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Abstract 

Plant NBLRR proteins are immune receptors named for their characteristic domains. 

Their mode of action is currently undetermined. The potato NBLRR protein Rx1 has 

been shown to possess a DNA binding activity in vitro. This thesis presents evidence 

that Rx1 binds DNA in response to its cognate elicitor CP106 in fixed N. benthamiana 

leaf material using a novel FRET-FLIM assay. The Rx1 CC and NBARC domains 

were both shown to possess this DNA binding activity. A nucleocytoplasmic 

distribution of Rx1 was shown to be required for DNA binding. Potential regulators of 

Rx1 DNA binding activity were identified using a yeast 2-hybrid screen against the 

CC domain of Rx1 and their effects on Rx1 DNA binding and Rx1 mediated immunity 

characterised. The transcription factor NbGLK1 was identified and characterised as a 

promoter of Rx1 DNA binding using FRET-FLIM and a promotor of Rx1 mediated 

extreme resistance to PVX. However, NbGLK1 was not found to affect Rx1 mediated 

HR. The protein NbMLHP was also identified in the yeast 2-hybrid screen. This 

protein was not found to impact Rx1 DNA binding in FRET-FLIM assays. It was, 

however, identified as a suppressor of Rx1 mediated extreme resistance to PVX (but 

not HR), and Rx1 did inhibit NbMLHP DNA binding. 
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1. Introduction 

 

1.1 Overview 

This thesis provides evidence that the plant NBLRR protein Rx1 binds genomic DNA 

to initiate pathogen defence signalling. This chapter aims to provide a review of the 

relative literature required to better understand and contextualise these results. A 

general overview of plant immune signalling will be provided with a focus on plant 

NBLRR proteins. This will include a review of what is known of plant NBLRR 

structure, function and regulation, and how these are combined to form a model of 

plant NBLRR pathogen defence signalling.  

 

1.2 Rx1 

 
This thesis describes work into the potato NBLRR protein Rx1. The Rx1 gene 

encoding this protein was first identified in a study of potato strains resistant to 

potato virus X (PVX) and were characterised as giving resistance. Two unrelated 

genes, both providing resistance were identified at the same locus, and were named 

Rx1 and Rx2 respectively (Resistance to potato virus X 1 and 2) (Cockerham et al., 

1970) 

 

Rx1 has been of particular scientific interest due to an unusual defence response it 

induces, known as extreme resistance. This is characterised by a reduced 

accumulation of PVX virus particles in the infected site immediately after infection. 

(Kohm et al., 1993) However, Rx1 has also been characterised as causing a separate 

HR in infected tissue. (Bendahmane et al., 1999). Further study identified the PVX 
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viral coat protein as the cognate elicitor of Rx1 mediated immunity. (Bendahmane et 

al., 1995).  

 

Rx1 is a plant NBLRR protein  that possess the archetypal three domain structure, 

with an N-terminal CC domain (see Section 1.4), making it a good model protein for 

NBLRR structure and function. 

 

1.3 Plant Pathogen Sensing 

Plants possess an immune system similar to the animal innate immune system. The 

first line of plant defence signalling consists of pathogen associated molecular pattern 

receptors, or PAMP receptors. These are protein receptors located on the exterior of 

the plant cell that sense molecules that are essential to the pathogen’s survival, and 

hence cannot be evolutionarily discarded to avoid detection e.g. bacterial flagellins 

(Jones et al., 2006). PAMP receptors initiate a signalling cascade that results in a 

defence response by the plant known as PAMP triggered immunity, or PTI. To combat 

plant PAMP receptors, pathogens have evolved effector proteins. Pathogen effector 

proteins are secreted by the pathogen and translocate themselves into the plant cell. 

Here they act to inhibit the defence signalling initiated by the PAMP receptor, enabling 

the pathogen to infect the plant host. Pathogens have also evolved small RNAs 

(sRNAs) that can translocate into the host and perform a similar role (Weiberg et al., 

2013). 

 

Plants have in turn evolved a means to combat effector proteins. Plant R proteins sense 

the effector proteins or sRNAs within the plant cell and initiate a stronger defence 

response known as effector triggered immunity, or ETI (Figure 1).  
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Plants trigger an array of different actions in response to pathogens, and many of these 

are observed both in ETI and PTI: The production of reactive oxygen species (ROS), 

cell wall thickening, the translation of pathogenesis related (PR) proteins with anti-

pathogen effects, and an increased production of secondary metabolites are all 

commonly observed in both PTI and ETI (Yang et al., 1997). Conversely, some 

immune responses are specific to the type of pathogen infecting the plant rather than 

ETI or PTI, such as the translation of antifungal peptides in response to some fungal 

infections (Yang et al., 1997). However, one characteristic effect of the stronger ETI 

defence response triggered by R proteins that is not observed in PTI is the controlled 

death of the infected cell and the surrounding tissue, known as the hypersensitive 

response (HR) (Morel et al., 1997).  

 

By far the most common class of R proteins are NBLRR proteins (Jones et al., 2006). 

These are named after two of their characteristic domains; the nucleotide binding (NB) 

and leucine rich repeat (LRR) domains. The exact mechanism through which R 

proteins initiate defence signalling is currently unknown. 
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Figure 1. A schematic model of plant immune signalling. A. Plant PAMP receptors detect 

essential pathogen molecules to trigger an immune response. B. Pathogens evolve effector 

proteins which translocate into the plant cell and inhibit PAMP triggered immunity. C. Plants 

evolve R proteins to detect pathogen effector molecules and initiate an enhanced immune 

response including HR. Adapted from Jones et al., 2006. 

 

 

 

 

1.4 STAND ATPases 

NBLRR proteins belong to a family of signalling proteins known as STAND proteins 

(signal transduction ATPases with numerous domains) (Danot et al., 2009). STAND 

proteins are large multidomain signalling proteins possessing a sensor domain, a core 

conserved nucleotide binding and oligomerisation domain (NOD domain), and an 

effector domain that initiates signal transduction. They are believed to function as an 

ATPase switch, with nucleotide hydrolysis or exchange in the NOD domain resulting 
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in a conformational shift in the protein. This conformational shift is associated with an 

activation of the protein’s signalling activity. 

 

STAND proteins are hypothesised to have evolved from AAA+ ATPases, a large, 

diverse family of signalling ATPases. The proteins within the AAA+ family displaying 

the highest similarity to STAND proteins are the DNA binding transcriptional 

regulators Cdc6 and Orc1 (Danot et al., 2009). The characteristic NOD domain of 

STAND proteins is adapted from the core AAA+ domain, a p-loop nucleotide-binding 

domain with a role in oligomerisation also known to have a DNA binding activity in 

Cdc6 and Orc1 (Capaldi et al., 2004, Feng et al., 2002).  

 

Various STAND proteins are known to adopt a large array of different oligomeric 

structures to carry out their roles, with oligomerisation mediated by the NOD domain. 

For example, the E. coli transcriptional activator MalT has been shown to form 

oligomeric curves using cryo-EM (Larquet et al., 2004). The crystal structures of the 

apoptosis regulators Apaf-1 and CED-4 are both octameric hutches (Zhou et al., 2015, 

Yan et al., 2007). The animal innate immune receptor STAND proteins NAIP2 and 

NLRC4 have been shown to initiate apoptosis by forming a ring-like structure using 

cryo-EM (Zhang et al., 2015).  

 

Plant NBLRR proteins belong to a subfamily of STAND ATPases with two other 

proteins, the aforementioned Apaf-1 and CED-4 (Danot et al., 2009). These are both 

apoptosis initiating proteins known from humans and C. elegans respectively (Zhou et 

al., 2015, Yan et al., 2007). NBLRR proteins typically follow the STAND protein 

three-domain structure. They possess either an N-terminal coiled coil (CC) or 
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Toll/interleukin-1 receptor-like (TIR) domain, hypothesised to be the effector domain 

that initiates signal transduction. A middle NBARC domain, shared with Apaf-1 and 

CED-4 that functions as the NOD domain. Finally, a C-terminal leucine rich repeat 

(LRR) domain is proposed to act as the sensor domain. Genome analysis of multiple 

model organisms has revealed that all four of these domains evolved individually 

before prokaryotes split from eukaryotes, but the fusion of these domains together is 

only found in land plants (Yue et al., 2012). Both CC and TIR NBLRR proteins are 

found in bryophytes, which diverged from other land plants approximately 450 million 

years ago (Xue et al., 2012). Both are also present in dicots, but TIR containing 

NBLRR proteins are not present in monocots, having been lost at some point in the 

clades evolutionary history (Meyers et al., 1999). 

 

1.5 Plant NB-LRR protein domains 

This section will give an overview of what is known of the structure and function of 

the different constituent domains common to plant NBLRR proteins (summarised in 

Table 1).  

 

 

 

 

Table 1. A schematic summary of different NBLRR protein domain architectures with 

examples. Including archetypal NBLRR proteins (with the sites of common motifs within the 

domains annotated), truncated NBLRR proteins, NBLRR proteins with novel domain fusions, 

and paired executor-sensor NBLRR proteins with integrated decoys. Adapted from Sukarta et 

al., 2016. 
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1.5.1 The CC domain 

CC domains were first predicted in 1953 as an energetically stable means of grouping 

alpha helices together by wrapping two or three helices around each other (Crick, 

1953). These domains are commonly known to be involved in protein-protein 

interactions involving helices from different proteins intertwining together (Kohn et 

al., 1997). In NBLRR proteins, CC domains are thought to act as the effector domain. 

Indeed, they are known to be the sufficient for HR in some NBLRR proteins, such as 

MLA10 (Maekawa et al., 2011) and Rp1 (Wang et al., 2015) but there are exceptions 

to this (see section 1.5.3). 

 

High sequence similarity is not observed throughout most regions of NBLRR CC 

domains (Sukarta et al., 2016). The exception to this is the conserved EDVID motif 

(consensus sequence WLxxVRELAYDAEDVLDx) that is observed in most NBLRR 

CC domains (Mazourek et al 2009) and is known to have a role in interdomain 

interactions (Rairdan et al., 2008) (see section 1.9). The EDVID motif is not universal 

though, and is missing within a highly conserved, smaller sub-clade of CC-NBLRR 

proteins (Collier et al., 2011). 

 

The structures of three NBLRR protein CC domains belonging to the EDVID clade 

have been solved. The Rx1 CC domain was crystallised and solved in a complex with 

the WPP domain of the protein RanGap2, a known interactor. The structure revealed a 

group of four bundled α-helicies (Hao et al., 2013, Figure 2). Meanwhile, the structure 

of the MLA10 CC domain was determined via X-ray crystallography to be a 

homodimer of a two intertwined helix-loop-helix motifs (Maekawa et al., 2011) 

(Figure 2). The difference between these two structures would suggest either a 
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variance in CC structures between different NBLRR proteins, or a conformational 

change upon interaction with another protein such as RanGap2 in Rx1.  

 

Recently, the structure of the Sr33 CC domain from barley has been solved using NMR 

spectroscopy. It adopts a conformation of 4 bundled α-helices, similar to Rx1, 

suggesting this structure is not merely a result of RanGap2 binding (Casey et al., 2016). 

SAXS experiments on Rx1 CC in solution suggested it also takes this conformation in 

the absence of RanGap2, and similar studies of MLA10 CC suggest that in solution it 

may also take a more compact monomeric structure (Casey et al., 2016). The dimeric 

MLA10 form may only be associated with the activated NBLLR protein initiating 

signalling. 
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Figure 2. Structures of NBLRR CC domains A. Rx1 CC crystallised as a 4 α-helix bundle (in 

cyan) both with and without the RanGAP2 WPP domain (green). Adapted from Hao et al., 

2013 B. The MLA10 CC domain crystal structure in a helix-loop helix conformation shown 

both as a monomer (in purple) and as the homodimer (purple and pink) Adapted from 

Maekawa et al., 2011 C. NMR structure of Sr33 CC domain as a 4 α-helix bundle (in blue) 

adapted from Casey et al., 2016. 

 

 

 

 

 

A. 

B. 

C. 
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1.5.2 The TIR domain 

TIR domains are involved in protein-protein interactions, often mediated through 

interactions with other TIR domains (Ve et al., 2015). They are known to be sufficient 

to initiate HR by themselves in the NBLRR proteins L6 and RPS4 (Bernoux et al., 

2011, Williams et al., 2014), suggesting that in these proteins the TIR domain may 

function as the effector domain of the protein, similar to the CC domain.  

 

The structures of TIR domains from several NBLRR proteins are known. The first 

plant TIR structure to be solved was from a truncated NBLRR protein (see Section 

1.5.5) containing only a TIR domain, AtTIR from Arabidopsis. The crystal structure 

revealed a globular, flavodoxin-like structure of five stranded parallel β-sheets 

surrounded by five α-helices. This is similar to known bacterial and mammalian TIR 

domain structures (Figure 3).  However, an extension to the D α-helix to form an αD3-

helix not seen in mammalian or bacterial TIR domains was also revealed. This was 

shown to be the site of many loss of function mutations from TIR domains, suggesting 

this extra loop is immunologically relevant (Chan et al., 2010). The flax NBLRR 

protein L6 has also been solved via X-ray crystallography (Figure 3) and shows a 

similar structure. This protein crystallised as a homodimer, with dimerization shown 

to be essential for the initiation of HR (Bernoux et al., 2011). This requirement for TIR 

domain self-interaction has also been demonstrated to be a requirement for the 

oligomerisation of the NBLRR protein N from tobacco (Mestre et al., 2002). The 

crystal structure of the paired NBLRR proteins (see section 1.5.4) RPS4 and RRS1 

TIR domains has been solved as a heterodimer. It reveals both TIR domains possessing 

a similar structure to AtTIR and L6, although RRS1 does not possess the αD3-helix 

extension (Williams et al., 2014). Heterodimerisation of RPS4 and RRS1 was shown 
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to require each protein’s TIR domains, and to be necessary for the initiation of HR 

(Williams et al., 2014).  

 

Genomic analysis of TIR-NBLRR domains found three common conserved motifs; 

TIR-1, 2, and 3 (Meyers et al., 2003). These correspond to regions spanning the 

transition across from β-sheets to α-helices in the TIR structures; TIR-1 from βA to 

αA1, TIR-2 from βC to αC, and TIR-3 from βD to αD1 (Chan et al., 2010) 
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Figure 3. Crystal structures of plant NBLRR TIR domains, all displaying a 5-stranded parallel 

beta sheet surrounded by five α-helices. A. AtTIR (yellow) with the extra D3 helix highlighted 

in red. Adapted from Chan et al., 2010 B. The L6 TIR domain. Adapted from Bernoux et al., 

2011 C. TIR domains from RPS4 (orange) and RRS1 (cyan) together as a heterodimer. 

Adapted from Williams et al., 2014. E. AtTIR (blue) superimposed on the human TIR domain 

structure MyDD8 (green) showing the insertion of the extra helical region. Adapted from Chan 

et al., 2010. 

 

A. B. 

E. 

D. C. 
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1.5.3 The NBARC domain 

The central NBARC domain can be broken down into 3 sub-domains. NB, ARC-1 and 

ARC-2. The NB domain is named after its nucleotide binding role and the two ARC 

domains are named for the group of proteins that share this subdomain; Apaf-1, R 

proteins, and CED-4 (Takken et al., 2012). The NBARC domain is hypothesised to 

possess a nucleotide hydrolysis activity. This nucleotide hydrolysis activity is thought 

to result in a conformational shift that activates the protein, switching it between an 

‘on’ and ‘off’ state to enable signalling (Takken et al., 2012). In the potato NBLRR 

Rx1 the NB subdomain is sufficient to induce HR (Rairden et al., 2008), suggesting 

that in some cases this domain may also have an independent signalling effector 

activity. There are currently no solved crystal structures of NBLRR NBARC domains. 

The aforementioned Apaf-1 and CED-4 structures have both been solved using X-ray 

crystallography (Zhou et al., 2015, Yan et al., 2007). These both show a hutch-like 

structure consisting of a tetramer of homodimers. 

 

Homology models of NBLRR NBARC domain structure have been generated based 

on Apaf-1, CED-4 and other STAND proteins (Figure 4.). The NB domain is predicted 

to consist of a five-stranded parallel β-sheet surrounded by seven α-helices. ARC1 is 

predicted to form a bundle of four α-helices, and ARC-2 a winged helix fold. Several 

motifs common to AAA+ ATPases are predicted within the NBARC domain of 

NBLRR proteins, and have been found to be conserved across multiple NBLRR 

proteins. These include the hhGRExE, walker A/p-loop, MHD, Walker B, GLPL, and 

RNBSA to D motifs (Meyers et al., 2003). The consensus sequences and any known 

functional roles of these motifs in ATP hydrolysis are summarised in Table 2.  
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Figure 4. A homology model of the NBARC domain of I-2 bound to ADP modelled on Apaf-

1. The NB, ARC1 and ARC2 subdomains are coloured red, purple and blue respectively. 

Conserved motifs are marked. Adapted from Lukasik et al., 2009. 

 

Table 2. Conserved protein motifs found in plant NBLRR protein NBARC domains, their 

subdomain location, consensus sequence and any putative ATP hydrolysis function. x denotes 

any amino acid residue, h a hydrophobic residue, o an alcoholic residue. Adapted from Takken 

et al., 2006 and Meyers et al., 2003. 

 

Motif 
Subdomain 

Location 

Consensus 

Sequence 
Putative Function 

hhGRExE NB hhGRExE 
R forms H-bond with adenine base via a water 

molecule 

P-loop/ 

Walker A 
NB GxxxxGKS/T 

K Binds α and β Phosphates, S/T coordinates 

Mg2+ ion 

RNBS-A NB 
FDLxAWVCVS

QxF 
S forms ATP binding biding pocket 

Walker B NB hhhhDD/E 

D coordinates second Mg2+ ion via a water 

molecule, D/E is an acid catalyst for ATP 

hydrolysis 

RNBS-B NB hhhhToR 
R senses γ-phosphate and relays the information 

to other parts of the protein 

RNBS-C ARC1 
YEVxxLSEDEA

WELFCKxAF 
Unknown, not predicted to form binding pocket 

GLPL ARC1 GxP G and P form ATP binding biding pocket 

RNBS-D ARC2 FLxxAxF Unknown, not predicted to form binding pocket 

MHD ARC2 hxhHD H interacts with β-phosphate 
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The ATPase activity of plant NBLRR NBARC domains have been demonstrated in 

vitro using recombinant CCNBARC domain from the tomato NBLRR protein I-2 

(Tameling et al. 2002). Mutation to residues in the RNBS-A and Walker B motifs that 

prevent nucleotide hydrolysis have been shown to result in autoactivation of immune 

signalling in I-2, whereas mutations to the p-loop of this protein that prevent nucleotide 

binding result in immunologically inactive protein (Tameling et al., 2006). This 

suggests that I-2 is bound to ATP in an active state and ADP in an inactive state. 

Recombinant Mi-1 from tomato has similarly been shown to have an ATPase activity 

(Tameling et al., 2002).  M from flax giving resistance to rust disease has also been 

shown to co-purify with ADP in an inactive state, and autoactive M to co-purify with 

ATP. This suggests that the ADP ‘off’ state and ATP ‘on’ state model may be conserved 

across multiple NBLRR proteins (Williams et al., 2011). 

 

However, this mode of action is not universal. The R protein N from tobacco co-

purifies with ADP in the active state and ATP in the inactive state (Ueda et al., 2006), 

in a reversal of what is seen in I-2 and M. Recombinant NB domain of the rice NBLRR 

protein R1, as well as NBARC PSiP from corn and RPM1 from A. thaliana have been 

shown to not possess a simple ATPase activity. Instead, they cleave ATP down to its 

nucleoside via a sequential removal of all three phosphates (Fenyk et al 2012). These 

cases of differing nucleotide hydrolysis activities and differing effects of nucleotide 

hydrolysis on NBLRR protein function suggest that one simple ‘ATPase switch’ model 

is not conserved across all NBLRR proteins. Instead, it appears that different NBLRR 

proteins have evolved to adapt NBARC domain nucleotide hydrolysis activity to 

different ends. 
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Some studies have also suggested that the NBARC domain may have a role in effecting 

signal transduction in addition to its role as a conformational switch. Homology 

modelling of Rx1 NBARC domain showed a high a degree of similarity to the DNA 

binding AAA+ ATPases CDC-6 and Orc1, leading to the hypothesis that this NBLRR 

protein may also bind DNA (Fenyk et al., 2015). Recombinant Rx1 CCNBARC 

refolded from E. coli was shown to bind DNA, distort DNA in response to ATP and 

induce DNA melting in vitro using EMSA and FRET-FLIM. DNA binding was 

confirmed not to be an artefact of refolding using in vitro EMSA assays on full length 

Rx1 expressed in and purified from N. benthamiana leaves (Fenyk et al. 2015). Rx1 

has a preference for binding ssDNA over dsDNA. Mutation of the p-loop was not 

found to affect DNA binding in Rx1, but did prevent DNA deformation in response to 

ATP (Fenyk et al., 2015), suggesting nucleotide hydrolysis may be involved in this.  

