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Abstract	
The	osmium	isotopic	composition	of	seawater	(187Os/188Os)	reflects	a	balance	between	

radiogenic	continental	sources	and	unradiogenic	mantle	and	extraterrestrial	derived	

sources.	Reconstruction	of	this	value	has	allowed	us	to	unlock	vital	information	about	a	

series	of	Earth	system	processes,	both	today	and	in	Earth’s	geological	past.	This	body	of	

work	looks	to	reconstruct	the	187Os/188Os	of	seawater	for	past	and	present	oceans	using	the	

187Os/188Os	composition	of	shales	and	macroalgae	(seaweed)	respectively.		

The	187Os/188Os	composition	of	Icelandic	(0.16	to	0.99)	and	Japanese	(0.16	to	1.09)	

macroalgae	are	highly	variable,	and	reflect	the	mixing	between	multiple	sources.	The	

187Os/188Os	of	Icelandic	coastal	waters	is	dominated	by	seawater	and	local	river	catchments,	

and	has	been	utilised	to	trace	the	influence	of	basaltic	weathering	on	the	global	Os	cycle.	

The	187Os/188Os	of	Japanese	coastal	waters	is	dominated	by	seawater	and	river	catchments	

draining	Miocene-Holocene	continental	rocks	or	anthropogenic	sources,	and	has	been	

utilised	to	trace	mankind’s	impact	on	the	global	Os	cycle.	The	187Os/188Os	profiles	of	shales	

from	the	Silurian	Ireviken,	Mulde,	Lau	and	Klonk	biovents	are	similar	to	those	previously	

recorded	for	the	Hirnantian	glaciation.	This	data	suggests	the	Silurian	has	been	punctuated	

by	several	glaciations	associated	with	fluctuations	in	global	temperatures,	sea-level	and	the	

carbon	cycle.	When	combined	with	the	Li	isotopic	(δ7Li)	composition	of	carbonates,	this	

study	suggests	glacial	processes	caused	large	changes	in	oxidative	and	silicate	weathering.	

This	study	has	successfully	utilised	macroalgae	as	a	proxy	for	the	187Os/188Os	of	

seawater	and	proven	it	can	become	a	powerful	tracer	of	Earth	system	processes	and	

human	activity.	This	study	has	also	redefined	the	Silurian	as	an	icehouse,	and	suggests	the	

long	term	decline	in	atmospheric	CO2,	due	to	orogeny,	land-plant	diversification,	volcanic-

arc	degassing	and/or	paleogeography,	was	reversed	by	periodic	glaciations	which	acted	to	

enhance	oxidative	weathering	whilst	suppressing	silicate	weathering.		 	
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Temporal	and	spatial	variations	in	the	isotopic	composition	of	seawater	reflect	the	effects	

of	fluctuation	in	Earth	system	processes	on	ocean	chemistry.	Many	radiogenic	isotope	

systems	in	seawater	are	sensitive	to	variations	in	continental	weathering	and	erosion,	

making	them	a	powerful	archive	for	reconstructing	responses	to	climatic	or	tectonic	

change,	with	silicate	weathering	receiving	special	attention	due	its	perceived	control	on	

atmospheric	CO2	over	geological	timescales	(Berner	et	al.,	1983;	Walker	et	al.,	1981).	Of	

these	radiogenic	systems,	the	rubidium-strontium	(87Rb-86Sr)	radiogenic	isotope	system	has	

been	the	most	widely	used,	with	variations	in	the	marine	87Sr/86Sr	record	reflecting	

fluctuations	in	continental	inputs	caused	by	orogenesis	(Raymo	et	al.,	1988)	and	glaciations	

(Armstrong,	1971).	However,	as	a	consequence	of	the	long	residence	time	of	Sr	in	the	

oceans	(2	-	4	Myr)	short-term	fluctuations	in	inputs	are	hard	to	detect	(Richter	and	

Turekian,	1993).		

The	osmium	isotopic	composition	of	seawater	(187Os/188Os)	reflects	a	balance	

between	radiogenic	continental	sources	and	unradiogenic	mantle	and	extraterrestrial	

derived	sources	(Peucker-Ehrenbrink	and	Ravizza,	2000).	Therefore,	much	like	Sr	isotopes,	

Os	isotopes	have	been	utilised	to	infer	information	about	past	changes	in	continental	

weathering	(See	Peucker-Ehrenbrink	and	Ravizza,	2012).	However,	unlike	Sr,	the	residence	

time	of	Os	in	the	ocean	(1-50	kyr)	is	sufficiently	short	to	respond	to	short-periodic	

fluctuations	in	input,	whilst	still	being	long	enough	to	attain	a	global	signal	(Levasseur	et	al.,	

1999;	Oxburgh,	2001;	Rooney	et	al.,	2016).	Therefore,	the	187Os/188Os	composition	of	

seawater	offers	the	ability	to	distinguish	between	high-frequency	climatic	and	low	

frequency	tectonic	forcing	(Peucker-Ehrenbrink	and	Ravizza,	2000).	This	has	allowed	us	to	

unlock	vital	information	about	a	series	of	Earth	system	processes	in	the	Earth’s	geological	

past	such	as:	flood	basalt	volcanism	(Cohen	and	Coe,	2002;	Du	Vivier	et	al.,	2014;	Ravizza	

and	Peucker-Ehrenbrink,	2003;	Turgeon	and	Creaser,	2008);	paleoweathering	(Finlay	et	al.,	

2010;	Ravizza	et	al.,	2001;	Schmitz	et	al.,	2004)	basin	connectivity	(Poirier	and	Hillaire-
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Marcel,	2009);	and,	bolide	impacts	(Paquay	et	al.,	2008).	However,	despite	three	decades	

of	work,	there	still	remains	a	great	dearth	of	data	187Os/188Os	for	pre-Cenozoic	time	(See	

Peucker-Ehrenbrink	and	Ravizza,	2012).	In	part,	this	study	looks	to	correct	this	by	

determining	the	187Os/188Os	of	seawater	for	the	Silurian.	

In	the	modern	ocean,	the	187Os/188Os	composition	of	seawater	has	been	

reasonably	well	constrained	through	direct	analysis	using	ultra-low	blank	techniques	

capable	of	oxidising	all	osmium	to	a	common	oxidation	state	(Chen	and	Sharma,	2009;	

Gannoun	and	Burton,	2014;	Levasseur	et	al.,	1998;	Paul	et	al.,	2009).	Nevertheless,	direct	

analysis	of	seawater	remains	analytically	challenging	due	to	the	low	concentrations	

(Peucker-Ehrenbrink	et	al.,	2013),	and	measurements	of	rivers,	estuaries	and	coastal	

waters	are	therefore	sparse	(Gannoun	et	al.,	2006;	Huh	et	al.,	2004;	Sharma	et	al.,	2007;	

Sharma	and	Wasserburg,	1997;	Turekian	et	al.,	2007).	The	composition	of	the	global	

riverine	inputs	therefore	remains	poorly	constrained,	raising	the	possibility	that	the	

osmium	input	into	the	ocean	could	be	underestimated	by	a	factor	of	~3	(Oxburgh,	2001).	

This	may	have	led	to	a	discrepancy	between	oceanic	osmium	residence	times	estimated	

from	mass	balance	calculations	(35	-	50	kyr)	and	those	inferred	from	the	evolution	(1	-	4	

kyr)	of	the	osmium	isotope	record	(Levasseur	et	al.,	1999;	Oxburgh,	2001;	Rooney	et	al.,	

2016;	Sharma	et	al.,	1999).		

Recent	work	suggests	macroalgae	concentrates	Os	(with	abundances	that	vary	

from	12.6	to	78.5	ppt),	whilst	maintaining	the	187Os/188Os	composition	of	the	seawater	it	

inhabits	(Racionero-Gómez	et	al.,	2016;	Racionero-Gómez	et	al.,	2017).	This	suggests	that	

macroalgae	could	act	as	a	proxy	for	the	187Os/188Os	composition	of	local	waters	whilst	

removing	some	of	the	analytical	challenges	associated	with	direct	analysis	of	seawater	i.e.	

ultra-low	concentrations	and	multiple	oxidation	states.	Macroalgae	existing	in	coastal	
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waters,	therefore,	should	record	an	187Os/188Os	signature	that	reflects	a	balance	of	local	

inputs,	including	riverine	input,	local	bedrock,	anthropogenic	activity	and	seawater.	

In	this	body	of	work	we	will	apply	the	macroalgae-Os-seawater	proxy	to	real	

world	settings	to	test	its	ability	to	record	Earth	system	processes	during	the	present.	In	

Chapter	2	we	will	utilise	macroalgae	collected	from	Icelandic	coastal	waters	to	trace	

fluctuations	in	the	187Os/188Os	of	freshwater	and	seawater	around	Iceland,	and	determine	

the	influence	of	basaltic	weathering	on	the	global	osmium	budget.	In	Chapter	3	we	will	

utilise	macroalgae	from	Japanese	coastal	waters	to	help	constrain	the	anthropogenic	

influence	on	the	global	Os	cycle.	Finally,	in	Chapter	4	we	will	utilise	the	Re-Os	isotope	

systematics	of	shales	to	determine	fluctuations	in	the	187Os/188Os	of	seawater	during	the	

Silurian,	and	shed	light	on	the	mechanisms	behind	abrupt	climatic	change	during	this	time.		

1.1	The	187Os/188Os	of	contemporary	seawater	

Osmium	is	among	the	least	abundant	elements	in	seawater,	therefore	early	attempts	to	

analyse	the	concentration	and	isotopic	composition	of	seawater	directly	were	plagued	with	

difficulties.	Koide	et	al.	(1996)	used	a	25	L	sample	of	seawater	spiked	with	a	190Os	tracer,	

separating	Os	with	anion-exchange	chromatography	and	them	purifying	it	using	distillation	

techniques.	Sharma	et	al.	(1997)	reduced	seawater	and	tracer	Os	by	bubbling	SO2(g)	and	

then	co-precipitating	Os	with	iron	oxyhydroxide	in	4-10	L	samples.	The	problem	with	these	

techniques	is	that	they	require	handling	a	large	volume	of	sample.	Three	subsequent	

techniques	attempted	to	use	smaller	volumes	of	sample	(50	g	to	1.5	kg),	and	tried	to	

equilibrate	tracer	and	water	Os	by	oxidising	it	to	a	common	oxidation	state	(OsO4).	

However,	Chen	and	Sharma	(2009)	discovered	that	each	of	these	methods	did	not	yield	

identical	concentrations	to	those	of	Woodhouse	et	al.	(1999).	They	found	higher	

temperatures	(300°C)	were	required	to	oxidise	all	species	of	Os	present	in	seawater.	With	a	
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reliable	chemical	separation	technique	in	hand	it	has	become	possible	to	measure	Os,	

although	still	analytical	challenging,	with	as	little	as	20g	of	seawater	(Sharma	et	al.,	2012).	

Despite	this	capability,	problems	still	arise	from	the	nature	of	Os	in	seawater.	

Extremely	low	concentrations	of	Os	in	seawater	i.e.	90fg	in	100ml	of	seawater,	means	you	

get	significant	interference	from	procedural	blanks	of	~3.6fg	(Chen	and	Sharma,	2009).	This	

is	compounded	by	contamination	from	the	use	of	polyethylene	bottles	for	seawater	

storage	(Sharma	et	al,	2012).	We	propose	to	develop	a	new	proxy	for	the	Os	isotopic	

composition	of	seawater	based	on	Os	measurements	of	macroalgae,	which	does	not	suffer	

from	these	problems	i.e.	Os	concentrations	in	seaweed	are	>50	pg/g	and	therefore	far	

higher	than	the	procedural	blank	(~50	fg),	whilst	the	long	term	storage	of	seaweed	does	

not	suffer	from	the	storage	techniques	used.	

1.1.1	Osmium	isotopes	in	macroalgae	

Work	conducted	by	B.	Racionero-Gómez	and	myself	at	the	University	of	Durham	looked	

into	the	biological	uptake	of	Re	(Racionero-Gómez	et	al.,	2016)	and	Os	(Racionero	Gomez	

et	al.,	2017)	into	macroalgae.	These	studies	utilised	a	single	macroalgae	species,	Fucus	

vesiculosus,	and	analysed	its	Re	and	Os	abundance	and	uptake,	as	well	as	assessing	if	it	

could	record	the	Os	isotope	composition	of	the	seawater	in	which	it	lived.	It	was	

demonstrated	that	Os	and	Re	are	not	located	in	one	specific	biological	structure,	but	found	

throughout	the	organism.	Osmium	uptake	was	determined	by	culturing	F.	vesiculosus	with	

different	concentrations	of	Os	with	a	known	187Os/188Os	composition	(~0.16).	The	cultured	

samples	took	on	the	isotopic	composition	of	the	culture	in	which	they	lived,	which	is	

significantly	different	to	the	background	composition	of	un-doped	seawater	(~0.94)	(Fig.	1).	

This	suggests	macroalgae	can	attain	the	isotopic	composition	of	seawater,	and	therefore	

could	potentially	act	as	a	proxy	for	understanding	a	variety	of	Earth	system	processes.			
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Fig.	1.	Osmium	(ppt)	accumulation	(circles)	and	187Os/188Os	compositions	(squares)	in	F.	

versiculosus	under	different	culture	media	Os	abundances.	See	Racionero-Gómez	et	al.	

(2017)	for	more	details.			

	

1.1.2	Osmium	isotopes	in	Iceland	

Iceland	consists	of	an	essentially	monolithological	basaltic	terrain	of	varying	ages	(historic	

to	12	Ma),	yielding	a	large	range	in	the	187Os/188Os	(0.15	to	1.04)	of	riverine	dissolved	loads	

(Gannoun	et	al.,	2006).	Unradiogenic	187Os/188Os	values	can	be	explained	by	congruent	

basalt	weathering	and/or	hydrothermal	input,	with	radiogenic	187Os/188Os	values	arising	

from	two	distinct	processes:	the	187Os/188Os	of	glacier-fed	rivers	can	be	explained	by	the	

entrainment	of	seawater	aerosols	into	precipitation	and	subsequent	glacial	melting;	while	

the	187Os/188Os	composition	of	direct-runoff	and	spring-fed	rivers	can	be	explained	by	the	

incongruent	weathering	of	certain	primary	basaltic	minerals	that	possess	exceptionally	high	
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187Re/188Os,	which	over	time	evolves	to	radiogenic	187Os/188Os	values	(Gannoun	et	al.,	

2004).		

The	chemistry	of	macroalgae	from	shallow	coastal	waters	is	dominated	by	the	

brackish	conditions	in	which	it	lives.	Macroalgae	therefore	come	in	contact	with	both	fresh	

water	and	seawater	sources	through	a	single	tidal	cycle,	and	in	theory,	the	187Os/188Os	

composition	of	macroalgae	should	represent	a	mixing	between	the	187Os/188Os	composition	

of	these	two	sources.	In	Iceland,	as	previously	explained,	the	187Os/188Os	composition	of	

riverine	inputs	will	be	highly	variable,	ranging	from	unradiogenic	values	near	the	central	rift	

zone,	through	to	highly	radiogenic	values	in	the	outer	parts	of	Iceland.	This	diverse	range	of	

187Os/188Os	compositions	makes	Iceland	a	unique	environment	with	which	to	test	the	ability	

of	macroalgae	to	record	the	187Os/188Os	composition	of	the	seawater	it	inhabits.	

Chapter	2	presents	Re-Os	abundance	and	isotope	data	for	macroalgae	and	

dissolved	and	bed	loads	from	coastal	waters	and	rivers	draining	basaltic	watersheds	of	

Iceland.	This	represents	the	first	examination	of	the	influence	of	both	seawater	and	river	

water	osmium	on	the	187Os/188Os	composition	of	macroalgae	and	demonstrates	the	ability	

of	macroalgae	to	trace	fluctuations	in	the	187Os/188Os	of	freshwater	and	seawater	around	

Iceland.	Chapter	2	utilises	this	to	determine	the	influence	of	basaltic	weathering	on	the	

global	osmium	budget.	

1.1.3	Osmium	isotopes	in	Japan	

The	present-day	open	ocean	seawater	187Os/188Os	value	of	~1.06	reflects	the	balance	

between	unradiogenic	mantle-derived	Os	and	radiogenic	continental	Os	(Peucker-	

Ehrenbrink,	&	Ravizza,	2000).	Dissolution	of	background	extraterrestrial	matter	contributes	

little	to	the	unradiogenic	sources	of	Os.	On	the	other	hand,	Os	released	by	anthropogenic	

activities	has	been	detected	in	coastal	sediments,	lakes	and	estuaries	from	sources	such	as	

sewage	sludge,	catalytic	convertors,	and	use	as	a	staining	reagent	in	biomedical	research	
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(Esser	and	Turekian,	1993;	Rauch	et	al.,	2004;	Ravizza	and	Bothner,	1996;	Turekian	et	al.,	

2007;	Williams	et	al.,	1997).	Atmospheric	anthropogenic	Os	attributed	to	the	smelting	of	

various	ores	and	catalytic	convertors,	has	also	been	detected	in	rain	and	snow,	which	is	

impacting	Os	in	oceanic	surface	waters	and	therefore	the	global	Os	budget	(Chen	et	al.,	

2009).	These	anthropogenic	sources	are	generally	characterized	by	unradiogenic	

187Os/188Os	compositions	(~0.12)	related	to	the	isotopic	composition	of	PGEs	refined	for	

human	use.			

Japan	offers	a	unique	place	in	which	to	study	the	influence	of	anthropogenic	

processes	on	regional	variations	in	the	marine	Os	cycle.	Large,	densely	populated,	

sprawling	metropolitan	areas	often	fall	in	close	proximity	to	coastal	waters,	inlet	seas	or	

bays.	Waters	in	these	regions	are	likely	to	be	dominated	by	unradiogenic	Os	produced	by	

sewage	treatment	plants,	hospitals,	refineries	and	vehicle	exhaust.		Moreover,	these	

metropolitan	areas	are	often	juxtaposed	to	sparsely	populated	rural	and/or	mountainous	

regions,	with	little	human	activity	and	therefore	anthropogenic	influence.	The	187Os/188Os	

composition	of	coastal	waters	in	these	regions	is	therefore	likely	to	be	dominated	by	

natural	sources	of	Os.	In	particular,	Japanese	river	catchments	are	dominated	by	the	

weathering	of	Miocene-Holocene	volcanic	and	sedimentary	rocks	of	radiogenic	187Os/188Os	

compositions.	As	previously	explained,	the	187Os/188Os	composition	of	macroalgae	from	

coastal	waters	likely	represents	a	mixing	between	the	187Os/188Os	composition	of	seawater	

and	local	freshwaters	inputs.	Macroalgae	from	densely	populated	regions	of	Japan	will	

therefore	likely	show	a	strong	influence	from	highly	unradiogenic	PGE	187Os/188Os	values	

derived	from	local	human	activity.	Meanwhile,	the	187Os/188Os	composition	of	macroalgae	

from	more	sparsely	populated	regions	will	show	a	stronger	influence	from	natural	

freshwater	sources.		
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Chapter	3	presents	Re-Os	abundance	and	isotope	data	for	macroalgae	from	

Tokyo	Bay,	Osaka	Bay,	Ise	Bay,	Mikawa	Bay,	Izu	Peninsula,	Noto	Peninsula,	Hokkaido	and	

northern	Honshu.	Tokyo	Bay,	Osaka	Bay	and	Ise/Mikawa	Bay	lie	in	close	proximity	to	the	

densely	populated	Kanto	(Tokyo-Yokohama),	Keihanshin	(Osaka-Kobe)	and	Chukyo	

(Nagoya)	metropolitan	areas.	The	187Os/188Os	signature	from	these	regions	is	much	lower	

than	expected	for	natural	river	and	oceanic	systems,	but	similar	to	the	isotope	composition	

of	PGE	ores.	This	suggests	that	human	activity	has	influenced	the	Os	isotopic	composition	

of	macroalgae,	and	therefore	seawater,	through	the	burning	of	municipal	and/or	hospital	

waste,	processing	of	sewage	and	the	extensive	use	of	automobiles	in	these	areas.	The	Izu	

Peninsula,	Noto	Peninsula,	Hokkaido	and	northern	Honshu	exhibit	187Os/188Os	values	similar	

to	global	river	water	or	Pacific	seawater	measurements,	suggesting	little	influence	from	

human	activity.	These	results	demonstrate	the	ability	of	macroalgae	to	trace	fluctuations	in	

the	187Os/188Os	of	freshwater	and	seawater	around	Japan,	and	utilise	this	to	determine	the	

influence	of	human	activity	on	the	global	osmium	budget.	

1.2	The	187Os/188Os	of	seawater	during	the	Silurian	

1.2.1	Climatic	change	during	the	Silurian	

In	contrast	to	previous	views	that	the	Silurian	was	an	environmentally	stable	period	

between	the	Ordovician	icehouse	and	the	Devonian	greenhouse	(Munnecke	et	al.,	2010),	it	

has	more	recently	become	apparent	that	the	Silurian	is	characterised	by	a	highly	dynamic	

climate	attenuated	by	multiple	short-lived	events,	strong	eustatic	sea	level	change	and	

oceanic	turnover	associated	with	extinction	events	after	a	recovery	from	the	end-

Ordovician	glaciation	(Calner,	2008;	Melchin	et	al.,	2012).	The	carbon	isotopic	composition	

of	carbonate	(δ13Ccarb)	through	the	Silurian	is	highly	variable,	indicating	the	climate	system	

and	carbon	cycle	were	probably	more	unstable	than	any	other	Phanerozoic	period	and	can	
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be	regarded	as	one	of	the	most	volatile	periods	when	considering	the	ocean-atmosphere	

system	(Cramer	and	Saltzman,	2005).	

The	Silurian	through	to	the	early	Devonian	is	marked	by	four	large-amplitude	

positive	carbon	and	oxygen	isotope	excursions,	with	the	δ13Ccarb	exceeding	+5	‰	during	the	

Ireviken,	Mulde,	Lau	and	Klonk	bioevents.	The	Lau	carbon	isotope	excursion	(>	+8	‰)	is	

probably	the	largest	post	Cambrian	δ13Ccarb	excursion	of	the	entire	Phanerozoic.	Such	

excursions	are	far	larger	than	anything	in	the	Mesozoic	or	Cenozoic,	and	therefore	any	

classical	interpretations	concerning	productivity	changes	are	not	viable	(Bickert	et	al.,	

1997).	The	δ13Ccarb	isotope	excursions	are	associated	with	significant	positive	oxygen	

isotope	(δ18O)	excursions	of	approximately	1	-	3.5	‰	magnitude	(Lehnert	et	al.,	2010;	

Munnecke	et	al.,	2010;	Žigaitė	et	al.,	2010),	which	are	too	large	to	be	explained	by	either	

temperature,	ice	volume	or	salinity	alone	(Bickert	et	al.,	1997).	However,	despite	these	

discoveries	and	over	two	decades	of	research,	the	cause	of	these	climate	perturbations	is	

still	not	understood.	

Traditional	explanations	for	these	events	have	invoked	a	shift	between	two	

stable	oceanic-climate	states,	driven	by	changes	in	the	location	of	deep-water	formation	

from	high	to	low	latitudes	(Jeppsson,	1990),	or	global	precipitation	rates	and	continental	

runoff	(Bickert	et	al.,	1997).	However,	these	early	attempts	to	explain	Silurian	climatic	

events	have	received	much	criticism	(Johnson,	2006;	Kaljo	et	al.,	2003;	Loydell,	1998).	More	

recently	it	has	been	postulated	that	Silurian	climatic	change	could	have	been	driven	by	

glacial	expansion	over	Gondwana,	inferred	in	part	from	positive	oxygen	isotope	shifts	

(Trotter	et	al.,	2016)	coupled	to	significant	eustatic	sea-level	change	(Díaz-Martínez	and	

Grahn,	2007;	Lehnert	et	al.,	2010),	much	like	the	Late	Ordovician	that	preceded	it	(Algeo	et	

al.,	2016;	Harper	et	al.,	2014).	However,	the	lack	of	glacial	sediments	in	the	stratigraphic	
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record	for	much	of	the	Silurian	(post-Wenlock)	has	hampered	this	notion	(Caputo,	1998;	

Díaz-Martínez	and	Grahn,	2007;	Grahn	and	Caputo,	1992).	

1.2.2	Application	of	the	Re-Os	system	to	the	Silurian		

To	shed	light	on	the	possible	mechanisms	behind	these	abrupt	climate	perturbations,	we	

have	applied	the	Re-Os	isotope	system	to	organic	rich	shales	from	geological	formations	

that	span	the	Ireviken,	Mulde,	Lau	and	Klonk	bioevents.	The	187Os/188Os																																																								

of	organic	rich	shales	mimics	that	of	seawater	at	the	time	of	deposition,	and	reflects	a	

balance	between	radiogenic	continental	sources	and	unradiogenic	mantle	and	

extraterrestrial	derived	sources	(Peucker-Ehrenbrink	and	Ravizza,	2000).	Therefore,	much	

like	Sr	isotopes,	Os	isotopes	have	been	utilised	to	infer	information	about	past	changes	in	

continental	weathering.	However,	unlike	Sr,	the	residence	time	of	Os	in	the	ocean	is	

sufficiently	short	to	respond	to	short-periodic	fluctuations	in	input,	whilst	still	being	long	

enough	to	attain	a	global	signal	(Levasseur	et	al,	1998;	Oxburgh,	2001).	Therefore,	the	Os	

isotope	system	offers	the	ability	to	distinguish	between	high-frequency	climatic	and	low	

frequency	tectonic	forcing	(Peucker-Ehrenbrink	and	Ravizza,	2000).		

In	Chapter	4	osmium	isotope	profiles	for	the	Ireviken,	Mulde,	Lau	and	Klonk	

bioevents	are	presented.	These	profiles	are	similar	to	the	Hirnantian	glaciation	(Finlay	et	

al.,	2010),	which	occurred	some	10	Myr	prior	to	the	Ireviken	Event.	The	187Os/188Os	profiles	

are	related	to	the	weathering	of	organic-rich	sedimentary	rocks	during	the	expansion	of	

continental	ice	over	Gondwana,	which	delivers	radiogenic	Os	to	the	ocean.	This	work	

suggests	climatic	perturbations	during	the	Silurian	are	related	to	glaciations	triggered	by	

declining	atmospheric	CO2	and	temperatures.	Once	the	glaciation	was	triggered,	enhanced	

oxidative	weathering	of	organic	and	sulphide	rich	sedimentary	rocks	led	to	a	release	in	CO2	

to	the	atmosphere	which	helped	reverse	global	cooling.		
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1.2.3	Application	of	the	Lithium	isotope	system	to	the	Silurian	

As	previously	explained,	variations	in	Os	isotopes	can	also	be	controlled	by	factors	other	

than	continental	weathering,	such	as	fluctuations	in	hydrothermal	alteration	of	juvenile	

basaltic	crust	and	extra-terrestrial	inputs	(Peucker-Ehrenbrink	and	Ravizza,	2000).	To	test	

the	validity	of	our	Os	isotope	curves	as	tracers	of	continental	weathering,	we	also	utilised	

other	continental	weathering	proxies.	The	Li	isotopic	composition	of	seawater	(δ7Li)	

reflects	a	balance	between	the	inputs	of	Li	from	rivers	(weathering	of	continental	silicate	

rocks)	and	mid-ocean	ridge	spreading	centres	(weathering	of	oceanic	silicate	rocks)	and	the	

outputs	of	Li	from	the	incorporation	into	marine	sediments	and	altered	oceanic	crust	

(Misra	and	Froelich,	2012).	The	δ7Li	of	carbonates	is	seen	to	reflect	the	δ7Li	of	seawater	

through	time,	and	has	been	used	to	reconstruct	continental	silicate	weathering	rates	in	the	

geological	past	(Misra	and	Froelich,	2012).	Recently,	Pogge	von	Strandmann	et	al.	(in	

review)	utilised	Li	isotope	measurements	in	carbonates	and	shales	that	span	the	Hirnantian	

glaciation.	A	peak	in	δ7Li	occurs	during	the	trough	in	Os	isotopes	(Finlay	et	al.,	2010)	

associated	with	glacial	maximum.	This	shows	a	strong	decline	in	silicate	weathering,	

reducing	the	effect	of	the	Earth’s	primary	CO2	removal	mechanism,	preventing	further	

cooling	and	allowing	temperatures	to	build-up,	leading	to	deglaciation.	

To	test	the	hypothesis	in	section	1.2.2	we	generated	Li	isotope	records	in	

carbonates	from	sections	spanning	the	Ireviken,	Mulde,	Lau	and	Klonk	bioevents	(See	

Chapter	4).	Lithium	isotope	records	show	a	similar	profile	to	the	Hirnantian	glaciation	

suggesting	suppression	in	continental	silicate	weathering	under	enhanced	continental	ice	

sheets.	This	reduces	one	of	the	Earth’s	major	CO2	withdrawal	mechanisms,	and	when	

combined	with	enhanced	oxidative	weathering,	leads	to	greater	levels	of	atmospheric	CO2.	

This	study	suggests	that	the	Earth	has	a	stabilising	negative	feedback	mechanism	in	which	a	

reduction	in	atmospheric	CO2	and	global	temperatures	which	leads	to	enhanced	
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continental	ice	is	ultimately	reversed	by	weathering	processes	which	act	to	increase	

atmospheric	CO2	and	temperatures,	preventing	a	runaway	icehouse.				
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Chapter	2	

Tracing	the	influence	of	weathering	processes	on	coastal	waters	surrounding	a	

basaltic	terrain	using	osmium	isotopes	in	macroalgae*	

	

	

*A	version	of	this	chapter	will	be	submitted	to	Global	Biogeochemical	Cycles,	co-authored	

with	David	Selby,	Abdelmouchine	Gannoun,	Kevin	W.	Burton	and	Jeremy	M.	Lloyd.	
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This	study	presents	rhenium	(Re)	and	osmium	(Os)	abundance	and	isotope	data	for	

macroalgae,	dissolved	load	and	bedload	from	the	Icelandic	coastal	waters,	an	environment	

adjacent	to	predominantly	basaltic	terrains,	ranging	in	age	from	historic	to	ca.	12	Ma.	Both	

the	Re	and	Os	abundance	in	macroalgae	are	shown	to	be	primarily	controlled	by	uptake	

from	the	dissolved	load	of	local	seawater.	In	a	habitat	with	varying	salinity	through	the	tidal	

cycle,	macroalgae	Re	and	Os	abundances	vary,	depending	on	the	relative	influence	of	local	

freshwater	inputs.	Incorporation	of	Re	and	Os	into	macroalgae	is	complicated	by	additional	

Re	uptake	from	suspended	particulates	and/or	bedload,	which	is	not	observed	for	Os,	

suggesting	different	uptake	pathways	for	both	Re	and	Os.	The	187Os/188Os	(0.16	to	0.99)	and	

187Re/188Os	(~65	to	40,320)	compositions	of	macroalgae	are	highly	variable,	and	can	be	

explained	in	terms	of	an	unradiogenic	187Os/188Os	contribution	with	low	187Re/188Os	from	

rivers	draining	younger	catchments	that	have	undergone	congruent	basalt	weathering	

(and/or	hydrothermal	input),	and	a	radiogenic	187Os/188Os	contribution	from	two	distinct	

sources:	rivers	draining	older	catchments	that	have	undergone	incongruent	weathering	of	

primary	basaltic	minerals	that	possess	exceptionally	high	187Re/188Os	ratios	that	have	

evolved	to	radiogenic	187Os/188Os	ratios;	and,	North	Atlantic	seawater.	Macroalgae	can	

attain	a	187Re/188Os	far	higher	than	that	recorded	for	the	Icelandic	geochemical	reservoirs	

due	to	the	preferential	uptake	of	Re	over	Os	at	high	Re	concentrations	in	the	dissolved	

load,	therefore	macroalgae	cannot	be	used	to	determine	the	187Re/188Os	of	seawater.	This	

study	confirms	the	utility	of	macroalgae	as	a	proxy	for	the	Os	isotopic	composition	of	

seawater,	which	holds	the	potential	to	elucidate	a	range	of	Earth	system	processes.	

However,	it	is	not	yet	possible	to	directly	relate	the	macroalgae	Os	concentration	to	that	of	

the	water	in	which	they	live.	Finally,	these	results	suggest	that	macroalgae	is	not	a	

substantial	sink	for	either	Re	or	Os.	Therefore,	global	macroalgae	biomass,	today	or	during	

the	Earth’s	geological	past,	does	not	play	a	significant	role	in	the	marine	Os	and	Re	cycles.		
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2.1	Introduction	

Temperature	and	atmospheric	carbon	dioxide	(CO2)	have	fluctuated	widely	throughout	the	

Phanerozoic,	from	warm	greenhouse	to	cold	icehouse	conditions.	Nevertheless,	

throughout	this	time,	temperature	and	CO2	have	always	remained	within	the	narrow	limits	

that	allow	life	to	exist	and	evolve	through	the	interaction	between	the	atmosphere,	

hydrosphere,	biosphere	and	lithosphere	(Berner	et	al.,	1983).	Over	geological	timescales	

(Myr)	temperature	has	partly	been	controlled	by	interactions	between	atmospheric	CO2	

and	continental	weathering.	Rising	temperatures	stimulate	increased	chemical	weathering	

of	silicate	rocks	drawing	down	CO2	from	the	atmosphere,	leading	to	a	decline	in	

temperature	(Berner	et	al.,	1983;	Walker	et	al.,	1981).	Many	radiogenic	isotope	systems	in	

seawater	are	sensitive	to	variations	in	continental	weathering	and	erosion,	making	ocean	

chemistry	a	powerful	archive	for	reconstructing	responses	to	climatic	or	tectonic	change.		

Of	these,	the	rubidium-strontium	(87Rb-86Sr)	radiogenic	isotope	system	has	been	

the	most	widely	used,	with	variations	in	the	marine	87Sr/86Sr	record	reflecting	fluctuations	

in	continental	inputs	caused	by	orogenesis	(Raymo	et	al.,	1988)	and	glaciations	(Armstrong,	

1971).	However,	as	a	consequence	of	the	long	residence	time	of	Sr	in	the	oceans	(2	-	4	Myr)	

short-term	fluctuations	in	inputs	are	hard	to	detect	(Richter	and	Turekian,	1993).		The	

osmium	isotopic	composition	of	seawater	(187Os/188Os)	reflects	a	balance	between	

radiogenic	continental	sources	and	unradiogenic	mantle	and	extraterrestrial	derived	

sources	(Peucker-Ehrenbrink	and	Ravizza,	2000).	Therefore,	much	like	Sr	isotopes,	Os	

isotopes	have	been	utilised	to	infer	information	about	past	changes	in	continental	

weathering	(See	Peucker-Ehrenbrink	and	Ravizza,	2012	and	references	therein).	However,	

unlike	Sr,	the	residence	time	of	Os	in	the	ocean	(1-50	kyr)	is	sufficiently	short	to	respond	to	

short-periodic	fluctuations	in	input,	whilst	still	being	long	enough	to	attain	a	global	signal	

(Levasseur	et	al.,	1998;	Oxburgh,	2001;	Rooney	et	al.,	2016).	Therefore,	the	187Os/188Os	
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composition	offers	the	ability	to	distinguish	between	high-frequency	climatic	and	low	

frequency	tectonic	forcing	(Peucker-Ehrenbrink	and	Ravizza,	2000).	

In	the	modern	ocean,	the	187Os/188Os	composition	of	seawater	has	been	

reasonably	well	constrained	through	direct	analysis	using	ultra-low	blank	techniques	

capable	of	oxidising	all	osmium	to	a	common	oxidation	state	(Chen	and	Sharma,	2009;	

Gannoun	and	Burton,	2014;	Levasseur	et	al.,	1998;	Paul	et	al.,	2009).	Nevertheless,	direct	

analysis	of	seawater	remains	analytically	challenging	because	of	the	low	concentrations	

and	multiple	oxidation	states	(Peucker-Ehrenbrink	et	al.,	2013),	and	measurements	of	

rivers,	estuaries	and	coastal	waters	are	therefore	sparse	(Gannoun	et	al.,	2006;	Huh	et	al.,	

2004;	Sharma	et	al.,	2007;	Sharma	and	Wasserburg,	1997;	Turekian	et	al.,	2007).	Therefore	

the	composition	of	the	global	riverine	input	remains	poorly	constrained,	raising	the	

possibility	that	the	osmium	input	to	the	ocean	is	underestimated,	thereby	accounting	for	

the	discrepancy	between	oceanic	osmium	residence	times	estimated	from	mass	balance	

calculations	(35	-	50	kyr)	and	those	inferred	from	the	evolution	of	the	osmium	isotope	

record	(1	-	4	kyr)	(Levasseur	et	al.,	1999;	Oxburgh,	2001;	Rooney	et	al.,	2016;	Sharma	et	al.,	

1999).	Although	it	is	also	proposed	that	the	difference	in	residence	time	estimates	relates	

to	the	local	removal	of	Os	(Sharma	et	al.,	2007).		

Recent	work	indicates	that	macroalgae	(seaweed)	concentrates	Os	(with	

abundances	that	vary	from	12.6	to	78.5	ppt),	whilst	maintaining	the	187Os/188Os	

composition	of	the	seawater	it	inhabits	(Racionero-Gómez	et	al.,	2017;	Rooney	et	al.,	

2016).	This	suggests	that	macroalgae	could	act	as	a	proxy	for	the	187Os/188Os	composition	of	

local	waters	whilst	removing	some	of	the	analytical	challenges	associated	with	direct	

analysis	of	seawater	i.e.	ultra-low	concentrations	and	multiple	oxidation	states.	Macroalgae	

existing	in	coastal	waters,	therefore,	should	record	an	187Os/188Os	signature	that	reflects	a	

balance	of	local	inputs,	including	riverine	input,	local	bedrock	and	seawater.		
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Iceland	consists	of	an	essentially	monolithological	basaltic	terrain	of	varying	ages	

(historic	to	12	Ma),	yielding	a	large	range	in	the	187Os/188Os	(0.15	to	1.04)	of	riverine	

dissolved	loads	(Gannoun	et	al.,	2006).	Unradiogenic	187Os/188Os	values	can	be	explained	by	

congruent	basalt	weathering	and/or	hydrothermal	input,	with	radiogenic	187Os/188Os	values	

arising	from	two	distinct	processes.	The	187Os/188Os	of	glacier-fed	rivers	can	be	explained	by	

the	entrainment	of	seawater	aerosols	into	precipitation	and	subsequent	glacial	melting.	

The	187Os/188Os	composition	of	direct-runoff	and	spring-fed	rivers	can	be	explained	by	the	

incongruent	weathering	of	certain	primary	basaltic	minerals	that	possess	exceptionally	high	

187Re/188Os,	which	over	time	evolves	to	radiogenic	187Os/188Os	values	(Gannoun	et	al.,	2004).	

Iceland	therefore	provides	a	unique	environment	with	respect	to	187Os/188Os	in	which	to	

test	the	ability	of	macroalgae	to	record	the	187Os/188Os	composition	of	the	seawater	it	

inhabits.		

This	study	presents	Re-Os	abundance	and	isotope	data	for	macroalgae	and	

dissolved	and	bed	loads	from	coastal	waters	and	rivers	draining	basaltic	watersheds	of	

Iceland.	Given	that	watersheds	of	Iceland	are	essentially	monolithological,	their	187Os/188Os	

composition	is	determined	by	the	age	of	basalt,	the	preferential	weathering	of	constituent	

basalt	minerals	and	the	entrainment	of	rain,	sea	and	hydrothermal	waters	(Gannoun	et	al.,	

2006).	This	study	represents	the	first	examination	of	the	influence	of	both	seawater	and	

river	water	osmium	on	the	187Os/188Os	composition	of	macroalgae.	These	results	

demonstrate	the	ability	of	macroalgae	to	trace	fluctuations	in	the	187Os/188Os	of	freshwater	

and	seawater	around	Iceland,	and	utilise	this	to	determine	the	influence	of	basaltic	

weathering	on	the	global	osmium	budget.	
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2.2	Field	and	analytical	techniques	
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Fig.	1.	Geological	map	of	Iceland	modified	after	Jóhannesson	(2014):	1	=	Holocene	

sediments;	2	=	basic	and	intermediate	lavas	(postglacial,	historic,	younger	than	AD	871);	3	=	

basic	and	intermediate	lavas	(postglacial,	prehistoric,	older	than	AD	871);	4	=	acid	lavas	

(postglacial,	historic,	younger	than	AD	871);	5	=	acid	lavas	(postglacial,	prehistoric,	older	

than	AD	871);	6	=	acid	extrusives	(Miocene,	Pliocene	and	Pleistocene,	older	than	11,000	

yrs);	7	=	basic	and	intermediate	hyaloclastite,	pillow	lava	and	associated	sediments	(Upper	

Pleistocene,	younger	than	0.8	myr);	8	=	basic	and	intermediate	interglacial	and	supraglacial	

lavas	with	intercalated	sediments	(Upper	Pleistocene,	younger	than	0.8	myr);	9	=	basic	and	

intermediate	extrusive	rocks	with	intercalated	sediments	(Upper	Pliocene	and	Lower	

Pleistocene,	0.8	-	3.3	myr);	10	=	basic	and	intermediate	extrusive	rocks	with	intercalated	

sediments	(Miocene	and	Lower	Pliocene,	older	than	3.3	myr);	11	=	basic	and	intermediate	

intrusions,	gabbro,	dolerite	and	diorite;	12	=	acid	intrusions,	rhyolite,	granophyre	and	

granite.	Sample	type	and	localities	are	indicated	in	the	legend.	Dashed	lines	represent	an	

outline	of	areas	shown	in	Figures	2a	and	2b.		

