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Abstract

Due to the recent Higgs boson discovery, an important target for particle physics is
to investigate its properties to determine if it is the standard model Higgs boson or
some other variety. The Large Hadron Collider is now in Run Two, collecting even
more data at higher precisions, which requires predictions at next to leading order or
higher orders. Therefore it is important to have an efficient and automatic calculation
of the next to leading order amplitudes for the Higgs boson. This thesis discusses the
methods needed to perform these calculations.

These calculations are specifically developed in order to add them to the BlackHat
library, which already provides these types of calculations for amplitudes involving
quarks, gluons and W and Z bosons. Both this thesis and BlackHat use recursive
methods, as these are more efficient than using the Feynman rules directly. Specifically
the BCFW recursion relation is used to calculate tree amplitudes and generalised
unitarity is used to calculate one loop amplitudes. These methods are first used in
4 dimensions to calculate the cut constructable parts of the amplitudes, then the
extension of these techniques to higher numbers of dimensions is discussed, allowing
the rational terms to be extracted using D dimensional generalised unitarity. In
general, two different even integer dimensions higher than 4 are required for a numeric
implementation of D dimensional generalised unitarity with spinors, which therefore
requires working in both 6 and 8 dimensions. To enable an efficient implementation,
a technique is introduced that allows only 6 dimensional calculations to be used
rather than both 6 and 8 dimensional calculations and a reduction of 6 dimensional
calculations to be in terms of only 4 dimensional objects is developed. The methods
presented in this thesis provide a solid groundwork for Higgs boson amplitudes to be

implemented into BlackHat.
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Chapter 1

Introduction and Motivation

It is an exciting time for particle physics, with the Large Hadron Collider (LHC) now
collecting data for Run Two at higher than ever energies. At these high energies there
is much hope that some new physics, beyond the standard model, will be detected
which will help with understanding the problems with the standard model, such as
the lack of candidates for dark matter and the hierarchy problem. Supersymmetry, in
which each standard model has a heavier partner particle, is one example of a beyond
the standard model theory that could be detected. These types of theory are one of
the main targets for Run Two.

Another of the main targets for Run Two is characterisation of the recently de-
tected Higgs boson. This would show whether it is the standard model Higgs boson
or some more exotic version. There is also hope that the Higgs boson could pro-
vide hints of new, beyond the standard model, theories through its interactions with
them. Both high precision measurements and high precision predictions are needed
to enable accurate conclusions to be drawn. The LHC in its second run is starting
to collect high precision data for the relevant channels and analyses, so the situation
is being approached where the limitation is the precision of the model predictions.
Many of the channels at the LHC produce large numbers of jets. To produce predic-
tions a hard process is combined with parton shower and hadronisation algorithms
in a Monte Carlo simulation, which converts quarks and gluons produced in the hard
process into large showers of particles, through soft and collinear radiation and then
into the observable hadrons which can be detected as part of jets. A group of hadro-
nised particles, produced by soft and collinear radiation, travelling in roughly the

same direction and from the same location, will be detected as a jet. Each of these
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Figure 1.1: The leading contribution to the Higgs-gluon coupling which is
mediated by a top quark loop.

jets is typically due to the radiation of a single particle produced in the hard pro-
cess. Therefore, the leading contribution to processes with many jets will be from
hard processes that produce a high multiplicity of particles. It is also important that
the calculations are in a form that is efficient for use in a Monte Carlo simulation,
so that they can be combined with the other steps to produce physically observable

predictions.

The Higgs boson coupling is proportional to the mass of the particle involved and
as such in quantum chromodynamics the strongest interaction is with the top and
bottom quarks. Top and bottom quark masses are larger than the energy scale of
the LHC and so can be treated as approaching infinite mass. All other quark masses
are much lower than this scale and so can be approximated as massless. The exact
leading order calculation for this type of amplitude is already a one loop amplitude,
as the top quark runs in a loop. In this heavy top quark limit, as the mass is a
large scale, the leading term in terms of the top quark mass can be approximated out
and all other terms can be neglected. This only leaves the contribution from a top
quark loop connecting two gluons and one Higgs boson, of the form in Figure 1.1,
from which the loop quark’s degrees of freedom can be integrated out to give a new
effective vertex between a Higgs boson and two gluons. The effective Lagrangian term

this introduces is given by
int C nv
‘CH = EHtr G;,LVG s (11)

where H is the Higgs field, G is the gluon field strength tensor and C' is the dimen-
sionful coupling constant which can be calculated order by order in ag. As this limit
is being used, all particles other than the Higgs boson will be assumed to be massless
from here on. Currently, amplitudes with a Higgs boson and jets at tree level in the
high top mass limit are automated for any multiplicity.

As the Next to Leading Order (NLO) correction and using the true masses of the

top and bottom quarks could be large contributions, both are needed to increase the

11 August 22, 2017
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precision of our predictions. The accuracy of working in the infinite top mass limit
at NLO has been directly investigated at low multiplicity by Harlander et al.[1] and
Grazzini et al.[2] and has been found to give a relatively flat correction of the order
of a few % for large areas of the phase space. This thesis examines the techniques
and methods needed to calculate the NLO amplitude for a Higgs boson with many
jets in the high top mass limit. The case of NLO without taking the high top mass
limit is a two loop calculation and as such is beyond our current ability to compute

in an efficient automated way for high multiplicities.

These NLO amplitudes are divergent in 4 dimensions and as such must be reg-
ulated. One of the most common methods, and the one used in this thesis, is to
working in d = 4 — 2e dimensions which causes the amplitude to have poles in € which
control and contain the divergences and will be cancelled with the soft and collinear
contributions to calculate the finite cross section. There are many ways to perform
this calculation. One scheme often used is the 't Hooft-Veltman scheme which allows
all elements of the loop to extend into to the extra dimensions. Another scheme is
the four dimensional helicity scheme[3] which keeps all spinor and polarisation vec-
tor states in 4 dimensions and allows only the internal loop momenta to enter the
extra dimensions. This scheme has the advantage that the Ward identities are pre-
served which allows checks and tools to relate different amplitudes. This scheme is
the scheme used in BlackHat and which will be used in this project. The different
schemes are often related in ways that don’t require extra loop calculations for exam-
ple the 't Hooft-Veltman and four dimensional helicity scheme amplitudes for a pure
gluon amplitude differ by a factor of

AHV _ gFDH _ Il+erd—e 2 Atree (1.2)

3(4m)2—e
where A7V is the amplitude in the 't Hooft-Veltman scheme, AfPH is the ampli-
tude in the four dimensional helicity scheme, A'®® is the tree amplitude and u is a

renormalisation scheme used to preserve the dimension of the amplitude.

It has already been shown that the amplitudes for any number of gluons in
the Maximally Helicity Violating configuration are the very simple Parke-Taylor
amplitudes[4]. In the Feynman diagram method, even for four gluons, the calculation
contains three different diagrams. When the number of particles in an amplitude is

increased, the number of terms increases factorially. This greatly limits the number
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of particles that can be included before the calculation of the amplitude becomes
too large to effectively implement. At 1-loop these problems become worse and even
simple four particle amplitudes can become difficult to perform. Therefore, the Feyn-
man diagram method and explicit loop integrations are not efficient for these types
of amplitudes and more efficient methods are needed.

The BlackHat library[5, 6, 7] already includes calculations for amplitudes with
quarks, gluons and optionally one of the vector bosons, W= or Z, and other processes
but does not currently include amplitudes for the Higgs boson. This thesis describes
the methods needed to efficiently implement the calculation of the NLO 1-loop ampli-
tude for Higgs boson with jets, in a generic way, for any number of quarks and gluons
of any helicities. Once the calculations have been implemented into the BlackHat
library it will be a very useful tool for adding NLO calculations into existing Monte
Carlo Event Generators such as Herwig++ or Sherpa.

Following this introduction, Chapter 2 gives a short review of the techniques of
colour ordered amplitudes and the spinor helicity formalism. These form the basis
of the techniques used in the remaining chapters. The notations used in this thesis
are also introduced in this chapter. Chapter 3 explores the BCFW recursion rela-
tion which is used to compute tree level amplitudes and discusses how it extends to
amplitudes with a Higgs boson.

The next two chapters discuss the techniques used to calculate the loop amplitude.
Firstly, Chapter 4 demonstrates how to calculate the cut constructable parts using
Generalised Unitarity. Explicit numerical formulas are derived to enable a systematic
numeric calculation to be implemented and this is extended to support amplitudes
with a Higgs boson. Chapter 5 explores how to calculate the rational terms of am-
plitudes including a Higgs boson, using 6 dimensional spinors. After deriving a 6
dimensional extension of the spinor helicity formalism, tree amplitudes are calculated
using it and simplified to allow an efficient calculation of the contributions needed
for 6 dimensional Generalised Unitarity. Chapter 6 discusses how the calculation has
been implemented, how to use the implementations and where possible, how Black-
Hat has been tested against the implementations developed in this project. Finally,
Chapter 7 concludes the project and discusses the remaining steps needed to fully

implement these calculations into BlackHat.
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Chapter 2

An Introduction to Efficient

Calculation Techniques

There are several techniques that can be used to efficiently calculate amplitudes which
separate the amplitudes into simpler parts. The first method used is colour ordered
amplitudes which separates the amplitudes’ kinematics from the colour factors and
splits the amplitudes into simpler “colour ordered” amplitudes. The second is to
work in the spinor helicity formalism which separates the different helicity states and
produces simpler formulas for different cases within the amplitude. Both of these
techniques are discussed based on the versions used by Dixon[8]. A decomposition
of the Higgs boson into a complex scalar is also introduced here which separates
amplitudes into MHV like amplitudes. Finally, recursive calculations using unitarity
techniques are introduced, which form the bedrock for the techniques discussed in the

following two chapters.

2.1 Colour Ordered Amplitudes

Inclusion of colour factors in numerical calculations can greatly increase their com-
plexity. If colour factors are included an amplitude is increased from a single complex
number to a large tensor of complex numbers in colour space. Many of the elements
in the matrix are zero and many of the rest are related, so it should be possible to
extract and then combine elements to give a simpler form which has less redundancy

and therefore leads to a more efficient calculation. One way this recombination can
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be done is by expanding an amplitude as the coefficients of different colour terms.
Each of these coefficients would be a single complex number. The modulus squared
of any specific type of amplitude, as used in the cross section, can be calculated from

the coefficients, the number of colours and the number of quarks.

To reduce an amplitude to the smallest possible set of colour terms requires con-
verting all colour factors to chains of the fundamental generators with no internal
colour or gluon indices. This reduction is possible as the gluon colour factor, f®b°,
which is the structure constant for the fundamental generators, can be written as|[§]

7

7% (tr[T°T°T€) — tx[T°TT")) (2.1)

fabc — _
where T is the fundamental generator which is normalised as|[8]
tr[T°T°) = 6°° . (2.2)

To remove internal gluon indices the Fierz identity for the fundamental generators,[8]

L

5 5965, (2.3)

TaijTagj _ 51_3523' _
is used. These relations can be used to convert the colour factor for any pure gluon
amplitude into a sum of terms that are each a single trace of fundamental generators,
one generator for each gluon. For amplitudes with quarks, the colour factor can be
converted into a sum of terms that are each the product of a single (possibly empty)
trace of fundamental generators and a chain of fundamental generators for each quark

pair, where again each gluon’s generator only appears once in each term.

The relations given in Equations 2.1 and 2.3 can be represented graphically in

terms of replacements of quarks and gluons as[§]

-3 -

- 1
e - T D e

where the rules only apply for the colour factors not kinematics.
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y&?& +o
1 5
+ ... =
2 4
3

4 permutations

Figure 2.1: A tree level five gluon diagram along with its colour decomposi-
tion. The numbers label the gluons.

For example, the relations can be applied to the colour factor for the Feynman
diagram shown in Figure 2.1, which is one of the diagrams contributing to the 5 gluon

amplitude, which can be rearranged as

D5 gluon,tree = fa1a2bfbascfca4a5 D(l’ 27 37 47 5)

- (_\@3 ([T T T") — [T 7))

(tr[TT*T°) — tx[T°T°T]) (tx[T°T*T] — tx[T°T**T*]) D(1,2,3,4,5)
- % tr[T T2 T8 tr[ TP T T tr[T°T** T D(1,2,3,4,5) £ . ..
2

- 7}3 [T 7T 216,16, [T, T°,, " tr[T°T* T*|D(1,2,3,4,5) * . ..
2

— L@ iTee Rres, e e TeT9 T D(1,2,3,4,5) + . ..
\fs j
2

= [T T TS T e[ TT™ T D(1,2,3,4,5) + ...
V2

— [T TR TS TT ] D(1,2,3,4,5) + ...
V2

=—3 Y (=) [T O T @ @ @ %] D(1,2,3,4,5)
\/5 0c€Ss5/Z5

(2.6)

where D(1,2,3,4,5) contains the kinematic parts of the diagram, +... represents
more terms that are not shown, the NLC terms cancel between different permutations
and therefore vanish, S5/Z5 is the set of all permutations of 5 items that are not the
same under cycles and (—1)7 is the sign of the permutations which is +1 for an even

number of exchanges and —1 for an odd number of exchanges. The diagrammatic
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—t €.00000000000008 - Y
P—mlwrzo : g Vo i (0 (- D))

k2 .
Jos ?“”Z”l“‘ B =75 (9" (k1 = k2)7 + g7 (ko — ka)" + g7 (ks — k1))
g

14

Y- 2 |
o Hoightg?? = 5(9" 9" + 9" g7")
k3
k4
p
p/
p ' g p
i o
p 3 Vol A Vol
pl

Table 2.1: Colour ordered Feynman rules in Faddeev-Popov gauge[8]. All
momenta are inbound.

representation of the rearrangement is shown in Figure 2.1.

As all diagrams can be replaced with terms of the form shown in the last line of
Equation 2.6, the entire tree amplitude can be changed to terms of that form. The
coefficients of each trace structure can be extracted, which gives the colour ordered
partial amplitudes. By combining them, the full amplitude can be constructed from

the colour ordered partial amplitudes as

As guon tree = g° Y [T O T @@ TW0O T | Ag o tree(0(1), 0(2),0(3), 0(4), 0(5)) .
0c€Ss/Z5
(2.7)

Rather than calculating the full amplitude directly and then extracting the coef-
ficient for each colour structure, it is possible to extract the coefficients for the colour
structures from the Feynman rules and then evaluate the colour ordered partial am-
plitudes. The modified Feynman rules, given in Table 2.1, enable the colour ordered
amplitudes to be evaluated by summing the expressions for all possible planar dia-

grams with a given fixed order of the external particles. There are two vertices for
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qqg which differ in the direction of the quark line and are no longer equivalent, as the

graphs are planar and the external particles have a fixed order.

For any number of gluons the formula extends to[8]

An gluongree = ¢" 72 > tr[T0 TO] A, guon tree(0(1), ..o 0(n)) ,  (2.8)
0ESn [ Zn

where S,,/Z, is the set of permutations of n items that are not equivalent under

cycles and A, giuon,tree is a colour ordered amplitude. If there are external fermions

then there will be chains of fundamental generators which connect with the quark

colour indices. For example, with one pair of external fermions the amplitude takes

the form|8]

An — 2 gluon,2 quark,tree —

gn—2 Z [Ta0(3) ---Tao(")}ijAn — 2 gluon,2 quarks,tree(lpa 213; U<3)a ceey O'(Tl)) . (29)
0€ESn_2

The same method applies for 1 loop calculations where, for example, the n gluon

amplitude is given by|§]

An gluon,1—loop — gn Z NC tr[Tad(l) "'Tad(n)}An;l(U(lx (X3} CT(’I‘L))
Uesn/Zn

3]+

S I T [T T Ay (0(1), .. 0(n) |, (2.10)
c=2 0€S,/Sn;c

where S,,/Sp.c is the set of all permutations of n items that do not give the same
trace terms, |n] is the largest integer less than or equal to n and the A, are partial
amplitudes. The A,.; are colour ordered partial amplitudes and are called primary
amplitudes. The other partial amplitudes are not colour ordered. If there are only
external gluons, these other partial amplitudes can be written as a sum of permuta-
tions of A,,;. If there are external quarks, the A,..~; can no longer be written in
terms of only the A,.;, but will need new colour ordered partial amplitudes which
are defined by specifying the direction the quark travels around the loop. Again this
decomposition can be performed diagrammatically and is shown for a two gluon and

two fermion one loop diagram in Fig. 2.2.
The Higgs boson is a completely colourless particle, as are the W and Z bosons
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IS 0=
CE K

Figure 2.2: The colour decomposition of a one loop, two fermion and two
gluon diagram. All Ni contributions cancel at all stages.

which are already implemented into BlackHat. These particles do not have any colour
factors attached and as such are not involved in any colour rearrangements. The
Higgs boson can therefore be introduced into amplitudes without changing the colour
ordering techniques and its ordering in partial amplitudes is not fixed, meaning that
any Higgs boson must be included in all possible positions. The Higgs boson can

therefore be included into colour ordered amplitudes without any extra complications.
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2.2 Spinor Helicity Formalism

Spinors are defined as the solution of the equation
pup =0, (2.11)
where p = v,p/ and v, are the gamma matrices. The solutions are normalised to
uRU=p, (2.12)

where u is the conjugate spinor for v and ® is an inner product summing over the

different spinor states. The conjugate spinors are solutions to
upp =0, (2.13)
and for real momenta are related to the normal spinor by
Uy = u;’)/o . (2.14)

In order to avoid problems with extending the definition of conjugate spinors to
complex momenta, conjugate spinors defined without needing conjugation will be

used for this project.

For 4 dimensions there is one degree of freedom left over after the spinors are
normalised so there are two basis states in the spinor space. It was discovered that
for massless QCD amplitudes are very simple when the basis states are helicity eigen-

states. For massless spinors the helicity operator is defined by
A e e A A (2.15)

The spinor eigen states are defined as

L£7s
2

L£7s
2

uy (k) = Pru(k) = u(k) ve(k) = PEo(k) = v(k) (2.16)

where P* is the projection operator for 45 and is defined as

- 1:|:"}’5
= 5 .

p* (2.17)
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From the completeness relation for massless spinors

u(k) @ (k) =v(k)@v(k) =§, (2.18)

it can be seen that the spinors for v and u are proportional to each other and as an

overall phase is arbitrary the spinors can be defined such that uy (k) = vy (k).

A more compact bra-ket notation can defined which is given by[8]

(2.19)

where the sign of the bra-ket type spinor is defined by the eigen value under the
helicity operator. Some combinations of these spinors have products that are zero
due to being opposite helicity eigen states, these products are [1|2) and (1|2]. As
opposite sign projection operators annihilate and the two spinors in the product are
projected with opposite sign projection operators, these products vanish. As with
all massless spinors, a product of any two of these spinors for the same momentum
vanishes. The remaining spinor products can be combined to form the relation[8]

1—7°
2

(ig) [ji] = Tx[ Wilfj] = 2k k; = (ki + k;)° = si5 (2.20)

which is derived using the completion relation for spinors, the anti-commutation re-
lations for gamma matrices and, as the momenta are massless, k‘f = k]2 = 0. These

spinor products are anti-symmetric so obey (ij) = — (ji) and [ij] = — [ji].

Gluon polarisation vectors can be written in terms of spinors as[8]

K yule®)
t (ki q) = j:<7" , 2.21
€, (ki q) V2 (% q%) (2.21)
or explicitly for each state
_ [k|vula) — (k|vuld]
MGTIER = €, (k;q) = £ (2.22)

V2 (kq) ’ V2gk]

where the vector, ¢, can be arbitrarily chosen independently for each gluon but must
not be changed between uses of the same gluon and corresponds to a gauge choice.

It can be shown to be a gauge by checking that a change in ¢ — ¢’ is proportional to
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the vector k,

i1 LN [kh/#‘q/) [k|'7u|Q>
€, (kiq') — €, (kiq) = V2 (kd) V3 (ka)
_ (= {gk) [Ehpld) = (= (k) [Klvula)
2(kq’) (kq)
(qlk|vuld") + (d'Iklvula)
2(kq’) (kq)
_ (' ulklg) + (¢'[Elvl9)
2 (kq') (kq)
_ (@ Ok + k) @)
2 (kq') (kq)
(d'q) u
= 3k o)
(dq)

= Ty (kg (229)

where in the first few lines the properties of spinor products have been used, in the
later lines the anti-commutation relations for slashed matrices have been used and the
same method applies for the transformation of the other helicity polarisation vector.
It is also possible to check that these expressions obey all the normal relations for

polarisation vectors such as

+ +
€- (ks )k = i% ~0, (2.24)

and

=1, (2.25)

where identities from [8] have been used, which are not shown or proved here. Due to
the ability to choose the reference vector freely for each gluon and the many spinor
products that are 0, it is often possible with a clever choice of reference vectors to
vastly simplify the calculation of amplitudes and to cause many of the diagrams

contributing to an amplitude to vanish.

Due to the simple relations between spinor products, many of which are 0, very
simple expressions for the amplitudes can be found and as shown by Parke and Taylor

the pure gluon amplitudes with all helicities the same or all but one the same are
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0. They found the first non-zero amplitude to be the so called Maximally Helicity
Violating amplitude which has all but two gluons having the same helicity. The mostly
positive MHV amplitude for any number of gluons is given by|8]

(13)*

Atres (12t =1k ) =i 2.26
TLglllOI]( ) i 77/ 72 )7’+ ) 7n ) Z<12> <23>..<n1> ) ( )

where one of the negative helicity gluons can be chosen to be labelled as 1 due to cyclic
symmetry of colour ordered amplitudes. This simple form is the same for any number
of gluons as long as they are in the MHV form, in contrast with amplitudes in other
systems where the amplitude increases enormously in complexity as the number of

particles increases. There is also an equivalent formula for the mostly negative case.

The amplitudes with one quark line are also found to be very simple in the MHV
cases, which for these amplitudes is when all but one gluon have the same helicity.
The mostly positive amplitude for this type of amplitude is given by[8]

by g (10° (19) )

Atree (1=,... :Zm ’

-+
n — 2 gluon, ¢q q

sl seeesdg oM

where again the choice has been made to label the negative helicity gluon as 1. The
quark anti-quark pair must have opposite helicity as QCD conserves helicity along

quarks lines and all momenta and helicities are taken as for outgoing particles.

For other cases the amplitudes are often not as simple, but they are still signifi-

cantly simpler than in other forms and many cases have a value of zero.

2.3 Higgs Boson as part of a Complex Scalar Field

A further simplification of calculations for amplitudes involving a Higgs boson can be

performed by defining a complex scalar field[9]
1 )
o= 3 (H +1i4) | (2.28)
where A is a real pseudo-scalar field which interacts with an effective vertex of

Lt = %iA tr G, *G* (2.29)
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where *G*” is the dual of the gluon field strength tensor and is given by
G = Gy, (2.30)

The interaction terms for the pseudo-scalar, A, and for the Higgs boson, H, combine

to produce an interaction term for the complex field ¢ of[9]
L3 = C (ptr GspuwGhp + 67 tr GaspuwGhip) (2.31)

where Gsp and Gasp are the self dual and anti self dual gluon field strength tensors

and are given by|[9]
ny o 1 pv * YUY uy o 1 nz * YUY
Gyp = 3 (G* +*G*) Giép = B (GH —*G") . (2.32)

Working with the complex field ¢ rather than directly with the Higgs field H is
particularly useful when working with helicity amplitudes and the spinor helicity
formalism as the helicity structures do not mix and the amplitudes are closely related
to their pure quark and gluon equivalents. For example the mostly positive MHV
amplitude with a ¢ is given by[9]

(13)"

Atree 12 .. i—1t i i+1t . o)y =—n
((ba ) ; 50 0,0+ 4 T ) Z<12><23><n1> ’

,n gluon

(2.33)

where the form of this amplitude is identical to the form of the amplitude without
the ¢, which is given in Equation 2.26. The presence of the ¢ particle does impact
the mostly negative amplitudes, as it causes them not to vanish. The all negative

amplitude is given by/[9]

4
my

Atree (¢717’27,...,7’l7) = (_l)nlm ’

¢,n gluon

(2.34)

where my is the mass of the Higgs boson.

Amplitudes involving the conjugate field ¢ do not need to be calculated, as am-
plitudes involving it are related to amplitudes involving ¢ by a parity transformation,

which gives the relation[9]

An(oT, 170 07l = (=1)7 A, (4,17, .. (2.35)

l
' )‘<ij><—>[ji] 7
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where nyg is the number of ¢g pairs in the amplitude and (ij) <> [ji] corresponds to
complex conjugation of the amplitude if all momenta are real. Therefore when working
in 4 dimensions, as is being done in Chapters 3 and 4, all Higgs boson amplitudes will

be calculated as amplitudes in terms of ¢ and will then be combined afterwards.

2.4 Recursive Construction of Amplitudes

With colour ordered amplitudes and the spinor helicity formalism, amplitudes can
often be written in simple forms but for an automated system a method is required
to build amplitudes, systematically, from simpler building blocks. The traditional
method is the Feynman diagram method where amplitudes are built by summing
Feynman rules over different diagrams. This method includes all possible information
about a process, including handling off-shell particles in a fully general way, but for
producing amplitudes this information is unnecessary. The information about off-
shell particles, along with the gauge redundancy that is in the Feynman rules but
not in any final amplitude, increases the complexity of this method. An improvement
would be to build amplitudes from lower multiplicity, already on-shell and numeric
amplitudes and this is exactly what is done in the Blackhat library and in this project.
The BCFW recursion relation is used to build tree amplitudes from lower multiplicity
tree amplitudes and then Generalised Unitarity is used to build loop amplitudes from
tree amplitudes. The next few chapters will explain and derive these methods and

extend for the Higgs boson.

Both the BCFW recursion relation and Generalised Unitarity methods rely on
unitarity. This is the statement that the residue of poles in amplitudes are the product
of two lower multiplicity amplitudes up to a sum over internal particles. To derive
this, conservation of probability needs to be applied to the S matrix. The S matrix
is the matrix that contains information about the probability of an interaction and is

defined in terms of the amplitude matrix as
S=1+iA, (2.36)

where A is the matrix of amplitudes. If probability is conserved then SST = 1.
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Substituting Equation 2.36 into this condition results in

1=(1+iA)(1 —iA")
=1+i(A—AT) - AAT

AAT = i(A - AT, (2.37)

which tells us that the imaginary part of an amplitude is related to the product of
lower multiplicity amplitudes. From the definition of amplitudes it can be seen that
the only imaginary part will come from the ie terms in propagators and will only
contribute when the propagator goes on-shell. From this it is clear that the residue

of an amplitude at a pole is proportional to a product of tree amplitudes.
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Chapter 3

BCFW Recursion Relation

In 2005, Britto, Cachazo, Feng and Witten[10] discovered a recursion relation that
relates an on-shell amplitude to lower multiplicity, on-shell amplitudes, which is called
the BCFW recursion relation. This recursion relation can be applied to any ampli-
tude, from any theory, but is particularly useful for calculations using the Spinor
Helicity Formalism, where the amplitudes being calculated have a helicity structure,
for reasons that will become apparent through this chapter. The BCFW recursion
relation works by selecting two momenta from the external momenta in the amplitude
and shifting them by an arbitrary complex amount, z, of a fixed vector n*, such that
the two shifted momenta stay on-shell and that momentum conservation is preserved.

The shift is given by
B sl ol TN YR
Pl — pi(z) = pf + znt P = pi(z) =pj —2n, (3.1)

where p;/; are the two selected original momenta and p;,; are the corresponding
shifted momenta. To ensure the shifted momenta stay on-shell it is necessary to

choose the shift vector n#* such that it satisfies the conditions,
2n,p) 4 zn® = =2n,p! + 2n® =0 (3.2)

and as n and p;/; are independent of z, this relation must be true at all orders in z

and the conditions simplify to

nup; = nup; = n?=0, (3.3)
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The solution to these conditions used for the BCFW relation is given by
nt = (i), (3.4)

which satisfies the conditions explicitly. This shift is especially useful for calculations
using the Spinor Helicity Formalism as it corresponds to a shift of the spinors given
by[10]

~

[i) = 16z)) = Ii) + = ) = i =131 = =1, (3.5)

where all the other spinors are unchanged by the shift.

When the shift is applied the resulting amplitude, fl(z), is a function of the com-
plex parameter z. The recurrence relation is derived by performing a contour inte-
gration of A(z)/z, around a circle of radius 7, and taking the limit of 7 — co. In this

limit the Cauchy residue theorem shows that the integral is given by

lim AG) 1 = omi (A(o) +y ReSZ‘zUA(Z)> : (3.6)
a7 Jzl=a * Z0 %0

where the sum is over every pole, zg, in the shifted amplitude. By the analyticity
properties of amplitudes, the only poles in the shifted amplitude will be due to internal
propagators going on-shell and will be single poles whose residues, by the optical
theorem, are shown to be proportional to the product of two lower multiplicity, on-
shell amplitudes. The form of the pole in the amplitude expanded around the location

of the pole is given by

A(z) = Al(;zf)’; ©) | i)
 A(2)A(2) | -
Pt amp A
A(2)An(z) -
T P2492:P-n A(z)
CA)A(z) 1 .
= =5 Z_%+A(z), (3.7)

where A, /r(2) are the two amplitudes either side of the selected propagator, P(2) is
the shifted momentum in the propagator, n is the shift vector, P = Y p is the un-
shifted momentum of the selected propagator made up of a sum of external momenta

including p; but not p; and fl(z) is the rest of the amplitude that does not have any
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poles at z — 2. Without loss of generality, the left amplitude and the propagator
momentum can be taken to include p; and not p;. This is because exchanging the left
and right sides will give the same terms again and including both would be a double
counting. The remaining cases are when both p; and p; are on the same side of the
propagator, which causes the z dependence to cancel and hence such terms will not
contribute. Taking the residue of this pole and substituting it into the equation for

the integral produces the result

ApmArm 1 A(z)

A=A0)=— —— 1 d
(0) Z 2P -nzom 2t a—roo lz|l=a ? N
A m r,m 1 . A
= — Z L — — lim (2) dz
2mia=oe Ji 1y 2
2P n
ApmArm 1 A(z)
= —_ - — 1 d .
Z P2 277 aoo szl—a PR (3:8)

m

where the sum is over the poles labelled by m, and A;/;.,, = fll/r (Q;P’Zf;l) are the on-

shell amplitudes resulting from splitting the diagram at the propagator labelled by m

2
5 PP If the integral can be shown to be

and evaluating for the shift parameter z =
zero then the BCFW recursion relation results. To do this without explicit integration
or using the residue theorem, power counting is used. In some cases power counting
can show us that the integral is zero, for all other cases the integral’s value cannot be

determined in this way. For pure gluon amplitudes this gives the condition that[10]
hi =+ or h; = — or both , (3.9)

where h;/; are the helicities of the gluons i and j respectively. This is equivalent to
saying that the helicities for the shifted gluons (h;, h;) must be either (+,+4), (—,—)
or (—,4) but not (+,—). If a shift needs to be performed on a pair of particles with
helicities (+, —) then the shift can be performed by swapping the roles of the gluons

in the shift or equivalently by swapping |-] — |-) in the definition of the shift.

For MHV amplitudes it is easy to see that this condition is the correct condition.
The amplitude only depends on |-) spinors so the shift only has an effect through
the spinor |i) being replaced with |i) 4+ z]|j). If the gluon ¢ has helicity +, then
this spinor is only present in the amplitude in the denominator and as such, in the
limit |z| — oo, the shifted amplitude will be proportional to 1/2% or, if i and j are

neighbouring particles, 1/z and the amplitude will vanish. For the case of a negative
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helicity for gluon i, if the other gluon shifted is the other negative helicity gluon, then
the numerator has the form (ij)* — ((ij) + z (jj))* = (ij)* which is unchanged, so
again the only contribution from the shift is in the denominator and the amplitude
will vanish in the limit |z|] — oco. The remaining case, which is the amplitude that
should not vanish, is that gluon ¢ has negative helicity and j has positive helicity. In
this case the numerator has the form (ik)* — ((ik) + z (jk))*, where gluon k is the
other negative helicity gluon. As |z| — oo this form tends to oo and the one or two

powers of z in the numerator can not save the amplitude from tending to oc.

To work out the trend for a general amplitude is more complex and requires
balancing the powers of z from the numerator and denominator of an amplitude.
For a general pure gluon amplitude, from the Feynman rules, it can be seen that the
contributions dependant on z in any diagram can only be from the single route through
the diagram, from one of the shifted particles to the other one. The contributions
along this route will be from propagators and from three particle vertices. The form

of a gluon propagator from the internal momenta, P, has the form

1 1 11
PZ_P2+ZP'H |z| =00 P-nz

=0, (3.10)

where P was chosen to contain i and therefore not j, and the form of a quark propa-

gator for the internal momenta, P, has the form

P P29+ G P11+ ]

P2 P24+ zP-n 2|00 P-mz P-n

=0. (3.11)

The form of a three gluon vertex is

1

& gluon I:i/;ki = 72 (2(29"'n% — g"7nt — g"Fn¥) +

g (k1 — k2)7 + g™ (ko — k3)" + " (ks — k1)7) ., (3.12)

where k; contains ¢ and ko contains j and k3 therefore contains no z dependence.
From this it can be seen that for any diagram the propagator and vertex combination
will depend on z at the worst as ~ z and possibly as constant or lower powers of z

if some of the numerator terms vanish. The polarisation vectors for ¢ and j can each
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either contribute 1/z or z, depending on their helicities, as they take the forms

et (i) = [i|vulq) N 1 [ilVulq)

D= i) +2Ga) 7 V2 a) (319
(e oy — Sl + 2 Glld | Glld]

i) = Valid V2 lig (314
PN /1) 1 Ghuld]

O == g - = i)~ 2 V2l (319)
i) = [lvuld) = 2liuld) | lilwld) (3.16)

V2 (i) V2 (i)

From this it can be seen that if gluon ¢ has helicity + and gluon j has helicity —,
then the amplitude will at most go as L for [2| — oo and the integral at infinity will
vanish. For the other valid helicity cases, the leading terms seem to go as z, but these
leading terms can be shown to vanish, leaving a correct leading term of %

This logic can be extended to amplitudes of quarks using the same methods. For
this project it also needs to be extended to amplitudes with a complex scalar, ¢, in
them, which requires showing that these amplitudes vanish in the limit of |z| — oc.
It is easy to see that if the amplitudes without the ¢ vanish, the ones with it will
also vanish, as the amplitudes are related and the amplitudes that completely vanish

without the ¢ will all vanish for any choice of shift particles.
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Chapter 4

Generalised Unitarity Method

The Generalised Unitarity method has been used by many people to derive analytical
forms for various one loop amplitudes[11, 12, 13]. Tt is a method that allows one loop
amplitudes to be built up from tree level amplitudes without directly performing any

integrations.

Any one loop amplitude can be expanded in terms of a basis of the scalar one
loop amplitudes. These amplitudes are those containing only scalar particles. It is
only necessary to use the subset of these amplitudes with all particles in the loop
being massless and only the external particles entering the loop having mass, as in
this project all particles are massless, other than the Higgs boson or complex scalar,
¢, neither of which can enter the loop as that would introduce higher powers of the
effective coupling and not be NLO. These scalar one loop integrals are of the form|[14]

dP1 1

I,(Py,..., Pp) =
P ) /mﬂﬁnu—a—m—mAY

, (4.1)

where n is the number of propagators in the loop which is the number of external
scalars entering the loop, Py, ..., P, are the momenta of the external scalars entering
the loop which must sum to zero and [ is the loop momenta. Any one loop integral
with massless propagators can be written as a sum of these integrals multiplied by ra-
tional functions of spinor products and Minkowski products of the external momenta,
as contributions that are divergent in the limit d — 4 are all due to integrating prop-
agators over the loop momentum. Therefore, when using this basis any contributions
that depend on the nature of the particles in the amplitude will be included in coeffi-

cients of these integrals. This basis is chosen as it is one of the simplest possible sets
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and any amplitude will have a unique expansion in terms of this basis. Any given
integral can be simplified and numerator terms removed using the Passarino-Veltman
reduction to write them as combinations of metric tensors and loop momenta squared,
which reduces the integral to a combination of the basis integrals. Then any ampli-
tudes with more than four propagators can then be reduced to amplitudes with at
most four propagators. In four dimensions only loop integrals with at most four prop-
agators are needed. For more than five propagators a simple partial fractioning of the
amplitude will reduce it to a sum of terms with at most five propagators multiplied
by rational functions of the Minkowski products of external momenta, as the set of
external momenta is linearly dependent. The remaining terms with five propagators
can again be reduced to give a combination of terms with at most four propagators
along with terms that contain enough explicit powers of the dimension to cancel any
poles from the integration and as such do not contribute to the cut producible parts
of the amplitude. After this reduction an amplitude will be written in the form of
sums of scalar one loop integrals with at most four propagators multiplied by rational
functions of spinors and Minkowski products of external momenta plus a term with
no poles in € where d = 4 — 2¢ is the dimension of space time. This expansion is
shown in Figure 4.1. The full set of these integrals have been evaluated explicitly as

functions of the external momenta flowing into each vertex of the loop.

To evaluate any one loop amplitude, all that remains to be calculated are the
coefficients of each of these scalar loop functions. These can be calculated by taking
any amplitude and making use of various methods to reduce the amplitude to an
explicit expansion in terms of these functions. However, this becomes intractable
when the number of particles increases and is complex to implement numerically. For
a more efficient method generalised unitarity can be used. This extends the unitarity
method to multiple cuts for loop amplitudes. A cut is defined as the process of

replacing a propagator by a delta function or more precisely of introducing the factor
21 (1— P)*5 ((1 — P)?) , (4.2)

where [ is the loop momenta and ﬁ is the propagator that is being cut. This
factor will integrate to zero unless multiplied by a function containing exactly the
propagator to which it corresponds. If cuts are performed on a loop amplitude it will

split it into a sum of products of tree amplitudes due to the factorisation properties
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A:zz’:di {}Jrzijci <(+zi:bi —O— +;ai —©+R

Figure 4.1: The expansion of an amplitude in terms of the scalar basis
functions. The sums are over each possible scalar loop function of that form,
defined by the momenta at each corner and R contains all contributions that
do not contain poles in e.

of amplitudes. The same cuts, when performed on the expansion, explicitly isolate
coefficients of different loop functions. Four cuts will isolate the coefficient of a single
box integral, as no integrals have more than four propagators and no other scalar loop
functions will be extracted by this set of cuts because any other scalar loop integral
will not contain all four of the propagators. Therefore, at least one of the cuts will
not be matched by a propagator and will vanish when integrated. By performing each
possible set of four cuts, all box coefficients can be extracted. For three cuts, in the
expansion in terms of scalar loop functions, a single triangle function will be isolated,
but there will also be contributions from box functions. However, triangle and lower
cuts are not required for boxes to be extracted, so their contributions can be removed
before attempting to calculate triangle coefficients. This same process applies for one
or two cuts and allows us to isolate each coefficient in turn.

After applying three cuts to the raw amplitude, three of the four degrees of free-
dom in the loop momenta are removed. If the product of the three tree amplitudes
is performed leaving the remaining degree of freedom as a free parameter, after sub-
tracting the poles due to boxes, the result will be a power series in the free parameter.
As will be shown later in this chapter, for the parametrisation used in this project,
the coefficient to extract is the constant term in this expansion, as all other terms will
vanish when integrated over the contour corresponding to the remaining degree of
freedom from the momentum integration. For analytical methods this coeflicient can
be extracted by explicit rearrangement of the expression to isolate the needed term.
For numerical methods this is not possible, instead, a discrete complex Fourier pro-
jection can be used to extract the coefficient, as long as the range of possible powers
that can appear in the expansion is known. The continuous version of the projection

for the term in the expansion of f(z) of the form 2™ is given by

Oo+27m
Puf(2)] 1/ £ (206") (z06") " dt (4.3)

B 2T 0o
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where zq is an arbitrary complex value and 6 is an arbitrary real angle. For any power
series, each term can be treated independently, as integration is linear and therefore,
to prove the projection works, an expression of the form z™ can be substituted and
then it can be shown that the result is 1 if m = n and 0 otherwise. For m = n the

relation is given by

1o fforem o inen
P,[n"] = > 8 (z0€™)" (20€") ~dt
1 Oo+2m o
= — zoe”) dt
2 0o
1 Oo+2m
= — 1d¢
2 0o
1 60+2n
=5 [t]a,
=1, (4.4)
and for m # n it is
1 Op+27 m o
P,[n™] = Py (zoe”) (zoe”) dt
iy 6o
1 Op+27

_ itym—n
=5 A (zoe ) dt

27 [m—n(zoe) ]90

1 —1 : m—n —1 : m-—n
g ([ ()] = [55 (o))
1 —

= [(zoei‘%)min — (zoew‘))mfn}

2rm—n

Op+27

~0. (4.5)

The discrete version to extract the coefficient of z™ using N evaluations is given

by

2

1 iom L i2m L -n
Dy nlf(2)) = + Z (20e27%) (2024 ) (4.6)
The proof proceeds similar to before but now, if there are N terms in the projection,

the result is 1 for n = m mod N and 0 for n # m mod N. m = n + kN, with any

integer k, results in

2

—1
1 F n+kN R

Dn,N[ZTH_kN] _ N (ZoezQTr N) (Z()eﬁTrN)

J

I
=)
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Il
IS
o

(4.8)

For m —n # 0 mod N, €% is an N*® root of unity, and when raised to N
successive integers, each root is given exactly once. Combining these with the fact that
the sum of all the N*" roots of unity is exactly 0, allows the fifth line of Equation 4.8
to be derived. From Equations 4.7 and 4.8 it is clear that if the expansion contains
terms from myi, t0 Nmax then a projection with at least npax — Mmin + 1 terms is

needed.
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The powers of these remaining parameters will come from numerator terms left
after the diagrams have been reduced by cancelling with propagators. For boxes,
as there are four propagators and external momenta are four dimensional, any com-
bination that contains loop momenta squared or higher powers will be cancellable
against a propagator and therefore should be contained in triangles or bubbles in-
stead. Therefore, the highest power of the loop momenta that can remain is a term
linear in the loop momenta. For triangles there is now the possibility of combinations
that no longer fully cancel against propagators and are in directions orthogonal to
components that could be cancelled against loop momenta. The highest power can
be calculated using power counting to derive the highest power that could come from
any diagram and as any extra powers in the denominator must cancel to reduce the
diagram to a combination of our basis, powers of the loop momenta appearing in the

denominator can be cancelled against those from the numerator.

For a normal renormalisable theory, for example the case of pure gluons ampli-
tudes, each propagator provides two powers of the loop momenta in the denominator
and each propagator must be connected by either a three or four point vertex. As
four point vertices do not contain any powers of loop momenta, they will not con-
tribute to the highest power of the loop momenta. The highest, therefore, must come
from terms containing three point vertexes which each contribute a power of the loop
momenta. Therefore, the highest power would come from a term with the minimum
number of propagators and a three point vertex on each corner which for triangles is
three powers of the loop momenta. For the case of amplitudes with a complex scalar,
¢, they contain one power higher of momenta and their Feynman rules include a two
gluon vertex with two powers of the particle momenta. This term would contribute
one higher power of the loop momenta and therefore would have a numerator with

up to four powers of the loop momenta.

For bubbles there is one less propagator and therefore one less vertex in the cases
that produce the highest powers of the loop momenta in the numerator and their
highest power possible is exactly one less than is possible for the triangles in the
same theory. Bubbles, therefore, have up to two powers of the loop momenta in the
numerator in renormalisable theories and for amplitudes with a ¢ up to three powers
of the loop momenta.

This, along with the ability to calculate the tree amplitudes, is the only change

needed to extend this for amplitudes with ¢, as all the properties used apply to
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Figure 4.2: A box digram showing the labelling of the momenta and the
direction each momenta is taken to be in.

any amplitude. To implement this efficiently and numerically, explicit formulas are
required for the loop momenta solutions for each set of cuts. Firstly, for boxes, the

relations that need to be solved are

12 =

(h—p1)* =

(h—p1—p2)° =
(h—p1—p2—ps)’ =0, (4.9)

where p1 234 are the external momenta outbound from each corner and I, is the
loop momentum heading into corner 1 from corner 2 as shown in Figure 4.2. If the
momenta flowing out of at least one of the corners is massless, then the solutions take

a particularly simple form given by|[6]

o _ (U2BI# 1) o (121341771

R TCIPIPIEY T

o _ (b*I21310) po_ [ 12I31401]

> = T (ipA) T 2[Rl

o _ (U2h*I314I1) p_ [L21#3J401]

S~ (iR T 2R
112|3]v*]4]1 1|2|3]v*]4|1

p_ {28 PR 1 B
2 (1]204]1) 2[112/4[1

where without loss of generality corner 1 has been chosen to be a massless corner and
l12,34 and [} 554 are the two different solutions to the relations. These momenta
satisfy the relations shown in Equation 4.9 if it can be shown that all these vectors
are massless and that the difference between neighbouring loop momenta is the ap-
propriate corners momenta. That they are all massless is easy to see from the form

of the momenta and the relations for spinors. For corner 1 the momentum difference
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relation is given by

L203[4fy#[1) — — (A}v*[2[3[4]1)
2 (1]2[4/1) 2 (1[2[4/1)

(12[3[41y"[1) + (L]y*[2]3[4]1)

2 (1[2[4[1)
_ py (112[3[1) — (123]7#[4]1) + (1[7"[2[3[4]1)
2(1[2[4/1)
_ 2p} (1[2[3]1) — 2pf (1]2]4]1) + (1]24*[3[4[1) + (1]7*[2[3[4[1)
2(1[2[4/1)
2ply (1]2)3|1) — 2p (1]2[4]1) + 2p5 (12[3[4[1) — (1[7*|2[3]4]1) + (L]v*[2[3]4]1)

(
-

2 (1]2[4]1)
_ Py (1[2]3[1) + ph (1]3[4]1)
s (1]2[4]1)
o, Py (12]4]1) — py (1)2[4]1)
=-p3+
(112[4[1)

=—p5 —py —ph

=y, (4.11)

where on the middle three lines commutation relations for slashed matrices have been
used and on the last four lines momentum conservation between the external momenta
has been used. The proofs for each of the other relations follow a similar method but

are easier to show.