 

Recombinant I-2 NBARC domain has also been found to have a DNA binding activity 

(Fenyk et al., 2016), suggesting DNA binding may be a conserved activity across 

multiple NBLRR proteins. However there were differences in the DNA binding 

properties of I-2 compared to those of Rx1. I-2 showed a preference for double 

stranded DNA over single stranded, the reverse of Rx1’s affinity. It was found to bend 

DNA to lesser angle than Rx1. I-2 also had a stronger affinity for DNA in the presence 

of ATP and with a non-hydolysable ATP analogue than with ADP. DNA binding was 

shown stimulate I-2 ATPase activity (Fenyk et al., 2016). These results suggest that I-

2 may bind DNA in an activated ATP bound state to initiate ETI. DNA binding studies 

have currently only been performed in an in vitro system, leaving the biological 

relevance of this DNA binding activity in the plant cell currently undetermined.  
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1.5.4 The LRR domain 

LRR domains are common to many proteins and are known to be involved in protein-

protein interactions (Kobe et al., 2001). They contain a characteristic LxxLxLxxNxL 

pattern of leucine and other hydrophobic residues interspersed with hydrophilic 

residues repeated multiple times (Padmanabhan et al., 2009). In NBLRR proteins the 

C–terminal LRR domain is believed to be the sensor domain that mediates pathogen 

detection. This region displays high variability in the sequence and length of these 

repeats across different NBLRR proteins, which may be the result of a high 

evolutionary pressure to detect different effector proteins (Padmanabhan et al., 2009). 

 

No LRR structures have been solved for NBLRR proteins. However, many LRR 

structures have been solved for other proteins. Homology modelling of the Lr10 LRR 

domain based on these other LRR structures reveals an elongated horseshoe-like 

structure giving a large surface area for interaction with other proteins. This was 

predicted to possess a positively charged N-terminal and a hydrophobic C-terminal 

region (Sela et al., 2012). It is hypothesised that an association between the LRR 

domain and a pathogen effector, perhaps through an intermediary protein, results in a 

conformational shift in the LRR domain that leads to activation of the NBLRR protein 

and the initiation of defence signalling (Padmanabhan et al., 2009). Mutation of 

putative surface hydrophobic residues in NBLRR proteins such as LR10 (Sela et al., 

2012) and L6, L7 and L8 (Dodds et al., 2006) is known to reduce the specificity of 

disease resistance, supporting this hypothesis. 
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1.5.5 Domain Variations 

There are many instances known of variations on this archetypal three domain 

structure; cases of NBLRR proteins with extra domains, different domains and missing 

domains have all been described (Table 1). Alternative N-terminal domains can be 

seen in bryophytes (mosses and liverworts), which branched off from other plant 

lineages approximately 450 million years ago. A survey of the genome of the moss 

Physcomitrella patens found a class of NBLRR proteins where the N-terminal CC/TIR 

domain is replaced with a protein kinase (PK) domain (Xue et al., 2012). A similar 

survey of the liverwort Marchantia polymorpha found a class of NBLRR proteins 

where the N-terminal CC/TIR domain is replaced with a domain homologous to α/β-

hydrolase known as an HNL domain (Xue et al., 2012). Different N-terminal domains 

in poplar and Arabidopsis are also known. A genome wide analysis of these species 

identified NBLRR proteins containing a BED Zinc-ring finger DNA binding domain 

in lieu of the CC/TIR domain (Kohler el al., 2008). 

 

Additional domains are also seen in multiple instances. A subclass of NBLRR proteins 

in Solanaceous plants contain an N-terminal leucine zipper domain (known as a 

Solanaceous domain, abbreviated to SD), known to be involved in DNA binding, in 

addition to their CC domain (Milligan et al., 1998). Examples of these include the 

tomato NBLRR proteins Prf and Mi. An Additional LIM domain is incorporated into 

the C-terminus of CSH3, an Arabidopsis NBLRR protein (Yang et al., 2012). CSH3 is 

known to have a role in freezing resistance (Yang et al., 2012), but LIM domain 

mutation results in immunological autoactivity, suggesting these domains can also 

have an immune function (Bi et al., 2011). RLM3 from Arabidopsis has an extra 
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BREVIS RADIX (BRX) domain incorporated at its C-terminus and provides 

immunity to a broad range of necrotrophic fungal infections (Staal et al., 2008). 

 

Some NBLRR proteins are known to act in pairs, often where one protein takes on a 

role as the sensor of the effector and another acts as the executor of defence signalling 

after interacting with the first (Sukarta et al., 2016). It is common in these proteins to 

see extra domains incorporated into the sensor NBLRR protein (Table 1). These are 

thought to be domains that mimic the targets of effector proteins. The effector proteins 

will bind these domains integrated into the NBLRR sensor, resulting in a 

conformational shift that initiates defence signalling. This is known as the integrated 

decoy hypothesis (van der Hoorn et al., 2008). 

 

An example of this can be seen in the sensing of PopP2 by RRS1. The bacterial effector 

protein PopP2 interferes with WRKY transcription factors that play a role in PAMP-

mediated immunity through a lysine acetylase activity (Sarris et al., 2015). The 

Arabidopsis NBLRR protein RRS1 (paired with RPS4) has a WRKY domain 

incorporated into its N-terminus. PopP2 binds this domain, which will results in RRS1 

initiating defence signalling (Césari et al., 2014). 

 

Similarly, HMA (heavy metal associated) domains are also hypothesised to be used by 

some NBLRR proteins as integrated decoys. HMA proteins are the target of AVR-Pik 

effector proteins (Maqbool et al., 2015). For instance, RGA4 (paired with RGA5) has 

a C-terminal HMA domain used to detect the effector proteins AVR-Pia and AVR1-

CO39 (Césari et al., 2013). Pikp1 (paired with Pikp-2) has an HMA domain between 
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the CC and NBARC domains. This is used to sense the effector protein AVR-PikD 

(Maqbool et al., 2015). 

 

The barley NBLRR protein RPG5 has been shown to act as pair with RPG4 to provide 

resistance against wheat stem rust (Brueggeman et al., 2008). RPG5 possesses a 

serine/threonine protein kinase-like domain integrated at its C-terminus that is known 

to be required for the protein to function (Brueggeman et al., 2008). This kinase 

domain displays homology to the surface localised receptor kinase protein Pto, a 

known effector target that is guarded by the NBLRR protein Prf (Brueggeman et al., 

2008). It is hence hypothesised that this domain is another integrated decoy used to 

sense these effectors. 

 

Examples of truncated versions of the archetypal three domain NBLRR protein are 

also known (Table 1). RPW8 consists solely of a CC domain, with no NBARC or LRR 

but is still known to confer resistance to powdery mildew in Arabidopsis (Xiao et al., 

2001).  

 

Many plant TIR containing proteins without LRR domains (known as TNS proteins), 

or without both an NBARC and an LRR domain (known as TX proteins) have also 

been shown to have immunological functions (Nandety et al., 2013). TN2 is a TNS 

protein that has been shown to be required to activate defence responses using 

exocytosis compromised Arabidopsis mutants (Zhao et al., 2015).  
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1.6 Subcellular Localisation of NBLRR Proteins. 

Many NBLRR proteins possess a nucleocytoplasmic distribution within the cell. 

Examples of this include Rx1, RPS4 and MLA10 (Slootweg et al., 2010, Wirthmueller 

et al., 2008, Shen et al., 2008). This distribution is known to be required for immunity. 

A purely nuclear or cytoplasmic distribution can result in a lack of HR (Slootweg et 

al., 2010).  

 

The way this distribution is maintained varies for different NBLRR proteins. Some 

NBLRR proteins are known to possess signal peptides that aid in their subcellular 

localisation. For example, RPS4 possesses an NLS signal peptide that allows 

trafficking of the protein to the nucleus (Wirthmueller et al., 2008). Meanwhile, the 

localisation of Rx1 is thought to depend more on its constituent domains. Deletion of 

the CC domain results in cytoplasmic distribution while deletion of the LRR results in 

a nuclear distribution. Mutation of the p-loop region also results in a cytoplasmic rather 

than a nucleocytoplasmic distribution. However, this effect is only seen in full-length 

constructs; truncated NBARC p-loop mutant constructs maintain a normal distribution 

(Slootweg et al., 2010). This nucleocytoplasmic distribution is also known to be 

dependent on multiple interacting proteins (see section 1.7.3 for details).  

 

Some NBLRR proteins, however, are known to deviate from this typical 

nucleocytoplasmic distribution. This is common in paired NBLRR sensor proteins, 

which are often localised to the site of action of their cognate effector proteins. Their 

paired executors, meanwhile, tend to maintain a nucleocytoplasmic distribution to 

effect ETI signalling. An example of this is RRS1-R, which is localised to the nucleus 

(Deslandes et al., 2003) where it senses the effector PopP2 that targets transcription 
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factors (Césari et al., 2014)(section 1.5.5). Its signalling executor pair RPS4, 

meanwhile, has a nucleocytoplasmic localisation (Wirthmueller et al., 2008). 

Similarly, the paired receptor sensor Rpg5 is known to be localised to the plant cell 

membrane to aid the sensing of effectors that target PTI signalling kinases there 

(Brueggeman et al., 2008). 

  

A nuclear localisation of NBLRR proteins has been associated with generic defence 

signalling, whereas a cytoplasmic localisation is thought to be involved in initiating 

HR (Heidrich et al., 2011).  

 

 

1.7 NB-LRR Protein interactors 

This section aims to review the various inter-protein interactions known to play a role 

in NBLRR protein function. 

 

1.7.1 Effector, Guardee and Decoy Interactors 

Some R proteins have been shown to interact directly with their bacterial effector p 

roteins to initiate signalling (Figure 5). For example, Pi-ta binds AVR-pita (Jia et al., 

2000) and L5, L6 and L7 in flax all physically interact with AVR-L5,6 and 7 in a yeast 

2-hybrid assay. Like for like changes in surface hydrophobic residues of the LRR and 

L5-6 regions can lead to changes in effector allele resistance (Dodds et al., 2006) 

suggesting it is the LRR domain mediating this direct binding.  

 

However, these cases are in the minority. Most NBLRR proteins require some sort of 

intermediary plant protein to bind to that in turn binds the effector. These can be the 
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targets of effector proteins that an R protein will bind to and utilise to sense the effector 

(Figure 5). These are known as guardee proteins as they are ‘guarded’ by the R protein. 

An example of this is RPS5, which binds its guardee PBS1 and detects conformation 

change in it caused by AVRPphb cleaving its activation loop (Qi et al., 2012). Often 

the N-terminus of the R protein is used to interact with the guard. The LRR then detects 

specific change in the guard protein conformation caused by effector. RPS5 detects 

PPBS1 via its CC domain, and activation loop cleavage is detected by the LRR (Qi et 

al., 2012).  

 

Another example of guardee mediated sensing is seen in the tobacco NBLRR protein 

N. N is known to sense the viral effector p50 in an interaction mediated by the guardee 

NRIP1, a functional rhodanese sulfurtransferase. NRIP1 is required for N mediated 

immunity and has been shown to interact both with N (through its N-terminal TIR 

domain) and with p50 via co-immunoprecipitation (Caplan et al., 2008). 

 

Proteins that mimic targets of effectors but are not themselves functional PTI 

signalling molecules are also known to be used as intermediary interactors between 

NBLRR proteins and pathogen effectors, and are known as decoys (Figure 5, see 

section 1.5.5 for a description of decoy domains integrated into NBLRR protein 

structure resulting in direct binding of the effector). An example of a decoy is ZED1. 

ZED1 is acetylated by the Pseudomonas effector protein HopZ1A, which targets 

receptor like cytoplasmic kinases that trigger PTI (Lewis et al., 2013). The NBLRR 

protein ZAR1 interacts with ZED1 to detect HopZ1A. However, ZED1 has no kinase 

activity itself, which suggests that it is a non-functional decoy, rather than a guard 

(Lewis et al., 2013).  
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FLS2 and BAK1 are kinases that form a PTI signalling complex after the recognition 

of bacterial flagellins (Xiang et al., 2008). They are targeted by the effector proteins 

AvrPto and AvrPtoB to inhibit PTI (Shan et al., 2008). Pto is a surface signalling kinase 

that also binds AvrPto and AvrPtoB and forms a complex with the NBLRR protein Prf 

(which has a unique N-terminal domain that mediates this reaction) but does not signal 

PTI (Ntoukakis et al., 2013). Instead, effector binding activates the Pto-Prf complex to 

initiate ETI signalling, making Pto another instance of a decoy rather than a guard 

(Ntoukakis et al., 2013). 
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Figure 5. A schematic of different modes of NBLRR effector protein sensing. A. Direct 

sensing of effector proteins by the NBLRR protein. B. The NBLRR ‘guards’ a target of the 

effector protein by interacting with it, detecting the binding of the effector to the guardee. C. 

The NBLRR protein interacts with a decoy. The decoy is a nonfunctional imitation of the 

effector protein target that the effector will also bind to. The NBLRR protein then detects 

effector-decoy binding. D. Decoy domains can be integrated directly into the NBLRR protein 

structure in a paired integrated decoy NBLRR protein where one NBLRR protein senses the 

effector and another initiates ETI (see section 1.5.5).  
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1.7.2 NBLRR Folding Interactors 

 The strong immune activation triggered by NBLRR proteins, and the lethal 

consequences for the cell upon their activation, result in a strong need for regulation 

of NBLRR proteins. Many other proteins have been shown to interact with NBLRR 

protein to help provide this regulation. 

 

Hsp90 is an ATP driven chaperone that assists protein folding. PP5 (protein 

phosphatase 5) complexes with Hsp90 and also aids NBLRR protein folding (Muskett 

et al., 2002). RAR1 also complexes with Hsp90 and enables sufficient MLA6 

accumulation to provide resistance (Bieri et al., 2004) and has also been shown to aid 

in the folding of N (Liu et al.,2004). RSI2 is an ATP independent chaperone, separate 

from this complex, the silencing of which prevents I-2 accumulation (Van Ooijen et 

al., 2010) suggesting it also aids in NBLRR protein folding. 

 

SGT1 (suppressor of the G2 allele of Skp1) is an HSP90 specific adaptor that helps 

form the Hsp90 complex (Kadota et al 2008). Rx1 has been shown to associate with 

SGT1. SGT1 also binds the SCF complex. SCF complexes are ubiquitin E3 ligases 

that target proteins for proteosomal degradation. The protein COP9 is known to 

interact with this promoting protein recycling.  Both COP9 and the SCF complexes 

are also known to interact with NBLRR proteins such as N (Cheng et al., 2011, Liu et 

al., 2002). It is thought that SGT1 mediates NBLRR proteins between the Hsp90 

complex for proper folding, and the SCF complex for degradation to prevent the build-

up of harmful excess of misfolded NBLRR protein. 
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1.7.3 Regulators of NBLRR localisation 

Regulation of NBLRR protein localisation has also been linked to interacting proteins. 

The aforementioned SGT1 is also required for nucleocytoplasmic distribution of Rx1 

and N. Silencing of SGT1 results in a cytoplasmic accumulation of Rx1 (Slootweg et 

al., 2010). It is hypothesised that SGT1 ensures proper folding of NBLRR proteins 

before they are trafficked into the nucleus away from the cell’s protein folding 

regulators. 

 

The CC domain of Rx1 has been shown to interact with the protein RanGap2 (Sacco 

el al., 2007). The regions of the CC domain flanking a conserved EDVID motif rather 

than the motif itself have been found to be required for this interaction (Rairdan et al., 

2008). It has been hypothesised that RanGap2 is required to help maintain the 

nucleocytoplasmic distribution of Rx1 that is required for protein function. The CC 

domain is known to favour a nuclear localisation of Rx1 and the LRR a cytoplasmic 

(Slootweg et al., 2010). 

 

 

 

1.7.4 Potential DNA binding regulators 

Section 1.5.3 describes a potential DNA binding activity of Rx1. Some R proteins are 

known to interact with transcription factors that could be regulators of an NBLRR 

DNA binding activity. Interaction between MLA10 and its cognate effector A10 has 

been shown to lead to an interaction with the transcription factors WRKY and MYB6 

(Shen et al., 2008, Chang et al., 2013). WRKY acts as a suppressor of PTI and MYB6 

as a promoter. The MLA10 interaction suppresses the suppressor WRKY activity and 
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promotes MYB6 (Chang et al., 2013). However, section 1.5.5 described the use of a 

WRKY domain as an integrated decoy in RRS1, and the possibility of these 

transcription factors being guardee proteins for MLA10 has not been excluded. 

 

 

1.8 NBLRR protein oligomerisation 

Section 1.5 stated that many STAND proteins are known to initiate signalling 

transduction through the formation of a diverse array of oligomeric structures, and it 

has been hypothesised that this is also the case for NBLRR proteins. Indeed, there are 

some known examples of NBLRR proteins oligomerising to initiate signal 

transduction. The Pto-Prf complex described in section 1.7.1 is known to be 

oligomeric, with the activation of ETI signalling caused by Pto proteins 

phosphorylating each other within the oligomer (Ntoukakis et al., 2013). N from 

tobacco is also known to oligomerise when initiating signalling transduction in the 

presence of the viral elicitor p50 and its guard NRIP1 (Mestre et al., 2006). Finally, 

RPS5 has also known to self-associate to form dimers or possibly oligomers using co-

immunoprecipitation via all three of its archetypal domains (Ade at al., 2007). Many 

examples of dimerisation are known to be mediated by CC and TIR domains, and these 

have been shown to be sufficient to initiate HR (Bernoux et al., 2011, Maekawa et al., 

2011, Williams et al., 2015, see Sections 1.4.1 and 1.4.2). 

 

However, this activity like many others is not universal across all NBLRR proteins: 

The CC domain of Rp1 has been shown to initiate HR and self-associate, like many 

other NBLRR CC domains. However, mutants deficient in self-association are not 

deficient in HR. This implies Rp1 can initiate HR in a monomeric state, and 
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dimerization may not be required for the protein to function (Wang et al., 2015). 

Additionally, RNBS-A mutants of N, compromised in putative nucleotide hydrolysis 

activity, are unable to initiate ETI. They can, however, still oligomerise. Hence, 

oligomerisation in and of itself is not sufficient to induce ETI in this instance (Mestre 

et al., 2006). 

 

1.9 Interdomain interactions  

The different NBLRR domains are known to be involved in many interdomain 

interactions that help to regulate protein function. Co-immunoprecipitation 

experiments have shown the Rx1 NBARC domain to interact with Rx1 LRR when 

expressed in trans (Bendahmane et al., 2002), specifically between the ARC-2 

subdomain and the N-terminal region of the LRR domain (Rairdan et al., 2006). Rx1 

CCNBARC binds the Rx1 LRR domain in the absence but not presence of its cognate 

effector CP106 (Moffet et al., 2002), suggesting the interaction with the LRR is 

inhibiting CCBARC activation and this inhibition is released by the effector.  

 

Mutations to the ARC-2 region responsible for this interaction, such as the D to V 

mutation to the MHD motif and mutations to the RNBS-D motif, result in protein 

autoactivity (Bendahmane et al., 2002). The ARC2 region is hence thought to mediate 

changes from the LRR to the NBARC domain, repressing NBARC activity in the 

absence of the effector and activating it in its presence.  

 

Coevolution between interacting domains maintains this interaction. Incompatibility 

results in autoactive protein lethal to the plant cell and this results in a strong selection 

pressure for interacting domains. Changes in sequence in one domain that would 
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compromise the interaction are compensated for by changes in the other domain. This 

effect can be seen in studies examining interactions between NBARC and LRR 

domains of 2 different NBLRR proteins. For example RPS5 and RPS2 NBARC and 

LRR domains will interact but the resulting chimera is autoactive, showing that 

inhibition has been compromised by their divergent sequences (Qi et al., 2012). More 

closely related NBLRR proteins, however, such as Rx1 and Gpa2 (both from the same 

gene locus in tomato, and displaying high sequence similarity) will interact to form a 

functional autoinhibited protein (Slootweg et al., 2013). 

 

These interactions between different NBLRR protein domains have been used as a tool 

to characterize the interaction. In Rx1 and Gpa2 these interactions were modelled to 

be between an acidic loop in the ARC2 region and the N-terminal charged region of 

the LRR (Slootweg et al., 2013). Stepwise truncation of RPS5 LRR domain shows the 

4 N-terminal repeats responsible for the interaction (Qi et al., 2015). Mutations to the 

p-loop do not affect LRR binding (Rairdan et al., 2006), however some mutations to 

the Rx1 nucleotide-binding pocket have been shown to broaden the range of pathogens 

that activate the protein, showing again that sequence variations within the two 

domains changes the dynamic of this interaction (Harris et al., 2012). These studies 

have led to the conclusion that the LRR domain has an autoinhibiting effect on the 

NBARC domain, maintaining an ‘off’ configuration with regards to nucleotide 

hydrolysis. This maintains a stable resting state in the protein that prevents premature 

activation of the protein and cell death.  

 

Interactions between other domains are also important for protein function. The Rpm1 

CC interacts with the NBARC domain. This inhibits CC mediated HR, showing that 
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in certain cases the NBARC domain can also have an autoinhibitory role. Mutation of 

the conserved EDVID motif within the CC domain reduced the strength of this 

interaction and restores HR. (Wang et al., 2015). The CC domain has also been shown 

to interact with both the LRR and NB domains of Rx1 using co-immunoprecipitation. 

The EDVIV motif within the CC domain has been shown to be required for this 

interaction (Rairden et al., 2008). The LRR domain does not interact with the CC 

domain in Rpm1 (Wang et al., 2015) showing that there are differences in interdomain 

interactions between different NBLRR proteins.  

