
Durham E-Theses

Task-Based Parallelism for General Purpose Graphics

Processing Units and Hybrid Shared-Distributed

Memory Systems.

CHALK, AIDAN,BERNARD,GERARD

How to cite:

CHALK, AIDAN,BERNARD,GERARD (2017) Task-Based Parallelism for General Purpose Graphics

Processing Units and Hybrid Shared-Distributed Memory Systems., Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12292/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/12292/
 http://etheses.dur.ac.uk/12292/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Task-Based Parallelism for General
Purpose Graphics Processing Units

and Hybrid Shared-Distributed
Memory Systems.

Aidan Bernard Gerard Chalk

A Thesis presented for the degree of
Doctor of Philosophy

School of Engineering and Computing Sciences
Durham University
United Kingdom

September 2017

Title page ii

Abstract

Modern computers can no longer rely on increasing CPU speed to improve their perfor-
mance as further increasing the clock speed of single CPU machines will make them too
difficult to cool [48], or the cooling require too much power. Hardware manufacturers
must now use parallelism to drive performance to the levels expected by Moore’s Law.
More recently, High Performance Computers (HPCs) have adopted heterogeneous ar-
chitectures, i.e. having multiple types of computing hardware (such as CPU & GPU)
on a single node. These architectures allow the opportunity to extract performance
from non-CPU architectures, while still providing a general purpose platform for less
modern codes [13].

In this thesis we investigate Task-Based Parallelism, a shared-memory paradigm
for parallel computing. Task-Based Parallelism requires the programmer to divide
the work into chunks (known as tasks) and describe the data dependencies between
tasks. The tasks are then scheduled amongst the threads automatically by the task-
based scheduler. In this thesis we examine how Task-Based Parallelism can be used
with GPUs and hybrid shared-distributed memory, in particular we examine how data
transfer can be incorporated into a task-based framework, either to the GPU from the
host, or between separate nodes. We also examine how we can use the task graph to
load balance the computation between multiple nodes or GPUs.

We test our task-based methods with Molecular Dynamics, a tiled QR decomposi-
tion, and a new task-based Barnes-Hut algorithm. These are problems with different
dependency structures which tests the ability of the scheduler to handle a variety of
different types of computation. The results with these testcases show improved per-
formance when we use asynchronous data transfer to and from the GPU, and show
reasonable parallel efficiency over a small number of MPI ranks.

Title page iii

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be
published without the author’s prior written consent and information derived from it
should be acknowledged.

Declaration

The work in this thesis was carried out in the School of Engineering and Computing
Sciences at Durham University between October 2012 and March 2017. All of the
work was carried out by the author unless otherwise stated and has not previously
been submitted for a degree at this or any other university.

Title page iv

Acknowledgements

I would like to thank my external advisor Dr Pedro Gonnet for his continued support
throughout my PhD. It is only due to his expertise and direction I have completed this
work.

I would also like to thank my supervisors, Dr Tobias Weinzierl and Prof Iain Stewart
for their help during my PhD.

Many thanks to the members of the SWIFT project and particularly to Dr Matthieu
Schaller for his help with the work for the Barnes-Hut simulation.

Additional thanks to the lecturers in the Innovative Computing group at Durham
University for helping me with issues that I encountered during my PhD.

This work was supported by the UK Engineering and Physical Sciences Research
Council.

This work used facilities provided as a part of the Durham University NVidia CUDA
Research Centre. This work also used the DiRAC Data Centric system at Durham Uni-
versity, operated by the Institute for Computational Cosmology on behalf of the STFC
DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National
E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1,
and STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC
is part of the National E-Infrastructure.

Finally, I’d like to thank my family and Helen for their love and support in com-
pleting this work.

Contents

1 Introduction 2
1.1 Shared and Hybrid Shared-Distributed Memory High Performance Com-

puters . 3
1.2 Introduction to CUDA GPUs . 3
1.3 Heterogeneous Architectures (GPU Clusters) 6

2 Task-Based Parallelism 10
2.1 Motivation . 10
2.2 Introduction to Task-Based Parallelism 12
2.3 Strengths and Weaknesses of these Models 18

3 The QuickSched Library 20
3.1 QuickSched . 20
3.2 Comparing Quicksched to Other Task-Based Systems 23

4 Example Problems 25
4.1 Molecular Dynamics . 25
4.2 Smoothed Particle Hydrodynamics . 33
4.3 Tiled QR Decomposition . 40
4.4 Barnes-Hut Simulation . 50

5 Task-Based Barnes-Hut for Gravity. 54
5.1 The Shared Memory CPU Task-Based Algorithm 54
5.2 Task-Based Barnes-Hut on the GPU 58
5.3 Adapting the Barnes-Hut Implementation for Hybrid Memory QuickSched 60

6 Task-Based Parallelism on GPUs 63
6.1 Implementing Task-Based Parallelism on CUDA GPUs 63
6.2 Task-Based Parallelism for GPUs in mdcore. 65
6.3 Using Multiple GPUs with mdcore . 87
6.4 Task-Based SPH on GPUs . 94

v

Contents 1

6.5 Extending QuickSched to GPGPUs . 96
6.6 Porting the Load and Unload Tasks back to mdcore 122
6.7 Conclusions . 124

7 Task-Based Parallelism for Hybrid Homogeneous Architectures with
Automated MPI 126
7.1 Introduction . 126
7.2 Partitioning the Task/Resource Graph 131
7.3 Automated Task-Based Data Transfer 132
7.4 Load Balancing and Work Partitioning 133
7.5 Creating the Send and Recv Tasks. 137
7.6 Implementing the Send and Receive Tasks 140
7.7 Results . 141
7.8 Conclusions and Future Work . 148

8 Conclusions and Future Work 150

Appendices 154

A Kernel-based data transfer to the GPU 155
A.1 Reducing occupancy . 157

B Does GPU-based kernel transfer affect the speed of CPU code? 158

C Implementation details for the Tiled QR decomposition 162
C.1 Reduction function using shared memory 162
C.2 SLARFT implementations . 162

D C code for the Barnes-Hut algorithm with QuickSched 165

Chapter 1

Introduction

Modern computers can no longer rely on increasing CPU speed to improve their per-
formance as further increasing the clock speed of single CPU machines will make them
too difficult to cool [48], or the cooling becomes too expensive in terms of power. Until
now, hardware manufacturers could rely on increasing clock rates to driver perfor-
mance, now they must use parallelism to drive performance to the levels expected by
Moore’s Law.

The most popular method for parallel computing is the Message Passing Interface
(MPI) [44]. In MPI, simulations are usually parallelised by decomposing the data into
equal sized chunks, and executing the computation on each chunk on each processor
in parallel. This is known as data parallelism. Each processor can communicate over
an interconnect with any other processor in the system. This programming model is
primarily designed for distributed memory systems, in which no two processors share
the same memory. In a distributed memory system, each individual CPU is known as
a node (MPI specifically calls each process a rank), and each node also contains the
memory and network required by that CPU.

Parallelism has also spread within single CPUs, known as multicores (or shared
memory machines). Machines with 8 or 16 CPU cores are now commonplace, and
workstations with over 32 cores are available. The ever increasing size of multicores is
already driving larger HPCs, with the Trinity supercomputer featuring 301,056 CPU
cores, with 16 cores per node [1]. More detail on how these work is discussed in section
1.1 Additionally, massively parallel devices known as accelerators that feature many
more cores than CPUs are becoming increasingly popular. The current number one
in the top 500 list features an accelerator-style architecture only. Figure 1.1 shows
how the number of cores and performance of the number one in the top 500 list has
progressed since the top 500 list’s creation.

More recently, OpenMP has become increasingly popular as a method of using
processors that share memory. OpenMP allows a programmer to add directives or

2

1.1. Shared and Hybrid Shared-Distributed Memory High Performance
Computers 3

pragmas to their code, to tell the compiler to parallelise certain sections with multiple
threads (multithreading). In the simplest case, the parallel for is used, which allows
a single for loop to be executed in parallel. To ensure correctness, the programmer
also needs to make sure to declare which variables can be shared between threads, and
which variables need to be copied for each thread. This fork-join parallelism can lead
to large amounts of load imbalance for more complex loops, and can introduce a lot
of synchronisation points. Getting good performance from OpenMP programs can be
quite difficult.

1.1 Shared and Hybrid Shared-Distributed Mem-
ory High Performance Computers

Shared memory systems (multicores) feature one or more processors sharing overlap-
ping parts of the memory hierarchy. An example of multiple processors sharing parts of
the cache hierarchy is shown in Figure 1.2-a. Modern multicores often feature multiple
CPU sockets, i.e. a 32 CPU multicore may feature 4 physical CPUs, with 8 cores each.

Older multiprocessor systems used a Uniform Memory Access (UMA) memory
model, where all of the processors accessed memory through a single memory bus,
and so the memory access time was uniform for all processors. As the number of cores
and CPU sockets increased, it has become standard that the speed of access to different
regions of memory is not uniform for each processor. This is known as Non-Uniform
Memory Access (NUMA). Each group of processors (e.g. cores in a single CPU) have
UMA access to some section of main memory, known as their local memory. These
groups are connected by an interconnect, allowing slower access to non-local memory.
This is shown in Figure 1.2-b.

Multicores have become increasingly common in HPCs. The distributed memory
model used on larger HPCs has been replaced by a new hybrid, shared-distributed
memory model, where the HPC consists of many multicore nodes connected by an
interconnection network. Each node usually features between 8 and 128 cores.

1.2 Introduction to CUDA GPUs

Computing using General Purpose Graphics Processing Units (GPGPUs, or GPUs)
has become increasingly popular in the last few years, most commonly GPUs that use
NVIDIA’s CUDA[35] architecture. CUDA GPUs have large numbers of cores (often
over 2000), each of which are less powerful than those in a standard CPU, have more
limited memory access, and a less rich instruction set. These cores are grouped into

1.2. Introduction to CUDA GPUs 4

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

10 2

10 3

10 4

10 5

10 6

10 7

10 8

Number of Cores

Peak Speed (GFLOPS)

Figure 1.1: A chart showing the performance and number of cores for the number
1 machine in the top500 list in each year from 1993. The data was taken from the
November lists in each year from 1993-2015, as well as the June 2016 list. Since 2007,
the number of cores in the machines has increased at roughly the same rate as the
performance.

1.2. Introduction to CUDA GPUs 5

core
L2 cache

core
L2 cache

core
L2 cache

core
L2 cache

Shared L3 Cache

core
L2 cache

core
L2 cache

core
L2 cache

core
L2 cache

Memory

Controller

I/O

Controller

QuickPath

Interconnect

Main Memory

a)

core
L2 cache

core
L2 cache

core
L2 cache

core
L2 cache

Shared L3 Cache

core
L2 cache

core
L2 cache

core
L2 cache

core
L2 cache

Memory

Controller

I/O

Controller

QuickPath

Interconnect

Main Memory

b)

core
L2 cache

core
L2 cache

core
L2 cache

core
L2 cache

Shared L3 Cache

core
L2 cache

core
L2 cache

core
L2 cache

core
L2 cache

I/O

Controller

Memory

Controller

Main Memory

QuickPath

Interconnect

Figure 1.2: Figure a) shows a single multicore CPU (based on Intel Haswell). Each
core will usually have its own L1 and L2 cache, however multiple cores will share the
L3 as shown. The cores will all share the main bus to RAM. The shared nature of
CPU caches varies on each individual processor.
Figure b) shows a 2-socket CPU setup, where each CPU will have similar cache hier-
archy as in a). Each CPU has has its own direct bus to an area of RAM known as its
local memory, and must use the interconnect between the CPUs to access the other
CPUs local memory. The memory accesses through the interconnect are often slower
than access to local memory.

1.3. Heterogeneous Architectures (GPU Clusters) 6

streaming multiprocessors (SMXs or SMs), which currently contain 192 cores. In each
SM, there are 6 warp schedulers, which each issue a single instruction to 32 threads to
be executed in lock-step.

During computation up to 231 − 1 threads (known as a thread grid) can be set to
execute a kernel, a sequence of instructions to be executed on the device. The thread
grid is split into blocks of up to 1024 threads each. Each block is assigned to an SM
when executed, and is only executed on that SM. Current SMs can have up to 16
blocks assigned to them at any time. Each block is further broken down into warps
of 32 threads. The GPU executes each warp of threads in strict lock-step parallelism,
i.e. all 32 threads execute the same instruction before any thread in the warp executes
any other instruction. A schematic of a single SM is shown in Figure 1.3-b.

Cores have relatively slow access to the main GPU memory, however there is a
small high-speed L2 cache shared between all the SMs (as shown in Figure 1.3-a), as
well as an individual L1 cache for each SM. The L1 cache is split into two sections, the
actual L1 cache and shared memory. The L1 caches are not coherent between SMs,
so if 2 SMs are writing to the same area in memory they will not necessarily observe
changes made on the other SM immediately. To help avoid these issues, CUDA has
a set of __threadfence functions which can help enforce the observed ordering of
memory operations by other threads in the system.

The traditional programming paradigm for GPUs has been to treat them as large
vector machines, repeating the same set of instructions, known as kernels, on large
datasets in lock-step, i.e. ”‘Single Instruction, Multiple Thread”’ (SIMT) parallelism.
This approach is effective for problems that vectorise easily. Unfortunately, many
problems cannot be easily vectorised and thus currently cannot be efficiently ported to
these devices.

Individual blocks have no explicit mechanisms to communicate with each other,
synchronisation between blocks has to be managed explicitly by using atomic operation
on values in global memory.

1.3 Heterogeneous Architectures (GPU Clusters)

Heterogeneous architectures are an increasingly common type of architecture in HPC
systems, with 3 of the top 10 HPCs in the June 2016 top 500 [1] list utilising het-
erogeneous architectures. Heterogeneous architecture machines consist of nodes with
both (multicore) CPUs and one or more accelerators or coprocessors. Most commonly
these systems use either NVIDIA CUDA GPUs (accelerators) or Intel Xeon Phi co-
processors. As accelerators and coprocessors are currently more power efficient (per
flop) than standard CPUs, these are likely to be a staple in future large machines, due

1.3. Heterogeneous Architectures (GPU Clusters) 7

a)

L2 Cache

SM SM

b)

L1 Cache/Shared

Warp Schedulers

Cores

Figure 1.3: Figure a) shows a pair of SMs, each with their own access to the shared L2
Cache.
Figure b) shows a single SM in more detail, with multiple warp schedulers, a large
block of cores, as well as the SM’s own L1 Cache and shared memory region.

1.3. Heterogeneous Architectures (GPU Clusters) 8

to the concerns about power consumption in exascale systems [13]. Accelerators and
coprocessors are currently mainly only useful for specific types of tasks that vectorise
well, e.g. Linear Algebra, Finite Element Methods.

Currently heterogeneous architectures are used less effectively than homogeneous
architectures [13]. These architectures present many challenges compared to homoge-
neous architectures, including data movement between RAM and accelerator memory,
load balancing between processor types, and avoiding the introduction of more syn-
chronisation points.

Accelerators and coprocessors typically have their own integrated memory which
cannot be accessed directly from the CPU. Current architectures require data transfer
across the PCI bus, which is slow and can be power inefficient compared to RAM
accesses by the CPU. The data is usually copied to the device manually by CPU
operations, or by MPI calls, which is an additional cost to using these devices.

Another problem highlighted by these heterogeneous architectures is load balanc-
ing. While load balancing has improved on homogeneous architectures it becomes more
difficult on these heterogeneous architectures, as often times they are not executing the
same operations. If the CPUs in the system are waiting for accelerators or coproces-
sors to finish work, it introduces additional synchronisation points which can reduce
performance.

1.3.1 Thesis Overview

This thesis examines an approach for using modern HPCs, known as Task-Based Par-
allelism. In Chapter 2 I give a historical overview of the method, and I discuss our
implementation of Task-Based Parallelism in Chapter 3, called QuickSched.

Chapter 4, I discuss the test-cases and algorithms used to test our implementations,
and introduce a new task-based algorithm for Barnes-Hut simulations in Chapter 5.

Task-Based Parallelism is an established paradigm for shared-memory CPU paral-
lelism, however its ability to be used on GPGPUs is less established. I aim to provide
a possible solution in chapter 6. In HPC, GPUs are often treated as accelerators for
specific sections of code, usually sections that naturally parallelise to a large num-
ber of threads. Most task-based setups treat GPUs as a single, massively vectorised
processor, which executes single tasks across the entire device. Instead, we recognise
the ability of the GPU to perform many tasks in parallel inside a single GPU kernel,
where each task needs to parallelise to a small number of threads. Our approach allows
complicated algorithms to be executed in a task-based way using only the GPU, and
allows us to perform computation in parallel with data transfer, an important topic in
GPGPU computing.

Another topic attracting a lot of research interest for Task-Based Parallelism is

1.3. Heterogeneous Architectures (GPU Clusters) 9

its use on Homogeneous Hybrid-Memory architectures. In Chapter 7, I introduce an
extension to our QuickSched model for these architectures, and show its strengths and
weaknesses on small numbers of MPI ranks.

Chapter 2

Task-Based Parallelism

2.1 Motivation

Traditional HPC methods are becoming increasingly difficult to use efficiently on large
machines. MPI typically relies on a data decomposition approach, and communicating
data between processors. As the number of processors increases the ratio of compu-
tation to communication falls, eventually resulting in communication dominating the
computation in the system, as shown in figure 2.1. This can lead to a loss of strong
scaling at larger numbers of nodes.

Recently MPI has been combined with OpenMP on these large machines to re-
duce the number of MPI ranks required (as OpenMP deals with the shared memory
parallelism on each node). OpenMP can introduce new issues however. OpenMP com-
putations usually consist of a number of parallel sections, and synchronisation at the
end of each of these sections while the system waits for all of the threads to complete.
This fork-join approach to parallelism can introduce a lot of synchronisation points in
the system, amplifying any load imbalances and reducing strong scaling as the number
of processors per node increases, as shown in Figure 2.2. NVIDIA have also developed
OpenACC [33] whjch is an OpenMP-like paradigm for GPU programming, where the
user can annotate loops to be executed on the GPU.

In addition to the massive increase in the number of CPU cores in HPC systems,
accelerators such as NVIDIA CUDA GPUs or Intel Xeon Phi Coprocessors are becom-
ing increasingly popular. These devices have very different architectures to traditional
CPUs, so the standard MPI/OpenMP approach does not work on them.

One possible solution to the ever increasing complexity of HPC machines could be
to find a programming model that is effective for both shared and distributed memory
setups and that can support accelerators as well. One such possibility is Task-Based
Parallelism.

10

2.1. Motivation 11

Figure 2.1: A diagram showing how increasing the number of ranks can lead to com-
munication overheads with MPI. As the number of ranks increases, the amount of
computation (the area in yellow) on each node decreases, however the amount of com-
munication decreases more slowly (the edges of the boxes).

Figure 2.2: A diagram showing the fork-join method associated with OpenMP. The
red highlighted areas show areas where there is load imbalance, so some threads are
idling while waiting for other threads to complete.

2.2. Introduction to Task-Based Parallelism 12

2.2 Introduction to Task-Based Parallelism

Task-Based Parallelism is a method originally created for shared memory parallel pro-
gramming, in which a program is split into a series of tasks. The tasks are retrieved
and executed by the cores until the computation is completed. To avoid concurrency
issues, the dependencies between tasks need to be considered, i.e. if there are 2 tasks,
where task A produces a result needed to compute task B, we say B is dependent on
A, or A unlocks B. The dependencies form a Directed Acyclic Graph (DAG). The cores
can execute tasks with no unsatisfied dependencies without having to worry about
concurrency or synchronisation, as these are handled implicitly by the dependencies.

Task-Based Parallelism has two major advantages over traditional techniques. Firstly,
since the tasks are assigned to the cores dynamically, the work is automatically load
balanced, i.e. no core will run idle if there are still tasks to be computed. Secondly,
the task dependencies avoid the necessity of any explicit synchronisation between the
cores, i.e. no core will sit idly waiting on data being computed by another core if any
other work is available.

Task-Based Parallelism does have some downsides though. Many codes need sig-
nificant rewrites to be able to use Task-Based Parallelism, which can be too expensive
or disruptive for a project to be able to complete. Furthermore, its use in massively
parallel codes is relatively unexplored, and it is not straightforward to use with het-
erogeneous systems.

2.2.1 Cilk and Other Implicitly Declared Task Dependency
Based Libraries

One of the first task-based libraries was Cilk [6], introduced in 1995. The Cilk model for
Task-Based Parallelism consisted of a group of procedures, each of which is broken into
a sequence of tasks (which they called threads). Each task is a nonblocking C function,
meaning it can run to completion without waiting once it has been invoked. When a
task completes it can spawn a number of child threads which begin new procedures,
as shown in Figure 2.3. The spawned task can execute concurrently with its parent,
as well as spawn additional children. As all of the tasks are nonblocking, no task
may wait on data from any of its children so a successor task is spawned to receive
the children’s return values when they are produced. A task and its successors are
considered to be part of the same procedure. Values sent from one task to another
induce data dependencies between the tasks. This computation is known as a spawn
tree. Cilk is an extension to the C programming language, and linked with a runtime
library at compile time.

Cilk also introduced a work-stealing scheduler [7] for task-based computations. Usu-

2.2. Introduction to Task-Based Parallelism 13

level 0

level 1

Figure 2.3: The Cilk model of multithreaded computation. Each task is represented
by a circle, grouped into procedures. The downward edges correspond to the spawn of
a child process. Horizontal edges represent the spawn of a successor. Curved, upward
edges correspond to a data dependency. This figure is based on Figure 1 from [6]

ally task-based libraries have 1 task queue for each processor in the system. Without
a work-stealing approach whenever a task queue becomes empty, the processor asso-
ciated with that queue would idle. With work-stealing, instead the processor looks at
the other queues to find a procedure to steal. In [7] they show that using a randomized
work-stealing algorithm is provably efficient. In this method, each processor picks a
random queue to attempt to steal a procedure from. If successful this procedure is ex-
ecuted by the processor. If not, the processor picks another random queue to attempt
to steal a procedure from. This continues until all the computation is completed.

This work stealing setup is the basis for most of the scheduling in other tasking
libraries, and leads to good load balancing on shared memory computers.

NVIDIAs Dynamic Parallelism [32] for GPUs has some similarities to Cilk. Rather
than spawning tasks that are executed by a single thread, the CPU spawns a number
of thread grids (i.e. kernels). These kernels can in turn launch additional kernels, and
may block (using the CudaDeviceSynchronise function) to wait on child kernels. This
allows a few methods of launching grids to enable various types of dependency struc-
tures. Dynamic Parallelism is only available on CUDA GPUs with compute capability
of ≥ 3.5.

2.2.2 Libraries with Automated Dependency Generation

SMP Superscalar (SMPSs) [43], StarPU [4], QUARK [52] and KAAPI [16] allow the
user to annotate functions as tasks, and specify the data input and outputs for each task
function. They all use this information to automatically generate data dependencies
between tasks. As of version 4.0, OpenMP can also compute dependencies in a similar
manner [37].

2.2. Introduction to Task-Based Parallelism 14

SMP Superscalar

SMP Superscalar (SMPSs) was first released in 2007 [43]. SMPSs is written as a
C language extension, allowing users to provide pragmas to the compiler to define
functions that represent tasks, as well as the data requirements for those functions,
such as input parameters, output parameters and inout parameters. The runtime
library can then analyse the dependencies in the system at runtime and generate the
dependencies automatically, meaning the programmer doesn’t have to analyse the data
flow in the computation, and allows the runtime to take advantage of the additional
data when scheduling tasks.

The SMPSs model specifies 3 different types of dependencies: Read after Write
(RaW) dependencies occur between a task that reads data and previous tasks to have
written to that data, i.e. task B reads from data then task C writes to the data; Write
after Write (WaW) dependencies are between tasks that write to a data location and
previous tasks that also write to that data, and Write after Read (WaR) dependencies
occur between a task that writes to data and a task that previously read that data.
Examples of these dependency types are shown in Figure 2.4. The RaW and WaW
dependencies are effectively the same data dependencies as specified in Cilk, while the
WaR dependencies are similar to those implied by task spawning. The SMPSs library
also uses variable renaming to help avoid WaR and WaW dependencies: If a task writes
to an array, the runtime library creates a new array instead, and redirects all following
reads of that array to the new array.

The SMPSs scheduler will execute dependent tasks on the same processor when
possible. Since two dependent tasks must share some data in the SMPSs model, this
should improve data locality.

As of version 3.0, OpenMP allows the user to specify tasks using the #pragma
omp task directive. Initially, there was no way to specify dependencies, however in
OpenMP 4.0 the depend keyword was added, allowing users to specify variable as in,
out or inout for each task. Any task with an in dependence-type is dependent on all
previously generated sibling tasks that reference any of the variables in an out or inout
dependence-type. Any task with a out or inout dependence-type is dependent on all
previously generated sibling tasks that reference any of the variables in an in, out or
inout dependence-type. This has been extended further in OpenMP 4.5 to allow users
to specify task priorities, though this is not implemented by any of the commonly used
(gcc, intel) implementations. The draft of the OpenMP 5.0 standard currently allows
reduction variables to be used inside task regions, and discussion is taking place about
allowing concurrent (or commutative) dependencies.

OmpSs is an extension of SMPSs which aims to extend OpenMP with new directives
to allow task-based parallelism similar to SMPSs. OmpSs extends to heterogeneous

2.2. Introduction to Task-Based Parallelism 15

a) t

a 0

t1

t2

a=2

2

x=a

b) t

a 0

t1

t2
a=2

2

x=a

c) t

a 0

t1

t2

2

a=a+1

a=a*2

1

Figure 2.4: The three types of data dependency specified in SMPSs. Figure a shows
thread 1 writing a value to the variable a, followed by thread 2 reading from it (RaW
dependency). Figure b shows thread 1 reading from a before thread 2 writes to it
(WaR dependency). Figure c shows thread 1 incrementing a, followed by thread 2
doubling its value (WaW dependency). These figures all assume the order in which
these operations occur is critical for correct execution.

2.2. Introduction to Task-Based Parallelism 16

architectures by allowing the programmer to supply multiple functions for each type
of task, where each function is designed for a different type of processor. The runtime
system can then choose to execute certain tasks on accelerators or coprocessors when
it thinks it would be better.

SMPSs and OmpSs both give the user a variety of scheduling policies to help tune
the performance of their code.

StarPU

StarPU, first released in 2008 [4] uses a codelet model. A codelet is a kernel that
may have multiple implementations of a task function, for CPUs, GPUs, and other
coprocessors. The StarPU scheduler also allows callback functionality to help with
synchronisation between different memories in the system. Once a task is completed,
the scheduler executed the callback function supplied when the task is created, and can
be used to enforce dependencies. Finally, the scheduler has some custom functionality
to try to transfer data directly between some pairs of accelerators. StarPU has recently
added commutative access to variables in tasks (version 1.2, released August 2016).

Similarly to SMPSs, StarPU uses real-time dependency generation based upon the
data required for each task, as provided by the user. StarPU also has a variety of
algorithms it uses for task scheduling, including a work stealing scheduler, a priority-
aware scheduler, and a data transfer time-aware scheduler.

QUARK and DAGuE

QUARK (QUeueing And Runtime for Kernels) was developed for the PLASMA linear
algebra library, and so many of the optimisations in the library are designed for linear
algebra algorithms. These libraries do not require a compiler extension. QUARK
requires the user to provide the runtime system with a series of tasks, and the data
requirements for those tasks. The runtime system then schedules the tasks using one
queue per thread. The queues are priority-aware, and the user can supply the library
with task priorities when defining the tasks. Tasks are enqueued such that data reuse
is maximised, and the scheduler uses a work-stealing approach to avoid threads idling.

As many linear algebra algorithms have O(n3) tasks, QUARK does not store the
entire DAG in memory, instead using a sliding window of active tasks to reduce memory
usage.

DAGuE (Directed Acyclic Graph Unified Environment) [8] is a more recent (2012)
task-based library that uses a similar approach to QUARK for scheduling, in that it
avoids storing the entire DAG in memory, and schedules to maximise data locality.
DAGuE uses their own Job Data Flow (JDF) representation of the dependencies for

2.2. Introduction to Task-Based Parallelism 17

an algorithm. These are seperate files in which the user specifies the types of tasks
in the system, the data required by the tasks and the functions used by each task in
the computation. This is used by the compiler (and runtime system) to determine the
data flow in the system and type of data associated with the various task types.

DAGuE also automatically handles data communication between MPI ranks based
on the data dependencies between tasks, according to a data partitioning. All com-
munication is handled by a separate thread, which takes commands from the compute
threads and issues the data transfers using MPI’s non-blocking point-to-point oper-
ations. When data must be sent, the sending node sends an activate message that
contains information about the task that completed. Upon receiving this message, the
destination node schedules the reception of the relevant data by evaluating the depen-
dencies of the parent task, and then replies to the sending node to tell it to initiate
data transfer. In addition to the data transfer, the system creates control messages,
which are used to tell other nodes about the completion of various tasks.

DAGuE can also support heterogeneous architectures in a similar way to OMPSs
and StarPU, where the CPU offloads tasks to accelerators when it deems appropriate.

2.2.3 Fully Declarative Task-Based Parallel Libraries

A third, less common approach to Task-Based Parallelism requires the user to specify
the entire task graph manually This is much more demanding on the programmer, as
they must fully understand the computation to be able to correctly specify the tasks
and their dependencies. However, since the entire task graph is known at all points of
the computation, the scheduler can potentially prioritise tasks along the critical path
of the computation. Additionally, the scheduler can use this information to maximise
memory-reuse.

This approach is used in Intel’s Threaded Building Blocks (TBB) [39]. The pro-
grammer specifies C++ classes for each type of task they wish to use in their program.
Each class overrides the execute method which is called by the executing thread. Each
task object keeps track of a successor task, which can be set by the programmer, and
the refcount which stores the number of children tasks. The programmer then spawns
tasks to be executed, and uses the successor field plus the inbuilt synchronisation meth-
ods to control task dependencies. TBB does not prioritise tasks along the critical path
of the computation however.

2.3. Strengths and Weaknesses of these Models 18

A

B

C

D

E

F

G

H

J

Figure 2.5: A diagram showing a difficult dependency structure to represent with a
task-spawning model. Usually additional dependencies will be needed to handle this
dependencies structure.

2.3 Strengths and Weaknesses of these Models

Most of the task-based libraries use either the task-spawn model (similar to Cilk), or
automated dependency generation (similar to SMPSs). Each of these models have
various strengths and weaknesses.

The spawn-based model is very easy to use, as the model works similarly to standard
serial computation, with a few additional keywords to allow the spawning of tasks, and
synchronisation of data from spawned tasks. This works well for simple dependency
structures, however it can be difficult to accurately represent some dependency struc-
tures without the introduction of additional synchronisation points or dependencies,
as shown in figure 2.5. To create the task hierarchy shown in figure 2.5, the program
can start by spawning task D. Task D then spawns tasks E and C, and waits for the
result. The C and E spawn tasks A and F respectively, and waits for their results.
Once A completes it spawns task B. Once task E completes, it spawns task G, which
in turn spawns task H. Before H can execute, it must spawn task J, and wait for it
to complete. This ordering inherently introduces an extra dependency between task G
and task J.

The automated dependency generation methods are a little more difficult to use -
the user needs to provide the system information on each of the task functions regarding
the utilisation of data, as well as providing the code to execute the tasks. From this,
the library builds a dependency graph, and executes the code. One weakness of this
automated dependency generation is that many of these libraries only store (or only
generate) a section of the DAG in memory at any one time. While this saves on memory

2.3. Strengths and Weaknesses of these Models 19

usage, it has a cost with respect to scheduling. This sliding window approach can’t
know how many tasks will be spawned when a task is completed, so it is difficult to
prioritise tasks on the critical path of the computation.

Task Conflicts

Most of these libraries are only aware of a single type of relationship between tasks,
i.e. dependencies, which specify a strict ordering between two tasks. In many cases,
the task ordering need not necessarily be this strict. If two tasks update some shared
resource in an order-independent way then enforcing an ordering can be detrimental
to scheduling, e.g. when accumulating forces on a particle, the order in which the
forces are computed does not matter. The only requirement on such tasks is to avoid
concurrent updating of that resource, so the two tasks must not execute simultaneously.
Such a relationship between two tasks is called a conflict. In some of these previous
libraries, conflicts are modeled as dependencies, however this enforces a pre-determined
ordering on conflicting tasks. This restriction can severly limit the performance of a
computation, as there are less options available. This can lead to sections of the
computation being delayed unnecessarily. This has been noted in [31] and [2].

The QUARK scheduler allows conflicts to be modelled by explicitly marking de-
pendencies as concurrent, whilst KAAPI and OMPSs allow marking access to certain
variable as reductions, however this is only for a limited set of basic operations. StarPU
has recently added commutative access to data between dependent tasks, resulting in
a model similar to conflicts. The Cilk model cannot represent conflicts.

Chapter 3

The QuickSched Library

3.1 QuickSched

Most of the work in this thesis focuses on extending the QuickSched library [20] for
Task-Based Parallelism to make use of GPUs and hybrid shared-distributed memory
machines. QuickSched uses a fully declarative task model.

QuickSched’s task scheduler consists of four main object types: task, resource,
scheduler, and queue. The task and resource objects are used to model the computation,
whilst the scheduler and queue objects manage how the tasks are executed.

3.1.1 Tasks and Resources

Tasks and resources are created by the user to model the computation. The tasks
represent the units of work in the computation, and each one is required to have a
type. When a task is executed, it will perform an operation that is defined by its
type. During their computation, tasks are assumed to utilise a number of resources,
and can either require exclusive access to that resource (known as locking a resource)
or not (known as using a resources). The resources conceptually provide access to
any resource in the system (such as a memory address, disk access, etc.). Locking a
resource can be conceptually thought as read and write access to a memory address,
while using a resource would be read-only access to that data. The resources cannot
be directly associated with a memory location however, so the user must be careful
when creating and storing the resources. If any pair of tasks lock the same resource,
then those tasks conflict.

As well as declaring the tasks, resources, uses and locks, the user also needs to
provide the scheduler with the task dependencies. If any Read after Write or Write
after Read dependency exists in the computation, it has to be explicitly specified by
the user before computation, unlike other libraries that can automatically generate

20

3.1. QuickSched 21

some dependencies.
Resources can also be declared as a hierarchical tree. When a resource is created,

the user can provide a parent resource. When a task is executed, it must not only be
able to lock all of its resources, but none of the parent or child tasks can be locked.
To ensure this, each resource has both a lock and a hold counter. The hold counter is
used to count the number of sub-resources that are currently locked. A resource can
only be successfully locked if its hold counter is 0, and none of its parents are locked.

Quicksched tasks have a cost and weight associated with them. The cost of a task
is a user-provided estimate of the task’s runtime. The weight of a task is computed
by the scheduler before execution, and is equal to the task’s cost plus the cost of all
of descendants of the task (a task’s t descendants are all tasks u from which there is a
path in the DAG from t to u).

3.1.2 Queues

The queues are stored as an array of task structures. Ideally, the tasks would be
stored in a sorted list, from the highest to lowest priority, however this makes adding
and removing tasks too expensive. Instead, the array is organized as a max-heap,
i.e. where the kth task has high priority than both the 2k + 1th and 2k + 2th, and the
task with the highest priority in the first position. Maintaining this heap structure
is much cheaper (O(log(n)) vs O(n) for a sorted list) when adding or removing tasks
from the queue.

The downside of this structure is that there is no efficient way to traverse the
tasks in priority order. Instead, the tasks are traversed as though it is a sorted list,
and returns the first task that can be locked. While this doesn’t necessarily result in
optimal task selection, it proves to be sufficient for efficient task-based computations.
Figure 3.1 shows an example of how the tasks may be organised using this heap.