	

2.2.1	Sampling	and	storage	

Macroalgae,	bedload	sands	and	waters	from	the	Icelandic	coastline	were	sampled	at	

eighteen	locations	during	late	August	of	2014	(Fig.	1;	samples	7-23	and	27).	A	further	nine	

locations	were	sampled	between	late	July	and	early	August	of	2015	(Fig.	1;	samples	1-6	and	

24-26).	In	total	twenty-seven	macroalgae,	eleven	bed	load	and	eight	water	samples	were	

collected	(Fig.	1;	Table	1	-	2).	Macroalgae	and	bedload	were	washed	using	deionised	(Milli-

Q™)	water	to	remove	any	attached	sediment	and	salt.	They	were	then	dried	for	12	h	at	60	

°C	and	stored	in	plastic	zip-lock	bags.	Macroalgae	and	bed	load	were	later	crushed	using	an	

agate	pestle	and	mortar	prior	to	analysis.	Water	samples	were	filtered	through	0.2	μm	

cellulose	acetate	filters	using	a	pressurized	Sartorius®	Teflon	unit.	Filtrate	aliquots	were	

stored	in	pre-cleaned	Savillex®	Teflon	bottles	to	prevent	Os	contamination	(Sharma	et	al.,	

2012).	Salinity	was	measured	using	a	Hanna®	HI	98192	conductivity	meter.	
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2.2.2	Macroalgae	species	and	habitats	

Specific	macroalgae	species	were	not	targeted	during	this	study,	and	samples	were	

selected	based	on	their	availability	at	sample	sites.	There	was	however	a	preference	to	

brown	macroalgae	over	green	and	red	macroalgae	due	to	their	relatively	high	abundance	in	

Re	(Mas	et	al.,	2005;	Prouty	et	al.,	2014;	Racionero-Gómez	et	al.,	2016;	Yang,	1991)	and	Os	

(Racionero-Gómez	et	al.,	2017;	Rooney	et	al.,	2016).	Four	species	of	brown	macroalgae	

(Fucus	vesiculosus,	Fucus	spiralis,	Fucus	distichus	and	Ascophyllum	nodosum)	were	

analysed.		

Fig.	2.	Geological	maps	of	the	Reykjanes	Peninsula	(a)	and	Eastern	Fjords	(b).	Key	is	the	

same	as	in	Figure	1.		

a	
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2.2.3	Re-Os	analysis	

The	Re-Os	analysis	for	macroalgae	and	bedload	were	carried	out	in	the	Durham	

Geochemistry	Centre	(Laboratory	for	Sulfide	and	Source	Rock	Geochronology	and	

Geochemistry).	The	seawater	Os	analyses	were	conducted	at	Laboratoire	Magmas	et	
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Volcans	at	the	Campus	Universitaire	des	Cézeaux,	with	the	Re	fraction	processed	at	the	

Durham	Geochemistry	Centre.	

	

2.2.3.1	Macroalgae	

The	technique	for	chemical	separation	of	Re	and	Os	from	macroalgae	is	reported	by	

Racionero-Gómez	et	al.	(2017).	In	brief,	approximately	200	mg	of	powdered	macroalgae	

was	introduced	into	a	Carius	tube	together	with	11	N	HCl	(3	mL),	15.5	N	HNO3	(6	mL)	and	a	

known	amount	of	185Re	+	190Os	tracer	solution	and	heated	to	220°C	in	an	oven	for	24	h.	The	

Os	was	isolated	from	the	acid	medium	using	CHCl3	solvent	extraction	and	then	back	

extracted	into	HBr.	The	Os	was	further	purified	using	a	CrO3-H2SO4	–	HBr	micro-distillation	

(Birck	et	al.,	1997;	Cohen	and	Waters,	1996).	The	remaining	Re-bearing	acid	medium	was	

evaporated	to	dryness	at	80°C,	with	the	Re	isolated	and	purified	using	both	NaOH-acetone	

solvent	extraction	and	HNO3-HCl	anion	chromatography	(Cumming	et	al.,	2013).						

	

2.2.3.2	Bed	load	

The	detailed	analytical	procedure	for	silicates	has	been	adapted	from	Ishikawa	et	al.	(2014).	

Approximately	1	g	of	bed	load	was	crushed	using	an	agate	mortar.	The	powder	is	dissolved	

with	HCl	+	HF	(4	mL:	2	mL)	in	a	22	ml-savillex®	vial	at	100°C.	The	acid-sample	medium	was	

evaporated	to	dryness	at	80°C	before	11N	HCl	(1	mL)	was	added	and	subsequently	

evaporated	twice	to	remove	remaining	HF.	The	resulting	acid	medium	was	introduced	into	

a	Carius	tube	together	with	11	N	HCl	(3	mL),	15.5	N	HNO3	(6	mL)	and	a	known	amount	of	

the	185Re	+	190Os	tracer	solution	and	heated	at	220°C	for	48	h.	The	extraction	and	

purification	of	the	Os	and	Re	fractions	follows	the	same	analytical	protocol	outlined	in	

section	2.3.1.	
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2.2.3.3	Seawater	

The	technique	for	chemical	separation	of	Re	and	Os	from	seawater	is	reported	by	

Racionero-Gómez	et	al.	(2017).	Briefly,	~60	g	of	water	sample,	plus	a	known	amount	of	

mixed	(190Os	+	185Re)	tracer	solution,	together	with	2	mL	of	Br2,	2	mL	of	CrO3-H2SO4	solution	

and	1.5	mL	of	98%	H2SO4	were	sealed	into	a	120	mL	savillex	vial	and	heated	to	100˚C	in	an	

oven	for	72	h	to	equilibrate	sample	and	spike	(Gannoun	and	Burton,	2014).	The	Os	was	

extracted	from	the	sample	into	liquid	Br2	followed	by	a	second	extraction	of	Os	using	1	mL	

of	Br2.	The	1	mL	of	liquid	Br2	was	added	to	the	sample	solution,	reacted	for	1	h,	and	then	

removed.	The	extracted	Br2	is	mixed	with	1	mL	of	9N	HBr	and	evaporated	to	dryness,	and	

further	purified	using	a	CrO3-H2SO4	–	HBr	micro-distillation.	The	Re	was	purified	as	outlined	

for	the	macroalgae	samples	(Cumming	et	al.,	2013).	

	

2.2.3.4	Mass	Spectrometry	

The	purified	Re	and	Os	fractions	were	loaded	onto	Ni	and	Pt	filaments	respectively,	and	

measured	using	NTIMS	(Creaser	et	al.,	1991;	Völkening	et	al.,	1991)	on	a	Thermo	Scientific	

TRITON	mass	spectrometer	using	Faraday	collectors	in	static	mode,	and	an	electron	

multiplier	in	dynamic	mode	respectively.	The	Re	and	Os	abundances	and	isotope	

compositions	are	presented	with	2	s.e.	(standard	error)	absolute	uncertainties	which	

include	full	error	propagation	of	uncertainties	in	the	mass	spectrometer	measurements,	

blank,	spike	calibrations,	and	sample	and	spike	weights.	Full	analytical	blank	values	for	the	

macroalgae	analysis	are	10.9	±	5.9	pg	for	Re,	0.13	±	0.13	pg	for	Os,	with	a	187Os/188Os	

composition	of	0.61	±	0.34	(1	SD,	n	=	4).	For	the	bed	load	analysis	the	full	analytical	blank	

values	are	15.9	±	0.23	pg	for	Re,	2.12	±	0.01	pg	for	Os,	with	a	187Os/188Os	composition	of	

0.27	±	0.001	(2	s.e.,	n	=	1).	For	the	seawater	analysis	the	full	analytical	blank	values	are	10	±	
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1.3	pg	for	Re,	0.043	±	0.002	pg	for	Os,	with	a	187Os/188Os	composition	of	0.72	±	0.02	(1	SD,	n	

=	4).		

To	monitor	the	long-term	reproducibility	of	mass	spectrometer	measurements	

Re	and	Os	(DROsS,	DTM)	reference	solutions	were	analysed.	The	125	pg	Re	solution	yields	

an	average	185Re/187Re	ratio	of	0.5987	±	0.0023	(2	SD.,	n	=	8),	which	is	in	agreement	with	

published	values	(e.g.,	Cumming	et	al.,	2013	and	references	therein).	A	50	pg	DROsS	

solution	gave	an	187Os/188Os	ratio	of	0.16111	±	0.0008	(2	SD.,	n	=	8),	which	is	in	agreement	

with	reported	value	for	the	DROsS	reference	solution	(Nowell	et	al.,	2008).	For	the	

seawater	Os	analysis	at	the	Laboratoire	Magmas	et	Volcans	monitor	instrument	

reproducibility	using	a	1	pg	DTM	Os	solution,	which	yields	a	187Os/188Os	value	of	0.1740	±	

0.0002	(2	SD,	n	=	4),	which	is	in	agreement	with	published	values	(Chen	and	Sharma,	2009;	

Gannoun	and	Burton,	2014).	

2.2.4	Statistical	tests	

Statistical	tests	were	carried	out	using	MATLAB®	R2017a	(MATLAB	9.2,	The	MathWorks	

Inc.,	Natick,	MA,	2017).	A	one-way	analysis	of	variance	(ANOVA)	was	utilised	to	determine	

whether	several	groups	of	a	factor	have	a	common	mean.	ANOVA	tests	for	differences	

between	group	means	by	partitioning	variation	in	the	data	into	two	components:	variation	

of	individual	observations	from	their	group	mean;	and,	variation	of	the	group	means	from	

the	overall	mean	(Wu	and	Hamada,	2000;	Neter	et	al,	1996).	If	during	the	ANOVA	test,	the	

p-value	of	the	F-statistic	(ratio	of	the	mean	squares)	is	smaller	than	the	significance	level	

(0.05),	the	test	rejects	the	null	hypothesis,	that	all	group	means	are	equal,	and	one	of	the	

group	means	is	therefore	different	from	the	others.	Where	the	ANOVA	test	is	used	the	

means	of	each	group	(avg),	the	F-statistic	(F)	and	the	p-value	will	be	cited.	In	the	event	the	

null	hypothesis	is	rejected	a	multiple	comparison	test	is	carried	out.	This	will	determine	

which	pairs	of	means	are	significantly	different	from	each	other.					
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2.3	Results		

2.3.1	Macroalgae	

Table	1	

Rhenium	and	osmium	abundance	and	isotope	data	for	Icelandic	macroalgae	samples	

	

The	Re	and	Os	abundance	and	isotope	data	for	macroalgae	are	given	in	Table	1.	Rhenium	

and	Os	abundances	show	a	large	range	from	0.1	to	88.4	ppb	and	from	3.3	to	254.5	ppt	

respectively.	Individual	species,	such	as	Fucus	vesiculosus,	Fucus	spiralis,	Fucus	distichus	

and	Ascophyllum	nodosum	show	variable	Re	abundances	from	3.6	to	71.9	ppb,	14.5	to	28.8	

ppb,	0.10	to	1.6	ppb	and	3.2	to	88.4	ppb,	respectively	(Fig.	3a).	Individual	species,	such	as	

Fucus	vesiculosus,	Fucus	spiralis,	Fucus	distichus	and	Ascophyllum	nodosum	also	show	a	

large	range	in	Os	abundances	from	5.0	to	254.5	ppt,	3.3	to	14.5	ppt,	4.7	to	7.6	ppt	and	9.5	

to	53.0	ppt,	respectively	(Fig.	3a).	The	187Os/188Os	compositions	of	the	macroalgae	range	

1 Fucus	vesiculosus 44.32 2.53 27.85 0.10 7879.7 452.6 0.337 0.003
2 Fucus	spiralis 14.52 0.57 8.81 0.07 8534.2 342.4 0.700 0.020
3 Fucus	vesiculosus 38.04 1.50 5.03 0.04 39405.6 1646.4 0.750 0.030
4 Fucus	vesiculosus 53.37 2.10 23.42 0.10 11864.8 471.8 0.750 0.010
5 Fucus	vesiculosus 40.52 2.32 44.92 0.16 4483.7 257.4 0.368 0.003
6 Fucus	vesiculosus 23.56 0.93 106.42 0.42 1087.5 43.5 0.270 0.010
7 Ascophyllum	nodosum 3.17 0.01 53.04 0.41 307.1 4.3 0.634 0.012
8 Fucus	vesiculosus 71.92 0.23 10.14 0.04 37751.4 211.2 0.926 0.006
9 Fucus	vesiculosus 15.39 0.05 6.93 0.06 11692.8 180.0 0.835 0.018
10 Fucus	vesiculosus 61.68 0.20 13.71 0.05 23395.3 120.6 0.736 0.004
11 Fucus	vesiculosus 25.66 0.54 7.87 0.05 17023.4 381.1 0.765 0.009
12 Fucus	vesiculosus 3.58 0.01 13.73 0.36 1323.9 77.5 0.535 0.044
13 Fucus	vesiculosus 8.86 0.19 10.59 0.12 4358.6 130.2 0.750 0.022
14 Fucus	distichus 0.11 0.03 4.69 0.10 123.5 34.6 0.970 0.058
15 Fucus	vesiculosus 14.65 0.05 9.21 0.09 8533.3 130.4 0.995 0.021
16 Fucus	vesiculosus 50.36 0.13 8.34 0.04 32096.9 237.1 0.913 0.009
17 Fucus	vesiculosus 43.93 0.11 7.72 0.04 30419.2 226.2 0.967 0.009
18 Fucus	distichus 1.55 0.01 7.41 0.05 1107.6 10.8 0.879 0.011
19 Fucus	spiralis 28.83 0.08 14.45 0.08 10523.5 80.0 0.854 0.009
20 Fucus	distichus 0.10 0.03 7.56 0.15 64.6 20.5 0.612 0.036
21 Fucus	spiralis 24.96 0.08 3.30 0.03 40320.4 683.7 0.938 0.023
22 Ascophyllum	nodosum 4.23 0.01 21.98 0.44 1022.7 41.8 0.925 0.053
23 Fucus	vesiculosus 60.27 0.15 8.24 0.06 38953.6 311.5 0.930 0.014
24 Ascophyllum	nodosum 88.43 0.29 13.83 0.28 34155.5 1422.1 0.962 0.056
25 Fucus	spiralis 18.15 0.06 6.45 0.04 14725.3 135.5 0.787 0.010
26 Ascophyllum	nodosum 63.96 3.65 9.45 0.04 35167.1 2017.9 0.727 0.006
27 Fucus	vesiculosus 9.58 0.55 254.47 1.69 182.3 10.7 0.161 0.003

2	s.e.	 2	s.e. 2	s.e.187Re/188Os 187Os/188Os2	s.e.
[Os]															
(ppt)

[Re]						
(ppb)Macroalgae	Species

Sample	
Location
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from	0.16	to	0.99	(Fig.	3b).	The	reason(s)	for	the	variability	is	discussed	below.	The	

187Re/188Os	ratios	of	the	macroalgae	are	highly	variable	(~65	to	40,320;	Fig.	3b).		

Fig.	3.	Rhenium	(open	diamonds)	and	osmium	(filled	squares)	abundance	(a)	and	isotopic	

composition	(b)	for	F.	vesiculosus	(green),	F.	spiralis	(orange),	F.	distichus	(purple)	and	A.	

nodosum	(blue).			

A	one-way	ANOVA	test	was	conducted	to	determine	if	there	was	any	statistically	

significant	variation	in	Re	abundance,	Os	abundance,	187Re/188Os	and	187Os/188Os	between	

each	macroalgae	species.	When	comparing	Fucus	vesiculosus,	Fucus	spiralis,	Fucus	distichus	

and	Ascophyllum	nodosum,	the	ANOVA	tests	for	Re	abundance	(avg	=	35.4,	21.6,	0.6,	39.9;	
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F	=	2.29;	p-value	=	0.1054),	Os	abundance	(avg	=	34.9,	8.3,	6.5,	24.6;	F	=	0.45;	p-value	=	

0.7178),	187Re/188Os	(avg	=	16904,	18525,	431,	17663;	F	=	1.18;	p-value	=	0.3385)	and	

187Os/188Os	(avg	=	0.68,	0.82,	0.82,	0.82;	F	=	0.68;	p-value	=	0.5744)	all	have	a	p-values	

which	fall	above	the	significance	level	(p-value	=	0.05).	We	can	therefore	accept	the	null	

hypothesis	that	each	species	has	a	common	mean	for	each	parameter	studied.		

	

2.3.2	Bed	load	

Table	2	

Rhenium	and	osmium	abundance	and	isotope	data	for	Icelandic	bed	loads	

Sample	
Loacation	

[Re]	
(ppb)	 2	s.e.	

[Os]		
(ppt)	 2	s.e.	 187Re/188Os	 2	s.e.	 187Os/188Os	 2	s.e.	

7	 0.73	 0.02	 41.21	 0.18	 85.6	 2.1	 0.157	 0.002	

8	 0.91	 0.03	 7.23	 0.04	 646.3	 23.0	 0.591	 0.007	

9	 0.89	 0.02	 15.60	 0.07	 277.8	 6.6	 0.231	 0.003	

10	 1.11	 0.04	 9.13	 0.04	 593.03	 20.98	 0.228	 0.003	

11	 0.89	 0.03	 8.81	 0.04	 494.3	 17.6	 0.250	 0.003	

12	 0.55	 0.02	 24.99	 0.12	 108.02	 3.97	 0.337	 0.004	

15	 0.69	 0.02	 23.71	 0.11	 143.2	 5.2	 0.292	 0.004	

18	 0.51	 0.02	 10.42	 0.05	 238.6	 8.8	 0.224	 0.003	

19	 1.03	 0.04	 12.52	 0.06	 405.5	 14.4	 0.271	 0.003	

20	 0.61	 0.02	 11.41	 0.05	 259.96	 9.45	 0.220	 0.003	

27	 0.63	 0.02	 69.05	 0.31	 44.2	 1.6	 0.204	 0.003	
	

The	Re	and	Os	abundance	and	isotopic	data	of	bed	loads	are	presented	in	Table	2.	Rhenium	

and	Os	abundances	range	from	0.5	to	1.1	ppb	and	7.3	to	69.1	ppt	respectively.	This	

compares	well	to	Re	and	Os	abundances	previously	recorded	in	Icelandic	basalts,	which	

range	from	0.05	to	1.8	ppb	and	3.7	to	1954.9	ppt	respectively	(Debaille	et	al.,	2009;	

Gannoun	et	al.,	2006).	Macroalgae	and	bed	load	retain	similar	levels	of	Os	with	the	

exception	of	the	macroalgae	sample	from	location	27	(Fig.	1),	which	is	heavily	enriched	in	

Os	(~254	ppt;	Fig.	4a).	Macroalgae	is	enriched	in	Re	by	several	orders	of	magnitude	when	

compared	to	bed	load.	A	significant	correlation	(R2	=	0.6061)	in	Re	abundance	is	observed	
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between	macroalgae	and	the	corresponding	bed	load	(Fig.	4b).	The	187Os/188Os	composition	

of	the	bed	load	ranges	from	0.16	to	0.59,	with	an	average	of	0.27,	which	is	closer	to	the	

unradiogenic	end-member.	The	bed	load	187Os/188Os	values	are	more	radiogenic	than	those	

previously	recorded	for	Icelandic	basalts	(Gannoun	et	al.,	2006),	although	data	in	this	study	

is	from	the	older	extremities	of	Iceland	(Figs.	1	-	2),	where	more	radiogenic	ingrowth	of	

187Os	will	have	occurred.	In	almost	all	cases,	the	187Os/188Os	ratios	of	macroalgae	are	

significantly	more	radiogenic	than	the	corresponding	bed	load	(Fig.	5a).	The	187Re/188Os	

ratio	of	the	bedload	ranges	from	44.2	to	646.3,	which	fall	close	to	the	lower	end	of	the	

range	reported	for	Icelandic	basalts	(45	-	1698;	Gannoun	et	al.,	2006).	Although	the	

macroalgae	possess	much	greater	187Re/188Os	than	the	corresponding	bed	load,	a	strong	

correlation	(R2	=	0.7962)	between	the	macroalgae	and	bed	load	187Re/188Os	is	observed	(Fig.	

5b).	

Fig.	4.	Bedload	osmium	(a)	and	rhenium	(b)	abundance	and	dissolved	load	osmium	(c)	and	

rhenium	(d)	abundance	versus	the	corresponding	abundance	in	macroalgae.	See	text	for	

discussion.	
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2.3.3	Dissolved	load	

Table	3	

Rhenium	and	osmium	abundance	and	isotope	data	for	Icelandic	dissolved	loads	

Sample	
Loacation	

[Re]	
(ppt)	 2	s.e.	

[Os]	
(ppq)	 2	s.e.	 187Re/188Os	 2	s.e.	 187Os/188Os	 2	s.e.	

Salinity	
(ppt)	 ±	

7	 1.9	 0.2	 69.2	 0.3	 130.99	 11.07	 0.160	 0.002	 0.140	 0.001	

8	 10.0	 0.7	 9.7	 0.1	 5467.3	 375.4	 0.876	 0.023	 33.580	 0.336	

9	 8.3	 0.6	 18.9	 0.2	 2229.6	 152.8	 0.569	 0.017	 29.680	 0.297	

11	 4.5	 0.3	 11.2	 0.1	 2097.98	 147.97	 0.693	 0.014	 30.080	 0.301	

15	 2.1	 0.2	 8.5	 0.1	 1184.03	 105.84	 0.230	 0.009	 0.220	 0.002	

19	 19.4	 1.3	 750.7	 3.0	 125.4	 8.4	 0.168	 0.002	 23.780	 0.238	

20	 0.6	 0.1	 8.1	 0.1	 365.7	 60.8	 0.198	 0.007	 0.000	 0.001	

27	 3.8	 0.3	 30.1	 0.2	 613.3	 43.9	 0.237	 0.006	 9.170	 0.092	
	

The	Re	and	Os	abundance	and	isotopic	data	of	filtered	water	samples	are	reported	in	Table	

3.	Rhenium	and	Os	abundances	range	from	0.6	to	19.4	ppt	and	8.1	to	750.7	ppq	

respectively.	These	values	are	highly	variable	when	compared	to	oceanic	Re	(~8.2	ppt)	

(Anbar	et	al.,	1992;	Colodner	et	al.,	1995;	Colodner	et	al.,	1993b)	and	Os	(~10	ppq)	

(Gannoun	and	Burton,	2014;	Levasseur	et	al.,	1998;	Sharma	et	al.,	1997;	Woodhouse	et	al.,	

1999)	concentration.	However,	they	compare	well	with	Re	and	Os	concentrations	found	in	

global	river	estimates	which	range	from	24	ppq	to	2.3	ppb	and	4.6	to	52.1	ppq	respectively	

(Colodner	et	al.,	1993a;	Levasseur	et	al.,	1999;	Miller	et	al.,	2011;	Sharma	and	Wasserburg,	

1997),	with	the	exception	of	sample	19	(750.7	ppq),	which	has	an	Os	concentration	several	

orders	of	magnitude	higher	than	for	any	water	ever	recorded.	With	the	exception	of	

sample	19,	Os	concentrations	are	similar	to	previously	recorded	Icelandic	rivers	(1.0	-	20.5	

ppq;	Gannoun	et	al.,	2006).	Macroalgae	are	highly	enriched	in	Re	and	Os	when	compared	

to	the	dissolved	load	of	the	rivers	measured	here	(Figs.	4c,	d),	in	keeping	with	previous	

observations	whereby	macroalgae	is	seen	to	take	up	and	concentrate	these	elements	from	

seawater	(Racionero-Gómez	et	al.,	2016;	Racionero-Gómez	et	al.,	2017).		
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Fig.	5.	Bedload	187Os/188Os	(a)	and	187Re/188Os	(b)	and	dissolved	load	187Os/188Os	(c)	and	
187Re/188Os	(d)	versus	the	corresponding	ratio	in	macroalgae.	See	text	for	discussion.	

	

The	187Os/188Os	ratio	of	the	dissolved	load	ranges	from	0.16	to	0.88.	These	values	

are	less	radiogenic	than	open	ocean	187Os/188Os	values	(~1.06)	(Gannoun	and	Burton,	2014;	

Levasseur	et	al.,	1998;	Sharma	et	al.,	1997;	Woodhouse	et	al.,	1999)	falling	close	to	the	

range	of	Icelandic	rivers	(0.15	-	1.04)	(Gannoun	et	al.,	2006).	In	almost	all	cases	the	

187Os/188Os	ratios	of	macroalgae	are	significantly	more	radiogenic	than	the	corresponding	

dissolved	load	(Fig.	5c).	The	most	radiogenic	values	were	obtained	for	macroalgae	close	to	

the	oldest	basalt	in	the	eastern	and	north-western	parts	of	Iceland,	while	the	most	

unradiogenic	isotope	ratios	were	found	either	close	to	the	central	active	zone	or	the	rivers	

draining	it	(Table	1;	Fig.	1).	The	187Re/188Os	ratio	of	the	dissolved	load	ranges	from	125.4	to	

5467.3.	The	lower	and	upper	values	of	this	range	are	similar	to	average	global	riverine	(227)	

and	seawater	(4270)	187Re/188Os	ratios,	respectively	(Peucker-Ehrenbrink	and	Ravizza,	2000)	

suggesting	the	influence	of	both	river	water	and	seawater	at	these	sampling	locations.	This	
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is	confirmed	by	salinity	data,	which	shows	a	weak	correlation	(R2	=	0.469)	with	187Re/188Os	

and	generally	higher	ratios	at	higher	salinity	and	vice	versa	(Table	3).		The	macroalgae	

187Re/188Os	are	generally	several	times	greater	than	the	corresponding	dissolved	load	(Fig.	

5d).	A	strong	correlation	(R2	=	0.9088)	in	187Re/188Os	values	is	observed	between	

macroalgae	and	the	dissolved	load	(Fig.	5d).	

	

2.3.4	Partition	coefficient	

The	partition	coefficient	(Kd)	for	Os	and	Re	is:	

Kd	=	
X s

[X]l
	

where	[X]s	is	the	total	elemental	abundance	for	macroalgae,	[X]l	is	the	elemental	

abundance	in	the	dissolved	load	of	seawater,	and	X	refers	to	the	element	in	question.	The	

Kd	values	for	sample	locations	where	both	macroalgae	and	seawater	measurements	are	

recorded	in	table	4.	

Table	4	

Partition	coefficients	between	macroalgae	and	seawater	for	Re	and	Os	abundance.	

Sample	
Location	 Re	Kd	 Os	Kd	

7	 1693	 767	
8	 7200	 1049	
9	 1860	 366	
11	 5644	 702	
15	 7113	 1084	
19	 1484	 19	
20	 156	 932	
27	 2536	 8448	
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2.4	Discussion	

2.4.1	Biological	and	environmental	controls	on	Re	and	Os	uptake	in	macroalgae	

Rhenium	and	Os	abundance	in	macroalgae	are	consistent	with	previous	studies,	showing	

variations	both	between	species	and	within	each	species	itself	(Fig.	3).	Rhenium	

abundances	in	Fucus	vesiculosus	from	sample	location	3,	8,	10	and	24	(Fig.	1)	compare	well	

with	values	of	51.0	to	103.4	ppb	in	the	UK	(Racionero-Gómez	et	al.,	2016)	and	60.8	to	84.9	

ppb	in	Norway	(Mas	et	al.,	2005).	However,	most	Fucus	vesiculosus	in	this	study	have	lower	

concentrations	than	those	from	the	literature,	ranging	from	3.6	to	50.4	ppb.	Likewise,	

Fucus	disichus	and	Ascophyllum	nodosum	show	a	lower	abundance	of	Re	than	recorded	

values	for	California	(Yang,	1991)	and	Greenland	(Rooney	et	al.,	2016),	with	the	exception	

of	sample	21.	Previous	Os	abundance	determinations	for	Fucus	vesiculosus	from	the	UK	

(33.8	ppt;	Racionero-Gómez	et	al.,	2017)	and	Ascophyllum	nodosum	from	Greenland	(12.6	

ppt;	Rooney	et	al.,	2016)	fall	within	the	ranges	found	in	this	study.	However,	Os	abundance	

for	Fucus	distichus	recorded	in	Greenland	(14.0	ppt;	Rooney	et	al.,	2016)	is	far	higher	than	

the	range	for	Icelandic	Fucus	distichus	of	this	study.	

It	has	previously	been	suggested	that	the	age	of	the	macroalgae	-	due	to	its	rapid	

accumulation	rates	(Yang,	1991)	-	and	geographical	distribution	-	due	to	relatively	

ubiquitous	oceanic	Re	concentrations	(Mas	et	al.,	2005)	-	do	not	play	a	part	in	controlling	

the	Re	concentration	in	macroalgae.	However,	seasonal	variations,	the	chemical	species	of	

the	Re	perrhenate	compound,	fertility	and	growth-media	Re	concentration	have	all	been	

suggested	as	possible	causes	of	Re	variation	in	macroalgae	(Mas	et	al.,	2005;	Racionero-

Gómez	et	al.,	2016).	Likewise,	due	to	fast	Os	uptake	(Racionero-Gómez	et	al.,	2017)	and	

relatively	ubiquitous	oceanic	Os	concentrations	(Peucker-Ehrenbrink	and	Ravizza,	2000),	it	

is	conceivable	that	seasonal	variations	and	growth-media	Os	concentration	could	cause	the	

variations	in	Os	seen	in	macroalgae	(Racionero-Gómez	et	al.,	2017).	
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All	samples	were	collected	during	the	same	season	(July-August)	suggesting	

seasonality	does	play	an	important	role	in	the	variations	in	Re	and	Os	abundance	observed	

in	this	study.	At	high	concentrations	it	has	been	found	that	the	species	of	Re	salt	does	not	

greatly	affect	the	levels	of	Re	incorporated	into	macroalgae	and	by	homogenising	the	

sample,	as	was	done	in	this	study,	the	influence	of	high	Re	non-fertile	tips	can	be	mitigated	

(Racionero-Gómez	et	al.,	2016).	However,	culturing	of	macroalgae	under	increasing	

seawater	Re	and	Os	concentrations	has	been	shown	to	cause	an	increase	in	uptake	in	Re	

(Racionero-Gómez	et	al.,	2016)	and	Os	(Racionero-Gómez	et	al.,	2017)	in	macroalgae.	

Although	oceanic	Re	(8.2	ppt)	and	Os	(~10	ppq)	concentration	is	seen	to	be	fairly	

ubiquitous	(Anbar	et	al.,	1992;	Colodner	et	al.,	1993b;	Levasseur	et	al.,	1998;	Sharma	et	al.,	

1997;	Woodhouse	et	al.,	1999),	riverine	Re	(3.1	ppt)	and	Os	(9.1	ppq)	abundance	is	

generally	much	lower,	but	also	highly	variable	(Colodner	et	al.,	1993a;	Levasseur	et	al.,	

1999;	Miller	et	al.,	2011;	Sharma	and	Wasserburg,	1997).	Therefore,	the	geographical	

distribution	could	play	an	important	role	if	macroalgae	living	on	the	continental	shelf	in	an	

estuarine	habitat	are	in	close	proximity	to	a	freshwater	source.	Under	estuarine	conditions,	

a	mixture	of	freshwater	and	seawater	could	cause	highly	variable	Re	and	Os	abundances	

through	a	tidal	cycle,	leading	to	variable	abundances	in	macroalgae.		

Macroalgae	in	this	study	were	collected	from	coastal	waters	surrounding	Iceland,	

generally	close	to	the	mouths	of	major	rivers	(Figs.	1	-	2).	Previously,	it	has	been	shown	that	

Re	concentration	acts	conservatively	in	the	Amazon	estuary	with	low	concentrations	(0.21	

ppt)	at	low	salinity	and	high	concentrations	(8.6	ppt)	at	high	salinity	(Colodner	et	al.,	

1993a).	Osmium	on	the	other	hand,	has	been	shown	to	behave	non-conservatively	in	

estuaries,	experiencing	removal	from	the	water	column	at	low	salinities	in	temperate	and	

arctic	estuaries	(Levasseur	et	al.,	2000;	Turekian	et	al.,	2007)	and	at	high	salinities	in	

tropical	estuaries	(Martin	et	al.,	2001;	Sharma	et	al.,	2007),	suggesting	potential	Os	removal	

at	low	salinities	in	Iceland.	Given	that	the	macroalgae	studied	here	tends	to	live	in	brackish	
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water,	it	will	interact	with	seawater	of	varying	salinity	through	a	tidal	cycle.	Samples	

located	closer	to	a	freshwater	source	could	therefore	receive	less	Re	and	Os	than	a	deeper	

water	sample,	which	can	be	seen	in	samples	16,	17	and	18	(Table	1;	Fig.	2b),	which	show	

progressively	higher	Re	and	Os	abundances	as	you	move	seaward.	This	could	explain	some	

of	the	Re	variability	in	F.	vesiculosus,	whereas	samples	(7,	9,	11,	12,	13,	14,	15,	18,	20	and	

27;	Table	1;	Fig.	1)	close	to	riverine	inputs	generally	have	lower	Re	abundances	(8.1	ppb)	

than	those	that	are	not	spatially	near	riverine	inputs	(43	ppb).	However,	Os	does	not	follow	

this	trend	suggesting	that	some	other	mechanisms	control	macroalgae	Os	uptake	and	

concentration.		

The	Os	abundance	of	the	dissolved	load	of	water	measured	in	this	study	(8.1	to	

750.7	ppq)	compares	well	with	global	river	estimates	(4.6	-	52.1	ppq)	(Levasseur	et	al.,	

1999;	Sharma	and	Wasserburg,	1997)	with	the	exception	of	sample	19	(750.7	ppq),	which	

has	an	Os	abundance	several	orders	of	magnitude	higher	than	any	recorded	water.	This	

high	variation	in	Os	abundance	can	be	attributed	to	the	influence	of	Icelandic	freshwater	

sources	(1.0	-	20.5	ppq),	with	lower	concentrations	found	in	rivers	draining	older,	more	

radiogenic	187Os/188Os	bearing	basaltic	catchments	(1.9	ppq)	when	compared	to	younger,	

less	radiogenic	187Os/188Os	basaltic	catchments	(10.5	ppq)	(Gannoun	et	al.,	2006).	This	could	

also	explain	some	of	the	variation	seen	in	the	macroalgae	Os	abundance,	whereby	samples	

(13,	14,	15,	16,	17,	18	and	20;	Table	1;	Fig.	1)	found	close	to	the	mouths	of	rivers	draining	

older	catchments	have	lower	concentrations	(8.0	ppt)	than	those	draining	younger	

catchments	(153.8	ppt;	Sample:	7	and	27;	Table	1;	Fig.	1).	However,	this	is	further	

complicated	by	the	potential	influence	of	geothermal	waters	that	possess	relatively	high	Os	

concentrations	(19.7	ppq;	Gannoun	et	al.,	2006),	which	could	explain	the	higher	Os	

concentration	(36.1	ppt)	found	in	macroalgae	around	the	Reykjanes	peninsula	(Samples	1	-	

6;	Table	1;	Fig.	2a).	This	is	supported	by	experimental	studies,	which	shown	increasing	Re	
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and	Os	abundances	in	cultured	F.	vesiculosus	with	increasing	Re	and	Os	abundances	in	the	

cultures	media	(Racionero-Gómez	et	al.,	2016;	Racionero-Gómez	et	al.,	2017).			

Fig.	6.	Partitions	coefficients	(Kd)	for	Os	(open	squares)	and	Re	(closed	circles)	for	varying	

salinities.		

Rhenium	and	Os	partition	coefficients	between	macroalgae	and	local	seawater	

(Table	4)	show	a	large	variation	with	salinity	(Fig.	6).	Osmium	Kd	remains	relatively	high	at	

both	high	and	low	salinities,	but	decreases	towards	intermediate	salinities	(Fig.	6).	Rhenium	

shows	variable	Kd	at	low	salinities	and	high	Kd	at	high	salinity,	but	decreases	towards	

intermediate	salinities	(Fig.	6).	This	suggests	salinity	controls	on	Re	and	Os	uptake	into	

macroalgae	with	greater	uptake	at	freshwater	(low)	and	seawater	(high)	salinity.	Uptake	of	

both	elements	is	reduced	at	intertidal	zone	(intermediate)	salinities.	This	could	arise	for	

several	reasons	in	macroalgae	such	as:	growth	rates;	salinity	stress	or	the	

conservative/unconservative	behaviour	of	Re	and	Os	in	an	estuarine	habitat.	Growth	rates	

are	known	to	increase	at	intermediate	salinities	(15	to	20	psu)	in	some	macroalgae	species	

(Martins	et	al.,	1999).	However,	if	Re	and	Os	uptake	is	linked	to	metabolic	activity,	we	

would	expect	higher	abundances	in	macroalgae	at	intermediate	salinities	as	more	Re	and	

Os	are	confused	for	elements	of	a	similar	ionic	radius	(Racionero-Gómez	et	al.,	2016;	
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Racionero-Gómez	et	al.,	2017).	Salinity	stress	can	be	caused	by	fluctuating	salinity	in	the	

fluid	medium	whereby	the	macroalgae	transports	salts,	and	therefore	potentially	Re	and	

Os,	to	maintain	their	cellular	osmolality.	In	marine	and	fresh	water	systems,	salinity	will	

remain	relatively	constant	and	therefore	macroalgae	will	not	undergo	salinity	stress.	

However,	in	the	intertidal	zone,	salinity	will	vary	through	a	tidal	cycle	and	macroalgae	will	

therefore	be	affected	by	salinity	stress.	This	could	potentially	prevent	macroalgae	from	

maintaining	constant	Re	and	Os	uptake	and	therefore	Re	and	Os	abundance	(Fig.	6).	As	will	

be	discussed	further	in	section	2.4.2.1,	Re	has	been	seen	to	behave	conservatively	in	an	

estuarine	habitat	while	Os	has	been	observed	to	behave	both	conservatively	or	

unconservatively	in	estuarine	habitats	(Levasseur	et	al.,	2000;	Martin	et	al.,	2001;	Sharma	

et	al.,	2007;	Turekian	et	al.,	2007;	Miller	et	al.,	2011).	This	could	lead	to	higher	Re	uptake	

high	Re,	high	salinity,	seawater	(Fig.	6).	Rhenium	uptake	decreases	as	you	move	landwards	

as	mixing	with	freshwater	drives	the	concentration	of	Re	down	towards	freshwater	values	

(Fig.	6).	Osmium	on	the	other	hand	has	been	seen	to	act	unconservatively	in	estuaries	with	

Os	removal	at	intermediate	salinities	as	sediment	dispersal	during	mixing	causes	

scavenging	onto	particulate	material	(Martin	et	al.,	2001).	This	would	act	to	lower	Os	

abundance	in	intertidal	waters	and	therefore	lower	Os	uptake	in	macroalgae	(Fig.	6).	

However,	Os	abundance	in	seawater	measured	in	this	study	is	not	seen	to	vary	with	salinity	

(Table	3).				

Previous	studies	have	identified	that	Re	accumulation	in	F.	vesiculosus	is	variable	

across	structural	components,	indicating	some	cells	are	more	specialised	for	Re	uptake	

(Racionero-Gómez	et	al.,	2016),	which	is	not	the	case	for	Os	(Racionero-Gómez	et	al.,	

2017).	Although	the	biological	mechanism	by	which	macroalgae	extract	Re	and	Os	from	

their	media	is	not	known,	culturing	studies	have	shown	that	macroalgae	directly	take	up	

both	Re	and	Os	from	the	dissolved	load	of	seawater	through	syn-life	

bioadsorption/bioaccumulation	(Racionero-Gómez	et	al.,	2016;	Racionero-Gómez	et	al.,	
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2017).	However,	these	studies	did	not	look	into	Re	and	Os	uptake	in	macroalgae	from	the	

particulate	or	bed	load	of	seawater.	A	strong	correlation	between	macroalgae	and	

dissolved	load	Os	abundance	is	clear	from	previous	studies	(Racionero-Gómez	et	al.,	2017),	

but	the	absence	of	any	correlation	between	macroalgae	and	bed	load	Os	abundance	found	

in	this	study	(Fig.	4a)	suggests	that	Os	uptake	is	purely	from	the	dissolved	load	with	little	

uptake	directly	from	the	bed	load.	However,	macroalgae	Re	shows	a	correlation	with	both	

the	dissolved	(Racionero-Gómez	et	al.,	2016)	and	bed	load	(Fig	4b).	This	suggests	a	

potential	additional	source	of	Re	to	macroalgae	from	the	bed	load.	However,	it	has	been	

shown	that	the	Re	abundance	of	the	holdfast	in	F.	vesiculosus	is	relatively	low	when	

compared	to	the	other	biological	structures	and	therefore	Re	is	probably	not	taken	up	from	

the	bed	load	via	this	pathway	(Racionero-Gómez	et	al.,	2016).		

Although	not	measured	in	this	study,	it	has	been	shown	that	Re	abundance	in	the	

particulate	load	of	Icelandic	rivers	is	well	correlated	with	the	respective	bed	load	(Gannoun	

et	al.,	2006).	The	similarity	of	the	bed	load	Re	abundance	measured	in	this	study	(0.5	-	1.1	

ppb)	to	Icelandic	rivers	(0.3	-	1.8	ppb;	Gannoun	et	al.,	2006)	could	suggest	a	possible	

correlation	with	Re	in	the	particulate	load	at	the	sampled	locations.	Macroalgae	Re	

abundance	could	potentially	be	correlated	with	the	particulate	load	suggesting	different	

biological	pathways	for	the	uptake	of	Os	and	Re	in	macroalgae.		

