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The Cosmological Implications of Self-Interacting Dark Matter
Andrew Alexander Robertson

Abstract

In this thesis I study how dark matter particles that interact through forces other than just

gravity would affect the formation of structure in the Universe. This begins with a theoret-

ical calculation of the location and rate at which these interactions take place throughout

cosmic history. Giant galaxy clusters are expected to have the highest rates of dark matter

interactions, at least for the simplest dark matter particle models.

Predicting the formation of structure with non-standard dark matter requires the use

of N -body simulations. I therefore introduce and test a set of modifications to the GAD-

GET code that allow it to simulate a class of dark matter models known as self-interacting

dark matter (SIDM). I focus particular attention on rarely discussed aspects of simulating

SIDM; including how to handle particles scattering multiple times within a single time-step

and how to implement scattering across processors. I also discuss how best to choose nu-

merical parameters associated with the SIDM implementation and the range of numerical

parameters that produce converged results.

Because galaxy clusters should have particularly high rates of dark matter interactions, I

use this code to perform simulations of a pair of merging galaxy clusters known as the ‘Bul-

let Cluster’. At first these employ simple SIDM particle physics models for the dark matter.

I demonstrate the importance of analysing simulations in an observationally motivated

manner, finding that the way in which simulation outputs are compared with observations

can have a significant impact on the derived constraints upon dark matter’s properties. I

then look at what happens to these constraints for more complicated particle physics mod-

els of SIDM. In isolated systems, the effects of a complicated scattering cross-sections can be

modelled using an appropriately-matched simple cross-section, while in systems like the

Bullet Cluster, complicated cross-sections lead to phenomenology not seen with simpler

particle models. Overall I find that SIDM remains a viable class of dark matter models,

consistent with current observations.
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Chapter 1
Introduction

Few questions can have as rich a history of human enquiry as the origin, evolution, and

eventual fate of the Universe. The understanding of the laws that govern our Universe,

as well as the ingredients that those laws act upon, is a branch of science now known as

physical cosmology.

1.1 Cosmology

The framework within which we study cosmology usually rests upon two key assump-

tions. The first is that Einstein’s General Theory of Relativity (GR) is the correct descrip-

tion of gravity, and the second is something known as the cosmological principle.1 This

principle states that on large enough scales the Universe appears to be homogeneous and

isotropic. That this is not true on small scales is evident from the rocky planet on which we

live, orbiting a star about 8 kpc away from the centre of a spiral galaxy; but if we look at

spherical volumes with a radius of 100 Mpc, then the typical density within these spheres

only fluctuates by around 1% from the cosmic average (Wu et al., 1999).

GR allows us to determine what the Universe looked like in the past, or will look like in

the future, provided we can measure the state of it now. Our first real insight into what this

present state looks like came from Edwin Hubble’s observation that galaxies were moving

away from us, with velocities that were, on average, proportional to their distance from us

1Also known as the Copernican principle after Nicolaus Copernicus

1
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(Hubble, 1929). This observation,

v = H0 r, (1.1)

known as Hubble’s law, may appear to put us in a special place in the Universe, violating

the cosmological principle. This is not the case, because the distance-velocity relation in

equation (1.1) implies that all other observers would observe the same law. This is only

true for a linear relationship between position and velocity; if, for example, we had ob-

served v ∝ r2, then we would be at a unique position in the ‘centre’ of the Universe, and

other observers would measure anisotropic distance–velocity relations. The Hubble law

therefore fits in naturally with our cosmological principle.

1.1.1 Hot Big Bang Model

The constant H0 is known as the Hubble constant, and describes the rate of expansion of

the Universe at the present time (t = t0). In general the constant in the distance–velocity

relationship is a function of time, H(t), which we can calculate from its current value and

the contents of the Universe, using solutions to the equations of GR for an isotropic and

homogeneous universe. Working backwards, the picture we get is of a Universe that had

an infinite temperature and density at a finite time in the past. GR is not able to adequately

describe physics in this regime, but can take it on from a short while later, where it predicts

a hot and dense Universe that is expanding and cooling. This model for the early Uni-

verse is known as the Hot Big Bang, and it has successfully explained many cosmological

observations.

As well as explaining the current expansion of the Universe, a Hot Bing Bang naturally

explains the origin of the Cosmic Microwave Background (CMB), as well as the nucleosyn-

thesis of the light elements. The former relies on the fact that when the Universe was suf-

ficiently hot that hydrogen atoms were unstable, radiation was efficiently scattered by free

electrons, and the Universe was opaque to photons. Once the temperature had dropped

enough to allow electrons and protons to form atomic hydrogen, the cross-section for pho-

ton scattering dropped, and the Universe became transparent to radiation. Rather oddly,
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this point on the cosmic timeline is known as recombination,2 which takes place around

400,000 years after the Big Bang (Planck Collaboration et al., 2016). The radiation from this

time has propagated freely since then, shifting in energy as its wavelength was stretched

by the expansion of the Universe. This radiation, sometimes dubbed ‘the afterglow of the

big bang’ was first detected as microwaves with a temperature ∼ 3 K by Penzias & Wilson

(1965), providing strong evidence for the Hot Big Bang model.

The nucleosynthesis of the light elements can also be predicted within the Hot Big Bang

paradigm. In the very early Universe, weak-force interactions keep protons and neutrons in

thermal equilibrium. When the Universe was just one second old, the density and energies

of particles had dropped such that the weak force was no longer able to maintain this

equilibrium. This is a process known as freeze out, and led to a Universe with a proton

to neutron ratio of about 6:1, in favour of protons because they are slightly lighter than

neutrons. The build-up of nuclei from protons and neutrons can then be calculated building

upon the method outlined in Alpher, Bethe & Gamow (1948). The rates of production

and destruction of the different light elements depend in different ways on the density

of baryons, so the fact that a single value for the baryon density can adequately describe

the observed primordial abundances of the light elements (Boesgaard & Steigman, 1985)

provides further strong evidence for a Hot Big Bang. These calculations rely on our ability

to model the expansion history of the Universe, so we will show how to do this now.

1.1.2 The expansion history of the Universe

As discussed above, the equations that describe the evolution of the Universe are those

of Einstein’s GR. However, it turns out that a Newtonian approach can be used to derive

equations that are almost identical to those in GR, and so we do that here. We begin by

considering a sphere of mass M and radius R, with the surface of the sphere expanding

at a rate Ṙ and the mass within the sphere expanding such that at all times, the density is

constant as a function of radius. The edge of the sphere is decelerated by all of the mass

within the sphere, while any symmetric mass distribution outside of the sphere produces

2This is odd because protons and electrons had not combined at any previous epoch.
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no net acceleration due to Newton’s shell theorem. With Newtonian gravity, this implies

R̈ = −GM
R2

= −4πGρ(t)R3

3R2
, (1.2)

where ρ(t) is the mass density inside the sphere, and dots correspond to derivatives with

respect to time. Conserving mass, the density scales as 1/R3, which we can write as

ρ = ρ0

(
R0

R

)3

, (1.3)

with the density equal to ρ0 at the time when R = R0.

Multiplying equation (1.2) by 2Ṙ and integrating with respect to time

Ṙ2 =
8πGρ0R

3
0

3R
+ constant (1.4)

(
Ṙ

R

)2

=
8πGρ(t)

3
+

constant

R2
. (1.5)

When considering the expansion of the Universe, it is useful to replace the radius of the

sphere with the scale-factor, a(t). This can be related to R through R(t)/R(t0) = a(t), which

defines the scale factor as unity at the current time, t0. When doing the full GR calculation,

an additional constant term appears in equation (1.5), known as the cosmological constant,

Λ. We can therefore write the first Friedmann equation, which governs the expansion his-

tory of the Universe, as (
ȧ

a

)2

=
8πGρ(t)

3
− kc2

a2
+

Λ

3
, (1.6)

where we can identify ȧ/a = Ṙ/R with the Hubble parameter introduced in equation (1.1),

so ȧ/a = H(t). The constant, k, can be positive, negative or zero, and relates to the curvature

of the Universe.

In order to solve equation (1.6), we need to know how the density, ρ, varies with time (or

scale factor). The matter density of the Universe evolves ∝ 1/a3, as mass is conserved and

the volume of the Universe∝ a3. If we have a matter-only universe, with zero cosmological

constant, then using ρ = ρ0/a
3 equation (1.6) becomes

ȧ2 =
8πGρ0

3a
− kc2. (1.7)

For a universe that is expanding, the first term on the right hand side of equation (1.7)

decreases in magnitude. If k is positive, then at finite a, the right hand side goes to zero,
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and the expansion of the Universe halts. The Universe would then proceed to collapse. If

k is negative, then ȧ decreases with time, but eventually tends to a constant value, while if

k = 0 the expansion of the Universe continues to slow, but does not halt in a finite time.

The density in equation (1.6), is not just the density of matter, but the energy-density

in all forms. For the case of radiation, the number density of photons is ∝ 1/a3, but as the

photon wavelength increases∝ a, and the energy of a photon is inversely proportional to its

wavelength, the energy density in radiation ∝ 1/a4. The curvature term and cosmological

constant can also be related to an energy density, such that equation (1.6) becomes

H2 =
8πG

3

(
ρm,0/a

3 + ρr,0/a
4 + ρk,0/a

2 + ρΛ,0

)
, (1.8)

with ρx,0 the energy density in species x at t = t0 (the present day), with m, r, k, and Λ

corresponding to matter, radiation, curvature and a cosmological constant respectively.

Looking at equation (1.8) at t = t0 (when a = 1), we can see that the sum of all the ρx,0

is equal to 3H2
0/8πG, which we call the critical density, ρcrit,0. Defining Ωx,0 = ρx,0/ρcrit,0, we

can write

H2 = H2
0

(
Ωm,0/a

3 + Ωr,0/a
4 + Ωk,0/a

2 + ΩΛ,0

)
, (1.9)

with Ωk,0 = 1−(Ωm,0+Ωr,0+ΩΛ,0). Note that the subscript 0 here is often dropped, so that (for

example) Ωm is used to designate the density of matter relative to the critical density at t0.

We could however ask about the value of Ωm(t), which need not be constant as the density

of matter can evolve in a different way to the critical density. A large amount of current

work in cosmology is focussed upon determining the values of the Ωx,0s. The latest results

from the Planck satellite’s measurement of the CMB (Planck Collaboration et al., 2016) find

a matter density Ωm,0 = 0.308 ± 0.012, and limits on the curvature of |Ωk,0| < 0.005. The

radiation density is much smaller, Ωr,0 ≈ 9.1× 10−5, and assuming the Universe is spatially

flat3 (Ωk,0 = 0) then ΩΛ,0 = 0.692± 0.012.

It is useful to define the function

E(a) =
√

Ωm,0/a3 + Ωr,0/a4 + Ωk,0/a2 + ΩΛ,0 , (1.10)

such that H(a) = H0E(a). We can then solve for the evolution of the scale factor, a(t),

3We will discuss in §1.2.3 the inflationary paradigm, which provides strong motivation for Ωk,0 ≈ 0.
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starting from a = 0 at t = 0 through

t =

∫ t

0

dt′ =

∫ a

0

da′

ȧ′
=

∫ a

0

da′

a′H(a′)
=

1

H0

∫ a

0

da′

a′E(a′)
. (1.11)

For general E(a) this can be solved numerically, but for simple universes we can proceed

analytically. For example, a matter-dominated critical density universe (Ωm,0 = 1, Ωr,0 =

Ωk,0 = ΩΛ,0 = 0), has E(a) = a−3/2. Putting this into equation (1.11) we find a = (t/t0)2/3,

with t0 = 2
3H0

the age of this universe when a = 1. A similar calculation for a radiation-

dominated critical density universe gives a = (t/t0)1/2, t0 = 1
2H0

; while for a universe

containing only a cosmological constant a ∝ exp(Ht) = exp
(√

Λ/3 t
)

. This final case is

known as a De Sitter universe, in which the Hubble law is not just a constant in space,

but in time as well. The time in this case is not particularly well defined, as this Universe

lacks a big-bang singularity (a = 0). A pure De Sitter universe is uninteresting because

it contains no matter, however, in our current best model for the expansion history of our

Universe, there are two phases in which the expansion is approximately De Sitter. The first

is inflation, during which a large vacuum energy drives an exponential expansion of the

early Universe. The second is at late times, as dark energy (which is currently consistent

with a cosmological constant) becomes the dominant energy component in the Universe.

We will discuss both of these later in this chapter.

Cosmological redshift

While we are discussing the expansion history of the Universe, it is useful to consider

the observational consequences of this expansion. In particular, the stretching of the wave-

length of light (or gravitational waves for that matter) that we call ‘redshift’. If two photons

are emitted at times te and te + ∆te, and arrive at an observer at times to and to + ∆to, then

for ∆te � to − te it can be shown that ∆to/∆te = a(to)/a(te). If we take 1/∆te to be the

frequency of a photon when it is emitted, then the wavelength when the photon is emitted

is λe = c∆te. The wavelength of the photon when it is received is λo = c∆to. We define the

redshift as

z =
λo − λe

λe

, (1.12)
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i.e. the fractional change in a photon’s wavelength from when it was emitted to when it

was received. With this definition, z = (∆to −∆te)/∆te = a(to)/a(te) − 1. Therefore, if we

receive a photon now (when t = t0 and a = 1), the scale factor when it was emitted was

a(te) =
1

1 + z
. (1.13)

How can we measure z? If the emission results from some physical process for which we

know the wavelength (such as an absorption line in a star’s spectrum), then we know λe.

So the wavelength of this emission in a measured spectrum, λo, allows us to calculate z.

1.1.3 Structure formation

So far our calculations have assumed the Universe to be homogenous and isotropic. Given

that on sufficiently large scales this appears to be true, this approach is thought to be valid

for calculating the expansion history of the Universe.4 However, we know that on small

scales there is structure, and in this section we discuss where this comes from. We start

with the equations that govern the evolution of the density ρ(r, t) and velocity v(r, t) of an

ideal fluid:

Continuity :
∂ρ

∂t
+∇.(ρv) = 0 (1.14)

Euler :
∂v

∂t
+ (v.∇)v = −1

ρ
∇p−∇Φ (1.15)

Poisson : ∇2Φ = 4πGρ. (1.16)

The first two equations describe the conservation of mass and momentum, with the third

describing how matter sources the gravitational field.

These equations are solved by the homogeneous solution ρ(r, t) = ρ̄(t), v = Hr ≡ v0

and Φ = 2πGρ̄
3
|r|2 ≡ Φ0. The continuity equation then reads

∂ρ̄

∂t
+ 3Hρ̄ = 0, (1.17)

with solution ρ̄ = ρ0/a
3. The Euler equation reads

Ḣr +H2r = −4πGρ̄

3
r, (1.18)

4Though some authors claim (see for example Buchert & Räsänen, 2012) that small scale inhomogeneities

can affect the global expansion history through a process known as ‘backreaction’.
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which implies a ∝ t2/3. We therefore see that this homogeneous solution is the matter-

dominated critical density universe discussed in §1.1.2. This is to be expected given that

our starting equations were Newtonian, such that they are valid when space is flat (a critical

density universe) and the fluid flow is non-relativistic (matter, not radiation). This second

condition is met for the vast majority of the Universe’s history, since the density of matter

became greater than that of radiation approximately 50 000 years after the big bang.

In equations (1.14)–(1.16), the time derivatives are at fixed physical position, r, with

∇ ≡ ∂
∂r

. Due to the expansion of the Universe, these equations are more easily understood

in comoving coordinates, x. These are defined by

r = a(t)x. (1.19)

The velocity can then be split into the velocity coming from the expansion (at fixed comov-

ing position) and the peculiar velocity (corresponding to a changing comoving position)

v =
dr

dt
= ȧx + aẋ ≡ v0 + vp, (1.20)

with vp the peculiar velocity.

To transform the Continuity, Euler and Poisson equations into comoving coordinates

we note that
∂

∂r
=

1

a

∂

∂x
≡ 1

a
∇x (1.21)

and that time derivates at fixed r transform to time derivates at fixed x following
(
∂

∂t

)

r

=

(
∂

∂t

)

x

−Hx.∇x. (1.22)

It is also useful to define the overdensity field δ(x, t) by

ρ(x, t) = ρ̄(t) [1 + δ(x, t)] . (1.23)

Making these substitutions we arrive at the comoving equations:

Continuity :

(
∂δ

∂t

)

x

+
1

a
∇x. [(1 + δ)vp] = 0 (1.24)

Euler :

(
∂vp

∂t

)

x

+
1

a
(vp.∇x)vp +Hvp = −1

a
∇xφ−

c2
s

a

∇xρ

ρ
(1.25)

Poisson :
1

a2
∇2

xφ = 4πGρ̄δ, (1.26)
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where φ = Φ − Φ0 is sometimes known as the peculiar gravitational potential, and gives the

fluctuations in the potential about the homogeneous solution we met earlier. We have also

introduced the adiabatic sound speed, cs ≡
(
∂p
∂ρ

)1/2

.

To make progress with solving these equations, we assume that δ and vp are small, so

that we can drop terms that are second order in them. The first-order continuity and Euler

equations are
∂δ

∂t
+

1

a
∇x.vp = 0 (1.27)

∂vp

∂t
+Hvp = −1

a
∇xφ−

c2
s

a
∇xδ, (1.28)

where the time derivatives are now implicitly at fixed x.

Taking ∂
∂t

(1.27) − 1
a
∇x.(1.28) and then making substitutions using the comoving conti-

nuity and Poisson equations we arrive at

∂2δ

∂t2
+ 2H

∂δ

∂t
= (4πGρ0 +

c2
s

a2
∇2

x)δ (1.29)

If we take a critical density universe containing only pressureless matter, then H = 2/3t,

cs = 0 and H2 = 8πGρ0(t)
3

, which implies 4πGρ0 = 2/3t2. Equation (1.29) becomes

∂2δ

∂t2
+

4

3t

∂δ

∂t
− 2

3t2
δ = 0. (1.30)

Then with the ansatz δ = Atn, we find that n = 2/3 or n = −1. The second of these is a

decaying mode, and is therefore uninteresting, but n = 2/3 leads to density perturbations

that increase in magnitude as the Universe evolves. In fact, δ ∝ t2/3 means that δ ∝ a. So

for small perturbations (remember that these results came from linearising the equations,

and so are only valid when δ � 1) in a matter dominated universe, the fractional density

perturbations grow linearly with the scale factor.

This evolution of density perturbations immediately poses a problem when combined

with information from the CMB and observations of the local Universe. The temperature

fluctuations in the CMB suggest that when a ≈ 0.001, the amplitude of typical density

fluctuations were δ ∼ 10−5 (Smoot et al., 1992). Extrapolating this to the present day, we

should expect only percent level fluctuations in the density field. However, the Universe

we see is rich with gravitationally collapsed structure, δ � 1. A good explanation for

this arises if there is a second matter component that is not coupled to the photons and
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baryons. Its fluctuations can therefore grow independently, and can be larger at the time

of recombination than the fluctuations in the baryon-photon fluid. After recombination,

when baryons are no longer tightly coupled to the photons, they can fall into the potential

wells of overdensities in the other matter component. In fact, such a matter component

was already suspected to exist before the fluctuations in the CMB had been measured. We

call this dark matter.

1.2 Dark matter

Comparing the structure in the local Universe with what we would expect from the CMB

in a baryon only Universe was not the first piece of evidence for dark matter (DM). In

fact, as early as the 1930’s, Fritz Zwicky had discovered evidence for unseen matter in

galaxy clusters (Zwicky, 1937). He estimated the mass of the Coma cluster by looking at

the line-of-sight velocity distribution of its galaxies. He then compared this value to the

total luminosity of the galaxies in Coma, and found that it was around 100 times more

massive than one would expect if the mass was just that due to stars. He argued that there

must be a dominant mass component in the cluster that was not optically bright, which he

called ‘dark matter’.

1.2.1 Evidence for dark matter

Since Zwicky’s early observations, there have been many more lines of evidence that point

towards the existence of DM. The archetypal example is the work on galaxy rotation curves

by Vera Rubin in the 1970’s. Using a high-resolution spectrograph, she was able to measure

the velocity of stars in edge-on spiral galaxies. What she found was that the velocity of stars

in the outskirts of spiral galaxies was roughly constant with radius (Rubin et al., 1980),

which assuming Newtonian gravity, implies that the enclosed mass grows linearly with

radius. This is not true of the visible mass, which is centrally concentrated, and would

lead to stellar velocities decreasing towards large radii. If one maintains that Newtonian

gravity (equivalent to GR in the weak-field regime relevant for galactic dynamics) is the

correct description, then the obvious solution is that there must be non-luminous material
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that is more extended than the stellar distribution, i.e. DM.

More recently, the mass of galaxies (Hoekstra & Jain, 2008) and galaxy clusters (Dahle,

2006) has been directly inferred from gravitational lensing. We outline the mathematical

details of this technique in §5.3.3, but in short: the path of photons is deflected by gravity.5

This results in multiple lines of sight leading to the same part of a lensed background

object, distorting the image of the lensed object. For simple lenses, such as point masses,

lensing typically distorts lensed objects to appear as multiple arcs, or if the lens and source

are well aligned along the line of sight, a ring of light known as an Einstein ring. The

curvature of these arcs or rings tells us about the extent to which light is being bent, and

can be used to infer the matter distribution that is doing the lensing (for a review of lensing,

see Bartelmann, 2010). For the case of galaxies and galaxy clusters, the results of lensing

suggest that the bulk of the lensing mass is otherwise-unseen DM (Massey et al., 2010).

On top of the dynamics and lensing signal of gravitationally collapsed structures, other

cosmological probes point towards the existence of DM. These include the Large scale struc-

ture, essentially the locations of galaxies in the Universe and the way in which they are

clustered. When assuming that the matter content of the Universe is dominated by col-

lisionless DM, the structure predicted (Springel et al., 2006) provides a striking match to

what is observed (Rodrı́guez-Torres et al., 2016). This includes detections of the so-called

Baryon Acoustic Oscillation feature (Cole et al., 2005; Eisenstein et al., 2005), whereby sound

waves in the baryons and photons in the early Universe result in a preferred separation

between pairs of galaxies – detectable in the local Universe.

All of these pieces of evidence for DM rely on the way DM affects things around it

through gravity. This has spurred the development of alternative gravity theories, that

would do away with the need for DM, by instead altering the gravitational force law such

that the baryonic content is sufficient to explain the observed properties of the Universe.

The most popular of these models is Modified Newtonian Dynamics (MOND), which posits

that for accelerations below some threshold,6 the force–acceleration relation is modified
5The magnitude of the deflections being twice as large in GR than if treating photons as massive particles

moving at the speed of light with Newtonian gravity and classical mechanics.
6The preferred value for this threshold is typically around 10−10 m s−2 (Milgrom, 1983; Brownstein &

Moffat, 2006; McGaugh et al., 2016)
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such that particles experience larger accelerations than they would according to Newton’s

second law. While this theory is reasonably successful at explaining galactic rotation curves

without needing to invoke DM (Milgrom, 1983; McGaugh & de Blok, 1998; Gentile et al.,

2011; McGaugh et al., 2016), this is less true of the other pieces of evidence pointing towards

the existence of DM (e.g. Aguirre et al., 2001; Soussa & Woodard, 2004; Pointecouteau

& Silk, 2005; Nusser & Pointecouteau, 2006; Takahashi & Chiba, 2007). These failures of

MOND are exacerbated by the properties of the theory leading to ambiguities when at-

tempting to apply it on cosmological scales (Scott et al., 2001).

A final challenge for MOND came in the form of the merging galaxy cluster known

as the Bullet Cluster. This system is discussed extensively in Chapter 5, with an image in

Fig. 5.14, but in short: the collision of two massive galaxy clusters has produced a system

where the hot X-ray emitting gas has been stripped away from the location of the galaxies

(Markevitch, 2006). The mass in gas is roughly ten times more than the mass in the galax-

ies, but the dominant gravitational lensing signal comes from the location of the galaxies

(Bradač et al., 2006). Modifying the lensing in a MONDian sense may be able to boost the

strength of the lensing above that from the baryonic material with GR, but as the gas is the

dominant baryonic matter component, the lensing signal should come from there (though

see Angus et al., 2006). This situation is naturally explained with DM (Clowe et al., 2006),

as if the DM is approximately collisionless, then it will not be stripped like the gas, and the

dominant mass component would be colocated with the galaxies, as inferred from lensing.

1.2.2 Experimental searches for dark matter

Understanding the nature of DM is now a major goal of not just the astrophysics com-

munity, but the particle physics one as well. In fact, the astrophysical evidence for non-

baryonic DM is one of the strongest pieces of evidence for physics beyond the Standard

Model (SM) of particle physics, driving experimental innovation to uncover its nature.

There are three main types of experiment that could hope to shed light on the identity

of DM, known as direct detection, indirect detection and production. All three of these rely

upon DM being coupled to SM particles through some force other than gravity, and are

shown schematically in Fig. 1.1.
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Most experiments searching for DM have focussed on so-called weakly-interacting mas-

sive particle (WIMP) DM. These are particles with weak interactions, and masses that are

similar in mass to the proton or heavier (typically 1 − 100 GeV Bertone, 2010). A major

cause for this as the leading DM paradigm is that a thermally produced WIMP, with a typi-

cal weak-force cross-section and mass in the range previously mentioned, has a relic abun-

dance in good agreement with the observed abundance of DM (e.g. Steigman et al., 2012).7

Such a DM candidate is also popular as it arises naturally in popular extensions to the SM

such as supersymmetry (Jungman et al., 1996; Bertone et al., 2005). This being said, there is

experimental work being done to find non-WIMP DM. The axion is another popular can-

didate for DM (Duffy & van Bibber, 2009) because it would simultaneously explain why

quantum chromodynamics does not seem to break CP-symmetry (the ‘Strong-CP problem’

Peccei & Quinn, 1977). There are therefore experiments attempting to detect axionic DM

(for a recent review see Graham et al., 2015), although in what follows we will focus on

WIMP searches.

Direct detection of DM

Direct detection experiments aim to detect DM particles as they scatter from atomic nuclei

in a laboratory. Such a recoil transfers energy to the nucleus, which is then detected in dif-

ferent manners depending on the type of detector. Most common are cryogenically cooled

crystal lattices, where a WIMP-nucleus collision produces ionisation and phonon signals,

and noble liquid detectors, where interactions with DM lead to scintillation.

The Sun orbits the galaxy at roughly 240 km s−1 (Hunt et al., 2016), while the rms velocity

of DM particles in the solar neighbourhood is predicted to be ∼ 270 km s−1 (Vogelsberger

et al., 2009). This means that a DM particle scattering with an Earth-based DM detector will

typically have a velocity of order a few hundred km s−1. Combining this with an assumed

mass of 1 − 100 GeV, the kinetic energy of incident DM particles is ∼ 1 − 100 keV. In this

7This result has been dubbed the WIMP miracle, though, as pointed out by Subir Sarkar, the same calcula-

tion for baryons would predict a number density 109 times lower than that actually observed (which we do

not call the baryon disaster), because for baryons the number density is determined by an initial baryon/anti-

baryon asymmetry.
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Figure 1.1: An illustration of different methods of detecting DM. In direct detection, a DM particle

scatters from a standard model (SM) particle, while indirect detection involves the production of

SM particles from DM. Finally, collider searches look for the production of DM particles from high-

energy collisions of SM particles.

energy range, there are a significant number of background sources that could be mistaken

for DM. In particular: cosmic rays, α-particles, electrons, and photons can have energies

in this range, and can scatter from atomic nuclei. The background from cosmic rays can

be reduced by placing these experiments deep within mines, as cosmic rays are efficiently

stopped by kilometres of earth. To reduce the impact of other backgrounds, a range of

materials encase these experiments with the aim of stopping contaminant particles from

entering the experiments.8

Direct detection experiments have placed limits on the DM-nucleon cross-section for

different DM masses, with the tightest constraints coming from LUX (Akerib et al., 2013),

XENON100 (Aprile et al., 2013) and SuperCDMS (Agnese et al., 2014). There have been a

8The CDMS team shielded their experiment with a range of materials including lead, which is required

to block external gamma rays. Terrestrial lead contains significant levels of the unstable isotope 210Pb which

would produce unwanted background radiation. CDMS therefore used lead salvaged from a ship that had

sunk off the coast of France in the eighteenth century, and had very low 210Pb levels (Ananthaswamy &

O’Hara, 2010).
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few recent experiments that have not worried about removing non-DM events, and instead

looked for an annual modulation in their total rate of events (Bernabei et al., 1998; Aalseth

et al., 2011; Angloher et al., 2012). A couple of these have found modulations that would

be consistent with the annual modulation in DM events expected due to the motion of the

Earth about the sun changing the Earth’s velocity through the DM halo on an annual cycle

(Bernabei et al., 2003, 2008; Aalseth et al., 2014). However, these detections are inconsis-

tent with other upper limits on DM cross-section from LUX, XENON100 and SuperCDMS,

placing severe doubt on these claimed detections.

Indirect detection of DM

Indirect detection is the detection of the products from either the annihilation or decay of

DM particles. Assuming a model for the DM particle, the branching fractions to different

final state particles can be calculated. The end states that we are interested in are typically

γ-rays, cosmic rays and neutrinos, all of which we are able to detect. For example the Fermi

Large Area Telescope (Fermi-LAT) can detect γ-rays with energies in the range 20 MeV to

more than 300 GeV (Atwood et al., 2009). These are the sorts of energies expected from

WIMP annihilation, and as the rate of annihilation is proportional to the square of the

DM density, looking with Fermi-LAT at regions where we expect a high DM density is a

sensitive probe of DM annihilation. In fact, there have been multiple reports of unexplained

excesses in the Fermi data (Hooper & Goodenough, 2011; Bringmann et al., 2012), towards

the galactic centre where we expect the DM density to be high. However, the interpretation

of such excesses as a result of DM remains contentious (e.g. Bartels et al., 2016; Lee et al.,

2016; Fornasa et al., 2016), due to other possible sources of γ-rays that would also cluster

around the galactic centre.

Production of DM

The prospect of producing DM during the high energy collisions at particle colliders such

as the Large Hadron Collider (LHC) provides another window into the nature of DM. Any

DM produced would not show up in the particle detectors, but would carry away energy

and momentum. Their existence could therefore be inferred from the amount of energy and
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momentum unaccounted for after a collision. So far, there are no suggestions of significant

DM production at the LHC, and only upper limits have been placed on DM’s interaction

cross-section with SM particles. These limits are complementary to those from direct de-

tection. For example, current direct detection experiments are most sensitive to DM in the

mass range 10− 1000 GeV, while the LHC is most sensitive for lower mass WIMPs (Rajara-

man et al., 2011).

1.2.3 The ΛCDM ‘concordance cosmology’

Despite no conclusive detection of DM particles, the overwhelming astrophysical evidence

in favour of DM has led to it becoming an established part of cosmology’s standard model.

The other key ingredient in this standard model is dark energy, which drives an accelerated

expansion of the late-time Universe.

Dark energy

This accelerated expansion was first observed by making measurements of the flux-redshift

relation of Type Ia supernovae. These supernovae are known as ‘standard candles’ (or

‘standardisable candles’), as their intrinsic luminosity can be inferred from the shape of

their light-curve. By combining the measured flux from a supernova with its inferred lu-

minosity, one can calculate the distance9 to the supernova. By then also measuring the

redshift of the supernova, and doing this for many supernovae, we find the distance to dif-

ferent redshifts, from which the expansion history can be calculated. This showed that the

rate of expansion is currently accelerating (Riess et al., 1998; Perlmutter et al., 1999), with

whatever causes this acceleration dubbed ‘dark energy’. The form of the expansion is con-

sistent with the dark energy simply being Einstein’s cosmological constant, so that we live

in a Universe with a non-zero ΩΛ. In fact, our current best estimates for the energy content

of the Universe suggest that the cosmological constant is the dominant energy component

at late times, with ΩΛ,0 ≈ 0.7 and Ωm,0 ≈ 0.3 (Planck Collaboration et al., 2016).

9More precisely, the ‘luminosity distance’.
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Inflation

We have seen in §1.1.3, how small density perturbations grow in an expanding Universe.

However, what gave rise to the initial fluctuations that have evolved into the large scale

structure of our Universe today? Historically there were different theories for what seeded

this structure. For example, topological defects formed in the early Universe known as

cosmic strings were thought to be good candidates (Kibble, 1976; Vachaspati, 1986; Bran-

denberger, 1991). However, precision cosmological measurements, such as those made of

the CMB (Smoot et al., 1992; Spergel et al., 2003; Planck Collaboration et al., 2016), suggest

that a process known as inflation was probably responsible. In the inflationary paradigm,

quantum fluctuations are amplified to macroscopic scales by an exponential expansion of

the Universe.

That inflation naturally provides a mechanism for generating initial density perturba-

tions is certainly in its favour, but it is not the reason for which an early inflationary period

was originally invoked. When Guth (1981) first proposed inflation, it was as a solution

to the Horizon and Flatness problems. The first of these is that the Universe appears to be

homogeneous, despite some patches of the Universe that we now observe being causally

disconnected. Taking as an example the CMB, different regions of the CMB sky were too

far apart (at the time they emitted the CMB photons we observe) to have communicated

with each other via signals that travel at the speed of light. Despite this, the temperature of

the CMB is uniform to one part in 105 across the whole sky. Inflation explains this by mod-

ifying the expansion history of the Universe such that the different patches of the CMB sky

were once in causal contact (and so could achieve thermal equilibrium with one another),

and were only later brought out of causal contact by a rapid expansion of space.

In order to illustrate the flatness problem, we return to the Friedmann equations. Taking

equation (1.6) and using ρcrit = 3H2/8πG,

H2 = H2 ρ

ρcrit

− kc2

a2
, (1.31)

with ρ the energy density in all forms (matter, radiation and a cosmological constant). Then,

using Ω = ρ/ρcrit and H = ȧ/a

1− Ω = −kc
2

ȧ2
. (1.32)
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As the Universe expands, ȧ decreases, and Ω is driven away from unity. This means that

Ω ≈ 1 is unstable. The observed Universe has a total energy density close to the critical

density today, which requires that it be extremely close to the critical density in the past.

Guth (1981) demonstrated that the same exponential expansion in the early Universe that

could solve the the horizon problem would also drive Ω→ 1, with both problems requiring

the scale factor to have rapidly increased by a factor & 5× 1027, or 64 ‘e-folds’.

Before describing the quantitative predictions from inflation, we stop to introduce the

power spectrum, P (k). We start by defining the Fourier Transform of the overdensity field

δ̃(k, t) =

∫
δ(x, t) exp(−ik.x) d3x, (1.33)

from which we can define the power spectrum

P (k, t) ≡
〈
|δ̃(k, t)|2

〉
. (1.34)

The angled brackets denote the expected value, and the power spectrum is a function of k ≡
|k| because of isotropy. Determining P (k) at different cosmological epochs, and comparing

with the predictions of different cosmological models is an important aspect of modern day

cosmology.

The power spectrum associated with inflation is Pi(k) ∝ kns , with ns known as the scalar

spectral index. The exponential expansion during inflation is driven by the presence of a

scalar field, φ, known as the inflaton. The value of ns is determined by the potential of the

inflaton, V (φ). A large number of potentials have been studied in the literature, with many

of them predicting ns ≈ 1 (Tegmark, 2005). In fact, the latest measurements from the Planck

satellite suggest ns = 0.966 ± 0.006, in good agreement with the prediction from a simple

quadratic potential V ∝ φ2 with 60 e-folds: ns = 0.967 (Okada et al., 2014).

Transfer function

Given the power spectrum of fluctuations produced by the end of inflation, predicting the

large scale structure of the Universe (at least on scales where the density field is linear)

is then simply a case of evolving these density perturbations forward in time, following

equation (1.29). Since equation (1.29) for the evolution of small perturbations is linear, each
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Fourier mode δ̃(k, t) grows independently of the others. We have already seen that in a

matter-dominated universe, δ ∝ a, but at early enough times the Universe must have been

radiation dominated, as radiation is diluted more quickly than matter as the Universe ex-

pands. For matter perturbations in a radiation-dominated universe, the solutions to equa-

tion (1.29) suggest that perturbations in the matter grow at most logarithmically, as they

are stabilised by pressure in the dominant radiation component. This pressure support can

only act over scales that are smaller than the particle horizon, which is the maximum dis-

tance from which particles could have travelled to the observer in the age of the universe,

and so the maximum scale over which causal physics can operate. By considering causally

disconnected patches of space as their own mini-universes, and finding how the density in

slightly over or under-dense mini-universes evolves as a function ofH , it can be shown that

super-horizon fluctuations grow as δ ∝ a2 in a radiation-dominated universe, and δ ∝ a in

a matter-dominated one. This means that during matter domination, the horizon plays no

special role in the growth of fluctuations, but at earlier times the evolution of fluctuations

depends strongly on whether they are on scales larger or smaller than the horizon.

The comoving scale of the particle horizon is

χH(t) =

∫ t

0

c dt′

a(t′)
. (1.35)

Before matter-radiation equality at t = teq, the universe is radiation dominated and a ∝ t1/2.

We can write this as a = (t/teq)1/2 aeq, from which the horizon for t < teq can be found:

χH = 2 c teq a/a
2
eq. So in the radiation-dominated era, the comoving horizon grows in pro-

portion to a. If we take two perturbations that enter the horizon in the radiation-dominated

era, with comoving wavenumbers k1 and k2, and corresponding length scales λ1 and λ2,

then the ratio of the scale factors when they enter the horizon is a1/a2 = λ1/λ2 = k2/k1.

Given that outside the horizon perturbations grow as a2 and inside the horizon they effec-

tively stop growing, the ratio of the growth of these two perturbations is (a1/a2)2. Smaller

wavelength perturbations enter the horizon earlier, and have their growth quenched when

they do so, resulting in less growth than for a larger wavelength perturbation.

To quantify the effects of causal physics on the growth of structures, we define the trans-
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fer function

T (k, t) =
δ(k, t)

δ(k, t = 0)

/
δ(k = 0, t)

δ(k = 0, t = 0)
. (1.36)

In words, this function describes by how much a fluctuation with wavenumber k has grown

compared to a fluctuation with k = 0. In equation (1.36), this growth is measured relative

to the size of these fluctuations at t = 0; what is meant by this is the primordial fluctuations,

e.g. those present at the end of inflation. Once the transfer function is known, the power

spectrum can be written as

P (k, t) = Pi(k)T 2(k, t)D2(t). (1.37)

D(t) is the linear growth factor, describing the growth of long wavelength perturbations

(k → 0).

If we define the wavenumber that enters the horizon at teq to be keq, then the above

discussion suggests that the transfer function should be constant for k < keq, and ∝ k−2

for k > keq. Note however, that a more detailed calculation of the transfer function (e.g.

Eisenstein & Hu, 1998) shows that the transition from T ≈ constant to T ∝ 1/k2 is grad-

ual. The full picture is also complicated by the different constituents of the Universe. DM,

baryons and neutrinos all evolve differently in the early Universe, and the evolution of den-

sity perturbations must be determined numerically, using codes like the publicly available

CMBFAST (Seljak & Zaldarriaga, 1999).

As well as the abundances of the different particle species, the nature of DM can af-

fect the form of T (k, t). Heavy DM particles will be non-relativistic at teq, and so there

will be negligible DM pressure during the matter-dominated era – when the small scale

fluctuations that lead to galaxies grow. Lighter DM particles can have significant thermal

velocities at teq, leading to a suppression of small-scale fluctuations by the free-streaming

of DM.

The temperature at teq is roughly 1 eV, so thermally-produced DM with this sort of mass

will lead to significant levels of free-streaming, removing structure on scales below that of

galaxy clusters. This sort of DM is known as hot, and was shown to be inconsistent with the

observed galaxy clustering in the Universe by White et al. (1983). Slightly heavier DM, with

a keV mass, would smooth out fluctuations below a comoving scale of around 100 kpc (Viel



CHAPTER 1. INTRODUCTION 21

et al., 2005). This DM is known as warm, and would suppress the number of low-mass DM

structures. Finally, heavier DM leads to negligible free-streaming, and is known as cold. For

example, a 100 GeV WIMP (around the mass expected for a SUSY neutralino) would only

lead to a suppression of DM structure at masses below an Earth mass (Angulo & White,

2010). This is far below the mass of the DM haloes that host galaxies, and so free-streaming

in this case has a negligible impact on the universe we observe.

1.2.4 Challenges facing ΛCDM

The ΛCDM model has been immensely successful at explaining observations of our Uni-

verse, and one could worry that this would leave cosmologists with nothing left to uncover.