The queues are locked using mutexes, which do not scale well. However, since
QuickSched usually uses one queue per computational thread, contention will only
occur when threads are work stealing, and this is rare enough that it will not have
much effect on performance.

3.1.3 Scheduler

The scheduler object is used as the main interface to QuickSched, and as such contains
the instances of the other three object types, as well as the number of tasks that have
not yet been executed.

The main interface to begin a task-based computation is the qsched_run function.
This requires a pointer to the scheduler to be executed, as well as a user-defined

3.1. QuickSched 22

30

17 12

15 14 9 6

a)

30 17 12 15 14 9 6b)

Figure 3.1: A diagram showing a task queue with task priorities. Figure a) shows the
theoretical heap structure used to order the tasks, while figure b) shows how the array
traversal can sometimes not follow the exact task priorities.

3.2. Comparing Quicksched to Other Task-Based Systems 23

function pointer, which is defined as typedef void(*qsched_funtype)(int,void*).
This function is called whenever a thread in the system is ready to execute a task. The
int is the type of the task to be executed, and the void* is the data associated with
the task. This allows the programmer to specify the behaviour of the thread whenever
a task is to be executed.

The QuickSched scheduler is capable of executing a task-based computation using
both OpenMP or pthreads. With pthreads, each thread is created and start executing
the task-based computation. With OpenMP, the entry call of the task-based computa-
tion is placed inside a parallel region, and the threads perform the same procedures as
when using pthreads. Functions such as locks are controlled using preprocesser macros
that wrap library calls or atomic operations.

3.2 Comparing Quicksched to Other Task-Based Sys-
tems

Table 3.2 shows a comparison of QuickSched to other commonly used task-based sys-
tems. OpenMP-like includes OpenMP 4.5 as well as the extensions available in projects
such as OmpSs or StarPU. All of the systems highlighted here have similar basic ideas
such as a work stealing scheduler, and many of them work on multiples architectures.
QuickSched is the only system discussed that prioritises tasks that lie on the critical
path, which can be done as it has the entire DAG in memory at the beginning of the
computation. In Quicksched, each thread tries to prioritise tasks that access some of
the same memory as the task it previously executed, which helps with memory reuse.

3.2.
C

om
paring

Q
uicksched

to
O

ther
T

ask-B
ased

System
s

24

Task system Manual
DAG spec-
ification

Work
Stealing
Scheduler

Criti-
cal Path
Scheduling

Target
Architecture

Conflicts Hierarchical
Dependencies

Memory
Reuse
Scheduling

QuickSched X X X CPU GPU MPI X X X

OpenMP-like × X × CPU GPU
OmpSs MPI

OmpSs
StarPU

OmpSs ×

Cilk X X × CPU × X ×

DAGuE X X × CPU MPI × X X

Intel TBB X X × CPU × X ×

Table 3.1: A table comparing the features available in different task-based runtimes. QuickSched has been designed to be applicable
to a wide variety of problems, so it contains all of the features shown here, while other runtimes may lack certain other features.

Chapter 4

Example Problems

4.1 Molecular Dynamics

4.1.1 Introduction to Molecular Dynamics

Molecular Dynamics (MD) is a type of N-body problem used for studying the move-
ment of atoms and molecules, usually in small biochemical systems. A simulation
usually requires thousands to billions of iterations (timesteps). In each timestep the
accelerations on the particles are computed then the particles are moved according to
an integration scheme.

The accelerations of the particles are usually computed in 3 sections. The first
section is the acceleration due to non-bonded interactions with neighbouring particles.
The non-bonded section is expensive due to finding all the neighbours of each particle
in the system, and this is the main cost of the simulation. The second section is the
acceleration due to long-range electrostatic interactions. The final section is any inter-
actions due to bonds between atoms. MD simulations usually use periodic boundary
conditions, as they represent a small area of a larger tiled molecular system.

Non-bonded Interactions

The non-bonded interactions are the main computational cost of any molecular dy-
namics simulation, primarily the neighbour finding section of the interactions. During
this step, the forces on each particle due to their interactions with each other atom in
the system are computed. These forces are large between atoms close to each other,
and tend towards 0 as the distance between atoms increases. To reduce the amount
of computation, atom pairs further away than a cutoff distance (rc) are ignored when
computing these forces.

25

4.1. Molecular Dynamics 26

Short-Range Electrostatics

The short-range electrostatics are usually computed by the Smoothed Particle-Mesh
Ewald (PME) algorithm [14], Particle-Particle/Particle Mesh (P3M) [27], or by multi-
level summation [42]. These forces are computed as:

∂2xi

∂t2
=

1

mi

∑
rij<rc

−∂vij(rij)

∂rij
, i = 1, . . . , N

where xi and mi are the position and mass of the ith particle, and rij is the Euclidean
distance between the ith and jth particles. The potential function vij(·) is dependent
on the particle types and is truncated at the cutoff distance rc, beyond which the
interactions are considered insignificant.

Long-Range Electrostatics

The long-range electrostatics can be computed using the Particle-Mesh Ewald method
[11]. To compute the long-range electrostatics, the particles in the system are interpo-
lated onto a grid. The grid is transformed into fourier space using a FFT, and then
the forces are computed. The sum of the long and short range electrostatics on the
particles should sum to the periodic electrostatic potential. Other methods (such as
Fast Multipole methods or Partial Differential Equation solvers) can also be used to
compute the forces due to long-range electrostatics.

Bonded Interactions

The bonded interaction section of a MD simulation ensures any forces in the system
do not break any of the bond, angle, dihedral or exclusion interactions specified in
the simulation input. Exclusion is the negative of the non-bonded interaction, as this
should not be computed for particles that are bonded 1.

4.1.2 Algorithms for Neighbour Finding

In MD, the non-bonded interactions involve each particle pair that are within the cutoff
radius (rc) of each other, known as neighbours. Neighbour finding is one of the most
computationally intensive sections of the simulation. Many different algorithms can be
used to compute each particle’s neighbours in MD simulations. In this section I will

1Since particles that are bonded may be very close to each other, the potential for the non-bonded
interactions is flattened off if particles are very close to avoid the potential becoming very large and
causing large inaccuracies in the system

4.1. Molecular Dynamics 27

detail the O(n2) algorithm, Verlet lists, cell lists and the extensions of cell lists (sorted
cell lists and pseudo-Verlet lists) used in this thesis.

The O(n2) algorithm

The simplest algorithm for neighbour finding is a double for loop over the particles,
and checking if each particle is a neighbour of each other particle in the space. This
algorithm is prohibitively slow for even small particle systems.

Verlet Lists

Verlet Lists[30] are one of the most popular algorithms for neighbour finding in particle
simulations. In the first step, the all-pair interactions are computed, and for each
particle a list containing all of its neighbours (i.e. all particles within rc) is stored. In
the next step we can reuse the same verlet lists to save time provided we have a shell,
i.e. by storing all particles within rc + 2d, and only rebuilding the verlet list when any
particle has moved further than d from the initial position.

Verlet lists give better performance than the naive O(n2) algorithm (Verlet lists take
O(n

5
3) runtime), and many codes use them for neighbour finding. However, building

the verlet lists initially is very expensive, and they often just store the particle indices,
so are not usually cache-friendly, as looping through the neighbours will involve loading
most particles directly from main memory.

Cell Lists

The cell list algorithm for the short-range electrostatic involves dividing the space into
a series of cells of size rcell. If rcell ≥ rc then to find all neighbours of a particle, you only
need to look inside the cell containing the particle and the 26 neighbouring cells (in 3
dimensions). The algorithm to then compute the short-range electrostatic between all
particles in two neighbouring cells is:

1: for all pi ∈ ci do
2: for all pj ∈ cj do
3: r2 ← |x[pi]− x[pj]|2

4: if r2 ≤ r2c then
5: Compute interaction between pi and pj

6: end if
7: end for
8: end for
This algorithm has a runtime of O(n) with respect to the number of particles in

the system, as the inner loop doesn’t depend on the number of particles, only the

4.1. Molecular Dynamics 28

Type of neighbour Percentage
of particles
in-range

Face-sharing pair 50.0%
Edge-sharing pair 16.2%
Corner-sharing pair 3.62%

Table 4.1: Average percentage of particles in a neighbouring cell that are in range of
any given particle in a cell.

distribution of them in the space. This means it has theoretically better runtime than
constructing Verlet lists.

However, for uniform particle distributions the percentage of particles in neigh-
bouring cells that are actually within rc of any given particle is actually quite low, as
shown in Table 4.1. This leads to large numbers of misses when searching for neigh-
bours (i.e the if statement in line 4 rarely triggers), which results in a net loss of
performance compared to a Verlet list. This is also apparent from the volume being
checked around the central cell. If rcell = rc, then the volume searched for neighbours
is 27r3c (volume of the cube around a particle), which is 20.75 times higher than the
ideal 4

3
πr3c (the volume of the neighbourhood sphere for a particle) [51]. Figure 4.1

shows how the algorithm works for a set of particles in 2 dimensions.
Halving the size of rcell dramatically reduces the searched volume to (2.5)3r3c , even

though non-adjacent cells need to be searched for neighbours.
In [3] it was shown that that reducing rcell to contain only a single particle in any

cell resulted in better performance than the conventional algorithm where rcell = rc.
However, [51] claims this method is not as fast as a Verlet List approach. They suggest
an improvement to the cell list approach to do a “weak” sort of the particles in the
system, meaning particles in the same cell are close to each other in memory, which
results in an improvement in cache hit rate. However, they still use a mix of the cell
list and Verlet list approach.

Sorted Cell Lists

[18] improves cell lists by sorting the particles in each cell along each of the 26 vectors
between the cell’s centre and each of its neighbours’ centres.

To sort the particles along the cell axes (→r), each particle is first projected onto →
r

using the equation x[p] · (
→
r

||→r ||
), where x[p] is the position of a particle p. The author

proves that any pair of particles that have a pairwise distance larger than rc along the
axis shared between the cells that contain them are guaranteed to be further apart
than rc. Once we have a projection of the particles onto each of the cell axes, we create

4.1. Molecular Dynamics 29

Figure 4.1: An illustration of the cell list approach. The circle shows the neighbourhood
(rc) around the particle in blue. All of the particles in green are neighbours of the blue
particle, whilst the red particles are not neighbours, but would be checked by the
neighbour finding algorithm.

4.1. Molecular Dynamics 30

Figure 4.2: In the sorted cell lists, the particles are sorted along the axis between the
two cells. When neighbour finding, any particles that have pairwise distance larger
than rc along the cell axis are also guaranteed to be further apart than rc

sorted lists for each axes using any sort algorithm. Figure 4.2 shows how the result of
this sorting for a pair of cells in 2 dimensions.

For any pair of neighbouring cells, ci and cj, we can calculate the forces on the
particles by making use of the sorted lists (Si and Sj) as follows:

lastj ← countj

for i from counti to 0 do
for j from 0 to lastj do

d← Pi[Si[i]]− Pj[Sj[j]]

if d ≤ rc then
pi ← ci[Si[i]]

pj ← cj[Sj[j]]

r2 = |x[pi]− x[pj]|2

if r2 ≤ r2c then
Compute interaction between pi and pj

end if
else

last_j ← j

end if

4.1. Molecular Dynamics 31

end for
end for

where Pi and Pj contain the projections of the particles onto →
r for cells ci and cj

respectively, and requires that values of Pi are all less positive than the values of Pj.
This algorithm results in far fewer spurious neighbours being found (around 59%

of particle pairs found by this algorithm will be neighbours, wheras 27% will be when
using unsorted cells of size 1

2
rc), especially as the majority of cell-pair interactions do

not share a face, and is faster than any of the other cell list variants [18].

Pseudo-Verlet Lists

One drawback of cell lists is the need keep an up-to-date record of which particle is
in which cell, and making sure the particles in each cell are contiguous in memory. If
we use sorted cell lists (which have been shown to have the best performance) we also
need to re-sort the cells along all 26 axis in every timestep which is expensive.

One alternative is to use Pseudo-Verlet Lists[19]. Pseudo-Verlet lists are similar in
concept to cell lists, however the size of the cells (rcell) is greater than rc. The usual
drawback of using larger cells to find neighbourhoods (i.e. searching a larger volume
than necessary) is negated by the sorted cell list approach. Figure 4.3 shows how the
area searched and areas containing neighbours differ for a particle in 2 dimensions.
Until the red area is not completely contained inside the grey region for any particle,
the cells do not need to be re-sorted.

We can then modify the algorithm for sorted interactions, by changing the projec-
tion distance check from d ≤ rc (as above) to d ≤ rm, where rm equals rc plus twice the
maximum displacement of any particle since the last regrid. This allows us to re-use
the sorted particle indices in more than one timestep.

The criteria for regridding is then to regrid if any particle has displacement more
than rcell−rc

2
(known as the skin radius rs), as neighbours will always be found until a

particle has moved more than rs
2
.

4.1.3 The Task-Based Algorithm in mdcore.

All of the work with MD in this thesis is a part of mdcore [23]. mdcore is an open
source library that supports a variety of architectures including shared memory CPU,
hybrid shared-distributed memory CPUs, and CUDA GPGPU processors. mdcore uses
Task-Based Parallelism on all of the architectures and implements both sorted cell list
and pseudo-Verlet list algorithms within the task parallel scheme.

During each timestep in an MD simulation, we have to compute the forces due to
non-bonded interactions, electrostatics, and the bonded interactions in the system.This

4.1. Molecular Dynamics 32

Figure 4.3: The psuedo-verlet list algorithm checks the area inside the grey polygon for
neighbours, as the particles are sorted along the cell axes, and these are only computed
occasionally. The red area is rc distance around the particle. The advantage of the
algorithm is that the cells do not need to be resorted until a particle moves more than
rs. At this point, the neighbourhood of the particle (the red circle) is no longer fully
contained by the searched area (the grey polygon).

4.2. Smoothed Particle Hydrodynamics 33

work has no requirement on any other data computed during the timestep, so there
are no dependencies between tasks in the classical MD simulation. As mdcore uses
either sorted cell lists or pseudo-Verlet lists, there is a requirement to sort the particles
before we can compute the non-bonded interactions. Since 95% of the work is done to
compute the non-bonded interactions, we turn this section into tasks. The remainder
(such as constraint satisfaction, SHAKE, thermostat etc.) of the work is done in serial.

The task algorithm to compute the non-bonded and bonded interactions requires
3 types of tasks:

1. Sort tasks. The sort tasks sort the particle indices for a single cell on all 26 axes.
We use symmetry to reduce this to only require 13 sort tasks per cell.

2. Non-bonded interaction tasks. These are actually further subdivided into pair
and self tasks, depending on whether the task computes forces on a cell pair or a
single cell. The pair tasks depend on the sort tasks for both of the cells involved.

3. Bonded tasks. These are also subdivided into bond, angle, dihedral and exclusion
tasks.

As well as the dependency between sort tasks and non-bonded tasks, any pair of
non-bonded tasks that share a cell conflict, i.e. they cannot be computed at the same
time as they write to the same variables, which would cause a race condition.

A diagram showing the tasks and dependencies for a simulation of four cells is show
in figure 4.4.

mdcore does not use QuickSched, but its task-based scheme was a precursor to
QuickSched.

4.2 Smoothed Particle Hydrodynamics

4.2.1 Introduction to Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a particle-based method that is used to
model compressible fluid flow[17]. It is commonly used in cosmological simulations to
model the behaviour of the gas in the universe [46].

In a SPH simulation, each particle pi has a position xi, velocity vi, internal energy
ui, massmi, and a smoothing length hi. Note that unlike in MD, the smoothing length2

is not fixed for all particles, and can change during the lifetime of the simulation for any
given particle, which makes this more difficult to solve than MD as neighbour finding

2equivalent to the cutoff radius in MD

4.2. Smoothed Particle Hydrodynamics 34

bonds angles exclusions dihedrals

sort

pair

self

Figure 4.4: A diagram showing the task DAG for an example MD simulation of 4 cells.
As well as the dependencies shown, no tasks which share a cell of the same colour can
be done simultaneously, as they conflict.

4.2. Smoothed Particle Hydrodynamics 35

is more difficult. The smoothing length is the interaction radius of the particle, and is
chosen so all particles have a similar number of neighbours.

This explanation of SPH is adapted from [21].
The particles are used to interpolate any quantity Q at any point in the space as a

weighted sum over the particles:

Q(r) =
∑
i

mi
Qi

ρi
W (||r− ri||, h), (4.1)

where Qi is the quantity at the ith particle and W (r, h) is the smoothing function.
In our code SWIFT [24], which implements SPH, W (r, h) is defined using a piecewise
polynomial:

W (r, h) =
8

πh3

1− 6(r

h
)2 + 6(r

h
)3, 0 < r

h
≤ 1

2
,

2(1− r
h
)3, 1

2
< r

h
≤ 1,

0, r
h
> 1.

(4.2)

The particle density ρi used in eq. 4.1 is computed as:

ρi =
∑

j,ri,j<hi

mjW (ri,j, hi), (4.3)

where ri,j = ||ri − rj|| is the distance between particles pi and pj. The smoothing
length hi of each particle is chosen such that the weighted number of neighbours Nngb

is kept roughly constant.

Nngb =
4

3
πh3

i

∑
j

W (ri,j, hi) (4.4)

This is achieved by applying a single step of Newton iteration to solve eq. 4.4 for
hi in every time-step, where the derivative ∂Nngb/∂hi is computed alongside eq. 4.3.
If the number of neighbours for any particle strays too far from the expected value,
the smoothing length and number of neighbours for that particle is recomputed until
a valid Nngb is obtained.

Once the densities have been computed, the time derivatives of the velocity, internal
energy and smoothing length (which all require ρi) are computed as follows:

dvi
dt

=
∑

j,ri,j<ĥi,j

mj

[
Pi

Ωiρ2i
∇rW (ri,j, hi) +

Pj

Ωjρ2j
∇rW (ri,j, hj)

]
, (4.5)

dui

dt
=

Pi

Ωiρ2i

∑
j,ri,j<hi

mj(vi − vj) · ∇rW (ri,j, hi), (4.6)

where ĥi,j = max(hi, hj), and the particle pressure Pi = ρiui(γ − 1) and correction

4.2. Smoothed Particle Hydrodynamics 36

term Ωi = 1 + hi

3ρi

∂ρ
∂h
. The polytropic index γ is usually set to 5

3
.

The computations in eq. 4.3, eq. 4.5, and eq. 4.6 involve finding all pairs of particles
within range of each other. Any particle pj is in within range of a particle pi if the
distance between pi and pj is less than or equal to the smoothing distance hi of particle
pi, as is done in eq. 4.3. Since in compressible SPH the smoothing lengths vary between
particles this relationship is not symmetric. If the distance between pi and pj is less
than max(hi, hj) then the particles are within range of each other.

Each timestep of the SPH computation is computed in three distinct stages that
are evaluated separately:

1. Density computation: For each particle pi, loop over all particles pj within range
of of pi (i.e. ri,j ≤ hi), and evaluate eq. 4.3. This computes the densities and
smoothing lengths of all particles.

2. Force computation: For each particle pi loop over all particles pj that are within
range of each other (i.e. ri,j < max(hi, hj)), and evaluate eq. 4.5 and eq. 4.6.
This computes the forces that act on each particle.

3. Timestepping: For each particle, move the particle forward in time, using the
forces on the particle to update the acceleration of the particle and move it in
space.

4.2.2 The SWIFT Task-Based Algorithm for SPH

A task-based algorithm for SPH was introduced in [24] and [21]. It makes use of cell-list
type structures for finding the neighbours. The algorithm is more complex than for
MD due to variable smoothing lengths, so we can’t use a single cell size to efficiently
find all the neighbours of every particle.

At the beginning of the simulation (and whenever the system needs to be reparti-
tioned) the space is partitioned into an initial grid of cells. The edge length of these
cells is at least as large as the maximum smoothing length of any particle, hmax. Each
of these cells is divided into 8 child cells if all of the particles contained within it have
a smoothing length of less than half the cell edge length. This process is repeated
until no cell in the system violates this constraint. In the SWIFT implementation a
cell is also not further divided if it contains less than a certain number of particles
(nmin), however this is not important to understand the algorithm. Figure 4.5 shows
an example particle distribution, and how it may be divided into cells (note that in
two dimensions, the cells are only split into 4 subcells).

This decomposition means all neighbours of any particle pi will be located in either
the smallest cell containing pi, or any direct neighbours of the cell containing pi.

4.2. Smoothed Particle Hydrodynamics 37

Figure 4.5: A diagram showing the cell partitioning for a 2D simulation. The top-left
cell needed dividing into smaller sub-cells as all of the particles contained within the
cell had small smoothing lengths.

4.2. Smoothed Particle Hydrodynamics 38

Figure 4.6: If all the particles within a cell have small smoothing lengths, the cell can
be split, and its self interaction replaced by the self and pair interactions of its subcells.

Figure 4.7: If all the particles in a pair of interacting cells have a smoothing length
less than or equal to half of the cell edge length, both cells can be split. Instead of the
pair interaction of the two large cells, the pair interactions of the subcells neighbouring
across the interface are computed. This ensures distant particles that never interact
do not need to be checked in the neighbour search.

For both the density and force computations cell-self and cell-pair tasks are con-
structed according to these rules:

• For any leaf cell (a cell that is not split), create a cell-self task for both density
and force.

• For any pair of neighbouring cells of the same size, create a cell-pair task for both
density and force provided one or both of the cells is not a leaf.

In addition, integrator tasks are created for each leaf that move the particles at the
end of each timestep.

We construct the tasks by creating cell pairs at the highest level, and recursively
splitting as shown in Figures 4.6 and 4.7.

Splitting cells can reduce the volume searched for neighbours for a particle, which
should lead to improvements in neighbour finding. To speed up the neighbour finding,
we used the cell sorting method described in section 4.1.2. One useful improvement for
the sorting of particles is that once we have sorted the subcells of a cell, we can construct
the sorted indices of the cell by merging the indices of its eight subcells (shown in 2D
in Figure 4.8). This can significantly reduce the cost of sorting large cells containing
many particles. Using this improvement, we can create a task-based hierarchical sort

4.2. Smoothed Particle Hydrodynamics 39

A B

C

Figure 4.8: Hierarchical sorting of a large split cell (A). First each subcell is sorted
along their individual cell axis (B), then the subcells are shifted and merged to produce
the sorting for the large cell (C).

setup. We create a sort task for every cell in the system with dependencies depending
on whether the cell is split or not:

• If the cell is a leaf cell, then it has no dependencies.

• If the cell is split into smaller cells, then its sort task dependent on the sort tasks
of all of its children.

When executed, only the leaf cells actually need to sort the particles. Larger cells can
merge the result of the sorting of their children.

This gives us the initial set of dependencies required for SPH:

1. The sort tasks of the leaf tasks which have no dependencies.

2. The sort tasks of the larger cells, which are dependent on the sort tasks of each
of their children.

3. The density tasks, which are dependent on the sort tasks of the cells they act
upon.

4. The force tasks, which are dependent all of the density tasks of all of the cells
(and the density tasks of all the children of those cells) they act upon.

5. The integrator tasks, which are dependent on all of the force tasks of the cell
they act upon. These are created only for leaf cells.

In order to avoid the large number of dependencies between the density and force
tasks of each cell, we create ghost tasks. The ghost task for a given cell depends on all
of the density tasks for that cell, and the force tasks are made dependent on the ghost

4.3. Tiled QR Decomposition 40

task. Additionally, the ghost task can do some computation that is required between
the two operations, such as checking the accuracy of Nngb for all of the particles in the
cell, and correcting any that were computed incorrectly during the density tasks. This
addition results in the task structure as shown in Figure 4.9.

As in MD, any pair of tasks that act on a shared cell or one of its subcells cannot
be executed at the same time, so they conflict. This is solved using hierarchical locks,
i.e. a cell can only be locked if none of its subcells or parent cells are locked.

SWIFT also uses the pseudo-Verlet list ideas introduced in [19] to avoid sorting the
particles in every timestep (discussed in section 4.1.2).

4.3 Tiled QR Decomposition

4.3.1 The Tiled QR Decomposition

The QR decomposition is a linear algebra operation that decomposes a matrix A into
two matrices Q and R such that A = QR where Q is orthogonal and R is upper
triangular. It is commonly used to solve the Least Squares Problem.

The problem is often solved using Gram-Schmidt or successive column-wise House-
holder Reflectors, but these do no parallelise well. To create a parallel version, [9]
created a tile version of the algorithm, known as the tiled QR decomposition.

The algorithm divides the matrix intom×n square tiles of sizeK×K, and performs
k = min(m,n) sweeps over the matrix. Each sweep performs a series of operations on a
decreasing sized submatrix of A, starting from the tile at position (k, k). The standard
tiled-QR decomposition also uses Householder reflections [28]. By doing this, Q and
R fit into a matrix the size of A, plus a small τ matrix. The τ matrix is required to
recover Q from H (the Householder matrix).

The task-based algorithm uses four types of task, usually referred to by their LA-
PACK names: xGEQRF, xLARFT, xTSQRF, xSSRFT. The x in the names refers
to whether the operation uses single precision (x=S), double precision (x=D), com-
plex (x=C) or complex-double (x=Z). In this thesis I only consider the operations on
single or double precision floating point numbers. The task structure (including de-
pendencies) is shown in table 4.2. There are no conflicts between tasks in the tiled QR
decomposition. An example of how the computation progresses on a 4 × 4 matrix is
shown in Figure 4.10.

4.3.2 Implementing the Tiled QR Decomposition

The tiled QR decomposition has not been widely implemented, as most uses of the al-
gorithm use library implementations such as LAPACK or PLASMA, though it is often

4.3. Tiled QR Decomposition 41

sort

sort

density

ghost

force

integrator

Figure 4.9: The task graph used for computing SPH. Arrows between tasks represent
dependencies between different task types. Dotted lines between tasks indicate conflicts
between tasks on the same data.

4.3. Tiled QR Decomposition 42

Task where depends on
task(s)

locks tile(s)

SGEQRF i = j = k (i, j, k − 1) (i, j)
SLARFT i = k, j > k (i, j, k − 1),

(k, k, k)
(i, j)

STSQRF i > k, j = k (i, j, k − 1), (i −
1, j, k)

(i, j), (j, j)

SSSRFT i > k, j > k (i, j, k − 1), (i −
1, j, k), (i, k, k)

(i, j)

Table 4.2: The task structure for the Tiled QR-decomposition.

level 1 level 2 level 3 level 4

Figure 4.10: Task-based QR decomposition of a matrix consisting of 4× 4 tiles. Each
circle represents a tile, and its colour represents the type of task on that tile at that level.
Empty circles have no task associated with them. The arrows represent dependencies
at each level, and tasks at each level also implicitly depend on the task at the same
location in the previous level.

4.3. Tiled QR Decomposition 43

used to benchmark task-based libraries. I implemented my own version of each of the
operations, first in serial MATLAB, and then in both C and CUDA C. The section
explains the operations and details my MATLAB implementation and the CUDA C
implementation. Additionally I provide the function to compute Q and check correct-
ness.

Our MATLAB function to compute the tiled QR decomposition of a matrix A (of
even dimensions) in serial is as follows:

1 f u n c t i o n [A , tau] = h o u s e Q R (A , t i l e s i z e)
2 [m , n] = size (A) ;
3 m = m/ t i l e s i z e ;
4 n = n/ t i l e s i z e ;
5 m i n m n = min (m , n) ;
6 tau = 0 ;
7 f o r k=1: m i n m n
8 [A , tau] = S G E Q R F (A , tau , k , t i l e s i z e) ;
9 f o r j=k+1: n

10 [A , tau] = S L A R F T (A , tau , j , k , t i l e s i z e) ;
11 end
12 f o r i=k+1: m
13 [A , tau] = S T S Q R F (A , tau , i , k , t i l e s i z e) ;
14 f o r j=k+1: n
15 [A , tau] = S S S R F T (A , tau , i , j , k , t i l e s i z e) ;
16 end
17 end
18 end
19 end

xGEQRF

The xGEQRF function performs a Householder QR decomposition of the tile it is

executed on, resulting in

(
R R

H R

)
and τ(k, (k− 1)×K) to τ(k, (k− 1)×K +K − 1).

The operation is performed on the top left tile in each step (A(k, k)), and must be
completed before any other operations in that step can take place. The operation is
dependent on any operations from previous steps on the tile being completed.

The operation computes each column of H = I− τwwT , where w is the normalized
column vector being operated upon. R = w is stored in the upper right triangle on
each row of the matrix, as each column of H is computed.

4.3. Tiled QR Decomposition 44

Our MATLAB function that computes xGEQRF is as follows:

1 f u n c t i o n [A , tau] = S G E Q R F (A , tau , k , t i l e s i z e)
2

3 b l o c k = A ((k−1)∗ t i l e s i z e+1: k∗ tilesize , (k−1)∗ t i l e s i z e+1: k
∗ t i l e s i z e) ;

4 f o r j = 1 : t i l e s i z e
5 n o r m x = norm (b l o c k (j : end , j)) ;
6 s = −sign (b l o c k (j , j)) ;
7 u1 = b l o c k (j , j) − s∗ n o r m x ;
8 if u1 ~= 0
9 w = b l o c k (j : end , j) / u1 ;

10 else

11 w = z e r o s (size (b l o c k (j : end , j))) ;
12 end
13 w (1) = 1 ;
14 if n o r m x ~= 0
15 tau (k , (k−1)∗ t i l e s i z e+j) = −s∗ u1 / n o r m x ;
16 else

17 tau (k , (k−1)∗ t i l e s i z e+j) = 0 ;
18 end
19 b l o c k (j+1:end , j) = w (2 : end) ;
20 b l o c k (j , j) = s∗ n o r m x ;
21 b l o c k (j : end , j+1: end) = b l o c k (j : end , j+1: end)−(tau (k , (k

−1)∗ t i l e s i z e+j) ∗ w) ∗(w ‘ ∗ b l o c k (j : end , j+1: end)) ;
22 end
23 A ((k−1)∗ t i l e s i z e+1: k∗ tilesize , (k−1)∗ t i l e s i z e+1: k∗ t i l e s i z e

) = b l o c k ;
24 end

where A is the matrix A, tau is the τ matrix, k is the step being computed and tilesize
is K.

xLARFT

The xLARFT operation is performed on the tiles A(k, j), j > k at each step k. It
cannot be computed until any operations from previous steps are completed on the tile
it acts upon, and until the xGEQRF operation for step k has also been completed. The
xLARFT routine applies the transformation H computed in the xGEQRF operation to

4.3. Tiled QR Decomposition 45

the tiles on row k, i.e. (I −HτHT)×A(k, j). The input parameters for the operation
are therefore the cells A(k, k), A(k, j) and τ(k, k).

Our MATLAB function to compute this operation is as follows:

1 f u n c t i o n [A , tau] = S L A R F T (A , tau , j , k , t i l e s i z e)
2 u p p e r b l o c k = A ((k−1)∗ t i l e s i z e + 1 : (k) ∗ tilesize , (k−1)∗

t i l e s i z e +1:(k) ∗ t i l e s i z e) ;
3 b l o c k = A ((k−1)∗ t i l e s i z e + 1 : (k) ∗ tilesize , (j−1)∗

t i l e s i z e +1:(j) ∗ t i l e s i z e) ;
4 f o r i = 1 : t i l e s i z e
5 w = u p p e r b l o c k (i : end , i) ;
6 w (1) = 1 ;
7 b l o c k (i : end , 1 : end) = b l o c k (i : end , 1 : end) − (tau (k , (k

−1)∗ t i l e s i z e+i) ∗ w) ∗(w ‘ ∗ b l o c k (i : end , 1 : end)) ;
8 end
9 A ((k−1)∗ t i l e s i z e + 1 : (k) ∗ tilesize , (j−1)∗ t i l e s i z e +1:(j) ∗

t i l e s i z e) = b l o c k ;
10 end

with the same naming scheme as xGEQRF.

xTSQRF

The xTSQRF operation is performed on the tiles A(i, k), i > k at each step k. It
cannot be computed until any operations on the tile it acts upon from previous steps
are completed, and until the xGEQRF operation for step k has also been completed.
Additionally, for each tile A(ii, k), ii > k+1, the xTSQRF operation at tile A(ii−1, k)

must have already been completed. The xTSQRF routine applies the Householder
transformation to the cell A(i, k) and updates the values of R in cell A(k, k).

Our MATLAB function to compute this operation is as follows:

1 f u n c t i o n [A , tau] = S T S Q R F (A , tau , i , k , t i l e s i z e)
2 u p p e r B l o c k = A ((k−1)∗ t i l e s i z e+1: k∗ tilesize , (k−1)∗

t i l e s i z e+1: k∗ t i l e s i z e) ;
3 R = getR (u p p e r B l o c k) ;
4 b l o c k = z e r o s (t i l e s i z e ∗2 , t i l e s i z e) ;
5 b l o c k (1 : tilesize , 1 : t i l e s i z e) = R (1 : tilesize , 1 : t i l e s i z e)

;
6 b l o c k (t i l e s i z e+1:end , 1 : t i l e s i z e) = A ((i−1)∗ t i l e s i z e+1: i∗

tilesize , (k−1)∗ t i l e s i z e+1: k∗ t i l e s i z e) ;

4.3. Tiled QR Decomposition 46

7 f o r j=1: t i l e s i z e
8 w = z e r o s (t i l e s i z e − j +1 ,1) ;
9 w (1) = b l o c k (j , j) ;

10 w (t i l e s i z e+2−j : t i l e s i z e∗2+1−j , 1) = b l o c k (t i l e s i z e+1:end
, j) ;

11 n o r m x = norm (w) ;
12 s = −sign (w (1)) ;
13 u1 = w (1) − s∗ n o r m x ;
14 if u1 ~= 0
15 w (2 : end) = w (2 : end) / u1 ;
16 else

17 w (2 : end) = 0 ;
18 end
19 w (1) = 1 ;
20 if n o r m x ~= 0
21 tau (i , (k−1)∗ t i l e s i z e+j) = −s∗ u1 / n o r m x ;
22 else

23 tau (i , (k−1)∗ t i l e s i z e+j) = 0 ;
24 end
25 b l o c k (j : end , j : end) = b l o c k (j : end , j : end) −(tau (i , (k−1)

∗ t i l e s i z e+j) ∗ w) ∗(w ‘ ∗ b l o c k (j : end , j : end)) ;
26 b l o c k (t i l e s i z e+1:end , j) = w (t i l e s i z e+2−j : end , 1) ;
27 end
28 f o r j=1: t i l e s i z e
29 u p p e r B l o c k (j , j : t i l e s i z e) = b l o c k (j , j : t i l e s i z e) ;
30 end
31 A ((k−1)∗ t i l e s i z e+1: k∗ tilesize , (k−1)∗ t i l e s i z e+1: k∗

t i l e s i z e) = u p p e r B l o c k ;
32 A ((i−1)∗ t i l e s i z e+1: i∗ tilesize , (k−1)∗ t i l e s i z e+1: k∗

t i l e s i z e) = b l o c k (t i l e s i z e+1:end , 1 : t i l e s i z e) ;
33 end

where the getR function returns the upper triangular matrix from the tile supplied.

xSSRFT

The xSSRFT operation is performed on the tiles A(i, j), i > k, j > k at each step
k. The xSSRFT operation on a tile A(i, j) for step k cannot be computed until the
xTSQRF operation on tile A(i, k) has been completed, and the xSSRFT or xLARFT

4.3. Tiled QR Decomposition 47

operation on tile A(i, j − 1) has been completed. As with all of the other operations,
the operation on the tile from all previous steps must also have been completed. The
xSSRFT routine applies the transformation computed by xTSQRF at A(i, k) to the
tiles A(i, j) and A(k, j).