	

2.4.2	Environmental	controls	on	the	187Os/188Os	of	macroalgae	

2.4.2.1	Influence	of	estuarine	conditions	on	the	187Os/188Os	of	macroalgae	

It	has	been	shown	that	the	187Os/188Os	of	floating	macroalgae	(Sargassum	fluitans	and	S.	

natans)	from	the	Gulf	of	Mexico	(Rooney	et	al.,	2016)	are	indistinguishable	from	that	of	the	

present	day	oceanic	187Os/188Os	value	of	1.06	(Peucker-Ehrenbrink	and	Ravizza,	2000).	In	

contrast,	macroalgae	from	waters	off	the	west	coast	of	Greenland	deviate	from	this	value	
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(0.9	-	1.9),	instead	recording	local	continental	Os	flux	into	the	coastal	region	(Rooney	et	al.,	

2016).	Moreover,	Fucus	vesiculosus	from	an	estuary	on	the	east	coast	of	the	UK	records	the	

187Os/188Os	of	the	seawater	in	which	it	lives	(0.94)	and	when	cultured	in	seawater	doped	

with	Os	of	a	known	187Os/188Os	composition	(0.16),	takes	on	the	composition	of	the	new	

source	(Racionero-Gómez	et	al.,	2017).	It	has	therefore	been	postulated	that	the	

187Os/188Os	of	macroalgae	can	act	as	a	proxy	for	the	187Os/188Os	of	the	seawater	in	which	it	

lives.		

The	187Os/188Os	of	macroalgae	from	this	study	(0.16	-	1.0;	Fig.	3b)	shows	a	similar	

range	to	the	187Os/188Os	of	dissolved	Os	in	Icelandic	rivers	(0.15	-	1.04;	Gannoun	et	al.,	

2006).	However,	when	we	compare	the	187Os/188Os	of	macroalgae	with	that	of	the	

dissolved	load	from	the	same	location	we	see	no	relationship	(Fig.	5c).	This	is	probably	due	

to	the	entrainment	of	seawater	in	an	estuarine	habitat	from	which	these	macroalgae	and	

water	samples	were	taken.	Under	estuarine	conditions	macroalgae	will	come	into	contact	

with	varying	amounts	of	freshwater	and	seawater	through	a	tidal	cycle.	Its	composition	will	

therefore	represent	a	mixing	between	the	187Os/188Os	of	a	local	freshwater	source	and	the	

187Os/188Os	of	North	Atlantic	seawater	(1.02;	Gannoun	and	Burton,	2014).	Macroalgae	from	

deeper	waters,	with	little	freshwater	influence,	are	more	likely	to	take	on	an	187Os/188Os	

composition	similar	to	seawater	(Rooney	et	al.,	2016;	this	study),	unlike	their	shallow	water	

counterparts	(Racionero-Gómez	et	al.,	2017;	this	study).		

This	is	apparent	when	the	187Os/188Os	of	the	dissolved	load	from	this	study	(0.16	-	

0.88)	is	plotted	against	salinity	(Fig.	7).	At	low	salinity,	the	187Os/188Os	of	the	freshwater	

source	is	dominant	and	values	are	closer	to	that	expected	for	Icelandic	rivers	(Avg.	=	0.4;	

Gannoun	et	al,	2006),	while	at	high	salinity	the	187Os/188Os	is	closer	to	a	North	Atlantic	

source	(Avg.	=	1.02;	Gannoun	and	Burton,	2014;	Green	square	in	Fig.	7).	For	each	location,	

macroalgae	inhabit	waters	with	an	intermediate	salinity	between	these	two	end-members	
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(black	squares	in	Fig.	7),	and	therefore	the	187Os/188Os	represents	a	mixture	of	both	

freshwater	and	seawater	sources.	This	is	supported	by	arctic,	temperate	and	tropical	

estuaries,	which	show	an	increasing	seawater	187Os/188Os	influence	as	you	move	oceanward	

to	higher	salinities	(Levasseur	et	al.,	2000;	Martin	et	al.,	2001;	Sharma	et	al.,	2007;	Turekian	

et	al.,	2007).		

Fig.	7.	Osmium	isotopic	(187Os/188Os)	composition	versus	salinity.	Blue	and	green	open	

squares	represent	values	for	the	dissolved	load	(this	study)	and	North	Atlantic	seawater	

(Gannoun	and	Burton,	2014)	respectively.	Salinity	has	been	interpolated	based	on	
187Os/188Os	measurements	for	macroalgae	(open	black	squares).	Macroalgae	generally	plots	

at	intermediate	salinities	along	a	mixing	line	between	the	corresponding	dissolved	load	for	

each	location	and	estimates	for	the	North	Atlantic.	See	text	for	discussion.	

	

2.4.2.2	Influence	of	basaltic	weathering	on	the	187Os/188Os	of	macroalgae		

During	mantle	melting	and	basalt	genesis,	both	Re	and	Os	become	fractionated.	Osmium	

behaves	as	a	compatible	element	during	melting	and	is	retained	in	the	mantle,	unlike	Re,	

which	is	moderately	incompatible	and	enters	the	melt.	Mantle	derived	basalts	thus	have	

very	high	Re/Os	values	and	their	primary	mineral	phases	crystallise	in	a	high	Re/Os	

environment	(Burton	et	al.,	2002;	Gannoun	et	al.,	2004).	Primary	minerals	such	as	olivine,	
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pyroxene	and	plagioclase	possess	higher	187Re/188Os	than	bulk-rock	or	glass,	and	over	short-

timescales	(<106	yrs)	can	produce	measurable	shifts	in	radiogenic	osmium	(187Osr)	(See	Fig.	

9	in	Gannoun	et	al.,	2006).		

In	Iceland,	rivers	draining	older	catchments	(>106	yrs)	are	undersaturated	with	

respect	to	these	high	187Re/188Os	bearing	minerals	(olivine,	pyroxene	and	plagioclase)	and	

preferential	weathering	of	these	phases	from	the	host	basalt,	combined	with	their	age,	

which	allows	for	radiogenic	ingrowth	of	187Os	from	the	decay	of	187Re,	causes	elevated	

radiogenic	187Os/188Os	in	the	dissolved	load	(Gannoun	et	al.,	2006).	In	contrast,	rivers	

draining	younger	catchments	(<106	yrs)	are	approaching	saturation	with	respect	to	these	

same	minerals,	which	in	this	instance	have	not	had	time	to	attain	significant	radiogenic	

ingrowth	of	187Os,	and	weathering	tends	towards	congruency	causing	the	dissolved	load	to	

approach	that	of	bulk-rock	(Gannoun	et	al.,	2006).	

Macroalgae	187Os/188Os	values	in	this	study	(0.16	–	0.99)	are	generally	much	

lower	than	the	187Os/188Os	ratios	of	0.81	to	1.89	previously	recorded	(Rooney	et	al.,	2016;	

Racionero-Gómez	et	al.,	2017).	However,	macroalgae	in	this	study	reach	similar	values	to	

cultures	doped	with	the	Os	standard	solution,	DROsS	(Racionero-Gómez	et	al.,	2017),	

suggesting	that	an	unradiogenic	187Os/188Os	source	of	the	Os	taken	up	by	the	macroalgae.	

When	the	187Os/188Os	of	macroalgae	is	plotted	against	the	reciprocal	of	the	concentration,	

all	the	data	fall	within	a	field	delimited	by	three	potential	end-members	(Fig.	8a):	Seawater	

(radiogenic	187Os/188Os,	intermediate	[Os]);	river	water	draining	an	old	basaltic	catchment	

(less	radiogenic	187Os/188Os,	low	[Os]);	and,	geothermal	water	and	river	water	draining	a	

young	basaltic	catchment	(unradiogenic	187Os/188Os,	high	[Os]).	Variations	in	the	187Os/188Os	

of	macroalgae	can	therefore	be	explained	by	the	mixing	between	radiogenic	seawater	and:	

relatively	less-radiogenic	187Os/188Os	bearing	rivers	(Blue	squares	in	Fig.	8a)	draining	an	

older	catchment	which	has	undergone	incongruent	weathering	of	high	187Re/188Os,	and	
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therefore	radiogenic	187Os/188Os,	minerals;	or	unradiogenic	187Os/188Os		bearing	rivers	(Pink	

circles	in	Fig.	8a)	draining	younger	catchments	which	have	undergone	congruent	

weathering	of	minerals	with	unradiogenic	187Os/188Os.	Samples	close	to	glacially	fed	rivers	

(Samples	9	and	10;	Fig.	1)	are	likely	to	attain	a	radiogenic	187Os/188Os	signal	(Orange	

diamonds	in	Fig.	8a)	due	to	the	entrainment	of	seawater	into	glacial	ice	(Gannoun	et	al.,	

2006).		

Fig.	8.	Osmium	isotopic	(187Os/188Os)	composition	against	the	reciprocal	of	the	Os	

abundance	for	(a)	macroalgae	sampled	close	to:	rivers	draining	a	young	basaltic	terrain	or	

geothermal	waters	(pink	circles);	rivers	draining	an	old	basaltic	terrain	(blue	squares);	and,	

Holocene	sediments	(orange	diamonds)	and	(b)	F.	vesiculosus	where	the	Os	abundance	is	

converted	to	that	of	seawater	(black	squares)	using	the	relationship	found	in	Racionero-
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Gómez	et	al.	(2017).	A	three-point	end-member	mixing	diagram	based	on	extreme	North	

Atlantic	seawater	(Green;	Gannoun	and	Burton,	2014)	and	rivers	draining	a	young	basaltic	

catchment	(pink;	Gannoun	et	al,	2006)	and	old	basaltic	catchments	(blue,	Gannoun	et	al,	

2006).	See	text	for	discussion.	

	

This	relationship	becomes	more	apparent	when	the	Os	abundance	in	F.	

vesiculosus	is	converted	to	the	Os	abundance	in	seawater	using	the	relationship	found	in	

Racionero-Gómez	et	al.	(2017;	y	=	0.0004x1.6607,	R²	=	0.9898),	with	its	reciprocal	plotted	

against	the	187Os/188Os	of	F.	vesiculosus,	and	then	compared	to	an	idealised	3-point	end-

member	mixing	model	(Fig.	8b).	Data	fall	upon	either:	a	mixing	line	between	seawater	

(187Os/188Os	=	1.02,	[Os]	=	10	ppq)	and	direct-runoff	rivers	draining	old	catchments	

(187Os/188Os	=	0.6,	[Os]	=	3.65	ppq);	a	mixing	line	between	seawater	and	direct-runoff	rivers	

draining	young	rivers	or	geothermal	waters	(187Os/188Os	=	0.14,	[Os]	=	22.7	ppq);	or,	close	to	

the	value	for	seawater	itself	(Fig.	8b).	However,	the	data	is	offset	in	concentration	space	

from	an	idealised	mixing	model.	This	is	most	likely	caused	by	the	conversion	rate	used,	

which	was	developed	by	doping	macroalgae	under	exceptionally	high	seawater	Os	

concentrations	(Racionero-Gómez	et	al.,	2017).	More	work	is	needed	to	ascertain	how	

macroalgae	cultures	behave	at	lower	Os	concentrations,	more	akin	to	those	found	in	

nature,	for	F.	vesiculosus	and	other	common	macroalgae	species.		

	

2.4.3	Biological	and	environmental	controls	on	187Re/188Os	of	macroalgae	

The	187Re/188Os	ratios	of	macroalgae	show	a	wide	range	from	~64	to	40,320	(Fig.	3b)	similar	

to	previous	studies	(6.8	to	31,983;	Rooney	et	al.,	2016,	Racionero-Gómez	et	al.,	2017),	but	

far	exceeding	that	found	in	global	seawater	(avg.	187Re/188Os	=	4270;	Peucker-Ehrenbrink	

and	Ravizza,	2000),	global	river	water	(avg.	187Re/188Os	=	227;	Peucker-Ehrenbrink	and	

Ravizza,	2000)	and	the	dissolved	load	of	waters	measured	in	this	study	(125-	5467).	As	
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previously	discussed	this	may	be	due	to	the	different	sources	of	Re	and	Os	in	macroalgae.	

Samples	located	close	to	a	young	basaltic	terrain	(Pink	circles	in	Fig.	9a)	are	characterised	

by	relatively	unradiogenic	187Os/188Os	and	low	187Re/188Os	compositions,	as	their	isotopic	

signature	is	controlled	by	geothermal	and	river	waters	dominated	by	congruent	weathering	

of	basaltic	bed-rock	with	relatively	unradiogenic	187Os/188Os	(0.12	-	0.18)	and	low	

187Re/188Os	(23.8	-	1310)	compositions.	Samples	located	close	to	the	older	basaltic	terrains	

(Blue	squares	in	Fig.	8a)	exhibit	radiogenic	187Os/188Os	and	high	187Re/188Os	ratios,	as	their	

isotopic	signature	is	dominated	by	river	waters	that	have	been	influenced	by	the	

preferential	weathering	of	old	primary	basaltic	minerals	such	as	olivine,	clinopyroxene	and	

plagioclase,	which	have	relatively	radiogenic	187Os/188Os	(0.13	-	0.25	which	has	undergone	

radiogenic	ingrowth)	and	high	187Re/188Os	(288	-	7164)	ratios	(Burton	et	al.,	2002;	Gannoun	

et	al.,	2004;	Gannoun	et	al.,	2006).	The	influence	of	seawater,	with	a	relatively	radiogenic	

187Os/188Os	(1.02)	and	intermediate	187Re/188Os	(4270;	Peucker-Ehrenbrink	and	Ravizza,	

2000),	will	pull	the	macroalgae	values	towards	a	seawater	end-member	(See	Fig.	9).	

Macroalgae	therefore	hold	the	potential	to	not	only	record	the	187Os/188Os	of	the	seawater	

in	which	they	live,	but	also	the	relative	187Re/188Os	ratio	of	the	seawater	sources.	This	is	

confirmed	by	the	strong	relationship	between	the	187Re/188Os	of	macroalgae	and	the	

dissolved	load	measured	in	this	study	(Fig	5d).	

Despite	this	relationship,	macroalgae	can	still	exhibit	187Re/188Os	ratios	greater	

than	expected	for	Icelandic	geochemical	reservoirs.	It	has	been	proposed	that	macroalgae	

uptake	Re	and	Os	through	the	same	mechanism	leading	to	competition	between	these	

elements	and	therefore	lower	Re	concentration	in	macroalgae	under	higher	Os	seawater	

concentration	and	vice	versa	(Racionero-Gómez	et	al.,	2017).	This	is	illustrated	when	the	

187Re/188Os	ratio	of	macroalgae	is	plotted	against	the	reciprocal	of	the	Re	concentration	

(Fig.	9b).	At	low	macroalgae	Re	concentration	(<10	ppb),	there	is	no	competition	between	

Re	and	Os	for	uptake	into	macroalgae,	and	187Re/188Os	ratios	remain	consistently	low	
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(<5,000).	As	the	Re	concentration	rises	above	~10	ppb,	Re	is	favoured	over	Os	as	the	two	

elements	begin	to	compete	for	uptake	into	macroalgae	leading	to	an	increase	in	187Re/188Os	

ratios	(5,000-15,000).	At	exceptionally	high	Re	concentration	(>25	ppb),	Re	continues	to	be	

taken	up	and	the	macroalgae	becomes	enriched	in	Re,	leading	to	exceptionally	high	

187Re/188Os	ratios	(15,000-40,000).		

Fig.	9.	(a)	187Re/188Os	versus	187Os/188Os	and	(b)	187Re/188Os	against	the	reciprocal	of	Re	

abundance	for	macroalgae	sampled	close	to:	rivers	draining	a	young	basaltic	terrain	or	

geothermal	waters	(pink	circles);	rivers	draining	an	old	basaltic	terrain	(blue	squares);	and,	

Holocene	sediments	(orange	diamonds).	See	text	for	discussion.			
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This	could	be	further	exacerbated	by	additional	uptake	of	Re	from	the	bed	load	

and/or	particulate	load	leading	to	even	higher	Re	concentration	relative	to	Os	in	

macroalgae	(Fig.	4b),	or	the	addition	of	another	187Re/188Os	signal	imparted	from	the	

bedload	(Fig.	5b).	These	biological	controls	on	Re	and	Os	uptake	could	possibly	be	the	

cause	of	the	187Re/188Os	ratios	in	macroalgae	close	to	the	outflow	of	older	river	catchments	

being	far	higher	than	those	observed	for	recorded	primary	basaltic	minerals	(Fig.	9a).		

	

2.5	Implications	and	future	outlook	

The	Re-Os	data	for	macroalgae	presented	here	have	been	successfully	used	to	trace	the	

influence	of	basaltic	weathering	on	the	187Os/188Os	and	187Re/188Os	of	Icelandic	coastal	

waters	and	subsequent	mixing	with	more	radiogenic	seawater.	Geothermal	water	and	

rivers	draining	young	basaltic	catchments	impart	an	unradiogenic	187Os/188Os	composition	

and	also	a	relatively	low	187Re/188Os	signal	to	coastal	waters.	Rivers	draining	older	basaltic	

catchments,	where	preferential	weathering	of	primary	basaltic	minerals	high	in	Re/Os	

ratios,	and	which	have	had	sufficient	time	for	the	decay	of	187Re	to	form	187Osr,	imparts	a	

more	radiogenic	187Os/188Os	composition	and	relatively	high	187Re/188Os	signal	to	coastal	

waters.	This	provides	further	evidence	to	support	the	use	of	the	187Os/188Os	of	macroalgae	

as	a	proxy	for	the	187Os/188Os	of	seawater,	overcoming	the	difficulties	associated	with	direct	

seawater	analysis	and	potentially	becoming	a	useful	tool	for	tracing	a	variety	of	Earth	

system	processes.	

If	samples	obtained	at	the	mouth	of	a	river	represents	the	entire	drainage	area	

(Miller	et	al.,	2011),	then	it	is	possible	to	calculate	the	entire	quantity	and	isotopic	

composition	of	dissolved	Os	that	is	supplied	to	the	North	Atlantic	from	Icelandic	rivers	

using	macroalgae.	The	rivers	containing	F.	vesiculosus	studied	have	an	annual	discharge	of	

2.3	km3/yr,	accounting	for	1.3%	of	the	total	discharge	of	Icelandic	rivers	(175	km3/yr).	Given	
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the	Os	abundance	of	F.	vesiculosus,	which	has	been	converted	to	that	of	seawater	and	then	

offset	to	be	more	representative	of	Icelandic	geochemical	reservoirs	(See	Fig.	8b),	we	

estimate	a	dissolved	Os	flux	of	2.35	kg/yr.	These	values	are	far	higher	than	previously	

recorded	estimates	for	Icelandic	rivers	of	0.98	kg/yr	(Gannoun	et	al.,	2006).	Some	of	the	

discrepancy	between	these	two	values	is	likely	due	to	the	underrepresentation	of	Icelandic	

rivers	in	this	study	(1.3%)	when	compared	to	previous	studies	(21%)	(Gannoun	et	al.,	2006),	

but	also	suggests	that	although	this	newly	developed	proxy	offers	the	potential	to	better	

constrain	the	187Os/188Os	composition	of	global	riverine	inputs,	more	work	is	needed	to	

understand	the	uptake	rate	of	Os	by	macroalgae	at	natural	levels	in	order	to	a	better	

estimate	the	global	riverine	abundance.	If	this	can	be	done,	macroalgae	could	hold	the	

potential	to	yield	a	better	understanding	of	the	global	Os	cycle	and	oceanic	residence	

times.		

It	is	also	possible	to	estimate	the	entire	quantity	of	Re	and	Os	taken	up	by	

macroalgae	from	Iceland.	The	four	macroalgae	species	studied	here	account	for	46%	of	the	

total	biomass	of	common	macroalgae	species	found	around	Iceland	(Munda,	1987).	Given	

the	average	Re	and	Os	abundance	for	each	species,	we	calculate	4.3	to	14.1	kg	of	Re	and	

3.3	to	11.8	g	of	Os	are	absorbed	by	these	macroalgae	over	their	lifetime.	This	is	rather	

insignificant	when	compared	to	the	Icelandic	river	input	of	Os	to	the	ocean	as	described	

previously.	However,	it	has	been	shown	that	upon	death	macroalgae	does	not	appreciably	

loose	Re	(Racionero-Gómez	et	al.,	2016).	If	this	is	the	same	for	Os,	and	6	to	14%	of	global	

macroalgae	(6084	Tg/yr)	(Krause-Jensen	and	Duarte,	2016)	survives	decomposition	and	is	

sequestered	to	sediment,	then	macroalgae	could	act	as	a	sink	of	0.03	to	89	kg/yr	of	Re	and	

0.001	to	0.2	kg/yr	for	Os,	when	based	on	the	range	of	compositions	of	all	macroalgae	

species	studied	to	date	(Mas	et	al.,	2005;	Racionero-Gómez	et	al.,	2016;	Racionero-Gómez	

et	al.,	2017;	Rooney	et	al.,	2016;	Yang,	1991).	This	is	insignificant	when	compared	to	

estimates	for	global	sediment	sinks	of	18	to	29	x103	kg/yr	and	260	to	1350	kg/yr	for	Re	and	
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Os,	respectively	(Morford	and	Emerson,	1999;	Oxburgh,	2001),	suggesting	macroalgae	

alone	does	not	have	a	significant	control	in	the	global	marine	Re	and	Os	cycle,	both	today	

and	in	Earth’s	geological	past.	
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Chapter	3	
	

Tracing	anthropogenic	osmium	around	Japan	using	the	osmium	isotopic	

composition	of	macroalgae*	

	

	

*A	version	of	this	chapter	will	be	submitted	to	Environmental	Science	and	Technology,	co-

authored	with	David	Selby	and	Katsuhiko	Suzuki.	
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This	study	presents	rhenium	(Re)	and	osmium	(Os)	abundance	and	isotope	data	for	

macroalgae	from	Japanese	coastal	waters	adjacent	to	densely	populated	megacities	

(Tokyo,	Osaka	and	Nagoya)	and	sparsely	populated	regions	of	Japan	(The	Izu	peninsula,	The	

Noto	peninsula,	northern	Honshu	and	Hokkaido).	The	187Os/188Os	composition	of	

macroalgae	is	highly	variable	(0.16	to	1.09)	and	can	be	explained	in	terms	of	mixing	

between	seawater	and:	rivers	draining	Miocene-Holocene	continental	rocks	with	a	

radiogenic	187Os/188Os	composition;	and/or,	anthropogenic	sources	of	Os	with	an	

unradiogenic	187Os/188Os	composition.	The	Os	emitted	from	catalytic	convertor	use	in	

vehicles	predominantly	controls	the	Os	isotope	budget	of	coastal	waters	in	densely	

populated	regions	of	Japan.	However,	Os	derived	from	medical	research,	municipal	solid	

waste	incinerators	and	sewage	outflow	can	generate	localised	point	sources	of	

anthropogenic	Os.	Anthropogenic	Os	attributed	to	coastal	cities,	which	is	transferred	via	

surface	waters	to	world’s	oceans,	represents	a	substantial	source	of	unradiogenic	Os	which	

is	driving	surface	seawater	to	lower	187Os/188Os	ratios	(~0.95)	than	deeper	waters	(~1.05).	

This	suggests	the	demand	in	PGEs,	their	refining	and	eventual	use	in	catalytic	convertors	is	

impacting	the	global	Os	cycle.	Finally,	this	study	suggests	that	osmium	isotopes	in	

macroalgae	could	become	a	powerful	environmental	indicator	and	tracer	of	continental	

inputs	to	the	marine	Os	cycle.					

	

3.1	Introduction		

The	osmium	isotopic	composition	(187Os/188Os)	of	seawater	reflects	a	balance	between	

radiogenic	continental	sources	and	unradiogenic	mantle	and	extraterrestrial	derived	

sources,	and	has	traditionally	been	used	to	trace	a	wide	range	of	Earth	system	processes,	

both	today	and	in	the	Earth’s	geological	past	(Peucker-Ehrenbrink	and	Ravizza,	2000,	2012).	

However,	human	activity	is	perturbing	the	marine	Os	cycle	(Chen	et	al.,	2009)	and	

anthropogenic	Os	contamination	has	been	detected	in	estuaries	(Turekian	et	al.,	2007;	
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Williams	et	al.,	1997),	coastal	sediments	(Esser	and	Turekian,	1993;	Ravizza	and	Bothner,	

1996),	lakes	(Rauch	et	al.,	2004)	and	precipitation	(Chen	et	al.,	2009)	(See	Table	1).	

Potential	sources	of	anthropogenic	Os	to	the	atmosphere	and	the	marine	environment	

include:	(i)	the	combustion	of	fossil	fuels;	(ii)	smelting	of	platinum	group	element	(PGE:	Os,	

Ir,	Pt,	Pd,	Ru,	Rh)	sulphide	ores;	(iii)	smelting	of	base-metal	(Pb,	Ni,	Cu,	and	Zn)	sulphide	

ores;	(iv)	smelting	of	aluminium	ore	(v)	smelting	of	chromium	ore;	(vi)	exhaust	from	

automobile	catalytic	convertors;	(vii)	emissions	from	incinerators;	and,	(viii)	sewage	

outflow	(See	Table	1).		

	

Table	1	

Comparison	of	natural	and	anthropogenic	sources	of	Os	and	Re.	Data	references	are:	

seawater	(Peucker-Ehrenbrink	and	Ravizza,	2000);	river	water	(Peucker-Ehrenbrink	and	

Ravizza,	2000);	precipitation	(Chen	et	al.,	2009);	loess	(Peucker-Ehrenbrink	and	Jahn,	2001);	

cosmic	dust	(Peucker-Ehrenbrink	and	Ravizza,	2000);	HT	hydrothermal	(Peucker-Ehrenbrink	

and	Ravizza,	2000);	LT	hydrothermal	(Peucker-Ehrenbrink	and	Ravizza,	2000);	fossil	fuels	

(Selby	and	Creaser,	2005;	Selby	et	al.,	2007);	base-metal	sulphide	ores	(Lambert	et	al.,	

1998;	Morgan	et	al.,	2002;	Walker	et	al.,	1994);	PGE	ores	(McCandless	and	Ruiz,	1991);	

chromites	(Walker	et	al.,	2002);	aluminium	smelter	(Gogot	et	al.,	2015);	airborne	particles	

(Rauch	et	al.,	2005);	urban	sediments	(Rauch	et	al.,	2004);	car	catalysts	(Poirier	and	

Gariépy,	2005);	sewage	sludge	(Esser	and	Turekian,	1993);	MSWI	ashes	(Funari	et	al.,	2016).	

		 [Os]	(fg/g)	 187Os/188Os	 [Re]	(pg/g)	 187Re/188Os	

Natural	

Seawater	 10	 1.06	 8.2	 4270	

River	Water	 9.1	 1.4	 428	 227	

Precipitation	 0.3	-	16.9	 0.16	-	0.98	
	  

Loess	 3.1	x	104	 1.05	 3	x	105	 50	

Cosmic	Dust	 5	x	108	 0.13	 3.7	x	107	 0.4	

HT	hydrothermal	 2.8	-	38	 0.13	-	0.39	
	  LT	hydrothermal	 98	 0.11	
	  Anthropogenic	

Fossil	Fuels	 0.01	-	295	x	103	 0.9	-	6	 0.3	-	40.7	x	103	 400	-	1300	

Base-metal	Sulphide	Ore	 0.02	-	89	x	106	 0.13	-	24	 0.6	-	286	x	103	 0.8	-	5232	

PGE	Ore	
	

0.15	-	0.19	
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Chromites	 2	-	1320	x	106	 0.12	 0.01	-	9.3	x	103	 0.01	-	2.2	

Aluminium	Smelter	 30	x	103	 2.5	
	  

Airborne	Particles	 0.001	-	0.82	pg/m3	 0.3	-	2.8	
	  

Urban	Sediments	 56	-	395	x	103	 0.36	-	2.2	
	  

Car	Catalysts	 6	-	228	x103	 0.16	-	0.19	
	  

Sewage	Sludge	 10	-	100	x	103	 0.6	-	1.7	
	  

MSWI	Ashes	 26	-	1650	x	103	 0.24	-	0.7	 		 		
	

Highly	radiogenic	anthropogenic	187Os/188Os	sources	include	the	smelting	of	

bauxite	ore	(~2.5)	and	fossil	fuels	(1.1	to	13.7)	(Finlay	et	al.,	2011;	Gogot	et	al.,	2015;	Selby	

and	Creaser,	2005;	Selby	et	al.,	2007).	In	contrast,	the	187Os/188Os	values	of	PGE	sulphide	

ores	from	the	Bushveld	Complex,	South	Africa	(0.15	to	0.2),	chromites	(0.12	to	0.14),	

municipal	solid	waste	incinerator	(MSWI)	ash	(0.24	to	0.7)	and	sewage	sludge	are	generally	

unradiogenic	(Esser	and	Turekian,	1993;	Funari	et	al.,	2016;	McCandless	and	Ruiz,	1991;	

Ravizza	and	Bothner,	1996;	Turekian	et	al.,	2007;	Walker	et	al.,	1994;	Williams	et	al.,	1997).	

The	187Os/188Os	of	base-metal	sulphide	ores	are	highly	variable,	and	in	some	cases	can	be	

relatively	radiogenic	(e.g.	Sudbury,	Canada)	due	to	contamination	from	continental	

sources,	whilst	in	other	cases	they	can	record	unradiogenic	187Os/188Os	values	similar	to	

mantle	derived	sources	(e.g.	Noril’sk,	Russia	and	Yilgarn	craton,	Australia)	(Lambert	et	al.,	

1998;	Morgan	et	al.,	2002;	Walker	et	al.,	2002).	Roughly	95%	(Jones,	1999)	of	all	PGEs	are	

derived	from	unradiogenic	sources	(0.15	-	0.2),	which	is	reflected	in	the	187Os/188Os	

measurements	of	the	catalytic	convertors	from	which	they	are	made	(0.1	-	0.2)	(Poirier	and	

Gariépy,	2005),	suggesting	the	187Os/188Os	of	automobile	exhaust	will	be	of	similar	values	

(Chen	et	al.,	2009).	

Smelters	(Gogot	et	al.,	2015;	Rodushkin	et	al.,	2007b),	incinerators	(Funari	et	al.,	

2016;	Turekian	et	al.,	2007;	Williams	and	Turekian,	2002)	and	sewage	outflow	(Esser	and	

Turekian,	1993;	Ravizza	and	Bothner,	1996;	Turekian	et	al.,	2007;	Williams	et	al.,	1997)	

represent	point	sources	in	anthropogenic	Os,	whereas	catalytic	convertors	represent	a	



70	
	

regional	influence	in	densely	populated	areas	(Poirier	and	Gariépy,	2005).	On	a	global	scale,	

the	refining	of	PGE	ores,	and	to	a	lesser	extent	automobile	exhaust,	has	driven	global	

precipitation	towards	the	isotopic	composition	of	ores	(~0.2)	(Chen	et	al.,	2009).	Moreover,	

present-day	surface	waters	have	lower	187Os/188Os	values	(~0.95)	than	deep	waters	(~1.05),	

suggesting	humans	have	impacted	the	global	Os	cycle	and	the	world’s	oceans	(Chen	et	al.,	

2009).	Osmium	isotopes	therefore	hold	the	potential	to	become	a	powerful	tracer	of	

hydrologic,	oceanographic	and	anthropogenic	processes	‘similar	to	Pb	from	leaded	gasoline	

usage	before	1978	or	tritium	from	atmospheric	atomic	bomb	testing	in	the	early	1960s’	

(Chen	et	al.,	2009).		

Despite	this	potential,	and	the	establishment	of	ultra-low	blank	analytical	

techniques	capable	of	oxidising	all	osmium	to	a	common	oxidation	state	(Chen	and	Sharma,	

2009;	Gannoun	and	Burton,	2014;	Levasseur	et	al.,	1998;	Paul	et	al.,	2009),	the	direct	

analysis	of	Os	in	seawater	still	remains	analytically	challenging	due	to	ultra-low	Os	

concentrations	(Peucker-Ehrenbrink	et	al.,	2013).	Therefore,	the	measurements	of	

anthropogenic	Os	in	rivers,	estuaries	and	coastal	and	oceanic	waters	remain	sparse.	Recent	

work	indicates	that	macroalgae	(seaweed)	concentrates	Os	(with	abundances	that	vary	

from	3.3	to	254.5	ppt),	whilst	maintaining	the	187Os/188Os	composition	of	the	seawater	it	

inhabits	(Racionero-Gómez	et	al.,	2017;	Rooney	et	al.,	2016;	Chapter	2).	This	suggests	that	

macroalgae	could	act	as	a	proxy	for	the	187Os/188Os	composition	of	local	waters	whilst	

removing	some	of	the	analytical	challenges	associated	with	direct	analysis	of	seawater	i.e.	

ultra-low	concentrations	and	multiple	oxidation	states.	Macroalgae	existing	in	coastal	

waters,	therefore,	should	record	an	187Os/188Os	signature	that	reflects	a	balance	of	local	

inputs,	including	riverine	input,	local	bedrock	and	seawater	and	has	been	utilised	to	

understand	natural	processes	in	Greenland	(Rooney	et	al.,	2016)	and	Iceland	(Chapter	2).	

Japan	offers	a	unique	place	in	which	to	study	the	influence	of	anthropogenic	

processes	on	regional	variations	in	the	marine	Os	cycle.	Large,	densely	populated,	
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sprawling	metropolitan	areas	often	fall	in	close	proximity	to	coastal	waters,	inlet	seas	or	

bays.	These	metropolitan	areas	are	often	juxtaposed	to	sparsely	populated	rural	and/or	

mountainous	regions,	with	little	human	activity	and	therefore	anthropogenic	influence.	

This	study	presents	Re-Os	abundance	and	isotope	data	for	macroalgae	from	Tokyo	Bay,	

Osaka	Bay,	Ise	Bay,	Mikawa	Bay,	Izu	Peninsula,	Noto	Peninsula,	Hokkaido	and	northern	

Honshu.		

Tokyo	Bay,	Osaka	Bay	and	Ise/Mikawa	Bay	lie	in	close	proximity	to	the	Kanto	

(Tokyo-Yokohama),	Keihanshin	(Osaka-Kobe)	and	Chukyo	(Nagoya)	metropolitan	areas.	The	

187Os/188Os	signature	from	these	regions	is	much	lower	than	expected	for	natural	river	and	

oceanic	systems,	but	similar	to	the	isotope	composition	of	PGE	ores.	This	suggests	that	

human	activity	has	influenced	the	187Os/188Os	of	macroalgae,	and	therefore	seawater,	

through	the	burning	of	municipal	and/or	hospital	waste,	processing	of	sewage	and	the	

extensive	use	of	automobiles	in	these	areas.	The	Izu	Peninsula,	the	Noto	Peninsula,	

Hokkaido	and	northern	Honshu	exhibit	187Os/188Os	values	similar	to	global	river	water	or	

Pacific	seawater	measurements,	suggesting	little	influence	from	human	activity.	These	

results	demonstrate	the	ability	of	macroalgae	to	trace	fluctuations	in	the	187Os/188Os	

compositions	of	freshwater	and	seawater	around	Japan,	and	utilise	this	to	determine	the	

influence	of	human	activity	on	the	global	osmium	budget.	

	

3.2	Field	and	analytical	techniques				

3.2.1	Sampling	and	storage	

Macroalgae	from	Osaka	Bay	(Sample	Location	16-22)	were	sampled	at	7	locations	during	

September	2014.	Macroalgae	from	Tokyo	Bay	(Sample	Location	1-15),	the	Izu	peninsula	

(Sample	Location	31-36)	and	the	Noto	peninsula	(Samples	Location	37-43)	were	sampled	at	

28	locations	between	July	and	September	2015.	A	further	8	locations	in	the	Ise	(Sample	
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Location	23-24)	and	Mikawa	(Sample	Location	25-30)	Bays	were	sampled	during	December	

2015.	Macroalgae	from	northern	Honshu	(Sample	Location	44-48)	were	sampled	at	5	

locations	during	September	2016.	Samples	from	Hokkaido	were	purchased	at	tsukiji	fish	

market	in	Tokyo.	In	total	sixty-four	macroalgae	samples	were	collected	(Fig.	1;	Table	1).	

Macroalgae	were	washed	using	deionised	(Milli-Q™)	water	to	remove	any	attached	

sediment	and	salt.	They	were	then	dried	for	12	h	at	60	°C	and	stored	in	plastic	zip-lock	

bags.	Macroalgae	were	later	crushed	using	an	agate	pestle	and	mortar	prior	to	analysis.	

Fig.	1.	Map	of	Japan.	Macroalgae	sample	locations	for	northern	Honshu	and	Hokkaido	are	

displayed	(Circles;	Table	2).	Dashed	lines	represent	an	outline	of	areas	shown	in	Figures	2	

(Tokyo	Bay),	3	(Osaka	Bay),	4	(Ise	and	Mikawa	Bay),	5	(The	Izu	peninsula)	and	6	(Kanazawa	

and	the	Noto	peninsula).		
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3.2.2	Macroalgae	species	and	habitats	

Specific	macroalgae	species	were	not	targeted	during	this	study,	and	samples	were	

selected	based	on	their	availability	at	sample	sites.	There	was	however	a	preference	to	

brown	macroalgae	over	green	and	red	macroalgae	due	to	their	relatively	high	abundance	in	

Re	(Mas	et	al.,	2005;	Prouty	et	al.,	2014;	Racionero-Gómez	et	al.,	2016;	Yang,	1991)	and	Os	

(Racionero-Gómez	et	al.,	2017;	Chapter	2;	Rooney	et	al.,	2016).	Twenty	species	of	

macroalgae	were	analysed:	Monostroma	nitidum;	Urospora	penicilliformis;	Hizikia	

fusiformis;	Undaria	pinnatifidia;	Dictyopteris	undulata	Holmes;	Gloiopeltis	complanata;	

Spatoglossum	crissum;	Gloiopeltis	furcate;	Sargassum	fusiforme;	Sargassum	muticum;	

Gelidum	elegans	Kutzing;	Gracilaria	vermiculophylla	(Ohmi)	Papenfuss;	Sargassum	horneri;	

Grateloupia	carnosa;	Schizymenia	dubyi;	Grateloupia	lanceolate;	Porphyra	tenera	Kjellman;	

Pachydictyon	coriaceum	(Holmes)	Okamura;	Gracilaria	bursa-pastoris;	and,	Laminaria	

japonica.	

	

3.2.3	Re-Os	analysis	

The	Re-Os	analysis	of	macroalgae	was	carried	out	in	the	Durham	Geochemistry	Centre	

(Laboratory	for	Sulfide	and	Source	Rock	Geochronology	and	Geochemistry).		

	

3.2.3.1	Macroalgae	

The	technique	for	chemical	separation	of	Re	and	Os	from	macroalgae	is	reported	by	

Racionero-Gómez	et	al.	(2017).	In	brief,	approximately	200	mg	of	powdered	macroalgae	

was	introduced	into	a	Carius	tube	together	with	11	N	HCl	(3	mL),	15.5	N	HNO3	(6	mL)	and	a	

known	amount	of	185Re	+	190Os	tracer	solution	and	heated	to	220°C	in	an	oven	for	24	h.	The	

Os	was	isolated	from	the	acid	medium	using	CHCl3	solvent	extraction	and	then	back	

extracted	into	HBr.	The	Os	was	further	purified	using	a	CrO3-H2SO4	–	HBr	micro-distillation	
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(Birck	et	al.,	1997;	Cohen	and	Waters,	1996).	The	remaining	Re-bearing	acid	medium	was	

evaporated	to	dryness	at	80°C,	with	the	Re	isolated	and	purified	using	both	NaOH-acetone	

solvent	extraction	and	HNO3-HCl	anion	chromatography	(Cumming	et	al.,	2013).								

	

3.2.3.2	Mass	Spectrometry	

The	purified	Re	and	Os	fractions	were	loaded	onto	Ni	and	Pt	filaments	respectively,	and	

measured	using	NTIMS	(Creaser	et	al.,	1991;	Völkening	et	al.,	1991)	on	a	Thermo	Scientific	

TRITON	mass	spectrometer	using	Faraday	collectors	in	static	mode,	and	an	electron	

multiplier	in	dynamic	mode	respectively.	The	Re	and	Os	abundances	and	isotope	

compositions	are	presented	with	2	s.e.	(standard	error)	absolute	uncertainties	which	

include	full	error	propagation	of	uncertainties	in	the	mass	spectrometer	measurements,	

blank,	spike	calibrations,	and	sample	and	spike	weights.	Full	analytical	blank	values	for	the	

macroalgae	analysis	are	10.9	±	5.9	pg	for	Re,	0.13	±	0.13	pg	for	Os,	with	a	187Os/188Os	

composition	of	0.61	±	0.34	(1	SD,	n	=	4).		

To	monitor	the	long-term	reproducibility	of	mass	spectrometer	measurements	

Re	and	Os	(DROsS,	DTM)	reference	solutions	were	analysed.	The	125	pg	Re	solution	yields	

an	average	185Re/187Re	ratio	of	0.5987	±	0.0023	(2	SD.,	n	=	8),	which	is	in	agreement	with	

published	values	(e.g.,	Cumming	et	al.,	2013	and	references	therein).	A	50	pg	DROsS	

solution	gave	an	187Os/188Os	ratio	of	0.16111	±	0.0008	(2	SD.,	n	=	8),	which	is	in	agreement	

with	reported	value	for	the	DROsS	reference	solution	(Nowell	et	al.,	2008).		

