installed in one-dimensional array. The Jensen
model was used for predicting wind deficit in the farm because of its simplicity and
ease of use.

Optimised control strategy based on yaw-offset was explained. The wake skew
angle is greater than yaw-offset, hence this principle can be used for maximising wind
farm power production for farm production maximisation. The analytical relationship
between α and γ obtained from literature [100] was explained.

An objective function was formulated for maximising farm production, using CP or
α or both as the decision variable(s), using coordinated control. The objective is to
minimise the difference between farm production assuming no-wake conditions and the
actual farm production in the given wind conditions.

Comparative analysis of performances of GA, SA, ACO and PSO concluded that
PSO is the most suitable optimiser for coordinated control. PSO is fast and computa-
tionally efficient relative to GA, SA and ACO. This makes PSO suitable for on-line
real time coordinated control of wind farms.

In-depth analyses of PSO were presented. Performances of two neighbourhood
topologies of PSO: the ring or circle topology and global best topology were compared
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and evaluated. Comparative analysis concluded that the global best (full-connected)
PSO has higher processing speed requiring lower overheads and is more suitable for
wind farm coordinated control.



Chapter 4

Development of TI-JM and Wake
Assessment Methodology

This chapter details the methodology adopted for developing a fast processing and
accurate wind deficit model (TI-JM) answering RQ-3. The approach for developing this
wind deficit model presents a novel methodology for combining accuracy of CFD-based
wind deficit models with computational efficiency of engineering wind deficit models.
An assessment methodology, for analysing impact of wake on farm production, is also
developed, answering RQ-4, by identifying wind conditions where coordinated control
can be beneficial for increasing overall farm production.

The farm controller has a wind deficit model and an optimiser as two integral parts
as discussed in in Chapter 2. It was concluded in Chapter 2 that the Jensen model [75] is
best suited for coordinated control of wind farms because of its computational efficiency
and simplicity of implementation. However, it was also noted that simple assumptions
of the standard Jensen model [75] make it relatively less accurate. Parameters in the
model must be tuned for accurate wind deficit prediction in the wind farm as concluded
in Chapter 2.

This chapter first details strengths and weaknesses of the Jensen model in section
4.1. This is followed by a literature review summarising methodologies for modifying
parameters in the Jensen model for overcoming its shortcomings in section 4.2. The
Turbulence Intensity based Jensen Model (TI-JM) is developed in section 4.3 considering
realistic wind flow rather than the ideal wind flow as in the standard Jensen model.
The TI-JM uses free-stream and wake added turbulence intensities (based on analytical
expression from CFD models) for predicting mean wind speed deficit inside the farm
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using the Jensen model, producing accurate results with high computational efficiency.
An assessment methodology for analysing impact of wakes on power production is
developed in section 4.4. The conclusion of this chapter is presented in section 4.5.
The structure of this chapter is presented in Figure 4.1.

Figure 4.1 Structure of chapter 4

4.1 Jensen Model

The Jensen model is an analytical wake flow model, first presented in [75]. A short
description of the Jensen model was presented in Chapter 2. It was noted in Chapter
2 that the Jensen model has been widely used for developing feedback control systems.
This section discusses the Jensen model detailing its strengths and weaknesses.

The Jensen model is based on law of conservation of momentum which states that
the overall momentum remains constant at any point in the flow field [75] as discussed
in section 2.2.2.1. The Left Hand Side (LHS) of equation (4.1) is a combination of two
terms. The first term represents the momentum just behind (downstream) the rotor
while the second one gives momentum added by the wake spread. The Right Hand
Side (RHS) of equation (4.1) gives the momentum at distance (x) where the wind
speed is equal to (ux). Free-stream wind speed is denoted by (u0), wind speed just
behind the rotor is given by (uT ), rotor radius is (r0) and radius of the wake spread is
denoted by (rx). Wake flow with the Jensen model is shown in Figure 4.2.

πr2
0uT +π(r2 − r2

0)u0 = πr2
xux (4.1)
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Figure 4.2 Wind deficit modelling with the Jensen model

Following are the basic assumptions and characteristics of the Jensen model [42,
75, 76].

1. Input parameters required - Wake decay coefficient (kJensen), CT , r0, u0 and x.

2. The model is based on the law of conservation of momentum.

3. Ideal wind flow - It is assumed that the wind is frictionless and incompressible
ignoring deep array effect and wake added turbulence intensity.

4. Constant kJensen - As wind flow is ideal, kJensen is assumed to be constant.
Standard values of kJensen for different terrains along with surface roughness
length and ambient turbulence intensity are given in Table 4.1 [91, 173].

5. Linear wake expansion - Wind expands linearly (in a hat shape) behind the rotor,
starting with a diameter equal to rotor diameter as shown in Figure 4.2.

6. Wake spread - Wake spread at any point depends upon kJensen, x and r0 as given
in equation (2.7).

7. The model does not provide detailed wake flow information, only mean wind
speed at the vicinity of each turbine in the farm is predicted.

8. The model is not valid for near wake prediction. Near wake is almost 1D behind
the rotor of the wake producing turbine [49, 52].

The limited number of parameters required for wake modelling and simplicity of
implementation with sufficient accuracy makes the Jensen model suitable for wind
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Table 4.1 Standard values of kJensen and ambient turbulence intensities for different
surfaces [91, 173]

Terrain Surface
Rough-
ness
Length

kJensen Ambient
Turbu-
lence
Intensity

Description

Offshore (Water
areas)

0.0002 0.040 0.06 Oceans and large water ar-
eas.

Mixed water and
land

0.0024 0.052 0.07 Can also be applied to very
smooth terrains.

Very open farm-
land

0.0300 0.063 0.10 No crossing hedges. Scat-
tered buildings. Smooth
hills.

Open farmland 0.0550 0.075 0.11 Some buildings. Crossing
hedges 8m high with distance
1250m apart.

Mixed farmland 0.1000 .083 0.12 Some building. Crossing
hedges 8m high with distance
800m apart.

Trees and farm-
land

0.2000 0.092 0.13 Dense vegetation. 8m hedges
250m apart.

Forests and vil-
lages

0.4000 0.1000 0.15 Villages, small towns and
much closed farmland. Many
high hedges. Forests.

Large towns and
cities

0.8000 0.108 0.17 Cities with extended build-
ings

Large build up
cities

1.6000 0.117 0.21 Large cities with build-up ar-
eas and high buildings

farm coordinated control [11]. Linear expansion of the wake behind the rotor can be
justified as it covers most of the wake affected area. This may affect the accuracy to
some extent, but as concluded in Chapter 2, a compromise has to be made between
accuracy and computational efficiency while selecting a wake model. The Jensen model
is a practical tool as long as the aim is to predict wind deficit inside the wind farm, for
estimating mean production [76]. Industry best practice is to install turbines in far
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wake region of the upstream turbines, as intensity of wakes reduces in far wake region
[11]. Hence with these assumptions and characteristics, the Jensen model is a suitable
tool for on-line coordinated control.

However assumptions such as ideal wind flow and constant kJensen make the model
relatively less accurate [35, 74]. Turbines under wake effects experience more turbulent
wind because of the wake added turbulence intensity and the deep array effect [35, 74].
This affects atmospheric stability and kJensen inside the wind farm. The farm acts
as a roughness generator itself [48]. Atmospheric stability is defined in terms of the
tendency of air to move upward or downward after it has been displaced vertically,
stable atmospheres tend to suppress vertical updrafts and reduce turbulence intensity
[174]. Atmospheric stability has a profound effect on the wind profile and on turbulence
intensity [175]. This affects wind conditions inside the wakes and brings abrupt changes
in the wind direction and speed. Wake effects diffuse quickly in unstable wind conditions
[174, 176]. The wake added turbulence intensity and extra roughness generated by
the wind farm disturbs the free-stream wind flow and make the wind more turbulent,
termed as deep array effect as was discussed in section 2.2.2.1. This increased turbulence
intensity must be taken into account while estimating wind speed deficit inside a wind
farm.

It can be seen in Table 4.1 that kJensen increases, as surface roughness and/or
turbulence intensity increases. Sea surface (offshore) kJensen is lower than kJensen for
grass or surfaces with vegetation. Water has lower roughness, hence wake takes longer
to recover and can travel for longer distances as compared to wakes onshore. The
increased value of kJensen also means increased wake expansion as per equation (2.7),
affecting more downstream turbines. Assuming ideal wake flow means ignoring the
extra roughness and wake-added turbulence intensity which results in lower values of
kJensen producing inaccurate wind deficit prediction inside the farm.

Researchers have addressed this issue adopting different approaches for adjusting
kJensen to match the actual wind speed deficit inside the wind farm. These approaches
are summarised in the following section 4.2.

4.2 Modifications in the Jensen Model

It was concluded in chapter 2 that parameters in engineering models must be tuned
according to the wind conditions for improving accuracy of these models. If the value
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of kJensen is tuned according to the wind conditions, accuracy of the Jensen model can
be increased [74]. Researchers have used SCADA data, CFD models and analytical
expressions for tuning kJensen considering deep array effect for achieving better results.
A review of these previous studies is presented as follows.

The work in [91] uses two different values of kJensen, one for free-stream conditions
and the other one for wake affected conditions. The first value of kJensen for free-stream
conditions is the standard value based on the terrain as given in Table 4.1. The second
value is a predetermined value of kJensen for the wake affected conditions and remains
constant second downstream turbine onwards. The wake affected kJensen is greater
than free-stream value because of the deep array effect [91].

The GH WindFarmer uses a correction factor for considering deep array effect
inside the wind farm [69]. This correction factor is applied to kJensen for taking deep
array effect into account [69].

The modified version of the Jensen model in WindPRO combines different turbulence
models with the Jensen model [41]. The turbulence models are used for estimating a
new (modified) value of kJensen for the wake affected wind turbines. It is recommended
in [48] to increase the kJensen inside the wind farm as the farm itself changes the
roughness, hence the free-stream wind may not follow assumptions of the standard
Jensen model.

Linear regression is used for estimating the actual value of kJensen using SOWFA
as a benchmark in [35]. SOWFA is a high fidelity CFD wake modelling software, which
gives detailed information about the flow field as discussed in Chapter 2. This study
[35] concludes that kJensen shall be modified (increased inside the farm) according to
the wind conditions for improving accuracy of the Jensen model.

Discrete bins of turbulence intensity are used in [177] 1 for determining the wake-
affected value of kJensen, using WindPRO as benchmark. First the increased turbulence
intensity inside the wake is estimated. This turbulence intensity is divided into discrete
bins. Each bin is then associated with a pre-determined value of kJensen. Wind speed
deficit is estimated with this modified kJensen and results are compared with WindPRO.
It is concluded in [177] that kJensen shall be modified inside the wind farm using a
continuous function.

The work in [92] evaluates kJensen using real time SCADA data under different
wind conditions in the onshore Brazos wind farm. This work [92] concludes that kJensen

1Self-citations by the author are presented in bold
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must be increased inside the wind farm for predicting the wind deficit accurately. The
standard values of kJensen shall only be applied to free-stream conditions [92]. Analysis
based on SCADA data confirms the additional roughness and turbulence intensity
inside the farm.

These studies confirm that if kJensen is properly tuned, then the accuracy of the
Jensen model can be increased. It was concluded in Chapter 2 that a better option is
to tune the kJensen using analytical expressions obtained from CFD models. This can
increase accuracy of the Jensen model without compromising its processing speed and
computational efficiency.

The wind deficit model developed in this work (TI-JM) uses this approach. An
analytical expression for estimating wake-affected turbulence intensity [178] is combined
with the Jensen model [75, 76] for predicting mean wind speed deficit inside a wind
farm. This model is presented in the next section.

4.3 Turbulence Intensity based Jensen Model (TI-
JM)

This section explains the step by step approach for developing a computationally
efficient and accurate wind deficit model. The model developed in this work is a
modified version of the Jensen model. The value of kJensen is modified based on the
wake-affected turbulence intensity inside the farm, hence the name Turbulence Intensity
based Jensen Model (TI-JM).

An artificial wind farm of 16 equidistant wind turbines with 3D spacing between
them, is assumed for this explanation. Wake effects reduce by increasing distance
between the turbines, that is why a spacing of 3D is used and it also presents industry
standard more accurately [138, 143]. However, any other spacing such as 2D, 4D, 5D

or any other can also be used for developing the wind deficit model. The wind farm
has a 4 × 4 layout and the wind direction is assumed to be 225° (south-west) as shown
in Figure 4.3. The 4 × 4 layout is assumed just to consider a two-dimensional wind
farm, any other two-dimensional layout such as 3×3, 4×3 or 5×5 can also be used
for developing the wind deficit model. The aim here is to develop the model with a
two-dimensional layout to enable the model to be used for wind deficit estimation in
wind farm with any layout. The following steps explain development and assumptions
of this model.
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1. The input parameters required - (easting, northing) coordinates of the turbines,
number or rows, number of turbines in each row (columns), free-steam wind speed
and turbulence intensity, wind direction and an initial value of kJensen for free-
steam conditions obtained from Table 4.1 according to the terrain characteristics.

2. It is assumed that wakes can affect downstream turbines up to 10D as suggested
in [41, 179].

3. It is assumed that the wake expansion remains linear behind the rotor (hat
shape), same as in the standard Jensen model [75].

4. First the wake centre-line is calculated up to 10D in the given wind direction.
Wake expansion is calculated using free-stream (initial) value of kJensen in equa-
tion (2.7) as shown in Figure 4.3a.

5. A rectangle (box) is drawn with the wake centre-line as the diameter of this
rectangle as shown in Figure 4.3b. This box is used for finding the turbines which
can be affected by the wake produced when it is extended up to 10D.

6. Turbines, actually affected by the wake are identified using geometry. It is
assumed that the turbine hub is perpendicular to the centre-line of the wake. If
the wake lines intersects rotor of any turbine, it is affected partially by the wake.
if a rotor lies between the two wake lines, it is under full wake effects. If none
of these conditions is present then the wake does not have any impact on the
turbines.

7. If a shadowed turbine is under partial wake effects, the percentage (weight) of
rotor swept area affected by the wakes (As) is determined.

8. Once the wake affected turbines are identified then wind speed deficits on these
turbines, as a result of the wake under consideration, is calculated using the
Jensen model in equation 2.5 as shown in Figure 4.3c.

9. In case of partial wakes, effective wind speed ux(ef) is the weighted sum of wind
speed predicted in step 8 (ux) multiplied by As and the free-stream wind speed
(u0) multiplied by rotor swept area not affected by wakes as given in the following
equation (4.2).

ux(ef) = ux ×As +u0 × (1−As)
100 (4.2)
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10. The above steps are performed for all the turbines facing the free-stream wind
according to the given wind direction.

11. The wake increases the turbulence intensity in the farm. This wake added
turbulence intensity (I+) can be estimated with the analytical expression given
in equation (4.3) [178].

The work in [178] presented different analytical expressions for estimating I+ and
concluded that the expression given in equation (4.3) is most suitable accurate
for estimating I+. The free-stream turbulence intensity is denoted by (I0) and
length of near wake is given by (xn). It is mentioned in [178] that equation (4.3)
can be used for estimating I+ in a wind farm with any given layout, hence it is
applicable to this work as well.

There is some uncertainty about how equation (4.3) is to be interpreted. A
cup anemometer is mostly sensitive to the longitudinal component of turbulence
intensity. Therefore, equation (4.3) may only represent the longitudinal compo-
nent of turbulence intensity, but there is some leeway to suggest it may be total
turbulence intensity in the absence of explicit information about its use. It is
assumed in this work that equation (4.3) represents the total turbulence intensity.
The analysis with equation (4.3) being equal to the longitudinal component is
left for future work as given in section 7.2.

I+ = 5.7×C0.7
T × I0.68

0 × (x/xn)−0.96 (4.3)

12. If I0 is given then the only unknown is xn which can be calculated using equation
(4.4) as given in [178].

xn = nR
dr
dx

(4.4)

where

R = r0

√
m+1

2 (4.5)

m = 1√
1−CT

(4.6)

n =
√

0.214+0.144m(1−
√

0.314+0.124m)
(1−

√
0.214+0.144m)

√
0.134+0.124m

(4.7)
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and dr
dx is the wake growth rate and can be found using the following equation

(4.8) [178]:
dr

dx
=

√√√√(dr

dx

)2
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+
(

dr

dx

)2
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+
(

dr
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)2

λ

(4.8)

where (
dr

dx

)
α

= 2.5I0 +0.0005 (4.9)

is the growth rate contribution due to ambient turbulence,(
dr

dx

)
m

= (1−m)
√

1.49+m

(1+m)9.76 (4.10)

is the contribution due to shear-generated turbulence, and

(
dr

dx

)
λ

= 0.0012Bnλ (4.11)

is the contribution due to mechanical turbulence, where (Bn) is the number of
blades and (λ) is the TSR.

13. The effective turbulence intensity inside wakes (Iwake) is estimated using equation
(4.12) [178].

Iwake =
√

I2
+ + I2

0 (4.12)

14. Turbulence intensity has three components: lateral, vertical and longitudinal.
According to [178], the longitudinal component of turbulence intensity (Iu) can
be specified by equation (4.13).

Iu = 1
ln(z/z0) = 2kJensen (4.13)

15. If isotropic conditions are assumed then the three components of turbulence
intensity are equal. Therefore Iu is one third of Iwake as given in equation (4.14).
It should be noted that if I0 is measured by a cup anemometer then the value
measured is actually Iu as a cup anemometer is mostly sensitive to Iu, except at
very low wind speeds, this is left as future work as given in section 7.2.

Iu = Iwake

3 (4.14)
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16. Equation (4.13) can now be replaced in Equation (2.6) to find the effective value
of kJensen as given in the following equation (4.15).

kJensen = Iu

2 (4.15)

17. The upper limit on Iwake is 20% as suggested by [98]. The lower limit is I0.

18. If a turbine is affected by multiple wakes then these are superimposed assuming
that the wind deficit in the wake is same as the linear sum of the wind deficits of
all wakes at the downstream turbine, as suggested in [42, 76]. This is shown in
Figure 4.3d.