Our MATLAB function to compute this operation is as follows:

1 f u n c t i o n [A , tau] = S S S R F T (A , tau , i , j , k , t i l e s i z e)
2 tile = z e r o s (t i l e s i z e ∗2 , t i l e s i z e) ;
3 tile (1 : tilesize , 1 : end) = A ((k−1)∗ t i l e s i z e+1: k∗ tilesize ,

(j−1)∗ t i l e s i z e+1: j∗ t i l e s i z e) ;
4 tile (t i l e s i z e+1:end , 1 : end) = A ((i−1)∗ t i l e s i z e+1: i∗

tilesize , (j−1)∗ t i l e s i z e+1: j∗ t i l e s i z e) ;
5 l o w e r t i l e = A ((i−1)∗ t i l e s i z e+1: i∗ tilesize , (k−1)∗ t i l e s i z e

+1: k∗ t i l e s i z e) ;
6 f o r m = 1 : t i l e s i z e
7 w = z e r o s (t i l e s i z e ∗2 ,1) ;
8 w (m) = 1 ;
9 w (t i l e s i z e+1:end , 1) = l o w e r t i l e (1 : end , m) ;

10 tile = tile − (tau (i , (k−1)∗ t i l e s i z e+m) ∗ w) ∗(w ‘ ∗ tile) ;
11 end
12 A ((k−1)∗ t i l e s i z e+1: k∗ tilesize , (j−1)∗ t i l e s i z e+1: j∗

t i l e s i z e) = tile (1 : tilesize , 1 : t i l e s i z e) ;
13 A ((i−1)∗ t i l e s i z e+1: i∗ tilesize , (j−1)∗ t i l e s i z e+1: j∗

t i l e s i z e) = tile (t i l e s i z e+1:end , 1 : t i l e s i z e) ;
14 end

Checking Correctness and Recovering Q

One advantage of the QR decomposition as a test case is the relative ease of checking
the correctness of the result. As the definition of the problem is A = QR we can check
correctness by taking the product of the Q and R matrices and comparing the result
to the input matrix, A.

As the tiled QR decomposition outputs HR and τ instead of QR, we need to be
able to recompute Q from H and τ .

H consists of a number of column vectors, denoted H1, ..., Hn. Q can be recovered
as Q1Q2...Qn, where Qi = I − ωwT and ω is a column vector, where for j = 0 :

n, ω(j ∗ K : j ∗ K + K − 1) = τ(j, k) ∗ A(i, j ∗ K : i, j ∗ K + K − 1). This is
similar to reassembling a matrix from its Householder reflectors, however since this

4.3. Tiled QR Decomposition 48

implementation doesn’t normalise each column, we need to use the τ values stored to
recover the column vector.

Our MATLAB script to recover Q is as follows:

1 f u n c t i o n Q = g e t Q F u l l (A , tau , t i l e s i z e)
2 Q = eye (size (A)) ;
3 [numrows , n u m c o l u m n s] = size (A) ;
4 n u m c o l t i l e = n u m r o w s / t i l e s i z e ;
5 n u m r o w t i l e = n u m c o l u m n s / t i l e s i z e ;
6 f o r k = 1 : n u m r o w t i l e
7 f o r l = 1 : t i l e s i z e
8 Q t e m p = eye (n u m r o w s) ;
9 f o r i = k : n u m c o l t i l e

10 w = z e r o s (numrows , 1) ;
11 w ((i−1)∗ t i l e s i z e+1: i∗ t i l e s i z e) = A ((i−1)∗ t i l e s i z e

+1: i∗ tilesize , (k−1)∗ t i l e s i z e+l) ;
12 w ((k−1)∗ t i l e s i z e+l) = 1 ;
13 if (((k−1)∗ t i l e s i z e+l) > (i−1)∗ t i l e s i z e+1)
14 w (1 : (k−1)∗ t i l e s i z e+l−1) = 0 ;
15 end
16 Q t e m p = Q t e m p ∗ (eye (n u m r o w s) − tau (i , (k−1)∗

t i l e s i z e+l) ∗ w∗w ’) ’ ;
17 end
18 Q = Q∗ Q t e m p ;
19 end
20 end
21 end

This code is only to illustrate how to perform this computation, but is not optimized.
Lines 16 and 18 can be implemented with fewer matrix multiplications to improve
performance. Our MATLAB, CPU and CUDA implementations presented have all
been checked to ensure A = QR within rounding error.

4.3.3 Implementing the Tiled QR Decomposition on the GPU

On the GPU, we parallelise task-based computations by executing one task per block.
This gives the coarse-grained parllelism for the QR decomposition on the GPU. The
major hurdle in implementing the tiled QR decomposition in CUDA was implement-
ing SIMT-parallel versions of each of the task functions. To parallelise the individ-
ual task functions, we spread the matrix-vector and vector-vector operations over the

4.3. Tiled QR Decomposition 49

threads in a block. This means we exploit SIMT parallelism to perform operations like
w=block(j:end,j)/u1; as each thread in a warp reads in a single element of w and
performs the necessary operations on it in parallel. For the SLARFT and SSSRFT we
can further parallelise the operations by striding across the updates to the upper tile
by the number of warps in the block, i.e. blockDim.x/32.

To avoid the need for synchronisation I therefore used tile sizes of 32 (the same as
the warp size). This means all of the operations within a tile are performed in lock-step
parallelism.

Larger tile sizes such as K = blockDim.x would have likely lead to improved
performance, despite the requirement for synchronisation between warps and increased
complexity of reduction operations. Our GPU implementation executes blocks of 128
threads, however the SGEQRF and STSQRF functions need to be executed a single
column at a time, meaning these functions are restricted to only 32 threads.

On CUDA GPUs it is usually important to have coalesced memory accesses for all
the threads in a warp. Since the QR operations primarily operate on columns of the
tiles, it makes sense to have the tiles stored in a column-major format. Additionally,
most implementations notice better cache-coherency if the tiles are stored as blocks in
memory, though this is less relevant for the GPU. This results in a tiled column-major
layout (also known as square blocked [25]), i.e. For a matrix A with tiles of size 32,
A(1 : 32) is the first column of the first tile, A(33 : 64) is the second column of the first
tile, and so on. This is the matrix layout I decided to use for my GPU implementation
of the tiled-QR decomposition.

Calculating the Norm of a Vector

To calculate the norm of a vector we can use a reduction operation. CUDA Compute
Capability 3.0 introduced shuffle operations, which allow threads within the same warp
to communicate data stored in registers to other threads in the warp. It was shown in
[12] that these shuffle operations can improve the speed of reductions within a warp
when compared to using shared memory.

I implemented a reduction operation in CUDA as follows 3:

1 __device__ inline void reduceSumMultiWarp(float* value){

2 #if __CUDA_ARCH__ >= 300

3 #pragma unroll

4 for(int mask = 16 ; mask > 0 ; mask >>= 1)

3Our code was safe for any compute capability - see Appendix C for the variant that works when
no shfl operations are available.

4.4. Barnes-Hut Simulation 50

5 *value += __shfl_xor((float)*value, mask);

6 *value = __shfl((float)*value, 0);

7 #else

8 //No shfl commands

9 #endif

10 }

where I used the shuffle operations if available. The WARPS variable is a predefined value
that ensure safety when using shared memory reductions with compute capabilities
pre-3.0. A vector norm operation can then be implemented as:

1 norm = 0.0;

2 norm = Tile[i*tilesize + TID] * Tile[i * tilesize + TID];

3 reduceSumMultiWarp(&norm);

4 norm = sqrt(norm);

where TID is threadIdx.x % 32, i is the column of the vector to be normalised, and
Tile is a pointer to a section of the matrix.

Appendix C contains the CUDA implementation of the SLARFT code, as well as
an alternate version that can cope with larger tile sizes.

4.4 Barnes-Hut Simulation

4.4.1 The Barnes-Hut Algorithm

The Barnes-Hut (BH) algorithm [5] is a hierarchical algorithm for solving N-body
problems, i.e. computing all the pairwise interactions between a set of N particles, in
O(NlogN) operations. It is often used in cosmological simulations to calculate the
forces between particles due to gravity.

The algorithm uses a recursive decomposition, and starts from an initial cell con-
taining all of the particles. For each cell, if that cell contains more than nmin particles
(in the original algorithm, nmax is 1), the cell is split in each dimension to create 8
subcells (in 3 dimensions), which are processed recursively. This process is repeated
recursively until no cells contains more than nmax particles. This is known as an oc-
tree decomposition. Figure 4.11 shows this decomposition for a set of particles in two
dimensions. As the figure shows, not all leaf cells have the same edge width.

Each particle pi interacts directly with every other particle pj, j 6= i, where the
ratio s

d
≥ θ holds, where s is the edge-length of the cell containing the particle pj,

and d is the distance between pi and the centre of mass of the cell containing pj. θ

4.4. Barnes-Hut Simulation 51

is the opening angle, a predefined constant whose value is chosen to give the required
accuracy for a simulation. If nmax is greater than or equal to 1, particles within the
same cell must interact directly regardless of the value of θ.

If s
d
< θ, then pi interacts with the centre of mass of the cell containing pj, rather

than with the particles individually.
Altering the value of θ varies the cost vs accuracy of the algorithm, and if θ = 0 it is

the same as doing the O(n2) interaction. Figure 4.12 shows the interactions of the same
particle set as in Figure 4.11 for two different values of θ. The green particle interacts
directly with the blue particles, and with the centre of mass (magenta particles) for
each other cell. In some cases when the cell only contains a single particle, the centre
of mass is just the particle (these are the magenta particles with a black border). The
hollow red particles are interacted with only by the centre of mass of one of the cells
that contains them. As θ is increased, fewer direct interactions are performed, and
centre of mass interactions cover larger groups of particles.

The tree-walk can be created by a recursive algorithm, by initially interacting each
particle with the root cell as follows:

function Treewalk(p, cell, theta)
s← cell.s
com← cell.com
d← |p.pos - com|
if s

d
≥ θ then

for Each nonempty child cell c of cell do
Treewalk(p, c, theta)

end for
else

Interact p with cell.com
end if

end function
If we ignore symmetry (i.e. for each particle pair p, q we compute the interaction

twice), then we can theoretically parallelise this algorithm easily, by dividing the parti-
cles into N chunks (where N is the number of processors to parallelise over) and having
each processor compute one of the chunks in parallel.

The task-based algorithm used for the BH is discussed in chapter 5.

4.4. Barnes-Hut Simulation 52

Figure 4.11: An image that shows the 2D Barnes-Hut cell decomposition of a set of
particles.

4.4. Barnes-Hut Simulation 53

theta = 0.35

theta = 0.5

Figure 4.12: This figure shows the interactions of the same particle introduced in
Figure 4.11 for two different values of θ. The green particle interacts directly with the
blue particles, and with the centre of mass (magenta particles) for each other cell. In
some cases when the cell only contains a single particle, the centre of mass is just the
particle (these are the magenta particles with a black border). The hollow red particles
are interacted with only by the centre of mass of one of the cells that contains them. As
θ is increased, fewer direct interactions are performed, and centre of mass interactions
cover larger groups of particles.

Chapter 5

Task-Based Barnes-Hut for Gravity.

Sections 5.2.1 and 5.3 contain work done by Matthieu Schaller (Institute of Computa-
tional Cosmology, Durham University) and myself

5.1 The Shared Memory CPU Task-Based Algo-
rithm

The standard octree approach for solving Barnes-Hut (BH) simulations uses a treewalk
through the tree to perform neighbour finding and compute the interactions. This can
lead to performance issues as this treewalk is performed for every particle in the system,
despite many of the particles interacting with similar sets of particles. Additionally,
if the particles are not contiguous in memory, this can lead to poor cache behaviour,
though using a space filling curve or similar to sort the particles may alleviate this.
Using a task-based approach to perform the Barnes-Hut allows us to avoid repeating
the tree-walk for every particle.

In a naive task-based implementation of the Barnes-Hut, every tree-traversal could
be a task, i.e. for every cell ci in the system, we create a task for every other cell cj
that ci interacts with. This method is acceptable if we have cells containing 10− 1000

particles when performing the particle-particle interactions, however when performing
particle-monopole interactions the scheduling overheads of the task would dominate
the computation.

To reduce this issue, the algorithm needs to be modified to increase the amount
of computation in each task. Rather than performing the octree decomposition until
every cell contains at most one particle, cells were split if they contain more than a
certain number of particles, nmax, usually 50 to 200.

We also change the criteria for particle interactions slightly from the original BH
algorithm. While in the original BH, particles may interact with particles in non-

54

5.1. The Shared Memory CPU Task-Based Algorithm 55

neighbouring cells if θ is low enough, we enforce that any direct interactions are between
pairs of leaf cells that are direct neighbours. In both the original BH and our new
algorithm (referred to as task-based BH), a particle’s interaction radius is governed by
the particle density of the space around it. In our algorithm, the number of neighbours,
and thus accuracy of the simulation, is roughly controlled by nmax. The two algorithms
will potentially compute slightly different interactions, so all of the results in this
section are only comparisons with the shared-memory CPU version of the task-based
BH algorithm.

The algorithm used 3 types of tasks:

• Single cell (aka self) direct interaction tasks that compute the forces between all
particle pairs pi, pii in a single cell ci.

• Direct interaction tasks that compute the forces between all particles pi, pj in a
pair of cells ci, cj (pair tasks).

• Particle-cell tasks. This computes all of the monopole interactions for the parti-
cles pi in a single cell ci. This function performs the recursive treewalk from the
root cell to find all of the monopoles that are required to interact with the cell
ci.

The direct interaction tasks are built using a recursive function that is called on
the root cell:

1: function CreateTasks(ci, cj)
2: if cj = ε then
3: if ci is split & ci.count > limit then
4: for Each child of ci, cp do
5: CreateTasks(cp, ε)
6: for Each sibling cz of cp not already looped to do
7: CreateTasks(cp,cz)
8: end for
9: end for

10: else
11: Create self task for ci
12: end if
13: else
14: if ci and cj are neighbours then
15: for Each pair of children of ci and cj, cx and cy do
16: CreateTasks(cx, cy)
17: end for

5.1. The Shared Memory CPU Task-Based Algorithm 56

18: end if
19: Create a pair task for ci and cj

20: end if
21: end function

The function initially checks if cj was passed to the function. If not, then it checks
if ci is split (i.e. has subcells) and contains more particles than a specified limit. If so,
the function recurses on each child of ci, and each combination of pairs of children of
ci. If ci is not split or contains too few particles, a self-interaction task is created for
ci.

If cj was passed to the function, and ci and cj are neighbours then the function
recurses for each pair of children from ci and cj. If ci and cj are not neighbours, then
a pair-interaction task is created for ci and cj.

This function performs (some of) the tree-walk required for the BH, so is a more
expensive initialisation than the standard BH. However, since we don’t walk all the
way to each individual particle, and only have to perform this once per tree rebuild,
the cost over an entire simulation would be much lower than having to perform

The particle-cell tasks require the root cell and a leaf cell for execution. The function
starts by finding the child of the root that contains the leaf, cp. The function recurses
with cp and the leaf cell, and then calls the iact_pair_pc function on each other child
of the root and the leaf. This continues until all non-leaf cells have interacted with the
leaf:

1: function iact_self_pc(cell, leaf)
2: for Loop over children of cell, cp do
3: if leaf is inside cp then
4: Break out the loop, remembering cp

5: end if
6: end for
7: if cp is split then
8: iact_self_pc(cp, leaf)
9: for Each other child of cell, cps do

10: if cps is split then
11: iact_pair_pc(cp, cps,leaf)
12: end if
13: end for
14: end if
15: end function

The iact_pair_pc function requires 3 cells, ci, cj and the leaf cell, and ci must
contain the leaf cell:

5.1. The Shared Memory CPU Task-Based Algorithm 57

1: function iact_pair_pc(ci, cj, leaf)
2: for Loop over children of ci, cp do
3: if leaf is inside cp then
4: Break out the loop, remembering cp

5: end if
6: end for
7: if cp and cj are neighbours then
8: for Loop over children of cj, cps do
9: if cp and cps are neighbours then

10: if cp and cps are both split then
11: iact_pair_pc(cp, cps, leaf)
12: end if
13: else
14: Interact leaf and cps directly.
15: end if
16: end for
17: else
18: for Loop over the children of cj, cps do
19: Interact leaf and cps directly.
20: end for
21: end if
22: end function

The function initially searches for the child of ci that contains the leaf cell, cp. If
cp and cj are neighbours, the algorithm loops over the children of cj, cps. The function
recurses for cp and each cps that are neighbours, provided both cells are split. If cp
and cps are not neighbours, the function interacts the particles in the leaf cell with
cps directly.

If cp and cj are not neighbours, the leaf is interacted with each child of cps directly.
Unlike the traditional BH algorithm, we do not control the accuracy by altering the

value of θ (the opening angle). Instead, to tune the accuracy of the code the maximum
number of particles (nmax) can be changed. If the maximum number of particles in a
cell is reduced then it is similar to increasing θ in the traditional algorithm. Inversely,
if the maximum number of particles in a cell is set to be the number of particles in the
space, it computes the n2 interaction.

5.2. Task-Based Barnes-Hut on the GPU 58

5.2 Task-Based Barnes-Hut on the GPU

The previously defined iact_pair_pc function has recursion even if task_limit is 0,
and recursive functions often perform poorly on GPUs. While newer versions of CUDA
support recursion, our experience was that the algorithm developed for use on the CPU
was not ideal on the GPU, though I did implement a SIMT parallelised version of the
algorithm discussed in section 5.1 for the GPU. The results with this algorithm are
shown in Table 5.1. These results were worse than we had aimed for, so we attempted
to modigy the algorithm to improve the performance.

Type Runtime
GPU, 128 parts
per cell

8.206ms

CPU, 1 thread 82.729ms
CPU, 4 threads 21.988ms

Table 5.1: Results with 15000 randomly distributed particles for the recursive task-
based algorithm of the Barnes-Hut on one GPU of an NVIDIA GeForce GTX 690 and
a 4-core Intel i7 (Sandy Bridge) CPU. The CPU setup uses 100 particles per cell and
a task_limit of 1e8. The GPU performs roughly 2.5× faster than the full CPU.

5.2.1 Modifying the Algorithm to be GPU-Friendly

To improve the performance of the algorithm on the GPU we need to remove the
recursion in the task functions. Additionally, increasing the number of particles in the
leaves to be approximately equal to the number the number of threads in a block should
improve performance. For the results shown in this section the maximum number of
particles in a cell was set to 128.

To avoid recursion in the direct interaction tasks, I removed the limit when con-
structing tasks (line 3 in the CreateTasks function pseudocode above), and modified
the interaction functions accordingly.

To avoid recursion in the particle-cell tasks, we separate the particle-cell tasks into
two types:

• Normal particle-cell tasks. This type is used when tasks are created on small cells
(cell->count <= 64 * cell_maxparts, where cell_maxparts is the maximum
number of particles in a cell).

• Split particle-cell tasks. If particle-cell tasks would be created on large cells, 8 of
these split tasks were created for the large cell’s children instead of creating the
single large task.

5.2. Task-Based Barnes-Hut on the GPU 59

nmax = 4

Figure 5.1: The green particles interact with each other in the cell’s self interaction
task, and interact with the blue particles from neighbouring leaves during the pair
interaction tasks. The remaining interactions are covered by interactions with the
monopoles (magenta), with 1 task per monopole. Since none of the cells contain enough
particles, this is done at the highest level of non-neighbouring cells.

Rather than making a single particle-cell task for each cell during cell creation,
I modified the CreateTasks function to perform a treewalk over the children of celli.
Provided celli contains more than a predefined number of particles, the function then
creates tasks to interact each child cell of celli with the monopole of cellj, and each
child cell of cellj with the monopole for celli . If celli does not contain more than this
number of particles, a task is created to interact celli with the monopole of cellj, and
to interact cellj with the monopole of celli. This means the particle-cell tasks no longer
need to recurse down the tree from the root to find non-neighbouring cells to interact,
as this treewalk now takes place in the CreateTasks function.

An example of this breakdown into tasks is shown in Figure 5.1. The green particles
interact with each other in the cell’s self interaction task, and interact with the blue
particles from neighbouring leaves during the pair interaction tasks. The remaining
interactions are covered by interactions with the monopoles (magenta). Since none of
the cells contain enough particles, this is done at the highest level of non-neighbouring
cells.

5.3. Adapting the Barnes-Hut Implementation for Hybrid Memory
QuickSched 60

The improved GPU algorithm performed significantly better, as shown in Table 5.2,
and Table 5.3 shows results on larger problems.

Type Runtime
New GPU algo-
rithm, 128 parts
per cell

5.641ms

Original GPU
algorithm, 128
parts per cell

8.206ms

CPU, 1 thread,
default setup

82.729ms

CPU, 4 threads,
default setup

21.988ms

Table 5.2: Results with 15000 randomly distributed particles for the recursive task-
based algorithm of the Barnes-Hut on one GPU of a NVIDIA GeForce GTX 690 and
an Intel i7 (Sandy Bridge) CPU. The new algorithm performs significantly faster than
the original algorithm on the GPU, even on this small test case which contains minimal
recursion.

5.3 Adapting the Barnes-Hut Implementation for
Hybrid Memory QuickSched

When implementing the algorithm on hybrid shared-distributed memory systems, the
algorithmic changes discussed in section 5.2.1 did not perform well when using multiple
MPI ranks, as shown in Table 5.4.

The algorithm tends to create particle-cell tasks that operate on cells close to the
root of the tree, which makes it difficult to partition the work equally across the nodes.
Furthermore, each of the particle-cell tasks potentially needs to use each resource

Simulation type 1M parts 3M parts 10M parts
1 CPU with Quicksched 15.9s 50.5s 174.5s
16 CPUs with Quicksched 1.217s 3.489s 12.0s

GTX690 GPU 0.239s 0.677s 2.636s
GTX690 GPU Single precision 0.116s 0.344s 1.414s

Tesla K40c GPU 0.099s 0.271s 2.025s

Table 5.3: Average time taken to compute the accelerations for a single timestep of a
Barnes-Hut simulation. The CPU code run is our own test case[22] run on a single node
of the DiRAC Data Centric system at Durham University, with up to 16 processors
(2 Intel E5-2670 0 @ 2.60GHz per node). The GPU code uses mixed precision unless
otherwise stated, and is primarily double precision.

5.3. Adapting the Barnes-Hut Implementation for Hybrid Memory
QuickSched 61

Number of MPI ranks Time per step
1 21.6s
4 23.6s

Table 5.4: Average time taken to compute the accelerations for a single timestep of
a Barnes-Hut simulation with 1M parts. These results were run on a shared memory
machine using only MPI parallelism (64-core AMD Opteron 6376 machine at 2.67
GHz.), so any loss in performance is primarily due to load imbalance/duplicated work,
or synchronisation caused by the communication.

corresponding to any child cell of the root. For large simulations, this leads to too
many resource uses in the system and worsens the performance of other sections of the
scheduler. To reduce this issue, the algorithm was modified to create more particle cell
tasks that operate nearer the leaves of the tree, which should help load balancing, and
means each task only needs to use a single cell’s resource. These tasks were created by
removing the particle cell creation routine added to the GPU code, and instead adding
a new function:

1: function create_pcs(ci, cj)
2: if cj = ∅ then
3: for Each child of ci, cp do
4: if cp is split then
5: create_pcs(cp, NULL)
6: end if
7: for Each sibling of cp, cps do
8: if cp and cps are both split then
9: create_pcs(cp, cps)

10: end if
11: end for
12: end for
13: else
14: if ci and cj are neighbours then
15: if ci and cj are both split then
16: for Each child of ci, cp do
17: for Each child of cj, cps do
18: create_pcs(cp, cps)
19: end for
20: end for
21: end if
22: else
23: Create particle-cell tasks for ci and cj

5.3. Adapting the Barnes-Hut Implementation for Hybrid Memory
QuickSched 62

nmax = 4

Figure 5.2: An example of the interactions created with this algorithm. The same
self and pair tasks are created, however we create additional particle-cell tasks when
compared to the GPU algorithm, as we create one per leaf.

24: end if
25: end if
26: end function
The function is initially provided the root cell as ci. The function recurses over all
possible pairs of cells. For each pair of non-neighbouring cells, it creates a pair of
particle cell tasks, rather than recursing to their children. Since this creates relatively
few but large tasks, the implementation also used a minimum depth parameter, and
would always recurse to that depth in the tree before creating any tasks.

An example of the interactions created with this algorithm is shown in Figure 5.2.
The same self and pair tasks are created, however we create additional particle-cell
tasks when compared to the GPU algorithm, as we create one per leaf.

One issue with this algorithm is that it can create a very large number of tasks,
and this issue is apparent in the results section of Chapter 7.

The C implementations for QuickSched are given in Appendix D

Chapter 6

Task-Based Parallelism on GPUs

6.1 Implementing Task-Based Parallelism on CUDA
GPUs

Although task-based methods are commonplace on shared memory systems, relatively
few solutions exist for implementing them on GPUs. The methods that do exist tend
to deploy single tasks on the entire GPU [43], meaning only problems whose individual
tasks can parallelise to thousands of threads can use GPUs efficiently. Despite the
vectorised programming model, the hardware itself can be viewed as a multithreaded
multi-core computer, where every block is conceptually equivalent to a single core
executing with a fixed number of threads in parallel. In principle we could use Task-
Based Parallelism directly on the GPU by launching a set of blocks and letting each
block dynamically select and execute tasks in parallel. The tasks themselves would be
executed in SIMT parallelism using only the threads within each block. These tasks
would only need to vectorise over a single block. Figure 6.1 shows a comparison of a
task-based approach to treating the GPU as a large vector machine.

The usual strategy for using GPUs requires the user to manage the data movement
to and from the GPUmanually. This is a commonly discussed issue with GPU hardware
and has led to the development of OpenACC [33], while OpenMP 4.5’s offload model
can also reduce the burden for the programmer. Requiring the user to manage their
data transfers often leads to a synchronous “load, compute, unload” method, and these
synchronisation points cause a loss in overall performance. As GPU technology has
progressed they have gained the ability to directly access main memory (albeit slowly).
I will show how using task-based methods on the GPU improves data transfer to the
GPU as it helps to hide data movement behind actual work done, and thus can lead to
overall performance improvement. By modeling the data transfers as tasks, we remove
the requirement for the user to manually transfer data, which can reduce the difficulty

63

6.1. Implementing Task-Based Parallelism on CUDA GPUs 64

a)

Thread block

Kernel 1

Kernel 2

warp warp warp warp warp

b)
Thread block

Single

GPU Kernel

warp warp warp warp warp warp

Figure 6.1: Figure a) shows the traditional approach to using the GPU, where a single
kernel is executed by the entire GPU in parallel. Once the first kernel completes,
another kernel is executed on the entire GPU. Figure b) shows our new approach,
where small blocks of threads execute different work in parallel within a single large
kernel.

6.2. Task-Based Parallelism for GPUs in mdcore. 65

of programming these devices. Automatic data transfer allows computation to start
on the GPU without all of the memory required to have been copied to the GPU’s
memory, and data can be transferred back to the CPU as soon as the computation
on that data is complete. Recent versions of CUDA already enable this with the use
of streams and multiple kernels, however our task-based implementation allows even
more fine-grained data transfers.

If a task-based methodology could be integrated with a CPU task-based scheme,
it may enable load balancing across different types of devices. This is a concern on
heterogeneous systems, however I do not address it in this work.

There have been previous projects looking at task-based parallelism on GPUs, with
[10] and [47] introducing task-based schedulers for the GPU. [10] uses CUDA streams
to launch many kernels, using the GPUs inbuilt ability to adaptively schedule the
kernels to the device to provide good load balancing, and makes use of CUDA streams’
asynchronous memory transfer tools, which allows data movement to the device in
parallel with kernel execution. Their approach is less fine-grained than the approach
I introduce in this chapter. [47] creates a task-parallel approach specifically designed
for graphics processing, and it is unclear how suitable it is to more general problems.

In this chapter I will describe the initial scheduler used in mdcore, and the improve-
ments to the scheduler. I then discuss some work done on improving the MPI load
balance of mdcore, and how the methods used allowed the creation of a multi-GPU
implementation of mdcore. Finally, I discuss the adaptation of the mdcore scheduler
to fit the QuickSched task model, resulting in the creation of a general-purpose CUDA
task scheduler for GPUs, including automated data transfer to the device.

6.2 Task-Based Parallelism for GPUs in mdcore.

Results in this section were run with CUDA 5.0 on the GTX480 and GTX690
This section details the development of the task-based scheduler on the GPU, which

was originally developed as part of mdcore. It highlights the initial design created by
Dr Pedro Gonnet, and my work to develop it and improve the performance of mdcore.
These improvements were developed iteratively based on the results obtained, and
these are also included.

6.2.1 Implementing Task Queues on the GPU

mdcore is a Molecular Dynamics (MD) library that implements MD on a variety of
architectures, including shared and hybrid shared-distributed memory CPU systems,
Intel Cell Broadband Engine Architecture and NVIDIA GPUs using CUDA. The neigh-

6.2. Task-Based Parallelism for GPUs in mdcore. 66

bour finding algorithms implemented are the cell list algorithm (section 4.1.2) and the
pseudo-Verlet algorithm (section 4.1.2). The algorithm used to compute the van der
Waals forces and the short-range electrostatics is discussed in section 4.1.3. mdcore
does not implement long-range electrostatics.

Our task queues on the GPU primarily use two arrays, treated as cyclic buffers. The
first array (known as tids) contains a list of task indices that still need to be executed
in the current timestep, whilst the second array (called done_tids) contains all of the
task IDs that have been executed (or are currently being executed) in this timestep.
The only time the task IDs are not in one of these two arrays is when the task is actively
being checked if they are ready to be computed. The task indices of completed tasks
are kept, as they can be reused in later timesteps. At the end of each timestep, we
can swap the tids and done_tids pointers. The tids array will then contain the task
indices in the order in which they were executed in the previous timestep, which is
likely to result in a better ordering and lead to improved performance.

Each task queue also stores four other values, used to compute the position of tasks
in the queue, and to determine when the queue is empty. These are named first,
last, done_count, and count. The first two values are used to find indicies of tasks in
the queue. The first counter stores the position of the first task ID in the queue, while
last stores the first empty position in the queue. count contains the total number
of tasks in the task queue, while done_count stores how many tasks in this queue
have been or are being executed in this timestep (equal to the number of tasks indices
currently in the done_tids array).

The movement of a task through the queue structure is shown in Figure 6.2. To
remove a task from the queue, the accessing thread atomically increments the first
counter to retrieve the position of the head of the queue, and retrieves the task index
stored at that position. If the task is ready to be executed, the index is then placed
at the end (done_count) of the done_tids array, else the task index is added back to
the queue. To add a task to the queue, the thread increments last (which finds the
tail position of the queue) and places the task index in this position.

To check whether the task queue is empty, we check if count == done_count. Since
tasks may not always be in either tids or done_tids, it is feasible for first == last
before the computation is ready to terminate if one of the tasks being checked is not
yet ready for computation.

The initial GPU task-based setup is based on the CPU implementation, but mod-
ified to have more lightweight queues. The outline of the main task-based kernel that
is executed on the GPU by each threadblock in parallel is:

1 __global__ void kernel(...){

6.2. Task-Based Parallelism for GPUs in mdcore. 67

first last

is ready?
no

yes

t ids

done_t ids

done_count count

queue_gettask queue_puttask

Figure 6.2: Schematic of the queue data structure. The indices of unexecuted tasks
are stored in tids, between first and last-1. Task indices are removed from the
head of the queue (first), and if they are ready to run, they are copied to done_tids.
Otherwise, they are returned to the tail of the queue (last).

2 __shared__ int tid;

3 while (there are tasks){

4 if(threadIdx.x ==0)

5 tid = get_task()

6 execute task using a single block

7 }}

where tid is a shared variable (i.e. visible to all of the tasks in the block), and stores
the task index to be executed. In lines 4 and 5, the first thread in each thread block
retrieves a task index from the queue, which is then implemented by the entire block
in parallel in line 6. Since the rest of the threads in the block are idle while the task
retrieval is taking place, we want to minimise the cost of queue access. To achieve
this, the task queues are implemented as lock-free queues, i.e. no thread can cause any
other thread to spin or wait, while guaranteeing system-wide progress. The queue data
structure is as follows:

1 struct queue_cuda{

2 int* tids, done_tids;

3 volatile int first;

4 volatile int last;

5 volatile int done_count;

6 volatile int count;

7 };

The tids and done_tids arrays contain the task indices, and are usually of size greater
than or equal to the number of tasks in the system. Initially the tids array contains

6.2. Task-Based Parallelism for GPUs in mdcore. 68

all of the task indices that need to be executed, and the done_tids array is empty.
Once a task has been selected for execution, its index is placed in the done_tids array.
Once a timestep is complete, the tids and done_tids pointers can be swapped.

The first variable stores the position of the first task index in the tids array,
and the last variable stores the first empty index in the tids array. These values are
always wrapped using the size of the array when modified, so the tids array is treated
as a cyclic buffer. The done_count stores the first empty position in the done_tids
array, and the count variable stores the total number of task indices stored in the
queue. Once done_count equals count we know the tids array is empty.

The queue_gettask function which retrieves a task index from a queue is imple-
mented as follows:

1 __device__ int queue_gettask(struct queue_cuda *q){

2 int ind, tid = -1;

3 if(q->done_count == q->count)

4 return -1;

5 ind = atomicAdd(&q->first, 1);

6 ind %= cuda_queue_size;

7 while(q->done_count < q->count && (tid = q->tids[ind]) < 0);

8 if(tid >= 0)

9 q->tids[ind] = -1;

10 return tid;

11 }

In line 3, the function checks if the queue is empty, and if so returns no index (-1).
Otherwise, in lines 5 and 6 the first variable is incremented and wrapped around the
length of the queue. Next, the function waits for a valid task index to be present at
the position required in line 7. This check is necessary as when adding tasks to the
queue, the q->last value is incremented before the index is added to the queue. In
line 9 the task index is stored in tid and then the value in the q->tids array is set to
be empty (-1). The value stored in tid is then returned.

The function to add a task to a queue (queue_puttask) is implemented as follows:

1 __device__ void queue_puttask(struct queue_cuda *q, int tid){

2 int ind;

3 ind = atomicAdd(&q->last, 1) % cuda_queue_size;

4 while(q->tids[ind] != -1);

5 q->tids[ind] = tid;

6 }

6.2. Task-Based Parallelism for GPUs in mdcore. 69

The function computes the index of the next position in the queue in line 3, and will
block in line 4 if the queue is full (if the queue is full then first == last, so none of
the task indices in q->tids will be −1, which is only updated near the end (line 11)
of queue_gettask). In line 5 the task index is written to the q->data array.

I also need to introduce the mutex operations implemented by CUDA atomic op-
erations that are used on the GPU:

1 __device__ void cuda_mutex_lock (int *m){

2 while(atomicCAS(m, 0, 1) != 0);

3 }

4

5 __device__ int cuda_mutex_trylock (int *m){

6 if(*m == 0){

7 int res = atomicCAS(m, 0, 1);

8 return res;

9 }

10 return 0;

11 }

12

13 __device__ void cuda_mutex_unlock (int *m){

14 atomicExch (m , 0);

15 }

The mutexes are integer values, where a value of 0 represents the mutex being unlocked
and a value of 1 represents the mutex being locked. To lock a mutex, we use the
atomicCAS function which allows us to check if the mutex is currently unlocked, and
lock it if so. This operation behaves as a spinlock. The cuda_mutex_lock function
blocks until the mutex can be locked, while the cuda_mutex_trylock function attempts
to lock the mutex, and returns the success of the operation. The cuda_mutex_unlock
function takes a mutex and sets it to 0 using the atomicExch function. It is important
that unlocking is only ever performed by the block that locked the mutex, otherwise
write conflicts may occur.