	

3.3	Results	

The	Re	and	Os	abundance	and	isotope	data	for	macroalgae	are	presented	in	Table	2.	The	

Re	and	Os	abundance	show	a	large	range	from	0.02	to	21.43	ppb	and	1.96	to	122.76	ppt	

respectively.	The	187Os/188Os	and	187Re/188Os	compositions	are	highly	variable	and	range	
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from	0.16	to	1.09	and	8.7	to	11234.5	respectively.	The	reason(s)	for	the	variation	is	

discussed	is	section	4.	In	section	3.3.2	to	3.3.6,	the	position	of	sample	locations	are	

compared	to	several	indicators	of	human	activity.	Population	density	data	(ESRI,	2014),	Os	

pollution	sources	(Google	Earth,	2016)	and	CO2	emission	data	from	EAGrid2010	(Kannari	et	

al.,	2007)	can	be	found	in	panel	b,	c	and	d	(Figs.	2	to	6)	respectively.		

Table	2	

Rhenium	and	osmium	abundance	and	isotope	data	for	Japanese	macroalgae	samples	

Sample		
Location	 Macroalgae	Species	

[Re]	
(ppb)	 2	s.e.	

[Os]	
(ppt)	 2	s.e.	 187Re/188Os	 2	s.e.	 187Os/188Os	 2	s.e.	

Tokyo	Bay	
1	 Monostroma	nitidum		 0.02	 0.03	 3.90	 0.08	 28.7	 38.9	 0.519	 0.032	
2	 Monostroma	nitidum		 3.56	 0.20	 11.27	 0.22	 1603.9	 113.4	 0.541	 0.031	
3	 Monostroma	nitidum		 2.88	 0.05	 3.33	 0.07	 4462.4	 215.1	 0.674	 0.041	
4	 Monostroma	nitidum		 0.07	 0.03	 7.67	 0.08	 42.2	 19.4	 0.363	 0.011	

5	
Urospora	

penicilliformis	 3.72	 0.04	 24.03	 0.11	 789.5	 9.3	 0.582	 0.006	
5	 Monostroma	nitidum		 0.305	 0.001	 12.18	 0.05	 124.7	 1.0	 0.397	 0.004	
6	 Monostroma	nitidum		 3.65	 0.04	 29.19	 0.56	 639.5	 26.7	 0.592	 0.034	

7	
Urospora	

penicilliformis	 0.52	 0.03	 29.86	 0.31	 87.9	 5.4	 0.463	 0.014	

7	
Urospora	

penicilliformis	 0.938	 0.009	 30.06	 0.31	 156.3	 3.6	 0.428	 0.012	

8	
Urospora	

penicilliformis	 0.233	 0.003	 26.57	 0.50	 43.9	 1.9	 0.436	 0.025	

rpt	
Urospora	

penicilliformis	 0.37	 0.03	 18.14	 0.34	 101.6	 9.3	 0.455	 0.026	
9	 Monostroma	nitidum		 0.127 0.001 17.21 0.13 37.0 0.6 0.418 0.009 
9	 Monostroma	nitidum		 0.269 0.001 17.60 0.08 76.7 0.6 0.450 0.005 
10	 Monostroma	nitidum		 0.05	 0.03	 3.77	 0.08	 71.0	 40.5	 0.551	 0.034	
11	 Monostroma	nitidum		 0.06	 0.03	 3.44	 0.07	 85.7	 45.2	 0.669	 0.041	
12	 Hizikia	fusiformis	 1.63	 0.09	 10.00	 0.07	 861.6	 50.3	 0.867	 0.012	
13	 Undaria	pinnatifidia	 2.14	 0.02	 5.85	 0.04	 1948.2	 27.2	 0.950	 0.015	

14	
Dictyopteris	undulata	

Holmes	 0.10	 0.03	 7.40	 0.15	 68.5	 21.7	 0.910	 0.053	

15	
Gloiopeltis	
complanata	 7.65	 0.14	 17.10	 0.20	 2362.2	 66.3	 0.857	 0.026	

Osaka	Bay	

16	
Spatoglossum	

crassum	 1.33	 0.07	 13.25	 0.08	 502.6	 26.7	 0.445	 0.007	
16	 Gloiopeltis	furcata	 0.58	 0.03	 21.31	 0.22	 137.3	 8.5	 0.497	 0.014	
17	 Sargassum	fusiforme	 3.64	 0.17	 122.76	 0.54	 143.6	 6.9	 0.165	 0.002	
17	 Undaria	pinnatifidia	 4.21	 0.15	 23.91	 0.45	 876.0	 47.7	 0.380	 0.022	
rpt	 Undaria	pinnatifidia	 3.49	 0.17	 24.87	 0.39	 697.4	 40.6	 0.364	 0.017	
18	 Undaria	pinnatifidia	 7.05	 0.25	 22.78	 0.25	 1589.2	 65.5	 0.628	 0.018	
18	 Undaria	pinnatifidia	 4.72	 0.22	 14.34	 0.20	 1683.0	 91.7	 0.597	 0.023	
19	 Undaria	pinnatifidia	 4.21	 0.15	 18.81	 0.36	 1144.2	 62.5	 0.591	 0.034	
19	 Gloiopeltis	furcata	 0.55	 0.04	 11.36	 0.12	 246.6	 18.5	 0.521	 0.015	
20	 Sargassum	fusiforme	 2.58	 0.10	 25.89	 0.16	 518.8	 20.0	 0.758	 0.010	
21	 Sargassum	muticum	 0.38	 0.03	 16.59	 0.18	 114.5	 10.3	 0.508	 0.015	
22	 Undaria	pinnatifidia	 3.18	 0.12	 19.34	 0.37	 830.8	 45.6	 0.497	 0.029	

Ise	Bay	
23	 Gelidum	elegans	 0.16	 0.03	 88.80	 0.84	 8.7	 1.7	 0.158	 0.005	
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Kutzing	

23	

Gracilaria	
vermiculophylla	
	(Ohmi)	Papenfuss	 0.08	 0.03	 27.06	 0.49	 15.0	 5.4	 0.185	 0.011	

24	 Undaria	pinnatifida	 1.37	 0.07	 22.01	 0.13	 318.5	 16.7	 0.602	 0.008	
Mikawa	Bay	

25	 Sargassum	horneri	 0.36	 0.03	 10.62	 0.21	 176.3	 18.5	 0.742	 0.043	
26	 Sargassum	muticum	 0.24	 0.03	 7.31	 0.15	 167.3	 23.8	 0.689	 0.041	
27	 Grateloupia	carnosa	 3.82	 0.18	 5.30	 0.09	 3661.5	 217.3	 0.544	 0.027	
28	 Sargassum	muticum	 21.43	 1.00	 14.78	 0.08	 7523.2	 354.7	 0.716	 0.008	
29	 Schizymenia	dubyi		 0.19	 0.03	 3.00	 0.06	 327.6	 55.1	 0.513	 0.032	

30	
Grateloupia	
lanceolata	 0.27	 0.03	 3.51	 0.04	 390.0	 48.1	 0.537	 0.017	

Izu	Peninsula	
31	 Hizikia	fusiformis	 4.83	 0.17	 16.92	 0.19	 1504.3	 62.5	 0.842	 0.025	

32	
Porphyra	tenera	

Kjellman	 0.61	 0.04	 7.78	 0.09	 407.4	 26.4	 0.704	 0.022	

33	

Pachydictyon	
coriaceum	(Holmes)	

Okamura	 4.22	 0.15	 10.25	 0.14	 2129.3	 97.2	 0.692	 0.027	

34	
Dictyopteris	undulata	

Holmes	 4.79	 0.17	 15.21	 0.14	 1628.8	 64.8	 0.697	 0.017	
35	 Hizikia	fusiformis	 0.65	 0.04	 28.10	 0.32	 122.0	 7.6	 0.905	 0.026	
36	 Undaria	pinnatifidia	 0.89	 0.04	 8.69	 0.06	 537.4	 26.9	 0.776	 0.010	

Kanazawa	and	the	Noto	Peninsula	
37	 Monostroma	nitidum		 0.16	 0.03	 5.18	 0.10	 158.6	 30.7	 0.459	 0.028	

38	
Gracilaria	bursa-

pastoris	 0.12	 0.03	 6.13	 0.12	 100.8	 25.5	 0.476	 0.028	
38	 Monostroma	nitidum		 0.03	 0.03	 2.29	 0.05	 70.2	 66.1	 0.483	 0.031	

39	
Gracilaria	bursa-

pastoris	 0.61	 0.04	 19.24	 0.38	 166.0	 13.2	 0.848	 0.049	

40	
Dictyopteris	undulata	

Holmes	 3.18	 0.15	 27.16	 0.54	 623.1	 39.0	 0.937	 0.054	
41	 Sargassum	muticum	 1.73	 0.09	 32.80	 0.21	 279.1	 14.1	 0.888	 0.011	

42	
Dictyopteris	undulata	

Holmes	 2.56	 0.11	 12.20	 0.07	 1101.0	 49.0	 0.822	 0.009	
43	 Sargassum	muticum	 1.60	 0.07	 25.26	 0.17	 341.0	 16.1	 1.017	 0.013	

Northern	Honshu	
44	 Laminaria	japonica	 0.82	 0.04	 3.98	 0.05	 1078.3	 54.7	 0.763	 0.024	
45	 Laminaria	japonica	 2.12	 0.06	 6.40	 0.04	 1727.7	 54.1	 0.765	 0.008	
46	 Laminaria	japonica	 1.44	 0.05	 16.16	 0.14	 470.1	 17.3	 0.884	 0.018	
47	 Laminaria	japonica	 0.60	 0.03	 12.10	 0.14	 263.2	 16.0	 0.921	 0.027	
48	 Laminaria	japonica	 3.92	 0.11	 11.10	 0.19	 1877.8	 83.3	 0.923	 0.045	

Hokkaido	
49	 Laminaria	japonica	 7.71	 0.02	 3.69	 0.05	 11234.5	 257.2	 1.016	 0.031	
50	 Laminaria	japonica	 2.637	 0.009	 4.02	 0.08	 3517.9	 154.1	 0.984	 0.059	
51	 Laminaria	japonica	 1.27	 0.07	 1.96	 0.05	 3485.2	 269.9	 1.015	 0.068	
52	 Laminaria	japonica	 2.878	 0.009	 5.06	 0.11	 3078.9	 132.4	 1.075	 0.064	
53	 Laminaria	japonica	 11.87	 0.04	 11.32	 0.10	 5689.1	 82.2	 1.093	 0.022	

	

3.3.1	Hokkaido	and	Northern	Honshu		

The	Re	and	Os	abundance	in	macroalgae	from	Northern	Honshu	and	Hokkaido	(Fig.	1)	

varies	from	0.6	to	11.87	ppb	and	1.96	to	16.16	ppt	respectively.	The	187Os/188Os	and	

187Re/188Os	compositions	range	from	0.76	to	1.09	and	263.2	to	11234.52	respectively.	No	

discernible	pattern	can	be	found	between	Re	and	Os	abundance	and	geographical	position.		
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Fig.	2.	Sample	locations	and	187Os/188Os	macroalgae	values	(a),	population	density	(b),	
potential	Os	point	source	locations	(c)	and	annual	vehicle	CO2	emissions	in	t-CO2	km-2	yr-1	
(d)	for	the	Tokyo	Bay	area.	

	

The	187Os/188Os	and	187Re/188Os	composition	of	macroalgae	is	generally	higher	in	

macroalgae	from	Hokkaido	(avg.	187Os/188Os	=	~1.03;	avg.	187Re/188Os	=	~5401)	than	

northern	Honshu	(avg.	187Os/188Os	=	~0.85;	avg.	187Re/188Os	=	~1083).		

	

3.3.2	Tokyo	Bay	

The	Re	and	Os	abundance	in	macroalgae	from	Tokyo	Bay	(Fig.	2a)	varies	from	0.02	to	7.65	

ppb	and	3.33	to	30.06	ppt	respectively.	The	187Os/188Os	and	187Re/188Os	compositions	range	

from	0.36	to	0.95	and	28.7	to	4462.4	respectively.	No	discernible	pattern	can	be	found	

between	Re	abundance	and	187Re/188Os	composition	and	geographical	position.	Osmium	

abundance	is	generally	higher	in	macroalgae	with	proximity	to	central	Tokyo	(Samples	5	to	

9).	The	187Os/188Os	composition	of	macroalgae	from	Tokyo	Bay	are	highly	variable.	

Relatively	unradiogenic	values	(~0.36	to	0.67)	are	found	in	macroalgae	from	the	northern	

and	north-eastern	parts	of	the	bay,	with	consistently	low	(~0.4)	187Os/188Os	values	near	

central	Tokyo	(Samples	7	to	9).	Macroalgae	more	proximal	to	the	Pacific	Ocean,	possess	

187Os/188Os	values	that	become	progressively	more	radiogenic	(~0.7	to	0.95).	

The	densely	populated	cities	of	Yokohama,	Tokyo	and	Chiba	occupy	western,	

northern	and	north-eastern	parts	of	Tokyo	Bay	respectively	(Fig.	2b).	A	large	number	of	

hospitals	occupy	the	western	and	northern	parts	of	the	bay,	while	municipal	solid	waste	

incinerators	(MSWIs)	and	sewage	treatment	plants	dominate	parts	of	the	bay	close	to	

central	Tokyo	and	Chiba	(Fig.	2c).	Major	highways	connecting	the	cities	of	Yokohama,	Tokyo	

and	Chiba,	generate	high	annual	vehicle	CO2	emissions	along	the	edge	of	the	northern	part	

of	the	Bay	(Fig.	2d).	Major	highways	and	traffic	congestion	lead	to	exceptionally	high	

vehicle	emissions	in	central	Tokyo	(Fig.	2d).			
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3.3.3	Osaka	Bay	

The	Re	and	Os	abundance	in	macroalgae	from	Osaka	Bay	(Fig.	3a)	varies	from	0.38	to	7.05	

ppb	and	11.36	to	122.76	ppt	respectively.	The	187Os/188Os	and	187Re/188Os	compositions	

range	from	0.17	to	0.76	and	114.5	to	1683	respectively.	No	discernible	pattern	can	be	

found	between	Re	abundance,	Os	abundance	and	187Re/188Os	compositions	and	

geographical	position.	The	187Os/188Os	composition	of	macroalgae	from	Osaka	Bay	is	highly	

variable.	Samples	along	the	eastern	coast	of	Awaji	Island	vary	from	relatively	unradiogenic	

187Os/188Os	values	(0.16	to	0.45)	towards	the	south	(Sample	site	18)	and	the	centre	(Sample	

site	17)	to	relatively	radiogenic	187Os/188Os	values	(0.52	to	0.63)	in	the	north	(Sample	site	18	

and	19).	The	most	radiogenic	187Os/188Os	values	(~0.76)	can	be	found	close	to	central	Osaka	

(Sample	site	20),	with	relatively	homogenous	187Os/188Os	values	of	~0.5	occurring	south	of	

Osaka	(Sample	site	21	and	22).	

c	

b	

d	

a	
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Fig.	3.	Sample	locations	and	187Os/188Os	macroalgae	values	(a),	population	density	(b),	

potential	Os	point	source	locations	(c)	and	annual	vehicle	CO2	emissions	in	t-CO2	km-2	yr-1	

(d)	for	the	Osaka	Bay	area.	See	Fig.	2	for	population	density	information.			

	

The	densely	populated	megacity	of	Osaka	lies	to	the	north-east	of	the	bay	and	

the	large	city	of	Kobe	occupies	the	northern	coast	(Fig	3b).	These	cities	generally	represent	

more	than	4000	people	per	square	km,	while	Awaji	Island	to	the	south-west	has	a	

population	lower	than	400	people	per	square	km	(Fig.	3b).	A	large	number	of	hospitals,	

MSWI,	sewage	treatment	plants	and	steel	mills	occupy	the	eastern	coastline	of	Osaka	Bay	

(Fig.	3c).	A	small	section	of	the	eastern	bay	is	occupied	by	several	large	oil	refineries	(Black	

circles	in	Fig.	3c).	Three	hospitals	are	clustered	near	central	Awaji	Island	with	a	further	two	

at	the	northern	tip	of	the	island	(Fig.	3c).	Major	highways	running	to	Osaka	and	Kobe	

generate	high	annual	vehicle	CO2	emissions	along	the	northern	edge	of	the	Bay	(Fig.	3d).	

Exceptionally	high	vehicle	emissions	can	be	found	in	central	Osaka	(Fig.	3d).			

	

3.3.4	Ise	and	Mikawa	Bay			

The	Re	and	Os	abundance	in	macroalgae	from	Ise	and	Mikawa	Bay	(Fig.	4a)	vary	from	0.16	

to	21.43	ppb	and	3	to	88.8	ppt	respectively.	The	187Os/188Os	and	187Re/188Os	compositions	

range	from	0.16	to	0.74	and	8.7	to	7521.2	respectively.	No	discernible	pattern	can	be	found	

between	Re	abundance,	Os	abundance,	and	187Re/188Os	and	geographical	position.	The	

187Os/188Os	composition	of	macroalgae	from	Ise	and	Mikawa	Bay	are	highly	variable.	

Moderately	radiogenic	187Os/188Os	values	(~0.51	to	0.54)	are	found	along	the	northern	

coastline	of	Mikawa	Bay	close	to	the	cities	of	Gamagori	(Sample	29)	and	Nishio	(Sample	

30).	The	187Os/188Os	values	along	the	southern	coastline	of	Mikawa	Bay	are	generally	more	

radiogenic	(~0.69	to	0.74)	with	the	exception	of	sample	27	(~0.54).	In	the	Ise	Bay,	

187Os/188Os	values	are	relatively	unradiogenic	(~0.16)	close	to	the	city	of	Matsusaka	(Sample	
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23),	with	more	radiogenic	187Os/188Os	values	(~0.6)	close	to	the	mouth	of	the	bay	and	the	

Philippine	Sea	(Sample	24).	

b	

c	
d	

a	
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Fig.	4.	Sample	locations	and	187Os/188Os	macroalgae	values	(a),	population	density	(b),	

potential	Os	point	source	locations	(c)	and	annual	vehicle	CO2	emissions	in	t-CO2	km-2	yr-1	

(d)	for	the	Ise	and	Mikawa	Bay	areas.	See	Fig.	2	for	population	density	and	point	source	

information.	

	

The	densely	populated	cities	of	Gamagori	and	Nishio	occupy	the	northern	coast	

of	Mikawa	Bay,	with	Toyohashi	to	the	east	(Fig.	4b).	The	densely	populated	city	of	

Matsuaka	occupies	the	western	section	of	Ise	Bay	(Fig.	4b),	with	the	megacity,	Nagoya,	to	

the	north	of	the	map.	Several	hospitals	are	spread	across	the	western	coastline	of	Ise	Bay	

with	a	more	densely	grouping	in	Toyohashi	(Fig.	4c).	Several	sewage	treatment	plants	

occupy	the	eastern	and	northwest	regions	of	Mikawa	Bay	(Fig.	4c).	Vehicle	CO2	emissions	

are	relatively	high	in	Toyohashi	and	along	the	western	coastline	of	the	Ise	Bay	(Fig.	4d).			

	

3.3.5	Izu	Peninsula	

The	Re	and	Os	abundance	in	macroalgae	from	the	Izu	Peninsula	(Fig.	5a)	vary	from	0.61	to	

4.83	ppb	and	7.78	to	28.1	ppt	respectively.	The	187Os/188Os	and	187Re/188Os	compositions	

range	from	0.69	to	0.91	and	122	to	2129.3	respectively.	No	discernible	pattern	is	observed	

between	Re	abundance,	Os	abundance,	and	187Re/188Os	and	geographical	position.	The	

187Os/188Os	composition	of	macroalgae	from	the	Izu	Peninsula	are	variable,	but	all	relatively	

radiogenic	(~0.7	to	0.91).	Along	the	southern	tip	of	the	peninsula	(Sample	Location	32	to	

34)	the	187Os/188Os	values	are	~0.7,	with	slightly	more	radiogenic	values	being	found	further	

north	on	the	western	coast	(187Os/188Os	=	~0.84)	and	eastern	coast	(187Os/188Os	=	0.78	to	

0.91).	The	Izu	Peninsula	is	generally	sparsely	populated,	with	the	largest	city	(Numazu)	to	

the	northwest	of	the	peninsula	(Fig.	5b).	Several	hospitals	and	MSWIs	line	the	eastern	coast	

of	the	peninsula	(Fig.	5c).	Vehicle	CO2	emissions	are	low	across	the	entire	peninsula,	with	

the	exception	of	the	city	of	Numazu	to	the	north	(Fig.	5d).	
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Fig.	5.	Sample	locations	and	187Os/188Os	macroalgae	values	(a),	population	density	(b),	
potential	Os	point	source	locations	(c)	and	annual	vehicle	CO2	emissions	in	t-CO2	km-2	yr-1	
(d)	for	the	Izu	Peninsula.	See	Fig.	2	for	population	density	information.		

	

3.3.6	Noto	Peninsula	

The	Re	and	Os	abundance	in	macroalgae	from	the	Noto	Peninsula	(Fig.	6a)	vary	from	0.03	

to	3.18	ppb	and	2.29	to	32.8	ppt	respectively.	The	187Os/188Os	and	187Re/188Os	compositions	

range	from	0.46	to	1.02	and	70.3	to	1101	respectively.	The	Re	abundance	of	macroalgae	

from	Kanazawa	and	the	western	coast	of	the	Noto	Peninsula	(Sample	Location	37	to	39)	is		

b	

c	 d	

a	
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Fig.	6.	Sample	locations	and	187Os/188Os	macroalgae	values	(a),	population	density	(b),	

potential	Os	point	source	locations	(c)	and	annual	vehicle	CO2	emissions	in	t-CO2	km-2	yr-1	

(d)	for	the	Noto	Peninsula.	See	Fig.	2	for	population	density	information	

	

lower	(0.03	to	0.61	ppb)	than	for	macroalgae	of	the	northern	and	eastern	coast	of	the	Noto	

Peninsula	(1.6	to	3.18	ppb).	The	Os	abundance	in	macroalgae	is	lower	(2.29	to	6.13	ppt)	

b	a	

c	 d	
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near	the	city	of	Kanazawa	(Sample	Location	37	and	38)	than	for	macroalgae	of	the	Noto	

Peninsula	(12.2	to	32.8	ppt).	The	187Re/188Os	composition	of	macroalgae	from	the	western	

coast	of	the	Noto	Peninsula	(Sample	Location	37	to	39)	are	lower	(70.2	to	166)	than	for	the	

northern	and	eastern	coast	of	the	Noto	Peninsula	(279.1	to	1101).	The	187Os/188Os		

composition	of	macroalgae	from	the	Izu	Peninsula	is	highly	variable.	Relatively	

unradiogenic	values	(0.46	to	0.48)	are	found	close	to	the	major	city	of	Kanazawa	(Sample	

Location	37	and	38),	whereas	samples	surrounding	the	Noto	Peninsula	are	relatively	

radiogenic	(0.82	to	1.02).	

The	Noto	Peninsula	is	generally	sparsely	populated,	with	the	largest	city	

(Kanazawa)	to	the	southwest,	and	the	cities	of	Takaoka,	Imizu	and	Toyama	to	the	south	

east	of	the	peninsula	(Fig.	6b).	Hospitals,	MSWIs	and	sewage	treatment	plants	are	generally	

clustered	in	major	cities,	with	several	hospitals	spread	around	the	Noto	Peninsula	(Fig.	6c).	

Vehicle	CO2	emissions	are	low	across	the	entire	peninsula,	with	the	exception	of	Kanazawa	

to	the	southwest	and	Takaoka	and	Toyama	to	the	southeast	(Fig.	6d).	

	

3.4	Discussion	

The	large	range	in	the	187Os/188Os	composition	of	macroalgae	(0.16	to	1.09)	implies	that	

both	highly	radiogenic	and	highly	unradiogenic	sources	of	Os	contribute	to	the	bulk	Os	in	

macroalgae.	Natural	sources	of	radiogenic	Os	include	seawater,	chemical	weathering	of	

radiogenic	continental	crust	and	the	deposition	of	Aeolian	dust,	while	anthropogenic	

sources	include	the	smelting	of	radiogenic	base-metal	sulphide	ores	and	contamination	

from	fossil	fuels.	Natural	sources	of	unradiogenic	Os	include	hydrothermal	alteration	of	

oceanic	crust,	volcanism,	cosmic	dust	and	the	chemical	weathering	of	juvenile	basaltic	

crust,	whereas	anthropogenic	sources	involve	exhaust	from	automobiles	and	the	

processing	of	PGE	ores,	chromites	and	unradiogenic	base-metal	sulphide	ores.	In	the	

following	sections	we	will	first	discuss	the	environmental	and	biological	influence	on	Re	and	
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Os	uptake	in	macroalgae	before	discussing	each	of	the	sources	presented	above	to	infer	

that	the	Os	produced	by	human	activity	dominates	the	isotopic	composition	of	coastal	

waters	in	proximity	to	major	Japanese	cities.	

	

3.4.1	Biological	and	environmental	controls	on	the	187Re/188Os	of	macroalgae	

The	187Re/188Os	of	macroalgae	show	a	wide	range	8.7	to	11234.5	(Table	2)	similar	to	

previous	studies	(6.8	to	40,320)	(Racionero-Gómez	et	al.,	2017;	Chapter	2;	Rooney	et	al.,	

2016).	This	may	be	due	to	the	different	sources	of	Re	and	Os	to	macroalgae.	When	the	

187Re/188Os	of	macroalgae	is	plotted	against	the	187Os/188Os	of	macroalgae	(Fig.	7a),	most	

Japanese	seaweeds	show	a	large	variation	in	187Os/188Os	for	a	small	range	in	187Re/188Os	

when	compared	to	Icelandic	macroalgae	(grey	circles	in	Fig.	7a).	This	may	suggest	that	

Japan	lacks	a	source	high	in	Re	and	therefore	high	187Re/188Os	values,	such	as	old	primary	

basaltic	minerals	(See	Chapter	2;	Gannoun	et	al.,	2006).	Instead	the	macroalgae	appear	to	

be	dominated	by	sources	low	in	Re	such	as	river	water	(avg.	187Re/188Os	=	227;	Peucker-

Ehrenbrink	and	Ravizza,	2000).	The	187Re/188Os	ratios	increase	as	riverine	sources	mix	with	

seawater	with	higher	187Re/188Os	(avg.	187Re/188Os	=	4270;	Peucker-Ehrenbrink	and	Ravizza,	

2000).	This	is	particularly	dominant	in	Hokkaido	(black	squares	in	Fig.	7a)	where	macroalgae	

from	deeper	waters	have	a	stronger	influence	from	Pacific	Ocean	seawater,	and	thus	

higher	187Re/188Os	values	(Fig.	7a).		

When	the	187Re/188Os	of	macroalgae	is	plotted	against	the	reciprocal	of	the	Re	

concentration	(Fig.	7b)	we	see	a	similar	relationship	to	Icelandic	macroalgae	from	Chapter	2	

(grey	circles	in	Fig.	7b).	This	suggests	similar	mechanisms	could	control	Re	and	Os	uptake	in	

Japanese	macroalgae.	If	Re	and	Os	are	taken	up	via	the	same	pathway	it	will	lead	to	

competition	between	these	elements	and	therefore	lower	Re	concentration	in	macroalgae	

under	higher	Os	seawater	concentration	and	vice	versa	(Chapter	2;	Racionero-Gómez	et	al.,	

2017).	At	low	Re	concentration,	there	is	no	competition	between	Re	and	Os	for	uptake	into	
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macroalgae,	and	the	187Re/188Os	ratios	remain	consistently	low.	As	the	Re	concentration	

rises,	Re	is	favoured	over	Os	as	the	two	elements	begin	to	compete	for	uptake	into	

macroalgae,	leading	to	an	increase	in	the	187Re/188Os	ratios.	At	exceptionally	high	Re	

concentrations,	Re	continues	to	be	taken	up	and	the	macroalgae	becomes	enriched	in	Re,	

leading	to	exceptionally	high	187Re/188Os	ratios	in	macroalgae	(Fig.	7b).	
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Fig.	7.	a)	The	187Re/188Os	against	the	187Os/188Os	of	macroalgae	from	Iceland	(Chapter	2)	and	
Japan	(Chapter	3).	b)	187Re/188Os	ratios	against	the	reciprocal	of	the	Re	concentration	for	
Japanese	(black	squares)	and	Icelandic	(grey	circles)	macroalgae.	

	

3.4.2	Natural	sources	of	osmium	to	macroalgae	

A	large	number	of	macroalgae	inhabit	brackish	waters,	and	their	187Re/188Os	and	187Os/188Os	

composition	will	therefore	represent	a	mixing	between	freshwater	riverine	inputs	and	

seawater	(See	Chapter	2).	The	187Os/188Os	composition	and	Os	abundance	of	a	depth	profile	

from	the	East	Pacific	Ocean	has	been	constrained	at	~1.04	and	10	ppq	respectively	(Chen	

and	Sharma,	2009;	Gannoun	and	Burton,	2014;	Woodhouse	et	al.,	1999).	Further,	the	

hydrogenous	187Os/188Os	composition	of	present	day	marine	sediments	suggest	that	the	

Sea	of	Japan	has	a	similar	187Os/188Os		composition	of	~1.03	(Dalai	et	al.,	2005).		

Fig.	8.	Osmium	isotope	composition	(187Os/188Os)	of	macroalgae	from	Hokkaido	sample	
locations	(See	Fig.	1).	Black	line	shows	data	from	direct	Pacific	Ocean	seawater	
measurements	(See	Gannoun	and	Burton,	2014).	

	

These	187Os/188Os	values	are	reflected	in	the	187Os/188Os	compositions	(Table	2)	of	

macroalgae	farmed	from	deeper	pristine	waters	>	2	miles	off	the	east	coast	of	Hokkaido	
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(~1.02),	which	is	indistinguishable,	within	uncertainty,	from	Os	isotope	measurements	

obtained	directly	from	seawater	(Fig.	8).	The	187Os/188Os	composition	of	macroalgae	from	

shallower	coastal	waters	around	Japan	will	represent	the	mixing	between	Pacific	seawater	

values	(~1.04)	and	local	continental	riverine	inputs	with	a	diverse	range	of	187Os/188Os	

compositions	and	Os	abundances	dependent	on	the	underlying	lithology	being	weathered.	

The	long	chain	of	Japanese	islands	along	the	northwest	margin	of	the	Pacific	

Ocean	consists	of	two	trench-arc	systems:	the	East	Japan	Island	Arc	which	marks	the	

boundary	between	the	Eurasian,	Pacific	and	Philippine	Sea	plates;	and	the	West	Japan	

Island	Arc	which	represents	the	boundary	between	the	Eurasian	and	Philippine	Sea	plates	

(Hashimoto,	1991).	These	features	generate	a	complex	geology	that	can	be	broken	down	

into	five	major	elements:	poorly	lithified	Neogene-Quaternary	sediments	and	Paleogene	

sedimentary	rocks	(~40	%);	accretionary	complexes	consisting	mainly	of	melange,	

mudstone	and	sandstone	(~17	%);	non-alkaline	Neogene-Quaternary	volcanic	rocks	(23	%);	

granitic	rocks	intruded	during	the	Cretaceous	(~10	%);	and,	metamorphic	rocks	(~4	%).	The	

underlying	in	geology	of	Japan	therefore	represents	a	large	range	of	ages	and	sources	i.e.	

mantle	to	upper	crust.	

Parent-daughter	fractionation	of	the	Re-Os	system	during	mantle	melting	leads	

to	Re	becoming	preferentially	partitioned	into	the	melt	over	Os.	As	a	product	of	mantle	

differentiation,	continental	crust	is	characterised	by	higher	Re/Os	ratios	relative	to	the	

mantle.	With	an	average	continental	crust	age	of	~2.2	Gyr,	in	situ	decay	of	187Re	has	led	to	

the	accumulation	of	appreciable	187Os	and	a	radiogenic	187Os/188Os	composition	of	~1.4	

(Peucker-Ehrenbrink	and	Jahn,	2001).	The	erosion	and	subsequent	weathering	of	complex	

underlying	lithologies	has	led	to	highly	variable	187Os/188Os	values	(0.64	to	2.94)	and	Os	

abundances	(4.6	to	52.1	ppq)	in	global	rivers	(Levasseur	et	al.,	1999a).	The	major	cities	

studied	here,	and	more	than	70%	of	the	Japanese	population,	reside	on	the	Japanese	

‘plains’	which	are	largely	underlined	by	Quaternary	sediments	(Hashimoto,	1991).	It	is	
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therefore	expected	that	the	187Os/188Os	composition	of	rivers	draining	these	regions	to	be	

similar	to	the	global	riverine	average	of	~1.54	(Levasseur	et	al.,	1999a).	

Pleistocene-Holocene	sediments	and	sedimentary	rocks	occupy	the	entire	

drainage	basin	of	the	Kanto	plains	(Ohta	et	al.,	2011),	Osaka	plains	(Ohta	et	al.,	2005;	Ohta	

et	al.,	2007),	Kanazawa	plains	(Ohta	et	al.,	2004)	and	Ise	plains	(Ohta	et	al.,	2005;	Ohta	et	

al.,	2007),	and	therefore	represent	the	dominant	control	on	the	chemical	composition	of	

rivers	draining	the	relevant	watershed	(Ohta	et	al.,	2005).	We	would	therefore	expect	the	

187Os/188Os	of	waters	in	Tokyo	Bay	(Fig.	2)	to	represent	a	mixture	between	radiogenic	rivers	

(~1.54)	draining	the	coastal	plains	and	Pacific	seawater	(~1.04)	entrained	into	the	bay	from	

the	Pacific	Ocean	via	estuarine	gravitational	circulation.	However,	the	187Os/188Os	of	

macroalgae	from	Tokyo	Bay	(Fig.	2a),	Osaka	Bay	(Fig.	3a),	Kanazawa	(Fig.	6a)	and	Ise	Bay	

(Fig.	4a)	are	relatively	unradiogenic	and	range	from	0.36	to	0.95,	0.17	to	0.76,	0.16	to	0.6	

and	0.46	to	0.48	(Table	2).	This	suggests	that	Os	from	natural	sources	has	very	little	

influence	on	the	isotopic	composition	of	Tokyo	Bay.		

Although	most	regions	studied	are	underlain	by	sedimentary	plains,	exceptions	

to	this	include	the	Ryoke	belt,	Izu	peninsula	and	Noto	Peninula.	The	Ryoke	belt	is	

characterised	by	low	P/T	type	metamorphism	and	extensive	felsic	igneous	activity	that	

covers	a	~800km	stretch	of	inner	Southwest	Japan	(Nakajima,	1994).	Granitic	rocks	are	

dominant	over	metamorphic	rocks	throughout	the	Ryoke	belt,	and	were	derived	from	

magmas	produced	in	the	lower	crust	and/or	upper	mantle;	with	potential	assimilation	of	

metamorphic	rocks	or	Precambrian	crust	(Yuhara	et	al.,	2000).	Weathering	of	granitic	

material	dominates	central	Awaji	Island,	Kobe	city	along	the	north	coast	of	Osaka	Bay	and	

the	Yahagi	River,	which	flows	into	northern	Mikawa	Bay	(Ohta	et	al.,	2005;	Ohta	et	al.,	

2007).	The	weathering	of	high	pressure	metamorphic	rocks	dominates	the	Toyo	River	

which	flows	into	the	eastern	Mikawa	Bay	(Ohta	et	al.,	2005;	Ohta	et	al.,	2007).	Most	studies	

suggest	the	weathering	of	old	(Precambrian)	granitic	terrain	delivers	highly	radiogenic	Os	
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(187Os/188Os	=	≥	2.5)	to	rivers	draining	these	catchments	(Chen	et	al.,	2006;	Ehrenbrink	and	

Ravizza,	1996;	Huh	et	al.,	2004).	However,	the	Ryoke	Belt	is	made	up	of	more	recent	

(Cretaceous)	I-type	granites	with	some	sedimentary	components	of	the	Mino	Terrain	

(Ishihara	and	Wu,	2001).	Although	hard	to	estimate	without	direct	measurements,	the	low	

Os	concentration	combined	with	high	Re/Os	ratios	in	granites	(Johnson	et	al.,	1996),	

combined	with	possible	crustal	contamination	of	radiogenic	Os	would	lead	to	high	

187Os/188Os	values	in	silicic	material	since	the	Cretaceous	(Alves	et	al.,	1999;	Alves	et	al.,	

2002;	Hart	et	al.,	2003;	Hart	et	al.,	2002).	We	therefore	suggest	that	relatively	unradiogenic	

187Os/188Os	values	of	macroalgae	from	Osaka	Bay	(0.17	to	0.76)	and	Mikawa	Bay	(0.51	to	

0.74)	are	not	related	to	the	weathering	of	local	granites.			

The	187Os/188Os	composition	of	macroalgae	from	the	south	and	east	coast	of	the	

Izu	Peninsula	(Sample	Location	31	to	36;	Fig.	5a)	and	the	coast	of	the	Noto	Peninsula	

(Sample	Location	39	to	43;	Fig.	6a)	range	from	0.69	to	0.91	and	from	0.82	to	1.02	

respectively.	These	values	are	consistently	lower	than	the	187Os/188Os	composition	of	

seawater	(~1.04),	suggesting	the	influence	of	an	unradiogenic	endmember.	Low	human	

activity	(Fig.	5b	and	Fig.	6b)	and	the	absence	of	substantial	anthropogenic	sources	of	Os	in	

the	regions	studied	(Fig.	5c,	d	and	Fig.	6c,	d)	suggests	that	the	dominant	source	of	

unradiogenic	Os	is	likely	to	be	natural.	Formations	exposed	on	the	Izu	Peninsula	are	almost	

entirely	composed	of	submarine	and	terrestrial	volcanics	erupted	since	the	early	Miocene,	

and	their	reworked	deposits	(Koyama	and	Umino,	1991).	The	north-east	tip	of	the	

peninsula	is	dominated	by	recent	(0-0.6	Ma)	Higashiizu	and	Shiofuki	basaltic	to	andesitic	

lavas	and	pyroclastics.	This	contrasts	with	the	southern	Izu	Peninsula,	which	is	dominated	

by	older	(Middle	Miocene	to	Early	Pleistocene)	basaltic	and	andesitic	volcanics	from	the	

Yugashima	and	Shirahama	group.	Miocene	andesitic	lava	and	sedimentary	rocks	from	the	

Iwaine	and	Kurosendai	dominate	the	lithology	of	the	Noto	peninsula	(Japan,	1992).		
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Weathering	of	these	volcanic	systems	dominates	stream	and	coastal	sediments	

emanating	from	them	(Ohta	et	al.,	2005;	Ohta	et	al.,	2004;	Ohta	et	al.,	2007).	We	would	

therefore	expect	the	187Os/188Os	composition	of	rivers	in	these	regions	to	have	a	more	

mantle	signature	(~0.12)	due	to	the	weathering	of	basaltic	material	dominating	local	

catchment	areas	(Gannoun	et	al.,	2006).	However,	the	decay	of	abundant	187Re	in	the	older	

Yugashima	and	Shirahama	groups	and	the	Noto	Peninsula	may	lead	to	radiogenic	ingrowth	

of	187Os	and	therefore	higher	187Os/188Os	compositions	in	these	regions	(Gannoun	et	al.,	

2004;	Gannoun	et	al.,	2006).	The	187Os/188Os	compositions	of	macroalgae	from	the	Izu	

coastal	waters	therefore	constitutes	a	mixing	between	radiogenic	Pacific	seawater	(~1.04)	

and	unradiogenic	rivers	draining	a	basaltic	terrain	(>0.12).	This	is	supported	by	the	

187Os/188Os	composition	of	marine	sediments	from	the	Yasaka	estuary	in	northern	Kyushu,	

which	range	from	0.67	to	0.73,	and	represent	a	mixture	of	locally	weathered	Miocene	

volcanics	and	seawater	(Zheng	et	al.,	2014).		

	

3.4.3	Anthropogenic	sources	of	osmium	to	macroalgae	

Anthropogenic	Os	has	been	detected	in	estuaries	(Turekian	et	al.,	2007;	Williams	et	al.,	

1997),	lakes	(Rauch	et	al.,	2004),	coastal	sediments	(Esser	and	Turekian,	1993;	Ravizza	and	

Bothner,	1996),	biological	organisms	(Rodushkin	et	al.,	2007a,	b),	airborne	particles	(Rauch	

et	al.,	2005)	and	precipitation	(Chen	et	al.,	2009).	Sources	of	anthropogenic	Os	include	

hospitals	(Esser	and	Turekian,	1993;	Turekian	et	al.,	2007;	Williams	et	al.,	1997),	MSWIs	

(Funari	et	al.,	2016),	vehicle	exhaust	(Poirier	and	Gariépy,	2005)	and	smelters	(Chen	et	al.,	

2009;	Rodushkin	et	al.,	2007b),	and	can	be	either	directly	introduced	into	rivers	and	coastal	

waters	via	sewage	outflow	(Esser	and	Turekian,	1993;	Ravizza	and	Bothner,	1996;	Turekian	

et	al.,	2007;	Williams	et	al.,	1997)	or	directly	to	the	atmosphere	as	volatile	OsO4	during	

high-temperature	processes	(Smith,	1974).	The	187Os/188Os	composition	of	Os	from	these	

sources	depends	on	the	original	material	used	in	their	creation.	The	187Os/188Os	
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composition	of	fossil	fuels	are	highly	radiogenic,	ranging	from	1	to	13.7	(Finlay	et	al.,	2011;	

Selby	and	Creaser,	2005).	The	PGE	sulphide	ores	and	chromites	have	unradiogenic	

187Os/188Os	values	of	0.15	to	0.2	(McCandless	and	Ruiz,	1991)	and	0.12	to	0.14	(Walker	et	

al.,	2002)	respectively.	The	187Os/188Os	composition	of	base-metal	sulphide	deposits	are	

highly	variable:	ranging	from	values	similar	to	PGE	ores	(Lambert	et	al.,	1998;	Walker	et	al.,	

1994),	through	to	highly	radiogenic	values	caused	by	contamination	from	continental	crust	

during	their	creation	(Morgan	et	al.,	2002).		