19. This process is repeated for all the turbines in the wind farm.

20. This model can be used for any number of turbines, with any given layout.

The TI-JM takes deep-array effect into account for estimating wind speed deficit
inside the wind farm. The upper limit on turbulence intensity means that once this limit
is reached, the turbulence is kept constant for all the downstream turbines, otherwise
the turbulence intensity will rise to an impractical value. The higher turbulence
intensity inside the wind farm means that the wake diffuses quickly which results in
little or no wind speed deficit on downstream turbines deep inside the wind farm. The
TI-JM will be used by the optimiser for creating different combinations of turbines’
power productions. The TI-JM will be validated using real time data from the wind
farms case studies in Chapter 5.

4.4 Wake Assessment Methodology

It was discussed in Chapter 2 that wakes can severely affect wind farm power production
in certain wind conditions. An assessment methodology is developed in this section
for identifying impact of wakes on power production in the wind farm, using SCADA
data, answering RQ-4. Usually SCADA data is collected from each wind turbine and
met-mast after every 10 minutes. This data contains useful information about the
health and operational status of the turbines and wind conditions on site. SCADA
data can be used for identifying potential wind conditions where coordinated control
may improve wind farm power production. This wake assessment methodology can
also be used for performance comparison of different wind farms with similar layouts.
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(a) Wake expansion up to 10D (b) Identifying wake-affected turbines

(c) Wind speed deficit on the wake-affected
turbines using the Jensen model [75]

(d) Combining multiple wakes. Wake
expansion and the kJensen increases inside

the wind farm [42, 76]

Figure 4.3 Steps for predicting wind speed deficit with the TI-JM with a 4×4 wind farm
assuming wind flows at 225° i.e. wind from south-west

Firstly, the power production along with wind speed and direction signals from the
SCADA data are used. Data is filtered to use only those records where wind turbine
operates at its maximum capacity (normal operations), no curtailment is applied and
there are no O&M issues. For all the turbines, average of power production is taken in
all wind speeds with a direction resolution of 1°. This visualises power production of
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the turbines in 360° showing impact of wakes. This can also be used for identifying
appropriate wind direction and speed bins for further analysis.

If the comparison is between farms with different capacities then power production
is normalised (Pn) between 0 and 1 using equation (4.16), where i is the turbine under
consideration and N is the total number of turbines and (P (i)) is power production of
the ith turbine.

Pn = P (i)−a

b−a
(4.16)

a = min(P (1),P (2), ...,(P (N))
b = max(P (1),P (2), ...,(P (N))

The denominator in equation (4.16) amplifies turbines’ productions. Turbine
producing maximum (among all) at a particular instance of time has Pn = 1 while
turbine with minimum power production (among all) at that instance has Pn = 0.
Comparing power production in 360° identifies wind conditions where impact of wakes
is significant. In some wind directions, there are no or minimal wake effects while in
other directions impact of wakes on farm production is significant. This wake impact
depends upon different variables such as wind direction, layout of the farm, spacing
between the turbines and surface roughness. This will be further discussed in section
5.3.

Secondly, relative efficiency (ηRel) with respect to turbine producing the maximum
power (b) is calculated as given in equation (4.17). It can be observed in equation
(4.17) that for each record, the turbine producing maximum power has efficiency of 1
or 100%. This means that any data errors or unidentified O&M problems are ignored
and only the impact of wakes on power production is considered. This step magnifies
the impact of wakes in the chosen speed and directional bin.

ηRel = P (i)
b

(4.17)

This assessment methodology can show performance of wind farms in different wind
conditions. Coordinated control can be applied in identified wind conditions where
power production is significantly affected by wakes. This assessment methodology
answers RQ-4 which is about developing a strategy for assessing wake effects on farm
production, identifying potential wind conditions where coordinated control can prove
beneficial for mitigating these wakes and increasing farm production.



92 Development of TI-JM and Wake Assessment Methodology

4.5 Conclusion

This chapter presented the wind deficit model developed in this work. First detailed
description of the Jensen model was provided identifying its strength and weaknesses.
Previous studies proposing methodologies for modifications in the Jensen model were
summarised. A wind deficit model (TI-JM) was developed which combines the Jensen
model with a CFD-based analytical expression of turbulence intensity.

The TI-JM requires limited parameters and overcomes limitations of the Jensen
model by considering the deep array effect for wind speed deficit prediction inside the
wind farm. The value of kJensen varies turbine by turbine basis depending upon the
free-stream and wake-added turbulence intensities and distance between the turbines.
This model can be used for any layout of the farm in any wind conditions.

An assessment methodology, for identifying wind condition where wakes can severely
affect farm production, was presented. The assessment methodology uses SCADA data
for calculating power production in 360°. Efficiency relative to the turbine producing
maximum power (among all) was calculated for avoiding any data errors or unidentified
O&M problems. This methodology will be used for assessing performance of the wind
farms case studies in Chapter 5.



Chapter 5

Experimental Results based on
Simulations

This chapter presents the experimental results obtained through simulations. A part
of the work in this chapter is also presented in [29, 180]1. This chapter answers
RQ-5 by simulating different control strategies (greedy, CP -based and yaw-based) in
different wind conditions for maximising farm production. It is concluded that generally
CP -based control is beneficial in full-wake conditions while yaw-based optimisation
is a better option in partial wake conditions. Greedy control is the best in no-wake
conditions.

Data from three operating wind farms case studies (Brazos, Le Sole de Moulin
Vieux (SMV) and Lillgrund) are used in the simulations. Detailed description of these
wind farms is given in section 5.1 explaining the available data, layout, terrain and
wind characteristics on site. This is followed by validation of the TI-JM using data
from the SMV wind farm in section 5.2.

The assessment methodology developed in Chapter 4 is used for evaluating impact
of wakes on turbines production in the SMV wind farm, identifying wind conditions
where wake effects are severe, in section 5.3. Once the wake impacted wind conditions
are identified, farm efficiencies are used for evaluating greedy, CP -based and yaw-based
control strategies in section 5.4. Efficiencies obtained from SCADA data and WindPRO
are used as benchmarks. A brief description of WindPRO is provided in section 5.4.1.
Some key results and analysis are presented in section 5.5.

1Self-citations by the author are presented in bold
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It is concluded in section 5.6 that farm power production can be increased by up to
8% with the control strategies developed in this work. The control process is completed
in less than 15 seconds for Brazos and SMV while it takes less than 50 seconds for
Lillgrund wind farm. If the wind flows at 12m/s (maximum below rated) in parallel
to the wind farms case studies , it will require at least 85 seconds for reaching the
last turbine in Brazos case study row of seven turbines, 142 seconds for reaching the
last turbine in SMV wind farm, 266 seconds for reaching the last turbine in the eight
turbines row in Lillgrund. This shows that the controller has sufficient time to calculate
and communicate the new power settings to the corresponding turbines. The structure
of this chapter is presented in Figure 5.1.

Figure 5.1 Structure of chapter 5

5.1 Wind Farms Case Studies

Two onshore wind farms, Brazos and SMV, and one offshore wind farm, Lillgrund, are
used as case studies. Brazos is a medium size wind farm where turbines are placed
in a non-grid pattern. SMV is a small wind farm with seven wind turbines installed
approximately as a one-dimensional array. Lillgrund is a medium sized wind farm with
a grid-like layout. A brief overview of Brazos, SMV and Lillgrund is presented in the
following sections.
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5.1.1 Brazos

The Brazos wind farm is located in Texas, USA and is owned by Shell Wind En-
ergy/Mitsui. The farm can be divided into two sister wind farms, Brazos-A and
Brazos-B. The downwind spacing in some of the rows is as high as 8D while the
crosswind spacing can be as low as 2D for some rows. A wind farm with a non-grid
shape and high downwind spacing such as Brazos can be considered made of several
smaller sub-farms (each row or a group of turbines is a sub-farm) as shown in Figure
5.2a. This makes the control process fast and efficient as each sub-farm is optimised
individually.

The case study in this work is based on the encircled row-2 from Brazos-A, shown in
Figure 5.2a. The selected row-2 is made of seven Mitsubishi MWT-1000 turbines [142]
with 3D spacing between them. Characteristics of Mitsubishi MWT-1000 turbines are
given in Table D.1 in Appendix D. The 3D spacing represents industry standards more
accurately as compared to the 2D spacing between turbines in some other rows.

When the wind flows from east, the wind speed is free-stream wind speed as no
turbines are installed on east of the case study row. The nearest turbine to the west is
installed at a distance of more than 20D, hence it can be assumed that the wind speed
is free-stream wind speed. The row in the north-west of the case study row can affect
wind characteristics when wind flows from north-west. The terrain is flat and open
with low grass [92]. The wind-rose in Figure 5.2b shows the prevailing wind direction
and frequency of wind speeds. The wind flows almost 79% of the time from south and
north in the downwind direction while it flows crosswind for rest of the time as can be
seen in Figure 5.2b.

SCADA data from 2004 - 2006 is used in this study. This data is available on the
ReliaWind server in Durham University, UK [143].

5.1.2 Le Sole de Moulin Vieux (SMV)

SMV is an onshore one-dimensional wind farm located in the northern France and is
owned by Maïa Eolis (now Engie Green). The farm consists of seven Senvion MM82
2050 kW wind turbines [16]. Characteristics of Senvion MM82 2050 kW turbines are
given in Table D.2 in Appendix D. Spacing between the turbines varies from 3.3D -
4.3D.
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(a) Brazos A layout with selected rows (ROW-1 and
ROW-2) encircled (b) WindRose

Figure 5.2 Brazos A layout (rows under consideration encircled) and wind-rose obtained
from SCADA data from 2004 - 2006

The farm initially consisted of five wind turbines (SMV1 - SMV5). Two turbines
(SMV6 and SMV7) were added later to the farm. The farm layout is almost like a
one-dimensional array as shown in Figure 5.3a. The first five turbines SMV1 - SMV5
are installed almost in a straight line. The last two turbines are not completely in-line
with the other five turbines. These two turbines can be considered a different row,
but with very close spacing. Spacing between the turbines is almost 3.7D to 4.3D.
A 80 meters high lattice met mast with ultrasonic anemometers at 80, 60, 40 and
20m height, located 1km east of SMV2 and 1.6km north-east of SMV6, provides the
free-stream wind characteristics.

The terrain is rough with fresh grass or vegetation. There are woods to the south at
a distance of almost 100m (less than 1.5D) from the wind farm affecting atmospheric
stability in the farm [138, 175, 181]. The trees are about 15m high. This influences
atmospheric stability and result in high turbulence intensity in the wind farm. The
farm also suffers from diurnal and seasonal variations in wind conditions [138, 175].

WindPRO suggests free-stream turbulence intensity of 15% for this wind farm
clearly exhibiting the roughness on site [48]. This high surface roughness and turbulence
intensity results in quick wake recovery. Wind from surroundings flows quickly to make
for the momentum loss created by wakes, resulting in increased turbulence intensity.
This wake added turbulence intensity also means that wind speed and direction can
change abruptly in the farm. The prevailing wind direction is from south and south-
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(a) SMV layout (b) WindRose

Figure 5.3 SMV layout and wind-rose obtained from SCADA data from 2011 - 2014

west as can be seen in the wind-rose in Figure 5.3b. SCADA data from 2011 - 2016
and details about the wind farm were provided by Maïa Eolis (now Engie Green).

5.1.3 Lillgrund

Third wind farm case study is a two-dimensional offshore wind farm; Lillgrund which
is located between Sweden and Denmark in Öresund and is owned by Vattenfall. The
farm consists of 48 Siemens SWT-2.3-93 wind turbines [17] installed in 8 rows and
8 columns. Characteristics of Siemens SWT-2.3-93 turbines are given in Table D.3
in Appendix D. Spacing between the turbines in rows is 4.5D and between rows it is
3.5D [17, 182]. Main reason for this close spacing between the turbines in the wind
farm is the navigational issues [182].

The farm has a grid-like layout as can be seen in Figure 5.4a. The prevailing wind
direction is from south and south-west and the mean wind speed is 8.5m/s [182] as
shown in Figure 5.4b. Wind data from 2000 - 2015 at 50m height accessed from [183]
was used to create the wind-rose in Figure 5.4b. Turbines inside the farm are almost
always under wake effects as the layout is a very dense.

SCADA data for the wind farm could not be accessed. However, important
information such as turbine characteristics, 360° farm efficiency and farm layout is
given in [9, 182, 144, 184]. Access to details of the surface roughness length, turbulence
intensity in all directions and average efficiency was given by [144].
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(a) Layout and highlighted rows (turbines) used
for normalisation (b) Lillgrund WindRose

Figure 5.4 Lillgrund layout and wind characteristics on the site

Details and data from these wind farms are used for validating and evaluating the
TI-JM and optimised coordinated control strategies.

5.2 Validation of TI-JM

A wind deficit model (TI-JM) was presented in section 4.3. This section validates the
TI-JM using SCADA data from the SMV wind farm.

5.2.1 Data Selection Criteria

Three days wind data at 10 minutes interval (almost 400 valid data points) was chosen
for validating the wind deficit model. During this period the wind predominantly blew
from north to south, parallel to the turbine array, producing full or near full wake
effects in the wind farm. Data from the SMV wind farm is used because suitable wind
data from the Brazos wind farm was not available for model validation and SCADA
data for Lillgrund could not be accessed. The downwind distance is up to 8D in the
Brazos wind farm and wind flow is predominantly in this direction as was discussed
in section 5.1.1. The three days SCADA data from the SMV wind farm provides a
suitable data set for validating the TI-JM. Other than this, the field implementation
detailed in Chapter 6 is performed in the SMV wind farm, hence validating the TI-JM
with SMV data is a better and reasonable option. SMV1 faced the free-stream wind
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while all other turbines were under wake effects of corresponding upstream turbines.
SMV6 and SMV7 were not operational during this period, hence these two turbines
are not considered for validation. The five turbines (SMV1 - SMV5) are used for
validation.

5.2.2 Validation

Figure 5.5 shows the comparison between the actual wind speed and predicted wind
speed by the TI-JM. The actual wind speed was determined using each turbine’s power
production from the SCADA data using Turbine’s power curve (given in Appendix D)
in below rated wind conditions, as discrepancies were found in the wind speed reported
by nacelle anemometers. The operation status signal from the SCADA data was used
to make sure that only those records are considered where turbines operated without
any curtailment and O&M issues.

An initial value of kJensen of 0.07 is used with TI-JM, as recommended in Table 4.1
for the type of terrain SMV has. This fits well for predicting the wind speed on SMV2
as can be seen in Figure 5.5a. The free-stream turbulence intensity was calculated from
the SCADA data using equation (5.1). The free-stream wind speed is determined using
power production of the wind turbine facing free-stream wind. The turbulent velocity
fluctuations for every six data points (wind speed) is denoted by (u′) while average of
the same six data points (wind speed) is denoted by (U). It should be noted that any
other number of data points (other than six) may be used for estimating free-stream
turbulence intensity, however six data points are used in this work as suggested in
[28, 58–63].

I0 = u′

U
(5.1)

As the wind flows through the wind farm, TI-JM makes sure that effective value of
kJensen increases as per the wind conditions inside the farm. It can be seen in Figure
5.5 that the model accurately predicts the wake affected wind speed on downstream
turbines in most of the cases.

It shall be noted that the model is acceptable for developing control strategies as
long as it is under-predicting the wind speed on shadowed turbines in a given limit.
However, if it over-predicts the wake affected wind speed then the farm controller will
result in false increase in power production. This can result in lower farm production in
real time operations as compared to the conventional greedy control. It can be observed
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in Figure 5.5 with the (Actual - Predicted) wind speed, that the model over-predicts
the wind speed in very few cases (less than 3% of total data points).

The TI-JM took approximately 10 seconds for completing the wind deficit calculation
using almost 70 hours data for five wind turbines with a 10 minutes interval, using
a computer with 5 cores, 3.50GHz processor and 16GB RAM). This high processing
speed and accuracy make the TI-JM very suitable for on-line coordinated control.

5.3 Wake Assessment Methodology

This section applies the wake assessment methodology developed in section 4.4 on the
SMV wind farm. This assessment visualises the impact of wakes on turbines in the
farm identifying suitable conditions for implementation of coordinated control. Turbine
power, operational status and wind direction signal from the SCADA data were used.
The assessment methodology was applied on the Brazos wind farm in [29]. SCADA
data for Lillgrund could not be accessed, hence the assessment methodology was not
applied on Lillgrund.

Normalised average powers were calculated comparing performance of Brazos
row-1 and SMV in [29]. The selected Brazos row-1 and SMV have almost similar
layout but the turbines’ capacities and characteristics are different as can be seen in
Tables D.1 and D.2 in Appendix D, hence normalising the power production makes
the performance comparison easier. Further assessment steps were also applied for
performance comparison in [29]. Figures 5.6 and 5.7 are reproduced from [29] to show
the normalised power production of Brazos row-1 and the SMV wind farm. As stated,
performance of the two wind farms in terms of power production can now be compared
using these figures. It should be noted that wind direction in the Brazos wind farm
is rotated by 90° in this case for the purpose of comparison with SMV wind farm.
These details are also used for identifying wind conditions where wakes significantly
affects power productions of the wind turbines and hence farms’ productions as will be
detailed in section 5.5.

Average production of the turbines at 8m/s±0.5m/s with a directional resolution
of 1° is presented in Figure 5.8. For presentation purposes, productions of SMV1 -
SMV4 are visualised in Figure 5.8a while productions of SMV5 - SMV7 are visualised
in Figure 5.8b. It can be observed with this visualisation that the turbines’ production
is significantly affected when the wind flows from north or south. The wind direction
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(a) Wind prediction of SMV2 kJensen = 0.07

(b) Wind prediction on SMV3 using TI-JM

sectors 0°±40° and 180°±40° are significantly affected by wakes. The same pattern
was observed for all other wind speed bins.

During the analysis it was noted that a wind speed bin of ±0.5m/s is suitable for
the SMV wind farm. For directional bin, analyses were performed starting with a bin
of ±20° refining the resolution to ±1°. It was observed that a bin size of ±5° captures
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(c) Wind prediction on SMV4 using TI-JM

(d) Wind prediction on SMV5 using TI-JM

Figure 5.5 Validation of the TI-JM using SCADA data from the SMV wind farm when the
wind flows predominantly from north to south parallel to the turbine array for almost three

days

most of the wake affected area. Studies in [87] suggest a direction bin size of ±10°
using data from two offshore wind farms. However, surface roughness is high onshore
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which results in quick wake recovery. Hence a bin size of ±5° shall be used for onshore
wind farms.