These relations only work if there is at least one momenta that is massless, which
is true for pure gluon and quark amplitudes with seven or less external particles. For
amplitudes with Higgs bosons, complex scalars, ¢, or similarly any other external
massive particles, these solutions are no longer enough for seven external particles, so
a more general solution is required. To derive the general case, which is also the form
of solution used for triangles and bubbles, a general basis of four massless independent
vectors is needed. As there are in general no massless corners, the first step is to take
two of the corners, which will be called corners 1 and 2 and their outbound momentum
vectors K7 and K> and project a pair of massless vectors by projecting them on each
other. There are various definitions for how to perform the projection, but the one
used here is a simplified version of that used by Berger and Forde[11] that leads to

simpler formulas when working algebraically. This solution defines the two massless
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projections, K; and K as

- K2

K=K ——K,
ol

- K2

Ky =Ky, — —2K, , (4.12)
ol

where + is fixed such that the two projected vectors are massless and is given by

A
=K Ky |1+, ——
Y 1 2< K1~K22>

K2 KK
A=K, K — K2K2 = det ! b

, (4.13)
K- K, K2

where A is the determinant of the matrix of the products of any two of the three
momentum conserving momenta, and is therefore independent of the labelling of the
momenta. The two solutions for the momenta labeled by the choice of sign in ~

are not independent. The solution with one sign is related to the solution with the

opposite sign by the relations

YT ot
K = 3 K
% —E -+
K§ = T%Kl ; (4.14)

where the superscripts label which of the signs is chosen. From this it is clear that
it is possible to choose either solution and ignore the other, as the results will be the
same and using both would be a double counting. The solution with a positive sign
is chosen so that the projected vectors are well behaved in the limit when K7 and K3
vanish, as for the negative sign solution, « will vanish in this limit. The other two

vectors used are built from the spinors for the two massless projected vectors and are

given by
i
ng = M;’KH} . (4.15)

From these four vectors, any vector in 4 dimensional space can be built, as long as the

four vectors are linearly independent, which they will be, if the two original vectors
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are linearly independent. These four vectors are particularly convenient to use as the
products of various combinations vanish or are very simple. The spinor products that

are simple are given by

ny-ng = —K; - K (4.16)
O=K1~n1:f(1-n2
:K2~n1:f(2~n2
=K; -np=Kj-no

:K2~n1 :KQ'nQ .
From this basis a general loop momenta can be written as
Iy = Oékl + ﬁf(g +ciny + cong (417)

where «, 3, n1 and ng are arbitrary complex constants. The first condition to apply
will be to ensure that the loop momentum for the propagator between corners 1 and

2, lo, is on-shell; this will be needed for all cuts. This corresponds to the condition

0=13
~ ~ 2
= (aKl + BKs +ciny + 02712)
=2 (Ozﬁf(l . [N(g + claf(l “ny + Cgozf(l “No + Clﬂffg “ny + Cgﬁf(z * Mo + Cc1Ca2Ny 'TLQ)
=2 (aﬁK’l . KQ “+c1cong - TLQ)

=2 (Oéﬁ — 6102) f(l . K2 s (418)

which is used to fix cjco = af. Which of ¢; and ¢; to fix in terms of the other
variables is not specified. This is because, as will be shown below, « and 8 will be
fixed by the next two cuts performed and one or both of them can be zero, in which
case the solution for ¢; and cy will split into two branches, each with one of the
constants vanishing and the other having a non zero value, ranging over all possible
values depending on whether a fourth cut is applied. This form for the solution is

particularly useful as the expression for the momenta, in terms of spinors, factorises
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and is given by

= (] + 2 (] ) (o] + o]
c1
= (Oé <I~(1‘+CQ <[~(2’) ")/'u <’[~(1:| +f‘f(2:|) s (419)
2
where the two solutions are equivalent, unless one of K7 and K3 vanishes, in which

case they are each valid in one branch of the solution space, as in the other they

evaluate to %.

The next two cuts to be applied, which are needed for both triangles and boxes,
are for the propagators either side of the loop momenta, ls. These are given by the

conditions
0=(lp+ K,)° 0=(ly — K2)* , (4.20)

for which solutions are given by

K KoKy Ko+ Ky - K1 Ko - Ko
2K, - KoKy - Ko — K1 - K1 Ko - K)
_ K3(K?+7)

o (4.21)
B Kl'K:1f<~1'K2+K1'K:1K2'K:2
2(Ky - K3Ky - Ky — Ky - K1 Ko - Ko)
_ K+ (4.22)

4A

Using these two solutions produces simple spinor representations for the loop mo-

menta, [y and [3, which are given by

e (] 2 ) (1

&)+ e ‘KQD

= (1_acK (K] e <K2D 7 (\f‘l} + A Cm) \f@]) (4.23)
Iy = (<f(1’ + (1_60,” <RQD P (a1 = O [Fo] + e [ Ra )
_ (a(l —Cx,) <K1‘ + e <K2D o <’K1} + M ‘KQD . (424)

where C'k, and Cg, are constants given by

2(y— Ky - Ks)

Cr =
o v+ K3

(4.25)
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2(’}/—K1K2)

C =
K v+ K?

(4.26)

As for Iy, the two solutions are equivalent unless K7 or K3 — 0, in which case they

correspond to the two different branches of the solution.

The final cut is given by

0=(ls — Ky — K3)* , (4.27)

and is solved to give

X1+ \/1 — 16“51(3}("11(3 fL2)

4K3 nq
14 \/ K2K2A, (K24 K242K, - K2))

X

X2A2

4.28
4K3 s ( )

il

Rl
X131

X

4K3 N9
x (1% \/1+ 2K2AL (K2 K2+42K, - Kg))

X2A2

4.29
1K s ) (4.29)

where these forms are again chosen to simplify choices of signs in the limit of K? or

K2 — 0 and the terms X and A4 are given by

X = (KQ + K3)2 - 2&K1 . (KQ + Kg) - Qﬁf(g . (KQ + Kg)

((K1 FK)? (K — Ks) - (Ky— Kg)) K2K2 + 2K, - Ky (K2K, - Ky + K2K, - K))

2A
+ (Ko + K3)* (4.30)

Ay = 2K, KoKy KsKy Ky — (Ko.K3)* K2 — (K1.K3)* K3 — (K1.K2)* K2 + K2K2K2
K2 K- K, K;-Ks
=det | K, - Ko K3 Ky Ky | - (4.31)

Ki-K; Ky Ky K2

These forms are not directly applicable to bubble diagrams as they only have one
independent momentum vector and a basis must be built from at least two vectors. A
solution of the same form would be very useful as it would again have a simple form in

terms of spinors and would allow for efficient calculations using the same structures.
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Therefore, an arbitrary on-shell reference vector, y, is used as the second vector
from which to build the basis. The exact value of this vector is irrelevant and will
cancel in all calculations, but care is needed to ensure the vector will not have badly
behaved products with any of the external momenta and as such should be chosen to
be a complex vector that is not just a complex multiple of a real vector. The main
example used in this project for numerical evaluation is x = (1+2i,1—24,1+44,/15).
Using this vector and the method used above for triangle and boxes with the two cut
conditions, equations are arrived at for the loop momenta of[12]
yK? y(1 —y) K7

—tn, —
2K1-XX " 2tK1 X

1—y)K?2 1-y)K2
(1-y) 1X_m1_y( y) Ly
2K1X 2tK1X

h=(1-yK + no

ly = —yK; — (4.32)

where t and y are the two degrees of freedom left after the two cuts. These momenta

can again be written in a compact spinor form as

2
[ 7% yK] “w _1_y‘~
= (o (R + gl ) o (<22 ] +

= (= (] - G2 () e (2 ] + 1) (4.33

To perform the integrals, the Jacobian factors, J, and the integration contours
for these choices of loop momenta representation are needed. The Jacobian factors
result from both the change in integration variables from the loop momenta itself to
the coefficients of our momenta definition and from performing the integrations over

the delta functions. These can be given by the formula

o oL
J= e (i ) : (4.34)
det (%’;)

where z; and z; run over the set of new integration variables, dj runs over the set
of functions inside the delta functions and x; runs over the variables integrated out
with the delta functions. For example, for triangles this is due to changing from the
loop momenta to the four variables «, 3, ¢; and ¢y and then integrating out «, 5 and
either ¢; or ¢y using the three delta functions. For this case x; and x; would run over
all four of the variables «, 5, ¢; and ¢o and x; would run over «, 8 and whichever of

c1 and ¢y is integrated out.
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For the case of the general box cut this gives a Jacobian factor, Jy, of

K- K,

Jy = ~ — ——
16 (Kl . K1K2 . K2 — Kl . KgKl . KQ) (Kg snicp — K3 . TLQCQ)

1 A
_ = 5 (4.35)
81\ X2A2 + AyK?K32 (K1 + Ka)
For the case of triangle solutions the Jacobian factor is
K- K,
J3 = - - —
8 <K1 KKy Ky — Ky - KoKy - Kg) c
1
_ 4.36
8 |oVa (4.36)

where c¢ is whichever of ¢; and cs is the remaining free parameter. For the case of

bubble solutions the Jacobian factor is

\/m na) Kl X)2

4tK1 Xni.ng

(4.37)

To calculate the conditions for the integration contour, it should be noted that the
full integration space of the loop momenta is over all real momenta, so the contour
will cover the set of parameters in the loop momenta that cause the loop momenta to
be real. To evaluate these conditions the spinor representations are used along with

the condition that for real vectors (I|" o |I]. For triangles, this relation simplifies to
c*c = const , (4.38)

where ¢ is whichever of ¢; and ¢y is the free parameter and const is a positive function
of the external momenta that, as all poles other than those at ¢ = 0 are subtracted
leaving only a power series in ¢, is irrelevant by Cauchy residue theorem. For bubbles,
as there are two parameters, the solution space is a surface rather than a line, but

again a simple relation can be found which is

t*t = const y(1 —y) , (4.39)
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where again const is a positive function of external momenta and therefore, the so-
lution space is that 0 < y < 1 and ¢ is integrated round a circle whose radius is a
function of y but, as all poles other than those at ¢ = 0 are removed, this simplifies

to an integration round any circle centred on the origin.

The exact values of the Jacobian expressions are not relevant, as the same factor
would appear when integrating both the scalar loop and the true amplitude terms.
The relevant parts are the forms of these in terms of the free parameters, as the Jaco-
bian factors must be well behaved at all relevant points and therefore not contribute
poles and, when combined with the forms of the contours, will determine which terms
in the integrand will be extracted by performing the remaining integrals. For trian-
gles, as the Jacobian is of the form 1/¢ and the contour is a circle around 0, it is
the constant terms in the expansion of the triangles in terms of ¢ that will contribute
when integrated and all others will vanish. They will still be needed for subtracting
from bubbles, as the other coefficients in terms of ¢ can contribute to the poles that
need subtracting. For bubbles, in terms of ¢, it is the constant term that is needed,
again using the same logic as for triangles. To numerically evaluate the integrals, it
is necessary to know what ranges of powers there can be in each variable. For this
momentum parametrisation the integrand must be a polynomial of order p — 1 of the
monomials y, ¢t and M and therefore, for the t° terms, the range of powers of y is
from 0 to p — 1. From direct evaluation of the y integral it is clear that the relevant

contribution is given by

bOn
B—E ’ 44
—~n+1’ (4.40)

where b; ; is the coefficient of ¢/ in the expansion of the bubble after removing poles
due to boxes and triangles. To extract all these coefficients requires n x m evaluations,
where n is one more than the difference between the lowest and highest power of ¢t and
m is one more than the highest power of m, as the lowest power of y is 0. However, this
is not the most efficient that can be achieved as instead of extracting each coefficient
and combining, a simpler expression can be produced that will directly produce this

combination. If the highest power of y is 3, as it is for standard QCD amplitudes,

B= é (bO(O) + 3b <§)> , (4.41)

will extract the relevant contribution, where b;(yo) is the coefficient of t* evaluated

then the formula

for y = yo. This relation will not work for amplitudes with a complex scalar, ¢, as a
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y* term is present, therefore a more general relation is needed that is correct for one

more power in y. The formula needed is

ST TR R CTTREN)) R

If even higher powers of y occurred then a relation with more evaluations would be

needed but they are not required for this project.

With these terms the boxes can now be evaluated directly, but for the trian-
gles and bubbles one more contribution is needed, the explicit forms of the sub-
tractions. These poles are of the form of a numerator, which is the unintegrated
numerator for the box or triangle diagram, divided by a denominator, which is the
product of the propagators corresponding to the extra cuts in that diagram. For
example, for the contribution of the box to the second triangle from the left in Fig-
ure 4.3, the triangle has cuts for (I + K1) = 0, 12 = 0 and (I — K5)* = 0 and the
box has an extra cut at (Io — Ky — K3)2 = 0, so the pole contribution will be from
“box numerator form” /(I — Ko — K3)?. For this case the two reference vectors for the
box are the same as the two reference vectors for the triangle, but the calculations are
equivalent even if the choice of reference vectors is different, as long as care is made
to use the correct signs on the box contributions and to use the vector for the extra

pole evaluated relative to the appropriate loop momenta of the triangle.

The numerators of boxes can at most be linear in the free parameter in the triangle
loop momentum parametrisation, as anything with higher powers would be cancellable
with propagators in the box and therefore will be accounted for in triangle and bubble
contributions. As its value at the location of the two box contributions are known, it
must be given by

c(bt =b7)+ctb™ —c bt
ct —c~

, (4.43)

“box numerator form” =

where c is whichever of ¢; and ¢ is the free parameter in the triangle parametrisation,
¢/~ are the two solutions to the extra box cut as given in Equation 4.28 or Equa-
tion 4.29 and b/~ are the two box coefficients corresponding to each of the solutions.

Combining these relations, along with the 1/c from the Jacobian and simplifying
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results in expressions for the poles of

“pole” = — ! AN (4.44)
ol = 2Ks-n(ct—c ) \e—ct c—c )’ ’

where n is ny if ¢ is ¢; and n is ng if ¢ is cs.

Applying a triangle as a pole to a bubble, requires finding both the numerator
structure and the simplified pole structure. The pole structure comes from evaluat-
ing the propagator corresponding to the extra cut at Iy — K5, using the momentum

representation for /s given in Equation 4.32 which gives

1 tKy - x ( 1 1 )
- - : 4.45
(s — K5)° K2 meKi(yt—y ) \y-yt y—y" (4.45)

where yT/~ are the two solutions of the propagator going on-shell for y which are

given by

2tK1~XK2-TL1+K12K2~X+K§K1<X

t

1 K1 -xK;i Ky — K?K, - tK2n
yi—(+t DG A X) 1+ |14 B 2
2 Ky - leKl 1 t(Kl'xK1~K2—KfK2'X)
5—’_ K12K2~n2

(4.46)
Each c in the triangle form must come from a loop momentum multiplied with some
combination of external momenta. Therefore, to expand out in terms of the space of
the bubble momentum solutions, the values of the coefficients must be projected out of
the full momentum. As the basis elements in the triangle momentum parametrisation
have simple products with each other, an obvious choice for how to project out the
coefficients, is to project using the basis vectors. The coefficients are found to be

extracted by

ZQ'ng _ l2'n1
2A YN

(4.47)

C1 = —7

which if applied to the bubble momentum form will give

(1-y) <I~(t,2 X> K12
Qtle

ci(t,y) = e <I~(t,2‘f(1> + (t [X‘f(t,l} +y [f(l‘f(m])

ca(t,y) = S <f(t 1 f(1> + " y)2§§I;X> K (t [X‘f(m} +y [f(l‘f(t,zb ;

(4.48)
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where IN(M /2 are the K 1/2 for the triangle by which this pole is caused. For triangles
with a massless corner, whichever of these solutions corresponds to the variable that
gives contributions for that triangle will be used. For the case where all corners are
massive, both solutions will be used, as the solution which was not used to evaluate
the triangle can be used to give an expression for 1/c that has no poles in terms
of y. With these terms the all massive case can be evaluated, but in the massless
triangle case an extra complication arises, as there are terms that are proportional to
V1 + at + bt2 where a and b are constants in terms of ¢ and y. These terms integrate
to zero on our contour, but would need an infinite number of terms in the Fourier
projection to cause them to cancel correctly. For the massive case, due to symmetries,
these terms cancel and so can be ignored, but for the massless case cancellations do
not always occur and must be added in manually. These contributions come from
partial fractioning of the pole form, which takes our numerator function num(c(t, y))

divided by the pole at y = y*, and rearranges it to the form

¢ num(c(t,y C  mum(c(t,y®))  Of(tyy7)
+ _ - _ ﬂ:)): + _ - e A (4.49)
Y Y y—y Yy Y Yy—y Yy Yy

where C' contains all the terms in the coefficient part of the expanded pole form that
are free from y, y* and ¥~ and f is a rational function of its parameters, with only
positive powers of y and y* and both positive and negative powers of t. This function
has terms that should vanish due to integrations over terms of the form V1+at+ b2 ,
but which do not vanish in our numerical implementations and therefore must be
subtracted. This expression will only give contributions that contain the dangerous
term, when there are terms with an odd power of the square root. The simplest
expression that would fully cancel this term is one which has exactly the same form,
but with the opposite sign on the square root which corresponds to using the other
solution for y. To directly evaluate f in terms of the other solution would require
analytically calculating the form of f, which is a non trivial task, as such it is much
easier to use the directly evaluated pole form to calculate the cancellation needed.

This is a function of the form

C (num(c(t,y)) ~ num(c(?,y)) N num(c(t,yﬂ)) . (4.50)

yt—y~ y—y*t y—yT y—yF

For poles from boxes contributing to bubbles, the product of the two extra prop-
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agators and the known numerator form found above can be simplified using partial
fractions to get a form for the poles that combines the box on triangle and triangle

on bubble forms found above, giving

“box numerator form” K- x (
(o — K2)* (Is — K3)°  K§
N 1 (“pole” (K3,c(tyay))  “pole” (K, c(t7y2))>
Ky -ng (Y24 — y2-) Y — Y2y Y~ Y2
n 1 (“pole” (Ka2,c(t,ys+))  “pole” (Kg,c(t,yg)))> s
K3 no (ys+ — y3-) Y~ Y3+ Y~ Y3

where yo /34 are the two solutions for y for the poles with Ky or K3 respectively and
“pole” (K, ¢) is the box on triangle pole from Equation 4.44 for the extra cut at K
evaluated for the value of ¢ given. From this it is clear that the box on bubble pole
gives a pair of contributions that each look like the contribution of a triangle and as
such for evaluation they can be combined with the triangle pole that has the same

pole structure.

For efficiency reasons it is useful to skip the calculation of terms that are known to
not contribute. The more terms that can be skipped, the less work there is to do and
the less terms there are at higher numbers of loop propagators, the less poles there are
that need subtracting from lower loop propagator calculations. The simplest set of
terms to ignore is any for which one of the corners is an amplitude with helicity choices
that vanish, which applies irrespective of the particles involved, but has more cases
to consider, as which helicity combinations vanish depends on the particles involved.
The next few simplifications depend on properties of the loop momenta when corners
are on-shell. Firstly, when a single corner goes on-shell, the loop momenta on each

side of it can be simplified to

I = (K| 4" 1+K722 |K1] + ¢1 |K.
1 117 2K, - Ky 1 1 |2

(140 (Ka| + ez (Ko ) 7 1K)
2K1'K2 1 2 2 1

2
lg = <‘K'1|’}/'u (1(2 |K1] + C1 ’Kz})
2K, - Ko

- Kigu(uc <K‘ e (4.52)
2K1'K2 1 2 2 1] » .

where the massless corner has been labelled as 1. From these expressions it is clear

that whether ¢; or ¢ is non-zero, determines which type of spinor is proportional
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for all the momenta in that corner. For amplitudes with three on-shell particles,
only two cases are non vanishing and each of these must have two particles with one
helicity and one with the opposite helicity and will be labelled by the helicity of which
they have two. These amplitudes will each depend on only one type of spinor and
therefore will vanish when the spinors they depend on are proportional. As a result, if
a corner is massless, only one branch of the momentum solutions need be considered.
Therefore, for numerical calculations, if there is at least one massless corner then one
of them will be chosen to be corner 1 and only evaluated with the correct branch of

the solution for the helicities in that corner.

If two neighbouring corners are on-shell then the loop momenta between them and

either side of them are related in spinor forms and are given by

Iff = (K| " (|K1] + 1 | Ka))
= ((K1| + e2 (K2|) " | K4]
Iy = c1 (Ki|y"|K2]
= ¢ (Ka|y"| K]
15 = (e1 (K1| — (K2|) " | Ko

= (Ka|y" (c2 |[K1] — |K2]) (4.53)

where spinors can now be written for K7 and Ko, as they are on-shell and so the K 1
and K, projected vectors are just the same as the unprojected vectors and so are no
longer needed. If two adjacent corners are massless, then they must have opposite
helicities, as otherwise they each vanish on opposite solutions and so neither solution
will contribute for that diagram. For boxes, if two opposite corners are both on-
shell, the solutions will have the same type of spinor proportional in each of the two
corners and therefore must in both corners depend only on the other type of spinor
and must be of the same helicity. These relations serve to greatly reduce the numbers
of diagrams that are relevant and which need to be computed. For bubbles, an even
stricter condition can be found as scalar loop diagrams vanish if there are no scales
in the diagram and as there are only two corners, their momentum vectors must be
equal and opposite, so the only scale available is the mass of this momentum. If it
vanishes then the scalar loop function vanishes, so diagrams with only one massless

particle on one side of the bubble will vanish and do not need to be computed. All
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these relations apply equally well to amplitudes with a complex scalar, ¢, as to pure
QCD amplitudes, although care must be taken as a corner with contains only a ¢ is
not a massless corner.

Contributions that are not relevant have been removed from the set of terms shown

in Figure 4.3, Figure 4.4 and Figure 4.5 using all these relations.
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14
[T

Figure 4.3: A graph showing the different terms that contribute to the am-
plitude for g; g; qff?)q’i 4 with the quark travelling left. The arrows indicate
other diagrams to which a diagram contributes a pole.
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(4.4.a) One of the two fragments of the diagram of terms. The other is in Figure 4.4.b.

Figure 4.4: A graph showing the different terms that contribute to the am-
plitude for g; q1+72q’1*7 3®p with the quark travelling left. The arrows indicate
other diagrams to which a diagram contributes a pole.

August 22, 2017 54



Simon Armstrong Next to Leading Order Calculations for Higgs Boson + Jets

(4.4.b) One of the two fragments of the diagram of terms. The other is in Figure 4.4.a.

Figure 4.4: A graph showing the different terms that contribute to the am-
plitude for g7 qucji 3®p with the quark travelling left. The arrows indicate
other diagrams to which a diagram contributes a pole.
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(4.5.a) One of the two fragments of the diagram of terms. The other is in Figure 4.5.b.

Figure 4.5: A graph showing the different terms that contribute to the ampli-
tude for gi g5 qfsqi 4@ p with the quark travelling left. The arrows indicate
other diagrams to which a diagram contributes a pole.
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(4.5.b) One of the two fragments of the diagram of terms. The other is in Figure 4.5.a.

Figure 4.5: A graph showing the different terms that contribute to the ampli-
tude for g; g2+ qffsq’i 4P p with the quark travelling left. The arrows indicate
other diagrams to which a diagram contributes a pole.
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Chapter 5

Rational Terms

In the previous chapters, methods have been developed that will construct the ma-
jority of each amplitude for processes with a Higgs boson and many jets at one loop,
however there are terms that cannot be extracted using just these techniques. These
terms are the terms that do not have any poles or cuts in 4 dimensions and there-
fore cannot be constructed by techniques that require poles to build the amplitudes.
These terms are called rational terms. One of the common ways to calculate rational
terms is to use relations involving supersymmetric amplitudes[13]. These amplitudes
contain combinations of the physical amplitudes and extra amplitudes. The most
common combination to use is a combination of A’ = 1 chiral and A/ = 4 supersym-
metric theories, where N counts how many supersymmetries there are in the theory.

For external gluon amplitudes these are given by[13]

AN=Y = A9 4 4A] 4345

Aﬁle chiral — A'fz —i—AS , (5.1)

where A9, A and A are the different versions of an amplitude, with gluons, Weyl
fermions and complex scalars respectively in the loop. Using these building blocks

pure gluon amplitudes and quark amplitudes can be built up as[13]

N=4 N'=1 chiral S
A = AT — 4 AT A2

A'fl — A.Q/:l chiral _ATSL‘ . (52)

As all supersymmetric amplitudes are cut constructable in the four dimensional
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helicity scheme, they have no rational terms. Therefore, the rational terms of their

component amplitudes are related to each other by[13]

- 43 o = = 4
rational — ‘"1 [rational 7 rational ~— 7 |rational ’

A9

n

(5.3)

where | , means take only the rational part of the amplitude. From these relations

rationa
it can be seen that the rational part of quark and gluon amplitudes is the same as
the rational part of their related scalar amplitudes, but with a minus sign for quark
amplitudes. These scalar amplitudes are much simpler and so can be extracted using
generalised unitarity in 6 dimensions or recursion relations. Unfortunately this is
not possible with Higgs boson amplitudes, as forming a supersymmetric amplitude

would require using the supersymmetric extension for the Higgs boson, rather than

the standard model Higgs boson.

Another type of method that has been used to extract these terms is recursion
methods using ideas similar to BCFW as done by Berger, Del Duca and Dixon[15].
These methods use properties of the loop amplitudes under shifts of the external
momenta to relate the rational terms to the cut terms and therefore rely on the pole
structure of the cut terms when shifts are applied. These methods are therefore not
as easy to apply numerically as they rely on complete knowledge of the pole structure

of the amplitudes.

The method used here is to use generalised unitarity applied directly in more than
4 dimensions, as in more than 4 dimensions the rational terms have cuts and poles.
If calculating in any specific dimensions greater than four, then the dependence on
the dimensionality of space time can be extracted by using the dependence on the
magnitude of the momenta pointing into the extra dimensions, as long as there is no
explicit dependence on the direction or complex argument of any components. In the
four dimensional helicity scheme (FDH)[3], which is being used here, all internal spinor
and gluon states are kept in 4 dimensions. Therefore, the dependence of amplitudes
on the dimension of space time, due to loop momenta and due to extra spinor and
gluon states, must be separated. To derive the relations used to separate these two
dependencies, it is useful to separate the dimension of the loop momenta, which will

be called D;, from the dimension of the spinor and gluon polarisation states, which
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will be called D;. Using this split, a loop amplitude is given by[14]

Ap,,p,({pi}) =

/ dbPi] NDS({pi}vl). (5.4)

'(ﬂ—)% dldg . dN

where D; must be less than or equal to D;.

If there is a closed quark loop in an amplitude, the extra contributions due to an
increase of two in dimensions will be factors of two, due to there being twice as many
states and the gamma matrices being twice as big. If chiral quarks are used, the
quark space will split into two. If it can be shown that using either of the chiral quark
subspaces is a valid representation of the 4 dimensional states and that amplitudes do
not mix the two spaces and are identical in either case, then the state reduction can
be performed by using only one of the two spaces in the calculations. For the case of
pure gluon amplitudes, it can be shown that the dependence of the loop amplitude
on D, must be at most linear, as it arises purely from terms that form a closed loop

of metric tensors. Therefore the amplitude in any dimensionality can be given by[14]

Ap,.p.({pi}) = Ap, ({p:}) + (Ds — 4) Ap, ({p:}) , (5:5)

where A}, ({p:}) and A} ({p:}) is independent of Dy, but will still depend on D;.
Combining two evaluations at two different values for Dy, the values of the two differ-
ent components can be extracted which will allow a continuation to different values

of Ds. Therefore, the value in the four dimensional helicity scheme is given by[14, 16]

(D2 —4)Ap, p,=p, — (D1 —4)Ap, p,=p,

o (5.6)

AppH =

To evaluate these expressions explicitly requires calculating in two different, even,
integer dimensions, both of which must be greater than or equal to D;, which is itself
greater than 4. This would require working in both 6 and 8 dimensions although
with the restriction that the loop momenta remains in either 5 or 6 dimensions. In
both of these sets of dimensions a generalised unitarity calculation would need to be
performed to extract the coefficients of the integrals and then once combined they can
be limited back down to d = 4 — 2¢ dimensions. Again the basis of loop integrals is
needed and now the basis is extended to include pentagon scalar loop integrals. The
coeflicients now contain extra tensor components dependant on the loop momenta and

there are now multiple elements that do not vanish when integrated. Some of these
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Figure 5.1: The expansion of an amplitude in terms of the scalar basis func-
tions in D dimensions. The sums are over each possible scalar loop function
of that form, defined by the momenta at each corner. The coefficients con-
tain loop momentum tensor structures and are therefore inside the loop
momentum integral.

tensor terms give rise to D; dependence which when combined with poles in the loop
integrals results in the rational terms. In terms of this basis the amplitude is expanded
as shown in Figure 5.1. The forms that can appear in the coefficients are limited as
any term containing external momenta can be replaced by a combination of inverse

propagators, loop momenta squared and rational functions of external momenta as

1-P=-(P+P-(1-P)) . (5.7)

DO =

A further restriction is that there is no dependence on the direction in the extra
D — 4 dimensions, as there are no external vectors in this subspace, only on the total

magnitude of these components which will be labelled by ©? which is defined by
=1?—pu?, (5.8)

where [ contains the 4 dimensional components of I. Therefore, the terms that can
appear are all possible terms built from p? and t; = [-n;, where n; are unit vectors that
form an orthonormal basis of the subspace of 4 dimensional space that is transverse
to all external momenta. A final restriction is on the highest power of loop momenta
that can occur in the integrals, which for amplitudes involving a Higgs boson is one
higher than the number of propagators in the loop momenta. Therefore, the general

forms of the coefficients are
di = d) + tyd} + (CZ? - tld}) + pt (d? + tlci?) (5.10)
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Ci =& F 1 128 + (13 —12)E + t1tac) + (13 — 3t2)t1 0 + (12 — 3t3)taco
(- 62B)E + (B — 3)tact
P (& + 1iE] + 007+ (8 — 13)& + tited)) + p'E (5.11)
bi = 0 + 1) + t2b? + t3bd + (13 — 12)b} + (13 — 12)b2 + t1tob8 + t1t3b] + tot3b?
+t1(13 — 3t3)b) + ta(t3 — 3t3)b;° + ta3(t3 — 3t3)bit + t1(t5 — t3)b;>
Fta(t2 — )B1 4 (82 — £2)B14 + tytatsbl® + 12 (13? S+ D)+ b2 + t35§’) ,

(5.12)

where the dependence on t; encodes all the 4 dimensional loop momentum depen-
dence, coefficients with a bar over them appear in 4 dimensional generalised unitarity
calculations, coefficients with a ~ over them are new coefficients for D dimensional cal-
culations and all coefficients are independent of the dimension of the loop momenta,
D;. Tt is now possible to expand each of these coefficients out into their own integrals.
Most of the integrals vanish and as such only a small subset are needed directly, but
for numerical calculations, in theory, all coefficients are needed as subtractions. The
only integrals, other than the normal 4 dimensional basis, that do not vanish in the
limit of D = 4 — 2¢ — 4 are integrals whose numerators can only be powers of p2.
However the box and pentagon with ;2 inserted do vanish in this limit. In the limit
of D = 4 — 2e — 4, dropping terms of order ¢, the extra non-vanishing integrals are

given by|[17]

dP1 ut 1

L] = /Em - (5.13)
Bl = [ e = L P P (.10
I3[p?] = / ZTDJ; DngDB = % (5.15)
. T (5.16)

where the I,,[X] is the scalar integral with n propagators and a numerator term of

X, D; is the i*" propagator and P; is the momenta flowing out of the i*" corner.

Combining these with the coefficients above, the rational term is given by

1 w1 PL+PL+Ph 1 2 70
h= _Bzi:di +2Z< 12 G _Ezijpi[l]bi > B17)

%

where P, ; is the momenta in the j' corner of the cut i.
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To calculate the amplitudes in the four dimensional helicity scheme, the relevant
coeflicients must be extracted using the methods from the previous chapter and com-
bined to form the rational terms in both 6 and 8 dimensions. The rational terms in
each dimension are then combined using Equation 5.6 to form the rational term in
the four dimensional helicity scheme. Alternatively, as the relations are linear, the
extrapolation of the spinor and polarisation state dimension dependence to 4 dimen-
sions can be done at the coefficient level and then only combined to give the rational

term once the FDH versions of each coefficient are found.

Working in higher numbers of dimensions increases the complexity of the calcu-
lations, as such it is always simpler to work in fewer dimensions and a lower number
of different dimensions. It is possible to avoid working in 8 dimensions by simplifying
the calculation so only a single dimension greater than 4 is needed by making use
of the form of the Feynman rules, as is done by Giele, Kunszt and Melnikov[14] and
Davies[16]. The single dimension now needed will be taken to be 6 dimensions. This
is done by noticing that if D; is taken as being 5, then D; and Dy can be taken
to be 5 and 6 respectively. Furthermore, if the amplitude is purely gluons then the
difference between working in Dy and D, will be the contribution due to gluons with
their polarisation vectors pointing in the 6th dimension, which, if the Feynman rules
can be extracted consistently, is equivalent to a complex scalar particle[14, 16]. The
new Feynman rules needed for pure gluon amplitudes are just the normal three and
four gluon vertex factors, but with one of the gluons forced to be in the 6th dimen-
sion, along with the propagator factor for gluons in the 6th dimension and gluon

polarisation vectors in the 6th dimension. The polarisation vector must be given by

€ =ng , (5.18)

where nf is the unit vector in the 6th dimension. On contracting this with a three
gluon vertex it is clear that the combination will vanish, unless exactly one of the
other gluons is also polarised in the direction of the 6th dimension. Therefore, taking
two of the gluons, with momenta k1 and ko, as being polarised in the 6th dimension,

the vertex factor is given by

(k1 — k2)7ngng (5.19)

63 August 22, 2017



Next to Leading Order Calculations for Higgs Boson + Jets Simon Armstrong

where the ¢ index is contracted with the remaining gluon line and the indices p and
v are contracted with gluons pointing in the 6th dimension. The same logic applies
to the four gluon vertex, which requires that if any gluons are polarised in the 6th
dimension, either two or four are. If two neighbouring gluons are polarised in the 6th

dimension the four gluon vertex is given by
i
— Lotk (5.20)

where the indices 1 and v are contracted with the gluons polarised in the 6th dimen-
sion and the indices o and p are contracted with the two remaining gluons which are
next to each other. It is clear from the form of the gluon propagator that if the gluon
at one end is polarised in the 6th dimension, the other end will also be, which allows

it to be simplified to
inkng
k2 +i0 °

(5.21)

For the Higgs boson calculations the same extraction must be applied to the Higgs
boson vertex rules. These two vertex rules obey the same relations as above and
therefore will be given for the case of two gluons being in the direction of the 6th

dimension. The vertex rule from the 2 gluon vertex is given by

— Q’L'k‘l . k:gngng 5 (5.22)

where k; and ko are the momenta of the gluons polarised in the 6th dimension which
are contracted with the indices p and v. The vertex rule derived from the 3 gluon

vertex is given by

—iV2(ky — k2) nknk (5.23)

where k; and ko are the momenta of the gluons polarised in the 6th dimension which
are contracted with the indices g and v and the remaining index, o, is contracted

with the remaining gluon.

From these relations it is clear that for the tree amplitudes in any corner of a
generalised unitarity calculation, as there will be exactly two external gluons polarised
in the 6th dimension, there must be a single line through the diagrams of gluons
polarised in this direction and these gluons can all be treated as scalars using the new

Feynman rules calculated above with the factors of n§ stripped. The Feynman rules
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Table 5.1: Colour ordered Feynman rules in Faddeev-Popov gauge for the
scalar particle equivalent to a gluon polarised in the 6th dimension. The
dash-dotted lines are the new scalar and all momenta are inbound.

for the new complex scalar are given in Table 5.1.

The last case to handle is amplitudes with external quarks which enter the loop,
which can have a mixture of quarks and gluons as the cut particles. This case can be
handled by working with only one of the two copies of 4 dimensional spinors, to reduce
the quark state dimension dependence, and then using scalar 6th dimensional gluons
to subtract the extra gluon polarisation states. This is possible, as after reducing to
only the 4 dimensional set of spinors, the dependence on D, is due to terms with a
closed loop of metric tensors and pairs of gamma matrices in a quark line, which again
can result in at most linear dependence on Dg. The extra Feynman rules needed for

this case are also shown in Table 5.1.

Therefore, if the calculations for the full 6 dimensional amplitudes and, where
there are gluons in the loop, the subtraction terms using the scalar equivalent for the
gluon, can be performed, the coeflicients of scalar loop integrals in the amplitude can

be extracted and then the rational terms can be calculated using only 6 dimensions.
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To perform these calculations, an explicit numerical implementation must be derived
and must be checked to ensure the properties used above are true. These aspects will

be investigated in the next few sections.

5.1 6 Dimensional Spinor Helicity Formalism

The 6 dimensional extension of the spinor helicity formalism will enable efficient
calculation of amplitudes in 6 dimensions by making use of the many cancellations and
vanishing products, especially as many of the vectors are still purely 4 dimensional.
To derive 6 dimensional spinors, a 6 dimensional generalisation of the gamma matrices

is needed. The conditions these have to obey, as for the 4 dimensional case, are

{v" "t =g"" (5.24)

where ¢g"” = diag(1,—1, —1,...) is the metric of space time. There are many solutions
to these equations but some are more convenient to use than others. This project uses
a recursive definition, so that the different dimensions can be compared directly. In
addition, a basis is used where as many elements as possible are zero, so that as many
elements as possible in both spinors and products are zero and different elements
mix as little as possible in products. The basis is also chosen to be based on the
Weyl (chiral) basis as helicity spinors will be used and therefore a diagonal chirality
operator, the v5 equivalent, will ensure different helicities do not mix. The chirality
operator from now on will be referred to as ¢, as 5 is the name of a normal gamma

matrix in 6 or more dimensions. The basis chosen is[18]

V=, ® o3 73_2 =ilg_2 ® o1 73‘1 = —ilg_2 ® 09

75 =01 Yy = —ioy (5.25)
where I, is the identity matrix in d dimensions which is given by

Ii=1,®1; 5 I, = s (526)
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and the Pauli matrices, o;, are given by

0 1 0 —i 1 0
o1 = o9 = o3 = (5.27)
10 i 0 0 -1
Using these definitions the 6 dimensional gamma matrices are given by
0 1 0 —1
0 0
1 0 1 0
0 0
0o -1 0 1
0 0
-1 0 -1 0
% = % =
0 -1 0 1
0 0
-1 0 -1 0
0 0
0 1 0 -1
0 0
1 0 10

o
~

o
—

0 0
i 0 10 0 i 0 1
Ve = Ve = V6 = V6 =
0 —i 0 —1 i 0 10
0 0
—1 0 1 0
(5.28)

where the matrices are given in block form and are all 8 x 8 matrices. Using this basis

the y¢ is given by

Yo = : (5.29)
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In hindsight, a basis that produced a chirality operator that was diagonal, with
the top four values being one and the bottom four values being minus one, would
have made the calculations simpler, as splitting the space into two using the helicity
projector would have split spinors and matrices in half, top from bottom, whereas
with this basis the space is split in a more complex pattern of rows, 1,4,6,7 and
2,3,5,8. However, as this only makes a difference to readability and simplicity of

algebraic implementations, the basis defined in Equation 5.25 is used from here on.

Using this basis, spinors can be derived by using the defining equation

pulp) =0, (5.30)

where u(p) is a spinor corresponding to the momentum p. After using this definition
there are still four degrees of freedom left. One is removed by the normalisation

condition of

> ulp)ulp) =p . (5.31)

where 4 is the conjugate spinor for u and for real momenta is defined by @ = u'o.
The others are used to split the general spinor into multiple spinor states. The first
split is into the eigen spaces of the chirality operator, ¢, which splits the spinor
space into two subspaces, each with one remaining degree of freedom. So that the
external particles, which are still 4 dimensional, have simple spinors, the last split
should reduce to the eigen states of the 4 dimensional chirality operator, v 4c, when
the momenta is 4 dimensional. Unfortunately it is not possible to split the remaining
spinor space by the 4 dimensional helicity operator for full 6 dimensional momenta.
For this project, one of the simplest extensions away from the 4 dimensional limit was
chosen, which is to keep the components that are already non-zero the same and only
allow one extra component to become non-zero. Any choice for both gamma matrices
and spinors should produce the same answers, other than an overall phase change on
amplitudes, but this has not been tested directly as it would require reproducing the

complete calculations for multiple choices of spinor basis.
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Using these choices the spinors are given by

VPo + p1 0 0 0
0 Ps5tips 0 P3+ips
VPo+p1 Vpot+p1
0 0 0 Vo +p1
P3—ipa 0 _ DPs+ipa 0
Uyy = VPo+p1 u_y = Up_ = VPo+p1 u_ =
0 VPo + p1 0 0
Ps5—ipa 0 p3tips 0
VPotpr Vpotpr
0 0 VPo + p1 0
0 P3—ips 0 _ P5—ipa
VPo+p1 vVPo+p1
(5.32)

As in 4 dimensions, it is possible to write the conjugate spinors in terms of a
combination of the transposed spinors. For this choice of spinors, the conjugates are
given by

Up_] = iluz;lal R0y Q01 = uy, , (5.33)

where the underlined spinor, w;,;, is the conjugate spinor, but is labelled by the helicity
of the spinor it can be written in terms of and io; ® 0y ® o7 is a real anti-diagonal

matrix. For example 4 is given by

=t
Ut = U310

= s p3+ip2 P5+ips
( Po+ D1 00 \/;70+P1 0 VPpo+p1 0 0) o

= /o _ P3tip _ Dpstip
< Po+ 1 v;0+1721 0 \/2’0+;1 00 O) ’ (534)
and u, is given by

- T
Uy =y 01 Q020

=—1 _ Pstips p3+ips
' (O 00 VPo+p1 0 Vpo+p1 Vpo + 1 O> 01 Q09 Q01

= /o0 F py — Patip2 _ Ps+ips ) )
(0 Po 1 VPo+p1 0 VPpo+p1 00 0) (5 35)
This shows that u, =4, as expected.

The spinor products for each helicity combination can be worked out, both in

general from the relations and in the specific case of these spinors. The spinor products
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that are exactly zero are u, (p)usn,(q) and u_j, (p)u—n,(q), where p and g are two
general on-shell 6 dimensional momenta and h; and hy are arbitrary signs, which can
be shown using the definition of the spinors. As the spinors are eigenstates of the 6

dimensional helicity operator, the appropriate sign projection operator,

_ 1+

P:I: 9 )

(5.36)

can be applied to each spinor. When applied to spinors and conjugate spinors the

projection operators satisfy the relations

Prugp=ugp Prusp =0

Q$7hpzl: = Ux,h Qi,hpj: =0. (537)

If the projection operators introduced for the two spinors in a spinor product have

opposite signs then they will cancel and the product will vanish.

In general, the other spinor products are non-zero, however a similar logic to that
used above, but using the 4 dimensional chirality operator, shows that in the limit of
both momenta being 4 dimensional wy, , (p)un, n,(¢) vanishes. The remaining spinor
products, in this limit, must be given by the standard 4 dimensional spinor products,
apart from possible changes in sign. For the choice of spinors used in this project,
various spinor products can be related to each other. The full set of relations and

their limits in the case of 4 dimensional momenta are given by,

e (P (q) = —u__(Q)us s (0) = u_(P)us 4 (q) = —up (Qu_(p) 22222 0
u (P)us(q) =~y (Q)u 4 (p) = up_ (P)u_s(q) = —u_4 (Q)us—(p) 222" 0

up (P)u—t(q) = u_ (Qui+(p) = —u_, (P)ut+(q) = —uy 1 (Qu—+(p) = —uy (P)us(q)

u__(pluy—(q) =uy_(Qu——(p) = —uy_(p)u-—(q) = —u__(qQ)us+—(p) = —u_(p)u—(q) ,
(5.38)

where the spinors with only one sign are 4 dimensional spinors as given in Equa-
tion 2.19. In Section 5.2 even simpler explicit expressions for these products in terms

of massless 4 dimensional projections will be derived.

The other main contribution needed for calculating amplitudes in 6 dimensions is

a representation for polarisation vectors of gluons. As for the spinors, a representa-
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tion that reduces to their 4 dimensional versions would be helpful as it would allow
easy comparison to 4 dimensional amplitudes and calculations. Unfortunately, the
simplest option of using the same expression as is used in 4 dimensions, as shown
in Equation 2.21, does not obey the relations expected for polarisation vectors when
used in 6 dimensions. It is possible to find a simple extension to the 4 dimensional

case which does obey all the required relations, which is given by

_ Un (P)Y*Fu—pm

b ; , 5.39
EhJ,—h,m(p ) N k ( )

where k is again a arbitrary on-shell vector that fixes the gauge for the gluon. This
representation though does have the issue of there being eight different states where as
physically there are known to be four gluon states. This issue is resolved by noticing

that the states form pairs that are equivalent, up to a choice of sign, related by

€+,h,7,l(p§ k) = —hlE,’lnL,h(p; k) . (540)

Therefore, where convenient, the polarisation vector form will be simplified to

eni(pik) =ern—1(pik) . (5.41)

The explicit mention of the arbitrary reference vector will also be dropped where there
is only one polarisation vector and will be implicitly labelled as k.

The other expression needed when calculating amplitudes and expressions involv-
ing gluons is a formula for the contraction of a polarisation vector with a gamma
matrix, either in another polarisation vector or in a spinor chain. This can be shown

to be given by

/()= Fu_ 1 (p)uy 1 (p) — u_ i (p)uy (VK + hl (Fug n(p)u_;(p) — us n(p)u_ (p)K)
hP) = V2p-k ’
(5.42)

where, when combined with any spinor chain or polarisation vector, at most two of

the four terms will contribute.
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5.2 Reducing 6 Dimensional Spinors to 4 Dimen-
sions

A 6 dimensional vector can be decomposed into a 4 dimensional vector and a vector

purely in the 5th and 6th dimensions,

pl = pZD,M +p§D ) (5.43)

where p is the full 6 dimensional vector, psp s is the 4 dimensional part and psp is

the part purely in the 5th and 6th dimensions. In components the vectors are given

by
Po Po 0
P p1 0
P2 D2 0
p= PaD,M = PeD = (5.44)
D3 D3 0
j2 0 D4
D5 0 D5

Both psp.p and pep are in general massive vectors and their dot product is zero as
they have no components in common directions. Using an extra arbitrary massless
4 dimensional vector, a, it is possible to write the 4 dimensional part in terms of a

massless 4 dimensional vector as

2
u_ PaD.m

noo_
o =p —ght—= 5.45
4D 4D, M 2pap a1 - a ( )

The vector pgp can be written in terms of any pair of 4 dimensional vectors and
the values of the 5th and 6th dimensional components. If the two vectors are chosen

to be the vectors a and psp, psp can written as

piptug, (pap)V” dtu—n—1(pap) — piy "y, (pap)V” dhuni (pap)
4dpsp - a

psp = hl : (5.46)

where h and [ are arbitrary signs and ,u;,t = ps =+ ip4 contains the values of the 5th
and 6th dimensional components of the vector p.
The spinors for the full 6 dimensional vector, p, can also be written in terms

of the spinors for their massless 4 dimensional projection and the arbitrary vector
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used in the massless projection by inserting the fraction %, which due to the

commutation properties of gamma matrices is equivalent to the identity, and gives

_ #yp + ¢4D¢u

un,(p) pap n(p)
= uhl(G)W hz(a)uhl(z(;)jpsj?zhl (p) .
wn—1 (pap) Up (I;;fz)?.i%;hz (p) + un (pap) Up_g (21;1412 ?i;ﬁhl (p) . (5.47)

The remaining dependence on the vector p is in the coefficients of each spinor, which

can be evaluated in terms of p,, a and ,uff, once a choice is given for a.