 

Novel domains in NBLRR proteins can also play a role in autoinhibition. Section 1.4.5 

described a class of NBLRR proteins in Solanaceous plants with a novel N-terminal 

SD domain. This SD domain (specifically an SD2 subdomain) interacts with the CC 

domain in Mi1.2 and inhibits its HR activity (Lukasik-Shreepaathy et al., 2012). 

 

 

1.10 A model of archetypal NB-LRR function  

This leads us to an archetypal model of a protein switch, moderated by a nucleotide 

binding/hydrolysis activity in the central NBARC domain. This activity is 

autoinhibited by the LRR domain in a resting state. Effector/guard/decoy binding then 

results in a conformational shift in the LRR domain. This weakens the interaction with 

the NBARC domain, which in turn ends LRR mediated inhibition of the NBARC 

domain nucleotide hydrolysis/exchange activity. The resulting conformational shift 

within the NBARC domain to an ‘ON’ state, associated with nucleotide 

hydrolysis/exchange, ends NBARC domain inhibition of the CC/TIR effector domain 

(Figure 6). The activated protein then initiates defence signalling by an unknown 
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mechanism through the TIR/CC effector domain, possibly DNA binding, to initiate 

ETI and HR. Every step of this is tightly regulated by a range of interacting proteins 

to help prevent premature activation and cell death.  
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Figure 6. A simplified model of archetypal NB-LRR protein function. Adapted from Takken 

et al., 2010 A. SGT1 mediates between correct folding of the NBLRR protein by chaperones 

and proteosomal degradation of excess protein. B. The protein remains in an autoinhibited 

‘off’ state by interdomain interaction until activation by effector/guard/decoy protein binding 

releases these via a conformational shift. C. Some form of nucleotide hydrolysis/exchange in 

the uninhibited NBARC domain induces a conformational shift to the ‘ON’ state. D. The 

activated NBLRR protein induces HR and defence signalling through an unknown 

mechanism, possibly DNA binding. 

 

 

1.11 Conclusion 

NBLRR proteins are a large family of plant immune receptors that mediate an extreme 

form of defence signalling. They are characterised by their three domains: an N-

terminal CC or TIR domain, believed to be an effector domain; a middle NBRAC 

domain, thought to act as a molecular switch to toggle the protein between an active 

an inactive state; and finally a C-terminal LRR domain believed to be involved in 

pathogen sensing. 

 

The mechanism through which NBLRR proteins initiate defence signalling is currently 

unknown. There is evidence that the central NBARC domain is involved in DNA 

binding and unwinding in the NBLRR proteins Rx1 and I-2, and this could indicate 

these proteins acting as transcription factors to initiate the defence response.  

However, currently the immunological effect of any DNA binding activity remains 

unknown. 

 

It should also be noted that there can be a high degree of variability between different 

NBLRR proteins in sequence, structure, subcellular localisation and biochemical 
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activity. What is known to be the case for one NBLRR protein cannot be generalised 

to all or even many others without further supporting evidence. 

 

This thesis describes experiments with the aim of demonstrating Rx1 DNA binding 

activity in plant leaf material. This shall determine if the in vitro activity previously 

shown is biologically relevant, and what affect this activity has on Rx1 triggered 

immunity. Experiments with the aim of describing how any Rx1 DNA binding activity 

in plants is regulated are also described. 
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Aims and Objectives 

 
Previous work had shown plant NBLRR proteins binding DNA in vitro (Fenyk et al., 

2015). It was hypothesised that NBLRR proteins bind DNA in planta and that this 

activity plays a role in the currently unknown mechanism through which they initiate 

defence signalling. This thesis describes experiments with the aim of demonstrating 

the DNA binding activity of the potato NBLRR protein Rx1 in planta, determining 

which protein domains are responsible for DNA binding, under what biological 

conditions DNA binding occurs. Additionally, experiments that attempt to identify 

proteins that interact with Rx1 to regulate its DNA binding activity are described. 

Together, these experiments aim to build a model of how Rx1 specifically and NBLRR 

proteins in general might initiate defence signalling through DNA binding. 
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2. Materials and Methods 

 

2.1 Chemical reagents and equipment 

All materials purchased were from sigma unless otherwise stated. 

 

2.2 DNA methods 

 

2.2.1 PCR 

DNA fragments were amplified using Phusion polymerase (Thermo Scientific). The 

PCR reaction mixture was set up as per the manufacturer’s instructions. The reaction 

was heated to 95 °C for 2 min. It was then annealed at 58° C for 1 min, elongated at 

72 °C for 30 seconds per kilobase of DNA in the fragment, and then denatured at 95 

°C for 1 min. This was repeated for 30 cycles, after which the reaction was cooled to 

4 °C. The product was resolved using agarose gel electrophoresis (2.2.11). 

 

2.2.2  LR  and BP gateway cloning Reactions 

PCR product  (10 ng) was mixed with 100 ng of target vector in a total reaction volume 

of 8 µl with TE reaction buffer pH 8.0. 2 µl of the appropriate Clonase enzyme mix 

(Invitogen) was added (Gateway® LR Clonase® II enzyme mix and Gateway® BP 

Clonase® II enzyme mix respectively) and the mixture incubated at 25 °C for 1 hour. 

1 µl of Invitrogen proteinase K mixture (2 µg/µl proteinase K) were added and the 

mixture incubated at 37 °C for 10 min. 
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2.2.3 Miniprep of plasmid DNA 

The manufacturer’s instructions were used (Qiagen Miniprep kit), and the product 

quantified using a Nanodrop spectrophotometer (2.2.12). 

 

2.2.4 Preparation of chemically competent E. coli via CaCl2 

LB containing the appropriate antibiotic (100 ml) was seeded with 2 ml of overnight 

E. coli culture and grown to OD600= 0.5 at 37°C and 200 rpm. The culture was cooled 

to 4°C and centrifuged at 4000 g for 10 min at 4°C. The supernatant was discarded and 

the pellet resuspended in 50 ml of a solution of 20 mM CaCl2, 80 mM MgCl2 at 4°C. 

This was again centrifuged at 4000 g for 10 min at 4°C, the supernatant discarded and 

the pellet resuspended in 4 ml of 100 mM CaCl2, 20% (v/v) glycerol. The resulting 

suspension of competent E. coli was separated into 80 μl aliquots and frozen at -80°C 

until further use (Sambrook et al., 1989). 

 

2.2.5 Transformation into E. coli 

Between 10 to 150 ng of DNA were added to 80 μl of E. coli cells made competent 

with CaCl2 (2.2.4). This was incubated on ice for 20 min, then heat shocked at 42°C 

for 45 seconds before being returned to ice for 2 min. 1 ml of SOC media at 37°C was 

added and the resulting mixture incubated at 37°C for 1 hour. 100 μl of culture was 

spread onto an LB agar plate containing the appropriate antibiotic. The remaining 

culture was centrifuged at 4000 g for 5 min, the supernatant discarded, and the pellet 

resuspended in 100 μl of SOC media. This was spread onto another LB agar plate 

containing the appropriate antibiotic. Plates were incubated overnight at 37°C 

(Sambrook et al., 1989). 

 



 54 

2.2.6 Colony PCR  

A 25 µl reaction mixture was setup containing 17 μl of milliQ water, 2.5 μl of dNTPs 

(200 μM), 2.5 μl 10x Taq Bioline Red reaction buffer, 1.5 mM MgCl2, 1 μl of each 

primer (1 ng/µl) and 0.5 μl (2.5 units) of Taq Bioline Red polymerase. A pipette tip 

was then touched to a colony and dipped into the reaction mixture. The mixture was 

then subjected to PCR with the same reaction conditions as 2.2.1. 

 

2.2.7 Agarose gel electrophoresis 

DNA solution (20 µl) was loaded onto a 1 % (v/w) agarose TAE (40mM Tris, 20mM 

acetic acid, and 1mM EDTA) gel containing 10 ng/ml ethidium bromide. 5µl of DNA 

Hyperladder 1 (Thermo-Scientific) was added to an adjacent lane to resolve fragment 

size. The gel was then run in TAE buffer for 20 min at 120 V. The DNA bands were 

then visualized under UV light. 

 

2.2.8 DNA purification from an agarose gel 

The desired band was excised from the gel and transferred to a 1.5 ml eppendorf tube. 

1 ml of DNA binding buffer (6 M sodium perchlorate, 50 mM Tris-HCl pH 8.0, 10 

mM EDTA) was added and the mixture incubated at 60°C for 30 min to dissolve the 

agarose. 8 μl of DNA binding matrix was added and the mixture incubated at 20°C for 

half an hour (30 min) with regular agitation. The mixture was microfuged for 1 min at 

13,500 g and the supernatant discarded. The pellet was washed once with 125 μl of 

DNA binding buffer, and then twice with 750 μl of DNA wash buffer (20 mM Tris-

HCl p.H. 7.5, 2 mM EDTA, 400 mM NaCl, 50% (v/v) ethanol). The resulting pellet 

was dried for 5 min at 37°C before being resuspended in 15 μl of water. This was 
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incubated for 10 min at 37°C before being microfuged for 1 min at 13500 g. The 

supernatant was removed and the pellet discarded. 

 

2.2.9 Preparation of bacterial glycerol stocks 

A 5 ml culture of bacteria containing the desired construct was grown overnight in LB 

media with the appropriate antibiotic in an shaking incubator at 30°C and 200 rpm. 

This was centrifuged at 4000 g for 5 min and the supernatant discarded. The pellet was 

resuspended in YEB media with 40% (v/v) glycerol and then frozen at -150°C.  

 

2.2.10 Preparation of chemically competent Agrobacterium tumefaciens 

GV3101 via CaCl2 

A 5 ml culture of A. tumefaciens GV3101 in YEB media was grown overnight in a 

shaking incubator at 30°C and 200 rpm. This was added to 50 ml of YEB and the 

mixture incubated at 30°C and 200 rpm until OD600 = 0.5. The culture was centrifuged 

at 4000 g for 5 min. The supernatant was discarded and the pellet resuspended in 25 

ml of 4°C 150 mM NaCl. The suspension was incubated on ice for 15 min before 

centrifugation for 5 min at 4000 g. The supernatant was discarded, and the pellet 

resuspended in 20 ml CaCl2 and aliquoted into 100 μl portions. These were frozen on 

dry ice and then either used immediately for transformation or stored at -80 °C.  
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2.2.11 Transformation into Agrobacterium tumefaciens GV3101 

A 100 μl aliquot of competent Agrobacterium tumefaciens GV3101 was thawed on ice 

and 1 μl of the appropriate construct added. The cells were frozen on dry ice, and then 

incubated at 37°C for 5 min. 1 ml of YEB medium was then added and the culture 

grown in a shaking incubator for 2-4 hours at 30°C and 200 rpm. The cultures were 

centrifuged at 800 g for 3 min and spread onto a YEB plate containing the appropriate 

antibiotic, which was incubated at 30°C for 2 days.  

 

2.2.12 Determination of DNA Concentration Via Nanodrop 

Spectrophotometer 

A Nanodrop spectrophotometer (Thermo-Scientific) was blanked using 2 µl of milliQ 

water. 2 µl of DNA solution were placed on the Nanodrop and the absorbance 

measured at 260 nm with 260:280 nm absorbance ratio used to assess purity. 

 

2.2.13 Cloning of GFP-NbMLHP and GFP-NbGLK1 

Template DNA was amplified via PCR (section 2.2.1)(primers 1,2 for NbMHP, 3,4 for 

NbGLK1, see Table 3), inserting attr1 and attr2 recombination sites. The reaction was 

separated via agarose gel electrophoresis (section 2.2.7) and purified (section 2.2.8). 

Construct DNA was inserted into a pDONR207 entry vector using a BP clonase 

reaction (section 2.2.2) and transformed into chemically competent DH5α E. coli. 

Colonies were tested for the presence of pDONR207 containing construct via colony 

PCR (see Section 2.2.6, primers 1,5 for NbMHP, 3,5 for NbGLK1). Construct was 

purified from positive colonies via miniprep (section 2.2.3). The construct was then 

inserted into pK7WGF2 destination vector via LR clonase reaction (section 2.2.2). 

This mixture was transformed into chemically competent DH5α E. coli. Colonies were 
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tested for the presence of pK7WGF2 containing construct via colony PCR (section 

2.2.6) (primers 1,6 for NbMHP, 3,6 for NbGLK1). The completed vector was then 

purified via miniprep (section 2.2.3) and transformed into competent A. tumefaciens 

GV3101 for infiltration. 

 

Table 3. Primers used in the construction of GFP-NbMLHP and GFP-NbGLK1 

 

Primer 

No. 
Description Sequence 

Sense/ 

Antisense 

1 NbMLHP Forward GGGGACAAGTTTGTACAAAAAAGCAG

GCTACATGGAAAAAGAGTACGGC 

Sense 

2 NbMHLP Reverse GGGGACCACTTTGTACAAGAAAGCTGG

GTCACCTCCTTGACCGTTTCTTTG 

Anti-sense 

3 NbGlk1 Forward GGGGACAAGTTTGTACAAAAAAGCAG

GCTACATGCTAACTATATCACCTTTG 

Sense 

4 NbGlk1 Reverse GGGGACCACTTTGTACAAGAAAGCTGG

GTCATGGAGGTATTTTATTAATC 

Anti-sense 

5 pDONR207 Internal TCGCGTTAACGCTAGCATGGATCTC Sense 

6 pK7WGF2 Internal CTGCTGGAGTTCGTGACC Sense 

 

 

2.3 Plant Methods 

 

2.3.1 Infiltration of Nicotiana Benthamiana via Agrobacterium tumefaciens 

GV3101 

A 5 ml Agrobacterium tumefaciens GV3101 culture in YEB media with the appropriate 

antibiotic (see Table 4.) was grown overnight in a shaking incubator at 30°C and 200 

rpm. This mixture was centrifuged at 2,500 g for 5 min and the supernatant discarded. 

The pellet was washed twice in 2 ml of infiltration buffer (10 mM MES p.H. 6.5, 10 

mM MgCl2, 200 μM acetosyringone) before being resuspended in 2 ml of infiltration 

buffer and incubated for 2-3 hours at 20°C. The mixture was infiltrated into 3 week 
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old N. benthamiana leaves at an OD600 of 0.01-0.5, by pressing a 2 ml syringe to the 

underside of the leaf and exerting a counter pressure with a finger on the other side. 

 

Table 4. Plasmid constructs used for infiltrations in the experiments described in this thesis 

with the vector they are contained in, the appropriate antibiotics for an overnight culture, and 

the source of the vector (see section 2.3.1). 

 

Gene Vector 
Antibiotic 

Resistance(S) 
Origin of Vector 

GFP pK7WGF2 Spectinomycin Gift of S. Fenyk 

GFP-H2B pK7WGF2 Spectinomycin Gift of S. Fenyk 

GFP-CC pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-CC-NBARC pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-NBARC pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-NBARC-LRR pBin35s Kanamycin (Slootweg et al., 2010) 

LRR-GFP pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-Rx1 pBin35s Kanamycin (Slootweg et al., 2010) 

CP106 pBin35s Kanamycin (Slootweg et al., 2010) 

CP105 pBin35s Kanamycin (Slootweg et al., 2010) 

Pto/AvrPto pLSU-16 Tetracycline Gift of F. Takken 

GFP-Rx1-nls pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-Rx1-nes pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-Rx1 D460V pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-Rx1 CCNBARC K176R pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-Rx1 CCNBARC S202F pBin35s Kanamycin Gift of E. Slootweg 

GFP-Rx1 CCNBARC D225E pBin35s Kanamycin Gift of E. Slootweg 

NbGLK1-HA pBin35s Kanamycin Gift of P. Townsend 

Rx1-HA pBin35s Kanamycin (Slootweg et al., 2010) 

GFP-NbGLK1 pK7WGF2 Spectinomycin Section 2.2.16 

PVX:GFP pGR208 Kanamycin (Peart et al., 2002) 

p19 pBin61 Kanamycin (Voinnet et al., 2003) 

GFP-LRR-HA pBin35s Kanamycin Gift of E. Slootweg 

AvrRPS4-HA pBin35s Kanamycin Gift of D. Baulcombe 

NbMLHP-HA pBin35s Kanamycin Gift of P. Townsend 

GFP-NbMLHP pK7WGF2 Spectinomycin Section 2.2.16 

NbMLHP-HA Y335F pBin35s Kanamycin Gift of P. Townsend 

NbMLHP-HA E385L pBin35s Kanamycin Gift of P. Townsend 
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2.3.2 Preparation of Leaves for TCSPC 

N. benthamiana leaves were infiltrated with Agrobacterium tumefaciens as described 

previously (see section 2.3.1) at the appropriate OD600. The plants were grown for 3 

weeks at 25°C with 16 hours of light. The leaves were infiltrated with 10 g/ml LDS-

751 dye in infiltration buffer before being fixed in 4% formaldehyde (v/w) in PBS 

overnight at 20°C in the dark. The leaves were then quenched with 125 mM glycine 

in PBS for 1-2 hours at 20°C in the dark, and stored in PBS in the dark at 4°C until 

use. 

 

2.3.3 TCSPC Data Collection  

A section of the leaf was excised, mounted onto a microscope slide and data collected 

using a modified Zeiss Axiovert inverted epifluorescence microscope. The GFP 

fluorophore was excited with a Picoquant pulsed diode laser LDH-P-C-440 at 440nm, 

70 ps pulse FWHM at 20 MHz. This was focused on the leaf using a Zeiss 100x oil 

immersion Ph3 lens. The emission of the sample was detected using an Id Quantique 

100-50 counting module with a Carl Zeiss bp510 nm filter to block unwanted sources 

of fluorescence. Readings were taken for an hour each at 2 points on each leaf and data 

was collected from 6-11 leaves per construct. The data was re-convoluted using a 

Decay Analysis Tool Vs 1.2.1 for Microsoft Excel on PC. The instrument response 

function was pasted into the ‘Inst. Resp. Raw Data’ column, and the photon counts 

from channels 1069 to 2100 were pasted into the ‘Raw measured Data’ column. These 

were the channels that produced a decay that corresponded closest to the instrument 

response function. A Grindvald-Steinberg re-convolution routine was used to fit an 

instrument response to the lifetime decay profile. The data were fitted to a sum of 

exponentials using an iterative least squares reconvolution procedure with the 
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optical/electrical excitation profile to produce a biexponential decay containing two 

lifetimes. If the solver failed to return a result, the parameters of the instrument 

response were adjusted one at a time to produce a closer fit and the solver run again. 

The parameters were Amp (Amplitude) 1, Amp 2, Amp 3, Amp 4, Tau (lifetime) 1, Tau 

2 Tau 3, Dback, iback and shift. If modifying the parameters failed to return a solution 

the channels the data was taken from were adjusted to provide a better fit with the 

instrument response. These steps were repeated until a suitable solution was generated 

to re-convolute the data. A ratio of the yield of the two main lifetimes (at 0.25-0.9 ns 

and 1.1-1.6 ns respectively) was calculated for each data set. If the solver generated 2 

lifetimes the same to 4 decimal places, they were treated as the same lifetime and 

summed together before the ratio was calculated. If a longer lifetime of 2-3 ns was 

detected instead of a 1.1-1.6 ns lifetime, the yield of this longer lifetime was used 

instead. An average lifetime ratio for each leaf (the individual replicate) was then 

calculated from the ratio of the two points data was recorded from. An average ratio 

for each construct was then calculated from the average ratio of each leaf. Statistically 

significant variations in lifetime ratios between constructs were then determined via 

ANOVA. To generate an intensity reading for the measured fluorescence decays, the 

decays were integrated using the trapezium rule (Atkinson, K.E., 2008). treating the 

area between each time channel as a trapezium. 

 

2.3.4 Nicotiana benthamiana Hypersensitive Response (HR) Assay 

N. benthamiana leaves were infiltrated with Agrobacterium tumefaciens as described 

previously (2.3.1) at the appropriate OD600. The plants were then grown for 4 days at 

25°C with 16 hours of light. The leaves were harvested, visually inspected, 

photographed and scored 1-5 for cell death; 1 being no visual sign of any cell death 
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whatsoever in the infiltrated region. 5 being complete cell death throughout the 

infiltrated region (see Figure 7. for scale). 24 leaves were infiltrated and scored for 

each set of constructs and statistically significant variations in cell death scores 

calculated via ANOVA. 

 

 

Figure 7. A scale of scored cell death in infiltrated N. benthamiana leaves from no visible cell 

death (1) to complete cell death across the entire infiltrated area (5). 

 

2.3.5 Fluorescence Viral Replication Assay 

Different regions of a single N. benthamiana leaf were infiltrated (see section 2.3.1) 

with fluorescently tagged PVX virus both mixed with and without the appropriate test 

constructs. Leaves were grown for 4 days and then harvested. For each infiltrated area, 

3 different 10 mm leaf discs were cut out and placed in a 96 well plate. The 

fluorescence intensity of each leaf disc was measured using a synergy H4 plate reader, 

exciting at 410 nm and measuring emission at 550 nm with a 20 nm bandwidth. An 

average of the fluorescence intensities for the 3 leaf discs were then calculated to give 

a value for each infiltrated area. The fluorescence of each area was then normalised to 

the control area on each leaf infiltrated with only fluorescent PVX. 8-20 leaves were 

infiltrated and measured for each set of constructs and statistically significant 

variations in fluorescence intensity assessed via ANOVA. 