The functions to lock and unlock the resources required to execute tasks are imple-
mented as follows:

1 __device__ int lock_resources_for_task(int tid){

2 int cid, cjd;

3 cid = cuda_locks[tid].i;

4 cjd = cuda_locks[tid].j;

5 if(cuda_mutex_trylocks(&cell_lock[cid]))

6.2. Task-Based Parallelism for GPUs in mdcore. 70

6 if(cid == cjd || cuda_mutex_trylock(&cell_lock[cjd]))

7 return 1;

8 else

9 cuda_mutex_unlock(&cell_lock[cid]);

10 return 0;

11 }

12

13 __device__ void unlock_resources_for_task(int tid){

14 int cid, cjd;

15 cid = cuda_locks[tid].i;

16 cjd = cuda_locks[tid].j;

17 cuda_mutex_unlock(cell_locks[cid]);

18 cuda_mutex_unlock(cell_locks[cjd]);

19 }

The cuda_locks variable is a device array that contains information required for the
tasks, primarily the indices of the resources required to execute a task.

The lock_resources_for_task function checks whether a task is ready to be ex-
ecuted, and returns 1 if so or 0 otherwise. Tasks here are assumed to have either 1
or 2 required resources (as any task in mdcore will use either one or two cells), and if
they only require a single resource, cuda_locks[tid].i == cuda_locks[tid].j. To
avoid any potential deadlock due to the Dining Philosophers Dilemma, we enforce that
cuda_locks[tid].i <= cuda_locks[tid].j. The function first locks cuda_locks[tid].i,
and if successful, attempts to lock cuda_locks[tid].j. If both are successfully locked,
then it returns success, else it reverses any locks that were obtained, and returns failure.

The get_task function is then specified as follows :

1 __device__ int get_task(struct queue_cuda *q, int steal){

2 int tid = -1, cid, cjd;

3 while((tid = queue_gettask(q)) >= 0){

4 if(lock_resources_for_task(tid))

5 break;

6 cuda_queue_puttask(q, tid);

7 }

8 }

In lines 3 to 7, the function pulls a task index from the queue using the queue_get-
task function. If the resources can’t be locked, the task index is returned to the queue
and the loop repeats.

6.2. Task-Based Parallelism for GPUs in mdcore. 71

Unlike on the CPU where mdcore uses 1 queue for each thread, on the GPU we
only use 1 queue per SM. Since each SM is capable of executing up to 8 blocks con-
currently on the NVIDIA GeForce GTX 480, this means a total of 15 queues, as the
card contained 15 SMs, and each queue is shared by up to 8 blocks. Each block can
compute which queue was its primary queue using an assembly function to retrieve
the executing SM’s ID. We use work stealing to improve load balancing between the
queues.

At the end of each timestep, the done_tids and tids pointers are switched. The
tids arrays then contain the tasks in the order in which they were executed, which is
likely to be a better ordering and lead to improved performance in later timesteps.

6.2.2 The Initial GPU Setup in mdcore

To avoid any explicit synchronisation in the task-based kernel, each block was launched
with only 32 threads (i.e. a single warp). Since warps are always executed in strict lock-
step, all threads wait on data accessed by a single thread in the block (such as the task
index to be executed). I chose to launch the minimum number of blocks to maximise
occupancy at 25% of theoretical peak (limited by the number of threads in each block),
which requires 8 blocks per SM on Fermi architectures, and a total of 120 blocks on the
NVIDIA GeForce GTX 480. To attempt to compensate up for the low occupancy, the
implementation of the task functions tries to use 4-way Instruction Level Parallelism
(ILP), as [50] notes that high performance can still be achieved with low occupancy on
GPUs when using ILP.

For example, the interactions are implemented as follows:

1 for(pjd = threadIdx.x; pjd < count_j; pjd += blockDim.x){

2 load particle pjd position

3 for(k = 0; k < 3; k++){

4 pjf[k] = 0.0f;

5 }

6 for(ind = 0; ind < wrap_i; i+= 4){

7 ilp_part[0] = particles[ind];

8 ilp_part[1] = particles[ind+1];

9 ilp_part[2] = particles[ind+2];

10 ilp_part[3] = particles[ind+3];

11 //compute 4 interactions

12 particles[ind] = ilp_part[0];

13 particles[ind+1] = ilp_part[1];

14 particles[ind+2] = ilp_part[2];

15 particles[ind+3] = ilp_part[3];

6.2. Task-Based Parallelism for GPUs in mdcore. 72

16 }

17 update particle pjd.

18 }

Where count_j is the number of particles in cell j, wrap_i is the number of particles
in cell i, and pjf is a temporary store for the forces on particle pjd. The particle
loads in lines 7-10 shift based upon the thread ID (not shown here), which avoids
any threads accessing the same particle simultaneously and allowing non-atomic writes
when updating the particles in cell i (due to the lock-step nature of the warps).

6.2.3 Sorting the Particles on the GPU

The neighbour-finding algorithm used in mdcore is the sorted cell algorithm from Sec-
tion 4.1.2. To use this algorithm we need to be able to efficiently sort the particle
indices on the GPU. We sorted the particles using normalized bitonic sort [38], which
implements a parallel sorting network. The sorting network constructed by the algo-
rithm ensures that no two threads access the same data simultaneously in each step, so
there are no race conditions during each step of the algorithm. A small sorting network
is shown in Figure 6.2.3 The algorithm requires almost no extra memory to perform.

The algorithm was implemented as follows:

1 __device__ inline void cuda_sort_descending (unsigned int *a , int

count){

2 int i, j, k, threadID = threadIdx.x;

3 int hi, lo, ind, jnd;

4 unsigned int swap_i, swap_j;

5 for (k = 1 ; k < count ; k *= 2){

6 /* First step. */

7 for (i = threadID ; i < count ; i += blockDim.x){

8 hi = i & ~(k-1); lo = i & (k-1);

9 ind = i + hi; jnd = 2*(hi+k) - lo - 1;

10 swap_i = (jnd < count) ? a[ind] : 0;

11 swap_j = (jnd < count) ? a[jnd] : 0;

12 if ((swap_i & 0xffff) < (swap_j & 0xffff)){

13 a[ind] = swap_j;

14 a[jnd] = swap_i;

15 }

16 }

17 /* Let that last step sink in. */

18 __syncthreads();

6.2. Task-Based Parallelism for GPUs in mdcore. 73

0

1

2

3

4

5

6

7

Step

Phase 1

1

2

2 1 3 2 1

3

Figure 6.3: The sorting network for normalized bitonic sort on 8 elements. In phase k
of the algorithm, steps k to 1 are performed. Each step can be performed in parallel,
with synchronization required between steps of the algorithm. Adapted from [38].

19 /* Second step(s). */

20 for (j = k/2 ; j > 0 ; j /= 2){

21 for (i = threadID ; i < count ; i += blockDim.x){

22 hi = i & ~(j-1);

23 ind = i + hi; jnd = ind + j;

24 swap_i = (jnd < count) ? a[ind] : 0;

25 swap_j = (jnd < count) ? a[jnd] : 0;

26 if ((swap_i & 0xffff) < (swap_j & 0xffff)){

27 a[ind] = swap_j;

28 a[jnd] = swap_i;

29 }

30 }

31 __syncthreads();

32 }

33 }

34 }

The algorithm takes dlog2(count)e iterations, each made up of two steps. In the first
step, each thread takes pairs of values, and changes the order such that the larger value

6.2. Task-Based Parallelism for GPUs in mdcore. 74

Problem Time per step
JAC 14.018ms
ApoA1 69.981ms

Table 6.1: Time to compute the nonbonded interactions for the JAC and ApoA1 MD
test cases with the initial task-based setup, using a NVIDIA GeForce GTX 480.

is earlier in the array. In each iteration the two pairs of values are 2log(k) entries apart,
where k is the current iteration. The second step reorders the segments of the array
to accomodate any changes made in step one (by performing each step one performed
in previous iterations, in reverse order).

In lines 12 and 26 the code checks swap_i & 0xffff and swap_j & 0xffff as the
array (a) being sorted stores two 16-bit values in each int, the particle index in the
cell, followed by the particle position (along the cell axis).

6.2.4 Initial Results

I tested the setup described above on the JAC (Joint Amber-Charmm test case, 23558
particles, 1.03nm cutoff, 6× 6× 6 cell grid) and ApoA1 (Apolipoprotein A1 in water,
92224 particles, 1.20nm cutoff, 8 × 8 × 6 cell grid) benchmarks. The runtime with
120 blocks and 32 threads per block on a NVIDIA GeForce GTX 480 are shown in
Table 6.1. I will later use the STMV (Satellite Tobacco Mosaic Virus [15]) in water
test case, 1,066,628 particles, 1.20nm cutoff, 17× 17× 17 cell grid).

As well as these initial results, I also looked at the scaling of the code as the number
of blocks increased from 1 to 120, and examined the performance of the different
sections of the code as the number of blocks increased. This allowed us to see if there
are overheads due to a specific area of the code. The performance examination was
done by coding timers into the simulations, using the CUDA clock64 functions. When
enabled, each function was wrapped in these clock functions, allowing us to measure
the amount of time spent in certain functions, such as the queue, pair tasks, self tasks
etc. These results are shown in Figures 6.4 and 6.5.

These results show the scheduling overhead (get task) reaching over 10% of the
runtime with 120 blocks, which is too high of a cost for the task-based scheduler, so it
needed to be improved. The required CPU time to run the computation does increase as
the number of blocks increase, however the increase is offset by the increased number of
active threads. This is common when looking at strong scaling, however the overheads
in our case were higher than expected.

The poor performance of the scheduler for the JAC test case is likely due to the lock
contention over the cells. In JAC, there are only a total of 216 cells. When running 120

6.2. Task-Based Parallelism for GPUs in mdcore. 75

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

Nr. Blocks

s
×

T
hr

ea
ds

Timers with the Original Setup for JAC on GTX480

Pair−interactions
Self−interactions
Sorting
Scheduler
Total

20 40 60 80 100 120
0

20

40

60

80

100

120

Nr. Blocks

S
pe

ed
up

10 20 30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

Nr. Blocks

P
ar

al
le

l E
ffi

ci
en

cy

Performance of the Original Setup on JAC on the GTX480

Figure 6.4: Code timing, scaling and efficiency plots on the GeForce GTX480 for the
JAC test case. The JAC test case barely speeds up past 80 blocks, and the time spent
in get_task dramatically grows. This is likely due to a lack of cell pairs available to
be locked, leading to some blocks repeatedly accessing the queues and not doing any
work.

6.2. Task-Based Parallelism for GPUs in mdcore. 76

10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

Nr. Blocks

s
×

T
hr

ea
ds

Timers with the Original Setup for ApoA1 on GTX480

Pair−interactions
Self−interactions
Sorting
Get task
Total

20 40 60 80 100 120
0

20

40

60

80

100

120

Nr. Blocks

S
pe

ed
up

10 20 30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

Nr. Blocks

P
ar

al
le

l E
ffi

ci
en

cy

Performance of the Original Setup on ApoA1 on the GTX480

Figure 6.5: The measured performance of the initial setup on the GeForce GTX480 for
the ApoA1 test case, as well as scaling. As the number of blocks increases, the cost of
task retrieval dramatically grows from < 1% of runtime to approximately 10%.

6.2. Task-Based Parallelism for GPUs in mdcore. 77

blocks, it is already impossible for all blocks to lock a cell pair at the same time. Some
blocks may therefore spend a large amount of time attempting to lock a cell/cell-pair
before they can perform any computation.

6.2.5 Improving the Scheduler

When I investigated the cost of the scheduler, I found that the most expensive function
was the get_task function, and not the queue_gettask function. This implied that
attempting to lock a cell already in use resulted in high overheads with high block
counts. I decided to test a variety of alternative approaches:

• Force blocking: The force blocking variant uses only a single queue, and modifies
the get_task function (page 70) to not lock the cells, but simply break out of
the loop in line 7 of the function. The particle interaction functions lock the cells
before updating particles using the mutex operations. This variant will block if
it cannot obtain the lock inside the interaction function, so if two blocks try to
write to the same cell at the same time, one will perform no work and stay in
the spinlock until the other has finished.

• Atomic updates: This variant uses the same modifications to the queue as for
the force blocking variant. All of the updates on particle forces are replaced by
the in built atomicAdd CUDA function instead. Atomic operations have higher
overhead than normal operations, so updating the particle data will be more
expensive with this method.

• Single queue (also called blocking): This variant is the same as the original setup.
It only uses one queue shared by all of the SMs.

• No work stealing: This variant was the same as the original, except work stealing
was disabled after the first timestep. The work stealing was enabled in the first
timestep, as with less blocks than streaming multiprocessors the code would
otherwise deadlock.

The first two variants were created to test the performance of alternative strate-
gies to avoid race conditions on the GPU with locks or atomic operations inside the
interaction functions (rather than using conflicts), while the latter two examined the
advantages/overheads of work stealing and multiple queues with the previous setup.
The timing plots of these variants are shown in Figures 6.6 and 6.7. The time taken
to calculate the short-range electrostatics is shown in Table 6.2.

The force blocking method requires significantly less time to retrieve tasks from
the queues with any number of blocks, and there is a slight improvement in runtime.

6.2. Task-Based Parallelism for GPUs in mdcore. 78

a)

10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

Nr. Blocks

s
×

T
hr

ea
ds

Timers with the Original Setup for ApoA1 on GTX480

Pair−interactions
Self−interactions
Sorting
Get task
Total

b)

10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

Nr. Blocks

s
×

T
hr

ea
ds

Timers with Force Blocking Updates for ApoA1 on GTX480

Pair−interactions
Self−interactions
Sorting
Get task
Total

c)

10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

Nr. Blocks

s
×

T
hr

ea
ds

Timers with Atomic Force Updates for ApoA1 on GTX480

Pair−interactions
Self−interactions
Sorting
Get task
Total

d)

10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

Nr. Blocks

s
×

T
hr

ea
ds

Timers with Blocking for ApoA1 on GTX480

Pair−interactions
Self−interactions
Sorting
Get task
Total

e)

10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

Nr. Blocks

s
×

T
hr

ea
ds

Timers with no Work Stealing for ApoA1 on GTX480

Pair−interactions
Self−interactions
Sorting
Get task
Total

Figure 6.6: Timing plots for the five variants (including the original setup, a) on a
GeForce GTX 480 with the ApoA1 test case. b) is the Force blocking variant, which
shows improved scheduler performance at high block counts, though the pair interaction
cost is slightly higher. c) is the atomic force update variant, which performs by far the
best at low block counts. As the number of blocks increases, the performance drops
off dramatically, as the overhead of the atomic operations outweighs the computation.
d) shows the setup with no work-stealing, which performs similarly to the original
setup, however the cost of retrieving tasks is slightly reduced at high block numbers.
e) shows the single queue setup, which performs similarly to the original setup, however
the cost of the queue accesses fluctuates wildly as the number of blocks is increased.

6.2. Task-Based Parallelism for GPUs in mdcore. 79

a)

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

Nr. Blocks

s
×

T
hr

ea
ds

Timers with the Original Setup for JAC on GTX480

Pair−interactions
Self−interactions
Sorting
Scheduler
Total

b)

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

Nr. Blocks

s
×

T
hr

ea
ds

Timers with Force Blocking Updates for JAC on GTX480

Pair−interactions
Self−interactions
Sorting
Scheduler
Total

c)

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

Nr. Blocks

s
×

T
hr

ea
ds

Timers with Atomic Force Updates for JAC on GTX480

Pair−interactions
Self−interactions
Sorting
Scheduler
Total

d)

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

Nr. Blocks

s
×

T
hr

ea
ds

Timers with Blocking for JAC on GTX480

Pair−interactions
Self−interactions
Sorting
Scheduler
Total

e)

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

Nr. Blocks

s
×

T
hr

ea
ds

Timers with no Work Stealing for JAC on GTX480

Pair−interactions
Self−interactions
Sorting
Scheduler
Total

Figure 6.7: Timing plots for the 5 variants (including the original setup, a) on a GeForce
GTX 480 with the JAC test case.

6.2. Task-Based Parallelism for GPUs in mdcore. 80

Variant JAC ApoA1
Original 14.018ms 69.981ms
Force blocking 9.425ms 68.084ms
Atomic forces 14.613ms 129.227ms
Single queue 14.631ms 70.105ms
Nosteal 13.683ms 69.384ms

Table 6.2: Time to compute the nonbonded interactions for the JAC and ApoA1 MD
test cases with each of the variants on the GTX480. The timings are averaged over 1000
timesteps for JAC and 500 timesteps for ApoA1. Most of the variants are similar in
speed, with minor advantages for the forceblocking interactions and no work-stealing
setups. The atomic force updates perform badly on ApoA1, however with only 60
blocks this variant takes 135ms, suggesting the access to/latency of the atomic units
is the major limiting factor.
For the JAC results, it is clear that not locking the cells during task retrieval is beneficial
(hence the better performance with Force blocking), as there aren’t enough cells to let
each thread lock an entire cell pair, and the forceblocking setup is significantly faster.

However, the dopair and doself sections perform 5-10% worse than the original setup.
The performance loss can be attributed to the calls to cuda_mutex_lock, which will
block until the lock is available. With JAC, since all blocks can do work until needing
to perform particle updates to main memory, the runtime improves significantly.

The atomic update method works significantly better than the original setup at low
block counts (< 30). Not only does it have the same improvement as the force blocking
method with respect to the queue access, the dopair and doself functions are signifi-
cantly faster when using under 30 blocks. However, once this variant reaches 40 blocks,
these functions start linearly slowing down with every additional block launched. Since
the GeForce GTX 480 card has Compute Capability 2.0, the atomic units cannot handle
so many atomic operations occurring simultaneously. Using atomic operations inside
the innermost loop causes a large loss of performance.

The results with the force blocking and atomic update methods suggest that locking
cells while in the queue is detrimental to performance, and we should avoid addressing
race conditions inside the scheduler.

The single queue and no work stealing variants, which only modified the queue
setups, barely differed in runtime from the original setup. Removing work stealing did
show a reduction in time spent in the queues by around 50%, whilst using only a single
queue had no overall net benefit, though the time spent in the queues fluctuated wildly
as the number of blocks changed (as shown in Figure 6.6). This implies the assumed
benefits of work stealing do not outweigh the additional cost of queue access.

One of the major issues I noticed was the cost of updating the particle forces in the
innermost loops. As we loop through the particles, we need to avoid race conditions,

6.2. Task-Based Parallelism for GPUs in mdcore. 81

meaning either locking and unlocking the cell repeatedly in the innermost loop, or
using atomic operations in the innermost loop which can cause the loop to slow down
dramatically. A possible solution to this issue would be non-symmetric force compu-
tations, i.e. computing the forces between a cell pair twice, but only storing the forces
for the particles in one cell each time. While non-symmetric force computations result
in more computation, it reduces the number of memory writes during the innermost
loop, which reduces the cost of the innermost loop.

6.2.6 One-Sided Force Interactions

Future sections also show results with an NVIDIA GeForce GTX690, a dual-GPU
card with Compute Capability 3.0. The new generation of card features overhauled
atomic operations, and these upgrades result in significantly better performance for
atomic operations [36]. To make use of the improved atomic operations, I changed the
interaction routines to be one-sided, as I wanted to avoid atomic operations within the
innermost loop.

As well as implementing these one-sided force interactions, I created a statically
scheduled version using these one-sided interactions. The statically scheduled variant
launches two kernels: The first kernel loops through the cells and performs all the
sorting required for the sorted interactions; The second kernel loops through the cells
and performs all the interactions involving that cell. Each block loops over the cells
starting on the cell with index blockIdx.x, and increments the index by gridDim.x
after each iteration. The cell pairs are stored in a global array. Since no blocks
would ever modify the particles at the same time, no mutexes or atomic operations are
required to safely update particle forces.

6.2.7 Adding Dependencies

The sorting on the GPU is done using bitonic sort, and takes place in each of the
pair interaction tasks. This results in sorting 26 times for each cell, whereas if we can
perform all the sorts for a cell before any of the interactions involving that cell, we
only need to sort 13 times, and reverse the indices (or loop over them in reverse) for
the other 13 axes.

To avoid oversorting, I added sort tasks, which take a single cell and sort the particle
indices along each of the 26 cell axes (by sorting in 13 axes and reversing the indices
for the remaining axes). These can be stored and accessed when necessary in the pair
interaction tasks. The pair interaction tasks depend on the sort tasks. To enable these
dependencies I needed to modify the scheduler.

First the task representation needs to be modified. Initially, all of the tasks are

6.2. Task-Based Parallelism for GPUs in mdcore. 82

represented as cell pairs, and store the indices of the cells that are involved in the
interaction. With the introduction of sort tasks, we need to be able to differentiate
between different types of task, so create a task_cuda structure that contains this
information:

1 struct task_cuda{

2 short int type, subtype;

3 volatile int wait;

4 int flags;

5 int i, j;

6 int nr_unlock;

7 int unlock[task_max_unlock];

8 }

The type field stores the type of task represented by this structure, whilst the subtype
field is used to store further information on the task, for example if an interaction only
needs data storing on one of the cells. The wait field stores the number of unexecuted
tasks that unlock this task, i.e. the dependency counter. The flags field stores extra
information required for the task (for example the shift vector between a cell pair in
molecular dynamics), and i and j fields stores the indices of the cells involved. The
nr_unlock field stores how many tasks are unlocked by this task and the unlock array
stores the task indices of all of the tasks unlocked by this task. task_max_unlock is a
compile time variable which limits how large the unlock array can be.

The get_task function has to be modified to check all of the dependencies on a
task have been correctly resolved before it can be retrieved and executed. I modified
the loop in lines 3-7 to:

1 while((tid = queue_gettask(q)) > 0){

2 if(!cuda_tasks[tid].wait){

3 if(cuda_tasks[tid].type == task_type_sort)

4 break;

5 if(cuda_tasks[tid].type == task_type_self)

6 if(lock_resources_for_task(tid)) break;

7 if(cuda_tasks[tid].type == task_type_pair)

8 if(lock_resources_for_task(tid)) break;

9 }

10 queue_puttask(q, tid);

11 }

6.2. Task-Based Parallelism for GPUs in mdcore. 83

Line 2 of the loop checks whether the task’s dependencies are all satisfied, and if not,
returns the task to the queue. If the task is a self or pair task, the function attempts to
lock the cells required. If it is a sort task, it doesn’t need to lock the cell as it doesn’t
directly update the particle data.

When a task is completed, its dependent tasks need to be unlocked, and is done by
the first thread in the block, as follows:

1 if (threadID == 0)

2 for (k = 0 ; k < cuda_tasks[tid].nr_unlock ; k++)

3 atomicSub((int *)&cuda_tasks[cuda_tasks[tid].unlock[k]].wait , 1);

The wait counters are initially set by looping through the tasks, and incrementing the
wait counter of each task which depends on them. The wait counters are set in serial
on the CPU before the first kernel execution:

1 for(i = 0 ; i < nr_tasks ; i++)

2 for (k = 0 ; k < cuda_tasks[tid].nr_unlock ; k++)

3 cuda_tasks[cuda_tasks[tid].unlocks[k]].wait++;

In later timesteps, this is performed in parallel on the GPU. The threads in a single
block are executed in parallel over the loop in line 1, and perform line 3 using an
atomicAdd operation.

6.2.8 Moving Towards 100% Occupancy

Up until now, the kernels all used blocks of 32 threads (i.e. a single warp). Using only
a single warp in each block avoids the need for explicit synchronisation within each
block, as all the threads in a warp are executed in lock-step. The potential downside
of this setup is that the maximum possible GPU occupancy when using blocks of 32
threads is 25% [34], as the GPU requires at least four warps per block to be able to
reach 100% occupancy. With only one warp per block, the occupancy is limited by the
maximum number of blocks per multiprocessor, capping occupancy at 25%.

In an attempt to reduce the effects of low occupancy, the initial implementation
tried using 4-way Instruction Level Parallelism (ILP) in the innermost loops. We
attempt to make use of ILP by manually unrolling the innermost loop n times (for
n-way ILP) to perform multiple particle interactions inside one loop iteration. During
compilation, the compiler may be able to reorder the instructions to better utilise the
machine’s resources (e.g. starting a memory read operation while doing computation on
other data). This can also improve instruction pipelining, allowing more operations to

6.2. Task-Based Parallelism for GPUs in mdcore. 84

Variant ApoA1 STMV
With ILP 83.5ms 825ms
Without ILP 84.0ms 821ms

Table 6.3: Time required to compute the nonbonded interactions for the ApoA1 and
STMV test cases on the GTX480 with and without ILP.

20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

220

Nr. Blocks

R
el

at
iv

e
S

pe
ed

up

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

3

Nr. Blocks

R
el

at
iv

e
P

ar
al

le
l E

ffi
ci

en
cy

Dynamic
Static
Original

Performance with 100% Occupancy on ApoA1 on the GTX480 Relative to the Original Setup

20 40 60 80 100 120
0

50

100

150

200

250

Nr. Blocks

R
el

at
iv

e
S

pe
ed

up

20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

Nr. Blocks

R
el

at
iv

e
P

ar
al

le
l E

ffi
ci

en
cy

Dynamic
Static
Original

Performance with 100% Occupancy on ApoA1 on the GTX690 Relative to the Original Setup

Figure 6.8: Timing plots for the ApoA1 test case with 100% occupancy. All the plots
are relative to the original setup. The dynamic variant is approximately 3−3.5× faster
on the GTX480 and the GTX690 at the maximum block count on each GPU.

be overlapped. Often, the compiler will manually unroll the loops at high optimisation
levels. When I tested the kernels where we attempted to use ILP against an identical
kernel without ILP, the benefit is minimal, as shown in Table 6.3 for the NVIDIA
GeForce GTX480.

Our results suggest that our attempt at using ILP provides no benefit, and likely
meant that using more threads per block would improve performance. This requires
modification of the code to explicitly synchronise the warps within each block where
necessary using __syncthreads().

As well as moving to 128 threads per block, I decided to use one-sided interaction
functions in the kernels, as these allowed us to most effectively exploit the atomic force
update method, which I felt was the most efficient method of updating the particles.

The results of increased occupancy are shown in Figures 6.8 and 6.9.

6.2. Task-Based Parallelism for GPUs in mdcore. 85

20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

220

Nr. Blocks

R
el

at
iv

e
S

pe
ed

up

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

3

Nr. Blocks
R

el
at

iv
e

P
ar

al
le

l E
ffi

ci
en

cy

Dynamic
Static
Original

Performance with 100% Occupancy on STMV on the GTX480 Relative to the Original Setup

20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

220

Nr. Blocks

R
el

at
iv

e
S

pe
ed

up

20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

Nr. Blocks

R
el

at
iv

e
P

ar
al

le
l E

ffi
ci

en
cy

Dynamic
Static
Original

Performance with 100% Occupancy on STMV on the GTX690 Relative to the Original Setup

Figure 6.9: Timing plots for the STMV test case with 100% occupancy. All the plots
are relative to the original setup. The dynamic variant is approximately 3−3.5× faster
on the GTX480 and the GTX690 at the maximum block count on each GPU.

Variant ApoA1 STMV
Original 104.282ms 809.784ms
Dynamic 27.959ms 253.484ms
Static 36.925ms 292.319ms

Table 6.4: Results for the ApoA1 and STMV simulations on the GTX690 GPU. The
Dynamic and Static variants both use 100%, i.e. 128 threads per block and 128 blocks,
whilst the Original setup only uses 32 threads per block with 128 blocks.

6.2. Task-Based Parallelism for GPUs in mdcore. 86

Variant JAC ApoA1 STMV
Serial CPU bonded interactions 14.540ms 84.882ms 781.347ms
Parallel GPU bonded interactions 13.861ms 64.968ms 652.274ms

Table 6.5: Time required to compute a timestep for the all three test cases on the
GTX480 with the GPU parallelised bonded interactions or the serial CPU bonded
interactions.

Table 6.4 and Figures 6.8 and 6.9 show that increasing the occupancy leads to
significant performance gains, despite the requirement to explicitly synchronise the
blocks. The increased number of threads executing on the device helps offset the
memory latency, which improves the performance.

6.2.9 Running the Bonded Interactions on the GPU

Having already added dependencies to the GPU, it is easy to extend the task setup
to allow more types of task, such as the tasks for the bonded interactions. Bonded
interactions are a list of interactions that need to be applied to a fixed set of particles.
They vectorise relatively straightforwardly. The four types of bonded interactions
(bonds, angles, dihedrals and exclusions) all use the same task type, however they each
have their own subtype. The subtype is used to decide which function to execute.

Each type of bonded interaction has its own list of particles involved in the inter-
action, and the task’s i value stores the index in the bonded interaction list to start
iterating from. The j value stores the number of bonded interactions that needed to be
executed by the task. Each bonded interaction is computed separately, and the forces
are applied to the particles using atomic operations.

Results with the parallel bonded interactions are shown in Tables 6.5 and 6.6.
The parallel bonded interactions scheme show a significant improvement over the se-
rial bonded interactions executed on the CPU on the larger test cases, but minimal
improvement on the JAC test case. The JAC testcase has relatively few bonded in-
teractions, so the increased data transfer requirements probably outweigh the benefits
from the parallel bonded interactions. These results show that our scheme can be
extended to support more types of task without impacting performance.

6.2.10 Conclusions

The fastest version of the GPU code uses the sorted cell algorithm for neighbour finding
inside the self and pair tasks (with an option to switch to pseudo-Verlet lists) and
bitonic sort for the sort tasks. The kernel can be executed by any number of threads,
though I found best performance was achieved using 128 threads per block, and enough

6.3. Using Multiple GPUs with mdcore 87

Variant JAC ApoA1 STMV
Serial CPU
bonded interac-
tions

9.750ms 80.503ms 656.002ms

Parallel GPU
bonded interac-
tions

9.768ms 43.855ms 449.312ms

Table 6.6: Time required to compute a timestep for the all three test cases on the
GTX690 with and without the parallel bonded interactions.

blocks to reach 100% GPU occupancy. This makes best use of the GPU architecture, as
the oversubscription of threads to physical cores helps hide the memory access latency.

The self and pair tasks use atomic operations to update the particle position, and
are one-sided. I chose this scheme as atomic operations on modern GPU hardware are
efficient enough to perform inside the interaction function, however I anticipated them
being too expensive to perform repeatedly within the innermost loop. The schedule-
based strategies for avoiding race conditions on particle updates performed much worse,
which I believe is due to extending the amount of time spent in single-threaded regions.

There is also an option to compute the bonded interactions on the GPU in parallel,
and this performs significantly better than serial CPU execution of these interactions.

6.3 Using Multiple GPUs with mdcore

mdcore implements both a hybrid shared-distributed memory algorithm as well as the
GPU version discussed in Section 6.2. Many of the issues with distributed memory (or
hybrid shared-distributed memory) architectures are mirrored in multi-GPU setups.
Both require good load balancing and minimisation of the amount of duplicated com-
putation, whilst distributed and hybrid memory architectures also want to minimise
the amount of communication in the system.

6.3.1 Improving MPI use in mdcore

mdcore uses a data decomposition to parallelise over distributed memory systems,
i.e. each cell is assigned to a node and each node runs a task-based computation on
all of the cells assigned to the node. mdcore uses a synchronous halo exchange to deal
with computation near the edge of each subdomain. The original setup in mdcore used
a bisection method to divide the cells amongst the processors. This recursive function
divides the space in whichever dimension has the largest number of cells, and recurses
on each of the bisectors until the correct number of partitions have been created.

6.3. Using Multiple GPUs with mdcore 88

One issue with the bisection method is that if a dimension has an odd number
of cells, the two partitions in that dimension are unlikely have the same number of
particles associated with them. Even if the particle distribution was perfectly uniform,
this method would introduce load imbalance due to these unequal partitions. Another
issue with this method is that it ignores any variance in the computational cost of each
cell, e.g. for non-uniform particle distributions. In general, if a cell has more particles
it will be more expensive to compute the interactions involving that cell. The bisection
method does result in partitions that are contiguous areas of the domain, which is
beneficial as it avoids repeating as much computation (as both if a cell pair is split
across two nodes, both nodes will compute those interactions).

To improve on the bisection method, we would ideally want a setup that:

1. Is not dependent on the number of cells in each dimension.

2. Takes into account the varying cost of computation associated with each of the
cells.

3. Minimises the amount of repeated computation by keeping contiguous partitions
when appropriate.

One common approach to load balancing for distributed memory systems is to use
graph partitioning methods. To use a graph partitioning approach, we need to find a
way to represent the system as a graph. Fortunately, the cell and task-based approach
make this relatively straight forward. We create a node in the graph for each cell in
the system, and create an edge between each cell pair that interact (i.e. are within rc

of each other). The edges can be added by looping through the pair tasks. When
a partition breaks an edge in the graph, it means the task represented by the edge
is duplicated. If we can minimise the amount of duplicated work, we may get better
performance.

Without node and edge weights, the partitioning algorithm will not perform signifi-
cantly better than the bisection method, so it is important to give reasonable estimates
of these. One important factor when estimating these is that cell pairs that share a
face will usually be more expensive to compute than cell pairs that share an edge or
corner, as more particles will be within rc.

Using a random, uniformly distributed particle distribution with cells of size rc we
can compute the rough percentage of particles that will be within rc along the cell axis.
I used a simple Monte-Carlo simulation to compute these values, and they are shown
in Table 6.7.

From these values, we can compute an estimate of the cost of each task. For self
interaction tasks, we use c2i , where ci is the number of particles in the cell. For pair

6.3. Using Multiple GPUs with mdcore 89

Position Percentage of
particles within
rc

Face 50.0%
Edge 16.2%
Corner 3.62%

Table 6.7: Percentage of particles within rc along the cell axis between a cell pair that
share a face, edge or corner.

tasks, we use ci · cj ·K, where ci and cj are the number of particles in the two cells, and
K is the percentage of particles within rc as shown in Table 6.7. Each node’s weight is
equal to the sum of all of the tasks’ costs that involve the cell represented by the node,
and each edge was weighted as the cost of the task it represents. The resulting graph
is partitioned using the METIS graph partitioning library [29].

A scaling plot of ApoA1 on the Cosma 41 machine is shown in Figure 6.10. The
METIS partitioning approach performs better than the bisection method on more than
two nodes. The bisection method performs poorly on three nodes, as it cannot partition
the space into three segments effectively.

Figure 6.11 shows a scaling plot of ApoA1 with only MPI. The METIS partitioning
method works much better overall, achieving 71% parallel efficiency at 8 nodes. The
bisection method achieves 61% parallel efficiency at 8 nodes, however it only performs
well when using a power of 2 number of MPI ranks. This is due to uneven partitions
when trying to divide an 8×8×6 cell grid into an odd number of partitions(the largest
partition is likely the same as for the previous power of 2, and the largest partition will
limit the performance).

6.3.2 Using the Graph-Partitioning Approach to Enable Mul-
tiple GPU Setups

We can use the same partitioning models (bisection and graph partition-based) as above
to partition the work for multi-GPU systems. In addition to the data partitioning, we
also use CUDA streams to enable asynchronous data transfer between the host and the
GPU. The use of these streams and asynchronous data transfers allows data transfer
to one GPU while the other is doing computation, meaning the first GPU can start
on its workload while the data is still moving to the second GPU in the system. The
partitioning is still performed on the CPU.

112 core nodes with 2x Intel X5650 @ 2.67GHz

6.3. Using Multiple GPUs with mdcore 90

10 20 30 40
0

5

10

15

20

25

30

35

40

45

Nr. Cores

S
pe

ed
up

Speedup of an ApoA1 Simulation on Cosma 4.

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Parallel Efficiency of an ApoA1 Simulation on Cosma 4.

Nr. Cores
P

ar
al

le
l E

ffi
ci

en
cy

With METIS
Bisection

Figure 6.10: Results of an ApoA1 simulation on the Cosma 4 machine, with 12 cores per
node. Scaling within nodes is shown with a dashed line, while scaling with multiple
nodes is shown with a solid line. The code performs better when using METIS to
perform the partitioning when executed on more than 2 nodes, notably the performance
on 3 nodes with the bisection method is poor, due to an uneven partitioning.