For the rest of this project a is chosen to be

1
-1
a“:% 1 (5.48)
0
0
0

as this gives one of the simplest forms for all the expressions for the spinor definition

used. With this choice of reference vector the spinor can be written as

du_n1(pap) _p .

TSR (5.49)

Un1(p) = uni(pap) — bl

The reason for this choice is to ensure that only two spinors appear in the replace-
ment for the 6 dimensional spinor, rather than the four that can appear in general,
and that they have different helicities. If this is ensured then in an expansion of the
product of a spinor for a 6 dimensional vector and a spinor for any other 4 dimen-
sional vector, at most one term will exist and in the expansion of a spinor product
for two 6 dimensional vectors, at most two terms will exist. To ensure that only two
spinors appear in the replacement for the 6 dimensional spinor and that they have
different helicities requires that the products uy,; (pap) duni(p) and wy,_i(a)p, ,uni(p)
vanish. This choice of vector is the unique real vector that causes both of these prod-
ucts to vanish. It is also the vector that when contracted with a momenta gives the

expression that will appear in the square roots within its spinors.
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By applying this replacement to the definition of the conjugate spinor as given in

Equation 5.33, the replacement for the conjugate spinor can be derived, which gives

U_p l(P4D)¢i —hl

hl— 5.50
up, 1 (p) = wp, (Pap) + pap-a M7 ( )

Combining this replacement with the replacement for spinors, a replacement for a

slashed matrix can also be derived which is given by

d Mp o+ Z U (du—n,—1(pap)wy  (Pap) — uni(Pap)u_y _(pap)dt) pht |

P=Piot o a

i 2p4p - @
(5.51)
Using these replacements on spinor products gives the relations
W (P)u—n1(q) = wp, (Pap)u—n1(qap) = —hlw (pap)ui(qap) (5.52)
1 (u_py(pap)du_n,—1(qup) _ Up, 1 (pap)dun,—1(qap)
() = ity (SO i 2P 000), o)
(5.53)

where the right hand sides depend only on 4 dimensional vectors and can therefore

be written as 4 dimensional spinor products.

5.3 Calculating 6 Dimensional Amplitudes

The amplitudes calculated in this project will always have physical external particles
in 4 dimensions. This limits where the extra dimensions can be introduced into the
tree and loop amplitudes being calculated. Therefore many of the amplitudes can be
greatly simplified. It is also necessary to check the validity of the properties needed
for 6 dimensional generalised unitarity calculations and for the state sum reduction
using scalar particles.

The corners of the cut loops require tree amplitudes. These tree amplitudes will
have external momenta for all but the two legs that are cut loop propagators. There-
fore these are the only momenta that can have 6 dimensional components. As there
are only two particles that have 6 dimensional components, by conservation of mo-
mentum, the 5th and 6th components of their momenta must be equal and opposite
to the values in the other particles’ momenta. A simple logic would also imply that
as there are no other 6 dimensional vectors, the direction in the 5th and 6th compo-

nents should be irrelevant and a rotation between the components should not change
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anything, but this needs to be proven explicitly and it must be shown precisely which
types of amplitudes are guaranteed to show this behaviour. There are also restrictions
on the helicity states that can appear for external and internal particles. In general,
quarks and gluons both have twice as many states as they do in 4 dimensions, however

the Higgs boson has one state, which is the same as in 4 dimensions.

To show that loop amplitudes do not depend on the direction of the 5th and 6th
components of the momenta, the dependence of tree amplitudes on them must be
shown. It must then be shown that any dependence cancels when used in generalised
unitarity calculations. The simplest case is an n gluon amplitude which will therefore
be handled first. Without loss of generality the first two particles are chosen to be
the ones from the cut loop propagators and will be called p and ¢ respectively. Using
Feynman rules, the possible terms that can appear in any given amplitude can be
calculated without evaluating the amplitude in full. For a pure gluon amplitude the
Feynman rules are given in Table 2.1. To prove exactly what terms can be contributed
for each diagram, one vertex can be chosen and starting with its vertex factor, new
vertex factors and propagators connecting them can be added. These can then be

split into separate terms. If this process is repeated, at each stage any term will have

the form
m Ng—2n n
[17-e I &7 [[em
i=1 j=1 k=1
C A — , (5.54)

[[ s

1=1
where C' is a complex number, P, @, R and S are momentum vectors containing some
combination of neighbouring momentum from the total amplitude, m and n count

how many of their respective types of factors are in the term and obey the relations

0<m<{]\2fg—J m+1<n<L]\2[gJ, (5.55)

and N, is the number of external indices or equivalently the number of gluon po-
larisation vectors the term needs to be contracted with to form an amplitude. The

number of vertex factors of each type can be calculated as

N3 = N, +2m —2n

Ny=n—-m-—1, (5.56)
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where N3 is the number of three gluon vertices and Ny is the number of four gluon

vertices. This form will be proved in Appendix A.

When these terms are contracted with the gluon polarisation vectors, each po-
larisation vector will either contract with a free momenta, R, or with a metric, g,
that will contract a pair of polarisation vectors together. From this, every term in an

amplitude is of the form

m Ng—2n n
[I7-Q II Bi-ei[]ex-<
i=1 j=1 k=1
C Fp—— , (5.57)

I[ s

=1

where e;//)k are gluon polarisation vectors.

Extending the general form of a term to an amplitude with a quark line, can be
done by tracing along the quark line, contracting each gamma matrix from a vertex
factor with a gluon term of the form in Equation 5.54. Each time a gluon term is
added, either a free vector, R, or a metric, g, must be contracted with the gamma
matrix in the vertex term. If a vector is contracted then it will introduce a slashed
matrix into the quark line. If a metric is contracted then a free gamma matrix is left
that will be contracted with a gluon polarisation vector and so introduce a slashed
gluon polarisation vector to the quark line. In general therefore, the terms in an

amplitude with one quark pair and any number of gluons are of the form

Ny—Ngg—2n

’
=1 =1 k=1 _
¢ j u H waT“ U(NqRJqug)uv (5.58)

Ng+m—n—Ngr—1

St

=1

where N4 of the Ugs are gluon polarisation vectors and the remaining Ny g of the U,s,
along with T}s, are momentum vectors containing some combination of neighbouring

momenta from the total amplitude and the summation limits now obey the conditions

N, + N,r + N,
OSms{ o ;“ qu—NqR—ng
N, + N,y + N,
m+NqR<n<{ 9ot ‘129+ qRJ—NqQ. (5.59)

To show how the amplitudes depend on the direction of the extra components of
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vectors, it is required to show how the various types of term depend on the extra
dimensions. Three of the types of term needed are products of two momentum vec-
tors, products of two polarisation vectors and products of polarisation vectors and
momentum vectors. The final type of term is spinor chains with an odd number of
gamma matrices, each contracted with either a momenta or a polarisation vector.
Firstly, products of two momenta will be considered. They can only depend on the
4th and 5th dimensional components if one or both of them contains one of the loop
propagator momenta, p or q. Without loss of generality, both of the momenta in a
product can be expanded as the sum of a possibly massive momentum vector, which
contains all contributions from any other momenta and one, both or none of the loop
momenta. It is then possible to expand the products into multiple terms. The terms
that this can produce and their expansions in terms of their 4 dimensional equivalent

vectors are

R-S=R-S (5.60)
-+
by by R - a
R'p:gp7+R'p4D:p4D,M~R (5.61)
Pap - a
-+
Pg g B-a
R'q:L‘i‘R'qle:(MD,M'R (5.62)
2qup - a
p-p=q-q=0 (5.63)

(#dpap - a—pfqap - a) (pgpap - a — py qup - a)
P4p - aQq4p - @

P-q=q4D -P4D +

1, _ _
= {4D,M * PAD,M — 5 (#q M; + Hp ,u;;) , (5.64)

where R and S are the massive vectors containing only 4 dimensional momenta. All
of these terms only depend on ;L;t/q through the combinations }u, = pfp, and
pt g = pgp, = —ptp, . These forms are the only ways that “i/q can occur in

Minkowski products of momenta.

The next form that occurs is R; - €;. As for Minkowski products of momenta, the
momenta, R, can be expanded as a 4 dimensional massive vector and possibly one or
both of the 6 dimensional vectors. The resulting terms can be expanded in terms of

4 dimensional equivalent vectors as

_ @+h(7")$kﬂ—h(7")
2/or - k
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wyp (r)phu_y (r)

nn(r)-p = 2V2r - k
wgp(r)dRu g () wyp (r)p, pRu_p(r)
B 4\/§r-kp4p -a 22 - k

_ u+h(7“)ffg;w.}zuh(r) .
€nn(p).S = u+h(2p\)/§fjl.tkh(p)
.y (pap)BBkdu_y, (pap )it 11, N o (pap) Sk, (pan)

8v/2 (p4D k4 e u;fu;) (pap -a)®  2V2 (104D k4 g N;ME)

%papa %papa
_ Uyn(pap)dBRdu_y, (pan)if 1y L Wen(Pap)Bku_p(pap) (5.67)
8V2pap.ar -k (pas - a)® 2v2pap.v - k .

Q+h(p)$k@77h(p)
2\/§p -k
S-apsp -k —k-apsp - S
V2pap -a (p4D kA gt i
S-apspm-k—k-apap - S
V2papar - apap.v - k P

€n—n(p).S =

=h

)

=h

(5.68)

where only terms involving p are shown, as it is easy to produce the equivalent terms
involving ¢ from the versions shown. For these cases it can be seen that factors of
,u;‘ W, appear in many places. However, lone factors of ,u;f or u, only appear in terms
from gluons with opposite helicities and always have the sign of the p as the second
sign of the helicity. The other case, involving contracting the polarisation vector for
one of the 6 dimensional momenta with the other 6 dimensional momenta, show the

same pattern as for the ones shown above but are too complex to show here.

The same can be done for the contraction of two polarisation vectors and again
the same relations apply. Now, as there are two polarisation vectors, it is possible for
both gluons to have the same pair of helicities and for the two helicities on each gluon
to be opposite, i.e. €,_p, - €4_p. In this situation the terms will have an overall factor
of ,uzij. If the two gluons have exactly opposite polarisations and both have their two
signs opposite, i.e. €,_p - €_pp, then there will be no overall factor of u;‘,u; as factors
of ,u;‘ #, can be converted to Minkowski products of vectors. Overall, this means that
each term in a pure gluon amplitude can contain many factors of u;‘ W, » but any lone
factors of u;t always come from polarisation vectors with their two helicities opposite.
The sign of the factors depends on the helicities of the most common type of gluon
with opposite signs. If the most common type of gluon is €,_, then the amplitude

will have overall factors of u;h and the number of factors will be #e,_p — #€_np,

August 22, 2017 78



Simon Armstrong Next to Leading Order Calculations for Higgs Boson + Jets

where #e¢p,; means the number of polarisation vectors of type €p;.

For all pure gluon amplitudes needed to calculate the rational parts, there can
only be two gluons that have these helicities, so at most there will be two overall
factors of p and that will only be the case if both the gluons have the same helicities.
As the signs of the gluons either side of a cut are related, the overall factors of pu* for
the product of the amplitudes either side of the cut must be the same as for a single
amplitude without the two gluons from the cut. Therefore, the full combination of
tree amplitudes used to build a cut contribution must have no overall dependence on

pt and must only depend on p* via the combination pt ™.

To extend this to amplitudes with quarks, first requires proving the forms of tree
amplitudes with quarks in and then again combining them to show that any overall
factors of u® cancel. The only extra contribution needed for quark amplitudes is
knowing the dependence of one or more quark lines on p*. Firstly the cases of only a
single spinor chain will be considered. It is clear from the vanishing products and the
expansion of slashed matrices in terms of spinors that any quark line will vanish if the
quarks at either end have opposite values for their first helicity signs. This separates
the sets of amplitudes into two spaces as is required. It still remains to show that the
two spaces are both equivalent but this just requires the amplitudes to not depend on
the value of the first helicity sign. To simplify the relations all slashed momenta will
be expanded as above, but this time also replacing any instances of the loop momenta
q with minus the sum of all the other momenta using conservation of momenta. This
leaves spinor chains with an odd number of elements which are either p, slashed
polarisation vectors for p or ¢, a possibly massive 4 dimensional slashed momenta or
slashed polarisation vectors for 4 dimensional external gluons. To further simplify the
cases that need to be handled, any p can be commuted to the start of the spinor line,
followed by the polarisation vector for p if present, then the polarisation vector for ¢
and finally followed by all the purely 4 dimensional slashed vectors and polarisation
vectors. Each of these swaps will also introduce an extra term of the form of a spinor
chain with the two swapped elements removed, multiplied by the Minkowski product
of the two items removed. These extra terms will also always have an odd number
of slashed matrices and be of the same form as the original spinor chain but with
less elements in them. The simplest case to handle is an amplitude with the two cut
particles being the quarks and no other quarks in the amplitude. Then the form of the

spinor lines can always be converted to the spinor for the quark p followed by a chain
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of an odd number of slashed momenta or polarisation vectors which are all purely 4
dimensional. Any spinor chain terms that have a p in them will result in terms with
no p in them once the commutations are applied as any p will be commuted to the
start and then cause the term to vanish as u(p)p = 0. There now remain two forms

to calculate for this case which depend on the helicities of the quarks and are given

by
~~ ~~ thl(p4D)¢?¢ufhfl(Q4D) _
up(p) X wn—1(q) = wp(pap) X wn—i(qap) + whi

4dpsp - aqsp - a

(5.69)
nx ;X\ "-ILX\
th(l?)?uhz(q) _ g(uhz(pw){;iuf. ;Lhz(%D) n th(P4D()]4jf' ayiuhl(qw))u_hl 7
(5.70)

where X represents the n slashed matrices in the chain and n is odd. From these
forms it can be seen that amplitudes with a single quark line, where the two quarks

—hlif the quarks are both of

are the cut loop propagators, have an overall factor of u
helicity hl and have no overall factors of u* otherwise. All other dependence on p*

is via the combination p*pu~.

The next simplest case is an amplitude with one of the cuts being a quark and
the other being a gluon. Without loss of generality the cut quark will be chosen to
be p and the cut gluon will be chosen to be g. After applying all the simplifications
and relations as above, two types of spinor chain remain. Firstly are spinor chains
with only 4 dimensional slashed matrices and secondly are chains with the slashed

polarisation vector, ¢(g), at the start. The different cases for these terms are given

by
N S
wp(p) X uni(r) = wy(pap) X wn_i(r) (5.71)
P N
wy(p) X (r) :hlu_hz(mQD)?i X uhl(r)lufhl (5.72)
PapD - @
PG
U (P (@) X un—(r) o 1 (5.73)
Py
th(P)ffm,_m(Q) X up_y(r)ocp™™ (5.74)
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—

n—1x

P
up(P)¢ 10 () X upi(r) ocp™™ (5.75)
—
up (P 1 _pi(@) X upa(r) o<1 (5.76)
up (P g —n,—1(@) X Uh—z(T)K(thl)Q, (5.77)

where in the later terms, factors that do not depend on u*, or only depend on pu*
via the combination uT =, have been removed as the expressions are too complex to

show in full here.

The last type of term that can contribute to an amplitude with a single quark
line is the case where the cut particles are both gluons. If the connection between
the two 6 dimensional gluons does not include the quark line, then the quark line is
independent of p and ¢ and the dependence on pu* must come from pure gluon factors.
The remaining cases are too complex to show here but have been calculated and are
found to obey the same relations as above, namely that each gluon of helicity €5, —p
and each quark line where the quarks have helicities u;,; and wuy;, contributes a factor of
" or removes a factor of "' These relations can also be shown to work for multiple
quark lines by examining the new cases contributed. For pure gluon amplitudes it has
already been shown above that these factors of u* cancel between amplitudes when
combined for a generalised unitarity contribution. Using the same logic, combined
with the formulas derived above for the dependence of quark lines, it is clear that the
overall factors of u* for any product of tree amplitudes is again the same as a single
amplitude without the cut quarks. Therefore, for amplitudes with quark lines in, there
again must be no overall dependence on pu* for the combination of tree amplitudes
needed for a generalised unitarity term. In addition, for any generalised unitarity
contribution for an amplitude which includes a combination of quarks, gluons and

optionally a Higgs boson, the only dependence on pt is via the combination put ™.

Therefore, it has been shown that the exact value of the components ps and ps
of the loop momenta are irrelevant and can be chosen freely without affecting the
results of the generalised unitarity calculations and that p+ and g~ can be chosen
to have the same value and to always have a positive real part or be pure imaginary
with a positive imaginary part. This reduces the two extra complex components of

the momenta to one extra complex value for g = u™ = p~.

To show that the quark state reduction works, requires showing that amplitudes
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do not depend on which of the two quark spaces they are from, other than an overall
sign shared by all terms. The effect from the quark helicities is only able to affect the
quark lines in each term. For the cases with no cut quarks, the two spaces give exactly
the same value as they must have 4 dimensional type helicities. If the quarks are cut
then there are more options available and the tree amplitudes, in general, will depend
on which quark space is used, due to the factors of hl and p~" that appear, but these
always cancel to terms of the form p*p~, while also cancelling the dependence on
which space they are from. Therefore, both spaces will give equal contributions and

the state sum reduction works.

It now remains to show that the extra amplitudes needed for the gluon state reduc-
tion also simplify and obey the relations expected. For scalar subtraction amplitudes
for pure gluon amplitudes, the terms that can contribute are related to those for the
pure gluon amplitude, by the requirement that for any term of the gluon amplitude
where the two cut gluons would have been contracted with each other using a metric
tensor, there is a term of the same form but with that metric tensor removed. Each
corner in these amplitudes must depend on ™ and p~ only via the combination
ptp, as all contributions that give overall factors of u*, were shown earlier to be
contractions of the polarisation vectors for the cut gluons with either each other, other
polarisation vectors or momentum vectors and these factors can not appear in these
terms. Therefore, these subtraction terms are again independent of the direction of
the extra components and could even be calculated with the loop momenta taken in
a direction that includes the 6th dimension, which would not otherwise have been

permitted.

For amplitudes with external quarks, as well as some gluons in the loop, if any
corners do not contain the quarks, then by the same logic as above, those corners
must only depend on p and p~ via the combination p*p~. If all the cut particles in
a contribution are gluons and each quark pair is isolated to a single corner, then the
only case to consider is amplitudes like those shown on the left of Figure 5.2. Many
diagrams in these amplitudes will not have the scalars enter the quark line and will
therefore have the two lines connected by a gluon. For this case, the same logic as
for pure gluon amplitudes can be used to show that again the term must have no
overall factors of u or p~ and can only depend on pu® via the combination ptpu~.
The remaining type of diagram for this type of corner is where the scalar lines both

enter the quark line and is shown in the rightmost diagram in Figure 5.2. For this
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Figure 5.2: The general form of the scalar subtraction amplitude for a corner
with a quark pair that does not enter the loop, along with the two types
of term that contribute to it. The dash-dotted lines represent the scalar
corresponding to gluons in the 6th dimension. An external gluon shown in
the diagrams can represent any number of external gluons, including none.
The cut particles are always the bottom two particles in each diagram and
shaded circles represent all possible colour ordered diagrams that contribute
to the amplitude or type of term.

case the term that is new and could potentially break the assumptions, is the quark
line with the scalar lines entering it, as these introduce explicit factors of 74, which
is not a massless physical momentum vector. Again these terms will be handled by
commuting these factors to the very end of the quark chain, which will leave one term
with both of these slashed matrices at the end and many terms with one or both of
these vectors removed from the chain and contracted with another contribution from
the line. The term which still has both factors of ji; present and has them adjacent

to each other can then be simplified by removing these two slashed matrices, as

Thelhte = ng[ =—1, (5.78)

where [ is the identity matrix for the space of gamma matrices. This term therefore
gives a contribution without overall factors of x4 or x~ and only depends on p* via
the contribution u™p~. The other terms produced by this commutation will contain
chains with one or zero factors of #, multiplied by one or two factors, each of the form
of ng contracted with either a momentum vector or an external polarisation vector.
These extra factors will all vanish as the loop momenta is restricted to only be in 5
dimensions and the polarisation vectors are for external gluons with 4 dimensional

polarisations and momenta and either of these will vanish when contracted with ng.

The remaining type of corner that needs investigation is those that have a quark for

one of the cut particles and a gluon for the other as shown in Figure 5.3. Again each
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Figure 5.3: The general form of the scalar subtraction amplitude for a corner
with a single quark that enters the loop, along with the form of the only type
of term that contributes to it. The dash-dotted lines represent the scalar
corresponding to gluons in the 6th dimension. An external gluon shown in
the diagrams can represent any number of external gluons, including none.
The cut particles are always the bottom two particles in each diagram and
shaded circles represent all possible colour ordered diagrams that contribute
to the amplitude or type of term.

term will be commuted so that a fixed order of the slashed matrices is achieved. Here,
as for the other quark corner above, any extra terms produced by the commutation
of 1h, must vanish as they will introduce factors of ng contracted with either a loop
momenta or an external polarisation vector. The quark line will contain exactly one
factor of jt; and a combination of slashed external polarisation vectors and slashed
momenta, which will contain a combination of the loop momenta, [, and external
momenta. As for the normal amplitudes, if there are multiple factors of the loop
momenta, they can be commuted to be next to each other and will then vanish.
Therefore, there can be at most one loop momenta left in the amplitude after this.
The remaining factor of the loop momenta will also vanish if it is commuted to the
end of the quark line that is the cut quark, leaving just terms with a single factor of
7 next to the spinor for the cut quark. This quark line is potentially problematic as
it may introduce factors of u* that do not combine with a factor of the opposite sign.
Using the properties of quark lines derived above, the dependence of these terms on

w1 can be shown to be

ﬂhl(p)ﬁ“ﬁ X Uhl(?") = lﬂhl(p4D) (u_h/l(nﬁAD)ﬂ—hl(a) — u—hl(a)ﬂ—hl(nﬁAD)) X uhl(r)
(5.79)
n—1x n—1x
- =~ s
up (p)hy X un—i(r) = —hwy (pap)gu—n,—1(neap)u_,_,(a) X uhfz(r)%fm ’
(5.80)
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where ng 4 is a 4 dimensional vector introduced as the 4 dimensional equivalent to ng.
ng,q is derived by splitting 2ng into the difference between two massless 6 dimensional

vectors, ng and ng , which are given by

1 1
0 0

ng = ! ng = ! , (5.81)
0 0
0 0
1 -1

and then applying the normal reduction to 4 dimensional vectors. Both of these

vectors, when reduced, result in the same 4 dimensional massless vector, ng , which

is given by
1
111
Ne,4aD = 5 . (582)
0
0

As all terms in these amplitudes must have a factor of this form, the overall depen-
dence on put is consistent, but it is no longer as it was for normal amplitudes. This
is potentially problematic as now factors of % will no longer cancel and there could
be overall factors of p* that depend on the helicity of the cut terms. If the two
corners of this form are neighbours, then there are two cases for the internal depen-
dencies, which are given in Table 5.2. If there are other corners between these two
corners, then there are four cases, as all that matters is the helicites of the external
and cut quarks next to the corners where the quarks exit the diagram because, as
found above, multiple neighbouring corners with both cut particles being quarks have
the same overall factors of 4% as one corner without the internal cuts. These four
cases are also shown in Table 5.2. These terms, as shown in the table, are also well
behaved and depend on p* only via the combination ptp~ and as such all of the
calculations are independent of the direction of the extra components, other than the

requirement that [ - ng = 0 when calculating these extra cut terms.

As all the amplitudes are independent of the value of the components of the loop

momenta in the extra dimensions, it would greatly simplify implementing calculations
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Upy Up—1 Upy Uph—1

Uh—1y Lpy
g ! oc putp

Table 5.2: The different types of quark line dependence in generalised uni-
tarity terms for the scalar gluon subtraction terms. The top row are the
contributions if the corners where the quark line exits the diagram are next
to each other and the other rows are for if there are any number of extra
corners between them. Only one extra corner is shown, as the contribution
from a series of neighbouring corners with both cut particles being quarks,
combines to give the same contribution as only a single corner with the same
edge cut quarks. Any extra external gluons in any corner are not shown as
the contribution depends only on the quark line and scalar gluons.

if all amplitudes were calculated in terms of the massless 4 dimensional projected
momenta and the value of p2. This will require new effective particle types that
label the particles that are 6 dimensional. For these particles, their true momenta
must be calculated by combining the massless projection with the given value for p2.
To actually calculate these amplitudes will still require using the full 6 dimensional
Feynman rules, but all external momenta will be purely 4 dimensional and all factors
and terms in the amplitude will be written in terms of purely 4 dimensional spinor
products, Minkowski products, constants and the value of p2. It is important to
note that conservation of momenta in amplitudes involving external particles that
are 6 dimensional is more complex, as it is the total 6 dimensional momenta that

is conserved not the reduced momenta. The exact relation between the projected
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on-shell momenta of two cut on-shell 6 dimensional particles is

P-a

iy =", —P"—a" tu 5.83
i+1,4D ©,4D a 2li74D -a (li,4D ca—P- a)lu’ no ( )

where the full 6 dimensional momenta satisfy the relation I, | = I! — P* and l; 41 4p
will be massless if and only if the full 6 dimensional vector would have been massless.

After a complete set of the lowest multiplicity and simplest amplitudes is calcu-
lated explicitly from the Feynman rules, the BCFW recursion relation can be used
to calculate the higher multiplicity amplitudes, by applying it to the purely 4 dimen-
sional momenta. However, care must be taken to use the modified conservation of
momenta rule given above and to sum over all possible states including the extra 6
dimensional ones, if the two 6 dimensional momenta are on opposite sides of a cut.
The exact formula that combines the two amplitudes on either side of the cut to give
the contribution will also need to be calculated. It is also important to check which
choices of shifted particles will be valid. These conditions are not yet known and are

likely to be complex if one of the 6 dimensional particles is chosen.

5.4 Calculating the Rational Terms using 6 Dimen-

sional Spinors

Once tree amplitudes can be calculated, the next step is to combine them to produce
the coefficients of the scalar basis integrals and then combine the coefficients with the
values of the basis integrals to give the rational terms. For numeric calculations an
explicit numerical expression for the loop momenta is again required. As before, it
would be convenient if the loop momenta could be written in terms of spinors and
vectors for the external momenta. If the cut conditions are evaluated in terms of
the massive 4 dimensional loop momenta, then the conditions extend in a relatively
simple way and give the loop momentum for three or more cuts of
K3(EP+9)  uKHEZ +1)

13ap.ar = cnf + can + K o — K# A , (5.84)

where ¢; and c¢o now satisfy the conditions

2, KZK2(K?4K242K;-K>)
,y (M + 1 2 1 4A2

C1C2 = —

A : (5.85)
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and if a fourth cut is performed they are given by

X (11\/1—# XA24A (K%K%(K%+§§+2K1.Kz) _’_4#2))

= 5.86

“ 4K3 Ny ( )
e

= 5.87

2 4K3 *Ng ’ ( )

where the conventions for the directions of momenta and definitions for Ky, K», ny,
na, v, A, Ay and X are the same as for Equation 4.28. As this definition is massive
it does not have a spinor representation, but its massless projection does. To project
down into a spinor form, the vector a must be expanded in terms of the basis of
f(h f(g, n1 and ng, so that extra linearly dependant vectors and spinors are not

introduced. In terms of this basis, a is given by

B f(f(K%Kl'af’yKya)+I~(5(K12K2~a—ny1~a)+n’f’yn2~a+n’2l'yn1'a

at 5
2K?K3 —2 (K, - Ks)

(5.88)

where nq - a and ns - a are related by

(v — 2K, - K>) <K22 (K1 - a)? + K? (Ky - a)® — 2K, - aKs - aK - Kz)
K{K3 '

ny-ang-a=
(5.89)
Using this representation for a, the spinor form for the massless 4 dimensional loop

momentum is given by

K?K -a—vKi-a
_ B+ /-

(|« LR )

1 ‘LL C(Cl,cz)

K2Ky-a—~Ky-a)\ | = ng - a .
PEADELY! Y2 9 Y2
((aJrM C(c1,c2) ) ‘Kl} * (Cl NG 0(01702)> ‘KQD

K2Ky-a—~Ky-a ~ ny-a ~
2 Aol YL 2 2 Y1

_— K
((a+u 0(01702) ><K1’+<C2+M 0(01,62)>< 2‘)
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o
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-1 B T ey |-
oy ‘ 1} Clenca) ‘Kz} : (5.90)
Co+ p C(e1,e2)
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where the common function C'(cq, c2) is extracted to simplify the representation and

is given by

C(Cl,Cg) = 2(K22K1 . a(Kf +K1 . Kg) — K%KQ . a(K22 +K1 . Kg) +2A(cln1 - a+ cang - a))

=4dc1Any - a+2(K3Ky -a(K? + Ky - Ko) — Ki Ko - a(K3 + K - K3))

(K2K; - a® + K?K> - a® — 2K - aKs - aK; - K>) (/ﬁ n KfKS(KfoZSHKer))

+
ciny - a

=dcyAny - a+2(K3Ky -a(K? 4+ Ky - Ko) — KiKo - a(K3 + Ky - K>))

(K22K1 .a2 +K12K2 .a2 _2K1 'G,KQ '&Kl KQ) (M2 + Klng(KfZIZ§+2K1K2))

+

CoNg - a

(5.91)

As in 4 dimensions the bubble can not directly use the above form as it only
has one independent external momenta so an extra arbitrary vector is required to
parametrise the set of momenta. By the same method as above, the loop momenta

cut conditions can be solved and the loop momentum given by

o yK% y(1 *y)Klz *#2
l =1-y) K1+ g, — 2 L
1,4D,M ( y) 1 2K, 'XX n %K, - X na
% ( *y)Kf y(l—y)K% *HZ
l =—yK| — ———x —tn; — 5.92
2,4D,M yn 2K, - x X ni %K, -\ na , ( )

where again this solution gives a massive vector. As for the loop momentum parametri-
sation for pentagons, boxes and triangles, the reduced 4 dimensional loop momentum
will have a spinor representation which will factorise. As in 4 dimensions no ex-
tra variants of the loop momentum expression are needed to handle the case where
K? — 0 as this will not contribute due to the presence of K7 in the scalar integral’s
value.

It is necessary to know exactly what form the combinations of tree amplitudes will
have in terms of the remaining degrees of freedom and which of these coefficients are
needed to form the rational terms for each cut in order to evaluate the coefficients.
This is calculated by taking the form of the loop momentum solution, which for
three or more cuts is given above, and substituting it into the form of the integral
numerators as given in Equations 5.9 to 5.12. The directions for the vectors n; can be
chosen, subject to the conditions that defined them, for each box, triangle and bubble
diagram, so that the resulting forms are as simple as possible, without changing the

form that results because of the symmetry of the numerator forms. The result will be
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a power series in the remaining degrees of freedom, with a relatively complex shape
in the space of the different degrees of freedom.

The reduced momenta forms given above include extra poles, but these must
cancel when the different amplitudes and coefficients are combined to produce the
full generalised unitarity contribution. Care must be taken if the vectors become
4 dimensional, as then u? — 0 and the loop momenta should collapse back to the
standard 4 dimensional form, but may numerically diverge from this solution. It
is also important to ensure that the product of the loop momenta with a does not
vanish, as then the projection would fail. This should be unlikely to happen as long
as the products of external momenta with a do not vanish and complex values for the
extra components are used. If the product does vanish then there is likely to be a
factorisation of the badly behaved components that allows them to cancel between the
coefficients. No extra cases will be needed to handle the situation where the momenta
of one or both of the external corners used to construct the momenta representation
is massless, unlike in 4 dimensions, as long as pu? is not zero.

The final component needed to calculate the rational terms, are the subtraction
terms resulting from contributions that have extra cuts. These again will be functions
of the coefficients for the higher terms, though there are now significantly more terms
to handle. It is hoped that some of the coefficients can be ignored if it can be shown
that both their contribution to the terms that are actually needed and their contri-
bution to the subtractions for lower diagrams will always vanish when the relevant
terms are projected out. As for the pure 4 dimensional calculation, each coefficient
can be projected out using complex Fourier projections. Combining all these steps,
the coefficients for each amplitude and any subtraction amplitude can be calculated
and then combined using Equation 5.17 and Equation 5.6, to give the rational terms
in the four dimensional helicity scheme. The full details of how to implement this

calculation have not been worked out in this project due to time constraints.
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Chapter 6

Implementing the

Calculations

Throughout this project Mathematica 8[19] has been used to implement the calcula-
tions and derive the formulas given in this thesis. For the 4 dimensional calculations
in Chapters 3 and 4, the Mathematica package Spinors@Mathematica (SQM)[20] was
used, which provides an implementation of the spinor helicity formalism in 4 dimen-
sions for both analytical and numeric calculations. This Mathematica package uses
the same definition for spinors as is used in BlackHat. This enables direct numerical
comparisons of the values produced by BlackHat and those produced by the Mathe-
matica implementation, as no overall external momentum dependent phases need to
be combined with the values before comparison. The automatic numerical calcula-
tions for tree amplitudes and the cut coefficients are implemented in terms of the basic
spinor and 4-vector objects provided by this package, as a collection of Mathematica
source files. This implementation can calculate the tree amplitudes and coefficients
of the one loop scalar basis integrals for any amplitude containing one or zero Higgs
bosons with any number of quark pairs and gluons. The Mathematica code for the
4 dimensional calculations is divided into three files: common shared code in Com-
mon.txt; the tree level, colour ordered, helicity amplitudes in HelAmpIN.txt and the
one loop cut part calculations in Loop-Cuts.txt. Types of particles are labelled by
objects of the form Type [Properties, ...], where Type is the type of particle, either
Higgs, Phi, Gluon or Quark, and Properties, . .. includes the helicity of the particle

and, for quarks, its direction (1 for a quark and -1 for an anti-quark which is the
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same as a quark travelling in the opposite direction) and flavour. For example, a
positive helicity gluon is labelled as Gluon[1], a negative helicity quark of flavour 2 is
labelled as Quark[1,-1,2] and a negative helicity anti quark of flavour 3 is labelled
as Quark[-1,-1,3]. Various properties of the types of particles that are used later in
the calculations are defined in Common.txt. This file also loads S@QM, defines a few
extra methods for it and improves the functions that calculate spinors from momenta

to handle cases where elements are infinite or indeterminate (of the form 0/0).

The tree level amplitudes are calculated using the function HelAmplN, which is
called using expressions of the form HelAmplN [{Momenta, . ..},{ParticleTypes,...}],
where the Momenta are either lists containing the elements of the momenta, or names
that have been defined in S@M as four vectors or spinors and have their momenta
defined. This function’s arguments are separated based on whether or not a particle
is colour ordered and then the particles are sorted into a canonical order so that when
declaring amplitudes, the minimum number of combinations needs to be checked for.
In Hel AmplIN.txt, explicit formulas for the MHV and anti-MHV amplitudes are de-
clared, along with some amplitudes that vanish. These amplitudes are used by the
BCFW implementation to build up higher multiplicity amplitudes. It was discovered
that some theoretically valid shifts had terms of the form 0/0 which caused numerical
problems and were not handled well in this implementation, therefore multiple pairs
of shift particles are tried until one is found that provides a valid amplitude. Many
cases where this could happen were handled by explicitly checking for certain forms
of terms and declaring that they would vanish, even though often they are badly
behaved numerically. Care was needed, while combining the two amplitudes to form
a BCFW term, to ensure that the correct factors were introduced by the contribution
for the particles either side of the cut, so that they form a valid propagator, given
that they were calculated with momenta in the opposite directions which are not
guaranteed to have a simple relationship. A simpler method was used in the cut part
calculations, where the spinors for the reverse particle are explicitly defined as i times
the non-reversed particle’s spinors, as this does not require as much care on these

factors.

The coefficients of the scalar loop integrals were also calculated in Mathemat-
ica using the code in Loop-Cuts.txt. For this section of calculations the processes
and set of momenta must be declared using the functions DeclareProcess and

DeclareMomConf. Both of these functions take as their first argument a list containing
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a pair of lists, where the first list is the colour ordered particles and the second is the
non-colour ordered particles. DeclareProcess also has a second argument which is
the quarks that turn left after entering the loop. For each quark pair either the quark
or the anti-quark is left turning. It is also possible to have a closed quark loop which
is represented by the quark flavour —1. It is not important whether the closed loop
quark is a quark or an anti-quark, as the differences always cancel in closed quark
loops. The helicity property of left turning quarks is also not specified as it is implicit
from the helicity of the external quark. Both these declaration functions return a new

unique symbol that labels the process or momentum configuration.

The Mathematica code generates the set of all possible non-vanishing cuts and
the sets of cut propagators for each cut. Cuts are described by a pair of lists, the
first of which lists particles which are the first particle not in the previous corner,
which is the same as the first particle in that corner unless the corner is empty. The
second list shows which corner contains each non-colour ordered particle. For example,
{{2,4,4,5},{2}} in an amplitude with five ordered particles and one unordered
particle, means the first corner has particles 2 and 3, the second corner contains the
first and only unordered particle, the third corner contains just particle 4 and the
last corner contains particles 5 and 1. This split is shown in Figure 6.1. The list of
propagator particles is given by the particles heading out of each corner, towards the
next corner, in corner number order. This labelling is also shown in Figure 6.1. The
list of possible cuts is generated using SplitOptions[process,n], where process is
the symbol returned by DeclareProcess and n is the number of cuts wanted and is
2 for bubbles, 3 for triangles and 4 for boxes. The list of possible sets of propagators
for a given cut is calculated using SplitValidPropOptions [process,split], where
split is a split as returned by SplitOptions. It is possible for a split to be returned
by SplitOptions, but for for it to have no valid sets of propagators and therefore for
SplitValidPropOptions to return an empty list.

The numeric value of the coefficient of each scalar function is calculated using the
functions CalculateBoxContribution, CalculateTriContribution and
CalculateBubbleContribution, all of which take the process, momentum configu-

ration, cut and cut propagators as arguments, in that order.

For tree level amplitudes the values were tested against the values produced by
BlackHat and found to agree to within the expected error, which is of the order of the

square root of the error in the input, due to square roots in the spinor definitions. This
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Figure 6.1: The cut labelled {{2,4,4,5},{2}} for a five gluon, one Higgs
amplitude. The propagators are labelled by p;, where ¢ is the index in the
list of propagators for the cut. The direction that the propagator particle is
viewed as travelling in is shown with arrows. All external particles are taken
as outbound. This shape of diagram and cut label is equally valid for any
set of five ordered and one non-ordered external particles.

is performed with the python script TreeTests.py which links to BlackHat, generates
momenta and processes and calculates them, then generates Mathematica code to
calculate each amplitude and compare it to the value calculated with BlackHat. The
cut part integral coefficients were also tested to ensure that both implementations
produced the same set of non vanishing amplitudes and the same numeric values for
all cuts for all types of amplitude and again the values were found to agree. This is
tested using the python script OneLoopTests.py. The only issue was with amplitudes
with a closed quark loop which were out by a factor of —1, which is a factor that,
in BlackHat, has been absorbed into the coefficients rather than the integral. There
were also a few cuts that one version produced but the other did not produce, but
these always had a value of zero as is required. This inconsistency is not necessarily
an issue as time spent calculating coefficients that can be shown to be zero is traded
against the effort needed to work out which terms are going to vanish. The main
class of amplitudes that vanish but are still produced by BlackHat, was cuts for
Higgs boson amplitudes where the corner containing the Higgs boson had helicities
that vanish. It would improve the efficiency of BlackHat’s calculation to not calculate
these contributions that are known to always vanish. The methods of implementation
for the cut part calculations for amplitudes with a Higgs boson and for pure quark and
gluon amplitudes were compared in BlackHat and showed the same differences as were
found in this project. This is another confirmation that the existing implementation
in BlackHat is correct for calculating the cut parts of one loop amplitudes with a

Higgs boson.
Care was required when comparing cuts between BlackHat and the Mathematica
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implementation as different labelling conventions are used. If the amplitude contains
only colour ordered particles, then there is only a difference if the first particle in the
first corner is not particle 1, in which case the last element from the label is moved to
the front to form the BlackHat label. If there are non-colour ordered particles then it
is even more complex to convert the split labels, as BlackHat inserts the non-colour
ordered particles into the colour ordered particles in different positions for each cut, so
it can label the cut as if all the particles were ordered. This conversion along with the
many other conversions needed to convert between BlackHat labels and Mathematica

labels are in BHMathLink.py.

There is also Mathematica code in DrawCuts.txt to draw graphs showing the
possible cuts for an amplitude along with which diagrams contribute poles to which
other diagrams. This was used to produce Figures 4.3-4.5. These diagrams are pro-
duced using pdfLaTeX[21], feynmp|[22], pdfcrop[23] and dot[24] to draw the individual
Feynman diagrams, process them and then combine them to produce the overall fig-
ure. Similar functionality is also available in BlackHat and can be accessed using the

--plotgraph option of OneLoopTests.py or its short version.

For the rational terms, a Mathematica implementation of spinors in 6 dimen-
sions has been developed. It has been used to derive and check the relations be-
tween 6 dimensional and 4 dimensional spinors and between 6 dimensional momenta
and spinor expressions. It is implemented in 6DSpinorHelicity.txt and uses the
spinors as defined in Section 5.1. Both algebraic and numeric calculations can be
performed. There are many rearrangements and simplifications available. Spinors
and conjugate spinors are represented by the objects spinor [name,helicity,...]
and spinorbar[name,helicity,...], where name is the label for the particle and
helicity, ... represents the one or two helicity signs for the spinor depending on
if the spinor is 4 or 6 dimensional respectively. Slashed matrices are represented
by Sm[name,helicity] for massless momenta and SmM[name,helicity] for massive
momenta, where helicity is the helicity of the spinor space that the slashed matrix is
in. These are combined in products using the function Sp [elements, . ..] where each
element is a spinor, conjugate spinor or slashed matrix. It is also possible to insert lin-
ear functions of these elements as elements in larger spinor products. All products are
expanded as fully as possible and completely closed spinor products are extracted and
separated into individual factors. Closed spinor products will also reverse direction to

produce a canonical form. As was shown in Section 5.1 many spinor products vanish
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Sp[spinorbar [p, 1, 1], Sm[r ], Sm[s], Sm[t]1, spinor [q, -1, -1]]
Sp[spinorbar [p, 1, 1], Sm[r ], Sm[s], Sm[t], spinor [q, 1, -1]]
Sp[spinorbar [q, 1, -1], Sm[t], Sm[s], Sm[r ], spinor [p, 1, 1]]
%% // Traditional Form

Sp[spinorbar [q, 1, -1] + spinorbar [p, 1, -11],

(Sp[Sm[r ], Sm[s]]1+ S [Sn[s], Sn[r1]), spinor [p, -1, -1]]

0

Spluy o [p], SM(r, 1], Sm[s, -1], Sm[t, 1], uy 4 [q]]
Spluy o [p], SM(r, 1], Sm[s, -1], Sm[t, 1], uy ;[q]]
True

(uy 1(p), SM(r, D, Sn(s, -1, SN(t, 1, u; _4(q))

S(uy, 4 [p), Smir, 13, Sm[s, -1], u 4 4 ([p]]+Sp[u
Sp[u, 4 [q], Smir, 1], Sm[s, -1], u_y, 1 [p]]+Sp[
pl]

2 M [Mm(s], Mmr]]Splu; ;[(q], U g, oI

Decl areVector D nension [r, 4]
Decl areVect or D nension [s, 4]
Sp[spinorbar [p, 1, 1], spinor [q, -1, 1]]
Sp[spinorbar [p, 1, 1], spinor [, -1, -1]]
Sp[spinorbar [r, 1, 1], spinor [s, -1, 1]]
Sp[spinorbar [r, 1, 1], spinor [s, -1, -1]]

4

[Pl Sm[s, 1], Sm[r, -1], uy 4 [p]]+

1, S
u; ;[ql, Smis, 1], Sm[r, -1], u_y 4 [p]]

4

S|

=

11 [P1 Uy 1 (9]]

Figure 6.2: Examples of the spinor and slashed matrix objects and their
products using the implementation in 6DSpinorHelicity.txt. The first block
of equations show various of the simplifications that are performed automat-
ically by the implementation for any momenta while the second block shows
simplifications that only happen if the momenta are 4 dimensional.

and these conditions are implemented here and cause the relevant terms to simplify
to zero. Using the function DeclareVectorDimension[momenta, dimensions], it is
possible to declare that vectors are in a lower number of dimensions, for example,
a 4 dimensional vector while working in 6 dimensions, where momenta is the name
of the momenta and dimensions is the number of dimensions that the vector is in.
Declaring that vectors are 4 dimensional while working with 6 dimensional spinors
and momenta allows the extra properties given in Section 5.1 to be used and many
more products to be simplified away. These spinor and slashed matrix objects and
some of the automatic simplifications performed are shown in Figure 6.2.

Momenta are represented by Mom [name] for massless momenta and MomM [name] for
massive momenta, where name is the name of the vector. These are combined to give
their Minkowski product using the function Mp [mom1 ,mom2], where mom1 and mom?2 are

both momenta and examples are shown in Figure 6.3. Again, as for spinor products,
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M [MmM[p], Mm[q]]
% // Traditional Form

M [Mm[q], Mm[p]]
== %%

M [MmM[p], Mm[p]]

M [MrM[p], MM[p]]

% // Traditional Form

M [Mm[q], Mm[p]]
Pq - Pp

M [Mm[q], MmM[p]]
True

0

M [MnM[p], MMM[p]]

Py -Pp

Figure 6.3: Examples of momenta objects and their Minkowski products
using the implementation in 6DSpinorHelicity.txt.