1	 2	 3	 4	 5	
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2.4 Protein Methods 

 

2.4.1 Sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-

PAGE) 

0.75-1.5 mm thick resolving gels were used with 10% acrylamide (v/v), 375 mM Tris-

HCl pH 8.8, 0.1 % SDS (w/v), 0.1% APS (w/v), 0.01 % TEMED (v/v). Stacking gels 

were made with 5 % acrylamide (v/v), 130 mM Tris-HCl pH 6.8, 0.1 % SDS (w/v), 

0.1% APS (w/v), 0.01 % TEMED (v/v). Samples were mixed 4:1 with SDS-PAGE 

loading buffer (250 mM Tris-HCl pH 6.8, 10 % (w/v) SDS, 0.5 % (w/v) bromophenol 

blue, 50 % (w/v) glycerol, 500 mM DTT), incubated at 95°C for 3 min and 10-20 µl 

loaded into each lane of the gel. 5 µl of protein ladder (SDS PAGE ruler plus, thermo 

scientific) was added an adjacent lane to establish protein size. The gels were then run 

at 160 V for 40 min in running buffer (25mM Tris-HCl pH 8.35, 192 mM glycine, 0.1 

% (w/v) SDS) (Sambrook et al., 1989). 

 

2.4.2 Western blotting 

Protein was resolved via SDS-PAGE (see section 2.4.1) and then transferred to a 

nitrocellulose membrane overnight at 55 V in transfer buffer (25 mM Tris-HCl pH 

8.35, 192 mM glycine, 20 % methanol (v/v)). The membrane was then blocked with 

blocking buffer (5 % (w/v) milk in phosphate buffered saline solution with 0.1 % (v/v) 

Tween 20 (PBST)). The membrane was washed in blocking buffer containing primary 

antibody at the appropriate dilution (see Table 5) for 2 hours, and then washed 3 times 

with PBST for 5 min each to remove any background antibody binding. If secondary 

antibody was required, the membrane was incubated at the appropriate dilution (see 

Table 5.) in blocking buffer for 45 min, and washed 3 times in PBST for 5 min to 
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remove background. The signal was detected using enhanced chemiluminescence 

(ECL) detection system (GE Healthcare) (Sambrook et al., 1989).   

 

Table 5. Antibody dilution factors in blocking buffer for western blot staining. 

 

Antibody Dilution Factor in Blocking Buffer 

Rabbit Anti-Myc 1 in 5000 

Goat Anti-GFP 1 in 5000 

Rabbit Ant HA, HRP Fused 1 in 1000 

Mouse Anti-Rabbit, HRP Fused 1 in 20 000 

Mouse Anti-Goat, HRP fused 1 in 20 000 

 

 

2.4.3 Co-immunoprecipitation 

0.1 g of infiltrated N. benthamiana leaves (see section 2.4.1) were ground up on dry 

ice in extraction buffer (50 mM Tris-Cl pH 7.5, 50 mM NaCl, 20 % glycerol (v/v), 0.1 

% Tween 20 (v/v), 0.1 mM DTT, 2.5 % PVPP (w/v) 1% protease inhibitor cocktail 

(v/v) (Sigma)) using a pestle and mortar. The mixture was then centrifuged at 13,000 

g for 10 min at 4°C. The supernatant was passed through a Sephadex G25 column and 

plant protease inhibitor cocktail (Sigma) added (1 % v/v). The mixture was then 

incubated with 60 µl rabbit anti-Ig agarose (Sigma) for 1 hour at 4°C, and centrifuged 

at 13,000 g for 1 min at 4°C. The pellet was discarded and the supernatant added to 60 

µl of anti myc-agarose (sigma) and incubated for 2 hours at 4°C. The mixture was 

washed 3 times with G25 buffer (50 mM Tris-Cl pH 7.5, 50 mM NaCl, 20 % glycerol 

(v/v), 0.1 % Tween 20 (v/v), 0.1 mM DTT) to remove non-specifically bound material. 

Protein was eluted from the resin by incubating with 60 μl of elution buffer (50 mM 

NaOH) for half at hour at 4°C, and then microfuging at 4000 g for 4 min at 4°C. The 

eluent was then analysed via Western blotting (see section 2.3.2). 
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2.4.4 Yeast Two-Hybrid Screen 

The Yeast two-hybrid screen was performed by Hybrigenics service SAS. Bait protein 

was cloned into a pB27 bait plasmid as a C-terminal fusion to LexA (pB27 

construction is described in Formstecher et al., 2005). The initial screen was performed 

against a random-primed mixed tissue Nicotiana benthamiana cDNA library 

constructed into a pP6 prey plasmid (pB27 construction is described in Formstecher et 

al., 2005). 96 Million clones were screened giving 9-fold library coverage using a 

mating approach with Y187 (matα) and L40 GLl4 (mata) yeast strains. Positive clones 

were selected on medium lacking leucine, tryptophan, and histidine. Positive clones 

were picked, sequenced, and overlapping sequences combined to generate a Selective 

Interacting Domain (SID) that represented one interaction. Each interaction was 

assessed computationally for the probability of a non-specific interaction. This 

assessment gave each interaction a PRBS (predicted biological score) from A (lowest 

probability of non-specificity) to E (highest probability of non-specificity) (see Table 

6). To confirm protein-protein interactions, freshly transformed yeast colonies were 

resuspended in 1 mL sterile deionized water, and 10 µL aliquots were spotted onto 

medium lacking leucine and tryptophan (−L/−W) and medium lacking leucine, 

tryptophan, histidine (−L/−W/−T), supplemented with 10 or 50 mM 3-Amino-1,2,4-

triazole (3-AT). Growth was scored after 5 to 7 d of incubation at 28°C. 
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Table 6. Definition and explanation of each category of Predicted Biological Scores (PRBS) 

generated by computational analysis to judge the reliability of each interaction generated by 

the initial yeast two-hybrid screen (Formstecher et al., 2005) 

 

 

Global PRBS (for Interactions represented in the Screen) Nb % 

A Very high confidence in the interaction  6 7.60% 

B High confidence in the interaction  2 2.50% 

C Good confidence in the interaction  3 3.80% 

D 

Moderate confidence in the interaction 

68 86.10% 

This category is the most difficult to interpret because it mixes 

two classes of interactions: 

- False-positive interactions 

- Interactions hardly detectable by the Y2H technique (low     

representation of the mRNA in the library, prey folding, prey 

toxicity in yeast)  
 

E 

Interactions involving highly connected (or relatively highly 

connected) prey domains, warning of non-specific interaction. 

The total number of screens performed on each organism is taken 

into account to set this connectivity threshold: 20 interactions to 

different bait proteins in our entire database for Human, 10 for 

Mouse, Drosophila and Arabidopsis and 6 for all other organisms. 

They can be classified in different categories: 

 - Prey proteins that are known to be highly connected due to their 

biological function  

0 0.00% 

- Proteins with a prey interacting domain that contains a known 

protein interaction motif or a biochemically promiscuous motif  
 

F Experimentally proven technical artefacts  0 0.00% 

Non Applicable 

N/A  

The PRBS is a score that is automatically computed through algorithms and cannot 

be attributed for the following reasons: 

- All the fragments of the same reference CDS are antisense 

- The 5p sequence is missing 

- All the fragments of the same reference CDS are either all OOF1 or all OOF2 

- All the fragments of the same reference CDS lie in the 5' or 3' UTR 
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2.5 Computer Software and Statistical Analysis 

Data was analysed using either Microsoft Excel or GraphPad Prism 6.0, with the 

former being used to calculate averages, standard errors of means and standard 

deviations and latter being used to produce graphical representations. All error bars 

shown depict the standard error of the mean. Multiplicity adjusted p-values were 

calculated using a Dunnett-Wilson Multiple Comparison ANOVA test in Graphpad 

Prism 6.0 with a 95 % confidence interval. Statistical significance was defined as p > 

0.05.  
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3. FRET-FLIM DNA binding assay in fixed Nicotiana benthamiana 

leaves 

 

 

3.1  Introduction 

 

NBLRR proteins belong to the STAND p-loop ATPase AAA+ superfamily. Members 

of this superfamily, including Cdc6 and Orc-1, are known to have a DNA binding 

activity (Capaldi et al, 2004). The exact mechanism through which NBLRR proteins 

induce signal transduction is unknown. Nuclear localisation and interaction with 

DNA-binding proteins has been shown to be required for signal transduction in several 

NBLRR proteins; the wheat NBLRR protein MLA-10 has been shown to associate 

with WRKY and MYB6 transcription factors (Chang et al. 2013), while various NB-

LRR proteins have known DNA binding domains, such as leucine zippers, 

incorporated into their structures (Milligan et al., 1998). It was therefore hypothesised 

that NB-LRR proteins induce their signal response through a DNA binding activity. 

This was previously demonstrated in vitro using recombinant Rx1 and protein purified 

from N. benthamiana leaves via electromobility gel shift assays and FRET-FLIM on 

fluorescently tagged oligonucleotides (Fenyk et at., 2015). However, no Rx1 DNA 

binding activity has been previously described in vitro, leaving it possible that this is 

an artefact of using recombinant protein. This chapter describes the development of a 

method to investigate protein-DNA interactions in planta to further support this 

hypothesis, ruling out the possibility of an artefact, and elucidating the biological effect 

of this activity.   

 

In the experiment developed, N. benthamiana leaves were infiltrated to transiently 

express GFP tagged proteins. The DNA binding dye LDS-751 was then infiltrated as 

a fluorescence energy acceptor, and the leaves fixed. Protein-DNA binding activity 
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was then measured using FRET-FLIM. FRET-FLIM has been used previously to 

demonstrate protein-DNA interactions in fixed mammalian cells (Cremazy et al., 

2005).  

 

This chapter uses this procedure to present evidence that the NB-LRR protein Rx1 

displays a DNA binding activity. This activity stems from the CC and NBARC 

domains and is activated in the presence of the PVX coat protein, CP106. 

 

 

3.2  GFP and GFP- H2B fluorescence lifetime analysis 

 

Controls were established against which Rx1 DNA binding in planta could be 

assessed. Free GFP was used as a negative control. The histone H2B is known to bind 

DNA (Cremazy et al., 2005), and the Arabidopsis ortholog of this protein was N-

terminally fused to GFP and used as a positive control. Both were transiently expressed 

in N. benthamiana leaves. These were stained with the cell permeable nucleic acid 

binding dye LDS-751 and fixed in formaldehyde. LDS-751 has an absorption 

spectrum that overlaps with the emission spectrum of GFP when bound to DNA. Since 

energy transfer from the GFP to the LDS-751 would result in a decrease in GFP 

fluorescence lifetime, it was hypothesised that a decrease in GFP fluorescence 

lifetimes would be observed upon a protein-DNA interaction. The GFP fluorophore 

was excited at 410 nm and fluorescence decays recorded for both constructs using a 

microscope adapted for time correlated single photon counting (see Section 2.2.3).   

 

Fluorescence decays showed a decrease in lifetime from the free GFP negative control 

to the DNA binding GFP-H2B fusion (Figure 8). However, the difference between 
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most of the resulting fluorescence lifetimes was too small to be measured using single 

average fluorescence lifetime. Hence, a different, more accurate method of lifetime 

analysis was developed.  

 

 

 
 

Figure 8: Fluorescence decays produced by exciting fixed N. benthamiana leaves infiltrated 

with GFP and GFP-H2B, respectively, and stained with LDS-751. Leaf samples were excited 

at 410 nm and fluorescence measured at 510nm . A decrease in fluorescence lifetime can be 

seen from the free GFP to the DNA binding GFP-H2B as the latter transfers energy to LDS-

751. 

 

 

The fluorescence decays were reconvoluted to determine their constituent lifetimes. 

For all decays, this resulted in a bi-exponential decay with one lifetime of 

approximately 0.4 ns and another of approximately 1.2 ns (Figure 9).  A shortening of 

the yield of the longer lifetime towards the decay relative to the shorter was observed 

from the free GFP to the H2B-GFP. The longer lifetime was hypothesised to be 

emission of energy via fluorescence, and the shorter lifetime transfer of energy to an 

adjacent acceptor. Some transfer of energy to an acceptor would still be expected to 

occur from free GFP due to non-specific interactions with DNA, LDS-751, and any 

other acceptors naturally present in the plant cell. This shorter lifetime was therefore 
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always expected to be present in the data set. However, a specific interaction between 

the construct and DNA would display a far greater amount of energy transfer than any 

non-specific interaction, resulting in a higher yield in the shorter lifetime. 

 

To measure the decrease in the yield of the longer lifetime, a ratio of the yield of the 

shorter lifetime to the longer lifetime was calculated (Figure 10.). The GFP-H2B 

infiltrated leaves showed a statistically significant decrease in the ratio of lifetime 

yields compared to the leaves infiltrated with free GFP. This demonstrates that energy 

transfer from the GFP construct to the LDS-751 could be measured upon the protein 

binding DNA.  

 

 

 

  
 

 
Figure 9: Plot showing the yield of fluorescence lifetimes produced by reconvoluting 

fluorescent decays of GFP and GFP-H2B infiltrated N. benthamiana leaves stained with 

LDS-751 and fixed with formaldehyde. Each decay contained a longer lifetime at 

approximately1.2 ns and a shorter at 0.5 ns. 
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Figure 10: The average ratio of fluorescence lifetime yields (long lifetime yield/ short 

lifetime yield) of GFP and GFP-H2B infiltrated N. benthamiana leaves stained with LDS-

751 and fixed with formaldehyde. n = 6-7, p < 0.05; Students t test 

 
 

 

3.3  Assaying Rx1 domain DNA binding activity with FRET-FLIM  

 

 

The previous section described the development of a FRET-FLIM DNA binding assay 

using control constructs. This section describes the application of this method to the 

different constituent domains of the potato NB-LRR protein Rx1 to determine if they 

possess a DNA binding activity. The domains were tested first before full-length Rx1 

as interactions between the domains in full length protein are known to inhibit immune 

signalling activity in the absence of the PVX coat protein, CP106 (Slootweg et al., 

2013), and it was hypothesised that this may also inhibit any DNA binding activity. 

Expressing domains individually rather than together allowed any DNA binding 

activity to be identified in the absence of any autoinihibition.  

 

GFP tagged constructs were expressed in N. benthamiana leaves. The leaves were 

stained with LDS-751 and fixed in formaldehyde. GFP fluorescence lifetimes were 

G
FP

G
FP

-H
2B

0

1

2

3

4

R
a

ti
o

 o
f 
L

if
e

ti
m

e
 Y

ie
ld

s



 72 

recorded and compared to the control constructs from the previous section. All Rx-1 

constructs were N-terminally tagged with GFP, bar the leucine rich repeat domain 

(LRR), which had been previously demonstrated to only express in N benthamiana 

with a C-terminal GFP tag (Figure 11.) (Slootweg et al., 2010). 

 

 

 

 

Figure 11: Schematic diagram of wild type Rx1 (top bar) and the truncated GFP tagged Rx1 

constructs assayed for DNA binding, indicating the position of protein domains. Coiled coil 

(CC) domain shown in red, NBARC domain shown in blue, Leucine rich repeat (LRR) domain 

shown in yellow, and GFP tag shown in green. 

 

 

 

A statistically significant difference was observed between free GFP fluorescence 

lifetimes and all combinations of GFP tagged Rx1 constructs except the LRR repeat 

on its own (Figure 12.). This demonstrates both the NBARC domain and the CC 

domain transferring a significant amount of energy to the DNA binding dye in the plant 

cell, indicating a close physical association with chromatin. The NBARC domain is 

modelled as showing structural similarity to the DNA binding ATPases Cdc6 and Orc-

1 and is hypothesised to be the source of Rx1 DNA binding activity (Fenyk et al., 
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2015), suggesting the association with chromatin and energy transfer was coming from 

this DNA binding activity. The CC domain was not anticipated to also bind DNA, but 

has been observed previously to interact with a high density complex inside the 

nucleus that could be chromatin (Slootweg et al., 2010). CC domains are commonly 

known to be involved in protein-protein interactions (Kohn et al., 1997). The CC 

domain-DNA interaction could therefore be due to a mediating protein interacting with 

both, perhaps in a regulatory function (see Chapters 4 and 5). The LRR domain was 

not hypothesised to possess a DNA binding activity. LRR domains are commonly 

involved with hydrophobic protein-protein interactions and are thought to be involved 

with the sensing of pathogen effectors in plant NB-LRR proteins (Takken et al., 2012). 

 

Figure 12: Graph of ratio of lifetime yields of Fixed N. benthamiana leaves infiltrated with 

GFP tagged Rx1 domains compared with a free GFP control.  n = 6. ̂  indicates adjusted p value 

> 0.05, * indicates adjusted p value < 0.05, ** indicates adjusted p value < 0.01 calculated using 

a Dunnett-Wilson Multiple Comparison ANOVA test. 
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fluorophores. More energy transfer would result in a higher intensity of LDS-751 

fluorescence relative to GFP fluorescence. The GFP fluorophore was excited at 

410 nm and fluorescent decays were recorded for both LDS-751 and GFP 

emission. The decays were integrated to give a measure of fluorescence intensity, 

and a ratio of GFP to LDS-751 fluorescence intensity was calculated. This 

successfully demonstrated a statistically significant difference between both 

control constructs (Figure 13). Furthermore, this analysis matched the results of 

the lifetime ratios for all but one Rx1 construct: The NBARC domain by itself 

showed no statistically significant difference from free GFP, whereas such a 

difference was observed in the lifetime analysis. This construct also displayed a 

higher standard deviation of ratio values with this method compared to the lifetime 

analysis. Variation in protein expression levels impact tests based on fluorescence 

intensity, but have little effect on changes in fluorescence lifetime. It was 

concluded that fluorescence intensity readings were less reliable than fluorescence 

lifetime readings due to the greater impact of protein expression level on the 

results. Although the influence of altered protein expression levels could be 

resolved by normalising to protein content through Western blotting it was decided 

to solely proceed with the quicker lifetime analysis method that did not require 

normalisation. 
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Figure 13: Graph showing the ratio of the integrated fluorescence decays of fixed N. 

benthamiana infiltrated with various GFP labelled constructs. Decays were measured for GFP 

and LDS-751 fluorescence, and the fluorescence decays recorded integrated to give an 

intensity measurement. A ratio of LDS-751 to GFP florescence intensity was then calculated 

to measure energy transfer to the DNA bound dye. n = 6. ^ indicates adjusted p value > 0.05, * 

indicates adjusted p value < 0.05, ** indicates adjusted p value < 0.01 calculated using a Dunnett-

Wilson Multiple Comparison ANOVA test. 
 

 

 

 

3.4  Rx1 binds DNA in response to CP106 

 

 

With the individual domains characterised in section 3.3, this section investigates the 

behaviour of the full length wild type protein. Full length GFP-Rx1 was assayed both 

in isolation and when co-expressed with either avirulent or virulent PVX coat protein 

(CP106 and CP105 respectively (Bendahmane et al., 1995)). Full length Rx1 displayed 

no statistically significant DNA binding activity by itself, and none with virulent 

CP105 (Figure 14). But when co-expressed with avirulent CP106, Rx1 DNA binding 

was induced. This result suggests that the protein exists in an autoinhibitory state with 

regards to DNA binding, as it does with immune signalling (Rairdan et al., 2008). The 
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domains interact with each other to hold the protein in an inactive state, preventing the 

NBARC and CC domains binding DNA. The presence of CP016 in the plant cell then 

initiates a conformational shift in the protein, allowing DNA binding and potentially 

initiating immune signal transduction. The absence of a drop in fluorescence lifetimes 

upon coexpression with virulent CP105 confirms that it is CP106 induced defence 

signalling that is causing the drop in lifetime ratio, and the result is not merely an 

artefact of coat protein co-expression. 

 

 

 

  
 

 

Figure 14: Average ratio of lifetime yields of fixed N. benthamiana leaves infiltrated with 

GFP tagged Rx1 with and without avirulent (CP106) and virulent (CP105) PVX viral coat 

protein compared to GFP-H2B and GFP infiltrated s controls. n = 6. ^ indicates adjusted 

p value > 0.05, * indicates adjusted p value < 0.05, ** indicates adjusted p value < 0.01 

calculated using a Dunnett-Wilson Multiple Comparison ANOVA test. 
 

 

 

 

 

 

G
FP

G
FP

-H
2B

G
FP

-R
x1

G
FP

-R
x1

+C
P
10

6

G
FP

-R
x1

+C
P
10

5

0

1

2

3

4

R
a

ti
o

 o
f 
L

if
e

ti
m

e
 Y

ie
ld

s

**

^ ^

**



 77 

3.5  Fluorescence lifetimes do not decrease upon non-specific defence 

activation 

 

 

Necrosis caused by NLR protein triggered immunity can cause changes in the levels 

of fluorescent pigments present in N. benthamiana leaves such as chlorophyll (Harris 

et al., 2014). To ensure the changes in lifetimes being observed was not due to such 

changes, N. benthamiana leaves were infiltrated with GFP-Rx1, the tomato NB-LRR 

protein Pto, and the bacterial effector protein AvrPto. Pto senses AvrPto and induces 

defence signalling in response (Tang et al., 1996). No change in lifetimes were seen in 

the leaves expressing GFP-Rx1 alone or GFP-Rx1, Pto and AvrPto together relative to 

the GFP control expression (Figure 15), but a drop in the ratio of fluorescent lifetimes 

was observed when GFP-Rx1 and CP106 were co-expressed. This demonstrates that 

DNA binding caused a change in the ratio of lifetimes, rather than changes in 

fluorescence resulting from a generic immune response. It also shows that Rx1 DNA 

binding is only induced by its specific cognate elicitor, and not by a generic immune 

response. 
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Figure 15: Average ratio of lifetime yields of fixed N. benthamiana leaves infiltrated with GFP 

tagged full length Rx1 mutants with and without CP106, GFP-Rx1with Pto and AvrPto GFP-

H2B and a GFP infiltrated control. n = 4-8. ^ indicates adjusted p value > 0.05, * indicates 

adjusted p value < 0.05, ** indicates adjusted p value < 0.01 calculated using a Dunnett-

Wilson Multiple Comparison ANOVA test. 
 