Osmium	has	major	uses	–	as	a	tissue	stain	for	electron	microscopy	and	as	a	

catalyst	in	steroid	synthesis	–	in	medical	research	(Smith,	1974).	Anthropogenic	Os	from	

biological	and	medical	research	laboratories	has	been	detected	in	the	Hudson	River-	Long	

Island	Sound	estuarine	system	and	Chesapeake	Bay	with	an	estimated	187Os/188Os	

composition	of	~0.13	(Esser	and	Turekian,	1993;	Helz	et	al.,	2000;	Turekian	et	al.,	2007;	

Williams	et	al.,	1997).	The	dominant	mode	of	transport	is	believed	to	be	sewer	outflow	

from	nearby	hospitals	and	atmospheric	transport	from	hospital	incinerators,	the	influence	

of	which	can	be	detected	up	to	70	km	from	the	source	(Esser	and	Turekian,	1993;	Ravizza	

and	Bothner,	1996;	Williams	et	al.,	1997).	Although	not	measured	here,	sewage	from	

outflows	in	New	Haven	(Esser	and	Turekian,	1993),	New	York	City	(Williams	et	al.,	1997)	

and	Boston	(Ravizza	and	Bothner,	1996)	have	187Os/188Os	compositions	and	Os	abundances	

of	between	0.15	to	0.3	and	0.57	to	4.01	ppb	respectively.		

Densely	populated	regions	of	Japan	(See	panel	b	in	Figs.	2	to	6)	are	generally	

served	by	a	large	number	of	major	hospitals	(See	red	circles	in	panel	c	of	Figs.	2	to	6).	We	

would	therefore	expect	a	significant	influx	of	unradiogenic	Os	from	hospitals	situated	in	

central	Tokyo	and	Yokohama	(Fig.	2c),	central	Osaka	(Fig.	3c),	western	Ise	Bay	and	eastern	

Mikawa	Bay	(Fig.	4c)	and	Kanazawa	(Fig.	6c).	The	187Os/188Os	composition	of	macroalgae	

from	these	regions	are	generally	highly	unradiogenic	ranging	from	0.39	to	0.55	near	central	

Tokyo	and	Yokohama,	0.5	to	0.76	near	Osaka,	0.16	to	0.19	in	western	Ise	Bay,	0.51	to	0.54	
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in	northern	Mikawa	Bay	and	0.46	to	4.48	near	Kanazawa	(Table	2).	Additionally,	

macroalgae	samples	from	central	Awaji	Island	(Sample	Location	17)	show	highly	

unradiogenic	187Os/188Os	values	of	0.17	to	0.38,	close	to	the	previously	recorded	187Os/188Os	

of	sewage	(0.15	to	0.3).	This	is	most	likely	due	the	high	number	of	hospitals	in	the	nearby	

city	of	Sumoto	to	the	south	or	the	sewage	treatment	plant	to	the	north	(Fig.	3c).	This	

suggests	that	the	macroalgae	have	incorporated	Os	related	to	medical	research	from	point	

sources	such	as	hospitals	and	sewage	treatment	plants	either	via	sewage	outflow	or	

incineration	of	medical	waste	(Fig.	9).	However,	despite	the	ubiquitous	nature	of	hospitals	

in	major	cities	e.g.	Tokyo	and	Osaka,	the	187Os/188Os	composition	of	macroalgae	from	these	

regions	are	not	uniformly	low.	For	example,	macroalgae	in	Tokyo	Bay	show	an	increase	to	

more	radiogenic	values	westwards	from	central	Tokyo,	despite	the	ubiquity	of	hospitals	in	

this	region.	Meanwhile,	the	macroalgae	closest	to	central	Osaka	(Sample	Location	20)	has	

the	highest	187Os/188Os	values	(0.76)	for	Osaka	Bay.	This	suggests	that	although	medical	

facilities	can	offer	a	point	source	for	anthropogenic	Os	e.g.	Awaji	Island,	other	

anthropogenic	sources	can	dominate	in	other	regions.	

Fig.	9.	Macroalgae	Os	concentration	(filled	circles)	and	isotopic	composition	(open	circles)	

with	distance	from	hospitals	in	central	Awaji	Island	(red	circles)	or	an	oil	refinery	in	central	

Osaka	(green).	
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MSWIs	are	considered	one	of	the	best	options	for	municipal	solid	waste	

management	in	industrialised	countries	(Chandler	et	al.,	1997)	and	are	widely	used	in	

major	Japanese	cities.	Analysis	of	bottom	and	fly	ash	from	Italian	MSWIs	show	a	wide	range	

of	187Os/188Os	compositions	(0.24	to	0.7)	and	concentrations	(0.026	to	1.65	ppb),	and	it	has	

been	predicted	that	the	Os	released	from	MSWI	smokestacks	will	range	from	16	to	38	ng	

Os/m2/yr	(Funari	et	al.,	2016).	This	is	therefore	an	important	source	of	Os	near	central	

Tokyo	and	Osaka	(See	light	green	circles	in	Fig.	2c	and	3c).	These	additional	inputs	of	

potentially	unradiogenic	Os	could	cause	the	relatively	unradiogenic	187Os/188Os	values	in	

regions	with	relatively	low	vehicle	emissions	i.e.	Yokosuka	(Sample	Location	10),	Chiba	

(Sample	Location	1,2	and	5),	Kanazawa	(Sample	Location	38)	and	the	south	coast	of	Osaka	

Bay	(Sample	Location	21	and	22).		

Automobile	catalytic	convertors	could	potentially	provide	a	larger,	regionally	

dispersed,	source	of	anthropogenic	Os.	Direct	measurements	of	catalytic	convertors	yield	

unradiogenic	187Os/188Os	values	and	Os	abundances	of	0.1	to	0.2	and	6	to	228	ppt	

respectively	(Poirier	and	Gariépy,	2005).	Moreover,	new	catalytic	convertors	could	be	

responsible	for	as	much	as	120	pg	Os/m2	in	the	first	year	of	their	life	(Poirier	and	Gariépy,	

2005),	and	anthropogenic	Os	sourced	from	vehicle	exhaust	has	been	detected	in	airborne	

particles	(Rauch	et	al.,	2005)	and	global	precipitation	(Chen	et	al.,	2009).	As	the	majority	of	

PGEs	are	sourced	from	the	Bushveld	Complex	(South	Africa)	and	Noril’sk	(Russia),	we	

expect	catalytic	convertors	in	Japan	to	have	unradiogenic	values	of	0.15	to	0.2	(Jones,	

1999).	Here	we	have	utilised	total	vehicle	CO2	emissions	for	2015	from	the	East	Asian	Air	

Pollutant	Emission	Grid	(EAGrid2011)	database	(Kannari	et	al.,	2007)	to	try	and	determine	

the	influence	of	catalytic	convertors	on	regional	variations	in	anthropogenic	Os	(See	panel	

d	in	Figs.	2	to	6).		

We	can	generally	see	that	in	regions	of	high	vehicle	emissions,	we	get	the	most	

unradiogenic	187Os/188Os	values	in	macroalgae.	The	187Os/188Os	composition	of	macroalgae	
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in	central	Tokyo	range	from	0.42	to	0.46.	These	values	are	indistinguishable	from	the	

hydrogenous	load	of	previously	recorded	marine	sediments	from	the	Tama	River	(~0.3	to	

0.4)	(Zheng	et	al.,	2014),	coincident	to	where	the	highest	vehicle	emissions	in	Japan	are	

found	(Fig.	2d).	The	187Os/188Os	composition	of	macroalgae	becomes	more	radiogenic	(0.55	

to	0.67)	in	regions	of	intermediate	vehicle	emissions	such	as	Yokosuka	and	Chiba,	with	the	

exception	of	Sample	Location	4	which	is	highly	unradiogenic	(0.36).	The	187Os/188Os	

composition	of	macroalgae	begins	to	reach	more	radiogenic	187Os/188Os	values	(0.85	to	

0.95),	close	to	Pacific	Ocean	estimates	(~1.04),	in	regions	of	low	vehicle	emissions	on	the	

Boso	Peninsula	(Fig.	2d).	In	Osaka	Bay,	macroalgae	187Os/188Os	values	are	relatively	

unradiogenic	(0.5	to	0.59)	in	regions	of	intermediate	vehicle	emissions	(Fig.	3d).	However,	

macroalgae	from	Sample	Location	20	and	17	where	vehicle	emissions	are	highest	and	

lowest	respectively,	record	the	most	radiogenic	187Os/188Os	values	(0.76)	and	unradiogenic	

values	(0.17	to	0.38)	respectively.	In	the	case	of	sample	location	17,	as	previously	

explained,	local	influence	from	hospital	and	sewage	outflow	will	contribute	Os	with	an	

unradiogenic	187Os/188Os	composition	to	this	region.	Meanwhile,	sample	location	20	is	close	

to	an	oil	refinery	(Fig.	3c),	which	could	act	as	a	point	source	of	anthropogenic	Os.	Osmium	

in	oil	is	generally	highly	radiogenic	(187Os/188Os	=	1	to	13.7)	(Finlay	et	al.,	2011;	Selby	and	

Creaser,	2005;	Selby	et	al.,	2007)	and	any	oil	spills	or	atmospheric	emission	will	therefore	

carry	similar	compositions.	This	is	therefore	the	most	likely	cause	of	radiogenic	187Os/188Os	

values	(0.76)	in	this	area	(Fig.	9).	Mikawa	and	Ise	Bay	show	similar	trends	with	relatively	

unradiogenic	values	close	to	the	regions	of	highest	vehicle	emissions	(Fig.	4d).			

Finally,	other	potential	point	sources	of	anthropogenic	Os	include	the	processing	

of	chromites,	PGE	ores	and	base-metal	sulphide	ores.	Although	PGE	ore	and	chromite	

smelters	are	not	known	to	exist	in	the	regions	studied	here,	a	wide	number	of	steel	mills	

are	located	in	the	Japanese	industrial	centres	such	as	Tokyo	and	Osaka	(Fig.	2c	and	3c).	The	

187Os/188Os	composition	of	base-metal	sulphide	deposits	are	highly	variable:	ranging	from	
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unradiogenic	mantle	values	less	than	0.3	(Lambert	et	al.,	1998;	Walker	et	al.,	1994),	

through	to	highly	radiogenic	values	greater	than	0.9	(Morgan	et	al.,	2002).	Not	knowing	the	

source	of	ore	used	at	Japanese	steel	mills,	and	due	to	the	lack	of	studies	of	emissions,	it	is	

hard	to	estimate	the	influence	of	these	sources	on	regional	fluctuations	atmospheric	Os.	

However,	it	should	be	noted	that	steel	mills	could	potentially	act	as	a	significant	source	of	

anthropogenic	Os	with	potentially	highly	variable	isotopic	composition.	
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Fig.	10.	187Os/188Os	against	population	density	for	a	400	km2	area	surrounding	each	

sample	for	(a)	populated	bays	studies	here	(Mikawa,	Ise,	Osaka	and	Tokyo	Bay)	and	(b)	

Tokyo	Bay.	Black	symbols	represent	macroalgae	affected	by	point	sources	such	as	hospitals	

and	oil	refineries	(See	Fig.	9).	

	

In	conclusion,	during	this	study	we	have	found	a	wide	range	of	natural	and	

anthropogenic	sources	to	Japanese	waters.	In	regions	such	as	Hokkaido,	northern	Honshu,	

the	Izu	Peninsula,	and	Noto	Peninsula	where	human	activity	is	low,	the	osmium	isotope	

budget	of	coastal	waters	is	dominated	by	natural	Os	from	Pacific	Ocean	seawater	and	

riverine	sources	dominated	by	the	weathering	of	local	rock	types	such	as	volcanic,	granitic	

and	sedimentary	rocks.	In	densely	populated	regions	such	as	Tokyo,	Yokohama,	Chiba,	

Osaka,	Kanazawa,	Matsuaka	and	Toyohashi,	anthropogenic	sources	of	Os	dominate.	

Osmium	from	catalytic	convertors	dominates	the	Os	isotope	budget	in	coastal	water	in	

these	regions.	However,	point	sources	can	become	more	influential	in	samples	located	

near	hospitals,	sewage	treatment	plants	and	MSWIs.	This	is	best	shown	when	the	

187Os/188Os	composition	of	macroalgae	is	plotted	against	population	density	(Fig.	10).	In	

areas	of	low	population	density,	the	187Os/188Os	of	macroalgae	ranges	from	0.6	to	1	(Fig.	

10a).	However,	as	population	density	increases,	the	isotopic	composition	of	macroalgae	

becomes	more	unradiogenic	(0.6	to	0.4).	Point	sources	such	as	hospitals	and	oil	refineries	

pull	the	isotopic	composition	of	macroalgae	towards	their	respective	source	compositions	

away	from	this	trend	(Black	circles	in	Fig.	10a).	This	relationship	becomes	more	apparent	

when	the	187Os/188Os	of	macroalgae	is	plotted	against	population	density	for	Tokyo	Bay	

(Fig.	10b).	Macroalgae	in	the	less	populated	region	of	the	Boso	Peninsula	have	an	isotopic	

composition	of	~0.9.	However,	as	you	move	into	the	bay,	and	towards	the	more	populated	

regions	to	the	North	of	the	Bay,	the	isotopic	composition	becomes	more	unradiogenic	

(0.4).					
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3.4.4	Anthropogenic	influence	on	the	global	osmium	cycle	

3.4.4.1	Anthropogenic	impact	on	Japanese	coastal	waters	

This	study	has	shown	that	the	187Os/188Os	composition	of	macroalgae	can	successfully	trace	

the	fluctuations	in	natural	and	anthropogenic	processes	around	Japan.	When	the	

187Os/188Os	composition	of	macroalgae	is	plotted	against	the	reciprocal	of	the	

concentration,	all	of	the	data	fall	within	field	delimited	by	four	potential	end-members	(Fig.	

9):	seawater	(radiogenic	187Os/188Os,	intermediate	[Os]);	river	water	draining	Quaternary	

sedimentary	material	(radiogenic	187Os/188Os,	low	[Os]);	river	water	draining	Miocene	

volcanic	rocks	(intermediate	187Os/188Os,	low	[Os]);	and,	anthropogenic	Os	with	a	PGE	

source	(unradiogenic	187Os/188Os,	high	[Os]).	Variations	in	the	187Os/188Os	of	macroalgae	can	

therefore	be	explained	by	the	mixing	between	these	distinct	sources.		

Fig.	11.	187Os/188Os	ratios	against	the	reciprocal	of	the	Os	concentration	for	Japanese	
(Chapter	3)	and	Icelandic	(Chapter	2)	macroalgae.	See	Fig.	7b	for	key.	

	

Highly	populated	regions	such	as	Tokyo	Bay	(red	squares),	Osaka	Bay	(dark	
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mixing	line	between	radiogenic	seawater	and/or	river	water	and	anthropogenic	sources	

(Fig.	11).	Meanwhile,	sparsely	populated	regions	such	as	Hokkaido	(black	squares),	the	

Boso	Peninsula	(light	blue	squares),	the	Izu	Peninsula	(dark	green	squares)	and	northern	

Honshu	(light	blue	squares)	fall	on	a	mixing	line	between	radiogenic	seawater	and	

radiogenic	or	relatively	unradiogenic	river	water	(Fig.	11).	This	suggests	that	human	activity	

has	added	an	additional	source	of	Os	to	the	Japanese	marine	Os	budget	and	is	driving	the	

system	towards	unradiogenic	values.	This	has	caused	the	187Os/188Os	profile	of	a	relatively	

old	island	arc	like	Japan,	to	take	on	the	187Os/188Os	profile	of	a	young	mid-ocean	rift	system	

like	Iceland	(grey	circles	in	Fig.	11).		

3.4.4.2	Anthropogenic	contributions	of	osmium	from	Japan	

Osmium	oxide	becomes	volatile	at	a	catalytic	convertors	operating	temperature	(>400°C),	

releasing	75	-	95%	of	its	Os	to	the	atmosphere	within	the	first	year	of	use	(Poirier	and	

Gariépy,	2005).	It	has	been	estimated	that	a	1	kg	monolithic	catalyst	contains	between	6	

and	228	ppt	Os	which	will	be	released	during	its	lifetime	(Poirier	and	Gariépy,	2005).	Given	

a	population	of	127	million	people	in	Japan,	and	roughly	5.5	million	new	vehicles	on	the	

road	in	Japan	in	2015,	we	estimate	roughly	23	people	per	car.	Given	a	population	of	~15.5	

M,	~4.2	M	and	~9.3	M	people	for	the	Tokyo-Kawasaki-Yokohama-chiba,	Osaka-Kobe	and	

Mie-Aichii	metropolitan	regions	respectively,	this	amounts	to	~675,000,	~182,000	and	

~400,000	vehicles	respectively.	If	we	assume	each	car	has	a	1	kg	monolithic	catalyst,	this	

amounts	to	3	to	105,	1.5	to	54	and	0.2	to	8.4	pg	Os/m2/yr	respectively.		

This	is	comparable	to	previous	Os	emission	estimates	for	New	York	City	of	3	to	

126	pg	Os	/m2/yr	(Poirier	and	Gariépy,	2005).	This	suggests	that	Os	emission	from	catalytic	

convertors	are	significant	in	urban	areas	when	compared	to	natural	Os	inputs	of	~810	pg	

Os/m2/yr	(Poirier	and	Gariépy,	2005)	from	continental	erosion	and	atmospheric	dust	inputs	

of	1	pg	Os	/m2/yr	(Williams	and	Turekian,	2002).	However,	point	source	Os	emissions,	such	
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as	MSWIs	(16	to	38	ng	Os/m2/yr),	can	become	far	more	significant	then	vehicle	emissions	in	

densely	populated	regions	(Funari	et	al.,	2016).		

	

3.4.4.3	Impact	of	anthropogenic	osmium	on	surface	waters	

Contemporary	surface	seawater	has	a	lower	187Os/188Os	composition	(~0.95)	than	deep	

waters,	which	has	been	attributed	to	human	activities	(Chen	et	al.,	2009;	Levasseur	et	al.,	

1999b).	If	we	assume	that	surface	waters	at	the	mouth	of	a	bay	(M)	represents	the	mixing	

between	an	anthropogenic	source	of	Os	(A)	coming	from	the	bay	and	a	natural	source	of	Os	

coming	from	seawater	(SW),	we	can	describe	the	isotopic	composition	and	concentration	

at	the	mouth	using	the	following	equation:	

	

187Os/188OsM	 Os SW+ Os A = 	187Os/188OsSW[Os]SW	+	187Os/188OsA[Os]A	

	

We	can	then	rearrange	the	above	equation	to	determine	the	concentration	of	

anthropogenic	osmium:	

	

Os A =
Os SW(187Os/188OsSW	-	187Os/188OsM)	

187Os/188OsM − 187Os/188OsA
	

	

If	we	assume	that	the	isotopic	composition	of	macroalgae	from	the	mouth	of	the	

bay	represents	187Os/188OsM	(187Os/188OsTokyoBay	=	0.86;	187Os/188OsOsakaBay	=	0.47;	

187Os/188OsIseBay	=	0.6),	and	given	a	187Os/188OsSW	and	[Os]SW	for	the	Pacific	Ocean	

(187Os/188OsPacific	=	1.04;	[Os]Pacific	=	8	ppq)	and	an	187Os/188OsA	representative	of	PGE	ores	

(0.15)	we	estimate	the	concentration	of	anthropogenic	Os	in	surface	waters	at	the	mouth	

of	Tokyo,	Osaka	and	Ise	Bays	to	be	2	ppq,	14	ppq	and	8	ppq	respectively.	Given	a	flow	rate	

of	8	x	109	m3/yr,	8	x	109	m3/yr	and	37	x	109	m3/yr	for	surface	waters	leaving	Tokyo,	Osaka	
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and	Ise	Bay	respectively	(Smith	and	Yanagi,	1997),	we	estimate	a	total	of	approximately	4.2	

kg	Os/yr	of	anthropogenic	Os	is	delivered	to	the	Pacific	Ocean	from	these	three	bays.		

Using	an	average	value	of	1.4	kg	Os/yr	delivered	by	each	Japanese	megacity	and	

considering	there	are	currently	16	megacities	globally	situated	in	coastal	regions,	this	

equates	to	22.6	kg	Os/	yr	delivered	from	global	coastal	cities.	However,	coastal	megacities	

only	represent	242	million	people	or	~8.2%	of	people	living	within	the	coastal	region	

(Pelling	and	Blackburn,	2014).	Therefore,	a	potential	276	kg	of	anthropogenic	Os	could	be	

delivered	via	surface	waters	to	the	world’s	oceans	every	year	if	we	extrapolate	to	the	entire	

global	coastal	population.	Chen	et	al.	(2009)	calculated	2,391	kg/yr	are	required	to	drive	

the	Os	isotopic	composition	of	ocean’s	surface	waters	(depth	=	200m)	from	1.05	to	0.95.	

They	suggested	that	the	majority	of	this	anthropogenic	Os	is	delivered	to	the	atmosphere	

during	the	refining	of	PGE	ores.	However,	this	study	suggests	~12%	of	anthropogenic	Os	in	

surface	waters	can	be	attributed	mainly	to	the	use	of	PGEs	in	catalytic	convertors,	and	

confirms	human	activity	is	impacting	the	global	Os	budget.	

	

3.5	Implications	and	future	outlook	

The	Re-Os	data	presented	here	suggests	macroalgae	can	successfully	trace	the	impact	of	

environmental	and	human	activity	on	the	global	osmium	budget.	It	particular,	the	

187Os/188Os	composition	of	macroalgae	has	traced	fluctuations	in	natural	Os	from	the	

weathering	of	volcanics	and	sedimentary	material,	and	its	mixing	with	seawater	from	the	

Pacific	Ocean	and	the	Sea	of	Japan	in	brackish	waters	around	Hokkaido,	northern	Honshu,	

the	Izu	Peninsula	and	Noto	Peninsula.	Moreover,	the	187Os/188Os	composition	of	

macroalgae	has	also	successfully	traced	the	impact	of	anthropogenic	Os	emissions	from	the	

use	of	catalytic	convertors,	MSWIs,	hospitals	and	refineries	on	waters	in	Tokyo	Bay,	Osaka	

Bay	and	Ise/Mikawa	Bay	near	densely	populated	regions	of	Japan.	This	supports	previous	

work	that	indicates	Os	isotopes	can	act	as	a	powerful	tracer	of	earth	surface	processes	such	
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as	basaltic	weathering	in	Iceland	(Chapter	2)	and	continental	weathering	in	Greenland	

(Rooney	et	al.,	2016).		

The	widespread	use	of	catalytic	convertors	has	led	to	the	removal	of	a	range	of	

pollutants	from	the	environment.	Ironically,	this	has	led	to	global	Os	pollution	at	the	Earth’s	

surface	from	the	production	of	platinum	for	use	in	catalytic	convertors.	Unlike	previous	

studies,	we	suggest	that	the	refinery	of	PGEs	does	not	have	a	significant	influence	on	the	

Japanese	marine	Os	budget.	Instead,	the	widespread	use	of	Os	in	medical	research	and	the	

lack	of	treatment	in	sewage	and	municipal	waste	has	led	to	significant	contamination	in	

regions	directly	adjacent	to	hospitals,	MSWIs	and	sewage	treatment	plants.	In	densely	

populated	regions,	Os	emissions	from	catalytic	convertors	dominate	regional	Os	budgets,	

and	represent	a	significant	source	of	Os	to	the	atmosphere.	Transfer	of	anthropogenic	Os	

from	these	sources,	via	surface	waters,	to	the	world’s	oceans	represents	~12%	of	

anthropogenic	Os	input	to	the	surface	ocean,	which	acts	to	drive	the	187Os/188Os	

composition	of	seawater	from	1.05	to	0.95.	This	study	echoes	Chen	et	al.	(2009)	who	

suggested	that	‘Os	isotopes	could	be	a	valuable	tracer	for	the	hydrological	cycle,	similar	to	

Pb	from	leaded	gasoline	usage	before	1978	or	tritium	from	atmospheric	atomic	bomb	

testing	in	the	early	1960s.’	

Further	work	is	needed	to	understand	the	specific	uptake	rate	of	Os	from	

seawater	by	macroalgae	in	a	similar	manner	to	Racionero-Gómez	et	al.	(2017).	Such	data	

for	Japanese	macroalgae	species	will	provide	a	better	estimate	of	the	Os	abundance	in	

Japanese	coastal	waters.	This	will	help	yield	a	better	understanding	of	the	global	Os	cycle	

and	oceanic	residence	times.	It	would	be	wise	to	utilise	other	isotope	systems	in	

conjunction	with	the	Os	isotope	system	to	distinguish	between	the	sources	of	

anthropogenic	Os	from	populated	regions.	For	instance,	Al	and	organic	C	have	used	in	

conjunction	with	osmium	isotopes	to	trace	the	flow	of	anthropogenic	Os	related	to	sewage	
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outflow.	This	will	allow	the	possibility	to	distinguish	Os	attributed	to	catalytic	convertors	

from	other	sources	in	complex	regions	such	as	Tokyo.		
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Chapter	4	
	

Osmium	and	lithium	isotope	evidence	for	fluctuating	oxidative	and	silicate	

weathering	during	periodic	Silurian	glaciations*	

	

	

*A	version	of	this	chapter	will	be	submitted	to	Nature,	co-authored	with	Philip	Pogge	von	

Strandmann,	Timothy	M.	Lenton,	David	Selby,	Emilia	Jarochowska,	Jiri	Fryda,	Jindrich	Hladil,	

David	Loydell,	Ladislav	Slavik,	Mikael	Calner	and	Axel	Munnecke	
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The	Silurian	(419.2	to	443.8	Ma)	was	one	of	the	most	climatically	unstable	periods	of	the	

Phanerozoic,	punctuated	by	four	large	positive	carbon	isotope	(δ13C)	excursions,	associated	

with	rapid	turnover	in	marine	biota.	Despite	over	two	decades	of	research,	the	cause	of	

these	climatic	fluctuations	is	still	unclear.	Here	we	use	osmium	(187Os/188Os)	and	lithium	

(δ7Li)	isotope	measurements	of	shales	and	carbonates	spanning	four	of	the	most	

prominent	Silurian	δ13C	excursions,	to	assess	the	role	of	continental	weathering	during	this	

time.	We	find	two	peaks	of	radiogenic	187Os/188Os	compositions	either	side	of	the	lightest	

δ7Li	values	during	each	δ13C	excursion.	Geochemical	modelling	attributes	this	to	periodic	

continental	glaciations,	which	act	to	enhance	the	oxidative	weathering	of	organic-	and	

sulphide-rich	lithologies,	whilst	suppressing	global	silicate	weathering.	The	production	of	

atmospheric	CO2	from	oxidative	weathering,	coupled	to	a	reduction	in	silicate	weathering	–	

and	therefore	atmospheric	CO2	removal	–	acted	to	reverse	the	long-term	decline	in	

atmospheric	CO2	and	global	temperatures	driven	by	orogenesis,	land	plant	diversification,	

reduced	volcanic	arc	degassing	and/or	changes	in	paleogeography	during	the	Silurian.	

	

4.1	Introduction	

Over	the	past	two	decades	it	has	become	apparent	that	the	Silurian	is	the	most	climatically	

unstable	period	of	the	Phanerozoic,	punctuated	by	four	large	amplitude	(>5‰)	positive	

carbon	isotope	(δ13C)	excursions	(Fig.	1)	associated	with	fluctuations	in	the	carbon	cycle,	

seawater	temperatures	and	faunal	extinction	rates	(Calner,	2008;	Lehnert	et	al.,	2010;	

Melchin	et	al.,	2012;	Munnecke	et	al.,	2010;	Noble	et	al.,	2005).	Traditional	explanations	for	

these	events	have	invoked	a	shift	between	two	stable	oceanic-climate	states,	driven	by	

changes	in	the	location	of	deep-water	formation	from	high	to	low	latitudes	(Jeppsson,	

1990),	or	global	precipitation	rates	and	continental	runoff	(Bickert	et	al.,	1997).	However,	
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these	early	attempts	to	explain	Silurian	climatic	events	have	received	much	criticism	

(Johnson,	2006;	Kaljo	et	al.,	2003;	Loydell,	1998).		

Figure	1.	Osmium	(187Os/188Os,	green	squares),	lithium	(δ7Li,	red	diamonds),	oxygen	(δ18O,	

blue	circles)	and	carbon	(δ13C,	black	circles)	isotope	ratios	for	shale	and	carbonate	sections	

measured.	a,	Klonk,	b,	Kosov	(Os),	c,	Bartoszyce	IG-1,	d,	Aizpute-41,	e,	Kosov	(Li),	f,	

Hunninge	and	g,	Lusklint	&	Lickershamn.	Data	from	this	study	is	compared	to	the	global	

conodont	(C)	and	graptolite	(G)	bio-events	(Melchin	et	al.,	2012),	δ13C	(Saltzman	and	

Thomas,	2012;	Cramer	et	al.,	2011a),	δ18O	(See	Trotter	et	al.,	2016),	glacial	tillites	(thick	

dashed	black	line)	(Caputo,	1998;	Díaz-Martínez	and	Grahn,	2007;	Grahn	and	Caputo,	1992)	

and	sea-level	reconstructions	(Haq	and	Schutter,	2008;	Johnson,	2006,	2010;	Loydell,	

1998).		
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More	recently	it	has	been	postulated	that	Silurian	climatic	change	could	have	

been	driven	by	glacial	expansion	over	Gondwana,	inferred	in	part	from	positive	oxygen	

isotope	(δ18O)	shifts	(Fig.	1)	(Azmy	et	al.,	1998;	Brand	et	al.,	2006;	Eriksson	and	Calner,	

2007;	Kaljo	et	al.,	2003;	Lehnert	et	al.,	2010;	Trotter	et	al.,	2016;	Žigaitė	et	al.,	2010)	

coupled	to	significant	eustatic	sea-level	change	(Haq	and	Schutter,	2008;	Johnson,	2006,	

2010;	Loydell,	1998),	much	like	the	Late	Ordovician	that	preceded	it	(Algeo	et	al.,	2016;	

Harper	et	al.,	2014).	However,	the	lack	of	glacial	sediments	in	the	stratigraphic	record	for	

much	of	the	Silurian	(post-Wenlock)	has	hampered	this	notion	(Caputo,	1998;	Díaz-

Martínez	and	Grahn,	2007;	Grahn	and	Caputo,	1992).	

In	the	absence	of	stratigraphic	evidence	for	glacial	sediments,	seawater	

chemistry	can	become	a	powerful	archive	for	reconstructing	earth	system	responses	to	

climatic	or	tectonic	change,	and	several	isotope	systems	have	been	utilised	to	reconstruct	

continental	weathering	and	erosion.	Traditionally,	the	rubidium-strontium	(87Rb-86Sr)	

radiogenic	isotope	system	has	become	the	most	widely	used,	and	variations	in	marine	

87Sr/86Sr	are	seen	to	reflect	fluctuations	in	continental	inputs	caused	by	orogenesis	(Raymo	

et	al.,	1988)	and	glaciation	(Armstrong,	1971).	However,	the	long	residence	time	of	

strontium	in	the	oceans	(2	-	4	Myr)	and	multiple	continental	sources	from	both	carbonate	

and	silicate	weathering	(Jacobson	et	al.,	2002;	Palmer	and	Edmond,	1992)	means	that	

short-periodic	fluctuations	in	unambiguous	inputs	are	hard	to	detect	(Hodell	et	al.,	1990;	

Richter	and	Turekian,	1993).	Unlike	strontium,	Os	and	Li	isotope	systems	can	overcome	

some	of	these	difficulties.	

The	osmium	isotopic	composition	(187Os/188Os)	of	seawater	reflects	a	balance	

between	the	weathering	of	radiogenic	Os-rich	sedimentary	rocks	or	silicate	minerals	and	

unradiogenic	mantle	and	extraterrestrial	derived	sources	(Georg	et	al.,	2013;	Peucker-

Ehrenbrink	and	Ravizza,	2000).	Likewise,	the	lithium	isotopic	composition	(δ7Li)	of	seawater	
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reflects	the	balance	between	chemical	weathering	of	continental	silicate	minerals,	high	

temperature	weathering	of	oceanic	silicate	minerals	at	mid-ocean	ridge	spreading	centres	

(Chan	et	al.,	1993;	Elderfield	and	Schultz,	1996;	Huh	et	al.,	1998),	and	incorporation	into	

altered	oceanic	crust	and	authigenic	clays	(Chan	et	al.,	1992;	Chan	et	al.,	2006;	James	et	al.,	

1999;	Mackenzie	and	Garrels,	1966;	Misra	and	Froelich,	2012;	Seyfried	et	al.,	1998;	Verney-

Carron	et	al.,	2011;	Vigier	et	al.,	2008).	When	combined	with	relatively	short	residence	

times	in	seawater	(~1	-	50	kyr	for	Os	and	~1	-	1.5	myr	for	Li)		(Huh	et	al.,	1998;	Oxburgh,	

2001;	Rooney	et	al.,	2016;	Stoffynegli	and	Mackenzie,	1984),	these	isotope	systems	have	

permitted	the	ability	to	unlock	vital	information	about	a	series	of	Earth	system	processes	

such	as	flood	basalt	volcanism	(Cohen	and	Coe,	2002;	Du	Vivier	et	al.,	2014;	Ravizza	and	

Peucker-Ehrenbrink,	2003;	Turgeon	and	Creaser,	2008),	paleoweathering	(Hathorne	and	

James,	2006;	Lechler	et	al.,	2015;	Misra	and	Froelich,	2012;	Pogge	von	Strandmann	et	al.,	

2013;	Ravizza	et	al.,	2001;	Schmitz	et	al.,	2004),	basin	connectivity	(Poirier	and	Hillaire-

Marcel,	2009),	bolide	impacts	(Paquay	et	al.,	2008)	and	mantle	and	peridotite	formation	

(Pogge	von	Strandmann	et	al.,	2011).	In	tandem,	these	systems	have	recently	been	utilised	

to	determine	how	silicate	weathering	has	been	influenced	by	continental	ice	volume,	

atmospheric	CO2	and	global	temperatures	during	the	Late	Ordovician	Hirnantian	mass	

extinction	(Finlay	et	al.,	2010;	Pogge	von	Strandmann	et	al.,	in	review).		

Here,	shales	were	measured	for	osmium	isotopes	(187Os/188Os),	and	bulk	

carbonates	were	measured	for	lithium	isotopes	(δ7Li)	and	trace	metals,	in	stratigraphic	

sections	that	span	the	late	Telychian-early	Sheinwoodian,	mid-Homerian,	mid-Ludfordian	

and	late	Pridoli-early	Lochkovian	positive	carbon	isotope	excursions	(See	Fig.	1).	This	study	

represents	the	first	application	of	Os	and	Li	isotopes	to	stratigraphic	sections	from	the	

Silurian.	The	results	demonstrate	the	ability	of	Os	and	Li	isotopes	to	trace	global	

fluctuations	in	Earth	system	processes,	and	when	combined	with	dynamic	isotope	models,	

elucidate	potential	causes,	such	as	fluctuations	in	ocean	circulation,	flood	basalt	volcanism,	
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global	temperature,	hydrothermal	activity	and/or	continental	ice	volume.	Finally,	this	study	

looks	at	geological	and	climatic	trends	in	atmospheric	CO2	during	the	Silurian,	and	relates	

them	to	negative	feedback	mechanisms	that	help	maintain	a	habitable	planet.			

	

4.2	Materials	and	methods	

4.2.1	Geological	setting	

In	this	study,	four	shale	sections	were	analysed	for	osmium	isotopes	and	four	bulk	

carbonate	sections	were	analysed	for	lithium	isotopes	(See	Fig.	3	to	9).	Combined,	these	

sections	covered	four	periods	of	Silurian	time:	the	late	Telychian	to	Early	Sheinwoodian;	

mid	Homerian;	late	Ludfordian;	and	the	Silurian-Devonian	boundary.	Shales	from	the	

Aizpute-41	core	(Latvia)	and	carbonates	from	the	Lusklint	&	Lickershamn	sections	(Gotland,	

Sweden)	cover	the	latest	Telychian	to	earliest	Silurian.	Shales	from	the	Bartoszyce	core	

(Poland)	and	bulk	carbonates	from	the	Hunninge-1	core	(Sweden)	cover	the	mid	Homerian.	

Shales	and	bulk	carbonates	from	the	Kosov	(Czech	Republic)	section	cover	the	Late	

Ludfordian.	Shales	from	the	Klonk	core	(Czech	Republic)	cover	the	Silurian-Devonian	

Boundary.	The	location	of	these	sections	can	be	found	in	Figure	2.	Sections	were	chosen	

because	they	have	all	had	extensive	carbon	isotope	and	biological	stratigraphy	carried	out.	

Meanwhile	they	represent	the	most	distal	coastal	environemnts	away	from	restricted	

basins,	and	therefore	are	the	most	likely	sections	to	record	ocean	signatures.	The	following	

will	detail	the	geology,	sampling	strategy	and	paleoenvironment	of	each	section	studied.				
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Figure	2.	Silurian	(425	Ma)	paleogeographic	map	(adapted	from	Melchin	et	al.,	2012).	

Sample	locations	from	Gotland	(Hunninge-1),	Aizpute-41,	Bartoszyce	and	the	Barrandian	

(Kosov	and	Klonk)	are	highlighted.	Dark	and	light	brown	represent	the	position	of	

continents	and	continental	shelves	respectively,	during	the	Silurian.	White	lines	represent	

the	configuration	of	modern	continents.		

	

4.2.1.1	Aizpute	core	

The	late	Telychian-early	Sheinwoodian	Aizpute-41	core	is	located	in	the	town	of	Aizpute,	

situated	in	western	Latvia,	in	the	deeper	shelf	part	of	the	Eastern	Baltoscandian	Basin.	The	

latest	Llandovery	beds	consist	of	greenish	and	brownish	grey	marlstones,	while	the	earliest	

Wenlock	consists	of	green,	grey	and	brown	marlstones	with	calcareous	marlstones	(Loydell	

et	al.,	2003).	Sampling	strategy	of	graptolite-rich,	relatively	high	total	organic	carbon	(TOC)	

shales	was	followed	according	to	Loydell	et	al.	(2003).	The	δ13Ccarb	data	for	the	drill	core	

material	can	be	found	in	Cramer	et	al.	(2010).				

4.2.1.2	Lusklint	&	Lickershamn	

The	late	Telychian-early	Sheinwoodian	Lower	Visby	formation	and	the	earliest	

Sheinwoodian	Upper	Visby	formation	can	be	found	outcropping	at	Lusklint	and	

Lickershamn	along	the	north-western	coast	of	Gotland,	Sweden.	The	Lower	Visby	

formation	consists	of	up	to	12	m	of	regular	alternations	of	2-5	cm	thick,	wavy	bedded	to	
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nodular	argillaceous	limestones	and	approximately	10	cm	thick	marls	which	were	

deposited	in	a	distal	shelf	environment,	below	storm	wave	base	and	the	photic	zone	

(Maier,	2010;	Calner	et	al.,	2004).	However,	the	bedding	in	the	Upper	Visby	formation	is	

not	as	regular,	with	the	ratio	of	marl	to	limestone	increasing	in	the	uppermost	part	of	the	

formation	where	detritic	limestones	become	more	dominant	(Maier,	2010).	Samples	from	

the	Lower	Visby	formation	were	sampled	from	Lusklint	while	samples	from	the	Upper	Visby	

formation	were	sampled	from	Lusklint.	The	δ13Ccarb	data	for	the	samples	can	be	found	in	

Maier	(2010).	

4.2.1.3	Bartoszyce	

The	mid-Homerian	Bartoszyce	IG	1	borehole	is	located	in	the	eastern	part	of	the	Peribaltic	

Syneclize	of	the	Polish	part	of	the	East	European	platform.	The	core	consists	of	sparsely	

bioturbated,	light-grey	laminated	and	calcareous	mudstones	(Porębska	et	al.,	2004).	

Sampling	strategy	of	relatively	high	TOC	shales,	δ13Ccarb	and	δ18Ocarb	data	can	be	found	in	

Porębska	et	al.	(2004).	