M [Sp[spinorbar [p, 1, 11, ¥, Sm[q], spinor [r, -1, -1]], Mm[s]]
% // Traditional Form
% // DoMpToSm // Tradi ti onal Form

M[Sp[u, 4 [P], o[l], Smig, -1], u_y _;[r]], Mm[s]]
(Uuy 1(p), o, 9m(q, -1), u_y _1(1)) -Ps 4

(uy 1(p), SM(s, D, IM(q, -1), u_y _4(r))

M [Sp[spinorbar [p, 1, 1], ¥, Sm[q], spinor [r, -1, -1]1,
Sp[spinorbar [s, 1, -11, ¥, spinor [t, 1, 1111

% // Traditional Form
% // DoMpToSpi nor Chains // Sinplify // Traditional Form

M ([Sp[u, 5 [Pl oll], Smiq, -1], uy, 1 (r 1], Sp[uy 4 (t], of[l], Uy y[s]]]
(Uuy 1(p), o, am(q, -, u_y _1(1) (U 4(t), oy, Uy _1(S))

=2(uy 4(), u_g () (uy 1 (p), SM(d, D), Uy _1(9)) +
2(uy _y(s), u_y _1(n) (uy 4 (1), SM(g, D, uy 1(p)) +
2(uy (p), u_g,_1(N) {uy 4 (1), SM(g, D, us _4(s))

Figure 6.4: Examples of spinor chains containing gamma matrices and the
simplification of the products with momenta and each other using the im-
plementation in 6DSpinorHelicity.txt.

products are fully expanded and if needed, reversed, to give a canonical representation.
This canonicalisation is very important as otherwise it is possible to have a complex
expression that should cancel, but does not, as the different terms are using different
forms of their spinor chains or Minkowski products. It is not easy to find these
manually in large expressions. Unfortunately there are still equivalent expressions
that cannot be automatically canonicalised, as they would involve commuting matrices
around in spinor chains, which if it does not cause a cancellation could drastically
increase the number of terms in an expression, causing it to be too complex to handle
and work with.

Complex, momenta like, expressions can also be written involving spinor chains

with gamma matrices, \ [Gamma] or \ [Sigma] [h], inserted, which can be combined
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using Mp; these and simplification of their products are shown in Figure 6.4. If the
other vector in the Minkowski product is a normal momenta rather than a spinor
chain, then the product can be simplified by applying DoMpToSm to it. Simplifica-
tions for the Minkowski product of two spinor chains containing gamma matrices
are harder to perform in general, but for most cases can be performed by applying
DoMpToSpinorChains. The main case this function cannot replace is expressions of
the form uy j, (p)v*u+ 1(q) wy (1) Vuut,n(8), as it is not possible to write them purely

in terms of the spinors they contain. If this type of term is encountered, the simplest

db+Bd
2a-b

solution is to insert the fraction into one of the spinor chains, where a and b are
two vectors which should be chosen so that the expression simplifies. As this requires
knowledge of what the other vectors are, it cannot be automated and as such is not

provided as a function.

Expressions involving chains of slashed matrices can often be simplified by com-
muting matrices so that objects for the same momenta are neighbouring, or so that
different terms are rearranged to have the same form. The function
CommuteMatricies[elementl,element2], where elementl and element2 are both
either explicit gamma matrix objects of the form \ [Sigma] [h] or the name of a mo-
menta, can be applied to an expression to commute element1 and element2 whenever
they occur in that order in the expression. Basic automatic commutations are also
possible where it is simple to see that the commutation will produce simpler expres-
sions, as it will cause there to be two neighbouring slashed matrices for the same
momenta, or cause a momenta to be next to its corresponding spinor, and as such
these terms will vanish. This is done using the functions CommuteMatriciesAway and
CommuteSigmaMatriciesAway, depending on whether it is a gamma matrix or only
slashed matrices that are in between the matching items that will be commuted away.

Examples of these functions for commuting slashed matrices are shown in Figure 6.5.

These spinor and Minkowski products can also be evaluated numerically using
functions defined in 6DSpinorHelicity.txt. There can be multiple sets of values de-
fined for any momenta as the definitions are attached to a tag. To define a value for
a momentum for a specific tag the function DeclareVectorMomentum is used, which
takes arguments of the form DeclareVectorMomentum[tag,momentum,{p0,pl,...}]
or DeclareVectorMomentum[tag,momentum,{{helicities}->spinor,...}], where

helicities is the helicities of the spinor and all possible helicities must be included in
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Sp[spinorbar [p, 1, 1], Sm[r ], Sm[s], Sm[t], spinor [q, 1, -1]] // CommuteMatricies[r, s]
Sp[spinorbar [p, 1, 11, Sm[r ], Sm[q], Sm[r 1, spinor [q, 1, -1]] // Conmut eMatri ci esAnay
Sp[spinorbar [q, 1, -1] + spinorbar [p, 1, -1],

(Sp[SM[r ], Sm[s]1+ Sp[Sn[s], Sm[r]1]1), spinor [p, -1, -1]]

% // CoomuteMatricies[r, s]

2 Mp[Mm(s], Mm(r 1] Splu, ; [p], SMit, 1], uy, 1 (q]]-
Splu, 4 [p], Sms, 1], Sm(r, -1], Sm{t, 1], uy 4 [q]]

2 M (Mm(r ], Mm[q]] Sp[u, ; [p], SMr, 1], u; 1 ([q]]

Sp(u, 4 [pl, SMIr, 1], Sm[s, -1], u_y 4 [p]]+Sp[uy _,[p], SmIs, 1], Sm[r, -1], uy ;[p]]+
lu; 4 0dl, Smir, 1], Sm(s, -1], u_y 1 [p]]+Sp[u; ,[d], Sm[s, 1], Sm[r, -1], u_; 1 [p]]

2 Mp(Mm(s], Mmr]]Splu; ;(q], Uy 4[p]]

Figure 6.5: Examples of commuting spinor chains using the implementation
in 6DSpinorHelicity.txt.

the list, otherwise missing options will not be usable for evaluating expressions. Once
momenta are declared, then expressions using them can be evaluated by applying
Ev[dimensions,tag], where dimensions is the number of dimensions the expression
should be evaluated for, which is required as some expressions can be used alge-
braically in any number of dimensions, but numerical evaluation requires the number
of dimensions to be stated. Numerically evaluating various expressions along with

the different ways of declaring momenta values are shown in Figure 6.6.

The 4 dimensional spinors used in 6DSpinorHelicity.txt as part of the recursive
definition unfortunately do not have the same form as those used in BlackHat or
S@M, but differ by a rotation of vectors in space. The rotation swaps the 2nd and

4th components and negates the 3rd component and is given by the Lorentz trans-

formation
1 0 0 O
0 0 0 1
AF, = (6.1)
0 0 -1 0
01 0 O

This is especially important for the reduction of 6 dimensional momenta to massless
4 dimensional momenta, as the vector a used in the reduction was chosen for that
particular spinor representation and needs to be converted if a different representation

is used. For the BlackHat and SQM definition of spinors it is clear that a, as given
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Decl areVectorl\bnentum[norri, p, { 474 |, 3, 12, -4, -4, 17}];

Decl areVectorl\bnentum[noni, q, {- 583 , 11, -13, 2, 15, 8}];

Decl areVect or Monentum[mon2, p, {1-54, 3+2 4, 11 -3 4, -7 4, 2+ 11 &, 5}];

Decl areVectorl\bnentum[nDrrZ, q, {{1, 1} » {{4-3 i}, {-3-18 i}, {16 -2 i}, {0}},

6 21 6 21 42 8l i
{1, -1}y > {{0}, =+ —, {&}, {1}}, {-1, 1} > {i{-=-—¢, O} {1}, {—-— .
(o {2+ 20 ) (-2 (-2

(-1, -1} > ({3+4 4}, {4-3 i}, {0}, {-16+2 1‘1)}}];

Decl ar eVect or Mrentum[non?, r, {5, 0, 3, 0, 0, 0, 0, 4}];

Mm(p] // Ev [6, non2]

Mm[q] // Bv [6, non2]

% == %%

(1-54, 3+21i, 11-314, -71, 2+11 1, 5}

(1-54, 3+21i, 11-314i, -71, 2+11 1, 5}

True

{Sp[spinorbar [p, 1, 1], spinor [r, -1, 117,
Sp[spinorbar [p, 1, -1], spinor [r, -1, 111} // Ev[6, non2] // Sinplify

{Sp[spinorbar [q, 1, 1], spinor [r, -1, 111, Sp[spinorbar [q, 1, -1], spinor [r, -1, 111} //
Ev[6, non2] // Sinplify

%%% [[11]1 %%% [[2]]1 = %% [[1]] %% [[2]]

42 661 4 3i 4 3i
{(_7+ )/-,(6+21)\/-}
5 5 )\5 5 5 5

{6+781'1 6+2jL}
NG

Fal se

True

Sm[p, h]// BEv[6, nonl] // Traditional Form
Smip, h1// Bv[6, non2] // Traditional Form

Vara -3h 4-12 17+ 4 0

-4-12i -3h-+474 0 17+ 4

17 +4i 0 —3h-+474 -4+12i
0 17 +4i 4+12i V474 -3 n

(1-5i)-(3+2ih -3-4i 6-2i 0
-3-18i (-3-2i)h-(1-54) 0 6-2i
16 -2 0 (-3-2i)h-(1-54) 3+4i

0 16-2i 3+18i (1-5i)—-(3+2i)h

Figure 6.6: Examples of declaring numeric values for momenta and evaluat-
ing spinors, momenta and slashed matrix objects in terms of them using the
implementation in 6DSpinorHelicity.txt.
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in Equation 5.48, will be given by

1
0
alsy = L . (6.2)
BH 9
0
-1

These replacements for 6 dimensional spinors in terms of massless 4 dimensional
spinors are provided in the variables rep and reph [h], where in the latter the replace-
ment uses h and its negative for the summed over helicities needed in the replacement,
which can greatly help with producing a simple result. The reverse replacement is
also provided in the variable unrep. These leave the expression defined in terms of
the explicitly named extra component of the momenta p4 and ps, which can then be
replaced with the p expressions defined in Equation 5.46. This is achieved by using
the replacements stored in the variables tomu, tomuh [h] and tomuhp [hfn], where the
first replacement uses 4+ and - as the signs in the p, the second uses +h and -h as
the signs and the third version’s argument is a function that takes the name of the
momenta and returns the expression to base the signs for the ps on. Again the reverse
replacement is provided and is stored in the variable frommu. To avoid replacing all
momenta in an expression these replacements will currently only replace an explicitly
specified list of vectors; the replacements will need to be manually updated if extra
vectors need to be replaced, by changing the pattern named as pp in the replacement
rules.

Due to time constraints the full calculation for 6 dimensional tree and one loop
amplitudes has not been performed, but could be developed using the objects and tools
defined in 6DSpinorHelicity.txt along with the Feynman rules defined in Tables 2.1
and 5.1. Unfortunately the conversion to 4 dimensional spinors cannot be performed
using replacement rules, as slashed matrices have the same form in any number of
dimensions, but when converting from 6 to 4 dimensions should convert to the sum of
both helicities, for which it is impossible to declare a rule. There are also issues with
simplifications for spinor products applying during the replacement causing incorrect
results and terms to vanish that should not have, since while in the middle of applying
the replacement some objects are 6 dimensional and some are already 4 dimensional.
As such the final conversion to 4 dimensional expressions will have to be done manually

while writing the 4 dimensional implementation.
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Chapter 7

Conclusions

In this thesis progress has been made towards adding Higgs boson amplitudes to
BlackHat. This requires calculating tree amplitudes with any number of quarks and
gluons both with and without a Higgs boson. These tree amplitudes have been cal-
culated and are shown to agree with BlackHat, apart from a few differences in sign
conventions for quarks. The cut parts have also been calculated and again agree with
BlackHat, after taking account of the differences in quark signs, apart from a factor
of —1 for closed quark loop contributions. BlackHat was seen to produce cuts that
were known to vanish. The main case where this happened was amplitudes contain-
ing a Higgs boson where the corner with the Higgs boson causes the coefficient to
vanish unless it is restricted to have at least two negative helicities and this is not
currently done in BlackHat. Adding this restriction would save calculating a large
class of cuts that can easily be seen to vanish. Apart from this possible improvement
in speed the code was found to reliably and efficiently calculate the cut parts. The
various restrictions and assumptions used in deriving the calculations and therefore
the limitations of the method as currently implemented in this project are discussed.
The main restriction on the method as discussed in this thesis is that only massless
particles are allowed in loops. This restriction could be lifted and will have to be
lifted when it is used in calculating the rational terms.

The method to calculate the rational terms was unfortunately not completed in
this project due to time constraints so could not be implemented into BlackHat. The
basic method is discussed in Chapter 5 and a Mathematica implementation of 6 dimen-
sional spinor helicity formalism has been developed, along with a method to reduce

the calculations back down to 4 dimensions by introducing effective massive particles
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which is discussed in Chapter 6. This implementation is included in Appendix C. The
general form of the dependence of tree amplitudes needed for generalised unitarity
calculations on the extra dimensions has been investigated and there is no dependence
found on the direction of the extra components, apart from in the amplitudes needed
to subtract the extra gluon polarisation states. For those amplitudes it is required
that the product of the loop momenta with the polarisation vector in the 6" dimen-
sion is taken to be zero. If this is ensured, even if the direction of the polarisation
vector has to be effectively chosen based on the direction of the loop momenta, then
again the amplitudes are independent of the direction of the extra components. With
these restrictions the rational terms can be calculated in terms of only 4 dimensional
momenta and amplitudes with new effective massive particles, however the internal
degrees of freedom in the Feynman rules still require full 6 dimensional momenta and
states.

Once a set of the simplest amplitudes has been calculated, higher multiplicity am-
plitudes can again be calculated with the BCFW recursion relations, but this time
using massive 4 dimensional momenta. The general form has been investigated, but
the details of the implementation, including which particles are valid to use as the
shifted particles and what other factors need to be introduced into each term other
than the pair of tree amplitudes, has not been investigated. Once all tree amplitudes
can be calculated the scalar loop integral coefficients needed for the rational terms
can be extracted using generalised unitarity. The forms of the numerator terms in
terms of the degrees of freedom in the loop momenta definitions needs calculating,
along with the subtraction terms needed to subtract the higher order terms from the
lower order terms, which must be formulated in a way that can be evaluated numer-
ically. Once these elements of the calculation are completed, the rational terms can
be calculated. Finally, these calculations will need to be implemented into BlackHat,
which will also require converting the calculation to use the conventions used in Black-
Hat and implementing it in terms of BlackHat’s choice of spinor conventions. These
combined with the already implemented cut part calculations will provide an efficient
and automatic calculation for the loop amplitude in a way that will make BlackHat
an even more useful addition to the set of tools available for NLO calculations at the

LHC. This thesis provides an important set of building blocks towards this aim.
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Appendix A

The Form of a Generic Term

in an Amplitude.

The first case to prove is the generic term in a pure gluon amplitude which is given

by
m Ngfzﬂ n
7o I # I
1=1 Jj=1 k=1
c N T : (A1)

[[ s

=1
This can be proven to be the correct form using proof by induction. Firstly the base
cases are a single three or four gluon vertex on its own which corresponds to the cases
where m =0, n=1and Ny =3 or m =0, n =2 and Ny = 4 respectively. To prove
the recursion this form must be combined with each possible form of propagator and
extra vertex combination and show that all terms in the result are also of this form.

Firstly the case of combining a momentum index with the metric tensor from a three
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gluon vertex is considered. The relation is then given by

m Ng—2n n
HPi'Qi H R;” Hg”Wk
= =1 =1 : ;’L K _ H(Ng—2n+1)
¢ Ng+m—n—2 k2 + 40 \/ig/h (kl k2) g
[T s
=1
m Ngy—2n ) "
HR - Q; H R?J Rllh (kl _ kQ)H(Ng—Qn+1) H gukgk’
¢ =1 7=2 k=1
B ﬁ Ng+m—n—2
S |
=1
m N{/]—Qn .
17 @ I & [[e"
_ izl j=1 k=1
=C Ny4+m—n—2 ’ (AQ)
2
I s
=1

where in the last line the new factors have been relabelled to match the terms they
combine with and N, has been replaced with N; = N,+1 which is the correct increase
in external gluons. The next case is when a metric tensor in the term is contracted

with a metric tensor of the extra three gluon vertex and is given by

m Ngy—2n n
[mr-e II rRYI1o
i=1 j=1 k=1 1 i e
C Ng+m—n—2 k2+i()ﬁg”1 U(ky — kg)H(Ng—2n+1)
II =
=1
m Ng—2n n
H‘ZDZ Qi H R;Lj (ky — kg )HNg—2n+1) (H gukak> g”lai
C i=1 j=1 paie
B ﬁ Ng+m—n—2
w1 s
=1
m N;72n .
HPZ Qi H R;Mj H g Rk
_ =l j=1 k=1
-¢ Ny tm—n—2 : (A.3)
2
II =
=1
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The next case is contracting the momenta from a three gluon vertex with a metric

tensor from the term and is given by

Ng—2n
[Ir-o [T # [Lo
) —1

Ng+m n—2 k2 +1i0 2

II s

=1

m *2’ﬂ n
H P Qi H Rl — ko)t <H 9”’”) gno
_ C i=1 k=2

c=

97 (k1 — k2o,

Ng+m—n—2

¥l st

=1

>

m N;—Qn . n
1m0 I w2 o
i Wi j g
i=1 =1 k=1
= — : (A.4)
Ng-l-’m—n—2
72
II s
=1

The last case for adding a three gluon vertex is contracting the momenta from the

vertex with a momenta in the term which results in

Ng—2n

HP Qi H R’”Hg"’“”’“ o
? g n+1<7n+1(k1 k2)/t1

N+m n—2 k2+20\f

[I s

=1

m Ng—2n n
(Hpi : Qi) Ry - (k1 — k2) H R;'U <H 91’”’“) QV:L“U;L+1
i=1 j=2 k=1
Ng+m—n—2
S

=1

c=

Sl

N'—2n

HPI Q H R/#J H gukok

y1=1

=C

N:7+m —n'=2

I s

=1

where in the last line as well as replacing N, with N; = Ny + 1, n has been replaced
with n’ = n + 1 and m has been replaced with m’ = m + 1 which all agree with the

expected limits on the different factors.

Lastly for the pure gluon amplitude the contraction of a four gluon vertex with a

term must be shown to produce correctly formatted terms. Again each case will be
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handled separately. Firstly, if the vertex is contracted with a metric tensor from the

term then the combination is given by

m Ng—2n n
Hj Vi
[Tr-o 1 # s
- p— — !
01*1 j=1 k=1 ! cg Ulglliﬁ»lo';,ﬁ»l
Ng+m—n—2 k2 440 77"

I[ s

=1

m Ng*2n n

. 0. Hi H VEOk V10T (V19 n41
17 [I = g | g oig
=1

. = j=1
- ZCC Ng+m—n—2

’
n

N’

m 972 n'
. o
[r-o IT w7 It
j=1 k=1

yi=1
= C 7 n )
Ng—i-m—n —2

[ s

=1

where now N, is replaced by N, = N, + 2 and n is replaced by n’ = n + 1. The last

case for pure gluon amplitudes is contracting the four gluon vertex with a momenta

in the term which gives

m Ng—2n n
1
[[e-o 11 # T
i=1 Jj=1 k=1 2 M/ ’ ’
c c 1g¥Vn+1%n+1
Ng+mfn72 k2 +ZO gﬂl g
2
II s
=1
m Ny—2n n
) ) Hj I VoK v ol
P Q; Rj Ry g g et
] Ci:l j=2 k=1
=1 Ng+m—n—2
eI s
=1
- N;72n' n'
. ’or
IR I
_ i=l j=1 k=1
—C e . (A7)
gtm

s

1=1
The changes in number of factors of each type that can be introduced by adding each

type of vertex are summarised in Table A.1.

Now the form for amplitudes with a single quark line will be derived which is given
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Terms of the form Formula Three Gluon Vertex | Four Gluon Vertex
P-Q m +1
R¥ Ny —2n +1 -1
gt n +1 +1
% Ny+m—n—2 +1 +1 +1
Number of gluons N, +1 +1 +2

Table A.1: The different forms of factors that can appear in pure gluon
amplitudes along with how the number of each factor present is changed by
adding extra propagator and vertex combinations of each type.

by

Ng—Ngg—2n

/
fro T mollod
i=1 j=1 k=1 _
C : u H UaTa U(NqR+ng)u7 (AS)

Ng+m—n—Ngr—1

St

=1

where Ngq of the U,s are gluon polarisation vectors and the rest (Nyr of them)
along with T, are momentum vectors containing some combination of neighbouring
momenta. To derive this formula, the form is built by tracing along the quark line
from the spinor towards the conjugate spinor and then at the end adding the conjugate
spinor for the other quark to the end of the quark line. The form used to build this
up is therefore the equation given above with the conjugate spinor, u, removed which

is given by

Ng—Ngg—2n

[Ie-e 11 Riolled /yn,-
i=1 j=1 k=1
C - H UaTa M(NqR+ng)u . (Ag)

Ng+m—n—Ngr—1

I s

=1

The base cases for the proof by induction are therefore the quark combined with a
single quark vertex which is itself combined with a gluon propagator and then a term
for a combination of gluons, which will be of the form found above for the pure gluon
amplitude. There are two different cases depending on whether the gamma matrix
introduced by the quark vertex is contracted with a momentum from the gluon term

or a metric tensor and therefore eventually with a gluon. If the gamma matrix is
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contracted with a momentum vector then the terms will have the form of

m (Ng+1)—2n—1 n
[r-a 1 # I

= Jj=1 k=1
¢ (Ng+1)+m—n—2 k2 + ZOR((N +1)—2n) ¥

2
II s
=1
Ng—2n

[Iro [T # [Lo

y1=1
=C Ny +m n—1 R(N972n+1)u
oI st
l
=1
Ng—2n

7o I # [

— = U, (A.10)

Ny +m n

I s
=1

where Vg 41 is used where IV, would have been used in the pure gluon amplitude as
one gluon from the factor is replaced with the quark line. This matches the expected

form for when Nyr =1 and Ny = 0.

(Ng+1)—2n n—1

[I7-e I & 11s
Ci:l j=1 k=1 1 on
(Ny+1)km-—n—2 2+l "
II
=1
Ng—2n
HP Qz H R)u‘_‘l HngUk
_ C,z 1 ,yonu
Ng+m n—1
¥l st
=1
m —2n —2
o I Hng
— o=t Nq+m_n - ~ora (A.11)

TS

=1

where in the last line n has been replaced with n’ = n — 1. Again this matches with
the expected form, but now for when Nyr = 0 and Nyy = 1. The recursion relations
are derived by adding an extra quark propagator and quark vertex with the quark
vertex contracted with a gluon propagator and a pure gluon term. The formulas are
too complex to show here but the changes induced by each combination are shown in

Table A.2.
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Type of Vector that is Contracted
into the Quark Line

Terms of the Form Formula PO{?I‘I?&‘EIOH Momenta
ector
P-Q m +m/ +m/
RH Ny —2n — Ny, +N, —2n -1 +Ny —2n’
ghv n +n/ +n’
1
o Ng+m—n+Ngp—1| +N,+m'—n" | +N;+m' —n'+1

Number of gluons
Number of Polarisation
Vectors in the Quark Line

Number of Momenta in
the Quark Line

Ny

N,

a9

2Ngyr + Nyg

-l-N; +Ng/1
+1
+1 +2

Table A.2: The different forms of factors that can appear in amplitudes with
one quark line along with how the number of each factor present is changed
by adding extra propagator and vertex combinations of each type.
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Appendix B

Source Code for 4
Dimensional Calculations and

Comparing to BlackHat

The code created as part of this project can also be downloaded from http://bit.

ly/20XSBSu.

B.1 Mathematica Implementation of Tree and One

Loop Cut Part Calculations

Listing B.1: Common.txt

1 (¥ Functions to handle a list with wrapping. Handles the modular
arithmetic with the range of indices being 1 to length rather than
the more common 0 to length — 1 %)

2> LLMod[1_List , i_-Integer] := 1 + Mod[i — 1, Length[l]]

3 LL[1-List , i-Integer] := 1[[LLMod[1l, i]]]

. LL[1_List , i-List] := (LL[l, #1] & ) /@ i

5 LLRange[1_List , i_-Integer , j_Integer] :=

(LLMod[1l, #1] & ) /@ Range[i, i + Mod[j — i, Length[1]]]

s (x Load S@M x)
9 << ”Spinors ‘7
10

11 (% Silence the many messages that S@M prints *)
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12 Spinors ‘Private ‘PRINT[x__] := Null

14 (x Add an undeclare method *)

15 Spinors ‘ UndeclareSpinorMomentum [s_] := (Spinors ‘Private ‘NumLa[s]| =.;
16 Spinors ‘Private ‘NumCLa[s] =.; Spinors ‘Private ‘NumLat[s] =.;
17 Spinors ‘Private ‘NumCLat[s] =.; Unprotect [Num4V]; NumdV([s] =.;

18 Protect [Num4V];

19 Spinors ‘ Private ‘ NumSpinorList :=

20 Evaluate [DeleteCases [ Spinors ‘ Private ‘ NumSpinorList, s]];

21 Spinors ‘Private ‘NumDefs [])

22 Spinors ‘ FullyUndeclareSpinor [s_] := (UndeclareSpinorMomentum [s];

23 UndeclareSpinor[s]) ;

25 (% Declare an improved version of the spinor definition formula that
handles Indeterminates and Complex Infinities =)

26 Spinors ‘Private ‘Sol2Dim1[k_List] :=

o
BN

Module[{ sqklp = Sqrt[k[[1]] + k[[4]]], ptplus = k[[2]] + I k[[3]]},
28 If [MemberQ[k, Indeterminate | ComplexInfinity]|, {Indeterminate,

29 Indeterminate},

30 If[sqklp = O,

a IE[K[[1]] - k[[4]] =

0, {(k[[2]] - T k[[3]])/Sart[2 k[[2]]], (k[[2]] + I k[[3]])/
Sart[2 k[[2]]]}, {(k[[2]] — T k[[3]])/Sart[k[[1]] — k[[4]]],

Sart[k[[1]] — k[[4]]]}], {saklp, ptplus/sqkip}]]]

;5 Spinors ‘Private ‘Sol2Dim2[k_List] :=

36 Module[{ factor = 1, sqklp = Sqrt[k[[1]] + k[[4]]],

s ptminus = k[[2]] — T k[[3]]},

38 If [MemberQ[k, Indeterminate | ComplexInfinity]|, {Indeterminate,

39 Indeterminate},

10 If[sqklp = 0,

w IE[K[[1]] - k[[4]] =

0, {(k[[2]] + I k[[3]])/Sart[2 k[[2]]], (k[[2]] — I k[[3]])/
Sart[2 k[[2]]]}, {(k[[2]] + T k[[3]])/Sart[k[[1]] - k[[4]]],
" Sart[k[[1]] — k[[4]]]}], {saklp, ptminus/sqklp}]]]

16 DeclareSpinor [Epsilon[___]]
15 (% Use a different sign convention. Can be set to true after this is
loaded and before calculation is performed x*)

1o $UseBHSigns=False

51 (x Set the precision if it is not already set x)
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If [Hold [Evaluate[$Precision]] =—= Hold|[$Precision], $Precision =

MachinePrecision ]

(¥ Allows increased precision in internal parts of the calculation *)

NN[e.] := N[e, $Precision]
NN[e., f : (-Integer | _Real)] := N[e, f $Precision]
NN[e., Max] := N[e, 10 MachinePrecision]

(x Set the symbol s so that it evaluates to the numeric value of the
expression v at f times the current precision but only actually
evaluates once per precision at which it is used *)

NNCache[s_Symbol, v_, f_: 1] :=

s := (Module[{vv = Evaluate[NN[v, f]], p = $Precision},

s := vv /; p = $Precision]; s)

(x Only declare the spinor momentum if the elements of the momenta or
spinor are numeric *)
MyDeclareSpinorMomentum [a_ ,
xx : {_-?NumericQ, _?NumericQ, _?NumericQ, _?NumericQ}]| :=
DeclareSpinorMomentum [a, xx]
MyDeclareSpinorMomentum [
a_, {la : {{_-?NumericQ}, {_-?NumericQ}},
lat : {{-?NumericQ, _?NumericQ}}}] :=

DeclareSpinorMomentum [a, la, lat]

(¥ Evaluate an expression with the specified sets of definitions for
momenta. Will remain unevaluated if the spinor elements are not
numeric *)

WithSpinors [expr_,
spinors : {_, ({-?NumericQ, _?NumericQ, _?NumericQ, _?

NumericQ} | {{{-?NumericQ}, {_-?NumericQ}}, {{-?NumericQ, _7
NumericQ}}})} ...] =
Module[{tmp}, MyDeclareSpinorMomentum @@ {spinors}; tmp = expr;
FullyUndeclareSpinor [#[[1]]] & /@ {spinors}; tmp];
SetAttributes [ WithSpinors, HoldFirst]
SyntaxInformation [ WithSpinors] = {” ArgumentsPattern” —> {_, ___},
”"LocalVariables” —> {”Table”, {2, \[Infinity]}}}

(x Declare various properties for the different types of particle x*)

ParticleName [Gluon [h_]]:=7"Gluon helicity :”’<>ToString[h]
ParticleName [Phi[1]]:="Phi”
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ParticleName [Phi[—1]]:="Phi dagger”
ParticleName [Higgs []]: =" Higgs boson”
ParticleName [Quark[1,h_, f_]]:="Quark of flavour:”’<>ToString[h]<>" and

helicity :”<>ToString [h]
ParticleName [Quark[—1,h_, f_]]:=" Anti Quark of flavour:”’<>ToString[h]<>”

and helicity :”<>ToString[h]

ReverseParticle [phi_Phi]:=phi

ReverseParticle [higgs_Higgs]:=higgs
ReverseParticle [Gluon[h_]]:=Gluon[—h]
ReverseParticle [Quark [p-,h_, f_]]:=Quark[—p,—h, {]

IsOrderedQ [ -Phi| _Higgs|:=False
IsOrderedQ [ -Gluon | -Quark]:=True
IsUnorderedQ [p-]:=!IsOrderedQ [p]

IsMassiveQ [ -Phi| _Higgs]:=True
IsMassiveQ [ -Gluon | -Quark]:=False

(x Skip evaluating if the condition is false *)
SetAttributes [ Skiplf, HoldFirst]
SkiplIf[val., False] := val

SkipIf[_, True] := Sequence []

(x Provide a sort key that uniquely sorts particle types into a format

that gives convenient orderings *)

SortKey [Gluon[h_]]:={0,h,0,0,0}
SortKey [Quark[p_,h_, f_]]:={-1,0,0,0,0}
SortKey [Phi[p-]]:={100,—-p,0,0,0}

5 SortKey[Higgs|[]]:={100,0,0,0,0}

Listing B.2: HelAmplIN.txt

(x Split the particles into separate groups for the colour ordered and
non—colour ordered particles x*)
HelAmpIN[p : {_-_-_}, types : {Except[_-List] ...}] :=
HelAmplN [{ Extract [p, Position[types, _?IsUnorderedQ]],
Extract [p, Position[types, _7IsOrderedQ]]}, {Cases]|
types, -?IsUnorderedQ], Cases[types, -7IsOrderedQ]}]

(x Put the particles into a canonical order x)
HelAmpIN [{ pNonOrd_List, p_List}, {typesNonOrd_List, types_List}] :=
Module[{ best] =
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Sort [ Table [{ RotateLeft [ SortKey /@ types, i],

Length[types] — 1}]][[1, 2]]},

i}7 {ii 07

HelAmplIN [{ pNonOrd, RotateLeft[p, bestI]}, {typesNonOrd,

RotateLeft [types, bestI]}] /; bestl

1= 0]

Simon Armstrong

(x Allow the momenta for the particles to be passed in directly rather

than requiring previously declared momenta mames )

HelAmpIN [{pVNonOrd : {_List ...},
pV : {_List ...}}, {typesNonOrd_List,

Module[{ isMassive = IsMassiveQ /@ Join[typesNonOrd,

types_List }] :=

allp}, n = Plus @@ isMassive /. {False —> {0,

p = Range[n [[2]]];

1}, True — {1, 0}};

P = Table[Symbol ["PP” <> ToString[i]], {i, n[[1]]}];
allp = isMassive [[ ;; ]];
allp [[ Position[isMassive , True|] // Flatten]] = P;

allp [[Position[isMassive , False] // Flatten]]

MapThread |

If[#1, DeclareSpinorMomentum ,

= P;

DeclareLVectorMomentum][#2, #3] &, {isMassive, allp,

Join [pVNonOrd, pV]}, 1];
HelAmplIN [{ allp [[;; Length[pVNonOrd]]],

allp [[Length[pVNonOrd] + 1 ;;]]}, {typesNonOrd, types}]]

(x Declare an error message format for use in amplitudes x*)

3 HelAmplN :: badamp =

?Bad amplitude evaluated for particles

«»

5 bad value ‘¢7;

of types

types], n, p, P,

‘¢ called ‘¢ has \

(x Declare the wvanishing, MHV and anti-MHV pure gluon amplitudes =*)

HelAmpIN [{{},

p-List}, {{}, {Gluon[—1] | PatternSequence][],

Gluon[1l] ..}}] := 0
HelAmpIN [{{},

p-List}, {{}, {Gluon[—1], Gluon[—1], Gluon[—1]

Gluon [1] | PatternSequence[]}}] = 0

HelAmpIN [{{}, p-List}, {{},

types : {Gluon[—1], Gluon[—1], Gluon[1]}}] :=
I+xModule[{num = Spaa[p[[1]], p[[2]]] // NN,

denom = Product [Spaa[LL[p, i], LL[p,
NN}, If[num =— 0 && denom =— 0,

Message [ HelAmplN : : badamp, types, p,
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HoldForm [Num”4/Denom| /. {Num —> num, Denom —> denom}]; 0,

num "4 /denom | |

» HelAmpIN [{{}, p-List}, {{},

types : {Gluon[—1], Gluon[1l], Gluon[1]}}] :=
Ix(—1) Length[p]x*
Module [{num = Spbb[p[[2]], p[[—1]] // NN,
denom = Product[Spbb[LL[p, i], LL[p, i + 1]], {i, Length[p]}]
NN}, If[num = 0 && denom == 0,
Message [Hel AmplN : : badamp, types, p,
HoldForm [Num”“4/Denom] /. {Num —> num, Denom —> denom}]; 0,

num "4 /denom | ]

[1]...}}] =
IxSpaa[p[[1]], p[[Length[{gpl}]+2]]]"4/
Product[Spaa[LL[p, i], LL[p, i + 1]], {i, Length[p]}]//NN

HelAmpIN [{{},p-List}, {{}.{gml:Gluon[—1]...,Gluon[1],gm2:Gluon|[ —1]...,

Gluon [1]}}] :=
Ix(—1) " Length[p]«Spbb[p [[Length[{gml}]+1]], p[[—-1]]]"4/
Product [Spbb [LL[p, i], LL[p, i + 1]], {i, Length[p]}]//NN

//

i3 HelAmpIN [{{},p-List}, {{}.{Gluon[—1],gpl:(Gluon[1]...) ,Gluon|[—1],Gluon

(x Declare the wvanishing, MHV and anti—-MHV amplitudes with one quark

pair *)
HelAmpl [{{}, -List}, {{}, {Quark[_, _, _], Quark[_, _, _],
Gluon [hg_], Gluon[hg_-] ..}}, - : Null] := 0

5 HelAmpl[{ -List , _List}, {-List, {Quark[pql-, hql_, f1_],

Quark [pq2-, hq2_, f2_], Gluon[-] ...}} - : Null] :=
0 /; pal = pq2 || hql == hq2 || f1 != f2
HelAmpIN[{-, -}, {-List, {-Quark, _Quark}}] := 0

HelAmpIN[{{}, p : {pal-, pa2-, pg-}},
types : {{}, {Quark[Pql-, hql_-, f_], Quark[Pq2_, hq2_, f_],
Gluon[hg_|}}, epsilon. : Epsilon[]] :=
If[$UseBHSigns, 1, —Pql hql] If[hql = 1, —(—1) Length[p], 1] Ix
Module [ {num =

If [hg = hql, If[hg = -1, Spaa[pg, pql], Spbb[pg, pqll]],
If [hg = -1, Spaa[pg, pq2], Spbb[pg, pqa2]]] // NN,
denom = If[hg = -1, Spaa[pq2, pql], Spbb[pq2, pql]] // NN},

If [num = 0 && denom =— 0,
Message [ HelAmplN : : badamp, types, p,

HoldForm [Num”2/Denom| /. {Num —> num, Denom —> denom}]; 0,
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num”2/denom]|] /; Pql = —Pq2 && hql = —hq2

HelAmpIN2QuarksH1H3 [ Sptype-, hl_, h3_, {pl-, p2_, p3_}]
NN[Sptype[pl, p3]]"2 /; hl = h3

HelAmpIN2QuarksH1H3 [ Sptype-, hl_, h3_, {pl_, p2_, p3_}]
NN[Sptype[p2, p3]]"2 /; hl == —h3

HelAmpIN2Quarks [ Sptype-, hl_, h3_, {pl., p2_, p3_}, p-List] :=
I+HelAmpIN2QuarksH1H3 [Sptype, hl, h3, {pl, p2, p3}]*
NN[Sptype[pl, p3]x*
Sptype [p2, p3]/
Product [Sptype [LL[p, i], LL[p, i + 1]], {i, Length[p]}]]

HelAmpIN [{{},
p ¢ {pal-, pa2-, pgs--}}, {{}, {Quark[Pql_, hql_, f_],
Quark [Pq2_, hq2_, f_], gol : Gluon|[hog_.] ..., Gluon|[hg_],
Gluon [hog_] ...}}, epsilon_: Epsilon[],hg_|PatternSequence []] :=
If [$UseBHSigns,1,—Pql*hql]*«If[hg = 1, —(—1)"Length[p], 1]x%
HelAmplN2Quarks [ If [hg = —1, Spaa, Spbb], hql,
hg, {pal, pq2, {pgs}[[Length[{gol}] + 1]]}, p] /; Pql=Pq2 & hql=—
hq2 && hog==-hg

(¥ Declare the vanishing, MHV and anti-MHV amplitudes with a phi *)

> HelAmpIN[{{_},p-List}, {{Phi[1]},{Gluon[_-],Gluon[1]...}}] = 0
s HelAmpIN[{{_-},p-List}, {{Phi[1]},{Gluon[—1],gpl:(Gluon[1]...) ,Gluon[—1],

Gluon[1]...}}] =
I+Spaa[p[[1]], p[[Length[{gpl}]+2]]] 4/
Product [Spaa[LL[p, i], LL[p, i + 1]], {i, Length[p]}]//NN
HelAmpIN [{{_},p-List}, {{Phi[1]},{Gluon[—1]..}}] :=
I+((—1) Length[p]+s @@ p~2)/Product[Spbb[LL[p, i], LL[p, i + 1]],
{i, Length[p]}]//NN

(x Declare the 3 negative, Next—to—-MHV amplitude. This uses an arbitrary
reference vector which is generated at random x)

HelAmplPhiRatioSum [p_, 11_, 12_, gs_., qe., r_] :=

HelAmplPhiRatioSum [p, LLMod[p, 11], LLMod[p, 12], LLMod[p, qs],

LLMod[p, qe], r] /; 11 > Length[p] || 12 > Length[p] ||
gs > Length[p] || qe > Length[p]
HelAmplPhiRatioSum|[p_, e_, e_., e., e., r_|] =1

HelAmplPhiRatioSum [p_, 11_, 12_, gs_, qe., r_] :=
Sum(Spab [LL[p, 11], LL[p, qi], r], {ai, LLRange[p, as, qe]}]/

Sum|Spab [LL[p, 12], LL[p, qi], r], {qi, LLRange[p, gs, qe]}
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120 HelAmplPhi3NegTerm [p_, {ml_., m2_, m3_}, i., j-, gs_, qe_,epsilon_] :=
130 (Spaa[LL[p, m2], LL[p, m3]]"4*Spaa[LL[p, i], LL[p, i + 1]]=x

131 Spaa[LL[p, j], LL[p, j + 1]]*HelAmplPhiRatioSum[p, ml, i, gs, qe,
132 epsilon |« HelAmplPhiRatioSum [p, ml, j, gs, qe, epsilon]x

133 HelAmplPhiRatioSum [p, ml, i + 1, gs, qe, epsilon]x

134 HelAmplPhiRatioSum [p, ml, j + 1, gs, qe, epsilon])/

135 s @@ LL[p, LLRange[p, gs, qe]]

136 HelAmplPhi3Neg[p-, {ml., m2_, m3_},epsilon_] :=

137 Sum[HelAmplPhi3NegTerm [p, {ml, m2, m3}, i, j, i + 1, j,epsilon] +
138 HelAmplPhi3NegTerm [p, {ml, m2, m3}, i, j, j + 1, i,epsilon],

139 {i, LLRange[p, ml, m2 — 1]}, {j, LLRange[p, m3, ml — 1]}]

111 RandomNSphere [n_] :=

142 Module[{tmp = RandomVariate [ MultinormalDistribution [

143 ConstantArray [0, n], IdentityMatrix[n]]]},

144 tmp/Sqrt [Plus @@ (tmp*tmp) |]

145 RandomNBall[n_] := Random|[Real]” (1/n)+*RandomNSphere[n]

146 Random4Vector [Real, m_:0, scale_:1] :=

147 Module[{tmp = scale*RandomNBall[3]},

125 Prepend [tmp, (2*Random|Integer] — 1)xSqrt[m"2 + Plus @Q (tmp*tmp) ]]]
149

150 NWithEpsilons[expr_-] :=

151 Module[{es = DeleteDuplicates [Cases|[expr, Epsilon|[___],

152 100]]}, PRINT[” Generating Momenta for”, es];

153 (DeclareSpinorMomentum [#1, Random4Vector [Real]] & ) /@Q es; N[expr]]

154

155 HelAmpIN [{{-},p-List}, {{Phi[1]},{Gluon[—1],gpl:Gluon[1]...,Gluon[—1],
gp2:Gluon [1]...,Gluon[—1],Gluon [1]...}}] :=

156 NWithEpsilons [I+«Sum|[HelAmplPhi3Neg [p, RotateLeft[{1,Length[{gpl}]+2,

Length[{gpl,gp2}]+3}, i],Epsilon[]], {i, 3}]/
157 Product[Spaa[LL[p, i], LL[p, i + 1]], {i, Length[p]}]]

150 (% Will return all ways of splitting a list of unique elements into two
parts *)

160 AllSplits [1_List] := {#, Complement|[l, #]} & /@ Subsets[1]

161

162 (% Will return all possible propagators for a BCFW cut *)

163 PropsForCut [{Gluon[-] ...}, {a-, b_-}] := {Gluon[1l], Gluon[—1]}

161 PropsForCut [types_List, {a-, b_}] :=

165 PropsForCut [RotateLeft [types, b — 1][[;; LLMod[types, a — b]]]]

166 PropsForCut [{left___ , Gluon[_-] .., right___}] :=

167 PropsForCut[{left , right}]
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16s PropsForCut [{left___, Quark[pl_-, hl_, f_], Quark[p2_., h2_, f_],

169 right___}] := PropsForCut[{left , right}] /; pl = —p2 && hl = —h2
170 PropsForCut [{}] := {Gluon[1l], Gluon[—1]}

171 PropsForCut [{q : Quark[_, _, _]}] = {q}

172 PropsForCut [{-, -_}] = {}

174 (% Check if a pair of particles are wvalid for the BCFW shift particles 1

and j *)
175 InvalidShiftsQ [ _List , {Gluon[1l] | Quark[_, 1, _],
176 Gluon[—1] | Quark[-, —1, -]}, {-Integer, _Integer}] := True
177 InvalidShiftsQ [
178 types_-List , {Quark[pa_, -, f_], Quark[pb_, -, f_]}, {a_Integer,
179 b_Integer}] :=
150 True /; pa = —pb && (LLMod|[types, a + 1] = b ||
181 LLMod[types, b + 1] = a)
152 InvalidShiftsQ [types_List , {Quark[., —1, _], Gluon[—1]} | {Gluon|[1],
183 Quark[_., 1, _]}, {a-Integer, b_Integer}] := True /;
184 (LLMod|[types, a + 1] = b || LLMod[types, b + 1] = a)
155 InvalidShiftsQ[_List, {-, -}, {-Integer, _Integer}] := False

157 (% Check for the factor introduced in the spinors by reversing the
momenta *)

158 ReversingFactor [mom_List] := (DeclareSpinorMomentum [spinor , mom];

189 DeclareSpinorMomentum [ mspinor , —mom];

100 NN[La[spinor]][[1, 1]]/NN[La[mspinor]][[1, 1]])

101 ReversingFactor[sm : {{-, -}, {-, -}}] =

102 ReversingFactor [PfromSm2 [sm]]

104 (% The extra factor needed to correct for how the momenta either side of
the cut are defined x*)
195 PropogatorFactor [Gluon[_], _]:=1

196 PropogatorFactor [Quark[p-,_, -] ,mom_]:=ReversingFactor[—ps*mom]

190 (* Calculate the momenta or particle types to use for the amplitude on
one side of a cut *)

200 HelAmplBCFCombineSide [{ NonOrd_List, ord_-List}, {a-, b_},

201 splitNonOrd_List , prop-] := {Part[NonOrd, splitNonOrd],

202 Append [LL|[ord, LLRange[ord, a, b — 1]], prop]|}

200 (x Evaluate a BCFW term x)

205 HelAmpINBCFTermImpl [{ pNonOrd_List, p-List}, {i-, j-}, {a-,
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206 b_}, {leftNonOrd., rightNonOrd_}, prop-,
207 lefttypes : {_-List, _List}, righttypes : {_List, _List}] :=

208 Module[{z, ii, jj, shiftedp, q, mq, qp, A},

209 z =1z /.
210 Flatten [ ExpandSToSpinors |
211 SpOpen [ Solve |

212 0 = ShiftBA[LL[p, i], LL[p, j], z]]

213 s @@ Join[Part [pNonOrd, leftNonOrd],
214 LL[p, LLRange[p, a, b — 1]]]], z]]]] // NN,
215 WithSpinors[shiftedp = ReplacePart[p, {i —> ii, j = jj}I];

216 qp = PfromSm2 [ (Sum]|

217 Sm2[LL[shiftedp, gs]], {qs, LLRange[p, a, b — 1]}] +
218 Sum|[Sm2[pp], {pp, Part[pNonOrd, leftNonOrd]}]) // NNJ;
219 WithSpinors |

220 A = HelAmplN [

221 HelAmplBCFCombineSide [{ pNonOrd, shiftedp}, {a, b}, leftNonOrd,
222 mq], lefttypes]sx

223 HelAmplN |

224 HelAmplBCFCombineSide [{ pNonOrd, shiftedp}, {b, a}, rightNonOrd,
225 q], righttypes];

226 AxI/NN|[

227 s @@ Join [Part [pNonOrd, leftNonOrd],

228 LL[p, LLRange[p, a, b — 1]]]]* PropogatorFactor [prop, qp], {q,
229 ap}, {mq, —qp}], {ii, {Lalp[[i]]] // NN,

230 Lat [p[[i]]] — zxLat[p[[j]]] //

231 NN}, {di, {Lalp[[Jj]]] + zxLa[p[[i]]] // NN, Lat[p[[j]]] // NN}}]]

233 (* Declare some terms that are known to vanish based on the particle
types on each side *)

234 HelAmpINBCFTerm [{ pNonOrd_List , p_-List}, {i-, j-}, {a-,

235 b_-}, {leftNonOrd_, rightNonOrd_}, prop-,

236 lefttypes : {_List, _List},

237 righttypes : {{}, {Gluon[h_] | Quark[-, h_, _],

Gluon[h_] | Quark[_, h_, _],
230 Gluon|[h_] | Quark[_, h_, _]} | {Gluon[1] | Quark[_, 1, _],
240 Gluon[1] | Quark[_, 1, _],

241 Gluon[—1] | Quark[_, —1, _]} | {Gluon[1] | Quark[_, 1, _],
242 Gluon[—1] | Quark[., —1, _],

243 Gluon[1] | Quark[_, 1, _]} | {Gluon[—1] | Quark[_, —1, _],
24 Gluon[1] | Quark[_, 1, _], Gluon[1] | Quark[_, 1, _]}}] = 0

245 HelAmpINBCFTerm [{ pNonOrd_List, p-List}, {i-, j-}, {a-,
246 b_-}, {leftNonOrd_., rightNonOrd.}, prop-,
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lefttypes : {{}, {Gluon[h.] | Quark[_, h_, _],
Gluon[h-] | Quark[-, h_, _],
Gluon[h-] | Quark[-, h_, -]} | {Gluon[1] | Quark[-, 1, _],
Gluon[—1] | Quark[_, -1, _],
Gluon[—1] | Quark[-, -1, _]} | {Gluon[—1] | Quark[., -1, _],
Gluon[1] | Quark[_, 1, _],
Gluon[—1] | Quark[-, —1, _]} | {Gluon[—1] | Quark[_, -1, _],
Gluon[—1] | Quark[_., —1, _], Gluon[1] | Quark[_, 1, _]}},
righttypes : {_List, _List}] := 0

(x Will swap the sides to put the term in a canonical order. The rule is
if there is a single non—colour ordered particle it goes in the
left half, otherwise the left half will be the smaller half in terms
of number of particles. If neither of these rules choose an order
the current order is wused %)

HelAmpINBCFTerm [{ pNonOrd_List, p_-List}, {i-, j-}, {a-, b_},

nonordsplit : {{}, {}} | {{__}, {--}}, prop_,

lefttypes : {_List, _List}, righttypes : {_List, _List}] :=

HelAmpINBCFTermImpl [{ pNonOrd, p}, {i, j}, {b, a},
Reverse|[nonordsplit], ReverseParticle[prop], righttypes,
lefttypes] /; Mod[b — a, Length[p]] > Length[p]/2

HelAmpINBCFTerm [{ pNonOrd_List , p-List}, {i-, j-}, {a-,

b_}, {{leftnonordsplit__}, {}}, prop-, lefttypes : {_List, _List},
righttypes : {_List, _List}] :=

Hel AmpINBCFTermImpl [{ pNonOrd, p}, {i, j}, {b,

a}, {{}, {leftnonordsplit}}, ReverseParticle[prop], righttypes,
lefttypes]

Hel AmpINBCFTerm [{ pNonOrd_List , p_List}, {i-, j-}, {a-,

b_}, {leftNonOrd-, rightNonOrd-}, prop-,
lefttypes : {_List, _List}, righttypes : {_List, _List}] :=
HelAmpINBCFTermImpl [{ pNonOrd, p}, {i, j}, {a, b}, {leftNonOrd,

rightNonOrd}, prop, lefttypes, righttypes]

(x Declare some BCFW terms that are known to vanish x*)

- HelAmpINBCFTerm [{{}, p-List}, {{}, -List}, {-, -}, {a_,

b}, {({}, {}}, -] =
0 /; a = LLMod[p, b + 1] || LLMod[p, a + 1] = b
HelAmpINBCFTerm [{ _List , p_List}, {_List, _List}, {-, -}, {a_,
b}, {{}, {--}}, -] == 0 /; LLMod[p, a + 1] = b
HelAmpINBCFTerm [{ _List , p_List}, {_List, _List}, {_, -}, {a_,
b-}, {{--}, {}}, -] == 0 /; a = LLMod[p, b + 1]
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285 (* Calculate the types of particle on each side of the cut *)

256 HelAmpINBCFTerm|[p : {-List, _List},

287 types : {_List, _List}, {i-, j-}, {a-, b_}, {leftNonOrd_,

288 rightNonOrd_}, prop.] :=

250 HelAmpINBCFTerm[p, {i, j}, {a, b}, {leftNonOrd, rightNonOrd}, prop,
290 HelAmplBCFCombineSide [types, {a, b}, leftNonOrd, prop],

291 HelAmplBCFCombineSide [types, {b, a}, rightNonOrd,

292 ReverseParticle [prop|]]

205 (% Evaluate an amplitude for a given choice of shift particles x*)
206 HelAmpINBCF [{ pNonOrd_List, p_List}, {typesNonOrd_List,

207 types_List}, {i-, j-}] := Sum]|

298 HelAmpINBCFTerm [{ pNonOrd, p}, {typesNonOrd, types}, {i, j}, {a, b},
299 splitNonOrd , prop], {a, LLRange[p, i + 1, j]}, {b,

300 LLRange[p, j + 1, i]}, {splitNonOrd,

301 AllSplits [Range[Length [pNonOrd]|]} , {prop,

302 PropsForCut [types, {a, b}]}]

303

300 (% Try different shifts until one evaluates successfully x)

305 HelAmpINBCFSearch [{ pNonOrd_List, p_List}, {typesNonOrd_List,

306 types-List }] :=

3

s07  Catch [Do[ If [!