However, there are still theoretical challenges surrounding our ignorance towards the iden-

tity of the dark matter and what is driving the late-time accelerated expansion.

Problems with the cosmological constant

The observed late-time acceleration is well described by a cosmological constant, which is

unclustered and has an energy density that is constant in time. However, the inferred value

of this constant is considered ‘unnatural’, being many orders of magnitude smaller than the

zero-point energy suggested by quantum field theory (Carroll, 2001). This is known as the

cosmological constant problem. The coincidence problem is a second challenge for the natu-

ralness of the measured ΩΛ,0; given that matter and a cosmological constant have energy

densities that evolve very differently with scale factor, it is surprising that we are viewing

the Universe at a time when their energy densities are similar. Also surprising, is the com-

parable magnitude of the density in baryons to the density in DM, given that most models

for DM production are not closely related to baryogenesis.

The missing satellites problem

Aside from these somewhat philosophical questions, there are discrepancies on the scale

of individual galaxies between observations and the predictions from simulations with

ΛCDM. Kauffmann et al. (1993) used ‘Monte Carlo merger trees’ (Kauffmann & White,
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1993) to demonstrate that Milky Way size haloes with CDM should contain well over 100

subhaloes capable of hosting observable satellite galaxies, a factor of 5–10 higher than the

number that had actually been observed. Using N -body simulations, Klypin et al. (1999)

made similar predictions for the amount of substructure expected around the Milky Way,

with a paper title that asked the question “Where are the Missing Galactic Satellites?”,

from which the missing satellites problem takes its name. Moore et al. (1999) similarly found

that a large number of subhaloes should survive within the Milky Way halo, which has

now been confirmed by much higher resolution simulations of Milky Way-like haloes with

CDM (Diemand et al., 2008; Springel et al., 2008).

The problem of the relatively low number of observed Milky Way satellite galaxies,

when compared with the large number of predicted DM substructures, has multiple pos-

sible solutions. An obvious solution is that small DM subhaloes are inefficient at form-

ing stars. The photoionisation background suppresses the cooling of primordial gas (Ef-

stathiou, 1992; Bullock et al., 2000; Benson et al., 2002; Somerville, 2002), which could be

sufficient to explain the dearth of observed satellite galaxies (Gnedin & Kravtsov, 2006).

Another exciting alternative, is that this problem is telling us something about the nature

of DM. For instance, warm DM would lead to a smaller number of DM subhaloes around

the Milky Way than CDM.

Since this problem was first raised, the number of faint satellite galaxies has increased

dramatically (Willman, 2010; McConnachie, 2012; Bechtol et al., 2015; Drlica-Wagner et al.,

2015) with over 50 satellite galaxies of the Milky Way now known, and suggestions that a

factor of 3–5 more satellites are still to be discovered (Hargis et al., 2014). At the same time,

our understanding of reionization and the effects of stellar feedback on further star forma-

tion (Ceverino & Klypin, 2009; Ceverino et al., 2014; Hopkins et al., 2014; Trujillo-Gomez

et al., 2015) have also improved, and with it, the theoretical prediction for the number of

luminous satellites has fallen. In fact, the missing satellites problem no longer appears to

be much of a problem, and far from pointing towards a need for non-standard DM, the

number of observed satellites can be used to rule out DM models that would erase too

much substructure (Macciò & Fontanot, 2010; Lovell et al., 2014; Kennedy et al., 2014; Bose

et al., 2017).
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The core/cusp problem

Simulations of structure formation in a CDM universe predict a universal density profile,

with ρ ∝ 1/r in the central regions, irrespective of halo mass or cosmology (Navarro, Frenk

& White, 1997). This increasing central density towards the centre of a DM halo is known

as a cusp. On the other hand, observations of objects ranging in size from dwarf galaxies

(Łokas, 2002; de Blok et al., 2003; Oh et al., 2011) to galaxy clusters (Sand et al., 2004, 2008;

Newman et al., 2009, 2013) typically favour the presence of a shallower central density

slope, or even constant density DM cores.

Solutions to this apparent discrepancy within a CDM framework typically invoke bary-

onic feedback processes that can alter the DM profile in the inner regions (Navarro et al.,

1996; Mashchenko et al., 2006; Governato et al., 2010; Zolotov et al., 2012; Governato et al.,

2012; Pontzen & Governato, 2012; Teyssier et al., 2013), or observational biases, that can lead

to inferring a core when a cuspy halo is present (Swaters et al., 2003; Hayashi et al., 2004;

Dalcanton & Stilp, 2010; Pineda et al., 2017). However, not all observed galaxies appear to

have cores (Oman et al., 2015), and this problem is now better characterised by the state-

ment that observed galaxies appear to have more diverse rotation curves than simulated

ones, with some observed galaxies having large deficits in the inferred amount of mass in

their inner regions. We discuss the diversity of dwarf galaxy rotation curves shortly.

Too big to fail

Boylan-Kolchin et al. (2011) made a detailed comparison between local dwarf galaxies and

CDM-only simulations. Their most massive DM substructures around simulated Milky

Way-like haloes were considerably more massive than estimated dwarf galaxy masses

made from line-of-sight velocity measurements (Walker et al., 2009; Wolf et al., 2010). If

the results from the N -body simulations are representative of the real Universe, there must

be a significant number of massive dark subhaloes around the Milky Way. These subhaloes

that do not contain stars despite their large mass have been dubbed ‘too big to fail’ (TBTF).

Immediately one can see that this problem is related to the previous two: if there were

fewer DM substructures then the ‘most massive’ substructures would extend down to
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lower masses and hence lower circular velocities, while if DM haloes have cores this would

lower the circular velocities at fixed subhalo mass. The reason that this problem gained

particular traction is that the observational measurement (of the mass enclosed within the

half-light radius) is thought to be particularly robust, being largely insensitive to the un-

known velocity anisotropy (Wolf et al., 2010) that makes mass determinations within both

larger and smaller radii uncertain.

Much like the missing satellites and core/cusp problems, TBTF has had numerous pro-

posed solutions within the ΛCDM framework. It has been demonstrated that strong gas

outflows (driven by supernovae for example) can lead to rapid fluctuations in the gravita-

tional potential that transfer energy to the DM particles and reduce the central density of

DM (Navarro et al., 1996; Pontzen & Governato, 2012; Governato et al., 2012; Oñorbe et al.,

2015). Other authors have argued that there is not sufficient energy in the supernovae that

have taken place within dwarf galaxies to remove the amount of DM mass from the cen-

tral regions required to solve TBTF (Peñarrubia et al., 2012; Garrison-Kimmel et al., 2013),

although recent work (Sawala et al., 2016; Dutton et al., 2016; Fattahi et al., 2016) suggests

that it may be possible to match dwarf galaxy data without extreme outflows or the forma-

tion of cored DM profiles. The loss of baryons due to reionisation as well as environmental

effects such as ram pressure stripping of gas and tidal stripping of DM, lower the mass

of haloes hosting dwarf satellite galaxies, producing results consistent with observations.

However, these environmental processes should not be important for field galaxies where

it has also been reported that there is a TBTF problem (Garrison-Kimmel et al., 2014; Klypin

et al., 2015; Papastergis et al., 2015).

The diversity of dwarf galaxy rotation curves

Dwarf galaxies have a striking diversity of measured rotation curves (Oman et al., 2015).

This appears to be at odds with CDM, which predicts a universal density profile for DM

haloes (Navarro et al., 1997). While this diversity may derive from incorrectly determined

distances to and inclinations of these dwarf galaxies (Oman et al., 2016; Read et al., 2016),

if dwarf galaxies really do have diverse rotation curves then the ΛCDM paradigm would

need substantial revision. One such revision, would be if DM particles could interact with
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one another through forces other than just gravity. DM that behaves in this way is known as

self-interacting dark matter (SIDM), and we will now discuss the motivation for invoking

such DM.

1.3 Self-interacting dark matter

Motivated by the small scale challenges to ΛCDM, Spergel & Steinhardt (2000) proposed

that DM could be self-interacting. In their original proposition, these interactions are

isotropic elastic scatterings with an interaction cross-section that is independent of velocity.

If the cross-section for these interactions is sufficiently large, then structure formation on

small scales is altered from the case of collisionless DM. The redistribution of energy and

momentum by DM particle collisions decreases the central density of DM haloes and tends

to make the DM velocity distribution isotropic, leading to more spherical haloes (Spergel

& Steinhardt, 2000; Burkert, 2000; Yoshida et al., 2000b). The presence of such a dark force

would have significant implications for both particle physics and astrophysics. Large self-

interactions would rule out some of the most popular DM candidates such as axions (Duffy

& van Bibber, 2009) or supersymmetric neutralinos (Bertone et al., 2005), while changing

cosmological structure formation on small scales.

1.3.1 Astrophysical motivation and constraints

Dwarf galaxies

The main astrophysical motivation for SIDM comes from the small-scale challenges faced

by the ΛCDM model that were previously discussed (for a review see Weinberg et al., 2015).

While there is strong evidence that baryonic processes can alter the CDM predictions from

those of a DM-only universe (e.g. Schaller et al., 2015a), it is not yet clear whether correctly

including the relevant astrophysics will be sufficient to bring simulated CDM dwarf galax-

ies in line with those that are observed. An exciting alternative is that these small-scale

discrepancies are telling us something about the nature of DM. CDM can be modified by

removing the assumption that DM is collisionless, and instead allowing DM particles to
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scatter with one another. For moderate scattering cross-sections, the success of ΛCDM in

describing the observed large-scale structure of the Universe is maintained, while the pre-

dictions for the internal-structure of DM haloes (including those that host dwarf galaxies)

are altered.

Initial excitement about SIDM was related to its ability to produce constant density cores

in dwarf galaxies (Spergel & Steinhardt, 2000; Yoshida et al., 2000b), as well as reduce the

amount of substructure in DM haloes – thus addressing the core/cusp and missing satel-

lites problems. The reduction in substructure was proposed to happen by the process of

evaporation: when a subhalo with a low velocity dispersion travels through a more massive,

high velocity dispersion halo, the scattering of subhalo DM particles with main halo DM

particles will most often result in neither particle being bound to the subhalo. Through

this process, the DM in the subhalo will gradually be lost to the main halo, particularly

for subhaloes passing close to the centre of the main halo. The large DM–DM scatter-

ing cross-sections required to significantly reduce the expected number of dwarf galaxy-

hosting subhaloes around the Milky Way have now been ruled out (D’Onghia & Burkert,

2003), although currently allowed cross-sections can alter the mass function of subhaloes

in the inner regions of galaxies and galaxy clusters (Rocha et al., 2013).

The production of constant density cores also naturally solves the TBTF problem. The

half-light radii of the observed dwarf galaxies used to infer the TBTF problem (Boylan-

Kolchin et al., 2011) are . 1 kpc (Wolf et al., 2010). This is within the radius that is signif-

icantly affected by moderate SIDM cross-sections (Vogelsberger et al., 2012; Rocha et al.,

2013; Zavala et al., 2013; Vogelsberger et al., 2014b; Fry et al., 2015), with the reduced cen-

tral densities in SIDM haloes lowering the circular velocity profiles in the inner regions

and bringing simulated SIDM-only systems into better agreement with stellar velocity

dispersion measurements than CDM-only simulations (Elbert et al., 2015). Getting good

agreement between the TBTF observations and SIDM-only simulations does not require a

fine-tuned cross-section. The non-linear relationship between the SIDM cross-section and

DM halo core sizes means that cross-sections spanning at least two orders of magnitude

(σ/m = 0.5–50 cm2 g−1) can alleviate TBTF (Elbert et al., 2015).

Recently, it has been suggested that SIDM might also explain the striking diversity of
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measured galaxy rotation curves (Kaplinghat et al., 2014b; Pace et al., 2016; Elbert et al.,

2016; Creasey et al., 2017). The interaction between a baryonic disk and an SIDM halo in

which it lives could lead to small changes in the baryonic component of a dwarf galaxy

producing dramatic changes in the total density profile. This interaction between baryons

and the density profile of SIDM haloes has been studied in the context of analytical models

(Kaplinghat et al., 2014b; Pace et al., 2016) as well as N -body simulations imposing an

analytical disk potential (Elbert et al., 2016; Creasey et al., 2017). In both cases it has been

demonstrated that SIDM can both increase and decrease the central density of DM in the

presence of baryons, depending on how centrally concentrated the baryonic component is.

For a diffuse baryonic component, SIDM alters the DM density profile in the same way

as for the DM-only case, producing a constant density core and reducing the mass in the

centre of the halo. However, a concentrated baryonic component can contract the DM halo

(Blumenthal et al., 1986; Jesseit et al., 2002; Gnedin et al., 2004). With CDM this leads to a

mild increase in the central density compared with the DM-only case, but with SIDM this

contraction increases the rate of scattering, which can become so efficient at transporting

energy away from the centre of the halo that it induces ‘core collapse’ (Kochanek & White,

2000; Balberg et al., 2002; Koda & Shapiro, 2011, and see also §4.2.5) and the production

of very dense halo cores. SIDM may therefore explain the diverse rotation curves found

by Oman et al. (2015), which poses a problem for CDM (though see Read et al., 2016),

even with the inclusion of baryonic feedback processes that can alleviate the TBTF problem

(Oman et al., 2016).

Galaxy clusters

Additional motivation for studying SIDM comes from the detection of separations between

the distribution of stars and DM in galaxy clusters (Williams & Saha, 2011; Mohammed

et al., 2014; Massey et al., 2015). If the inferred offset between one of the bright central

galaxies in Abell 3827 and its DM halo (Massey et al., 2015) is interpreted as resulting from

SIDM, then it corresponds to an isotropic scattering cross-section of σ/m ∼ 1.5 cm2 g−1

(Kahlhoefer et al., 2015). While such an offset could potentially arise from an out of equi-

librium system, or dynamical effects such as tides or dynamical friction acting differently
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on the differently distributed stars and DM, offsets of this size appear to be rare in a ΛCDM

universe (Schaller et al., 2015c).

There are also suggestions from combined lensing and stellar kinematics studies that

observed galaxy clusters have a deficit of DM in their centres compared with what is pre-

dicted (Sand et al., 2004, 2008; Newman et al., 2009, 2013). That being said, other lensing

studies find agreement with CDM predictions (e.g. Okabe et al., 2013), and the low central

DM densities found by some authors may be explained by the assumption of isotropic stel-

lar orbits and/or a systematic error in the assumed stellar mass-to-light ratio (for a detailed

discussion see Schaller et al., 2015b). If taken at face value, then the DM density profiles

inferred by Newman et al. (2013) would be consistent with them being formed by SIDM

with σ/m ≈ 0.1 cm2 g−1 (Kaplinghat et al., 2016).

SIDM constraints

Since SIDM was first proposed as an alternative to collisionless DM, work has been done to

constrain the self-interaction cross-section. Due to the high densities and relative velocities

of particles, galaxy clusters are the systems in which the scattering rate would be the high-

est, unless the cross-section is a decreasing function of relative velocity. This means that

clusters have been used to place the tightest constraints on velocity-independent SIDM

cross-sections. The absence of large offsets between the DM and collisionless galaxies in

cluster mergers have been used to limit the cross-section to σ/m . 0.5 cm2 g−1 (Markevitch

et al., 2004; Randall et al., 2008; Dawson et al., 2012; Kahlhoefer et al., 2014; Harvey et al.,

2015), with similar constraints being derived from the consistency in mass-to-light ratios of

post-collision systems and isolated clusters (Randall et al., 2008). Kim et al. (2017) have re-

cently shown that SIDM in cluster mergers can lead to long-lived offsets between brightest

cluster galaxies (BCGs) and their associated cluster-scale DM haloes, potentially allowing

cross-sections to be constrained to σ/m . 0.1 cm2 g−1.

The shapes and radial density profiles of clusters have provided complementary tests

of the SIDM paradigm. The core sizes (Yoshida et al., 2000b; Meneghetti et al., 2001) and

ellipticities (Miralda-Escudé, 2002) of clusters initially provided very stringent constraints,

with claims that the observed triaxiality of clusters implied σ/m . 0.02 cm2 g−1 (Miralda-
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Escudé, 2002). A cross-section of this size would render SIDM essentially irrelevant in the

dwarf galaxies where it was originally hoped that it could bring theoretical predictions and

observations in to line. However, this tight constraint came from an analytical calculation,

which assumed that DM haloes should be close to spherical within a radius where DM

particles have interacted on average once. Peter et al. (2013) revisited this constraint, by

analysing N -body simulations of galaxy clusters with SIDM. They found that in 3D, haloes

could still have significant asphericity inside of the radius at which particles had scattered

on average once since the halo formed, and that this was exacerbated by the fact that the

observational probes used by Miralda-Escudé (2002) were sensitive to the projected density,

which even in the centre of a halo receives a contribution from mass at large 3D radii, which

can be significantly triaxial. Peter et al. (2013) therefore revised the constraints placed by

Miralda-Escudé (2002), finding that DM with σ/m . 1 cm2 g−1 was still viable. Rocha

et al. (2013) used the same set of N -body simulations, and derived similar constraints from

comparing the central densities of their simulated clusters with those of observed clusters.

Away from galaxy clusters, there are fewer constraints on the DM cross-section. On

dwarf galaxy scales, it remains an open question whether the cores formed in SIDM bring

simulations into closer or more distant agreement with observations. Also, with very large

cross-sections, the DM density at the centre of haloes actually increases (Kochanek & White,

2000; Moore et al., 2000; Yoshida et al., 2000a; Koda & Shapiro, 2011), such that there is

no SIDM cross-section for which cores in dwarf galaxies become too large to (currently)

be allowed. Milky Way-like galaxies have the highest ratios of stellar mass to total mass

(Behroozi et al., 2013; Moster et al., 2013; Vogelsberger et al., 2014a; Schaye et al., 2015), and

have inner regions that are dominated by baryons. These are the same regions where SIDM

effects would show up, and so it is hard to discern SIDM from CDM using such galaxies.

That being said, Di Cintio et al. (2017) have recently shown that the decreased dynamical

friction caused by the lower DM density in SIDM galaxies compared with CDM, can result

in large offsets between supermassive black holes and the centre of their host galaxies, not

expected in CDM. The presence or absence of such offsets may provide a test of SIDM on

Milky Way-like galaxy scales.
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Velocity-dependent SIDM

The tightest constraints on the DM–DM scattering cross-section come from galaxy cluster

scales, where the relative velocity between DM particles is high. Meanwhile SIDM’s ability

to solve the TBTF problem, or produce diverse rotation curves, is on the galaxy or dwarf

galaxy scale. This was noted by Fry et al. (2015) who found that cross-sections consistent

with cluster scale constraints could not significantly reduce the central density of haloes

with peak circular velocities below 30 km s−1. For this reason, there has been increased in-

terest in SIDM with a velocity-dependent cross-section (Loeb & Weiner, 2011; Vogelsberger

et al., 2012; Zavala et al., 2013; Vogelsberger & Zavala, 2013). As we will see in the next sec-

tion, a cross-section that decreases with increasing relative velocity is naturally achieved

within many particle physics models that give rise to SIDM.

The velocity dependence that arises in particle models of SIDM is often similar to scat-

tering in a Coulomb potential, where the cross-section ∝ 1/v4 (Ackerman et al., 2009; Feng

et al., 2010; Buckley & Fox, 2010). This strong velocity dependence means that the cross-

section in dwarf galaxies can be many orders of magnitude larger than on cluster scales. As

such, these models can readily produce effects in dwarf galaxies while evading all current

constraints that come from galaxy clusters. For velocity-dependent SIDM models, obser-

vations at different velocity scales provide complementary information, so it is important

to investigate SIDM effects in a wide range of systems (Kaplinghat et al., 2016).

1.3.2 Particle physics models

The cross-sections for DM interactions with SM particles are experimentally constrained to

be very small, suggesting that if DM can interact through the strong, weak or electromag-

netic forces that it does so with small cross-sections that are insufficient to affect structure

formation. Because of this, particle models of SIDM typically invoke a new force in the

dark sector. In most cases these models are built precisely because they would be inter-

esting astrophysically, a potential weakness of the SIDM paradigm, though in Feng et al.

(2010); Buckley & Fox (2010); Finkbeiner et al. (2011) there are examples of SIDM behaviour
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arising naturally from DM models designed to explain an unrelated anomaly.10

There is an ever-growing menagerie of particle physics models of DM that would be-

have in an SIDM-like manner (Bento et al., 2000; Kusenko & Steinhardt, 2001; Mohapa-

tra et al., 2002; Foot, 2004; Feng et al., 2009; Ackerman et al., 2009; Loeb & Weiner, 2011;

Blennow et al., 2012; Tulin et al., 2013b; Petraki & Volkas, 2013; Cline et al., 2014b; Petraki

et al., 2014; Boddy et al., 2014; Kouvaris et al., 2015; Soni & Zhang, 2016; Kainulainen et al.,

2016; Han & Zheng, 2017), though not all of them lead to the simple behaviour originally

invoked by Spergel & Steinhardt (2000). In some models, the DM can undergo inelastic

or dissipative processes (Fan et al., 2014; Schutz & Slatyer, 2015; Foot & Vagnozzi, 2016;

Boddy et al., 2016), with the potential for DM bound states to form (Boddy et al., 2016;

Cirelli et al., 2017). Many of these models lead to DM scattering that is anisotropic and/or

has a strong velocity-dependence (Ackerman et al., 2009; Loeb & Weiner, 2011; Blennow

et al., 2012; van den Aarssen et al., 2012; Tulin et al., 2013b; Petraki & Volkas, 2013; Petraki

et al., 2014), which could be appealing given our discussion above.

Some proposed scenarios are more elaborate still, with only a sub-dominant component

of the DM being self-interacting (Fan et al., 2013; Boddy et al., 2014). A complicated dark

sector such as this could result in novel phenomenology, potentially explaining the forma-

tion of supermassive black hole seeds at high redshift (Pollack et al., 2015) and (even more

speculatively) the demise of the dinosaurs (Randall, 2015).

While SIDM may not be unique in offering a solution to these ‘small-scale problems’

(Pontzen & Governato, 2012; Governato et al., 2012; Sawala et al., 2016), there are numerous

DM particle candidates that give rise to scattering between DM particles (Carlson et al.,

1992; Bento et al., 2000; Kusenko & Steinhardt, 2001; Mohapatra et al., 2002; Feng et al.,

2009; Tulin et al., 2013b; Kaplinghat et al., 2014a; Boddy et al., 2014; Wang et al., 2016), so

it is an important challenge to try and constrain the cross-section for DM–DM scattering

from astrophysical observations, in a bid to constrain the allowed parameter space for DM

particle models. If it was found that DM must have a significant self-interaction cross-

section then this would have a profound effect on particle physics theories of DM, ruling

10In this case an observed excess of cosmic ray positrons in the 1 to 100 GeV energy range (Adriani et al.,

2009).
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out many of the favoured (and most searched for) DM candidates.

Finally, we note that late-time scattering affecting the distribution of DM in gravitation-

ally collapsed objects is not the only way for DM–DM interactions to alter cosmological

structure formation. If the DM scattering is mediated by light particles (dark radiation),

then primordial perturbations in the dark sector undergo collisional (Silk) damping on

scales below the dark radiation’s diffusion length (Buckley et al., 2014). This leads to a

power spectrum of fluctuations that is qualitatively similar to those from warm DM (Bring-

mann et al., 2016), although BAO-like oscillations in the DM-dark radiation fluid can lead

to oscillations in the power spectrum within the damping envelope (Buckley et al., 2014;

Cyr-Racine et al., 2016). However, there are SIDM models for which the power spectrum is

unchanged from that for collisionless CDM, and even for models that lead to a suppression

of small scale power, this suppression is not uniquely defined by the late-time scattering

properties of the model (Buckley et al., 2014; Vogelsberger et al., 2016). In other words, a

particular SIDM cross-section can be achieved by different combinations of particle physics

parameters, which would give different length scales below which the power spectrum is

suppressed. For this reason, this thesis focusses only on the late time scattering effects of

SIDM, assuming a CDM initial power spectrum throughout.

1.4 Thesis outline

The remainder of this thesis is organised as follows. Chapter 2 introduces a method to

estimate the rate of SIDM scattering in collapsed structures throughout the history of the

Universe, showing at what times and in which objects we expect significant rates of DM

scattering. In Chapter 3 we provide a short summary of N -body simulation techniques,

before going on to discuss how we implemented DM scattering into the GADGET N -body

code. Chapter 4 is then a suite of tests that demonstrate the efficacy of our SIDM imple-

mentation, with a discussion of the range of numerical parameters for which we achieve

converged results. Chapters 5 and 6 then use this code to simulate the Bullet Cluster with

SIDM, first with a simple model for DM scattering and focussing on the importance of

the techniques used when comparing the simulation results with observations, and then
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looking at how the predictions change when using more complicated models of particle

scattering. Finally we summarise our findings in Chapter 7.







Chapter 2
Self-interacting dark matter scattering rates

through cosmic time

2.1 Introduction

Assessing the effects of dark matter particle phenomenology on structure formation is usu-

ally done using cosmological simulations. However these simulations can only access a

finite range of objects due to their limited resolution. An alternative to simulations, orig-

inally pioneered by Press & Schechter (1974, hereafter PS) and later extended by use of

Excursion Set Theory (Bond et al., 1991) and consideration of ellipsoidal collapse (Sheth

et al., 2001), is used to calculate ‘analytical’ mass functions. This is done using linear theory

to evolve the density field, and assuming a simple model for gravitational collapse in which

regions denser than some density threshold collapse to form virialised objects. Using the

PS formalism is attractive as it allows us to look at all scales and redshifts simultaneously,

while we can easily separate the contribution from haloes of different masses to quantities

such as the mean scattering rate for SIDM particles through cosmic time.

This chapter follows a similar procedure to Cirelli et al. (2009), who estimated the DM

annihilation rate through cosmic time. The rate of interactions in a DM halo can be calcu-

lated given a particle model and the density profile of the halo. Then with a mass function

(from PS theory or equivalent) it is possible to work out the total rate of scattering in the

universe. For the simplest model of particle annihilation, the DM cross-section, σ, mul-

36
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tiplied by the relative velocity of particles, v, is constant. As the rate of interactions is

proportional to 〈σv〉 this simplifies the calculation relative to a case where σ has some other

velocity dependence. In this work we use DM models that have interaction cross-sections

that differ from σ ∝ 1/v, first using the simplest model for particle scattering in which σ is

a constant.

This chapter is aimed at estimating the rate of scattering in DM haloes of different

masses through cosmic time. The high redshift Universe is very dense, and were it to

turn out that the scattering rate was therefore high, the survival of the first seeds of struc-

ture formation could provide a useful constraint on the self-interaction cross-section of DM.

This work should also be helpful when assessing the importance of resolution in N -body

simulations of SIDM, because they can only resolve objects above a certain mass. While

only the resolved objects from simulations are usually of interest, objects build up in a hi-

erarchical fashion, such that resolved objects at some epoch, are made from the merging

of smaller (potentially unresolved) objects from an earlier time. It is therefore important

to assess whether these small objects that merged should have been affected by DM self

interactions.

The chapter is organised as follows. In §2.2 we discuss the calculation of the DM inter-

action rate through cosmic time for a velocity-independent scattering cross-section, while

in §2.3 we show the effects of changing the models and parameters that went into our orig-

inal calculation. In §2.4 we perform the same calculation with velocity-dependent cross-

sections, focussing in particular on two models simulated by Vogelsberger & Zavala (2013).

Finally, we give our conclusions in §2.5. Throughout this chapter we assume a Planck 2013

cosmology (Planck Collaboration et al., 2014) unless stated otherwise, and also assume that

self-interactions do not affect large scale structure formation.

2.2 Interaction rate over cosmic time

In this section we first discuss the number density of DM haloes of different masses and

how this evolves with redshift. By then looking at the scattering rate of DM particles in the

haloes that exist at a particular redshift we can calculate the rate of DM particle scattering
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at that epoch. This calculation assumes that DM scattering is only between particles within

the same DM halo, and neglects the fact that scattering rates would be enhanced during

the merging of DM haloes, when the relative velocities between particles can be larger. As

haloes only spend a small fraction of time undergoing major mergers, the contribution of

mergers to the integrated number of scatterings should not be too significant.

2.2.1 Mass function of collapsed structures

We initially calculate the number of structures of a given mass using Press-Schechter (PS)

theory, considering alternative formulations in §2.3.2. The primordial fluctuations δ =

(ρ − 〈ρ〉)/〈ρ〉 in the Universe’s matter density field ρ, are evolved using linear theory as

discussed in §1.1.3. The spherical collapse model (e.g. Lacey & Cole, 1993) predicts that

volumes of radius R in which the mean overdensity δR exceeds a critical threshold δR >

δc = 1.686 will collapse under their own gravity. We assume gravitational collapse to be

immediate leading to a virialised halo with mass M = 4
3
πR3〈ρ〉.

To find these volumes, consider smoothing the density distribution on a scale R. As-

suming the density fluctuations form a Gaussian random field, the fraction of the Universe

in regions with an overdensity greater than δc is

F (δR > δc) =

∫ ∞

δc

1√
2πσ2

R

exp

(
− δ2

R

2σ2
R

)
dδR. (2.1)

This depends only on σ2
R, the variance of δR on this scale. Because δR has zero mean,

σ2
R =

〈
δ2
R

〉
= D2(z)

∫
k2P (k)W̃ 2

R(k) dk, (2.2)

where the linear growth factor D(z) governs the amplitude of perturbations at redshift z,

and W̃R(k) is the Fourier Transform of a real-space spherical top hat filter of radius R.

The power spectrum P (k) is obtained by multiplying the power spectrum of fluctua-

tions generated by inflation by the Transfer Function T (k), as outlined in §1.2.3. For sim-
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plicity we use the Eisenstein & Hu (1998) zero-baryon CDM model in which

T (q) =
L0

L0 + C0 q2
,

L0(q) = ln(2e+ 1.8q),

C0(q) = 14.2 +
731

1 + 62.5q
,

(2.3)

and q is related to k by

q =
k

Ωm h2 Mpc−1 Θ2
2.7 , (2.4)

where TCMB = 2.7 Θ2.7 K. We look at the effect of changes to the high-k power spectrum by

integrating the mass function down to different minimum masses, as explained in §2.2.3.

PS theory then interprets the fraction of the Universe’s volume for which δR > δc as the

fraction of the Universe’s mass that has collapsed to form objects with mass M ≥ 4
3
πR3 〈ρ〉.

In this transition from smoothing over volumes to mass scales, it is also convenient to

eliminate time dependence from the rms density fluctuations, i.e. we define the rms mass

fluctuations on scale M as σM ≡ σR(z)/D(z), such that D(z = 0) = 1. Thus the fraction of

the mass in the Universe in collapsed objects with mass greater than M , at redshift z, is

F (M, z) =

∫ ∞

δc/σMD(z)

1√
2π

exp

(
−ξ

2

2

)
dξ, (2.5)

where ξ = δM/σMD(z). This depends only on the rms density fluctuations (in the lower

limit of integration) and the linear growth factor. Differentiating it with respect to mass

yields the multiplicity function

dF

d lnM
(z) =

√
2

π

∣∣∣∣
d lnσM
d lnM

∣∣∣∣ ν exp

(
−ν

2

2

)
, (2.6)

where we have introduced ν = δc/σMD(z) and multiplied by a factor of two to account for

mass that is initially in under-dense regions.1 This describes how the mass in the Universe

is divided amongst objects of different mass and is plotted in the top panel of Fig. 2.1.
1Consider what happens when we take M → 0 in equation (2.5). On small scales the rms fluctuations are

very large, and the lower limit in the integration tends to zero. This implies F (0, z) = 1
2 , and only half of the

mass in the Universe is in collapsed objects. On small enough scales the density field is always non-linear,

and so we would expect all mass in the Universe to be in collapsed objects if we take M → 0. The missing

half of the Universe corresponds to regions that are below the collapse threshold when smoothed on a scale

M , but would be above the collapse threshold if smoothed on some larger scale. For more information, see

the discussion of the ‘cloud-in-cloud’ problem in Bond et al. (1991).
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Figure 2.1: Top panel: The Multiplicity Function, which shows how mass in the Universe is split

between objects of different mass, as described by Press-Schechter theory. Different coloured lines

show different redshifts. Middle panel: The interaction rate per particle as a function of halo mass,

assuming NFW density profiles and the Duffy et al. (2008) concentration-mass relation, with a

velocity-independent cross-section of 1 cm2 g−1. Circles highlight the mass at which the Multiplic-

ity Function peaks, illustrating a relatively constant interaction rate per unit mass in the Universe’s

most typical haloes. Bottom panel: The product of curves in the two upper panels, illustrating the

relative contribution of haloes in different logarithmic mass bins to the total interaction rate per

particle. In this scenario, the main location for scatterings gradually transitions to more and more

massive structures.
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2.2.2 Interaction rates in collapsed structures

The scattering rate of an individual dark matter (DM) particle i, with velocity vi, is

Γi =

∫
fv(v) ρ

σ

m
|vi − v| d3v, (2.7)

where fv is the velocity distribution function,2 ρ the local density, and (σ/m) the cross-

section for DM–DM scattering (which could depend on |vi− v| ≡ vpair) divided by the DM

particle mass. Integrating over the velocity distribution function gives the scattering rate

for a particle at position r,

Γi(r) =
〈σ vpair〉(r)ρ(r)

m
. (2.8)

For a halo of mass M containing N particles, the mean scattering rate per particle is

Γhalo(M) =
1

N

N∑

i=1

Γi. (2.9)

Integrating over radius r gives

Γhalo(M) =
1

M

∫ ∞

0

4πr2ρ(r)Γi(r) dr (2.10)

=
1

M

∫ ∞

0

4πr2ρ2(r)
〈σ vpair〉(r)

m
dr. (2.11)

We assume that the collapsed haloes from PS theory have spherically symmetric Navarro,

Frenk & White (1997, hereafter NFW) density profiles,

ρ(r)

ρcrit

=
δNFW

(r/rs)(1 + r/rs)2
, (2.12)

where rs is a scale radius, δNFW a dimensionless characteristic density, and ρcrit = 3H2/8πG

is the critical density. We assume that the mass of a halo fills a spherical region of radius

r200, within which the mean density is 200 ρcrit and the total mass is M200. Outside this

region we assume the density to be zero. For brevity we will also refer to r200 as rv and

M200 as M . The concentration parameter is defined as c ≡ r200/rs and can be related to the

characteristic density by

δNFW =
200

3

c3

ln(1 + c)− c/(1 + c)
. (2.13)

2Here fv is normalised such that
∫
fv(v) d3v = 1.
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Note that the NFW profile is obtained from non-interacting dark matter simulations.

Dark matter scattering reduces the density in the centre of DM haloes, producing a con-

stant density core (Burkert, 2000; Yoshida et al., 2000b; Spergel & Steinhardt, 2000; Colı́n

et al., 2002; Rocha et al., 2013; Zavala et al., 2013). Assuming an NFW profile, the average

radius at which interactions take place (assuming an isotropic velocity dispersion) is 0.32 rs

independent of halo concentration. This is similar to the radius for which the radial density

profiles seen in the simulations of Rocha et al. (2013) first drop below the NFW prediction.

These simulations used the maximum allowed velocity-independent cross-section, and so

cores in other models would likely be smaller. Also, while the density in the centres of

haloes decreases, DM scattering increases the velocity dispersion in halo centres, which

should cancel some of the effect. Nevertheless we acknowledge that these DM interactions

are moderately self-regulating because they form cores that will tend to decrease the in-

teraction rate, but proceed assuming an NFW profile for the DM density. If we relax this

assumption then the scattering rates calculated would be lower, but a full treatment of the

effect that scattering has on the phase space distribution of haloes, and so the subsequent

scattering rates, requires full N -body simulations that are beyond the scope of this chapter.

To calculate the mean pairwise velocity of particles, we integrate over the velocity distri-

bution functions of particle pairs. Assuming that their velocities are isotropic and follow a

Maxwell-Boltzmann distribution3 with one dimensional velocity dispersion σ1D, this gives

〈vpair〉 = (4/
√
π)σ1D. For an NFW halo, the velocity dispersion of particles is (Łokas &

Mamon, 2001)

σ2
1D(s, c) =

1

2
c2g(c)s(1 + cs)2GM

rv

[
π2 − ln(cs)− 1

cs

− 1

(1 + cs)2
− 6

1 + cs
+

(
1 +

1

c2s2
− 4

cs
− 2

1 + cs

)

× ln(1 + cs) + 3 ln2(1 + cs) + 6Li2(−cs)
]
,

(2.14)

where s ≡ r/r200, g(c) ≡ [ln(1 + c) − c/(1 + c)]−1, and Li2(x) is the dilogarithm (commonly

3High resolution simulations of CDM report departures from Gaussianity for the distribution of velocity

components along the principal axes of the velocity dispersion tensor (Vogelsberger et al., 2009), but this

approximation is sufficient for our work.
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referred to as Spence’s function), defined by

Li2(x) =

∫ 0

x

ln(1− u)

u
du. (2.15)

Returning to equation (2.11), and changing integration variable from r to s, we find

Γhalo(M, rv, c) = 16
√
π
r3

v

M

σ

m

∫ 1

0

s2ρ2(s, c)σ1D(s, c) ds, (2.16)

where we have now assumed that the DM-DM cross-section is velocity-independent (this

restriction is relaxed in §2.4). Both ρ(s, c) and σ1D(s, c) depend on the virial mass and ra-

dius of a halo, and can be written as dimensionless functions of s and c multiplied by the

dimensional quantitiesM/r3
v and

√
GM/rv respectively. We can then see that Γhalo will be a

function of the halo concentration scaled by power-laws in M and rv. Specifically, at fixed

cross-section and halo concentration, Γhalo ∝M3/2 r
−7/2
v .

At a particular cosmic time, M ≡ M200 and rv ≡ r200 are not independent, because

M200/r
3
200 ∝ ρcrit(z) by definition. Using this, we find Γhalo ∝M1/3 ρ

7/6
crit, such that

Γhalo(M, z, (σ/m), c) = Γhalo(M0, z0, (σ/m)0, c)

(
M

M0

)1/3

×
(
ρcrit(z)

ρcrit(z0)

)7/6(
(σ/m)

(σ/m)0

)
.

(2.17)

We calculate Γhalo(M0, z0, (σ/m)0, c) with M0 = 1010 M�, z0 = 0 and (σ/m)0 = 1 cm2 g−1,

by numerically integrating equation (2.16). We can then calculate Γhalo for haloes with

different masses and at different redshifts using equation (2.17).

At fixed mass, redshift and cross-section, Γhalo is found to increase significantly with

increasing halo concentration. The logarithmic slope of the Γhalo(c) relation is ∼ 1.7 for c =

5, and∼ 2.5 for c = 30, with Γhalo ∝ c2 for concentrations around 10. As halo concentrations

generally decrease with increasing halo mass, the mass dependence of Γhalo is suppressed

below the Γhalo ∝ M1/3 seen in equation (2.17). The overall form of Γhalo(M, z) depends

upon the concentration-mass-redshift relation. Following Duffy et al. (2008, hereafter D08),

we shall initially assume

c(M, z) = 5.72

(
M

1014 h−1M�

)−0.081

(1 + z)−0.71. (2.18)
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Using this c(M, z) relation we show Γhalo(M, z) in the middle panel of Fig. 2.1. Γhalo in-

creases rapidly with increasing redshift at fixed mass, and increases with mass at fixed

redshift. As objects grow in mass through cosmic time, the scattering rate in typical haloes

at each redshift evolves slowly. Note that several more recent works show that this simple

power law dependence of c(M) should flatten at low masses, which we discuss in §2.3.1.

2.2.3 DM’s cosmic scattering rate

Multiplying the multiplicity function from §2.2.1 by the interaction rate in individual haloes

from §2.2.2 gives the contribution of haloes of different mass to the total rate of particle

scattering in the Universe (see bottom panel of Fig. 2.1). Integrating this quantity over

all halo masses at different redshifts yields the mean scattering rate of all particles at that

redshift, Γ(z), which we refer to as the ‘Cosmic Scattering Rate’. This is plotted in Fig. 2.2,

where it can be seen that after a gradual rise from the early universe to z ≈ 6, Γ(z) is

constant to within a factor of two to the present day.