4.2.1.4	Hunninge	core	

The	mid-Homerian	hunninge-1	core	is	located	in	the	Hunninge	quarry	of	western	Gotland,	

Sweden.	The	Gannarve	member	consists	of	alternating	beds	of	brownish,	argillaceous,	fine	

dolostone	with	silty	dolomarlstone	and	alum	shales	(Calner	et	al.,	2006).	The	overlying	bara	

oolite	member	and	brick	clay	member	consist	of	coated	grains	and	argillaceous,	nodular	

limestone	alternating	with	shale	respectively	(Calner	et	al.,	2006).	Sampling	strategy	for	

carbonates	and	δ13Ccarb	data	can	be	found	in	Calner	et	al.	(2006).			

4.2.1.5	Kosov	

The	mid-Ludfordian	Kosov	section	is	located	in	the	Barrandian	region	of	the	Czech	Republic.	

The	kozlowskii	biozone	consists	of	alternating	beds	of	grey	finely	laminated	shale	and	light-

grey	packstones	and	grainstones,	while	the	overlying	Pristiograptus	dubius	postfrequens	
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biozone	consists	of	alternating	beds	of	light-grey	packstones/grainstones	and	mudstones	or	

grey	coarsely	laminated	calcareous	shales.	Sampling	strategy	of	carbonates	and	relatively	

high	TOC	shales	and	δ13Ccarb	data	can	be	found	in	Frýda	and	Manda	(2013).			

4.2.1.6	Klonk	core	

The	Pridoli-Lochkovian	(Silurian-Devonian)	GSSP	is	located	in	the	Czech	Republic	35km	

southwest	of	Prague.	The	latest	Pridolian	and	earliest	Lochkovian	beds	consist	of	grayish-

black,	platy,	mostly	fine-grained	bituminous	limestones	alternating	with	calcareous	shale	

interbeds	with	occasional	stringers	of	crinoidal	limestones	(Becker	et	al.,	2012).	Sampling	

strategy	of	relatively	high	total	organic	carbon	(TOC)	drill	core	material	was	followed	

according	to	Crick	et	al.	(2001).	δ13Ccarb	and	δ18Ocarb	data	for	the	drill	core	material	can	be	

found	in	Buggisch	and	Mann	(2004).	

4.2.2	Sample	preparation		

Prior	to	crushing,	20	-	80	g	of	shale	sample	was	polished	to	eliminate	contamination	from	

cutting	and	drilling	marks	and	samples	with	any	signs	of	veining	or	weathering	were	

avoided.	The	shale	samples	were	then	dried	at	60	°C	for	~12	h	before	being	broken	into	

chips	with	no	metal	contact.	Bulk	carbonates	and	shales	were	crushed	to	a	fine	powder	

(~30	μm)	in	a	Zirconia	ceramic	dish	using	a	shatterbox.	Bulk	carbonates	were	leached	using	

a	sequential	extraction	method	(Pogge	von	Strandmann	et	al.,	2013;	Tessier	et	al.,	1979),	

whereby	~0.1	g	of	carbonate	was	leached	for	5	h	at	room	temperature	using	Na	acetate	

buffered	to	pH	5	by	acetic	acid.	Leaching	of	interstitial	silicates	was	monitored	using	

elemental	ratios	such	as	Al/Ca	and	Mn/Ca.	The	Al/Ca	ratio	must	be	greater	than	>0.8	

mmol/mol	before	silicate-derived	Li	will	perturb	the	d7Li	measured	in	carbonates	(Pogge	

von	Strandmann	et	al.,	2013).	The	sample	preparation	and	Re-Os	isotope	and	trace	metal	

analysis	was	carried	out	at	the	Durham	Geochemistry	Centre	(Laboratory	for	Sulfide	and	
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Source	Rock	Geochronology	and	Geochemistry)	at	Durham	University.	The	Li	isotope	

analysis	was	carried	out	at	the	stable	isotope	lab	the	University	of	Oxford.	

	

4.2.3	Osmium	isotope	analysis	of	shales	

Rhenium	and	osmium	abundances	and	isotopic	compositions	were	determined	using	

isotope	dilution	negative	thermal	ionisation	mass	spectrometry	using	CrVI–H2SO4	digestion	

and	solvent	extraction	(CHCl3),	micro-distillation	and	anion	chromatography	methods	

(Creaser	et	al.,	1991;	Cumming	et	al.,	2013;	Selby	and	Creaser,	2003).	The	CrVI–H2SO4	

digestion	employed	here	principally	dissolves	the	organic	fraction	of	a	shale,	thus	liberating	

the	hydrogenous	Re-Os	load	of	the	sediment,	and	therefore	avoiding	detrital	

contamination	(Kendall	et	al.,	2004;	Selby	and	Creaser,	2003).		

For	all	shale	samples	between	0.5	and	1	g	of	powder	was	added	to	a	carius-tube	

with	a	known	amount	of	185Re-190Os	tracer	solution	and	8	ml	of	0.25	g/g	CrVIO3-4	N	H2SO4	at	

220	°C	for	48	h.	Osmium	was	isolated	from	the	acid	medium	using	CHCl3	solvent	extraction,	

with	back	extraction	in	HBr,	and	then	further	purified	using	a	micro-distillation	technique.	

Rhenium	was	isolated	using	NaOH-C3H6O	solvent	extraction	and	purified	using	anion	

chromatography.	The	isolated	Re	and	Os	fractions	were	loaded	onto	Ni	and	Pt	filaments	

respectively,	and	their	isotopic	composition	was	determined	using	a	ThermoScientific	

TRITON	mass	spectrometer	using	Faraday	collectors	and	the	secondary	electron	multiplier,	

respectively.		

Total	procedural	blanks	for	Re	and	Os	are	1.1	and	0.1	pg	respectively,	with	an	

average	187Os/188Os	of	1.3	(n=6).	Raw	Re	and	Os	oxide	values	were	corrected	for	oxygen	

contribution	and	mass	fractionation.	Calculated	uncertainties	include	those	associated	with	

mass	spectrometer	measurements,	blank	abundance	and	isotopic	composition,	spike	
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calibration,	and	sample	and	spike	weights.	In-house	standard	solutions	of	Re	and	Os	

(DROsS)	yield	an	average	185Re/187Re	value	of	0.59872	±	0.00135	(1SD,	n	=	24),	and	

187Os/188Os	of	0.16101	±	0.000401	(1SD,	n	=	41),	respectively,	which	is	identical,	within	

uncertainty	to	the	previously	published	values	(Nowell	et	al.,	2008).		

Initial	187Os/188Os	(187Os/188Osi)	values	in	this	study	were	determined	from	Re-Os	

data	and	the	187Re	decay	constant	(1.666e−11	a−1)	(Smoliar	et	al.,	1996)	and	interpolated	

graptolite	biozone	ages	(Melchin	et	al.,	2012).	Analytical	uncertainty	for	individual	

calculated	Osi	is	<	0.05.	The	reproducibility	of	calculated	187Os/188Osi	was	based	on	15	

analyses	of	the	USGS	rock	reference	material	SBC-1	(Bush	Creek	Shale)	and	has	a	value	of	

~0.65	±	0.1	(2	SD).	This	uncertainty	was	used	to	account	for	the	maximum	uncertainty	in	

the	sample	set.	Calculated	187Os/188Osi	ratios	assume	closed	system	behavior	after	

deposition	with	respect	to	both	rhenium	and	osmium	and	that	the	187Os/188Os	ratios	reflect	

the	isotope	composition	of	the	local	seawater	at	the	time	of	sediment	deposition,	and	are	

unaffected	by	mineral	detritus.		

	

4.2.4	Lithium	isotope	analysis	of	bulk	carbonates	

A	split	of	each	sample	solution	was	retained	for	cation	analysis	using	an	Elan	Quadrupole	

inductively	coupled	plasma	mass	spectrometer.	Samples	were	matrix	matched	to	10	μg/g	

Ca	and	calibrated	against	a	set	of	synthetic	standards	made	up	from	single	element	

solutions.	The	Al/Ca	ratio	in	carbonates	was	monitored	to	detect	the	influence	of	Li	leached	

from	silicate	clays.	Previous	work	suggests	carbonates	must	be	>0.8	mmol/mol	before	

carbonate	Li	isotope	ratios	become	measurably	perturbed	by	Li	leached	from	clays	(See	

Pogge	von	Strandmann	et	al.,	2013).	Accuracy	and	precision	were	assessed	by	repeated	

analyses	of	seawater,	the	international	reference	material	JLs-1	and,	in	order	to	assess	

reproducibility	of	both	analyses	and	carbonate	leaching,	repeated	dissolutions	and	analysis	
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of	a	sample	of	the	Plenus	Marl	from	Eastbourne	were	undertaken.	Sample	reproducibility	

of	Li/Ca	and	Al/Ca	was	~7%	(2	SD,	n	=	6).		

The	larger	part	of	each	sample	(typically	containing	5	–	10	ng	Li)	was	purified	by	

passing	it	through	a	two-stage	cation-exchange	procedure	(Pogge	von	Strandmann	et	al.,	

2011).	Given	that	Li	isotopes	fractionate	during	cation	chromatography,	it	is	critical	to	have	

column	yields	close	to	100%	(Tomascak,	2004).	To	assess	the	efficacy	of	this	process,	splits	

of	the	solution	were	collected	before	and	after	the	collected	bracket	for	Li,	and	were	

analysed	for	Li	content.	Results	showed	that	<0.1%	of	Li	was	present	in	these	splits.		

The	total	procedural	blank	for	Li	isotope	analysis	is	~0.02	ng	Li,	which	is	

insignificant	compared	to	the	mass	of	sample	used.	Analyses	were	performed	on	a	Nu	

Plasma	HR	multi-collector	ICP-MS,	using	a	sample-standard	bracketing	system	relative	to	

the	LSVEC	standard	(Flesch	et	al.,	1973).	Each	sample	was	measured	three	separate	times	

during	an	analytical	session,	repeat	measurements	being	separated	by	several	hours,	but	

during	the	same	analytical	session.	Each	individual	measurement	consisted	of	10	ratios	(10	

s	total	integration	time),	giving	a	total	integration	time	of	300	s/sample.	At	an	uptake	rate	

of	75	μl/min,	the	sensitivity	for	a	20	ng/ml	solution	is	~18	pA	of	7Li.	Background	

instrumental	Li	intensity,	typically	~0.01	pA,	was	subtracted	from	each	measurement.	

Accuracy	and	external	reproducibility,	as	assessed	from	seawater,	is	31.1	±	0.6	‰	(2	SD,	n	=	

16,	chemistry	=	16).	Precision	was	also	assessed	from	repeated	analyses	(including	leaching	

and	chemistry)	of	an	in-house	marl	standard,	which	also	gives	a	reproducibility	of	±	0.6	‰	

(n	=	7).	
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4.2.5	Isotope	modeling	

Dynamic	box	models	for	seawater	Os	and	Li	cycles	have	been	utilised	to	explore	causes	of	

the	variations	seen	in	the	data.	The	models	were	adapted	from	those	presented	in	Pogge	

von	Strandmann	et	al.	(2013).		

4.2.5.1	Osmium	isotope	modeling		

The	Os	model	was	constructed	from	the	following	mass	balance	equation:	

+,Os

+-
= 𝐹sil + 𝐹ORLW + 	𝐹lth + 𝐹hth + 𝐹dust − 𝐹out		 													Eq.	1	

where	N	is	the	seawater	Os	reservoir,	and	Fx	represents	the	input	and	output	

fluxes:	sil	=	river	input	related	to	silicate	weathering;	ORLW	=	river	input	related	to	the	

weathering	of	organic-sulphide-rich	lithologies;		lht	=	low-temperature	hydrothermal;	hth	=	

high-temperature	hydrothermal;	and	dust	=	aeolian	dust.	The	isotope	balance	equation	is	

then	given	by:	

𝑁Os
+1SW

+-
= 𝐹sil 𝑅sil − 𝑅SW + 𝐹ORLW 𝑅ORLW − 𝑅SW + 𝐹lht 𝑅lth − 𝑅SW +

𝐹hth 𝑅hth − 𝑅SW + 𝐹dust 𝑅dust − 𝑅SW − 𝐹out(𝑅out − 𝑅SW)																																																																																																																																													

Eq.	2	

where	Rx	is	the	isotope	ratio	of	the	various	fluxes.	Finally,	the	calculation	of	the	

sink	of	Os	from	seawater	is	based	on	the	assumption	that	partitioning	into	the	sink	is	due	

to	a	constant	partition	coefficient	k,	where:	

𝐹out = 𝑘×𝑁		 						Eq.	3	

These	equations	differ	from	the	original	model	(Pogge	von	Strandmann	et	al.,	

2013)	as	the	riverine	input	has	been	partitioned	into	two	components	derived	from	silicate	

weathering	and	organic-sulphide-rich	lithology	weathering	(ORLW)	(See	Georg	et	al.,	2013).	

During	the	Cenozoic,	riverine	Os	fluxes	are	largely	controlled	by	the	oxidative	weathering	of	
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ORL	and	represents	70%	of	riverine	Os	budget,	with	silicate	weathering	representing	the	

other	30%	(Georg	et	al.,	2013;	Li	et	al.,	2009).	However,	during	the	Silurian,	the	absence	of	

extensive	terrestrial	vegetation	will	lower	the	availability	of	organic-rich	sediments	for	

weathering,	and	silicate	weathering	will	therefore	represent	a	more	dominant	control	on	

the	riverine	Os	budget	(60%).	Cosmic	dust	is	not	included	in	the	model	as	it	is	unlikely	its	

flux	changed	during	this	time.		

	

4.2.5.2	Lithium	isotope	modeling	

The	Li	model	was	constructed	from	the	following	mass	balance	equation:	

+,Li

+-
= 𝐹riv + 𝐹hth − 𝐹sed				 	 	Eq.	4	

where	N	is	the	seawater	Li	reservoir,	and	Fx	represents	the	input	and	output	

fluxes:	riv	=	river;	hth	=	hydrothermal;	and	sed	=	sediment	(combined	uptake	into	marine	

sediments,	and	alteration	of	the	oceanic	crust).	The	isotope	balance	equation	is	then	given	

by:	

𝑁Li
+1SW

+-
= 𝐹riv 𝑅riv − 𝑅SW + 𝐹hth 𝑅hth − 𝑅SW − 𝐹sed(𝑅sed − 𝑅SW)		 Eq.	5	

where	Rx	is	the	isotope	ratio	of	the	various	fluxes	where	SW	=	seawater.	Rsink	is	

given	by	∆sink	=	Rsink-Rsw,	where	∆7Lisink	=	15-16‰	(Chan	et	al.,	1993;	Huh	et	al.,	1998;	Misra	

and	Froelich,	2012).	Finally,	the	calculation	of	the	sink	of	Li	from	seawater	is	based	on	the	

assumption	that	partitioning	into	the	sink	is	due	to	a	constant	partition	coefficient	k,	

where:		

𝐹out = 𝑘×𝑁		 Eq.	6	

The	fractionation	of	Li	uptake	into	carbonates	is	accounted	for	by	the	model.	

Assuming	a	modern	oceanic	sink	(Hazen	et	al.,	2013)	and	hydrothermal	δ7Li,	an	
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unfractionated	riverine	δ7Li	(~0‰)	similar	to	continental	crust	(Sauzéat	et	al.,	2015)	is	

required	to	produce	the	δ7Li	of	seawater	recorded	for	the	Hirnantian	(Pogge	von	

Strandmann	et	al.,	in	review).	Such	an	isotopically	light	riverine	flux	was	most	likely	due	to	

the	domination	of	illites,	which	cause	little	fractionation	(Millot	and	Girard,	2007),	prior	to	

the	advent	of	terrestrial	plants	(Pogge	von	Strandmann	et	al.,	in	review).	Li	was	modelled	

over	10	kyr	steps,	while	Os	was	modeled	over	5	kyr	steps.	Table	1	lists	the	values	used	in	

the	models	for	each	system.		

	

Table	1	

Model	input	parameters.	Starting	parameters	are	based	on	Pogge	von	Strandmann	et	al.,	

2013	and	Pogge	von	Strandmann	et	al.,	2017.	However,	Os	riverine	flux	has	been	modified	

to	represent	contributions	from	the	weathering	of	both	silicates	and	ORL.	See	text	for	

details	on	model	perturbations.	

Starting	Parameters	
		 Li	 		 Os	

F	river	(Gmol/yr)	 20	 Silicate	(mol/yr)	 600	

	 	
ORLW	(mol/yr)	 400	

F	hydro	(Gmol/yr)	 9.3	 low-T	hydro	(mol/yr)	 95.4	

	 	
high-T	hydro	(mol/yr)	 366	

F	dust	(mol/yr)	
	 	

150	

	 	 	 	R	river	 0	 Silicate	 0.6	

	 	
ORLW	 1.34	

R	hydro	 7	 low-T	hydro		 0.878	

	 	
high-T	hydro		 0.115	

R	dust	 		 		 1.05	
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4.3	Results	

4.3.1	Rhenium-osmium	isotope	data	

Rhenium	and	osmium	isotope	compositions	and	abundance	data	for	the	Aizpute-41	

(Latvia),	Bartoszyce	(Poland),	Kosov	(Czech	Republic)	and	Klonk	(Czech	Republic)	samples	

are	presented	in	Table	2.	

		

Table	2	

Rhenium	and	osmium	abundance	and	isotope	data	for	the	Aizpute-41,	Bartoszyce,	Kosov	

and	Klonk	shale	samples.	Initial	187Os/188Os	(187Os/188Osi)	were	calculated	using	graptolite	

biozone	ages	from	(Melchin	et	al.	(2012).	

Depth	 Re	 2	s.e.	 Os	 2	s.e.	 187Re/188Os	 2	s.e.	 187Os/188Os	 2	s.e.	 187Os/188Osi	 2	s.e.	

(m)	 (ppb)	 		 (ppt)	 		 		 		 		 		 		 		

Aizpute-41	Core,	Latvia	

910.06	 2.22	 0.01	 65.0	 0.7	 206.9	 2.9	 2.10	 0.04	 0.602	 0.015	

910.19	 2.31	 0.01	 67.2	 0.7	 208.8	 3.0	 2.11	 0.04	 0.595	 0.014	

910.60	 2.42	 0.01	 74.0	 0.8	 196.9	 2.8	 2.06	 0.04	 0.629	 0.015	

910.90	 2.91	 0.05	 73.8	 0.6	 244.6	 4.9	 2.33	 0.03	 0.558	 0.013	

911.33	 3.23 0.03 87.2 0.7 226.6 3.0 2.18 0.03 0.540 0.010 

912.00	 2.79	 0.05	 77.3	 0.6	 217.4	 4.3	 2.04	 0.03	 0.466	 0.011	

912.90	 2.17	 0.04	 98.9	 0.5	 121.7	 2.3	 1.30	 0.01	 0.414	 0.008	

914.01	 2.02	 0.15	 84.9	 0.5	 136.6	 10.1	 1.59	 0.01	 0.602	 0.045	

914.74	 5.60	 0.01	 130.7	 1.1	 271.3	 2.5	 2.53	 0.03	 0.564	 0.009	

914.80	 5.53	 0.02	 135.4	 1.1	 250.0	 2.3	 2.20	 0.03	 0.391	 0.006	

914.95	 3.26	 0.01	 115.1	 0.7	 166.7	 1.2	 1.83	 0.02	 0.620	 0.007	

915.90	 7.88	 0.25	 128.0	 0.9	 433.6	 14.0	 3.66	 0.03	 0.521	 0.017	

916.50	 10.52	 0.19	 152.8	 1.0	 502.4	 9.2	 4.06	 0.03	 0.422	 0.008	

917.70	 10.20	 0.33	 144.1	 1.1	 525.5	 17.0	 4.28	 0.03	 0.468	 0.016	

919.96	 9.59	 0.17	 144.5	 1.1	 481.5	 8.9	 4.00	 0.03	 0.515	 0.010	

924.70	 1.88	 0.01	 81.2	 0.5	 131.7	 1.1	 1.51	 0.01	 0.557	 0.007	

924.98	 1.52	 0.01	 78.6	 0.5	 108.2	 0.8	 1.38	 0.01	 0.593	 0.007	

925.21	 3.77 0.04 98.3 0.5 237.6 2.6 2.32 0.01 0.597 0.007 

925.65	 9.64	 0.03	 152.7	 1.3	 460.6	 3.5	 4.07	 0.04	 0.733	 0.009	

928.01	 16.74	 0.04	 207.6	 1.8	 644.7	 4.5	 5.18	 0.05	 0.511	 0.006	

930.38	 17.95	 0.32	 230.0	 1.8	 606.8	 11.2	 4.83	 0.04	 0.433	 0.009	

932.35 27.46 0.07 274.0 2.2 929.8 5.2 7.23 0.05 0.489 0.004 

934.20	 15.86	 0.04	 249.7	 1.9	 439.6	 2.9	 3.47	 0.03	 0.287	 0.003	

935.82	 5.98	 0.02	 143.5	 0.9	 253.5	 1.7	 2.13	 0.02	 0.296	 0.003	
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Bartoszyce	Core,	Poland	

1674.20	 12.46	 0.22	 162.3	 1.3	 597.0	 11.1	 4.83	 0.04	 0.551	 0.011	

1672.90	 12.55	 0.40	 196.3	 1.5	 454.8	 14.8	 3.78	 0.03	 0.517	 0.017	

1670.00 8.71 0.02 131.5 1.0 482.9 3.0 4.06 0.03 0.595 0.006 

1666.65	 9.46	 0.17	 147.8	 1.0	 461.5	 8.5	 3.93	 0.03	 0.618	 0.012	

1665.00	 14.96	 0.27	 238.4	 1.6	 449.5	 8.3	 3.86	 0.03	 0.638	 0.013	

1663.75	 3.01	 0.05	 69.8	 0.6	 275.5	 5.5	 2.65	 0.03	 0.670	 0.016	

1662.30	 1.71	 0.06	 42.7	 0.5	 253.2	 8.9	 2.53	 0.05	 0.711	 0.029	

1661.80	 1.10	 0.02	 27.9	 0.4	 244.2	 6.7	 2.35	 0.07	 0.603	 0.024	

1661.70 1.29 0.01 30.0 0.4 268.5 5.7 2.44 0.07 0.513 0.018 

1661.40	 1.17	 0.02	 34.6	 0.5	 203.6	 5.6	 2.04	 0.06	 0.580	 0.023	

1660.72	 0.74	 0.02	 26.2	 0.6	 166.2	 8.7	 1.76	 0.10	 0.567	 0.044	

1660.70	 0.51 0.01 34.2 0.7 81.1 3.4 1.18 0.07 0.594 0.042 

1660.00	 4.09 0.04 87.4 2.1 298.5 12.4 2.61 0.15 0.471 0.033 

1659.75	 3.80	 0.07	 106.3	 0.9	 221.5	 4.4	 2.32	 0.03	 0.727	 0.017	

1659.65	 0.53 0.01 39.8 0.2 72.9 1.1 1.16 0.01 0.639 0.012 

1657.95 3.81 0.01 126.9 1.0 177.5 1.5 1.87 0.02 0.601 0.009 

1656.72	 4.38	 0.25	 126.4	 0.9	 210.1	 12.1	 2.12	 0.02	 0.611	 0.036	

1652.36	 8.61	 0.49	 192.2	 1.2	 283.8	 16.3	 2.54	 0.02	 0.500	 0.029	

1648.20 7.93 0.02 184.6 1.3 272.9 2.0 2.57 0.02 0.615 0.007 

1647.20 9.32 0.02 204.1 1.2 290.9 1.5 2.60 0.02 0.515 0.004 

Kosov,	Czech	Republic	

-7.60	 5.60	 0.39	 79.7	 1.0	 499.9	 35.7	 3.78	 0.07	 0.235	 0.017	

-6.5	 3.28	 0.01	 55.9	 0.6	 401.1	 4.9	 3.33	 0.05	 0.486	 0.010	

-6	 4.26	 0.01	 60.9	 0.7	 518.7	 6.1	 4.25	 0.07	 0.570	 0.011	

-5.00	 4.45	 0.08	 100.9	 0.8	 285.9	 5.8	 2.79	 0.03	 0.761	 0.017	

-3.65	 9.34	 0.53	 134.0	 1.0	 511.4	 29.4	 4.13	 0.03	 0.509	 0.029	

-2.20	 2.07	 0.04	 22.3	 0.3	 802.9	 19.5	 6.25	 0.13	 0.559	 0.018	

-1.00	 8.35	 0.16	 102.7	 1.1	 623.6	 12.8	 4.66	 0.06	 0.243	 0.006	

-0.15	 15.28	 0.87	 145.7	 1.4	 949.4	 54.7	 6.86	 0.06	 0.129	 0.008	

0.15	 1.65	 0.01	 25.1	 0.2	 473.3	 5.9	 3.89	 0.05	 0.533	 0.009	

1.75	 0.33	 0.03	 12.9	 0.1	 146.1	 11.7	 1.48	 0.03	 0.443	 0.036	

2.10	 0.84	 0.02	 30.0	 0.5	 160.7	 5.4	 1.61	 0.06	 0.472	 0.024	

4.25	 0.22 0.00 10.4 0.1 124.8 3.1 1.63 0.04 0.740 0.024 

9.45	 0.64	 0.04	 27.0	 0.6	 140.7	 10.0	 1.93	 0.11	 0.930	 0.085	

14.60	 1.16 0.00 21.9 0.3 355.3 7.6 3.12 0.09 0.605 0.022 

16.60	 3.02 0.01 35.4 0.4 721.7 7.2 5.90 0.08 0.788 0.013 

Klonk	Core,	Czech	Republic	

16.37	 1.93	 0.07	 66.3	 0.5	 175.0	 6.4	 2.02	 0.03	 0.789	 0.031	

17.53	 2.77	 0.01	 81.6	 1.1	 206.7	 4.3	 2.13	 0.06	 0.682	 0.024	

18.67	 7.30	 0.26	 176.3	 1.5	 259.9	 9.5	 2.44	 0.03	 0.619	 0.024	

19.82	 4.45	 0.16	 152.2	 1.2	 172.9	 6.3	 1.87	 0.02	 0.662	 0.026	

20.73	 2.60	 0.01	 137.6	 1.4	 110.7	 1.6	 1.78	 0.03	 1.006	 0.024	

21.22	 1.98	 0.01	 104.8	 1.1	 110.6	 1.6	 1.76	 0.03	 0.984	 0.024	

22.25	 2.37	 0.01	 111.1	 1.1	 126.8	 1.8	 1.93	 0.04	 1.044	 0.025	
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23.27	 1.81	 0.01	 64.0	 0.7	 176.5	 2.7	 2.39	 0.05	 1.149	 0.029	

23.45	 3.50	 0.01	 76.4	 1.1	 304.0	 5.8	 3.03	 0.08	 0.898	 0.030	

23.65	 6.46	 0.02	 148.2	 1.9	 282.7	 4.7	 2.77	 0.06	 0.792	 0.022	

23.95	 2.35	 0.01	 59.6	 0.7	 248.2	 4.3	 2.48	 0.06	 0.745	 0.021	

24.25	 4.61	 0.02	 142.2	 1.7	 198.0	 3.3	 2.17	 0.05	 0.787	 0.022	

24.4	 6.00	 0.02	 158.1	 1.9	 234.3	 4.0	 2.29	 0.05	 0.643	 0.019	

24.54	 8.84	 0.03	 182.4	 1.6	 321.0	 3.2	 3.00	 0.04	 0.750	 0.012	

24.65	 3.52	 0.02	 124.9	 1.5	 167.0	 3.0	 1.88	 0.04	 0.710	 0.021	

24.72	 3.76	 0.02	 125.2	 1.5	 181.9	 3.2	 2.11	 0.05	 0.832	 0.024	

24.77	 4.07	 0.02	 161.2	 1.8	 146.6	 2.5	 1.70	 0.04	 0.671	 0.019	

24.87	 5.77	 0.02	 150.2	 1.8	 235.5	 4.1	 2.22	 0.05	 0.567	 0.016	

24.87	 6.04	 0.02	 159.7	 1.3	 232.2	 2.1	 2.22	 0.03	 0.590	 0.009	

25.01	 3.12	 0.02	 84.5	 1.1	 229.3	 4.4	 2.33	 0.06	 0.721	 0.022	

25.21	 5.06	 0.02	 123.4	 1.6	 258.1	 4.6	 2.47	 0.06	 0.665	 0.020	

25.35	 6.71	 0.02	 136.2	 1.8	 325.3	 5.7	 2.97	 0.07	 0.691	 0.020	

25.42	 2.54	 0.01	 111.1	 1.2	 137.3	 2.0	 2.00	 0.04	 1.039	 0.025	

25.60	 6.34	 0.02	 116.8	 1.4	 370.3	 5.3	 3.32	 0.07	 0.725	 0.018	

25.98	 3.75	 0.01	 118.8	 1.3	 190.5	 2.7	 2.07	 0.04	 0.732	 0.018	

26.22	 2.13	 0.01	 99.4	 1.0	 123.5	 1.8	 1.62	 0.03	 0.754	 0.018	

26.45	 5.13	 0.02	 152.4	 1.3	 215.9	 2.0	 2.66	 0.03	 1.148	 0.017	

26.78	 10.42	 0.04	 175.5	 2.4	 411.3	 6.9	 3.48	 0.08	 0.602	 0.017	

27.25	 6.47	 0.02	 208.0	 2.4	 186.2	 3.1	 1.98	 0.04	 0.673	 0.019	

27.8	 17.46	 0.06	 200.9	 1.4	 729.0	 3.9	 5.81	 0.03	 0.697	 0.005	

28.34	 4.55	 0.02	 105.6	 0.9	 274.3	 2.6	 2.60	 0.03	 0.678	 0.010	

29.28	 6.86	 0.24	 185.3	 1.0	 229.0	 8.2	 2.30	 0.01	 0.690	 0.025	

30.15	 9.95	 0.35	 224.8	 1.3	 283.7	 10.1	 2.65	 0.02	 0.665	 0.024	

31.45	 6.94	 0.25	 206.0	 1.1	 204.8	 7.3	 2.14	 0.01	 0.701	 0.025	
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4.3.1.1	Aizpute-41	Core	

	

Figure	3.	Osmium	(187Os/188Os,	green	squares),	oxygen	(δ18Ocarb,	blue	circles)	and	carbon	

(δ13Ccarb,	black	circles)	isotope	ratios	for	shales	and	carbonates	from	the	Llandovery-

Wenlock	Aizpute	core.	Biozone,	lithology	and	carbon	and	oxygen	data	have	been	adapted	

from	Cramer	et	al.	2010.	See	text	for	details.	

The	Re	and	Os	abundances	and	187Re/188Os	and	187Os/188Os	ratios	are	variable	throughout	

the	Aizpute-41	section	([Re]	=	1.52	to	27.46	ppb;	[Os]	=	65	to	274	ppt;	187Re/188Os	=	108	to	

930;	187Os/188Os	=	1.3	to	7.2;	Table	2;	Fig.	3).	Initial	187Os/188Os	values	range	from	0.29	to	

0.73	(Table	2d;	Fig.	2).	From	934.82	to	965.28	m,	within	the	latest	lapworthi	and	earliest	

murchisoni	biozones,	187Os/188Osi	increases	from	~0.29	to	~0.73.	From	925.65	to	916.5	m,	

187Os/188Osi	decreases	from	~0.73	to	~0.42.	The	187Os/188Osi	then	fluctuates	between	~0.39	

and	~0.62	during	the	latter	part	of	the	murchisoni	biozone.	From	912.9	to	910.6m,	spanning	
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the	firmus	biozone,	the	187Os/188Osi	increases	from	0.41	to	0.63.	A	hiatus	in	the	

riccartonensis	biozone	prevents	further	analysis	into	the	Wenlock.				

4.3.1.2	Bartoszyce	Core	

Figure	4.	Osmium	(187Os/188Os,	green	squares),	oxygen	(δ18Ocarb,	blue	circles)	and	carbon	

(δ13Ccarb,	black	circles)	isotope	ratios	for	shales	and	carbonates	from	the	mid-Homerian	

Bartoszyce	section.	Biozone,	lithology	and	carbon	and	oxygen	data	have	been	adapted	

from	Porębska	et	al.	(2004).	See	text	for	details.	

The	Re	and	Os	abundances	and	187Re/188Os	and	187Os/188Os	ratios	are	variable	throughout	

the	Bartoszyce	IG-1	core	([Re]	=	0.5	to	15	ppb;	[Os]	=	26.2	to	238.4	ppt;	187Re/188Os	=	73	to	
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597;	187Os/188Os	=	1.2	to	4.8;	Table	2;	Fig.	4).	Initial	187Os/188Os	values	range	from	0.47	to	

0.73	(Table	2;	Fig.	2c).	From	1672.9	to	1662.3	m,	from	the	latest	lundgreni	to	the	base	of	

the	nassa	biozone,	the	187Os/188Osi	increases	from	~0.52	to	~0.71.	Immediately	afterwards,	

the	187Os/188Osi	decreases	from	~0.71	to	~0.51	where	it	remains	relatively	low	(~0.5)	

between	1661.7	to	1660	m.	From	1660	to	1659.7	m,	the	187Os/188Osi	sharply	increases	from	

~0.47	to	~0.73.	The	187Os/188Osi	then	proceeds	to	decrease	throughout	the	rest	of	the	nassa	

biozone.	

4.3.1.3	Kosov	section	

The	Re	and	Os	abundances	and	187Re/188Os	and	187Os/188Os	ratios	are	variable	throughout	

the	Kosov	section	([Re]	=	0.2	to	15.3	ppb;	[Os]	=	10.4	to	145.7	ppt;	187Re/188Os	=	124.8	to	

949.4;	187Os/188Os	=	1.5	to	6.9;	Table	2;	Fig.	5).	Initial	187Os/188Os	values	range	from	0.13	to	

0.93	(Table	2;	Fig.	2b).	From	7.6	to	5	m,	the	187Os/188Osi	increases	from	~0.23	to	~0.76.	Prior	

to	the	base	of	the	dubius	postfrequens	biozone,	the	187Os/188Osi	decreases	from	~0.76	to	

~0.13	between	5	and	0.13	m.	The	187Os/188Osi	then	increases	from	~0.13	to	~0.93	between	

0.13	and	-9.45	m	before	decreasing	again	towards	the	end	of	the	dubius	postfrequens	

biozone
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.	

Figure	5.	Osmium	(187Os/188Os,	green	squares),	Lithium	(δ7Li,	red	squares),	oxygen	(δ18Ocarb,	

blue	circles)	and	carbon	(δ13Ccarb,	black	circles)	isotope	ratios	for	carbonates	and	shales	

from	the	Ludfordian	Kosov	section.	Biozone,	lithology	and	carbon	and	oxygen	data	have	

been	adapted	from	Frýda	and	Manda	(2013).	See	text	for	details.	
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4.3.1.4	Klonk	Core	

Figure	6.	Osmium	(187Os/188Os,	green	squares),	oxygen	(δ18Ocarb,	blue	circles)	and	carbon	

(δ13Ccarb,	black	circles)	isotope	ratios	for	carbonates	and	shales	from	the	Silurian-Devonian	

GSSP	at	Klonk.	Biozone	information	adapted	from	Crick	et	al.	(2001).	Carbon	and	oxygen	

isotope	data	have	been	adapted	from	Buggisch	and	Mann	(2004).	See	text	for	details.	

	

The	Re	and	Os	abundances	and	187Re/188Os	and	187Os/188Os	ratios	are	variable	throughout	

the	Klonk	core	([Re]	=	1.8	to	17.4	ppb;	[Os]	=	59.6	to	224.8	ppt;	187Re/188Os	=	110	to	729;	

187Os/188Os	=	1.6	to	5.8;	Table	2;	Fig.	6).	Initial	187Os/188Os	values	range	from	0.57	to	1.15	
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(Table	2;	Fig.	2a).	From	31.45	to	26.78	m,	the	187Os/188Osi	are	moderately	radiogenic,	

ranging	from	~0.6	to	~0.7.	Between	26.78	and	25.35	m,	the	187Os/188Osi	fluctuates	between	

~0.6	and	~1.15.	Across	the	Silurian-Devonian	boundary,	the	187Os/188Osi	is	also	moderately	

radiogenic,	with	values	between	~0.57	and	~0.83	(25.35	-	23.95	m).	From	23.95	to	23.27	m,	

the	187Os/188Osi	increases	from	0.74	to	1.15	before	subsequently	decreasing	from	1.15	to	

0.62	during	the	earliest	Devonian.		

	

4.3.2	Lithium	isotope	and	trace	metal	data	

Lithium	isotope	measurements	and	trace	metal	data	for	the	Hunninge-1	(Sweden)	and	

Kosov	(Czech	Republic)	samples	are	presented	in	Table	3.		

Table	3	

Lithium	isotope	and	trace	metal	data	for	the	Hunninge-1	and	Kosov	carbonate	samples.	

Depth		 δ7Li	 2	s.d.	 Mg/Ca	 Al/Ca	 Mn/Ca	 Sr/Ca	
(m)	 (‰)	 		 (μmol/mol)	 (μmol/mol)	 (μmol/mol)	 (μmol/mol)	

Lusklint	&	Lickerdhamn,	Sweden	
38	 11.0	 0.2	 6.50	 0.27	 0.51	 0.17	
30	 12.3	 0.2	 4.81	 0.17	 0.49	 0.09	
21	 11.1	 0.3	 5.11	 0.15	 0.45	 0.10	
14	 11.6	 0.6	 4.39	 0.12	 0.38	 0.12	
4	 11.6	 0.5	 5.53	 0.18	 0.50	 0.18	
1	 11.1	 0.8	 4.45	 0.17	 0.47	 0.09	

-0.19	 13.5	 0.5	 4.00	 0.15	 0.41	 0.09	
-0.66	 12.2	 0.1	 6.63	 0.22	 0.38	 0.20	
-2.25	 16.1	 0.2	 5.36	 0.14	 0.29	 0.22	
-3.27	 17.6	 0.5	 4.18	 0.21	 0.22	 0.15	
-4.2	 16.1	 0.5	 4.15	 0.08	 0.26	 0.12	
-5.8	 14.3	 0.1	 5.15	 0.20	 0.32	 0.17	

Hunninge-1	Drillcore,	Sweden	
	    -4.4	 11.2	 0.7	 39.32	 0.536	 2.74	 0.75	

-2.8	 11.4	 0.3	 28.51	 0.290	 3.64	 0.74	
-1.5	 11.4	 0.5	 40.49	 1.006	 2.46	 0.66	
-1.1	 10.6	 0.5	 32.11	 0.521	 1.76	 0.29	
-0.7	 9.9	 0.1	 20.51	 0.123	 1.97	 0.39	
-0.4	 12.2	 0.2	 41.29	 0.827	 1.89	 0.60	
-0.2	 12.5	 0.2	 40.12	 0.536	 1.47	 0.68	
0.2	 12.7	 0.3	 48.25	 1.002	 1.07	 0.96	
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0.7	 12.6	 0.6	 24.21	 0.108	 0.67	 0.83	
1	 13.4	 0.3	 15.61	 0.007	 0.50	 0.70	
1.5	 13.8	 0.2	 19.00	 0.007	 0.53	 0.63	
1.8	 14.7	 0.6	 24.94	 0.114	 0.49	 1.27	
4.8	 13.0	 0.7	 22.07	 -0.005	 0.61	 1.35	

Kosov,	Czech	Republic 
-4.77	 9.6	 0.6	 13.64	 -0.018	 1.23	 0.56	
-2.65	 6.2	 0.5	 12.69	 0.066	 0.78	 0.55	
-2.2	 7.8	 0.4	 14.60	 0.014	 0.74	 0.51	
-1.25	 5.8	 0.6	 14.48	 0.108	 0.85	 0.44	
-1	 4.6	 0.1	 12.34	 0.200	 0.85	 0.79	
-0.7	 7.8	 0.6	

	    -0.45	 6.2	 0.4	
	    -0.05	 15.4	 0.2	 10.93	 0.052	 0.47	 0.97	

0.5	 6.2	 0.7	
	    0.9	 9.0	 0.3	 13.24	 0.129	 0.35	 0.95	

1.15	 5.3	 0.5	
	    1.5	 6.3	 0.6	
	    2.7	 6.2	 0.2	
	    3.3	 5.6	 0.2	
	    4.05	 6.1	 0.1	 13.67	 0.072	 0.41	 0.99	

5.28	 12.8	 0.6	 13.29	 0.065	 0.31	 0.98	
	

4.3.2.1	Lusklint	section	

The	Mg/Ca,	Al/Ca,	Mn/Ca	and	Sr/Ca	ratios	are	variable	throughout	the	Hunninge-1	drillcore	

(Mg/Ca	=	4.38	to	6.5	μmol/mol;	Al/Ca	=	0.12	to	0.27	μmol/mol;	Mn/Ca	=	0.38	to	0.51	

μmol/mol;	Sr/Ca	=	0.09	to	0.18	μmol/mol;	Table	3;	Fig.	7).	The	Al/Ca	ratios	remain	below	

the	~0.8	mmol/mol	threshold,	suggesting	little	influence	from	Li	leached	from	clays.	The	

δ7Li	values	range	from	11	to	12.3	‰	(Table	3;	Fig.	7).	The	δ7Li	values	remain	relatively	

constant	throughout	the	bicornis	and	procerus	biozones.		
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Figure	7.	Lithium	(δ7Li,	red	squares)	and	carbon	(δ13Ccarb,	black	circles)	isotope	ratios	for	

carbonates	from	the	Llandovery-Wenlock	Lusklint	section.	Biozone,	lithology	and	carbon	

data	have	been	adapted	from	Maier	(2010).	See	text	for	details.	