308 InvalidShiftsQ [types, {types[[i]], types[[j]]}, {i, j}],

309 Module[{ val =

310 HelAmpINBCF [{pNonOrd, p}, {typesNonOrd, types}, {i, j}l},

311 If[! MatchQ|
312 val, (- : 1)*Infinity | ComplexInfinity | Indeterminate],
313 Throw[val]]]], {i, Length[p]}, {j,

314 LLRange[p, i + 1, i — 1]}]; Indeterminate]

316 (x Evaluate the amplitude using BCFW. Will only be used if mone of the
rules for specific types of amplitude match *)

317 HelAmpIN [{ pNonOrd_List , p-List}, {typesNonOrd_List, types_List}] :=

315 HelAmpINBCFSearch [{ pNonOrd, p}, {typesNonOrd, types}] /; Length[pNonOrd
]+Length[p] > 3

Listing B.3: Loop-Cuts.txt

1 (* A safe list part which only evaluates when the value to index is a

list =)
> SPart[i_-][l.List] := Part[l, i]
3 \[GothicCapitalP] = SPart;
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(x Declare momenta sets and processes, including which quarks are

travelling left =)

Process[_] = {{}, {}}
LeftQuarks|[_] := {}

DeclareProcess [p : {_-List, _List}, leftquarks_: {}] :=

Module[{ process }, Process|[process]| = p; LeftQuarks|[process] =
leftquarks;
process]
MomConf[_] = {{}, {}}

DeclareMomConf[p : {-List, _List}] :=

Module [{ momconf}, MomConf|[momconf] = p; momconf]

(x Convert names to objects that can be added *)

ToSp[l-List] := ToSp /@ 1
ToSp[i_Integer] := Sp[i]
ToSp[Spli-]] = Sp[i]
ToSp[s_-Symbol /; LVectorQ[s]] := s

(¥ Declare the reverse spinors for an already defined momenta *)
DeclareReverseSpinor [spinors_List , reverse_List] :=
MapThread [ DeclareReverseSpinor , {spinors, reverse }]

DeclareReverseSpinor [sp : (-Integer | _-?SpinorQ),

r : (-Integer | _Symbol)] := (DeclareSpinorMomentum [r, IxLa[sp] // NN,

I«Lat[sp] // NNJ]; {sp, r})

(* The factor introduced by reversing a particle *)

LoopReversingFactor [Quark[p-, --_]] = p I

s LoopReversingFactor [ _Gluon] := —1

(* Calculate the amplitude for a corner given the cut particles and the

loop momenta defined as pointing around the loop x*)

CalculateLoopCornerAmplitude [{ pPNonOrd_List ,

p-List}, {typesNonOrd-List, {gl : (Gluon[-] ...), Quark[ql_, hl_, f_
I
mid___, Quark[q2_, h2_, f_], g2 : (Gluon[-] ...)}}, {Quark[ql-, hl_,
£,
Quark[ql_, hil_, f_]}, {11_, 12_}] :=
CalculateLoopCornerAmplitude [{ pNonOrd,
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f], mid, Quark[q2, h2, —f — 1],

f}: Quark[qlv h17 —f - 1]}7 {117 12}]

; CalculateLoopCornerAmplitude [{ pPNonOrd_List ,

p-List}, {typesNonOrd_List,

types_List}, {t1-, t2_}, {l1_, 12_}] :=
WithSpinors |
Module[{tmp}, DeclareReverseSpinor[111, 1l1r ];
tmp = HelAmplN [{pNonOrd, Join[p, {112, 111r}]}, {typesNonOrd,
Join [types, {t2, ReverseParticle[t1]}]}]* LoopReversingFactor[tl];
FullyUndeclareSpinor [111r |; tmp], {111, 11}, {112, 12}]

CalculateLoopCornerAmplitude [{ pNonOrd_List, p_-List}, {typesNonOrd_List,

types_List}, {tl_,

t2_}, {{(Indeterminate |
1,

12.}]

CalculateLoopCornerAmplitude [{ pNonOrd_List ,

{(Indeterminate | {Indeterminate

3 b

= Indeterminate

p-List}, {typesNonOrd_List,

types_List}, {tl_,

t2_}, {11_., {(Indeterminate | {(Indeterminate | {Indeterminate B
)N
.}}] := Indeterminate

(*
SplitCorners [{ Unord_List

Split the external particles into the different corners x*)

Ord_List }, {splits_List ,
#]] & /@

splitUnord_List }]

Transpose [{ Extract [Unord, Position[splitUnord,
Range[Length[splits|],

LI[[5; #2 — #1]] & @a@

1, 1, Length[Ord] + splits [[1]]]}]

RotateLeft [Ord, #1 —

Partition[splits , 2,

(x Combine the external particles in each corner with the loop

propagators to give the particles in each corner x)

CombineCornerPropsTypes[corners {{-List, _List} ...}, props_List] :=
MapThread [{#1[[1]],
Join [#1[[2]], #2]} &, {corners, {#][[2]], ReverseParticle [#[[1]]]} &
/@

Partition [props, 2, 1,

1]}]

(* Calculate at what indexr a new split must be inserted to maintain the
order of the cuts )

InsertionIndex [split-, corner., newsplit_] :=

0 /; corner = Length[split] &&
newsplit <= split [[1]] && ! newsplit = split [[corner]]

InsertionIndex [split-, corner., newsplit_] := corner
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70 (% Calculate the mame for a new combined split =)

s0 SplitName [{{}, nonord_-List}, {corner., newsplit_-Integer ,
81 newNonord_List }] := {{newsplit},

82 PadLeft [{}, Length[newNonord], 1]}

s3 SplitName [{ splits_List , nonord_List}, {corner_Integer ,

84 newsplit_-Integer , newNonord_List }| :=

85 Module[{insert = InsertionIndex [splits , corner, newsplit]}, {Insert]|
86 splits , newsplit, insert + 1],

87 MapThread [

88 Mod[#1 + If[(#1 = corner) && #2 > 0, 1, 0] +

89 If[#1 > insert, 1, 0] — 1, Length[splits] + 1] + 1 &, {nonord,
90 newNonord }]}]

92 (* Replace new splits that are completely invalid with Sequence[] *)
03 RemovelnvalidSplits [

94 process_, {split., splitNonord_}, {c_, i_., nonordshift_}] :=

95 Sequence[] /; split[[c]] = i && Count[nonordshift, 0] = 0

o6 RemovelnvalidSplits [

o7 process_, {split., splitNonord_-}, {c_., i., nonordshift_}]

os  Sequence[] /; (Length[split] !=

99 c || (i <= split [[1]] && ! split[[c]] = 1)) &
100 split [[Mod[c, Length[split]] + 1]] = i &&
101 Count|[nonordshift , 1] = 0

102 RemovelnvalidSplits [process-, {split-, splitNonord-},

103 newsplit_] := newsplit

104

105 (* Calculate the list of possible new splits given an existing split *)
106 SplitOptions [process-, {{}, splitNonord_List}] :=

107 Table[{None, i, Table[0, {Length[Process|[process]|[[1]]]}]}, {i,
108 Length[Process [process |[[2]]]}]

100 SplitOptions[process., {splits_List , splitNonord_List}] :=

110 RemovelnvalidSplits [process, {splits, splitNonord}, #] & /@

111 Flatten [Table |

112 Module[{ nonordindex = Position[splitNonord, c]},

113 Table[{c,

114 Mod[i + splits [[c]] — 1, Length[Process|[process|[[2]]]] + 1,
115 ReplacePart [PadRight [{}, Length[splitNonord], None],

116 MapThread [Rule, {nonordindex, non}]]}, {i, O,

117 If[c = Length[splits],

118 splits [[1]] — splits[[c]] + Length[Process|[process]|[[2]]],

119 splits [[¢ + 1]] — splits [[c]]]}, {non,
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Tuples[{0, 1}, Length[nonordindex]]}]], {c, 1,
Length[splits]}], 2]

(¥ Calculate all possible splits into n corners x*)
SplitOptions [process_, 0] := {{{}, {}}}
SplitOptions [process_, n_Integer] :=

Union @QQ

Function [name,

SplitName [name, #] & /@ SplitOptions[process, name]] /@
SplitOptions [process, n — 1]
MatchQuarks [Quark[p-, -, f_], process_] :=

MemberQ|[ Left Quarks [ process ], Quark[p, f{]]

SplitPropOptions [process_, {splits : {}, _List},

loopprops : {}, {corner_, newsplit_-Integer , _List}] :=

Module[{ quarks = Cases|[LeftQuarks|[process], Quark[p_-, —1] :> p],
cornertypes =
RotateLeft [ Process [process|[[2]], newsplit — 1] /.
Gluon|[_-] —> Sequence[] //. {ol___,

Quark[pl_, hl_, f_]?(MatchQuarks[#, process] &),
Quark [p2-, h2_, f_], o02___} :> {ol, 02} /;
pl = —p2 & & hl = —h2},

If [Length|[cornertypes] =— 0,

If [Length[quarks] =

1, {{Quark[quarks[[1]], 1, —1]}, {Quark]
quarks [[1]], -1, —1]}}, {{Gluon[1]}, {Gluon[—1]}}],
If [And|[Length|[quarks] = 0,

MatchQ|[ cornertypes , {Quark[pl-, hl_., f_],
Quark [p2-, h2_, f_]?(MatchQuarks[#, process] &)} /;
pl = —p2 && h1 = —h2]], {{cornertypes[[1]]}}, {}]]]

(* Calculate the possible loop propagators given a split and its

propagators and the new cut being added *)

; SplitPropOptions[process_, {splits : {__Integer}, nonord_List},

loopprops : {_List ...}, {corner_Integer, newsplit_Integer ,
newNonord_List }] :=
Flatten [SplitPropOptions |
process , {splits, nonord}, #, {corner, newsplit, newNonord}] & /@
loopprops, 1]
SplitPropOptions[process_, {splits : {_-_Integer}, nonord_List},

loopprops_-List, {corner_Integer, newsplit_-Integer ,
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newNonord_List }]| :=
Module[{index = InsertionIndex[splits, corner, newsplit],
name = SplitName [{splits , nonord}, {corner, newsplit, newNonord}],
cornerparts , options},
cornerparts =
CombineCornerPropsTypes [ SplitCorners [ Process [process|, name],
Insert [loopprops, None, index + 1]][[index + 1, 2]];
cornerparts =
cornerparts /.
Gluon|[_-] | ReverseParticle [None] —> Sequence[] //. {ol___,
Quark [pl-, hl_, f_]?(MatchQuarks[#, process]| &),

Quark [p2_, h2_, f_], o2___} :> {ol, o2} /;
pl = —p2 & & hl = —h2;
options =
If [Length[cornerparts] = 0, {Gluon[1], Gluon[—1]},
If [Length[cornerparts] == 1, cornerparts, {}]];

Insert [loopprops, #, index + 1] & /@ options]

(¥ Calculate all possible propagators for a given split =)

SplitPropOptions[process_, {splits_List , nonord_List}]| :=

Module[{name = {{}, {}}, options = {}},
Do[options =
SplitPropOptions [process , name,
options, {i — 1, splits[[i]], nonord — i + 1}];
name = SplitName [name, {i — 1, splits[[i]], nonord — i + 1}], {i,

Length[splits]}]; options]

(x Calculate the helicity of a cormer if it has omne, or return None *)

CornerHelicity [nonels_List , els_List] :=

CornerHelicity [Sort [nonels],

Sort[els]] /; ! (OrderedQels]| && OrderedQ[nonels])

CornerHelicity [{}, {Gluon[h_], Quark[-, -, -], Quark[-, -, _-]}] = h
CornerHelicity [{}, {Gluon[—1], Gluon[—1], Gluon[1]}] = —1
CornerHelicity [{}, {Gluon[—1], Gluon[1], Gluon[1]}] := 1
CornerHelicity [ -List , _List] := None

(* Remove from the list of propagators all combinations that are known

to vanish for any reason x*)

RemovelgnorableOptions [process_, {splits : {__Integer}, nonord_List},

loopprops : {-List ...}] :=

RemovelgnorableOptions[process, {splits, nonord}, #] & /@ loopprops
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> RemovelgnorableOptions|[process_, {splits : {_}, nonord_List},

loopprops-List] := Sequence|]

RemovelgnorableOptions [process_, {splits : {i-, j-}, {2 ...}},
loopprops-List] :=

Sequence || /; Mod[i, Length[Process|[process|[[2]]]] + 1 = j

7 RemovelgnorableOptions[process_, {splits : {i-, j-}, {1 ...}},

loopprops_List] :=
Sequence[] /; i == Mod[j, Length[Process|[process][[2]]]] + 1
RemovelgnorableOptions [process_, {splits : {__Integer}, nonord_List},
loopprops_List] :=
RemovelgnorableOptions|[process, {splits, nonord}, loopprops,
Map| Sort ,
CombineCornerPropsTypes |
SplitCorners [Process [process], {splits, nonord}], loopprops], 2]]
RemovelgnorableOptions|[process_, {splits : {__Integer}, nonord_List},
loopprops_List, {_-__, {{}, {Gluon[h_] ...}}, _-__}] := Sequence][]

RemovelgnorableOptions [process_, {splits : {__Integer}, nonord_List},

loopprops_-List , {---, {{}, {Gluon[hl_], Gluon[h2_], Gluon[h2_],
Gluon[h2_] ..} | {Gluon[hl_], Gluon[hl_], Gluon[hl_] ..,
Gluon[h2_]}}, _-__}] := Sequence]]

RemovelgnorableOptions [process_, {splits : {__Integer}, nonord_List},
loopprops_-List , {---, {{}, {Gluon[h_],
Gluon[h_] .., _Quark, _Quark}}, ___}] := Sequence[]
RemovelgnorableOptions|[process_, {splits : {__Integer}, nonord_List},
loopprops-List, {--_, {{Phi[p-]}, {Gluon[p-],
Gluon[h_]} | {Gluon[h_], Gluon|[p-]}}, ---}] := Sequence ]
RemovelgnorableOptions|[process_, {splits : {__Integer}, nonord_List},
loopprops_List , {_--_, {{Phi]

p-1}, {Gluon[p-] ..., _Quark, _Quark}}, ___}] := Sequence]]
RemovelgnorableOptions [process_, {splits : {__Integer}, nonord_List},
loopprops_List , {_--_, {{}, {Gluon[hl_], Gluon[h : (hl_ | h2.)],

Gluon[h2_]} | {Gluon[h_], _Quark, _Quark}}, {{}, {Gluon[hl_],
Gluon[h : (hl_ | h2.)],
Gluon[h2_]} | {Gluon[h_], _Quark, _Quark}}, ___}] := Sequence ]
RemovelgnorableOptions|[process_, {splits : {__Integer}, nonord_List},
loopprops_List , {{{}, {Gluon[hl_], Gluon[h : (hl_. | h2.)],
Gluon[h2_]} | {Gluon[h_], _Quark, _Quark}}, -__, {{}, {Gluon]|
hi.], Gluon[h : (hl. | h2.)],
Gluon[h2_]} | {Gluon[h_], _Quark, _Quark}}}] := Sequence []
RemovelgnorableOptions [process_, {splits : {__Integer}, nonord_List},
loopprops_List , {pre-__, {{}, {Gluon[hl_], Gluon[hl_],
Gluon[h2_]}}, -, {{}, {Gluon|[hl_], Gluon[h2_], Gluon[h2_]}},
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244 post___}] =
245 Sequence|[] /; Length[{pre, post}] = 1 (% total length==4 *)

246 RemovelgnorableOptions[process_, {splits : {__Integer}, nonord_List},

247 loopprops_List , {pre___, {{}, {Gluon[h2_], Gluon[hl_],

248 Gluon[h1_]}}, -, {{}, {Gluon[h2_], Gluon[h2_], Gluon[hl_]}},
249 post___}] :=

250 Sequence|] /; Length[{pre, post}] = 1 (% total length==4 *)

251

252 RemovelgnorableOptions|[., _, loopprops_List, _] := loopprops

254 SplitValidPropOptions [process_ ,split_- | := RemovelgnorableOptions |

N

process , split, SplitPropOptions|[process, split]]

N}
1

(+ Calculate the momentum solution for a box %)

255 CalcBoxLoopMom [{{{}, {k1_}}, K2 : {_List, _List}, K3 : {_List, _List},
259 K4 : {_List, _List}}, 1] :=

260 Module[{k2 = Plus @@ ToSp[K2 // Flatten],

261 k3 = Plus @@ ToSp[K3 // Flatten],

262 k4 = Plus @@ ToSp[K4 // Flatten]}, {{La[kl],

263 CLa[kl].CSm2[k2].Sm2[k3].CSm2[k4]/Spaa[kl, k2, k4, k1]}, {La[kl],
264 CLa[kl].CSm2[k4].Sm2[k3].CSm2[k2]/

265 Spaa[kl, k2, k4, k1]}, {CSm2[k3].Sm2[k4].La[k1]/

266 Spaa[kl, k2, k4, k1],

267 CLa[kl].CSm2[k2]}, {CSm2[k3].Sm2[k2].La[kl]/Spaa[kl, k2, k4, k1],
268 CLa[kl].CSm2[k4]}} // NN]

260 CalcBoxLoopMom [{{{}, {k1_}}, K2 : {_List, _List}, K3 : {_List, _List},
270 K4 : {_List, _List}}, —1] :=

271 Module[{k2 = Plus @@ ToSp[K2 // Flatten],

272 k3 = Plus @@ ToSp[K3 // Flatten],

273 k4 = Plus @@

274 ToSp[K4 // Flatten]}, {{CSm2[k4].Sm2[k3].CSm2[k2].CLat[kl]/

275 Spbb[kl, k4, k2, k1],

276 Lat[k1]}, {CSm2[k2].Sm2[k3].CSm2[k4].CLat[kl]/

277 Spbb[kl, k4, k2, k1], Lat[k1]}, {CSm2[k2].CLat[k1],

278 Lat [k1].Sm2[k4].CSm2[k3]/

279 Spbb[kl, k4, k2, k1]}, {CSm2[k4].CLat[k1],

280 Lat[k1].Sm2[k2].CSm2[k3]/Spbb[kl, k4, k2, kl1]}} // NN]

252 CalcBoxLoopMom [momconf_, {split_List , nonord_List},
283 masslessindex_Integer , h_] :=
284 CalcBoxLoopMom [momconf, {split, nonord}, masslessindex, h] =

255 RotateRight [
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286 CalcBoxLoopMom [
287 RotateLeft [ SplitCorners [MomConf[ momconf], {split, nonord}],
288 masslessindex — 1], h], masslessindex — 1]

289
200 (% Determine if a box has a massless corner and if so where it is *)

201 MasslessBoxCorner |

292 process_, {split : {pre___, i-, j-, -_-_}, nonord_List}]| :=
203 Length[{pre}] + 1 /; j = i + 1 && FreeQ[nonord, Length[{pre}] + 1]
204 MasslessBoxCorner [ process_, {split : {1, ___, i_-}, nonord_List}] :=
205 4 /; Length[Process[process|[[2]]] = i1 && FreeQ[nonord, 4]

206 MasslessBoxCorner |

297 process_, {split : {___Integer}, nonord : {___Integer }}| := None

200 (% Determine which momenta solution is wvalid for a given box *)
300 ValidBoxLoopSolution [{ nonord_List , ord_List}] :=

301 ValidBoxLoopSolution [Sort [nonord], Sort[ord]]

s02 ValidBoxLoopSolution [{}, {Gluon[h_], Quark[_-, -, _],

ws  Quark[-, -, _]}] :=h

304 ValidBoxLoopSolution [{}, {Gluon[—1], Gluon[—1], Gluon[1]}] := -1
305 ValidBoxLoopSolution [{}, {Gluon[—1], Gluon[1], Gluon[1]}] := 1
sos ValidBoxLoopSolution[{}, {-, -, -}] := None

307

s0s (¥ Calculate the contribution from a single boxz *)

300 (* masslessindex is an integer so there is a massless corner. If there
are no massless corners, a version where masslessinder is None must
be implemented *)

310 CalculateBoxContribution [process_ ,

311 momconf_, {split_List, nonord_List}, masslessindex_Integer , props.,

312 solutionhel_] :=

313 Module[{ solution ,

314 cornertypes = SplitCorners|[Process|[process], {split, nonord}],
315 cornernames = SplitCorners [MomConf[momconf], {split, nonord}]},
316 If[solutionhel == None, 0,

317 solution =

318 CalcBoxLoopMom [momconf, {split, nonord}, masslessindex,

319 solutionhel |;

320 I/2«Product |

321 CalculateLoopCornerAmplitude [cornernames [[i]],

322 cornertypes [[i]], {props[[i]],
323 props [[Mod[i, 4] + 1]]}, {solution[[i]],
324 solution [[Mod[i, 4] + 1]]}], {i, Length[split]}]]] /;

325 ValidBoxLoopSolution@ ( CombineCornerPropsTypes [
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326 SplitCorners [Process [process], {split, nonord}], props]|[]

327 masslessindex ]]) = solutionhel

320 CalculateBoxContribution [process_,

330 momconf_, {split_List, nonord_List}, masslessindex_Integer , props.,
331 solutionhel_] :=

332 0 /; ValidBoxLoopSolution@ (CombineCornerPropsTypes |

333 SplitCorners [Process [process], {split, nonord}], props]|[]

334 masslessindex ]]) != solutionhel

336 CalculateBoxContribution [process_ ,

337 momconf_, {split_List, nonord_List}, props.,

338 solutionhel_Integer] := (CalculateBoxContribution [process,

339 momconf, {split, nonord}, props, solutionhel] =

340 CalculateBoxContribution [ process , momconf, {split, nonord},

341 MasslessBoxCorner [ process , {split, nonord}], props, solutionhel])

3142 CalculateBoxContribution [process._

343 momconf_, {split_List , nonord_-List}, props_,

344+ None | PatternSequence[]] :=

345 CalculateBoxContribution [ process , momconf, {split, nonord},

346 props, —1] +

347 CalculateBoxContribution [ process , momconf, {split, nonord}, props,

348 1]

349

350 (* Calculate the equation for the triangle loop momentum as a function
of t, evaluating as much as possible, as early as possible *)

351 CalcTriLoopMomEqn [{ kk1_List, -, kk3_List}, None, h_] :=

352 Module[{kl = Plus @@ ToSp[kkl // Flatten],

353 k3 = Plus @@ ToSp[kk3 // Flatten], K1, K3, S1, S3,

354 k1k3, \[CapitalDelta], \[Gamma], K3t, Klt}, Kl = Num4V[kl];

555 K3 = NumdV[k3]; S1 = MP2[k1] // NN; S3 = MP2[k3] // NN;

50 klk3 = MP[k1, k3] // NN; \[CapitalDelta] = k1k3°2 — S1 S3; \ [Gamma] =

357 k1k3 + hxSqrt[\[CapitalDelta]]; K3t = K3 — S3/\ [Ganmmma] K1;

58 Klt = K1 — S1/\[Gamma] K3;

350 Function|[t,

360 Evaluate|

361 WithSpinors [{{t La[klt] +

362 S1%(S3 + \[Gamma]) /(4%\[CapitalDelta]) La|

363 k3t], —S3#(S1 + \[Gammm]) /(4%\[CapitalDelta]xt) Lat[klt] +

364 Lat [k3t]}, {t La[klt] +

365 S1xS3%(S1 + \[Gamma]) /(4%\[Gamma]«\ [ CapitalDelta]) La|

366 k3t], —\[Gamma]x(S3 4+ \[Gammma]) /(4x\[CapitalDelta]+t) Lat|
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klt] + Lat]|
k3t]}, {t Laf

for Higgs Boson + Jets

k1t] + \[Gamma]*(S1 + \[Gamma]) /(4*\[CapitalDelta]) La|

k3t], —Sl=x

S3x(S3 + \[Gamma]) /(4% \[Gammma] *x\ [ CapitalDelta]xt) Lat[klt] +

Lat [k3t]}} // NN, {klt, Kit}, {k3t, K3t}]]

1]

CalcTriLoopMomEqn [ corners_List , masslessindex_Integer , 1] :=

Module[{kl = Plus @@ ToSp[corners [[ masslessindex]]
k3 = Plus @@
ToSp[corners [[Mod[ masslessindex + 1, 3] + 1]] /
K3t}, ¢ = MP2[k3]/(2 MP[kl, k3]) // NN;
K3t = NumdV[k3] — ¢ Numd4V[k1];
Function|t,
Evaluate |
RotateRight [
WithSpinors [{{t La[kl], —c/t Lat[kl] +
Lat [k3t]}, {t La[kl], —(c + 1)/t Lat[kl] +

// Flatten],

/ Flatten], c,

Lat [k3t]}, {t La[kl] + La[k3t], Lat[k3t]}} // NN, {k3t,
K3t}], masslessindex — 1]]]]
CalcTriLoopMomEqn [ corners_List , masslessindex_Integer , —1] :=

Module[{kl = Plus @Q ToSp[corners [[ masslessindex ]]
k3 = Plus @@

// Flatten],

ToSp|[corners [[Mod| masslessindex + 1, 3] + 1]] // Flatten], c,

K3t}, ¢ = MP2[k3]/(2 MP[kl, k3]) // NN;
K3t = Num4V[k3] — ¢ NumdV[kl];
Function|[t,
Evaluate|
RotateRight |
WithSpinors[{{—c /t La[kl] + La[k3t],
t Lat[k1]}, {—(c + 1)/ t La[kl] 4+ La[k3t],

t Lat[k1]}, {La[k3t], t«Lat[kl] + Lat[k3t]}} // NN, {k3t,

K3t}], masslessindex — 1]]]]

CalcTriLoopMomEqgn [momconf_, {split_List , nonord_List
h_] := Module[{ corners =

SplitCorners [MomConf[ momconf], {split, nonord}],

CalcTriLoopMomEqn [momconf, {split, nonord}, massle

CalcTriLoopMomEqn [ corners , masslessindex, h]]

CalcTriLoopMom [momconf_, {split_-List , nonord_List},

135

}, masslessindex_,
params } ,

ssindex , h] =

masslessindex._ |
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100 CalcTriLoopMomEqn [momconf, {split, nonord}, masslessindex, h][t]

110

111 (% Calculate the subtraction of a box from a triangle as a function of t
, evaluating as much as possible, as early as possible x)

112 CalculateTriSubtractionEqnlmpl[process. , momconf_, split_ ,

113 masslessindex_Integer , solution : (1 | —1), props-]| :=

114 Function |t

415 Evaluate [Module[{ cornernames =

116 SplitCorners [MomConf[ momconf], split], k1, K3, C},

117 k1l = Plus @@ ToSp|[cornernames [[ masslessindex]] // Flatten];
418 K3 = Plus @QQ

119 ToSp|cornernames [[Mod[ masslessindex + 1, 3] + 1]] // Flatten];

120 C = MP2[K3]/2/MP[kl, K3] // NN;

121 WithSpinors |

422 Sum|[Module|{ boxname = SplitName[split , boxsplit],

123 insindex =

124 InsertionIndex [split [[1]], boxsplit[[1]], boxsplit[[2]]], k},
125 k =

426 Plus @@ ToSp|

127 Flatten [If [insindex >= masslessindex,

128 SplitCorners [MomConf [ momconf] , boxname] ||

129 masslessindex ;; insindex]],

430 RotateLeft [ SplitCorners [MomConf|[momconf], boxname],

131 masslessindex | [

132 1 ;; insindex — masslessindex + 4]]]]]; (1/

133 If [solution = 1,

™ Spab[kl, k,

435 k3T]+(t — (MP[k, k] + 2 C MP[k, k1])/Spab|kl, k, k3T]),
136 Spab [k3T, k,

137 kl]*(t — (MP[k, k] + 2 C MP[k, k1])/Spab[k3T, k, k1])] //
438 NN) «Sum[ CalculateBoxContribution [ process , momconf, boxname,
139 boxprops,

140 solution*(—1) " (masslessindex +

441 If [insindex < masslessindex, 1, 0] —
142 MasslessBoxCorner [ process , boxname]) ], {boxprops,
143 RemovelgnorableOptions [process , boxname,

144 SplitPropOptions [process, split, props,
445 boxsplit]]}]], {boxsplit,

146 SplitOptions [process, split]}], {k3T,

147 NumdV [K3] — C«Num4V[k1]}]]]]

110 CalculateTriSubtractionEqnImpl [ process., momconf_, split_,

August 22, 2017 136



460

161

162

163

464

189

190

491

Simon Armstrong Next to Leading Order Calculations for Higgs Boson + Jets

masslessindex : None, h_, props_.] :=
Module[{ cornernames = SplitCorners [MomConf[momconf], split], k1, k3,
K1, K3, S1, S3, klk3, \[CapitalDelta]},
k1l = Plus @@ ToSp[cornernames [[1]] // Flatten];
k3 = Plus @@ ToSp[cornernames [[3]] // Flatten]; Kl = NumdV[kl];
K3 = Num4V[k3]; S1 = MP2[k1] // NN; S3 = MP2[k3] // NN;
k1k3 = MP[kl, k3] // NN; \[CapitalDelta] = kl1k3"2 — S1 S3;
Function [t
Evaluate|
Module [{\ [Gamma] = k1k3 + h*Sqrt [\ [CapitalDelta]]},
WithSpinors [
Sum|[Module [{ boxname = SplitName [split , boxsplit],
insindex =
InsertionIndex [split [[1]], boxsplit[[1]], boxsplit[[2]]], k,
f, b, ¢, j, boxmasslessindex},
k = Plus Q@
ToSp [ Flatten |

If [insindex >= 1,

SplitCorners [MomConf|[momconf] , boxname][[1 ;; insindex]],
RotateLeft [ SplitCorners [MomConf[ momconf], boxname], 1][]
1 ;; insindex + 3]]]]]; f = Spab[klT, k, k3T] // NN;

b = (MP[k,

k] 4+ (S3%(S1 + \[Gamma])*MP[k, k1T] —
S1%(S3 + \ [Gamma] ) x*
MP[k, k3T]) /(2 \[CapitalDelta]))/(2 f) // NN;
¢ = —S1%S3%(S1 + \[Gamma)]) x(S3 + \[Gamma]) x
Spab [k3T, k, k1T]/((4 \[CapitalDelta]) "2xf) // NN;
j = Sqart[b"2 — c];
boxmasslessindex = MasslessBoxCorner [process, boxname];
Sum| CalculateBoxContribution [ process , momconf, boxname,
boxprops, boxh]x
If [WithSpinors [(MP[ltm, lb] — MP[ltp, 1b])/MP[ltp, ltm] //
NN // Re, {Ib,

CalcBoxLoopMom [ momconf, boxname, boxmasslessindex ,
boxh][[1]]}, {ltp, \[GothicCapitalP|[1l]@
CalcTriLoopMom [momconf, split, masslessindex, h,
b+ jl}, {ltm, \[GothicCapitalP][1]@
CalcTriLoopMom [momconf, split , masslessindex, h,
b — ]} <

0, =(b — J)/(i*(t = (b =17))), (b+
/Gt = (b +j)))], {boxh, -1, 1}, {boxprops,

RemovelgnorableOptions[process , boxname,

137 August 22, 2017



Next to Leading Order Calculations for Higgs Boson + Jets Simon Armstrong

192 SplitPropOptions [process, split, props, boxsplit]]}]/f/

193 2 ], {boxsplit, SplitOptions[process, split]}], {k1T,

194 K1 — S1/\[Gamma] K3}, {k3T, K3 — S3/\[Gammma] K1}]]]]]

495

196 CalculateTriSubtractionEqn [process_,

197 momconf_, {split_-List, nonord_List}, masslessindex_-, soln_,

198 props-] :=

100 CalculateTriSubtractionEqn [process, momconf, {split, nonord},

500 masslessindex , soln, props] =

501 CalculateTriSubtractionEqnImpl [ process , momconf, {split, nonord},

502 masslessindex , soln, props]

500 CalculateTriSubtraction[args__, t_] :=

505 CalculateTriSubtractionEqn[args ]|

506 t] (* args is always process_,momconf-, split_ ,masslessindex_, soln_,
props_ %)

507

s0s (% Check which momentum solutions are valid for a given triangle x*)

500 ValidTriLoopSolution [{ nonord_List , ord_List}] :=

510 ValidTriLoopSolution [Sort [nonord], Sort[ord]]

511 ValidTriLoopSolution [{}, {Gluon[h_], Quark[_, _, _],

oo Quark[-, -, _]}] i=h

513 ValidTriLoopSolution [{}, {Gluon[—1], Gluon[—1], Gluon[1]}] = —1
514 ValidTriLoopSolution [{}, {Gluon[—1], Gluon[1l], Gluon[1]}] := 1
515 ValidTriLoopSolution [{}, {-, -, -}] := None

517 (* Try and find a massless corner in a triangle =x)

515 MasslessTriCorner [

519 process_-, {split : {pre_-__, i-, j-, --_}, nonord_List},
520 props_List] :=

521 Length[{pre}] + 1 /;

522 j = 1 + 1 && FreeQ[nonord, Length[{pre}] + 1] &&

523 1 = ValidTriLoopSolution@ (CombineCornerPropsTypes |

524 SplitCorners [Process [process], {split, nonord}], props]|[]
525 Length[{pre}] + 1]])

526 MasslessTriCorner [process_, {split : {1, ___, i-}, nonord_List},

527 props_List] :=

s2s 3 /; Length[Process|[process|[[2]]] = i && FreeQ[nonord, 3] &&
529 1 = ValidTriLoopSolution@ ( CombineCornerPropsTypes [
530 SplitCorners [Process [process], {split, nonord}], props][[3]])

531 MasslessTriCorner [

532 process_, {split : {pre.__, i., j-, ___}, nonord_List},
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props_List] :=

Le

ngth[{pre}] + 1 /; j = i + 1 && FreeQ[nonord, Length[{pre}] + 1]

535 MasslessTriCorner [process-, {split : {1, -__, i-}, nonord_List},

536

537

>38

539

540

559

560

561

562

563

564

565

566

567

568

569

570

props_List] :=

3

/; Length[Process|[process|[[2]]] = i && FreeQ[nonord, 3]

MasslessTriCorner |

process_, {split : {___Integer}, nonord : {___Integer}},

props_List] := None

(*

; Cal

S

Calculate a raw triangle contribution as a function of t *)
culateRawTriContributionImpl[cornernames_, cornertypes., props-,

olution_] :=

1/2 Product|

CalculateLoopCornerAmplitude [\ [ GothicCapitalP |[i]@
cornernames , \[GothicCapitalP][i]@
cornertypes, {\[GothicCapitalP][i]@
props, \[GothicCapitalP][Mod[i, 3] + 1l]@
props }, {\[GothicCapitalP|[i]@
solution , \[GothicCapitalP ][Mod[i, 3] + 1]@solution}], {i, 3}]

CalculateRawTriContribution [process_,

momconf_, {split_List , nonord_List}, masslessindex_Integer , props.,

S

olutionh_, t_] :=

Module[{ cornertypes =

SplitCorners [Process [process], {split, nonord}],

cornernames = SplitCorners [MomConf[momconf], {split, nonord}]},

CalculateRawTriContributionImpl|[cornernames, cornertypes, props,

CalcTriLoopMom [momconf, {split, nonord}, masslessindex
solutionh , t]] —

CalculateTriSubtraction [process, momconf, {split, nonord},
masslessindex , solutionh, props, t] /;

solutionh =

ValidTriLoopSolution@ (CombineCornerPropsTypes|[cornertypes ,

props ] [[ masslessindex]]) ]

CalculateRawTriContribution [process_,

momconf_, {split_List , nonord_List}, masslessindex_Integer , props-,

S

olutionh., t_] :=

Module[{ cornertypes =

0

139

SplitCorners [Process [process], {split, nonord}]},
/; solutionh !=

ValidTriLoopSolution@ (CombineCornerPropsTypes|cornertypes ,
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575 props | [[ masslessindex|]) ]

577 CalculateRawTriContribution [process_ ,
578 momconf_, {split_List, nonord_List}, masslessindex : None, props_,
579 solutionh_, t_] :=

5s0  Module[{ cornertypes =

581 SplitCorners [Process [process], {split, nonord}],

582 cornernames = SplitCorners [MomConf[momconf], {split, nonord}]},

583 CalculateRawTriContributionImpl [cornernames, cornertypes, props,

584 CalcTriLoopMom [momconf, {split, nonord}, masslessindex, solutionh,
585 t]] — CalculateTriSubtraction [process, momconf, {split, nonord},
586 masslessindex , solutionh, props, t]]

sss CalculateRawTriContribution [process_ ,
589 momconf_, {split_List, nonord_List}, props_, h_, t_] :=
500 CalculateRawTriContribution [ process, momconf, {split, nonord},

591 MasslessTriCorner [ process , {split, nonord}, props], props, h, t]

503 (% Set up the constants used for the extraction of the different
coefficients x*)

504 NNCache[t0, 3 Sqrt[2] — Pi, 2]

505 ptO[-__] := t0

506 p = 9; (* Number of points to use x)

507 ppl---] = p
so0s mp = 4; (* Maximum power — high enough for a Higgs boson to work x*)
500 pmp[---] := mp

600

601 (x Calculate the equation for the coefficient of any power in a triangle
*)

c02 CalculateTriContributionEquation [process_,

603 momconf_, {split_List, nonord_List}, props., h_] :=

602 CalculateTriContributionEquation [process, momconf, {split, nonord},

605 props, h] =

606 Module[{p = pp|[process], t0 = ptO[process]},

607 Function [n,

608 Evaluate|

609 Sum|[t0"—nx*

610 CalculateRawTriContribution [process ,

611 momconf, {split, nonord}, props, h,

612 t0+Exp[2 Pi I j/(2 p+ 1)]]x

Bxp-2 Pi T j n/(2 p+ 1)], {i, —p, p}/(2 p + 1) // Factor]]]

614
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615 CalculateTriContribution [process_,

616 momconf_, {split_-List, nonord_List}, props-, h_Integer, n_: 0] :=
617 CalculateTriContributionEquation [process , momconf, {split, nonord},
618 props, h][n]

619 CalculateTriContribution [process._,

620 momconf_, {split_-List , nonord_-List}, props-, h : None, n_: 0] :=
621 CalculateTriContribution [ process , momconf, {split, nonord}, props, 1,
622 n] 4+ CalculateTriContribution [process, momconf, {split, nonord},
623 props, —1, n]

624 CalculateTriContribution [process._,

625 momeconf_, {split_List , nonord_List}, props.] :=

626 CalculateTriContribution [process, momconf, {split, nonord}, props,

627 None, 0]

620 (* The arbitrary vector used in the bubble momentum parametrisation x)
630 DeclareSpinorMomentum [\[Chi], {1 + 2 I, 1 -2 I, 1 +4 1 ,
631 NN[Sqrt[15], 100]}]

633 (x Calculate the bubble loop momentum as a function of t and y,
evaluating as much as possible, as early as possible x*)

6312 CalcBubbleLoopMomEqn [{ kk1_List , _}] :=

635 Module[{kl = Plus @@ ToSp[kkl // Flatten], Klt, Slo\[Chi]},

636 Slo\[Chi] = MP2[k1]/2/MP[kl, \[Chi]] // NN;

037 Klt = Numd4V[k1] — Slo\[Chi] NumdV[\[Chi]];

638 Function[{t, y},

639 Evaluate [
640 WithSpinors [{{t La[klt] + (1 — y) Slo\[Chi] La[\[Chi]],
641 y/t Lat[klt] + Lat[\[Chi]]}, {—t La[klt] +

642 y Slo\[Chi] La[\[Chi]], (1 — y)/t Lat[klt] — Lat[\[Chi]]}} //
643 NN, {klt, Klt}]]]]

6142 CalcBubbleLoopMomEqn [momconf_, {split_List , nonord_List}] :=

625 Module[{ corners = SplitCorners [MomConf[momconf], {split, nonord}],

646 params },

647 CalcBubbleLoopMomEqn [momconf, {split, nonord}] =

648 CalcBubbleLoopMomEqn [ corners ||

610 CalcBubbleLoopMom [momconf_, {split_List , nonord_List}, t_, y_] :=

650 CalcBubbleLoopMomEqgn [momconf, {split, nonord }|[t, y // NN]

652 (x Calculate the raw and unsubtracted bubble contribution, evaluating as
much as possible, as early as possible x)
653 CalculateRawBubbleContributionImpl|[cornernames_, cornertypes., props.,

654 solution_] := —I Product|
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655 CalculateLoopCornerAmplitude [cornernames [[i]],