For this analysis, we assume that haloes form down to masses of 10−12 M�. In the real

Universe, self-interacting dark matter creates a small-scale cut-off in the power spectrum

due to collisional damping. For DM composed of weakly interacting massive particles

(e.g. neutralinos), the minimum mass of collapsed objects is ∼ 10−6 M� (Hofmann et al.,

2001). If DM were axions then this minimum mass would be ∼ 10−12 M� (Kolb & Tkachev,

1996). For the general class of self-interacting dark matter models that lead to astrophysi-

cally interesting scattering rates in the late-time Universe, collisions in the early Universe

suppress power on larger scales, or even introduce acoustic oscillations in the dark matter-

dark radiation system (Buckley et al., 2014). There is a rich possible phenomenology affect-

ing the high-k power spectrum, which is highly model-dependent.

We investigate the approximate effect of a cutoff in the power spectrum by integrating

Γhalo(dF/d lnM) down to different minimum masses, Mmin, shown as the extra lines in

Fig. 2.2. Furthermore, in numerical simulations, only haloes above a given mass scale are

resolved, and only the DM interactions above those scales can be tracked. We therefore

include lines with large Mmin in Fig. 2.2, to act as predictions for the expected scattering

rate in cosmological simulations. Note that the results as Mmin → 0 converge particularly
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slowly for the D08 concentration-mass relation, due to the high concentration of very small

haloes. Nevertheless, these results are less sensitive to changing Mmin than those for a

simple annihilation channel where σvpair is constant (Mack, 2014) and low mass haloes

make a dominant contribution to the total scattering rate.

In addition to the rate of cosmic scattering, an interesting quantity is the mean cumu-

lative number of interactions that particles have undergone. As each scattering event is

a two-body interaction, this is twice the number of interactions per particle. We call this

quantity Nscatter and plot it as a function of redshift in the bottom panel of Fig. 2.2. While

the cosmic scattering rate is markedly different at intermediate and high redshifts when us-

ing different minimum masses, the values of Nscatter(z = 0) are more robust. For (σ/m) =

1 cm2 g−1, Nscatter(z = 0) is 0.87 with Mmin = 10−12 M� and 0.68 with Mmin = 1010 M�.

A noticeable feature of Γ(z) in the upper panel of Fig. 2.2 is the upturn after z ≈ 1.

This is not present when using more recent c(M, z) relations with more complex redshift

dependences than the simple (1 + z)−0.71 in the D08 relation. This upturn is not physical,

and arises because the concentration is defined in terms of r200 which in turn depends on

ρcrit. When the Universe is matter-dominated ρcrit ∝ (1 + z)3, such that at fixed halo mass

r200 ∝ (1 + z)−1. At late times, when there is a significant dark energy contribution to

the Universe, the evolution of ρcrit slows and is no longer given by a simple power law in

(1 + z). This affects the r200 of haloes, and hence halo concentrations, such that a simple

power-law cannot accurately capture c(M, z).

2.3 Sensitivity to astrophysical assumptions

In the previous section we considered the redshift dependence of DM scattering rates and

showed that with a velocity-independent cross-section, the mean rate of particle scattering

in the Universe initially grows and then starts to decrease after z ≈ 6, dropping by less than

a factor of two to the present day. In this section we explore the sensitivity of this result to

the assumptions of the model.
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Figure 2.2: Top panel: The mean scattering rate of particles in the Universe calculated from Press-

Schechter theory, assuming the NFW density profile, the D08 concentration-mass relation and

σ/m = 1 cm2 g−1. The different lines count only scatterings in haloes more massive than 1010M�

(bottom line) to 10−12M� (top line). The scattering rate varies by less than a factor of two from z ≈ 6

onwards. Bottom panel: The mean cumulative number of interactions that particles have undergone

as a function of redshift. The different lines again include only those interactions in haloes more

massive than a given threshold. With a velocity-independent cross-section, most scattering is at late

redshifts where there is more time. This results in most scattering being in high-mass haloes, so that

Nscatter(z = 0) varies by less than 25% between Mmin = 10−12M� and Mmin = 1010M�.
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2.3.1 Concentration-mass-redshift relations

The concentration-mass-redshift relation, c(M, z), of D08 is attractive for its simplicity and

because over a small range of redshifts and halo masses, concentrations can be well fit

by simple power laws in M and (1 + z). However, numerical studies that have resolved

structures over a wide range of halo masses have found that concentrations are not well

fitted by simple power laws. Examining the results of the Millennium Simulation (Springel

et al., 2005b) from z = 3 to z = 0 it is clear that the form of c(M, z) is not separable, with the

mass dependence evolving with redshift (Gao et al., 2008). This evolution takes the form

of a flattening of the c(M) relation at increasing redshift, such that concentrations of very

massive galaxy cluster haloes evolve only weakly with redshift while the concentrations of

smaller haloes decrease rapidly with increasing redshift.

The c(M, z) relation is found to be remarkably complex, particularly when considering

the dependence on cosmological parameters. Prada et al. (2012, hereafter P12) find that this

complex relationship is a result of the ‘wrong’ physical quantities, M and z, being used.

Analogous to studies of the halo mass function, in which a much simpler fitting formula is

possible when one considers the mass function as a function of lnσ−1
M rather than a function

of M (Jenkins et al., 2001), the c(lnσM) relationship is found to be simpler than c(M).

The behaviour of this relationship can be explained by models in which the concentra-

tion of a halo is related to its accretion history (Wechsler et al., 2002; Zhao et al., 2003). Lud-

low et al. (2014, hereafter L14) found that if the mass of a halo, M(z), was plotted against

the critical density, ρcrit(z), then the relationship M(ρcrit) was well fit by an NFW profile,

with associated concentration cMAH. They also found a simple relation between cMAH and

the concentration of the halo, allowing the concentration-mass relation to be predicted from

the mass-accretion history of haloes. The statistics of the mass-accretion of DM haloes can

be found from simulations, or calculated using the conditional probabilities4 found in ex-

tensions of PS theory (Bond et al., 1991; Bower, 1991; Lacey & Cole, 1993; Kauffmann &

White, 1993).

Different methods for measuring c(M, z), either from simulations or analytical calcu-

4The conditional probability that the material making up an object of mass M1 at redshift z1 is in an object

of mass M0 at redshift z0.
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lations, give similar results around the peak of the multiplicity function (M ≈ M∗), but

differ significantly at high and low masses. While the cosmic scattering rate is dominated

by haloes around M∗(z), the scattering rate in haloes is highly sensitive to the halo con-

centration, and so even small differences between c(M, z) relations can lead to significant

changes in Γ(z). In Fig. 2.3 we show Γ(z) calculated as in Fig. 2.2 but for a variety of c(M, z)

relations.

Noticeable in Fig. 2.3 is that using c(M, z) from L14 gives a scattering rate at inter-

mediate redshifts a factor of two above that found using other c(M, z) relations. The L14

analytical model was calculated for relaxed haloes, which are generally dynamically older,

making them more concentrated than unrelaxed haloes of a similar mass. The cuts made

to remove unrelaxed haloes are one of the two main reasons why c(M, z) relations from

simulations disagree with each other, the other being the way in which c is calculated from

a mass distribution. For example, Prada et al. (2012) calculate c from the ratio Vmax/V200,

where Vmax and V200 are the maximum circular velocity and the circular velocity at r200 re-

spectively, while Diemer & Kravtsov (2015) find c by directly fitting the radial density with

an NFW profile.

2.3.2 Mass function prescription

It is known that the PS formula does not provide an exact fit to the mass function from

simulations. Specifically, it underestimates the number of rare objects in the ‘high-mass

tail’, with an overestimate of the amount of mass around the peak of the multiplicity func-

tion (see e.g. Jenkins et al., 2001). A better fit to the mass function from simulations was

achieved by Sheth & Tormen (1999, hereafter ST), who found that compared to PS, equa-

tion (2.6) becomes:

dF

d lnM
= A

√
2a

π

∣∣∣∣
d lnσM
d lnM

∣∣∣∣
[
1 +

(
aν2
)−p]

ν exp

(
−aν

2

2

)
, (2.19)

with A = 0.3222, a = 0.707 and p = 0.3. We note that our definition of ν is different from

that in the ST paper, with νST = ν2. The original PS formula can also be described by

equation (2.19) with A = 0.5, a = 1 and p = 0.
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Figure 2.3: The cosmic scattering rate calculated using the concentration-mass-redshift relations

of Duffy et al. (2008), Prada et al. (2012), Ludlow et al. (2014), Dutton & Macciò (2014), Diemer &

Kravtsov (2015), and Correa et al. (2015). These were calculated assuming a Planck 2013 cosmology

(Planck Collaboration et al., 2014), a PS mass-function, and σ/m = 1 cm2 g−1, counting the contribu-

tion from all haloes more massive than 10−12 M�. Lines become dashed for redshifts where authors

state their relationships may not be valid.
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The ST mass function increases the number density of the most massive objects com-

pared to the PS mass function, providing a better fit to simulations (see e.g. Reed et al.,

2007). While these differences can be extremely important for some studies (e.g. counting

the number density of massive clusters) we find that the different mass functions do not

have a large effect on our results. This is because the scattering rate per unit mass in DM

haloes increases only gently with increasing halo mass, as can be seen in the middle panel

of Fig. 2.1. The shape of Γ(z) is similar when either a PS or ST mass function is used, al-

though the normalisation is slightly lower for the latter. By redshift zero there are ∼ 20%

fewer DM interactions with an ST mass function.

2.3.3 Varying cosmological parameters

Similar to changing the formalism used to calculate the multiplicity function, small changes

to the Cosmological Parameters leave the cosmic scattering rate relatively unchanged be-

cause of the weak mass dependence of Γhalo(M). Using c(M, z) from D08, we find that

changing cosmological parameters from Planck 2013 to WMAP9 decreases the mean num-

ber of interactions per particle by redshift zero, Nscatter(z = 0), by 12%. This is driven by

Planck’s larger value for Ωm, resulting in larger critical densities at early times. Using ear-

lier WMAP results leads to similar changes, except for WMAP3 for which the anomalously

low Ωm and σ8 lead to a 33% reduction in Nscatter(z = 0).

The concentration-mass-redshift relation also depends on cosmological parameters, which

is made explicitly clear by relations that relate c to σM rather than M directly (e.g. Prada

et al., 2012; Diemer & Kravtsov, 2015). This cosmology dependence of c(M, z) makes little

difference when moving from Planck 2013 to WMAP9, but further reduces the scattering

rate for a WMAP3 cosmology such that Nscatter(z = 0) is 40% lower than with a Planck

2013 cosmology, using c(M, z) from P12. This increased difference, beyond that seen for

a cosmology independent c(M, z), can be understood by noting that haloes of a particular

mass form later with smaller σ8, and are therefore less concentrated.
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2.3.4 Scatter in the concentration-mass relation

So far we have assumed that given the mass of a halo we know its concentration through

the concentration-mass relation. In practice this relation has some scatter around it, which

will impact on the mean scattering rate of haloes. From equation (2.17) the concentration

dependence of the scattering rate in haloes is described by Γhalo(M0, z0, (σ/m)0, c). This

is non-linear in c, such that even symmetric scatter in c at fixed mass will alter the mean

scattering rate in haloes of that mass.

To discuss how Γhalo is affected by scatter in c, it will be useful to introduce c0, the value

of c implied by the c(M, z) relation. Dolag et al. (2004) find that for haloes of fixed mass

and redshift, ln c is normally distributed. If we assume that ln c is normally distributed

with mean ln c0 and variance σ2
ln c, then c follows a log-normal distribution, with probability

density function

P (c) =
1

c σln c

√
2π

exp

(
−(ln c− ln c0)2

2σ2
ln c

)
. (2.20)

Including a log-normal distribution of concentrations at fixed mass and redshift leads to

an increase in Γ at all concentrations, related to the long tail of the distribution towards high

values, as well as a shift in the expectation value of c.5 If c(M, z) in D08 was a measure of the

mean c for a particular mass of halo, then we would have to make the change ln c0 → ln c0−
σ2

ln c/2 in equation (2.20) to keep 〈c〉 = c0. However, the c(M, z) relation in D08 was acquired

by fitting to the median values of c in each mass bin at each redshift. The median value

of c from the probability density function in equation (2.20) is simply exp (ln c0) = c0 as

required. Dolag et al. (2004) found that σln c ≈ 0.22, almost independent of the cosmological

model. This corresponds to a standard deviation in log10 c of 0.1, or a scatter of 0.1 dex.

We find that the shape of Γ(z) is effectively unchanged by scatter in c(M, z), but that the

normalisation increases with increasing scatter. For a 0.1 dex scatter, the normalisation

increases above that of the scatter-free case by less than 15%.

5For the distribution in equation (2.20), the expectation value of c is given by 〈c〉 = exp
(
ln c0 + σ2

lc/2
)
> c0.
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2.4 Velocity-dependent cross-sections

Having calculated the rate of DM scattering through cosmic time assuming that the cross-

section is velocity-independent, we now lift this assumption, and perform the same calcu-

lation with velocity-dependent DM-DM cross-sections.

2.4.1 Particle model

For velocity-dependent cross-sections we use the vdSIDMa and vdSIDMb models described

in Vogelsberger & Zavala (2013). These are well-motivated by particle physics, and describe

the transfer cross-section for elastic scattering mediated by a new gauge boson of mass mφ.

This results in an attractive Yukawa potential with coupling strength αc. These interactions

are analogous to the screened Coulomb scattering in a plasma, for which the momentum-

transfer cross-section can be approximated by

σT
σmax
T

≈





4π
22.7

β2 ln (1 + β−1) , β < 0.1

8π
22.7

β2 (1 + 1.5β1.65)
−1
, 0.1 < β < 103

π
22.7

(
lnβ + 1− 1

2
(ln β)−1

)2
, β > 103,

(2.21)

where β = πv2
max/v

2
pair and σmax

T = 22.7/m2
φ (Feng et al., 2010; Finkbeiner et al., 2011; Loeb &

Weiner, 2011). Here vmax is the velocity at which (σT vpair) peaks, with σT (vmax) = σmax
T . We

have also introduced the “momentum-transfer cross-section”, σT , defined as

σT =

∫
(1− cos θ)

dσ

dΩ
(θ) dΩ (2.22)

= 2π

∫ 1

−1

(1− cos θ)
dσ

dΩ
(θ) d cos θ, (2.23)

where dσ
dΩ

is the differential cross-section, assumed to be azimuthally symmetric, which

describes the probability of particles scattering into a patch of solid angle dΩ. The transfer

cross-section is an effective scattering cross-section that is useful in describing angularly de-

pendent cross-sections (where dσ
dΩ

is not constant). For isotropic scattering ( dσ
dΩ

= constant)

the transfer cross-section is simply σT = σ, while in general the mean momentum trans-

fer for a scattering process with transfer cross-section σT is equal to the mean momentum
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transfer for isotropic scattering with σ = σT . Throughout the rest of this chapter, when

calculating the rate and number of particle scattering events we will use σT as if it were the

cross-section i.e we will calculate an effective rate of particle scatterings that is the rate of

isotropic scattering events that would lead to the same rate of momentum transfer.6

The velocity-dependent cross-section in equation (2.21) leads to noticeable changes in

Γhalo(M). The cross-section diverges as the pairwise velocity tends to zero, such that scat-

tering in low mass haloes (with typical velocities less than vmax) is enhanced above the

constant cross-section case. For vpair � vmax, σT ∝ v−4
pair, leading to a strong suppression of

the scattering rate in DM haloes with velocity dispersions larger than vmax.

The vdSIDMa and vdSIDMb models have values of σmax
T /m and vmax chosen to max-

imise the self-interaction rate at the typical velocity dispersion of Milky Way dwarf spheroidals,

while avoiding known astrophysical constraints on the cross-section. Specifically, vdSIDMa

and vdSIDMb have vmax = 30 km s−1 and σmax
T /m = 3.5 cm2 g−1, and vmax = 10 km s−1 and

σmax
T /m = 35 cm2 g−1 respectively.

2.4.2 vdSIDM cosmic scattering rates

The calculation of the DM scattering rate Γ(z) proceeds in a similar manner to §2.2, in that

we first find the distribution of haloes of different mass ( dF
d lnM

) and then find the scattering

rate per unit mass in these haloes, Γhalo(M). However, the calculation of Γhalo(M) is com-

plicated by the velocity-dependent cross-section, because the cross-section can no longer

be taken outside the integral in equation (2.11). Instead, we find 〈σ vpair〉(r) by numeri-

cally integrating σT (vpair) vpair over the probability distribution of pairwise velocities, again

assuming that the velocities of individual particles are drawn from a Maxwell-Boltzmann

distribution function with 1D velocity dispersion σ1D. This yields

〈σTv〉 (σ1D) =
1

2σ3
1D

√
π

∫
σT (v)v3e−v

2/4σ2
1D dv. (2.24)

6In general, particle orbits within a DM halo are approximately isotropic, so there is no preferred direction

for particle scattering. In these cases, the momentum transfer cross-section accurately captures the effects of

scattering. However, this may not be the case for systems where there is a preferred direction along which

particles approach (Kahlhoefer et al., 2014), such as in a merger. We demonstrate this explicitly in Chapter 6.
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Figure 2.4: Scattering rates (top row) and cumulative number of scatters (bottom row) as a function

of redshift, for two different velocity-dependent scattering cross-sections. The left column is for

vdSIDMa which has vmax = 30 km s−1 and σmax/m = 3.5 cm2 g−1; while vdSIDMb (right column)

has vmax = 10 km s−1 and σmax/m = 35 cm2 g−1. The different line colours correspond to differ-

ent values for Mmin of 108, 104, 1, 10−4, 10−8, and 10−12 M�, with both Γ and Nscatter monotonically

increasing with decreasing Mmin. The solid lines are for the D08 concentration-mass-redshift rela-

tion, while the dashed lines use the P12 c(M, z). Unlike the constant cross-section case in Fig. 2.2,

Γ(z) is now plotted on a logarithmic scale as the scattering rate is larger by around two orders of

magnitude at high redshift compared to redshift zero.

Then with σ1D(r) from equation (2.14) we can find 〈σTv〉 (r), which we use in the numerical

evaluation of equation (2.11) to calculate Γhalo(M). Combining Γhalo(M) with the multiplic-

ity function we can calculate the cosmic scattering rate as in §2.2.3.

The scattering rate through cosmic time is plotted for vdSIDMa and vdSIDMb in Fig. 2.4.

In contrast to the velocity-independent case in Fig. 2.2, the scattering rate is now displayed

on a logarithmic scale. It peaks at redshift 20 − 30 and falls by two orders of magnitude
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before z = 0. Most interactions thus occur at early times as can be seen in Fig. 2.5. Half

occur before z = 5.7 for vdSIDMa and z = 7.2 for vdSIDMb (in the latter case, the Universe

is ∼ 5% of its present age). This is in stark contrast to the gentler evolution of Γ(z) with a

constant cross-section (c.f. Fig. 2.2), where half the interactions occur after z = 0.96.

With a velocity-dependent cross-section, most scatterings also occur in low mass haloes

with typical velocities v . vmax. Raising the minimum mass of considered haloes Mmin

from 10−12 M� to 108 M� lowers the number of interactions by redshift zero by a factor of

six, which can be seen in Fig. 2.6 (for which we introduce N0 ≡ Nscatter(z = 0)). For the

constant cross-section case, the same change leads to a decrease in Nscatter(z = 0) of only

10%.

The choice of concentration-mass-redshift relation becomes more important when the

cross-section is velocity-dependent, because different c(M, z) disagree most for low mass

haloes and at high redshift. In particular, the simple power law relation from D08 predicts

low-mass haloes to be much more concentrated than more recent relations in which c(M)

flattens at low mass. This recovers (a less extreme version of) what is seen in estimates

of the DM annihilation rate, where 〈σ vpair〉 is usually assumed to be constant, resulting in

an even larger fraction of interactions occurring in low mass haloes, and hence a cosmic

scattering rate with strong dependence on c(M, z) (Mack, 2014; Correa et al., 2015).

As well as the three particle models already discussed (velocity-independent, vdSIDMa

and vdSIDMb), we include in Fig.s 2.5 and 2.6 plausible but more extreme velocity-dependent

models with lower vmax. We need not specify the normalisation of σmax
T /m for these calcu-

lations, but it can be chosen to solve small-scale problems at dwarf galaxy scales, while

eluding constraints at cluster scales. As vmax is lowered, a larger fraction of interactions

happen at high redshift and in low-mass haloes. For the most extreme case considered,

with vmax = 10−3 km s−1, half of the interactions have occurred by z = 19, and half occur

in haloes of mass < 10−6 M�. We stress that such models cannot be excluded on particle

physics grounds, but it is unclear whether the large number of scatterings in such low mass

haloes would leave a detectable signal in the present day universe.
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Figure 2.5: When do scatterings happen? The cumulative number of interactions as a function of

redshift, normalised to unity at redshift zero. The different colours correspond to different particle

models for the DM, while the solid and dashed lines are for the D08 and P12 c(M, z) relations

respectively. All curves were calculated using Mmin = 10−12 M�. The number in brackets in the

legend is Nscatter(z = 0) for the relevant model. These are not present for the models with specified

vmax, which represent vdSIDM models with unspecified σmax
T . Velocity-dependent models with low

vmax lead to more interactions in haloes with low internal velocities, pushing scattering towards

high redshifts where collapsed objects are less massive.
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Figure 2.6: Where do scatterings happen? The fraction of scatterings by redshift zero that occur in

haloes more massive than Mmin, normalised to unity for Mmin = 10−12 M�. Different line styles

are as in Fig. 2.5, with colours corresponding to particle models, and solid or dashed lines rep-

resenting the D08 or P12 concentration-mass-redshift relations respectively. Models with velocity-

independent cross-sections have more of their scatterings in high-mass haloes compared to velocity-

dependent cases, where the typical halo mass in which most interactions happen is an increasing

function of vmax.
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2.5 Conclusions

We have presented an analytical calculation of the mean rate of DM–DM scattering events,

for particle physics models with a velocity-independent or velocity-dependent cross-section.

In all our calculations, we assume that the self-interactions are a small perturbation to

ΛCDM and do not, for example, change the overall growth of structure.

For particle physics models with a velocity-independent interaction cross-section, our

results match the canonical picture in which most scatterings occur in massive structures
>∼ 1012 M� at late times z <∼ 1. Our calculations are found to be robust to current uncer-

tainties in cosmological parameters as well as variations in the mass function used. They

are also insensitive to the high-k power spectrum (because most scattering events occur in

haloes more massive than the cut-off scales due to DM self-interactions in the early uni-

verse). The main source of uncertainty in the results is the concentration-mass-redshift re-

lation c(M, z). Its unknown form at high redshift and low mass propagates into a factor of

almost three discrepancy in the scattering rate at intermediate redshifts (z ≈ 10). However,

the scattering rate changes by only a factor of two over most of cosmic time, and different

c(M, z) relations give similar results after z ≈ 1, where there is more time. Consequently,

the total number of interactions during the entire history of the Universe is uncertain to

only a factor of ∼ 2.

For particle physics models with a well-motivated velocity dependence, the scattering

takes place mainly in low mass objects <∼ 104 M� at early times z >∼ 7. The scattering rate

Γ(z) peaks at earlier redshifts z ∼ 20, with a pronounced peak two orders of magnitude

higher than the scattering rate at the present day. These numbers are more sensitive to

the choice of cosmological and astrophysical parameters, and are dominated by regimes

in which the mass function and concentration-mass-redshift relation are least well known.

This minimum mass of considered structures,Mmin, is particularly important, with changes

to the small-scale power spectrum induced by DM scattering affecting the cosmic scattering

rate.

The dominance of high redshift scatterings in velocity-dependent models profoundly

changes their influence on the evolution of structure, and may alter the best strategy to
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search for observational signatures. DM particle interactions lead to a transport of particles

away from the centres of structures (Kochanek & White, 2000), replacing the cusps found

in collisionless CDM simulations with constant density cores.7 If the SIDM interactions

are effectively confined to high redshift, then they may lead to a smearing of small-scale

structure more qualitatively reminiscent of warm dark matter. The affected DM structures

are also the hosts of the first galaxies, and it is interesting to consider what impact cored

haloes could have on early galaxy formation.

High redshift scattering in low-mass objects also has important consequences for at-

tempts to simulate vdSIDM cosmologies. Most scatterings occur in low mass haloes at high

redshift that would not be resolved in typical cosmological simulations, but the unresolved

interactions could be important for the later dynamics of particles. The large number of

self-interactions would create DM cores in high-redshift haloes, and it then becomes an im-

portant question – on which there seems little consensus – whether or not the mergers of

small cored haloes form cores that persist in large haloes at the present day.

7Haloes in which there have been a larger number of interactions presumably have larger cores. However,

we caution against qualitative attempts to determine the scattering rate from core sizes: estimates of the core

size and ellipticity of a galaxy cluster halo (Miralda-Escudé, 2002) overestimated the effect of SIDM by a factor

50 compared with the results from N -body simulations (Peter et al., 2013).





Chapter 3
Simulating self-interacting dark matter

3.1 An Introduction to N -body techniques

In this chapter we discuss our implementation of DM–DM scattering within the N -body

code GADGET (Springel, 2005). Before this, however, we introduce the N -body method as

a means to solve for the evolution of a self-gravitating system, assuming initially that DM

particles interact only through gravity.

3.1.1 The N -body method

In its simplest incarnation, an N -body code simulates the evolution of N gravitationally

interacting bodies (e.g. stars orbiting in a globular cluster) by directly calculating the grav-

itational force on each body from the N − 1 other bodies. Such a system can be simulated

by representing each body by a particle, described by its mass, position and velocity. The

simulation proceeds by making small jumps in time, a ‘time-step’, during which the ve-

locity of a particle is updated based on the acceleration due to gravitational forces, and its

position updated based on its velocity.

For a globular cluster this involves tracking ∼ 105 ‘particles’, but assuming the DM

particle mass to be 100 GeV, a Milky-Way like DM halo contains ∼ 1067 DM particles. Cos-

mological simulations therefore cannot come close to simulating individual DM particles,

and instead rely on simulating a set of tracer particles sampled from the distribution func-

61
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tion of DM particles. Before going on to discuss the distribution function and the equations

that govern its time-evolution, we first discuss two-body interactions and when they are

important in self-gravitating systems. Two-body interactions are close encounters between

pairs of particles that alter the dynamics of a system compared with particles orbiting in a

smooth potential. The importance of these effects depends on the number of particles in

a system, so if we are going to use a system with 106–109 particles to simulate a physical

system with 1067 particles, we need to be careful not to spuriously introduce these effects.

3.1.2 Two-body interactions

In Appendix B we discuss scattering in a Coulomb potential. The radial dependence of

gravitational forces is the same as that for electrostatic forces, and so the equations derived

for a Coulomb potential apply equally to two particles that gravitationally scatter. Com-

paring the gravitational force between two bodies

Fgrav =
Gm2

r2
, (3.1)

with the Coulomb force (equation B.1), we can transform equation (B.5) into its gravita-

tional equivalent

b =
Gm

v2 tan θ
2

, (3.2)

where b is the impact parameter,1 m the mass of the particles, and v their initial relative

velocity. For small scattering angles, this gives

θ ≈ 2Gm

b v2
. (3.3)

If we assume that a particle moves at a speed v through a sea of stationary particles,

each with a mass m and number density n, then we expect it to encounter

Γb db = 2π b db v n (3.4)

particles with impact parameters between b and b + db, per unit time. Over time, these en-

counters alter the trajectory of the particle under consideration in the manner of a random

1For a definition of the impact parameter see Fig. B.1
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walk, so that the mean square total deflection angle is found by summing the squares of

the individual deflection angles

〈
θ2

tot

〉
= θ2

1 + θ2
2 + θ2

3 + ... (3.5)

Assuming many small kicks we can write this as an integral

〈
θ2

tot

〉
(t) =

∫ t

0

∫ bmax

bmin

Γb θ
2(b) db dt =

8πG2m2n t

v3
ln
bmax

bmin

, (3.6)

where bmin and bmax are the minimum and maximum impact parameters of encounters, and

ln bmax

bmin
is known as the Coulomb logarithm. In order to calculate the timescale over which

2-body encounters significantly alter the path of our particle, we set 〈θ2
tot〉 (trelax) = 1, from

which we find the relaxation time

trelax =
v3

8πG2m2n ln bmax

bmin

. (3.7)

The values of bmin and bmax are not well defined, though thankfully the result is only

logarithmically dependent upon them. bmax is typically taken to be the characteristic size of

the system under study, for example the radius of a globular cluster, while a sensible choice

for bmin is the ‘strong encounter radius’. This is the radius at which the magnitude of the

gravitational potential energy of two particles is equal to the initial kinetic energy

Gm2

rstrong

=
1

2
mv2. (3.8)

For pairs of particles with b . rstrong we expect a large change in the velocities of the par-

ticles, such that our previous assumption of many small deflections would no longer be

valid. We can quantify the effects of these strong encounters by noting that given the defi-

nition of rstrong, we expect the typical time between strong encounters to be

tstrong =
1

πr2
strongv n

=
v3

4πG2m2n
= 2 ln

bmax

bmin

trelax. (3.9)

Frequent distant encounters are therefore more efficient at altering a particle’s trajectory

than strong encounters so long as bmax � bmin. trelax is therefore the relevant timescale on

which two-body effects become important, with strong encounters only contributing as a

secondary effect.
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Returning to equation (3.7), and considering a uniform density sphere with radius R

and total mass M , we can progress by noting that mn is simply the density ρ = M/4
3
πR3.

If we also set bmax = R and bmin = rstrong = 2Gm/v2, then the relaxation time is

trelax =
v3R3

6G2Mm ln Rv2

2GM

. (3.10)

The virial theorem relating the kinetic and potential energies of a stable system of particles

interacting through gravitational forces states that

2Ekin + Epot = 0. (3.11)

For a uniform density sphere, the binding energy is

Epot = −3GM2

5R
(3.12)

and the kinetic energy is

Ekin =
1

2
Mv2, (3.13)

which using the virial theorem implies

v2 =
3GM

5R
. (3.14)

Using this in equation (3.10),

trelax =
3

50

MR

mv ln
(

3
10
M
m

) . (3.15)

Then, noting that M/m is just the number of particles in the system, N, and dropping the

numerical pre-factors which are only approximate,

trelax ∼
N

lnN

R

v
. (3.16)

R/v is often referred to as the crossing time, and is comparable to the time it takes a particle

to orbit within a system. Two-body relaxation is therefore only important over timescales

∼ N/ lnN crossing times. For stars within globular clusters, or galaxies within a galaxy

cluster, trelax may be less than the age of the Universe, and two-body effects can play an

important role. For DM within a galaxy on the other hand, trelax is many orders of magni-

tude larger than the age of the Universe. The DM therefore behaves as a collisionless fluid,

evolving under the influence of a smooth gravitational potential that is generated by its

mass distribution.
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3.1.3 The Collisionless Boltzmann Equation

We have just seen that for DM particles, two-body gravitational interactions are negligi-

ble. DM particles therefore move smoothly through phase space, with their distribution in

physical-space and velocity-space defined by the distribution function f(r,v, t), with

dM = f(r,v, t) d3r d3v (3.17)

the mass of DM in the volume element d3r centred on r, with velocity in the velocity-space

element d3v centred on v.

In the absence of collisions, Liouville’s theorem states that

df

dt
= 0. (3.18)

The derivative here is the Lagrangian derivative, and Liouville’s theorem is the statement

that the six dimensional phase-space density about a given system point (i.e. a DM particle)

traveling through phase-space is constant with time. The Lagrangian derivative of f can

also be written as
df

dt
=
∂f

∂t
+
∂f

∂r
· dr

dt
+
∂f

∂v
· dv

dt
, (3.19)

which combined with equation (3.18) and using the fact that dr
dt

is the velocity, v, and that

changes in velocity result from the gravitational force per unit mass, −∇Φ, gives

∂f

∂t
= −v · ∇f +∇Φ · ∂f

∂v
. (3.20)

This is known as the Collisionless Boltzmann equation, or Vlasov equation, which coupled

with the Poisson equation

∇2Φ = 4πGρ = 4πG

∫
f d3v (3.21)

describes the evolution of a collisionless self-gravitating system.

Equations (3.20) and (3.21) completely describe the evolution of the DM fluid2 and we

could calculate the evolution of f on a six-dimensional phase-space grid. However, DM

that is ‘cold’ lives on a thin sheet in phase-space, such that this method would be highly

2For now we are assuming that the DM is the only species, and thus makes the only contribution to the

gravitational potential.
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inefficient. Instead, we turn to N -body simulations, a Monte Carlo technique where we

replace the smooth distribution function f(r,v, t) with N particles, each described by a

mass, position and velocity, such that

f(r,v, t) ≈
N∑

i=1

miδ(r− ri(t))δ(v − vi(t)). (3.22)

More precisely, over any phase-space volume V

∫

V

f(r,v, t) d3r d3v =

〈 ∑

(ri,vi)∈V
mi

〉
. (3.23)

This requires that the initial ri and vi are selected with probability proportional to f(r,v, t0),3

where t0 is the starting time of our simulation.

With an initial set of particles with phase-space coordinates that evenly sample f(r,v, t0),

the phase-space density at a later time, f(r,v, t), can be approximated by the distribution

of particles at this time, if we move the particles through phase space according to

dri
dt

= vi and
dvi

dt
= −∇Φ(ri). (3.24)

We estimate the potential from the masses and positions of the N particles through the

Poisson equation, noting that the linearity of this equation means that the potential at ri is

simply the sum of the potential at ri from all other particles in the system

Φ(ri) = −
∑

j 6=i

Gmj

|ri − rj|
. (3.25)

This potential (assuming δ-function point mass particles) diverges as particles approach

one another, leading to large gradients in Φ, hence large accelerations. These require careful

integration with small time-steps to produce the correct evolution of vi(t). As discussed in

§3.1.2, close encounters should not be important for the evolution of collisionless DM, and

so these large accelerations in close encounters are entirely spurious, a result of the small

number of particles used in simulations compared to the number of DM particles in the

underlying physical systems that is being simulated. It is therefore common practice to

‘soften’ the gravitational potential, such that the force between two particles falls off as the

separation tends to zero.
3Assuming that all simulation particles have the same mass.
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3.1.4 Gravitational softening

A common example of this softening procedure is so-called Plummer softening, where the

potential becomes

Φ(ri) = −
∑

j 6=i

Gmj

(|ri − rj|2 + ε2)1/2
, (3.26)

with ε the ‘gravitational softening length’. Equation (3.26) corresponds to the potential if

each particle had a Plummer density profile (Plummer, 1911)

ρP (r) =

(
3m

4πε3

)(
1 +

r2

ε2

)− 5
2

. (3.27)

However, softening and treating each particle as an extended mass distribution are not

entirely equivalent as the force acting on a particle at ri is calculated from the gradient of

the potential there, not the force that would be exerted on an extended density distribution

centred there.

Softening reduces the forces in close encounters, allowing for the use of longer time-

steps than for an unsoftened potential. It also provides a better estimate of the forces that

would be present if there were a smooth matter distribution rather than N δ-function par-

ticles. Another reason often cited for including softening is to reduce two body relaxation.

As discussed in Dehnen (2001) and found empirically by (Hernquist & Barnes, 1990), re-

laxation effects are not suppressed much by softening. This follows from the Coulomb

logarithm term in the relaxation time (equation 3.7); relaxation results from both close and

near encounters, with each decade in impact parameter contributing equally. Reducing

the effects of close encounters therefore cannot prevent relaxation from occurring, which

depends predominantly upon the number of particles used in the simulation.

3.1.5 The GADGET N -body code

Having introduced the theoretical background toN -body techniques, we now remark upon

how the particle distribution is evolved in practice in the collisionless simulations used in

cosmology, in particular in the GADGET code used throughout this thesis.
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Gravitational softening in GADGET

We start by discussing gravitational softening, for which Plummer softening is no longer

popular. This is because the force due to a Plummer sphere is everywhere less than that

due to a point particle, which means that the expected value of the forces in a Plummer

softened N -body system systematically deviate from the forces in the underlying system.

This force bias can be reduced by using a compact kernel, i.e. one for which the force

returns to that for a point particle outside of some radius. The kernel used in GADGET is

the spline kernel introduced by Monaghan & Lattanzio (1985) in the context of smoothed-

particle hydrodynamics (SPH). This corresponds to a density distribution for each particle

ρs(r, ε̃) =
8m

πε̃3





1− 6
(
r
ε̃

)2
+ 6

(
r
ε̃

)3
, 0 ≤ r

ε̃
≤ 1

2
,

2
(
1− r

ε̃

)3
, 1

2
< r

ε̃
≤ 1,

0, r
ε̃
> 1.

(3.28)

For this kernel, the forces between particles separated by more than ε̃ are the same as

those for point particles. In GADGET, the gravitational softening length ε, is defined by

ε̃ = 2.8ε. This definition stems from Plummer softening described in §3.1.4. With ε̃ = 2.8ε,

the gravitational potential at zero radius is −Gm/ε, the same as for a Plummer sphere

(equation 3.27).

Efficient gravitational force calculations

A direct summation of the forces acting on all particle pairs in a simulation would involve
1
2
N(N−1) individual force calculations. For simulations that can have upwards of a billion

particles, this would be completely infeasible in a sensible amount of time and so alterna-

tives to direct summation are used. Two popular solutions to this problem are to use a tree

or a particle mesh. GADGET uses both, so we describe them both here.

Tree: The hierarchical tree algorithm (Barnes & Hut, 1986) works by dividing the simula-

tion box up into sub-regions and dividing these sub-regions into further sub-regions until

each region contains either one or no particles. In GADGET this division is done using an

octree, where each cubic region is divided into eight equally sized octants. When calculat-

ing the forces on a particle, nearby particles can have their forces calculated directly, while
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Figure 3.1: A schematic of an octree, showing how the physical simulation volume is

divided into octants on the left, and how this can be stored in a tree structure on the right

(Source: Wikimedia Commons).

for sets of more distant particles contained in some sub-region, the mass within the sub-

region at the centre-of-mass of the sub-region can be used instead. This is because the small

scale distribution of matter has only a small influence on the force felt far away due to that

matter. This method of calculating forces lends itself naturally to a tree structure, as shown

in Fig. 3.1. The root node of the tree contains the mass within the simulation box and the

centre of mass of the box, and then eight links to its daughter nodes. These daughter nodes

will contain the centre of mass of the particles within the corresponding cubic cell, as well

as links to their eight daughter nodes. This continues until we reach leaf nodes, which are

those containing one or zero particles.

In order to calculate the force on a particle we start at the root node, and traverse the

tree. If the centre of mass of a node is sufficiently far away from the particle for which we

are calculating the forces, then all particles within the corresponding cell are treated as a

single particle with mass equal to the mass within the cell and at the position of the centre

https://commons.wikimedia.org/wiki/File:Octree2.png


CHAPTER 3. SIMULATING SIDM 70

of mass of the cell. If the node is not sufficiently far away then we continue to walk the

tree, opening up its daughter nodes. For a node that is a distance r away, with a cell of

side-length l, ‘sufficiently far away’ usually means l/r < θop, where θop is known as the

opening angle. In GADGET this criteria is altered somewhat, so that a node containing mass

M is opened if:
GM

r2

(
l

r

)2

> α |a|, (3.29)

where a is the acceleration on the particle in question4 and α is the ErrTolForceAcc param-

eter that determines the accuracy of the tree-force calculation.

Particle mesh: The particle mesh algorithm starts by calculating a gridded density field,

by assigning the mass of the particles on to a grid. For this purpose GADGET uses a cloud-

in-cell assignment (Hockney & Eastwood, 1981). The Poisson equation (3.21), can then be

efficiently solved, by noting that in Fourier space it becomes

− |k|2Φ̃(k) = 4πGρ̃(k), (3.30)

with Φ̃ and ρ̃ the Fourier transforms of the potential and density respectively.