Relative efficiency is calculated as per equation (4.17) in the wake affected wind
sectors (0° ± 40° and 180 ± 40°) in a 10° bin in the wind speed bin of 8m/s±0.5m/s
and results are presented in Figure 5.9. It can be seen that downstream turbines are
severely affected by wake effects. For example, relative efficiency of SMV5 can be as
low as 40% when the wind flows in the 200°−210° bin. This is when SMV5 is under
full wake effects of SMV6. Relative efficiency of SMV6 is only 40% in the 170°−180°
bin when it is under full wake effects of SMV7. Impact of wakes on other turbines’
productions can also be observed as shown in Figure 5.9.

The first step of the assessment methodology visualises the impact of wakes on
turbines’ productions in the farm. This identifies wind conditions where coordinated
control can bring improvement in net production. This is also used for deciding
suitable wind direction and speed bin size for wake effects calculation. The second
step magnifies the wake affected directional sectors by analysing directional bins using
relative efficiency.

The wind deficit model (TI-JM) has been validated and the assessment methodology
has been applied on the SMV wind farm. The next step is to show the improvement
coordinated control strategies can bring in the net power production of wind farms.
This is explained in the next section 5.4.
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(a) Normalised average power of Brazos Row1
turbine A1 - A3

(b) Normalised average power of Brazos Row
turbine A4 - A7

Figure 5.6 Normalised average power of Brazos Row1 (Wind direction rotated by 90° for
comparison with SMV wind farm) [29]

5.4 Evaluating Coordinated Control Strategies

This section describes the methodology adopted for evaluating wind farm coordinated
control strategies. Efficiencies obtained from SCADA data and WindPRO are used as
benchmarks for evaluating the TI-JM. Only below rated wind speeds are considered in
these simulations as there are no or minimal wake effects in above rated conditions
[9]. The below rated wind conditions for turbines in each wind farm are presented
in Appendix D. From this point onwards, average efficiency explicitly means average
efficiency in below rated wind conditions unless otherwise described.

Standard values of kJensen (for onshore and offshore wind farms) given in Table 4.1
are used with WindPRO in a 10° direction bin (highest possible resolution). The initial
value of kJensen in the TI-JM is tuned using the SCADA data (Brazos and SMV), for
matching the efficiency based on SCADA data using the greedy control as discussed in
[92].

The CP -based and yaw based optimised control strategies are simulated for the three
wind farms case studies using TI-JM. Efficiencies based on the optimised strategies
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(a) Normalised average power of SMV1 - SMV3 (b) Normalised average power of SMV4- SMV7

Figure 5.7 Normalised Average power of wind turbines in SMV wind farm [29]

(a) Average power of SMV1 - SMV4 (b) Average power of SMV5- SMV7

Figure 5.8 Average power of wind turbine in SMV wind farm at 8m/s±0.5m/s
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(a) Relative Efficiency 0°−40° in 10° bin (b) Relative Efficiency 320°−360° in 10° bin

(c) Relative Efficiency 140°−180° in 10° bin (d) Relative Efficiency 180°−220° in 10° bin

Figure 5.9 Efficiency relative to the turbine producing maximum for wind direction sectors
0°±40° and 180°±40° in 10° bin

are compared with the standard greedy control. The direction resolution is kept at 1°
for efficiencies obtained with SCADA data and TI-JM. PSO is used for optimisation
as it is the most suitable optimiser for coordinated control as concluded in Chapter 3.
A brief description of WindPRO is given in the section 5.4.1. This is followed by the
methodology for determining efficiencies of the wind farms case studies.

5.4.1 WindPRO

This section is mainly based on the details provided in [48]. WindPRO is one of
the most widely used and industry standard software for design, development and
assessment of wind energy projects. The software has a number of modules and the
user is free to use a single or combination of modules as required.

All calculations in this study, based on WindPRO, are performed using the Wind
Atlas Program (WAsP) module. WAsP uses wind statistics and terrain assessment of
the area within 20-km radius around the site. WAsP uses site specific topographical
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data to generalize the regional wind climatology and then uses the inverse calculation
to acquire the projected wind climatology at a specific location. The World Geological
Survey (WGS) [48, 185, 186] has 10 meter spatial scale digital elevation models of
the wind farm area. This information was exported to WAsP as elevation contour
lines at 3m intervals recommended by WAsP [48]. WAsP solves the linearised NS
equations by assuming a steady state flow in stable atmosphere, linear advection and
first order turbulence closure [91]. This information is then combined with power curve
of the wind turbine for production estimation. The project preparation for estimating
production of the SMV wind farm using WindPRO (WAsP) is presented in Figure
5.10. The following information is required for production estimation using WAsP.

1. Wind Statistics - Wind data from MERRA [183] database at 50m height (maxi-
mum available) with a time resolution of one hour (highest possible resolution
with the available data) is used.

2. Terrain assessment - The roughness, local obstacles and orography are analysed
with Google Earth [187] and field surveys.

3. Power curve of the wind turbine under observation - WindPRO has built-in
power curves for wind turbines with different capacities and characteristics made
by different companies. A user can also develop a power curve according to the
given requirements.

The standard Jensen model [75] (with a constant kJensen) available in WindPRO is
used for estimating wake power losses using WAsP. The standard value of kJensen = 0.07
for Brazos and SMV and kJensen = 0.04 for Lillgrund is used as given in Table 4.1.
The wind turbines are placed on the map according to the layout of the wind farm as
shown in Figure 5.10.

5.4.2 Brazos and SMV Efficiency

Efficiencies of the Brazos and SMV (η) wind farms are estimated using equation (5.2)
[11]. The actual power production of the wind farm is denoted by (PActual) while the
maximum possible power assuming no-wake effects is given by (Pmax). Full or near-full
wake conditions are assumed in the simulations. Details of data filtering are the same
for both these wind farms as discussed in section 5.3.

η = PActual

Pmax
(5.2)
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Figure 5.10 Preparing project for SMV wind farm using WindPRO

Efficiency based on SCADA data is maximum of 82% and 86% for Brazos and SMV
respectively even in no-wake conditions. This can be due to errors in SCADA data or
other unknown operational issues, as the efficiency should be almost 100% in no-wake
conditions when turbines operate at their maximum capacity.

WindPRO and TI-JM only take the wake effects into account while estimating farm
production. Therefore, the maximum efficiency is shifted to 1 i.e. 100% by adding the
difference (1−max(Eff(0−360))) to the whole efficiency curve. This does not change
the shape of the efficiency curve but makes it possible to compare it with WindPRO
and TI-JM by ignoring all other issues with the farm and data except wake effects.
This also shows the importance of the second step of the assessment methodology as
discussed in sections 4.4 and 5.3.
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5.4.3 Lillgrund Efficiency

SCADA data for the wind farm could not be accessed. However, important information
such as turbine characteristics, 360° farm efficiency and farm layout are given in
[9, 17, 182, 184]. Access to details of the surface roughness length, turbulence intensity
and average efficiency was provided by [17]. Average 360° efficiency based on SCADA
data for below-rated wind conditions is reproduced from [9, 17] digitising data with
[188]. Equation (5.3) [17] is used for calculating efficiency (ηLill) of this wind farm.

ηLill = Nj

48

48∑
i=1

Pi∑
j

Pj
(5.3)

where (i) is the the turbine under consideration, (Pi) is the average power of a turbine,
(j) denotes number of turbines and is a set containing only the turbines used for
normalisation as given in Table 5.1 and shown in Figure 5.4a. The set j depends upon
free stream wind direction and contains wind turbines facing the free-stream wind.
Number of turbines in set j is denoted by (Nj) as given in Table 5.1.

According to [17], the average free-stream turbulence intensity in Lillgrund is 0.06,
and that kJensen can be tuned as per the wind deficit model.

Table 5.1 Turbines used for normalisation for estimating Lillgrund efficiency [17]

Wind
Direction

Figure
5.4a

Nj j

North-east NNE 5 Turbine 1 of row 1 to row
5

South-east NSE 7 Seven turbines of row 1
South-west NSW 3 Turbine 8 of row 2 to row

4
North-west NNW 3 Three turbines of row 8

5.5 Results and Analysis

Analysis of efficiencies obtained through different sources and methods for Brazos,
SMV and Lillgrund are presented in this section. Below rated wind conditions are used
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in these analysis as suggested in [9]. This was discussed in detail in sections 1.2.1 and
5.4.

5.5.1 Brazos

Turbines in the case study row-2 are installed in a straight line as can be seen in Figure
5.2a. Hence the same wake effects are produced when the wind flows from east or west.
Average efficiency for 90°±30° is shown in Figure 5.11. The wind sector of 90°±10°
represents the full or near-full wake conditions. Partial wakes are observed in the
sector of 70°±10° and 110°±10°. It can be seen in Figure 5.11 that shifted efficiency
can be as low as 58% showing how adversely wakes can impact the farm production.
WindPRO predicts that the efficiency can be as low as 30% in the worst cases (full
wakes) with such layout.

Figure 5.11 Brazos Efficiency in Full and near-full wake conditions

TI-JM predicts a minimum average efficiency of 62% in full wake conditions. The
methodology for obtaining efficiency of this wind farm was explained in section 5.4.2.
Higher values of wake decay coefficient (up to kJensen = 0.25) are used, as estimated
by TI-JM for calculating speed deficits deep inside the farm as shown in Figure 5.13.
This shows that the standard value of kJensen = 0.07 for onshore wind farms must be
tuned according to the wind conditions (inside the farm). The data driven initial value
of kJensen keeps the efficiency constant and closer to the efficiency based on SCADA
data in the 80° − 100° sector, as can be observed in Figure 5.11. This (data driven)
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higher initial value of kJensen increases the wake spread, which is further increased
inside the farm because of the wake-added turbulence intensity as discussed in section
4.3. With a constant kJensen, efficiency based on the TI-JM follows efficiency obtained
with WindPRO, as WindPRO also uses the constant standard value of kJensen. Other
factors affecting the difference between efficiencies obtained with TI-JM and WindPRO
are the different ambient turbulence intensities used for these two models and the fact
that WindPRO includes the WAsP terrain model while TI-JM does not take account
of terrain. These are the sources of uncertainty in model prediction accuracy.

The average efficiency predicted by TI-JM follows the shifted efficiency much closer
as compared to WindPRO, especially from 60°−90°. WindPRO and TI-JM produce
symmetrical results around 90° as it is a straight line one-dimensional array of turbines.
However the shifted efficiency based on SCADA data is not symmetrical. Unknown
operational issues, errors in the SCADA data or wakes produced by the Brazos-B wind
farm can be a reason for this loss in production. WindPRO and TI-JM ignore the
impact of nearby turbines assuming free-stream conditions.

It can also be seen in Figures 5.11 and 5.12 that CP -based and yaw-based control
strategies can improve the average efficiency by up to 2%. CP -based control can perform
better in full or near-full wakes (90°±10°) while yaw-based control can perform better
in partial wake conditions (70°±10° and 110°±10°). In full wake situation, a larger
yaw-offset (can be more than 30°) is required for skewing the wake away from the
downstream turbine [113, 189, 190]. This significantly reduces production of the
upstream turbine (on which the yaw-offset is applied) as discussed in section 3.1.4.
Even a yaw-offset of up to 30° does not fully skew the wake away from the downstream
turbine, rather a full-wake is converted to partial wake [113, 189, 190]. In partial wake
conditions, the yaw-offset applied is smaller (yaw-offset value depends upon wake,
usually within a range of ±15°), which does not have significant impact on production
of the upstream turbine and this also converts a partial wake into no-wake condition,
which significantly increases production of downstream turbine.

The contour plots in Figure 5.13 compare the wind flow using conventional, CP -
based and yaw-based control. It can be seen that upstream turbines produce lower
wind speed deficit with CP -based control as compared to conventional control as
their production has been curtailed. Yaw-based control on the other hand skews
the wake away from the downstream turbines by yawing the upstream turbine. It
was observed while estimating the efficiency that CP -based optimisation strategy can
increase the farm production by up to 5% while yaw-based optimised control can
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Figure 5.12 Percentage increase in Brazos efficiency with coordinated control strategies
relative to the efficiency obtained with greedy control using TI-JM

result in a maximum of 7% increase in farm production [29]. A single simulation for
optimisation always took less than 15 seconds in this case.

The contour plots in Figure 5.13 also show the increase in wake-width as the
wind flows through the wind farm representing the impact of wake added turbulence
intensity.

(a) Greedy Control (b) CP -based Control (c) Yaw-based control

Figure 5.13 Comparison of Greedy, CP -based and yaw-based control for the Brazos wind
farm at 8m/s in full wake conditions

5.5.2 Le Sole de Moulin Vieux (SMV)

Average efficiency (in wind direction from the south) for the SMV farm is shown
in Figure 5.14. The direction sector of 160° − 220° represents full or near-full wake
conditions. The shifted efficiency shows that efficiency can be as low as 78% in full wake
conditions. WindPRO predicts that losses can be as high as 30% resulting in decreased
efficiency of 70%. The standard value of kJensen = 0.07 for onshore wind farms is used
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Figure 5.14 SMV Efficiency in Full and near-full wake conditions

in WindPRO. Details of how these efficiencies were obtained were provided in section
5.4.2.

The TI-JM estimates that efficiency can be as low as 76% in the worst case. TI-JM
estimates value of kJensen up to 0.20 for better wake prediction inside the wind farm.
Efficiency obtained with TI-JM (greedy control) fits well with the shifted efficiency from
160° − 200°. However, WindPRO estimates better in the sector 200° − 220°. TI-JM
captures the shape of the efficiency curve but the difference in predicted efficiency is
high for the direction sector of 200°−220° as wake losses are under-estimated. This
shows that even a higher value of kJensen cannot capture the wake accurately. This
can be attributed to the highly unstable surface layer conditions on site [138, 174, 175]
as discussed in section 5.1.2.

With coordinated control strategies, average efficiency can be increased by up to
4% as can be seen in Figures 5.14 and 5.15. CP -based and yaw-based control strategies
perform equally well (on average) in this case over all wind directions. This is because
of the layout of the farm as discussed in section 5.1.2. As turbines are not installed
completely in-line, the wake effects (conditions) for different wind turbines are different.
For example, SMV1 to SMV4 are under full or near-full wake effects produced by
SMV5 in the 180°±10° sector, however SMV6 is under minimal partial effect of SMV7
in this sector. Similarly SMV6 is under full wake effects of SMV7 in the 200° ± 10°
but all other turbines are under partial wake effects of their corresponding upstream
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Figure 5.15 Percentage increase in SMV efficiency with coordinated control strategies
relative to the efficiency obtained with greedy control using TI-JM

turbines. Hence no specific pattern of increase in efficiency was observed as can be
seen in Figure 5.15.

Contours in Figure 5.16 present a comparison of greedy, CP -based and yaw-based
optimisation strategies for the farm. It was observed while estimating the efficiency
that a maximum increase of up to 8% in power production is possible for this farm
with both CP -based and yaw-based optimised control [29]. A single simulation for
optimising farm power production always took less than 15 seconds in this case.

5.5.3 Lillgrund

The efficiency of this two-dimensional offshore wind farm can be as low as 40% in
full wake conditions (45°±10°,135°±10°,225°±10°,315°±10°) [9] as shown in Figure
5.17. Average efficiency in below rated wind conditions is 67% resulting in 33% wake
losses [9]. The methodology for estimating efficiency of this wind farm was presented
in section 5.4.3.

It is estimated (with simulations) that the values of kJensen given in Equation 5.4
shall be used with the TI-JM for free-stream conditions. These values fit well with the
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(a) Greedy Control (b) CP -based Control (c) Yaw-based control

Figure 5.16 Comparison of Greedy, CP -based and yaw-based control for the SMV wind
farm at 8m/s in full wake conditions

Figure 5.17 Lillgrund 360° average efficiency in below rated wind conditions

farm efficiency curve given in [9].

kJensen = 0.04 when u0 ≤ 7.0m/s

kJensen = 0.08 when 7.0m/s < u0 ≤ 12.0m/s

Above rated wind conditions are not considered in simulations, as suggested in [9]
(5.4)
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It can be seen in Figure 5.17 that efficiency based on greedy control using TI-JM fits
well with the efficiency based on SCADA data (obtained from [9]). With the limited
available information, it can be concluded that TI-JM is in good agreement with the
efficiency obtained from real time data. The standard kJensen = 0.04 for offshore wind
farms is used in WindPRO for estimating the efficiency. WindPRO captures the shape
of average efficiency curve but results are inaccurate for most of the wind directions.
This shows that WindPRO identifies wind conditions where wakes have higher impact
on farm production but the wake prediction is incorrect.

Coordinated control can bring significant improvement in efficiency of such dense
farms. CP -based and yaw-based optimised farm control can improve the efficiency by
up to 6% relative to the greedy control based on TI-JM. Efficiency can be increased in
almost all wind directions due to the dense layout. CP -based control performs better
in full wake conditions (45°±10°,135°±10°,225°±10°,315°±10°) than the yaw-based
control as was discussed in section 5.5.1. Yaw-based control generally performs better
than CP -based control in partial wakes (all other directions than the full-wakes) as
can be seen in Figures 5.17 and 5.18 and section 5.5.1.

Figure 5.18 Percentage increase in Lillgrund efficiency with coordinated control strategies
relative to the efficiency obtained with greedy control using TI-JM

The contour plots in Figure 5.19 compare conventional, CP -based and yaw-based
control of Lillgrund wind farm. It was observed with simulations with innovative
control strategies result in production increase of up to 8% for Lillgrund under full
wake conditions (below rated power) as compared to the greedy operations. In reality,
over all wind directions and all wind speeds, the total potential increase will be rather
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(a) Greedy Control (b) CP -based Control (c) Yaw-based control

Figure 5.19 Comparison of Greedy, CP -based and yaw-based control for the Lillgrund wind
farm at 8m/s in full wake conditions

smaller. A single simulation for optimising farm power production took less than 50
seconds in this case.