656 cornertypes [[i]], {props[[i]],

657 props [[Mod[i, 2] + 1]]}, {solution[[i]],

658 solution [[Mod[i, 2] + 1]]}], {i, 2}]

659

660 (* Calculate the t to use in a triangle from the bubble’s t and y *)
661 CalculateTriTFromBubble [momconf_, klt_, Slo\[Chi]_, triname_,

662 tricorner_Integer , h_Integer, —1, t_, y-] := 0

663 CalculateTriTFromBubble [momconf_, kl1t_, Slo\[Chi]_., triname_,

664 tricorner_Integer , 1, power_, t_, y_-] :=

665 Module[{ corners = SplitCorners [MomConf|[momconf], triname], tkl, tk3},
666 tkl = Plus @@ ToSp|[Flatten[corners [[tricorner ]]]];

667 tk3 = Plus @@ ToSp|[Flatten[corners [[Mod[ tricorner + 1, 3] + 1]]]];
668 WithSpinors [(t Spaa[klt, tK3t] —

669 Slo\[Chi] (1 — y) Spaa[tK3t, \[Chi]]) (t Spbb[\[Chi], tkl] —
670 y Spbb[tkl, k1t])/(t s[tkl, tK3t]) // NN, {tK3t,

671 NumdV[tk3] — NN[MP2[tk3]/2 /MP[tkl, tk3]] NumdV[tkl]}]]

672 CalculateTriTFromBubble [momconf_, klt_, Slo\[Chi]_, triname_,

673 tricorner_Integer , —1, power_, t_, y_-] :=

672 Module[{ corners = SplitCorners [MomConf[momconf], triname], tkl, tk3},
675 tkl = Plus @@ ToSp|[Flatten[corners [[tricorner |]]];

676 tk3 = Plus @QQ ToSp[Flatten|[corners [[Mod[tricorner + 1, 3] + 1]]]];
677 WithSpinors [(t Spaa[klt, tkl] —

678 S1o\[Chi] (1 — y) Spaa[tkl, \[Chi]]) (t Spbb[\[Chi], tK3t] —
679 y#Spbb[tK3t, k1t])/(t s[tkl, tK3t]) // NN, {tK3t,
680 NumdV[tk3] — NN[MP2[tk3]/2 /MP[tkl, tk3]] NumdV[tk1]}]]

631 CalculateTriTFromBubble [momconf_, klt_, Slo\[Chi]_., triname_., None,
682 ho, 1, t_, y_] :=

653 Module[{ corners = SplitCorners [MomConf[momconf], triname], tkl, tk3,
684 tK1, tK3, S1, S3, \[Gamma]},

685 tkl = Plus @@ ToSp|[Flatten[corners [[1]]]];

686 tk3 = Plus @@ ToSp|[Flatten[corners [[3]]]]; tK1 = Num4V[tkl];

6sr tK3 = NumdV[tk3]; S1 = NN[MP2[tk1]];

6ss  S3 = NN[MP2[tk3]]; \[Gamma] =

seo  NN[MP[tkl, tk3]] + h Sqrt[NN[MP[tkl, tk3]]"2 — S1 S3];

690 WithSpinors [(t Spaa[klt, tK3t] —

691 Slo\[Chi] (1 — y) Spaa[tK3t, \[Chi]]) (t Spbb[\[Chi], tK1lt] —
602 y Spbb[tK1t, k1t])/(t s[tKlt, tK3t]) // NN, {tKlt,

693 tK1 — S1 tK3/\[Gamma]}, {tK3t, tK3 — S3 tK1/\[Gamma]}]]

604 CalculateTriTFromBubble [momconf_, klt_, Slo\[Chi]_, triname_, None,
695 ho, —1, t_-, y-] :=

606 Module[{ corners = SplitCorners [MomConf[momconf], triname], tkl, tk3,
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tK1, tK3, S1, S3, \[CapitalDelta], \[Gamma]},
tkl

Plus @@ ToSp|[Flatten[corners [[1]]]];

tk3 = Plus @Q ToSp|[Flatten|[corners [[3]]]]; tK1 = Num4V[tkl];

tK3 = NumdV[tk3]; S1 = NN[MP2[tkl]];

S3 = NN[MP2[tk3]]; \[CapitalDelta] =
MP[tK1, tK3]"2 — S1 S3 // NN; \ [Gamma] =
NN[MP[tkl, tk3]] + h Sqrt[\[CapitalDelta]];

WithSpinors[—16 \[CapitalDelta]"2 (t Spaa[klt, tKI1t] —

Slo\[Chi] (1 — y) Spaa[tK1lt, \[Chi]]) (t Spbb[\[Chi], tK3t] —
y Spbb[tK3t, k1t])/(t S1 S3 (S1 + \[Gamma]) (S3 + \[Gamma]) s |
tK1t, tK3t]) // NN, {tKlt, tK1 — S1 tK3/\|[Gamma]}, {tK3t,

tK3 — S3 tK1/\[Gamma] }]]

(x Calculate the bubble subtraction contributions, evaluating as much as

possible, as early as possible *)

CalculateBubbleSubtractionEqnIlmpl [ process_., momconf_, split_,

props_] :=

Module[{ cornernames = SplitCorners [MomConf|[momconf], split], KI,

Slo\[Chi], ypoles, res, tts, ttsy, tripropss,
K1 = Plus @@ ToSp|[cornernames [[1]] // Flatten];
Slo\[Chi] = MP2[K1]/2/MP[K1, \[Chi]] // NN;
WithSpinors |
Do[Module[{ triname = SplitName[split , tri],

triconts },

insindex = InsertionIndex [split [[1]], tri[[1]], tri[[2]]], K2,

S2, \[Chi]K2klt, a, at, bt, c, sqrtterm},
K2 =
Plus @@ ToSp|

Flatten [If [insindex = 0,

RotateLeft [ SplitCorners [MomConf|[momconf], triname], 1][]

1 ;; insindex 4+ 3 — 1]],
SplitCorners [MomConf [ momconf] , triname |

S2 = MP2[K2] // NN;

[[1 ;; insindex]]]]];

¢ = 1/(S1o\[Chi]*Spab[\[Chi], K2, bkit]) // NN;
bt = c+sMP[K1, K2] — (2«MP[K2, \[Chi]])/Spab[\[Chi], K2, bklt] //
NN; a = csMP[K2, K2] — 2 MP[K2, \[Chi]]/Spab[\[Chi], K2, bkit] //

NN; at = —cx*Spab[bklt, K2, \[Chi]] // NN;

ypoles[tri, t-, h_] :=

Evaluate[(1/2 + t bt) + hxSqrt[(1/2 + t bt)"2 — t (a + t at)]];

res[tri, t_] :=

Evaluate[c t/Sqrt[(1/2 + t bt)"2 — t (a + t at)]];

ttsy [tri, cormer_, h_, trih_,

power_] := (ttsy[tri, corner, h, trih, power| =

143
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Function[{t, y},

Evaluate |

CalculateTriTFromBubble [momconf, bklt,

corner , trih, power, t, y]]]);

tts[tri,

power._]

corner_, h_,

= (tts[tri,

Function[{t},

Evaluate |

ttsy

triconts [

[tri, corner,

tri, tricorne

trih_

corner , h,

h, trih, power][t,

Slo\[Chi], triname,

trih , power] =

r-, h_, trih_ |

ypoles[tri, t, h]]]]);

triprops-, ttp-, ttm_] :=

CalculateTriContribution [ process , momconf, triname,

triprops, trih, 0]

Sum|[ ttp

+

"1 CalculateTriContribution [process , momconf, triname,

triprops, trih,

i] +

ttm”~i CalculateTriContribution [process, momconf, triname,

triprops, trih ,

tripropss

[tri] =

—i], {i, 1, pmp[process] — 1}];

RemovelgnorableOptions[process , triname,

SplitPropOptions [process, split,

SplitOptions [process ,

Function [{t,

v}, —WithSpinors |

props ,

split]}], {bklt,
Num4V[K1] — Slo\[Chi] Num4V[\[Chi]]}];

Sum|[Module[{ triname = SplitName[split , tri]

insindex = InsertionIndex [split [[1]],

res [tri

, t] Sum]|

Module[{ tricorner

MasslessTriCorner [ process , triname,

trihs [h_] :=

Evaluate |

If [MatchQ[tricorner ,

If[(Abs[tts[tri, tricorner

August 22, 2017

Abs|[tts [tri,

tts[tri,

Abs[tts [tri,

tricorner ,

)

-1, -1,
-1, 1,
-1, -1, 1
-1, 1,

07 {7h}7 {h}]v {17 71}”§

Sum[Sum| CalculateTriSubtraction [ process , momconf, triname,

tricorner ,

tricorner ,

tricorner ,

_Integer],

trih , triprops,

tts[tri, tricormer, h,

t]] h/(y — ypoles[tri, t, h]) +

triconts [tri,

tricorner ,

trih , 1]

h

)

trih ,

tri]]], {tri,

)

tri [[1]], trif[2]]]},

triprops], trihs},

Hit]] -
1][t]]) /(Abs]
JIt]] +
It]]) <

triprops ,

Simon Armstrong
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ttsy [tri, tricorner, h, trih, 1][t, y],
ttsy [tri, tricorner, h, trih, —1][t,
yll (h/(y — ypoles[tri, t, h]) —

h/(y — ypoles[tri, t, —h])) +

triconts[tri, tricorner, h, trih, triprops,

ttsy [tri, tricorner, h, trih, 1][t,
ypoles|[tri, t, —h]],
ttsy [tri, tricorner, h, trih, —1][t,
ypoles[tri, t, —h]]] h/(y —
ypoles[tri, t, —h]), {trih, trihs[h]}]/
Length[trihs [h]], {h, {-1, 1}}]], {triprops,
tripropss[tri]}]], {tri,
SplitOptions [process, split]}], {bklt,
Num4V [K1] — Slo\[Chi] Num4V[\[Chi]]}]]]

CalculateBubbleSubtractionEqn [ process_ ,

momconf_, {split_List , nonord_-List}, props_.] :=

CalculateBubbleSubtractionEqn [process , momconf, {split, nonord},

props] =

CalculateBubbleSubtractionEqnlmpl[process , momconf, {split, nonord},

props |

CalculateBubbleSubtraction [ process_,

momconf_, {split_List , nonord-List}, props-List, t-, y-] :=

CalculateBubbleSubtractionEqn [ process , momconf, {split, nonord},

(*

props|[t, y]

Calculate the raw but subtracted bubble contribution, evaluating as

much as possible, as early as possible *)

CalculateRawBubbleContribution [ process_

momconf_, {split_List, nonord_List}, props_, t., y.] :=

Module[{ cornertypes =

SplitCorners [ Process [process], {split, nonord}],

cornernames = SplitCorners [MomConf[momconf], {split, nonord}]},

CalculateRawBubbleContributionImpl [cornernames, cornertypes, props,

(*

145

CalcBubbleLoopMom [momconf, {split, nonord}, t, y]|] —

CalculateBubbleSubtraction [ process , momconf, {split, nonord},

props, t, yl]

The coefficients and values for y needed to extract the correct

combinations for different marimum powers of y x)
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GetyExtraction[1 | 2] := {{1, 1/2}}
GetyExtraction |
3 | 4] = {{1/2, (3 — Sart[3])/6}, {1/2, (3 + Sqrt[3])/6}}
23 GetyExtraction[
5 | 6] = {{4/9,

1/2}, {5/18, (5 — Sqrt[15])/10}, {5/18, (5 + Sqrt[15])/10}}

i GetyExtraction |

7 | 8] := {{(18 + Sqrt[30])/72, (35 — Sqrt[525 — 70 Sqrt[30]])/
70}, {(18 + Sqrt[30]) /72, (35 + Sqrt[525 — 70 Sqrt[30]])/
70}, {(18 — Sqrt[30]) /72, (35 — Sqrt[525 + 70 Sqrt[30]])/
70}, {(18 — Sqrt[30]) /72, (35 + Sqrt[525 + 70 Sqrt[30]])/70}}

GetyExtraction [
9 | 10] := {{64/225,
1/2}, {(322 + 13 Sqrt[70]) /1800, (21 — Sqrt[245 — 14 Sqrt[70]])/
42}, {(322 + 13 Sqrt[70]) /1800, (21 + Sqrt[245 — 14 Sqrt[70]])/
42}, {(322 — 13 Sqrt[70]) /1800, (21 — Sqrt[245 + 14 Sqrt[70]])/
42}, {(322 — 13 Sqrt[70]) /1800, (21 + Sqrt[245 + 14 Sqrt[70]]) /42}}

s (% Calculate the needed bubble contribution x)

CalculateBubbleContribution [ process_,
momconf_, {split_List , nonord_List}, props_] :=
CalculateBubbleContribution [ process , momconf, {split, nonord},
props] =
Module[{p = pp|[process], t0 = ptO[process], yex},
yvex = GetyExtraction[p];
Sum|[yex [[k, 1]] CalculateRawBubbleContribution [process,
momconf, {split, nonord}, props, t0«Exp[2 Pi I j/(2 p + 1)],
vex[[k, 2]]], {k, Length[yex]}, {j, —p, p}I/(2 p + 1) //

Factor]

B.2 Comparing Mathematica Implementation and

BlackHat

Listing B.4: Test.txt

SetAttributes [PrintTiming , HoldFirst]
PrintTiming [expr_] := Module[{tmp = AbsoluteTiming[expr]},

Print [tmp[[1]], 7 to evalute 7, HoldForm[expr]]; tmp[[2]]]

5 FailedTests = {};

6

TestIndex = 0;
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s (¥ Run a test, show its result and if it failed record for later =)
9 SetAttributes|[TestEqual, HoldFirst]

10 TestEqual [expr-, value_] := Module[{i, result},

11 i = TestIndex = TestIndex + 1; Print[” Starting Test 7, i,

12 7. ”xDefer [expr], "=", value]; result = PrintTiming[expr];
13 If [TrueQ[result = value], Print[” Test succeeded”],
14 Print ["Test 7, i, 7 Failed: 7, result, "=/=", value];

15 FailedTests = Append[FailedTests, i]]; ]
16 TestEqual [expr_, value_, error_] := Module[{i, result},

17 i = TestIndex = TestIndex + 1; Print[”Starting Test 7, i,

18 7: 7xDefer [expr]|, "=", value]; result = PrintTiming[expr];

19 If [TrueQ[If [TrueQ[value == 0], Abs[result], (Abs[result — value]*2)/
20 (Abs[result] 4+ Abs[value])] < error], Print[” Test succeeded”],
21 Print ["Test 7, i, 7 Failed: 7, result, 7=/=", value];

22 FailedTests = Append|FailedTests, i]]; ]

214 (% Show any tests that have failed =*)

25 ShowFailedTests [] := If[Length[FailedTests] = 0,

26 Print["No Tests Failed”], Print[” Test(s) 7,

27 Sequence @@ Riffle [FailedTests, 7, 7], 7 Failed”]]

Listing B.5: Rules.txt

epsilon = 10" —7;

N

3 (¥ Compare two sets of rules recursively. Rules match if the values for
the same keys match within tolerance except for keys that are only
in one set of rules whose values must all be zero within tolerance
*)

+ CompareRules[keys_, math : _Real | _Complex | _Integer,

5 bh : _Real | _Complex | _Integer] :=

¢ If[TrueQ[Abs[math — bh]*2/(0.1 + Abs[math] + Abs[bh]|) < epsilon],

7 True, Print[” Difference in valid values for ”, keys, 7 7, math,
8 ”1=", bh]; False]
o CompareRules[keys_, math : {}, bh : _Real | _Complex | _Integer] :=

10 If[TrueQ[Abs[bh] < epsilon], True,

11 Print [?bh value not 0 and math missing for 7, keys, ” 7, bh];
12 False]
13 CompareRules[keys_-, math : _Real | _Complex | _Integer, bh : {}] :=

12 If[TrueQ[Abs[math] < epsilon], True,
15 Print [?”math value not 0 and bh missing for 7, keys, ” 7, math];
16 False]

17 CompareRules [keys_, math_List, bh_List] :=
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GenerateMathRules [ process_

GenerateMathRules [ process_

$UseBHSigns =

Next to Leading Order Calculations for Higgs Boson + Jets

Module[{result = True},
If [Not[And @@ (CompareRules[Append][keys,
Intersection [First /@ math, First
Print[”error in common elements for 7,
If [Not[And @@ (CompareRules|[Append][keys,
Complement [ First /@ math,

Print [”error in elements only in math 7
If [Not[And @@ (CompareRules|[Append]|keys,
Complement [ First /@ bh,

Print[”error in elements only in bh 7,

(*x Generate a set of mested rules with split as the outer

propagators as the inner key that map

corresponding coefficient *)

GenerateMathRules [ process_, momconf_, n_,

Module[{ tree = HelAmpIN [MomConf[momconf] ,
Function[split ,

split —> ((# >

GenerateMathRules [ process , momconf, n,

momconf_, n

momconf, n,

GenerateMathRules [ process

momeconf_, n

GenerateMathRules [ process , momconf, n,

False;

First /Q bh])],

First /Q math])],

Simon Armstrong

#], # /. math, # /. bh] & /@

/@ bh])], result = False;

keys]];

#], # /. math, {}] & /@
result = False;

» keys]];

#], {}, # /. bh] & /@
result = False;

keys]]; result]

key and
to the value of the
genfunc.] :=

Process[process]]},

genfunc [process , momconf, split, #, None]/tree) & /Q
RemovelgnorableOptions [process, split ,
SplitPropOptions [process , split]])] /@
SplitOptions [process, n]]
GenerateMathRules [ process_, momconf_, n 4] =

CalculateBoxContribution ]

3] =

CalculateTriContribution]

2] =

CalculateBubbleContribution]

Listing B.6: rambo.py by Daniel Maitre

7?7 Generate random sets of on—shell

momenta that conserve momenta

93 9

3 import random

10

import math
from numpy import array

random . seed (1234)

def doublePi():

return math. pi

August 22, 2017
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math. get _pi=doublePi

def

def

def

def

def

149

dot(a,b):

return sum([a[i]xb[i] for i in range(len(a))],type(a[0]) (0) )

getRandomQ (RandomGenerator=random . random , Type=float ,mathLib=math) :
c=Type (2)*RandomGenerator ()—Type (1)

phi=Type(2)*mathLib. get_pi () * RandomGenerator ()

q0=—mathLib.log (RandomGenerator () xRandomGenerator () )
qx=qO0*mathLib.sqrt (Type(1l)—cx*c)s*mathLib.cos (phi)
qy=qO0*mathLib.sqrt (Type(1l)—c*c)*mathLib.sin (phi)

qz=q0x*c

return (q0,qx,qy,qz)

boost (q,x,gamma,b) :
Type=type(x)
p0=xx(gammaxq[0]+dot (b,q[1:]))
p= array(q[l:])

pt+= bxq[0]

f=Type (1) /(Type (1)+gamma)
fx=dot (b,q[1:])

pt=bxf

pr=x

return (p0,)+tuple(p)

finalStatePS (w,n,Type=float ,mathLib=math,*xkargs):

gs = [ getRandomQ(Type=Type, mathLib=mathLib,xxkargs) for i in range(
n)]

Q = array ([ sum([a[j] for q in gs ],Type(0)) for j in range(4)])

M = mathLib. sqrt (Q[0]+Q[0] —dot (Q[1:],Q[1:]) )

b = array( [a/M for q in Q[1:] ])

x = Type(w) M

gamma = Q[0] /M

ps=[ boost(q,x,gamma,b) for q in gs ]

return ps

PS(n,Type=float ,mathLib=math, RandomGenerator=random .random ,*x kargs) :
ctheta=Type(2)*RandomGenerator ()—Type (1)

stheta=mathLib.sqrt (Type(l)—cthetaxctheta)

phi=Type(2) *RandomGenerator () *mathLib. get_pi ()

sphi=mathLib.sin (phi)

cphi=mathLib. cos (phi)
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w=Type(n)
E=w/Type (2)
c=mathLib
pl=(-E,
—Exsthetaxsphi ,
—Exsthetaxcphi,
—Exctheta
)
p2 = ( -E , —-p1[1], —pl[2], —pl[3])
ps=finalStatePS (n,n—2,RandomGenerator=RandomGenerator , Type=Type,
mathLib=mathLib ,*x kargs)

return [ pl,p2] + ps

Listing B.7: BHtools.py based on code by Daniel Maitre

99

BlackHat types 777
## uncomment this and insert the correct path to find the
## blackhat python library if it is mnot already in the

## module import path

5 #Zamport sys

#sys.path.append(’/path/to/blackhat/python/library ’)

import BH

import re

import itertools

import rambo

def getRandomMC(n) :
ps =rambo.PS(n)
cms = [ BH.Cmomd(*p) for p in ps |

return BH.mcd (*cms)

stringToParticleMap={

‘'m’ : BH.cvar.m ,

[N}

p’ : BH.cvar.p ,

‘gqm’ : BH.cvar.gm |,

qp’ : BH.cvar.qp ,
‘Qm’ : BH.cvar.q2m ,
'Qp’ : BH.cvar.qg2p ,
’gbm’ : BH.cvar.gbm ,

)

gbp’ : BH.cvar.gbp ,

August 22, 2017

Load BlackHat and declare a few functions to map between strings and

150



Simon Armstrong

def

5 def

151

’Qbm’
b pr K

7ym1

) )

yp
1p
"lm’
"Ibp’
lbm
"Um’
Up’
"Ubm’
"Ubp’
‘ph’:

7phd7.

: BH.cvar.gb2m
: BH.cvar.gb2p
BH.cvar.ym ,
BH.cvar.yp ,
BH.cvar.lp ,
BH.cvar.lm ,
: BH.cvar.lbp,
: BH.cvar.lbm,
BH.cvar .Qm ,
BH.cvar.Qp ,
: BH.cvar.Qbm ,
: BH.cvar.Qbp ,
BH. cvar.ph ,
BH. cvar.phd ,

'"H’: BH.cvar .H |

’qOm’

) )

q0p
’gbOm ’
"qbOp’
‘qlm’

"qlp’

"gblm’
"gqblp’
‘q2m’

"q2p
"gb2m’
"qb2p’
’q3m’
"q3p”
"gb3m’

"qb3p’

: BH.cvar.qm ,

: BH.cvar.qp ,
: BH.cvar.gbm
: BH.cvar.gbp

: BH.cvar.q2m ,

: BH.cvar.q2p |,
: BH.cvar.gb2m
: BH.cvar.gb2p

: BH.cvar.q3m ,

: BH.cvar.q3p ,
: BH.cvar.gb3m
: BH.cvar.gb3p

: BH.cvar.qgdm

: BH.cvar.q4p |,
: BH. cvar.gb4dm
: BH.cvar.qgb4dp

)

)

)

)

stringToParticles (st):

ps=st.split(’ )

return

stringToProcess(st):

return BH. process (BH. vectorpID (stringToParticles(st)))

Listing B.8: BHMathLink.py

[ stringToParticleMap [p]

for p in ps |

Next to Leading Order Calculations for Higgs Boson + Jets
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9 9

representations of various objects

import BHtools

import BH

Functions to convert between BlackHat and Mathematica implementation

99

as BHT

from math import loglO, ceil

import numpy as np

from collections import defaultdict

def genmc(pro):

IR

massive particles

Generate a set of momenta for the given process taking account of

95 9

nparticles=len(pro)

imassive=[i for i in range(nparticles) if pro[i].mass()!=0]

nmassive=len (imassive)

imassless=[i

for i in range(nparticles) if pro[i].mass()==0]

nmassless=len (imassless)

n=nparticles+nmassive #nmassless+2xnmassive

mc=BHT . getRandomMC (n)

inds=np.zeros ((nparticles) ,dtype=int)

inds [imassless|=range(1l,nmassless+1)

inds[imassive]=[mc.Sum(i,i+1) for i in range(nparticles —nmassive+1,n

+1,2)]

return mc,[int(i) for i in inds]

def dasmath(d):

7?7” Write a double in a form that can be read as Mathematica input

if d==0:

return 70"

999 9

exp=int (logl0 (abs(d)))

return str(d/10xxexp)+” " "+str (exp)

def casmath(c):

RRIRE)

99

input

Write a complex number in a form that can be read as Mathematica

return dasmath(c.real)4+’+I*”4+dasmath(c.imag)

IR

> def makequarkmap(cut ,n):

Calculate a map to correct quark flavours to Mathematica versions.

In corners of a cut, BlackHat relabels quarks to ensure that if the

same quark

quarks will

August 22, 2017
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connect up. The Mathematica implementation does this at
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153

the last possible step before evaluating and therefore expects
quarks to be labelled using their external flavours
quarkmap={}
cutquarks=defaultdict (set)
for i in range(n):
for j in range(cut.corner_size(i+1)):
ind=cut.corner_ind (i+1,j+1)
externpart=cut.extern_process().p(ind)
internpart=cut.get_process (i+1).p(j+2)
if externpart.is_a (BH.cvar.quark):
# if the particle is a quark then correct from the
# type used in the corner to the type used in the
# external process
quarkmap [internpart . flavor ()]=externpart . flavor ()
cutpart=cut.get_process(i+1).front ()
# map cut quarks from the type in one corner to the
# type used in the previous corner
if cutpart.is_a(BH.cvar.quark):
otherpart=cut.get_process ((i—1)%n+1).back()
cutquarks [cutpart. flavor()].add(otherpart.flavor ())
cutquarks [otherpart. flavor () ].add(cutpart.flavor ())

while cutquarks:

# if the quark is not found then there must be a closed quark loop

value=—1

# start from a cut quark and repeatedly search for quarks
# that are equivalent and also check if any match an
# external quark
quarkset=[cutquarks.keys () [0]]
newquarks=quarkset [:]
while newquarks:
quark=newquarks.pop ()
if quark in quarkmap:
value=quarkmap [ quark ]
for otherquark in cutquarks.pop(quark):
if otherquark not in quarkset:
quarkset . append (otherquark)
newquarks.append (otherquark)
for quark in quarkset:
quarkmap [ quark]=value

return quarkmap

Next to Leading Order Calculations for Higgs Boson + Jets
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_partToMathMap={
BH. cvar .m:” Gluon[—1]” |
BH.cvar.p:”Gluon[1]” ,
BH.cvar.ph:”Phi[1]”
BH.cvar.phd:”Phi[—1]”" |,

BH.cvar .H:” Higgs []”

def partToMathMap (p,quarkmap={}):

99 9 999 9

Convert a BlackHat particle to its Mathematica type name
if p.is_a(BH.cvar.quark):
return 7 Quark ["+(”—1” if p.is_anti_particle() else "17)+” "+str(p.
helicity () )+” ,”+str (quarkmap. get (p. flavor () ,p. flavor ()))+"]”
else:

return _partToMathMap [p]

def partname(p,i):
7?7”” Generate a name for a particle compatible with SQM ”””
if p.mass()==0:
return str (i)

else:

return "P’+str (i)

def mcmathprint (pro,mc,inds):

9939

Convert the momentum configuration to the code to declare the

RIE]

corresponding SGM momenta
="
for p,i in zip(pro.particle_.IDs(),inds):

if p.mass()==0:

s=s+” DeclareSpinorMomentum ["+str (i)4” ,{”4casmath (mc.p(i) .E())+",

casmath (mc.p(i).X())+” ,”+casmath (mc.p(i).Y() )+’ ,”+casmath (mc.p(i).
)+ }\n”

else:

77+
Z

s=s+” DeclareLVectorMomentum [P’+str (i )+ ,{"+casmath(mc.p(i).E() )+,

7+casmath (me.p(i).X() )+’ ,”+casmath (mc.p(i).Y())+" ,”+casmath (mc.p(i
Z())+" H\n”

return s

def generate_label_maps (pro):
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9939

Generate a pair of maps containing information needed to map cuts

299

from BlackHat to their Mathematica names

ordered_label_map={}

unordered_label_map={}

i=0

j=0

for k in range(len(pro)):

if pro[k].get_ordered () = O0:
=it
ordered_label_map [k+1]=]
else:
i=i+1

unordered_label_map [k+1]=i

return ordered_label_map , unordered_label_map

def get_label_indexes ((ordered_map ,unordered_map)):

RRIRL]

Generate lists containing the indexes of the ordered and unordered

99

particles in the BlackHat process

ordered_indexes=[—1]*xlen (ordered_map)

unordered_indexes=[—1]xlen (unordered_map)

for k,v in ordered_map.items():

ordered_indexes [v—1]=k

for k,v in unordered_map.items():

unordered_indexes [v—1]=k

return ordered_-indexes ,unordered_-indexes

def calculate_raw_code (c,(ordered_map ,unordered_map)):

777 Calculate the split code from a BlackHat cut, in a form that

[RIE]

matches the Mathematica implementation

cut_-labels =[]

unordered_labels=[—1]*len (unordered_map)

skipped = 0

for i in range(c.nbr_props()):

155

corner = [c.corner_ind (i+1,j+1) for j in range(c.corner_size (i+1))]
for ind in [ind for ind in corner if ind in unordered_map]:
unordered_labels [unordered_map [ind]—1]=i+1
corner .remove (ind)
if len(corner) = 0:
skipped = skipped+1
else:
cut-labels.extend ([ordered_-map [corner [0]]]* ( skipped+1))

skipped=0
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cut_labels.extend ([ cut_labels [0]]« skipped)

shifted = 0;
target = min(cut_labels)
while cut_labels[0] != target or cut_labels[—1] = target:

shifted = shifted+1
cut-labels.append(cut_labels.pop(0))
if shifted != 0:

unordered_labels = [((i+len(cut_labels)—shifted —1) % len(cut_labels)

) + 1 for i in unordered_labels]

return cut_labels ,unordered_labels ,shifted

def calculate_mycode (¢, maps):
777 Calculate the split code as a string from a BlackHat cut, in a

RRIE]

form that matches the Mathematica implementation

cut-labels ,unordered_labels ,shifted=calculate_raw_code (c,maps)
cuts = 77 . join(str(el) for el in cut_labels)
if len(unordered_labels) != 0:

cuts += "—"477 . join (str(el) for el in unordered_labels)

return cuts,shifted

def calculate_mathsplit (cut,maps):

99 9 99 9

Calculate the Mathematica code for the label for a split

cut-labels ,unordered_labels ,shifted=calculate_raw_code (cut ,maps)

return 7 {{"+”,” .join (str(s) for s in cut_labels)+”},{”"+”,”.join(str(s)

for s in unordered_labels)+”}}” ,shifted

5 def sortedcuts(cutfunction ,cutcount ,maps):

9939

Sort the cuts into a consistent order.

Returns a list of tuples containing the BlackHat index of the cut and

the cut itself

cuts=[(i+1,cutfunction(i+1)) for i in range(cutcount)]

def key((i,cut)):
return (calculate_mycode (cut ,maps) ,)+tuple(cut.l(i+1).conjugate ()
for i in range(cut.size()))

cuts.sort (key=key)

return cuts

def getprops(cut,n,shift):
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9939

Return the propagators for a cut in the order

[IRIE]

Mathematica implementation

needed for the

return tuple(p.p(p.n()) for p in (cut.get_process ((i+shift —1)%n+1) for

i in range(n)))

# Dictionaries to map colour structures to strings and back

colourstructToBH={

7 glue” :BH. glue ,
”nf” :BH. nf ,

"LT” :BH.LT,

"RT” :BH.RT,
"LLT” :BH.LLT,
"LRT” :BH.LRT,
"RLT” :BH.RLT,
"RRT” :BH.RRT}

colourstructureFromBH={v:k for k,v in colourstructToBH.iteritems ()}

# Dictionary to map colour structures to the Mathematica code for them

colourstructureBHtoMath={
BH. glue:”{}”,
BH. nf:” {Quark[1l,—1]}",

BH.LT:” {Quark[—1,1]}”,

BH.RT:” {Quark[1,1]}”,

BH.LLT:” {Quark[—1,1],Quark[—1,2]}",

BH.LRT:” {Quark[—1,1],Quark[1,2]}”,

BH.RLT:” {Quark [1,1],Quark[—1,2]}”,

BH.RRT:” {Quark [1,1],Quark[1,2]}"}

Listing B.9: TreeTests.py

#!/usr/bin/python

import BHtools as BHT

import BH

from BHMathlink import x*

import sys

import os

import random

random . seed ()

from itertools import combinations

import numpy as np
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13 def calctest (pro,mc,inds):

14 ep=BH. ep (mc, inds)

15 A=BH.TreeHelAmpl (pro)

16 return A.eval(ep)

17 def mathcode(pro,mc,inds,val):

18 s=mcmathprint (pro ,mc, inds)

19 s=s+"\n”

20 s=s+”’ TestEqual [HelAmpIN [{"+” ,” . join (partname(p,i) for p,i in zip(pro.
particle_IDs () ,inds))+"},{"+”,” . join (partToMathMap(p) for p in pro.
particle_-IDs () )+” }]|,”+casmath(val)+” 1%~ —9]\n”

21 return s

22 def runtest(pro):

23 mc, inds=genmc(pro)

24 val=calctest (pro,mc, inds)

25 return mathcode(pro,mc, inds , val)

27 def allcombs(1):
28 for i in range(0,len(1)+1):
20 for ¢ in combinations(1l,1):

30 yield ¢

32 def shuffle (els,counts):

33 if sum(counts)==0:
34 yield ()
35 else:

36 for i in range(len(els)):

37 counts [i]—=1
38 for s in shuffle (els,counts):
39 yield (el[i],)+s

10 counts [ i]+=1

12 def noshuffle(els,counts):

13 return [tuple(e for e,c in zip(els,counts) for i in range(c))]

15 shuffle=noshuffle

17 def rungluetests () :
as s=""

19 for n in range(4,10):

50 for nneg in range(n+1):

51 for shuf in shuffle (("p”,”m”) ,(n—nneg,nneg)):

52 s=st+runtest (BHT. stringToProcess(” ”.join (shuf)))+’\n\n”
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return s

def runphigluetests ():
="
for n in range(4,10):
for nneg in range(n+1):
for shuf in shuffle (("p”,”m”) ,(n—nneg,nneg)):
s=s+runtest (BHT. stringToProcess (”"ph "+” 7 .join (shuf)))+’\n\n”

return s

; def quarkoptions(nquarks,i=0):

if nquarks==0:
yield []
else:
qo=[("qp” ,”gbm”) ,("qm” ,”qbp”) ,(”qbp” ,”qm”) ,(”gbm” ,”qp” ) ]
for option in quarkoptions(nquarks—1,i+1):
for o in qo:

yield [tuple(q[:—1]+str(i)+q[—1] for q in o)]4+option

def insertquarks (others ,quarks):
others=tuple(others)
if len(quarks)==0:
yield others
else:
for i in range(len(others)+1):
for rest in insertquarks(others[i:],quarks[1:]):

yield others [:i]+quarks[0]+rest

def pad(it,el):
for e in it:
yield e
while True:

yield el

def grouper(l,n):
for i in range(0,len(1),n):

yield 1[i:i4n]

def insertquarksone(others ,quarks):
others=tuple(others)
per=max(len (others)/len(quarks) ,1)

l=[e for o,q in zip(pad(grouper(others,per),()),quarks) for e in qg+o]

159 August 22, 2017



96

98

99

100

101

106

107

108

109

110

Next to Leading Order Calculations for Higgs Boson + Jets Simon Armstrong

return [tuple(l)+others[len(1):]]

insertquarks=insertquarksone

def runquarkgluetests():
Iy
for N in range(4,10):
for nneg in range(N—-2,—-1,—1):
for nquarks in range(l,min((N-nneg)/2,3)+1):
n=N—nquarks*2
for quarks in quarkoptions(nquarks):
for shuf in shuffle (("p”,”’m”) ,(n—nneg,nneg)):
for withq in insertquarks(shuf,quarks):
print withq;
s=s+runtest (BHT. stringToProcess(” ”.join (withq)))+”\n\n”

return s

> def runphiquarkgluetests():

_»”

s
for N in range(4,10):
for nneg in range(N-2,—-1,—1):
for nquarks in range(l,min((N-nneg)/2,3)+1):
n=N—nquarks*2
for quarks in quarkoptions(nquarks):
for shuf in shuffle ((”p”,”m”) ,(n—nneg,nneg)):
for withq in insertquarks (shuf, quarks):

print withq;

s=s+runtest (BHT. stringToProcess (”ph "+’ 7 .join (withq)))+"\

n\n”

return s

def mainglue():

from subprocess import Popen,PIPE

p = Popen([”math8” ,”—noprompt” ], cwd=os.path.dirname (os.path.realpat
__file__)), stdin=PIPE)
pipe = p.stdin

pipe.write (” SetOptions|[#,FormatType—>OutputForm]&/@Streams []\ n”)
pipe. write (7 <<\”Common. txt\”\n”)

pipe. write (" <<\"HelAmpIN. txt\”\n”)

pipe.write (7<<\"Test. txt\”\n")
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pipe

pipe
pipe

pipe

.write(rungluetests())

.write (" ShowFailedTests [|\n")
.write (" Exit []”)

.close ()

p.wait ()

def mainphiglue () :

from subprocess import Popen, PIPE

p = Popen ([”math8” ,”—noprompt”], cwd=os.path.dirname(os.path.realpath(

__file__)), stdin=PIPE)

pipe

pipe.

pipe.
pipe.

pipe.

pipe.

pipe.

pipe.

pipe.

= p.stdin

write (” SetOptions|[#,FormatType—>OutputForm]&/@Streams ]\ n”)

write (7 <<\”Common. txt\”\n”)
write (7<<\"HelAmpIN . txt\”\n”)

write ("<<\"Test.txt\”\n”)

write (runphigluetests ())

write (" ShowFailedTests [|\n")

write (" Exit []”)

close ()

p.wait ()

def mainquarkglue () :

from subprocess import Popen,PIPE

p = Popen([”math8” ,”—noprompt”], cwd=os.path.dirname(os.path.realpath(

__file__)), stdin=PIPE)

pipe

pipe.

pipe.

pipe.

pipe.

pipe.

pipe

161

= p.stdin

write (” SetOptions|[#,FormatType—>OutputForm]&/@Streams []\ n”)
write (7 <<\”Common. txt\”\n”)
write (7<<\”"HelAmpIN. txt\”\n”)

write ("<<\"Test.txt\”\n”)

write (runquarkgluetests ())

.write(”ShowFailedTests []\n”)
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pipe

pipe

.write (" Exit []”)

.close ()

p.wait ()

170 def mainphiquarkglue () :
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10

1

=

from subprocess import Popen,PIPE

from BHMathlink import =

from collections import defaultdict

from subprocess import Popen, PIPE

BH. use_setting ("USEXNOWNFORMULAE no”)

print

71*)77
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p = Popen([”math8” ,”—noprompt”], cwd=os.path.dirname(os.path.realpath(
__file__)), stdin=PIPE)
pipe = p.stdin
pipe.write (” SetOptions|[#,FormatType—>OutputForm]&/@Streams []\ n”)
pipe.write (7<<\”Common. txt\”\n”)
pipe. write (”"<<\"HelAmpIN. txt\”\n”)
pipe. write ("<<\"Test.txt\”\n")
pipe.write(runphiquarkgluetests ())
pipe.write (”ShowFailedTests []\n”)
pipe.write (" Exit []”)
pipe.close ()
p.wait ()
if __name__=="__main__":
import sys
name=sys.argv [1] if len(sys.argv)>=2 else ”7glue”
globals () [”main”+name] ()
Listing B.10: OneLoopTests.py
#!/usr/bin/python
print 7 (x”
import sys
import os.path
import BHtools as BHT
; import BH
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def getprocesses(cut,n):

return [cut.get_process(i+1) for i in range(n)]

7 def collectcuts (cuts,ncuts,n,maps):
splits=defaultdict (dict)
for i in range(ncuts):
cut=cuts (i+1)
split ,shifted = calculate_mathsplit (cut ,maps)
splits [split][getprops(cut,n,shifted)]=(makequarkmap (cut,n),cut)

return splits

def run(PRO, mode=BH. glue ,doprint=True, mathtestcode=True, plotgraph=False ,
outfile=sys.stdout):

mc, inds=genmc (PRO)

ep=BH. ep (mc, inds)

print 7 (x”#make the next few lines output be treated by mathematica as

a comment

A=BH. TreeHelAmpl (PRO)

tree=A.eval(ep)

if doprint:
print PRO

print tree

AA=BH. One_Loop_-Helicity_Amplitude (PRO, mode)

cc=AA. cut_part ()

cp=cc . makeDarrenCutPart ()

if cp=—None:
cp=cc . makeHiggsCutPart ()

if cp=—=None:
print ”"can’t convert cut part to known type”
return

print cp

print 7 Generating Maps: ”+str (PRO)
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print len (PRO)

maps = generate_label_maps (PRO)

print maps

if doprint:
for (i,c) in sortedcuts(cp.bubble,cp.nbr_bubbles () ,maps):
res=c.eval(ep)
print ”Bubble {i:{pad}} code {code}/{mycode} [ {processes[0]} |
{processes [1]} ]|: {res.real:< 16.10g}{res.imag:<+16.10g}i | {norm.
real:< 16.10g}{norm.imag:<+16.10g}i” .format (i=i ,pad=len(str (cp.
nbr_bubbles ())) ,code=c.get_code () ,mycode=calculate_mycode (c,maps)

[0] ,processes=getprocesses (c,2) ,res=res ,norm=res/tree)

for (i,c) in sortedcuts(cp.triangle ,cp.nbr_triangles () ,maps):
res=c.eval(ep)
print " Triangle {i:{pad}} code {code}/{mycode} [ {processes[0]}
| {processes[1]} | {processes[2]} ]: {res.real:< 16.10g}{res.imag
:<+16.10g}i | {norm.real:< 16.10g}{norm.imag:<+16.10g}i” .format (i=i,
pad=len(str(cp.nbr_triangles ())),code=c.get_code () ,mycode=
calculate_mycode (c,maps) [0] , processes=getprocesses(c,3) ,res=res ,norm

=res/tree)

for (i,c) in sortedcuts (cp.box,cp.nbr_boxes () ,maps):

res=c.eval(ep)

print "Box {i:{pad}} code {code}/{mycode} [ {processes[0]} | {
processes [1]} | {processes[2]} | {processes[3]} |: {res.real:< 16.10
gt{res.imag:<+16.10g}i | {norm.real:< 16.10g}{norm.imag:<+16.10g}i”.
format (i=i ,pad=len(str (cp.nbr_boxes())),code=c.get_code () ,mycode=
calculate_mycode (c,maps) [0] , processes=getprocesses (c,4) ,res=res ,norm

=res/tree)

print 7 x)”

if mathtestcode:
try:
if mode=BH. nf:
sign=—1

else:
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165

sign=1

s=mcmathprint (PRO, mc, inds )+"\n”

ordered_indexes ,unordered_indexes=get_label_indexes (maps)

s+="process=DeclareProcess [{{”4+”,” . join (partToMathMap (PRO[i —1])
for i in unordered_indexes)+’},{"+”,”.join (partToMathMap (PRO[i —1])
for i in ordered_indexes)+”}}, "+colourstructureBHtoMath [mode]+” |\ n”

s+="momconf=DeclareMomConf[{{”4” ,” . join (partname (PRO[i —1],inds [i
—1]) for i in unordered_indexes)+”},{”4+”,”.join (partname (PRO[i —1],
inds[i—1]) for i in ordered_indexes)+”}}]\n”

s+="\n"

s+=" CompareRules [\” TREE\” , Abs [ HelAmpIN [ MomConf[ momconf] , Process |
process |]] ,”+dasmath (abs(tree))+”]\n”

s+="HelAmpIN [MomConf [ momconf]| , Process [ process ||/ ("+casmath(tree )+’
)\n\n”

if not doprint:
# force the cuts to evaluate themselves (only first copy is
apparently needed)
for (i,c) in sortedcuts(cp.bubble,cp.nbr_bubbles () ,maps):
res=c.eval(ep)
for (i,c) in sortedcuts(cp.triangle ,cp.nbr_triangles () ,maps):

res=c.eval(ep)

splits=collectcuts (cp.box,cp.nbr_boxes () ,4,maps)

s+="bh={"+",” . join (split+"—>{"+" ,” . join (" {"+", 7 .join (
partToMathMap (p, quarkmap) for p in prop)+’}—>"+casmath(signxcut.eval
(ep)/tree) for prop,(quarkmap,cut) in els.iteritems())+”}\n” for
split ,els in splits.iteritems())+”};\n”

s+=" CompareRules [{}, GenerateMathRules [ process ,momconf,4] ,bh]\n”

splits=collectcuts (cp.triangle ,cp.nbr_triangles () ,3,maps)

s+="bh={"+",” . join (split+’—>{"+" ,” . join (" {"+”, 7 .join (
partToMathMap (p, quarkmap) for p in prop)+’}—>"+casmath(signxcut.eval
(ep)/tree) for prop,(quarkmap,cut) in els.iteritems())+”}\n” for
split ,els in splits.iteritems())+” };\n”

s+=" CompareRules [{}, GenerateMathRules [ process ,momconf,3] ,bh]\n”

splits=collectcuts (cp.bubble,cp.nbr_bubbles () ,2,maps)
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109 s+="bh={"+",” . join (split+"—>{"+" ,” . join (" {"+", 7 .join (
partToMathMap (p, quarkmap) for p in prop)+’}—>"+casmath(signxcut.eval
(ep)/tree) for prop,(quarkmap,cut) in els.iteritems())+”}\n” for

split ,els in splits.iteritems ())+"};\n”

110 s+=" CompareRules [{}, GenerateMathRules [ process ,momconf, 2] ,bh]\n”
111

112

113 except Exception as ex:

114 print ” (x ERROR x*)”

115 print s

116 raise

117

118 print 7 \n\n(sssss %% «MATH CODEs %% %%+ ) \n\n”

119 if not (outfile==sys.stdout or outfile==sys.stderr):
120 print s;

121 print >>outfile ,s,”\n\n”

122 print 7 (s« END MATH CODEs s s o sk k% ) \n”

124 if plotgraph:

125 path="tree_structure —'+str (PRO)+’— 4colourstructureFromBH [mode]
126

127 import os

128 os.system ( 'mkdir —p \"%s\’’ % path)

129 BH. print_cut_part_graph (cp, path)

130 os.system (’cd \"%s\’ ; make all > /dev/null’ % path)

132 return A /AA cp

131 class MathStream (object) :

135 def __init__(self):

136 self .p=None
137 def connect(self):
138 if self.p=—None:

139 self .p = Popen ([”math8” ,”—noprompt”], cwd=os.path.dirname(os.path.
realpath(-_file__)), stdin=PIPE)

140 self.p.stdin.write(” SetOptions[#,FormatType—>OutputForm]&/@Streams
[\n")

141 self.p.stdin.write (”<<\”Common. txt\”\n”)

142 self.p.stdin.write (”<<\”HelAmpIN. txt\”\n")

143 self.p.stdin.write (”<<\”Loop—Cuts. txt\”\n”)

144 self.p.stdin.write (”"<<\”Rules.txt\”\n”)

145 def write(self ,st):
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if self.p==None:

self.connect ()

self.p.stdin.write(st)

def close(self):

if self.p!=None:

self.p.stdin.close ()

self .p.wait ()

self.p=None

def parseargs(args ,mathstream):

if len(args) = 0:

Next to Leading Order Calculations for Higgs Boson + Jets

print ” Script to run tests of the BlackHat and Mathematica

implementations of one loop cut amplitudes.”

print

print 7 Arguments are:

”

print ”Valid options are

)

output to the console”

”

print

([OPTIONS] PROCESS|’!’ COLOURSTRUCTURE|’x ")

——[no] print’ to turn on/off printing

’——[no] mathtestcode’ to turn on/off

generating Mathematica code”

”

print

the graph of cuts

”

print

’——[no] plotgraph’ to turn on/off generating

contributing to the amplitude.”