. 

 

 

3.6  Nucleocytoplasmic distribution of Rx1 is required for DNA binding 

 

It has been previously shown that for Rx1 to induce defence signalling a 

nucleocytoplasmic distribution of protein is required, as Rx1 tagged with either a 

nuclear localisation (nls) or export (nes) signal displayed a reduced ability reduce 

accumulation of PVX in infected leaves (Slootweg et al., 2010). It was also shown that 

that Rx1 mediated sensing of CP106 occurs in the cytosol, as reduced HR was 

observed when Rx1 was co-infiltrated with CP106 with an nls tag (Slootweg et al., 

2010). It was therefore of interest as to whether this nucleocytoplasmic distribution 

was also a requirement for Rx1 DNA binding, or whether nuclear localisation is 

sufficient, and whether CP106 induced Rx1 DNA binding also required cytoplasmic 

recognition of CP106. To test this GFP tagged Rx1 constructs with both nuclear 

localisation and nuclear export sequences were assayed with and without CP106 
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(Figure 16). Both these tags have been shown to localise Rx1 to the nucleus and 

cytoplasm respectively (Slootweg et al., 2010). GFP-Rx1-nls displayed no statistically 

significant DNA binding activity, demonstrating that nuclear localisation alone is 

insufficient to induce DNA binding (this also suggests overexpression of Rx1 in the 

nucleus does not result in a drop in lifetime ratio via a non-specific interaction with 

chromatin). The coexpression of GFP-Rx1-nls with CP106 also displayed no 

statistically significant DNA binding activity. This shows that Rx1 cannot elicit a 

nuclear DNA binding response to CP106 without first sensing it in the cytosol. The 

GFP-Rx1-nes displayed no statistically significant DNA binding both in the presence 

and absence of CP106. This demonstrates that transport of Rx1 from the cytosol to the 

nucleus after detection of CP106 is required. A signal cannot be sent from the cytosol 

itself. Hence, a nucleocytoplasmic distribution of protein is therefore required for DNA 

binding as it is for immune signalling.  
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Figure 16: Average ratio of lifetime yields of fixed N. benthamiana leaves infiltrated with GFP 

tagged full length Rx1, Rx1-nes, Rx1-nls all with and without CP106, GFP-H2B and a GFP 

infiltrated control. n = 4-8. ^ indicates adjusted p value > 0.05, * indicates adjusted p value < 

0.05, ** indicates adjusted p value < 0.01 calculated using a Dunnett-Wilson Multiple 

Comparison ANOVA test. 
 

 

 

 

3.7  Autoactive and inactive Rx1 DNA binding mutants 

 

 

It was hypothesised that mutations that affect immune signalling in Rx1 would also 

affect DNA binding activity. In this section different Rx1 mutants were screened for 

their ability to bind DNA (Figure 17). Rx1 D460V is an autoactive mutation in the 

MHD motif in the NBARC domain that elicits an immune response in the absence of 

any coat protein (Bendahmane et al., 2002) and is thought to do this by weakening the 

autoinhibiting effect the LRR has on the NBARC domain (Slootweg et al., 2013). 

K176R is a mutation in the putative p-loop region of the NBARC domain that 

inactivates any potential nucleotide binding activity and is unable to induce HR in 

response to CP106 (Slootweg et al., 2010, Bendahmane et al., 2002). S202F and 
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D225E are mutations in Rx1 designed to replicate the mutants S233F and D283E from 

the tomato NB-LRR protein I-2. These are mutations to the RNBS-A domain and 

Walker B motifs of the NBARC domain respectively, and deactivate the nucleotide 

hydrolysis activity of I-2 and lead to an autoactive immune response (Tameling et al., 

2006). However, the effect of the S202F and D225E mutations on Rx1 immunological 

activity is currently unknown. 

 

Some Rx1 mutations are known to effect distribution in the full-length protein, 

resulting in cytoplasmic rather than nucleocytoplasmic distribution (Slootweg et al., 

2010), preventing any potential DNA binding in vivo. However, when expressed as a 

truncated protein containing only the CC and NBARC domains, these proteins revert 

back to a nucleocytoplasmic distribution. For this reason Rx1 K176R, S202F, and 

D225E were assayed in this truncated form rather than as a full-length protein. Full 

length Rx1 D460V is not known to display a non-cytoplasmic distribution and so was 

assayed as a full-length protein rather than in a truncated form. 
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Figure 17.: Average ratio of lifetime yields of fixed N. benthamiana leaves infiltrated with 

GFP tagged full length and truncated Rx1 mutants compared to wild type Rx1 and coat 

protein, GFP-H2B and a GFP infiltrated control. n = 6. ^ indicates adjusted p value > 0.05, 

* indicates adjusted p value < 0.05, ** indicates adjusted p value < 0.01, *** indicates 

adjusted p value < 0.001 calculated using a Dunnett-Wilson Multiple Comparison 

ANOVA test. 

 
 

 

The full-length autoactive Rx1 D460V behaved in the same manner as wild type Rx1 

protein in the presence of CP106, binding DNA (Figure 17.). Previous work on this 

mutant concluded that it weakened the interactions between the NBARC and LRR 

domains that held the protein in an inactive resting state (Slootweg et al., 2013). The 

results suggest that disrupting this interaction leads to protein DNA binding, and links 

DNA binding to an Rx1 immune signalling. However it has also been hypothesised 

that this mutation disrupts nucleotide binding and the connection between the ARC 

subdomain and the nucleotide binding pocket. Loosening nucleotide binding is 

thought to allow easy nucleotide exchange. This hypothesis states that the easy 

exchange of ADP for activating ATP is what results in autoactivity (Tameling et al., 
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2006). This nucleotide exchange could also be what activates Rx1 in regards to DNA 

binding, leading to the result observed. 

 

The p-loop mutant K176R behaved identically to the wild type CC-NBARC truncation 

(Figure 17), constitutively binding DNA. However, truncated S202F and D225E both 

failed to bind DNA, unlike the wild type truncation. These results implied that 

inactivating nucleotide binding (K176R) did not affect DNA binding, but inactivating 

nucleotide hydrolysis (S202F, D225E) did.  

 

Previous work performed on I-2 mutants showed that mutants unable to bind 

nucleotides (K207R) were not autoactive while mutants able to bind nucleotides but 

unable to hydrolyse them (S233F and D283E) led to protein autoactivity. Double 

mutants that could neither bind nor hydrolyse nucleotides were not autoactive. It was 

concluded that that ATP binding activated I-2, initiating defence signalling, and 

nucleotide hydrolysis deactivated it (Tameling et al., 2006). The results of the mutant 

DNA binding assay suggest that Rx1 behaves differently, with ATP hydrolysis 

activating DNA binding (and potentially immune signalling), rather than nucleotide 

binding.  

 

It is important to note, however, that no nucleotide hydrolysis has been detected in 

recombinant Rx1 as it has in I-2, and that full length S202F and D225E mutants have 

not been observed to trigger an autoactive hypersensitive response in Agrobacterium 

infiltrated N. benthamiana as would be expected if these mutations were leading to 

autoactive DNA binding and immune signalling. 
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3.8 Co-infiltration of Truncated Rx1 mutants with the LRR domain 

 

 

Section 3.7 included investigations into the activity of some truncated Rx1 mutants 

whose cytoplasmic distribution in a full-length Rx1 construct made the analysis of 

DNA binding intractable in vivo. These results do not show the effect the interaction 

between the NBARC domain and the LRR has on these mutations. This interaction is 

known to regulate the protein, inhibiting NBARC domain activity to prevent 

premature defence signalling activation. How this interaction affects these activity 

compromised mutants in a full-length protein was therefore of interest. 

 

It has been shown that the Rx1 CC-NBARC domains will interact with the LRR 

domain in planta if the two are co-expressed (Moffet et al., 2002). It was hypothesised 

that if the truncated mutants were co-expressed with wild type LRR, the two domains 

should physically interact and behave as full length Rx1 mutant, but with a 

nucleocytoplasmic distribution. The DNA binding activity of the two domains co-

expressed could then be assayed. 

 

To optimise the experimental conditions for this interaction, wild type GFP-

CCNBARC and LRR-GFP were infiltrated into N. benthamiana leaves at a range of 

OD600 values and the resulting lifetime ratios measured and compared to a full length 

wild type Rx1 control (Figure 18). The two domains interacting were hypothesised to 

behave as wild type Rx1 and not bind DNA, resulting in a similar higher lifetime ratio 

of approximately 2.5 (section 3.4). If the CCNBARC and LRR domains did not 

interact the free CC-NBARC was hypothesised to bind DNA, giving a lower lifetime 

ratio (section 3.3). A Dunnett-Wilson Multiple Comparison ANOVA test was used to 

determine similarity of the lifetime ratios to a full length Rx1 control column. The 
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conditions giving the highest adjusted p-values in the test were judged to have behaved 

most similar to wild type full length Rx1. The highest p-value of 0.5171was given 

when the CC-NBARC was infiltrated at OD600  = 0.01, and the LRR was infiltrated at 

OD600 = 0.5, indicating these conditions optimised CC-NBARC and LRR interaction.  

 

 

 

 
Figure 18: Average lifetime ratios of fixed N. benthamiana leaves co-infiltrated with GFP-

CC-NBARC and LRR-GFP at a range of OD600 values compared to an Rx1 full-length control. 

The ratio lifetime yields increases as the OD600 of the GFP-CCNBARC decreases relative to 

the LRR-GFP. n = 3. ^ indicates adjusted p value > 0.05, * indicates adjusted p value < 0.05, 

** indicates adjusted p value < 0.01, calculated using a Dunnett-Wilson Multiple Comparison 

ANOVA test. 

 

 

The mutants S202F, D225E and K176R and wild type Rx1 were infiltrated with the 

LRR domain at the optimised OD600 values both with and without CP106. 

Fluorescence lifetime yields were then recorded. These were then compared to 

controls of wild type full length Rx1 with and without CP106. The results are 

summarised with a comparison to the lifetime ratios for truncated CCNARC constructs 

in Table 4. 
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Figure 19: Average ratio of lifetime yields of fixed N. benthamiana leaves infiltrated with GFP 

tagged truncated Rx1 mutants coinfiltrated with LRR-GFP compared to wild type Rx1. Rx1 

and CCNBARC domains were infiltrated at OD600 = 0.01, all other constructs were infiltrated 

at OD600 = 0.5. n = 10. ^ indicates adjusted p value > 0.05, * indicates adjusted p value < 0.05, 

** indicates adjusted p value < 0.01, *** indicates adjusted p value < 0.001 calculated using 

a Dunnett-Wilson Multiple Comparison ANOVA test. 
 

 

Table 7. FRET-FLIM analysis of DNA binding in fixed N. benthamiana leaf material for wild 

type Rx1, Rx1 K176R, Rx1 S202F, and Rx1 D225E. All proteins were assayed as truncated 

CCNBARC, CCNBARC + LRR, and CCNBARC + LRR + CP106. Where relevant, the motif 

any mutation is present in, and the putative Rx1 activity targeted by the mutation is listed.  
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K176R+LRR constitutively bound DNA with and without CP106 present. This 

represents a change from wild type Rx1 that would bind only when activated by CP106 

(Figure 19). The truncated K176R previously bound DNA in the absence of LRR 

(Table 4). Previous work has shown p-loop CCNBARC mutants being capable of 

physically interactively with LRR domains (Moffett et al., 2002), so the mutation 

cannot be preventing LRR inhibition of DNA binding in the absence of CP106 by 

completely preventing binding. The K176R mutation could allow the LRR to bind the 

CCNBARC but prevents an inhibiting conformation being adopted. Whether this is 

due to an inability to bind nucleotides or a general destabilisation of the protein is 

unclear. 

 

S202F+LRR failed to bind DNA in the absence of coat protein, but then bound in the 

presence of CP106, behaving identically to the wild type protein (Figure 19). This was 

a distinct change from the truncated S202F that did not bind DNA as the truncated 

wild type does (Table 4). The result suggests that the physical interaction with the LRR 

may be buffering a structural destabilising effect of the S202F mutant on the NBARC 

domain and restoring function. The previous results with the truncated protein can 

therefore not be concluded to be the result of the loss of any nucleotide hydrolysis 

activity. 

 

D225E+LRR constitutively bound DNA both with and without CP106 (Figure 19). 

Previously the truncated mutant failed to display any statistically significant DNA 

binding activity (Table 4). This could imply that the LRR was stabilising the mutant 

NBARC domain as for S202F, but the interaction adopts a conformation that permits 

DNA binding in the absence of coat protein. Again, this could imply that the truncated 
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mutant failed to bind due to being structurally unstable rather than any compromised 

nucleotide hydrolysis activity.  

 

 

The results of co-infiltrating these mutants with LRR demonstrate how little is 

understood of how the mutations affect Rx1 activity. The drastic changes in DNA 

binding behaviour in response to the LRR could indicate any previous lack of DNA 

binding activity was due to changes in Rx1 structural stability rather than changes in 

nucleotide binding and hydrolysis. There is an absence of any biochemical data on 

Rx1 nucleotide binding or hydrolysis, and the effect of these mutations on such an 

activity. This makes it impossible to reliably conclude whether changes in DNA 

binding upon mutation are linked to changes in nucleotide binding/hydrolysis or 

changes in protein folding and stability. Further in vitro characterisation of these 

mutants is required (see discussion Chapter 6). 

 

 

 

3.9 Conclusion 
 

This chapter demonstrates Rx1 associates with plant genomic DNA in fixed plant 

material using a novel FRET-FLIM assay. This association is observed in both the CC 

and NBARC domains, but not the LRR domain. It is thought that in the NBARC 

domain this association is the result of a DNA binding activity possessed by the 

domain that has been demonstrated previously using recombinant protein in an in vitro 

assay (Fenyk et al., 2015). In the case of the CC domain it is conjectured that this 

activity is the result of an intermediary protein-protein interaction. 

 

When all three domains are expressed together as full length Rx1 association with 

DNA is inhibited. The addition of the potato virus X viral coat protein CP106 will then 
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activate the full length Rx1 to bind DNA. This is not seen in the avirulent coat protein 

CP105. The absence of a DNA binding signal on the addition of Pto and AvrPto 

confirms that this is not an artefact resulting from a generic immune response.   

 

A nucleocytoplasmic distribution of protein is required for DNA binding to occur. The 

use of nuclear localisation sequences and nuclear export sequences to sequester Rx1 

in either the nucleus or cytoplasm exclusively prevents any binding occurring in the 

presence of CP106. This matches previous work showing that such a distribution is 

required for Rx1 to trigger immune signalling (Slootweg et al., 2010). 

 

The immunologically autoactive Rx1 mutant D460V will constitutively bind DNA in 

the absence of CP106. This mutation was concluded to prevent inhibition of DNA 

binding by the LRR domain. The deactivation of the putative p-loop region of Rx1 in 

the mutant K176R does not affect the ability of the CC-NBARC domains to bind DNA, 

implying nucleotide hydrolysis may not be prerequisite for DNA binding. The S202F 

mutation results in the CC-NBARC domain being unable to bind DNA. However, 

coexpression with the LRR domain reverses this and restores normal protein activity. 

The D225E mutation inhibits the binding of the CC-NBARC to DNA. Coexpression 

with the LRR reverses this activity, resulting in a constitutively active set of domains. 

Whether these mutants behave this way due to changes in nucleotide hydrolysis 

activity or due to general changes in protein stability is unknown and requires further 

In vitro characterisation of these mutants (see Chapter 6).   

 

The results show Rx1 DNA binding activity and it’s link to the induction of immune 

signalling in vivo in response to virulent PVX coat protein CP106. This confirms the 
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initial hypothesis and validates the work done demonstrating Rx1 binding DNA in 

vitro. How this Rx1 DNA binding is regulated by other proteins and the impact of this 

on plant immunity was therefore of interest, and is explored in subsequent Chapters. 

 

3.10 Discussion 

The FRET-FLIM results suggest both the NBARC and CC domains of Rx1 associate 

with DNA. Homology modelling of the Rx1 NBARC domain predicts a possible DNA 

binding activity based on similarity to other DNA binding members of the STAND 

ATPase AAA+ superfamily (Fenyk et al,. 2015). No CC domains are known to have 

DNA binding activity and are more commonly associated with protein-protein 

interactions (Kohn et al., 1997). This suggests that the DNA binding domain of Rx1 is 

the NBARC domain, with the CC domain of the protein more likely to be involved 

with an interaction with another intermediate DNA binding protein. This association 

could position the domain physically close enough to the DNA binding LDS-751 to 

facilitate energy transfer. 

 

The CC domain has been previously shown to associate with a high molecular weight 

complex in the nucleus (Slootweg et al., 2010). The energy transfer observed in the 

experiment suggests that this high molecular weight complex is genomic DNA. It was 

concluded that Rx1 binds genomic DNA in response to CP106. 

 

Section 3.5 demonstrated that Nuclear localisation and accumulation of Rx1 was 

shown to be insufficient to trigger DNA binding; transport of Rx1 from the cytosol to 

the nucleus is required. Nucleocytoplasmic distribution of Rx1 is also known to be 

required to trigger immunity, and Rx1 had been shown to detect CP106 in the cytosol 
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(Slootweg et al., 2010). The results imply that Rx1 mediated immune signalling may 

be triggered by Rx1 DNA binding in the nucleus after the elicitor is sensed in the 

cytosol. 

 

This DNA binding data is supported by work done showing that CCNBARC Rx1 binds 

DNA in vitro using recombinant refolded protein from E. coli. using EMSA and FRET-

FLIM assays (Fenyk et al., 2015). EMSA also demonstrated that CCNBARC Rx1 

protein purified from N. benthamiana leaves bound DNA (Fenyk et al., 2015). This 

demonstrates that the FRET-FLIM assay was measuring an active DNA binding 

activity of Rx1 CCNBARC and not an association with DNA mediated by another 

protein. The results show that the in vitro DNA binding observed in this paper also 

occurs within the plant cell. This paper also demonstrated that recombinant Rx1 

CCNBARC had a bending and melting effect on DNA using FRET-FLIM, a common 

activity of transcription factors (Finzi et al., 2010). Section 3.4 showed Rx1 DNA 

binding in response to its cognate elicitor CP106. Together, these suggests that Rx1 

DNA binding may stimulate gene expression in response to CP106 to trigger plant 

defence signalling. Rx1  DNA binding has been shown to be non-specific (Fenyk et 

al., 2015), suggesting that another protein would have to mediate this interaction to 

provide specificity (see Chapter 4) . 

 

 The FRET-FLIM experiments with mutant Rx1 constructs designed to investigate the 

impact of nucleotide hydrolysis/binding were inconclusive. I-2 nucleotide hydrolysis 

deficient mutants (S233F and D283E) result in I-2 auto-activity, whereas the 

nucleotide binding mutant K207R is inactive (Tameling et al., 2002). However S202F 

and D225E have not been described as causing immunological autoactivity in Rx1. 
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Nor is there any evidence of Rx1 nucleotide hydrolysis recorded in the literature for 

the K176R mutation to disrupt. Tough Rx1 DNA bending has been shown to be 

dependent on ADP  and a functional p-loop (Fenyk at al., 2015). The NBARC domain 

of Rx1 may not hydrolyse or even bind ATP. The effects of these mutations may just 

be the structural destabilization of the NBARC domain resulting in partially misfolded, 

inactive protein. 

 

The effects seen in the FRET-FLIM assay for these mutant constructs could be the 

result of either compromised nucleotide binding/hydrolysis activity, or compromised 

protein stability. The mutations could interrupt motifs required for protein folding and 

stability. Slight changes in protein folding with the NBARC domain could compromise 

inter-domain interactions in Rx1 that the D460V mutation indicates are 

immunologically relevant and functionally relevant to DNA binding. Changes in 

behaviour from co-expression with the LRR could be the result of the LRR stabilising 

a partially folded NBARC domain. Further work is required to elucidate this 

relationship (see Chapter 6). 
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4. The impact of the transcription factor NbGLK1 on Rx1 triggered 

immunity 

 

4.1 Introduction 

NB-LRR protein activation is tightly regulated as their promiscuous activity can lead 

to cell death through the hypersensitive response (HR). Chapter 3 presented evidence 

that the NB-LRR protein Rx1 bound DNA in fixed plant leaf material. Previous work 

has demonstrated the ability of recombinant Rx1 protein to bind DNA in vitro (Fenyk 

et al., 2015). With the DNA binding activity of Rx1 established, it was hypothesised 

that this binding would be regulated so as to prevent an immune response in the 

absence of an immune elicitor.  