5.6 Conclusion

This chapter presented main experimental results, based on simulations. Data from
two onshore (Brazos and SMV) and one offshore (Lillgrund) wind farms was used in
the simulations. First the wind deficit model (TI-JM) developed in section 4.3 was
validated using SCADA data from the SMV wind farm. This validation confirmed that
the TI-JM accurately predicts the wind speed deficit inside the wind farm in most of
the cases with high processing speed as was discussed in section 5.2.

The assessment methodology developed in section 4.4 was applied on the SMV
wind farm visualising and analysing wake effects in the wind farm. It was observed
that wakes can severely affect turbines’ productions in the direction sectors of 0°±40°
and 180°±40°. These sectors were divided into ±5° direction bins and a wind speed
bin of ±0.5m/s. Analysis using relative efficiency with respect to the turbine producing
maximum power shows that relative efficiency can be as low as 40% for some of the
turbines.

Coordinated control strategies were evaluated using wind farm efficiencies. Effi-
ciencies based on SCADA data and WindPRO were used as benchmarks. The TI-JM
accurately predicted efficiencies of the wind farms case studies in most of the cases. It
was concluded that generally CP -based optimisation strategies perform better in full
wake conditions while yaw-based optimisation strategies perform better in partial wake
conditions. This answered RQ-5 which is about performance comparison of different
control strategies in different wind conditions.
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In full wakes conditions, even larger yaw-offset (greater than 15°) cannot skew the
wake away from downstream turbines and this larger yaw offset also reduces power
of upstream turbine significantly. A partial wake can be converted into a no-wake
situation with an optimised yaw-offset applied on the upstream turbine increasing
overall farm production.

Average efficiency in below rated wind speeds is increased by up to 2% for Brazos-
row, 4% for SMV and 6% for Lillgrund wind farm as can be seen in Figures 5.12, 5.15
and 5.18. The increase in efficiency is relative to the greedy control when simulated
using TI-JM. Simulations confirmed that production increase of up to 8% is possible
with these innovative control strategies in full-wake conditions and below rated wind
conditions. In reality, over all wind directions and all wind speeds, the total potential
increase will be rather smaller. The percentage increase in production was estimated
while calculating the efficiency as was discussed in section 5.5. Optimisation process
for Brazos-row and SMV is completed in a maximum of 15 seconds and a maximum of
50 seconds for Lillgrund. This high speed and accuracy make the controller suitable
for real time on-line field implementation.



Chapter 6

Field Implementation

This chapter is mainly based on the collaborative work with Maïa Eolis (now Engie
Green) detailing the filed implementation of coordinated control strategies in the SMV
wind farm as a part of the French Government SmartEOLE project [181]. The work in
this chapter answers the final RQ-6 explaining the approach adopted, for implementing
coordinated control strategies in the SMV wind farm, given the operational limitations.
A part of this work is present in [191]1. To the best knowledge of the author, this is
the first practical implementation of Light Detection And Ranging (LiDAR) based
coordinated control strategies in an operating wind farm.

Two 2MW turbines in the SMV wind farm are investigated for this purpose. State
of the art LiDAR were installed in the wind farm for accurately measuring the wind
characteristics up to a frequency of 1Hz. Simulations are performed using WindPRO
and the TI-JM for designing the practical experiments and predicting the impact of
coordinated control strategies on farm production.

Analyses on real time field data are performed and results are compared with
simulations. Results based on simulations are mostly in good agreement (within a
range of 1.5%) with field results. It is shown that a gain of up to 11.5% is possible in
downstream turbine production, using a hard curtailment strategy, by reducing power
of the upstream turbine (using CP ) by about 17%. Overall combined production is
decreased with the hard curtailment strategy, indicating that the upstream turbine must
be optimally curtailed for avoiding any production loss. The yaw-based coordinated
control strategies are also implemented in the field but the data cannot be collected
due to technical problems and malfunctioning of one of the LiDAR.

1Self-citations by the author are presented in bold
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The experimental setup for this field implementation is given in section 6.1. This
is followed by the methodology adopted for designing the field experiments and the
field implementation of coordinated control strategies in section 6.2. Details of the
data and data-filtering are given in section 6.3. Simulated and field results of the
CP -based curtailment experiment are presented in section 6.4 while simulated results
of the yaw-based experiment are presented in section 6.5. Conclusion of this chapter is
provided in section 6.6. The structure of this chapter is presented in Figure 6.1.

Figure 6.1 Structure of chapter 6

6.1 Experimental Setup

The aim of the SmartEOLE project is to propose and implement innovative wind
farm control strategies for improving farm efficiency [181]. One major part of the
SmartEOLE project is to develop and implement centralised farm control strategies
analysing wake interactions using LiDAR. LiDAR can greatly help in removing the
uncertainty in wind characteristics, making it possible to investigate coordinated
control strategies in wind farms [11, 122]. LiDAR can provide information about wind
conditions before it reaches the turbines. This information can be used for optimising
combined output of the wind farm.

The control strategies are implemented in the SMV wind farm. Details of this
wind farm were presented in section 5.1.2. The wind-rose in Figure 5.3b shows that
the prevailing wind direction is from south and south-west, mainly in the direction
from SMV6 to SMV5. Hence these two turbines were chosen for the field experiment.
Figure 6.2 shows the wind conditions during the CP -based curtailment experiment
confirming the prevailing wind direction (south-west) and justifying the selection of
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the two turbines. SMV6 is upstream and acts as the wake producing turbine, hence
curtailment is applied on this turbine.

Figure 6.2 Wind conditions during the CP -based curtailment experiment

SMV6 is equipped with nacelle mounted Orion 5-beam LiDAR [181] facing the
free-stream wind as shown in Figure 6.4. A Wind iris LiDAR [181] is mounted on
top of SMV5. A ground based LiDAR, Windcube V1 type [181] has been installed
between turbines SMV2 and SMV3 as shown in Figure 6.3. This LiDAR measures the
wind speed at heights between 40m and 200m with 1Hz frequency. A scanning LiDAR
[181] is also installed at 1.2km to the east of the wind farm as shown in Figure 6.5.
The scanning LiDAR is programmed to carry out three horizontal and one vertical
scan. This allows measurement of wind characteristics at hub height of SMV6 in wake
situations for SMV5. These LiDAR provide valuable and accurate information about
the wake flow and wind characteristics at a frequency of up to 1Hz.

6.2 Methodology

This section explains the methodology for designing the experiments based on CP

and yaw offsets. It was concluded in Chapter 5 that the power production of SMV
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Figure 6.3 SMV layout and surrounding with positions of met mast and LiDAR [187]

Figure 6.4 Leosphere 5 beam LiDAR
mounted on top of SMV6

Figure 6.5 Scanning LiDAR 1.2km east of
SMV for horizontal and vertical scans
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wind farm is significantly affected by wake effects when the wind flows in 0° ± 40°
and 180°±40° sectors. The direction sector 180°±40° was further analysed with the
assessment methodology given in section 4.4.

It was observed that SMV5 is under wake effects of SMV6 in the sector 200°±20°
as shown in Figure 6.6. WindPRO predicted 26% losses in SMV5 production caused by
SMV6 wakes, in this directional sector using yearly data from 2015 and 2016. Figure
6.7 presents power production of SMV5 and SMV6 in two steps in normal operations,
showing the impact of SMV6 wake on SMV5 production. It can be observed in Figure
6.7 that SMV5 production is significantly affected by the SMV6 wake in the 200°± 20
sector. Different production settings of SMV5 and SMV6 were evaluated for developing
a curtailment strategy. The two steps (settings) presented in Figure 6.7 was found to
be the most suitable for implementations due to the limitations on turbine curtailment.
This will be discussed in detail in section 6.2.1. Wind also flows predominantly in this
direction, hence this is the chosen direction sector for this experiment.

Simulations were performed in the chosen wind direction sector using WindPRO
and the TI-JM. Optimal settings for curtailment based on CP were obtained with the
optimised coordinated control strategies as will be discussed in section 6.4.1.

WindPRO does not have any mechanism for estimating impact of yaw-offsets on
wake produced. Hence the yaw-based simulations are performed using the TI-JM
only. For refined analysis, the direction bin is halved making it ±2.5°. Tables were
created for each direction bin of 5° with a speed bin of ±0.5m/s showing the optimum
yaw-offset on SMV6 as will be discussed in section 6.5.

The CP -based and yaw-based field experiments are detailed in the following sections
6.2.1 and 6.2.2 respectively.

6.2.1 Field Implementation using CP

This CP -based experiment lasted for six months. The aim of this experiment is to
analyse the impact of SMV6 curtailment on SMV5 production. The optimised control
strategies cannot be implemented due to operational limitations. Some changes were
made in the turbine’s control software by the turbine manufacturer, which did not allow
to change the turbine’s power production settings for each wind speed and direction bin
as required for the optimised control. Due to these changes, the curtailment has to be
applied manually on SMV6. That is why a two-step curtailment strategy was adopted,
which can be easily implemented on SMV6. The strategy is aimed at curtailing SMV6
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Figure 6.6 Predicting wake effects in the wind direction sector 200°±20 using WindPRO

power to a maximum of 20% in two steps in the selected direction sector according to
the criteria given in Table 6.1.

SMV7 power production is used as the reference, as it is unaffected by wakes when
the wind flows in the chosen sector. In the first step, when the power of SMV7 is
between 1200kW and 1500kW and SMV6 power is above 1200kW, SMV6 is curtailed
to 1200kW. In the second step if SMV7 power is between 1600kW and 1900kW and
SMV6 power production is above 1600kW then SMV6 is curtailed to 1600kW. This
means that a maximum of 20% curtailment is allowed on SMV6 power production.
This curtailment approach is named as hard curtailment strategy due to the hard
curtailment limits. The region between 1500kW and 1600kW is not considered for
curtailment due to operational limitations on the turbines.

The curtailment ranges given in Table 6.1 were identified using a series of surveys,
discussions and simulations, considering the operational limitations (changes in turbine’s
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Figure 6.7 SMV5 and SMV6 power production in 180°−220° in normal operations

control software). These settings were found to be the most suitable for implementations
due to the limitations on turbine curtailment.

The optimised control requires a different CP or turbine’s production settings for
each wind speed and direction bin. It was not possible to change the production
of SMV6 for each wind speed and direction bin, due to restrictions in the turbine’s
control software. Therefore, different possible curtailment settings were evaluated by
simulating production of the two experiment turbines (SMV6 and SMV5) and the
whole wind farm with real time data. The curtailment settings given in Table 6.1 were
found to be most suitable for field implementation. The curtailment settings given
in Table 6.1 were the closest to the the optimum settings, implementable in the field
[181]. It should be noted that these settings do not completely reflect the optimum
settings, but provides a broader idea of how SMV6 wake affects SMV5 production.

The curtailment strategy in Table 6.1 was implemented in the selected wind
directional sector i.e. 200°±20°. Each time when wind conditions were favourable for
the hard-curtailment, an engineer manually curtailed SMV6 accordingly. The wind-rose
in Figure 6.8 shows the wind conditions when SMV6 was actually hard curtailed in
the field as per the criteria given in Table 6.1. The power curve based on this hard
curtailment strategy is shown in Figure 6.9. It can be observed with the hard curtailed
power curve in Figure 6.9 that SMV6 was curtailed only when the wind speed was
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Table 6.1 Two steps of the hard curtailment strategy

if 180° ≤ Wind Direction ≤ 220°

Step1: if 1200kW < SMV7 ≤ 1500kW

then curtail SMV6 to 1200kW

Step2: if 1600kW < SMV7 ≤ 1900kW

then curtail SMV6 to 1600kW

above 10m/s. The curtailed power curve is the same as standard power curve below
10m/s and above 14m/s as can be seen in Figure 6.9.

Senvion MM82 2050 are variable speed turbines and their power can be curtailed
as desired, by controlling the CP using blade pitch angle or rotational speed [16].
The turbine controller is configured to follow the manufacturer standard power curve
by default i.e. the greedy control. This standard power curve is given in Figure
6.9. These power curves in Figure 6.9 show how SMV6 should operate with different
control settings. Figures 5.11, 5.14 and 5.17 showed the efficiency of Brazos, SMV and
Lillgrund wind farms when the turbines productions were simulated using the standard
and optimised power curves. Power productions is plotted against wind speed rather
than efficiency against wind direction in this chapter due to the limited availability of
field data as will be explained in section 6.4.2. Furthermore, the aim is to analyse the
impact on coordinated control strategies in each wind speed and direction bin, hence
plotting power production against wind speed for a given direction bin is a better
option.

For optimised control, the turbine must follow an optimised power curve for each
direction bin communicated by the farm controller. This requires fast processing and
efficient on-line control strategies, to formulate the power curve according to the wind
conditions, as discussed in Chapter 5. Due to operational constraints, it was not
possible to use the optimised power curve during the field implementation as explained
earlier.

Efficiency was plotted against wind direction in Figures 5.11, 5.14 and 5.17 where
more data was available as compared to the data obtained from the field implementation
in this chapter. The aim was to show the overall percentage increase farms’ productions
in below rated wind conditions with coordinated control strategies. The aim in this
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Figure 6.8 Wind-rose for the periods when SMV6 was curtailed with the hard strategy

chapter is to analyse the impact of coordinate control (hard-curtailed) strategies on net
production in each direction and speed bin. A turbine’s power curve show the power
production of the turbine in each bin as shown in Figure 6.9, hence power curves are
used in this chapter, instead of efficiency for depicting impact of curtailment of power
production.

The field implementation is based on SMV6 and SMV5, with the wind flowing from
south and south-east. This takes SMV7 production out of the analysis as SMV7 power
production is unaffected when SMV6 is curtailed. Hence from this point onwards the
farm means turbines SMV1 - SMV6.

6.2.2 Field Implementation using Yaw-offsets

The yaw-based optimisation strategy for SMV6 and SMV5 predicts that the optimal
yaw-offset range is −10° to 15°, as will be discussed in section 6.5. However, the
operational limitations allow a maximum yaw-offset range of −12° to 8°.
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Figure 6.9 Comparison of SMV6 standard, hard-curtailed and optimised power curve

This yaw-based coordinated control strategy was implemented in two steps. In the
first step: SMV6 was operated with a yaw-offset of −12° for ten days. In the second
step: the yaw-offset on SMV6 was increased to 8°. SMV6 operated for four weeks
with this 8° offset. The analysis will be performed in the 200°±20° sector: SMV5 is
under wake effects of SMV6 in this direction sector as discussed in section 6.2. It was
observed during normal operations that turbines are not always completely in-line with
the wind direction. Hence there is always some unwanted yaw-error in normal (greedy)
operations.

The aim here is to choose a dynamic yaw-offset by adding the intentional yaw-offset
(−12° or 8°) and the actual yaw-error (unwanted). The actual yaw-error is obtained
from the network management systems of Maïa Eolis (now Engine Green). This results
in a larger yaw-offset range as the effective yaw-offset may be beyond the −12° to 8°
range.

The yaw-offset decreases SMV6 production but at the same time skews the wake
away from SMV5, increasing its production. The optimum yaw-offsets result in increase
in net production. The full data set could not be collected from the 5-beam LiDAR
due to some technical problems. First, the communication cable was cut mistakenly
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by road workers during the execution of the experiment. Second, further problems
occurred during data retrieval from the LiDAR storage system after the experiment.
The field implementation is complete and analysis is left for future work as will be
discussed in section 7.2.1.

6.3 Data and Filtering

It was discussed in section 6.2.2 that the data for yaw-based experiment is not available
due to equipment malfunctioning. All the devices were fully functional during the
CP -based curtailment experiment and data was collected from these devices for further
analysis. This section presents details of the data collected through different sources
and the filtering process to make the data noise free.

As discussed in section 6.2.1, the CP -based experiment lasted for six months. During
this period, data from different sources (met-mast, SCADA, LiDAR and MERRA
[183]) was recorded. Availability of data from these sources is shown in Figure 6.10.
The curtailment periods are also given in Figure 6.10 which is 19 hours, corresponding
to more than 200 data points. Filtering criteria is to have at least 10 valid points in
a given directional and speed bin. Wind conditions with less than 10 points are not
considered for analysis.

Figure 6.10 also shows atmospheric stability in the wind farm. It can be seen that
atmosphere is mostly unstable as discussed in section 5.1.2. The atmospheric stability
given in Figure 6.10 is displayed as Monin Obukhov length (MOL) sampled in 10
classes, starting from very unstable moving to strongly stable conditions as given in
Table 6.2 [138, 181]. The MOL is calculated using MERRA 2 reanalysis data [183].
Detailed description of how the MOL is calculated is given in [138]. The Obukhov
length (L(m)) is a surface layer scaling parameter that is a function of surface heat
and momentum fluxes [138, 174]. The atmospheric stability is not used in calculations
in this work. The purpose of depicting it in Figure 6.10 is to show that atmosphere is
mostly unstable in the SMV wind farm.

Another important issue was the difference in wind directions reported by different
sources. Instantaneous wind directions can differ from a measuring device placement to
another because of wind turbulence. Nevertheless, offsets are mostly due to calibration
errors.
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Figure 6.10 Data Availability for the CP -based experiment from different sources

To avoid any directional discrepancy in analyses, LiDAR Windcube data at a
height of 80m were corrected by analysing directions of wakes and then used as
a reference. Unlike nacelle mounted instruments, this LiDAR’s wind direction is
independent of nacelle position and wake effects do not interfere in the directions of
interest. Indeed, the measurement of LiDAR wind direction is heavily perturbed in
situation of inhomogeneous wind flow (complex terrain and wake conditions). Finally,
directional offsets using this reference were applied to all the devices i.e. LiDAR,
turbines and met mast.
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Table 6.2 Monin Obukhov Length classification [138]

L(m) WT Classes Stability

−140 < L < 0 0 Very unstable

−1000 < L < −140 1 Unstable

L < −1000orL > 2500 2 Neutral

1000 < L < 2500 3 Slightly stable

600 < L < 1000 4 Stable

380 < L < 600 5 Stable

240 < L < 380 6 Stable

160 < L < 240 7 Very stable

80 < L < 160 8 Very stable

L <80 9 Strongly stable

6.4 CP -based Results

This section presents results from the CP -based curtailment experiment. Results based
on simulations are presented in section 6.4.1 followed by results based on real time
data (collected during the field implementation) in section 6.4.2.