'——out’ FILE to specify where the

Mathematia code should be written to.”

”

print

stdout’

or

FILE can be one of the special values

)

‘stderr It can also be ’/math/’ to

)

request that the

Mathematica code be sent directly to a command line instance of

Mathematica”

files={"stdout” : sys.stdout ,” stderr” : sys.stderr ,” /math/” : mathstream}

currentoptions={"doprint”: True,” mathtestcode” : True,” plotgraph” : False ,

outfile” :sys.stdout}

longoptions={"print”:{”doprint” :True},

"noprint”:{” doprint” : False},

”

"mathtestcode”: {”mathtestcode” : True},

"nomathtestcode” : {” mathtestcode” : False },

"plotgraph”: {”plotgraph”:True},

"noplotgraph” :{” plotgraph”: False}}

shortoptions={"t”:{”mathtestcode” : True},

167

False},

"n” :{”mathtestcode” : False },

"T” :{”doprint” : False ,” mathtestcode”

:True,” plotgraph”:
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"p”:{”doprint”: True},
7q”:{”doprint” : False },
7g” {7 plotgraph” : True}}
changesincelast=False
torun =[]
args=list (args)
while args:
arg=args .pop (0)
if arg[0]=="-":
if arg[l]=="-"":
if arg[2:]=="out”:
fname=args . pop (0) ;
if fname not in files:
try:
files [fname]=open (fname ,”w”
except IOExpetion as ex:
print ex
if fname in files:
currentoptions [ outfile”]=files [fname]
else:
currentoptions.update(longoptions[arg[2:]])
else:
for a in arg[1:]:
currentoptions.update(shortoptions[a])
changesincelast=True
else:
if arg!l="1":
PRO=BHT. stringToProcess (arg)
arg=args.pop(0)
if arg!="x%":
mode=colourstructToBH [arg |
torun . append (((PRO,mode) ,dict (currentoptions)))
changesincelast=False

if changesincelast:

Simon Armstrong

print 7 (x WARNING: Trailing options what will be ignored x*)”

if len(torun)==0:
print 7 (x ERROR: Nothing to run *)”

return torun
def main(args):

mathstream=MathStream ()

for a,kwa in parseargs(args,mathstream):
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run (*a,*xkwa)

mathstream . close ()

import sys

main (sys.argv[1l:])

Listing B.11: DrawCuts.txt

LaTeXValToSign[1] := 747

LaTeXValToSign[—1] := "—

MakeLaTeXName [ Gluon [h_], name_] :=

7g_{” <> ToString[name] <> ”}"” <> LaTeXValToSign[h]

MakeLaTeXName [Phi[1], name_] := ”7\\phi_-{” <> ToString[name| <> ”}”

MakeLaTeXName [ Phi[—1], name_.] :=

"\\bar\\ phi_{” <> ToString[name] <> 7}”

MakeLaTeXName [ Quark [1, h_, f_], name_] :=

7q-{” <> ToString[f] <> 7 ,,” <> ToString[name| <> 7} <>
LaTeXValToSign[h]

MakeLaTeXName [ Quark[—1, h_, f_], name_] :=

"\\bar q_{” <> ToString[f] <> 7 ,,” <> ToString[name] <> 7}"7 <>
LaTeXValToSign [h]

MakeLaTeXName[_, name.] := "?_{” <> ToString[name] <> 7}”
5 LaTeXLineType[_Phi] := ”dashes”

LaTeXLineType[Quark[—1, -, _]] := "plain”

LaTeXLineType [Quark[1, _, _]] := 7fermion”

LaTeXLineType[_-Gluon] := ”gluon”

LaTeXLineType[-] := ”dots”

ReverseLine [Quark[—1, -, _]] := True;

ReverseLine [_] := False;

3 MakeFeynMFSide [0] = 77

MakeFeynMFSide [ x_?Positive] := 7 left=" <> ToString[x];
MakeFeynMFSide [ x_?Negative] := 7, left=" <> ToString[x];
MakeFeynMFLine[vl_, v2_, prop-, options_: 77,  side_: 0] :=

MakeFeynMFLine [v2, vl, ReverseParticle[prop], options, —side] /;
ReverseLine [prop]

MakeFeynMFLine[vl_, v2_, prop., options_: 7”7, side_: 0] :=
StringJoin [”\\fmf{”, LaTeXLineType[prop], options,
MakeFeynMFSide [side], "}{”, v1, 7.7, v2, ”}”]

; MakeFeynMFLabels[i., vl_, v2_, prop_] :=

MakeFeynMFLabels[i, v2, vl, ReverseParticle [prop], "right”] /;

ReverseLine [prop]
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36 MakeFeynMFLabels[i-, vl_, v2_, prop., side_: "left”] :=
37 Module[{ path = StringJoin [’ vpath” ,ToString[i],” (--", vl, 7,__.7, v2, 7)”
:|} b

35 Sow|[StringJoin[”\\ fmfi{phantom, label=${",

39 MakeLaTeXName [ ReverseParticle [prop], 71”7 <> ToString[i]],

10 71$,label.side=", side, ”}{subpath (0.6 length(”, path,

11 7),0.8 length(”, path, 7)) of 7, path, "}”7]];

122 Sow|[StringJoin [”\\ fmfi{phantom, label=${",

43 MakeLaTeXName [prop, 17 <> ToString[i]], ”"}$,label.side=", side,
14 ?}{subpath (0.2 length(”, path, 7),0.4 length(”, path, 7)) of 7,

45 path, 7}7]]]

17 MakeFeynMF [ process_, momconf_, split_, props_] :=

s StringJoin |

49 Riffle [Reap|

50 Module[{vname, cornernames, cornertypes},

51 cornernames = SplitCorners [MomConf|[momconf], split];
52 cornertypes = SplitCorners[Process|[process], split];

53 Sow|[StringJoin[”\\ fmfsurround{”,

54 Riffle [ToString /@ Range[Length|[Flatten|[cornernames]|]|] //

55 Reverse, 7.,7], 7}71];

56 Table [vname [Flatten [cornernames | [[i]]] = ToString[i];

57 Sow [StringJoin [”\\fmfv{label=${",

58 MakeLaTeXName [ Flatten [ cornertypes |[[1]],

59 Flatten [cornernames | [[i]]], 7}$}{”, ToString[i], 7}”]], {i,

60 Length[Flatten [cornernames |]}];

61 Table [ Table [

62 Sow [ MakeFeynMFLine [”v” <> ToString[i],

63 vname [ Flatten [cornernames [[i]]][[j]]],

64 Flatten [cornertypes [[i]]][[]j]], 77, O]], {i,

65 Length[Flatten [cornertypes [[i]]]]}];

66 Sow [ MakeFeynMFLine [

67 7v” <> ToString[Mod[i — 2, Length[split [[1]]]] + 1],

68 7v? <> ToString[i], props[[i]], ”,tension=0.4,tag="<>ToString]|1i
I

69 If [Length[split [[1]]] = 2, 0.6, 0]]], {i,

70 Length[split [[1]]]}]; Sow[”\\fmffreeze”];
7 Table [

MakeFeynMFLabels [ i ,

73 7v” <> ToString[Mod[i — 2, Length[split [[1]]]] + 1],
74 "v? <> ToString[i], props[[i]]], {i,

Length[split [[1]]]}]]][[2, 1]], "\n"]]
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77 MyRun[cmd_] :=
7s  Module[{ val = Run[cmd]},

79 If [TrueQ[val = 0], 0, Throw[{cmd, val}, Run]]]

80

s1 MakeFeyn[process_., momconf_, split_, props-] := Module[{code =7

82 \\nonstopmode

83 \\pdfminorversion=3

84 \\documentclass{letter}

85 \\usepackage [usenames]{ color} %used for font color

86 \\usepackage {amssymb} %maths

87 \\usepackage{amsmath} %maths

88 \\usepackage [utf8]{inputenc} %useful to type directly diacritic \

80 characters

90 \\usepackage{graphicx}

91 \\usepackage [outdir=./]{epstopdf}
92 \\DeclareGraphicsRule{*}{mps}{«}{}
93 \\usepackage{feynmp}

94 \\ begin{document}

95 \\thispagestyle{empty}
96 \\begin{fmffile }{mathfig}
97 \\begin{fmfgraph*}(120,120)

98 7 <> MakeFeynMF [ process , momconf, split, props] <> ”
99 \\end{fmfgraphx}

100 \\end{fmffile}

101 \\end{document}”, dir = CreateDirectory[], img},

102 SetDirectory [dir |; Export[dir <> 7 /math.tex”, code, ”Text”];
103 Catch [MyRun[” pdflatex math” |; MyRun[” mpost mathfig.mp”];

104 MyRun[” pdflatex math” ]; MyRun[” pdflatex math”];

105 MyRun|[” pdfcrop —margin 10 math math—crop.pdf”];
106 img = Import|[dir <> ”/math—crop.pdf”, ImageSize —> 1000][[1]];
107 ResetDirectory [|; DeleteDirectory[dir, DeleteContents —> True];

108 Show|[img, ImageSize —> 300],
109 Run, (ResetDirectory [];
110 Print [Row[{” Error: 7, #1, 7 for 7, dir}]]) &]]

112 GetFeyn[process., momconf_, split_, props_]| :=
113 Module[{ val = MakeFeyn|[process, momconf, split, props]},
114 If [TrueQ[val [[0]] == Graphics],

115 GetFeyn|[process, momconf, split, props] = val, val]]

117 GenerateAllDiagrams [proc_, momconf_, n_, f_: (Grid[#1] —> #3 &)] :=
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Function[split ,

f[split , #, GetFeyn[proc, momconf, split, #]] & /@

RemovelgnorableOptions [proc

SplitPropOptions [proc, split]]]

Flatten

ForAllDiagrams [proc_, momconf_,
Function[split ,
f[split, #] & /@

RemovelgnorableOptions [proc

SplitPropOptions [proc, split]]]

Flatten

, split ,

/@ SplitOptions [proc, n] //

n_, f_: (#1 —> #2 &)] :=

, split

CalculateDiagramDependancies [proc., momconf_, n_]

ForAllDiagrams [ proc, momconf, n,

Function [{ split , props},
Function [

newSplit , ({SplitName|[split

, newSplit], #} —> {split,

/@ SplitOptions [proc, n] //

RemovelgnorableOptions [proc, SplitName|[split, newSplit],

SplitPropOptions [proc, split, props, newSplit]]] /@

SplitOptions [proc, split]]]

ShowDependancyGraph [ proc_, momconf_] :=

Module[{ FMFVertexShapeFunction},

FMFVertexShapeFunction [pos_, {split_, props_},

Inset [GetFeyn[proc, momconf,

size., args___| :=

split , props], pos, {0, 0}, size];

Graph [{ CalculateDiagramDependancies [proc, momconf, 2],

CalculateDiagramDependancies [ proc, momconf,

VertexShapeFunction —> FMFVertexShapeFunction,

3]} // Flatten,

VertexSize —> 1.5,

DirectedEdges —> False, GraphLayout —> ”SpringEmbedding” |]

GenerateDependancyGraphDot [procP_, momconfP_, name_: ”graph”] :=
Module[{ ToN$Value = 0, ToN$Values = {}, ToN, dir = CreateDirectory (],
spec, graph}, ToN[1l_.] := (ToN$Value = ToN$Value + 1;
ToN$Values = Union|[Append [ ToN$Values, 1]];
ToN[1] = ToString[ToN$Value]) ;
spec = StringJoin|
Riffle [{”digraph{”, "node[label=\"\",shape=none]|”,
ToN [#[[1]]] <> "—>" <> ToN|[#][[2]]] < 7" & /@

CalculateDiagramDependancies [ procP, momconfP, 2],

ToN[#[[1]]] <> "—>" <> ToN[#][[2]]] <> 7" & /@

CalculateDiagramDependancies [ procP, momconfP, 3],

StringJoin[” {rank=same;” ,

August 22, 2017

Riffle[#, ”:”],

1] & /e

Simon Armstrong

props}) & /@

172



Simon Armstrong Next to Leading Order Calculations for Higgs Boson + Jets

Map[ ToString [#[[1]]] &,
161 GatherBy |

162 SortBy [{ToN[#], Length[#[[1, 1]]]} & /@ ToN$Values, Last],
163 Last], {2}],

164 ToN[#] <> ” [image=\"" <>

165 Export [dir <> 7 /7 <> ToN[#] <> 7 .eps”,

166 GetFeyn [procP, momconfP, #[[1]], #I[[2]]]] < "\”];” & /@
167 ToN$Values, ”}”} // Flatten, ”"\n”]];

168 graph = Export[dir <> ”/graph.txt”, spec];

169 Catch [MyRun [

170 7dot —Tps < ” <> graph <> 7 > 7 <> dir <> ”/graph.eps”|;

171 MyRun[” eps2eps 7 <> dir <> 7/graph.eps 7 <> dir <> 7 /graph2.eps”];
172 MyRun[” ps2pdf —dEPSCrop ” <> dir <> 7 /graph2.eps 7 <> name <>

173 7 .pdf” ]; DeleteDirectory[dir , DeleteContents —> True]; ,

174 Run, Print[Row[{” Error: 7, #1, ” for 7, dir}]] &]]
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Appendix C

6 Dimensional Spinor Helicity

Implementation

The code created as part of this project can also be downloaded from http://bit.

ly/20XSBSu.

Listing C.1: 6DSpinorHelicity.txt

(x Declare the dimension of vectors to enable extra simplifications *)

Dimension[p-] := None;
; DeclareVectorDimension[p-, d_-?EvenQ] := Dimension[p] = d;
UndeclareVectorDimension [p-] := Dimension[p] =.;

i (* TraditionalForm and/or StandardForm representations for the wvarious

objects *)
SetAttributes [DoWith, HoldAll]

DoWith[s-, v_, e_] := Module[{tmp}, s = v; tmp = e; s =.; tmp]

MakeBoxes|[spinor [p-, hs__], f : TraditionalForm | StandardForm] ":=
MakeBoxes| Subscript [u, hs][p], f]
MakeBoxes|[spinorbar [p-, hs__], f : TraditionalForm | StandardForm] ":=
MakeBoxes|[ Subscript [UnderBar [u], hs][p], f]

Subscript [u, hs__][p-] := spinor[p, hs]

5 Subscript [UnderBar[u], hs__][p-] := spinorbar[p, hs]
; AngleBracket = Sp;
: MakeBoxes[Sp[a___], f : TraditionalForm] ":=

MakeBoxes [ AngleBracket [a], f]
MplIndexSymbollndex = 0;
MakeBoxes [Mp[(ma : Mom | MomM) [a_-], (mb : Mom | MomM) [b_]],
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f : TraditionalForm|] ":=
RowBox|[{ SubscriptBox [ If [TrueQ[ma =— Mom], "p”, "P”],
MakeBoxes[a, f]], 7 \[CenterDot]|”,
SubscriptBox [ If [TrueQ[mb = Mom], ”p”, "P”], MakeBoxes|b, f]]}]

5 MakeBoxes[Mp[a_, b_], f : TraditionalForm] ":=

RowBox [ { Block [{ MpIndexSymbol = MakeBoxes|[\ [Mu], f],
MpIndexUp = True}, MakeBoxes[a, f]], ”\[CenterDot]”,
Block [{ MpIndexSymbol = MakeBoxes [\ [Mu], f], MplndexUp = False},
MakeBoxes[b, f]]}]
MakeBoxes [\ [Gammma] , f : TraditionalForm] :=
SubscriptBox [” \ [Gamma]” , MplIndexSymbol] /; ! MpIndexUp

> MakeBoxes [\ [Gamma] , f : TraditionalForm] :=

SuperscriptBox [” \ [Gamma]” , MpIndexSymbol] /; MplndexUp
MakeBoxes [\ [Sigma][1], f : TraditionalForm]| :=
SubscriptBox [” \ [Sigma|”, MplndexSymbol] /; ! MplndexUp
MakeBoxes [\ [Sigma][1] , f : TraditionalForm| :=
SuperscriptBox [” \ [Sigma]”, MpIndexSymbol] /; MplndexUp
MakeBoxes [\ [ Sigma][—1], f : TraditionalForm] :=
SubscriptBox [OverscriptBox [” \ [Sigma]”, ”7”], MplndexSymbol] /; !
MplIndexUp
MakeBoxes [\ [ Sigma][—1], f : TraditionalForm] :=

SuperscriptBox [OverscriptBox [” \ [Sigma]”, ”7”], MplndexSymbol] /;
MplIndexUp
MakeBoxes|[Mom[i_-], f : TraditionalForm] :=

SubscriptBox [”p” , RowBox[{MakeBoxes[i, f], MplndexSymbol}]] /; !
MplIndexUp
MakeBoxes [Mom[i-], f : TraditionalForm] :=

SubsuperscriptBox ["p”, MakeBoxes[i, f], MplndexSymbol] /; MplndexUp

MakeBoxes [MomM[i_], f : TraditionalForm] :=
SubscriptBox [”P” , RowBox[{MakeBoxes[i, f], MpIndexSymbol}]] /; !
MplIndexUp
MakeBoxes[MomM[i_], f : TraditionalForm] :=

SubsuperscriptBox [P’ , MakeBoxes[i, f], MplndexSymbol] /; MplndexUp

MakeBoxes [Mp[a_, b_, i-], f : TraditionalForm] ":=
RowBox[{ DoWith [ MpIndexUp$$[i], True, MakeBoxes[a, f]],

DoWith [MpIndexUp$$[i], False, MakeBoxes[b, f]]}]
MakeBoxes [\ [Gammma] [i-], f : TraditionalForm

]
SubscriptBox [” \ [Gamma]” , MakeBoxes[i, f]] /; ! MplndexUp$$[i]
MakeBoxes [\ [Gamma] [i_], f : TraditionalForm]

SuperscriptBox [” \ [Gamma]” , MakeBoxes[i, f]]
MakeBoxes [\ [Sigma | [1][i-], f : TraditionalForm] :=

SubscriptBox [” \[Sigma]” , MakeBoxes[i, f]] /; ! MplndexUp$$[i]
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MakeBoxes [\ [Sigma ] [1][i-], f : TraditionalForm] :=

SuperscriptBox [” \ [Sigma]”, MakeBoxes[i, f]]

5 MakeBoxes [\ [Sigma][—1][i-], f : TraditionalForm] :=

SubscriptBox [OverscriptBox [” \ [Sigma]”, 77”], MakeBoxes[i, f]] /; !
MpIndexUp$$[i]

s MakeBoxes [\ [Sigma][—1][i-], f : TraditionalForm] :=
SuperscriptBox [OverscriptBox [” \ [Sigma]”, 777], MakeBoxes[i, f]]
MakeBoxes [Mom[p_][i-], f : TraditionalForm]| :=

SubscriptBox [”p” , RowBox[{MakeBoxes[p, f], MakeBoxes[i, f]}]] /; !
MpIndexUp$$[i]

3 MakeBoxes [Mom[p_][i-], f : TraditionalForm] :=

SubsuperscriptBox [”p” , MakeBoxes[p, f], MakeBoxes[i, f]]
MakeBoxes| Metric[i-, j-], f : TraditionalForm] :=
SuperscriptBox [”g” , RowBox[{MakeBoxes[i, f], MakeBoxes[j, f]}]]
MakeBoxes [ Metric[i-, j-], f : TraditionalForm] :=
SubscriptBox [”g”
RowBox|{ MakeBoxes[i, f], MakeBoxes[j, f]}]] /; !
MpIndexUp$$[i] && ! MplndexUp$$|[j]
MakeBoxes [ Metric[i-, j-], f : TraditionalForm] :=
SubscriptBox [ SuperscriptBox [”g” , MakeBoxes[i, f]],
MakeBoxes[j, f]] /; ! MplndexUp$$[j]
MakeBoxes | Metric [i-, j-], f : TraditionalForm] :=
SuperscriptBox [SubscriptBox [”g” , MakeBoxes[i, f]],
MakeBoxes[j, f]] /; ! MplndexUp$$[i]
MakeBoxes [ CalculatedP [mom_], f : TraditionalForm]| :=
RowBox|[{ SubscriptBox ["p”, "calc”], 7[”, MakeBoxes|[mom, f], 7]”}]
MakeBoxes [Mom[i-], f : TraditionalForm] :=
SubscriptBox [”p” , MakeBoxes[i, f]]
MakeBoxes|[Mom[i-], f : TraditionalForm] :=
SubscriptBox ["p”, MakeBoxes[i, f]]

MakeBoxes|[ shift [{p-, q-}, z_, h_List, 1_List][p-],
f : TraditionalForm | StandardForm] :=
MakeBoxes [ Subsuperscript [OverHat [p] —> q, Row[h], Row[1]][z], f]
MakeBoxes [ shift [{p-, q-}, z_, h_List, 1_List][q-],
f : TraditionalForm | StandardForm] :=
MakeBoxes [ Subsuperscript [p —> OverHat[q], Row[h], Row[1]][z], f]
MakeBoxes [Mom[ shift [{p-, q-}, z-, h_List, 1_List]|[p-]],
f : TraditionalForm] :=
SubscriptBox |
MakeBoxes [

Subsuperscript [OverHat [ Subscript ["p”, p]] —> Subscript[”’p”, q],
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105 Row[h], Row[l]][z], f], MpIndexSymbol] /; ! MplndexUp

106 MakeBoxes [Mom[ shift [{p-, q-}, z-, h_List, 1_List][q-]],

107 f : TraditionalForm]| :=

10s  SubscriptBox [

109 MakeBoxes [

110 Subsuperscript [ Subscript ["p”, p] —> OverHat[Subscript[”p”, q]],
111 Row[h], Row[l]][z], f], MpIndexSymbol] /; ! MplndexUp

112 MakeBoxes [Mom[ shift [{p_, q-}, z_, h_List, I1_List][p_-]],

113 f : TraditionalForm]| :=

114 SuperscriptBox [

115 MakeBoxes |

116 Subsuperscript [OverHat [ Subscript ["p”, p]] —> Subscript[”’p”, q],
117 Row[h], Row[1]][z], f], MplndexSymbol] /; MplndexUp

115 MakeBoxes [Mom|[shift [{p-, q-}, z-, h_List, l1_List][q-]],

119 f : TraditionalForm] :=

120  SuperscriptBox |

121 MakeBoxes [

122 Subsuperscript [ Subscript ["p”, p] —> OverHat[Subscript[”p”, q]],
123 Row[h]|, Row[1]][z], f], MplndexSymbol] /; MpIndexUp

124 MakeBoxes [Mom[ shift [{p-, q-}, z_-, h_List, 1_List][p-]][i-],

125 f : TraditionalForm]| :=

126 SubscriptBox |

127 MakeBoxes |

128 Subsuperscript [OverHat [ Subscript ["p”, p]] —> Subscript[”’p”, q],
129 Row[h], Row[l]][z], f], MakeBoxes[i, f]] /; ! MplndexUp$$[i]
130 MakeBoxes [Mom|[shift [{p-, q-}, z-, h_List, l1_List][q-]][i-],

131 f : TraditionalForm] :=

132 SubscriptBox [

33 MakeBoxes [

134 Subsuperscript [ Subscript ["p”, p] —> OverHat[Subscript[”p”, q]],
135 Row[h], Row([1]][z], f], MakeBoxes[i, f]] /; ! MplndexUp$$[i]
136 MakeBoxes [Mom[ shift [{p-, q-}, z_-, h_List, 1_List][p-]][i-],

37 f : TraditionalForm]| :=

135 SuperscriptBox [

130 MakeBoxes |

140 Subsuperscript [OverHat [ Subscript [”p”, p|] —> Subscript[”"p”, q],
141 Row[h], Row[l]][z], f], MakeBoxes[i, f]]

112 MakeBoxes [Mom[ shift [{p-, q-}, z-, h_List, 1_List]|[q-]][i-],

143 f : TraditionalForm] :=

114 SuperscriptBox |

145 MakeBoxes |

146 Subsuperscript [Subscript ["p”, p] —> OverHat[Subscript[”’p”, q]],
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147 Row[h], Row[l]][z], f], MakeBoxes[i, f]]

145 MakeBoxes [Mom|[shift [{p-, q-}, z-, h_List, l1_List][p-]],

149 f : TraditionalForm]| :=

150 MakeBoxes |

151 Subsuperscript [OverHat [ Subscript ["p”, p]|] —> Subscript[”"p”’, q],
2 Row[h], Row[1]][2], f]

153 MakeBoxes [Mom|[shift [{p-, q-}, z-, h_List, 1_List][q-]],

154 f : TraditionalForm] :=

155 MakeBoxes |

156 Subsuperscript [ Subscript ["p”, p] —> OverHat [Subscript[”p”, q]],
wr  Rowlh], Row[1]][2], f]

155 Subsuperscript [OverHat [p_-] —> q-, Row[h_], Row[l_]][z_]
150 shift [{p, q}, z, h, 1][p]

160 Subsuperscript [p- —> OverHat[q-], Row[h_], Row[l_]][z-]
61 shift [{p, q}, z, h, 1][q]

162

163 Subscript [” \ [PlusMinus]”, p.] := HelicitySign [p]

164 MakeBoxes|[ HelicitySign [p-], f : TraditionalForm | StandardForm] ":=

165 MakeBoxes | Subscript [” \ [PlusMinus|”, p], f]

166

167 (* An object representing a sign whose value may not be known yet but
which can still be simplified since it is known that it must be

either 1 or —1 =)

16s HelicitySign[a-, b__] := HelicitySign[a] HelicitySign [b]
160 HelicitySign[a-"n_] := HelicitySign[a] n

170 HelicitySign[a- b_] := HelicitySign[a, b]

171 HelicitySign[—a_] := —HelicitySign [a]

172 HelicitySign [1] = 1

73 HelicitySign[—1] = —1

174 HelicitySign[a_-] " n_?70ddQ “:= HelicitySign[a]
175 HelicitySign[a_-] " n_?EvenQ ":= 1

77 (¥ Declare spinors, conjugate spinors, slashed matrices, momenta and
their products along with many basic simplifications that are always
applied *)

175 Attributes [Sp] = {Flat};

170 Attributes[Metric] = {Orderless};

150 Default [Mp, 3] := Sequence []

1851 Mp[a_, b, i_.] := Mp[b, a, i] /; Order[a, b] =1

182

153 Sp[pre---, spinorbar[pl-, hsl__], mid_-__, spinor[p2., hs2__],

184 post__] := Sp[pre, post] Sp[spinorbar[pl, hsl], mid, spinor[p2, hs2]]
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185 Sp[pre__, spinorbar[pl_, hsl__], mid___, spinor[p2., hs2__],

186 post___] :=

1857 Sp[pre, post] Sp[spinorbar[pl, hsl], mid, spinor[p2, hs2]]

1ss Sp[pre--—, a- + b_, post___] := Sp[pre, a, post] 4+ Sp[pre, b, post]
180 Sp[pre-__, a_. b_, post___] :=

w0 a Sp[pre, b, post] /;

191 FreeQ[a //.

192 Sp[spinorbar[pl_, hsl__], mid___, spinor[p2., hs2__]] :> 1,
193 spinor | spinorbar | \[Gamma] | Sm | SmM]

04 Mp[a- + b_, ¢c_, i-.] := Mpl[a, ¢, i] + Mp[b, ¢, i]

195 Mp[a-, b. 4+ c_, i-.] := Mpla, b, i] + Mpla, c, i]

196 (x Factors that contain mo free objects with a space—time index can be
moved to outside of the product x)

o7 Mpla- b_, c_] :=

108 a Mp[b, c¢] /;

100 FreeQ[a //. Mp[-_] :> 1, Mom | MaxM | \[Gamma] | \[Sigma] | Metric]

200 Mpla_-, b_ c_] :=

21 b Mpla, <] /;

2020 FreeQ[b //. Mp[_-_] :> 1, Mom | MaxM | \[Gamma] | \[Sigma] | Metric]

203 Mp[a_ b_, c_, i_.] :=

204 a Mp[b, ¢, i] /;

205 FreeQ[a, Mom[_][i] | ManM[-][i] | \[Germa][i] | \[Sigma][-][i] |

206 Metric[i, -] | Metric[-, i]]

20r Mpla-, b_ c_, i_.] :=

208 b Mpla, ¢, i] /;

209 FreeQ|[b,

oo Mom[-][i] | ManM[-][i] | \[Gamma][i] | \[Sigma][-][i] |

211 Metric[i, -] | Metric[_, i]]

212 Mp[a_[i-], b_[i-], i-] := Mp[a, b]

215 Mpla_[i-], Metric[i-, j-], i-] := a[j]

21s Mp[Metric[i-, j-], a_[i-], i-] = a[j]

215 Mp[Metric[i_, j_], Metric[i., k_], i_] := Metric[j, k]

216 Mp[Sp[pre___, \[Gamma][i_], post___], b_[i-], i-] :=

217 Mp[Sp[pre, \[Gamma], post], b]

215 Mp[a_[i-], Sp[pre-_., \[Gamma][i_], post___]|, i_] :=

219 Mp[a, Sp[pre, \[Gamma], post]]

220 Mp[Sp[pre-._, \[Gamma][i_], post___],

221 Sp[pre2._., \[Gamma][i.], post2___], i.] :=

222 Mp[Sp[pre, \[Gammma], post], Sp[pre2, \[Gamma], post2]]

223 Mp[Sp[pre___, \[Gamma][i_], post___], Metric[i-, j_-], i-] :=
224 Sp[pre, \[Gamma][j], post]

225 Mp[Metric[i-, j-], Sp[pre-—, \[Gamma][i_], post___], i_] :=
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\[Gammma] [j], post]
\[Sigma][1-][i-],
\[Sigma][1], post],

Sp[pre,
Mp([Sp[pre---,

Mp([Sp [pre,

0o Mp[a_[i-], Sp[pre__., \[Sigma][l

Mp[a, Sp[pre, \[Sigma][l], post

21 Mp[Sp[pre___, \[Sigma][l_-][i-],
Sp[pre2__., \[Sigma][l2_][i-],
Mp([Sp[pre, \[Sigma][l], post],

Mp[Sp[pre---, \[Sigma][l_][i-],
Sp[pre, \[Sigma][l][j], post]

, Mp[Metric[i_, j_-], Sp[pre___, \[
Sp[pre, \[Sigma][1][j], post]
Mp[Mom[a_], Mom[a_]] := 0

o Mp[0, _, i-.] = 0
Mp[_, 0, i_.] := 0
Mp2[a_] := Mp[a, a]

s Sp[pre-——, sl : {___List}, s2 :

Sp[pre, sl.s2, post]
Sp(b {a}]

S Sp[{a-—-}] = Sp[{b-__}] "= {a}
Sp[{{n_}}] := n

Mp[pl_List, p2_List] :=

pL[[1]] p2[[1]] -

Sum[pl [[$$i]] p2[[8$i]], {$Si,

b_o[i-], i-]

post___],

b]

i)

C10s], posto—_],

1]

post___],
post2___], i_] :=
Sp[pre2, \[Sigma][l2], post2]]

post___], Metric[i-, j_-], i-] :=

Sigmal][1l-][i-], io] =

post___],

{---List}, post___] :=

Sp[{a} + {b}]
= {b}

2, Min[Length[pl], Length[p2]]}]

(x Convert the Minkowski product of momenta with a spinor chain

containing a gamma matriz to a slashed matriz in the appropriate

location *)
DoMpToSm|[expr_] :=
expr //. {Mp[Mom[a_], Sp[pre__,
Mp[Sp[pre-_,
Sp[pre, Sm[a], post],
Mp[Mom[a-], Sp[pre-_,
\[Sigma][1.7],

1], post],

Mp[Sp[pre__,
Sp[pre, Smla,
Mp[MomM[a_], Sp[pre-_,
Mp[Sp[pre-_,
Sp[pre, SmM[a], post],
Mp[MoxM[a-], Sp[pre--,

Mp[Sp[pre_-, \[Sigma][l.],
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\ [Gamma] |
\ [Gammma| , post___], ManM[a_]] :>

\[Gammma] , post___]] |

\ [Gamma] , post-__], Mom[a_]] :>

\[Sigma][1-], post___]] |

post___], Mom[a_]] :>

post___]] |

\[Sigma][1_], post___]] |

post___], ManM[a_]] :>
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Sp[pre, SmM[a, 1], post]}

(x Convert the Minkowski product of two spinor chains, both containing a

gamma matriz, to products of spinor chains x)

DoMpToSpinorChains [ expr_] :=

expr //.
{Mp[Sp[prel___, Sm[p_, mh.], \[Sigma][h_], postl___],
Sp[pre2.__, \[Sigma][h_],

post2___]] :> —Mp[Sp[prel, \[Sigma][mh], Sm[p, h], postl],

Sp[pre2, \[Sigma][h], post2]] +

2 Sp[prel, postl] Sp[pre2, Sm[p, h], post2] /; mh = —h,
Mp[Sp[prel___, \[Sigma][h_], Sm[p-, mh_], postl___],
Sp[pre2__., \[Sigma][h_],

post2___]] :> —Mp[Sp[prel, Sm[p, h], \[Sigma][mh], postl],

Sp[pre2, \[Sigma][h], post2]] +

2 Sp[prel, postl] Sp[pre2, Sm[p, h], post2] /; mh = —h,
Mp[Sp[pre2.__, \[Sigma][h_], post2___],
aa : Sp[prel___, Sm[p., mh.], \[Sigma][h_],

postl___]] :> —Mp[Sp[prel, \[Sigma][mh], Sm[p, h], postl],

Sp[pre2, \[Sigma][h], post2]] +

2 Sp[prel, postl] Sp[pre2, Sm[p, h], post2] /; mh = —h,
Mp[Sp[pre2-__, \[Sigma][h_], post2___],
aa : Sp[prel___, \[Sigma][h_-], Sm[p-, mh_],

postl___]] :> —Mp[Sp[prel, Sm[p, h], \[Sigma][mh], postl],
Sp(pre2, \[Sigma][h], post2]] +

2 Sp[prel, postl] Sp[pre2, Sm[p, h], post2] /;

mh =— —h} //.

{Mp][

Sp[spinorbar[pl-, hpl_, lpl_],

midpre : (Sm[-, -] ...), \[Sigma][h_], midpost : (Sm[_, ] ...),
spinor [p2_, hp2_, lp2_]],

Sp[pre___, \[Sigma][mh], post___]] :>

2 (Sp[pre, midpost, spinor[p2, hp2, 1p2], spinorbar[pl, hpl, Ipl],

midpre, post] —

HelicitySign [Ilpl, 1p2, (—1) (Length[{midpre, midpost}])] Sp|
pre, Sequence @@ Reverse[{midpre}], spinor[pl, hpl, Ilpl],
spinorbar [p2, hp2, 1p2], Sequence @@ Reverse[{midpost}],
post]) /; mh — —h,

Mp[Sp[pre---, \[Sigma][mh.], post___],
aaaa : Sp[spinorbar[pl_, hpl_, 1lpl_],
midpre : (Sm[-, -] ...), \[Sigma][h_],

midpost : (Sm[_-, -] ...), spinor[p2_, hp2_, Ip2_]]] >
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2 (Sp[pre, midpost, spinor[p2, hp2, 1p2], spinorbar[pl, hpl, Ipl],
midpre, post] —

HelicitySign [lpl, 1p2, (—1)"(Length[{midpre, midpost}])] Sp|
pre, Sequence @Q Reverse[{midpre}]|, spinor[pl, hpl, lpl],
spinorbar [p2, hp2, 1p2], Sequence @@ Reverse[{midpost}],
post]) /; mh — —h.

Mp[Sp[spinorbar[pl-, hpl_, lpl_],
midpre : (Sm[-, -] ...), \[Sigma][h.], post___],
Splpre_-__, \[Sigma][mh_], midpost : (Sm[-, -] ...),
spinor [p2-, hp2_, Ip2_]]] :>
2 (Sp[spinorbar[pl, hpl, lpl], midpre, midpost,
spinor [p2, hp2, 1p2]] Sp[pre, post] —

HelicitySign [Ilpl, 1p2, (—1)"(Length[{midpre, midpost}])] Sp|
pre, Sequence @@ Reverse[{midpre}], spinor[pl, hpl, Ilpl],
spinorbar [p2, hp2, 1p2], Sequence @@ Reverse[{midpost}],
post]) /; mh = -h,

Mp[Sp[pre-_-, \[Sigma][mh_ ], midpost : (Sm[-, -] ...),
spinor [p2-, hp2_, 1p2_]],
aaaa : Sp[spinorbar[pl_, hpl_, lpl_],
midpre : (Sm[-, -] ...), \[Sigma][h_], post___]] :>
2 (Sp[spinorbar[pl, hpl, Ipl], midpre, midpost,
spinor [p2, hp2, 1p2]] Sp[pre, post] —

HelicitySign [lpl, 1p2, (—1)  (Length[{midpre, midpost}])] Sp|
spinorbar [p2, hp2, 1p2], Sequence @@ Reverse[{midpost}],
post] Sp[pre, Sequence @Q@ Reverse[{midpre}],
spinor [pl, hpl, Ipl]]) /; mh = —h}

(x Declare more simplifications and rearrangements for spinor products

that are always applied =)

Sp[---, spinorbar[p-, hsl__], spinor[p-, hs2__], ___] = 0

Sp[---, Sm[p-, -], spinor[p-, hs__], ___] :=0

Sp[---, spinorbar[p., hs__], Sm[p_, -], --_] (= 0

Sp[---, Sm[p-], Sm[p-], ---] := 0

Sp[pre---, SmM[p-], SmM[p-], post___] := Sp[pre, post] Mp2[MomM[p]]
Sp[---, Sm[p-, -], Sm[p_, -], ---] =0

Splpre.—_, SmM[p-, -], SmM[p-, -], post___] :=

Sp[pre, post] Mp2[MamM[p]]

Sp[pre.__, (Sm | SmM)[pl_, h1] | \[Sigma][hl_],
Sm[p2-, h2_] | \[Sigma][h2_], post_-__] := 0 /; hl = h2
Sp[pre-——, (sm : Sm | SmM)[pl-],

o : ((Sm | SmM)[-, h2_] | \[Sigma][h2_]), post___] :=
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sas Sp[pre, sm[pl, —h2], o, post]

310 Sp[pre--_,
350 o : ((Sm | SmM)[-, hil_-] | \[Sigma][hl-]), (sm : Sm | SmM)[p2_],

351 post___] := Sp[pre, o, sm[p2, —hl], post]

w2 Splpre._, \[Gamma], o : ((Sm | SiM)[_, h2_] | \[Sigma][h2]),
post___] := Sp[pre, \[Sigma][—h2], o, post]

w1 Sp(pre-——, o+ ((Sm | SmM)[-, h1.] | \[Sigma][h1.]), \[Gamma],

355 post___] := Sp[pre, o, \[Sigma][—hl], post]

356

357 Sp[pre-——, (Sm | SmM) [p2-, h2_], spinor|[p-, h_, hs___], post___] :=

52 0 /; h2 = —h

350 Sp[pre-——, \[Sigma][h2_], spinor[p-, h_, hs___], post___] :=

560 0 /3 h2 = —h

361 Sp[pre---, spinorbar[p-, hs__], (Sm | SmM)[p2-, h2_], post___] :=

362 0 /; h2 = —{ConvertHels[hs]}[[1]]

363 Sp[pre-__, spinorbar[p_, hs__], \[Sigma][h2_], post___] :=

se2 0 /; h2 = —{ConvertHels[hs]}[[1]]

365 Sp[pre-——, (sm : Sm | SmM) [p2-], spinor|[p-, h_, hs___], post___] :=

s66  Sp[pre, sm[p2, h], spinor[p, h, hs], post]

s Sp[pre___, \[Gamma], spinor[p_, h_, hs___], post___] i=

s6s  Sp[pre, \[Sigma][h], spinor[p, h, hs], post]

360 Sp[pre---, spinorbar[p-, hs__], (sm : Sm | SmM)[p2-], post___] :=
370 Sp[pre, spinorbar[p, hs], sm[p2, {ConvertHels[hs]}[[1]]], post]

371 Sp[pre--_, spinorbar[p-, hs__], \[Gamma], post___] :=

s72  Sp[pre, spinorbar[p, hs], \[Sigma][{ConvertHels[hs]}[[1]]], post]

374 Sp[pre---, spinorbar[pl_, hsl___], spinor[p2., h2_, hs2___],

375 post___] := 0 /; h2 = {ConvertHels[hsl1]}[[1]]

376 Sp[pre---, spinorbar[pl-, hsl___], spinor[p2., hs2___], post_-__] :=
377 0 /; Dimension[pl] =!= None && Dimension [p2] =!= None &&

378 MemberQ[Drop[{ hs2}, —(Max|[Dimension[pl], Dimension[p2]]/2 — 2)] —
379 Drop[{ ConvertHels |

380 hsl]}, —(Max[Dimension[pl], Dimension[p2]]/2 — 2)], 0]

381 Sp[pre-__, spinorbar[pl_, hsl___], sms : Sm[_, _] ...,

382 spinor [p2_, hs2___], post___] :=

s 0 /; Dimension[pl] =!= None &&

524 Dimension [p2] =!= None && !

MemberQ[ Dimension [#[[1]]] & /@ {sms}, None] &&

566 MemberQ[Drop[{ hs2}, —(Max[Dimension[pl],

ser Dimension [#[[1]]] & /@ {sms}, Dimension[p2]]/2 —
2)] - (=1)"

389 Length [{sms}] Drop[{ConvertHels |
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390 hs1l]}, —(Max[Dimension[pl], Dimension[#][[1]]] & /@ {sms},
391 Dimension [p2]]/2 — 2)], 0]

303 CompareHels[{}, {}] :=
304 CompareHels[{hl1_, hh1___}, {h2_, hh2___}] :=

False

305 Module[{ order = Order[hl, h2]},
396 If [order == 0, CompareHels[{hhl}, {hh2}], order > 0]]

308 CalculatedP /: Mom[CalculatedP [mom_]] := mom

300 CalculatedP /: MomM[ CalculatedP [mom_]] := mom

100 CalculatedP /: Sm[CalculatedP [a_. Mom[b_] + mom.], h_] :=
w1 a Sm[b, h] + Sm[CalculatedP [mom], h]

102 CalculatedP /: Sm[CalculatedP [a-. Mom[b_]], h_] := a Sm[b, h]
103

104 RevP /: Mom[RevP [mom_]] := —Mommom]

w05 RevP /: ManM[RevP [mom_]] := —MamM [mom]|

ws RevP /: Sm[RevP[a_], h_] := —Sm[a, h]

.7 RevP /: spinor [RevP[a_], hs__] := I spinor[a, hs]

10s RevP /: spinorbar[RevP[a_], hs__] := I spinorbar[a, hs]

109

0 FlipHelicities [Splels___]] := Sp @@ FlipHelicities [{els}]

11 FlipHelicities [{el-, rest___}] :=

412 Join[{ FlipHelicities [el]}, FlipHelicities [{rest }]]
113 FlipHelicities [{}] = {}

i1a FlipHelicities [Sm[p-, i-]] := Sm[p, —i]

i15 FlipHelicities [SmM[p-, i-]] := SmM[p, —i]

416 FlipHelicities [\[Sigma][i_-]] := \[Sigma][—1i]
115 Sp[spinorbar[pl-, hsl__], pre : (Sm | SmM)[--] ..., \[Sigma][h_],
119 post : (Sm | SmM)[__] ..., spinor[p2., hs2__]] :=

420  SpFlipSign[{hsl}, {hs2}, Length[{pre, post}] + 1] Sp]

121 spinorbar [p2, hs2],
122 ConvertMidHelicities [Reverse[Sp|[pre, \[Sigma][h], post]],
423 Length[{hsl}]], spinor[pl, hsl]] /;

124 CompareHels[{ —Length[{ pre}], hsl, {pre}, pl}, {—Length[{post}], hs2,
125 Reverse[{ post }], p2}]

26 Sp[spinorbar[pl-, hsl__], sms : (Sm | SmM)[__] ...,

427 spinor [p2-, hs2__]] :=

s SpFlipSign[{hsl}, {hs2}, Length[{sms}]] Sp[spinorbar[p2, hs2],

129 ConvertMidHelicities [Reverse [Sp[sms]|], Length[{hsl}]],

130 spinor [pl, hsl]] /;

431 CompareHels[{hsl, Sp[sms], pl}, {hs2,
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ConvertMidHelicities [Reverse [Sp[sms]|]|, Length[{hsl}]], p2}]

spinor [p-, hs__] :=

spin

orbar [p, ConvertHels[hs]]

(x Replace slashed matrices by spinors. d_ is the number of dimensions

the expression is

in terms of a specified set of helicity labels,

in. It

is also possible for the replacement to be

in which case the

dimension is set by the number of labels needed for a spinor x)

ConvertSmToSpinors[d_, Sm[p_, h_]] :=

ConvertSmToSpinors [Sm[p, h], PadLeft[{}, d/2 — 2, 1]]

ConvertSmToSpinors [Sm|[p-,

h7]7

hs_List] :=

Sum[Sp[spinor [p, —h, Sequence @@ (hs is)],

ex

barspinor [p, —h, Sequence @@ (hs is)]], {is

Tuples[{1, —1}, {Length[hs]}]}]

; ConvertSmToSpinors[d_, p_][expr_] :=

)

pr //. Sp[pre-__, spinorbar[p2., h2_, hs__], Sm[pp : p, h_],
post___] :>
Sp[pre, spinorbar[p2, h2, hs],
ConvertSmToSpinors [Sm|[pp, h], {hs}], post] //.