Using a Fast Fourier Transform, it is efficient to convert between a quantity and its

Fourier decomposition. The gravitational forces are found by Fourier transforming the

gridded density and using equation (3.30) to calculate Φ̃ from ρ̃, before performing an in-

verse Fourier transform to get the potential Φ. The gravitational forces can then be calcu-

lated from the gradient of Φ. This method is fast, and has the added bonus of implement-

ing periodic boundary conditions, as usually required for a cosmological simulation. The

downside is that the resolution is limited by the size of the grid used for calculating the

density and potential, and so if we want high force resolution in high density regions, we

would require a fine mesh everywhere. This can be rectified by using an adaptively refined

mesh, as done in ART (Kravtsov, 1999), FLASH (Fryxell et al., 2000), RAMSES (Teyssier, 2002)

and ENZO (Bryan et al., 2014). In GADGET the solution is to split the force calculation into

a long and short-range component. The short-range forces are calculated using a tree, and

the long-range forces using a mesh with a fixed cell size.5

4In GADGET this is estimated from the acceleration in the previous time-step.
5This force splitting is done in Fourier space, with Φ̃ split into two components, Φ̃long = Φ̃ exp

(
−|k|2r2

s

)
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Particle time-steps

The final aspect of GADGET that we will discuss before introducing our SIDM implemen-

tation is the time-stepping procedure. This uses leapfrog integration, which updates the

position and velocities of particles according to

Drift : ri = ri−1 + vi−1/2 ∆t (3.31)

Kick : vi+1/2 = vi−1/2 + ai ∆t, (3.32)

where ri and vi correspond to the positions and velocities at integer time-step i, and ai is

the acceleration at time-step i, which for gravity is just a function of the ri. Note that the

positions and velocities are not updated at the same integer time-step, but a half-integer

time-step apart. The positions are updated from time-step i to time-step i+1, by the velocity

at a time half-way between i and i + 1, and vice-versa. It is from this behaviour that the

technique gets its name.

Equations (3.31) and (3.32) are complicated somewhat when dealing with time integra-

tion in an expanding Universe, as detailed in Quinn et al. (1997). Another complication

arises when we want particles to have time-steps that adapt to the environment. For ex-

ample, particles in the centre of dense collapsed structure need much shorter time-steps to

accurately integrate their motion than particles moving through a low density region, and

using the shortest required time-step for all particles in the simulation would be wasteful.

The ∆t are therefore allowed to vary according to

∆tgrav = min

[
∆tmax,

(
2ηε

|a|

)1/2
]
, (3.33)

where ε is still the gravitational softening length, a is the acceleration of the particle for

which we are calculating the time-step, and η a numerical parameter that controls the

time-integration accuracy.6 To allow for particles to be synchronised, the time-steps from

and Φ̃short = Φ̃− Φ̃long, with rs the spatial scale at which the force is split. The long range forces are calculated

using the particle mesh method with the potential Φlong, while the force between pairs of particles (or particles

and distant cells) can be appropriately modified from the softened Newtonian force to implement the forces

coming from Φshort.
6η is the GADGET parameter file option ErrTolIntAccuracy.
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equation (3.33) are mapped onto a power of two hierarchy, where all time-steps are some

maximum allowed time-step divided by a power of two.

Because of the alternating updates of position and velocity, there are two different ways

to implement variable time-steps within a leapfrog scheme. These are known as ‘drift-

kick-drift’ (DKD) and ‘kick-drift-kick’ (KDK). In KDK the time-step effectively changes at

an intermediate point in the kick, while in DKD it changes during the drift. Because a par-

ticle’s time-step is calculated from the acceleration on it, which in turn depends on particle

positions, it is determined at the start or end of a drift step. For this reason, the time-

asymmetry of KDK is smaller than DKD. The decreased time-asymmetry of KDK leads to

better behaviour, as demonstrated for the case of orbits in a Keplerian potential by Springel

(2005). To be explicit about the steps involved in KDK integration, each time-step is com-

posed of the following:

K(∆t/2) : vi+1/2 = vi + a(ri)
∆t

2
, (3.34)

D(∆t) : ri+1 = ri + vi+1/2 ∆t, (3.35)

K(∆t/2) : vi+1 = vi+1/2 + a(ri+1)
∆t

2
, (3.36)

where ∆t for this time-step is determined by using a(ri) in equation (3.33).

3.2 Collisional dynamics

In §3.1.3 we introduced the collisionless Boltzmann equation (CBE), which describes the

evolution of a collisionless fluid such as CDM. When considering SIDM we want to solve a

similar equation, with the addition of a collision term that scatters particles into and out of

patches of phase space. A question one is often asked when discussing SIDM simulations

is how it can be reasonable for a simulation particle – that ‘represents’ a large number of

DM particles – to scatter in one direction. Is this not akin to saying that a very large number

of DM particles all happened to receive the same momentum kick, and if it is the same, why is it a

reasonable thing to do?

A key thing to note about a collision term in the Boltzmann equation is that it scatters

particles away from the DM phase space sheet. The CBE combined with the assumption
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that DM is cold, tells us that the fine grained distribution function evolves as a 3D sheet

in phase space, and that gravity acts to distort this sheet. These distortions do not tear

the sheet, such that neighbouring points in phase space remain that way indefinitely. With

a collision term this is no longer the case, as neighbouring points in phase space can be

scattered away from one another. Thinking of simulation particles as patches of phase

space is inconsistent with this picture, because parts of the patch will be scattered while

others will not. We therefore find it more satisfactory to think of SIDM simulation particles

as phase-space tracers. This distinction is largely philosophical, but goes some way to

answering the question of why it is reasonable to scatter simulation particles as if they

were individual DM particles.

3.2.1 Calculating the interaction rate

The Boltzmann equation with a collision term can be written as

df(r,v, t)

dt
= Γin − Γout. (3.37)

The ‘out’ term accounts for collisions in which a particle at position r and with velocity

v scatters from another particle and thus no longer has a velocity v, while the ‘in’ term

accounts for collisions that result in a particle with velocity v when it previously had some

other velocity.

If the interacting particles can be treated as hard spheres with radius r, then particles

will interact if they come within a distance 2r of each other. The cross-section for particle

interactions is therefore σ = π(2r)2. A particle moving at speed v through a stationary back-

ground of such particles, with a particle number density n, will scatter with background

particles at a rate

Γ = nσv. (3.38)

This can be generalised for the case where background particles have a distribution of

velocities described by fv(r,v) = f(r,v)/ρ(r),7 then a particle at ri with velocity vi will

scatter at a rate

Γi(ri,vi) =

∫
fv(ri,v)ρ(ri)

σ

m
|vi − v| d3v, (3.39)

7Here fv is normalised such that
∫
fv(r,v) d3v = 1.
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from which we recover equation (3.38) using the relationship between mass density and

number density (ρ = mn) for the case of stationary background particles (fv(ri,v) = δ(v),

with δ the Dirac delta function).

Γi gives the rate of scattering for individual particles, from which we can easily calculate

the out term in equation (3.37) as

Γout(ri,vi) = f(ri,vi)Γi(ri,vi). (3.40)

However, we want to implement scattering into an N -body code, for which the scattering

rate per particle was already the useful quantity. We therefore wish to implement equa-

tion (3.39) at each time-step in the code, for each particle in our simulation. Doing this

accounts for Γout in equation (3.37), while Γin is accounted for by appropriately updating

the velocities of those particles that scatter, such that they scatter in to a new patch of phase

space with the correct probability.

3.2.2 Calculating the post-scatter velocities

We assume that the SIDM particle interactions are fully described by an azimuthally sym-

metric differential cross-section, which could have some velocity dependence, d2σ
dΩ dv

. From

the differential cross-section at a particular velocity, dσ
dΩ

, we can calculate the total cross-

section at that velocity as

σ = 2π

∫ π

0

sin θ
dσ

dΩ
dθ. (3.41)

We can then define the probability that a scattered particle changes direction by an angle in

the range [θ, θ + dθ] as

p(θ) dθ =
2π sin θ

σ

dσ

dΩ
dθ. (3.42)

3.3 Methods of simulating SIDM

Before going on to explain the method we used to implement DM self-interactions in the

GADGET code, we briefly discuss two potential methods of simulating SIDM that were not

chosen, and the reasons for doing so. SIDM simulations in the literature are dominated

by N -body methods that add velocity-kicks to the gravitational dynamics, but one could
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imagine simulating SIDM using a fluid like description, or altering the method for calcu-

lating which particles receive kicks from that usually employed.

3.3.1 Fluid-like description of SIDM

For a system of collisional particles, we can define the mean free path, λ = 1/σn, where σ is

the cross-section for particle interactions and n the number density of particles. If λ is much

smaller than the characteristic length scale of the system, then the continuum assumption

applies and we can treat the collection of particles as a continuous fluid. This fluid can

be described by macroscopic quantities: density, pressure, temperature and bulk velocity,

that are single valued at each location, and are well-defined over ‘infinitesimal’ volume

elements. To see that this is not true for a system of collisionless particles, consider two

bulk streams of particles that pass through each other. In the collisionless case there will

be two bulk velocities at one location, while with a short λ, particles from the two streams

will interact with each other. These interactions turn the two bulk velocities into random

motions, which are macroscopically manifest as an increased temperature and pressure.

Can SIDM be treated in such a way? This depends on the cross-section for particle

scattering, as well as the typical densities of dark matter. If we take an SIDM cross-section

of σ/m = 1 cm2 g−1, and assume a density equal to the average density inside virialised

objects at z = 0, then we find

λ =
1

σn
=

1

(σ/m)ρ
=

1

1 cm2 g−1 200ρcrit,0

≈ 150 Mpc. (3.43)

This is much larger than the typical size of haloes, and so SIDM with such a cross-section

is very far from behaving like a fluid. The mean free path in equation (3.43) considered a

density that is the average within a halo’s virial radius. The density inside a halo varies by

orders of magnitude, so in the central high-density regions of a halo the DM may behave

more like a fluid, however the fact remains that SIDM with a cross-section of the order

usually considered is in an intermediate regime where collisions can neither be ignored nor

treated as so frequent that they lead to fluid behaviour. This should not be surprising given

that in Chapter 2 we found that for σ/m = 1 cm2 g−1 the average number of interactions

that a particle undergoes by z = 0 is of order unity.
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Yoshida et al. (2000a) ran simulations that treated SIDM as a fluid, and found that rather

than reducing the central densities of haloes – one of the main astrophysical motivations

for SIDM – the central cusp became steeper than the ρ ∝ 1/r seen with CDM. The cluster-

scale halo they simulated also became significantly more spherical, at odds with observed

clusters that can have large ellipticities in projected mass. The sort of cross-sections that

would lead to fluid-like SIDM are also ruled out by the Bullet Cluster, where the separation

between the hot gas and lensing mass (primarily DM) demonstrates that DM’s behaviour

cannot be the same as that of the gas. In summary, simulating DM as a fluid is valid for

highly collisional SIDM, but not for the cross-sections that are currently allowed by astro-

physical observations.

3.3.2 Individually resolved DM interactions

Particularly for the case of isotropic scattering, a natural way to implement scattering

would be to treat the DM simulation particles as hard spheres, that scatter with each other

when they touch. Particles at positions x1 and x2, with velocities v1 and v2, collide during

the next time-step if

|x1 − x2 + (v1 − v2) t| = 2 rp (3.44)

has a solution for t in the range 0 to ∆t. Here, rp is the effective radius of a simulation

particle for the purposes of scattering, defined by π(2 rp)2 = σp = (σ/m)mp. This setup is

shown in Fig. 3.2.

• •x1 x2

v1

v2

• •
2 rp

u1

u2

Figure 3.2: Two particles whose positions and velocities mean that they will scatter within the next

time-step. For isotropic scattering,
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An appealing aspect of such a scheme is that it keeps scattering local, and that the post-

scatter velocities can be worked out from the pre-scatter velocities and the axis connecting

the particle centres at the point of collision – which is parallel to the exchanged momen-

tum between the two particles. However, this scheme is computationally expensive, as a

quadratic equation must be solved for each pair of particles to see if they will scatter within

the next time-step. Only neighbours up to some maximum separation, max(vpair) ∆t, would

need to be checked for potential scattering, but the maximum pairwise velocities of parti-

cles, max(vpair), can be large. High-velocity scattering events transfer the greatest amount

of energy and momentum and so should not be missed, which would require a neighbour

search over a large volume.

Aside from the poor speed performance expected of this method, there is also the worry

that it would be particularly sensitive to small-scale details of the simulation, such as the

initial conditions. For a cross-section of 1 cm2 g−1, the scattering radius is

rp =

(
mp

108 M�

)1/2

0.041 kpc, (3.45)

while for a Planck 2015 cosmology (Planck Collaboration et al., 2016), the comoving mean

inter-particle separation (l = (mp/ 〈ρ〉)1/3) is

l =

(
mp

108 M�

)1/3

130 kpc. (3.46)

At low redshift the scattering radius is over three orders of magnitude smaller than the

mean inter-particle separation, and over an order of magnitude smaller than a typical grav-

itational softening length, with these ratios increasing as we move to higher resolution.

This means that whether or not particles scatter is sensitive to the trajectories of particles

on scales much smaller than any other scales in the simulation. As an example of where

this might cause a problem, consider a cosmic sheet or filament, collapsing from grid-like

initial conditions. If this collapse proceeds along one of the grid axes, then at the point of

shell-crossing, the particles will all scatter. Contrast this with the case of collapse at some

significant angle to each of the grid axes, where no neighbouring particles will pass within

2 rp of each other during shell-crossing. For glass-like initial conditions this effect would be

less severe, but still one should be cautious about having a simulation that is sensitive to
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particle positions on scales well below those that would usually be considered ‘resolved’.

We finally note that this method extends less naturally to the case of velocity-dependent

or anisotropic DM–DM scattering cross-sections. For this and the other reasons above we

chose not to use this method for our SIDM simulations.

3.4 Implementation

We implemented DM scattering on top of the GADGET code described earlier in this chap-

ter. The scattering is done stochastically, using a similar algorithm to Rocha et al. (2013)

that they derive from the Boltzmann equation. At each time-step, the probability for each

pair of nearby particles to scatter is calculated, and a random number is drawn to see which

particles do actually scatter. This algorithm is similar to that used in other SIDM simula-

tions (including Kochanek & White, 2000; Yoshida et al., 2000b; Davé et al., 2001; Koda &

Shapiro, 2011; Vogelsberger et al., 2012; Fry et al., 2015; Elbert et al., 2016; Kim et al., 2017),

with these algorithms primarily differing in the number of neighbours (or search volume)

used to find potential scattering pairs.

For ease of discussion, we focus here on the case of isotropic scattering with a velocity-

independent cross-section. In Chapter 6 we discuss how to extend this method to the more

general case of an arbitrary differential cross-section.

3.4.1 Scattering Rate

For a particle moving with velocity vi, its scattering rate is given by equation (3.39), which

we repeat here

Γi(ri,vi) =

∫
fv(ri,v)ρ(ri)

σ

m
|vi − v| d3v. (3.47)

To calculate scattering probabilities within an N -body simulation, fv and ρ are estimated

from the volume within a distance hSI of a particle’s position. We call hSI the ‘scatter search

radius’, and note that we will sometimes simply call it h. To avoid confusion with the

Hubble parameter (h = H0/100 km s−1 Mpc−1), we will use hSI in this chapter, while in

future chapters the meaning of h should be clear from the context.
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In equation (3.47), it is the cross-section per unit mass, rather than the cross-section of

individual particles, that enters the scattering rate per particle. It is for this reason that it

is σ/m that SIDM studies can constrain. Throughout this work, σ and m will refer to the

cross-section and mass of individual DM particles, while σp and mp will be used for the

cross-section and mass of the simulation particles. Astrophysical observables, such as core

sizes, are determined by the fraction of particles that are scattered during a process, and so

relate to the scattering rate for particles – whether they be individual particles or simulation

particles. This means that the cross-section of our simulation particles must scale with the

simulation particle mass, following

σp =
( σ
m

)
mp. (3.48)

The simplest way to estimate the scattering rate from the particles enclosed in the search

region is for all neighbour particles to contribute equally to the estimate of ρ and fv, inde-

pendent of their location within the search region. For a local number density np of simula-

tion particles, the expected number of particles within the search region is 〈Np〉 = 4
3
πh3

SI np.

So using ρ σ/m = ρ σp/mp = npσp, we can estimate the integral in equation (3.47) by a sum

over the Np neighbour particles

Γi =

Np∑

j=1

σp|vi − vj|
4
3
πh3

SI

. (3.49)

From this, the probability of two particles, i and j, separated by a distance less than hSI,

scattering within the next time step, ∆t, is given by

Pij =
σp|vi − vj|∆t

4
3
πh3

SI

, (3.50)

where for velocity-dependent cross-sections, σp would be a function of |vi − vj|.
In this scattering procedure, hSI is a numerical parameter that has to be chosen. In

§4.2.2 we investigate the effects of changing hSI, using both a fixed hSI for all particles, as

well as a variable hSI that adapts to the local density. We find that using a fixed value of

hSI, similar in size to the gravitational softening length, provides correct results. This is

in contrast to smoothed particle hydrodynamics (Gingold & Monaghan, 1977) (for which

adaptive smoothing lengths are necessary) as the scattering is inherently stochastic, and so

it is not important that the scattering probability varies smoothly.
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Neighbour search

The oct-tree employed by GADGET for the gravity calculation is used to find neighbours

from which a particle could scatter in the next time-step. We find particles within a spheri-

cal search region with radius hSI, by walking the tree, opening a node if it has some overlap

with the search region. When using a fixed hSI for all particles, the search is symmetric

in the sense that if particle i finds particle j as a potential scattering partner, then j will

also find i. For this case, we can ensure that each pair of particles separated by a distance

less than hSI is only found once, and scatters with the probability given in equation (3.50).

However, for variable hSI this symmetry in neighbour searching is no longer guaranteed,

and so instead we allow particle pairs to find each other in both directions, and scatter with

a probability equal to half of that in equation (3.50) each time – though in this case they will

not necessarily ‘meet’ twice.

3.4.2 Scattering kinematics

If two particles with identical mass, and velocities vi and vj are to scatter, then we first

move into the centre of momentum frame, in which the velocities are v′i and v′j = −v′i.
We use the direction of v′i to define the z-axis, from which the polar scattering angle θ is

measured. We draw a random θ from the probability density function p(θ) (equation 3.42)

to determine the polar angle at which the particles scatter, as well as drawing a random

azimuthal angle from the range [0, 2π]. With these two angles, the scattering kinematics in

the centre of mass frame are completely determined. Finding the momentum transfer in

the centre of mass frame, we can then move back to the simulation frame, and apply these

momentum kicks.

For the case of isotopic scattering that we consider in this chapter, the scattering kine-

matics are particularly simple.8 The post-scatter velocities are

ui = V + w ê

uj = V − w ê
(3.51)

8The fully general case is discussed in Chapter 6.
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where the u are the post-scatter velocities, V = (vi + vj)/2, w = |vi − vj|/2, and ê is a

randomly oriented unit vector. When scattering is anisotropic, the post-scatter velocities

take a similar form, but the direction of ê is drawn from a probability density function that

depends on p(θ).

3.4.3 Multiple scatters within a time-step

As particle scattering is implemented on a particle-pair by particle-pair basis, it is possible

for a particle to scatter more than once in a single time-step. While the low rate of particle

scattering9 results in these multiple scatters being infrequent, it is important that they are

dealt with in an appropriate way. Because the momentum kick from one scattering event

alters the velocities of the particles for any future scattering event, we cannot allow a par-

ticle to scatter twice in one time-step with the same initial velocity. Instead we arbitrarily

order all pairs of particles, and update the particle velocities when we decide two particles

will scatter. In this way any future scattering events involving these particles will use the

updated velocities, essentially time-ordering the scattering events within one simulation

time-step.

Scattering across processors

A further complication arises when running simulations on multiple processors. In order

for particles that reside on different processors (which have access to different memory) to

scatter, the properties of one of the particles must be exported to the processor on which the

other particle resides. To increase parallel efficiency, all of these exports take place simulta-

neously, and then processors determine if any of their imported particles scatter with their

own particles. During this step, it would be possible for a particle that is currently exported

to scatter off an imported particle on its own processor. As such, the particle could scatter

simultaneously on different processors, which would lead to both scattering events taking

place with the same initial velocity for the particle in question. We call this occurrence ‘bad

9For σ/m = 1 cm2 g−1 we showed in Chapter 2 that the average number of scattering events per particle is

O(1) by redshift zero, and so the frequency of particles scattering twice within a single simulation time-step

is very low.
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scattering’. Conserving energy and momentum in each of the two scattering events, and

then later combining the two momentum kicks, does not in general conserve energy, and

this process could lead to the production of additional kinetic energy in the simulation. The

problem is that the collisions have not been time-ordered. With proper time-ordering, the

incoming velocity for the second scattering would have been altered by the first scattering

event, changing the momentum transfer in the second scattering event.

There are various ways to overcome this problem. A popular method in the literature

is the use of shorter time-steps for SIDM than would be used for collisionless DM (e.g.

Vogelsberger et al., 2012), to keep the probability of a particle scattering twice in one time-

step negligibly small. Unfortunately, this leads to SIDM simulations that take much longer

than their CDM counterparts, which is clearly undesirable. For this reason, we sought an

approach that would work when time-steps are set by the same gravitational dynamics

constraints as are used for CDM simulations.

Due to the domain decomposition in GADGET, most particles that reside in each other’s

search radii, will be stored on the same processor. Collisions between these particles are

easily time ordered, as the particles’ velocities can be updated as soon as they scatter. This

is also true if a particle exported to another processor scatters twice there. Again, all the

necessary velocities can be updated after the first scattering event, such that the second

event is correctly modelled. However, a particle scattering on more than one processor,

within a single time-step, is problematic.

Given the small size of hSI compared to the size of the domains, the majority of prob-

lematic scatterings would involve particles from only two domains. For example, particle

i from processor I being exported to processor J and scattering there, whilst a particle

from processor J is exported to processor I and scatters off particle i there. Our solution

for the case of just two domains is to assign a direction between each pair of processors,

and only allow particles to be exported in this direction. To help with load-balancing, the

difference between the number of processor pairs in which a processor exports particles

and the number in which it imports particles, should not be larger than one. To do this, a

directional communications pattern as shown schematically in Fig. 3.3 is used. Assigning

a directionality to the particle send/receive process does not completely prevent particles
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if I + J is even:

if I > J :

I exports particles to J

else:

J exports particles to I

else:

if I > J :

J exports particles to I

else:

I exports particles to J

Figure 3.3: Pseudocode for the directional communications pattern employed in the scattering algo-

rithm, with an example of the direction in which particles are exported for the case of 7 processors.

In the pseudocode, I and J are the ranks of two processors, stored as the GADGET variable ThisTask.

These processor ranks run from 0 to Nprocessors − 1, and are the numbers at the heptagon vertices in

the schematic diagram on the left.

scattering simultaneously on different processors, as it is still possible where particles on

three or more domains are within a distance hSI of each other. However, the rate of scat-

tering within a time-step is low, and the size of the domains compared to the size of hSI is

large, such that these events are highly unlikely.

In order to quantify the level at which bad scattering takes place, we keep a log of all

scattering events that allows us to detect these problematic encounters. For three particles

drawn from a Maxwell-Boltzmann velocity distribution, the mean change in energy when

one particle scatters ‘badly’ from the two other particles, is 〈∆E〉 = 1
2
〈KE〉, where 〈KE〉 is

the mean kinetic energy of individual particles. This rises to 〈∆E〉 ≈ 0.87 〈KE〉 when we

weight the triplets of particles by the probability of them scattering, as particles with higher

relative velocities are more likely to scatter (equation 3.50).

For practical purposes, bad scattering was non-existent once we implemented direc-

tional communication. As an example, across all the simulations used in Chapter 5 only



CHAPTER 3. SIMULATING SIDM 84

one bad scattering event happened. As the expected change in energy due to a bad scatter-

ing is of the order of the kinetic energy per particle in the simulation, a bad scattering event

changes the total energy by ∼ 1 part in NDM, where NDM is the number of DM particles in

the simulation. In Chapter 5 this corresponds to 1 part in 107, making it inconsequential

compared to the non-conservation of energy due to gravitational forces. With variable time

steps, manifest energy conservation is lost (Dehnen & Read, 2011), and our Chapter 5 sim-

ulations had a typical level of energy conservation over the course of a simulation of ∼ 1

part in 104.

It is possible for bad scattering to have a noticeable impact on the results of a simula-

tion. For example, in §4.2.5 we show the evolution of the density profile of an SIDM halo

undergoing core collapse. During this process, the central regions of the halo become ex-

ceptionally dense, and the scattering rates very high. We found in this case, that if we ran

the simulation on a large number of cores, then there could be appreciable rates of bad

scattering, that injected energy into the system and altered the halo’s evolution. For this

reason, the simulations shown in §4.2.5 were run on a single processor.

3.4.4 Scattering within leapfrog integration

As discussed in §3.1.5, GADGET uses a KDK leapfrog time-stepping scheme. Our SIDM

scattering implementation depends on both the particle positions (to find neighbours) and

velocities (for scattering probabilities and scattering kinematics), and so here we describe

exactly which positions and velocities we use. In our implementation, a time-step for an

SIDM particle involves the following:

K(∆t/2) : vi+1/2 = vi + a(ri)
∆t

2
, (3.52)

S(∆t) : ui+1/2 = Scatter(vi+1/2, ri,∆t), (3.53)

D(∆t) : ri+1 = ri + ui+1/2 ∆t, (3.54)

K(∆t/2) : vi+1 = ui+1/2 + a(ri+1)
∆t

2
, (3.55)

where the scatter step is the statement that the post-scatter velocities ui+1/2 are calculated

from the pre-scatter velocities vi+1/2, using the positions from the start of the time-step. It

is not clear that this is the best way to implement scattering, and it may be that putting half
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of the drift step (ri+1/2 = ri + vi+1/2 ∆t/2) before the scatter step would be preferable. We

did not investigate the effect of making this change, because, as demonstrated in Chapter 4,

our code performed as expected in various test cases.

3.4.5 Scattering in cosmological simulations

The scattering implementation as discussed so far has assumed that we are working in

non-expanding space. For cosmological simulations, GADGET uses comoving positions, as

well as velocities and time intervals that differ from their definitions in non-cosmological

simulations. In this section we describe the system of units used internally by GADGET

when simulating an expanding patch of space, and explain how our scattering algorithm

is implemented in a manner that is consistent with these.

GADGET’s system of units for cosmological simulations

We start by re-stating the definition of comoving position, x, related to the physical posi-

tion, r, by

r = a(t)x, (3.56)

where a(t) is the cosmological scale factor.10 From this, we can define the physical velocity,

v, and peculiar velocity, vp, as

v ≡ ṙ = ȧx + aẋ ≡ ȧx + vp . (3.57)

The internal positions in GADGET are comoving, while the internal velocities are neither

physical nor peculiar, instead being the ‘canonical momentum’11

Pos ≡ x (3.58)

Vel ≡ a2 dx

dt
. (3.59)

10We would like to thank Tom Theuns, as the notation in this section draws heavily from his document

describing the inner workings of the EAGLE code (Schaye et al., 2015).
11This is different from the snapshots, where the velocity is vsnap =

√
adx

dt .
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The units used in GADGET are set in the parameter file, with defaults of

UM = 1010 M� = 1.989× 1033 g = ÛM g (3.60)

UL = 1 kpc = 3.085× 1021 cm = ÛL cm (3.61)

UV = 1 km s−1 = 105 cm s−1 = ÛV cm s−1 (3.62)

which defines the GADGET parameter file options UnitMass in g ≡ ÛM , UnitLength in cm ≡
ÛL, and UnitVelocity in cm per s ≡ ÛV . The unit of time is thus a derived unit,

UT = UL U
−1
V = 3.085× 1016 s = 0.979 Gyr. (3.63)

We will use a hat to indicate a (dimensionless) program value, and note the following

relationship between physical masses, velocities and lengths and their respective program

values:

m = UM h−1m̂ (3.64)

v = UV a
−1v̂ (3.65)

l = UL a h
−1l̂. (3.66)

GADGET uses the expansion factor a as the time variable and d log a for time-steps. The

logarithm of the simulation time, which runs from scale factor abegin to amax, is linearly

mapped onto an integer timeline with TIMEBASE integer steps. This defines the difference

in log a between neighbouring points on the integer timeline:

Timebase interval ≡ log(abegin/amax)

TIMEBASE
. (3.67)

The time between two events (such as the start and end time of a time-step – ai and ai+1) is

therefore stored in GADGET as an integer,

ti step =
log ai+1 − log ai

Timebase interval
. (3.68)

To convert a small interval in log a to an interval in time, we can apply the chain rule

dt =
a

ȧ

da

a
=

d log a

H(a)
. (3.69)
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GADGET uses the following definitions relevant to calculating the Hubble constant, H(a):

Hubble ≡ 100 km s−1 Mpc−1 UT (3.70)

E(a) ≡
√

Ωma−3 + ΩΛ + (1− Ωm − ΩΛ)a−2 (3.71)

and therefore

H(a) = hU−1
T Hubble× E(a). (3.72)

Combining this with equations (3.68) and (3.69), we can relate a small time interval, ∆t, to

an interval in log a, and in turn to GADGET’s integer time-step

∆t =
∆ log a

hU−1
T Hubble× E(a)

=
Timebase interval× ti step

hU−1
T Hubble× E(a)

. (3.73)

Scattering probabilities in cosmological SIDM simulations with GADGET

Using the above relationships, we can relate the probability for a pair of particles to scatter

(equation 3.50)

Pij =
(σ/m)mp|vi − vj|∆t

4π
3
h3

SI

, (3.74)

to an expression in dimensionless program values that we can implement in GADGET

Pij =
(σ/m)

(cm2/g)

ÛM

Û2
L

m̂p|v̂i − v̂j|
4π
3
ĥ3

SI

h

a4

Timebase interval× ti step

Hubble× E(a)
. (3.75)

To do this, we define the following:

σ̂ ≡ (σ/m)

(cm2/g)

ÛM

Û2
L

(3.76)

f̂σ ≡
h2

a4
(3.77)

f̂dt ≡
1

h× Hubble× E(a)
(3.78)

d̂t ≡ Timebase interval× ti step, (3.79)

such that the scattering probability can be calculated in terms of program values as

Pij =
σ̂ m̂p|v̂i − v̂j|

4π
3
ĥ3

SI

f̂σ f̂dt d̂t. (3.80)





Chapter 4
Testing the self-interacting dark matter

implementation

4.1 Scattering from a uniform background

To test our scattering algorithm, we modelled a uniform cube of particles moving through

a constant density background of stationary particles. To allow for simple predictions to

be made for the system, we did not allow particles from either the cube or background to

scatter more than once. All of the particles in the cube had initial velocities v0 along the

x

y

z

L

b

b
a

a

a

v0

Figure 4.1: The setup of our test case, where a cube containing Nc particles moves through a cuboid

with a number density of stationary particles nb. The cube and background particle positions are

drawn randomly within their respective volumes. Our test case used b = 11
10a and L = 2a, withNc =

105 particles in the cube. The density of points in the background cuboid was nb = 2.5× 105 a−3.
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z-axis, and gravity was turned off.

4.1.1 Scattering rates

Predicted scattering rates

The expected rate of scattering for each particle in the cube is Γ = nb v0 σp, where nb =

(ρb/mp) is the number density of background particles. This leads to the expected number

of interactions after a time t being approximately

Nexp = Nc Γ t = Nc nb v0 σp t, (4.1)

with Nc the number of particles in the cube.

The expected number of scattering events is complicated by the fact that scattered par-

ticles can no longer interact.1 This effect can be captured analytically by noting that the

number of particles in the cube changes in time according to

dNc

dt
= −ΓNc, (4.2)

with the solution

Nc(t) = Nc(0) exp (−nb v0 σp t) . (4.3)

The expected number of scattering events before a time t is then simply Nc(0)−Nc(t), such

that if we let the cube travel through a uniform background of length L

Nexp = Nc(0) [1− exp (−nbσpL)] . (4.4)

This is still a slight simplification, as when particles at the front of the cube (the right hand

side of the cube in Fig. 4.1) scatter from background particles, they lower the background

density of particles seen by particles towards the back of the cube. This effect can still be

modelled analytically, for which we point the interested reader to Appendix A.

1Allowing scattered particles to scatter again would also complicate things, as scattered particles no longer

have velocities v0 or 0.
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Measured scattering rates

Our test simulations used the parameters given in the caption to Fig. 4.1, with the particle

cross-section chosen such that nbσpL = 0.1. The number of scattering events measured

in this test is plotted relative to the prediction from equation (4.4) in Fig. 4.2 as a function

of the search radius, h. For small values of h, the number of scattering events falls below

that expected. This was noted by Rocha et al. (2013), who found that scattering was not

correctly resolved for h less than 20% of the mean background inter-particle separation.

By running the test case with different time steps, we find that this 20% is not an intrinsic

property of simulating scattering using a Monte Carlo method. Instead we find that the

minimum h for which scattering is correctly implemented is a function of the time step,

cross-section and the relative velocity of particles.

Probability saturation

In general, the scattering rate is insensitive to h, as the number of neighbour particles that

a particle finds at each time step is proportional to the volume searched (∝ h3), but the

probability of scattering from each of those particles follows equation (3.50) (∝ h−3). The

product of the number of neighbour particles, and the probability of scattering with each of

them, gives the total probability of a particle scattering, which does not depend on h. This

breaks down when the probability to scatter from a neighbour particle becomes greater

than unity. At that point, the probability of a particle scattering in a time step is just the

probability of finding a neighbour particle during that time step, which goes as h3. For this

reason, in this ‘probability-saturated’ regime, the rate of scattering is proportional to h3, as

shown by the solid lines in the right panel of Fig. 4.2. As the probability for a pair of neigh-

bouring particles to scatter is proportional to ∆t/h3, a smaller h can be used when using

shorter time steps. Given that the time-steps in these test simulations were set arbitrarily,

there is no significance to the value of h at which probability saturation occurred (counter

to the conclusions drawn by Rocha et al., 2013). In §4.2 we discuss scattering in a DM halo,

where the time-steps are limited by dynamical considerations, following equation (3.33).

We therefore leave the discussion of how to choose h to avoid probability saturation for
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Figure 4.2: The number of scattering events in our test simulations as a function of neighbour-

search radius, h. The left panel is similar to Fig. 1 in Rocha et al. (2013), and we find that we also see

a decrease in the rate of scattering, below that expected, when using small h. While this happens

for h . 0.2(mp/ρb)1/3 in agreement with the results in Rocha et al. (2013), the precise h at which the

drop in scattering rate begins is a function of the simulation time step, ∆t, here measured in units of

a/v0. As discussed in the text, we can now explain this effect as a result of the probabilities for pairs

of particles to scatter within a time-step becoming greater than 1. These probabilities are ∝ h−3,

and so in the right panel we show the same data as in the left panel, but plotted on logarithmic

scales. The solid lines show N ∝ h3, the result one expects from probability saturation. For these

test simulations, Nexp ≈ 104, and the error bars show the 1σ uncertainty, assuming thatN is Poisson

distributed.
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Figure 4.3: Diagram of the repeated sampling problem. The blue, green and red lines mark the

regions sampled by particles with different search radii. As h is decreased, the number of potential

scattering partners that a particle finds deceases. For sufficiently small h, the expected number of

potential scattering partners drops below the expected number of scatters and the scattering rate

drops below what it should be.

§4.2.3, where it can be discussed in a context relevant for astrophysical simulations.

Repeated sampling

The problem of probability saturation can be avoided, so long as sufficiently small time-

steps are used. However, another problem arises when h is made too small. The problem

is easy to see when one considers the simple test case used here. As h is made smaller, the

number of background particles that any one particle from the moving cube will sample

during the course of the simulation decreases. In the extreme case that fewer than Nexp of

theNc cube particles will find another particle in their search region, the number of particles

that scatter must decrease below that expected. This problem is demonstrated pictorially

in Fig. 4.3.

To see when this becomes a problem, we can consider simulating the particles as hard

spheres that scatter whenever they are separated by a distance rp =
√

σp
π

. This was the

method of simulating scattering described in §3.3.2. From considering simulating the inter-

actions in this way, we can see that our method will clearly have broken down for h ≤ rp.
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In fact this problem exists even for larger h than this, though as discussed in §3.3.2, for as-

trophysically allowed cross-sections, rp is orders of magnitude smaller than any other scale

in the simulation, and so this problem can be avoided with a sensible choice for h.

It is interesting to note how breaking this constraint can lead to a decrease in the num-

ber of scattered particles, even though the probability of scattering in any one time-step

(and hence the scattering rate) is being correctly (albeit stochastically) sampled. As h is

decreased, the time-steps must be decreased according to ∆t ∝ h3 to avoid probability-

saturation. This in turn means that the distance travelled in a time-step is∝ h3, so that with

small h, particles sample the same region of space in many successive time-steps. Pairs of

particles that end up close together can scatter off each other several times, keeping the to-

tal scattering rate correct, but not distributed between the particles in the correct way. We

therefore call this second problem associated with a small neighbour-search radius, repeated

sampling.

4.1.2 Post-scatter kinematics

As well as the rate of scattering, the directions and velocities of scattered particles in our

test case were compared to expectations. For isotropic scattering, the distribution of scat-

tered particles is the same for those originally part of the background or originally part of

the moving cube. The expected distribution of velocities and directions is calculated by

transforming the differential cross-section from the centre of mass frame of the collisions,

into the frame of our simulations. For the case of isotropic scattering, these distributions

take on simple forms, with f(θ) ∝ sin 2θ, and f(v) ∝ v for v ≤ v0, with no particles with

velocities greater than v0. These results are shown in Fig. 4.4, with results that match ex-

pectations.

4.2 Scattering in an isolated halo

Astrophysically allowed SIDM cross-sections result in DM interactions that only happen

at an appreciable rate in the centre of gravitationally collapsed objects. An important test

of our code, is therefore how well it captures the rate of scattering inside a DM halo. To
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Figure 4.4: The distribution of polar angles and velocity magnitudes of scattered particles in one

of our test simulations. The red dashed line shows the expected distribution, with the red shaded

region showing the 2σ variation about this expectation, assuming the number of particles in each

bin is Poisson distributed. The top panel is symmetric about θ = π/4 because (in the frame of the

stationary background) particles that scatter leave at right angles to one another, so if a cube particle

is scattered by an angle θ1, then the background particle with which it scattered moves at an angle

π/2− θ1 with respect to the z-axis.
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test this, we simulate isolated Hernquist profiles (Hernquist, 1990), which have a density

distribution

ρ(r) =
M

2π

a

r

1

(r + a)3
, (4.5)

with M the total mass of the halo, and a the scale radius. These are used because unlike

NFW profiles (equation 2.12), they have a finite mass and so do not need to be truncated.

They also have analytical distribution functions, which allow equilibrium initial conditions

to be easily generated, and quantities such as the expected scattering rate within a halo to

be calculated analytically.

In order to generate haloes that closely resemble those found in cosmological simula-

tions, we use a matching procedure between NFW profiles and Hernquist profiles. Given

the Hernquist profile’s two free parameters, we require two matching criteria. The first of

these we take to be matching the normalisation of the density in the central regions, for

which ρ ∝ r−1 for both NFW and Hernquist profiles. We also then match the mass within

a radius of r200 for the Hernquist profile to that of the NFW profile, making use of the mass

within a radius r for a Hernquist profile,

M(< r) = M
r2

(r + a)2
. (4.6)

Enforcing these matching criteria yields a relationship between the Hernquist parame-

ters, a and M , and the NFW parameters, M200, r200, and c:

M = M200
(r200 + a)2

r2
200

(4.7)

a =
r200√
c2

2[ln(1+c)− c
1+c ]
− 1

. (4.8)

We note that a similar matching procedure is described in the text of Springel et al. (2005a),

but that they match M200 of the NFW profile to the total mass, M , of the Hernquist profile,

resulting in a slightly different formula for a.

4.2.1 Generating Hernquist profile initial conditions

In order to generate a particle distribution with positions and velocities corresponding to

a Hernquist profile, we need the phase space distribution function. For a Hernquist profile
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this is only a function of the specific energy,2 E, given by Hernquist (1990)

f(E) =
M

8
√

2πa3v3
g

1

(1− q2)5/2

[
3 sin−1 q + q(1− q2)1/2(1− 2q2)(8q4 − 8q2 − 3)

]
, (4.9)

where

vg =

√
GM

a
(4.10)

and

q =

√
−aE
GM

. (4.11)

First, the positions of particles are generated by drawing uniform random numbers in the

interval 0 to 1 and mapping them onto radii. For a uniform random variable X ∼ U(0, 1),

this is done by finding r such that

X =
M(< r)

M
=

r2

(r + a)2
. (4.12)

The angular positions of the particles are simply found by drawing polar and azimuthal

angles corresponding to a uniform distribution over the unit sphere.