6.4.1 Simulation-based Results

WindPRO and the TI-JM are used in the simulations discussed in this section. The
standard Jensen model [75] is used for wake prediction with WindPRO. It shall be
noted that for a two turbines case, the TI-JM behaves exactly the same as the standard
Jensen model (WindPRO). The standard kJensen = 0.07 given in Table 4.1 for onshore
wind farms, is used in both WindPRO and TI-JM. Hence there is no difference between
WindPRO and TI-JM in this case as both produce the same results for a two turbines
study using the standard Jensen model. The percentage increase or decrease in
production was determined by simulating the available wind data with the standard,
hard-curtailed and optimised power curve and then finding the difference in production
accordingly.
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6.4.1.1 Simulations with all the Collected Data

WindPRO predicted an average increase of almost 3% in SMV5 power production in
the (200°±20°) directional sector with the hard curtailment strategy as compared to
normal operations. This increase in each 10° bin is shown in Figure 6.11. The highest
increase 1.15% is achieved in the 190°−200° bin. This was the prevailing wind direction
bin in the farm during the field implementation as can be seen in Figure 6.2. SMV5
is almost completely shadowed by the wake produced by SMV6 in the 190° − 200°
bin. Hence WindPRO predicts a higher gain for this bin. The lowest increase is in
the bin 200°−210° where SMV5 is under full wake effects of SMV6. As compared to
other three bins, wind blew less frequently in this bin as can be seen in Figure 6.2.
Production gain in the other two bins (partial wake conditions) is almost the same.

If equal weight (for wind direction and speeds) is given to all the bins then the gain
in SMV5 production increases as the wake moves from partial to full wake conditions.
WindPRO simulation of SMV6 normal operation (greedy control) with all the collected
data predicts losses of up to 26% in SMV5 production due to SMV6 wake. This also
provides more space for improvement with coordinated control. It was assumed in this
simulation that SMV6 is under free flow wind conditions and wake produced by SMV7
was ignored, hence SMV5 is solely under the wake effects of SMV6. These WindPRO
simulations in Figure 6.11 show that curtailment of SMV6 can produce more increase
in SMV5 power production in full or near-full wake conditions.

WindPRO predicted a loss in combined production of SMV6 and SMV5 when SMV6
is hard curtailed as shown in Figure 6.11. This is expected with the hard curtailment
strategy as SMV6 can be curtailed as high as 20%. The aim is to analyse the impact
of this curtailment on SMV5 production and not to increase the combined production.
The loss in net production shows that the loss in SMV6 power production due to
curtailment is not compensated by gain in SMV5 power production. The highest loss
in combined production is predicted in the 180°−190° bin, as SMV5 is under minimal
wake effect of SMV6 as compared to other three bins. Loss in combined production
decreases as the wake moves from partial to full wake conditions. The smallest loss is
in full wake conditions in the 200°−210° bin.

Figure 6.11 also shows the optimised increase in SMV5 production in all the four
bins predicted by the CP -based farm control strategy developed in this thesis. The
farm controller predicted that no net increase can be achieved by curtailing SMV6 in
the 180°−190° bin, as wake impact on SMV5 is minimal. Therefore, SMV6 shall follow
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its standard power curve resulting in maximum combined production. When the wake
moves to near-full wake conditions in 190° − 200° bin, SMV5 can benefit more from
curtailment of SMV6. Highest possible gain in combined production is 0.4% in this
bin 190°−200° as wind conditions are favourable for implementation of coordinated
control and wind blew more frequently in this bin (Figure 6.11). Optimised gain in
SMV5 production in full wake conditions is 0.35%.

As discussed earlier if it is assumed that wind flow is same in all the four bins then
the highest optimised gain is possible in full wake conditions. Analyses of these results
show no clear trend with respect to wind speeds. This is in confirmation with the
findings in [99].

Figure 6.11 Simulated percentage increase/decrease in SMV5 and net production
(SMV5+SMV6) when SMV6 is curtailed, weighted according to wind frequency

The farm controller (optimised operations) makes sure that there is no loss in
combined production. The controller curtails SMV6 only when the loss in production
can be compensated by the gain in SMV5 production. If no net gain is possible by
curtailing SMV6, the farm controller instructs SMV6 to operate greedily resulting in
maximum combined production. The optimised control could not be implemented
in the field due to the operational constraints as discussed in section 6.2.1. However
simulations with the optimised strategies are performed to analyse the impact on
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production of the optimised control as shown in Figure 6.11. This also provides
information for comparing the hard and optimised control strategies.

It was discussed in Chapter 2 that the gain in production depends upon many
parameters including number of turbines in the farm that can be curtailed and number
of downstream turbines that can benefit from this curtailment, wind conditions and
surface roughness on the site. The number of turbines in this case is only two.
Turbulence intensity and roughness on the site is very high allowing the wake to diffuse
quickly [138]. Hence the optimised increase in SMV5 production and net gain is low.
If all seven turbines in the farm are optimally controlled, a gain of up to 7% is possible
in farm production in full or near-full wake conditions [29].

These simulations predict that SMV5 production can be increased by curtailing
SMV6. Simulations also predicted decrease in net production with the hard curtailment
strategy relative to normal operations. Optimised control of SMV6 can assure that
there is no decrease in net production and can also result in increased net production
in favourable wind conditions.

6.4.1.2 Simulations with Filtered Data

This section presents simulated results with the filtered data. The filtered data is
obtained after applying the filtering criteria given in section 6.3 on all the collected
data. It was found that there are not enough valid data points available for the first
step of curtailment strategy i.e. when 1200kW < SMV 6 ≤ 1500kW . Filtering criteria
(minimum of 10 points in each bin) given in section 6.3 are not met for this part of
curtailment strategy. Hence results, only for the second step of curtailment strategy
are presented. Valid speed bins range from 11m/s to 13m/s as data in only these
speeds met the filtering criteria.

The real time filtered data was simulated with the TI-JM using the hard curtailment
strategy given in Table 6.1 and results are presented in Figure 6.12. The simulated
results in Figure 6.12 can be compared with results given in Table 6.3 as same set
of data is used for obtaining these results. Simulations show an increase of 12.5% in
SMV5 production in full wakes in the 200° − 210° bin as can be observed in Figure
6.12 while the actual increase based on analysis of field data is 11.5% in the same bin
as shown in Table 6.3. Simulations resulted in 6% decrease in combined production of
SMV5 and SMV6 in the 200°−210° bin, while the actual decrease is 6.4% in the same
bin. The overall farm production is decreased by 2.5% in the 200° −210° bin as per
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the simulations while the actual decrease is 1.9% in the same bin. Similar patterns
can be observed for other wind turbines in different directional bins by comparing the
simulation based results in Figure 6.12 and results based on field data given in Table
6.3. This comparison shows that these simulations are in good agreement with the
results based on field data.

Figure 6.12 Results based on simulating the filtered data with TI-JM

6.4.2 Field Results

Results in this section are based on field data collected in the CP -based curtailment
experiment, filtered as per the criteria defined in section 6.3 as discussed in section
6.4.1.2. These results are plotted with 80% confidence interval represented by the bar
on figures in this section. All the analyses in this section are based on the results give
in Table 6.3. The SMV6 power curve during the curtailment periods, compared to the
normal operations is shown in Figure 6.13.

Impact of the curtailment strategy on downstream turbines and farm power produc-
tion in each valid data bin is given in Table 6.3. The directional bins 180°−190°,190°−
200° and 210° − 220° are ignored as the number of data points in these bins is not
significant (less than 10 points in each bin). When the bin size is increased to ±10°,
number of valid data points are increased meeting the filtering criteria. This results in
some overlapped bins as can be seen in Table 6.3, but provides more data for analyses.

SMV6 curtailment in the whole sector (200° ± 20°) on average is 17.5% and in
full wakes it is 18.6% as shown in Table 6.3. Average gain, during the experiment,
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Table 6.3 Impact of SMV6 hard curtailment on SMV wind farm (% increase/decrease
compared to normal operations)

Turbine(s) 180°−220° 190°−210° 200°−210° 200°−220°

SMV6 -17.5 -17.1 -18.6 -19

SMV5 4.5 11.5 11.5 -0.7

SMV4 3.5 4.9 -0.9 -1.5

SMV3 2.0 2.3 -0.3 -0.5

SMV2 1.6 1.9 0.2 0.2

SMV1 2.6 2.7 0.5 0.6

SMV5+SMV6 -8.1 -5.6 -6.4 -10.9

Farm -0.7 0.4 -1.9 -3.4

Figure 6.13 SMV6 power curve obtained from field data with 80% confidence interval
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in SMV5 production is 4.5%. The highest gain is observed in full wake conditions
(200°−210°), which is 11.5%. Power curve of SMV5 during the curtailment period in
full wake conditions compared to normal operations is presented in Figure 6.14. The
increase in SMV5 production in the valid speed bins confirms positive impact of the
hard curtailment strategy. This increase is propagated through the wind farm and
increase in production is observed for all the downstream turbines SMV4 - SMV1 as
given in Table 6.3.

Combined production of SMV5 and SMV6 during the curtailment experiment is
also given in Table 6.3. It should be noted that the combined production of SMV5 and
SMV6 is different than simply adding the production of SMV5 and SMV6 given in
Table 6.3. The combined production is actually taken from the data, when production
of the two turbines (SMV5 and SMV6) is analysed, the number of data points is
increased, fulfilling the filtering criteria. When individual production of SMV5 or
SMV6 is considered, number of data points is reduced and for some wind speed and
direction bins, the filtering criteria was not met as explained earlier. This is the reason
that the sum of the values in “SMV5” and “SMV6” is not the same as the value “SMV5
+ SMV6” in Table 6.3. Overall, the combined production is decreased by almost
5%. This means that the loss in SMV6 production is not compensated by gain in
SMV5 production with the hard curtailment strategy. The lowest decrease in combined
production is in full wake conditions (200° − 210°) as given in Table 6.3 and Figure
6.15. By definition, SMV6 wake has highest impact on SMV5 production in full-wake
conditions. Hence, the benefit of curtailment is also high in this bin. In partial wake
conditions, impact of SMV6 is relatively low, hence gain in production is also low.

This loss in combined production is the reason to opt for optimised control strategies.
When fully implemented, the optimised control strategies never produce losses in
combined production. If the loss in upstream turbine’s production is not compensated
by gain in downstream turbine’s production, the optimised control strategies operate
with the standard power curve, moving back to greedy control, avoiding any power
loss as discussed in section 6.4.1.

Overall farm production (SMV1 - SMV6) is also reduced by an average of 0.7%, as
a result of SMV6 curtailment as given in Table 6.3. The average loss is less than 1%
showing that the five downstream turbines (SMV1 - SMV5) have benefited from the
17.5% curtailment of SMV6. The farm power curve in the 200°±20° is presented in
Figure 6.16 showing the small loss in production, during the curtailment period. This
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Figure 6.14 Impact of the hard curtailment strategy on SMV5 in full wake conditions (80%
confidence interval)

small decrease in overall farm production relative to normal operations suggests that if
turbines are curtailed optimally, then overall farm production can be increased.

6.5 Yaw-offsets based Results

This section is based on the results obtained from simulations for designing the yaw-
offset based field experiment as given in Table 6.4. Real-time field data is not available
due to equipment malfunctioning as discussed in section 6.2.2. The simulations in
this section are based on the TI-JM, as WindPRO does not have any mechanism for
calculating impact of yaw-offsets on wake-effects [48].

The optimised yaw-offsets with maximum percentage increase in net production for
each wind speed bin and 5° direction bin are given in Table 6.4. It is observed that
generally higher wind speeds (in below-rated conditions) result in more increase in net
production with yaw-based coordinated control. PSO estimated higher yaw-offsets for
higher wind speeds as can be observed in Table 6.4 for the 190°−195° bin to 215°−220°
bins. In higher wind speeds, a yaw-offset on SMV6 does not affect its production
by much but the wake is skewed away considerably with a higher angle from SMV5
increasing its production significantly, hence net production is increased. For example
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Figure 6.15 Impact of hard curtailment strategy on combined production (SMV5 + SMV6)
in full wake conditions (80% confidence interval)

Figure 6.16 Impact of the hard curtailment strategy on overall farm production
(SMV1-SMV6) in 200°±20° bin (80% confidence interval)
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with a yaw-offset of 12° (the maximum in Table 6.4), production of the yawed turbine
will be decreased by 0.95 times (cos2(12)) as was discussed in section 3.1.4. Different
powers of "cos2 α" (within a range of 1 to 5) were evaluated as researchers have used
different powers for the term "cos2 α" [119] as was discussed in section 3.1.3. It was
found that the power of "2" models the field data (SCADA data) more accurately as
compared to other powers. Hence, the term "cos2 α" is used in this work for predicting
impact of yaw-offsets on power production of a turbine.

It is also observed that as the wind flow moves from partial to full-wake conditions,
higher yaw-offsets (up to 12°) are required for skewing the wake away from SMV5.
Impact of SMV6 wake is not significant on SMV5 production in partial wake conditions.
The decrease in production depends upon how much swept area of SMV5 is affected
by SMV6 wake. The impact on production increase as more and more swept area is
affected by the wake as wind speed deficit on SMV5 increases. The specific decrease in
SMV5 production due to SMV6 wake is dependent upon this wind speed deficit. A
smaller yaw-offset (within a range of 1° to 6°, as per Table 6.4) can move the wake away
from SMV5 swept area. This smaller yaw-offset does not impact SMV6 production
significantly but the partial wake situation for SMV5 is converted into a no-wake or
much reduced wake situation. Wake effects are minimal in the 180° − 185°, SMV5
swept area is not affected by SMV6 wake as the two turbines are not completely in-line
in this direction as can be seen in Figure 6.3, hence PSO estimates that the standard
operations with greedy control is the best option keeping yaw-offset closer to 0°. The
impact of SMV6 on SMV5 production (in standard greedy control) was shown in Figure
6.7 where it can be observed that SMV5 production decrease as the wind direction
moves from 180° to 205° and then increases from 206° to 220°. The specific wake losses
in production depend upon wind conditions, hence it is difficult to quantify these wake
effects. However, as a linear wind deficit model (TI-JM) was used in simulations, it
was observed that a maximum of 8% swept area of SMV5 can be affected by SMV6
wake in the 180°−185° bin.

In full wake conditions i.e. 200°−205° and 205°−210°, SMV6 wake has significant
impact on SMV5 production. A yaw-offset on SMV6 within a range of [−10°,15°],
though reduces its production but also reduces wake effect on SMV5 increasing its
production, hence net gain in production is observed. The decrease in SMV5 production
depends upon the actual yaw-offset applied, for example a yaw-offset of 15° reduces
the production of the yawed turbine by 0.93 times. The impact on SMV5 production
depends upon specific wind conditions and parameters such as frequency of wind speed
in a specific direction.
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It was discussed in section 6.2.2 that the yaw-offset range implemented in field is
[−12°,8°]. That is why dynamic (effective) yaw-offsets shall be used as this increases
range of the yaw-offsets. This dynamic yaw-offsets can be estimated by adding the
yaw-error (unwanted yaw-offset) to the intentional yaw-offset applied on SMV6.

Table 6.4 Estimated optimised yaw offsets in degrees with % increase relative to greedy
control in ±2.5° direction bin and ±0.5m/s speed bin

W
ind

Speed
(m

/s)

180°−
185°

185°−
190°

190°−
195°

195°−
200°

200°−
205°

205°−
210°

210°−
215°

215°−
220°

Yaw
offset

%
increase

Yaw
offset

%
increase

Yaw
offset

%
increase

Yaw
offset

%
increase

Yaw
offset

%
increase

Yaw
offset

%
increase

Yaw
offset

%
increase

Yaw
offset

%
increase

5 0 0 -3 1 -6 2.1 -7 5 -8 1.5 8 2.3 6 5.1 5 2.1

6 0 0 -3 1 -6 2.7 -8 5 -9 2.4 10 2 7 5.3 5 3.3

7 0 0 -3 1 -6 3.7 -8 6.5 -10 2.1 15 2.5 7 6.4 5 3

8 0 0 -3 1 -6 3.4 -8 6.5 -10 1 15 3.1 11 6.4 5 2.9

9 -1 0.1 -3 1 -6 3.7 -8 6.5 -10 1 15 3.2 11 6.7 7 3.1

10 -1 0.2 -3 1 -6 3.5 -9 6.1 -10 2.3 15 3.3 11 6.7 7 2.5

11 -1 0.9 -3 1 -8 4 -9 6.6 -10 4.6 15 5.6 11 6.6 9 3.6

12 -5 1 -3 1.8 -8 4 -9 6.5 -10 5.7 15 6 12 6.6 9 3.8

It is concluded with these simulations that for a two-turbine (SMV6 and SMV5)
case, coordinated control based on yaw optimisation results in higher production gain
relative to CP -based coordinated control and greedy control. According to equation
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(3.1), the yaw-offset reduces power of SMV6 but as the turbine still operates at its
maximum capacity according to the effective wind conditions, turbine’s production is
only reduced by a factor of cos2 α, where α is the yaw-offset applied.

A yaw-offset in the range of 15° does not have a significant impact on turbine’s
production but as the skew-angle is greater than the yaw-offset, the wake is skewed
away from SMV5. This was discussed in detail in section 3.1.4. The skew angle for 15°
yaw-offset is around 18° (equation (3.9)), which means that a partial wake situation
can be converted into no-wake situation and a full-wake situation can be converted to
a partial-wake situation with optimum yaw-offsets. This produces a positive impact on
net production.

6.6 Conclusion

This chapter detailed the field implementation of coordinated control strategies an-
swering RQ-6 by presenting an approach for implementation of coordinated control
strategies in an operating wind farm, constraint to the operational limitation. Two
turbines (SMV6 and SMV5) in the onshore SMV wind farm were chosen for real-time
implementation. The farm and turbines were equipped with modern LiDAR. These
LiDAR provided high frequency accurate data about the wind characteristics in the
farm.

SMV7 power production was used as a reference for defining a two-step hard
curtailment strategy in the directional sector 200° ± 20°. The curtailment strategy
reduced SMV6 production (using CP ) by a maximum of 20% analysing the wake effect
produced on SMV5 and the overall production.