To identify putative Rx1 interactors that may mediate its DNA binding activity, the 

CC domain of Rx1 (amino acids 1-144) was screened in a Yeast 2-hybrid assay against 

a mixed tissue Nicotiana benthamiana cDNA library. Positive matches from this 

screen were to be bioinformatically analysed to determine if they were likely to bind 

DNA. Putative DNA binding proteins were then hypothesised to be potential 

regulators of Rx1 DNA binding. This chapter describes the identification of one such 

protein, and further experiments with the aim of confirming its interaction with Rx1 

and determining the mechanism through which any regulation of Rx1 DNA binding 

occurs. 

The transcription factor NbGLK1 (Golden-Like transcription factor 1) displayed 

affinity for the Rx1-CC domain in the Yeast 2-Hybrid assay. The GLK1 family of 

transcription factors have been shown to be involved in defence signalling (Han et al., 
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2013, Murmu et al., 2014) and chloroplast development (Waters et al., 2009) in 

Arabidopsis. As a protein hypothesised to bind DNA and be involved in defence 

signalling, NbGLK1 was identified as a potential regulator of Rx1 DNA binding.  

The ability of NbGLK1 to regulate Rx1 DNA binding activity was investigated. The 

impact of NbGLK1 on Rx1 DNA binding, the Rx1 mediated defence response, and 

Rx1 mediated cell death was tested. The impact of Rx1 on NbGLK1 DNA binding was 

also assayed, as was the ability of Rx1 and NbGLK1 to interact in planta. 

 

4.2 Yeast 2-hybrid screen results 

CC domains are known to be involved in protein-protein interactions (Kohn et al., 

1997). The Rx1 CC domain has been shown in previous work to be involved in protein-

protein interactions, binding the protein RanGAP2 (Tameling el al., 2007). It was 

therefore hypothesised that proteins mediating Rx1 DNA binding would do so via this 

domain. The section describes a yeast 2-hybrid screen with the aim of identifying Rx1 

CC interactors. 

Amino acids 1-144 of Rx1 (residues corresponding to the CC domain) were cloned 

into a pB27 bait plasmid as a C-terminal LexA fusion. This was then subject to a Yeast 

2 hybrid screen against a random-primed Nicotiana benthamiana mixed tissue cDNA 

library (https://www.hybrigenics-services.com/library/1) in a pP6 prey plasmid fused 

to a transcription-activating domain of the bacterial transcription factor Gal4. LexA is 

a bacterial DNA binding protein that when interacting with a Gal4 activating domain 

forms a functional Gal4 transcription factor. An interaction between a LexA fused CC 

domain with a protein from the library fused with the Gal4 activation domain results 
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in activation of the Gal4 promoted HIS3 histidine production gene on the pP6 plasmid. 

Clones expressing HIS3 were selected for through growth on media deficient in 

histidine leucine, tryptophan (Formstecher et al., 2005, see Materials and Methods 

section 2.4.4). 

To confirm interactions, the colonies giving positive results from the initial screen 

were spotted onto plates containing media lacking leucine and tryptophan and medium 

lacking leucine, tryptophan and histidine supplemented with 10 or 50 mM 3-Amino-

1,2,4-triazole (3-AT). 3-AT inhibits imidazoleglycerol-phosphate dehydratase, an 

enzyme involved in the production of histidine. Using low concentrations of this 

inhibitor in the media improves selection for the HIS3 histidine production gene used 

for selection in the Y2H screen. Positive prey colonies were sequenced, and putative 

protein domains determined through bioinformatics. Proteins with strong affinities for 

the CC domain that also contained DNA binding domains were identified as potential 

regulators of Rx1 DNA binding. 

Among the hits generated by the initial screen were 7 positive results of overlapping 

sequence that were combined to a form Single Interacting Domain from a protein 

homologous to the one encoded by LOC102587163 (GenBank ID: 565364225) in the 

Solanum tuberosum genome library (see appendix 7.1-7.2 for full Yeast two-hybrid 

results). Homology to a protein from the same organism as Rx1 was necessary for the 

interaction to be considered biologically relevant. This was one of the highest 

confidence results in the screen with a PRBS (predicted biological score) of B, 

corresponding to ‘high confidence in the interaction’ (see methods and material 2.4.4 

for a description of PRBS scores). A 1x1 Yeast 2 hybrid screen confirmed this result, 

showing yeast growth on the 10 mM 3-Amino-1,2,4-triazole (3-AT) supplemented 
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leucine, tryptophan and histidine deficient plate (Figure 21). No growth was seen on 

the corresponding plate for any of the negative controls. 

 

 

 

 

Figure 20. Sequence alignment of Nicotiana benthamiana GLK1 (NbGLK1) amino acid 

sequence with Solanumm tuberosum GLK1 (SbGLK1) using ClustalOmega. Conserved 

residues between the sequences are highlighted, and the putative NbGLK1 Myb helix-turn 

helix DNA binding domain as annotated by Interpro (amino acids 104-144) is indicated.  

 

Myb 



 97 

 

Figure 21. 1x1 Yeast 2 hybrid screen of Rx1-CC against NbGLK1 performed by 

Hybrigenics. Rx1 was fused to the Gal4 DNA-binding domain and NbGLK1 was fused to 

the Gal4 activation domain. Plates were grown on medium lacking leucine and tryptophan 

(−L/−W) and medium lacking leucine, tryptophan, histidine (−L/−W/−T), supplemented 

with 10 or 50 mM 3-Amino-1,2,4-triazole (3-AT).  A. Smad vs Smurf positive control B. 

Empty pB27 bait vs empty pP7 prey negative control. C empty pB27 bait vs NbGLK1 in 

prey negative control. D. Rx1 containing bait vs empty pP7 prey negative control. E. CC 

Rx1 in pB27 bait plasmid with NbGLK1 in pP7 prey plasmid.  

 

 

 

 



 98 

Bioinformatic analysis using Clustal Omega for multiple sequence alignment 

(https://www.ebi.ac.uk/Tools/msa/clustalo/ (Sievers et al., 2011)) and Interpro for 

domain annotation (http://www.ebi.ac.uk/interpro/ (Mitchell et al., 2014)) suggested 

this protein was homologous to the protein GLK1 (Golden-Like transcription factor 

1)(Figure 20). NbGLK1 is hypothesised to bind DNA, containing a putative Myb 

helix-turn-helix DNA binding domain and belonging to a family of transcription 

factors (Han et al., 2013). GLK1 has been shown to be involved in defence signalling 

in Arabidopsis, providing resistance to cucumber mosaic virus (Han et al., 2013) and 

the fungal pathogens Fusarium graminearum and Hyaloperonospora arabidopsidis 

(Murmu et al., 2014). It was therefore identified a potential regulator of Rx1 DNA 

binding, and subject to further investigation.  

 

4.3 NbGLK1 promotes Rx1 DNA binding in vivo 

Chapter 3 demonstrated that full length Rx1 bound genomic DNA in response to its 

viral elicitor, CP106, in fixed leaf material (Section 3.5). To investigate any impact 

NbGLK1 had on Rx1 DNA binding, NbGLK1-HA and GFP-Rx1 were co-expressed 

(Materials and Methods 2.3.1, Table 4) both with and without CP106 in N. 

benthamiana leaves via Agrobacterium mediated infiltration. NbGLK1-HA and 

CP106 were infiltrated at OD600 = 0.4 to maximise expression and GFP-Rx1 was 

infiltrated at OD600 = 0.1 to prevent cell death via HR. The leaves were fixed in 

formaldehyde and stained with LDS-751. The same FRET-FLIM assay developed in 

Chapter 3 (section 3.2, Materials and Methods 2.3.2/3) was then performed on GFP-

Rx1 to determine whether it bound genomic DNA. 
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Figure 22. The average ratio of fluorescence lifetimes for N. benthamiana leaves expressing GFP-

Rx1 in combination with NbGLK1 and CP106 fixed in formaldehyde and stained with LDS-751. 

Free GFP and GFP-H2B expressing N. benthamiana are included as negative and positive controls.  

n = 6-10. ^ indicates adjusted p value > 0.05, * indicates adjusted p value < 0.05, ** indicates 

adjusted p value < 0.01. *** indicates adjusted p value < 0.001. Adjusted p values calculated using 

a Dunnett-Wilson multiple comparisons test. 

 

Chapter 3 demonstrated that Rx1 bound DNA only when co-expressed with CP106 

(section 3.4). This result was repeated in the experiment, with a similar statistically 

significant drop in Rx1 lifetime ratio seen upon co-expression with CP106. This 

indicates a shift to DNA binding and greater energy transfer to the LDS-751. However, 

the results also show that full length Rx1 displays a statistically significant decrease in 

lifetime ratio in the presence of NbGLK1-HA in both the presence and absence of the 

CP106 viral coat protein (Figure 22). This suggests that Rx1 is binding DNA in both 

instances. It was concluded that NbGLK1 was acting positive regulator of Rx1 DNA 

G
FP

G
FP

-H
2B

G
FP

-R
x1

+N
bG

LK
+C

P
10

6

G
FP

-R
x1

+C
P
10

6

G
FP

-R
x1

+N
bG

LK

G
FP

-R
x1

+N
bG

LK
+C

P
10

6

0

1

2

3

4

5

Construct

R
a

ti
o

 o
f 
L

if
e

ti
m

e
 Y

ie
ld

s

^

*** *** ** **



 100 

binding, pulling the protein onto DNA when its cognate elicitor is absent. It should be 

noted that NbGLK1 and Rx1 are both overexpressed in the experiment. Under standard 

physiological conditions NbGLK1 may not trigger Rx1 DNA binding in the absence 

of it ellicitor. 

 

4.4 The impact of Rx1 on NbGLK1 binding in vivo 

The previous section investigated the impact of NbGLK1 on GFP-Rx1 DNA binding 

using FRET-FLIM. As a transcription factor, NbGLK1 also binds DNA (Hao et al., 

2013). The aim of this section is to determine the impact of Rx1 on GFP-NbGLK1 

DNA binding using the same FRET-FLIM analysis. Knowing this would in turn 

elucidate the mechanism through which NbGLK1 regulates Rx1 DNA binding.  

NbGLK1 was cloned into the Agrobacterium tumefaciens vector pK7GF2 using a 

gateway reaction via a pDONR-207 intermediate vector (see Materials and Methods, 

2.2.13), giving it an N-terminal GFP tag. This was then infiltrated into N. benthamiana 

leaves and expressed in the presence and absence of untagged Rx1 and CP106 

(Materials and Methods 2.3.1, Table 4). GFP-NbGLK1 and CP106 were infiltrated at 

OD600 = 0.4 to maximise expression and Rx1 was infiltrated at OD600 = 0.1 to prevent 

cell death via HR. The leaves were fixed in formaldehyde, stained with LDS-751, and 

assayed for NbGLK1 DNA binding activity using FRET-FLIM. 
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Figure 23. The average ratio of fluorescence lifetimes for N. benthamiana leaves expressing GFP-

NbGLK1 in combination with Rx1 and CP106 fixed in formaldehyde and stained with LDS-751. 

Free GFP and GFP-H2B expressing N. benthamiana are included as negative and positive controls.  

n = 11-14. ^ indicates adjusted p value > 0.05, * indicates adjusted p value < 0.05, ** indicates 

adjusted p value < 0.01. Adjusted p values calculated using a Dunnett-Wilson Multiple 

Comparison ANOVA test. 

 

  

The results show no statistically significant decrease in GFP-NbGLK1 ratio of lifetime 

yields from the free GFP negative control when expressed by itself, or when co-

expressed with either Rx1 or CP106 individually. A drop in the ratio of lifetime yields 

was only seen when GFP-NbGLK1 is expressed with both CP106 and Rx1 

simultaneously (Figure 23). This implies that NbGLK1 does not bind DNA in the plant 

cell until both of these proteins are present. 

The previous section suggested that NbGLK1 causes Rx1 to bind DNA in the absence 

of CP106. These results imply that Rx1 will not cause NbGLK1 to bind DNA in the 
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absence of coat protein. If the two proteins were interacting it would be expected that 

they would bind both DNA together in the absence of CP106, but this was not seen. 

This could be due to an excess of NbGLK1 being expressed in the leaves relative to 

Rx1. Agrobacterium containing the Rx1 construct was infiltrated into leaves at a lower 

OD600 value than NbGLK1 to avoid Rx1 triggered plant cell death, possibly resulting 

in lower expression. Any excess NbGLK1 may not interact with Rx1, remaining 

inactive and not binding DNA, giving a negative result in the assay. Meanwhile all of 

the smaller amount of Rx1 may interact with the excess of NbGLK1, promoting the 

Rx1 DNA binding activity. This would lead to the positive result seen in section 5.3. 

 

4.5 NbGLK1 promotes immunity to PVX independent of Rx1 

Section 4.3 demonstrated that NbGLK1 promoted Rx1 DNA binding. If Rx1 DNA 

binding initiates defence signalling, NbGLK1 should act as a promoter of Rx1 

triggered PVX resistance. This section investigates whether NbGLK1 regulates Rx1 

mediated immunity to Potato virus X (PVX).  

Rx1 is known to prevent PVX virus accumulation in infected cells (Bendahmane et 

al., 1995). An Agrobacterium vector containing the PVX genome tagged with GFP, 

pGR208 (Peart el al., 2002), was infiltrated into an area of N. benthamiana leaves. 

This vector was also co-infiltrated with either Rx1, NbGLK1-HA, or with both Rx1 

and NbGLK1 together in separate areas of the same leaf (see Materials and Methods 

2.3.1, Table 4). The leaves were incubated for 4 days and the GFP fluorescence 

intensity of the infiltrated areas recorded. The increase and decrease of GFP 
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fluorescence across the different infiltrated areas of the leaf would indicate the 

different construct’s impact on PVX immunity (see Materials and Methods 2.3.5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. (A) The average ratio of fluorescence to a GFP-PVX control for N. benthamiana leaves 

expressing GFP-PVX in combinations with NbGLK1 and Rx1.  n = 16. ̂  indicates adjusted p value 

> 0.05, * indicates adjusted p value < 0.05, **** indicates adjusted p value < 0.0001. Adjusted p 

values calculated using a Dunnett-Wilson Multiple Comparison ANOVA test. (B) A 

representative N. benthamiana leaf of the results under UV light showing the PVX fluorescence. 

1 = PVX, 2 = PVX + Rx1, 3 = PVX + NbGLK1, 4 = PVX + Rx1 + NbGLK1. 

 

The results show a statistically significant drop in GFP-PVX fluorescence in the 

presence of Rx1 (Figure 24). This control demonstrates that Rx1 triggered an immune 

response to the viral genome, reducing viral accumulation, leading to a reduction in 

fluorescence intensity. However, NbGLK1 also caused a statistically significant 

decrease in fluorescence both in the presence and absence of Rx1. The decrease in 

areas infiltrated with NbGLK1 is greater than the decrease seen in areas infiltrated with 

only Rx1.  
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 The decrease in fluorescence triggered by NbGLK1 in the absence of Rx1 suggests 

NbGLK1 can initiate immune signalling to PVX without Rx1. This would imply both 

that NbGLK1 acts parallel to Rx1 in defence signalling transduction, and that this 

defence signalling can be independent of Rx1. NbGLK1 acting parallel to Rx1 could 

allow it to promote resistance to a large range of pathogens by interacting with multiple 

NB-LRR proteins. This would fit with the multiple resistances NbGLK1 is observed 

to promote in Aribadopsis (Han et al., 2013, Murmu et al., 2014). 

 

4.6 The impact of NbGLK1 on Rx1 mediated Cell Death 

Rx1 has been shown to initiate two separate defence responses to PVX; the prevention 

of PVX viral accumulation in the infected cell (Bendahmane et al., 1995), and the 

triggering of plant cell death, the hypersensitive response (HR) (Bendahmane et al., 

1999). The previous section assayed the impact of NbGLK1 on viral accumulation. 

This section aims to determine the influence of NbGLK1 on HR.  

 

Sections of N. benthamiana leaves were infiltrated with NbGLK1, NbGLK1 + Rx1, 

NbGLK1 + CP106, NbGLK1 + Rx1 + CP106 and Rx1 + CP106 (the positive control). 

NbGLK1 and CP106 were infiltrated at OD600 = 0.4. Rx1 was infiltrated at OD600 = 

0.1 (see Materials and Methods 2.3.1, Table 4). The leaves were then incubated and 

each infiltrated area scored for cell death from 1-5 (see Materials and Methods section 

2.3.4). 
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Figure 25. (A) The average cell death score for N. benthamiana leaves expressing NbGLK1 in 

combinations with CP106 and Rx1. n = 24. ^ indicates adjusted p value > 0.05, **** indicates 

adjusted p value < 0.0001. Adjusted p values calculated using a Dunnett-Wilson multiple 

comparisons test. (B) A representative N. benthamiana leaf of the results. A = NbGLK1, B = 

NbGLK1 + Rx1, C = NbGLK1 + CP106, D = Rx1 + CP106, D = NbGLK1 + Rx1 + CP106. (C) 

Representative images of N. benthamiana leaf areas for each cell death score. 

 

 

Areas infiltrated with the Rx1 + CP106 positive control and NbGLK1 + Rx1 + CP106 

both gave a high cell death score, indicating HR (Figure 25). Areas infiltrated with 

NbGLK1, NbGLK1 + Rx1, and NbGLK1 + CP106 all gave a statistically significant 

lower cell death score than the positive control, indicating no HR.  
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NbGLK1 expression was only associated with cell death when co-expressed with both 

Rx1 and CP106, which together initiate HR in the absence of NbGLK1. These results 

suggest that expression of NbGLK1 has no impact on HR.  

Section 4.3 showed NbGLK1 promotes Rx1 DNA binding in the absence of coat 

protein. However, the results showed NbGLK1 expression caused no increase in Rx1 

mediated HR in the absence of coat protein. This implies that Rx1 DNA binding may 

have no impact on the HR.  

Section 4.6 showed that NbGLK1 promotes Rx1 mediated extreme resistance to PVX 

in N benthamiana, but this experiment shows that this immunity must be independent 

of HR. It was concluded that that NbGLK1 promotes Rx1 DNA binding to trigger 

extreme resistance to PVX, but not HR. HR must therefore be triggered through a 

separate signal transduction pathway by Rx1 that may not involve DNA binding.   

 

4.7 Co-immunoprecipitation of Rx1 and NbGLK1 

Yeast 2-hybrid screens (section 4.2) demonstrate a protein-protein interaction in a 

fungal protein expression system. It is possible this interaction was an artefact of the 

two proteins being expressed in a different environment. This section seeks to 

determine if the NbGLK1-Rx1-CC interaction would occur in a plant expression 

system using co-immunoprecipitation.  NbGLK1 with an HA tag would be co-

expressed with the Rx1-CC-myc domain in N. benthamiana. Protein would be 

extracted and the NbGLK1-HA immunoprecipitated with an anti-HA antibody resin. 

Co-immunoprecipitation of the Rx1-CC-myc alongside the NbGLK1-HA would 

demonstrate an interaction between the two. 
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4.7.1 Screen of NbGLK1-HA Expression Conditions in N. benthamiana 

Higher expression of NbGLK1-HA increases the number of molecules for Rx1-CC 

protein molecules to interact with, increasing the sensitivity of the co-

immunoprecipitation. A trial expression of NbGLK1-HA in N. benthamiana via 

Agrobacterium mediated infiltration was performed to optimise protein expression 

conditions. The NbGLK1 construct was infiltrated at an OD600 of 0.4 both with and 

without a P19 expressing vector at an OD600 0.01 (see Materials and Methods 2.3.1, 

Table 4). The p19 protein is plant viral suppressor that increases transgene expression 

by repressing the plant gene silencing response against transgenes (Voinnet et al., 

2003). Leaves were incubated for either 2 or 3 days after infiltration. Protein was then 

extracted from the leaves and visualised via Western blotting (see Materials and 

Methods 2.3.) using an HRP linked anti-HA antibody. 

 

 

 

Figure 26: Western blot of trial NbGLK1-HA expression extracted from N benthamiana leaves 

incubated for either 2 or three days in the either the presence or absence of P19 plant viral 

suppressor. Protein visualised using a HRP linked rat anti-HA antibody. 



 108 

The strongest NbGLK1 band was produced when the construct was co-infiltrated with 

P19 and then incubated for 2 days before protein expression (Figure 26). A 3-day 

incubation period resulted in a significant decrease in protein production. While a 2-

day incubation in the absence of p19 decreased the strength of the NbGLK1 band at 

70 kDa and increased the strength of the 20 kDa band. This would suggest that that 

p19 prevented protein degradation. It was therefore decided to perform the co-

immunoprecipitation on leaf material co-infiltrated with p19 after a 2-day incubation 

period.  

 

4.7.2 Sephadex G-25 Column Screen 

Previous co-immunoprecipitations to show interactions between the domains of Rx1 

used a sephadex G-25 column to remove plant secondary metabolites that would 

interrupt interactions with antibodies from extracted plant material (Slootweg et al., 

2013). A screen was performed to determine the optimal conditions for protein elution 

from the G25 column to maximise the yield of protein eluted, increasing the chance of 

a successful protein-protein interaction later on. Rx1-CC-myc was transiently 

expressed in N benthamiana leaves for 2 days and extracted (see Materials and 

Methods 2.3.1, Table 4). The plant protein extract was added to Sephadex G-25 

columns of 3.5 ml volume. The columns were tested both under pressure via 

centrifugation and gravity. 5x1 ml fractions were collected from the gravity fed 

column to determine in which fractions the protein eluted.  
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Figure 27: Western blot of Sephadex G-25 column screen on Rx1 CC-myc extracted from N. 

benthamiana leaves. Protein visualised using a goat anti-myc 1° antibody and an anti-goat 

HRP linked 2° antibody. A = initial plant protein extract. B = eluent from Sephadex G-25 

column loaded with plant protein extract and centrifuged at 720 g for 1 min. C-F = sequential 

1 ml fractions of eluent from a G-25 column eluted via gravity. 