The velocities are more complicated. Given a particle at radius r with velocity v, its

specific energy is

E = Φ(r) +
1

2
|v|2, (4.13)

where

Φ(r) = − GM

r + a
(4.14)

is the gravitational potential due to a Hernquist mass distribution. All particles must be

bound to the halo, such that there is a maximum velocity for particles at radius r

vesc(r) =

√
2GM

r + a
. (4.15)

To draw a velocity for a particle at radius r according to the distribution function, we can

use rejection sampling. We first draw a v uniformly from within the sphere defined by

|v| < vesc(r). This velocity is then accepted with a probability proportional to f(E). This

can be done by finding the maximum f(E) at that radius, which is f
(

Φ(r)
)

, and drawing

a uniform random variable Y ∼ U(0, 1). We then accept the velocity v if

Y f
(

Φ(r)
)
≤ f

(
Φ(r) +

1

2
|v|2
)
, (4.16)

2This means that the velocities of particles are isotropically distributed at all radii.
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otherwise we draw a new random velocity and repeat the process.

4.2.2 Scattering rates in an isolated halo

Having generated Hernquist-profile initial conditions, we now use them to explore SIDM

scattering within a DM halo. We checked that our profiles are stable with collisionless DM,

finding that with a suitable choice of time-integration and tree-force accuracy parameters,

the density profile and velocity distribution remained unchanged except for the formation

of a small constant density core – with radius similar to the gravitational softening length.

This stability, and the numerical choices necessary to achieve it are discussed further in

§4.2.4.

In Fig. 4.5 we plot the scattering rate per particle in an isolated DM halo with a Hern-

quist density profile. The halo has a total mass of M = 1015 M� and a scale radius a =

1000 kpc. The simulation was run for 2.5 Gyr with 106 particles, each with a mass mp =

109 M�, and a Plummer-equivalent gravitational softening length ε = 12 kpc.

The scattering rate per particle as a function of radius was extracted from the simu-

lations by taking the location of all scatters during the simulation and binning them in

logarithmically-spaced radial bins. This was then divided by the time averaged number of

particles within the same radial bins to get the scattering rate per particle.

Predicted scattering rates in haloes

For the analytical calculation of the expected scattering rate per particle, the density and

the mean pairwise velocity need to be known. The density distribution is given in equa-

tion (5.1), while the pairwise velocities can be calculated from the velocity dispersion.

Given isotropic velocities following a Maxwell–Boltzmann distribution, the mean pairwise

velocity is given by 〈vpair〉 = (4/
√
π)σ1D, where σ1D is the one-dimensional velocity dis-

persion. This can be calculated from the density profile and the Jeans equation, which

(assuming an isotropic velocity distribution) gives

σ2
1D =

GM

12a

{
12r(r + a)3

a4
ln

(
r + a

r

)
− r

r + a

[
25 + 52

r

a
+ 42

(r
a

)2

+ 12
(r
a

)3
]}

≡ GM

12a
fH(r̃),

(4.17)
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Figure 4.5: The scattering rate per particle in a Hernquist profile DM halo, plotted as a function of

radius. Increasing the size of the search radius used for DM scattering leads to a decrease of the

scattering rate in the inner regions of the halo. The results converge for h < ε as the density profile

in the simulation forms a numerical core with radius ∼ ε due to gravitational softening. All lines

used a fixed h except for the hvar line for which h is varied for each particle to keep 32 neighbours

within the search region. For the fixed h lines there are corresponding crosses plotted along the

analytical curve at the radius equal to h, showing that for r . max(h, 2ε) the scattering rate falls

below the analytical result.
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for a Hernquist profile, where r̃ = r/a.

Integrating over the velocity distribution function in equation (2.7) gives the average

scattering rate for particles at position r,

Γ(r) =
〈σ vpair〉(r)ρ(r)

m
. (4.18)

If the DM cross-section is velocity independent then 〈σ vpair〉 = σ〈vpair〉 = σ(4/
√
π)σ1D, and

we can calculate the expected scattering rate per particle at different radii in the halo from

equations (5.1) and (4.17). This is shown as the dashed line in Fig. 4.5.

Measured scattering rates in simulated haloes

As DM scattering leads to the formation of a cored density profile and also changes the

velocity distribution, the scattering rate as a function of radius would not follow the ana-

lytical relation once the system has evolved due to self-interactions. To allow for a direct

comparison with the analytical result we turn-off the momentum kicks from scattering,

such that the scattering algorithm is used to find particles that scatter, but does not actually

change the particles’ momenta as a result of scattering.

Fig. 4.5 demonstrates that our code reproduces the correct scattering rate within the halo

at all but the smallest radii – where the scattering rate falls below the analytical prediction.

This behaviour is easily understood by noting that the search radius for finding neighbours

from which to scatter, h, acts as a scale on which the density and velocity distribution are

smoothed in the calculation of scattering probabilities. The search radius therefore smooths

away the density cusp in the scattering rate calculation leading to decreased scattering rates

compared with the true unsmoothed rate. The scattering rate in the simulations drops sig-

nificantly below the analytical rate only for radii less than h, so using a small h is preferred

to capture the scattering rate in small high-density regions.

For h smaller than the gravitational softening length, ε, the radius within which Γ falls

below the analytical result ceases to change. This is because there is a core formed in the

particle distribution due to gravitational softening, with the core size of the order of ε.

Pushing h to smaller values than ε therefore cannot recover the analytical result, because

the particle distribution is already smoothed on the scale of the gravitational softening.
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As discussed in §4.1.1, Rocha et al. (2013) found that their scattering algorithm under-

predicted scattering rates for small values of h in low-density regions. Specifically, they

found the scattering rate dropped below the correct rate when h (ρ/mp)1/3 . 0.2, i.e. when

h is less than 20% of the mean inter-particle separation. For h = 0.1 kpc in Fig. 4.5, h is

∼ 4% of the mean inter-particle separation at r = 2a, but the scattering rate still matches

the analytical prediction. This supports our findings in §4.1.1, namely that the Rocha et al.

(2013) result stems from probability saturation, and so depends on the time-steps used.

4.2.3 How to choose the neighbour-search radius

Fig. 4.5 demonstrates that using smaller values of hSI, or an adaptive hSI that depends on

the local density, allows the scattering rate to be more accurately captured. At the same

time, using too small an hSI can lead to the problems of probability saturation or repeated

sampling. In this section we use simple analytical arguments for the case of a Hernquist

profile, to find an appropriate size for the SIDM neighbour search radius.

As previously discussed, the scattering rates for particles should not depend sensitively

on hSI. With a large hSI, particles find many neighbours, but then have a low probability of

scattering from each of them. For small hSI, the stochasticity is switched from the drawing

of an unlikely random number to the unlikely event of finding neighbouring particles with

separation < hSI. There are however certain advantages to both, and we start this section

by briefly outlining the pros and cons of large and small hSI, before going on to explain

how we choose hSI in our simulations.

The case for small hSI

In general a smaller search radius is better because

(i) Scattering is more local, which leads to better conservation of angular momentum,

which is not implicitly conserved by non-local scattering.

(ii) The scattering rate resolves local density peaks and troughs. A particle’s probabil-

ity of scattering depends on the local density measured over a scale ∼ hSI, which if

too large could smooth away density peaks that should lead to a locally high rate of
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scattering.

(iii) Fewer neighbours are found, making scattering less computationally expensive. This

is particularly relevant for simulations run on multiple cores, where a small hSI sig-

nificantly reduces the fraction of particles with neighbours that reside in different

domains. Not only is communication between MPI tasks computationally expensive,

but in the case of particle scattering it introduces additional complications discussed

in §3.4.3.

The problem with small hSI

There is only one obvious drawback to using a small hSI, namely that Pij (equation 3.50)

increases as 1/h3
SI, such that for too small an hSI, Pij > 1. To avoid probability saturation,

small time-steps need to be used. Using smaller time-steps than those needed to adequately

implement gravitational dynamics would lead to simulations that take much longer than

their CDM counterparts, which is clearly undesirable.

Choosing a suitable hSI

From the previous discussion it is clear that we want to use as small a search radius as

possible, while ensuring that we keep Pij < 1. In Fig. 4.6, we show how the expected value

of Pij varies with radius in a Hernquist profile, with both a fixed hSI and one that varies to

keep a fixed number of neighbours enclosed within the search radius. The scattering rate

for a particle depends on the local density and velocity distribution as described by equa-

tion (4.18). The density profile and one-dimensional velocity dispersion for a Hernquist

halo are given by equations (5.1) and (4.17) respectively.

The gravitational time-step for a particle in GADGET is given by equation (3.33), re-

peated here for convenience

∆tgrav = min

[
∆tmax,

(
2ηε

|a|

)1/2
]
, (4.19)

with ε the gravitational softening length, a the acceleration of the particle, and η a numerical

parameter that controls the time-integration accuracy. Given the Hernquist density profile,
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Figure 4.6: The blue solid line in the top-left and top-centre panels show the density pro-

file and velocity dispersion profile in a Hernquist halo, while the top-right panel shows

the expected rate of scattering at different radii assuming that σ/m = 1 cm2 g−1. The red

dashed line shows the same quantities for a particle distribution that approximately re-

sembles the cored density profiles found in SIDM simulations. The bottom-left panel then

shows the time-step calculated for particles, assuming ε = 2.8 kpc and η = 0.025. From the

time-step, velocity dispersion and cross-section, the expected pairwise scattering proba-

bility can be found, which is plotted in the bottom-centre panel assuming a particle mass

of 108 M� and a fixed hSI of 5.6 kpc. The green dotted line shows how this changes for the

cored Hernquist profile if hSI varies with density to keep 32 neighbour particles enclosed

in each particles’ search region. The bottom-right panel shows the expected number of

neighbour particles for particles at different radii, the product of Nngb and 〈Pij〉 being

equal to Γ∆tgrav.
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we can calculate the gravitational acceleration as a function of radius, and therefore calcu-

late the gravitational time-step. This is plotted in the bottom-left panel of Fig. 4.6, where

we ignore that GADGET also imposes a maximum time-step on all particles in a simulation.

For a given particle mass and search radius, we can calculate the mean scattering prob-

ability for pairs of particles with separation < hSI from 〈vpair〉 and ∆t. This can be found

analytically,

〈Pij〉 (r̃) =
(σ/m)mp

h3
SI

(
3π η ε a fH(r̃)

2

)1/2

(1 + r̃), (4.20)

and is plotted in the bottom-middle panel of Fig. 4.6. For a Hernquist profile we find that

〈Pij〉 decreases towards the centre of a halo, despite the fact that the scattering rate per par-

ticle is increasing. This is in part because the time-steps decrease towards the halo centre,

decreasing the probability of scattering within a single time-step, and also because the in-

crease in density towards the centre of the halo does not increase 〈Pij〉, instead increasing

the expected number of neighbours within a particle’s search region, Nngb (bottom-right

panel).

The haloes formed in SIDM do not have the high central densities, and low central ve-

locity dispersions seen in simulated CDM haloes. Instead they form a cored central region

with constant density, and an isothermal velocity dispersion. Over a wide range of cross-

sections, Hernquist profiles form cores that grow to a size rcore ≈ 0.12 a, at which point

they stabilise (Kochanek & White, 2000, and see Fig. 4.10), with a central velocity disper-

sion close to the peak velocity dispersion of the corresponding halo with collisionless DM

(Rocha et al., 2013). To mimic these effects, we also include in Fig. 4.6 the results for a

Hernquist halo altered to have ρ(r < 0.12a) = ρ(r = 0.12a) and a velocity dispersion that,

inside of the radius at which it peaks for a standard Hernquist profile, is equal to this peak

velocity dispersion.

The radial distribution of Pij in this altered Hernquist profile rises towards low radii,

driven by the low accelerations (and subsequently large time-steps) in the centre of a cored

halo. However, even with this rise towards small radii, Pij . 0.01 over a large range of

radii with our assumed numerical parameters. This is particularly true in practice because

(i) The acceleration in the inner region of a cored halo is increased by departures from

spherical symmetry, and by substructures or other nearby haloes.
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(ii) GADGET employs a time-step limit, which for the simulations discussed in Chap-

ter 5 (that provided the inspiration for the numerical values in Fig. 4.6) was ∆tmax =

10 Myr. As large ∆tgrav at both small and large radii drive up Pij , the time-step limit

controls Pij in these regions.

The results presented in Fig. 4.6 demonstrate that for a cluster mass halo simulated with

O(106) particles, hSI ∼ ε results in Pij � 1. However, to inform our choice of hSI in other

systems, or when simulating systems at higher resolution, it is informative to consider how

Pij depends upon the mass of the system being simulated, and the mass of the simulation

particles. We do this by assuming that as we change the particle mass, we change the

gravitational softening length and SIDM search radius accordingly, with the scaling mp ∝
ε3 ∝ h3

SI. Also, we assume that halo concentration is independent of halo mass, such that

for a Hernquist halo, M ∝ a3. Making these assumptions and using equation (4.20) we can

see that: when changing the resolution while simulating a fixed physical system 〈Pij〉 (r̃) ∝
m

1/6
p , when simulating systems of different mass with a fixed resolution 〈Pij〉 (r̃) ∝ M1/6,

and when simulating different systems keeping the number of particles fixed 〈Pij〉 (r̃) ∝
M1/3 ∝ m

1/3
p .

This result means that as we increase the resolution of our simulations, or simulate

systems smaller than galaxy clusters, the pairwise scattering probabilities decrease. As the

example case in Fig. 4.6 was a massive system at low resolution, setting hSI ∼ ε should

correctly implement scattering in most systems we would want to simulate. We also note

that if instead of assuming halo concentration to be independent of mass, we had set some

concentration-mass relation, this would have changed how 〈Pij〉 scales with halo mass. For

example, if we use the simple relationship from Duffy et al. (2008)

c200 = 3.93

(
M200

2× 1012 h−1 M�

)−0.097

, (4.21)

and match NFW profiles to Hernquist profiles following the discussion earlier in this chap-

ter, then we find 〈Pij〉 (r̃) ∝ M0.20 provides a good fit over a wide halo mass range (M200 =

106 − 1016 M�).
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4.2.4 The evolution of density profiles with SIDM

One of the main astrophysical motivations for SIDM is to alter the central density profiles

of DM haloes. In this section we investigate the formation of constant density cores at the

centre of SIDM haloes, by allowing Hernquist profiles to evolve under the influence of DM

scattering.

Core formation with CDM

To investigate core sizes in SIDM, we need to first ensure that we do not form cores as

numerical artefacts. Even for collisionless DM, simulated haloes will form small cores due

to gravitational softening. We therefore evolved Hernquist profiles with collisionless DM,

for a range of different simulation parameters, and found the range of parameters that

formed cores that were stable and acceptably small. The halo used for these tests had

M = 1014 M� and a = 225 kpc. Our fiducial set of simulation parameters were a particle

number of N = 1283, and a time-integration and force accuracy of η = 0.005 and α = 0.0012

respectively. We used a fiducial gravitational softening length of ε = 4.4 kpc, and varied the

softening with the simulation particle mass according to ε ∝ m
1/3
p .

From these fiducial parameters, we varied each parameter individually. The resulting

radial density profiles after 10 Gyr for each of these test simulations, are shown in Fig. 4.7.

In order to reduce the noise in our density profile measurements, the density in each ra-

dial bin was calculated as the average of eleven snapshots uniformly distributed in time

from 9.5 Gyr to 10.5 Gyr after the simulations began. We find that the density profiles are

converged with respect to η and α for our fiducial parameters, and that with sufficiently

accurate force resolution and time integration accuracy, cores do not grow much beyond a

couple of gravitational softening lengths.

When the force accuracy used was not sufficient, cores formed and continued to grow

throughout the simulation. These cores had a distinctive shape, with a sharp transition

to a flat central density. The required force accuracy parameter (α) to avoid formation of

these runaway cores was dependent on the number of particles used, with more particles

requiring the use of a smaller α. For this reason, the simulation run with 2563 particles used
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a smaller α than the fiducial value. The opening criterion used in GADGET is more compli-

cated than a simple opening angle (see equation 3.29), making the analysis of the situation

challenging. We do not fully understand the behaviour of our simulations when running

with large α values, although it is clear that the gravitational forces acting on a particle

calculated with tree gravity can be biased by not opening up sufficiently nearby cells. In

any case, Fig. 4.7 allows us to empirically test for what range of numerical parameters we

have converged results.

CDM run-times

While investigating the importance of different accuracy parameters for the results of our

simulations, we also recorded how these parameters affected the run-time of the simula-

tions. The results are plotted in the bottom-right panel of Fig. 4.7. The CPU time (wall clock

time multiplied by number of cores) was measured over 0.1 Gyr of the simulation, starting

soon after the beginning of the simulation. The measurement was made near the beginning

of the simulation, as at this time the numerical parameters had not had much effect on the

system being simulated. We did not measure from the beginning of the simulation to avoid

including the time associated with various startup procedures.

By fitting power laws to the computation time’s dependence on the different accuracy

parameters, we can see the computational cost of using different parameter values. The

scaling with particle number was super-linear (tCPU ∝ N1.42), which is expected as the

computation per particle increases with increasing particle number. This is because the

number of other particles with which a particle interacts increases with increasing N (al-

though with tree gravity the number of force evaluations per particle only scales as logN ),

and also because the softening and hence time-steps of particles was decreased with in-

creasing particle number. The dependence on η (tCPU ∝ η−0.44) can also be understood, by

noting that in equation (3.33) ∆t ∝ η1/2. As such, the number of time-steps (and hence the

CPU time) scales ∝ η−1/2, in rough agreement with our empirical findings. The α depen-

dence is somewhat harder to predict, given that it depends sensitively on the distribution

of matter in the simulation. Perhaps surprisingly, given that it is an important parameter in

terms of the stability of our haloes, we found that run times depended only weakly upon



CHAPTER 4. TESTING THE SIDM IMPLEMENTATION 108

100 101 102

r / kpc

105

106

107

108

ρ
/

M
�

kp
c−

3

N = 323

N = 643

N = 1283

N = 2563

εεεε

100 101 102

r / kpc

105

106

107

108

ρ
/

M
�

kp
c−

3

η = 0.08

η = 0.02

η = 0.005

η = 0.00125

εεεε

100 101 102

r / kpc

105

106

107

108

ρ
/

M
�

kp
c−

3

α = 0.0192

α = 0.0048

α = 0.0012

α = 0.0003

εεεε

0.25 0.5 1.0 2.0(
N/1283

)1/3
; (α/0.0012)−1/2 ; (η/0.005)−1/2

10−3

10−2

10−1

100

101

R
el

at
iv

e
C

P
U

T
im

e

t ∝ N1.42

t ∝ α−0.19

t ∝ η−0.44

Figure 4.7: Radial density profiles after 10 Gyr, plotted for simulations run with different particle

numbers and with different force and time-integration accuracy parameters. The black dashed lines

show the Hernquist density profile used for the initial conditions, with the shaded regions showing

the expected 1σ variations in the initial density profile, assuming the number of particles in each

radial bin is Poisson distributed. The vertical dashed lines show the gravitational softening length.

Our fiducial parameters were N = 1283, η = 0.005 and α = 0.0012, from which we varied the

parameters individually. The N = 2563 simulation used α = 0.0003 rather than the fiducial value

because the α at which the simulations converged was seen to be dependent on the number of

particles used. The bottom-right panel shows how the CPU time taken for the simulations depends

on the chosen numerical parameters.
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α, with tCPU ∝ α−0.19.

Core formation with SIDM

Now with a knowledge of the expected numerical core-sizes, we can investigate the cores

that form due to self-interactions. We turn on scattering between DM particles, using

the method described in Chapter 3. Similar to our CDM convergence tests, we evolved

our Hernquist halo with SIDM with different particle numbers and with different force

and time-integration accuracy parameters. The results for σ/m = 1 cm2 g−1 are shown in

Fig. 4.8. When a large α value is used, the density profile is still unstable, but for the other

parameters, the profiles appear well converged. In particular, the simulations that were

run with a small number of particles do a reasonable job of capturing the cored structure,

though presumably this would stop if the softening became comparable to the physical

core size set by the SIDM cross-section.

We find that the resulting density profiles are well fit by a cored-Hernquist profile, de-

fined as

ρ(r) =
M

2π

a

(rβ + rβc )1/β

1

(r + a)3
, (4.22)

where rc is the core-radius, and β controls how sharply the density profile transitions from

ρ ∝ 1/r to the constant density core. Examples of cored-Hernquist fits to radial density

profiles are given in Fig. 4.9.

By finding the best fit cored-Hernquist profile for a number of time-steps in our simu-

lations, we can see how the core size evolves over time. We fixed β = 4 when fitting the

cored profiles. The fits achieved when fixing β in this way are not as good as when β is

allowed to vary (see Fig. 4.9), but this process enables us to describe the evolution of the

core in terms of only a single number. This was done for a variety of cross-sections, and is

plotted in Fig. 4.10. Following Kochanek & White (2000, hereafter KW00) the plot is made

in terms of the dimensionless quantities rc/a, t/tdyn, and σ̂, where the dynamical time for

a Hernquist profile is defined as tdyn = 4π(a3/GM)1/2, and the dimensionless cross-section

as σ̂ = M(σ/m)/a2. Plotting the core sizes in this dimensionless way allows the results to

be applied to systems with different masses and concentrations.

We ran the same dimensionless cross-sections as KW00, with results that agreed except
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Figure 4.8: Radial density profiles after 10 Gyr from simulations with σ/m = 1 cm2 g−1. As in

Fig. 4.7, the simulations were run with different numbers of particles, and different force and time-

integration accuracy parameters, varying from a fiducial simulation with N = 1283, η = 0.005 and

α = 0.0012. Shaded regions show the expected 1σ variations in the density of the best fit cored-

Hernquist profile to our fiducial run.
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Figure 4.9: The radial density profile for a 1014 M� Hernquist halo, with a = 225 kpc. The halo

was evolved with σ/m = 1 cm2 g−1. The density profile at different times after the beginning of the

simulation is shown by the points, with error bars assuming that the number of particles in each

radial bin is Poisson distributed. The best-fit cored Hernquist profile (equation 4.22) at each time

has been plotted with a solid line, while the dashed lines are the best-fit cored Hernquist profiles

when we fix β = 4. The coloured vertical dashed lines show the best fit core-radius (rc) with a

variable β.
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Figure 4.10: The evolution of core sizes starting with a Hernquist profile as the initial conditions.

For the collisionless case (dark blue line), a core forms on the scale of the gravitational softening

length. For the collisional cases, the core size grows to be ∼ 15% of the scale radius. For the largest

cross-sections, the cores then undergo core-collapse within a few dynamical times. For a 1014 M�

halo with a = 225 kpc, the dynamical time is 2.05 Gyr and σ̂ = 1 corresponds to σ/m = 2.42 cm2 g−1.
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for the normalisation of rc/a. The core radii found in KW00 were considerably larger than

those in Fig. 4.9 (by a factor of 3–4). This is due to their definition of the core size, as they

estimate the core size as the radius at which the density drops to a quarter of the central

density. As the core forms within a region where ρ ∝ 1/r, the radius at which ρ has dropped

to a quarter of the central density is four times the radius at which the density of the initial

profile is equal to the central density of the cored profile, and hence roughly four times the

rc returned by our fitting procedure.

SIDM run-times

The CPU time for our σ/m = 1 cm2 g−1 simulations were measured in the same way as

the collisionless ones, and plotted in the bottom-right of Fig. 4.8. The scaling with both η

and α was very similar to the collisionless case, while the run-time increased more slowly

with increasing particle number than for the collisionless simulations (tCPU ∝ N1.24 for

SIDM versus tCPU ∝ N1.42 for CDM). We found that when running the simulation with

the fiducial set of parameters, the SIDM simulation ran 30% slower than the collisionless

version. As expected, the neighbour search and scattering procedure increase the CPU

time required. However, the formation of large cores in the collisional simulations led to

faster simulations over the course of the ∼ 10 Gyr for which they were run. This is because

the dynamical times for particles in a cored profile are longer than for those in a cuspy

profile, meaning that once a core has formed due to self-interactions, the time-steps used

in the collisional case are longer than in the collisionless case (see the bottom-left panel of

Fig. 4.6).

4.2.5 Core collapse

An interesting feature of the evolution of systems with large cross-sections is that after the

initial formation of a core, the central density rises again. This is known as gravothermal

collapse, and is a phenomenon seen in other gravitationally bound collisional systems, such

as globular clusters. Gravothermal collapse in the context of globular clusters has been

studied theoretically (Lynden-Bell & Eggleton, 1980) using a model that describes thermal
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conduction. More recently, Balberg et al. (2002) applied a similar model to isolated SIDM

haloes.

The differences between a system of stars and a system of collisional dark matter, pri-

marily stem from the fact that stars undergo Rutherford scattering, which has strong angu-

lar and velocity dependence.3 This leads to many interactions, each with a small amount of

momentum transfer. If the DM cross-section is isotropic, then these systems are dominated

by a small number of high momentum transfer events. These two scenarios lead to differ-

ences in the way energy is transported through the system. Another difference is that core

collapse in globular clusters can be halted by energy injection from three-body encounters

(Goodman & Hut, 1989). When a binary star system has a close encounter with a third star,

it typically ‘hardens’, giving out energy to the third star. There is no equivalent of this with

SIDM, such that collapse should proceed unchecked.

The density and velocity dispersion for a halo undergoing core collapse are plotted as

a function of radius in Fig. 4.11. The velocity dispersion inside the scale radius becomes

isothermal within a dynamical time due to the redistribution of energy by the collisions.

This isothermal distribution increases in temperature, as core collapse leads to the system

becoming more gravitationally bound.

The results for gravothermal collapse of a Hernquist profile from Monte Carlo N -body

simulations and a conducting fluid model were compared by Koda & Shapiro (2011). They

found that by tuning the two free parameters in their conducting fluid model,4 they get

good agreement between the two methods for both the density profiles and velocity dis-

persions. The increase in velocity dispersion at large radii seen in Fig. 4.11 does not appear

to be present in their results, although they only plot the velocity dispersion out to ten scale

radii (∼ 2 Mpc in Fig. 4.11), where we just start to see an effect.

It is important to stress that for the 1014 M� haloes simulated here, core collapse within a

Hubble time was only seen for the two largest cross-sections, corresponding to 7.3 cm2 g−1

and 24.2 cm2 g−1. These cross-sections are an order of magnitude above current upper-

limits, and Ahn & Shapiro (2005) demonstrated (using the conducting fluid model) that

3The ‘collisions’ in globular clusters are close gravitational encounters, for which the differential cross-

section is dσ
dΩ ∝ (v sin θ

2 )−4.
4These two free parameters relate to the efficiency of heat conduction on large and small scales.
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the accretion of new material onto a halo acts to stabilise haloes against core collapse. This

suggests that currently viable SIDM models will not result in collapsed haloes within a

Hubble time.

4.3 Scattering in a cosmological simulation

As a final test of our code implementation, we ran a small cosmological periodic box, with a

Planck 2013 cosmology (Planck Collaboration et al., 2014) and a box-size of 25h−1 Mpc. The

initial conditions were produced using the IC GEN code described most recently in Jenkins

(2013). The displacements and velocities were computed using second-order Lagrangian

perturbation theory, using the method outlined in Crocce et al. (2006). The simulation was

run at three different resolutions, corresponding to particle numbers of 643, 1283 and 2563,

and with σ/m = 1 cm2 g−1.

In §3.4.5 we discussed how scattering is implemented within cosmological simulations.

Given that GADGET uses comoving positions and canonical momenta as the internal vari-

ables for position and velocity, and that the scale factor is used to keep track of time, there

are various conversion factors (primarily the scale factor a and Hubble parameter h) that

enter into the calculation of scattering probabilities. To test that these factors have been cor-

rectly included, we measured the average rate of scattering per particle in the simulations,

and compared the results with the analytical predictions for the scattering rate found in

Chapter 2.

In Fig. 4.12 we show that there is reasonable agreement between the rates of scattering

measured in our simulations and an analytical prediction. For this prediction we used

an ST mass function, and the Diemer & Kravtsov (2015) concentration-mass relation. As

demonstrated in Fig. 2.3, different concentration-mass relations predict rates of scattering

that differ by around a factor of two. Some of the agreement in Fig. 4.12 is therefore due to

our choice of concentration-mass relation, but the rough agreement between the simulation

results and predictions act as a sanity check of both our SIDM implementation and the

framework for analytically predicting Γ(z).

The measured Γ(z) from our three different-resolution simulations show that as the
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Figure 4.11: The density profile and velocity dispersion at different times in a simulation of a halo

undergoing core collapse. The black dashed lines show the analytical profiles for the Hernquist halo

used as initial conditions, while the solid lines show how these profiles evolve in time. The halo was

the same one as in Fig. 4.10, with the cross-section corresponding to the σ̂ = 10 case. Initially the

central density is lowered by DM scattering, but with a large cross-section the interactions transport

heat so efficiently that the core undergoes gravothermal collapse and ends up extremely dense. This

corresponds to the shrinking of rc in Fig. 4.10, though the density profiles are not well described by

cored-Hernquist profiles once core collapse has begun.
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Figure 4.12: The scattering rate per particle in simulations of a 25h−1 Mpc cosmological box, with

a Planck 2013 cosmology (Planck Collaboration et al., 2014), and an SIDM cross-section of σ/m =

1 cm2 g−1. The simulations were run at three different mass resolutions, corresponding to particle

numbers of 643, 1283 and 2563. The black dashed line shows the analytical predictions using an

ST mass function and the Diemer & Kravtsov (2015) concentration-mass relation, following the

method from Chapter 2. In our simulations we do not expect scattering in haloes that are not well

resolved, and so we include the analytical prediction counting only those scattering events in haloes

more massive than some minimum mass. These are drawn as the coloured dashed lines, with the

minimum halo mass corresponding to 20mp, with mp the particle masses at our three resolutions.

Finally, the red dotted line is the same as the red dashed line, but also not including scattering in

haloes with M200 > 1014 M�.
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resolution increases, the rate of scattering goes up. This is to be expected, because with

increased resolution we resolve smaller-scale overdensities that host DM–DM scattering.

The way in which Γ(z) changes in response to changing resolution can be approximately

reproduced by modifying the analytical prediction to only include scattering in haloes more

massive than twenty times the particle masses used in our simulations.

Finally, we mention that the simulation results drop below the analytical predictions

for z . 1. By inspecting the bottom panel of Fig. 2.1, we can see that at low redshift a

significant contribution to Γ(z) comes from massive (> 1014 M�) DM haloes. Given the

relatively small box size of our simulations, we do not expect massive haloes to form. In

Fig. 4.12 we therefore show, for one of the analytical prediction lines, the result if we also

ignore scattering in objects more massive than 1014 M�. This is largely illustrative, but

the good agreement between this line and the result from the corresponding simulation is

reassuring.





Chapter 5
What does the Bullet Cluster tell us about

self-interacting dark matter?

5.1 Introduction

The massive galaxy cluster 1E 0657–56 (the ‘Bullet Cluster’) acts as a DM particle collider,

potentially allowing for discrimination between different particle physics models of DM.

In particular, limits on the offset between the galaxies and DM associated with the smaller

DM halo (the ‘bullet’) as well as limits on the loss of DM mass from the bullet have been

used to place constraints on the DM-DM elastic scattering cross-section (Randall et al., 2008;

Kahlhoefer et al., 2014, hereafter R08 and K14 respectively).

Clusters are useful as their distribution of DM can be probed by both strong and weak

gravitational lensing. The relative velocities of DM particles within clusters is also of order

1000 km s−1, two orders of magnitude larger than in dwarf galaxies. Velocity dependent

cross-sections can arise naturally in models for SIDM (Ackerman et al., 2009; Buckley & Fox,

2010; Loeb & Weiner, 2011; van den Aarssen et al., 2012; Tulin et al., 2013a), and constraining

such models requires a handle on the cross-section at different velocity scales (Kaplinghat

et al., 2016).

The first attempt to use colliding galaxy clusters to constrain the collisional nature of

DM (Markevitch et al., 2004) found that σ/m < 5 cm2 g−1 from limits on the size of any

potential offset between the DM and stars in the Bullet Cluster. This constraint, derived

120
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from analytical toy models, was improved by R08 who ran N -body simulations of Bullet

Cluster-like systems with SIDM. Combined with tighter constraints on any DM–galaxy

separation (Bradač et al., 2006), they found σ/m < 1.25 cm2 g−1.

Owing to the high relative velocity of the DM haloes in the Bullet Cluster, DM particles

from the bullet that scatter with particles from the main cluster will typically have sufficient

energy to escape the potential of the bullet halo, and so the bullet halo would evaporate due

to DM self-interactions. The mass to light ratio of the bullet halo is similar to that of the

main halo, and if one assumes that this similarity means that less than 23% of the DM in

the inner regions of the bullet halo could have scattered with particles from the main halo

then the R08 simulations suggest that σ/m < 0.7 cm2 g−1. However, observations of over

200 galaxy clusters (Popesso et al., 2007) have shown that there is significant scatter in the

luminosity-mass relation for clusters. Specifically, Popesso et al. (2007) found that the r-

band luminosity of clusters was tightly related to the number of galaxies with an r-band

absolute magnitude of Mr ≤ −20, but that from the number of galaxies the mass of the

cluster could only be predicted with an accuracy of 55%. This suggests that the significance

of the σ/m < 0.7 cm2 g−1 result derived in R08 is over-stated, as it assumes little intrinsic

scatter in the mass-to-light ratios of clusters.

Since the discovery of the Bullet Cluster, other colliding cluster systems have been

found, and used to constrain the cross-section for DM scattering. Similar analysis to that

performed on the Bullet Cluster places limits of σ/m < 4 cm2 g−1 from MACS J0025.4-

1222 (Bradač et al., 2008), σ/m < 3 cm2 g−1 from Abell 2744 (Merten et al., 2011), and

σ/m < 7 cm2 g−1 from DLSCL J0916.2+2951, the ‘Musket Ball Cluster’ (Dawson et al., 2012).

K14 pointed out that during galaxy cluster collisions, DM particles preferentially collide

along the merger axis, and that these systems could be used to determine not just the cross-

section for DM scattering, but its angular dependence. In particular, they showed that the

resulting distribution of DM is different for the case of short-range, contact interactions

(for which the scattering is isotropic), compared to long-range interactions, where there is

a preference for low scattering angles, and particles can undergo many small momentum

transfer collisions.

Compared with systems undergoing major mergers, clusters undergoing minor merg-
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ers with large mass ratios are ubiquitous. Harvey et al. (2015) found 30 such clusters, with a

total of 72 pieces of substructure. By looking at the position of the DM substructure relative

to the position of the corresponding stars and gas, they placed limits of σ/m < 0.47 cm2 g−1

for the DM elastic scattering cross-section.

In this chapter we choose to focus on the Bullet Cluster, as the gas morphology and the

lack of line-of-sight velocity difference between galaxies from the two clusters implies that

the collision has taken place with little impact parameter and in the plane of the sky (Bar-

rena et al., 2002). In addition to this simple geometry, X-ray observations of the shock front

leading the gaseous bullet allow the relative velocity between the two merging clusters to

be estimated (Markevitch, 2006). In this chapter we limit our study to the case of isotropic

and velocity-independent cross-sections, focusing on the importance of the method used

to extract position estimates from the simulations.

This chapter is structured as follows. In §5.2 we describe the initial conditions we use for

our simulations. In §5.3 we discuss different methods for measuring the positions of differ-

ent components within a merging galaxy cluster, before applying these different methods

to our simulations in §5.4. Finally, we give our conclusions in §5.5. We use Ωm = 0.3,

ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1. At the redshift of the Bullet Cluster (z = 0.296) 1 kpc

corresponds to 0.23 arcsec.

5.2 Simulation initial conditions

In order to draw meaningful conclusions on the properties of DM from a comparison of

our simulations to observations, it is important that the simulations do a reasonable job of

recreating the Bullet Cluster’s observed properties. Lage & Farrar (2014) performed a large

suite of magnetohydrodynamic simulations of the Bullet Cluster, hoping to match a wide

range of observational data sets. In order to constrain the 34 parameters required to gener-

ate their initial conditions, they required over 1000 simulations, which in our case (looking

at the effect of changing the DM-DM scattering cross-section) would have to be done for

each cross-section that we investigate. This would be an exceptionally computationally-

demanding task, and although complicated, the initial conditions generated are still ide-
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alised models for the two clusters, ignoring the effects of mass accretion prior to or during

the merger, and without substructure that could be important for matching to the lensing

data. Instead of attempting the demanding task of finding optimal initial conditions for

each cross-section we investigate, we choose to take a simple idealised model for the sys-

tem, which provides a reasonable match to key data sets. We then investigate how observ-

ables (in particular the offset between DM and galaxies) change as the DM cross-section is

varied.

5.2.1 Density profiles

The main constraints on the total density profiles of the two clusters come from lensing

observations. As a first model, we take the best-fitting values from fitting two spheri-

cally symmetric Navarro, Frenk & White (1997, hereafter NFW) mass distributions to weak

lensing data, as done in Springel & Farrar (2007, hereafter SF07). With our assumed cos-

mology, the best fit values are r200 = 2136 kpc, c = 1.94 and r200 = 995 kpc, c = 7.12,

for the main cluster and bullet cluster respectively. Given the redshift of the system at

z = 0.296, the masses of the two haloes are then M200 ≈ 1.5× 1015 M� for the main cluster

and M200 ≈ 1.5× 1014 M� for the bullet cluster.1

The concentration of the main halo derived from weak lensing would place this halo

well below the concentration-mass relation derived from observations of galaxy clusters

(Merten et al., 2015) or from numerical (Prada et al., 2012; Dutton & Macciò, 2014; Diemer

& Kravtsov, 2015) or analytical (Correa et al., 2015) work. SF07 found that with c = 2

the ram pressure on the gas bullet is not sufficient to strip it away from its DM halo. The

observed gas bullet trails its DM by ∼ 100 kpc, which they could match by increasing the

concentration of the main halo to c = 3. Making the main halo even more concentrated than

this resulted in over-predicting the gas-DM separation, and also lead to the morphology of

the bow shock differing from what is observed. We therefore choose to use c = 3 rather

than the weak-lensing derived c = 1.94 for the main halo in our fiducial model for the

collision.
1We define r200 as the radius at which the mean enclosed DM density is 200 times the critical density, and

M200 as the mass enclosed within r200. The concentration, c, is then r200/rs, where rs is the NFW scale radius.
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We model the total matter distribution of each cluster with a Hernquist profile (Hern-

quist, 1990),

ρ(r) =
M

2π

a

r

1

(r + a)3
. (5.1)

These are used because unlike NFW profiles, they have a finite mass and so do not need

to be truncated. They also have analytical distribution functions, which allow equilibrium

initial conditions to be easily generated, and quantities such as the expected scattering rate

within a halo to be calculated analytically. We matched our NFW halo parameters to Hern-

quist profiles using the method discussed in §4.2. This method matches the normalisation

of the density in the central regions, for which ρ ∝ r−1 for both NFW and Hernquist pro-

files, as well as the mass within r200. With a mass, M , and scale radius, a, for each of our

two haloes, we generated equilibrium Hernquist profile initial conditions using the method

from §4.2.1.

5.2.2 Relative velocity of the DM haloes

The relative velocity between the two DM haloes in the Bullet Cluster was originally es-

timated to be 4700 km s−1, as this corresponded to the ‘shock velocity’, the velocity of the

shock front relative to the pre-shocked gas (Markevitch, 2006). This large relative velocity

would be rare within the context of ΛCDM (Hayashi & White, 2006), leading to the sugges-

tion of a long-range fifth-force that would result in additional acceleration (Farrar & Rosen,

2007).

Simulations including gas have since shown that the shock velocity can be considerably

larger than the relative velocity between the DM haloes. The pre-shocked gas, which be-

longs to the main halo, is not at rest with respect to its halo, but is instead moving towards

the bullet halo. Additionally, the shock front is not at rest with respect to the bullet halo

DM, but moves ahead of it. A discussion of the mechanisms responsible for these effects is

available in SF07.

SF07 find that the observed shock velocity can be matched by haloes that collide with

a velocity corresponding to infall from infinity. We therefore start our simulations with

the cluster centres separated by 4 Mpc and with a relative velocity that corresponds to the
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velocity they would obtain if falling from rest at infinite separation, assuming each halo

acts like a point mass.

5.2.3 Summary of initial conditions

Our fiducial model for Bullet Cluster-like initial conditions is two Hernquist profiles, sep-

arated by 4 Mpc, and with a relative velocity of 2970 km s−1 along the line joining the two

cluster centres. The main halo corresponds to an NFW profile with M200 = 1.5× 1015 M�

and c = 3, while the bullet halo has M200 = 1.5× 1014 M� and c = 7.12. When con-

verted into matched Hernquist profiles, the masses and scale radii are M = 3.85× 1015 M�,

a = 1290 kpc, and M = 2.46× 1014 M�, a = 279 kpc for the main and bullet halo respec-

tively.