WindPRO predicted 3% increase in SMV5 production with the given hard curtail-
ment strategy in the chosen directional sector. A decrease in combined production
of SMV5 and SMV6 is predicted as the loss in SMV6 production is not compensated
by gain in SMV5 production. The optimised control strategies were used to estimate
optimised power settings of SMV6. Simulations with the farm controller predicted an
optimised increase of up to 0.4% in SMV5 production. The farm controller assures no
losses in net production.

Data from different sources namely LiDAR, met-mast, SCADA and MERRA
database was analysed during the curtailment period. An increase of up to 11.5% was
observed on SMV5 production with real time field data. It was observed that increase
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in SMV5 production becomes more significant as the partial wake moves towards full
wake conditions. The gain in SMV5 production was propagated through the farm as
downstream turbines benefited from reduced wake effects. No particular trend was
observed with respect to the variations in wind speed.

A decrease in net production of SMV5 and SMV6 and overall farm (SMV1 -
SMV6) production was observed with the hard curtailment strategy. This confirms
the importance of optimised control strategies. Simulations confirm that if SMV6
power is curtailed with an optimised strategy, the loss in SMV6 production is always
compensated by gain in SMV5 production. Off-line optimisation can be a solution.
But as observed in the SMV wind farm, atmospheric instability and abrupt changes in
wind characteristics requires on-line farm control and optimisation. This can only be
achieved with fast and computationally efficient optimised strategies.

The difference between simulations (with filtered data) and field results is within a
range of 1.5%. It can be concluded that the simulation (WindPRO and TI-JM) were
in good agreement with field results for the bins where field data was available.

The yaw-based coordinated control strategies were also implemented in the SMV
wind farm using SMV6 and SMV5. Data cannot be collected due to some technical
problems and equipment malfunctioning. WindPRO does not have any mechanism
for predicting the impact of yaw-offsets on wake effects. Hence only the TI-JM was
used in yaw-offset based simulations. A refined direction bin with a resolution of 5°
was used for in-depth analysis. Simulations for each directional and speed bin were
performed for obtaining an optimised yaw-offset for SMV6 and results were reported.

The optimum yaw-offsets fall in a range of [−10°,15°]. However the operational
limitations only allowed a yaw-offset range of [−12°,8°]. SMV6 was first operated with
−12° yaw-offset for almost two weeks and then with 8° yaw-offset for four weeks.

Simulations, using optimum yaw-offsets, concluded that net gain in production
increases as wind speed increases (below-rated wind conditions). It was also concluded
that higher yaw-offsets are required for increasing net production in full wake conditions.

It is concluded that for a two-turbine case (SMV6 and SMV5); the yaw-based
coordinated control can be more beneficial for farm production relative to CP -based
coordinated control and the standard greedy control, in wake affected conditions.
According to simulations, if SMV6 is operated with the optimum yaw-offsets according
to the wind conditions, net production (SMV6 + SMV5) can be increased by up to
6.7%.



Chapter 7

Conclusions

The main objective of this thesis was to develop intelligent, fast processing and accurate
wind farm control strategies, which are easily implementable in the field. A set of six
research questions was generated in Chapter 1 showing the aims, for achieving the
objective. Each chapter in this thesis answered one or more of these research questions.

This chapter provides the overall conclusion of this thesis in section 7.1. Some
future exploration areas are detailed in section 7.2.

7.1 Conclusions

In this thesis, innovative coordinated control strategies for wind farm production
maximisation, have been presented. A review of previous research regarding wind
farm coordinated control in section 2.4 concluded that the main challenge in the field
implementation of coordinated control is the inverse relationship between accuracy
and computational efficiency of control strategies based on this concept. The innova-
tive control strategies developed in this work specially emphasises on computational
efficiency without compromising accuracy. This has been achieved by answering the
research questions given in section 1.3 as follows.

7.1.1 Coordinated Control Concept

RQ-1: What is the state of the art in coordinated control of wind farms? What are
the requirements for developing on-line coordinated control strategies?
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It was discussed in section 2.4 that optimised curtailment of upstream turbines can
be beneficial for overall farm production as downstream turbines have more wind to
produce with.

7.1.1.1 Contribution

The literature review in section 2.4 concluded that a farm controller based on the
coordinated control concept has a wind deficit model and an optimiser as two integral
parts. It was also concluded in section 2.4 that the controller must be computationally
efficient and accurate if on-line coordinated control is required.

7.1.2 PSO: The most suitable Optimiser for Coordinated Con-
trol

RQ-2: What are the key properties of the optimisation technique that enables on-
line coordinate control? Which optimisation technique is the most appropriate for
optimising wind farm power production with on-line coordinated control?

It was concluded in section 2.4 that iterative techniques with intrinsic intelligence
shall be used for solving the complex problem of coordinated control. It was discussed
in section 3.1.1 that researchers have used heuristic optimisation techniques for solving
complex non-linear problems.

7.1.2.1 Contribution

Four heuristic optimisation techniques (GA, SA, ACO, PSO) were selected for per-
formance evaluation in section 3.1.1 as a conclusion of a detailed literature review of
performance comparison of different optimisation techniques in section 3.1.1. These op-
timisers are intelligent and solve real time complex problems iteratively exhibiting high
processing speed, fulfilling the criteria developed in section 2.4.2. The BF technique
was used as a benchmark.

Performance evaluation of the selected optimisers was performed in section 3.8
using an artificial wind farm detailed in section 3.1.2. The evaluation criteria were
based upon the processing speed, number of iterations used for solving the problem,
the number of overheads used, success rate and accuracy as discussed in section
2.4.2. It was concluded in section 3.8 that PSO outperformed other optimisers in
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terms of processing speed, number of iterations and overheads used. A comparison of
different PSO neighbourhood topologies in section 3.9.10 confirmed that PSO with the
global-best topology (all particles are connected) is the most suitable for wind farm
coordinated control. Hence, PSO with global-best topology was used for developing
the coordinated control strategies in this work.

7.1.3 Combining Accuracy of CFD Wake Models With Engi-
neering Wake Models

RQ-3: What is the most appropriate wind deficit model for on-line coordinated control
which can achieve the required level of accuracy without compromising computational
efficiency? How the accuracy of CFD models and computationally efficiency of en-
gineering models can be combined for developing hybrid wind deficit models having
positive characteristics of both the models?

It was concluded in section 2.3.1 that the accuracy of CFD wake models shall be
combined with the speed of engineering wake models. It was concluded in section
2.5 that the Jensen model is most suitable for wind farm coordinated control because
of its processing speed but the parameters must be tuned for accurate wind deficit
prediction.

7.1.3.1 Contribution

A wind deficit model (TI-JM) was developed in section 4.3 which uses free-stream
and wake added turbulence intensities for estimating the effective value of wake decay
coefficient (kJensen). This information was combined with the standard Jensen model
for predicting wind speed deficit inside the wind farm, taking deep array effect and
wake added turbulence intensity into account, resulting in fast and accurate wind
deficit modelling.

The TI-JM was validated using real-time data from two onshore wind farms (Brazos
and SMV) in section 5.2.The TI-JM was also validated by estimating efficiencies of
the wind farms case studies using conventional greedy control in section 5.5. It was
observed that the efficiencies estimated with TI-JM match well with the efficiencies
based on SCADA data. It was concluded in section 5.5 that higher values of wake
decay coefficient (kJensen) must be used inside the wind farm for accurate estimation
of wind speed deficit, hence power production.
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7.1.4 Evaluating Performance of Wind Farms using Wake As-
sessment Methodology

RQ-4: What is the most appropriate methodology / strategy for assessing impacts of
wakes on farm production and identifying wind conditions where coordinated control
can be beneficial for increasing farm production? How can SCADA data from wind
farms be used effectively for visualising and analysing wake effects on production?

An assessment methodology for performance evaluation of a wind farm in different
wind conditions (using SCADA data) was presented in section 4.4.

7.1.4.1 Contribution

The assessment methodology first calculates production in 360° for a given wind speed
or averaging production in all wind speeds. This visualises the impact of wakes on farm
production as shown in section 5.3. Wind conditions with severe wake effects were
further analysed by calculating relative efficiency comparing performance of different
wind turbines in the farm as given in section 5.3.

Data from the Brazos and SMV wind farms was used for comparing performance
of turbines installed in a similar layout in section 5.3. This methodology was also
applied on two turbines in the SMV wind farm for designing CP -based and yaw-based
coordinated control field experiments in section 6.2.

7.1.5 Implementing Control Strategies according to Wake Con-
ditions

RQ-5: How different control strategies (Conventional greedy, CP -based or yaw-based)
behave in different wind conditions? Which strategy is better for maximising farm
production considering full, partial and no-wake conditions?

Efficiencies based on SCADA data from three wind farms case studies (Brazos, SMV,
Lillgrund) and WindPRO were used as benchmarks for evaluating the performance of
coordinated control strategies (developed in this work) in different wind conditions in
section 5.5.
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7.1.5.1 Contribution

The coordinated control strategies can improve efficiencies by up to 6% for the wind
farms case studies, as discussed in section 5.5. The control process for Lillgrund wind
farm consisting of 48 wind turbines took a maximum of 50 seconds indicating the
computational efficiency of the farm controller as discussed in section 5.5.3. Wind
farm production was increased by up to 8% with the innovative coordinated control
strategies as detailed in section 5.5.

It was concluded in section 5.6 that CP -based control performs better than the
yaw-based and greedy control in full or near-full wake conditions. Yaw-based control
performs better in partial wake conditions while greedy control is the obvious choice in
no-wake conditions.

7.1.6 Implementing the CP -based control in the SMV Wind
Farm

RQ-6: What is the best approach for practical implementation of coordinated control?

The coordinated control strategies were implemented in the SMV wind farm
using two turbines setup equipped with modern LiDARs as discussed in Chapter 6.
The optimised control strategies cannot be implemented in field due to operational
limitations on the turbines as detailed in section 6.2. Therefore other strategies (hard-
curtailment) were adopted for field implementation as given in section 6.2. To the best
knowledge of the author, this is the first practical implementation of LiDARs based
coordinated control strategies in an operating wind farm.

7.1.6.1 Contribution

The CP -based control strategy was implemented in the SMV wind farm as presented
in section 6.2.1. A curtailment of maximum 20% was applied on the upstream turbine
(SMV6), in a two-step hard curtailment strategy and the impact on downstream
turbine’s (SMV5) production and net production was analysed. The aim in this case
was not to increase the net production but to analyse the impact on downstream
turbine’s production.

It was observed in section 6.4.2 with real time field data that a reduction of almost
17% in upstream turbine’s production can increase the downstream turbine’s production
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by almost 11%. The analysis in section 6.4.2 concluded that there is little decrease (less
than 2%) in overall farm (SMV1-SMV6) production as a result of the hard curtailment
strategy showing that the loss in upstream turbine’s production is compensated by
increase in downstream turbines’ productions. There is significant decrease in the net
production of the two experiment turbines (SMV5, SMV6) concluding that upstream
turbine must be optimally curtailed for increasing net production as discussed in section
6.6.

7.1.7 Implementing the Yaw-based Control in the SMV Wind
Farm

The yaw-based field experiments were also implemented in two steps in August/September
2016 as discussed in section 6.2.2.

7.1.7.1 Contribution

The upstream turbine (SMV6) was operated with a yaw-offset of −12° and 8° during
the experiment as discussed in section 6.2.2. The optimised yaw-offsets fall mainly in
this range as estimated by the yaw-based optimisation strategy as given in Table 6.4.

Simulations in section 6.5 predicted a net increase of up to 7% in net production
with the optimised yaw offsets relative to the standard greedy operations as can be
seen in Table 6.4.

7.1.8 Thesis Conclusion

To summarise, this research work developed computationally efficient and accurate
optimised control strategies for increasing wind farm production. A fast processing
and accurate wind deficit model (TI-JM) was developed. PSO with global best neigh-
bourhood topology was chosen as the most suitable optimiser for on-line coordinated
control. PSO and the TI-JM were combined for developing CP -based and yaw-based
on-line coordinated control strategies bringing an improvement of up to 6% in wind
farm efficiency relative to the standard greedy operations, as was discussed in section
5.5.3.

Coordinated control strategies were implemented in an operating wind farm for the
first time using modern LiDARs in the history of wind energy. The analysis on field
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data showed decrease in net production with the hard curtailment strategy confirming
that fast processing, intelligent and accurate on-line coordinated control strategies
must be used for increasing wind farm production. This makes sure that if no net gain
can be achieved, then the turbines should operate greedily, resulting in zero production
loss.

7.2 Future Work

In the course of this PhD work many new techniques and methodologies have been
presented. These can be further developed and extended for achieving other objectives
and exploring new research areas. Some of the possible extensions of this research work
are presented as follows.

7.2.1 Analysis of Data Obtained from Yaw-based field Imple-
mentation

The 5-beam LiDAR contains important information such as the free-stream wind
direction and speed as was discussed in section 6.2.2. As soon as the device is
operational, data will be collected and analyses will be performed. The theoretical
background and methodology for analyses is already completed as was discussed in
section 6.5.

The results in Table 6.4 will be validated once the 5-beam LiDAR is operational.
The dynamic yaw-offsets will be used for analysing the impact on SMV6, SMV5 and
their combined production. This will be used for identifying optimum yaw-offsets using
real-time field data suggesting an innovative way to operate a wind farm for increasing
net production. This will result in another publication as a result of this PhD work.

7.2.2 Optimising Farm Power Production and Fatigue Loads

The emphasis in this work was on increasing farm production using the available
resources efficiently. However, there are cases when the grid-requirement is less than
the maximum available farm production, hence some of the turbines must be curtailed
to meet the grid requirements. This provides an opportunity for multi-objective
optimisation of farm power production and fatigue loads on the turbines. This will
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require an objective function where grid-required farm production is used as a constraint
while DEL or fatigue loads on different parts such as tower bending moment and blade
bending moment are optimised. Reducing DEL or fatigue loads will reduce O&M costs.

7.2.3 Providing Ancillary Services

The control strategies can be extended to manage power flows in the network so
maximum and efficient utilisation of wind assets is achieved, indirectly incentivised
higher levels of wind integration. The control algorithms can have more than one
objective and constraints e.g. fatigue loading in the wind farm and / or voltage,
line flow limits and economics constraints of using the network paving the way for
active network management. These complex control strategies can help streamline
better integration of wind resources into existing networks without the need for grid
reinforcement.

7.2.4 Evaluating other Optimisers and Different Coding En-
vironments

Performance of GA, SA, ACO and PSO was evaluated with BF as a benchmark using
Matlab®. There are many other optimisation techniques available such as TS, BFO
and ABC as discussed in Chapter 3. Performance of these optimisers shall be evaluated
for any potential improvement in computational efficiency and accuracy. The impact
of coding environment shall be analysed by using environments other than Matlab®.

7.2.5 Data Driven Techniques for Wake Modelling

A generic analytical expression for estimating wake added turbulence intensity was used
in Chapter 4 for developing TI-JM. However, performance and accuracy of the TI-JM
can be improved using farm-specific expressions obtained with data-driven techniques.
If high frequency and accurate data is available (such as data obtained from LiDARs
in Chapter 6), it can be used for developing analytical expressions for developing wind
deficit models.
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7.2.6 Sensitivity analysis of TI-JM

A sensitivity study to the TI-JM model results to varying kJensen through the wind
farm will provide further details and impact of increasing kJensen inside the wind farm.
The sensitivity analysis can be performed using a CFD model such as SOWFA as a
benchmark or the wind farm data can also be used for this purpose. Other expressions
for determining I+ shall be used. When a cup anemometer is used, sensitivity analysis
shall be performing by assuming I0 equals to Iu.
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Appendix A

The environmental impact and
hidden costs of energy generating
sources

This appendix presents a detailed description of Table 1.1 showing the environmental
impact and hidden costs of different energy sources. This appendix is mainly based on
the details given in [4]. The planning and cost risks are presented in section A.1. This
is followed by climate change impact in section A.2. Details of energy sources on air
pollution are give in section A.3. The land, water and visual and noise impacts are
presented in sections A.4, A.5 and A.6 respectively.

A.1 Planning and Cost Risks

This section presents the planning and cost risks of generating power from different
energy sources. The owner’s costs are used as a proxy for up-front costs. These
costs include: development costs; preliminary feasibility and engineering studies;
environmental studies and permitting; legal fees; project management; interconnection
costs; owner’s contingency; and insurance and taxes during construction.

The overall planning and cost risks of biomass are moderate. The lead time for
new units is typically 3 to 4 years. Up-front costs are in the range of $650 per kW,
putting significant money at risk in the event of project cancellation. Fuel cost risk is
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usually significant; this risk is sometimes shifted to customers via a fuel adjustment
mechanism.

The overall planning and cost risks of coal projects are high. The lead time for new
projects is 5 to 8 years. This increases planning risks relative to the plants that can be
developed more rapidly. Cost overruns of 50% to 100% have been common in recent
years. Up-front costs are in the range of $430 to $530. Utilities are often allowed to
begin charging customers for new units before the units are completed, increasing the
cost of energy for consumers.

The overall planning and cost risks for nuclear are high. New projects have 6 to
10+ years lead time, creating very high planning risk. Up-front costs are around $960
per kW, prompting significant losses in the event of project cancellation. Cost overruns
are often passed on to ratepayers, and utilities are allowed to begin charging customers
for new units before the units are completed.

The overall planning and cost risks for natural gas projects are moderate. The lead
time of 3 to 4 years for new projects reduces the planning risk. Up-front costs are
round $160 per kW. The primary risk of gas-fired units is the risk of rising gas prices.

The overall planning and cost risks for solar are low. The lead time for commercial
projects is around 3 to 4 years while for residential projects it is well under a year.
There are no fuel cost risk. Estimated upfront costs range from $470 to $650. Most
solar projects are being developed by non-utility companies, reducing ratepayer risk.

The overall planning and cost risks for wind are low. The lead time for large projects
is typically 3 to 4 years, smaller projects can be developed more rapidly. Up-front costs
of onshore projects are very low – roughly $140 per kW – reducing losses in the event
of a cancelled project. Up-front costs for offshore projects are high, due to the costs of
working at sea. Wind projects impose no fuel cost risk. Most onshore and offshore
projects are developed by non-utility companies, reducing ratepayer risk.