Nr. Cores

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

0

1

2

3

4

5

6

7

8
Speedup of an ApoA1 Simulation on Cosma 4 (MPI only).

Nr. Cores

1 2 3 4 5 6 7 8

P
a
ra

lle
l
E

ff
ic

ie
n
c
y

0

0.2

0.4

0.6

0.8

1

Parallel Efficiency on Cosma 4 (MPI only).

With METIS

Bisection

Figure 6.11: Results of an ApoA1 simulation on the Cosma 4 machine, with 1 thread
per node. Each MPI rank is executed on a separate node. The bisection method
does not improve except when using a power of 2 number of ranks, while the METIS
partitioning approach scales with any number of MPI ranks.

6.3. Using Multiple GPUs with mdcore 91

The average time taken per timestep with the METIS graph partitioning setup is
shown in Tables 6.8 and 6.10 using the GTX480 and GTX690 respectively. Comparing
these results to the results with the parallel bonded interactions in Tables 6.5 and 6.6
shows there is a larger benefit from using only the parallel bonded interaction scheme
than from solely using multiple GPUs. This is due to the bonded interactions taking a
large percentage of the runtime of each timestep (36.879ms for ApoA1 on the GTX690
machine). Once we combine the parallel bonded scheme with the utilisation of multiple
GPUs the code performs approximately twice as fast on the GTX690, and 1.5× faster
on the GTX480 machine.

The main performance limiters are the load balancing of the GPUs (for example on
the ApoA1 test case with the GTX690, the two cards average 12.975ms and 15.275ms
respectively), and the movement of data to and from the CPU (whilst the kernel with
higher execution time averages 15.275ms per timestep, the overall runtime for the GPU
section of a timestep is 26.153ms, meaning over 11ms of the runtime of each timestep
is used on data transfer).

I also ran the code using the bisection method, and these results are shown in
Tables 6.9 and 6.11. On the JAC and ApoA1 test cases, the bisection method tends
to perform slightly better than the METIS partitioning, however the METIS method
is significantly better on the STMV test case. The STMV test case is the only one
of the three which has an odd number of cells in each dimension. If the particles
are reasonably evenly distributed, I would expect this to lead to a larger amount of
load imbalance than the ApoA1 and JAC test cases. Overall, the METIS partitioning
method doesn’t appear to perform better than the bisection method when the number
of cells can be split evenly using bisection, but performs better when the bisection
method is expected to perform poorly.

6.3.3 Issues with the Multiple GPU Setup

While the cost to compute the nonbonded interactions with multiple GPUs is reason-
ably load balanced, the overall performance of the code does not improve significantly
due to the data packing and data transfer methods used in mdcore. Additionally, the
computation time on each GPU is lower, but the overall data transfer time does not
change, resulting in poor scaling overall, as the data transfer begins to use a large
percentage of the runtime in each timestep.

It is clear from these results that to use multiple GPUs effectively we need to solve
the issue with data transfer in the system, most likely by performing the all of the
molecular dynamics on the GPU, which means only the data from the halo regions
needs transferring in every timestep. This was not investigated in this work.

6.3. Using Multiple GPUs with mdcore 92

Variant JAC ApoA1 STMV
Single GPU ver-
sion

14.540ms 84.882ms 781.347ms

Multi GPU ver-
sion

12.490ms 73.709ms 688.339ms

Multi GPU ver-
sion with paral-
lel bonded inter-
actions

12.476ms 52.830ms 540.700ms

Multi GPU ver-
sion with psuedo-
Verlet Lists

11.024ms 73.165ms 696.859ms

Table 6.8: Average time required to compute a timestep for the all three test cases on
the GTX480 using the METIS partitioning method.

Variant JAC ApoA1 STMV
Single GPU ver-
sion

14.540ms 84.882ms 781.347ms

Multi GPU ver-
sion

12.143ms 75.255ms 705.829ms

Multi GPU ver-
sion with paral-
lel bonded inter-
actions

12.130ms 51.934ms 557.677ms

Multi GPU ver-
sion with psuedo-
Verlet Lists

10.760ms 74.613ms 701.990ms

Table 6.9: Average time required to compute a timestep for the all three test cases on
the GTX480 using the bisection partitioning method.

6.3. Using Multiple GPUs with mdcore 93

Variant JAC ApoA1 STMV
Single GPU ver-
sion

9.750ms 80.503ms 656.002ms

Multi GPU ver-
sion

8.739ms 70.312ms 546.436ms

Multi GPU ver-
sion with paral-
lel bonded inter-
actions

8.733ms 37.312ms 331.697ms

Multi GPU ver-
sion with psuedo-
Verlet Lists

7.610ms 69.225ms 563.387ms

Table 6.10: Average time required to compute a timestep for the all three test cases on
the GTX690 using the METIS partitioning method.

Variant JAC ApoA1 STMV
Single GPU ver-
sion

9.750ms 80.503ms 656.002ms

Multi GPU ver-
sion

8.385ms 69.887ms 558.907ms

Multi GPU ver-
sion with paral-
lel bonded inter-
actions

8.405ms 35.741ms 344.495ms

Multi GPU ver-
sion with psuedo-
Verlet Lists

7.297ms 68.876ms 554.445ms

Table 6.11: Average time required to compute a timestep for the all three test cases on
the GTX690 using the bisection partitioning method.

6.4. Task-Based SPH on GPUs 94

6.4 Task-Based SPH on GPUs

As part of the SWIFT[24] project, I began working on an SPH implementation using
CUDA. As discussed in Section 4.2.2, SWIFT uses a task-based algorithm to compute
SPH on the CPU, so we felt using the same task scheduler used for mdcore might yield
similar runtime improvements on the GPU.

I implemented the same task-based model as for mdcore in SWIFT, and began to
work on SIMT parallelising the task functions to be executed on the GPU. I chose to
work on the sort tasks, density tasks, ghost tasks, and force tasks

SPH is more difficult to implement on the GPU as the particles have dynamic
smoothing lengths, which means more branch divergence when finding particle neigh-
bours. Furthermore, to speed up SPH simulations, not all particles need to directly
interact in every time step (particles that interact in a given timestep are called active).
This is very different to mdcore, where all particles interact in every timestep.

The sort functions were implemented in a similar manner as in mdcore, utilising
bitonic sort and parallelising the sorting network between the threads in a block.

It was difficult to SIMT parallelise the ghost tasks on the GPU. In these tasks
the algorithm checks whether the all of the values calculated in the density tasks are
correct. If not, these values are recalculated for the subset of particles which have
incorrect values. These are commonly only incorrect for a tiny percentage of the
particles in any given cell, resulting in the majority of the threads in a warp idling
while they wait on other threads to calculate these values. The performance of these
tasks was further worsened due to the recursion present in the tasks, which avoids
performing this computation on large cells.

The GPU tasks to compute the densities and forces are a SIMT parallelised version
of the one-sided CPU routines, with atomic updates to particles to ensure no race
conditions. The force tasks require the maximum value of a variable computed for any
particle (called the signal velocity, v_sig or v_sig_stor) in each cell to be found. The
reduction can be done within each warp using the CUDA __shfl operations on newer
architectures:

1 for(k = 16 ; k > 0 ; k >>= 1){

2 v_sig_stor = fmaxf(v_sig_stor , __shfl_xor(v_sig_stor , k));

3 }

4 if(threadIdx.x % 32 == 0)

5 while(v_sig_stor > (v_sig = v_sig_shared))

6 atomicCAS((int *)&v_sig_shared , __float_as_int(v_sig) ,

__float_as_int(v_sig_stor));

7 __syncthreads();

6.4. Task-Based SPH on GPUs 95

Task type GPU Runtime CPU Runtime
Density 22% 48%
Force 52% 38%
Ghost 16% 1%

Table 6.12: Runtime breakdown of the GPU and CPU SPH kernels into the main
work sections. Any remaining runtime is taken up by the particle sorting and time
integration scheme (CPU only), as well as any other overheads.

8 v_sig_stor = v_sig_shared;

9 if(threadIdx.x == 0)

10 while(v_sig_stor > (v_sig = ci->vsig))

11 atomicCAS((int *) &ci->vsig , __float_as_int(v_sig) ,

__float_as_int(v_sig_stor));

Lines 1-3 synchronise the maximum value of the signal velocity within a warp. Lines
4-6 force synchronisation of the value across the entire block, as v_sig_shared is a
shared memory value. The final lines of the code segment updates the signal velocity in
the cell structure. Since the CUDA inbuilt atomicCAS function only works on integers,
the __float_as_int function is needed, which lets you pass floats to the function.

6.4.1 Results

I tested the code on a Sedov Blast[41] test case with 1 million particles, and a breakdown
of the GPU kernel’s runtime is shown in Table 6.12. The ghost tasks perform much
worse relatively on the GPU.

The ghost tasks on the GPU were split into 2 sections, which follow recursion to the
leaves of the tree. The first section calculated which particles needed to be recalculated,
and zeroed their computed values. For all other particles, some additional computation
takes place, which ensures all the values required for the force interaction are ready.
This section of the task has branch divergence which worsens the SIMT parallelism of
the code on the GPU.

The second section of the ghost tasks recomputed the values for the necessary
particles. This involved interacting a small subset of particles (sometimes even a single
particle) against each neighbouring cell.

We decided to halt work on the GPU SPH code, as the CPU implementation was
still rapidly developing, and felt it was more important to work on other areas until
the CPU code was more mature.

6.5. Extending QuickSched to GPGPUs 96

6.4.2 Future work for GPU SWIFT

The main area to focus on is the implementation of the ghost tasks on the GPU.
Firstly, the recursion through the octree to the leaves should be removed, or ghost

tasks should be created directly on the leaf cells. Each of these possible solutions has
disadvantages. The former leads to large ghost tasks, and makes finding the correct in-
teractions for the particles more difficult. The latter involves potentially large numbers
of tasks and dependencies.

Secondly, the amount of work done in branches while looping over the particles
should be minimised (to reduce the cost of branch divergence), and the values that are
needed for the force interaction should be computed only once all of the particles in
the cell have corrected density values.

A further consideration that I did not investigate was how the implementation
would deal with situations where not all particles were active in a given timestep.

6.5 Extending QuickSched to GPGPUs

This work was published in Parco 2015 - Minisymposia: Is the Programming Environ-
ment ready for Hybrid Supercomputers?
An early version of this work was presented at UKMAC 2014.
Results in this section were run with CUDA 7.0 on the NVIDIA GeForce GTX690.

Our results to this point with Task-Based Parallelism on GPUs showed the method
had merit on these devices. However, requiring the user to implement the data move-
ment as well as the task infrastructure requires a lot of work from the user to get
efficient code, which makes the approach unappealing to use. To ease data movement
between the GPU and the CPU, we decided to integrate data transfer into the scheduler
by extending the resources already defined in QuickSched.

CUDA allows the user to allocate page-locked memory that is accessible to the
device directly (known as pinned memory). Using pinned memory and the Unified
Virtual Address Space in CUDA makes accessing data in the host CPU’s memory
straightforward from CUDA kernels, and allows data transfer to take place during the
kernel, instead of before kernel execution. This is discussed in detail in Section 6.5.6.

The method we decided to use to integrate the data transfer was to create load and
unload tasks which deal with the data movement in the system. Ideally, we would like
these data transfer tasks to be created automatically by the scheduler, and be executed
as part of the main task loop in parallel with work whenever possible.

6.5. Extending QuickSched to GPGPUs 97

6.5.1 The QuickSched Model and Using it with GPUs

The QuickSched programming model introduced in Section 3 defines resources as a
structure that virtually represents data (or other resources in the system). To allow
the utilisation of the resources to implement the data movement during the GPU kernel,
I needed to extend the resource structures as follows:

1 struct res{

2 lock_type lock;

3 volatile int hold;

4 int owner;

5 int parent;

6 /* Pointer to data on the CPU */

7 void* data;

8 /*Size of the data (in bytes) associated with this resource */

9 int size;

10 #ifdef WITH_CUDA

11 /* Pointer to the data on the GPU */

12 void* gpu_data;

13 /* Index of the load task for this resource, if required.*/

14 int task;

15 /* Index of the unload task for this resouce, if required.*/

16 int utask;

17 #endif

18 };

I added a data pointer, as well as the size of the data associated with the resource.
I also added three GPU-specific fields, the gpu_data pointer and two integers which
store the task IDs of the load and unload tasks associated with the resource.

The data, size and gpu_data are provided to the scheduler when the resources
are created, and in the case of hierarchical resources the data of a child resource needs
to be fully enclosed by the data associated with its parent. This can be easily verified
when the child is created by comparing the pointers:

1 if(s->res[id].parent != qsched_res_none && data != NULL){

2 char* parentdata = (char*)s->res[parent].data;

3 char* childdata = (char*) data;

4 int pos = childdata - parentdata;

5 if(pos < 0 || pos + s->res[id].size > s->res[parent].size){

6 error("Data for a child resource must be contained in the data of

its parent");

6.5. Extending QuickSched to GPGPUs 98

7 }

8 }

I also needed to define three reserved task types for the load, unload and ghost tasks.
An alternate queue data structure is needed for GPU QuickSched, so I copied the queue
setup as is used in GPU mdcore. The scheduler object remains unchanged from the
CPU version of QuickSched, as the scheduler is never used on the device, but only for
the setup performed on the CPU.

6.5.2 Modifying the Dependency Implementation from mdcore

One inconsistency between our CPU and GPU implementations of Task-Based Par-
allelism is that in the CPU implementation, tasks are not enqueued until they had
no active dependencies, whereas all of the tasks were enqueued initially on the GPU.
The GPU implementation of the task queue needed to perform additional checks when
retrieving tasks to ensure the task was ready to be executed, i.e. the task’s wait counter
is 0.

I modified the GPU implementation of the task scheduler to mirror the CPU, and
only enqueue a task once all of its dependencies are satisifed. Since enqueuing a task
only costs two atomic operations, it is cheaper than having to retrieve another task
when an unready task is retrieved.

I changed the CPU setup code to only place tasks with an initial wait of 0 into the
GPU task queue. I also modified the code that is executed when a task is completed
to enqueue tasks that are ready:

1 for(i = threadIdx.x; i < tasks_cuda[tid].nr_unlocks; i+= blockDim.x){

2 if(atomicSub(&tasks_cuda[tasks_cuda[tid].unlocks[i]].wait, 1) == 1){

3 cuda_queue_puttask(cuda_queue, tasks_cuda[tid].unlocks[i]);

4 }

5 }

where tid is the task index of the completed task, and tasks_cuda is the task array
on the GPU. This can also be parallelised, as the queue is completely thread-safe.

Finally I needed to modify the get_task function. Since any task retrieved by
queue_gettask is guaranteed to be ready to execute, we no longer need to check the
tasks wait counter, and can just return the retrieved task index:

1 __device__ int get_task (struct queue_cuda *q){

2 int tid = -1;

6.5. Extending QuickSched to GPGPUs 99

3 while ((tid = queue_gettask(q)) >= 0){

4 break;

5 }

6 if (tid >= 0){

7 q->rec_data[atomicAdd((int *)&q->rec_count , 1)] = tid;

8 }

9 return tid;

10 }

6.5.3 Implementing Conflicts with the new Task Setup

QuickSched defines conflicts to occur between pairs of tasks that lock one or more
of the same resources. Since this definition is central to the CPU performance, I
decided to implement conflicts in the GPU version of QuickSched too. Due to the
previous experiences in mdcore, they are disabled by default (they can be enabled
using a define). The conflicts mirror the implementation on the CPU i.e. whenever a
task is retrieved from the queue, the resources associated with it are locked, and if the
resources can all be locked then the task is executed. If they cannot be retrieved then
the task is returned to the queue and the next task in the queue is tested.

On the GPU, the resource locks are implemented using the same mutex strategies
as in mdcore. The locking functions (cuda_trylock, cuda_lock and cuda_unlock)
are implemented identically to the mutexes used in early versions of mdcore. To lock
a task, the scheduler has to loop through all of the resources locked by the task and
attempt to hierarchically lock them. The function is implemented as follows:

1 __device__ int cuda_locktask (int tid){

2 int k;

3 struct task *t;

4 t = &tasks_cuda[tid];

5 for (k = 0 ; k < t->nr_locks ; k++)

6 if (cuda_lockres(t->locks[k]) == 0)

7 break;

8 if (k < t->nr_locks){

9 for (k -= 1 ; k >= 0 ; k--)

10 cuda_unlockres(t->locks[k]);

11 return 0;

12 }else{

13 return 1;

14 }

15 }

6.5. Extending QuickSched to GPGPUs 100

The cuda_lockres and cuda_unlockres functions implement the hierarchical locking
and unlocking of the resources, and are discussed below. In line 5 we loop over the
locks and attempt to lock them. If any of the locks are unsuccessful, we quit the loop
early. In line 8 we check if all of the resources were locked successfully. If so then the
function returns that it was successful (line 13), and the task can be executed. If not,
it loops back through the resources that were locked successfully and releases them
(line 9 and 10), then returns that the locking failed (line 11).

Since the resources can be hierarchical, successfully locking a resource requires both
atomic compare-and-swapping the resource’s lock, and holding all of the resources’ par-
ents. To hold the parents we have to temporarily lock the parent, and if successful,
atomically increment the hold counter. The cuda_lockres function is then imple-
mented as follows:

1 __device__ int cuda_lockres (int rid){

2 int finger, finger2;

3 if (res_cuda[rid].hold || cuda_trylock(&res_cuda[rid].lock))

4 return 0;

5 if (res_cuda[rid].hold){

6 cuda_unlock(&res_cuda[rid].lock);

7 return 0;

8 }

9 for (finger = res_cuda[rid].parent ; finger != qsched_res_none ;

finger = res_cuda[finger].parent){

10 if (cuda_trylock(&res_cuda[finger].lock))

11 break;

12 atomicAdd((int *) &res_cuda[finger].hold , 1);

13 cuda_unlock(&res_cuda[finger].lock);

14 }

15 if (finger != qsched_res_none){

16 cuda_unlock(&res_cuda[rid].lock);

17 for (finger2 = res_cuda[rid].parent ; finger2 != finger ; finger2 =

res_cuda[finger2].parent)

18 atomicAdd((int *) &res_cuda[finger2].hold, -1);

19 return 0;

20 }else

21 return 1;

22 }

In lines 3-4, the function checks if this resource is held (i.e. one of its child tasks is
currently locked), and if not attempts to obtain the lock on the resource. If this is

6.5. Extending QuickSched to GPGPUs 101

unsuccessful, then the function failed to lock the resource. If successful, it again checks
if the resource has been held in line 5. This needs to be checked again as it is possible for
the resource to have been held while the function was waiting to execute the trylock
function. If it has been held, the lock is released (line 6) and the function returns that
it failed. The function then loops up the resource tree, and attempts to increment the
hold counter of each of the parents (lines 9-14). If it can increment the hold counter
of all the parents, then the function completes and terminates successfully. If any of
the parents are locked, then it terminates the loop early, and executes the if statement
in line 15. In the if statement, the resource is unlocked in line 16, and then the hold
counter of all of the held parents are decremented in lines 17 and 18. The function
then terminates unsuccessfully.

The cuda_unlockres function is implemented as follows:

1 __device__ void cuda_unlockres (int rid){

2 int finger;

3 cuda_unlock(&res_cuda[rid].lock);

4 for (finger = res_cuda[rid].parent ; finger != qsched_res_none ;

finger = res_cuda[finger].parent)

5 atomicAdd((int *) &res_cuda[finger].hold, -1);

6 }

In line 3, the function unlocks the resource. In lines 4-5 the function loops over the
parent resources and decrements their hold counters.

We need to release all of the locks after a task is executed. This is done through
an additional function, called cuda_done, which loops over all of the resources locked
by the task and calls the cuda_unlockres function on them.

The get_task function (defined in section 6.2.1) was also modified to use the
cuda_locktask function, lines 4-6 were changed to:

1 while ((tid = cuda_queue_gettask(q)) >= 0){

2 if(cuda_locktask(tid) == 1)

3 break;

4 atomicAdd((int*)&q->nr_avail_tasks, -1);

5 cuda_queue_puttask (q , tid);

6 }

Rather than breaking out of the loop immediately, it tries to lock the resources as-
sociated with the tasks in line 2, and only breaks if it is successful in locking the
resources. If it is unsuccessful, it places the task back into the queue in line 5. The

6.5. Extending QuickSched to GPGPUs 102

decrement of q->nr_avail_tasks in line 4 is necessary as the cuda_queue_puttask
function increments this value, but in this case the number of tasks in the queue does
not increase.

6.5.4 Creating the Load and Unload Tasks

The load and unload tasks manage the movement of data between the CPU and GPU.
The load tasks are scheduler-created tasks that copy data from CPU memory to GPU
memory, while the unload tasks copy data from GPU memory to CPU memory, and
are also created by the scheduler.

When creating the load and unload tasks we want to ensure the following:

1. The dependencies are added in the correct place in the dependency array. The
dependencies are sorted by the unlocking task, and resorting the dependencies is
computationally expensive.

2. The dependencies added enforce a correct computation, i.e. no task executes
before the data required is copied to the device, and no data is copied back to
the host until all tasks that write to that data are complete.

3. In the case of hierarchical resources, we transfer small amounts of data (i.e.
resources closer to the leaves) unless the data associated with the sub-resources
is too small for the transfer to be efficient. If the data transferred is too small,
then the overheads of copying the data will outweight the benefits of performing
the data transfer as part of the computational kernel.

4. Ideally we want to add as few dependencies as possible as there is some overhead
to adding large numbers of dependencies, as every dependency in the system
costs additional atomic operations.

The first requirement is relatively straightforward to implement. For each task,
the scheduler already stores nr_unlocks, nr_locks and nr_uses. For each locked and
used resource the implementation will create one unload task that is unlocked by the
locking/using task, so we need to add nr_locks + nr_uses gaps between each task’s
dependencies when creating the new dependency list.

As well as enforcing that resources must be fully contained within their parents, it
is necessary to ensure the data represented by any pair of resources never overlap. As
we already check the first criteria when resources are created, to check the second we
only need to check:

1. The highest level resources (i.e. resources with no parents) never overlap.

6.5. Extending QuickSched to GPGPUs 103

2. Any two resources that share a parent don’t overlap.

To check these requirements, we use bucket sort to sort the tasks by ascending
parent ID (where resources without a parent have a parent ID −1). We then use
bucket sort on each of the subarrays (containing tasks that share parents) to sort the
resources by the memory address pointed to by each resources’ data pointer. Once
we have this array, first sorted by parent ID, then memory address, we can loop over
the array and check if task i and task i + 1 share a parent ID. If so, we can then use
pointer arithmetic to check res_data[i] + s->res[res[i]].size <= res_data[i+1],
where res_data contains the sorted data pointers, and res contains the IDs of the
corresponding resources. If this is true, the resources don’t overlap. If any of the
resources overlap, the algorithm halts and returns an error message.

Once the extension of the dependency array and sorting of the resources is complete,
we can create the load and unload tasks. The function that creates the load and unload
tasks is a recursive function:

1 void qsched_create_loads(struct qsched *s, int ID, int size, int

numChildren, int parent, int *res, int *sorted){

2 int i,j;

3 int task, utask;

4 if(numChildren > 0 && size/numChildren > 128*sizeof(int)){

5 task = qsched_addtask(s, type_ghost, task_flag_none, NULL, 0 , 0);

6 qsched_adduse(s, task, ID);

7 s->res[ID].task = task;

8 utask = qsched_addtask(s , type_ghost, task_flag_none, NULL, 0 , 0);

9 qsched_adduse(s, task, ID);

10 s->res[ID].utask = utask;

11 for(i = sorted[ID]; i < sorted[ID+1]; i++){

12 qsched_create_loads(s, res[i], s->res[res[i]].size,

sorted[res[i]+1]-sorted[res[i]], ID, res, sorted);

13 }

14 }else{

15 task = qsched_addtask(s , type_load , task_flag_none, &ID,

sizeof(int), 0);

16 s->res[ID].task = task;

17 utask = qsched_addtask(s , type_unload, task_flag_none, &ID,

sizeof(int), 0);

18 s->res[ID].utask = utask;

19 for(j = sorted[ID]; j < sorted[ID+1]; j++){

20 s->res[res[j]].task = task;

6.5. Extending QuickSched to GPGPUs 104

21 }

22 }

23 }

where res is the sorted array of resource IDs, and sorted stores the number of children
that each resource has. The sorted array is computed during the sorting process. The
function is called for each parentless resource. If the resource has children, and the
size of the data associated with the current resource is deemed to be large enough,
i.e. the average size of a child resource is > 128 * sizeof(int)), then the scheduler
creates two ghost tasks (lines 4-10). These ghost tasks are used to avoid large numbers
of dependencies in systems with many levels of hierarchical resources. If the tasks
directly depending on the load tasks were created for each of the leaf resources, there
would be 8l dependencies required, where l is the number of levels in the hierarchy.
Using the ghost tasks means each task only depends on at most 8 unload tasks or
8 ghost tasks. Once the ghost tasks are created, the function recurses to each child
resource (lines 11 to 13).

If the resource has no children, or the data associated with them is too small, then
the scheduler creates a load and unload task for the resource directly, and sets the load
task reference stored by all of its children to be the load task created for the parent
resource (lines 15-20).

After creating all the load and unload tasks, we loop over the tasks and check that
task (load task reference) and utask (unload task reference) are set for all resources.
If not, we recurse up the resource hierarchy until we find a parent with the relevant
task set, and set the task and utask variables.

Our initial strategy for computing the dependencies was to loop through every
non-load, non-unload, non-ghost task t and add dependencies from every load task
l to t, where l is the load task of a resource locked or used by t, and from t to all
of the corresponding unload tasks. These dependencies were added to the end of the
dependency array in an unsorted order, so the dependency array needed to be resorted
before computation could begin. The additional sorting overhead was too large, and
resulted in the pre-processing taking too long to be feasible.

Instead, we break the process into two stages. We first compute a usage list for
each resource. To compute it, we loop through all of the tasks, and store their ID in
the usage list for each resource they lock or use. If any of the resources they lock or use
don’t have their own load or unload task (i.e. resource->utask == parent->utask),
the ID is instead stored in the usage list for the parent resource who the load and
unload task belong to.

The second step is to compute the dependencies between the load and unload tasks,
and the computation tasks. Since we want to avoid resorting the dependencies, this

6.5. Extending QuickSched to GPGPUs 105

step needs to create an in-place sorted list of the dependencies. To do this, we loop
over the resources and create all of the dependencies for the load and unload tasks that
correspond to each resource.

Since they are the most straightforward, we first add the dependencies for the
unload task (utask). For any resource, the utask variable will either point to an
unload task or a ghost task. In the case that utask points to an unload task, every
child of the resource will point to the same unload task with its own utask variable.
In this case the task will not unlock any further tasks. If utask points to a ghost
task, then the task needs to unlock all of the child resources’ utask. This can be done
by looping through the children and adding all of these dependencies as a contiguous
block.

Once this is completed, we can add the dependencies for the load task, and is only
done if res->task != parent->task. First, if the resource has a parent, we need to
add a dependency from res->task to parent->task, as parent->task is a ghost task
that depends on data transfer done either by this task (if a load task) or one of this
resource’s children’s load task (if a ghost). We then loop over the usage list for this
resource, and add a dependency from res->task to each of the tasks in the usage list.

6.5.5 Unneccessary Dependencies

I tested two strategies (executed on the CPU) to minimise the number of dependencies
added. The first strategy was a recursive strategy that was called before adding a de-
pendency from a load task to a work task (or from a work task to an unload task). This
strategy used two functions, transitive_use_unlocks and transitive_use_locks.
Both functions relied on the task array to be sorted into a topological ordering, i.e. no
task appears in the task array until all of its parent tasks have already appeared.
The former function searched for any child task that also used or locked the specified
resource:

1 int transitive_use_unlocks(struct qsched *s, struct task *t, int res,

int depth){

2 int i;

3 for(i = 0; i < t->nr_uses; i++){

4 if(t->uses[i] == res)

5 return 1;

6 }

7 for(i = 0; i < t->nr_locks; i++){

8 if(t->locks[i] == res)

9 return 1;

6.5. Extending QuickSched to GPGPUs 106

10 }

11 if(depth >= MAX_DEPTH){

12 return 0;

13 }

14 for(i = 0; i < t->nr_unlocks; i++){

15 if(transitive_use_unlocks(s, &s->tasks[t->unlocks[i]], res, depth +

1))

16 return 1;

17 }

18 return 0;

19 }

In lines 2-9, the function checks if the resource being search for (res) is used or locked
by the current task. In lines 11-13, if the exit criteria is met then the function exits.
Otherwise the function recurses to all tasks unlocked by t.

The MAX_DEPTH variable can be set at compile time, and is used to control how
deep the search goes. If MAX_DEPTH is 1, the function will only check the tasks that
directly depend on t, whereas if MAX_DEPTH is large enough, the algorithm will search
the entire subgraph from t. This function was called before adding dependencies to
unload tasks, and the dependency would only be added if the function returned 0.

The transitive_use_locks function is similar, but since the parents of a task
aren’t stored, it has to make use of the topological ordering to find them:

1 int transitive_use_locks(struct qsched *s, int tid, int res, int depth){

2 int i,j;

3 struct task *new_t;

4 struct task *t = &s->tasks[tid];

5 for(i = 0; i < t->nr_uses; i++){

6 if(t->uses[i] == res)

7 return 1;

8 }

9 for(i = 0; i < t->nr_locks; i++){

10 if(t->locks[i] == res)

11 return 1;

12 }

13 if(depth >= MAX_DEPTH){

14 return 0;

15 }

16 for(i = tid-1; i >= 0; i--){

17 new_t = &s->tasks[i];

6.5. Extending QuickSched to GPGPUs 107

18 for(j = 0; j < new_t->nr_unlocks; j++){

19 if(new_t->unlocks[j] == tid){

20 if(transitive_use_locks(s, i, res , depth + 1))

21 return 1;

22 break;

23 }

24 }

25 }

26 return 0;

27 }

In lines 16-22, the code searches backwards through the topological ordering to find
all of the tasks that unlock the task with index tid. Again, MAX_DEPTH is used to
limit how many levels of dependencies are searched to find another resource that locks
or uses the resource. This function was used before adding dependencies from load
tasks to the task with index tid, and the dependency was only added if the function
returned 0.

This method worked reasonably well for small problems. When used for the QR
decomposition on a 9× 9 tile matrix, it only added 366 dependencies for the load and
unload tasks (with MAX_DEPTH effectively set to infinite), rather than the 1530 added
without it. However even on a 9× 9 matrix, the algorithm took 2.5s and scaled poorly
with problem size; on a 12×12 matrix the algorithm already took over a minute. With
MAX_DEPTH set to 4, it still found the same result for the 9 × 9 case, and took only
15ms. However, no matter what I set MAX_DEPTH to (as low as 1), the overall algorithm
was infeasible on larger test cases.

The second method I tested attempts to simulate an execution of the task tree.
Rather than recursing through the task graph to see if any subtree contains a reference
to the resources used by each task, we loop through the tasks in a topological ordering.
For each task, we check if the data is already available for each resource used or locked
by this task. If not, then we mark it as available and create the relevant dependency
from the load task (or to the unload task). Once we have checked each of this tasks
used or locked resources, we copy its accesses to its children before continuing to the
next task.

The method uses a bit array, with each bit was initially set to 0. The first step
involves looping forward through the topological ordering:

1 for(i = 0; i < s->count; i++){

2 if(s->tasks[i].type == type_load || s->tasks[i].type == type_unload)

3 continue;

6.5. Extending QuickSched to GPGPUs 108

4 for(k = 0; k < s->tasks[i].nr_uses; k++){

5 use = s->tasks[i].uses[k];

6 usek = use >> 5; // use / 32;

7 usem = use & 31; // use % 32.

8 if((is_loaded[i][usek] & (1 << (31-usem))) == 0){

9 qsched_addunlock(s, s->res[use].task , i) ;

10 is_loaded[i][usek] |= (1 <<(31-usem));

11 }

12 }

13 /* Repeat process for locks*/

14

15 for(k = 0; k < s->tasks[i].nr_unlocks; k++){

16 if(s->tasks[s->tasks[i].unlocks[k]].type == type_load ||

17 s->tasks[s->tasks[i].unlocks[k]].type == type_unload)

18 continue;

19 for(j = 0; j < s->count_res/32 +1; j++){

20 is_loaded[s->tasks[i].unlocks[k]][j] |= is_loaded[i][j];

21 }

22 parents[s->tasks[i].unlocks[k]][num_parents[s->tasks[i].unlocks[k]]]

= i;

23 num_parents[s->tasks[i].unlocks[k]] =

num_parents[s->tasks[i].unlocks[k]] + 1;

24 }

25 }

Lines 2-3 ensure the function always skips any load and unload tasks that had been
generated. The loop in lines 4-12 loops over each of the resources used by the task.
Lines 5-7 compute the index corresponding to the task in the bit array. The if statement
in line 8 tests to see if the resource has already been loaded by a parent of this task.
If not, a dependency is added from the load task to this task, and the associated bit is
set in this tasks’ array (is_loaded[i]). The loop is repeated for the resources locked
by this task as well (which is not shown in the above code segment).

Finally, the loop in lines 15-23 loops over each task unlocked by the current task,
and updates their bit arrays so that any resources that will be loaded prior to this
tasks execution have the corresponding bit set in the dependent tasks’ bit arrays. This
loop also sets up the parent array that is neccessary to compute the unload tasks’
dependencies.

One this process is completed, the bit arrays are reset, and the same process is
performed in reverse to compute the dependencies for the unload tasks.

This method was much quicker than the recursive method on small QR decompo-

6.5. Extending QuickSched to GPGPUs 109

Array Size 1e6 1e7 1e8
Non-pinned cud-
aMemcpy

6.01ms 54.86ms 543.5ms

Pinned cudaMem-
cpy

5.48ms 54.27ms 538.6ms

Kernel memory
transfers

5.48ms 54.22ms 538.6ms

Table 6.13: Time required to move data to and from the device plus a simple compu-
tation kernel.

sition test cases, however on large test cases this method used too much memory to be
feasible (as the memory requirement scales with the number of tasks and number of
resources, and for the QR decompostion there are O(n3) tasks and O(n2) resources).

It is clear that this problem is at least as difficult as transitive reduction, however
discussion with Prof. Daniel Paulusma suggested that our specific problem may be
NP-complete to compute (Prof. Daniel Paulusma, personal communications). Since
I noticed little change in the runtime of the GPU kernel when the system contained
fewer dependencies, I decided to abandon this area of research.

6.5.6 Load and Unload Task Implementation

The load and unload tasks implementations were tested in a stand-alone program
(discussed in more detail in Appendix A), and compared to cudaMemcpy. The imple-
mentation used the same block/thread structure as is used in mdcore, i.e. 128 blocks
of 128 threads each. I ran and timed three variants:

1. cudaMemcpy with memory allocated using malloc on the CPU.

2. cudaMemcpy with memory allocated using cudaMallocHost (i.e. pinned memory)
on the CPU.

3. A kernel moving the memory to and from the GPU before and after all of the
computation.

The computation kernel was a simple array-squaring kernel with varying array sizes.
The runtimes of these three methods is shown in Table 6.13.

These results showed that we could achieve the same performance as cudaMemcpy
when using kernels to do the data transfer. With these results, I implemented the
memory transfer technique into QuickSched:

6.5. Extending QuickSched to GPGPUs 110

Matrix size With tasks With cudaMemcpy
1024× 1024 82.486ms 82.417ms
1536× 1536 220.026ms 216.236ms
2048× 2048 516.695ms 517.692ms

Table 6.14: Time taken to compute the tiled QR decomposition of various matrices.
The times include the loading and unloading of data to the device as well as the
QuickSched setup times.