Sp[pre---, Sm[pp p, h_], spinor[p2_, h2_, hs__], post___] :>

Sp[pre, ConvertSmToSpinors[Sm[pp, h],

p, h-]

post] //. Sm[pp

ConvertSmToSpinors[p-, {h_,

ex

pr //. Sm[pp : p, hh

h]

hs___}][ex

pr-] :=

{hs}],
:> ConvertSmToSpinors|[d, Sm[pp, h]]

spinor [p2, h2, hs],

:> ConvertSmToSpinors [Sm[pp, hh], {hs}]

(x Commute the given pair of slashed matrices wherever they occur in the

expression x*)

CommuteMatricies [ml_\[Sigma], m2p_][expr_] :=
expr /. {Sp[pre---, ml, Sm[m2 : m2p, -], post___] :>
2 Mom[m2] Sp[pre, post] — Sp[pre, Sm[m2], \[Gamma], post],
Sp[pre--—, ml, StM[m2 : m2p, -], post___] :>
2 MonM[m2] Sp[pre, post] — Sp[pre, SmM[m2], \[Gamma], post]}
CommuteMatricies [mlp-, m2_\[Sigma]][expr-] :=
expr /. {Sp[pre--—, Sm[ml : mlp, -], m2, post___] :>
2 Mom[ml] Sp[pre, post] — Sp[pre, \[Gamma], Sm[ml], post],
Sp[pre---, SmM[ml mlp, _], m2, post___] :>
2 MooM[ml] Sp[pre, post] — Sp[pre, \[Gamma], SmM[ml], post]}
CommuteMatricies [mlp_, m2p_][expr_] :=
expr /. {Sp[pre_-_., Sm[ml mlp, a-], Sm[{m2 : m2p, _], post___] :>
2 Mp[Mom[ml], Mom[m2]] Sp[pre, post] —
Sp(pre, Sm[m2], Sm[ml], post],
Sp[pre--—, SmM[ml : mlp, a_], Sm[m2 : m2p, -], post___] :>
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170 2 Mp[ManM[m1], Mom[m2]] Sp[pre, post] —

471 Sp[pre, Sm[m2], SmM[ml], post],

172 Sp[pre---, Sm[ml : mlp, a_-], SmM[m2 : m2p, -], post___] :>
473 2 Mp[Mom[ml], ManM[m2]] Sp[pre, post] —

174 Sp[pre, SmM[m2], Sm[ml], post],

175 Sp[pre--—, SsM[ml : mlp, a-], SmM[m2 : m2p, -], post___] :>

476 2 Mp[MomM[ml], MomM[m2]] Sp|[pre, post]| —
a7 Sp[pre, SmM[m2], SmM[ml], post]}

7o (x» Commute matrices if this can cause a term to vanish by placing two
elements for the same massless momenta next to each other x)

iz0 CommuteMatriciesAway [expr_] :=

151 expr //. {Sp[pre_.__, Sm[{ml_, h_], Sm[m2_, 1_], Sm[ml_, h_],

182 post___] :> 2 Mp[Mom[m2], Mom[ml]] Sp[pre, Sm[ml, h], post],
483 Splpre-—-, Sm[ml_, h_], SmsM[m2_, 1_], Sm[ml_, h_], post_-__] :>
184 2 Mp[ManM[m2], Mom[ml]] Sp[pre, Sm[ml, h], post],

185 Sp[pre-—-, SsM[ml_, h_], Sm[m2_, 1_], SsM[ml_, h_], post___] :>
186 2 Mp[Mom[m2], Mom[ml]] Sp[pre, Sm[ml, h], post] —

487 Mp2[ManM[ml]] Sp[pre, SmMp[m2, h], post],

188 Splpre-—-, SsM[ml_, h_], SsM[{m2_, 1l_], SmM[ml_, h_], post___] :>
189 2 MpMomM[m2] , Mom[ml]] Sp[pre, Sm[ml, h], post] —

190 Mp2 [ManM[ml]] Sp[pre, SmMp[m2, h], post],

491 Splpre-—-, Sm[ml_, 1_], Sm[m2_, 1_], spinor[ml_, h___],
192 post___] :> 2 Mp[Mom[m2], Mom[ml]] Sp[pre, spinor [ml, h], post],
193 Sp[pre-—-, Sm[ml_, 1_-], SmM[m2_, l_], spinor[ml_, h___],

194 post___] >

495 2 Mp[MonM[m2] , Mom[ml]] Sp[pre, spinor[ml, h], post],

196 Sp[pre--_, spinorbar[ml_, h___], Sm[m2_, 1.], Sm[ml_, m_],
197 post__] :>

198 2 Mp[Mom[m2], Mom[ml]] Sp[pre, spinorbar[ml, h], post],

499 Sp[pre-__, spinorbar[ml_, h___], SsM[m2_, 1_], Sm[ml_, m_],
500 post__] :>

501 2 Mp[MomN[m2], Mom[ml]] Sp[pre, spinorbar[ml, h], post]} //. {Sp]

502 pre--—, Sm[a_, h_], Sm[b-, 1l_], Sm[c., m_], Sm[a-, n_],
503 post___] :>
504 4 Mp[Mom[a], Mom[b]] Mp[Mom[c], Mom[a]] Sp[pre, post] —

2 Mp|[Mom[a], Mom[b]] Sp[pre, Sm[a], Sm[c], post] —

2 Mp[Mom[a], Mom[c]] Sp[pre, Sm[b], Sm[a], post],

v Sp[pre-—_, Sm[a_, h_], SsM[b_, 1_], Sm[c., m.], Sm[a_, n_],
508 post___] :>

w0 4 Mp[Mom[a], MaxM[b]] Mp[Mom[c], Mom[a]] Sp[pre, post] —
2 Mp[Mom[a], MaxM[b]] Sp|[pre, Sm[a], Sm[c], post] —
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2 Mp[Mom[a], Mam[c]] Sp[pre, SuM[b], Sm[a], post],
Sp[pre---, Sm[a-, h.], Sm[b_, 1.], SsM[c., m.], Sm[a-, n_],
post___] :>
4 Mp[Mom[a], Mom[b]] Mp[MauM[c], Mom[a]] Sp[pre, post] —
2 Mp[Mom[a], Man[b]] Sp[pre, Sm[a], SmM[c], post] —
2 Mp[Mom([a] , MaM[c]] Sp[pre, Sm[b], Sm[a], post],
Sp[pre-.-, Sm[a., h.], SuM[b-, 1.], SuM[c., m.], Sm[a., n.],
post___] :>
4 Mp[Mom[a], MaM[b]] Mp[MarM[c], Mam[a]] Sp[pre, post] —
2 Mp[Mom[a], ManM[b]] Sp[pre, Sm[a], SuM[c], post] —
2 Mp[Mom[a], ManM[c]] Sp[pre, SmM[b], Sm[a], post],
Sp[pre_-_, SmM[a_, h_], Sm[b_, 1_.], Sm[c., m.], SmM[a_, n_],
post___] :>
4 Mp[Mom[a], Mom[b]] Mp[Mam[c], Man[a]] Sp[pre, post] —
2 Mp[Mom[a], Mom[b]] Sp[pre, Sm[a], Sm[c], post] —
2 Mp[Mom[a], Mom[c]] Sp[pre, Sm[b], Sm[a], post] +
Mp2[MaM[a]] Sp[pre, Sm[b], Sm[c], post],
Sp[pre-—-, SuM[a., h_], SsM[b_, 1.], Sm[c., m.], SuM[a_, n_],
post___] :>
4 Mp[Mom[a], MarM[b]] Mp[Mom[c], Mom[a]] Sp[pre, post] —
2 Mp[Mom[a], ManM[b]] Sp[pre, Sm[a], Sm[c], post] —
2 Mp[Mom([a], Mom[c]] Sp[pre, SuM[b], Sm[a], post] +
Mp2[ManM[a]] Sp[pre, SmM[b], Sm[c], post],
Sp[pre_—_, SmM[a_, h_], Sm[b_, 1.], SuM[c_, m.], SsM[a_, n_.],
post___] :>
4 Mp[Mom[a], Mom[b]] Mp[MaM([c], Mom[a]] Sp[pre, post] —
2 Mp[Mom[a], Mom[b]] Sp[pre, Sm[a], SmM[c], post] —
2 Mp[Mom[a], ManM[c]] Sp[pre, Sm[b], Sm[a], post] +
Mp2[MarM[a]] Sp[pre, Sm[b], SxM[c], post],
Sp[pre-.., SmM[a., h_], SsM[b_, 1.], SuM[c_, m.], SuM[a_, n.],
post___] :>
4 Mp[Mom[a], MaM[b]] Mp[MarM[c], Mam[a]] Sp[pre, post] —
2 Mp[Mom[a], ManM[b]] Sp[pre, Sm[a], SuM[c], post] —
2 Mp[Mom[a], ManM[c]] Sp[pre, SmM[b], Sm[a], post] +
Mp2[ManM[a]] Sp[pre, SmM[b], SmM[a], post]}

(x Commute gamma matrices if it can cause a term to wvanish by placing
two elements for the same massless momenta next to each other x)
CommuteSigmaMatriciesAway [expr_] :=
expr //. {Splpre___, Sm[ml_, h_], \[Sigma][l_], Sm[ml_, h_],
post___-] :> 2 Mom[ml] Sp[pre, Sm[ml, h], post],
Sp[pre--—, SsM[ml_, h_], \[Sigma][l_-], SmsM[ml_, h_], post___] :>

187 August 22, 2017



563

564

565

566

567

568

569

Next to Leading Order Calculations for Higgs Boson + Jets

2 Mom[ml] Sp[pre, Sm[ml, h], post] —
Mp2[MomM[ml]] Sp[pre, \[Sigma][h], post],

Sp[pre---, Sm[ml_, 1_], \[Sigma][l-], spinor[ml_,

post___] :> 2 Mom[ml] Sp[pre, spinor[ml, h], post],

Simon Armstrong

h***] )

Sp[pre_._, spinorbar[ml_, h___], \[Sigma][l_-], Sm[{ml_, m_],

post___-] :> 2 Mom[ml] Sp[pre, spinorbar[ml, h],

(* Dimension independant code for evaluating expressions

SpinorExpression [d_, p_List, hs___] :=

SpinorExpression [d, PadRight[p, d, 0], hs] /; Length[p]

SpinorExpression[d., p-List, hs___] :=

SpinorExpression [d, PadRight[p, d, 0], hs] /; Length[p]

AdjointSpinor[d_, s_, hs__] :=

AdjointSign[d, hs] Transpose[s]. AdjointMetric[d]

\ [Gamma] Expression[2, _, 0] := {{1}}
\ [Gammma] Expression[2, h_, _] := {{h}}
\ [Gammma] Expression[d-, h_, i-] := ArrayFlatten[{{

\ [Gamma] Expression[d — 2, h, i], 0}, {0, —
\ [Gamma] Expression[d — 2, ~h, i]}}] /;
d > 2 && EvenQ[d] & i < d — 2

5\ [Gamma] Expression[d-, s_., i.-] :=

ArrayFlatten [{{0,

post]}

numerically *)

= d

I IdentityMatrix[2"(d/2 — 2)]}, {I IdentityMatrix[2"(d/2 — 2)],

0}} /; d > 2 && EvenQ[d] && i = d — 2
\ [Gamma] Expression [d_, s_, i.] :=
ArrayFlatten [{{0,

IdentityMatrix[2°(d/2 — 2)]}, {-IdentityMatrix[2"(d/2 — 2)],

0}}] /3 d > 2 && EvenQ[d] & i = d — 1

shift$S$reps = {};

ReplaceShiftedSpinors [expr_] := expr //. shift$8reps
vectors$$momentums$$defined [, _] := False
vectors$$spinors [tag_, p-] :=

Module[{spinors$ },
spinors$ [d-,
hs__] := (spinors$[d, hs] =

SpinorExpression [d, vectors$$momentums|[tag, p], hs]);

tag /: vectors$$spinors|tag, p] = spinors$] /;

vectors$$momentums$$defined [tag, p]
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vec

tors$$spinors|tag., p : CalculatedP [pexpr_]] :=

Module[{spinors$ },

s

pinors$ [d-,
hs__] := (spinors$[d, hs] =

SpinorExpression [d, pexpr // Ev[d,

tag}: hS]);

tag /: vectors$$spinors[tag, p] = spinors$]

vectors$$momentums [ tag._ ,

S

h = —1 && MatchQ[vectors$$momentums [tag, p],

MatchQ [ vectors$$momentums [tag, q],

hift [{p-, a-}, z-, {h_.}, {1_}][

Next to Leading Order Calculations for Higgs Boson + Jets

p-]1] := (Mom[p] + 2z Sp[spinorbar[p, h], \[Gamma], spinor|[q, 1]]/2 //

Ev(4, tag]) /;

vectors$$momentums [tag. ,

S

h = —1 && MatchQ[vectors$$momentums [tag, p],

MatchQ [ vectors$$momentums [tag, q],

shi
J

vectors$$spinors|[tag-, shift[{p-, q-}, z

hift [{p-, a-}, z-, {h_}, {1_}][

_List |

_List] &

q-]] := (Mom[q] — =z Sp[spinorbar[p, h], \[Gamma], spinor[q, 1]]/2 //

Ev[4, tag]) /;

ft$$reps =

_List]

_List] &

oin[shift$$reps, {Mom[shift[{p_, q-}, z_, {h_}, {1_}][p-]] >

Mom([p] + z Sp[spinorbar[p, h], \[Gamma], spinor[q,
Mom[shift [{p-, a-}, z-, {h_}, {1-}][q-]] :>

Mom[q] — z Sp[spinorbar[p, h], \[Gamma], spinor[q,
Sm[shift [{p-, a-}, z-, {h-}, {1-}][p-], h.] >
Sm[p, h] + z Sp[spinor[q, 1], spinorbar[p, h]],
Sm[shift [{p-, a-}, z-, {h-}, {1-}][p-], 1.] >
Sm[p, 1] + z Sp[spinor[p, h], spinorbar[q, 1]],
Sm[shift [{p-, a-}, z-, {h-}, {1-}][a-], h.] :>
Sm[q, h] — z Sp[spinor[q, 1], spinorbar[p, h]],
Sm[shift [{p-, a-}, z-, {h-}, {1-}][a-], 1.] >
Smla, 1] — z Sp[spinor[p, h], spinorbar[q, 1]]}];
o, {ho}, {1-}10p-1114,

a_] := (spinor[p, a] + z spinor[q, a]

/] Ev[4, tag])

1/2,

/2,

/3

h = -1 && a =— 1 && MatchQ| vectors$$momentums|tag, p],

vectors$$spinors|[tag-, shift[{p-, q-}, z

(

h = -1 && a =— —1 && MatchQ| vectors$$momentums[tag, p],

vectors$$spinors|[tag-, shift[{p-, q-}, z

MatchQ [ vectors$$momentums [tag, q],

spinor [p, a] // Ev[4, tag]) /;

MatchQ [ vectors$$momentums [tag, q],

a_] := (spinor[q, a] — z spinor[p, a]

189

_List |

_List] &&

-, {h-}, {1-}][p-]I[4, a-] :=

_List ]

_List] &

- gh-}s {13 [a-1](4,

/] Ev[4, tag])

/3
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h = -1 && a =— h && MatchQ|[vectors§$momentums[tag, p],

MatchQ [ vectors$$momentums [tag, q], -List]

_List] &&

vectors$$spinors [tag_, shift[{p-, q-}, z-, {h_}, {1_-}][qa-]][4,

a-] := (spinor[q, a] // Ev[4, tag]) /;

h = -1 && a =— —h && MatchQ|[ vectors$$momentums[tag, p],

MatchQ [ vectors$$momentums [tag, q], -List]
shift$$reps =
Join[shift$$reps, {(ss : spinor | spinorbar)]|
shift [{p_, a_}, 2., {b_}, {1_}][p.], h] :>
ss[p, h], (ss : spinor | spinorbar) |

shift [{p-, a-}, z-, {h-}, {1-}][p-], 1-] :>

ss[p, 1] + z ss[q, 1], (ss : spinor | spinorbar)|

shift [{p-, a-}, z-, {h-}, {1-}][a-], 1-] >
ss[q, 1], (ss : spinor | spinorbar) |

shift [{p-, a-}, z-, {h-}, {1-}][q-], h-] :>
ss[q, h] — 2z ss[p, h]}];

53 vectors$$momentums [tag_ ,

Shift({p-, a-}, 2, {h-, 1-}, {m_, n_}][
p-]] = (Mom[p] —
HelicitySign [h,
n] z Sp[spinorbar[p, h, 1], \[Gamma], Sm[q]

2 /) Ev[6, tag]) /;

, spinor[p, m, n]]/

h = —m && MatchQ[vectors$$momentums |[tag, p], -List] &&

MatchQ [ vectors$$momentums [tag, q], -List]
vectors$$momentums|tag_
Shift({p-, a-}, 7, {h-, 1-}, {m., n_}][
q-1] = (Mom[q] +
HelicitySign [h,
n] z Sp[spinorbar[p, h, 1], \[Gamma], Sm[q]

2 /) Ev[6, tag]) /;

, spinor[p, m, n]]/

h = —m && MatchQ[vectors$$momentums [tag, p], -List] &&

MatchQ [ vectors$$momentums [tag, q], -List]
shift$$reps =
Join [shift$$reps , {Mom]|
shift [{p-, a-}, z-, {h_, 1.}, {m_, n_}][p_]]
Mom[p] —
HelicitySign [h,

n] z Sp[spinorbar[p, h, 1], \[Gammma], Sm[q],

2, Mom[shift [{p-, q-}, z_, {h., 1.}, {m_,
Mom[q] +
HelicitySign [h,
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678 n] z Sp[spinorbar[p, h, 1], \[Gammma|, Sm[q], spinor[p, m, n]]/
679 2,

w0 Sm[shift[{p-, a-}, z-, {h., 1_}, {m, n_}][p-], h.] >

681 Sm[p, h] +

682 z (HelicitySign[h, 1] Sp[Sm[q], spinor[p, h, 1],

683 spinorbar [p, m, n]] —

684 HelicitySign [m, n] Sp[spinor[p, m, n], spinorbar[p, h, 1],
685 Sm[q]]) ,

686 Sm[shift [{p-, q-}, z-, {h-, 1-}, {m., n_}][p-], m] >

wr Smlp, m] +

688 z (—HelicitySign[h, 1] Sp[spinor[p, h, 1], spinorbar[p, m, n],
689 Sm[q]] +

690 HelicitySign [m, n] Sp[Sm[q], spinor[p, m, n],

691 spinorbar [p, h, 1]]),

692 Sm[shift [{p-, q-}, z-, {h-, 1.}, {m_, n_}][q-], h_] :>
693 Sm[q, h] —

694 z (HelicitySign[h, 1] Sp[Sm[q], spinor[p, h, 1],

695 spinorbar [p, m, n]] —

696 HelicitySign [m, n] Sp[spinor[p, m, n], spinorbar[p, h, 1],

697 Sm[q]]) ,
698 Sm[shift [{p-, q-}, z-, {h_, 1.}, {m_, n_}]|[q-], m] :>
699 Sm[q, m] —

700 z (—HelicitySign[h, 1] Sp[spinor[p, h, 1], spinorbar[p, m, n],

701 Sm[q}] +
702 HelicitySign [m, n] Sp[Sm[q], spinor[p, m, n],
703 spinorbar [p, h, 1]]) }];

704 vectors$$spinors [tag., shift[{p-, q-}, z_, {h_, 1}, {m_, n_}][p-]][6,
705 a_, b_] := (spinor[p, a, b] —

706 z HelicitySign[a, n] Sm[q, m].spinor[p, m, n] // Ev[6, tag]) /;
707 m= —h && h = a & 1 = —b &

708 MatchQ [ vectors$$momentums [tag, p], -List] &&

709 MatchQ [ vectors$$momentums [tag, q], -List]

710 vectors$$spinors [tag-, shift[{p-, q-}, z-, {h_, 1-}, {m_, n_}][p-]][6,
711 a_, b_] := (spinor[p, a, b] —

712 z HelicitySign[a, 1] Sm[q, h].spinor[p, h, 1] // Ev[6, tag]) /;
713 m == —h & m = a && n = -b &

714 MatchQ [ vectors$$momentums [tag , p], -List] &&

715 MatchQ [ vectors$$momentums [tag, q], -List]

716 vectors$$spinors [tag_, shift[{p-, q-}, z_, {h_, 1_-}, {m_, n_}][p-]][6,
ar a., b.] == (spinor[p, a, b] // Bv[6, tagl) /;

715 m=——-h &% ((h=2a8&& 1 =>b) || m=a&&n=»>)) &&

719 MatchQ [ vectors$$momentums [tag, p], -List]| &&
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720 MatchQ [ vectors$$momentums [tag, q], -List]

721 vectors$$spinors [tag-, shift[{p-, q-}, z-, {h_, 1-}, {m-, n_}][q-]][6,
722 a_, b_] := (spinor[q, a, b] +

723 z HelicitySign[h, 1] spinor[p, h, 1] Sp[spinorbar[p, m, n],
spinor[q, a, b]] // Ev[6, tagl) /;

725 m == —h && h = a && MatchQ|[vectors$$momentums [tag, p], -List] &&
726 MatchQ [ vectors$$momentums [tag, q], -List]

727 vectors$$spinors [tag., shift[{p-, q-}, z_, {h_, 1}, {m_, n_}][q-]][6,
728 a_, b_] := (spinor[q, a, b] +

729 z HelicitySign [m, n] spinor[p, m, n] Sp[spinorbar[p, h, 1],

730 spinor[q, a, b]] // Ev[6, tag]) /;

731 m =— —h && m =— a && MatchQ|[vectors$$momentums|tag, p], -List] &&
732 MatchQ [ vectors$$momentums [tag, q], -List]

733 shift$$reps =

734 Join[shift$$reps, {(ss : spinor | spinorbar)|

735 shift [{p-, q-}, z-, {h-, 1.}, {m., n_}][p-], ho, 1] :>

36 ss[p, h, 1], (ss : spinor | spinorbar)]|

737 shift [{p-, a-}, z-, {h-, 1_}, {m-, n_}][p-], m-, n_] :>

738 ss|[p, m, n],

739 spinor [shift [{p-, q-}, z-, {h_, 1_}, {m_, n_}][p-], ho, b_] :>
740 spinor [p, h, b] —

741 z HelicitySign [h, n] Sp[Sm[q, m], spinor[p, m, n]] /; b = -1,
742 spinor [shift [{p-, q-}, z-, {h_, 1_-}, {m_, n_}][p-], m-, b_] :>
743 spinor [p, m, b] —

744 z HelicitySign [m, 1] Sp[Sm[q, h], spinor[p, h, 1]] /; b = —n,
745 spinorbar [shift [{p-, q-}, z-, {h_, 1-}, {m_, n_}][p-], h-, b_] :>
746 spinorbar [p, h, b] —

747 z HelicitySign [h, 1] Sp[spinorbar[p, m, n], Sm[q, m]] /;

. b — —1,

749 spinorbar [shift [{p-, q-}, z-, {h_, 1-}, {m_, n_}][p-], m_, b_] :>
750 spinorbar [p, m, b] —

751 z HelicitySign [m, n] Sp[spinorbar[p, h, 1], Sm[q, h]] /;

752 b = —n, (ss : spinor | spinorbar) |

54 ss[q, h, b] +
755 z If [TrueQ[ss = spinorbar], HelicitySign[h, b],

53 shift [{p-, q-}, z-, {h_, 1_}, {m-, n_}][q-], ho, b_] :>

756 HelicitySign [h, 1]] ss[p, h, 1] Sp[spinorbar[p, m, n],

57 spinor [q, h, b]], (ss : spinor | spinorbar)]|

759 ss[q, m, b] +

760 z If[TrueQ[ss = spinorbar], HelicitySign [m, b],

761 HelicitySign [m, n]] ss[p, m, n] Sp[spinorbar[p, h
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spinor [q, m, bJ]}];

(* Function to declare momenta for names on the momenta set ’tag’ *)

DeclareVectorMomentum [tag-, p-,
pp-List] := (tag /: vectors$$momentums$$defined [tag, p] = True;
tag /: vectors$$momentums|tag, p] = pp)

$CheckSpinorsConsistent = True;

SetAttributes [ CheckSpinorsMomentum , HoldFirst ]

CheckSpinorsMomentum :: Inconsistent =

"The spinors ‘3°‘ and ‘4‘ give a momentum of ‘5° which is not the \

same as the momenta ‘6°¢ for ‘1°¢ ‘2°¢.7;
CheckSpinorsMomentum [ tag_ ,

oy {hs © (1] 1) ..} = {spp : {{-} .}, som : {{.} ..}}] =
Message [ CheckSpinorsMomentum :: Inconsistent , tag, p, spp, spm,

CalculateMomenta [spp, spm, {hs}],

vectors$$momentums [tag, p]] /; $CheckSpinorsConsistent &&

Simplify |

CalculateMomenta [spp, spm, {hs}] != vectors$$momentums|tag, p]]
DefineSpinors |

spinors$_, {hs : (1 | =1) ...} — {spp : {{-} ..},

spm : {{-} ..}}] := (spinors$[_, hs, 1] = spp;

spinors$[_, hs, —1] = spm)
DeclareVectorMomentum [tag-, p-,
oo ({hs : (1] —1) ..} = {spp : {{_} -}, som : {{_} .-.}}),
sps (L1 | =1) o} = ({4} b, Lo} D) ] = (tag /:
vectors$$momentums [tag ,

p] = (tag /: vectors$$momentums[tag, p] =

CalculateMomenta [spp, spm, {hs}]);
CheckSpinorsMomentum [tag, p, #] & /@ {sp, sps};
Module[{ spinors$}, DefineSpinors[spinors$ , #| & /@ {sp, sps};

tag /: vectors$$spinors[tag, p] = spinors$; spinors$])

DeclareVectorMomentum [tag_, p-, spspre : ({(1 | —-1) ...} — _)
sph : {(1 | -1) ...} —> {sp-Sp, other_} |,
spspost ¢ ({(1 | =1) ...} => ) ...] =

DeclareVectorMomentum [tag, p, spspre, sph —> {other, sp[[1l]]},

spspost] /; Length[sp] = 1

DeclareVectorMomentum [tag-, p-, spspre : ({(1 | =1) ...} — _)
sph : {(1 | -1) ...} — {other., sp-Sp} ,
spspost : ({(1 | -1) ...} — _) ...] =

DeclareVectorMomentum [tag, p, spspre, sph —> {sp[[1]], other},
spspost] /; Length[sp] = 1

DeclareVectorMomentum [tag-, p

-
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W LU S ) > (Y Y | Se)) ] =
505 Module[{sp$},

s0s  DeclareVectorMomentum [tag, p,

w7 Sequence @@ (#[[1,

808 1, 55 =2]] = ({sp8[1],

809 sp$[—1]1} //. ((spS[#[[1, —1]]] = #[[2]]) & /@ #)) &) /@
810 GatherBy [sp, #[[1, ;; —2]] &]]]

811

s12 (x Remove the declaration of a momenta for a specified ’tag’ x*)
s13 UndeclareVectorMomentum [ tag_ ,

814 p-] := (Remove[Evaluate|[vectors$$spinors|tag, p|]];
vectors$$spinors [tag, p] =.;

815 tag

816 tag vectors$$momentums [tag, p] =.;

S~ ~

817 tag vectors$$momentums$$defined [tag, p] =.;)

s10 (x Declare that a ’tag’ inherits all momenta values defined for another

tag *)

s20 DeclareInheritingTag[tag_,

821 parent_]| := (tag /: vectors$$momentums|tag, p-] :=

822 vectors$$momentums [ parent , pJ;

823 tag /: vectors$$spinors|[tag, p.] := vectors$$spinors|[parent, p];
824 tag /: vectors$$momentums|tag, p-] :=

825 vectors$$momentums$$defined [ parent, p];)

s27 (* FEvaluate expressions numerically x*)
s2s Ev[d., moms_]|[expr_]| :=

s20 Module[{e = expr},

sso. e //. {spinor[p., hs__Integer] :>

831 vectors$$spinors [moms, p][d, hs] /;

832 MatchQ[ vectors$$spinors [moms, p][d, hs], {_-_List}],

833 spinorbar [p-, hs__Integer] :>

834 AdjointSpinor[d, vectors$$spinors [moms, p|[d, hs], hs] /;

835 MatchQ[ vectors$$spinors [moms, p][d, hs], {_-_List}], (Sm | SmM) |
836 p-, h_] :> \[Gamma] Expression[d, h,

837 0] vectors$$momentums |[moms, p][[1]] —

838 Sum [\ [Gamma] Expression [d,

839 h, $8i] vectors$$momentums|[moms, p|[[$$i + 1]], {$%i, 1,
840 Length[vectors$$momentums [moms, p]] — 1}] /;

841 MatchQ [ vectors$$momentums [moms, p], _List], (Mom | ManM) [p_] :>
842 PadRight [ vectors$$momentums [moms, p|, d, 0] /;

843 MatchQ [ vectors$$momentums [moms, p], -List],

844 Sp[pre_-, \[Sigma][h_], post__] :>
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845 Table [Sp[pre, \[Gamma]Expression[d, h, \[Mu]], post], {\[Mu], O,
846 d — 1}]}]

sas (% Implementations for functions that depend on the number of dimensions

*)
s10 ConvertHels[i-] := Sequence[—i] (* 4d *)
850
s51 ConvertHels[i_, j_] := Sequence[i, —j] (x 6d =)
553 ConvertMidHelicities [sp-, 1] := FlipHelicities [sp]
s54 ConvertMidHelicities [sp-, 2] := sp
ss6 SpFlipSign[{-}, {-}, n_-] := HelicitySign[(—1)"(n + 1)] (* 4d =)

sss SpFlipSign[{-, hl1_}, {-, h2_}, n_] :=
ss0  HelicitySign[(—1)"n, hl, h2] (x 6d *)

860

s61 Sp[pre---, spinorbar[p-, hh_, h_], Sm[-_], spinor[p-, hh_, h_],

862 post___] := 0

s63 Sp[pre-__, spinorbar[p-, hh_, h_], \[Sigma][.], spinor[p-, hh_, h_],
864 post___] := 0

865

s66 SpinorExpression[4, {p0-, pl-, p2_, p3_}, 1] :=

sor  1f[TrueQ[Simplify [p0 + pl =— 0]],

sox If[TrueQ[p0 — pl =— 0],

869 Module[{sqrtp3 =

870 Sqrt[2 p3]}, {{(p3 + I p2)/Sqrt[2 p3]}, {(p3 — I p2)/
871 Sqrt[2 p3]}}],

872 Module [{sqrtpm =

873 Sart [p0 — pl]}, {{(p3 + I p2)/sqrtpm}, {sqrtpm}}]],

s7a Module[{sqrtpp = Sqrt[p0 + pl]}, {{sartpp}, {(p3 — I p2)/sqrtpp}}]]
s75 SpinorExpression[4, {p0., pl., p2., p3.}, —-1] :=

s76 If [TrueQ[Simplify [p0 + pl = 0]],

877 If [TrueQ[p0 — pl = 0],

878 Module[{sqrtp3 =

879 Sart[2 p3]}, {{(p3 + I p2)/Sqrt[2 p3]}, {(p3 — I p2)/
830 Sqrt[2 p3]}}],

ss1 Module[{sqrtpm =

Sart[p0 — pl]}, {{sartpm}, {(p3 — I p2)/sqrtpm}}]],

ss3 Module[{sqrtpp = Sqrt[p0 + pl]}, {{(p3 + I p2)/sartpp}, {sartpp}}]]
ssa AdjointMetric [4] = {{0, —1}, {1, 0}};
ss5 AdjointSign[4, i-] := 1
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ss7 CalculateMomenta [{{ppp-}, {ppmp-}}, {{pppm-}, {ppm-}}, {}] := {(ppm \
sss ppp + ppmp pppm) /2, (ppm ppp — ppmp pppm) /2,

sso I (ppm ppmp — ppp pppm) /2, (ppm ppmp + ppp pppm)/2}

501 SpinorExpression[6, {p0-, pl-, p2., p3-, p4-, p5_-}, 1, 1] :=

so2 If[TrueQ[Simplify [p0 + pl = 0]],

893 If [TrueQ[Simplify [p0 — pl = 0]],

<01 If[TrueQ[Simplify [p3 + I p2 = 0]],

895 If [TrueQ|

896 Simplify |

897 p3 — I p2 = 0]], {{(p5 + I p4)/

898 Sart[2 p5]}, {0}, {0}, {(p5 — I p4)/Sart[2 p5]}},
899 Module[{sqrtppm =

900 Sart[p3 — I p2]}, {{sartppm}, {0}, {0}, {—(p5 — I p4)/
901 sqrtppm } }17,

902 Module[{ sqrtppp =

903 Sart[p3 + I p2]}, {{sartppp}, {0}, {0}, {—(p5 — I p4)/
904 sqrtppp } }]],

905 Module[{ sqrtpm =

906 Sart [p0 — pl]}, {{(p3 + I p2)/

907 sqrtpm}, {sqrtpm}, {0}, {—(p5 — I p4)/sqrtpm}}]],

o0s  Module[{sqrtpp =

909 Sart[p0 + pl]}, {{sartpp}, {(p3 — I p2)/sartpp}, {(p5 — I p4)/
910 sqrtpp}, {0}}]]

911 SpinorExpression [6, {p0-, pl-, p2-, p3_, p4_, pb_}, 1, —1] :=

012 If [TrueQ[Simplify [p0 + pl = 0]],

913 If [TrueQ[Simplify [p0 — pl = 0]],

914 If [TrueQ[Simplify [p3 + I p2 = 0]],

915 If [TrueQ|

916 Simplify |

017 p3 — I p2 = 0]], {{0}, {-(p5 + I p4)/

918 Sart[2 p5]}, {—(p5 — I p4)/Sart[2 p5]}, {0}},

919 Module[{sqrtppm =

920 Sqrt[p3 — I p2]}, {{0}, {-(p5 + I p4)/
921 sqrtppm }, {sqrtppm}, {0}}]],

922 Module[{sqrtppp =

023 Sart[p3 + I p2]}, {{0}, {-(p5 + I p4)/
924 sqrtppp}, {sartppp}, {0}}]],

925 Module[{sqrtpm =

926 Sart [p0 — pl]}, {{(p5 + I p4)/

927 sqrepm}, {0}, {sqrtpm}, {(p3 — I p2)/sqrtpm}}]],
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{{0}, {—=(p5 + I p4)/sartpp}, {(p3 + I p2)/

sqrtpp}, {sqrtpp }}]]

SpinorExpression[6, {p0-, pl_, p2_, p3., pd4_, p5_}, —1, 1] :=

If [TrueQ[Simplify [p0 + pl = 0]],
If [TrueQ[Simplify [p0 — pl = 0]],
If [TrueQ[Simplify [p3 + I p2 = 0]],
If [TrueQ|
Simplify |
p3 — I p2 = 0]],

{{o}, {-(p5 + I p4)/

Sqrt[2 p5]}, {—(p5 — I p4)/Sqrt[2 p5]}, {0}},

Module[{ sqrtppm

Sqrt[p3 — I p2]},

sqrtppm }, {sqrtppm}, {0}}]],

Module[{sqrtppp

Sqrt[p3 + I p2]},

sqrtppp }, {sqrtppp}, {0}}]],

Module[{sqrtpm =

Sqrt [p0 — pl]}

Module[{sqrtpp =

SpinorExpression [6, {p0_, pl_, p2_, p3_,

Sqrt[p0 + pl]},

)

{{0}, {-(p5 + I p4)/

{{o}, {=(p5 + 1 p4)/

{{0}, {=(p5 + I p4)/sartpm}, {(p3 + I p2)/

sqrtpm}, {sqrtpm}}]],

{{(p5 + I p4)/

sqrtpp}, {0}, {sartpp}, {(p3 — I p2)/sqrtpp }}]]

If [TrueQ[Simplify [p0 + pl = 0]],
If [TrueQ[Simplify [p0 — pl = 0]],
If [TrueQ[Simplify [p3 + I p2 = 0]],
If[TrueQ|
Simplify |
p3 — I p2 = 0]], {{(p5 + I p4)/

197

Sart[2 p5]},

Module[{sqrtppm

p477 p5*}7 _17 _1] =

{o}, {0}, {(p5 — I p4)/Sqrt[2 p5]}},

Sart[p3 — I p2]}, {{sqrtppm},

sqrtppm } }]]
Module[{ sqrtppp

)

Sart[p3 + I p2]}, {{sartppp},

sqrtppp } }]],
Module[{sqrtpm =

{0},

{o},

{0}, {—(p5 — I p4)/

{0}, {—=(p5 — T p4)/

Sqrt [p0 — pl]}, {{sartpm}, {(p3 — I p2)/sqrtpm}, {(p5 — I p4)/
sqrtpm }, {0}}]],

Module[{ sqrtpp =

Sqrt [p0 + pl]},

{{(p3 + I p2)/
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sqrtpp }, {sartpp}, {0}, {—=(p5 — I p4)/sqrtpp}}]]
AdjointMetric [
6] = {{0, 0, 0, 1}, {0, 0, —1, 0}, {0, 1, 0, 0}, {—1, 0, O, O}};

73 AdjointSign[6, i-, j-] := HelicitySign[i j]

CalculateMomenta6dI [pp-, pm-, ppp-, ppm-, pdp-, pdm_,
h_] := {pm + pp, pp — pm, I (ppm — ppp), ppm + ppp, h I (pdm — pdp),
pdm + pdp}/2
CalculateMomenta [{{spl_-}, {sp2_-}, {sp3_-}, {sp4-}}, {{sml_}, {sm2_}, \
{sm3_}, {sm4_}}, {h : 1}] :=
CalculateMomenta6dIl [sm4 spl — sml sp4, sm3 sp2 — sm2 sp3,
sm3 spl — sml sp3, sm4 sp2 — sm2 sp4d, —sm2 spl + sml sp2,
sm4 sp3 — sm3 sp4, h]
CalculateMomenta [{{sp3-}, {sp4-}, {spl-}, {sp2-}}, {{sm3_}, {sm4d_}, \
{sml}, {sm2.}}, {h : —1}] =
CalculateMomenta6dI [sm4 spl — sml sp4, sm3 sp2 — sm2 sp3,
sm3 spl — sml sp3, sm4 sp2 — sm2 spd, —sm2 spl + sml sp2,

sm4 sp3 — sm3 sp4, h]

(x The polarisation wvector in any number of dimensions. The number of

dimensions is set by the number of signs given as each of i__ and
J-- %)
PolVec[p-, q-, i--, j--] :=
Sp[spinorbar[p, i], \[Gamma], Sm[q], spinor[p, j]]/27(3/2)/
Mp[Mom[p], Mom[q]] /; Length[{i}] = Length[{]}]
PolVec[p-, q-, i, j__, \[Mu]_] :=
Sp[spinorbar[p, i], \[Gamma][\[Mu]], Sm[q], spinor[p, j]]/27(3/2)/
Mp[Mom[p], Mom[q]] /; Length[{i}] = Length[{]}]

(* Replacements for reducing 6 dimensional momenta to 4 dimensional
momenta and the reverse x)
rep = {spinor[pp : p | g | n6p | n6bm | shift[{p, a}, z][p | q], h_,
1_] :> spinor[ppla], h, 1] —
HelicitySign [h,
1] (pp[5] —
I HelicitySign[h, 1] pp[4]) Sp[Sm[a, —h],
spinor [pp[a], —h, 1]]/2/Mp[Man[a], Mom[pp[a]]] ,
spinorbar[pp : p | q | n6p | n6m | shift[{p, q}, z][p | q], h-,
1_] :> spinorbar[pp[a], h, 1] +
HelicitySign [h,
1] (pp[5] —
I HelicitySign[h, 1] pp[4]) Sp[spinorbar[pp[a], —h, 1],
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1009 Sm[a, —h]]/2/Mp[Mom[a], Mom[pp[a]]],

1010 Mom[pp : p | q | n6p | n6m | shift[{p, a}, z][p | a]] >

1011 Mom[pp[a]] + Mom[a] (pp[4]°2 + pp[5]"2)/2/Mp[Mom[pp[a]], Mom[a]] +
1012 Sum[h Sp[spinorbar[pp[a], 1, h], \[Sigma][l], Sm[a, —1],

1013 spinor [pp[a], —1, —h]] (pp[5] + I h pp[4]), {h, {1, —1}}]/4/
1014 Mp[Mom[pp[a]], Mom[a]],

1015 Sm{pp : p | q | nbp | nbm | shift[{p, q}, z][p | q], h-] >

1016 Sp[Sm[pp[a], h]] +

1017 Sum[1 HelicitySign |

1018 h] (pp[5] —

L01o I 1 HelicitySign[h] pp[4]) (Sp[spinor[ppla], —h, 1],

1020 spinorbar [pp[a], h, —1], Sm[a, h]] —

L021 Sp[Sm[a, h], spinor[pp[al], h, —1],
1022 spinorbar [pp[a], —h, 1]] ), {1, {1, —-1}}]/2/

1023 Mp[Mom[pp[a]] , Mom[a]] + (pp[4]°2 + pp[5]°2) Sp[Sm[a, h]]/2/

1024 Mp [Mom[pp [a]] , Mom[a]]};

1025 reph [11_] := {spinor[pp : p | q | n6p | nébm | shift[{p, q}, z][p | q],
1026 ho, 1_.] :>

1027 spinor [pp[a], h, 1] —

1028 HelicitySign [h,

1029 1] (pp[5] —

1030 I HelicitySign[h, 1] pp[4]) Sp[Sm[a, —h],

1031 spinor [pp[a], —h, 1]]/2/Mp[Mom[a], Mom[pp[a]]],

1032 spinorbar[pp : p | q | nép | n6m | shift[{p, a}, z][p | q], h-,
1033 1_] :> spinorbar[ppla], h, 1] +

1034 HelicitySign [h,

1035 1] (pp[5] -

1036 I HelicitySign[h, 1] pp[4]) Sp[spinorbar[pp[a], —h, 1],
1037 Sm[a, —h]]/2/Mp[Mom[a], Mom[pp[a]]],

1088 Mom[pp : p | q | n6p | ném | shift[{p, a}, z][p | q]] >

1039 Mom[pp[a]] + Mom[a] (pp[4]°2 + pp[5]"2)/2/Mp[Mom[pp[a]], Mom[a]] +
1040 Sum|[ HelicitySign [h] Sp[spinorbar[pp[a], 1, h], \[Sigma][1],

on Smla, —1],

1042 spinor [pp[a], —1, —h]] (pp[5] +

1043 I HelicitySign[h] pp[4]), {h, {11, —11}}]/4/

1044 Mp[Mom[pp[a]], Mom[a]],

1045 Sm[pp : p | q | nbp | n6m | shift[{p, q}, z][p | q], h-] :>
1046 Sp[Sm[pp[a], h]] +

1047 Sum| HelicitySign [1] HelicitySign [

n (ppl5] -

1049 I HelicitySign[1l] HelicitySign [h] pp[4]) (Sp|

1050 spinor [pp[a], —h, 1], spinorbar[pp[a], h, —1], Sm[a, h]] —
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Sp[Sm[a, h], spinor|[pp[a], h, —1],

spinorbar [pp[a], —h, 1]] ), {1, {11, —=11}}]/2/
Mp[Mom[pp[a]], Mom[a]] + (pp[4]°2 + pp[5]°2) Sp[Sm[a, h]]/2/
Mp[Mom([pp[a]], Mom[a]]};

5 unrep = {spinor[(pp : p | q | shift[{p, a}, z][p | a])[a], b, 1] :>

spinor [pp, h, 1] +
HelicitySign [h,
1] (pp[5] -
I HelicitySign[h, 1] pp[4]) Sp[Sm[a, —h], spinor[pp, —h, 1]]/
2/Mp[Mom[a], Mom[pp]],
spinorbar [(pp : p | q | shift[{p, a}, z][p | q])[a], h-, 1] :>
spinorbar [pp, h, 1] —
HelicitySign [h,
1] (pp[5] —
I HelicitySign[h, 1] pp[4]) Sp[spinorbar[pp, —h, 1],
Sm[a, —h]]/2/Mp[Mom[a], Mom[pp]],
Mom[(pp : p | a | shift[{p, a}, z][p | a])[a]] >
Mom[pp] + Mom[a] (pp[4]°2 + pp[5]°2)/2/Mp[Mom[pp[a]], Mom[a]] —
Sum[h Sp[spinorbar[pp, 1, h], \[Sigma][l], Sm[a, —1],
spinor [pp, —1, —h]] (pp[5] + I h pp[4]), {h, {1, —1}}]/4/
Mp[Mom[pp], Mom[a]],
Sm[(pp : p | q | shift[{p, a}, z][p | q])[a], h-] :>
Sp[Sm[pp, h]] —
Sum[] HelicitySign |
h] (pp[5] —
I 1 HelicitySign[h] pp[4]) (Sp[spinor[pp, —h, 1],
spinorbar [pp, h, —1], Sm[a, h]] —
Sp[Sm[a, h], spinor[pp, h, —1],
spinorbar [pp, —h, 1]] ), {1, {1, —1}}]/2/
Mp[Mom[pp], Mom[a]] + (pp[4]°2 + pp[5]°2) Sp[Sm[a, h]]/2/
Mp[Mom[pp], Mom[a]]};

tomu = {(pp : p | a)|
4] :> (I/2)+(Subsuperscript[\[Mu], pp, "—7"] —
Subsuperscript [\ [Mu], pp, "+7]), (pp : p | a)]
5] :> (Subsuperscript[\[Mu], pp, "—"] +
Subsuperscript [\ [Mu], pp, "+7]) /2};
tomuh[h_] = {(pp : p | a)[4] > (I/2)x
HelicitySign [
h] (Subsuperscript[\[Mu], pp, —h] —
Subsuperscript [\ [Mu], pp, h]), (pp : p | q)]
5] :> (Subsuperscript[\[Mu], pp, —h] +
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Subsuperscript [\ [Mu], pp, h])/2}

tomuhp [h-] := {(pp : p | a)[4] > (I/2)%

HelicitySign [

h[pp]] (Subsuperscript[\[Mu], pp, —h[pp]] -
Subsuperscript [\ [Mu], pp, hipp]]), (pp : p | a)|

5] :> (Subsuperscript[\[Mu], pp, —h[pp]] +
Subsuperscript [\ [Mu], pp, h[pp]])/2}

1100 frommu = {Subsuperscript [\ [Mu], p_, "+”] > p[5] + I p[4],

1101

1102

Subsuperscript [\ [Mu], p-, "-”] :> p[5] — I p[4],

Subsuperscript [\ [Mu], p-, h_] :> p[5] + I HelicitySign[h] p[4]}

201
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