 

 

The results showed that the highest amount of protein present were in fractions D and 

E. These corresponded to the 2nd and 3rd ml eluted from the gravity fed column (Figure 

27). A higher concentration of protein could be observed in these compared to the 

protein eluted from the centrifuged column (B). It was therefore decided to run the 

Sephadex column under room pressure, collect the 2nd and 3rd ml of eluent and pool 

them together. This mixture would then be used for the co-immunoprecipitation. 
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 4.7.3 Co-immunoprecipitation of Rx1 and NbGLK1 at 40 mM NaCL 

The protocol for the co-immunoprecipitation was adapted from the method Slootweg 

et al. used to co-immunoprecipitate the LRR domain of Rx1 with the Rx1-CC domain 

(Slootweg et al., 2013, see Materials and Methods 2.4.3). Rx1 LRR-HA was used as a 

positive control and AVRRps4-HA was used as a negative control (see Materials and 

Methods 2.3.1, Table 4). All proteins were assayed both in the presence and absence 

of Rx1-CC-myc. Samples were taken from the experiment and protein visualised via 

Western blotting at the following points: After protein extraction from N. benthamiana 

to test for expression; after completion of the Sephadex G25 column to ensure elution; 

after the first centrifugation of the anti HA antibody resin to determine what protein 

failed to bind to the resin; and finally after elution from the resin to determine what 

protein was bound to the resin. 
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Figure 28: Western blot of co-immunoprecipitation of N. benthamiana leaf material 

expressing Rx1 CC-myc in combinations with and without a LRR-HA positive control, 

NbGLK1-HA or an AVRRps4-HA negative control. Samples were taken after protein 

extraction, Sephadex G-25 column, washing the HA antibody resin, or eluting from the HA 

antibody resin. Protein was visualised using either a goat anti-myc 1° antibody and an anti-

goat HRP linked 2° antibody or using a HRP linked rat anti-HA antibody.  

 

The Western blotting of the protein extract from N. benthamiana showed all the 

proteins were expressing successfully (Figure 28 lanes A1-7, B4-7). However, the 

different proteins were expressing in very different amounts. Far more of the LRR-HA 

positive control and AVRRps4-HA negative control (lanes A1,3,5,7) was expressed 

than NbGLK1-HA (A2,6).  

The Western blotting of the samples taken from the Sephadex column eluent (lanes 

A8-14, B8-14) showed that almost all of the protein extract was successfully recovered 

from the column, with little to no noticeable drop in protein yield from the protein 

extract (lanes A1-7, B4-7). 
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Western blotting with an anti-HA antibody of the resin wash showed the complete 

absence of any HA tagged proteins (lanes C8-14). This show that all 3 HA tagged 

proteins successfully bound to the resin. All 3 were then successfully recovered in the 

elution stage as showed in the anti HA Western blot of the eluate (lanes C1-7). 

Not all of the Rx1-CC present interacted with the resin and/or the HA tagged proteins, 

as protein could be observed in the resin wash for all samples in which it was present 

(lanes D11-14). 

The CC domain was also eluted in all samples in which it was present (lanes D4-7). 

This includes both the negative control containing an AVRRps4-HA with Rx1-CC 

(D7) and the negative control containing only Rx1-CC with HA tagged protein at all 

(D4). Variations in the amount of Rx1-CC eluted between samples could be seen. But 

these correlated closely with variations amount of Rx1-CC being expressed in plants. 

The B7 and D7 negative control contain more than the B6 and D6 samples containing 

NbGLK1 with Rx1-CC. i.e. more Rx1-CC was eluted in samples where more Rx1-CC 

was added to the resin, rather than as a result of a selective interaction with an HA 

tagged protein.  

The elution of Rx1-CC from the sample lacking an HA tagged protein (D4) suggests 

that the CC domain was interacting directly with resin rather than with an intermediate 

protein. It was concluded that a stronger wash once the sample was loaded onto the 

resin was required to disrupt this interaction and provide selection solely on the basis 

of an interaction with the HA tagged protein. 
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4.7.4 Screen of Salt Concentration on co-immunoprecipitation of Rx1 and 

NbGLK1 

The previous section demonstrated that the resin wash buffer used in the co-

immunoprecipitation was unable to wash non-specifically bound Rx1-CC off the resin. 

This section describes a screen of different wash conditions for the anti-HA antibody 

resin. The interaction between the different domains of Rx1 consists of an electrostatic 

attraction in current models (Slootweg et al., 2013). Structural characterisation of the 

interaction between the Rx1-CC domain and a known protein interactor RanGAP2, 

however, showed a hydrophobic interaction (Hao et al., 2013). It was hypothesised 

that wash conditions that promoted the electrostatic interaction between the LRR and 

the CC domain (used as a positive control in section 4.7.3) would not necessarily 

promote a possible hydrophobic interaction between NbGLK1 and the CC domain. It 

was therefore decided to discard LRR as a positive control and instead focus on a 

comparison between the NbGLK1-HA interaction with the Rx1-CC domain and the 

AVRRps4-HA negative control interaction with the Rx1-CC domain. Both of these 

were expressed in N. benthamiana and co-immunoprecipitated using a screened of 

various resin washes. Two wash buffers of increased NaCl concentration of 60mM 

and 80mM were trialled. As was another buffer of identical salt concentration to that 

used in section 4.7.3 (40mM), but with an increased concentration of Tween 20 from 

0.1% (v/v) to 1% (v/v). 
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Figure 29: Western blot of a co-immunoprecipitation on N. benthamiana leaf material co-

expressing Rx1-CC-myc with either NbGLK1-HA or an AVRRps4-HA negative control. 

Samples taken after protein extraction, Sephadex G-25 column, washing the HA antibody 

resin, or eluting from the HA antibody resin. Anti HA antibody resin wash buffer contained 

40, 60 or 80 mM NaCl as indicated. Protein was visualised using either a goat anti-myc 1° 

antibody and an anti-goat HRP linked 2° antibody or using a HRP linked rat anti-HA antibody.  

 

The Western blot analysis of the post extraction and post column samples again 

showed all constructs expressing successfully (Figure 29. Lanes A1-6, B1-6) and 

passing through the Sephadex column (lanes A7-12, B7-12). The anti-HA Western 

blot of the resin wash and eluent showed both the desired HA tagged proteins 

successfully bound to the resin (lanes C1-6) and no detectable protein was washed off 

by any of the tested wash buffers (lanes C7-12).  
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The anti-myc Western blot showed changes in wash buffer did impact the affinity of 

the Rx1-CC domain for the resin. At the highest salt concentration (80mM NaCl) no 

Rx1-CC was eluted from the resin in the presence of both NbGLK1 and AVRRps4 

(lanesD1, D4). 80mM NaCl is therefore sufficient to disrupt non-specific interactions 

between Rx1-CC and the resin, but also disrupts any interaction there could potentially 

be with NbGLK1. At the lowest NaCl concentration (40mM) with raised Tween 20 

concentration (1% (v/v)) both NbGLK1 and the negative control both eluted 

comparable amounts of Rx1-CC (lanes D3, D6). It was concluded that the elevated 

Tween 20 concentration had little effect on non-specific Rx1-CC interactions with the 

resin in the conditions tested.  

The middle salt concentration (60mM NaCl) also displayed eluted Rx1-CC with both 

NbGLK1 and AVRRps4 (D2, D5). However, the quantity of Rx1-CC visualised by 

the Western blot was far lower in the negative control (D5) than the NbGLK1 (D2). 

Rx1-CC could therefore be interacting with NbGLK1 over the negative control at these 

conditions. It should be noted however, that the leaves containing NbGLK1 and Rx1-

CC expressed more Rx1-CC (B2) than those containing AVRRps4 (B5). This means 

that any apparent selectivity may be an artefact caused by loading more Rx1-CC onto 

the resin.  
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4.7.5 Elution With Boiling SDS Sample Buffer 

Section 4.7.4 showed a higher yield of eluted Rx1-CC for a NbGLK1 sample over the 

negative control. To try and improve this selectivity observed in it was decided to use 

a harsher elution method on the anti-HA antibody resin to ensure all bound protein 

was removed. In previous sections the resin had been eluted using a 50 mM NaOH 

elution buffer at 4°C. A co-immunoprecipitation was carried out on N. benthamiana 

leaves expressing Rx1-CC-myc both with and without NbGLK1, with protein eluted 

from the resin using SDS-PAGE loading buffer (see Materials and Methods 2.3.) at 

95°C.   

 

 

 

Figure 30: Western blot of co-immunoprecipitation on N. benthamiana leaf material 

expressing Rx1-CC-myc with and without NbGLK1-HA. Samples taken after protein 

extraction and after eluting from the HA antibody resin. Protein was visualised using either a 

goat anti-myc 1° antibody and an anti-goat HRP linked 2° antibody or using a HRP linked rat 

anti-HA antibody.  
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The results show that NbGLK1 was not visualised in the sample from the leaf extract 

(Figure 30, B2), but was in the resin eluent (B4), showing that the protein was 

expressed but required concentrating on the resin to visualise. More Rx1-CC was 

eluted in the absence of NbGLK1  (lane A3) than with it present (lane A4). However 

lanes A1 and A2 on the myc antibody western show far more CC-myc expressed in 

the leaves without NbGLK1 (A1) than with (A2). Rx1-CC elution was hence linked to 

variations in the amount expressed in leaves rather than the presence of NbGLK1. It 

was therefore concluded that the new elution method was ineffective at improving 

selectivity for an interaction between Rx1-CC and NbGLK1. 

 

4.8 Conclusion 

 The Yeast 2-hybrid screen results identified NbGLK1 as a potential regulator of Rx1 

DNA binding, showing a strong binding affinity for the Rx1-CC domain and belonging 

to a known family of transcription factors. A FRET-FLIM assay on the effect of 

NbGLK1 on Rx1 DNA binding in fixed leaf material showed that NbGLK1 promotes 

Rx1 DNA binding in the absence of its cognate viral elicitor CP106.  FRET-FLIM 

analysis of NbGLK1 DNA binding showed that Rx1 did in turn promote NbGLK1 

DNA binding when co-expressed with CP106. 

 

Analysis of the impact of NbGLK1 on Rx1 mediated PVX immunity showed that 

NbGLK1 inhibits viral replication of PVX in the absence of Rx1. However, NbGLK1 

did not promote HR in N. benthamiana when expressed in isolation or with Rx1 or 

CP106. NbGLK1 linked immunity occurs independently of HR. NbGLK1 was 

concluded to work parallel to Rx1 in a defence signal transduction pathway that did 
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not induce HR. However, NbGLK1 could not be shown to interact with the Rx1-CC 

domain in planta via co-immunoprecipitation. 

 

This chapter concludes that NbGLK1 acts as a positive regulator of Rx1 DNA binding 

and extreme resistance to PVX, but not Rx1 mediated HR. However, further work is 

required to establish whether or not an interaction occurs between the two proteins in 

planta (see Chapter 6). 

  

4.9 Discussion 

The FLIM-FRET work performed in fixed N. benthamiana is supported by NbGLK1 

DNA binding assays in vitro on recombinant protein using fluorescence anisotropy 

that show it possesses a DNA binding ability (Townsend et al., unpublished data). This 

NbGLK1 DNA binding has also been shown to be sequence specific. Specificity in 

Rx1 DNA binding could therefore be mediated by an Rx-GLK1 interaction. The 

impact of Rx1 on NbGLK1 DNA binding has also been demonstrated in vitro using 

fluorescence anisotropy with fluorescently tagged oligonucleotides. This showed that 

Rx1 CCNBARC and CC both inhibited NbGLK1 DNA binding (Townsend et al., 

unpublished data). The in planta FRET-FLIM data showed full length Rx1 promoting 

NbGLK1 DNA binding in the plant cell. 

 

These results suggest that that NbGLK1 enables site-specific DNA binding of Rx1 and 

this promotes Rx1 triggered extreme immunity to PVX, preventing the accumulation 

of PVX in infected cells. NbGLK1 belongs to a known family of transcription factors 

(Chen et al., 2016). These have been previously demonstrated to have a role in 

immunity in Arabidopsis against cucumber mosaic virus and the fungal pathogens 
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Fusarium graminearum and Hyaloperonospora arabidopsidis (Han et al., 2013, 

Murmu et al., 2014). The fact that NbGLK1 promoted immunity in the absence of Rx1 

suggests it could also be acting in parallel, with multiple NBLRR proteins and this is 

supported by the fact that it also provides immunity to these other pathogens that are 

not sensed by Rx1. NbGLK1 does not impact Rx1 mediated HR, implying that HR is 

caused by a separate signal transduction pathway, possibly not triggered by Rx1 DNA 

binding. 

 

The results did not show an interaction between NbGLK1 and Rx1 in the 

coimmunoprecipitation. However, in vitro analysis of recombinant NbGLK1 and Rx1 

CC using size exclusion gel chromatography shows co-elution of the two proteins 

(Townsend et al., unpublished data) which does support the yeast 2-hybrid data in 

suggesting a physical interaction is occurring between the two, suggesting further 

work is needed to clarify whether there is an interaction or not (see Discussion chapter, 

Section 6.3). 
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5. The impact of NbMLHP on Rx1 triggered immunity 

 

5.1 Introduction 

Chapter 4 described a Yeast 2-hybrid experiment using the CC domain of Rx1 to 

identify potential regulators of Rx1 DNA binding from a Nicotiana benthamiana 

cDNA library. The protein NbGLK1 was identified and characterised as a positive 

regulator of Rx1 DNA binding and PVX immunity. 

However, the same Yeast 2-hybrid experiment generated other putative Rx1 CC 

interactors with DNA binding domains. This chapter describes experiments on a 

second potential regulator of Rx1 DNA binding, with the aim of confirming whether 

this protein affects Rx1 DNA binding, and what impact it has on Rx1 mediated 

immunity. 

A protein with high homology to the predicted Solanum tuberosum protein MLHP 

(micronuclear linker histone polyprotein) displayed affinity for the CC domain in the 

Yeast 2-Hybrid assay. Bioinformatic analysis of this protein predicted a SANT domain 

at the N-terminus. SANT domains are DNA binding domains known to be involved in 

chromatin remodelling (Boyer et al., 2002). A bromodomain was also predicted in the 

central region. Bromodomains are domains with an acetyl lysine binding activity. 

Often proteins with this domain regulate gene expression via targeting of DNA binding 

protein such as histones, leading to changes in chromatin remodelling (Sanchez et al., 

2009). It was therefore hypothesised that NbMLHP was a regulator of Rx1 DNA 

binding. 
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This chapter describes experiments that investigate the impact of NbMLHP on Rx1 

activity. The impact of NbMLHP on Rx1 DNA binding, the Rx1 mediated defence 

response, and Rx1 mediated cell death were all tested. The impact of Rx1 on NbMLHP 

DNA binding was also assayed, as was the ability of Rx1 and NbMLHP to interact in 

planta. 

 

5.2 Yeast 2-hybrid results  

The previous Chapter described a Yeast 2-hybrid screen using the Rx1 CC domain 

against a library of N. benthamiana cDNA with the aim of finding potential regulators 

of Rx1 DNA binding (see Section 4.2 and Materials and Methods section 2.3.4). 

Proteins with strong affinities for the CC domain that also contained putative DNA 

binding domains were identified as potential regulators of Rx1 DNA binding.  

7 positive results from the initial screen were of an overlapping sequence that was 

combined to an SID of the bromodomain of a protein in the cDNA library. This protein 

displayed a high level of homology the predicted protein at LOC102600407 (GenBank 

ID: 565386739) in the potato genome (see appendices 7.1-2). Computational analysis 

determining the reliability of this positive result gave a PRBS score of A, 

corresponding to ‘very high confidence in the interaction’ (see Section 2.3.4 for an 

explanation of the PRBS score). The protein was subject to a 1x1 Yeast 2 hybrid screen 

as described in section 4.3, and this confirmed this result, showing yeast growth on the 

10 mM 3-Amino-1,2,4-triazole (3-AT) supplemented leucine, tryptophan and histidine 

deficient plate (Figure 32). No growth was seen on the corresponding plate for any of 

the negative controls. 



 124 

 

Figure 31. Sequence alignment of Nicotiana benthamiana MLHP (NbMLHP) amino acid 

sequence with Solanumm tuberosum MLHP (SbMLHP) using ClustalOmega. Conserved 

residues between the sequences are highlighted. A SANT domain is predicted between 

NbMLHP residues 6-72 and a bromodomain predicted between residues 301-408 using 

InterPro domain annotation.  

SANT Domain 

Bromodomain 
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Figure 32. 1x1 Yeast 2 hybrid screen of CC Rx1 against NbMLHP performed by Hybrigenics. 

Rx1 was fused to the Gal4 DNA-binding domain and NbMLHP was fused to the Gal4 

activation domain. Plates were grown on medium lacking leucine and tryptophan (−L/−W) 

and medium lacking leucine, tryptophan, histidine (−L/−W/−T), supplemented with 10 or 50 

mM 3-Amino-1,2,4-triazole (3-AT).  A. Smad vs Smurf positive control B. Empty pB27 bait 

vs empty pP7 prey negative control. C empty pB27 bait vs NbMLHP in prey negative control. 

D. Rx1 containing bait vs empty pP7 prey negative control. E. CC Rx1 in pB27 bait plasmid 

with NbMLHP in pP7 prey plasmid.  
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Bioinformatic analysis using ClustalOmega for multiple sequence alignment 

(https://www.ebi.ac.uk/Tools/msa/clustalo/ (Sievers et al., 2011)) and Interpro for 

domain annotation (http://www.ebi.ac.uk/interpro/ (Mitchell et al., 2014)) of this 

protein showed high homology to the Solanum tuberosum protein MLHP 

(micronuclear linker histone polyprotein) (Figure 30) and predicted 2 potential 

chromatin-associated domains. A SANT domain; a DNA binding domain known to be 

involved in chromatin remodelling (Boyer et al., 2002), and a bromodomain. 

Bromodomains are involved in acetyl lysine binding, and are not inherently chromatin 

associated (Boyer et al., 2002). A common target of their acetyl lysine binding activity 

is histones. Acetyl lysine binding of histones is associated with regulation of gene 

expression via chromatin remodelling (Sanchez et al., 2009). The presence of a DNA 

binding SANT domain that is associated with chromatin remodelling led to the 

hypothesis that the putative bromodomain in NbMLHP also has a role in chromatin 

remodelling, and targets a DNA associated protein for acetyl lysine binding, possibly 

histones.  

 

Bromodomain containing proteins have been shown to have a role in immunity in 

humans; BRD4 acetylates a lysine residue on NFκB to activate the inflammatory 

response (Huang el al,. 2009). BRD4 has also been shown to have a role in the 

transcription of viral genes, regulating HIV transcription (Zou et al., 2009), preventing 

papillovirus E2 protein (Gagnon et al., 2009), and interacting with Kaposi's sarcoma-

associated herpesvirus-encoded LANA-1 (Ottinger et al., 2009). In plants the 

cucumber RNA binding bromodomain protein BRP1 has been shown to regulate 

cucumber mosaic virus (CMV) replication (Chaturvedi et al., 2016) and the bacterial 
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effector protein PopP2 deactivates a plant immunological WRKY transcription factor 

through an acetyl lysine binding activity (Sarris et al., 2015). 

It was hypothesised that NbMLHP regulated Rx1 DNA binding, and experiments with 

aim of characterising its activity and relationship with Rx1 were undertaken 

 

 

5.3 NbMLHP does not impact Rx1 DNA binding in vivo 

Chapter 4 demonstrated that NbGLK1 promoted Rx1 DNA binding in N. benthamiana 

using FRET-FLIM analysis.  This section aims to determine if NbMLHP also influences 

Rx1 DNA binding using the same method. NbMLHP-HA and GFP-Rx1 were co-

infiltrated (Materials and Methods 2.3.1, Table 4) both with and without CP106 into 

Nicotiana benthamiana leaves. NbGLK1-HA and CP106 were infiltrated at OD600 = 

0.4 to maximise expression and GFP-Rx1 was infiltrated at OD600 = 0.1 to prevent cell 

death via HR. The leaves were fixed in formaldehyde and stained with LDS-751. The 

same FRET-FLIM assay developed in Chapter 3 (section 3.2, Materials and Methods 

2.3.2/3) was then performed on GFP-Rx1 to determine under which conditions it 

bound genomic DNA. 
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Figure 33. The average ratio of fluorescence lifetimes for N. benthamiana leaves expressing GFP-

Rx1 in combination with NbMLHP and CP106 fixed in formaldehyde and stained with LDS-751. 

Free GFP and GFP-H2B expressing N. benthamiana are included as negative and positive controls.  

n = 6-10. ^ indicates adjusted p value > 0.05, * indicates adjusted p value < 0.05, ** indicates 

adjusted p value < 0.01. Adjusted p values calculated using a Dunnett-Wilson Multiple 

Comparison ANOVA test. 