Problem size Kernel Runtime
1M particles 135.220ms
10M particles 2084.827ms

Table 6.15: Time taken to compute the accelerations on particles from a cosmological
volume using the Barnes-Hut method. The times only include the runtime of the GPU
kernel, with a maximum of 128 particles per cell.

1 __device__ __inline__ void cuda_memcpy_tasks (void *dest , void

*source , int count , int tid){

2 int k;

3 int *idest = (int *)dest, *isource = (int *)source;

4 for (k = threadIdx.x ; k < count/sizeof(int) ; k += blockDim.x){

5 idest[k] = isource[k];

6 }

7 }

One limitation of our data transfer method is that all of the resources’ data needs
to be a multiple of sizeof(int), however this is not a problem for the testcases
implemented, and can easily be checked and enforced in the scheduler.

6.5.7 Results with the Initial Setup

I ran the initial setup with both the tiled QR decomposition (introduced in Section 4.3)
and a Barnes-Hut implementation (described in Chapter 5).

In this thesis I use task plots to help visualise how the computations progress. When
collecting the data for task plots, each task structure has stores a few additional values:
The start and end time of the task (stored in clock ticks), and the block ID of the block
that executed a task. Before executing a task, start time and block ID are stored in the
task struct, and after a task completes the end time is stored. These values are output
when the computation is completed, and task plots can be generated using MATLAB
(or other tools).

6.5. Extending QuickSched to GPGPUs 111

a)

0 10 20 30 40 50 60 70

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for QR with Async Loads on a 1024x1024 Matrix.

b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for QR with Async Loads on a 1024x1024 Matrix.

Figure 6.12: Task plots for the QR decomposition on a 1024× 1024 matrix. a) shows
the entire computation while b) shows a zoom into the start of the computation. The
purple tasks show the load tasks. The computation can begin once the data arrives
on the GPU, and every block is working for the majority of the computation. At the
start and end of the computation, some of the blocks are idle, which is due to the
dependency structure of the QR decomposition.
The magenta tasks are the load tasks, and the teal tasks are the unload tasks. The
remaining colours represent the work tasks of the QR decomposition.

0 20 40 60 80 100 120

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for BH on a 1M Particle Comsological Volume

Figure 6.13: Task plot for the BH simulation of a 1M particle cosmological volume.
Since there are no dependencies, the tasks are executed in the order they are placed
into the queue. Since some of the task_type_pc_split tasks use large cells, these are
executed last and have a long runtime. This results in the unload tasks being delayed
until these tasks complete, leading to poor runtime.
The magenta tasks are the load tasks and the teal tasks are the unload tasks. The
remaining colours represent the work tasks of the BH simulation.

6.5. Extending QuickSched to GPGPUs 112

Figure 6.12 shows how the QR decomposition computation progresses on the GPU.
Initially, all the blocks copy data to the GPU before any computation begins, which
can be seen in more detail in the zoomed Figure 6.12(b). Since all the data transfer
happens before any computation, a lot of the blocks are idle early on the computation
when there is relatively little work that can be done due to the dependencies. The
unload tasks are almost completely hidden behind the computation. Table 6.14 shows
that there is no benefit from the task-based data transfer with the initial scheduler for
the QR decomposition.

Figure 6.13 shows the progression of the Barnes-Hut computation on the GPU. As
with the QR, no computation occurs until all of the data has been moved to the GPU,
and the unload tasks need to wait on the large task_type_pc_split tasks before they
can be executing, resulting in almost no difference from the standard load-compute-
unload methodology.

These results imply the scheduler needs to be modified to increase the amount of
compute and data transfer performed in parallel.

6.5.8 Improving the GPU Setup

The main flaw with the single queue setup is that no computation will begin until
almost all of the data movement tasks are complete, as the queue has no concept of
priority on the GPU. This means relatively little computation will occur in parallel to
data transfer, which means the kernel is almost no different to using cudaMemcpy or
cudaMemcpyAsync to move the data to and from the GPU.

Since it is important that the GPU task queues are lock-free and as lightweight as
possible, I decided it was not feasible to create priority queues (or any directly priority-
aware data structure) on the GPU. Instead, I felt having rough estimates of priorities
would be enough to improve the GPU performance. We prioritised the tasks based
on their task type alone, with the load tasks being the lowest priority, and the unload
tasks being highest priority, and ghost and user-defined tasks being medium priority.
This decision was made as we want to prioritise work over loading data (to avoid all
blocks initially just loading data until all the data has been transferred).

To implement the levels of priority, I created multiple task queues, and only allowed
specific task types to be placed in specific queues, i.e. one queue only containing load
tasks, one queue only containing unload tasks and one queue containing any other
type of task. When attempting to retrieve a task, each block would first try the queue
containing the unload tasks, and if unsuccessful in obtaining a task, try the other
queues in the priority order.

Since the queue_gettask function blocks until either all of the tasks that belong to
the queue are executed, or until a valid task index is retrieved, I modified the task queue

6.5. Extending QuickSched to GPGPUs 113

to maintain a counter of how many task indicies they contain at any time. This value
can easily be checked directly, and avoid accessing empty queues when attempting to
retrieve tasks.

The queue_cuda structure (which was previously identical to the queue structure
used in mdcore) was modified, and a new field was added:
volatile int nr_avail_tasks. This value is initially set to the number of tasks
initially placed in the queue, usually 0 for the unload and work task queues, and equal
to the number of load tasks for the load task queue.

When adding this idea of multiple queues to be checked in priority order, it also
became possible for a block to fail to retrieve a task, despite not all of the tasks in the
system being completed. Since the exit criteria checked only if the system was able to
retrieve a task, blocks could exit the main loop earlier than they should. To fix this,
I added a new __device__ variable, named tot_num_tasks, which stores the number
of tasks that still needed to be executed.

The queues’ nr_avail_tasks field is queried to check which queue to retrieve tasks
from, resulting in the start of the main kernel being modified:

1 if(threadIdx.x == 0){

2 tid = -1;

3 if(unload_queue.nr_avail_tasks > 0)

4 tid = get_task(&unload_queue);

5 if(tid < 0 && cuda_queues[0].nr_avail_tasks > 0)

6 tid = get_task(&cuda_queues[0]);

7 if(tid < 0 && load_queue.nr_avail_tasks > 0)

8 tid = get_task(&load_queue);

9 }

10 __syncthreads();

11 if(tid < 0 && tot_num_tasks == 0)

12 break;

I also needed to modify the get_task and puttask routines to use these new variables:

1 __device__ int get_task (struct queue_cuda *q){

2 int tid = -1;

3 if(atomicAdd((int*)&q->nr_avail_tasks, -1) <= 0){

4 atomicAdd((int*)&q->nr_avail_tasks, 1);

5 return -1;

6 }

7 while ((tid = cuda_queue_gettask(q)) >= 0){

6.5. Extending QuickSched to GPGPUs 114

8 break;

9 }

10 if (tid >= 0){

11 q->rec_data[atomicAdd((int *)&q->rec_count , 1)] = tid;

12 }

13 return tid;

14 }

The only change to get_task is the addition of lines 3-6. Before progressing further,
we decrement the nr_avail_tasks variable, and check if the previously stored value
was ≤ 0. If so, then the queue is empty, so we reverse the change and exit the function.
If not, then the queue contains tasks, and this access will remove one of them, so the
counter is already updated.

The puttask function was also modified slightly:

1 __device__ void puttask (struct queue_cuda *q , int tid){

2 int ind;

3 ind = atomicAdd(&q->last , 1) % cuda_queue_size;

4 while (q->data[ind] != -1);

5 q->data[ind] = tid;

6 atomicAdd((int*)&q->nr_avail_tasks, 1);

7 }

The only required change to puttask is to increment the counter for the task queue
in line 6. Finally, the queue_gettask function was modified slightly to decrement
tot_num_tasks.

I also had to change the dependency count update to ensure that newly available
tasks were placed into the correct task queue:

1 for(i = threadIdx.x; i < tasks_cuda[tid].nr_unlocks; i += blockDim.x){

2 if(atomicSub(&tasks_cuda[tasks_cuda[tid].unlocks[i]].wait , 1) == 1

){

3 if(tasks_cuda[tasks_cuda[tid].unlocks[i]].type != type_unload)

4 cuda_queue_puttask(&cuda_queues[0] , tasks_cuda[tid].unlocks[i]);

5 else

6 cuda_queue_puttask(&unload_queue , tasks_cuda[tid].unlocks[i]);

7 }

8 }

6.5. Extending QuickSched to GPGPUs 115

Matrix size Initial setup New setup
1024× 1024 82.486ms 79.928ms
1536× 1536 220.026ms 214.919ms
2048× 2048 516.695ms 509.654ms

Table 6.16: Time taken to compute the tiled QR decomposition of various matrices.
The times include the loading and unloading of data to the device as well as the
QuickSched setup times. The new setup performs slightly faster than the initial setup
overall.

Problem size Initial Runtime New Runtime
1M particles 135.220ms 121.000 ms
10M particles 2084.827ms 1771.151 ms

Table 6.17: Time taken to compute the accelerations on particles from a cosmological
volume using the Barnes-Hut method. The times only include the runtime of the GPU
kernel, with a maximum of 128 particles per cell. We can see the benefit of starting
the computation immediately, with a speedup of around 7-10%.

In lines 3-6, instead of just placing a task into the task queue, it checks if the task is
an unload task. If it is, it is placed into the unload_queue, else it is placed into the
standard task queue.

6.5.9 Results with the Multi-Queue Priority

The results for the QR decomposition are shown in Table 6.16 and task plots are shown
in Figure 6.14. The QR speeds up by 3% on the smallest testcase, and around 1% on
the largest. The benefit is small as the computation is limited primarily due to the
dependency structure. The first work task that must be executed requires the top-left
tile to be loaded to the GPU, and there is no mechanism in place to enforce that this
is the first tile loaded to the GPU.

The results for the Barnes-Hut with this setup are shown in Table 6.17 and a task
plot is shown in Figure 6.15. The Barnes-Hut benefits more from adding multiple
queues, as the data is not all loaded simultaneously. Instead, some threads perform
computation while other threads are performing data transfer, and this appears ben-
eficial. The task plot still shows some near-synchronous regions of data transfer from
the GPU to the host throughout the computation, so improvements are still required.
These near-synchronous regions of data transfer occur as the unload tasks are the high-
est priority tasks, so when a task that operates on a large cell completes, many new
unload tasks become available. This results in all of the threads unloading data rather
than performing computation until there are no more unload tasks to be executed.

6.5. Extending QuickSched to GPGPUs 116

a)

0 10 20 30 40 50 60 70

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for QR with Async Loads on a 1024x1024 Matrix.

b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for QR with Async Loads on a 1024x1024 Matrix.

Figure 6.14: Task plots for the QR decomposition on a 1024× 1024 matrix. a) shows
the entire computation while b) shows a zoom in at the start of the computation. The
purple tasks show the load tasks. The computation can start earlier than with the
initial setup, however there is still some delay before it begins.
The magenta tasks are the load tasks, and the teal tasks are the unload tasks. The
remaining colours represent the work tasks of the QR decomposition.

0 20 40 60 80 100 120

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for BH on a 1M Particle Comsological Volume

Figure 6.15: Task plot for the BH simulation of a 1M particle cosmological volume.
The data transfer is now spread out throughout the computation, though there are
still regular blocks of unload tasks being executed where no work is taking place.
The magneta tasks are the load tasks and the teal tasks are the unload tasks. The
remaining colours represent the work tasks of the BH simulation.

6.5. Extending QuickSched to GPGPUs 117

6.5.10 Using Instruction Level Parallelism to Achieve High
Data Transfer Rates with Few Threadblocks

The initial results showed that using the entire GPU to perform data transfer before
any computation began lead to not as much improvement as hoped. One strategy
to improve the performance was to try using fewer threadblocks to execute the load
tasks, as then computation would occur in parallel to data transfer. This could only
be successful if we could keep the data transfer rate high.

I extended the previous program used to test memory transfer by adding kernels
that performed memory transfer with ILP. I implemented this with 2, 3, and 4-way
ILP. The kernel to perform it with 4-way ILP is shown below:

1 __global__ void runner_run_copyTo_ILP4(int *d_a, int *h_a, int N){

2 int i;

3 int val1, val2, val4, val3;

4 for(i = blockIdx.x*blockDim.x + threadIdx.x; i < N; i+=

4*blockDim.x*gridDim.x){

5 val1 = h_a[i];

6 val2 = h_a[i + blockDim.x*gridDim.x];

7 val3 = h_a[i + 2*blockDim.x*gridDim.x];

8 val4 = h_a[i + 3*blockDim.x*gridDim.x];

9 d_a[i] = val1;

10 d_a[i + blockDim.x*gridDim.x] = val2;

11 d_a[i + 2*blockDim.x*gridDim.x] = val3;

12 d_a[i + 3*blockDim.x*gridDim.x] = val4;

13 }

14 }

This implementation is naive, so only works if N (the size of the array) is an exact
multiple of 4 * blockDim.x * gridDim.x.

I ran these variants on an array of size 15, 360, 000, with varying block counts. For
each increase in ILP (e.g. going from 1 to 2-way, 2-way to 3-way or 3-way to 4-way)
the number of threadblocks required to transfer the data can be decreased by a factor
of two without any significant loss in performance, and is shown in more detail in
Appendix A.

This allows us to use ILP in QuickSched to reduce the number of blocks required
for efficient data transfer, allowing concurrent data transfer and computation to occur
without enforcing that some of the load tasks were delayed (as before).

The code that implements the load and unload tasks in QuickSched was modified

6.5. Extending QuickSched to GPGPUs 118

to use 4-way ILP, and to perform the last few copies with no ILP in the case that the
size of the data was not a multiple of 4*blockDim.x.

I then modified the task retrieval process to use a new queue ordering:

1 if(threadIdx.x == 0){

2 tid = -1;

3 if(unload_queue.nr_avail_tasks > 0)

4 tid = get_task(&unload_queue);

5 if(tid < 0 && load_queue.nr_avail_tasks > 0 && blockIdx.x < 12)

6 tid = get_task(&load_queue);

7 if(tid < 0 && cuda_queues[0].nr_avail_tasks > 0)

8 tid = get_task(&cuda_queues[0]);

9 }

The load queue is now only accessed by blocks with blockIdx.x < 12 (this choice was
made by tuning the parameter on the GTX690), but those blocks prioritise it over the
work tasks. The load tasks should take the same amount of execution time as before,
however they will be done earlier on in the computation, so important tasks that rely
on large amounts of data can occur earlier in the computation. Other blocks are free
to perform computation as soon as any enough data has been copied to the GPU.

Finally, the load tasks were sorted by their weights (see page 21), meaning load
tasks which unlock tasks with large dependent subgraphs are likely to occur earlier in
the kernel.

6.5.11 Results with the ILP Data Transfer

The results for the QR decomposition with the new data transfer setup are shown in
Table 6.18, and task plots are shown in Figure 6.16. The results are improved, with
the computation starting almost immediately when the first tile is loaded to the GPU.

The results for the BH simulation are shown in Table 6.19, and a task plot is shown
in Figure 6.17. The computation performs similarly to the previous setup.

Overall, this setup seems to performs slightly better (1% improvement for QR, up
to 5% worse for BH), and the sorting of the load tasks leads to better ordering of data
transfer when there is a rich dependency structure, as shown in the QR decomposition.

We still don’t get ideal performance for the Barnes-Hut. As Figure 6.17 shows,
many of the large tasks still rely on all the data being copied to the GPU which means
they are executed last, and all of the unloading of all of the data waits for them to
complete. If these tasks could be executed earlier, we could concurrently unload data
while doing computation, as in the QR decomposition.

6.5. Extending QuickSched to GPGPUs 119

Matrix size Initial setup New setup
1024× 1024 82.486ms 78.381ms
1536× 1536 220.026 ms 211.481 ms
2048× 2048 516.695ms 502.782ms

Table 6.18: Time taken to compute the tiled QR decomposition of various matrices.
The times include the loading and unloading of data to the device as well as the
QuickSched setup times. The new setup performs 2.5-5% faster than the initial setup
overall.

a)

0 10 20 30 40 50 60 70

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for QR with Async Loads on a 1024x1024 Matrix.

b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for QR with Async Loads on a 1024x1024 Matrix.

Figure 6.16: Task plots for the QR decomposition on a 1024× 1024 matrix. a) shows
the entire computation while b) shows a zoom in at the start of the computation. The
purple tasks show the load tasks. The computation can begin almost immediately when
the first tile’s data arrives on the GPU, and every block is working for the majority of
the computation.
The magenta tasks are the load tasks, and the teal tasks are the unload tasks. The
remaining colours represent the work tasks of the QR decomposition.

Problem size Initial Runtime New Runtime
1M particles 135.220ms 120.400 ms
10M particles 2084.827ms 1847.997 ms

Table 6.19: Time taken to compute the accelerations on particles from a cosmological
volume using the Barnes-Hut method. The times only include the runtime of the GPU
kernel, with a maximum of 128 particles per cell. We can clearly see the advantage
gained from fully asynchronous data transfer for the Barnes-Hut, with a speedup of
around 7%.

6.5. Extending QuickSched to GPGPUs 120

0 20 40 60 80 100

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for BH on a 1M Particle Comsological Volume

Figure 6.17: Task plot for the BH simulation of a 1M particle cosmological volume.
The work tasks no longer need to wait on all of the data transfer to the GPU before
they can begin, improving the runtime of the kernel despite the data transfer to the
GPU taking 20ms longer. However, the ordering of the tasks is still poor, resulting in
near-synchronous unloading of the data.
The magneta tasks are the load tasks and the teal tasks are the unload tasks. The
remaining colours represent the work tasks of the BH simulation.

6.5.12 Adding Priorities to the Work Tasks

To fix the issue highlighted by the Barnes-Hut test case, I decided to add a priority
setup to the user-defined work tasks. Since we can’t use priority-aware data structures
on the GPU, I added an additional work queue to the setup. The new queue was the
last queue to be searched for tasks, i.e. the lowest priority queue.

Each task has a cost associated with it, which is provided by the user. Rather
than using the weight of tasks to determine whether a task is important (as a task’s
weight is strongly dependent on its dependencies), I felt the cost was a better way to
determine if a task was heavy enough to disrupt the execution of the kernel.

Using Quickselect [26], the CPU computes a value to use as a minimum task cost
for the higher priority queue. With two queues, I used the 80th percentile, i.e. the top
20% of work tasks by cost are placed in the higher priority queue, whilst the remainder
are placed in the normal priority queue.

This value is then copied to the GPU and stored in the variable median_cost. The
task unlock section was also modified to make use of the median_cost:

1 for(i = threadIdx.x; i < tasks_cuda[tid].nr_unlocks; i += blockDim.x){

2 if(atomicSub(&tasks_cuda[tasks_cuda[tid].unlocks[i]].wait , 1) == 1

&& !(tasks_cuda[tasks_cuda[tid].unlocks[i]].flags &

task_flag_skip)){

3 if(tasks_cuda[tasks_cuda[tid].unlocks[i]].type != type_unload){

4 if(tasks_cuda[tasks_cuda[tid].unlocks[i]].cost > median_cost ||

tasks_cuda[tasks_cuda[tid].unlocks[i]].type == type_ghost){

5 cuda_queue_puttask(&cuda_queues[0] , tasks_cuda[tid].unlocks[i]

);

6 }else{

6.5. Extending QuickSched to GPGPUs 121

Matrix size Initial setup Final setup
1024× 1024 82.486ms 79.290ms
1536× 1536 220.026 ms 214.496 ms
2048× 2048 516.695ms 506.294ms

Table 6.20: Time taken to compute the tiled QR decomposition of various matrices.
The times include the loading and unloading of data to the device as well as the
QuickSched setup times. The final setup performs slightly worse than the previous
setup (Table 6.18), but still significantly better than the initial setup. The loss of
performance is due to slightly more scheduling overhead during computation. The
benefit of having more priority-aware scheduling for the QR does not make up for
these costs.

7 cuda_queue_puttask(&cuda_queues[1] , tasks_cuda[tid].unlocks[i]

);

8 }

9 }else

10 cuda_queue_puttask(&unload_queue , tasks_cuda[tid].unlocks[i]);

11 }

12 }

As before, the unload tasks are placed into the unload_queue. The high priority work
tasks (i.e. those whose cost is larger than median_cost) and ghost tasks are placed into
the high priority queue (cuda_queues[0]) and all other work tasks are placed into the
normal priority queue (cuda_queues[1]).

6.5.13 Final Results

The runtimes (Table 6.20) for the QR decomposition again show only a small improve-
ment over the original setup, and performs worse than some of the previous setups.
However, the performance loss is likely due to the increased cost of scheduling in the
final version.

The Barnes-Hut simulation gains significantly from additional priority awareness.
It is clear from the task plot (Figure 6.18) that the unload tasks are now almost entirely
hidden in the computation. The large tasks that previously limited the performance
are prioritised, meaning large numbers of unload tasks are not waiting on a single task
to complete before they can be executed. Table 6.21 shows significant improvements
in the runtime (up to 56% over the initial variant).

Figure 6.19 shows a comparison of the original setup which uses cudaMemcpy, to
the version with no priority queue and load/unload tasks, and to the final version
with a priority queue setup and load/unload tasks. These results are for the Barnes-

6.6. Porting the Load and Unload Tasks back to mdcore 122

Problem size Runtime without priorities Runtime with priorities
1M particles 120.400ms 102.756 ms
10M particles 2084.827ms 1330.728 ms

Table 6.21: Time taken to compute the accelerations on particles from a cosmological
volume using the Barnes-Hut method. The times only include the runtime of the GPU
kernel, with a maximum of 128 particles per cell. We can clearly see the advantage
gained from the new priorities, with a speedup of 56% for the larger test case.

0 10 20 30 40 50 60 70 80 90 100

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time (ms)

B
lo

ck
 ID

Task Plot for BH on a 1M Particle Comsological Volume

Figure 6.18: Task plot for the BH simulation of a 1M particle cosmological volume.
The particle-cell tasks that operate on large cells are now prioritised, meaning the
unload tasks can occur almost entirely during the computation. This leads to better
load balancing and performance. Again the time taken to move data to the GPU rises
by 10ms, however the improved ordering of tasks more than makes up for this.
The magneta tasks are the load tasks and the teal tasks are the unload tasks. The
remaining colours represent the work tasks of the BH simulation.

Hut simulation. The improvements to the task-based scheme shows a speedup of
approximately 15%, coming solely from performing the data transfer and computation
concurrently, and prioritising the most computationally intensive tasks.

6.6 Porting the Load and Unload Tasks back to
mdcore

Results in this section ran with CUDA 5.0 on the GTX690 for direct comparison with
previous results.

The final work I undertook on Task-Based Parallelism for GPUs was to transfer the
improvements made to the scheduler as part of QuickSched back into mdcore. I ported
the load and unload tasks back into mdcore, with one load and unload task per cell.
Dependencies were added from the load tasks to the sort tasks, and from all of the self
and pair tasks to the unload tasks. mdcore only uses one queue for work tasks, as well
as the load and unload queues as used in QuickSched. One other change I made was
to place the sort tasks into the unload queue. These tasks are especially important, as
they unlock all of the pair interaction tasks. Allowing priority-aware scheduling may
improve this, however this led to better performance than placing the sort tasks into

6.6. Porting the Load and Unload Tasks back to mdcore 123

0 10 20 30 40 50 60 70 80

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

time (ms)

b
lo

c
k
 I
D

Task plot for BH with cudaMemcpy

0 10 20 30 40 50 60 70 80

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

time (ms)

bl
oc

k
ID

Task plot for BH with async loads and no priority awareness

0 10 20 30 40 50 60 70 80

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

time (ms)

bl
oc

k
ID

Task plot for BH with async loads and priority awareness

Figure 6.19: Task plots with and without load and unload tasks, and with/without
priority awareness on 150k particles. Each rectangle represents a single task that is ex-
ecuted. The full task-based setup performs better than the versions using cudaMemcpy
due to starting the computation sooner. Without priority awareness of user-specified
tasks, we don’t get as much of an advantage due to the apparent synchronisation of
the unload tasks. This occurs as data is being written to large resources at the end
of the computation, meaning any children of those resources have to wait until this is
completed before they can be unloaded. Adding further priority awareness allows us
to specify that these tasks should be executed first, so the unload costs become fully
integrated within the computation.

6.7. Conclusions 124

Variant JAC ApoA1 STMV
Serial CPU bonded inter-
actions with load and un-
load tasks

9.934ms 70.186ms 645.875ms

Parallel GPU bonded in-
teractions with load and
unload tasks

9.925ms 38.936ms 446.646ms

Table 6.22: Time required to compute a timestep for the all three test cases on the
GTX690 with and without the parallel bonded interactions, and with load and unload
tasks.

0 5 10 15 20 25
1
9

17
25
33
41
49
57
65
73
81
89
97

105
113
121

Time (ms)

B
lo

ck
 ID

Task Plot for the Execution of ApoA1 on the GTX690

Figure 6.20: Task plot for an ApoA1 simulation on the NVIDIA GeForce GTX690, with
parallel bonded interactions enabled. The black tasks are ghost tasks, which handle
the dependencies between the work tasks and the parallel bonded tasks. You can see
the load (magenta) and sort (red) tasks are interspersed as sort tasks are prioritised
over other load tasks. There is some load imbalance at the end of the simulation, as
some pair interaction tasks take longer than expected due to running in parallel with
bonded interaction tasks.
The teal tasks are the unload tasks, and the blue, green and yellow tasks are the
non-sort MD work tasks.

the work queue.
The results with these changes are shown in Table 6.22 and Figure 6.20. Overall,

the time taken to compute a timestep is improved slightly compared to the final version
created in Section 6.2.

6.7 Conclusions

In this section I have shown the evolution of our task-based approach on GPUs. Our
early task-based scheduler showed promise for MD, and further work as part of a
standalone library has shown it is effective on a problems with rich dependency graphs
(such as the tiled QR decomposition) or no dependencies (Barnes-Hut Simulation). I
also managed to integrate data transfer as part of the task-based framework, which
allows fine-grained data transfer and computation to occur in parallel, and this can
allow for significant speedup over solely using cudaMemcpy.

6.7. Conclusions 125

One difficulty I did not address during this work is parallelising the GPU com-
putation with CPU computation. While QuickSched enables both CPU and GPU
Task-Based Parallelism, I have not worked on a scheme for load balancing Task-Based
Parallelism on both devices, and due to this a single scheduler cannot perform Task-
Based Parallelism on the GPU and CPU simultaneously. I did check if the GPU data
transfer method affects CPU performance on memory-bound computation, and it ap-
pears to make no difference (Appendix B), so I believe there should be no loss in CPU
performance due to any of the GPU task-based parallel computation.

The load and unload scheme used in QuickSched also makes multi-GPU Task-Based
Parallelism on the same node difficult. As there is currently no atomic access to CPU
RAM on the GPU, any data writes need to not conflict when using multiple GPUs.
Due to the new hardware (which has since been released, specifically NVLINK) for
CUDA + Power8 I decided not to investigate how to overcome this difficulty at this
time. This new hardware should increase the speed of data transfer to the GPU, and
may change other ways in which the GPU accesses CPU RAM.

The task-based approach introduced here is aimed towards problems that cannot
use the entire GPU solely by SIMT parallelising the algorithm, or problems that have
complex data dependencies. The scheduler allows individual tasks to only exploit small
amounts of SIMT parallelisation, as it can parallelise these tasks across the entire GPU.

The downside of our task-based approach is that is currently requires the data to
be copied to and from the GPU after every kernel execution (through the load and
unload tasks). For applications that perform the entire computation on the GPU this
would hurt the performance, as such computations leave most of the data on the GPU,
and only copy data received from other nodes back to the GPU. It would be possible
to extend our work to avoid data transfer after every kernel.

I did not investigate load balancing CPU and GPU QuickSched inside the same
code. To be able to do this well, the library could test the relative performance of
each task type on the CPU and GPU, and then create a weighted partition of the work
based upon the relative speed of the CPU and GPU tasks. This may require a custom
partitioning algorithm to create unbalanced partitions.

Chapter 7

Task-Based Parallelism for Hybrid
Homogeneous Architectures with
Automated MPI

7.1 Introduction

Task-Based Parallelism is accepted as an effective shared-memory paradigm for parallel
computing. Its ability to automatically load balance computation is one of its major
advantages on these shared-memory systems. However, all massive-scale computations
cannot be performed on solely shared-memory computers, requiring either distributed
or hybrid shared-distributed memory setups. On these systems, the automatic load
balancing no longer works, as techniques such as work stealing is not efficient between
nodes, as nodes would need to pass multiple messages back and forth to perform work
stealing. This has resulted in little work being done on Task-Based Parallelism for
hybrid memory systems, though projects such as DAGuE [8] and our SWIFT [40]
project use Task-Based Parallelism for large scale computations and have shown its
efficacy, but use data decomposition methods to perform load balancing between nodes.

When performing computations on large hybrid shared-distributed memory ma-
chines, there are two new main difficulties that do not arise on shared memory systems:

1. Load balancing between nodes.

2. Data transfer between nodes.

Load balancing on hybrid or distributed memory machines is usually based upon
data decomposition. Naively, this involves dividing the data into N equal sized chunks
(where N is the number of nodes the computation is being performed upon) and
assigning each chunk to a separate node. Often codes use some data overlap between

126

7.1. Introduction 127

neighbouring regions (often known as halos). This decomposition method relies on
the assumption that the amount of work associated with each chunk of data is known
and homogeneous, which is often not the case. Furthermore, as the number of nodes
increases, the amount of data (and therefore the amount of computation) on each node
decreases, although the amount of communication does not, and may even increase.
This can result in communication dominating the computation. Other strategies for
load balancing exist, based on graph partitioning approaches or space filling curves,
however the data decomposition is still the most common approach.

Data transfer between nodes is usually performed by message passing (MPI) com-
munication protocols, though other techniques such as Distributed Global Address
Space (DGAS) methods do exist. Most applications perform communication and com-
putation separately, iteratively using single-threaded synchronous MPI steps followed
by bursts of computation across all of the nodes, though additions to MPI-2 and
MPI-3 have provided alternatives. This approach is used in the DL_POLY_4 [49] and
Gadget-2 [45] scientific codes (among many others), which are still commonly in use.
This approach means most of the cores are idle waiting on data transfer for large chunks
of the overall computation time, and this effect can further worsen the performance
loss due to load imbalances.

To be able to use Task-Based Parallelism on hybrid memory systems, we would
ideally need to be able to find an improved strategy to load balance the computation,
as well as improve data transfer. This should all be done as part of the task-based
scheme. Our solutions to both of these problems are based upon the work used to
build our GPU task-based framework.

During the work on mdcore (Section 6.3), I attempted to use a graph partitioning
approach to decompose the data between ranks based the expected amount of compu-
tation required for each segment of data. This seemed to be reasonably effective, and
is applied in this chapter to a more general task-based framework.

I also introduced the concept of load and unload tasks as part of QuickSched on the
GPU (Section 6.5). We build on this approach and use send and receive (shortened to
recv) tasks to perform the communication in a hybrid memory task-based framework.
Together with MPI’s asynchronous communication functions (Isend and Irecv), these
allow multi-threaded communication in parallel with computation.

One difficulty using Task-Based Parallelism on hybrid shared-distributed memory
systems is correctly enforcing conflicts and dependencies between tasks on different
nodes. Dependencies can be enforced using MPI communication to send a message to
another node when a task completes. Conflicts could just be modelled as dependencies,
however this has been shown to lead to poor performance for some task graphs as it can
limit the amount of parallelism available, e.g. in Molecular Dynamics if we treat the

7.1. Introduction 128

conflicts between pair tasks as dependencies, we would have an artificial ordering for
some of the tasks which reduces the amount of parallelism available. This was found to
be an issue in [31] and [2]. One way to avoid conflicts occurring between nodes would
be to duplicate the conflicting tasks on each node, though this obviously can lead to a
loss of parallel efficiency due to work duplication. We use the latter approach in this
chapter.

The remainder of this chapter provides a proof-of-concept implementation for this
approach as part of QuickSched, and the results of this implementation for the tiled
QR decomposition and a Barnes-Hut simulation.

7.1.1 Extending the QuickSched Model for MPI

When deciding how to use MPI automatically as part of QuickSched, I made decisions
to simplify some problems expected to arise during the implementation. The primary
simplification was to let every rank have a global view of the computation, i.e. every
rank knows all of the tasks and resources in the system, but doesn’t neccessarily have
all of the data associated with them. This makes some of the preprocessing steps easier
to compute. The obvious downside is that this is expensive with respect to the amount
of memory required.

In the standard QuickSched library, the tasks’ and resources’ indices are simply their
position in the task or resource array, and this ordering is fixed. In MPI QuickSched,
we do not enforce that the tasks and resources are all created on a single node. When
the synchronisation of these objects occurs between ranks, there is no easy way to keep
the original indices. Instead, I added ID fields to both the task and resource structures.
These ID fields are stored as long long int, with the first 16 bits being the ID of the
rank that created them, and the remaining 48 bits being a unique index on that node,
though in practice this is much larger than necessary. Every task and resource can
be uniquely identified by this ID. If this approach were to be used on over 216 nodes
the number of bits required to store the rank ID would need to be increased, while
the number of bits used to store the task index within the rank can be reduced, as an
individual rank is unlikely to create 248 tasks.

When deciding how to schedule tasks and load balance the computation across
multiple MPI ranks, I decided to no longer allow users to dynamically create tasks
during execution. The qsched_addtask_dynamic function specified in QuickSched
was renamed qsched_addtask_dynamic_local, and was only enabled if MPI was not
enabled. This decision was made as it invalidates the global view of the computation.
Furthermore, the default QuickSched qsched_addtask and qsched_addres were re-
named similarly and can only be used if MPI is disabled. This means MPI QuickSched
still supports all of the standard non-MPI QuickSched routines.

7.1. Introduction 129

To utilise QuickSched with MPI, QuickSched needs to know where the data asso-
ciated with each resource is stored. I created a new qsched_addres function, which
requires the user to specify a data size and a void** pointer. The function then
directly allocates memory using malloc of the size specified by the user, and returns
the pointer to the user. If a task writes to data stored in a resource, then the task
must lock the resource. If a task only reads from data stored in a resource, then the
task must use the resource.

For hierarchical resources, a separate qsched_addchildres function was created,
which required the user to specify a parent ID, a data size, a data offset (in bytes),
and a void** pointer. The pointer was then set to point to the offset specified in
the parents data array.

Since the scheduler/user should only use the IDs of tasks (as opposed to array
indices), I needed to implement functions to be able to retrieve the array indices of
the resources from their IDs, getindex (for resources) and gettaskindex (for tasks).
The scheduler stores two arrays, res_ranks and task_ranks, which store the first
array index of a resource/task that was created on each rank. All of the resources and
tasks created on a single rank are stored in a contiguous segment of the resource/task
array, in ascending order by ID. This means the index of any resource (or task) is
res_ranks[id>>48] + (id & 0xFFFFFFFFFFFFFF) (or task_ranks in the case of tasks).

7.1.2 Synchronising the Computation over MPI.

The model I decided to use for the MPI QuickSched setup requires two synchronisation
steps. The first step synchronises the resource structures across the ranks, and the
second synchronises the tasks, dependencies, uses, and locks across the ranks. Since
task creation requires knowledge of the resources, this two-step synchronisation process
is required to enable all ranks to create tasks.

To synchronise the resources, I created a qsched_sync_resources function:

1 void qsched_sync_resources(struct qsched *s){

2 int errors, i;

3 lock_lock(&s->lock);

4 s->res_ranks[s->rank+1] = s->count_res;

5 errors = MPI_Allreduce(MPI_IN_PLACE, s->res_ranks, s->count_ranks+1,

MPI_INT, MPI_SUM, s->comm);

6 //Block to check for MPI errors.