	

4.3.2.2	Lickershamn	section	

The	Mg/Ca,	Al/Ca,	Mn/Ca	and	Sr/Ca	ratios	are	variable	throughout	the	Hunninge-1	drillcore	

(Mg/Ca	=	4	to	6.63	μmol/mol;	Al/Ca	=	0.08	to	0.22	μmol/mol;	Mn/Ca	=	0.22	to	0.41	

μmol/mol;	Sr/Ca	=	0.09	to	0.22	μmol/mol;	Table	3;	Fig.	7).	The	Al/Ca	ratios	remain	below	

the	~0.8	mmol/mol	threshold,	suggesting	little	influence	from	Li	leached	from	clays.	The	

δ7Li	values	range	from	12.2	to	17.6	‰	(Table	3;	Fig.	8).	The	δ7Li	values	relatively	low	(~13	

‰)	at	the	base	of	the	upper	procerus	biozones	before	rising	to	17.6	‰	by	the	end	of	the	

upper	biozone,	decreasing	again	to	~	14.3	‰	during	the	lower	ranuliformis	zone.	
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Figure	8.	Lithium	(δ7Li,	red	squares)	and	carbon	(δ13Ccarb,	black	circles)	isotope	ratios	for	

carbonates	from	the	Llandovery-Wenlock	Lickershamn	section.	Biozone,	lithology	and	

carbon	data	have	been	adapted	from	Maier	(2010).	See	text	for	details.	
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4.3.2.3	Hunninge-1	drillcore	

Figure	9.	Lithium	(δ7Li,	red	squares),	oxygen	(δ18Ocarb,	blue	circles)	and	carbon	(δ13Ccarb,	

black	circles)	isotope	ratios	for	carbonates	from	the	mid-Homerian	Hunninge	core.	Biozone,	

lithology	and	carbon	and	oxygen	data	have	been	adapted	from	Calner	et	al.	(2006).	See	text	

for	details.	
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The	Mg/Ca,	Al/Ca,	Mn/Ca	and	Sr/Ca	ratios	are	variable	throughout	the	Hunninge-1	drillcore	

(Mg/Ca	=	15.6	to	48.3	μmol/mol;	Al/Ca	=	-0.005	to	1.006	μmol/mol;	Mn/Ca	=	0.49	to	3.64	

μmol/mol;	Sr/Ca	=	0.29	to	1.35	μmol/mol;	Table	3).	The	majority	of	Al/Ca	ratios	remain	

below	the	~0.8	mmol/mol	threshold,	suggesting	little	influence	from	Li	leached	from	clays.	

However,	samples	from	a	depth	of	-1.5	and	0.2	m	have	an	Al/Ca	of	~1	suggesting	possible	

influence	from	Li	leached	from	clays.	The	δ7Li	values	range	from	9.9	to	14.7	‰	(Table	3;	Fig.	

9).	From	4.4	to	1.5	m,	just	prior	to	the	base	of	the	nassa	biozone,	δ7Li	remains	relatively	

constant	(~11.3	‰).	Just	after	the	base	of	the	nassa	biozone,	δ7Li	drops	to	9.9	‰	before	

rapidly	increasing	to	14.7	‰	between	0.7	and	-1.8	m.	The	δ7Li	then	decreases	to	13	‰.		

	

4.3.2.4	Kosov	section	

The	Mg/Ca,	Al/Ca,	Mn/Ca	and	Sr/Ca	ratios	are	variable	throughout	the	Kosov	section	

(Mg/Ca	=	10.93	to	14.6	μmol/mol;	Al/Ca	=	-0.02	to	0.2	μmol/mol;	Mn/Ca	=	0.31	to	1.23	

μmol/mol;	Sr/Ca	=	0.44	to	0.99	μmol/mol;	Table	3).	Al/Ca	remains	below	the	0.8	mmol/mol	

threshold,	suggesting	little	influence	from	Li	leached	from	clays.	The	δ7Li	values	range	from	

4.6	to	15.4	‰	(Table	3;	Fig.	2e).	From	4.77	to	1	m,	prior	to	the	base	of	the	dubius	

postfrequens	biozone,	δ7Li	decreases	from	9.6	to	4.6	‰.	Between	1	and	0.05	m,	the	δ7Li	

increases	from	4.6	to	15.4	‰	before	decreasing	again	to	5.3	‰	by	-1.15	m.	The	δ7Li	values	

remain	relatively	constant	at	~6	‰	before	subsequently	increasing	to	12.8	‰	between	-

4.05	and	-5.28	m.		

	

4.4	Discussion	

The	Os	and	Li	isotope	records	(Fig.	1	and	Figs.	3	to	9)	show	similar	profiles	for	each	time	

period	studied,	but	with	differing	magnitudes	of	change.	Prior	to	the	δ13C	excursion	there	is	



140	
	

change	of	0.19	to	0.56	in	the	187Os/188Os	composition	to	more	radiogenic	values.	This	

change	in	the	187Os/188Os	composition	is	often	associated	with	an	increase	in	δ18O	of	

between	0.55	and	1.74	‰	(Fig.	1	and	Figs.	3	to	9).	This	is	followed	by	a	decline	in	the	

187Os/188Os	composition	to	previous	values.	This	interval	continues	to	be	characterized	by	

high	δ18O	values.	During	the	δ13C	excursion	of	between	0.9	and	8.29	‰,	the	187Os/188Os	

composition	generally	remains	low	(unradiogenic).	In	contrast,	the	δ7Li	increases	by	4.8	to	

9.2	‰.	During	the	relatively	plateaued	δ13C	interval,	the	δ18O	and	δ7Li	values	begin	to	

return	to	pre-excursion	values.	During	this	decline,	the	187Os/188Os	values	increase	by	0.26	

to	0.8	before	returning	to	the	more	unradiogenic	pre-excursion	values	either	in	time	with	

the	descending	limb	of	the	δ13C	record	or	prior	to	it,	with	exception	of	the	Telychian-

Sheinwoodian	boundary,	which	has	a	hiatus	after	the	ascending	limb	of	the	δ13C	excursion.	

Processes	that	could	cause	these	variations	include	contamination	during	sample	

processing,	diagenesis,	or	a	primary	seawater	signal	driven	by	local	or	global	changes	in	

Earth	system	processes.	Contamination	of	Re	and	Os	from	the	detrital	fraction	of	analysed	

shales	was	avoided	using	by	the	CrO3–H2SO4	digestion	method,	while	cation	exchange	or	

leaching	of	clays,	which	could	impart	an	isotopically	light	δ7Li	signal,	was	monitored	by	

analysing	cation/Ca	ratios	of	the	carbonate	samples	(See	section	4.2).	Diagenesis	can	be	

discounted	because	similar	trends	and	absolute	values	are	repeated	in	sections	from	

temporally	separated	sections	(This	study;	Finlay	et	al.,	2010;	Pogge	von	Strandmann	et	al.,	

in	review).	Furthermore,	carbon	and	oxygen	isotopes	in	studied	profiles	show	similar	values	

to	other	correlated	sections	that	span	the	same	intervals	(Fig.	1;	Saltzman	and	Thomas,	

2012;	Trotter	et	al.,	2016,	Cramer	et	al.,	2011).	It	is	therefore	suggested	that	the	isotopic	

shifts	in	the	carbonate	and	shale	sections	must	represent	primary	seawater	signatures.	

In	the	following	section	we	will	discuss	how	changes	in	a	variety	of	Earth	system	

processes	can	influence	both	the	187Os/188Os	and	δ7Li	of	seawater,	and	determine	if	these	
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processes	could	have	caused	the	variations	in	isotope	data	seen	in	this	study	using	dynamic	

Os	and	Li	cycle	models.	Initially	we	will	explore	traditional	ocean	circulation	models	(Bickert	

et	al.,	1997;	Jeppsson,	1990)	used	to	explain	lithological	and	carbon	and	oxygen	isotope	

variations	during	the	Silurian.	We	will	then	discuss	the	potential	of	rapid	climatic	cooling	

(e.g.	Lechler	et	al.,	2015;	Pogge	von	Strandmann	et	al.,	2013;	Ravizza	et	al.,	2001),	flood	

basalt	volcanism	(e.g.	Du	Vivier	et	al.,	2014;	Lechler	et	al.,	2015;	Pogge	von	Strandmann	et	

al.,	2013)	and	hydrothermal	activity	as	possible	explanations.	Finally	we	will	discuss	Silurian	

glacial	expansions	over	Gondwana	as	a	driver	of	global	environmental	change	(Azmy	et	al.,	

1998;	Brand	et	al.,	2006;	Kaljo	et	al.,	2003;	Trotter	et	al.,	2016).	

	

4.4.1	Isotopic	constraints	on	Silurian	seawater	chemistry	

4.4.1.1	Climatically	induced	changes	in	ocean	circulation	

Several	ocean-climate	models	were	developed	during	the	1990s	to	try	and	explain	the	

observed	changes	in	faunal	turnover,	lithology	and	carbon	and	oxygen	isotopes.	The	first	

model	was	established	by	Jeppsson	(1990)	to	explain	observed	changes	in	the	lithology	and	

conodont	faunas	of	Gotland.	The	model	proposes	that	major	bio-events	occurred	during	

the	transition	between	two	stable	oceanic	states,	known	as	Primo	and	Secundo	Episodes,	

driven	by	a	change	in	the	latitudinal	position	of	deep-water	formation.	Primo	episodes	

were	characterised	by	low	atmospheric	CO2	concentration,	cooler	climates	and	relatively	

low	global	sea	level.	Downwelling	of	cold-dense	high	latitude	surface	waters	ventilated	the	

deep	ocean,	causing	upwelling	of	oxic,	nutrient-rich	waters	at	low	latitudes,	which	drove	an	

increase	in	primary	productivity	and	shelf	fauna	diversity.	Low	latitude	climate	was	humid,	

and	high	rainfall	would	have	intensified	continental	weathering,	delivering	abundant	clay	

and	nutrients	to	shelf	seas.	The	Secundo	episodes	were	characterised	by	higher	

atmospheric	CO2,	warmer	climates	and	therefore	thermal	expansion	of	the	ocean.	Cold-
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dense	waters	no	longer	formed	at	high	latitudes,	and	salinity	driven	deep-water	formation	

occurred	at	intermediate	latitudes	instead.	This	created	a	stratified	ocean	with	lower	

primary	productivity	and	shelf	fauna	diversity.	The	low	latitude	climate	was	dry,	leading	to	

lower	run-off	and	a	decline	in	continental	weathering	intensity.	The	Ireviken,	Mulde	and	

Lau	events	all	supposedly	culminated	from	a	switch	between	these	two	oceanic	states	

(Jeppsson,	1998).	

As	previously	explained,	the	switch	between	Primo	and	Secundo	episodes	would	

have	had	a	profound	influence	on	low	latitude	continental	weathering	intensity	and	

therefore	the	riverine	flux	and	isotopic	composition	of	osmium	and	lithium	delivery	to	the	

ocean.	During	the	Primo	episodes,	warmer	temperatures,	a	humid	climate	and	higher	

precipitation	rates	would	be	associated	with	enhanced	chemical	weathering	rates	of	

radiogenic	continental	crust	resulting	in	an	increase	in	the	187Os/188Os	composition	of	

seawater	(Peucker-Ehrenbrink	and	Ravizza,	2000;	Peucker-Ehrenbrink	and	Ravizza,	2012;	

Ravizza	et	al.,	2001).	High	intensity	weathering	and	extensive	clay	formation,	as	proposed	

by	the	Jeppsson	(1990)	model,	would	lead	7Li-depleted	clays	and	other	secondary	minerals	

to	remain	in	the	weathering	zone	for	a	long	time,	leading	to	dissolution	of	these	phases	and	

relatively	low	δ7Li	in	river	water	and	therefore	a	decrease	in	the	δ7Li	of	seawater	(Bouchez	

et	al.,	2013;	Dellinger	et	al.,	2015).	During	the	Secundo	episodes,	lower	temperatures,	a	

more	arid	climate	and	lower	precipitation	rates	would	be	associated	with	reduced	chemical	

weathering	rates	and	therefore	result	in	a	lowering	the	187Os/188Os	composition	of	

seawater	(Peucker-Ehrenbrink	and	Ravizza,	2000;	Peucker-Ehrenbrink	and	Ravizza,	2012).	A	

lower	weathering	intensity	and	reduced	clay	formation	would	cause	6Li	to	be	retained	in	

precipitated	secondary	minerals,	leading	to	isotope	fractionation	and	relatively	high	δ7Li	in	

the	dissolved	load	of	rivers	and	an	increase	in	the	δ7Li	of	seawater	(Bouchez	et	al.,	2013;	

Dellinger	et	al.,	2015).		
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According	to	the	above	scenarios,	a	switch	between	these	two	(Primo-Secundo)	

states	during	the	Ireviken,	Mulde	and	Lau	events	would	be	associated	with	permanent	

change	from	relatively	radiogenic	187Os/188Os	and	low	δ7Li	to	relatively	unradiogenic	

187Os/188Os	and	high	δ7Li.	However,	the	observed	variations	in	187Os/188Os	and	δ7Li,	

associated	with	continental	inputs,	from	this	study	(Fig.	1)	do	not	follow	this	trend.	

Therefore,	our	data	does	not	support	a	switch	between	Primo	and	Secundo	episodes	as	a	

driver	of	Silurian	climate	perturbations,	at	least	in	terms	of	continental	precipitation	

changes.	

The	model	by	Jeppsson	(1990)	was	later	further	developed	by	Bickert	et	al.	

(1997)	using	geochemical	data.	They	noticed	that	the	Ireviken,	Mulde	and	Lau	events	were	

all	associated	with	anomalies	in	the	δ13C	and	δ18O	record	from	Gotland.	Bickert	et	al.	(1997)	

argued	that	the	positive	shifts	in	δ18O	during	these	events	were	driven	by	salinity	

fluctuations	associated	with	changes	in	global	evaporation-precipitation	rates	and	

continental	run-off.	As	a	result	the	ocean	circulation	model	of	Jeppsson	(1990)	was	adapted	

accordingly	to	the	stable	isotope	fluctuations	into	shifts	between	humid	periods	(H-

periods)	with	high	continental	input	and	upwelling	in	coastal	waters,	and	arid	periods	(A-

periods)	with	little	continental	runoff	and	downwelling	in	coastal	waters.		

Generally,	the	model	suggests	that	the	Silurian	climate	is	in	a	humid	state	

punctuated	by	short	arid	episodes.	A	full	humid-arid	cycle	(A-H	modes)	during	the	Ireviken,	

Mulde	and	Lau	events	would	be	associated	with	a	decline	in	low-latitude	continental	

weathering	intensity	during	A-periods.	To	test	the	A-H	modes	a	series	of	dynamic	models	

were	run	to	constrain	the	influence	of	a	gradual	decrease	in	global	continental	weathering	

rates	by	~50	%,	over	250	kyr,	on	the	Os	and	Li	isotope	systems	(Fig.	10).	During	a	switch	

from	an	H-	to	A-period,	a	decline	in	riverine	fluxes	related	to	silicate	and/or	organic-	and	

sulphide-rich	lithology	weathering	(Fig.	10b)	causes	a	shift	to	less	radiogenic	187Os/188Os	
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values	(Fig.	10a),	due	to	a	reduction	in	the	flux	of	radiogenic	Os	into	the	ocean.	The	

187Os/188Os	values	proceed	to	plateau	at	relatively	unradiogenic	values	for	~750	kyr	(Fig.	

10a),	before	rising	to	more	radiogenic	values	as	the	riverine	input	of	more	radiogenic	Os	

resumes	as	the	climate	returns	to	a	humid	mode	(Fig.	10b).	For	Li,	the	δ7Li	gradually	

increases	to	more	positive	values,	peaking	towards	the	end	of	the	arid	period	(Fig.	10c).	

During	the	switch	back	to	an	H-period,	the	flux	of	continental	derived	Li	increases	(Fig.	

10d),	driving	the	δ7Li	back	to	previous	values	over	the	next	5	Myr	(Fig.	10d).		

Figure	10.	Dynamic	model	of	Os	(a)	and	Li	(c)	isotopes	for	changes	in	continental	

precipitation	rates	according	to	Bickert	et	al.	(1997).	The	model	shown	was	generated	by	

assuming	a	50%	drop	in	continental	weathering	and	therefore	riverine	flux	(b,	d)	during	a	

switch	from	a	humid-period	(H)	to	an	arid-period	(A).	In	the	case	of	Li,	the	weathering	

congruency	is	modelled	by	varying	the	isotope	ratio	of	the	riverine	end	member	(d).	See	

text	for	details.	

This	is	supported	by	the	data	from	this	study	(Fig.	1),	which	shows	less	radiogenic	

187Os/188Os	compositions	at	the	same	time	as	the	peak	in	δ7Li	values	of	similar	magnitudes	

to	the	model	(Fig.	10)	during	the	A-periods	associated	with	the	Mulde	and	Lau	events.	We	
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also	see	less	radiogenic	187Os/188Os	compositions	during	the	Ireviken	and	Klonk	events	(Fig.	

1).	However,	we	would	expect	the	corresponding	H-periods	to	be	associated	with	relatively	

radiogenic	187Os/188Os	compositions	(Fig.	10a),	which	would	persist	for	much	of	the	Silurian.	

In	contrast,	short-lived	peaks	characterized	by	radiogenic	187Os/188Os	compositions	are	

observed,	with	background	levels	during	predicted	H-periods	similar	to	the	duration	of	the	

A-period	(Fig.	1).	In	addition,	the	ascending	limb	towards	radiogenic	187Os/188Os	

compositions	is	associated	with	an	increase	in	δ18O	in	most	instances	(Fig.	1).	According	to	

the	Bickert	et	al.	(1997)	model,	this	should	be	the	converse,	with	a	decline	to	unradiogenic	

187Os/188Os	compositions	during	an	increase	in	δ18O	as	a	lower	continental	flux	is	associated	

with	more	saline	coastal	waters.	This	is	compounded	by	previous	criticisms	that	argue	the	

concept	of	globally	increasing	aridity	or	humidity	is	not	supported	by	modelling	or	existing	

data,	and	is	therefore	difficult	to	argue	as	a	cause	for	global	events	(Johnson,	2006;	Kaljo	et	

al.,	2003;	Loydell,	1998;	Munnecke	et	al.,	2010).	

	

4.4.1.2	Flood	Basalt	Volcanism	

Periods	of	intense	submarine	or	continental	volcanism	and	the	emplacement	of	large	

igneous	provinces	(LIPs)	have	a	profound	influence	on	global	climate	and	are	

penecontemporaneous	with	the	onset	of	ocean	anoxic	events	(OAE).	Additionally,	newly	

formed	basaltic	terrains	can	have	a	large	impact	on	secular	variations	in	the	osmium	

(Bottini	et	al.,	2012;	Cohen	and	Coe,	2002;	Du	Vivier	et	al.,	2014;	Ravizza	and	Peucker-

Ehrenbrink,	2003;	Turgeon	and	Creaser,	2008)	and	lithium	(Lechler	et	al.,	2015;	Pogge	von	

Strandmann	et	al.,	2013)	isotope	records.	Submarine	fumarole	and	hydrothermal	alteration	

/	weathering	of	juvenile	basalts	delivers	a	flux	of	unradiogenic	Os	to	the	oceans,	driving	the	

187Os/188Os	composition	of	seawater	towards	mantle	values.	Further,	during	OAEs,	abrupt	

global	warming	associated	with	rising	atmospheric	CO2	caused	enhanced	weathering	of	
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mafic	silicate	material	which	delivered	low	δ7Li	(high	[Li])	inputs	to	the	ocean,	driving	the	

δ7Li	of	seawater	to	lower	values.	Therefore,	any	igneous	activity	during	the	Silurian	

intervals	studied	here	would	be	met	by	a	rapid	decrease	in	both	the	187Os/188Os	and	δ7Li	of	

seawater,	which	is	not	observed	(Fig.	1).	Furthermore,	this	is	compounded	by	the	lack	of	

evidence	for	LIPs	during	the	Silurian.				

	

4.4.1.3	Temperature-weathering	feedbacks		

Over	geological	timescales	(Myr)	temperature	has	partly	been	controlled	by	interactions	

between	atmospheric	CO2	and	continental	weathering	(Berner	et	al.,	1983;	Walker	et	al.,	

1981).	Rising	temperatures	stimulate	increased	chemical	weathering	of	silicate	rocks	

drawing	down	CO2	from	the	atmosphere,	leading	to	a	decline	in	temperature	and	vice	versa	

(Berner	et	al.,	1983;	Walker	et	al.,	1981).	Rapid	temperature	fluctuations	in	the	geological	

past	could	influence	continental	weathering	and	therefore	secular	variations	in	both	Os	and	

Li	isotope	records.	This	is	supported	by	Os	and	Li	isotope	data	from	the	Paleocene-Eocene	

Thermal	Maximum	(PETM)	and	OAEs	respectively,	which	are	interpreted	to	reflect	abrupt	

release	of	greenhouse	gases	which	resulted	in	an	increase	in	global	temperatures,	

stimulating	continental	silicate	weathering	and	delivering	radiogenic	Os	and	isotopically	

heavy	Li	to	the	ocean	(Lechler	et	al.,	2015;	Pogge	von	Strandmann	et	al.,	2013;	Ravizza	et	

al.,	2001).	

Silurian	oxygen	isotope	records	of	phosphates	(Fig.	1)	(Trotter	et	al.,	2016)	show	

globally	recognised	positive	excursions,	indicative	of	cooling	during	the	Ireviken,	Mulde	and	

Lau	events.	Likewise,	oxygen	isotope	data	from	sections	studied	here	show	an	increase	in	

δ18O	in	time	with,	or	slightly	preceding,	the	Os	and	Li	isotope	excursions	(Fig.	1).	According	

to	the	above	theory,	a	rapid	cooling	would	be	associated	with	a	decline	in	global	

continental	silicate	weathering	and	therefore	decrease	the	flux	of	the	radiogenic	Os	and	
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isotopically	heavy	Li	to	the	ocean,	driving	the	187Os/188Os	and	δ7Li	composition	of	seawater	

to	lower	and	higher	values	respectively.	However,	this	study	shows	an	increase	in	the	

187Os/188Os	composition	of	the	hydrogenous	component	of	the	organic-rich	sedimentary	

units,	and	thus	by	inference	that	of	the	contemporaneous	seawater	during,	or	slightly	

preceding	the	increase	in	the	δ18O	values;	with	the	excursion	to	more	positive	δ7Li	values	

occuring	sometime	after	the	initial	rise	in	the	δ18O	values	(Fig.	1).	This	suggests	that	

temperature	change	alone	is	not	the	driver	of	Os	and	Li	isotope	variations	seen	in	this	

study.	

	

4.4.1.4	Hydrothermal	activity	

In	the	modern	oceans,	hydrothermal	activity	at	mid-ocean	ridges	accounts	for	a	significant	

input	of	Os	and	Li	to	the	ocean,	with	a	187Os/188Os	composition	and	δ7Li	value	of	~0.12	and	

~8‰	respectively	(Hathorne	and	James,	2006;	Misra	and	Froelich,	2012;	Peucker-

Ehrenbrink	and	Ravizza,	2000).	The	isotopic	composition	of	these	fluxes	is	seen	to	be	

relatively	consistent	through	time,	however	a	change	in	their	flux	could	cause	variations	in	

the	isotopic	composition	of	seawater.	Although	hard	to	constrain,	a	reduction	in	pluton	

emplacement	(Hardie,	1996)	and	an	increase	in	the	Mg/Ca	ratio	of	seawater	(Stanley	and	

Hardie,	1998)	suggests	a	reduction	in	sea-floor	spreading	during	the	late-Wenlock	to	early-

Ludlow	(Cramer	et	al.,	2011b).	However,	the	low	resolution	of	available	data	prevents	an	

estimation	of	variations	of	hydrothermal	activity	over	the	relatively	short	timescales	

studied	here.		
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Several	dynamic	models	were	run	to	constrain	the	influence	of	short	periodic	

fluctuation	in	the	flux	of	high	temperature	hydrothermal	activity	on	the	Os	and	Li	isotope	

systems	(Fig.	11).	Two	scenarios	were	modelled:	1.	A	pulsed	decrease	in	the	hydrothermal	

flux	by	~50%	(Fig.	11b);	and,	2.	A	single,	extended	period	of	reduced	(~50%)	hydrothermal	

flux	(Fig.	11d).	During	the	pulsed	scenario	we	see	a	simultaneous	increase	to	more	

radiogenic	187Os/188Os	compositions	and	more	positive	δ7Li	values	with	each	decrease	in	

hydrothermal	flux	(Fig.	11a).	Although	the	187Os/188Os	compositions	become	more	

unradiogenic	in	time	with	an	increase	in	hydrothermal	flux,	the	δ7Li	values	show	a	delayed	

response,	declining	over	the	proceeding	250	kyr	(Fig.	11a).	This	compares	well	with	the	

187Os/188Os	data	from	this	study	(Fig.	1),	which	show	two	uniform	peaks	in	radiogenic	

187Os/188Os	compositions.	However,	the	magnitude	of	change	predicted	by	the	model	(0.07)	

is	much	smaller	than	measured	isotope	ratios.	Likewise,	the	δ7Li	values	measured	here	(Fig.	

1)	show	one	singular	peak	in	δ7Li	towards	the	second	peak	in	187Os/188Os	compositions,	

which	is	not	seen	in	the	model	(Fig.	11a).		

Figure	11.	Dynamic	model	of	Os	and	Li	isotopes	for	a	pulsed	reduction	in	hydrothermal	flux	

(a)	and	an	extended	period	of	reduced	hydrothermal	flux	(c).	The	model	shown	was	
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generated	by	assuming	a	50%	drop	in	hydrothermal	flux	over	two	relatively	short	250	kyr	

periods	(b)	or	over	a	single,	more	extended	750	kyr	period	(d).	See	text	for	details.	

During	an	extended	period	of	reduced	hydrothermal	flux	(Fig.	11d),	the	

187Os/188Os	compositions	and	δ7Li	values	increase	over	a	similar	period	of	time	(Fig.	11c).	

This	compares	well	with	Li	isotope	data	from	this	study	(Fig.	1),	which	shows	a	singular	

peak	in	δ7Li.	However,	the	magnitude	of	change	predicted	by	the	model	(<0.5	‰)	is	far	too	

small	when	compared	to	the	excursion	observed	(>4	‰).	Likewise,	the	187Os/188Os	

composition	determined	here	(Fig.	1)	show	two	peaks	in	radiogenic	187Os/188Os	values,	

which	is	not	seen	in	the	model	(Fig.	11c).	In	both	model	outputs	(Fig.	11a	and	c)	the	δ7Li	

decreases	by	>0.3‰	below	background	levels	after	the	excursion	due	to	a	dependence	of	

the	partition	coefficient	on	seawater	concentration,	which	remains	low	even	after	the	input	

has	increased.	These	modelling	studies	(Fig.	11)	suggest	that	fluctuations	in	the	

hydrothermal	flux	cannot	cause	the	variations	in	Os	and	Li	isotope	data	seen	here	(Fig.	1).	

	

4.4.1.5	Glaciation	

Osmium	and	Li	isotope	variations	found	in	this	study	bear	a	striking	resemblance	to	those	

measured	for	the	Hirnantian	glaciation	(Finlay	et	al.,	2010;	Pogge	von	Strandmann	et	al.,	in	

review),	some	12	Myrs	earlier	than	the	Telychian-Sheinwoodian	boundary	(Fig.	1).	Authors	

postulated	these	variations	were	driven	by	fluctuations	in	chemical	weathering	rates	

related	to	enhanced	continental	ice	volume	over	Gondwana.	Due	to	the	similarities	in	Os	

and	Li	isotope	trends	determined	here,	combined	with	reoccurring	global	trends	in	oxygen	

isotopes	(Azmy	et	al.,	1998;	Calner,	2008;	Lehnert	et	al.,	2010;	Munnecke	et	al.,	2010;	

Noble	et	al.,	2005;	Trotter	et	al.,	2016),	carbon	isotopes	(Cramer	et	al.,	2011a;	Cramer	et	

al.,	2010;	Munnecke	et	al.,	2010;	Saltzman	and	Thomas,	2012),	sea-level	reconstructions	

(Haq	and	Schutter,	2008;	Johnson,	2006,	2010;	Loydell,	1998),	marine	faunal	turnover	
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(Calner,	2008;	Cooper	et	al.,	2013;	Melchin	et	al.,	2012),	and	in	the	case	of	the	early	

Sheinwoodian,	the	presence	of	glacial	sediments	(Díaz-Martínez	and	Grahn,	2007),	we	

suggest	changes	in	continental	weathering	caused	by	glaciation	events	could	have	occurred	

during	each	of	the	four	Silurian	time	intervals	studied.	

During	glacial	advance,	physical	erosion	of	the	underlying	bedrock	provides	

abundant	freshly	comminuted	rock	flour	to	ice-sheet	margins	and	the	proglacial	zone	

(Tranter,	1982).	Subglacial	and	proglacial	conditions	promote	sulphide	oxidation	and	the	

chemical	weathering	of	carbonates	in	these	newly	formed	reactive	mineral	surfaces	

regardless	of	underlying	lithology	(Anderson	et	al.,	2000;	Cooper	et	al.,	2002;	Fairchild	et	

al.,	1999;	Tranter	et	al.,	2002)	whilst	stimulating	the	microbially	mediated	oxidation	of	

ancient	organic	matter	supplied	by	comminuted	shales	(Petsch	et	al.,	2001a;	Wadham	et	

al.,	2004).	Sedimentary	sulphides	and	organic	matter	are	often	associated	with	high	Os	

concentrations	and	highly	radiogenic	187Os/188Os	compositions	(Jaffe	et	al.,	2002;	Peucker-

Ehrenbrink	and	Hannigan,	2000;	Peucker-Ehrenbrink	and	Ravizza,	2000;	Pierson-Wickmann	

et	al.,	2002;	Ravizza	and	Turekian,	1989),	and	their	erosion	and	subsequent	oxidation	by	

advancing	ice-sheets	would	impact	on	the	global	riverine	Os	end-member,	driving	seawater	

to	more	radiogenic	values.	The	initial	peak	in	187Os/188Os	values	seen	in	this	study	(Fig.	1)	

and	during	the	Hirnantian	glaciation	(Finlay	et	al.,	2010)	can	therefore	be	attributed	to	

glacial	advance.	

However,	low	temperatures	in	newly	glaciated	regions	would	act	to	suppress	

chemical	silicate	weathering	to	lower	rates	than	previously	non-glaciated	regions	

(Anderson,	2005,	2007;	Anderson	et	al.,	2000;	Anderson	et	al.,	1997;	Gislason	et	al.,	2009;	

Maher	and	Chamberlain,	2014).	If	physical	erosion	rates	increase,	while	silicate	chemical	

weathering	remains	constant	or	decreases,	weathering	intensity	will	decline	and	therefore	

increase	the	dissolved	δ7Li	values	of	rivers	(Bouchez	et	al.,	2013;	Dellinger	et	al.,	2015;	Li	
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and	West,	2014;	Pogge	von	Strandmann	et	al.,	2017).	Likewise,	regions	of	low	chemical	

weathering	intensity	will	drive	the	δ7Li	of	glacial	rivers	to	more	positive	values,	as	6Li	is	

retained	by	secondary	minerals	(Pogge	von	Strandmann	et	al.,	2006),	and	the	formation	of	

Fe-oxyhydroxides	during	sulphide	oxidation	under	ice-sheets	will	also	preferentially	uptake	

6Li	onto	mineral	surfaces,	contributing	to	the	rise	in	the	δ7Li	of	glacial	waters	(Wimpenny	et	

al.,	2010).	An	increase	in	the	δ7Li	values	of	the	riverine	flux	combined	with	a	decrease	in	the	

overall	global	riverine	flux	of	Li,	due	to	the	gradual	covering	of	Gondwana	by	continental	

ice-sheets	preventing	weathering	of	the	underlying	silicate	minerals	(Kump	and	Alley,	1994;	

Pogge	von	Strandmann	et	al.,	in	review),	will	drive	the	δ7Li	value	of	seawater	to	more	

positive	values	(Fig.	1).		

As	glacial	expansion	began	to	slow	and	glacial	maximum	was	established,	the	

previously	high	denudation	rates	would	have	diminished	along	with	the	oxidation	of	

proglacial	and	subglacial	sulphides	and	organic	matter,	reducing	the	input	of	Os	with	a	

radiogenic	187Os/188Os	composition	to	the	oceans.	When	diminutive	denudation	is	coupled	

with	enhanced	low	latitude	continental	cover	by	ice	sheets	and	generally	colder,	drier	

conditions,	overall	global	chemical	weathering	rates	would	have	remained	low	under	

glacial	maximum	(Kump	and	Alley,	1994),	maintaining	high	δ7Li	values	and	low	187Os/188Os	

compositions	in	seawater	(Fig.1)	(Finlay	et	al.,	2010;	Pogge	von	Strandmann	et	al.,	in	

review).	For	the	Hirnantian	glaciation,	authors	have	suggested	that	this	transient	decline	in	

silicate	weathering,	and	therefore	a	decline	in	one	of	the	Earth’s	major	atmospheric	CO2	

withdrawal	mechanisms,	would	have	caused	an	increase	in	atmospheric	CO2	that	ultimately	

terminated	the	glaciation	(Kump	et	al.,	1999;	Pogge	von	Strandmann	et	al.,	in	review).	The	

similarity	between	Li	isotope	records	for	the	Hirnantian	(Pogge	von	Strandmann	et	al.,	in	

review)	and	this	study	(Fig.	1)	suggest	a	similar	mechanism	for	deglaciation	could	have	

occurred	throughout	the	Silurian.		



152	
	

Whatever	the	cause	of	deglaciation,	the	extensive	availability	of	fresh	material,	

increased	melt	water	and	generally	wetter	conditions	during	the	demise	of	continental	ice	

sheets	would	enhance	the	oxidation	and/or	weathering	of	sulphides,	shales	and	silicates	

left	behind	(Bluth	and	Kump,	1994;	Drever	and	Zobrist,	1992;	Gaillardet	et	al.,	1999;	Huh	

and	Edmond,	1999;	Meybeck,	1987;	Petsch	et	al.,	2001b;	Vance	et	al.,	2009;	Wildman	et	al.,	

2004).	This	would	cause	a	shift	in	the	global	riverine	Os	end-member,	and	therefore	

seawater,	to	more	radiogenic	values	(Finlay	et	al.,	2010;	Peucker-Ehrenbrink	and	Blum,	

1998)	creating	the	second	peak	in	the	187Os/188Os	composition	record	(Fig.	1).	Greater	

weathering	intensity	of	silicates	will	decrease	Li	isotope	fractionation	between	the	

dissolved	and	suspended	loads	of	glacial	rivers,	as	less	6Li	is	retained	in	secondary	minerals,	

driving	δ7Li	to	lower	values	(Huh	et	al.,	1998;	Pogge	von	Strandmann	et	al.,	2006).	As	these	

newly	formed	river	systems	become	more	mature,	continued	weathering	of	suspended	

material	will	increase	the	saturation	state	of	the	dissolved	load	with	respect	to	secondary	

minerals,	lowering	δ7Li	values	further	(Dellinger	et	al.,	2015;	Pogge	von	Strandmann	et	al.,	

2006).	A	decrease	in	the	δ7Li	value	and	Li	concentration	of	riverine	end-members	would	

lead	to	a	decrease	in	δ7Li	value	of	seawater,	eventually	restoring	the	system	to	pre-

excursion	values	(Fig.	1).		

Several	dynamic	models	were	run	to	constrain	the	influence	of	glacial	processes	

on	the	Os	and	Li	isotope	systems	(Fig.	12).	Biozone	boundary	ages	(Melchin	et	al.,	2012)	

were	used	to	constrain	the	timings	of	glaciation	(~250	kyr;	light	blue	box	denoted	by	G	in	

Fig.	12),	glacial	maximum	(~500	kyr;	dark	blue	box	denoted	by	GM	in	Fig.	12)	and	

deglaciation	(~250	kyr;	light	blue	box	denoted	by	D	in	Fig.	12).	During	glaciation,	the	

relative	continental	flux	related	to	silicate	weathering	(Fig.	12b	and	12e)	gradually	

decreases	by	50%,	while	the	weathering	of	organic-sulphide-rich	lithologies	increases	by	

~80%	(Fig.	12c).	In	the	case	of	the	Os	isotope	system,	this	causes	a	switch	from	a	riverine	

budget	dominated	by	silicate	weathering	(60%	of	total	Friv),	to	a	riverine	budget	dominated	
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by	ORLW	(70%	of	total	Friv).	The	highly	radiogenic	nature	of	ORL	(187Os/188Os	=	1.34;	Table	1)	

when	compared	to	silicate	minerals	(187Os/188Os	=	0.6;	Table	1)	causes	total	Rriv	to	become	

more	radiogenic,	whilst	Friv	remains	constant,	driving	the	187Os/188Os	composition	of	

seawater	to	more	radiogenic	values	(Fig.	12a).	Meanwhile,	a	reduction	in	riverine	inputs	

related	to	silicate	weathering	(Fig.	12e)	drives	δ7Li	to	more	positive	values	(Fig.	12d).			

Figure	12.	Dynamic	model	of	Os	(a)	and	Li	(d)	isotopes	during	a	change	in	high-latitude	

continental	ice	volume.	The	model	shown	was	generated	by	assuming	a	50%	decrease	in	

continental	silicate	weathering	(b,	e)	during	glaciation	(G),	which	remains	low	during	glacial	

maximum	(GM),	before	increasing	during	deglaciation	(D).	In	the	case	of	Os,	two	periods	of	

enhanced	ORLW	during	glaciation	and	deglaciation	are	generated	by	assuming	a	70%	

increase	in	the	riverine	flux	related	to	ORLW	(c).	In	the	case	of	Li,	the	weathering	

congruency	is	modelled	by	varying	the	isotope	ratio	of	the	riverine	end	member	(f).	See	

text	for	details.	

During	glacial	maximum,	ice	sheet	movement	stops,	causing	the	immediate	

cessation	of	enhanced	ORLW	and	the	relative	flux	of	FORLW	drops	to	below	pre-excursion	

values	(Fig.	12c).	This	causes	a	decrease	in	the	187Os/188Os	composition	of	seawater	as	the	

input	of	radiogenic	Os	to	seawater	is	removed	(Fig.	12a).	The	δ7Li	of	seawater	continues	to	

increase,	reaching	peak	values	towards	the	end	of	the	glacial	maximum	(Fig.	12d).	During	
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deglaciation,	the	riverine	flux	related	to	silicate	weathering	gradually	increases	back	to	pre-

excursion	levels	(Fig.	12b	and	12e),	while	the	riverine	input	related	to	ORLW	shows	a	

second	instantaneous	increase	before	gradually	declining	to	pre-excursion	levels	(Fig.	12c).	

This	causes	an	increase	in	the	187Os/188Os	composition	of	seawater	before	the	187Os/188Os	

composition	decreases	to	pre-excursion	values	(Fig.	12a).	The	δ7Li	value	of	seawater	

gradually	decreases	to	pre-excursion	values	over	the	next	~2	Myr	(Fig.	12d).		

This	compares	well	to	Os	isotope	data	for	the	Ireviken,	Mulde,	Lau	and	Klonk	

events	(Fig.	1),	which	all	show	a	similar	two-peak	profile	to	model	outputs	(Fig.	12a).	

However,	the	magnitude	of	change	from	model	outputs	(~0.12)	is	lower	than	described	in	

the	data	(0.19-0.8).	Possible	causes	of	these	discrepancies	could	be:	a	misrepresentation	of	

model	input	parameters;	or,	a	stronger	influence	from	local	continental	sources	of	Os	in	

coastal	shelf	sampling	localities,	which	will	drive	larger	variations	in	recorded	187Os/188Os	

when	compared	to	a	well-mixed	ocean.	Lithium	isotope	records	(Fig.	1)	show	a	similar	

singular	peak	in	δ7Li	values	to	the	model	outputs	(Fig.	12d).	A	scenario	in	which	river	flux	

alone	varied	throughout	the	glaciation	event	causes	a	δ7Li	excursion	of	~3	‰	(Fig.	12d),	

which	compares	well	to	recorded	data	for	the	Mulde	and	Lau	events	(<4.4	‰;	Fig.	1).	Peak	

δ7Li	values	occur	during	deglaciation	and	the	second	peak	of	radiogenic	187Os/188Os	values	

(Fig.	12a	and	d),	consistent	with	data	for	the	Mulde	event	(Fig.	1).	A	scenario	in	which	the	

river	flux	decreased,	while	riverine	δ7Li	ratios	increased	caused	a	variation	in	δ7Li	(~6	‰)	

greater	than	observed	in	the	data,	suggesting	weathering	congruency	remained	constant	

throughout	the	glaciation.	

The	failure	of	Silurian	ocean	circulation	models	(See	section	4.1.1),	flood	basalt	

volcanism	(See	section	4.1.2),	rapid	cooling	(See	section	4.1.3)	and	variations	in	

hydrothermal	activity	(See	section	4.1.4)	in	describing	variations	in	Os	and	Li	isotopes	found	

here	(Fig.	2),	leads	us	to	the	conclusion	that	periodic	glaciations	are	the	most	likely	cause	of	
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Silurian	climate	events,	based	on	the	current	understanding	of	the	Os	and	Li	isotope	

systems.	The	data	and	models	are	consistent	with	glaciation	events	during	the	late	

Telychian	to	early	Sheinwoodian,	mid-Homerian,	mid-Ludfordian	and	the	Silurian-Devonian	

boundary.	During	glaciation,	expanding	continental	ice	sheets	enhance	physical	erosion	

whilst	stimulating	chemical	weathering	of	organic	and	sulphide	rich	rocks	as	evidenced	by	

an	increase	in	the	187Os/188Os	composition	to	more	radiogenic	values	(Fig.	1;	Fig.	12a).	