The mass within each halo is 99% DM, and 1% stars, though we use an equal number

of DM and star particles (107 of each). The star particles are distributed as a smooth halo

following the DM density. While this is not the case in real galaxy clusters, where stars

reside within galaxies, we do this to allow us to more easily identify the location of the

stellar component. We also run some simulations including non-radiative gas, which are

discussed in §5.4.4. The gas initially follows the same density profile as the DM and stars,

with the halo mass being 83% DM, 16% gas, and 1% stars. The gas temperature was set so

that the gas was in hydrostatic equilibrium, which for the main halo in our fiducial mass

model gave a maximum gas temperature of 8.4 keV, in agreement with the temperature of

the pre-shocked gas in the Bullet Cluster (Markevitch, 2006).

5.2.4 Comparison to other SIDM studies

In Fig. 5.1 we show the density distribution of the main halo and bullet halo from different

simulations of the Bullet Cluster. As we are interested in the offset between stars and DM

within the bullet halo, the fraction of DM particles from the bullet halo that scatter from a

particle in the main halo is an important quantity. We therefore plot the density distribu-

tions of the two haloes in a manner that allows us to estimate this fraction. For the main

halo, we plot the projected density of DM at different radii, which can be multiplied by
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the cross-section to get an optical depth for DM scattering. For example, an SIDM particle

with σ/m = 1 cm2 g−1 passing through the main halo of our fiducial model at a projected

radius of 200 kpc, where the projected surface density is∼ 0.15 g cm−2, would have a∼ 15%

chance of scattering off a particle in the main halo.

In the right-hand panel of Fig. 5.1 we plot the fraction of particles at different projected

radii within the bullet halo. As the two haloes collide head-on, this is the distribution of

projected-radii of the main halo through which bullet halo particles will pass (if we ignore

the motion of DM particles within their own halo). We can then use the two panels of

Fig. 5.1 to calculate the fraction of particles in the bullet halo that scatter with a particle

from the main halo. For our fiducial model with σ/m = 1 cm2 g−1, we expect ∼ 23 (33)%

of particles from the inner 400 (150) kpc of the bullet halo to scatter with a particle from

the main halo, while for R08 and K14 the numbers are 21 (33)% and 28 (36)% respectively.

Considering all particles in the bullet halo, the number goes down to 12% for our fiducial

model, in good agreement with the value of 13% that we get in our simulations (see §5.4.3).

Stability of an isolated halo

In Fig. 5.2 we show the density of an isolated Hernquist profile, evolved both with and

without DM scattering. The halo shown is the same as the smaller halo in our fiducial

model for the Bullet Cluster. With collisionless DM the halo forms a small core with a size

∼ 2ε, where ε is the Plummer-equivalent gravitational softening length. The gravitational

force between pairs of particles is Newtonian when they are separated by more than 2.8ε,

but is reduced below this when they are closer, resulting in the formation of small numeri-

cal cores in otherwise cuspy haloes.

With SIDM the haloes form much larger cores, due to particles being preferentially scat-

tered out of high density regions. These cores form quickly, and settle to a size that is

independent of the DM cross-section, in agreement with Kochanek & White (2000).

Starting our simulations with the cluster centres separated by 4 Mpc results in core pas-

sage taking place ∼ 1.1 Gyr after the simulations begin. During this time the density pro-

files of the SIDM haloes evolve due to DM scattering, beginning to form constant density

cores at their centres. To check that the extent of core formation does not have a large im-
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Figure 5.1: Left panel: the projected mass density through the main halo of the Bullet Cluster, as a

function of projected radius. Right panel: the distribution of DM mass at different projected radii in

the subcluster of the Bullet Cluster, normalised so that
∫ 1 Mpc

0 f(R)dR = 1. Different line styles and

colours correspond to different choices for the density profiles. Our fiducial model is described in

§5.2.3 while two variations to our fiducial model (c = 1.94 and M200 = 3× 1014 M�) are described

in §5.4.2. The Fiducial (truncated NFW) lines are for the underlying NFW profiles that our fiducial

model (which uses Hernquist profiles) are matched to, truncated so there is no mass outside of r200.

Springel & Farrar 2007 was the fiducial model used in that paper, while Randall et al. 2008 is for

the density profiles used in their simulation with σ/m = 1.25 cm2 g−1 (their initial conditions were

changed slightly for different cross-sections). Kahlhoefer et al. 2014 only simulated one model for

the Bullet Cluster, which had a particularly concentrated bullet halo as evident in the right panel.

Lage & Farrar 2014 was the best-fit model found from running over a thousand simulations with

different initial conditions and comparing the results to several observational datasets.
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pact on our results, we experimented with a different initial separations between the two

haloes. Starting the haloes with a separation of 9 Mpc, the haloes have evolved for 3.4 Gyr

before they collide. We found this only had a small impact on our results, changing the

best-fit separation between stars and DM (with a scattering cross-section of 1 cm2 g−1) from

9.2 kpc to 8.4 kpc at the time of the observed Bullet Cluster in our fiducial model. This

change is small compared to the effects discussed in §5.4.

5.3 Measuring Positions

In order to measure the offsets between different components, we first need a definition of

position for each of the components. Observationally, the methods used to find the posi-

tions of the gas, galaxies and DM are typically all different, and may also be different from

the methods used to find the positions in associated simulations. It is therefore important

that we understand the effects of changing the method used to find the positions of the

various components, in a bid to understand how to best analyse the simulations in order

to compare the results with observations.

5.3.1 Shrinking Circles

The shrinking circles approach to finding the position associated with a set of discrete points

(the simulation particles) is the 2D analogue of the Shrinking Spheres approach often used

to find density peaks in N -body simulations (see e.g. Power et al., 2003). All of the particles

under consideration are first projected along one axis. Then a circle is drawn. centred on

the mean position of all particles, with radius chosen to be the distance between this centre

and the most distant particle. The radius is then shrunk by a factor f and a new centre is

calculated from the mean position of all particles within the current circle. The radius is

shrunk again, and the process continues until the radius of the circle is Rmin. The mean

position of all particles within this final circle gives the position of this set of particles.

This was the method employed by R08 who used Rmin = 200 kpc. This method clearly

only gives one position for a distribution of particles, and so to get the position of both DM

haloes from a simulation of the Bullet Cluster the method needs to be run separately on
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Figure 5.2: The radial density profile of an isolated halo with collisionless DM as well as SIDM with

isotropic cross-sections ranging from 0.5 to 2 cm2 g−1. The dotted lines show the average profile

between 1 and 2 Gyr after the start of the simulation, while the solid lines show the period 5–6

Gyr after the start of the simulation. Lines are semi-transparent when the density corresponds to

fewer than five particles in a radial bin. The vertical line corresponds to the Plummer-equivalent

gravitational softening length, ε. For the collisionless DM the initial Hernquist profile (dashed line)

is stable, except for the formation of a numerical core with size ∼ 2ε due to gravitational softening.
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particles belonging to the different haloes, or be started with the circles already shrunk to

a size where they only contain one DM peak.

5.3.2 Parametric fits to 2D density maps

As an alternative to using shrinking circles to find the positions of the two haloes, we

simultaneously fit the projected density map with two profiles that have analytical pro-

jected densities. We use 2D projections of Pseudo Isothermal Elliptical Mass Distributions

(PIEMDs), which have a 3D density profile

ρ(r) =
ρ0

(1 + r2/r2
core)(1 + r2/r2

cut)
; rcut > rcore. (5.2)

This profile has a core with central density ρ0 and size rcore, outside of which ρ ∝ r−2 as for

an isothermal sphere, until r & rcut for which the density falls off as r−4. This density profile

is useful in these SIDM simulations, where the additional free parameter over an NFW or

Hernquist profile, allows the cores produced by DM scattering to be well-fitted. The 3D

potential and projected-potential are also analytical for this model, making it popular in

gravitational-lensing analyses where deflection angles, shears and convergence depend on

gradients of the projected potential.

The projected density for a PIEMD is

Σ(R) = 2

∫ ∞

R

ρ(r)r√
r2 −R2

dr

= Σ0
rcore rcut

rcut − rcore

(
1√

r2
core +R2

+
1√

r2
cut +R2

)
,

(5.3)

where R is the projected radius from the centre of the halo, and

Σ0 = πρ0
rcore rcut

rcut + rcore

. (5.4)

As described in Kassiola & Kovner (1993), the axially symmetric projected density pro-

file in equation (5.3) can be made elliptical by substituting R→ R̃, where

R̃2 =
x̃2

(1 + ε)2
+

ỹ2

(1− ε)2
, (5.5)

and x̃ and ỹ are the spatial coordinates from the centre of the halo, along the major and

minor projected axes of the halo respectively. The ellipticity of the halo is defined as ε =
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(a − b)/(a + b) where a and b are the semi-major and semi-minor axes. Along with ε there

is an additional parameter φ that describes the angle between the x̃-axis and the x-axis, i.e.

the position angle of the major axis of the halo relative to our coordinate system (x, y).

We find the 2D positions of the DM haloes by simultaneously fitting two PIEMDs to the

total projected DM density. We first discuss the case of fitting the distribution to a single

isolated halo, the progression to two haloes then being relatively straightforward.

Each halo is described by seven parameters: the coordinates of the centre (X, Y ), the

central density ρ0, the core radius rcore, the outer radius rcut, the ellipticity ε and the position

angle φ. The distribution of simulation particles is split into evenly sized bins, generating

the data map, dij , to which we find the best-fitting parametric model. Given values for

the seven parameters that describe a PIEMD, the surface density can be calculated at each

bin using Σ(R) from equation (5.3) and using R → R̃ calculated as the distance between

the centre of each bin and the halo centre (X, Y ) transformed according to equation (5.5).

This would more accurately be done by integrating Σ(x, y) over the area of the bin. As the

density is roughly constant for R̃ < rcore, and our bin size used is smaller than the core radii

found, the variation of Σ across any individual bin is small, and the mean surface density

within a bin is well approximated by the surface density at the bin centre.

The model map, mi, is the expected number of particles in each bin given the current

parameter values, θ. This is simply the surface density at the bin position multiplied by the

bin area, and divided by the mass of the simulation particles.

Once we have a data map and a model map, we can calculate the probability of getting

our data map given the model map (i.e. the likelihood). For a bin with a given model

value, we expect the data value to be Poisson distributed with the expectation value equal

to the model value. The likelihood is the product over all map bins of the probabilities of

obtaining each data value given the model value:

L(θ = {X, Y, ρ0, rcore, rcut, φ, ε}) =
∏

i

mdi
i e−mi

di!
. (5.6)

We can combine this likelihood function with a set of priors to calculate posterior prob-

abilities for the parameters. This is done using EMCEE (Foreman-Mackey et al., 2013), a

PYTHON implementation of the affine-invariant ensemble sampler for Markov chain Monte
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Carlo (MCMC) proposed by Goodman & Weare (2010). We choose flat priors for X , Y , rcore

and rcut, with a prior on ρ0 that is flat in log-space.

In Fig. 5.3 we show the results of fitting two PIEMDs to a synthetic density map. The

synthetic map was generated by taking the projected density profile of two PIEMDs, here

chosen to have parameters similar to that of the Bullet Cluster at the time at which it is

observed, and then drawing a number of particles in each bin from a Poisson distribution

with mean equal to the number of particles expected from the analytic profiles, assuming

a particle mass equal to that used in our fiducial simulations.

The map in the top right of Fig. 5.3 shows visually the level of noise associated with

having a discrete set of particles and using 20 kpc bins, while the main corner plot shows

that the fitting procedure recovers the input model within the error contours of the 2D

projected posterior distributions. As the likelihood function in equation (5.6) is based upon

Poisson statistics in each bin, the width of the posterior distributions shows the uncertainty

in model parameters due to having a finite number of simulation particles. Of particular

interest is the width of the posterior of the halo position along the collision axis (X), as it

is the separation of different components along this axis that can be used to infer the DM

cross-section. Using the particle mass used in our simulations the width of the X posterior

distribution is ∼ 2 kpc.

5.3.3 Parametric fits to shear maps

Generating shear maps

Although the projected density is technically observable through size and flux magnifica-

tions (as recently done in Duncan et al., 2016), weak lensing is usually done using the

gravitational shear field. While the intrinsic ellipticities of galaxies are typically larger than

the ellipticity from gravitational shear, with a large number of lensed galaxies the projected

mass distribution of the lensing object can be determined.

The magnification of sources is described by the convergence, κ, while the distortion

to the shape of galaxies is described by the shear (γ1, γ2). Here γ1 describes stretching and

squashing along the x-axis, while γ2 describes these at 45◦to the x-axis. In fact, the effect
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Figure 5.3: The posterior distributions for the model parameters of the smaller halo (on the right

in the convergence map), found from simultaneously fitting two PIEMDs to the projected density

generated from two model PIEMDs. The contours show 68 and 95% confidence intervals. The

model values used to generate the projected density are shown by the blue lines, and are recovered

within the posterior distributions returned by the fitting procedure. The model values for the larger

halo were also recovered, but are not shown here for clarity. The plot was made using CORNER.PY

(FOREMAN-MACKEY, 2016).
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of lensing on galaxy ellipticities is described by the reduced shear, g = γ/(1 − κ). The

quantities κ, γ1 and γ2 can all be related to the effective lensing potential, Ψ, through

κ =
1

2

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
, (5.7)

γ1 =
1

2

(
∂2Ψ

∂x2
− ∂2Ψ

∂y2

)
, (5.8)

and

γ2 =
∂2Ψ

∂x∂y
. (5.9)

The convergence is also given by the scaled projected density

κ(x, y) =
Σ(x, y)

Σcrit

, (5.10)

where the critical surface density, Σcrit, is dependent on the geometry of the source, ob-

server and lens through

Σcrit =
c2

4πG

Ds

DlDls

, (5.11)

where Ds, Dl, and Dls are the angular diameter distances between the observer and the

source, observer and lens, and lens and source respectively.

Using equations (5.10) and (5.11), we can generate a κ map from a simulation snapshot

by binning the 2D particle distribution, having projected along the third dimension. Using

the number of particles in a bin, the particle mass, and the bin area, we can calculate a

projected density, Σ(x, y). Then given a redshift for the lens (here z = 0.296 as for the

observed bullet cluster) and a redshift for the source galaxies (here we use zs = 1) we

can calculate the critical surface density, which for our choice of cosmology was Σcrit =

2.85× 109 M� kpc−2.

Once we have a κ map, we can generate maps of γ1 and γ2 by making use of equations

(5.7 - 5.9). Taking the Fourier transform of these equations, we find

κ̂ = −1

2
(k2
x + k2

y)Ψ̂, (5.12)

γ̂1 = −1

2
(k2
x − k2

y)Ψ̂, (5.13)

and

γ̂2 = −kxkyΨ̂, (5.14)
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where k = (kx, ky) is the wave vector conjugate to x = (x, y). These can be rearranged to

give

γ̂1 =
k2
x − k2

y

k2
x + k2

y

κ̂, (5.15)

and

γ̂2 =
2kxky
k2
x + k2

y

κ̂. (5.16)

Finding γ1 and γ2 is then simply a case of taking the Fourier transform of κ, multiplying

by the appropriate function of kx and ky and taking the inverse Fourier transform to return

the desired shear component. The two components of g are then given by these shear

components divided by 1− κ.

Shear map likelihood function

Given maps of the two reduced shear components generated from a simulation snapshot,

gd
1,i and gd

2,i, we can calculate a likelihood function

L(θ) =
∏

i

exp

{(
(gd

1,i − gm
1,i)

2

2σ2
γ

)}
exp

{(
(gd

2,i − gm
2,i)

2

2σ2
γ

)}
, (5.17)

where gm
1,i and gm

2,i are the maps generated from the parametric model described by θ. When

reconstructing a shear field from the ellipticities of lensed galaxies, the variance of each

component of the shear field at a pixel, σ2
γ = σ2

int + σ2
meas, comes from the intrinsic elliptic-

ities of galaxies as well as shape measurement errors. Shape measurement errors depend

on the quality of the data, as well as the method used to measure shapes, while the intrinsic

ellipticities of galaxies are an unavoidable limitation to lensing measurements using grav-

itational shear. We thus set σmeas = 0 in this work, and assume that the only limitation to

reconstructing a mass model using weak lensing comes from the number density of galax-

ies and the width of their intrinsic ellipticity distribution. Leauthaud et al. (2007) found

that for each galaxy σint ∼ 0.26 across a wide range of sizes, magnitudes and redshifts.

Thus, given a number of lensed galaxies, N , within a pixel of a shear map, the contribu-

tion of intrinsic ellipticities to the average ellipticity of galaxies in that bin will be normally

distributed with zero mean and standard deviation σγ = 0.26/
√
N .

In this work we use a square shear map with a side length of 3 Mpc, centred on the

centre of mass of the two haloes. We first produce a convergence map of this same area, and
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then generate a shear map from this following the procedure described in §5.3.3. In order

to avoid wraparound errors, the convergence map is zero-padded up to a side length of 10

Mpc. The posterior distribution for parameters describing two elliptical PIEMDs can then

be calculated as for the projected density, using the likelihood function in equation (5.17),

where σγ is calculated assuming a source-galaxy density of 80 galaxies arcmin−2. We also

mask out any pixels where κ > 0.6, as in these regions the reduced shear can become very

large and then individual pixels dominate the likelihood, these regions are approaching or

in the strong lensing regime, and would not typically enter a weak lensing analysis.

The result of fitting to a shear map generated from the projected density profile in

Fig. 5.3 is shown in Fig. 5.4. Unlike the case of fitting to the projected density, the width

of the posterior distribution is no longer driven by the number of simulation particles, but

by our greater uncertainty on the shear map from the intrinsic shapes of lensed galaxies.

The synthetic shear map generated (and shown in the top-right of Fig. 5.4) did not include

any shape noise, and so the posterior distributions returned are centred on the true model

values. The width of the posterior describes the range of results one would expect to de-

rive had there been shape noise, as demonstrated by the red dots which show the maximum

likelihood parameter values for 20 different realisations of maps where Gaussian noise was

added to the synthetic shear map, with the variance of the noise corresponding to σ2
γ .

The width of the posterior distributions in Fig. 5.4 suggest that using gravitational shear

with 80 galaxies arcmin−2 we cannot determine the position of the bullet DM halo to better

than ∼ ±40 kpc. This is consistent with Harvey et al. (2015) who found a typical 1σ error

of 60 kpc on the DM halo positions determined from weak gravitational lensing with ∼ 60

galaxies arcmin−2 (D. Harvey, private communication).

5.4 Results

5.4.1 Offsets with different cross-sections

As our fiducial method to measure the positions of both stars and DM, we fit two PIEMDs

to the projected surface density as described in §5.3.2. Doing this independently for the DM
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Figure 5.4: Similar to Fig. 5.3, but for the case of fitting to reduced gravitational shear. The red points

indicate the maximum likelihood parameter values found from fitting to the underlying shear map

from the model with the addition of 20 different realisations of noise from source-galaxy intrinsic

ellipticities. In the shear map in the top-right the colour represents the value of the reduced shear,

while the white lines show the direction.
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and stellar component we can then measure the offset along the collision axis between the

two components. This was done for collisionless DM as SIDM with four different cross-

sections. The offset between the stars and DM of the smaller bullet halo is shown as a

function of the position of this halo in Fig. 5.5. This position was measured along the

collision (x) axis, relative to the centre of mass of the two haloes. As the main halo is

substantially more massive than the bullet halo, this position is similar to the separation

between the two DM haloes. For collisionless DM, the observed DM halo separation of

720 kpc occurs when the bullet halo is at XDM ≈ 600 kpc.

The offsets scale linearly with cross-section, in agreement with R08 and K14, but the size

of the offsets for a given cross-section are considerably smaller than those found in R08, and

about 40% smaller than in K14. For σ/m = 1 cm2 g−1 the offset at the time of the observed

Bullet Cluster is ∼ 10 kpc, whereas R08 find that a similar cross-section leads to the DM

trailing the galaxies by almost 40 kpc. From the observed trailing of galaxies by DM of 25±
29 kpc R08 placed constraints on the DM cross-section of σ/m < 1.25 cm2 g−1, whereas all of

our simulated cross-sections would be consistent with this observation. This discrepancy is

investigated in the following two sections, where we vary our initial conditions, and then

the method used to measure positions.

5.4.2 Sensitivity to varying initial conditions

The offsets for different cross-sections depend on the initial conditions used, as changing

the masses and concentrations of the haloes changes the rate of DM scattering as well as

the gravitational forces that dominate the dynamics of the merger. In this section, we in-

vestigate changing the initial conditions. We vary one parameter at a time from its value

in our fiducial model, and change the parameters in a way that has been used in previous

simulations or has been hinted at by previous results.

Main halo concentration

The first parameter we vary is the concentration of the main halo. Our fiducial model

used c = 3 as this was found to be required by SF07 to reproduce the observed offset
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Figure 5.5: The offset between the stellar (galaxy) and DM component of the bullet halo for different

SIDM cross-sections, where both the stellar and DM positions were determined by simultaneously

fitting two PIEMDs to the respective projected maps. The offsets scale linearly with DM cross-

section, and at the time of the observed bullet cluster the DM trails the galaxies by ∼ 10 kpc for

σ/m = 1 cm2 g−1. Lines are semi-transparent around the time of core-passage (which due to tidal

forces happens at XDM ≈ −80 kpc before the centres of mass of the two haloes meet) due to a

degeneracy in the positions of the two haloes leading to spurious offsets.
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between the bright X-ray bullet and the associated DM halo. This result used the rather

limiting assumption (as used in this work) that the gas density initially follows the DM

density. Lage & Farrar (2014) used more complicated models for their initial conditions,

with triaxial DM haloes, and a seven parameter model for the gas profile of each halo.

They found their best fitting model to have c = 1.17± 0.14 for the main halo, which would

put this halo well below the median concentration-mass relation. To investigate how a low

initial concentration for the main halo affects our results, we ran simulations with an initial

concentration for the main halo of c = 1.94, which was the best fit concentration for the

main halo measured after the collision via weak lensing.

The resulting offsets with collisionless DM and SIDM with σ/m = 1 cm2 g−1 are shown

in Fig. 5.6. The offset with SIDM is reduced relative to the fiducial model, which is to be

expected given that with a lower concentration, the projected density through the centre

of the halo is reduced. This means that particles in the bullet halo, which has zero impact

parameter and passes through the centre of the main halo, pass through less DM and are

less likely to scatter from particles in the main halo. In fact, the fraction of DM particles

from the bullet halo that scatter with particles from the main halo drops from 13% for our

fiducial model to 10%, in broad agreement with estimates of the scattering fraction that can

be made from Fig. 5.1.

Relative velocity between haloes

As discussed in §5.2.2 the shock velocity in the observed Bullet Cluster is 4700±600 km s−1.

In previous work using the Bullet Cluster to constrain SIDM (R08, K14) this has been used

as the relative velocity between the two DM haloes, despite hydrodynamical simulations

showing that the relative velocity of the shock front and pre-shocked gas in Bullet Cluster-

like simulations is significantly higher than the relative velocity of the DM haloes (SF07,

Milosavljević et al., 2007; Lage & Farrar, 2014).

In Fig. 5.6 we show how the offset between the bullet DM halo and galaxies changes

when the collision velocity is increased. We start the haloes with a relative velocity of

4000 km s−1 at a separation of 4 Mpc, which leads to a relative velocity of 4700 km s−1 at

the time of the observed Bullet Cluster. This is in contrast with our fiducial model, where
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Figure 5.6: DM–galaxy offsets as in Fig. 5.5, but with four different sets of initial conditions, each

run with collisionless DM and SIDM with σ/m = 1 cm2 g−1. These initial conditions are described

in §5.4.2, but in summary are as follows: compared to our fiducial model ‘c = 1.94’ has a lower

concentration for the main halo, ‘v = 4000 km s−1’ has an increased relative velocity between the

two haloes, and ‘M200 = 3× 1014 M�’ has a more massive bullet halo.
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haloes start with the velocity corresponding to falling from rest at infinite distance, and

the relative velocity between DM haloes is 3900 km s−1 at the time of the observed Bullet

Cluster. We find that the offsets are not very sensitive to this change in relative velocity.

Mass of bullet halo

The weak lensing derived mass for the bullet halo ofM200 = 1.5× 1014 M� is low in compar-

ison with the strong lensing results (Bradač et al., 2006) that calculate the mass in a 300 kpc

radius cylinder centred on the bullet halo’s BCG to be 3× 1014 M�. While this is the total

mass in this region, and includes a contribution from the main halo, this is still suggestive

that the weak lensing mass may be an underestimate. Simulations that have looked to re-

produce the gas morphology and luminosity have also found best fit mass-ratios for the

merger between 7:1 and 5:1 (Milosavljević et al., 2007; Mastropietro & Burkert, 2008; Lage

& Farrar, 2014).

For these reasons we run simulations with an increased mass for the bullet halo of

M200 = 3× 1014 M�, keeping the concentration the same as in our fiducial model. This

leads to a significant increase in the separation between DM and galaxies in the bullet,

with the offset at the time of the observed Bullet Cluster increasing from 10 kpc for our

fiducial model to 14 kpc.

Impact parameter

While the gas morphology implies a collision that was close to head-on, the bright gas

bullet is not located precisely along the line connecting the centres of the two cluster haloes,

suggesting a small non-zero impact parameter. We therefore run simulations with off-

centre collisions, and investigate how sensitive the DM-galaxy offsets are to this change.

We continue to start the simulations with the two haloes separated by 4 Mpc and on a

zero energy orbit, but rotate the velocities of the haloes by θinit with respect to the x-axis

that connects the two halo centres (keeping the velocities of the two haloes anti-parallel).

We choose θinit such that the two haloes would have a closest approach of r∗ if they behaved

as point masses throughout the merger. The force between the two haloes is reduced (com-

pared to the case of point masses) when their mass distributions overlap, so that the actual
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Table 5.1: Summary of non-zero impact parameter simulations.

r∗/ kpc θinit/
◦ b4 Mpc/ kpc rmin/ kpc θobs/

◦

0 0 0 0 0

12.5 3.2 224 102 6

25 4.5 316 153 10

50 6.4 447 236 18

100 9.1 632 354 30

minimum separation between the halo centres, rmin, is significantly larger than r∗.

We summarise our different impact parameter runs in Table 5.1. As well as r∗, θinit,

and rmin, we include the perpendicular distance between the two haloes’ velocities when

they are separated by 4 Mpc, b4 Mpc, and the angle between the halo-halo separation and

the bullet halo velocity at the time of the observed Bullet Cluster, θobs. Assuming that

gas is stripped in the opposite direction to the direction of motion, θobs should roughly

correspond to the angle between the DM-gas separation in the bullet halo and the DM-DM

separation between the two haloes.

In Fig. 5.7 we plot the separation between the DM and galaxies with different impact

parameters. In the top panel the impact parameter is in the plane of the sky, while in the

bottom panel it is along the line of sight, and the collision appears as if head on. Note that

in the top panel we measure the 2D offset between the DM and galaxies, as this offset is no

longer along the x-axis.

We find that moderate impact parameters only have a small effect on the DM-galaxy

offsets. SF07 found that r∗ < 12.5 kpc to avoid a gas distribution that is more asymmetric

than that observed, while Mastropietro & Burkert (2008) found that an impact parameter,

b = 150 kpc, gave the best match to the gas morphology and relative X-ray brightness of

the two gaseous haloes. This means that even our smallest non-zero impact parameter is

large compared to that used for the best-fitting results from other simulations of the Bullet

Cluster, and so we expect any impact parameter consistent with the observed Bullet Cluster

to decrease the DM-galaxy offset by less than 20%.
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Figure 5.7: DM-galaxy offsets with σ/m = 1 cm2 g−1 and four different impact parameters, as well

as a head-on collision. The runs are labelled by the angle between the separation of the two haloes

and the velocity of the bullet halo measured at the time of the observed Bullet Cluster, θobs. The

fitting was done by simultaneously fitting two PIEMDs to the projected mass distribution. In the

top panel the impact parameter was in the plane of the sky, while in the bottom panel it was along

the line of sight.
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5.4.3 Offsets with different position measures

Having found that the offset results are reasonably insensitive to the choice of initial con-

ditions, in Fig. 5.8 we show the effect of using different methods to measure positions. For

both collisionless DM and SIDM with σ/m = 1 cm2 g−1 we measured the separation be-

tween the stellar and DM components of the bullet halo using the methods described in

§5.3. For the shrinking circles and projected density measurements the same method was

used for finding the position of both the stars and DM, while for the shear measurement the

separation is that between the stellar halo measured by fitting to the projected density and

the DM halo measured using reduced gravitational shear. Fig. 5.4 demonstrates that with

80 galaxies/arcmin2 the position of the bullet halo can only be determined to ±40 kpc. As

this uncertainty is larger than the offsets for any of our simulated cross-sections, detecting

SIDM using weak lensing and the Bullet Cluster alone would not be possible. In Fig. 5.8 the

lines derived from reduced gravitational shear used 8000 galaxies/arcmin2, giving errors

indicative of what could be achieved with ∼ 100 Bullet Cluster-like systems.

As discussed in §5.3.1 the shrinking circles procedure will only return one position for

a distribution of particles. We therefore use two different approaches to return the position

of the bullet halo, both of which shrink the circle down to a final size of Rmin = 200 kpc as

used by R08. The first method (Halo 2) is to apply the shrinking circles procedure to only

the particles that were originally part of the bullet halo. The second method (All DM) is to

apply the shrinking circles procedure to all of the DM, but starting with a circle centred on

the second halo, as determined by Halo 2, with a starting radius of 500 kpc.

The different methods for measuring positions give very different results for the same

SIDM cross-section, highlighting the importance of matching the analysis to what is done

observationally. The offsets measured for σ/m = 1 cm2 g−1 using different methods can

be as different as the offsets for the different cross-sections shown in Fig. 5.5, particularly

soon after core passage. Of particular note is the large offsets measured using shrinking

circles on all of the DM. This method was also highly sensitive to the choice of starting

position and starting radius, suggesting it is not a robust way to measure offsets from sim-

ulations. As a method similar to this was used by R08, this explains the large offsets and

tight constraints on the DM cross-section that they found.
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Figure 5.8: DM - galaxy offsets as in Fig. 5.5, but measured using different methods: fitting to the

projected surface density (Σ), the reduced gravitational shear (g) and two different shrinking circles

techniques. For all methods but g, the same method was used to find the position of both the stars

and the DM, while for g it was only the DM measured using shear with the stars being measured

using Σ. The two shrinking circles techniques are described in §5.4.3.
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The sensitivity to the method used to measure the positions can be understood when

one considers that after core passage of the two haloes, there are three distinct sets of DM

particles: those originally from the main halo that have not interacted with any particles

from the sub halo, those originally from the sub halo that have not interacted with any

particles from the main halo, and particles from one halo that have scattered with a particle

from the other halo.2 The momentum transfer between the two haloes caused by isotropic

DM elastic scattering acts differently to the stripping of gas due to hydrodynamical forces,

as only a subset of DM particles receive a momentum kick. These particles then lag behind

the halo from which they came, gravitationally pulling it back, but they do this equally to

un-scattered DM particles and galaxies, and so do not lead to an offset between unscattered

DM particles and the collisionless galaxies. Any offset found between the DM and galaxies

is a result of fitting the wake of scattered particles and so depends sensitively on how

positions are measured.

For σ/m = 1 cm2 g−1 we show the projected DM density at the time of the observed

Bullet Cluster in Fig. 5.9, along with the distribution of particles that have scattered with a

particle from the other halo. For this cross-section and our fiducial initial conditions, 13%

of particles from the bullet halo scatter with particles from the main halo. The distribution

of these scattered particles is quite broad, with the highest projected density of scattered

particles being only 10% of the total projected density at the same location.

The position returned by shrinking circles to different final radii

To illustrate the problems with using a shrinking circles procedure to measure the positions

of stars and DM we show an example in Fig. 5.10, run on our fiducial simulation with

σ/m = 1 cm2 g−1 at the time of the observed Bullet Cluster (the same snapshot used for

Fig. 5.9). The position returned for both the stars and DM varies as a function of Rmin, with

the offset between the stars and DM also depending sensitively on Rmin.

An initial position for each of the stellar and DM components of the bullet halo is made

by running shrinking circles on only particles that were part of the bullet halo in the initial

2For particles that are involved in an inter-halo scattering event, particles from the two haloes are indis-

tinguishable when the scattering cross-section is isotropic.
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Figure 5.9: For SIDM with σ/m = 1 cm2 g−1 the projected density of all DM in red, with the pro-

jected density of DM particles that have scattered with a particle originally from the other DM halo

shown in blue contours, and also projected along the axes and shown as 1D histograms. The total

mass in these scattered particles is 6.5× 1013 M�, corresponding to 13% of particles from the bullet

halo scattering with particles in the main halo.
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conditions. The initial radius used was 400 kpc, a bit over half of the separation between

the two DM haloes. Initially as the circles are shrunk and re-centred they shift left due

to the gradient in density coming from the main halo. As this gradient is steeper closer

to the main halo, the DM position (that initially lies to the left of the stellar position) is

affected more by the presence of the main halo, which in turn leads to spuriously large

offsets. As the circles are shrunk further, they centre in on a region dominated by the bullet

halo, and the offsets decrease. Shrinking down to Rmin . 50 kpc the results become noisy

as the number of particles involved in the position estimate decreases, and there is no clear

density peak (with σ/m = 1 cm2 g−1 the core size of the bullet halo is∼ 100 kpc, though this

is less obvious in the top of Fig. 5.10 due to projection effects).

Even before the results become noisy, the offsets between the stellar and DM peaks

become very small, in agreement with K14 who found that the peaks in stellar and DM

projected density were perfectly coincident when DM scattering was isotropic. This raises

the question of whether any constraints can be placed on isotropic SIDM from looking at

separations between local galaxy and DM peaks in colliding clusters. That being said, most

studies that look for offsets between galaxies and peaks in free form lensing reconstructions

either bin lensed galaxies (Ragozzine et al., 2012; King et al., 2016) effectively smoothing the

DM distribution on some scale, or use a regularisation scheme (e.g. Bradač et al., 2006), such

that the diffuse cloud of scattered particles (Fig. 5.9) could shift the derived DM peak back

and lead to a measurable offset.

From the bottom panel of Fig. 5.10 it is clear that Rmin = 200 kpc can give misleadingly

large offsets, which explains the tight constraints on the DM cross-section found by R08.

What is also clear is that there is no good choice for Rmin, as the results do not converge as

Rmin is decreased. For these reasons we fit parametric models to our haloes in this chapter,

as is often done in gravitational lensing analyses (Smith et al., 2005; Richard et al., 2010;

George et al., 2012; Harvey et al., 2015; Massey et al., 2015; Shu et al., 2016). While this

does not directly relate to what was done in Bradač et al. (2006), where strong and weak

lensing were combined to produce a non-parametric mass model of the Bullet Cluster, a

mock strong-lensing analysis is beyond the scope of this paper. We cannot do strong lens-

ing with our simulations as the surface density of our simulated bullet halo does not exceed
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the critical surface density for a lens at the Bullet Cluster’s redshift. The absence of strong

lensing with SIDM was noted by Meneghetti et al. (2001), who found that with moderate

cross-sections of 0.1 − 1 cm2 g−1, the number of radial and giant-tangential arcs would fall

well below what is observed. However, they point out that even with a collisionless DM

simulation the number of strong lensing features falls below what is observed, and that

bright central galaxies probably play an important role in generating strong lensing fea-

tures. While this is certainly an interesting avenue to constrain SIDM, without including

the effects of galaxy formation physics in our simulations, and with these simulations start-

ing from idealised initial conditions, our work is not suited to testing whether the presence

of strong lensing features can constrain the DM cross-section.

5.4.4 Offsets including gas

So far, the results have been from simulations without any gas. However, real galaxy clus-

ters have significant gas fractions. While there is less gas than DM, the additional hydrody-

namic forces that act on the gas can alter the dynamics of merging clusters. In this section

we look at the changes from the previous results when each halo contains an adiabatic gas

component making up 16% of the total halo mass.

The resulting offsets between stars and DM are shown in Fig. 5.11. The offsets measured

for σ/m = 1 cm2 g−1 remain largely unchanged, with a small decrease (compared with the

gas-free case) in the offset measured by fitting to the projected surface density. This results

from the decreased optical depth for scattering as particles pass through the main halo,

owing to ∼ 16% of the DM mass now being in the form of gas. Most strikingly, there is

now a significant offset measured with collisionless DM when measuring the DM position

using gravitational shear. This is surprising, particularly as our DM and stars have the

same phase space distribution at all times in our collisionless DM run, so this offset is a

result of different fitting methods returning substantially different position estimates.
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Figure 5.10: Top panel: the average projected surface density measured in a 400 kpc strip centred on

the collision axis, for both the stars and DM (the stellar surface densities have been scaled up so that

the mass in stars matches that in DM). The points show the position of the bullet halo returned by

the shrinking circles procedure with different Rmin, with the width of horizontal bars being twice

Rmin. Bottom panel: the DM-galaxy offset as a function of Rmin. The dark line corresponds to the

top panel (when the two haloes are separated by ∼ 720 kpc, and with σ/m = 1 cm2 g−1), while the

lighter lines are for successive snapshots separated by 10 Myr.



CHAPTER 5. THE BULLET CLUSTER WITH SIDM 152

−600 −400 −200 0 200 400 600 800 1000 1200
xDM / kpc

−30

−25

−20

−15

−10

−5

0

5

(x
D

M
−

x g
al

)
/

kp
c

0.0 cm2 g−1

1.0 cm2 g−1

Σ

g

Figure 5.11: The offset between the stars and DM from simulations including adiabatic gas. As in

Fig. 5.8, the g measurement is the offset between the DM position measured using reduced shear

and the stellar position measured by fitting to the projected density of stars. As such, the large offset

with collisionless DM which is not seen when both the stellar and DM positions are measured from

their projected densities, means that fitting to the projected density or reduced shear of the same

mass distribution, can lead to strongly differing results.
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Explaining offsets with collisionless DM

In the top row of Fig. 5.12 we plot the projected DM distribution, and resulting shear field,

at the time of the observed Bullet Cluster, but only using particles that were part of the

bullet halo in the initial conditions. What is clear from the projected density is that the

mass distribution is not elliptically symmetric, with the peak on small scales being shifted

to the left of (i.e. lagging behind) the centre of mass measured on larger scales. This is

quantified in the top panel of Fig. 5.13 where we show the position returned by applying

the shrinking circles algorithm on the DM particles from the bullet halo, shrinking down

to different final radii, Rmin.

The middle and bottom rows of Fig. 5.11 show the best-fit maps from fitting to the pro-

jected surface density and reduced gravitational shear respectively. The projected surface

density fit favours a more elliptical halo, centred further to the right, than the shear fit. This,

combined with the fact that the halo position shifts left when measuring on smaller scales,

suggests that reduced shear is more sensitive to the inner regions of the halo, whereas the

projected density fit is more sensitive to larger scales. In the bottom panel of Fig. 5.13 we

show that this is what is expected, plotting (for both Σ and g) the sum of the signal to noise

ratio over the whole map, due to annuli of mass at different radii. The details of this are

explained in Appendix C. We find that this quantity peaks at R ∼ 60 kpc for reduced shear

and R ∼ 230 kpc for the projected density, in rough agreement with the shrinking circles

Rmin that returns the same position as the respective fitting procedure.

Asymmetry in the DM distribution, and consequent differences in the positions re-

turned by different fitting methods is most pronounced for the collisionless DM case as

the cuspy halo is tightly bound to the gas. The formation of DM cores with SIDM reduces

the strength of this gravitational binding, such that when the gas is stripped with SIDM it

does not drag back the central regions of the DM halo as strongly as with collisionless DM.

The stripping of gas is just one mechanism that could cause an asymmetric DM profile, but

serves as a cautionary tale for attempts to use offsets between different cluster components

to constrain DM’s collisional properties. The general result that an asymmetric profile can

lead to a measured offset between spatially coincident components, due to them being mea-

sured using techniques sensitive to different scales, is an important systematic to consider
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in future studies.

Changes to the gas morphology

Aside from its effect on the DM distribution, the gas itself could potentially be used as a

probe of DM self-interactions. In Fig. 5.14 we show the press release image of the Bullet

Cluster, with a similarly rendered output from our fiducial CDM + gas simulation shown

in Fig. 5.15. The gas morphology of the bullet, as well as the offset between the X-ray bright

bullet and its associated DM peak, are in good agreement with the observed Bullet Cluster.