7 s->res_ranks[0] = 0;

8 for(i = 1; i < s->count_ranks+1; i++){

9 s->res_ranks[i] += s->res_ranks[i-1];

7.1. Introduction 130

10 }

11 struct res *res_new = (struct res*)

calloc(s->res_ranks[s->count_ranks] , sizeof(struct res));

12 struct res *res_local = &res_new[s->res_ranks[s->rank]];

13 for(i = 0; i < s->count_res; i++){

14 res_local[i] = s->res[i];

15 }

16 int number = sizeof(struct res) * s->res_ranks[s->count_ranks];

17 number = number / sizeof(int);

18 errors = MPI_Allreduce(MPI_IN_PLACE, res_new, number, MPI_INT,

MPI_SUM, s->comm);

19 //Block to check for MPI errors.

20 free(s->res);

21 s->res = res_new;

22 for(i = 0; i < s->res_ranks[s->count_ranks]; i++){

23 if(s->res[i].ID>>48 != s->rank)

24 s->res[i].data = NULL;

25 }

26 }

where the s->res_ranks variable was introduced as part of MPI QuickSched, and
s->res_ranks[i] stores the index of the first resource created on rank i, and
s->res_ranks[num_ranks] is the total number of resources in the system. Lines 4-10
initialise this array. Once this array has been synchronised, the new resource array
(res_new) is created, and the resources created on this rank are placed into the cor-
responding section of that array in lines 12-14. This array is synchronised across the
ranks in lines 16-20. Finally, in lines 21-24 each rank loops through the resources, and
clears the data pointer if the resource wasn’t created on the rank.

I chose to use MPI_Allreduce to synchronise these arrays as having synchronisation
in this section is not a substantial part of the overall computation (as it is performed
once and it not performance critical), and these routines are heavily optimised for
performance in MPI implementations.

Synchronising the tasks, dependencies, uses, and locks (as well as two additional
arrays required later, called users and lockers) is performed in a similar manner to
the synchronisation of resources. Once this synchronisation has been completed, the
data array that stores the data belonging to each task need to be synchronised. This
array is synchronised in the same way, however the tasks no longer have offsets to the
correct data in the s->data array. When synchronising the s->data array, the offset
of each rank’s data resource is stored in a temporary array, and these offsets are used

7.2. Partitioning the Task/Resource Graph 131

to reconstruct the tasks’ data offsets in the new s->data array.
The MPI extensions to QuickSched needs more data than the GPU extensions, as

each rank creates its own QuickSched instance. Each of these QuickSched instances
needs to be able to be created independently, but must be able to be easily synchronised
with the other objects in the MPI computation. This results in the additional of global
IDs and resource owners for MPI QuickSched, while both MPI and GPU QuickSched
have additional values stored to use the specific architectures. As MPI QuickSched
manages data transfer for the user, the user needs to use QuickSched’s functions to
be able to find their data, while the GPU and CPU pointers in GPU QuickSched are
created by the user.

7.2 Partitioning the Task/Resource Graph

To be able to use Task-Based Parallelism on hybrid memory machines, we need to
address one of the primary issues of parallel computing, load balancing. Our strategy
for this extends on the ideas used for mdcore (Section 6.3), and is somewhat similar to
a data decomposition strategy.

In QuickSched, we have a sequence of dependent tasks, and each task uses and/or
locks a number of resources which represent the data in the system. We want to spread
the resources such that the amount of work that each node has to do is roughly the
same. As each task has a cost associated with them (which can be either user-specified
or based on runtime in previous iterations), we can work out a rough estimate of how
computationally expensive each resource is.

One further complexity is that we aim to avoid communicating data back and forth
during the computation - i.e. don’t send data for a resource x from node A to node
B, and from node B to node A in a single execution of the task graph. To enforce
this, I decided that every task that locks (i.e. writes to the data owned by) a resource
must be executed on the node that the resource is allocated to. This means any task
that locks multiple resources that are allocated to different nodes must be executed on
each node that owns one of the resources, i.e. reduce the amount of communication by
replicating work.

When performing the load balancing, we therefore want to minimise two values:

1. The amount of work that has to be repeated, i.e. minimise the number of tasks
executed on multiple nodes.

2. The load imbalance, i.e. minimise the difference in work executed across all nodes.

When working with no hierarchical resources, we can create a graph with one vertex
for each resource in the system, where each vertex’s weight is equal to the sum of the

7.3. Automated Task-Based Data Transfer 132

costs of all tasks that lock the corresponding resource. We can create edges between
all vertices where a task exists that locks both vertices, and the edge weight be equal
to the sum of the costs of all tasks that lock both of the corresponding resources.

We can then partition this graph using traditional graph partitioning approaches,
as these try to minimise both the difference in vertex cost between each partition,
and minimise the edge cut between the partitions. These two values represent the
load imbalance and duplicated work in the system, so these partitions should give a
reasonable result.

When working with non-hierarchical resources, building the task graph is slightly
more complex. The resource hierarchy can be a forest, where some of the resources are
used or locked and some may not be. Rather than creating one vertex for each resource
in the system, we instead create one vertex for each resource that is used or locked, but
has no ancestors that are used or locked (these resources are referred to as upper-level
resources). If a task locks a resource that isn’t directly represented by a vertex, its
costs are added to the upper-level resource that is an ancestor of the resource locked
by the task.

This is a prime example of the difficulty of building a single scheduler to work on
all possible problems, however this method should be effective for most problems.

7.3 Automated Task-Based Data Transfer

One main goal of MPI QuickSched was to create a task-based system where commu-
nication does not need to be handled directly by the user. Since the user specifies
a detailed system of tasks, uses, locks and dependencies, we can work out the data
requirements of the system automatically once we have an initial partitioning of the
data, such as the one described in the previous section.

As we enforce that a rank executes every task that locks a local resource (a resource
owned by the rank), we only need to transfer data between dependent tasks that are
executed by different nodes.

If a task is executed on a different rank to any of its dependencies, then the task
must wait on the data to arrive before it can be executed. Naively, we could create a
send/receive pair for every such task, and force the send and receive tasks to depend
on all of the tasks that unlock this task. However, this may involve sending the same
data multiple times, which may be unnecessary. Instead, if we loop through the tasks
in topological order, we can keep track of whether our local copy of a resource is up-
to-date. For each task t that locks a non-local resource, we only create a send/receive
pair if the local copy of each locked resource is not up-to-date. If we don’t create a new
send/receive pair, we ensure the previously created send/receive pair is unlocked by all

7.4. Load Balancing and Work Partitioning 133

tasks that unlock the task t and lock the resource communicated by the send/receive
pair, and the task t is unlocked by the most recently created receive task. Since all of
the data dependencies need to be explicitly stated by the programmer, this is sufficient
to reduce data transfer and ensure correct computation.

An example of this is shown in Figure 7.1. The figure shows two potential allocations
of the 3 resources (rectangles) to nodes (coloured red and green). The 4 tasks (circles)
are all dependent, and lock the resources they are joined to by a solid line, and use any
resource they are joined to by a dashed line. In a), data from resource A needs to be
sent from the red node to the green node after task 3 is executed, so the dependency
between tasks 3 and 4 is effectively replaced by a send and receive pair. Figure b)
shows an alternate allocation, where the data from resource A is sent from the red
node to the green node after task 2, and the data from resource B needs to be sent
from the green node to the red node before task 3. The data from resource A is never
sent back to the red node, as the red node will execute all 4 tasks.

7.4 Load Balancing and Work Partitioning

Partitioning the work and data is a three step process:

1. Build the graph from the resources and tasks.

2. Partition the graph using METIS.

3. Move the resources and data associated with them around the system.

As briefly mentioned earlier in this chapter, I added a lockers and users array to
the qsched structure. These arrays keep track of which tasks lock and use each resource,
and each resource knows how many tasks use or lock it. Storing this relationship in
both directions helps us to compute the resource graph efficiently.

7.4.1 Building the Resource Graph.

The METIS library takes an adjacency list input format, consisting of an edge list,
vertex weight array and edge weight array. The first step of building this graph is to
compute the cost associated with each resource. This is done on each rank by calling
the qsched_partition_compute_costs function.

1 void qsched_partition_compute_costs(struct qsched *s, idx_t

*res_costs){

2 struct task *t;

3 int i, j;

7.4. Load Balancing and Work Partitioning 134

a)

A B C

1 2 3 4

b)

A B C

1 2 3 4

Figure 7.1: The figure shows two potential allocations of the 3 resources (rectangles)
to nodes (coloured red and green). The 4 tasks (circles) are all dependent, and lock
the resources they are joined to by a solid line, and use any resource they are joined
to by a dashed line.
In a), data from resource A needs to be sent from the red node to the green node after
task 3 is executed, so the dependency between tasks 3 and 4 is effectively replaced by
a send and receive pair.
Figure b) shows an alternate allocation, where the data from resource A is sent from
the red node to the green node after task 2, and the data from resource B needs to be
sent from the green node to the red node before task 3. The data from resource A is
never sent back to the red node, as the red node will execute all 4 tasks.

7.4. Load Balancing and Work Partitioning 135

4 for(i = s->task_ranks[s->rank]; i < s->task_ranks[s->rank+1]; i++){

5 t = &s->tasks[i];

6 for(j = 0; j < t->nr_locks; j++){

7 res_costs[getindex(t->locks[j],s)] += t->cost;

8 }

9 for(j = 0; j < t->nr_uses; j++){

10 res_costs[getindex(t->uses[j],s)] += 1;

11 }

12 }

13 }

The loop in line 4 loops over all of the tasks created on the rank, and adds the task’s
cost to the res_cost of each resource that the task locks. It also increases the res_cost
of all of the resources used by each task by 1. While tasks that only use a resource
don’t have a large effect on the runtime associated with a resource, there is some cost
associated with having tasks executed on ranks that don’t contain all the resources
required for execution. I tested this by increasing res_cost by t->cost when a task
used a resource, or ignoring the uses completely, but didn’t see any benefit.

This array is then synchronised across the ranks using MPI_Allreduce with the
MPI_SUM operator.

Once the resource costs are computed, we can build the vertex weight array. When
performing this operation, we also need to keep track of which vertex corresponds to
which resource in QuickSched. The function that implements this loops through all
of the resources that are used or locked, and recurses through the resource hierarchy
above the resource. If the resource has no parents that are locked or used, then a vertex
is added to the graph to represent this rank, with the vertex’s cost being equal to the
res_cost calculated for this resource.

The res_cost values are also computed recursively, i.e. the res_cost of a resource
is equal to the sum of the costs of all tasks that lock the resource plus the res_cost of
all tasks that lock any children of that resource. This also occurs in the qsched_par-
tition_compute_costs function, however it is not shown in the code snippet above.

The final step of building the graph is to create the edge and edge weight arrays.
These are initialised as an array of arrays, which are merged into a single list once the
arrays have been populated. To build the edgelists, we loop through the tasks, and find
all pairs of locked resources for each task. For each pair, if the vertices representing the
resources (or resources’ parents) in the graph are distinct, an edge is added between
the vertices if one does not already exist. The task’s cost is then added to the weight
of that edge. Since the edge cut represents the amount of repeated work, uses are
ignored in this calculation, as using a resource does not enforce duplication of a task’s

7.4. Load Balancing and Work Partitioning 136

computation.
Once the graph has been constructed, it is partitioned using METIS_PartGraphKway,

which outputs an array containing the partition number that each vertex belongs to.

7.4.2 Moving the Resources and Data

Once the partition is obtained, each rank loops through the partition:

1 for(i = 0; i < node_count; i++){

2 if(nodeIDs[i] == s->rank){

3 if(s->res[noderef[i]].node != s->rank){

4 s->res[noderef[i]].data = malloc(s->res[noderef[i]].size);

5 MPI_Irecv(s->res[noderef[i]].data, s->res[noderef[i]].size,

MPI_BYTE, s->res[noderef[i]].node, i, s->comm, &reqs[reqnr]);

6 reqnr++;

7 s->res[noderef[i]].node = s->rank;

8 }

9 }

10 if(nodeIDs[i] != s->rank){

11 if(s->res[noderef[i]].node == s->rank){

12 MPI_Isend(s->res[noderef[i]].data, s->res[noderef[i]].size,

MPI_BYTE, nodeIDs[i], i, s->comm, &reqs[reqnr]);

13 reqnr++;

14 }

15 s->res[noderef[i]].node = nodeIDs[i];

16 }

17 }

where nodeIDs is the partition created by METIS. For each resource that is allocated
to a new node (line 3), the owning rank allocates memory to store the resource’s data
in line 4, and emits the MPI_Irecv to receive the data in line 5. The reqs array stores
MPI_Request objects created by the asynchronous MPI routines. Lines 10-13 emit the
MPI_Isend calls to send resources to other ranks.

Once all of the MPI calls have been emitted, each rank calls MPI_Waitall to wait for
the communication to complete. Once this is complete, we loop through the resources,
and update any child resources accordingly:

1 for(j = 0; j < s->res_ranks[s->count_ranks]; j++){

2 struct res *temp = &s->res[j];

3 struct res *parent;

7.5. Creating the Send and Recv Tasks. 137

4 int offset = temp->offset;

5 while(temp->parent != -1){

6 parent = &s->res[getindex(temp->parent, s)];

7 if(parent->num_lockers > 0 || parent->num_users > 0){

8 s->res[j].node = s->res[getindex(parent->ID, s)].node;

9 s->res[j].data =

&(((char*)s->res[getindex(parent->ID,s)].data)[offset /

sizeof(char)]);

10 break;

11 }

12 temp = parent;

13 offset += temp->offset;

14 }

15 }

For each resource, we recurse through the tree to find the first ancestor that was
used or locked (lines 5-7). Once this is found, we update the node and data pointer
and quit recursing. For each ancestor that was not used or locked, we continue to
recurse, and update the data offset in line 13. Since all resources occur after any
of their ancestors in the resource array (since any ancestors must be specified before
qsched_addchildres can be called during setup), this data will always be up-to-date.

Once this is updated, we loop over the resources, and nullify the pointer of any re-
source that is not local. Finally, we loop through the tasks and set the task_flag_skip
flag on each task that doesn’t lock any local resource.

7.5 Creating the Send and Recv Tasks.

The final setup step is to create the send and receive tasks required for the computa-
tion. At this stage, the qsched object is completely synchronised across the ranks, and
the inbuilt qsched_addtask and qsched_addunlock functions will no longer function
correctly on this object, as any new tasks will be added to the wrong location in the
arrays, and the object can no longer be easily synchronised. To avoid any issues occur-
ing at this point, we create a temporary tsched object (which is essentially a cutdown
version of a qsched object that doesn’t contain any queues or other sections not re-
quired for this section of code), which allows us to add new tasks and dependencies.
Once the send and receive tasks have been created, this is merged back into the qsched
and deleted.

Each send and recv task has five integers associated with it (stored in the
task->data array). These five values are necessary to be able to execute the task

7.5. Creating the Send and Recv Tasks. 138

during the computation, and are:

1. The rank ID of the rank sending the data.

2. The rank ID of the rank receiving the data.

3. The first 32-bits of the sent resource’s ID.

4. The second 32-bits of the sent resource’s ID.

5. The communication tag (required for MPI’s asynchronous communication func-
tionality).

The MPI specification requires that any two communications that occur simultane-
ously and share the same send rank, receive rank, and tag, must be received in the same
order as they are sent. This adds an ordering to data transfer, which is unnecessary
for our method. Instead, we use a different tag for every receive task on each node.
The method used to create our send and receive tasks means the task pair is always
created by the receiving rank, so it is sufficient to use a tag value of i when creating
the ith send/receive pair on each rank.

Before we can create the send and receive tasks, we initialise the wait counters
for all of the tasks, and topologically order the tasks. We also create first_recv
and data_pos arrays, which store the topological index of the first task that needs to
receive a resource, and the topological index of the last task that had an up-to-date
copy of a resource respectively. The values in both of these arrays are initially set to
−1.

The final preprocessing step is to compute each task’s parents. This can be done
while setting the wait counters.

Once the preprocessing has been completed, each rank loops through all of the
tasks in the topological ordering that need to be executed locally. These tasks have
different operations applied depending on whether their wait counter is 0 (i.e. are not
unlocked by any tasks) or not.

For every task with a wait counter of 0, we loop through all of the resources used
and locked by the task. If a resource is not local, we check whether it has already
been received on this rank (i.e. first_recv >= 0). If not, we create a send/receive
pair, make the task dependent on the receive task, and set first_recv equal to the
receive task’s ID. If the data has previously been received, then we make the task
dependent on the first_recv task for that resource instead. In this case, we do not
update data_pos, as we only know the data will be up-to-date as of the start of task
execution.

For the tasks with a nonzero wait counter, we want to only send the data if it is
not up-to-date on this rank. As before, we loop through all of the resources used and

7.5. Creating the Send and Recv Tasks. 139

locked by the task. For each of these resources, we find all of the parent (unlocking)
tasks that lock that resource, or any child or parent resource. If none of the parent
tasks lock the resource, then we perform the same operation as if the task had a wait
counter of 0 for that resource, as this task is not dependent on the result of any other
task for this resource. Otherwise, if we didn’t execute all of the parents on this rank,
we check if the resource was last received before any of the parents were executed
(i.e. data_pos[res_index] < last_parent). If so, then create a send/receive pair,
make the send task depend on each of the parent tasks, and make the receive task
depend on all of the locally executed parent tasks. If not, then ensure the most recent
send and receive tasks for the resource depend on the parent tasks, and the receive
task unlocks the work task. If we execute all of the parents, then we already have
up-to-date data, so we don’t need to add anything extra to the task graph. Finally, we
update the data_pos array to reflect that we have correct data after all of this tasks
parents, so set data_pos[res_index] = last_parent.

Once this process is complete, then each rank has a tsched structure that contains
a number of send and receive tasks, an array of unlocks which contains all the task
IDs that the send and receive tasks unlock, and an array of unlockers which contain
all the task IDs that unlock send and receive tasks. These tsched objects are now
synchronised across all of the ranks in a similar manner to the qsched synchronisation.
At this point, every rank has all of the task information required for the computation.
The final stage of setup before computation can take place, is to integrate the data
from the tsched structure back into qsched structure. First, append the tsched task
data array to the qsched->data array, and update the pointers for each task in the
tsched. The next step is to place the new send and receive tasks into the task array.
Since each rank makes their own send/receive pairs, the tasks cannot just be appended
to the task array, as all tasks created on the same rank need to be concurrent in the
task array (as otherwise the task structures cannot be quickly found from their ID
during execution). We can count how many new tasks were created by each rank and
create a new task array to contain all of the tasks. Each rank can then copy in the
tasks from the qsched followed by the tasks from the tsched to give our new task
array.

Adding the locks and unlocks to the task array requires appending the tsched’s
array to the qsched array, and append the unlockers array to the qsched’s unlock
array. Since these aren’t guaranteed to be ordered correctly in the tsched, these arrays
are sorted using bucket sort.

Finally, we loop over all of the send and receive tasks and set the qsched_flag_skip
flag on each task that is not executed locally.

Once this is complete, the usual QuickSched setup routines are conducted and the

7.6. Implementing the Send and Receive Tasks 140

computation can begin.

7.6 Implementing the Send and Receive Tasks

I used Intel MPI (5.1.0, 5.1.1 and 5.1.2) throughout this chapter.
The send and receive tasks differ slightly from the other tasks in that the work

associated with them should be done in the background,1 as we use asynchronous MPI
routines. This means we want to call the MPI routines as early as possible, and check
the communication status as often as is feasible, as this gives the MPI runtime the
maximum flexibility.

The MPI_Isend and MPI_Irecv calls require seven parameters. The first two pa-
rameters are the data pointer and the size of the data, given in multiples of the third
parameter, which specifies the size of a single piece of data (we use MPI_BYTE for all
of our routines). The fourth parameter specifies the rank ID of the receiving rank
for MPI_Isend, or sending rank in the case of MPI_Irecv. The fifth parameter is the
MPI message’s tag, which is stored in the task’s data. The sixth parameter is the
MPI_communicator object and the final parameter is the MPI_Request object that is
used to track of the status of the communcation.

When executing a send task, the task’s data stores the ID of the receiving rank,
the ID of the resource being sent, and the tag associated with the task. We know that
the data pointer in the resource will always be initialised before computation, so it is
safe to call MPI_Isend on the resource’s data.

When executing a receive task, there is no guarantee that the resource’s data
pointer will have been set correctly. Before we can execute the MPI_Irecv call, we
either need to allocate memory for the resource, or find its parent’s data pointer if it
exists. To do this, we loop upwards through the resource hierarchy to find a parent
whose data pointer is not NULL, and set the data pointer to the correct offset in its
parent’s data array. This check is done for every resource, regardless of whether the
resource’s data is NULL. This is necessary as we could receive a child’s data early on in
the computation, and later receive its parent’s data. Since we don’t update the child
pointers when we receive the parent, we need to correct the child’s pointer if we later
update the child resource again.

This execution all takes place at the start of the qsched_enqueue function, which
means that as soon as a send or receive task is unlocked, the communication can
begin. Once these calls have been executed, the task is placed into the first thread’s

1what this means is MPI implementation dependent. For Intel MPI it appears to use compute
cycles when the main threads/cores are not active

7.7. Results 141

task queue.
To identify when communication is complete (and potentially to start/complete

the communication, the exact behaviour MPI implementation dependent) we need to
call MPI_Test on the MPI_Request. Whenever a task would be removed from a queue,
the scheduler attempts to lock the resources associated with the task by calling the
qsched_locktask function. When the scheduler calls the qsched_locktask function
on a send or receive task, it calls the MPI_Test function on the request associated
with the task. If the MPI_Test is successful, the qsched_locktask returns that it is
successful. The scheduler then performs any unlocks for the communication task.

7.6.1 Retreiving the Data Pointers

As QuickSched manages all the data flow in the system, the user cannot use any
pointers created during initialisation when implementing task code. To allow the user
to find the data required for tasks, I created a qsched_getresdata function, which
requires the qsched object and a resource ID. Since the data pointer for a resource
isn’t guaranteed to have been set (if only the resource’s parent has been received for
example), it will recurse up the hierarchy to find the correct data pointer if required.

7.7 Results

I implemented the tiled QR decomposition (introduced in Section 4.3) and Barnes-Hut
algorithm (discussed in Section 5.3) with MPI QuickSched.

7.7.1 Tiled-QR Decomposition

The QR decomposition uses no hierarchical resources - each tile of the matrix (and
section of the τ matrix) was created using qsched_addres. The task data for each
task are the IDs of the resources locked or used by the task. This is the only data
required for the task to be able to find the matrix data.

I ran the Tiled-QR decomposition on a 8192× 8192 matrix, with tiles of size 128×
128, resulting in a matrix broken down into 64 × 64 tiles. This was used to perform
two scaling tests, the first to demonstrate the strong scaling and parallel efficiency
from 1-96 cores (12 cores per node), and the second to compare performance of shared
memory performance vs MPI-only setups. For the latter, I ran the code with 1-12
cores, using 1/2/3/4/6/12 cores per rank and examined the difference in performance.

Figure 7.2 shows reasonable scaling on this test case, which takes 303.7s on a single
core and 4.6s on the full 96 cores I tested it on. Furthermore, QR appears to still be
scaling at 96 cores, suggesting that this problem can continue to scale to higher node

7.7. Results 142

20 40 60 80
0

10

20

30

40

50

60

70

80

90

Nr. Threads

S
pe

ed
up

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Nr. Threads

P
ar

al
le

l E
ffi

ci
en

cy

Speedup and Parallel Efficiency of the QR Decomposition on Cosma 4 (8192x8192 Matrix).

2 4 6 8 10 12
0

2

4

6

8

10

12

Nr. Threads

S
pe

ed
up

Shared memory
6 per node
4 per node
3 per node
2 per node
MPI only

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Nr. Threads

P
ar

al
le

l E
ffi

ci
en

cy

Speedup and Parallel Efficiency of the QR Decomposition on Cosma 4 (8192x8192 Matrix).

Figure 7.2: Speedup and efficiency plots for the QR decomposition on a 8192 × 8192
matrix, with tiles of size 128× 128. The code scales up to 8 full nodes at an efficiency
of 67%. When comparing MPI only performance to shared memory performance, the
code drops from 93% efficiency (shared memory only) to 73% (MPI only). The code
generally performs better with more threads per node (as expected).

7.7. Results 143

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

4

8

Time (s)

N
od

e
0

4

8

N
od

e
1

4

8

N
od

e
2

4

8

N
od

e
3

4

8

N
od

e
4

4

8

N
od

e
5

4

8

N
od

e
6

4

8

N
od

e
7

Task Plot for the QR Decomposition on a 8192x8192 Matrix

Figure 7.3: A task plot for the execution of the QR decomposition on a 8192 × 8192
matrix on 8 nodes. The resource allocation given by METIS results in no tasks being
duplicated, which helps with the performance. However, some sections of the compu-
tation result in all but one of the nodes waiting on communication before they can
continue. The send tasks are magents and the receive tasks are teal.

7.7. Results 144

20 40 60 80 100 120

20

40

60

80

100

120

0

1

2

3

N
o
d
e
 A

s
s
ig

n
e
d

Figure 7.4: The matrix decomposition for 4 ranks. Each tiles is coloured according to
the rank it is assigned to. The matrix is striped by the automatic decomposition tool.

counts if available. As the number of nodes increase, we get the expected fluctutations
in parallel efficiency, as the partitioning will likely perform better at some node counts
than others.

Figure 7.3 shows a task plot on 8 nodes for a 8192 × 8192 matrix (tiles of size
128× 128). Overall, the computation is reasonably load balanced. However, there are
several areas where multiple nodes are idle whilst waiting on data to be computed on
other nodes. Due to the dependency structure of the QR, this can be difficult to avoid.

The matrix decomposition for 4 ranks is shown in Figure 7.4. Each of the tiles is
coloured according to the rank it is assigned to. The automatic decomposition appears
to stripe the matrix, which seems like a sensible way of balancing the tasks between
the node, though towards the end of the computation some nodes will be idle. This
is difficult to avoid with the QR decomposition, and load balancing the computation
may also result in increased communication.

Many Linear Algebra problems can be easier to load balance than other simulation
types (such as particle simulations) in that each matrix operation takes a fixed number
of arithmetic operations. This allows the user to make accurate estimates of task

7.7. Results 145

pc_depth Runtime Number of tasks
1 16.7s 10.5M
2 18.4s 10.5M
3 18.9s 10.7M
4 48.0s 26.5M

Table 7.1: Average time taken to compute the accelerations for a single timestep of a
Barnes-Hut Simulation on a 3 million particle cosmological volume as the pc_depth
parameter is varied. This setup used a maximum of 128 particles per leaf cell, and 12
threads on a single node. As pc_depth increases, the runtime increases. This is due to
an increase in the number of tasks, leading to increased contention over resources and
more scheduling overheads.

costs. In QuickSched I used costs of 200 for DGEQRF operations, 300 for DLARFT
and DTSQRF operations, and 500 for DSSRFT operations (the more computationally
expensive tasks have higher costs). It may be possible to improve performance slightly
with more accurate cost estimates, however these values gave us reasonably good load
balancing across nodes.

7.7.2 Barnes-Hut Simulation

The Barnes-Hut simulation is built on hierarchical resources. The space (single cell)
is created using qsched_addres, and the particles are added to the space. When the
particle sort and subcell creation is done, any subcells that contain particles are created
using qsched_addchildres. Along with the child resource, each cell object (which
contains data about the cell other than the particle data) required is created with
qsched_addres, and if a task uses or locks particles in a cell, it needs to know the
resource ID of the child resource and the cell object.

I performed the same scaling tests for the Barnes-Hut simulation as for the Tiled-
QR decomposition. The particle distribution used was a 3 million particle cosmological
volume, a small approximation of the type of particle distribution that would be used
for large cosmological runs.

One other parameter that was added for the MPI Barnes-Hut is the pc_depth. This
parameter can be used to tune how many times the create_pcs function recurses before
creating the particle-cell tasks. This does not affect the accuracy of the simulation,
but affects how many particles are involved in a single particle-cell task. With a higher
value of pc_depth, the create_pcs function creates more tasks, which leads to more
contention over resource locks, leading to worse shared memory scaling. Table 7.1
shows how the shared memory runtime is affected by the value of this variable.

One downside with the algorithm implemented for the Barnes-Hut as part of MPI
QuickSched is the large number of particle-cell tasks it creates. In the shared memory

7.7. Results 146

Max. parts per
cell

Runtime
(1 thread)

Runtime
(12 threads)

Nr. tasks Percentage of
runtime spent
in gettask (12
threads)

128 74.1s 16.8s 10.5M 70.2%
256 87.1s 12.6s 4.9M 58.2%
512 124.3s 12.9s 2.3M 32.5%
1024 202.9s 18.6s 1.1M 6.0%

Table 7.2: Average time taken to compute the accelerations for a single timestep of a
Barnes-Hut Simulation on a 3 million particle cosmological volume as the maximum
number of particles per cell is varier. This setup used a leaf_depth of 1, and a single
node. If interactions are created on smaller cells, the tasks require less computation on
average, resulting in an increase in scheduling overhead, and a loss of scaling.

CPU implementation, the execution time increases as the maximum number of par-
ticles in a cell increases, as the cell-pair interactions dominate the computation, and
increasing the number of particles in a cell increases the number of particle-particle
interactions. With the MPI QuickSched implementation, this is not necessarily the
case, as shown in Table 7.2.

I also examined the scaling of the code with 1-12 threads in a variety of layouts
when differing the maximum number of particles in each cell.

Figure 7.5 shows the scaling of the code with different layouts of up to 12 threads,
with different numbers of particles per cell. With small numbers of particles per cell,
shared memory scaling is poor. This is due to the scheduler overheads when locking
large numbers of very small tasks, and can result in the scheduler taking nearly 50%
of the overall runtime. MPI performance worsens as the number of particles per cell
increases, however this is probably since the performance of a single thread is higher,
so the overheads due to MPI is a larger percentage of the computation.

Figure 7.6 shows the scaling of the Barnes-Hut from 1-12 threads in a single node,
followed by MPI scaling up to 8 nodes (96 total threads). The code continues to scale
well up to 7 nodes, before the performance stops improving on 8 nodes. It is not clear
from this whether it is just a poor work partition on 8 nodes, or if the implementation
will no longer scale beyond 8 nodes. On 8 nodes, the simulation is only running 375k
particles per node, so 31k particles per core, which is quite a small number for a
simulation of this type.

Figure 7.7 shows a task plot for the Barnes-Hut on a 3 million particle run on 8
nodes of Cosma 4. This figure suggests that the load balancing of the simulation could
be improved between nodes. All of the communication takes place at the beginning of
the simulation, as these tasks are all ready immediately, so not as much as much work
and communication is happening in parallel.

7.7. Results 147

2 4 6 8 10 12
0

2

4

6

8

10

12

Nr. Cores

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Nr. Cores

P
ar

al
le

l E
ffi

ci
en

cy

Up to 12 per node
2 per node
3 per node
4 per node
6 per node
MPI only

Speedup and Efficiency of a BH Simulation on Cosma 4 (128 Particles per Cell).

2 4 6 8 10 12
0

2

4

6

8

10

12

Nr. Cores

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Nr. Cores

P
ar

al
le

l E
ffi

ci
en

cy

Up to 12 per node
2 per node
3 per node
4 per node
6 per node
MPI only

Speedup and Efficiency of a BH Simulation on Cosma 4 (256 Particles per Cell).

2 4 6 8 10 12
0

2

4

6

8

10

12

Nr. Cores

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Nr. Cores

P
ar

al
le

l E
ffi

ci
en

cy

Up to 12 per node
2 per node
3 per node
4 per node
6 per node
MPI only

Speedup and Efficiency of a BH Simulation on Cosma 4 (512 Particles per Cell).

2 4 6 8 10 12
0

2

4

6

8

10

12

Nr. Cores

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Nr. Cores

P
ar

al
le

l E
ffi

ci
en

cy

Up to 12 per node
2 per node
3 per node
4 per node
6 per node
MPI only

Speedup and Efficiency of a BH Simulation on Cosma 4 (1024 Particles per Cell).

Figure 7.5: Speedup and efficiency plots for the Barnes-Hut simulation on a 3 million
particle cosmological volume, as the number of particles per cell is changed.

7.8. Conclusions and Future Work 148

20 40 60 80
0

10

20

30

40

50

60

70

80

90

Nr. Cores

S
pe

ed
up

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Nr. Cores

P
ar

al
le

l E
ffi

ci
en

cy

Speedup and Efficiency of a BH Simulation on Cosma 4 (1024 Particles per Cell).

Figure 7.6: Speedup and efficiency plots for the Barnes-Hut simulation on a 3 million
particle cosmological volume, with a maximum of 1024 particles per cell. The code
scales up to 8 full nodes at an efficiency of 54%.

7.8 Conclusions and Future Work

In this chapter I have shown a proof-of-concept method for a hybrid shared-distributed
memory task-based parallel library with automated data transfer. I use a graph parti-
tioning based approach for load balancing between nodes, and have shown the methods
efficacy on two problems on small scale computations.

While the simulations paralellise effectively, a lot of the work done to setup the
scheduler is done in serial. In particular, the qsched_partition function can be slow
with high task and resource counts, and more so in hierarchical cases. Since a lot of
this is performed by a single thread on a single node, finding a way to parallelise the
operations could help reduce the overheads introduced by this setup function.

One other area to improve could be the load balancing method. Currently a graph
partitioning approach is used to partition the resources based on the estimated amount
of work for each resource. It is possible that using a local search or genetic algorithm
approach to partition the resources (either by itself or to improve the graph partitioning
result) might be more effective than a graph partitioning approach, however I have not
yet investigated this.

7.8. Conclusions and Future Work 149

0 0.5 1 1.5 2 2.5 3 3.5 4

4

8

Time (s)

N
od

e
0

4

8

N
od

e
1

4

8

N
od

e
2

4

8

N
od

e
3

4

8

N
od

e
4

4

8

N
od

e
5

4

8

N
od

e
6

4

8

N
od

e
7

Task Plot for BH

Figure 7.7: A task plot of the Barnes-Hut simulation on a 3 million cosmological
volume run on 8 nodes. The load balancing could clearly be improved on this number
of nodes, as the nodes have up to 15% load imbalance. The send tasks are magenta
and the receive tasks are teal.

Chapter 8

Conclusions and Future Work

In this thesis, I have introduced two independent strategies which enable the use of
Task-Based Parallelism on GPUs and on hybrid shared-distributed memory machines.
The major contribution in both cases is the automated data management between each
memory region, which aims to reduce the burden on the programmer.

The initial GPU work in mdcore led to many improvements. The biggest improve-
ment to the runtime in mdcore came from moving from 32 threads in each block to
128. This change improved up the performance dramatically, despite the additional
synchronisation required inside the blocks. The other main conclusion drawn from this
work is that the cost of conflicts on the GPU was high, and that if these can be avoided
by using atomics it may lead to better performance.

I also looked at using a graph partitioning approach for domain decomposition. The
task tree is used to create the graph to be partitioned, and other information from the
tasks (such as the task’s expected cost) is used to weight the graph. This was shown
to create better partitions than a simple bisection approach. This method has been
extended in SWIFT [40], as SWIFT measures each task’s execution time during the
computation. In later timesteps, this information gives more precise information about
each task’s cost, allowing the graph partitioning library to create better partitions.
Additionally, SWIFT has worked on a strategy to minimise the data transfer required
for subsequent partitions, e.g. if METIS were to output identically partitions with
different numberings, SWIFT is capable of mapping the new partition onto the old
partition.