A.2 Climate Change Impacts

The climate change impact of biomass is moderate. The direct CO2 emissions from
operation are in the range of 1250 g/kWh. There are additional carbon emissions
from fuel harvesting and transportation. It takes between 15 and 40 years for biomass
carbon emissions to be equivalent to coal-fired emissions, depending on the biomass
fuel type. It takes longer to reach carbon payback relative to gas-fired generation.
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The climate change impacts for power generation with coal is high. Analysis
found that life-cycle emissions estimates for existing projects range from 880 to 1270 g
CO2-eq/kWh with a mean of 1010 g CO2-eq/kWh. These emissions depend upon the
coal type used for power generation and plant efficiency. For new projects, the life-cycle
estimates fall between 730 nd 1010 g CO2-eq/kWh with a mean of 790 g CO2-eq/kWh.

The impacts of power generation through nuclear power plants on climate is low.
Direct emissions from nuclear plan operation are low. Major sources of life-cycle
emissions are uranium mining, enrichment and transportation, plant construction and
decommissioning. It is found with analysis that estimates of life-cycle GHG range from
3.7 to 110 g CO2-eq/kWh, with a mean of 18 g CO2-eq/kWh.

The climate change impacts of plants running on natural gas are high. Direct
emissions from these plants range between 350 and 400 g/kWh depending on the
efficiency of the plant. There are additional GHG emissions from gas drilling, processing
and pipeline leakages. The life-cycle GHG emissions are not given.

The impacts of solar projects on climate are low. Direct emissions from plant
operations are negligible. Major sources of life-cycle emissions are: extracting and
refining resources; and manufacturing PV panels and “balance of system” components.
It is estimated that GHG emissions range between 26 and 183 g CO2-eq/MWh, with a
mean of 52 g CO2-eq/kWh. Life-cycle emissions range between 9 to 55 g CO2-eq/kWh,
with a mean of 23 g CO2-eq/kWh.

Wind energy projects have low impacts on climate. Direct emissions from wind
turbines are negligible. Major sources of life-cycle emissions are: extracting and refining
resources; production of steel, concrete and composites; construction of supply factories.
The life-cycle GHG emissions range between 3.0 to 45 g CO2-eq/kWh, with a mean of
15 g CO2-eq/kWh.

A.3 Air Pollution Impacts

The impacts of biomass on ir pollution are moderate. Biomass power plants emit
significant quantities of sulphur and air toxics. There are additional emissions from fuel
harvest and transport. These emissions per unit of biomass fuel cannot be quantified
with the available data in [4].
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Coal has high impacts on air pollution. Coal plants are the largest sources of SO2,
mercury, arsenic, acidic gases and other toxics. Direct emission rates (g/kWh) are in
the following ranges:

• SO2: 0.5 - 14

• Mercury: 1.5×10−6 to 3.0×10−5

• HCl: 0.2

• HF: 0.03

Estimated annual damages from the US coal fleet (not including climate change) range
from $70 to $190 billion. Coal mining is also associated with serious health problems
because of emission of CO and other air toxics.

Nuclear plants have low impacts on air pollution. Direct emissions from operations
are low. Major sources of life-cycle emissions are: uranium mining, enrichment and
transportation, plant construction and decommissioning. Life-cycle emission rates
(g/kWh) are in the following ranges:

• SO2: 0.03 to 0.04

• HCl: 1.7×10−4 to 1.8×10−4

• HF: 4.8×10−5 to 5.2×10−5

• Low level emissions of other air pollutants are also reported.

The impact of power generation through gas plants is moderate. These plants emit
significant amounts of toxic gases and air pollutants. There are additional emissions
from drilling (fugitive emissions from wells and exhaust from diesel equipment) and
emissions from gas processing and pipeline operation. Upstream emissions have not
been quantified well enough to estimate life-cycle emissions from gas-fired generation.

The impact of solar power plants on air pollution is low. Direct emissions are
negligible. The life-cycle air emissions of SO2 is in the range of 0.05 to 0.2 g/kWh.
Quantification of other air pollutants, acidic and toxic gases is not provided.

Wind energy projects have negligible impacts on air pollution. Direct operational
emissions are negligible. Major sources of life-cycle emissions are: production of steel,
concrete and composites; construction of supply factories. An analysis of wind energy
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projects in Europe, including both onshore and offshore projects, produced the following
life-cycle emission rates (g/kWh):

• SO2: 0.03

• HCl: 4.5×10−4

• HF: 2.9×10−4

A.4 Land Impacts

Biomass has moderate impacts on land. The acidic gas emissions contribute to
soil acidification. Increased harvest of woody biomass affects soil quality. Biomass
combustion produces large amounts of ash. Some ash can be used as a soil amendment;
other ash must be landfilled.

Coal has high impacts on land. SO2 emissions from coal plants are a major
source of soil acidification. Impacts from underground mining include land subsidence,
underground fires and safety risks at abandoned mines.

Nuclear power plants have high impacts on land. A typical power plant produces
between 4.4×10−8 and 7.9×10−8 m3/kWh of radioactive waste, not including spent
fuel. Life-cycle production of hazardous waste is between 0.07 and 0.10 g/kWh and
other solid waste is 43 g/kWh. High-level waste must be stored securely for thousands
of years. Land use and property values are affected around long-term waste storage
sites.

The impacts natural gas on land is moderate. Natural gas combustion contribute
to soil acidification. Land cleared for drilling reduces and fragments wildlife habitat.
Up to 5 acres (20,000 m2) are cleared per well pad, and waste ponds and roads add to
occupied land. Drilling adversely impacts other land uses such as farming, ranching,
horse breeding and hunting. In some cases domesticated animals have been killed by
exposure to toxins.

Solar projects have moderate land impacts. The estimated life-cycle solar projects
land use ranges from 0.4 m2/MWh for roof integrated to 5.5 m2/MWh for ground-
mounted. There is concern about impacts on some threatened species’ habitat due to
large desert solar projects. Developers have been required to relocate animals.
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Wind projects have moderate impacts on land. Wind projects encompass large areas,
but most of the land can continue to be used for its prior purpose, typically farming,
ranching or wilderness. The life-cycle land use is in the range of 0.002 m2/MWh.
Estimated average bird mortality is between 0.2 and 2 deaths per GWh. At remote
sites, roads and towers could affect species sensitive to habitat disruption.

A.5 Water Impacts

Biomass has moderate impacts on water. These plants typically withdraw 500 to
600 gal/MWh and lose most of this to evaporation. Forest biomass does not require
irrigation, but its harvest can affect stream water quality.

Coal plants have high impacts on water. The cooling systems withdraw between
20000 and 50000 gal/MWh and lose roughly 300 gal/MWh of this via evaporation.
Coal mining degrades surface water quality in many ways; acid mine drainage is the
largest source of water pollution. Air emissions from coal plants contribute to the
eutrophication of lakes and bays. Liquid effluent from power plants degrades river
water quality. Coal waste impoundments pose risks to ground and surface water, and
large-scale accidents pose safety and environmental risks.

Nuclear have high impacts on water. The nuclear plants draw between 20000 and
60000 gal/MWh and lose 400 gal/MWh of this via evaporation. Estimated life-cycle
water use ranges between 2600 to 6900 gal/MWh. Waste-water production ranges from
6.3 to 7.4 gal/MWh. The major life-cycle water impacts are from uranium mining;
groundwater contamination has been documented at a number of old uranium mines,
and current mining techniques can leave elevated levels of contaminants in ground
water.

Water impacts of natural gas projects are high. Plants withdraw water at a rate of
roughly 230 gal/MWh and lose about 180 gal/MWh. Water impacts in the gas fuel
cycle are significant but difficult to quantify.

The water impacts of solar projects are negligible. It is estimated that life-cycle
water withdrawals of solar projects is between 225 and 520 gal/MWh.

The water impacts of wind energy projects are negligible. Estimates of the life-cycle
water withdrawals from wind projects, including both onshore and offshore projects,
range from 55 to 85 gal/MWh. Construction of offshore wind projects adversely affects
marine life; however the majority of these impacts cease with the end of construction.
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A.6 Noise and Visual Impacts

The noise and visual impacts of biomass are moderate. These impacts are commonly
cited as problems by groups opposing new projects. Currently these impacts cannot
be quantified with the available data. Truck delivery of biomass fuel impacts the
surrounding community and may affect property values near a plant.

Coal projects have moderate noise and visual impacts. These impacts are cited as
problems by groups opposing new projects. These impacts cannot be quantified with
the available data. Coal trains up to two miles long disrupt traffic and deposit coal
dust in the communities through which they pass.

Noise and visual and other impacts of nuclear are high. The opposing groups cite
new projects as problems in terms of noise and visual impacts. Production of enriched
uranium presents nuclear weapons proliferation risk. There is evidence of adverse
health effects from depleted uranium used in conventional munitions.

Noise and visual impacts are commonly cited as problems by groups opposing new
units. However no quantification can be provided with the available data. These risks
can be termed moderate as compared to other energy sources. Unconventional drilling
increases heavy truck traffic significantly.

Solar projects have low noise and visual impacts. Solar plants are not often opposed
on the basis of these impacts.

Noise and visual impacts of wind energy projects are moderate. These impacts are
commonly cited as problems by groups opposing new and existing projects. These
impacts cannot be quantified with the available data. Visual impacts are likely to be
more significant for onshore wind projects than for offshore, because turbines are tall,
usually spread over a large area and cannot often be hidden behind trees. As more
and more projects are moving offshore, visual impacts are reducing. With the use of
latest technology, noise impacts are also reducing.



Appendix B

Literature Review

This appendix summarises the literature review of performance comparison of different
wake models (section 2.3), coordinated control of wind farms (section 2.4) and perfor-
mance comparison of different optimisation techniques for solving complex problems
(section 3.1.1).

Studies regarding performance comparison of different wake models are given in
Table B.1. Previous studies regarding coordinated control are presented in Table
B.2 discussing the optimisation technique and wind deficit model used for developing
the control strategy and conclusion of each study. Studies regarding performance
comparison of different optimisation techniques for solving complex problems are
presented in Table B.3 discussing the optimiser used for comparison and conclusion of
each study.
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B.1 Comparison of Wake Models

This section summarises previous studies comparing performances of different wake
models in different wind conditions as discussed in section 2.3. The following Table
B.1 presents a discussion about the models used for comparison in each study along
with the conclusion and corresponding reference(s). A conclusion drawn from these
studies is to use engineering models in combination with CFD models for achieving
high computational efficiency and accuracy.

Table B.1 Literature review of comparison of different wake models

Wake Models
Discussion and Conclusion Ref

CFD models and software discussed in this table:

DWM, SOWFA, Wakefarm, Robert Gordon University (RGU)CFD, Fuga,
WindFarmer-CFD, Fluent, National Technical University of Athens (NUTA)
CFD, Risoe Linearised Flow, Flow, Ainslie, Deep-Array Wake Model (DAWM),
WindModeller, ARPS, Risoe CFD and semi-analytical models, Uppsala Uni-
versity analytical mode, RGU k − ε model, FarmFlow, Eddy viscosity, LES,
CRES-Farm, CENER, Actuator Disk using CFD

Engineering models and software discussed in this table:

Jensen, Larsen, Frandsen, Risoe Engineering, WAsP Engineering, WindFarmer-
Jensen, FLaP-Jensen, WAsP-Jensen

Jensen, CFD (gen-
eral)

Even the most sophisticated CFD models cannot
predict the wind deficit accurately. The Jensen
model is a better option for wind farm control

[12]

Jensen, Larsen,
Frandsen, Eddy
viscosity

The Jensen model outperforms other models for
single wake conditions. Larsen and eddy viscosity
models accurately captures width of the wake

[36]
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WAsP, CRES-Farm,
WindFarmer, Wake-
Farm, CENER,
NTUA CFD

Engineering models need to be tuned for better
results. CFD models generally over-predict wake
losses.

[38]

Risoe Engineering,
WAsP and analyt-
ical model, FLaP,
Wakefarm, RGU
CFD model

Engineering models can perform as good as CFD
models. However the wake decay coefficient in
WAsP has to be tuned according to the wind and
wake conditions

[39]

Jensen, Larsen,
Fuga

All the models predict wake losses accurately within
an error margin of 1.5%. Parameters in the Jensen
model are tuned to get better results.

[40]

Jensen, Ainslie,
FarmFlow

Both Ainslie and FarmFlow (CFD) models have
the same reliability higher than the Jensen model

[44]

DWM, LES
Both the models under-predict power losses and
over-predict fatigue loads

[47]

Jensen, DWM,
Actuator Disk,
SOWFA

The Jensen model is the simplest, fastest and most
suitable for feedback wind farm control. DWM
is not suitable for farm control. Actuator Disk
model can be an option but the complexity is high.
SOWFA can be used for testing farm control strate-
gies but the computational requirements are ex-
tremely high

[56]

Park Jensen,
Ainslie, DAWM,
Fuga, WindMod-
eller, ARPS

CFD models performs better than the Jensen
model. Parameters in the Jensen model have to be
tuned for better results.

[67]

Jensen, Ainslie,
Larsen

If wake decay coefficient in the Jensen model is
tuned, it can perform better than the other two
models

[80]
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Wakefarm, Wind-
Farmer, WAsP En-
gineering, NTUA
CFD model

Engineering models under-predict wake losses while
CFD based models over-predict wake losses

[27]

WAsP, Wind-
Farmer, Risoe
Linearised Flow,
Wakefarm, Fluent,
Flow, NTUA

All the models predicted the efficiency accurately
in most of the cases

[87]

Risoe CFD and
semi-analytical
models, Uppsala
University an-
alytical model,
WindFarmer, RGU
k − ε model, FLaP,
Wakefarm

None of the models predicted wake losses accurately.
Further research is necessary for developing better
wake models.

[57].

CFD models are relatively accurate but computationally very expensive.
Parameters in Engineering models have to be tuned in order to get
better and accurate results

[29, 35,
90, 92]

Engineering models can be highly effective if used properly with the
right values for parameters. High fidelity and computationally expen-
sive models shall be used to inform and reduce other models.

[74]
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B.2 Coordinated Control Strategies

This section summarises previous studies regarding the concept, benefits, and re-
quirements of coordinated control discussed in section 2.4. Table B.2 presents the
wind deficit model(s) and optimisation technique(s) used in these studies and a short
discussion with conclusion of each study.

The conclusion drawn from these studies is that coordinated control can be beneficial
for increasing overall farm production and reducing fatigue loads on the turbines in the
farm. Ideally, this type of control shall be performed on-line. This on-line coordinated
control requires a fast processing and accurate wind deficit model which provides
mean wind deficit in the vicinity of each turbine in the farm and a fast processing,
accurate and computationally efficient optimiser. These studies also suggest that
the controller shall be designed with intrinsic intelligence and iterative intelligent
optimisation techniques shall be used for optimising farm production and/or loads.

Table B.2 Literature Review of Wind Farm Control Strategies

Wind Deficit
Model / Method

Optimisation
Technique

Discussion and Conclusion

R
eference

Park Jensen model Numerical analysis
Coordinated control of wind farms is
better than conventional greedy control
in terms of power production

[10]

Model based on
discrete time non-
linear equations

Numerical Optimi-
sation

The controller should be developed with
intelligence or adaptive learning

[12]

CFD models (of-
fline)

Iterative numeri-
cal optimisation
scheme

Calculations and optimisation shall be
done off-line as CFD models are com-
putationally expensive

[19]

Modified version of
the Jensen model

PSO

An increase of up to 10% can be
achieved in a dense wind farm in cer-
tain wind conditions. The controller has
high computing efficiency and accuracy

[29]
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Mosaic-tiles wake
model

Non-linear Model
Predictive Control
(NLMPC)

Coordinated controller can increases en-
ergy capture

[33]

FLORIS and
SOWFA

Numerical Optimi-
sation

Benefits of cooperative control depends
upon wind conditions and farm layout.
Engineering models have to be adjusted
for coordinated control

[35]

Navier-Stokes equa-
tion

Numerical Optimi-
sation

The controller is computationally ex-
pensive

[13]

Jensen, DWM,
Actuator disk,
SOWFA

Not discussed
Tuning parameters in Jensen model can
make it most suitable for farm control

[56]

Jensen Park model
PSO, GA, SA,
Brute Force

PSO outperforms other optimisers in
terms of processing speed and number
of trials. An increase of up to 3% is
achieved in farm output for the given
artificial wind farm

[79]

Axial induction fac-
tor

Numerical optimisa-
tion

Compensation of aerodynamic interac-
tions is beneficial for farm output max-
imisation and fatigue loads minimisa-
tion

[94]

Jensen model
and analytical
expressions

Genetic algorithm
Coordinated control can significantly
reduce fatigue damage and increasing
farm output

[95]

WAKEFARM and
axial induction fac-
tor

Numerical optimisa-
tion

A gain of maximum 2% can be achieved
with cooperative control with measure-
ments on the EWTW test wind farm.
Yaw-offsets can be used for increasing
in farm power production as wake skew
angle is larger than the yaw offset angle

[34,96–102]
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Analytical wind
speed deficit model

Numerical optimisa-
tion

Coordinated control can be beneficial
for wind farms but the given control
strategy is computationally expensive

[103]

Model based on
Navier-Stokes
equation

Numerical optimisa-
tion

Reduction of structural and dynamic
loads can be achieved with the proposed
controller

[104,105]

Park Model
Numerical optimisa-
tion

Simulations show a clear potential for
improving the wind park generation

[106]

AEOLUS SimWind-
Farm

Optimisation prob-
lem is divided into
sub-problems

The controller can reduce structural
loads

[107,108]

Discrete state space
model

Numerical optimisa-
tion

DELs were reduced up to 8% on the
second with turbine in a two turbines
array

[109]

Standard and modi-
fied Park models

Extremum seeking
control

Coordinated control can increase energy
capture in low turbulence intensity con-
ditions, but not in high turbulence con-
ditions

[110]

Model free control
based on axial in-
duction factor

Game theory
25% increase in efficiency on the simu-
lated wind farms. Some of the assump-
tions are unrealistic

[111]

Park model
Game theoretic
control with multi-
agent systems

Coordinated control can increase energy
production by up to 10%

[112]

Park wake model
and empirical ex-
pression

Cooperative static
game approach,
Steepest descent
method

Yaw offset angles using cooperative con-
trol strategy can increase farm output

[113]
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SOWFA -

Properly curtailing or yawing the up-
stream turbine will significantly increase
power production of downstream tur-
bine

[114,115]

FLORIS and
SOWFA

Game theoretic ap-
proach

CFD simulations show that the increase
in farm output and reduction in loads
is possible through yaw control

[116]

Park model Genetic Algorithms
Results are promising for increasing pro-
duction for below rated wind speeds

[117]

AEOLUS SimWind-
Farm

Heuristic algorithm
(used off-line)

The possible energy gain depends on
the wake model and can go up to 7%

[118]

Jensen model
Gradient-based op-
timisation

Coordinated control can achieve in-
crease in farm output as wake interac-
tions are taken into account

[120]

Empirical models
based on experi-
mental results

Numerical optimisa-
tion

A gain of up to 2.85% is possible with
coordinated control for the given wind
farm. High loads on certain turbines
are evaded

[121]

Sensors on the wind turbines can be combined with wind deficit models for
reducing fatigue loading on the turbines using coordinated control

[20]

Wind tunnel experiments of a two turbine wind farm shows that the power of the
downstream turbines can be substantially increased by adjusting the power of the
upstream turbines using CP or yaw

[25]

Survey of wind farm control literature is presented. This work concludes that
there is no solid result that shows a reduced fatigue load while following a power
reference below the available power

[119]

Some of the important open problems in wind farm control are faster optimisation
and wake modelling tools, broad knowledge about turbulence intensity, use of
LiDARs, Intelligent farm control and using yaw offsets for farm power maximisation

[122]
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B.3 Performance Comparison of Optimisation Tech-
niques

This section summarises previous studies about performance comparison of different
optimisation techniques for solving complex problems discussed in 3.1.1. A brief
discussion about these studies is presented in Table B.3. This literature review was
used for selecting a set of optimisers (BF, GA, SA, ACO and PSO) for evaluation
using coordinated control.
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Table B.3 Literature review of comparison of different optimisation techniques

Optimisers Optimisation
Problem

Conclusion R
ef

GA, PSO, ACO, MA,
SFL

Discrete and con-
tinuous complex
problems

PSO outperformed other techniques
in terms of solution quality, suc-
cess rate and processing speed for
continuous problems. For discrete
problems all techniques performed
equally well.