Unfortunately, changes to the gas morphology as the DM cross-section is changed are

fairly small, with the largest differences being the width and temperature of the shocked

region. Increasing the DM cross-section lowers the luminosity-weighted projected tem-

perature in the shocked-gas region, from 30 keV with collisionless DM, to 25 keV with

σ/m = 2 cm2 g−1, both well within the quoted observational error (Markevitch, 2006).

This decrease in temperature also comes with an increase in the width of the shocked

region. The distance between the shock front and the contact discontinuity connecting the

shocked gas to the cold gas bullet, increases from 70 kpc with collisionless DM to 110 kpc

with σ/m = 2 cm2 g−1. While this latter value is in better agreement with the observed

distance between the shock front and contact discontinuity (∼ 140 kpc), we find (in agree-

ment with SF07) that this distance is highly sensitive to the concentration of the main halo,

making this measurement unsuitable for constraining the DM cross-section.

5.5 Conclusions

We have used our SIDM code, described in Chapter 3, to perform idealised simulations

of Bullet Cluster-like systems. With SIDM, the momentum transfer from particles in the

main halo to particles in the bullet halo with which they scatter, leads to a tail of scattered

particles in the bullet halo that shifts the measured position of this halo relative to the

collisionless stars. Our fiducial model for the Bullet Cluster was derived from fits to weak

lensing data. Changes to this fiducial model led to changes in the measured offsets between

stars and DM, although these changes were small and in a predictable manner.
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Figure 5.12: The convergence (left column) and reduced shear (right column) due to the bullet halo

DM, for a simulation with collisionless DM and non-radiative gas. The top row shows the simu-

lation output (only including DM particles that are part of the bullet halo in the initial conditions),

while the middle and bottom rows show the best fit maps generated by fitting to the projected

surface density and reduced gravitational shear respectively. Each panel is 1 Mpc across.
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Figure 5.13: Top panel: the x-position of the bullet DM halo measured using shrinking circles on

only the DM particles that are part of the bullet halo in the initial conditions. The position is shown

as a function of the radius to which the circle is shrunk, with the DM halo shifting to the left as the

measurement is made on smaller scales. The best-fit positions of the bullet DM halo from fitting to

the projected density and reduced gravitational shear are also shown. Bottom panel: the signal to

noise integrated over the projected density or reduced shear map, due to mass within an annulus

of fixed width at radius R. This was calculated using the projected density as a function of R from

the best-fit model to the projected density. Further details are in Appendix C.
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Figure 5.14: Press release image of the Bullet Cluster. Credit: X-ray: NASA/CXC/CfA/Markevitch

(2006); Optical: NASA/STScI; Magellan/U.Arizona/Clowe et al. (2006); Lensing Map:

NASA/STScI; ESO WFI; Magellan/U.Arizona/Clowe et al. (2006).

Figure 5.15: The projected DM density (blue) and X-ray luminosity (pink) from a simulation run

from our fiducial initial conditions, with CDM and gas. The optical image from the press release

has been overlaid. A video of the simulation evolving (including animated galaxies) is available at

https://www.youtube.com/watch?v=rLx_TXhTXbs

https://www.youtube.com/watch?v=rLx_TXhTXbs
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Our primary conclusion, is that the method used to measure the positions of the differ-

ent components can have a larger effect than using a different model for the Bullet Cluster.

In particular, shrinking circles methods similar to those used by R08, give substantially

larger DM–galaxy offsets than more observationally-motivated methods such as paramet-

ric fits to the projected density or reduced gravitational shear. This suggests that the σ/m <

1.25 cm2 g−1 constraint placed on the cross-section for DM scattering by R08 is strongly

overstated. In fact, for our fiducial model of the Bullet Cluster with σ/m = 2 cm2 g−1, the

DM–galaxy offset at the time of the observed Bullet Cluster is ∼ 20 kpc, which is allowed

by the 25 ± 29 kpc observed offset used by R08 to place their constraint. We produce more

robust results by fitting parametric models to the haloes – which can be done observation-

ally (Smith et al., 2005; Richard et al., 2010; George et al., 2012; Harvey et al., 2015; Massey

et al., 2015; Shu et al., 2016). We recommend that future simulation efforts adopt this, or

similarly motivated techniques, to enable a better comparison to observations.

We went on to show results from the first simulations of merging clusters to include

both SIDM and gas. The gas does not have much effect on the offset between the stellar

and DM components. However, as the gas is stripped it introduces asymmetries into the

stellar and DM components, with the central regions of the bullet halo lagging behind the

larger-scale centre. This is strongest with collisionless DM where the cuspy halo is tightly

bound to the gas. As the methods used observationally to measure the positions of the

galaxies and DM will be different, they are likely to be sensitive to different scales. We

showed that this can result in a measured offset between these two components even if

they have an identical spatial distribution. These asymmetric halo shapes could also be

produced by tidal forces or dynamical friction, and these asymmetries are an important

potential systematic that could lead to the false detection of SIDM.





Chapter 6
Simulations of self-interacting dark matter

with anisotropic scattering

6.1 Introduction

The tightest constraints on DM’s self-interaction cross-section have come from galaxy clus-

ter scales (Miralda-Escudé, 2002; Randall et al., 2008; Rocha et al., 2013; Peter et al., 2013;

Harvey et al., 2015; Kim et al., 2017), while the astrophysical motivation for SIDM pre-

dominantly comes from dwarf galaxies (Vogelsberger et al., 2012; Zavala et al., 2013; Elbert

et al., 2015; Vogelsberger et al., 2016). The typical velocities of DM particles within galaxy

clusters are of the order of 1000 km s−1, while in dwarf galaxies they can be 10 to 100 times

lower. Given that it is common for scattering cross-sections to have a strong velocity de-

pendence (such as σ ∝ v−4 in the case of Rutherford scattering) and that this is true also

of many particle physics based models for SIDM (Ackerman et al., 2009; Feng et al., 2010;

Buckley & Fox, 2010), it is not unreasonable for the cross-section in dwarf galaxies to be

orders of magnitude larger than in galaxy clusters. This has led to such particle candi-

dates being simulated (Vogelsberger et al., 2012; Zavala et al., 2013; Vogelsberger & Zavala,

2013; Vogelsberger et al., 2014b) in a bid to alleviate tensions on small scales, while evading

constraints that come from larger scales.

The parameters governing such velocity-dependent cross-sections (DM mass, mediator

mass and coupling strength) can in principle be constrained by estimating the cross-section

160
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for DM–DM scattering at different velocities. Kaplinghat et al. (2016) recently estimated the

DM mass and dark photon mass, assuming that the inferred core sizes in observed galaxy

clusters (Newman et al., 2013), low surface brightness galaxies (Kuzio de Naray et al., 2008)

and dwarf galaxies (Oh et al., 2011) are due to SIDM, and using a coupling strength equal

to the electromagnetic fine structure constant α′ = α ≈ 1/137.

What is often ignored when simulating these velocity-dependent cross-sections is that

the scattering is usually anisotropic. This is because the velocity dependence results from a

term in the scattering cross-section that depends on the exchanged momentum, which de-

pends on both the collision velocity and the scattering angle. This angular dependence has

not been included in previous simulations, which have instead simulated the scattering as

isotropic but with a cross-section modified such that the effects of DM scattering should be

similar to what would result from a faithful simulation using the underlying particle inter-

action. This has been done by matching the momentum transfer cross-section as a function

of collision velocity, σT (v), between the true particle interaction and that used in the simu-

lations. While this may work well when the DM velocity distribution is close to isotropic,

Kahlhoefer et al. (2014, hereafter K14) found that for the case of colliding galaxy clusters

the momentum transfer cross-section is insufficient to fully characterise the effects of DM

scattering. This is not surprising; when galaxy clusters collide there is a strongly preferred

direction along which DM particles collide and the angular distribution of scattered DM

becomes important.

The goal of this chapter is to explore the effects of anisotropic DM scattering, by simulat-

ing scattering processes faithfully to their underlying particle physics models. We explore

how the results from anisotropic scattering compare with the case of isotropic scattering for

the evolution of an isolated DM halo, as well as in a galaxy cluster collision. By also sim-

ulating these systems using an appropriately matched isotropic cross-section, as has been

done in the past, we can test the validity of this approximate scheme.

This chapter is organised as follows. In §6.2 we discuss the physics of anisotropic scat-

tering and introduce two examples of anisotropic scattering cross-sections. We then inves-

tigate how core-formation in an isolated DM halo depends on the angular-dependence of

the scattering cross-section in §6.3. In §6.5 we show the results of simulations of the Bullet
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Cluster run with anisotropic scattering, and contrast this system that has a clear direction-

ality to the case of an isolated halo. Finally, we summarise the chapter in §6.6.

6.2 Angular Dependent Scattering

The key particle physics quantity for a study of the astrophysical effects of SIDM is the

differential cross-section, dσ/dΩ. This quantifies the rate at which particles are scattered

into different patches of solid angle, and can vary as a function of the collision velocity, v.

In this section we briefly describe the particle physics that leads to angular-dependent

scattering, and then describe different integrated cross-sections, which condense a scatter-

ing probability that varies with angle into a single number. We end the section by introduc-

ing two different anisotropic cross-sections, which we later use in our simulations.

When dealing with particle scattering we assume that DM particles are indistinguish-

able and work in the centre of momentum frame of the two interacting particles, with the

velocities of the DM particles defined to be ±v/2 in the z-direction. To conserve both en-

ergy and momentum, both particles leave the collision with a velocity of v/2 at a polar

angle θ with respect to their incoming direction, where θ must be the same for the two

particles. Assuming that the scattering potential is spherically symmetric, the differential

cross-section is independent of the azimuthal angle φ. The DM particle mass is mχ and the

DM scattering is mediated by a particle with mass mφ, with a coupling strength (analogous

to the fine structure constant) αχ.

6.2.1 Particle physics of angular dependent scattering

As mentioned in this chapter’s introduction, most efforts to simulate SIDM have treated the

DM scattering as isotropic. This isotropic scattering, also commonly referred to as ‘contact

interactions’, ‘hard sphere scattering’ and ‘billiard ball scattering’1 results from an inter-

action with a massive mediator, leading to a short range force. For DM particles with a

1Readers may be interested to note that the cross-section per unit mass of a World Pool-Billiard Association

ball is 0.64 cm2 g−1, of similar magnitude to commonly studied SIDM cross-sections, though it is unclear how

resilient pool balls would be to ∼ 1000 km s−1 collisions.
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relative velocity v, scattering will be isotropic when the mediator mass is much heavier

than the DM particle momenta, cmφ � v mχ. When this is not the case, the interaction

cross-section will typically depend on the exchanged momentum, which increases with an

increased collision velocity or an increased scattering angle, leading to velocity-dependent

anisotropic scattering. This second case, with long range interactions due to a light or mass-

less mediator, arises in models of mirror DM (Blinnikov & Khlopov, 1983; Berezhiani et al.,

1996; Foot, 2004) and atomic DM (Cline et al., 2012; Cyr-Racine & Sigurdson, 2013), as well

as some other hidden sector DM models (Feng et al., 2009; Foot & Vagnozzi, 2015; Boddy

et al., 2016).

6.2.2 Integrated cross-sections

Given an azimuthally-symmetric differential cross-section, dσ/dΩ, the total cross-section is

σ ≡
∫

dσ

dΩ
dΩ = 2π

∫
dσ

dΩ
sin θ dθ. (6.1)

While this is the relevant quantity when considering the rate at which particles interact, it

does not fully describe the consequences of these interactions, as the effect of scattering by

a large angle (and so transferring a large amount of momentum between the two particles)

is greater than the effect of scattering by a small angle.

A useful concept when comparing the macroscopic consequences of particle interac-

tions with different angular dependencies for the differential cross-section is the momentum-

transfer cross-section. For a scattering angle of θ, the momentum transfer along the direc-

tion of the collision is

∆pz = p(1− cos θ), (6.2)

where p is the magnitude of each of the incoming particles’ momenta in the centre of mo-

mentum frame. We therefore define the momentum-transfer cross section as

σT ≡
∫

(1− cos θ)
dσ

dΩ
dΩ. (6.3)

This is similar to the definition of σ, except that interactions that lead to a large amount of

momentum transfer contribute more, while those that transfer little momentum are down-

weighted. For the case of isotropic scattering, where dσ
dΩ

= σ
4π

is independent of angle, the

momentum-transfer cross-section and the cross-section are equal, i.e. σT = σ.
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K14 point out that this definition of σT overestimates the momentum transfer due to

scattering with θ > π/2, as in these cases the particles, which we assume to be identical,

could be relabelled in such a way that they had scattered with θ < π/2. If we weight

scatters by the amount of momentum transfer, but relabel particles if they scatter by an

angle greater than π/2, then we get the integrated cross-section

σT̃ ≡
∫ π/2

θ=0

(1− cos θ)
dσ

dΩ
dΩ +

∫ π

θ=π/2

(1 + cos θ)
dσ

dΩ
dΩ, (6.4)

which we call the modified momentum-transfer cross-section. For isotropic scattering σT̃ =

σ/2, while for cross-sections with a negligible amount of large-angle scattering σT̃ ≈ σT .2

While integrated cross-sections such as σT and σT̃ do not fully describe a scattering pro-

cess, they are useful as a way to compare different scattering cross-sections, and have been

used in cosmological simulations of SIDM. The reason for this is computational efficiency.

For anisotropic cross-sections, where the vast majority of scattering events involve a low

momentum transfer (such as scattering from a Coulomb potential), there can be a large

number of interactions, each having very little effect. A less computationally intensive way

to simulate a similar effect is to simulate the scattering as isotropic, where most scattering

events involve a large amount of momentum transfer, but with a total cross-section scaled

down so that the rate of momentum transfer matches the momentum transfer expected

from the underlying particle physics model for the DM. This reduces the number of in-

teractions that need to be calculated, while attempting to adequately capture the effects of

particle scattering.

6.2.3 A velocity-independent, anisotropic cross-section

In §6.2.1 we discussed that anisotropic scattering usually occurs when the cross-section is

also velocity-dependent. However, studying an anisotropic cross-section without velocity

dependence is useful to gain intuition for what might happen with more complicated cross-

sections, and if realised in nature could have interesting effects in merging galaxy clusters

2For most cross-sections σT̃ has a similar value to the viscosity (or conductivity) cross section σV ≡
∫

sin2 θ dσ
dΩdΩ advocated by Tulin et al. (2013a), Cline et al. (2014a) and Boddy et al. (2016) for reasons similar

to those for introducing σT̃ .
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(K14). As an example of such a cross-section we use:

dσ

dΩ
=

α2

2m2
χ

1 + cos2 θ

1− cos2 θ
(6.5)

for which both σ and σT diverge and which we call Kahlhoefer velocity-independent (KVI).

In the case of the σT divergence, this is because of the divergence in the differential cross-

section as θ → π. While scattering by ∼ π leads to a significant amount of momentum

transfer between the two particles, it leaves the system relatively unchanged, as two iden-

tical particles just swap velocities with each other. For this reason, σT̃ is a more sensible

choice to describe the scattering. For this differential cross-section

σT̃ =
πα2

m2
χ

(ln 16− 1) . (6.6)

For the KVI cross-section, the divergence in the differential cross-section as θ → 0 and

θ → π, means that we cannot simulate the cross-section completely faithfully. However,

the modified momentum-transfer cross-section is finite for this differential cross-section

because the divergence in cross-section at low angles is accompanied by a suitably rapid

decline in the effectiveness of these scatters to transfer momentum. This means that for a

small θmin, one should expect that ignoring scattering with θ < θmin and θ > π−θmin, should

lead to negligible changes to the effect of this cross-section.

Introducing a cut-off, such that the differential cross-section follows equation (6.5) for

θmin < θ < π − θmin and is 0 outside of this, the cross-section is then finite,

σ(θmin) =
2πα2

m2
χ

{
ln

(
1 + cos θmin

1− cos θmin

)
− cos θmin

}
. (6.7)

The modified momentum-transfer cross-section becomes

σT̃ (θmin) =
πα2

m2
χ

{ cos2 θmin − 2 cos θmin + 4 ln(1 + cos θmin)} (6.8)

which can be compared with equation (6.6) to see how much momentum-transfer we ex-

pect to miss by introducing θmin. In particular, for θmin � 1

σT̃ − σT̃ (θmin) =
πα2

m2
χ

{
θ2

min +O(θ4
min)

}
. (6.9)

As an example, with θmin = 0.1 we only lose 0.6% of σT̃ .
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6.2.4 Yukawa-potential SIDM

A general result for scattering mediated by a massive mediator particle is that it is equiv-

alent to having a Yukawa potential. Loeb & Weiner (2011) noted that such a cross-section

would display interesting astrophysical signatures because the rate of scattering peaks at

a particular pairwise velocity, falling at smaller or larger velocities. This could lead to

scattering being important in DM haloes of a particular mass (and so a particular velocity

dispersion), while being negligible in the more massive haloes that have thus far provided

the tightest constraints on the DM cross-section. Simulations including such a model for

DM scattering have been performed, but have simulated the scattering as isotropic, us-

ing the momentum-transfer cross-section of the underlying particle physics model, as the

cross-section for isotropic scattering (Vogelsberger et al., 2012; Vogelsberger & Zavala, 2013;

Zavala et al., 2013; Vogelsberger et al., 2014b). We call this method of simulating DM mod-

els with anisotropic cross-sections, σT -match.

There is no analytical form for the differential scattering cross-section due to a Yukawa

potential, but by using the Born-approximation (Jelley, 1990), valid when the scattering

potential can be treated as a small perturbation, we can find an analytical form that ap-

proximates the true differential cross-section. For an interaction potential given by

V (r) = −αχe
−mφr

mφr
, (6.10)

the differential cross-section assuming the Born approximation is (Ibe & Yu, 2010)

dσ

dΩ
=

α2
χ

m2
χ

(
m2
φ/m

2
χ + v2 sin2 θ

2

)2 , (6.11)

where we have used natural units with ~ = c = 1. This can be re-written as

dσ

dΩ
=

σ0

4π(1 + v2

w2 sin2 θ
2
)2
, (6.12)

where w = mφc/mχ is a characteristic velocity, below which the scattering is roughly

isotropic with σ ≈ σ0. At higher velocities, the scattering has an angular dependence that

tends to that from scattering with a Coulomb potential, with a cross-section that decreases

with increasing velocity.
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From the differential cross-section we can calculate the integrated cross-sections

σ =
σ0

1 + v2

w2

, (6.13)

σT = σ0
2w4

v4

{
ln

(
1 +

v2

w2

)
− v2

w2 + v2

}
, (6.14)

and

σT̃ = σ0
2w4

v4

{
2 ln

(
1 +

v2

2w2

)
− ln

(
1 +

v2

w2

)}
. (6.15)

We note that at low velocities the scattering is non-perturbative and the Born approx-

imation is no longer valid. This is the reason why the behaviour of σT in equation (6.14)

differs from that found by numerically solving for orbits in a classical Yukawa potential

(Khrapak et al., 2004, and Appendix B where we sketch out their calculations) at low ve-

locities. The Born approximation result tends towards isotropic scattering with a velocity-

independent cross-section, while the results of the full calculation have a cross-section that

logarithmically increases towards low velocities. We therefore expect slightly different re-

sults compared with a full calculation of scattering through a Yukawa potential. However,

using the Born approximation is useful as it gives us an analytical differential cross-section

that we can faithfully simulate, allowing us to test the procedure of using isotropic scatter-

ing to capture the effects of a more complicated scattering process. With a known differen-

tial cross-section, we can simulate the scattering in a fully consistent manner, and compare

that with simulating it with a suitably matched σ(v) and isotropic scattering.

6.3 Implementing DM scattering

Our implementation of DM scattering builds upon the method introduced in Chapter 3. To

briefly summarise: at each time-step particles search for neighbouring particles, separated

by a distance less than the search radius h, and scatter from each of their neighbouring

particles with a probability

Pscat =
(σ/m)mp v∆t

4π
3
h3

, (6.16)

where σ/m is the DM scattering cross-section divided by the DM particle mass, mp is the

mass of a simulation particle, v is the relative velocity of the two particles, and ∆t is the
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size of the time-step. h is a numerical parameter that we keep fixed for all particles, with a

size similar to the gravitational softening length ε.

All simulations discussed in §6.4 and §6.5.1 used h = 2ε = 5.6 kpc, while in §6.5.2 larger

h (up to 4ε) were used. In general, a smaller h is better, because scattering is then more local

and the scattering rate resolves small-scale density peaks. However, with smaller h, fewer

neighbour particles are found, so the probability of scattering from those particles must

increase to achieve the correct rate of scattering. If h is too small, such that Pscat > 1, then

the rate of scattering will no longer be correctly calculated. To avoid this, small time-steps

can be used, but this makes the simulations computationally expensive. For this reason,

we use larger h for our simulations that have large cross-sections, keeping the maximum

value of Pscat below 0.1 in all cases. A more detailed discussion about the choice of h can

be found in §4.2.3.

6.3.1 Implementation of velocity-dependent scattering

For DM interactions that lead to a velocity-dependent cross-section, equation (6.16) can

be modified by letting σ vary with velocity. For simple models of DM, σ(v) may have an

analytical representation, while for more complicated models a lookup table can be used.

6.3.2 Implementation of angular-dependent scattering

From considerations of the solid angle at different polar angles, the probability density

function for scattering by an angle θ is

p(θ) =
2π sin θ

σ

dσ

dΩ
. (6.17)

Integrating this, we get the cumulative distribution function,

P (θ) =

∫ θ

0

p(θ′) dθ′, (6.18)

which is the probability that a particle scatters by an angle less than θ.

For particles due to scatter, a polar scattering angle can be drawn from p(θ) as the θ that

satisfies

P (θ) = X (6.19)
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where X is a random variable with a uniform distribution in the interval [0, 1].

For a general differential cross-section, the inverse of P (θ) is not necessarily analytical.

To allow us to simulate cross-sections with general angular dependence, we numerically

find solutions to equation (6.19) at Nθ values of X distributed uniformly in the interval

[0, 1]. The Xi take the values Xi = i−1/2
Nθ

where i = {1, 2, 3, ..., Nθ}, and we label the angles

uniformly drawn from p(θ), θi (i.e. P (θi) = Xi). For two particles that scatter, finding a

polar scattering angle is then just a case of drawing an integer i from the interval [1, Nθ]

and setting θ = θi.

6.3.3 Implementation of velocity-dependant angular-dependence

In general the angular and velocity dependence of a scattering cross-section need not be

separable, and P (θ) can vary with velocity. For these cases, the discussion in §6.3.2 can be

easily extended by generating a set of θi for each of Nv velocities, where Nv must be large

enough that p(θ) does not vary substantially from vi to vi+1. Using this as well as a velocity-

dependent σ(v) in equation (6.16) allows us to simulate particle scattering with a general

differential cross-section.

Throughout the rest of this work, we use Nθ, Nv = 1000 with the vi logarithmically

spaced from 0.01 to 10 000 km s−1. At velocities below 0.01 km s−1 the cross-section and

angular-dependence were set as if v = 0.01 km s−1, while at velocities greater than 10 000 km s−1

the cross-section was set to zero. This was to reflect the fact that for Yukawa-like models

the cross-section does not vary at low velocities, and falls off rapidly at high velocities. The

values of Nθ and Nv could be increased if required, as could the range of velocities cov-

ered, but these values were found to be sufficient for the cross-sections and systems we

simulated here.

6.3.4 Testing generalised scattering

To test our implementation of SIDM with velocity-dependent anisotropic cross-sections we

repeated our test case from §4.1, a cube of particles moving through a uniform slab of sta-

tionary particles. Particles in the cube all moved with a common velocity vcube through
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the slab and there were no gravitational forces. We used the differential cross-section for

Yukawa scattering described by equation (6.12) and ran the test at five different vcube, rang-

ing from 0.1w to 10w. The cross-section normalisation σ0 and the projected density of slab

particles were chosen such that 10% of the Ncube = 106 cube particles would be scattered if

the scattering was in the isotropic regime (v � w) and particles were not allowed to scatter

more than once.

In Fig. 6.1 we show the results of these test cases, plotted as the number of particles that

scatter, Ns, per unit polar angle. These agree with the predictions that were made using
dσ
dΩ

(vcube) and the projected density of DM through the slab. To make these predictions,

the number of expected scatters was calculated using σ(vcube). Their angular distribution

was then calculated by transforming the relevant p(θ) into the frame of the slab, from the

centre of momentum frame of the collisions where it is defined. As well as the predicted

distribution at velocity vcube, we also plot the predicted distribution at (vi+5/vi)vcube, where

the vi were determined using Nv = 1000 and velocities in the range 0.01 to 10 000 km s−1.

Changing velocity by only one bin led to imperceptibly small changes in the scattered dis-

tribution, and the small change in the predicted distribution when increasing velocity by

five velocity-bins justifies our choice of Nv.

6.4 Core growth in isolated haloes

In an isolated halo with an isotropic velocity distribution, there is no preferred direction

for particle scattering, and a suitably matched isotropic cross-section may be able to mimic

the effects of an anisotropic one. To test the efficacy of the σT -match procedure defined in

§6.2.4, we investigate the rate at which cores form in an isolated Hernquist profile (Hern-

quist, 1990) with anisotropic scattering and compare to isotropic scattering. We simu-

late a halo with parameters corresponding to the bullet halo in the Bullet Cluster, namely

M = 2.46× 1014 M� and a = 279 kpc (Chapter 5).
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Figure 6.1: The number of particles that scatter by different polar angles for a cube of DM parti-

cles moving through a uniform slab of particles at a speed vcube. The scattering cross-section was

Yukawa scattering under the Born approximation - see equation (6.12). Different line colours corre-

spond to different vcube, which changes the normalisation and angular dependence of the Yukawa

cross-section. The solid lines show scatters into different bins of angle measured in our test simu-

lations, while the dashed lines and shaded regions show the analytically predicted distribution of

scattering angles for each of these simulations and the expected 2σ Poisson variation. The dotted

lines show the prediction for a cube velocity of (vi+5/vi)vcube and are described further in §6.3.4.

With increasing vcube the number of scatters drops, and the scattering becomes more anisotropic.
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6.4.1 Determining core sizes

Following §4.2.4, we find the core size, rcore, by fitting a cored Hernquist profile

ρ(r) =
M

2π

a

(rβ + rβcore)1/β

1

(r + a)3
(6.20)

to the radial density distribution. During the fitting procedure we allow M , a, and rcore to

vary, while holding β = 4 fixed. We measure the core evolution in terms of a dimensionless

time, T/Tdyn, where the dynamical time follows the definition in Kochanek & White (2000),

Tdyn = 4π

√
a3

GM
, (6.21)

and is 1.8 Gyr for our chosen Hernquist profile. We run simulations with different cross-

sections, which again are defined to be dimensionless

σ̂ =
σ

m

M

a2
, (6.22)

such that σ̂ = 1 corresponds to σ/m ≈ 1.5 cm2 g−1 for our simulated halo.

6.4.2 KVI scattering

With a KVI cross-section we cannot use σT -match, as the momentum transfer cross-section

diverges. Instead we match σT̃ between KVI scattering and isotropic scattering. In Fig. 6.2

we demonstrate the effectiveness of σT̃ -match, showing that when the KVI cross-section

is normalised such that it has the same σT̃ as a particular isotropic cross-section, then the

evolution of the core size is close to that for the matched isotropic cross-section. We plot

the results using θmin = 0.025 and θmin = 0.1, which respectively correspond to 0.04% and

0.6% of σT̃ being truncated. For θmin = 0.025(0.1) the total cross-section, σ, is 4.4(2.8) times

larger than for the σT̃ -matched isotropic cross-section.

The similarity between the rcore evolution with isotropic scattering and with σT̃ -matched

anisotropic scattering suggests that at least in locally isotropic systems σT̃ is a useful way to

characterise DM scattering. Using only isotropic scattering and a calculation of σT̃ (and not

the full, underlying differential cross-section that leads to it) we can predict how a system

would evolve with anisotropic scattering.
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Figure 6.2: The evolution of core size for an isolated Hernquist profile, evolved with different SIDM

scattering cross-sections. The solid lines are for isotropic DM scattering, while the dashed and dot-

dashed lines are for anisotropic KVI scattering with θmin = 0.025 and 0.1 respectively, matched to

the isotropic cross-sections using σT̃ . In the case of the dashed line, there is between 4 and 5 times

as much scattering as for the equivalent solid line, but due to the angular-dependence of those

interactions the resulting evolution is similar. The shaded regions around the solid lines show the

1σ error on rcore and the horizontal dashed line shows the size of the gravitational softening length.
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6.4.3 Yukawa-potential scattering

In order to further test the ability of an integrated cross-section to capture the effects of

anisotropic scattering, we simulate the same Hernquist profile as in §6.4.2, this time with

scattering from a Yukawa potential assuming the Born approximation. The DM scattering

follows equation (6.12) and we simulate cross-sections with three differentw, with a variety

of σ0. The modified momentum-transfer cross-sections for the different simulated cross-

sections are shown in the left panel of Fig. 6.3.

In the right panel of Fig. 6.3 we show how the core sizes evolve for the different particle

models shown in the left panel. As the Hernquist halo in question has a typical velocity

for particles moving within the halo of vg =
√
GM/a ≈ 1950 km s−1, most scattering for

the w = 3000 km s−1 models is in the isotropic regime, and the core evolution is similar to

that seen in Fig. 6.2 with isotropic scattering. For all of the particle models, the evolution of

the core-size is approximately determined by the value of σT̃ (vg). For example the σ̂0 = 3,

w = 1000 km s−1 cross-section and σ̂0 = 1, w = 3000 km s−1 cross-section show similar

evolution of rcore, while having similar values of σT̃ (vg).

Having simulated these particle models using the full differential cross-section, we can

also test both σT -match and σT̃ -match. We simulated each of the particle models from

Fig. 6.3, using isotropic scattering and the appropriate σ(v) for σT -match and σT̃ -match.

Our results show that the momentum transfer cross-section, σT , is not a good quantity

to use to match an isotropic cross-section to an anisotropic one. Instead we found that

when cross-sections with different angular dependencies are matched by σT̃ , the rate of

core formation is very similar.

Fig. 6.4 shows the core size from the σT -match and σT̃ -match simulations, divided by

the core size from the simulation with the full differential cross-section. For clarity we

show only the σ̂0 = 10 cross-sections, but found that σT -match systematically underpredicts

the rate of scattering for all of the simulated cross-sections. For the examples shown in

Fig. 6.4, this underprediction in scattering rates with σT -match manifests itself in core sizes

being smaller than in the full differential cross-section simulations withw = 300 km s−1, and

larger when w = 3000 km s−1. This change in behaviour is because with w = 3000 km s−1 the

halo undergoes core-collapse, and so a lower rate of scattering leads to larger cores at fixed
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Figure 6.3: Top panel: The modified momentum-transfer cross-section as a function of velocity for

particles scattering through a Yukawa potential, assuming the Born approximation. The different

lines correspond to different values for the DM and mediator particle masses, as well as the coupling

strength for their interaction. These three parameters lead to the two astrophysically important

parameters that describe the scattering: σ0, the cross-section at low velocities when the scattering

is isotropic, and w, the velocity around which the cross-section transitions from being isotropic and

velocity-independent to anisotropic with a cross-section that drops rapidly with increasing velocity.

Bottom panel: the evolution of core size in an isolated Hernquist profile for the different cross-

sections shown in the left panel. The evolution of core sizes is approximately captured by the value

of σT̃ at v = vg, where vg is a typical velocity for particles within the halo, marked by the vertical

shaded region in the left panel.
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time. In contrast, σT̃ -match correctly predicts the evolution of the core size for all of our

simulated cross-sections. At early times the ratio of core sizes using σT̃ -match is not unity,

however this is because the small cores lead to large errors on this ratio. This applies also to

the σ̂0 = 10 model at late times, when rcore is again small. We emphasise that σT -match has

been used in previous work, that has incorrectly estimated the effects of DM models with

anisotropic particle scattering (e.g. Vogelsberger et al., 2012; Zavala et al., 2013; Cyr-Racine

et al., 2016).

That σT̃ -match leads to an enhanced rate of scattering compared with σT -match can be

understood from considering what happens when scattering is anisotropic, with a large

fraction of scattering being by small angles. In this case, σT and σT̃ will be similar, as

they only differ in how they treat scattering by angles θ > π/2. However, for isotropic

scattering, σT̃ = σT/2, so matching with σT̃ will lead to twice the rate of scattering as

matching with σT . Fig. 6.4 demonstrates that σT̃ more accurately captures the effects of

scattering by anisotropic cross-sections. This should be expected given that two particle

models could have different σT , while having indistinguishable particle interactions, purely

due to how particles are labelled.

6.5 DM-galaxy offsets in the Bullet Cluster

Having demonstrated that the effects in an isolated halo of SIDM with an anisotropic cross-

section can be understood by considering the modified momentum-transfer cross-section,

we now go on to investigate whether this is still the case in a system with strong direc-

tionality. The system we use is based on the merging galaxy cluster 1E 0657-56 (the Bullet

Cluster), using the fiducial mass model from §5.2.3. The initial conditions used for all the

simulations contain two Hernquist profiles, separated by 4 Mpc, and with a relative veloc-

ity of 2970 km s−1 along the line joining the two cluster centres. The main halo and bul-

let halo have Hernquist density profiles with masses and scale radii M = 3.85× 1015 M�,

a = 1290 kpc, and M = 2.46× 1014 M�, a = 279 kpc respectively. The mass within each halo

is 99% DM, and 1% stars, though we use an equal number of DM and star particles (107 of

each). The star particles are distributed as a smooth halo following the DM density profile.
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Figure 6.4: The core size using σT or σT̃ -match, normalised by the core size from faithfully simu-

lating the underlying particle model, for the three cross-sections with σ̂ = 10 from Fig. 6.3. The

line styles represent the value of w, in the same manner as Fig. 6.3, and the shaded regions around

the w = 300 km s−1 lines are representative of the errors on this ratio – coming from the widths of

the posterior distributions for rcore. σT̃ -match works well in all cases, while σT -match incorrectly

predicts the effects of anisotropic scattering on an isolated halo.
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The position estimates for the DM and galaxies were performed following the method

described in §5.3.2. This involves simultaneously fitting parametric models for the two

haloes to the projected surface density, modelling each halo with a Pseudo Isothermal El-

liptical Mass Distribution (PIEMD), which has a 3D density profile

ρ(r) =
ρ0

(1 + r2/r2
core)(1 + r2/r2

cut)
; rcut > rcore. (6.23)

We choose to fit parametric models because it is often done observationally (Smith et al.,

2005; Richard et al., 2010; George et al., 2012; Harvey et al., 2015; Massey et al., 2015; Shu

et al., 2016) and because of its advantages over local position estimates discussed in §5.4.3.

6.5.1 KVI scattering

In Fig. 6.5 we show that with KVI scattering the measured offsets between DM and galax-

ies are ∼ 50% larger than for the isotropic cross-section to which they are matched. This

matching was done using σT̃ -match, which as demonstrated in Fig. 6.2 leads to core for-

mation rates in isolated haloes that are very similar for isotropic scattering and a matched

KVI cross-section. This ∼ 50% increase in offsets was seen throughout the evolution of the

merger for each of the four cross-sections simulated: 0.5, 1, 1.5 and 2 cm2 g−1. This result

supports the findings of K14, who found that σT̃ was not enough to fully characterise the

effects of DM scattering.

Intuitively this can be understood: for isotropic scattering, only a small fraction of bullet

halo DM particles scatter with a particle from the main halo, and those that do are typically

ejected from the bullet halo. The unscattered DM is coincident with the collisionless galax-

ies, and any measured offset is a result of fitting to the wake of scattered particles. This is

not the case with anisotropic scattering, where many more particles can scatter, but each

receives only a small momentum kick. The DM particles that have received such a kick lag

behind the collisionless galaxies, leading to an offset between the galaxies and DM.

The KVI cross-sections were simulated using θmin = 0.025. Given that Fig. 6.5 demon-

strates that cross-sections with the same σT̃ can lead to different DM-galaxy offsets, one

might worry that the results in Fig. 6.5 are dependent on θmin. We tested for convergence

with respect to θmin by running the KVI cross-section σT̃ -matched to isotropic 1 cm2 g−1 with
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Figure 6.5: The DM-galaxy offset in the bullet halo of the Bullet Cluster as a function of the bullet

halo position (in the centre of mass frame). The solid lines are for isotropic scattering with a cross-

section as given in the legend. The dotted lines are for scattering with a KVI cross-section that has

the same σT̃ as the corresponding isotropic cross-section. The DM and galaxy positions were deter-

mined by fitting two parametric model haloes to the respective projected densities. The separations

were calculated every 10 Myr, and are plotted using a 50 Myr moving average. Lines are shown as

faint around core passage because measurements of the best-fit halo positions become noisy. In the

observed Bullet Cluster the two haloes are separated by∼ 720 kpc, which happens at xDM ≈ 600 kpc

with our mass model.
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Figure 6.6: The total cross-section (left panel) and modified momentum-transfer cross-section (right

panel) for four differential cross-sections. These four cross-sections correspond to the differential

cross-section in equation (6.12), with four different values of w. The normalisation of the cross-

section, σ0, was chosen such that the modified momentum-transfer cross-section at a velocity of

3900 km s−1 (the relative velocity between the two DM haloes during core passage in our Bullet

Cluster simulations) was 0.5 cm2 g−1, the same as for isotropic scattering with σ/m = 1 cm2 g−1.

Inset in the right panel is a plot showing the angular dependence of the four different cross-sections

at a velocity of 3900 km s−1. The w = 300 km s−1 line shows highly anisotropic scattering, with a

majority of low-θ scattering events, while for w = 10 000 km s−1 the scattering is almost isotropic

(p(θ) ∝ sin θ).
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θmin = 0.00625 and 0.1. The results from these tests were in agreement with each other and

the θmin = 0.025 results.

6.5.2 Yukawa-potential scattering

Having shown that using isotropic scattering to emulate the effects of the KVI anisotropic

scattering would lead to an underprediction in the measured offset between DM and galax-

ies, we now perform similar tests with the more complicated differential cross-section de-

scribed by equation (6.12). As well as having a velocity dependence, this cross-section has

an angular dependence that changes with velocity. This means that the behaviour of such

a particle in galaxy cluster collisions could be very different from in the cores of dwarf

galaxies, due to the very different velocity scales and the anisotropic nature of a cluster

collision.

Simulated cross-sections

We simulate four different cross-sections, with w = 300, 1000, 3000 and 10 000 km s−1. The

relative velocity between the two DM haloes in our simulations is 3900 km s−1 at the time

of core passage, so this range of w values was chosen to bracket inter-halo scattering in

the isotropic regime (w = 10 000 km s−1) all the way down to Rutherford-like scattering

(w = 300 km s−1). With fixed σ0 the low-w cross-sections would have much lower σT̃

at ∼ 3900 km s−1 than those with high-w. In order to keep the offsets with the differ-

ent cross-sections measurable, we normalise the different cross-sections such that σT̃ (v =

3900 km s−1) = 0.5 cm2 g−1, the same σT̃ as isotropic scattering with σ/m = 1 cm2 g−1.

The four simulated cross-sections are displayed in Fig. 6.6, which shows both σ(v) and

σT̃ (v), as well as the angular dependence, p(cos θ), at v = 3900 km s−1. In the v > w regime

σT̃ rises rapidly towards low velocities, such that for these particle models, tests on smaller

scales may provide better constraints. Nevertheless, simulations of dwarf galaxies have

shown that at velocities ∼ 40 km s−1 the cross-section could be as large as 50 cm2 g−1 (Elbert

et al., 2015) without being in tension with observations of Milky Way or Local Field dwarf

galaxies, such that these models may not be as outlandish as they first appear. Even if
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such large cross-sections cannot be accommodated at low velocities, these differential cross-

sections correspond to a perturbative treatment of Yukawa scattering. Tulin et al. (2013a)

have shown that quantum mechanical and non-perturbative effects can become important

when αχmχ/mφ & 1 andmχv/mφc . 1 respectively. In this “resonant regime”, quasi-bound

states in the potential can lead to resonances or antiresonances that could alter the cross-

section substantially at low velocities. Using a model such as the w = 300 km s−1 one is

therefore interesting as it probes what would happen in a galaxy cluster collision, where

the collision speed places inter-halo scatters deep within the anisotropic regime.