One further idea that can be considered is to use a genetic algorithm to improve
upon the initial partition. The graph partition approach I used in this thesis tries to
minimise the edge cut (which represents the amount of communication/repeated com-
putation) while attempting to balance the sum of the weights of the vertices (amount
of computation) in each partition. It may be better to minimise the maximum vertex
weight of any partition. Brief experimentation with a simple genetic algorithm sug-

150

Chapter 8. Conclusions and Future Work 151

gested that if the genetic algorithm is started from a random initial partition it is slow
to converge, however it could improve a partition generated by METIS in relatively
few iterations. I feel that more experimentation with alternative partitioning strategies
would be valuable, as it may improve the load balancing generated by the partitioning
approaches discussed in this thesis.

Our work with the QuickSched extensions for the GPU focused primarily on merg-
ing the approach developed for mdcore with the idea of automatic data transfer as
part of the task-based scheduler. I extended QuickSched to allow the user to provide
data pointers for each resource. Using information about the task graph and the data
requirements of each task, the scheduler creates tasks to transfer the data to and from
the GPU, and sets up dependencies so tasks only execute once the data required for
them has been transferred to the GPU, and to transfer data from the GPU as soon
as the computation on the data is complete. More coarse-grain approaches to this are
now standard in both OpenACC and the gcc OpenMP implementation (OpenMP Tar-
get directives). Our setup performs best when only a small number of blocks perform
the data transfer to the GPU, while the rest begin computation as it becomes ready.
Using only a few blocks (the required number is likely specific to each GPU) to transfer
data with ILP allows the kernel to transfer data at the maximum speed through the
PCI-express bus, enabling most of the device to be used for computation.

While I didn’t test implementing priority queues on the GPU, the setup used mul-
tiple queues to prioritise certain tasks. Our implementation tested at most 4 queues,
the highest priority queue containing unload and ghost tasks, the next highest the load
tasks (however was only ever accessed by a small number of blocks), and the remaining
contain the user-defined work tasks. Enabling the user-defined tasks to have different
levels of priority is clearly beneficial for certain problems where some tasks may lock
large numbers of resources, or have much higher runtimes that other tasks.

The QuickSched extensions for the GPU do not support multi-GPU usage inside a
single process, though the programmer could use multiple MPI ranks to make use of
multiple GPUs. Any data decomposition would have to be handled by the programmer
before using QuickSched. I did not investigate multi-GPU usage at the time, as I do
not have a good strategy for synchronising data between GPUs, nor for load balanc-
ing between GPUs. With the addition Compute Capability 6.0, CUDA GPUs now
have access to the atomicAdd_system function (along with a range of other system-
wide atomics) which enables synchronisation across the entire process. Additionally,
NVLINK increases the speed of data transfer between devices, and may allow work
stealing to occur between GPUs in the same process.

The final piece of work discussed in this thesis is the QuickSched extensions for
hybrid shared-distributed memory CPUs, focused on automating the data transfer

Chapter 8. Conclusions and Future Work 152

between MPI ranks. In MPI QuickSched, the scheduler manages all of the memory
required during the task-based computation, i.e. any allocations or deallocations of
memory during the computation are managed by QuickSched. Similarly to the GPU
extensions to QuickSched, the data movement is modeled using tasks (send tasks and
receive tasks), which are automatically created by the scheduler once the tasks required
for the computation have been specified. MPI QuickSched uses the same graph parti-
tioning approach as tested for mdcore to automatically load balance the work between
the MPI ranks.

The data transfer tasks made extensive use of the nonblocking MPI routines
(MPI_Isend, MPI_Irecv, MPI_Test) to perform the communication in parallel to the
computation. The library also requires full MPI_THREAD_MULTIPLE support to function
correctly. Our results showed that this approach was reasonably successful for small
testcases.

The MPI QuickSched implementation is only a proof of concept, and has a few
major limitations that will prevent it performing well at large node counts. The main
limitation is that every node requires a global view of the computation, i.e. all of
the nodes need to know all of the tasks, dependencies, and resources that are in the
computation (though not the data associated with the resources). This limits the size
of the computation that can be performed with MPI QuickSched due to the memory
overheads. The other limitation is that all of the scheduler setup is performed by only
a single thread on each rank, which will limit the overall scalability of the method.
It should be possible to avoid these issues, and for the approach to be used for large
workloads these would need to be solved.

The two QuickSched extensions cannot currently be used in tandem. With the
progression of High Performance Computers towards heterogeneous architectures, it
is essential to be able to make use of all of the hardware available on each node to
maximise performance. The main hurdle is dividing the computation between the
CPU and the GPU, and being able to notify the GPU of the arrival of data from other
ranks. A check function for the GPU could be created using the new system-wide
atomics, where the GPU tests a part of the CPU memory to see if the data has arrived
and can be copied to the GPU, however experimentation would be needed to see how
often this variable should be checked.

This thesis attempts to create a general purpose task framework that performs well
for any problem. The results show that using a single setup for all domains may not be
optimal. Allowing the user to tweak the options to suit their specific problem can yield
better performance. Having a large suite of options which need to be tweaked by the
user to extract performance can be daunting, especially for non-expert users. This is a
common complaint amongst domain scientists. Domain specificity is becoming popular

Chapter 8. Conclusions and Future Work 153

in HPC, with domain specific languages aiming to separate the domain scientist from
the performance aspects of their code. To keep up with this trend, task frameworks
need to both be able to perform well for the general case, but also allow fine-tuning for
specific domains through different scheduling options or other tasking extensions. An
example of this is conflicts (or commutative dependencies), which significantly improve
the performance of certain particle-based algorithms.

Appendices

154

Appendix A

Kernel-based data transfer to the
GPU

I created a small test program to test kernel-based data transfer to the GPU. The
program consisted of 3 kernels:

1. A kernel to copy the data to the GPU.

2. A kernel to square every value in the array.

3. A kernel to copy the data back to the host.

I created multiple versions of this first kernel, some of which included instruction-
level parallelism:

1 __global__ void runner_run_copyTo(int *d_a, int *h_a, int *h_b, int N){

2 int i;

3 for(i = blockIdx.x*blockDim.x + threadIdx.x; i < N ; i+=

blockDim.x*gridDim.x){

4 d_a[i] = h_a[i];

5 }

6 }

7

8 __global__ void runner_run_copyTo_ILP2(int *d_a, int *h_a, int *h_b,

int N){

9 int i;

10 int val1, val2;

11 for(i = blockIdx.x*blockDim.x + threadIdx.x; i < N; i+=

2*blockDim.x*gridDim.x){

12 val1 = h_a[i];

13 val2 = h_a[i + blockDim.x*gridDim.x];

155

Chapter A. Kernel-based data transfer to the GPU 156

14 d_a[i] = val1;

15 d_a[i + blockDim.x*gridDim.x] = val2;

16 }

17 }

18

19 __global__ void runner_run_copyTo_ILP3(int *d_a, int *h_a, int *h_b,

int N){

20 int i;

21 int val1, val2, val3;

22 for(i = blockIdx.x*blockDim.x + threadIdx.x; i < N; i+=

3*blockDim.x*gridDim.x){

23 val1 = h_a[i];

24 val2 = h_a[i + blockDim.x*gridDim.x];

25 val3 = h_a[i + 2*blockDim.x*gridDim.x];

26 d_a[i] = val1;

27 d_a[i + blockDim.x*gridDim.x] = val2;

28 d_a[i + 2*blockDim.x*gridDim.x] = val3;

29 }

30 }

31

32 __global__ void runner_run_copyTo_ILP4(int *d_a, int *h_a, int *h_b,

int N){

33 int i;

34 int val1, val2, val4, val3;

35 for(i = blockIdx.x*blockDim.x + threadIdx.x; i < N; i+=

4*blockDim.x*gridDim.x){

36 val1 = h_a[i];

37 val2 = h_a[i + blockDim.x*gridDim.x];

38 val3 = h_a[i + 2*blockDim.x*gridDim.x];

39 val4 = h_a[i + 3*blockDim.x*gridDim.x];

40 d_a[i] = val1;

41 d_a[i + blockDim.x*gridDim.x] = val2;

42 d_a[i + 2*blockDim.x*gridDim.x] = val3;

43 d_a[i + 3*blockDim.x*gridDim.x] = val4;

44 }

45 }

I then ran 6 variants of the code on an array of size 15, 360, 000. The first variant
used malloc to initialise the memory and cudaMemcpy functions to copy the data to the
device. The second used cudaMallocHost to initialise the memory and cudaMemcpy
functions to copy the data to the device. The remaining variants used cudaMallocHost

A.1. Reducing occupancy 157

Variant Runtime
malloc + cudaMemcpy 83.907394ms

cudaMallocHost + cudaMemcpy 83.210945ms
no ILP 83.176003ms

2-way ILP 83.198174ms
3-way ILP 83.139969ms
4-way ILP 83.149376ms

Table A.1: Runtimes of each method for data transfer plus the small kernel with the
GPU. Kernel-based approaches seem to perform best, and cudaMallocHost leads to
better performance than malloc

Variant Runtime
no ILP 144.102692ms

2-way ILP 89.689377ms
3-way ILP 80.860771ms
4-way ILP 80.818077ms

Table A.2: Runtimes of each kernel-based method for data transfer to the GPU. Even
with only 2 blocks, using 4-way ILP allows us to reach high data-transfer speeds.

to initialise the memory and a different copyTo kernel to copy data to the device. The
final 4 variants all used the same kernel to copy data back from the host, and all
variants used the same kernel to perform the array operation. The non-cudaMemcpy
variants all used 128 threads per block and 128 blocks to perform data transfer. The
methods were timed using the cuda Event API.

These results are shown in table A.1. These results suggest kernel-based data
transfer methods lead to the best performance.

A.1 Reducing occupancy

I also wanted to reduce the number of blocks required to keep memory transfer speeds
high. I tested with differing block counts, and found I could reach peak performance
with as few as 2 blocks if I used 4-way ILP. Table A.2 shows the performance of
the kernel-based methods with 2 blocks, each with 128 threads on an array of size
15,000,000 elements. This shows that using 4-way ILP can lead to high speed data
transfer with small block counts.

Appendix B

Does GPU-based kernel transfer
affect the speed of CPU code?

One potential performance issue I did not check was if GPU access to CPU memory
affected CPU performance. To test this, I created a pair of memory bound kernels, one
for the GPU and one for the CPU, and tested the CPU performance with and without
the GPU active, while ensuring the GPU program took longer than the CPU program.
The test program is shown below:

1

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5 #include <unistd.h>

6 #include <math.h>

7 #include <assert.h>

8 #include <omp.h>

9 #include <time.h>

10

11 inline

12 cudaError_t checkCuda(cudaError_t result){

13 #if defined(DEBUG) || defined(_DEBUG)

14 if (result != cudaSuccess){

15 printf("CUDA Runtime Error: %sn",

16 cudaGetErrorString(result));

17 assert(result == cudaSuccess);

18 }

19 #endif

20 return result;

158

Chapter B. Does GPU-based kernel transfer affect the speed of CPU code?159

21 }

22

23 __global__ void runner_run(int *d_a, volatile int *h_a, int *h_b, int

N){

24 int i, j;

25 for(j = 0; j < 8; j++)

26 for(i = blockIdx.x*blockDim.x + threadIdx.x; i < N; i+=

blockDim.x*gridDim.x){

27 d_a[i] = h_a[i];

28 d_a[i] += d_a[i];

29 h_a[i] = d_a[i];

30 }

31 }

32

33 int main(int argc , char *argv[]){

34 int blocks = 128;

35 int warps = 4;

36 float cuda_time=0.0f;

37 int c;

38 while ((c = getopt(argc , argv , "m:n:")) != -1)

39 switch(c) {

40 case 'm':

41 if (sscanf(optarg , "%i" , &blocks) != 1){

42 printf("Error parsing blocks.");

43 exit(EXIT_FAILURE);

44 }

45 break;

46 case 'n':

47 if (sscanf(optarg , "%i" , &warps) != 1){

48 printf("Error parsing warps.");

49 exit(EXIT_FAILURE);

50 }

51 break;

52 }

53 const int N = blocks*32*warps*12 * (100000/blocks);

54 const int bytes = 4*N;

55 int i,j,k;

56 omp_set_num_threads(4);

57 cudaEvent_t startEvent, stopEvent;

58 cudaSetDevice(0);

59 double timespent1 =0.0, timespent2 =0.0;

Chapter B. Does GPU-based kernel transfer affect the speed of CPU code?160

60 for(k = 0; k < 10; k++){

61 cudaEventCreate(&startEvent);

62 cudaEventCreate(&stopEvent);

63 volatile int *h_a;

64 int *h_b;

65 int *d_a;

66 cudaMallocHost((void**) &h_a, bytes);

67 cudaMallocHost((void**) &h_b, bytes);

68 cudaMalloc((int**)&d_a, bytes);

69 for(i = 0; i < N; i++)

70 h_a[i] = i;

71 const int host_N = N / 16;

72 int *host = (int*) malloc(bytes/16);

73 #pragma omp parallel for

74 for(i = 0; i < host_N; i++)

75 host[i] = i;

76 cudaEventRecord(startEvent,0);

77 runner_run<<<blocks, 4*warps>>>(d_a, h_a, h_b, N);

78 cudaEventRecord(stopEvent,0);

79

80 clock_t begin = clock();

81 for(j = 0; j < 80; j++){

82 #pragma omp parallel for

83 for(i = 0; i < host_N; i++){

84 host[i] += host[i];

85 }

86 }

87 clock_t end = clock();

88 timespent1 += ((double)(end-begin) / CLOCKS_PER_SEC);

89 cudaEventSynchronize(stopEvent);

90 checkCuda(cudaPeekAtLastError());

91 float time;

92 cudaEventElapsedTime(&time, startEvent, stopEvent);

93 cudaDeviceSynchronize();

94 printf("CUDA runtime: %.3f\n",

(/*(float)bytes*1000.0)*/time/1000.0));

95 #pragma omp parallel for

96 for(i = 0; i < host_N; i++)

97 host[i] = i;

98 begin = clock();

99 for(j = 0; j < 80; j++){

Chapter B. Does GPU-based kernel transfer affect the speed of CPU code?161

100 #pragma omp parallel for

101 for(i = 0; i < host_N; i++){

102 host[i] += host[i];

103 }

104 }

105 end = clock();

106 timespent2 += ((double)(end-begin) / CLOCKS_PER_SEC);

107 for(i = 0; i < N; i++)

108 h_a[i] = i;

109 cudaEventRecord(startEvent,0);

110 runner_run<<<blocks, 4*warps>>>(d_a, h_a, h_b, N);

111 cudaEventRecord(stopEvent,0);

112 cudaEventSynchronize(stopEvent);

113 checkCuda(cudaPeekAtLastError());

114 cudaEventElapsedTime(&time, startEvent, stopEvent);

115 cuda_time += time;

116 cudaFree(d_a);

117 cudaFreeHost((void*)h_a);

118 cudaFreeHost(h_b);

119 free(host);

120 }

121 timespent1 = timespent1 / 10.0;

122 timespent2 = timespent2 / 10.0;

123 cuda_time = cuda_time / 10.0 / 1000.0;

124 printf("Average time to run CPU in parallel = %f\n", timespent1);

125 printf("Average time to run CPU alone = %f\n", timespent2);

126 printf("Average time to run GPU alone = %f\n", cuda_time);

127 }

Running the program resulted in the following output:

1 Average time to run CPU in parallel = 2.424000

2 Average time to run CPU alone = 2.421000

3 Average time to run GPU alone = 5.252724

It is possible there is a small amount of cost to running the CPU and GPU in
parallel, however this was < 0.1% of the runtime, so it is unlikely to cause any major
issues.

Appendix C

Implementation details for the
Tiled QR decomposition

C.1 Reduction function using shared memory

On old CUDA architectures, warp reductions need to be implemented with shared
memory as follows:

1 __shared__ float vec[32*WARPS];

2 int tid = threadIdx.x;

3 vec[tid] = value;

4 int group = threadIdx.x / 32;

5 char n = 32 >> 1;

6 while(n > 0){

7 if(tid < n) vec[tid] = vec[tid] + vec[tid + n];

8 n = n >> 1;

9 }

10 __threadfence();

11 *value = vec[group * 32];

C.2 SLARFT implementations

The CUDA implementations of the SLARFT function are shown in this section:

1 void __device__ SLARFT(volatile float* cornerTile, volatile float*

rowTile,

2 int tilesize, int jj, int kk, volatile float* tauMatrix, int

tauNum){

162

C.2. SLARFT implementations 163

3 int i, j;

4 float z;

5 float w;

6 int TID = threadIdx.x % 32;

7 int set = threadIdx.x / 32;

8 for(i = 0; i < tilesize; i++){

9 if(TID > i)

10 w = cornerTile[i*tilesize + TID];

11 if(TID == i)

12 w = 1.0;

13 if(TID < i)

14 w = 0.0;

15 for(j = set; j < tilesize; j+=(blockDim.x/32)){

16 z=0.0;

17 z = w * rowTile[j*tilesize+TID];

18 reduceSumMultiWarp(&z);

19 if(TID >= i)

20 rowTile[j*tilesize + TID] = rowTile[j*tilesize + TID] -

21 tauMatrix[(kk*tilesize+i)*tauNum + kk] * w * z;

22 }

23 }

24 }

Each warp individually loops over the rows in the corner tile (line 8), and reads in w
(which is always stored in the lower diagonal of cornerTile). The warps then applies
the transformation to the column tile (lines 16-23) in strides of blockDim.x/32. As
the same thread always updates the same values in rowTile, there is no need for any
explicit synchronization during the routine. The SSSRFT function can be implemented
similarly. This implementation could easily be extended to use K = blockDim.x as
follows:

1 void __device__ SLARFT(volatile float* cornerTile, volatile float*

rowTile,

2 int tilesize, int jj, int kk, volatile float* tauMatrix, int

tauNum){

3 int i, j;

4 float z;

5 float w;

6 int TID = threadIdx.x;

7 int set = threadIdx.x;

C.2. SLARFT implementations 164

8 __shared__ int reduction;

9 for(i = 0; i < tilesize; i++){

10 if(TID > i)

11 w = cornerTile[i*tilesize + TID];

12 if(TID == i)

13 w = 1.0;

14 if(TID < i)

15 w = 0.0;

16 if(TID == 0)

17 reduction = 0;

18 __syncthreads();

19 for(j = 0; j < tilesize; j++){

20 z=0.0;

21 z = w * rowTile[j*tilesize+TID];

22 reduceSumMultiWarp(&z);

23 if(TID % 32 == 0){

24 atomicAdd(&reduction, z);

25 }

26 __syncthreads();

27 if(TID >= i)

28 rowTile[j*tilesize + TID] = rowTile[j*tilesize + TID] -

29 tauMatrix[(kk*tilesize+i)*tauNum + kk] * w * reduction;

30 }

31 }

32 }

where we have to use shared memory to perform a reduction over the multiple warps
in the block. This would allow the operations to use tiles where K == blockDim.x. It
is possible that using larger tiles could lead to faster calculations for larger matrices as
we would reduce the number of idle threads during SGEQRF and STSQRF functions,
however I did not test this during my thesis.

Appendix D

C code for the Barnes-Hut
algorithm with QuickSched

The task to create the tasks is implemented as follows:

1 void create_tasks(struct qsched *s, struct cell *ci, struct cell *cj){

2 qsched_task_t tid;

3 struct cell *data[2], *cp, *cps;

4 if (cj == NULL){

5 if (ci->split && ci->count > task_limit / ci->count){

6 for (cp = ci->firstchild; cp != ci->sibling; cp = cp->sibling){

7 create_tasks(s, cp, NULL);

8 for (cps = cp->sibling; cps != ci->sibling; cps = cps->sibling)

9 create_tasks(s, cp, cps);

10 }

11 }else{

12 data[0] = ci;

13 data[1] = NULL;

14 tid = qsched_addtask(s, task_type_self, task_flag_none, data,

15 sizeof(struct cell *) * 2, ci->count * ci->count /

2);

16 qsched_addlock(s, tid, ci->res);

17 }

18 }else{

19 if (are_neighbours(ci, cj)){

20 if (ci->split && cj->split && ci->count > task_limit / cj->count){

21 for (cp = ci->firstchild; cp != ci->sibling; cp = cp->sibling){

22 for (cps = cj->firstchild; cps != cj->sibling; cps =

cps->sibling){

23 create_tasks(s, cp, cps);

165

Chapter D. C code for the Barnes-Hut algorithm with QuickSched 166

24 }

25 }

26 }else{

27 data[0] = ci;

28 data[1] = cj;

29 tid = qsched_addtask(s, task_type_pair, task_flag_none, data,

30 sizeof(struct cell *) * 2, ci->count *

cj->count);

31 qsched_addlock(s, tid, ci->res);

32 qsched_addlock(s, tid, cj->res);

33 }

34 }

35 }

36 }

where task_limit is a predefined variable that controls how small individual tasks can
get. If the algorithm is supplied a single cell ci, then it checks whether to recurse in
line 7. If so, it recurses on each child of ci (line 11) and each pair of children of ci
(line 14). If ci is not split (i.e. doesn’t have children) then it creates a self interaction
task for ci. If the algorithm is supplied with a pair of cells ci and cj, it checks if they
are neighbouring cells in line 31. If so, and both cells are split, then the algorithm
recurses on all pairs of children from ci and cj in line 37. If either cell is not split,
then a pair direct interaction task is constructed between cells ci and cj. The locks
added in lines 26, 48 and 49 tell the scheduler which data is written to by the tasks.
When building the octree, a particle-cell task is created for every leaf task.

When tasks are created on non-leaf cells (i.e. when task_limit causes early termi-
nation of the recursion), the execution of the direct interaction tasks recurses before
doing the interaction on leaf cells.

1 static inline void iact_self_pc(struct cell *c, struct cell *leaf){

2 struct cell *cp, *cps;

3 for (cp = c->firstchild; cp != c->sibling; cp = cp->sibling){

4 if (is_inside(leaf, cp)) break;

5 }

6 if (cp->split){

7 iact_self_pc(cp, leaf);

8 for (cps = c->firstchild; cps != c->sibling; cps = cps->sibling){

9 if (cp != cps && cps->split) iact_pair_pc(cp, cps, leaf);

10 }

11 }

Chapter D. C code for the Barnes-Hut algorithm with QuickSched 167

12 }

1 static inline void iact_pair_pc(struct cell *ci, struct cell *cj,

struct cell *leaf){

2 struct cell *cp, *cps;

3 for (cp = ci->firstchild; cp != ci->sibling; cp = cp->sibling){

4 if (is_inside(leaf, cp)) break;

5 }

6 if (are_neighbours_different_size(cp, cj)){

7 for (cps = cj->firstchild; cps != cj->sibling; cps = cps->sibling){

8 if (are_neighbours(cp, cps)){

9 if (cp->split && cps->split){

10 iact_pair_pc(cp, cps, leaf);

11 }

12 }else{

13 make_interact_pc(leaf, cps);

14 }

15 }

16 }else{

17 for (cps = cj->firstchild; cps != cj->sibling; cps = cps->sibling){

18 make_interact_pc(leaf, cps);

19 }

20 }

21 }

In lines 5-7 it finds the child (cp) of ci that contains the leaf cell. If cp and cj are
neighbours, then it has to recurse (lines 8-14) as any neighbours of the leaf that are
contained in cj will have direct interaction tasks associated with them, and it must
not compute these interactions. The leaf then interacts with the monopoles of any
children of cj that are not neighbours of cp. If cp and cj are not neighbours, then the
leaf interacts with the 8 monopoles of the children of cj individually.

I modified create_tasks for the GPU as follows:

1 if(ci->count > 64*cell_maxparts){

2 for(cp = &cell_pool[ci->firstchild]; cp != &cell_pool[ci->sibling]; cp

= &cell_pool[cp->sibling]){

3 data[0] = cp-cell_pool;

4 data[1] = cj-cell_pool;

5 tid = qsched_addtask(s, task_type_pair_pc_split, task_flag_none,

data,

Chapter D. C code for the Barnes-Hut algorithm with QuickSched 168

6 sizeof(int) * 2, cp->count * cj->count);

7 qsched_addlock(s, tid, cp->res);

8 }

9 for(cp = &cell_pool[cj->firstchild]; cp != &cell_pool[cj->sibling]; cp

= &cell_pool[cp->sibling]){

10 data[0] = cp-cell_pool;

11 data[1] = ci-cell_pool;

12 tid = qsched_addtask(s, task_type_pair_pc_split, task_flag_none,

data,

13 sizeof(int) * 2, cp->count * cj->count);

14 qsched_addlock(s, tid, cp->res);

15 }

16 }else{

17 data[0] = ci -cell_pool;

18 data[1] = cj - cell_pool;

19 tid = qsched_addtask(s, task_type_pair_pc, task_flag_none, data,

sizeof(int) * 2, ci->count * cj->count);

20 qsched_addlock(s, tid, ci->res);

21 data[0] = cj - cell_pool;

22 data[1] = ci - cell_pool;

23 tid = qsched_addtask(s, task_type_pair_pc, task_flag_none, data,

sizeof(int) * 2, ci->count * cj->count);

24 qsched_addlock(s, tid, cj->res);

25 }

The use of pointer arithmetic (such as ci - cell_pool) is necessary as the GPU
implementation uses integer indexes to cells rather than pointers.

For MPI QuickSched I created a new function to create the particle-cell tasks:

1 void create_pcs(struct qsched *s, struct cell *ci, struct cell *cj, int

depth, int leaf_depth){

2 qsched_task_t tid;

3 qsched_task_t data[2];

4 qsched_task_t cp, cps;

5 struct cell *cp1, *cp2;

6 if(cj == NULL){

7 for (cp = ci->firstchild; cp != ci->sibling; cp = cp1->sibling){

8 cp1 = (struct cell*) qsched_getresdata(s, cp);

9 if(cp1->split)

10 create_pcs(s, cp1, NULL, depth+1, leaf_depth);

Chapter D. C code for the Barnes-Hut algorithm with QuickSched 169

11 for (cps = cp1->sibling; cps != ci->sibling; cps = cp2->sibling){

12 cp2 = (struct cell*) qsched_getresdata(s, cps);

13 if(cp1->split && cp2->split)

14 create_pcs(s, cp1, cp2, depth+1, leaf_depth);

15 }

16 }

17 }else{

18 if(depth < leaf_depth){

19 for (cp = ci->firstchild; cp != ci->sibling; cp = cp1->sibling){

20 cp1 = (struct cell*) qsched_getresdata(s, cp);

21 for (cps = cj->firstchild; cps != cj->sibling; cps =

cp2->sibling){

22 cp2 = (struct cell*) qsched_getresdata(s, cps);

23 create_pcs(s, cp1, cp2, depth+1, leaf_depth);

24 }

25 }

26 }else{

27 if(are_neighbours(ci, cj)){

28 if(ci->split && cj->split){

29 for (cp = ci->firstchild; cp != ci->sibling; cp = cp1->sibling)

{

30 cp1 = (struct cell*) qsched_getresdata(s, cp);

31 for (cps = cj->firstchild; cps != cj->sibling; cps =

cp2->sibling){

32 cp2 = (struct cell*) qsched_getresdata(s, cps);

33 create_pcs(s, cp1, cp2, depth+1, leaf_depth);

34 }

35 }

36 }

37 }else{

38 data[0] = ci->res;

39 data[1] = cj->res;

40 tid = qsched_addtask(s, task_type_pair_pc, task_flag_none, data,

41 sizeof(qsched_task_t) * 2, ci->count * 8);

42 qsched_addlock(s, tid, ci->res_parts);

43 qsched_adduse(s, tid, ci->res);

44 qsched_adduse(s, tid, cj->res);

45 data[0] = cj->res;

46 data[1] = ci->res;

47 tid = qsched_addtask(s, task_type_pair_pc, task_flag_none, data,

48 sizeof(qsched_task_t) * 2, cj->count * 8);

Chapter D. C code for the Barnes-Hut algorithm with QuickSched 170

49 qsched_addlock(s, tid, cj->res_parts);

50 qsched_adduse(s, tid, cj->res);

51 qsched_adduse(s, tid, ci->res);

52 }

53 }

54 }

55 }

The function is called by providing the root cell as ci and a leaf_depth. The
leaf_depth parameter can be tuned to choose at what level in the tree tasks are
created, but it must be less than or equal to the depth of all leafs in the tree. The
function recurses over all possible pairs of cells until it reaches leaf_depth. Once it
reaches this depth, for every pair of non-neighbouring cells it creates a pair of particle
cell tasks. For neighbouring cells, it keeps recursing until it reaches the leaves.

Bibliography

[1] Top500 list - june 2016.

[2] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi. Task-
based fmm for multicore architectures. SIAM Journal on Scientific Computing,
36(1):C66–C93, 2014.

[3] M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford university
press, 1989.

[4] C. Augonnet and R. Namyst. A unified runtime system for heterogeneous multi-
core architectures. In Proceedings of the International Euro-Par Workshops 2008,
HPPC’08, volume 5415 of LNCS, 2008.

[5] J. Barnes and P. Hut. A hierarchical o (n log n) force-calculation algorithm. 1986.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. Journal of Parallel and
Distributed Computing, 37(1):55–69, August 25 1996. (An early version appeared
in the Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’95), pages 207–216, Santa Barbara,
California, July 1995.).

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, Sept. 1999.

[8] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra.
Dague: A generic distributed DAG engine for high performance computing. Par-
allel Computing, 38(1):37–51, 2012.

[9] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Parallel tiled QR factor-
ization for multicore architectures. Concurrency and Computation: Practice and
Experience, 20(13):1573–1590, 2008.

171

Bibliography 172

[10] S. Chatterjee, M. Grossman, A. Sbîrlea, and V. Sarkar. Dynamic task parallelism
with a gpu work-stealing runtime system. In Languages and Compilers for Parallel
Computing, pages 203–217. Springer, 2011.

[11] T. Darden, D. York, and L. Pedersen. Particle mesh Ewald: An N log (N) method
for Ewald sums in large systems. The Journal of Chemical Physics, 98(12):10089–
10092, 1993.

[12] J. Demouth and NVIDIA. Shuffle: Tips and tricks. GTC 2013, 2013.

[13] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai,
J.-Y. Berthou, T. Boku, B. Braunschweig, et al. The international exascale soft-
ware project roadmap. International Journal of High Performance Computing
Applications, 25(1):3–60, 2011.

[14] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Peder-
sen. A smooth particle mesh Ewald method. The Journal of Chemical Physics,
103(19):8577–8593, 1995.

[15] P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and K. Schulten.
Molecular dynamics simulations of the complete Satellite Tobacco Mosaic Virus.
Structure, 14(3):437–449, 2006.

[16] T. Gautier, X. Besseron, and L. Pigeon. Kaapi: A thread scheduling runtime
system for data flow computations on cluster of multi-processors. In Proceedings
of the 2007 International Workshop on Parallel Symbolic Computation, pages 15–
23. ACM, 2007.

[17] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory
and application to non-spherical stars. Monthly Notices of the Royal Astronomical
Society, 181(3):375–389, 1977.

[18] P. Gonnet. A simple algorithm to accelerate the computation of non-bonded inter-
actions in cell-based molecular dynamics simulations. Journal of Computational
Chemistry, 28(2):570–573, 2007.

[19] P. Gonnet. Pseudo-Verlet lists: a new, compact neighbour list representation.
Molecular Simulation, 39(9):721–727, 2013.

[20] P. Gonnet. Quicksched: Task-based parallelism with dependencies and conflicts.
Technical report, Technical Report ECS-TR 2013/06, School of Engineering and
Computing Sciences, Durham University, South Road, DH1 3LE Durham, United
Kingdom, 2013.

Bibliography 173

[21] P. Gonnet. Efficient and scalable algorithms for smoothed particle hydrodynamics
on hybrid shared/distributed-memory architectures. SIAM Journal on Scientific
Computing, 37(1):C95–C121, 2015.

[22] P. Gonnet, A. B. Chalk, and M. Schaller. Quicksched: Task-based parallelism
with dependencies and conflicts. arXiv preprint arXiv:1601.05384, 2016.

[23] P. Gonnet and A. B. G. Chalk. mdcore, http://mdcore.sourceforge.net, 2013.

[24] P. Gonnet, M. Schaller, T. Theuns, and A. B. Chalk. Swift: Fast algorithms for
multi-resolution SPH on multi-core architectures. arXiv preprint arXiv:1309.3783,
2013.

[25] F. G. Gustavson. New Generalized Matrix Data Structures Lead to a Variety of
High-Performance Algorithms, pages 211–234. Springer US, Boston, MA, 2001.

[26] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961.

[27] R. W. Hockney and J. W. Eastwood. Computer simulation using particles. CRC
Press, 1988.

[28] A. S. Householder. Unitary triangularization of a nonsymmetric matrix. Journal
of the ACM, 5(4):339–342, 1958.

[29] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

[30] V. Loup. Computer experiments on classical fluids. Physical Review, 159(1):98–
103, 1967.

[31] H. Ltaief and R. Yokota. Data-driven execution of fast multipole methods. Con-
currency and Computation: Practice and Experience, 26(11):1935–1946, 2014.

[32] NVIDIA Corporation. Dynamic parallelism in CUDA.

[33] NVIDIA Corporation. OpenACC toolkit.

[34] NVIDIA Corporation. CUDA C programming guide, 2012.

[35] NVIDIA Corporation, Santa Clara, CA 95050, USA. NVIDIA CUDA C Program-
ming Guide 4.2, 2012.

[36] NVIDIA Corporation. Kepler GK110 whitepaper. 2013.

[37] OpenMP ARB. OpenMP 4.0 specification, 2013.

Bibliography 174

[38] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger. Fast in-place, comparison-
based sorting with CUDA: a study with bitonic sort. Concurrency and Computa-
tion: Practice and Experience, 23(7):681–693, 2011.

[39] J. Reinders. Intel Threading Building Blocks: outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly Media, 2010.

[40] M. Schaller, P. Gonnet, A. B. Chalk, and P. W. Draper. Swift: Using task-based
parallelism, fully asynchronous communication, and graph partition-based domain
decomposition for strong scaling on more than 100,000 cores. In Proceedings of
the Platform for Advanced Scientific Computing Conference, page 2. ACM, 2016.

[41] L. I. Sedov. Propagation of strong shock waves. Journal of Applied Mathematics
and Mechanics, 10:241–250, 1946.

[42] R. D. Skeel, I. Tezcan, and D. J. Hardy. Multiple grid methods for classical
molecular dynamics. Journal of Computational Chemistry, 23(6):673–684, 2002.

[43] SMP Superscalar. Users manual, July 2007.

[44] M. Snir. MPI–the Complete Reference: The MPI core, volume 1. MIT press, 1998.

[45] V. Springel. The cosmological simulation code gadget-2. Monthly Notices of the
Royal Astronomical Society, 364(4):1105–1134, 2005.

[46] V. Springel. Smoothed particle hydrodynamics in astrophysics. Annual Review of
Astronomy and Astrophysics, 48:391–430, 2010.

[47] M. Steinberger, M. Kenzel, P. Boechat, B. Kerbl, M. Dokter, and D. Schmalstieg.
Whippletree: Task-based scheduling of dynamic workloads on the GPU. ACM
Transactions on Graphics, 33(6):228–239, 2014.

[48] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s journal, 30(3):202–210, 2005.

[49] I. Todorov, W. Smith, and U. Cheshire. The dl poly 4 user manual. STFC,
STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United
Kingdom, version, 4(0), 2011.

[50] V. Volkov. Better performance at lower occupancy. 2010.

[51] Z. Yao, J.-S. Wang, G.-R. Liu, and M. Cheng. Improved neighbor list algorithm
in molecular simulations using cell decomposition and data sorting method. Com-
puter Physics Communications, 161(1):27–35, 2004.

Bibliography 175

[52] A. Yarkhan, J. Kurzak, and J. Dongarra. QUARK users guide. Technical report,
Technical Report April, Electrical Engineering and Computer Science, Innovative
Computing Laboratory, University of Tenessee, 2011.