Meanwhile,	glacial	cover,	subglacial	processes	and	declining	global	temperatures	reduce	

silicate	weathering,	decreasing	the	riverine	flux	of	Li	to	the	ocean,	leading	to	an	increase	in	

the	δ7Li	value	of	seawater	(Fig.	1;	Fig.	12e).	Declining	temperatures	coupled	to	enhanced	

continental	ice	volume	drive	the	δ18O	of	seawater	to	more	positive	values	(Azmy	et	al.,	

1998;	Calner,	2008;	Lehnert	et	al.,	2010;	Munnecke	et	al.,	2010;	Noble	et	al.,	2005;	Trotter	

et	al.,	2016).	A	drop	in	eustatic	sea-level	(Haq	and	Schutter,	2008;	Johnson,	2006,	2010;	

Loydell,	1998)	exposes	carbonate	shelves	to	weathering,	driving	the	δ13C	of	seawater	to	

more	positive	values	(Cramer	et	al.,	2011a;	Kump	et	al.,	1999;	Saltzman	and	Thomas,	2012).	

As	the	glacial	maximum	is	reached,	ice	sheet	expansion	abruptly	terminates,	reducing	the	

availability	of	freshly	comminuted	rock	for	the	oxidation	of	ancient	organic	matter	and	

sulphide	rich	lithologies	and	therefore	reducing	the	flux	of	Os	to	the	ocean	bearing	a	

radiogenic	187Os/188Os	composition	(Fig.	1;	Fig.	12a).	Extensive	stable	continental	ice-sheets	

maintain	low	levels	of	silicate	weathering	(Fig.	1;	Fig.	12e)	and	sea-level	(Johnson	2006,	

2010;	Haq	and	Schutter,	2008;	Loydell,	1998)	whilst	maintaining	a	higher	δ18O	value	of	

seawater	(Trotter	et	al.,	2016).	During	deglaciation,	rising	temperatures	and	the	increased	

availability	of	melt	water	and	freshly	comminuted	and/or	scoured	bedrock,	enhances	

chemical	silicate	weathering	and	the	oxidation	of	organic	and	sulphide	rich	rocks,	driving	an	

increase	in	the	187Os/188Os	composition	of	seawater,	and	a	decrease	in	the	δ7Li	value	of	

seawater	(Fig.	1;	Fig.	12a	and	12e).	An	increase	in	global	temperatures	and	a	reduction	in	

continental	ice-volume,	drives	a	decrease	in	the	δ18O	value	of	seawater	(Trotter	et	al.,	
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2016)	and	an	increase	in	global	eustatic	sea-level	(Haq	and	Schutter,	2008;	Johnson,	2006,	

2010;	Loydell,	1998).	

A	coupled	drop	in	eustatic	sea	level	and	global	temperatures	would	have	had	a	

profound	influence	on	marine	biota.	The	Ireviken,	Mulde,	Lau	and	Klonk	bio-events	are	

defined	by	global	extinctions	of	conodonts,	graptolites,	acritarchs,	and	other	benthos	

(Aldridge	et	al.,	1993;	Calner,	2008;	Cooper	et	al.,	2013;	Jeppsson,	1990,	1997;	Jeppsson,	

1998;	Jeppsson	and	Aldridge,	2000;	Loydell,	2007;	Melchin	et	al.,	1998;	Štorch,	1995).	

Cooper	et	al.	(2013)	utilised	graptoloid	evolutionary	rates	to	track	global	climatic	change.	

Relatively	calm	Ordovician	extinction	and	origination	rates	gave	way	to	highly	volatile	rates	

during	the	late	Katian	through	to	the	Early	Devonian,	with	sharp	extinction	episodes	

triggered	by	environmental	crisis	(Cooper	et	al.,	2013).	This	supports	the	idea	presented	in	

this	study,	in	which	a	switch	from	relatively	stable	greenhouse	conditions	during	the	Early	

and	Middle	Ordovician,	to	relatively	unstable	icehouse	conditions	during	the	Hirnantian	

and	Silurian,	created	highly	volatile	conditions	for	marine	biota.	Abrupt	glaciations	

presented	here	coincide	with	high	graptloid	extinction	rates	during	the	early	Sheinwoodian,	

mid	Homerian,	late	Ludfordian	and	latest	Pridolian,	with	subsequent	high	levels	of	

originations	during	recovery	phases	(Cooper	et	al.,	2013).		

	

4.4.2	Scenarios	for	triggering	Silurian	Glaciations	

Several	mechanisms,	usually	involving	a	drop	below	threshold	atmospheric	CO2	levels	(~6	

PAL;	Pohl	et	al.,	2014),	have	been	put	forth	as	triggers	for	the	Hirnantian	glaciation,	and	

include	changes	in:	orogeny	(Kump	et	al.,	1999);	land	plant	diversification	(Lenton	et	al.,	

2012;	Porada	et	al.,	2016);	volcanic	arc	degassing	(McKenzie	et	al.,	2016;	Pogge	von	

Strandmann	et	al.,	in	review);	and,	paleogeography	(Nardin	et	al.,	2011).	Like	the	

Ordovician	that	preceded	it,	many	of	these	processes	were	active	during	the	Silurian,	
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providing	several	possible	candidates	for	the	mechanism	that	triggered	the	glaciations	

proposed	in	this	study.		

	

4.4.2.1	Orogeny	

It	has	been	argued	that	enhanced	weatherability	of	silicate	rocks	during	the	Taconic	

orogeny,	led	to	a	long-term	decline	in	atmospheric	CO2	which	eventually	dropped	below	

the	threshold	levels	that	would	allow	continental	ice	to	expand	(Kump	et	al.,	1999).	During	

the	Silurian,	Avalonia	and	Baltica	collided,	with	subsequent	collision	of	these	combined	

landmasses	with	Laurentia	to	form	the	Scandian	orogeny	(Cocks	and	Torsvik,	2002;	Torsvik	

and	Cocks,	2013).	The	rapid	rise	to	more	radiogenic	87Sr/86Sr	isotope	ratios	during	the	

Silurian	has	been	attributed	to	enhanced	weathering	of	old	sialic	crust	exposed	during	the	

aforementioned	formation	of	the	Caledonian-Appalachian	orogenic	belt	(Cramer	et	al.,	

2011b).	Moreover,	steep	inflection	points	in	the	Sr	isotope	record	occur	prior	to	and/or	

during	the	late-Telychian,	mid-Homerian,	mid-Ludfordian	and	the	Silurian-Devonian	

boundary	(Cramer	et	al.,	2011b;	Frýda	et	al.,	2002).	These	repeating	periods	of	enhanced	

weatherability	of	exposed	sialic	crust	would	have	led	to	the	long-term	decline	in	

atmospheric	CO2	and	global	temperatures	which,	if	dropped	below	threshold	levels	(Kump	

et	al.,	1999),	would	initiate	the	formation	of	continental	ice	sheets.		

	

4.4.2.2	Land	plant	diversification	

It	has	been	hypothesized	(Lenton	et	al.,	2012)	that	the	expansion	of	non-vascular	land-

plants	during	the	Ordovician	accelerated	global	chemical	weathering	by	up	to	three	times	

modern	weathering	fluxes	(Porada	et	al.,	2016),	leading	to	the	drawdown	of	enough	

atmospheric	CO2	(<	6	PAL)	to	trigger	the	growth	of	ice	sheets.	Moreover,	the	development	
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of	vascular	land	plants	during	the	Devonian	is	thought	to	have	caused	a	dramatic	

drawdown	in	atmospheric	CO2	that	led	to	global	cooling	and	polar	glaciations	during	the	

Late	Devonian,	ultimately	leading	to	Carboniferous	icehouse	conditions	(Algeo	and	

Scheckler,	2010;	Algeo	and	Scheckler,	1998;	Berner,	1997).	During	the	Silurian,	non-

vascular	and	vascular	land	plants	expanded	geographically	to	inhabit	new	continents	and	

land	masses	(Steemans	et	al.,	2009).	Meanwhile,	the	development	of	evolutionary	traits	in	

vascular	land-plants,	such	as	more	extensive	rooting	structures	and	‘the	seed	habit’,	

originally	assigned	to	the	Devonian	(Algeo	and	Scheckler,	2010;	Algeo	et	al.,	1995;	Algeo	

and	Scheckler,	1998),	are	now	thought	to	have	developed	earlier,	during	the	Silurian	

(Edwards	et	al.,	2014;	Gensel,	2008;	Kenrick	et	al.,	2012).	Geographical	expansion	and/or	

the	development	of	more	extensive	root	systems	would	act	to	enhance	the	weathering	

rates	of	silicates,	leading	to	a	reduction	in	atmospheric	CO2,	global	cooling	and	periodic	

glaciations.		

	

4.4.2.3	Volcanic	arc	degassing	

Recently,	variations	in	volcanic	arc	activity	have	been	shown	to	have	a	direct	relationship	

with	climatic	shifts	between	icehouse	and	greenhouse	conditions	(McKenzie	et	al.,	2016).	

Continental	collisions	during	the	assembly	of	Gondwana	led	to	a	reduction	in	continental	

arc	volcanism,	and	therefore	atmospheric	CO2	emissions,	culminating	in	global	cooling	and	

the	Hirnantian	glaciation	(McKenzie	et	al.,	2016;	Pogge	von	Strandmann	et	al.,	in	review).	In	

the	Mid-Late	Silurian,	the	Iapetus	Ocean	closed	during	the	formation	of	Laurussia.	This	

newly	formed	continent	rapidly	travelled	southward,	eventually	colliding	with	Gondwana,	

causing	the	closure	of	the	Rheic	Ocean	by	the	Carboniferous	(Cocks	and	torsvik,	2002).	This	

would	have	led	to	a	reduction	in	continental	arc	volcanism,	as	evidenced	by	cumulative	age	
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distributions	of	Silurian	Zircons	(McKenzie	et	al.,	2016),	leading	to	global	cooling	and	

intermittent	Silurian	glaciations.	

		

4.4.2.4	Paleogeography		

Another	explanation	for	the	upper	Ordovician	through	to	late	Llandovery	glacial	period	

involves	changes	in	paleogeography	that	caused	the	movement	of	freshly	exposed	volcanic	

rocks		(Lefebvre	et	al.,	2010;	Young	et	al.,	2009)	through	the	intertropical	convergence	zone	

(ITCZ),	stimulating	continental	weathering	and	a	decline	in	atmospheric	CO2	below	a	

threshold	that	would	allow	continental	glaciations	to	occur	(Nardin	et	al.,	2011).	In	

particular,	the	progressive	amalgamation	of	Baltica,	Avalonia	and	Laurentia	at	tropical	

latitudes	led	to	high	runoff	and	therefore	weathering,	maintaining	the	low	atmospheric	CO2	

required	to	initiate	the	early	Silurian	glaciations	(Nardin	et	al.,	2011).	Although	this	model	

could	explain	the	mechanism	by	which	a	glaciation	just	after	the	Telychian-Sheinwoodian	

boundary	(Fig.	1),	it	precludes	the	existence	of	late	Silurian	glaciations	due	to	decreases	in	

continental	runoff	as	continental	landmasses	move	out	of	the	ITCZ	(Nardin	et	al.,	2011).	

However,	this	may	be	due	to	the	low	temporal	resolution	of	the	model.		

4.4.2.5	Orbital	forcing			

Although	there	have	been	many	Paleozoic-centric	mechanisms	put	forth	as	drivers	for	

Paleozoic	glaciations	(See	section	4.4.2.1	to	4.4.2.4)	it	has	recently	become	apparent	that	a	

more	‘Cenozoic-style’	scenario	may	have	caused	the	end-Ordovician	glaciations	(Ghienne	et	

al.,	2014).	The	Hirnantian	glaciation	is	generally	viewed	as	a	singular	event,	with	marine	

extinctions	tied	to	glaciation	and	deglaciation.	However,	high	resolution	stratigraphic	

records	have	led	to	the	discovery	of	several	high-order	glacial	cycles,	suggesting	a	multi-

order	climate	signal	similar	to	the	Cenozoic	(Sutcliffe	et	al.,	2000;	Ghienne	et	al.,	2014).	

Both	two	(Sutcliffe	et	al.,	2000)	and	three	(Ghienne	et	al.,	2014)	glacial	cycles	of	ice-sheet	
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growth	have	been	recorded	for	the	end-Ordovician,	controlled	by	a	0.1	Myr	eccentricity	

periodicity	(Sutcliffe	et	al.,	2000)	or	1.2	Myr	obliquity	modulation	(Ghienne	et	al.,	2014)	

respectively.		

Much	like	previous	views	for	the	Ordovician,	the	Silurian	climatic	events	are	

generally	seen	to	have	a	singular	peak,	lacking	in	high	order	glacial	cycles.	However,	the	

Silurian	is	severely	lacking	in	high	resolution	stratigraphic	and	isotopic	records,	precluding	

the	discovery	of	orbitally	forced	‘Cenozoic-style’	glacial	cycles.	Moreover,	Os	and	Li	isotopic	

records	from	this	study	(See	Fig.	1)	are	of	such	low-resolution	that	they	prevent	recognition	

of	such	events.	However,	Silurian	oxygen	isotope	(Trotter	et	al.,	2016)	and	sea-level	((Haq	

and	Schutter,	2008;	Johnson,	2006,	2010;	Loydell,	1998)	records	show	high-order	

fluctuations	possible	related	to	glacial	eustasy	on	glacial-interglacial	timescales	(See	Fig.1).	

Furthermore,	the	Hirnantian,	Sedgwicki,	Ireviken,	Mulde,	Lau	and	Klonk	events	appear	to	

be	spaced	over	4	to	5	Myr	intervals	(See	Fig.	1)	suggesting	a	pacing	to	Silurian	glaciations	

which	could	be	set	by	the	interaction	between	eccentricity,	obliquity	and	precession	cycles,	

ultimately	controlled	through	changes	in	insolation.		More	work	will	need	to	be	generate	

high-resolution	stratigraphic	and	isotopic	records	for	Silurian	climatic	events	in	a	similar	

manner	to	the	end-Ordovician	(See	Sutcliffe	et	al.,	2000	and	Ghienne	et	al.,	2014).	

4.4.2.6	Why	did	we	not	see	‘Snowball	Earth’	conditions	during	the	Silurian?		

Large	glaciations	encompassing	the	entire	globe,	otherwise	known	as	‘Snowball	Earths’,	are	

believed	to	have	occurred	during	the	Neoproterozoic	(1000	–	542	Ma),	as	evidenced	from	

the	existence	of	low-latitude	glacial	deposits	at	sea-level	(See	Hoffman	&	Schrag,	2002	and	

references	therein).	These	events	could	have	potentially	been	triggered	by	high	obliquity	

caused	by	the	lunar-forming	impact	(See	Williams,	2008)	or	positive	ice-albedo	feedbacks	

which	led	to	glacials	that	lasted	tens	of	millions	of	years	before	the	slow	accumulation	of	

atmospheric	CO2	due	to	volcanic	degassing	brought	them	to	an	end	(See	Hoffman	&	Schrag,	
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2002).	However,	unlike	the	Neoproterozoic	snowball	Earths,	Paleozoic	glaciations	such	as	

those	found	in	the	Cambrian,	Late	Ordovician,	Silurian,	Late	Devonian	and	Carboniferous	

are	generally	not	met	by	low-latitude	glacial	deposits	and	deglacial	cap-carbonates	and	

negative	d13C	excursions	(>10	‰).	This	suggests	there	was	either	more/less	feedback	

mechanisms	active	during	the	Neoproterozoic	when	compared	to	the	Paleozoic,	that	

allowed	for	runaway	icehouse	conditions	to	occur.		

Phanerozoic	paleogeography	reconstructions	(Cocks	and	Torsvik,	2002;	Torsvik	

and	Cocks,	2013)	often	situates	continental	masses	at	high-latitudes	over	one	or	both	of	

the	poles,	either	as	a	supercontinent	e.g.	Pangea	or	a	smaller	continent	e.g.	Antarctica.	

However,	unlike	the	Phanerozoic,	Neoproterozoic	snowball	Earths	are	dominated	by	a	

severe	lack	of	high-latitude	continental	masses.	This	would	have	created	an	absence	of	

continental	ice-weathering	feedbacks	proposed	in	this	study	for	the	Silurian	(See	section	

4.4.1.5).	Therefore,	once	polar	glaciation	is	initiated,	sea-ice	formation	would	proceed	to	

low	latitudes	via	positive	ice-albedo	feedback	without	the	subsequent	reduction	in	silicate	

weathering	and	enhancement	of	oxidative	weathering	associated	with	continental	ice,	

which	would	otherwise	act	to	increase	atmospheric	CO2	leading	to	global	warming.		This	

suggests	weathering	feedbacks	help	regulate	atmospheric	CO2,	preventing	runaway	

icehouse	conditions	and	snowball	Earths	(See	section	4.4.3).	

4.4.3	Weathering	feedbacks	help	regulate	atmospheric	CO2	

Weathering	regulates	atmospheric	CO2	over	multimillion	year	timescales	and	can	be	

summarised	by	several	chemical	reactions	(Berner	and	Berner,	2012;	Berner,	2006;	Berner	

et	al.,	1983;	Torres	et	al.,	2014;	Walker	et	al.,	1981).	The	dissolution	of	Mg-	and	Ca-	bearing	

silicate	minerals	by	carbonic	acid,	and	the	subsequent	transport	of	solutes	to	the	ocean	

where	inorganic	carbon	is	buried	as	marine	carbonates,	sequesters	atmospheric	CO2:	

CO2	+	(Ca,	Mg)SiO3	→	(Ca,	Mg)CO3	+SiO2		 Eq.7	
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On	the	other	hand,	the	oxidative	weathering	of	ancient	sedimentary	organic	matter	

releases	CO2	back	to	the	atmosphere:	

CH2O	+	O2	→	CO2	+	H2O	 Eq.	8	

Other	sources	of	atmospheric	CO2	include	the	oxidative	dissolution	of	pyrite	and	the	

subsequent	dissolution	of	carbonates	by	sulfuric	acid:	

15O2	+	4FeS2	+	14H2O	→	4Fe(OH)3	+	8H2SO4	 Eq.9	

CaCO3	+	H2SO4	→	CO2	+	H2O	+	Ca2+	+SO4
2-		 Eq.10	

and	

2CaCO3	+	H2SO4	→	2Ca2+	+	2HCO3
-	+	SO4

2-	↔	CaCO3	+	CO2	+	SO4
2-	+	Ca2+	

	 Eq.11	

Reactions	7	to	11	show	a	strong	dependence	on	climatic	parameters	such	as	temperature,	

runoff	and/or	physical	weathering	(Georg	et	al.,	2013;	Torres	et	al.,	2014).	During	the	

Cenozoic,	concurrent	increases	in	the	87Sr/86Sr,	187Os/188Os	and	δ7Li	records	(Klemm	et	al.,	

2005;	McArthur	et	al.,	2001;	Misra	and	Froelich,	2012)	suggest	enhanced	physical	and	

chemical	denudation	during	extensive	uplift	of	mountain	ranges	may	have	stimulated	CO2	

consumption	via	silicate	weathering	(Raymo	et	al.,	1988).	However,	in	the	absence	of	

enhanced	CO2	production	from	other	sources,	this	would	have	stripped	the	atmosphere	of	

all	its	CO2	within	a	few	million	years	(Berner	and	Caldeira,	1997).	This	decline	in	

atmospheric	CO2	may	have	been	offset	by	a	release	of	CO2	from	a	simultaneous	increases	

in	oxidative	weathering	of	ancient	organic	carbon	(Li	et	al.,	2009)	and/or	carbonate–sulfuric	

acid	weathering	(Torres	et	al.,	2014).		

During	Quaternary	glacial-interglacial	cycles,	enhanced	physical	weathering	left	

behind	fine-grained	material	for	chemical	weathering	at	glacial	terminals	(Bell	and	Laine,	
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1985;	Goodbred	and	Kuehl,	2000;	Hinderer,	2001;	Thomas	and	Thorp,	1995).	This	caused	

deglacial	pulses	in	silicate	weathering	that	could	have	theoretically	lowered	atmospheric	

CO2	by	10	-	20	ppm	(Vance	et	al.,	2009).	However,	ice	cores	record	a	rise	in	CO2	during	

deglaciations	(Petit	et	al.,	1999)	due	to	a	concurrent	release	of	CO2	from	the	enhanced	

weathering	of	organic-	and	sulphide-rich	sedimentary	rocks,	which	exceeded	CO2	

consumption	by	silicate	weathering	(Georg	et	al.,	2013).					

Here,	we	propose	similar	processes	occurred	during	the	Silurian.	The	long-term	

decline	in	atmospheric	CO2	caused	by	orogeny,	land-plant	diversification,	volcanic	

degassing	and/or	paleogeographic	changes,	induced	global	cooling.	Eventually	atmospheric	

CO2	dropped	below	threshold	levels	(~6	PAL)	triggering	an	expansion	of	southern	

hemisphere	ice	sheets	over	Gondwana,	which	proceeded	to	expand	via	positive	ice-albedo	

feedback.	During	glaciation,	enhanced	physical	weathering	and	glacial	processes	acted	to	

increase	the	oxidation	of	ancient	organic	carbon	and	sedimentary	sulphides,	which	

subsequently	dissolved	carbonates,	releasing	atmospheric	CO2	to	the	atmosphere.	

Meanwhile,	silicate	weathering	declined,	partially	suppressing	one	of	the	Earth’s	major	CO2	

removal	mechanisms.	The	combined	influence	of	these	two	effects	began	to	reverse	the	

global	cooling	trend.	During	glacial	maximum,	relatively	low	silicate	weathering	rates	

allowed	CO2	to	build	up	in	the	atmosphere	via	other	processes	e.g.	volcanism,	leading	to	

rapid	warming	and	eventually	deglaciation.	This	deglaciation	exposed	scoured	bedrock	to	

the	atmosphere	and	generated	freshly	comminuted	glacial	till,	acting	as	a	fertile	substrate	

for	meltwater	to	chemically	attack.	A	decline	in	atmospheric	CO2	due	to	enhanced	silicate	

weathering	at	glacial	terminals	would	have	been	largely	offset	by	enhanced	oxidation	of	

organic-	and	sulphide-	rich	sedimentary	rocks.	This	work	lends	itself	to	the	idea	of	the	Earth	

having	a	self-regulating	climate	that	allows	life	to	remain	within	habitable	conditions	

(Berner	and	Caldeira,	1997;	Berner	et	al.,	1983;	Garrels	et	al.,	1976;	Walker	et	al.,	1981).	
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4.5	Implications	and	future	outlook	

Osmium	and	Li	isotope	data	presented	here	are	interpreted	to	trace	fluctuations	in	

continental	weathering	through	Silurian	climatic	perturbations.	During	the	Silurian,	

orogeny,	the	diversification	and	global	expansion	of	land	plants,	changes	in	paleogeography	

and/or	a	reduction	in	volcanic	arc	degassing,	led	to	a	long-term	decline	in	atmospheric	CO2	

and	global	cooling.	During	the	late	Telychian-early	Sheinwoodian,	mid-Homerian,	mid-

Ludfordian	and	across	the	Silurian-Devonian	boundary,	atmospheric	CO2	dropped	below	

the	threshold	levels	(~6	PAL)	that	would	have	allowed	continental	ice	over	Gondwana	to	

expand	through	ice-albedo	feedbacks.	Once	triggered,	the	expansion	of	continental	ice	

enhanced	the	denudation	of	underlying	bedrock	and	the	production	of	fine-grained	

material	for	chemical	attack.	Subglacial	and	proglacial	processes	favour	the	oxidation	of	

ancient	organic	carbon	and	sulphides,	whilst	suppressing	silicate	weathering,	causing	a	net	

release	of	CO2	to	the	atmosphere.	Under	glacial	maximum,	the	production	of	fine-grained	

material	ceased,	and	oxidative	weathering	rates	diminished.	A	reduction	in	silicate	

weathering,	and	therefore	one	of	the	Earth’s	major	CO2	removal	mechanisms,	allowed	CO2	

to	build	up	in	the	atmosphere	via	other	processes,	leading	to	global	warming	and	rapid	

deglaciation.	During	deglaciation,	retreating	ice-sheets	would	have	enhanced	chemical	

weathering	through	the	provision	of	fresh	material,	increased	melt	water	and	generally	

wetter	conditions.	The	oxidative	weathering	of	organic	and	sulphide-rich	lithologies	would	

have	largely	offset	the	reduction	in	atmospheric	CO2	from	enhanced	silicate	weathering	

during	deglaciation.		

Fluctuations	in	the	Silurian	δ18O	record	were	driven	by	changes	in	continental	ice	

volume	and	global	temperatures,	with	more	positive	δ18O	values	during	glacial	periods.	The	

associated	drop	in	eustatic	sea	level,	exposed	carbonate	shelves	to	weathering	and	drove	

positive	shifts	in	the	δ13C	record,	attaining	the	highest	δ13C	values	during	glacial	maximum.	

A	coupled	drop	in	eustatic	sea	level	and	global	temperatures	would	have	had	a	profound	
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influence	on	marine	biota.	The	Ireviken,	Mulde,	Lau	and	Klonk	bio-events	are	defined	by	

global	extinctions	of	conodonts,	graptolites,	acritarchs,	and	other	benthos,	with	high	levels	

of	originations	during	post-glacial	recovery.	

In	contrast	to	previous	views	of	the	Silurian	as	a	greenhouse	world	punctuated	

by	large	carbon	cycle	perturbations	associated	with	changes	in	ocean	circulation	and	

precipitation	rates,	this	study	presents	a	new	outlook	on	the	Silurian.	We	suggest	the	

Silurian	is	an	icehouse	world	like	the	late	Ordovician	that	preceded	it,	punctuated	by	

glaciations	associated	with	abrupt	climatic	and	biological	change.	The	long-term	decline	in	

atmospheric	CO2	during	the	Silurian	was	periodically	reversed	by	negative	feedback	

mechanisms	associated	with	said	glaciations,	and	prevented	a	‘runaway’	icehouse,	helping	

to	maintain	a	habitable	planet.	Future	work	will	need	to	focus	on	generating	similar	

osmium	and	lithium	isotope	curves	for	different	paleogeographic	locations	to	validate	a	

global	signal	and	help	ascertain	the	timings	of	glaciation,	glacial	maximum	and	deglaciation.	

More	work	is	necessary	to	help	determine	between	orogeny,	land	plant	diversification,	

paleogeographic	changes	or	volcanic	arc	degassing	as	the	driver	of	atmospheric	CO2	decline	

and	global	cooling.		

Much	like	the	Cenozoic,	generating	Os	and	Li	isotope	curves	for	the	entire	

Silurian	could	help	track	the	timing	and	extent	of	orogenic	events.	More	detailed	spore	and	

macrofossil	records	for	Silurian	land-plants	could	help	track	evolutionary	and	geographical	

changes	and	help	ascertain	their	potential	influence	on	global	weathering	and	atmospheric	

evolution	through	computer	modelling.	Modelling	could	also	help	predict	the	influence	of	

enhanced	volcanic	weathering	on	atmospheric	CO2	during	Laurussia’s	passage	through	the	

ITCZ.	Finally,	the	hunt	for	glacial	sediments	in	South	America	and	Africa	should	be	resumed	

to	provide	unequivocal	evidence	for	Silurian	glaciations	and	their	timing.					
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This	body	of	work	has	determined	the	osmium	isotopic	composition	seawater	for	past	and	

present	oceans	by	applying	Re-Os	isotope	measurements	to	organic-rich	shales	and	

macroalgae	respectively.	This	has	led	to	a	better	understanding	of	basaltic	weathering	in	

Iceland,	mankind’s	influence	on	the	Os	isotope	cycle	and	the	discovery	of	several	Silurian	

glaciations.	This	final	chapter	briefly	draws	together	key	aspects	of	each	chapter	and	then	

suggests	possible	directions	for	future	work.	

	

5.1	Re-Os	isotope	uptake	and	distribution	in	macroalgae	

Research	conducted	by	B.	Racionero-Gómez	at	the	University	of	Durham,	in	part	under	

supervision	by	myself,	looked	at	Re	and	Os	uptake	and	distribution	in	the	common	

macroalgae	species,	Fucus	vesiculosus	(Racionero-Gómez	et	al.,	2016;	Racionero-Gómez	et	

al.,	2017).	These	studies	demonstrated	Re	and	Os	varies	within	the	macroalgae	and	that	Re	

and	Os	are	not	located	within	one	specific	structure.	Rhenium,	and	therefore	most	likely	

Os,	is	not	held	within	the	chloroplasts	or	cytoplasmic	proteins.	Rhenium	and	Os	abundance	

in	cultured	macroalgae	increased	with	increasing	culture	media	abundance.	Moreover,	

cultured	macroalgae	doped	in	seawater	with	a	known	Os	isotopic	composition,	took	on	the	

isotopic	signature	of	the	fluid,	with	no	signs	of	fractionation	(Racionero-Gómez	et	al.,	

2017).	Rhenium	did	not	accumulate	in	dead	macroalgae,	suggesting	syn-life	

bioadsorption/bioaccumulation	(Racionero-Gómez	et	al.,	2016).	

This	work	suggested	Re	and	Os	in	macroalgae	are	taken	up	directly	from	the	water	

column	in	which	they	live,	where	they	accumulate	to	far	higher	concentrations	than	

seawater.	Meanwhile,	the	uptake	of	Os	by	macroalgae	does	not	fractionate	Os	isotopes	

and	macroalgae	retains	the	isotopic	composition	of	seawater.	This	overcomes	several	

problems	associated	with	direct	Os	isotope	analysis	in	seawater,	such	as	ultra-low	

concentrations	and	multiple	oxidation	states	(Peucker-Ehrenbrink	et	al.,	2013).	It	is	
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therefore	possible	for	Os	isotopes	in	macroalgae	to	become	a	proxy	for	the	Os	isotopic	

composition	of	seawater,	a	powerful	tracer	of	Earth	system	processes.	More	work	will	need	

to	be	done	to	understand	the	uptake	mechanism	and	storage	location	for	Re	and	Os	within	

the	macroalgae.		

	

5.2	Re-Os	isotopes	in	macroalgae	as	a	tracer	of	Earth	system	processes	

Chapter	2	utilised	Re	and	Os	abundance	and	isotope	data	from	Icelandic	macroalgae,	

dissolved	load	and	bedload.	This	work	established	that	Re	and	Os	abundance	and	isotopic	

composition	reflected	that	of	the	brackish,	estuarine	habitats	in	which	they	live.	In	the	

instance	of	Iceland,	estuarine	conditions	represent	the	mixing	between	rivers	draining	

either	younger	basaltic	catchments	that	have	undergone	congruent	weathering,	or,	older	

basaltic	catchments	that	have	undergone	incongruent	weathering	of	primary	basaltic	

minerals	with	North	Atlantic	seawater.	However,	although	the	187Os/188Os	composition	of	

macroalgae	is	controlled	by	that	of	seawater,	the	187Re/188Os	composition	of	seawater	is	far	

higher	than	Icelandic	geochemical	reservoirs.	This	suggests	the	preferential	uptake	of	Re	

over	Os	at	high	ambient	seawater	Re	concentrations,	a	notion	supported	by	further	data	

presented	in	Chapter	3.		

This	study	built	on	previous	work	(See	section	5.1)	by	confirming	the	use	of	Os	

isotopes	in	macroalgae	as	a	proxy	for	the	187Os/188Os	composition	of	seawater	in	a	real-

world	setting.	However,	it	also	became	apparent	that	macroalgae	could	not	be	used	to	

trace	fluctuation	in	the	Os	abundance	and	187Re/188Os	composition	of	seawater.	More	work	

will	need	to	be	done	to	understand	Os	uptake	rates	in	a	range	of	common	macroalgae	

species.	This	will	allow	for	more	accurate	estimates	of	the	Os	abundance	of	seawater,	

which	in	turn	can	be	utilised	alongside	187Re/188Os	ratios	to	help	constrain	the	residence	

time	of	Os	in	the	ocean.	Finally,	macroalgae	is	not	a	substantial	sink	of	Re	and	Os	and	global	
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macroalgae	biomass	does	not	play	a	significant	role	in	the	marine	Os	and	Re	cycle,	both	

today	and	in	Earth’s	geological	past.						

	

5.3	Re-Os	isotopes	in	macroalgae	as	a	tracer	of	anthropogenic	processes	

Chapter	3	utilised	Re	and	Os	abundance	and	isotope	data	in	Japanese	macroalgae	to	trace	

not	only	natural	processes,	but	also	anthropogenic	contamination	associated	with	human	

activity	in	densely	populated	regions	of	Japan.	The	187Os/188Os	of	macroalgae	reflects	

mixing	between	seawater	and:	rivers	draining	Miocene-Holocene	continental	rocks;	and/or,	

anthropogenic	sources.	In	particular,	the	use	of	PGE	ores	in	catalytic	convertors	has	led	to	

the	widespread	release	of	appreciable	unradiogenic	Os	to	the	atmosphere	and	marine	

environment	surrounding	major	Japanese	cities.	This	is	compounded	by	further	point	

source	release	of	PGE	derived	Os	associated	with	medical	research	and	municipal	solid	

waste	processing.		

This	study	built	on	previous	work	(See	section	5.1	and	5.2)	by	confirming	that	the	

187Os/188Os	of	macroalgae	could	trace	environmental	fluctuations	in	anthropogenic	Os	

related	to	the	widespread	use	of	PGE	ores.	Osmium	isotopes	in	macroalgae	can	therefore	

become	powerful	tracers	of	pollution.	However,	more	work	will	need	to	be	done	to	find	

ways	to	distinguish	between	the	various	anthropogenic	sources	of	Os.	One	way	could	be	to	

develop	the	use	of	other	isotope	and	elemental	systems	with	specific	association	to	vehicle	

use,	municipal	solid	waste	or	relevant	medical	research	sources.	As	an	example,	Al	and	

organic	carbon	concentrations	in	sediments	have	been	used	in	conjunction	with	Os	

isotopes	to	trace	anthropogenic	Os	associated	with	sewage.	Finally,	Chapter	3	suggested	

coastal	cities	are	a	significant	source	of	anthropogenic	Os	to	the	ocean,	and	the	use	of	PGE	

ores	in	catalytic	convertors	has	led	to	lower	187Os/188Os	ratios	in	global	oceanic	surface	

waters.	
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5.4	The	Os	and	Li	isotopic	composition	of	Silurian	seawater	

In	Chapter	4,	Re-Os	and	Li	isotope	systematics	were	measured	in	organic-rich	shales	and	

carbonates,	from	sections	that	spanned	the	Silurian	Ireviken,	Mulde,	Lau	and	Klonk	

bioevents.	Osmium	and	Li	isotope	profiles	were	similar	to	those	previously	recorded	for	the	

Hirnantian	glaciation	(Finlay	et	al.,	2010;	Pogge	von	Strandmann	et	al.,	in	review)	and	are	

associated	with	fluctuation	in	the	weathering	of	organic-sulphide-rich	shales	and	silicates	

respectively.	This	suggests	that	much	like	the	Ordovician,	the	Silurian	is	punctuated	by	

several	glaciation	events	associated	with	enhanced	continental	ice	volume	over	Gondwana,	

and	is	supported	by	carbon	and	oxygen	isotope	data	and	sea-level	reconstructions.		

As	continental	ice	expands	subglacial	and	proglacial	processes	act	to	enhance	the	

weathering	of	organic	and	sulphide	rich	shales,	delivering	an	increased	flux	of	radiogenic	Os	

to	the	oceans.	Meanwhile,	subglacial	processes	act	to	suppress	silicate	weathering	causing	

a	reduction	in	the	delivery	of	isotopically	light	Li	to	the	ocean.	Under	glacial	maximum	the	

supply	of	freshly	comminuted	shales	ceases	along	with	weathering	and	the	supply	of	

radiogenic	Os	to	the	ocean.	However,	the	enhanced	ice	cover	maintains	relatively	low	

levels	of	silicate	weathering.	During	deglaciation,	subglacial	and	proglacial	processes	

enhance	the	weathering	of	organic	and	sulphide	rich	shales	and	silicates,	delivering	

radiogenic	Os	and	isotopically	light	Li	to	the	ocean.	

	

This	study	has	several	major	implications:	

1. The	Silurian	was	traditionally	thought	of	as	a	greenhouse	like	the	Devonian	that	

proceeds	it.	However,	this	work	suggests	the	Silurian	is	an	icehouse	much	like	

the	Ordovician	that	preceded	it.				
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2. The	Silurian	is	punctuated	by	several	glaciations	associated	with	minor	marine	

extinctions	and	a	reduction	in	global	temperatures	and	sea-level.	

3. Osmium	and	Li	isotopes	can	be	used	in	tandem	to	reconstruct	fluctuation	in	

continental	oxidative	and	silicate	weathering	respectively.	If	used	properly,	

these	proxies	could	help	us	understand	how	weathering	influences	

atmospheric	CO2	through	geological	time.		

4. Subglacial	and	proglacial	processes	lead	to	enhanced	oxidative	weathering	

whilst	suppressing	silicate	weathering	during	glaciations.	This	acts	to	reverse	

global	cooling	by	releasing	net	carbon	dioxide	to	the	atmosphere.		

5. A	long-term	decline	in	atmospheric	CO2	associated	with	orogeny,	land-plant	

diversification,	reduced	volcanic	arc	degassing	and/or	paleogeography,	is	

ultimately	reversed	by	weathering	processes	associated	with	enhanced	

continental	ice	volume,	preventing	runaway	icehouse	conditions.	

6. This	study	supports	the	idea	of	the	Earth	having	a	self-regulating	climate	that	

maintains	a	habitable	planet.					

5.6	Future	outlook	

Osmium	isotopes	in	macroalgae	as	a	proxy	for	the	187Os/188Os	composition	of	seawater	

remains	in	its	infancy	despite	the	great	strides	made	in	this	body	of	work.	One	major	

limitation	is	the	inability	to	determine	the	Os	abundance	in	seawater	using	macroalgae.	

More	work	will	need	to	be	done	to	determine	Os	uptake	relationships	in	a	similar	manner	

to	previous	work	(Racionero-Gómez	et	al.,	2017)	but	at	natural	Os	levels.	This	will	then	

have	to	be	repeated	for	the	most	common	globally	distributed	macroalgae	species.	This	

study	has	shown	the	187Os/188Os	of	macroalgae	represents	that	of	the	seawater	in	which	it	

lives,	and	if	it	could	be	combined	with	a	reconstruction	of	[Os],	would	allow	the	

determination	of	continental	inputs	of	Os	to	the	ocean.	This	would	allow	for	better	

constraints	on	the	marine	Os	cycle	and	Oceanic	residence	times.	
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This	work	has	shown	the	187Os/188Os	of	macroalgae	can	trace	anthropogenic	

sources	of	Os.	However,	it	is	difficult	to	distinguish	between	the	various	sources	due	to	the	

similar	nature	of	isotopic	signatures.	Other	isotope	or	elemental	systems	with	a	specific	

affinity	for	one	of	these	sources	will	need	to	be	developed	in	macroalgae	to	distinguish	

between	these	sources.	This	could	help	macroalgae	become	a	powerful	tracer	of	human	

activity	and	a	useful	environmental	indicator.	In	particular,	it	can	be	used	to	trace	the	

influence	of	widespread	catalytic	convertor	use,	‘similar	to	Pb	from	leaded	gasoline	usage	

before	1978	or	tritium	from	atmospheric	atomic	bomb	testing	in	the	early	1960s’	(Chen	et	

al.,	2009).		

This	body	of	work	provided	further	geochemical	evidence	for	periodic	Silurian	

glaciations	by	using	Os	and	Li	isotopes.	However,	physical	evidence	for	mid-late	Silurian	

glaciations	still	remains	elusive.	More	work	will	need	to	be	done	to	find	glacial	sediments	

for	the	time	periods	studied.	This	will	provide	unequivocal	evidence	for	a	Silurian	icehouse	

world.	Chapter	4	suggested	that	Os	and	Li	isotope	profiles	represent	changes	in	oxidative	

and	silicate	respectively.	However,	like	most	isotopes	systems,	these	signals	remain	

ambiguous.	Data	collected	in	this	study	could	reflect	changes	in	weathering	of	variable	

continental	rocks	(not	just	oxidative	weathering)	or	a	change	in	weathering	congruency.	

More	weathering	proxies	need	to	be	utilised	to	separate	out	these	signals.	Moreover,	

samples	were	only	analysed	in	one	regional	location.	In	order	to	determine	a	global	signal	

samples	from	globally	distributes	sites	need	to	be	measured.	

Finally,	the	cause	of	Silurian	glaciations	remains	elusive.	Most	proposed	

mechanisms	in	this	study	suggest	a	long-term	decline	in	atmospheric	CO2	and	global	

temperatures	resulting	from	changes	in	orogeny,	land-plant	diversification,	volcanic-arc	

degassing	or	paleogeography.	More	work	will	need	to	be	done	to	determine	between	these	
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drivers	of	climatic	change.	In	particular,	complex	carbon	cycle	modelling	for	the	Silurian	

may	provide	unparalleled	information.			
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