[125]

GA, PSO, ABC, CSA,
BFO, ACO and Firefly

Optimum power
flow and eco-
nomic dispatch

PSO and BFO performed better
than others in terms of speed and
solution quality

[126]

GA, TS, MPSO, ANN,
numerical methods and
evolutionary program-
ming approaches

Economic dis-
patch

MPSO success rate and speed make
it the first choice for solving such
complex problems

[127]

GA, PSO and DE Different discrete
and continuous
problems

GA are more suitable for discrete
problems. PSO and DE are better
options for continuous problems.

[128]

PSO and SA Condition moni-
toring of induc-
tion motors

PSO is suitable for real-time com-
plex problems because of it’s success
rate and high processing speed.

[129]

GA, SA, ANN and TS Optimum num-
ber of kanbans in
JIT

Solution quality is the same for all
optimisers. Speed ranking is TS,
SA, GA and ANN respectively.

[130]

Modified PSO and several
kinds of GA

Binary problems Modified PSO outperformed GA in
solving complex problems

[131]



Appendix C

Implementation of Optimisers in
Matlab

This appendix discusses implementation of different optimisers (GA, SA, ACO) and
tuning of parameters of these optimisers for achieving best possible results. Details of
GA implementation are given in section C.1 which is followed by SA implementation
details in section C.2 while details of ACO implementation are given in section C.3.

Different parameters values and functions were evaluated for minimising the value
of f(Pmax,CP (max),αmax). This evaluation is performed on a hit and trial basis where
each function or value is compared to every other available option for a given parameter.
The first priority was to achieve the highest solution quality even at the expense of
computational efficiency. If different functions / values of a parameter resulted in the
same solution quality, then the option with highest computational efficiency is chosen.
If there is no difference in solution quality and computational efficiency for different
values of a parameter, the default available in Matlab is used.

C.1 GA Implementation in Matlab Global Optimi-
sation Toolbox

This section provides details of GA implementation in Matlab global optimisation
toolbox and that how different functions and parameters were tuned for achieving the
best possible results as per the criteria in section 2.4.2. This section is mainly based
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on the details provided in [124]. It is mentioned in [124] that the default parameters
for each optimiser are the most optimum value for solving complex problems.

Details of all the available functions and parameters along with the evaluation
process are presented. Justification for selecting a specific function or parameter’s
value is provided as a result of this evaluation. These results are summarised in Table
C.1.

C.1.1 Population

Size: Population size specifies the number of individuals there are in each generation.
Different population sizes were used and evaluated. The default population size for five
or fewer variables is 50. The number of variables for optimisation (number of turbines)
in the wind farm case study (3.1.2) is six. Different sizes of population ranging between
20 and 100 were evaluated (with a step size of 10). It was found that the population
size of 50 performed well in this case as per the criteria in section 2.4.2. A greater
population size increases the optimisation time while a lower population size increased
the number of iterations and overheads required for optimisation, resulting in increased
processing time. Solution quality remained the same for all population sizes.

Initial Scores: This specifies scores for the initial population for GA. Different initial
scores were used in order to avoid the local optima, however each time the same results
in terms of processing speed and solution quality were achieved. When no initial scores
were defined, the GA algorithm (in Matlab) by default computes the scores using the
given objective function (f(Pmax,CP (max),αmax) in this case). No initial scores were
provided in this case.

Initial Range: This range specifies lower and upper bounds for the population. The
range of CT [0.20 to 0.52] were used which corresponds to the CP values of [0.189 to
0.45]. These values correspond to the the minimum and maximum CP for the assumed
wind speed (10m/s) as discussed in section 3.1.2.

C.1.2 Selection

The selection function chooses parents for the next generation based on their values.
The following options are available and each one was tested for solving the coordinated
control problem.
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Table C.1 Evaluating the parameters in GA implementation as per the criteria in section
2.4.2

Parameter Values / Functions
evaluated

Selected
value /
function

Reason for selection

Population 20 to 100 in a step of
10

50 Achieved optimum re-
sult with lower overheads
with higher processing
speed

Selection Stochastic uniform,
Tournament and
Roulette functions

Roulette Solution quality is rela-
tively better

Elite count 1 to 50 in a step of 1 3 Achieves optimum result
with highest computa-
tional efficiency

Crossover
fraction

0 to 1 in an interval of
0.05

0.80 Relatively high process-
ing speed

Mutation Uniform, Adaptive
feasible, Gaussian

Gaussian In case of no constraints,
this function is used.

Crossover Single point, Two
points, Heuristic,
Arithmetic, Scattered

Scattered Scattered is used in case
of no constraints.

Stochastic uniform: This function lays out a line in which each parent corresponds
to a section of the length of the line proportional to its expectation. The algorithm
moves along the line in steps of equal size, one step for each parent. At each step, the
algorithm allocates a parent from the section it lands on. The first step is a uniform
random number less than the step size.

Tournament Function: This function selects each parent by randomly choosing
individuals, the number of which is specified by the tournament size. The best
individual is then chosen to be a parent.

Roulette Function: This function selects the area of each segment from a simulated
roulette wheel proportional to its expectation. A section is selected randomly with a
probability equal to its area. It was found that this function produced better solutions
as compared to stochastic uniform and tournament functions and hence was used in
this work.
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C.1.3 Reproduction

Reproduction determines how the GA creates children at each new generation. The
following parameters were tuned for coordinated control of wind farms.

Elite Count: This specifies the guaranteed number of individuals to survive to the
next generation. The elite count can be any positive integer less than or equal to the
population size. Different values (1 to 50 in a step of 1) of elite count were used; the
simulations resulted in the same value of the objective function, however processing
speeds were different. The default value available in Matlab for a population size of 50,
which is 3, was found to be computationally more efficient and was used in this thesis.

Crossover Fraction: This is a fraction between 0 and 1. This fraction specifies the
next generation that crossover produces while the remaining individuals are produced
by mutation. Different fractions from 0 to 1 with an interval of 0.05 were evaluated
for solving the coordinated control problem. It was found that the default value of
0.80 produced better results (high processing speed for the most optimum (achieved)
result) as compared to other values.

C.1.4 Mutation

Small random changes are made in the individuals in the population through mutation
functions. Different functions are available for mutation in Matlab and each one was
evaluated for maximising farm production. A suitable mutation function ensures that
feasible parents give rise to feasible children, where feasibility is with respect to the
bounds.

Uniform: Uniform mutation is based on two steps. First, the algorithm selects a
fraction of the vector entries of an individual for mutation, where each entry has the
same probability as the mutation rate of being mutated. The mutation rate was varied
and it was noted that the default rate of 0.01 produces better results in terms of
solution quality and processing speed. In the second step, the algorithm replaces each
selected entry by a random number selected uniformly from the range for that entry.

Adaptive Feasible: Random directions for mutation are generated adaptive with
respect to the last successful or unsuccessful generation. The step length is then chosen
along each direction based on the bounds specified.
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Gaussian: This mutation function adds a random number to each individual taken
from a Gaussian distribution cantered on zero. If there are no constraints then
Gaussian mutation shall be used, hence Gaussian was used in this work as there are
not constraints. The Scale and Shrink parameters control the standard deviation of
this distribution. Standard deviation in the first generation is determined by the Scale
parameter while Shrink controls how the standard deviation shrinks as the generation
goes by. If Shrink is 0, the standard deviation remains constant. If Shrink is 1, the
standard deviation shrinks to 0 linearly as the last generation is reached. A bar given
in the toolbox adjusts the Shrink and standard deviation values accordingly. Only
the Shrink value needs to be defined and the standard deviation value is adjusted
accordingly. A Shrink value of 1 has been used in this study as this produced better
solution quality as compared to other Shrink values.

C.1.5 Crossover

Crossover combines two individuals (parents), to form a new individual (child) for the
next generation. Different crossover functions available in Matlab were evaluated in
this work for solving the coordinated control problem. A brief description of these
functions is given as following:

Single Point: The function first selects a random number between 1 and number of
variables (six in this case). Then the genes (entries) numbered less than or equal to
the randomly selected number are selected from the first parent, while rest of the genes
are selected from the second parent. The two resultant vectors are concatenated to
form a child.

Two Points: This function selects two random number between 1 and number of
variables (six in this case). Genes between the first number and the second number
are selected from the second parent and rest of the genes are selected from the first
parent. The resultant genes are concatenated to form a single gene (child).

Heuristic: This function creates new individuals (genes) randomly from the line
containing the two parents, a small distance away from the parent with the better
fitness, in the direction away from the parent with worst fitness value.

Arithmetic This crossover function creates new individuals that are a random arith-
metic mean of two parents, uniformly on the line between parents.
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Scattered This function creates a random binary vector, which then selects genes
from the first parent where the vector is 1, otherwise genes from the second parent
are selected. This way, genes are combined to form a child. It is suggested that the
Scattered crossover shall be used when there are no constraints. This ensures that
feasible parents give rise to feasible children where feasibility is with respect to bounds.
As there are no constraints for the coordinated control problem, this function is used
in this work. The results achieved were better in terms of solution quality relative to
the other crossover functions.

C.2 SA Implementation in Matlab Global Optimi-
sation Toolbox

This section provides details of SA implementation in Matlab global optimisation
toolbox and that how different functions and parameters were tuned for achieving the
best possible results as per the criteria described in section 2.4.2. This section is mainly
based on the details provided in [124]. Tuning of these parameters is summarised in
Table C.2.

C.2.1 Annealing Function

Annealing is used for generating new points (solutions) for the next iteration. Different
options for annealing are available in Matlab. All of them were evaluated for solving
the coordinated control problem.

Boltzmann annealing: This function takes random steps where size of each step is
proportional to the square root of the temperature.

Fast annealing: This function takes random steps and size of each step is proportional
to the temperature. Results obtained with this function are relatively better in terms
of processing speed as compared to the Boltzmann annealing, hence this function was
used in this thesis. Solution quality is same for both of these functions.

C.2.2 Reannealing Interval

The reannealing interval shows the number of points to be accepted before reannealing.
Different number of points was used for reannealing starting from 50 up to 200 with
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Table C.2 Evaluating the parameters in SA implementation as per the criteria in section
2.4.2

Parameter Values / Func-
tions evaluated

Selected
value /
function

Reason for selection

Annealing Boltzmann, Fast Fast Achieves the optimal solu-
tion with higher computa-
tional efficiency

Reannealing
interval

50 to 200 in a step
of 10

100 Processing speed is rela-
tively high

Temperature
update

Logarithmic, Lin-
ear, Exponential

Exponential
(0.95iteration)

Solution quality and pro-
cessing speed is relatively
better

Initial tem-
perature

50 to 150 in a step
of 10

100 Processing speed is rela-
tively higher

a step size of 10 and it was found that the default value of 100 performs better as
compared to other values in terms of processing speed. The same quality of solution
was achieved with all the values of reannealing interval.

C.2.3 Temperature Update Function

Logarithmic: Temperature decreases as 1/log(iteration).

Linear: Temperature is decreased as 1/iteration.

Exponential: Temperature is decreased as 0.95iteration. This function performed
better relative to logarithmic and linear functions in terms of processing speed and
solution quality and is used in this work.

C.2.4 Initial Temperature

This is the temperature at the beginning of the run. A temperature from 50 to 150
with a step of 10 was evaluated in this study and it was observed that the default
temperature (100) performed better in terms of processing speed. Solution quality
remained the same for all the temperatures. Hence the default temperature(100) was
used in this thesis.
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C.3 ACO implementation in Matlab

This section presents implementation and tuning of ACO variables in Matlab for
achieving the optimum result with high processing speed. A construction graph was
developed and ACO was implemented in Matlab as ACO is not a part of Matlab’s
global optimisation toolbox. The CT upper and lower bounds are same as for other
optimisers. The variables in the algorithm were tuned by evaluating different values
for solving coordinated control problem as per the criteria described in section 2.4.2.
Results are briefly discussed in section 3.6.1. The parameters tuning is summarised in
Table C.3.

C.3.1 Population size

Different populations of ants within a range of 20 to 100 in a step of 10 were evaluated.
A population size of 50 was found to be the most optimum for coordinated control
problem as the optimum solution was achieved with highest computational efficiency
relative to other population sizes.

Table C.3 Evaluating the parameters in ACO as per the criteria in section 2.4.2

Parameter Values /
Functions
evaluated

Selected
value /
function

Reason for selection

Population 20 to 100 in
a step of 10

50 Achieves optimum solu-
tion with highest com-
putational efficiency

Pheromone level 1 to 25 in a
step of 5

10 Better solution quality

Pheromone expo-
nential weight for
favourable paths

0 to 0.60
in a step of
0.03

0.30 Processing speed is the
highest for achieving op-
timum solution

Pheromone exponen-
tial weight for less
favourable paths

0.05 to 0.25 0.1 Better solution quality
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C.3.2 Initial Pheromone Level

The initial pheromone level is used for identifying different paths in the construction
graph. The pheromone level was initialised with different values from 1 up to 25 in a
step of 5. It was observed that a value of 10 is suitable for coordinated control of wind
farms as the optimum solution is achieved with the highest processing speed. All the
paths are initialised with the same value (10 in this case) at the start of the algorithm.

C.3.3 Pheromone Exponential Weight

The pheromone exponential weight was kept at 0.3 after evaluating different values (0.0
to 0.60 in a step of 0.03). This exponential weight is used for increasing the probability
of ants moving through the most optimum path. Pheromone evaporation rate for
less attractive or long paths was kept at 0.1. Different values were evaluated starting
from 0.05 up to 0.25 with a step of .05. The evaporation rate of 0.1 was found to be
suitable for farm production maximisation problem in terms of both solution quality
and processing speed. It should be noted that the exponential weight of favourable
paths (0.30) is greater than for less favourable paths (0.1). This is to replicate the
increase of pheromone on attractive paths and decrease the pheromone level on less
attractive paths.



Appendix D

Turbines’ Characteristics in the
Wind Farms Case-Studies

This appendix contains information about the turbines installed in the case study wind
farms detailed in Chapter 5. Only the information required for simulations in this work
is provided. Characteristics of the turbines installed in the Brazos wind farm are given
in Table D.1 and the standard power curve along with CP and CT is shown in Figure
D.1. Characteristics of the turbines in the SMV wind farm are given in Table D.2 and
Figure D.2 shows the standard power curve along with CP and CT of the turbines.
Characteristics of turbines installed in the Lillgrund wind farm are given in Table D.3
while the standard power curve along with CP and CT are shown in Figure D.3.
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Table D.1 Mitsubishi MWT-1000 turbine characteristics (Brazos) [142, 143]

Rated output (kW) 1000

Rotor diameter (m) 57

Hub height (m) 60

Max CP 0.406

Rated wind speed (m/s) 13.5

Cut-in wind speed (m/s) 3.5

Cut-off wind speed (m/s) 24

Figure D.1 Mitsubishi MWT-1000 turbine (Brazos) standard power curve with CP and CT

[142, 143]
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Table D.2 Senvion MM82-2050 kW turbine characteristics (SMV) [16]

Rated output (kW) 2050

Rotor diameter (m) 82

Hub height (m) 80

Max CP 0.465

Rated wind speed (m/s) 12.5

Cut-in wind speed (m/s) 3.5

Cut-off wind speed (m/s) 25

Figure D.2 Senvion MM82-2050 kW turbine (SMV) standard power curve with CP and CT

[16]
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Table D.3 Siemens SWT-2.3-93 turbine characteristics (Lillgrund) [17]

Rated output (kW) 2300

Rotor diameter (m) 93

Hub height (m) 80

Max CP 0.466

Rated wind speed (m/s) 10.9

Cut-in wind speed (m/s) 3.0

Cut-off wind speed (m/s) 25

Figure D.3 Siemens SWT-2.3-93 turbine characteristics (Lillgrund) standard power curve
with CP and CT [17]



Appendix E

Journal Publications

The two journal publications resulting from this work are presented in this appendix.
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