DM-galaxy offsets

Fig. 6.7 shows the measured DM-galaxy offsets for the different Yukawa cross-sections at

the time of the observed Bullet Cluster – defined as the snapshot where the separation

between the two haloes is closest to 720 kpc. These offsets are calculated using a shrinking

circles approach down to different final radii. We stress that the offsets found through

shrinking circles can be anomalously large due to the bias that comes from the presence

of a nearby halo discussed in §5.4.3, and so these offsets should not be compared with

observations of DM-galaxy offsets. However, the shrinking circles procedure is used as

shrinking to different radii provides insight into the 2D distribution on different scales,

and is useful for comparing the effects of different scattering cross-sections. To allow for

a comparison with observed offsets we also plot in Fig. 6.7 the offset measured by fitting

parametric models to the projected mass distribution. For all simulated cross-sections these

are less than 10 kpc and decrease with increasing angular dependence.

The largest offset arises when the cross-section is closest to isotropic, which is surprising

given that these cross-sections were matched to have the same σT̃ at the collision velocity

of the two DM haloes and in Fig. 6.5 we demonstrated that the more anisotropic scattering

cross-section (KVI) lead to larger DM-galaxy offsets than the σT̃ -matched isotropic cross-

section. To investigate this apparent discrepancy further, we now isolate the effects of an-

gular and velocity dependence by running σT̃ -matched isotropic versions of our Yukawa

cross-sections, as well as Yukawa cross-sections with the velocity dependence removed.
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σT̃ -matched Yukawa scattering

In an isolated halo, Fig. 6.4 demonstrated that using σT̃ -match allows us to use velocity-

dependent isotropic scattering to predict the effects of Yukawa scattering. To test whether

this still works in a system with a strong directionality, we plot the DM-galaxy offsets

when using σT̃ -match in Fig. 6.7. For the high-w cross-sections (where scattering at v ≈
3900 km s−1 is fairly isotropic anyway) this procedure is effective and the results are similar

to those from using the full differential cross-section. For the low-w cross-sections σT̃ -match

underpredicts the separations from using the full differential cross-section.

The effects of velocity-dependent scattering on DM-galaxy offsets

The DM-galaxy offsets with σT̃ -matched Yukawa scattering are in agreement with our find-

ings in §6.5.1 that isotropic scattering leads to smaller offsets than anisotropic scattering

when the cross-sections have the same σT̃ . However, they leave the question of why the

most isotropic cross-section (w = 10 000 km s−1) leads to offsets that are substantially larger

than for the more anisotropic cases. There are two primary reasons for this, both related to

the velocity dependence of the anisotropic cross-sections:

1. While the relative velocity between the centres of mass of the two DM haloes is

∼ 3900 km s−1 during core passage, the velocity of particles within their own haloes

transverse to the collision axis means that for inter-halo pairs of particles the mean

pairwise velocity is larger than 3900 km s−1. Assuming isotropic velocity dispersions

in the two haloes, with 1D velocity dispersions of 1200 km s−1 and 600 km s−1 for

the main and bullet halo respectively leads to an average pairwise velocity of ∼
4350 km s−1. At this velocity, the most anisotropic cross-sections, which have the

steepest σT̃ (v), have the lowest σT̃ as they were normalised to have the same σT̃ at

a lower velocity, 3900 km s−1.

2. The steep gradient of σ(v) around v = 3900 km s−1 in the low-w models means that

pairs of particles with low pairwise velocities are significantly more likely to scatter

than those with high pairwise velocities. This means that of the particles in the bullet

halo, it is those moving in the opposite direction to the motion of the bullet through
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the main halo that are most likely to scatter with a particle from the main halo. Prefer-

entially scattering those particles travelling backwards over those travelling forwards

leads to a forward shift in the position of the DM halo compared to all particles scat-

tering with equal probability. This in turn reduces the DM-galaxy separation.

The second reason is elucidated in Fig. 6.8 where we show the DM-galaxy offsets with

isotropic scattering and power-law velocity-dependent cross-sections. We simulate cross-

sections of the form
σ(v)

m
=
( v

4350 km s−1

)−α
cm2 g−1, (6.24)

such that all cross-sections have σ/m = 1 cm2 g−1 at the average pairwise velocity for parti-

cles drawn randomly from the two different haloes. To cut-off the low velocity divergence

in the cross-section, we capped the cross-sections from equation (6.24) to 100 cm2 g−1.

We find that despite having the highest rate of inter-halo scattering, the α = 4 case

also has the lowest DM-galaxy offsets, even though scattering is isotropic in all cases. This

is explained by the selection effect of a velocity dependent cross-section, such that those

particles that scatter preferentially had certain properties (see bottom panel of Fig. 6.8).

Using terminology whereby the bullet halo moves to the ‘right’: not just are bullet halo

particles that scatter more likely to have been moving left relative to the bullet halo, the

particles from the main halo with which they scatter are likely to be moving right relative

to the main halo. This means that with large α the majority of scatters take place with a

relative velocity lower than the mean pairwise velocity, and so transfer less momentum

between the two haloes. Also, if scattered particles are ejected from the bullet halo, and

these scattered particles were preferentially moving left, the remaining DM particles will

preferentially be moving right with respect to the bullet halo, which pushes the measured

position of the DM halo right and reduces the DM-galaxy offset.

Isolating Yukawa scattering’s angular-dependence

Returning to Fig. 6.7, we isolate the effects of the angular-dependence of Yukawa scattering

at different v/w by looking at the DM-galaxy separations in the Bullet Cluster including DM

scattering that uses the angular dependence and normalisation of our Yukawa models at
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Figure 6.7: The shrinking circles offsets for different simulated particle physics models, showing

how the DM-galaxy separation varies as a function of the final radius to which the circles are shrunk.

The solid lines show the results using the full differential cross-section for Yukawa scattering under

the Born approximation, while the crosses show the results of trying to mimic this scattering using

suitably matched isotropic scattering (matched using σT̃ ). The dashed lines show what happens

when we remove the velocity dependence of the Yukawa scattering models, by using the Yukawa

differential cross-section at v = 3900 km s−1 at all velocities. Finally, the horizontal bands represent

the DM-galaxy offsets for the full differential cross-section cases, as measured by fitting parametric

models to the projected surface density.
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Figure 6.8: Top panel: The DM-galaxy offset at the time of the observed Bullet Cluster with isotropic

DM scattering with a power-law velocity-dependence: σ(v)/m =
(
v/4350 km s−1

)−α
cm2 g−1. The

cross-section with the strongest velocity-dependence (α = 4) has a smaller offset than the velocity-

independent case (α = 0), despite the former having a greater fraction of bullet halo particles that

scatter from particles in the main halo. Bottom panel: The distribution of vx, the velocity along the

collision axis, for particles from the bullet halo before they scatter with a particle from the main

halo. As well as changing the total number of scattered particles, increasing α shifts the distribution

towards lower vx.
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v = 3900 km s−1 at all velocities. For these cases we recover our previous result that more

anisotropic scattering, in this case lower w, results in larger offsets at fixed σT̃ . The smaller

offsets with smaller w seen for the full differential cross-section runs do not contradict our

findings in §6.5.1. Rather, the effects of a steeply decreasing σT̃ (v) more than compensate

for the increased angular dependence.

6.6 Conclusions

We have explored simulations of SIDM where the scattering is anisotropic. Anisotropic

cross-sections arise when the rate of scattering depends on the amount of exchanged mo-

mentum, and are natural in models with a velocity-dependent DM scattering cross-section.

We considered two different models of anisotropic scattering, one without any velocity-

dependence (KVI) and one that has a total cross-section and angular dependence that varies

with velocity and corresponds to Yukawa scattering under the Born approximation.

For both of these anisotropic models the evolution of an isolated halo could be ade-

quately captured by treating the scattering as isotropic (Fig. 6.2 and Fig. 6.4), provided

that the isotropic cross-section is suitably matched to the underlying model. We find that

what needs to be matched between different cross-sections in order for them to behave in a

similar way is σT̃ , defined in equation (6.4). This is similar to the momentum transfer cross-

section, σT , that has been used by previous authors (Vogelsberger et al., 2012; Vogelsberger

& Zavala, 2013; Zavala et al., 2013; Vogelsberger et al., 2014b) to match an underlying par-

ticle physics model on to a velocity-dependent but isotropic scattering cross-section that is

more easily simulated. For cross-sections that are close to isotropic the matching scheme

chosen is not particularly important, but when the scattering is highly anisotropic (with the

majority of particles scattering by θ � π) there is a factor of 2 difference in the σT -matched

and σT̃ -matched isotropic cross-sections. This is because σT overestimates the ability of

isotropic scattering to alter dynamics, because scattering by large angles (∼ π) leads to a

large amount of momentum transfer, despite leaving the system relatively unchanged (the

two particles have simply switched places). In Fig. 6.4 we demonstrate that this results in

σT -matched isotropic scattering underpredicting the effects of an anisotropic cross-section,
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with cores using σT -matched isotropic scattering evolving slower than using σT̃ -matched

isotropic scattering, which in turn agreed with the results of using the full anisotropic cross-

section.

We went on to investigate how the σT̃ matching scheme works in a system that has a

strong directionality, namely Bullet Cluster-like galaxy cluster collisions. With an anisotropic

but velocity-independent cross-section, we found that the distribution of DM was not cor-

rectly captured by using matched isotropic scattering, which underpredicted the size of

DM-galaxy offsets induced by KVI scattering by ∼ 33%. For the case of Yukawa scattering

in a galaxy cluster collision we found that the strong velocity dependence of the cross-

section in regimes where the cross-section is anisotropic, leads to a suppression of the DM-

galaxy offsets. Using matched isotropic scattering still underpredicts the DM-galaxy offset

(crosses in Fig. 6.8), but these offsets are small anyway due to the velocity dependence. This

suppression of DM-galaxy offsets is not simply because velocity dependent cross-sections

must be small at typical galaxy cluster velocities to be reasonable at lower velocities. In

fact, the small offsets result even when the velocity dependent cross-sections are boosted

to have a substantial σT̃ at cluster velocities. The small offsets are a result of the gradient in

σ(v), which results in particle pairs with low relative velocities being more likely to scatter

than others. These low velocity pairs are made of particles that move within their halo in

the opposite direction to the bulk velocity of their halo, and preferentially scattering these

particles leaves a population of unscattered particles moving faster than the bulk velocity

of the halo. This shifts the measured DM position forwards reducing any DM-galaxy offset.

Ignoring the angular-dependence of SIDM models and instead using suitably matched

isotropic cross-sections appears to work well in isotropic systems such as an isolated halo,

but can lead to differences from the true result in anisotropic systems. Despite these differ-

ences, merging galaxy clusters do not appear to be a good place to constrain Yukawa-like

DM scattering, as the cross-section at cluster velocities would be lower than in smaller

objects, and the increased DM-galaxy separation due to the anisotropic nature of the scat-

tering is more than compensated for by the decreased DM-galaxy separation coming from

the gradient in σ(v) about the collision velocity of the clusters. Previous results that have

simulated an anisotropic scattering model using appropriately matched isotropic scatter-
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ing have typically focused on the density profiles of dwarf galaxies. Our results in isolated

haloes suggest these results are probably robust to changing from isotropic scattering to

using the underlying differential cross-section. That being said, a cosmologically formed

DM halo evolves through numerous mergers, and it is unclear if incorrectly modelling the

effects of SIDM in these mergers could lead to differences in the final density profile. This

will need to be addressed in the future by including anisotropic scattering in cosmological

simulations.





Chapter 7
Conclusions

Despite an ever growing amount of astrophysical evidence pointing towards the existence

of DM as the dominant matter component in the Universe (e.g. Planck Collaboration et al.,

2016), we still do not know what the DM is. Terrestrial experiments hoping to detect DM

(Bertone et al., 2005), offer hope that one day we may know the identity of the DM parti-

cle(s), but for now DM has only been detected through its gravitational effects on the things

that we can see. It is therefore prudent to ask what we can learn about the nature of DM

particles from the way they behave astrophysically. In this thesis, we investigated some of

the consequences of a dark sector in which DM particles can elastically scatter from one

another – known as SIDM. A significant cross-section for DM–DM scattering is one of the

few properties of the DM that can be probed by its astrophysical behaviour, alongside some

DM–SM interactions (Bœhm et al., 2014) and the mass of DM particles (e.g. Hu et al., 2000;

Alcock et al., 2000; Lovell et al., 2014).

We began in Chapter 2 by introducing a method to estimate the rate of SIDM scattering

in collapsed structures throughout the history of the universe, for different particle physics

models of SIDM. For the simplest (velocity-independent) cross-sections, our results match

the canonical picture in which most scattering occurs in massive structures >∼ 1012 M� at

late times z <∼ 1. The main source of uncertainty in this calculation was the concentration-

mass relation for DM haloes, with different relations predicting a total number of interac-

tions over the history of the Universe that vary by a factor of <∼ 2.

We then explored how this prediction changes, if the DM has a well-motivated velocity-
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dependent cross-section. This moves most scattering into low mass objects <∼ 104 M� at

early times z >∼ 7. The scattering rate as a function of redshift peaks at z ∼ 20, with a pro-

nounced peak two orders of magnitude higher than the scattering rate at the present day.

This has important consequences for attempts to simulate velocity-dependent SIDM cos-

mologies. Scattering in low mass haloes at high redshift would not be resolved in typical

cosmological simulations, but the unresolved interactions could be important in establish-

ing the later dynamics of particles. Not resolving these interactions may therefore lead to

incorrect predictions for the structure of haloes formed from SIDM particles with a velocity-

dependent cross-section.

In Chapter 3 we gave a theoretical overview describing how DM–DM scattering can

be incorporated into an N -body code. We then gave a detailed account of our specific im-

plementation of SIDM with an isotropic scattering cross-section in the GADGET code. We

put particular emphasis on rarely discussed aspects of simulating SIDM; including how

to handle particles scattering multiple times within a single time-step, how to implement

scattering across processors, when (within a leapfrog integration scheme) to implement the

scattering, and how scattering probabilities are calculated from program values in a cosmo-

logical simulation where the internal variables are not physical distances and velocities.

Having described our SIDM implementation, we then tested it in Chapter 4. We started

with a simple test case of a cube of SIDM particles moving through a uniform background

of stationary particles. For this system, we demonstrated that both the rate of DM scattering

and the distribution of velocities of scattered particles agreed with analytical predictions.

We also explained the mechanism that incorrectly lead Rocha et al. (2013) to conclude that

their SIDM implementation would under-predict the scattering rate in low density regions.

We then investigated the more astrophysically relevant situation of scattering in a DM

halo, demonstrating that the radial distribution of scattering events within a halo agreed

with the analytical prediction at all but the smallest of radii, where the predicted rate is

high owing to the divergent central density of our test (Hernquist) halo. The scattering rate

dropped below the analytical prediction at radii smaller than the neighbour search radius

used to find potential scattering partners. This is because the neighbour search radius acts

as a smoothing scale on which the local density is estimated for the purposes of scattering.
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With this in mind, we then discussed how to choose the neighbour search radius in order

to give the best results, finding that a search radius similar in size to the gravitational soft-

ening was a good choice. We allowed our Hernquist halo to evolve under the influence

of DM scattering, and demonstrated that for moderate cross-sections the density profile

evolved a constant density core, while for sufficiently large cross-sections the halo would

undergo core collapse, resulting in an extremely dense halo centre.

We ended Chapter 4 by showing the rate of scattering in a simulation of a cosmological

periodic box, compared with the predicted rate of scattering from Chapter 2. The two were

in good agreement, acting as a sanity check of both our SIDM implementation and our

framework for analytically predicting the cosmic scattering rate.

Chapter 5 then used the SIDM implementation introduced in Chapter 3 to simulate the

merging pair of galaxy clusters known as the Bullet Cluster. If DM particles can interact

with each other, the scattering leads to a transfer of momentum between the two colliding

DM haloes, causing the DM haloes to lag behind the (collisionless) galaxies. Analytical

models in the literature have regarded this as a drag force, which decelerates all of the

DM. However, with isotropic DM scattering, this transferred momentum is not evenly dis-

tributed between the particles in each halo. Most DM particles do not scatter with a particle

from the other halo, while a subset of them do and receive large momentum kicks. These

scattered particles lag behind the galaxies and unscattered DM, shifting the measured po-

sition of the DM halo relative to the galaxies, but in a way that depends sensitively on the

method used to measure the positions of the different components. In particular, shrinking

circles methods similar to those used by Randall et al. (2008) give substantially larger DM–

galaxy offsets than more observationally-motivated methods such as parametric fits to the

projected density or reduced gravitational shear. This suggests that the σ/m < 1.25 cm2 g−1

constraint placed on the cross-section for DM scattering by Randall et al. (2008) is over-

stated, with cross-sections as large as σ/m = 2 cm2 g−1 producing offsets consistent with

observations of the Bullet Cluster.

Finally, in Chapter 6, we extended our implementation of SIDM scattering to include

velocity-dependent and anisotropic cross-sections, with a method that allows SIDM with

an arbitrary differential cross-section to be simulated. We considered two different models



CHAPTER 7. CONCLUSIONS 194

of anisotropic scattering: one without any velocity-dependence (Kahlhoefer et al., 2014)

and one with a total cross-section and angular dependence that varies with velocity, in a

manner similar to that predicted by various particle models of SIDM (Loeb & Weiner, 2011;

Tulin et al., 2013b; Cyr-Racine et al., 2016).

For both of these anisotropic models, we discovered that the evolution of an isolated

halo could be adequately captured by treating the scattering as isotropic, so long as the

cross-section (hence rate of scattering) is appropriately reduced to account for the fact that

isotropic scattering is more efficient at transporting energy and momentum than predom-

inantly small-angle scattering. In practice, this means matching the momentum transfer

cross-section between the anisotropic cross-section and the isotropic one used to mimic it.

We stress that this momentum transfer cross-section should take into account that particles

scattering by large angles (> π/2), could be re-labelled so as to have scattered by a smaller

angle and have transferred less momentum. In previous simulations that have emulated

the effects of an anisotropic cross-section using an isotropic one (Vogelsberger et al., 2012;

Vogelsberger & Zavala, 2013; Zavala et al., 2013; Vogelsberger et al., 2014b), this re-labelling

has not been considered, leading to effective scattering rates incorrect by up to a factor of

two from the ones that would most faithfully reproduce the effects of the particle models

they were trying to simulate.

We then investigated the effects of anisotropic scattering in a system that is itself highly

anisotropic, running simulations of the Bullet Cluster that were similar to those in Chap-

ter 5. We found that for velocity-independent cross-sections, matched to have the same

rate of core formation in an isolated halo, scattering that was more anisotropic produced

larger offsets between the DM and galaxies. However, when the cross-section was a steeply

declining function of velocity, the offsets shrank because particle pairs with low relative ve-

locities are more likely to scatter than others. These low velocity pairs are made of particles

that move within their halo in the opposite direction to the bulk velocity of their halo, and

preferentially scattering these particles leaves a population of unscattered particles moving

faster than the bulk velocity of the halo. This shifts the measured DM position forwards, re-

ducing any DM-galaxy offset. A strong velocity-dependence in the cross-section typically

arises for the same particle physics reasons as anisotropic scattering, such that one tends to
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imply the other. Unfortunately this means that the large offsets with anisotropic scattering

will tend to be suppressed by the velocity-dependence. The net effect is that, even for these

models of SIDM, existing constraints in the literature have again been overestimated. SIDM

remains a viable theory, not only consistent with all current observations, but potentially

able to explain cosmology’s remaining small-scale inconsistencies.





Appendix A
The expected number of scattering events

for a cube moving through a uniform

background

As mentioned in §4.1, the expected number of scattering events in our test case of a cube

moving through a uniform background is more complicated than that given in equation (4.4).

This is because the first cube particles to pass through the background (which initially has

a number density of particles nb), scatter with some of the background particles, lowering

the background density seen by later cube particles. The system can be modelled by break-

ing the cube up into infinitesimal slabs of thickness dx, with x the distance of a particular

x

y

z

L

b

b
a

a

a

v0

xdx
z

Figure A.1: The test-case setup in Fig. 4.1, but additionally defining z, x and dx.
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slab from the front edge of the cube. This setup is shown in Fig. A.1.

The expected number of scattering events as the slab dx passes through the background

cuboid is still given by an equation similar to (4.4), but now accounting for the fact that

the number density of background particles is not constant with z, and depends on x i.e.

what fraction of cube particles have already passed through the background. The expected

number of scattering events involving particles from the slab dx is

dNexp =
Nc dx

a

[
1− exp

(
−σp

∫
n(z, x) dz

)]
, (A.1)

where Nc dx/a is the number of particles initially in the slab, and n(z, x′) is the background

number density as a function of z,1 after cube particles with x < x′ have passed through

the background cuboid. We define Nexp(x′), to be the expected number of scattering events

involving particles with x < x′, i.e. those particles from the hatched region in Fig. A.1. Each

scattering event decreases the number of background particles by one, such that
∫
n(z, x) dz = nbL−Nexp(x)/a2. (A.2)

Combining equations (A.1) and (A.2)

dNexp

dx
=
Nc

a

[
1− exp

{
− σp

(
nbL−Nexp(x)/a2

) }]
, (A.3)

which integrates to
∫ Nexp(x)

0

dN ′exp

1− exp
{
− σp

(
nbL−N ′exp/a

2
) } =

∫ x

0

Nc

a
dx′. (A.4)

The integral on the left hand side of equation (A.4), can be solved by making the substi-

tution u = σp(nbL−N ′exp/a
2), and using the indefinite integral

∫
(1− e−u)−1du = ln(eu − 1).

Using these, we arrive at

−a2

σp

ln

[
exp

{
σp (nbL−Nexp(x)/a2)

}
− 1

exp
{
σpnbL

}
− 1

]
=
Nc

a
x, (A.5)

which we can rearrange for Nexp(x) and evaluate at x = a, with Nexp ≡ Nexp(a)

Nexp = nba
2L− a2

σp

ln

[
1 + exp

(−σpNc

a2

){
exp (σpnbL)− 1

}]
. (A.6)

Evaluating this with the parameters used in §4.1, predicts an Nexp that is 0.9% lower than

when using equation (4.4). This difference is smaller than the expected Poisson noise.
1Specifically, the number density in the central a × a cross-section of the cuboid, through which the cube

passes.



Appendix B
A guide to SIDM with a Yukawa potential

Attempts to explain the small-scale challenges to ΛCDM by invoking SIDM are hampered

by the tight constraints on the DM–DM scattering cross-section in galaxy clusters. How-

ever, these cluster constraints can be evaded if the cross-section decreases with increasing

pairwise velocity, such that scattering rates are negligible in cluster sized haloes with typ-

ical velocities of 1000 km s−1, but can be significant in the smaller haloes that host dwarf

galaxies. A natural particle physics model for the DM that would give rise to such a cross-

section is scattering mediated by a new gauge boson of mass mφ, resulting in an attractive

Yukawa potential.

In this appendix, we introduce a simple model of scattering through a Yukawa potential.

While this is not the model we use in either Chapter 2 or 6, it hopefully serves to increase

the reader’s intuition for velocity-dependent and anisotropic SIDM models. We also derive

results for scattering in a Coulomb potential, that we make use of in §3.1.2.

B.1 Rutherford scattering

To introduce some notation and gain some intuition, we will first look at the case of Ruther-

ford scattering, originally the scattering of alpha particles from nuclei (Rutherford, 1911).

If we consider a particle with mass m and charge e scattering from a more massive particle

(a nucleus) with charge Ze then the repulsive Coulomb force between these two particles
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Figure B.1: The motion of a particle in a central repulsive Coulomb potential follows a hyperbolic

trajectory. From the impact parameter, b, and initial momentum, p, one can calculate the polar

scattering angle, θ.

is

FC(r) =
Ze2

4πε0r2
. (B.1)

We assume that the more massive particle is infinitely massive, and work in the frame

of that particle, in which we have a particle of mass m moving in a central potential. The

incoming particle starts infinitely far from the origin, with momentum p = mv along the

x-axis, and impact parameter b as shown in Fig. B.1. As the scattering is elastic, the particle

will leave with |pout| = |pin| ≡ p, but now at an angle θ from the x-axis, such that pout =

(p cos θ, p sin θ)1.

We label the angle between the x-axis and the line joining the centre of the potential to

the position of the particle at time t, φ(t), with φ(∞) ≡ θ. To calculate how the scattering

angle θ depends on the impact parameter and particle momentum we can equate the time-

integral of the y-component of the force on the particle, to the change in momentum along

the y-axis

p sin θ =

∫ ∞

−∞
FC(r) sinφ dt =

∫ ∞

−∞

Ze2

4πε0r2
sinφ dt. (B.2)

We proceed by changing integration variable to φ, and use conservation of angular mo-

mentum to relate the initial angular momentum to that at some later time, mvb = −mr2φ̇,
1The motion of a particle in a central potential remains in the plane defined by its initial position and

velocity, so we can work in just two dimensions.
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so that
1

r2

dt

dφ
=
−1

vb
. (B.3)

Using this in equation (B.2)

p sin θ =

∫ θ

π

−Ze2

4πε0bv
sinφ dφ =

Ze2

4πε0bv
(1 + cos θ). (B.4)

Then using p = mv and the identity sin θ
1+cos θ

= tan θ
2

b =
Ze2

4πε0mv2 tan θ
2

(B.5)

and ∣∣∣∣
db

dθ

∣∣∣∣ =
Ze2

8πε0mv2 sin2 θ
2

. (B.6)

From Fig. B.2, the infinitesimal annulus containing trajectories with impact parameters

in the range [b, b+ db], has an area dσ = 2πb db. Employing the identity tan θ
2

= 2 sin2 θ
2
/ sin θ

and dΩ = 2π sin θ dθ, we find the differential cross section

dσ

dΩ
=

(
Ze2

8πε0m

)2
1

v4 sin4 θ
2

. (B.7)

Integrating over solid angle, the total cross-section

σ ≡
∫

dσ

dΩ
dΩ = 2π

∫
dσ

dΩ
sin θ dθ (B.8)

diverges in this case, a result of the infinite range of the Coulomb force.

Performing a similar calculation for an attractive Coulomb potential one finds that equa-

tions (B.5)-(B.7) remain unchanged if θ is now defined to be below the x-axis. In the attrac-

tive case the particle gets closer to the centre of the potential than for the repulsive case,

leading to larger forces, but this is countered by the change of sign of the y-component of

the force on the particle during the encounter. These effects cancel one another, and (for a

given impact parameter and initial momentum) |∆py| = p sin θ is the same in the attractive

case as in the repulsive case, with only the sign of ∆py changed.

Rutherford scattering momentum transfer cross-section

A useful concept when comparing the macroscopic consequences of particle interactions

with different angular dependencies for the differential cross section is the momentum-
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Figure B.2: A particle with impact parameter bwill scatter at an angle θ, while a particle with impact

parameter b+dbwill scatter at an angle θ+dθ, where here dθ is negative as larger impact parameters

lead to weaker scattering. The yellow annulus has an area dσ, and particles with trajectories through

this annulus will scatter by a polar angle in the range [θ, θ + dθ].

transfer cross-section, described in §6.2.2. For the Coulomb interaction, the momentum-

transfer cross-section is divergent. However, if we introduce a minimum angle, θmin, and

ignore all scattering that deflects the particle by θ < θmin, we find

σT (θmin) = 2π

cos θmin∫

−1

(1− cos θ)

(
Ze2

8πε0m

)2
1

v4 sin4 θ
2

d cos θ. (B.9)

Then using the identity (1− cos θ) = 2 sin2 θ
2

and integrating

σT (θmin) =
8π

v4

(
Ze2

8πε0m

)2

ln

(
2

1− cos θmin

)
, (B.10)

which we will now use to explain the form of σT (v) for scattering in a Yukawa potential.

B.2 Scattering through a Yukawa potential

The Yukawa potential has previously been used to study the screened Coulomb scattering

in a plasma (Khrapak et al., 2004), for which the momentum-transfer cross section can be
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approximated by

σT
σmax
T

≈





4π
22.7

β2 ln (1 + β−1) , β < 0.1

8π
22.7

β2 (1 + 1.5β1.65)
−1
, 0.1 < β < 103

π
22.7

(
lnβ + 1− 1

2
ln−1β

)2
, β > 103,

(B.11)

where β = πv2
max/v

2 and σmax
T = 22.7/m2

φ (Feng et al., 2010; Finkbeiner et al., 2011; Loeb

& Weiner, 2011). Here vmax =
√

2αmφ/πmχ is the velocity at which (σT v) peaks, with

σT (vmax) = σmax
T .

Equation (B.11) is an analytical formula fit to the result of numerical calculations. In

this section we attempt to gain insight into the form of σT (v), by using a simplified model

for scattering in a Yukawa potential. We assume that a particle of mass mχ moves in the

potential

VY (r) = −αe
−mφr

r
, (B.12)

which leads to the radial force

FY (r) = −αe
−mφr

r2
(1 +mφr). (B.13)

Introducing the typical range of the interaction, rφ ≡ 1/mφ,2 we can rewrite equation (B.13)

FY (r) = −αe
−r/rφ

r2
(1 + r/rφ), (B.14)

which looks like the Coulomb force

FC(r) = −α 1

r2
, (B.15)

when r � rφ and exponentially decays to zero for r > rφ.

Using the result that the Yukawa force is Coulomb-like at small distances and exponen-

tially cut off outside of r = rφ, we can crudely approximate Yukawa scattering by treating

scattering processes with impact parameter b ≤ rφ as if the scattering were from the equiv-

alent Coulomb potential, and assuming no interaction when b > rφ.

Equation (B.10) gives the momentum-transfer cross-section for scattering in a Coulomb

potential when one ignores the contribution of scattering by less than an angle θmin. A

2We are using natural units here with ~ = c = 1.
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maximum impact parameter b = rφ, corresponds to a minimum scattering angle, which we

calculate using the relationship (equation B.5) between impact parameter and scattering

angle

θmin = 2 tan−1

(
2α

mχv2rφ

)
, (B.16)

where we have replaced Ze2/4πε0 from the electromagnetic case, with α, and also changed

m to mχ/2 to reflect that for two equal masses the reduced mass3 is half of the actual mass

of one of the particles. Making the same substitutions in equation (B.10) we have

σT (v) =
2π

v4

(
2α

mχ

)2

ln

(
2

1− cos θmin

)
. (B.17)

Looking at equation (B.16) we can see that as the pairwise velocity of particles increases,

the minimum scattering angle decreases. The velocity around which θmin transitions from

being large to small is when α/mχv
2rφ ∼ 1, which is when the initial kinetic energy is

similar to the magnitude of the potential at the typical range of the interaction, mχv
2 ∼

|VY (rφ)|. At velocities below this, particles that scatter do so with θ ∼ π, while for large

velocities the majority of scatters are low momentum transfer events with small θ.

Taking (π − θmin)� 1, we find the low-velocity limit of equation (B.17) to be

σT (v → 0) =
2π

m2
φ

= 2πr2
φ. (B.18)

This is simply the geometric cross section from the requirement that the impact parameter

is less than rφ, multiplied by a factor of two because when θ ≈ π the momentum transfer is

twice the average momentum transfer for an isotropic scattering process.

If instead we take the high-velocity limit of equation (B.17), we find

σT (v →∞) =
4π

v4

(
2α

mχ

)2

ln

(
mχv

2

2mφα

)
. (B.19)

This is exactly what one gets taking the low-β limit of σT (equation B.11) and using the

definition of β in terms of particle physics parameters.

At low velocities, this approximate treatment for Yukawa scattering agrees less well

with the numerical calculation. As v → 0, the approximate treatment gives a constant

3For two bodies of massm1 andm2 separated by a distance r and with potential energy V (r), the evolution

of the separation is described by µr̈ = −∂V/∂r, where µ = m1m2/(m1 +m2) is the reduced mass.
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Figure B.3: The momentum transfer cross-section for a fiducial set of particle physics parameters

(blue lines), as well as three models where one of the three parameters (DM mass, mediator mass

and coupling strength) have been changed from their fiducial values. The numerical calculation

results (equation B.11) are the solid lines, while the results from a simple model that ignores scat-

tering with b > rφ are drawn as dashed lines. The points along the solid lines are at v = vmax. Our

simple model agrees with the numerical results at velocities� vmax, while for velocities . vmax it

significantly under-predicts the true cross-section.

momentum-transfer cross section of 2π/m2
φ, while the fitting function to the numerical re-

sult is

σT =
π

m2
φ

(ln β + 1− 1/2 ln β)2. (B.20)

The breakdown of our simple model (in which scattering with b > rφ is ignored) at low

velocities can be readily understood. At low velocities even the exponentially suppressed

force can be sufficient to significantly scatter particles. As such, we expect our simple model

to under-predict the cross-section when v . vmax, as seen in Fig. B.3.



Appendix C
The contribution of mass at different radii

to the projected density and shear signals

In Fig. 5.13 we see that with an asymmetric DM profile, the positions of the halo returned

from fitting to the projected density and reduced gravitational shear differ, being similar

to the shrinking circles positions of the halo when shrinking to Rmin = 200 and 60 kpc,

respectively. This implies that shear is more sensitive to the central regions of the halo,

which appears to be at odds with the maps in Fig. 5.12 showing that the projected density

(and equivalently convergence) increases towards the centre of the halo, while the shear

has a flatter profile. This can be explained by noting that shear is a non-local quantity, and

that for a circularly symmetric projected mass distribution the shear at radius R depends

on all of the mass within R. In fact, the tangential shear (γt) from a circularly symmetric

mass distribution can be written in terms of the ‘excess surface density’

∆Σ = Σ̄(< R)− Σ(R) = Σcritγt. (C.1)

For an annulus of mass at radius R0 with mass M0 the shear internal to R0 is zero, while

the shear at R > R0 is simply the average surface density within R divided by the critical

surface density. The average surface density is the enclosed mass divided by the area, so

γt =
1

Σcrit

M0

πR2
. (C.2)

The noise in the shear map is independent of position, so the signal to noise ratio in a

particular pixel is just proportional to the shear there. The number of pixels in an annulus

206
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at radius R is proportional to 2πR dR. This implies that the sum of the signal to noise over

all pixels in an annulus at R due to the mass M0 at R0 is proportional to (M0/R
2)R dR. Inte-

grating this fromR = R0 outwards we find that the sum of the signal to noise over all pixels

in the map is proportional to M0 ln(Rmax/R0), where we have truncated the integration at

a maximum radius Rmax. For Rmax we use half the side length of the square regions used

when fitting to shear. As the total signal to noise only grows logarithmically withRmax, this

choice is not particularly important.

The mass M0, which is the mass in an annulus at radius R0, is the surface density at

radius R0 multiplied by the area of the annulus, so M0 ∝ Σ(R0)R0. As such, the sum of the

signal to noise ratio of all pixels in the map due to mass at radius R0 is

SNRg ∝ R0Σ(R0) ln

(
Rmax

R0

)
. (C.3)

The projected density is a local quantity, leading to the calculation being simpler than

for the case of shear. Fitting to the projected density used Poisson statistics, which for large

numbers of particles per bin can be approximated by Gaussian statistics. The signal to

noise ratio of a single pixel is then
√
N ∝

√
Σ, where N is the number of particles in that

pixel. The mass at radius R0 only contributes to the signal at R0, and the number of pixels

at radius R0 is proportional to R0. Using this, the sum of the signal to noise ratio of all

pixels in the map due to mass at radius R0 is

SNRΣ ∝ R0

√
Σ(R0). (C.4)

SNRg and SNRΣ are the quantities plotted in the bottom panel of Fig. 5.13, where they

have been normalised by their maximum value.
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Macciò A. V., Fontanot F., 2010, MNRAS, 404, L16

Mack K. J., 2014, MNRAS, 439, 2728

http://dx.doi.org/10.1086/307643
http://adsabs.harvard.edu/abs/1999ApJ...522...82K
http://dx.doi.org/10.1093/mnras/stv2040
http://adsabs.harvard.edu/abs/2015MNRAS.454.1798K
http://dx.doi.org/10.1086/317149
http://adsabs.harvard.edu/abs/2000ApJ...543..514K
http://dx.doi.org/10.1111/j.1365-2966.2011.18684.x
http://adsabs.harvard.edu/abs/2011MNRAS.415.1125K
http://dx.doi.org/10.1086/309962
http://adsabs.harvard.edu/abs/1996ApJ...460L..25K
http://dx.doi.org/10.1103/PhysRevD.91.043519
http://adsabs.harvard.edu/abs/2015PhRvD..91d3519K
http://dx.doi.org/10.1103/PhysRevLett.87.141301
http://adsabs.harvard.edu/abs/2001PhRvL..87n1301K
http://dx.doi.org/10.1086/527543
http://adsabs.harvard.edu/abs/2008ApJ...676..920K
http://dx.doi.org/10.1093/mnras/262.3.627
http://adsabs.harvard.edu/abs/1993MNRAS.262..627L
http://dx.doi.org/10.1088/0004-637X/787/2/144
http://adsabs.harvard.edu/abs/2014ApJ...787..144L
http://dx.doi.org/10.1086/516598
http://adsabs.harvard.edu/abs/2007ApJS..172..219L
http://dx.doi.org/10.1103/PhysRevLett.116.051103
http://adsabs.harvard.edu/abs/2016PhRvL.116e1103L
http://dx.doi.org/10.1103/PhysRevLett.106.171302
http://adsabs.harvard.edu/abs/2011PhRvL.106q1302L
http://dx.doi.org/10.1046/j.1365-8711.2002.05457.x
http://adsabs.harvard.edu/abs/2002MNRAS.333..697L
http://dx.doi.org/10.1046/j.1365-8711.2001.04007.x
http://adsabs.harvard.edu/abs/2001MNRAS.321..155L
http://dx.doi.org/10.1093/mnras/stt2431
http://adsabs.harvard.edu/abs/2014MNRAS.439..300L
http://dx.doi.org/10.1093/mnras/stu483
http://adsabs.harvard.edu/abs/2014MNRAS.441..378L
http://dx.doi.org/10.1093/mnras/191.3.483
http://adsabs.harvard.edu/abs/1980MNRAS.191..483L
http://dx.doi.org/10.1111/j.1745-3933.2010.00825.x
http://adsabs.harvard.edu/abs/2010MNRAS.404L..16M
http://dx.doi.org/10.1093/mnras/stu129
http://adsabs.harvard.edu/abs/2014MNRAS.439.2728M


BIBLIOGRAPHY 217

Markevitch M., 2006, in Wilson A., ed., ESA Special Publication Vol. 604, The X-ray Universe 2005.

p. 723

Markevitch M., Gonzalez A. H., Clowe D., Vikhlinin A., Forman W., Jones C., Murray S., Tucker W.,

2004, ApJ, 606, 819

Mashchenko S., Couchman H. M. P., Wadsley J., 2006, Nature, 442, 539

Massey R., Kitching T., Richard J., 2010, Reports on Progress in Physics, 73, 086901

Massey R., et al., 2015, MNRAS, 449, 3393

Mastropietro C., Burkert A., 2008, MNRAS, 389, 967

McConnachie A. W., 2012, AJ, 144, 4

McGaugh S. S., de Blok W. J. G., 1998, ApJ, 499, 66

McGaugh S. S., Lelli F., Schombert J. M., 2016, Physical Review Letters, 117, 201101

Meneghetti M., Yoshida N., Bartelmann M., Moscardini L., Springel V., Tormen G., White S. D. M.,

2001, MNRAS, 325, 435

Merten J., et al., 2011, MNRAS, 417, 333

Merten J., et al., 2015, ApJ, 806, 4

Milgrom M., 1983, ApJ, 270, 371
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Okada N., Nefer Şenoğuz V., Shafi Q., 2014, preprint, (arXiv:1403.6403)

Oman K. A., et al., 2015, MNRAS, 452, 3650

Oman K. A., Navarro J. F., Sales L. V., Fattahi A., Frenk C. S., Sawala T., Schaller M., White S. D. M.,

2016, MNRAS, 460, 3610

Pace A., Andrade K., Kaplinghat M., Tulin S., Yu H.-b., 2016, in American Astronomical Society

Meeting Abstracts. p. 337.05

Papastergis E., Giovanelli R., Haynes M. P., Shankar F., 2015, A&A, 574, A113
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Rajaraman A., Shepherd W., Tait T. M. P., Wijangco A. M., 2011, Phys. Rev. D, 84, 095013

Randall L., 2015, Dark Matter and the Dinosaurs: The Astounding Interconnectedness of the Uni-

verse

Randall S. W., Markevitch M., Clowe D., Gonzalez A. H., Bradač M., 2008, ApJ, 679, 1173
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