 

The experiment showed GFP-Rx1 lifetime ratios did not differ from the GFP negative 

control in the absence of CP106 (Figure 33). Significant drops in lifetime ratio were 

then observed upon co-expression with CP106. This pattern occurred both with and 

without NbMLHP coexpression. Sections 3.4 and 4.3 both concluded that Rx1 did not 

bind genomic DNA in the N. benthamiana leaves unless CP106 was co-expressed, as 

indicated by the drop in lifetime ratio. This experiment again repeated this result. That 

a similar drop in lifetime ratio occurs in the presence NbMLHP-HA suggests the 

protein is not affecting Rx1 DNA binding.  
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5.4 The influence of Rx1 on NbMLHP DNA binding In Vivo 

Bioinformatic analysis predicted a DNA binding SANT domain in NbMLHP (see 

section 5.2). The previous section concluded that NbMLHP does not affect Rx1 DNA 

binding. It was hence thought that perhaps Rx1 acts upstream of NbMLHP and the 

putative interaction between them involves Rx1 regulating NbMLHP DNA binding. 

This section aims to determine if Rx1 affects any potential NbMLHP DNA binding. 

To achieve this, NbMLHP was cloned into the Agrobacterium tumefaciens vector 

pK7GF2 using a gateway reaction via a pDONR207 intermediate vector (see Section 

2.2.13), providing an N-terminal GFP tag. The same FRET-FLIM experiment 

performed in section 5.3 was repeated, but with Rx1 expressed untagged and 

NbMLHP was expressed with an N-terminal GFP tag (Materials and Methods 2.3.1, 

Table 4). All incubation periods and OD600 infiltration values were unchanged from 

section 5.3. The fluorescence lifetimes of GFP-NbMLHP were then analysed to 

determine under which, if any, conditions it bound genomic DNA. 
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Figure 34. The average ratio of fluorescence lifetimes for N. benthamiana leaves expressing GFP-

NbMLHP in combination with Rx1 and CP106 fixed in formaldehyde and stained with LDS-751. 

Free GFP and GFP-H2B expressing N. benthamiana are included as negative and positive controls.  

n = 7-11. ^ indicates adjusted p value > 0.05, * indicates adjusted p value < 0.05, ** indicates 

adjusted p value < 0.01, *** indicates adjusted p value < 0.001. Adjusted p values calculated using 

a Dunnett-Wilson Multiple Comparison ANOVA test. 

 

When expressed in isolation, GFP-NbMLHP displayed a low lifetime ratio (Figure 33) 

comparable to the GFP-H2B positive control. This implies NbMLHP binds genomic 

DNA. However, upon coexpression with either Rx1, CP106, or both Rx1 and CP106 

together, a statistically significant rise in GFP-NbMLHP lifetime ratio is seen. It was 

concluded that the expression of these proteins inhibits NbMLHP DNA binding. 

Expression of Rx1 and CP106 together reduced NbMLHP DNA binding. This implies 

NbMLHP may act as a negative regulator of plant immunity. In a resting state 

NbMLHP might bind DNA via its SANT domain and supresses defence gene 
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activation through bromodomain mediated histone binding. CP106 activates Rx1 to 

trigger the Rx1 mediated defence response. Interaction between the active Rx1 CC 

domain and NbMLHP might then reduce its ability to bind DNA.  

Rx1 expression in the absence of CP106 also inhibited NbMLHP DNA binding. 

Overexpression of Rx1 can lead to a plant immune response in the absence of C106 

(Bendahmane et al., 2002). It may be that the result is an artefact of Rx1 

overexpression initiating immunity and preventing NbMLHP binding DNA. 

CP106 in the absence of Rx1 inhibited NbMLHP DNA binding. This could suggest 

that NbMLHP acts parallel to Rx1 in defence signal transduction. Rx1 can deactivate 

NbMLHP but so can other defence proteins present in the N. benthamiana leaf that are 

also activated by CP106 expression. 

 

5.5 The impact of NbMLHP on PVX Viral replication  

Section 5.4 demonstrated Rx1 inhibited NbMLHP DNA binding activity. It was 

hypothesised that NbMLHP DNA binding supressed defence genes and that NbMLHP 

expression would promote PVX infection. Chapter 4 showed NbGLK1 promoted 

extreme resistance to PVX in N. benthamiana leaves using an Agrobacterium vector 

containing a GFP tagged PVX virus genome (section 4.5). This section investigates 

the impact of NbMLHP expression on Rx1 mediated extreme resistance to PVX using 

the same GFP-PVX assay.  
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Different areas of the same N. benthamiana leaves were infiltrated with GFP-PVX, 

GFP-PVX and Rx1, GFP-PVX and NbMLHP, and finally GFP-PVX with Rx1 and 

NbMLHP (see Materials and Methods 2.3.1, Table 4). Areas of N. benthamiana leaves 

were infiltrated with Agrobacterium transformed with the pGR208 vector containing 

the GFP tagged PVX viral genome at OD600 = 0.4. HA-NbMLHP was infiltrated at 

OD600 = 0.4. The leaves were incubated for 1 day before infiltration of the appropriate 

areas with Rx1 at OD600 = 0.05. GFP-PVX fluorescence intensity of the infiltrated leaf 

area was then recorded and the change in GFP-PVX expression across the differently 

infiltrated areas of the leaf analysed (see Materials and Methods 2.3.5). 

 

 

Figure 35. (A) The average ratio of fluorescence to a GFP-PVX control for N. benthamiana leaves 

expressing GFP-PVX in combinations with NbMLHP and Rx1.  n = 16. ^ indicates adjusted p 

value > 0.05, * indicates adjusted p value < 0.05,. Adjusted p values calculated using a Dunnett-

Wilson Multiple Comparison ANOVA test. (B) A representative N. benthamiana leaf of the 

results under UV light showing the PVX fluorescence. 1 = PVX, 2 = PVX + Rx1, 3 = PVX + 

NbMLHP, 4 = PVX + Rx1 + NbMLHP 
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A drop in GFP-PVX fluorescence was observed upon co-infiltration with Rx1 (Figure 

35). Co-expression with NbMLHP or with both NbMLHP and Rx1 together resulted 

in no significant change in GFP-PVX fluorescence from the GFP-PVX control. The 

drop in fluorescence with Rx1 was concluded to be the result of Rx1 triggered extreme 

immunity inhibiting viral replication. Co-expression with NbMLHP inhibited this 

immune response. This result suggests that NbMLHP suppresses Rx1 mediated viral 

resistance, and it was hypothesised that this suppression was mediated by the DNA 

binding activity of NbMLHP demonstrated in section 3.4. 

 

 

5.6 The effect of bromodomain mutation on PVX Viral replication  

Bioinformatic analysis of NbMLHP predicted the presence of a bromodomain and a 

DNA binding SANT domain (Figure 31). The presence of a SANT domain suggests 

that the protein with the acetyl lysine group NbMLHP binds to may associate with 

DNA. It is common for bromodomain acetyl lysine binding on chromatin-associated 

proteins (usually histones) to promote gene expression through chromatin remodelling 

(Sanchez et al., 2009), and SANT domains are also associated with chromatin 

remodelling (Boyer et al., 2002). Previous sections showed NbMLHP supressed an 

Rx1 triggered extreme resistance to PVX (section 5.5), and that Rx1 inhibited 

NbMLHP DNA binding (section 5.4). It was hypothesised that NbMLHP supressed 

Rx1 mediated extreme resistance to PVX through histone acetyl lysine binding 

subsequent to DNA binding, promoting transcription of genes that inhibit immunity. 
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To test this hypothesis, the bromodomain of NbMLHP was mutated to inhibit binding 

to acetylated lysine. The residues responsible for bromodomain lysine binding have 

been previously elucidated for the human bromodomain containing protein Gcn5p, a 

histone acetyl lysine transferase (Owen et al., 2000). A protein BLAST search 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins)(Altschul et al., 2007) was 

used to identify the corresponding residues in NbMLHP and two highly conserved 

residues were picked for mutation, Y336 and E386. 2 HA tagged NbMLHP 

bromodomain mutants were constructed by P. Townsend (Table 4) for transient 

expression in N. benthamiana; Y336F and E386L (Figure 36A).  

These constructs were than used in a similar viral replication assay as described in 

section 5.5, with the wild type NbMLHP previously used replaced with the 

bromodomain mutants Y336F and E386L (see Materials and Methods 2.3.1, Table 4). 

Mutants were infiltrated into and incubated in N. benthamiana leaves under the same 

conditions as wild type NbMLHP was in section 5.5. The GFP-PVX viral fluorescence 

was recorded and analysed as described previously to determine the impact of these 

mutants on Rx1 mediated viral immunity (see section 5.5 and Materials and Methods 

section 2.2.). 
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Figure 36. (A) A schematic of NbMLHP protein sequence showing the location of the SANT 

domain (green), bromodomain (cyan) and two putative acetyl lysine binding sites selected for 

mutation at Y336 and E386. The letter in brackets at the mutation site indicates the substituted 

amino acid in the mutant constructs. Numbers indicate amino acid residues (B) The average ratio 

of fluorescence to a GFP-PVX control for N. benthamiana leaves expressing GFP-PVX in 

combinations with NbMLHP and Rx1.  n = 20. ^ indicates adjusted p value > 0.05, * indicates 

adjusted p value < 0.05. Adjusted p values calculated using a Dunnett-Wilson Multiple 

Comparison ANOVA test. (C) A representative N. benthamiana leaf of the results under UV light 

showing the PVX fluorescence.  1 = PVX, 2 = PVX + Rx1, 3 = PVX + NbMLHP Y336F, 4 = PVX 

+ Rx1 + NbMLHP Y336F 
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Figure 37 (A) The average ratio of fluorescence to a GFP-PVX control for N. benthamiana leaves 

expressing GFP-PVX in combinations with NbMLHP E386L and Rx1.  n = 11. ̂  indicates adjusted 

p value > 0.05, **** indicates adjusted p value < 0.0001. Adjusted p values calculated using a 

Dunnett-Wilson’s multiple comparisons test. (B) A representative N. benthamiana leaf of the 

results under UV light showing the PVX fluorescence. 1 = PVX, 2 = PVX + Rx1, 3 = PVX + 

NbMLHP E386L, 4 = PVX + Rx1 + NbMLHP E386L. 

 

As seen previously, a drop viral fluorescence was observed upon co-expression of Rx1 

in each of the mutant assays (Figures 36 and 37). This was concluded to be the result 

of Rx1 triggered immunity to PVX. Co-expression of GFP-PVX with NbMLHP 

Y336F led to no statistically significant change in viral fluorescence, similar to the 

lack of change in fluorescence observed when wild type NbMLHP was co-expressed 

with GFP-PVX (section 5.5). However, a drop in viral fluorescence was seen when 

both Rx1 and NbMLHP Y336F were co-expressed with the viral genome. This drop 

was not observed upon co-expression of wild type NbMLHP with Rx1. It was 

concluded that the suppression of Rx1 mediated viral resistance by NbMLHP observed 

in section 5.5 was deactivated by the Y336F mutation.  
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The second mutant, E386L, caused a significant drop in viral fluorescence when 

expressed both with and without Rx1. It was concluded that this mutation reversed the 

effect of the wild type protein, promoting viral immunity rather than suppressing it. 

The results suggest the underlying hypothesis was correct and suppression of Rx1 

mediated immunity by NbMLHP likely occurs through acetyl lysine binding. 

Mutations in the protein preventing the theoretical binding to acetyl lysine either 

negate immune repression (Y335L), or result in active promotion of a plant immune 

response immune (E386L). However the acetyl lysine binding activity of NbMLHP 

does require further experimental verification before this hypothesis can be confirmed 

(see section 6.4.2 for further details). 

 

5.7 The impact of NbMLHP with NbGLK1 on Viral Replication  

Section 5.5 showed NbMLHP inhibited Rx1 triggered extreme immunity to PVX. 

Section 5.4 showed CP106 inhibited NbMLHP DNA binding independently of Rx1. 

Chapter 4 showed NbGLK1 inhibited PVX replication independently of Rx1 (see 

section 4.5). It was therefore hypothesised that NbMLHP could inhibit NbGLK1 

triggered immunity to PVX independently of Rx1. 

This section aims to test this hypothesis using the same GFP viral replication assay in 

the previous section, replacing Rx1 with the HA-NbGLK1 construct used in section 

4.5. All constructs were infiltrated under the same conditions used in section 5.4 and 

incubated for the same time period. HA-NbGLK1 was infiltrated and incubated for the 

same time period as noted in section 4.5. GFP fluorescence intensity readings were 

recorded and analysed as described in Materials and Methods section 2.2. 
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Figure 38. (A) The average ratio of fluorescence to a GFP-PVX control for N. benthamiana leaves 

expressing GFP-PVX in combinations with NbMLHP and NbGLK1.  n = 6. ^ indicates adjusted p 

value > 0.05, **indicates adjusted p value < 0.01, Adjusted p values calculated using a Dunnett-

Wilson multiple comparisons test. (B) A representative N. benthamiana leaf of the results under 

UV light showing the PVX fluorescence. 1 = PVX, 2 = PVX + NbMLHP, 3 = PVX + NbGLK1, 4 

= PVX + NbGLK1 + NbMLHP 

 

 

 

The results showed a significant drop GFP-PVX viral fluorescence upon the expression 

of NbGLK1 (Figure 38). No significant change in viral fluorescence from the GFP-PVX 

control was observed upon co-expression with either NbMLHP or NbMLHP with 

NbGLK1. The drop associated with NbGLK1 was also observed in the previous Chapter 

(see section 5.4) and was concluded to be the result of an immune response to PVX 

triggered by NbGLK1. The lack of a drop in viral fluorescence observed when NbGLK1 

and NbMLHP were expressed with the PVX vector was thought to be a result of NbMLHP 

immune response suppression. It was concluded that NbMLHP could repress a viral 

immune response independent of Rx1 and was hence acting in parallel to Rx1 in 

suppression of defence signalling.  

A 

PVX

PVX+N
bM

LH
P

PVX+N
bG

LK
1

PVX+N
bG

LK
1+
N
bM

LH
P

0.0

0.5

1.0

1.5

Constructs

R
a

ti
o

 o
f 
P

V
X

 F
lu

o
re

s
c

e
n

c
e

^ ^

**



 139 

5.8 The effect of NbMLHP Bromodomain Mutation on NbGLK1 

mediated Viral Immunity 

Section 5.6 showed NbMLHP bromodomain mutants potentially unable to bind acetyl 

lysine no longer repressed Rx1 mediated viral resistance. This section aims to 

determine if the same mutants were also unable to repress the NbGLK1 mediated viral 

immunity shown in section 5.7. To achieve this, both HA tagged mutant NbMLHP 

constructs described in section 5.6 were used in the fluorescence NbGLK1 viral 

replication assay used in section 5.7, replacing the wild type NbMLHP. Mutants were 

infiltrated into and incubated in N. benthamiana leaves under the same conditions as 

wild type NbMLHP. 

 

  

 

 

Figure 39. (A) The average ratio of fluorescence to a GFP-PVX control for N. benthamiana leaves 

expressing GFP-PVX in combinations with NbMLHP and Rx1.  n = 13. * indicates adjusted p 

value < 0.05, ** indicates adjusted p value < 0.01. Adjusted p values calculated using a Dunnett-

Wilson multiple comparisons test. (B) A representative N. benthamiana leaf of the results under 

UV light showing the PVX fluorescence.  1 = PVX, 2 = PVX + NbGLK1, 3 = PVX + NbMLHP 

Y336F, 4 = PVX + NbGLK11 + NbMLHP Y336F 
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Figure 40. (A) The average ratio of fluorescence to a GFP-PVX control for N. benthamiana leaves 

expressing GFP-PVX in combinations with NbMLHP E386L and Rx1.  n = 6. ** indicates adjusted 

p value < 0.01, *** indicates adjusted p value < 0.001, **** indicates adjusted p value < 0.0001. 

Adjusted p values calculated using a Dunnett-Wilson multiple comparisons test. (B) A 

representative N. benthamiana leaf of the results under UV light showing the PVX fluorescence. 

1 = PVX, 2 = PVX + NbGLK1, 3 = PVX + NbMLHP E386L, 4 = PVX + NbGLK1 + NbMLHP 

E386L 

 

 

All combinations of constructs for both mutants and NbGLK1 resulted in a statistically 

significant drop in fluorescence from the control containing only PVX (Figures 39 and 

40). These results showed that both mutations deactivated NbMLHP repression of 

NbGLK1 triggered immunity, in the same way they deactivated repression of Rx1 

triggered immunity. Instead, both mutants caused active promotion of immunity, as 

demonstrated by the drop in fluorescence in the absence of NbGLK1.  
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This independent promotion of immunity was seen for the E386L mutation in section 

5.5. However, this section previously showed no promotion of an immune response 

by Y336F, merely an absence of repression. The previous Chapter showed NbGLK1 

caused a greater loss of viral replication than Rx1 under the assayed conditions (see 

section 5.4), indicating a stronger immune response. It is possible that this stronger 

response lead to systemic acquired resistance (SAR) across the assayed leaves, 

boosting the fluorescence loss. The results suggest that NbMLHP suppression of the 

NbGLK1 triggered defence response was also mediated by the putative NbMLHP 

acetyl lysine binding activity. Hence, any acetyl lysine binding occurs parallel to Rx1 

in defence signalling. Changes in resistance gene expression via transcription factor 

lysine acetyl binding is a known feature of plant immunity (Sarris et al., 2015) and the 

DNA binding activity of NbMLHP make it highly possible that a DNA associated 

protein may be the target of any acetyl lysine binding activity.  

 

5.9 Rx1 mediated Cell Death Assay 

This section aims to determine what impact NbMLHP expression has on Rx1 mediated 

HR. Chapter 4 demonstrated that regulation of Rx1 DNA binding by NbGLK1 

promoted extreme resistance to viral immunity, but did not impact HR. It was hence 

hypothesised that the DNA binding action of NbMLHP that was previously 

demonstrated to supress Rx1 mediated extreme resistance to PVX (section 5.5) would 

also not be able to impact Rx1 mediated HR.  

Sections of N. benthamiana leaves were infiltrated with NbMLHP, NbMLHP + Rx1, 

NbMLHP + CP106, NbMLHP + Rx1 + CP106 and Rx1 + CP106 (the positive control). 

NbMLHP and CP106 were infiltrated at OD600 = 0.4. Rx1 was infiltrated at OD600 = 
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0.1 (see Materials and Methods 2.3.1, Table 4). The leaves were then incubated and 

each infiltrated area scored for cell death (see Materials and Methods section 2.3.4). A 

high cell death score would indicate HR was being triggered by the constructs, and a 

low cell death score would indicate the absence of HR.  

 

Figure 41. (A) The average cell death score for N. benthamiana leaves expressing NbMLHP in 

combinations with CP106 and Rx1. n = 24. ̂  indicates adjusted p value > 0.05, * indicates adjusted 

p value < 0.05 ** indicates adjusted p value < 0.01. Adjusted p values calculated using a Dunnett-

Wilson multiple comparisons test. (B) Representative images of N. benthamiana leaf areas for each 

cell death score 
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Areas infiltrated with the Rx1 + CP106 positive control and NbMLHP + Rx1 + CP106 

both gave a high cell death score, indicating HR (Figure 41). Areas infiltrated with 

NbMLHP, NbMLHP + Rx1, and NbMLHP + CP106 all gave a statistically significant 

lower cell death score than the positive control, displaying no HR.  

NbMLHP showed no ability to supress Rx1 and CP106 mediated HR. It was concluded 

that NbMLHP DNA binding supresses extreme resistance to PVX without supressing 

HR, confirming the hypothesis. 

 

5.10 Co-immunoprecipitation of Rx1 and NbGLK1 

Section 4.7 described a co-immunoprecipitation experiment designed to determine if 

the interaction between NbGLK1 and Rx1 CC observed in the Yeast 2 hybrid screen 

was an artefact of the two proteins being expressed in a fungal expression system, or 

if the interaction would also occur in a plant expression system. This section describes 

a co-immunoprecipitation experiment with the aim of resolving the same issue for the 

NbMLHP-Rx1 CC interaction.  

The experimental set up was based around that of section 4.7, with NbMLHP replacing 

NbGLK1: NbMLHP with a HA tag would be co-expressed with the Rx1-CC-myc 

domain in N. benthamiana (see Materials and Methods 2.3.1, Table 4). Protein would 

be extracted and the NbMLHP-HA immunoprecipitated with an anti-HA antibody 

resin. Co-immunoprecipitation of the CC-myc alongside the NbMLHP-HA would 

demonstrate an interaction between the two. 
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5.10.1 Screen of NbGLK1-HA Expression Conditions in Nicotiana 

benthamiana 

Higher expression of NbMLHP-HA increases the number of molecules for Rx1-CC 

protein molecules to interact with, increasing the sensitivity of the co-

immunoprecipitation. Section 4.7.1 described a trial expression of NbGLK1-HA in N. 

benthamiana via Agrobacterium mediated infiltration to optimise protein expression 

conditions. The same expression screen was repeated replacing NbGLK1-HA with 

NbMLHP-HA. The cells were infiltrated at an OD600 of 0.4 both with and without a 

silencing P19 vector (the function of which is described in section 4.7.1) at OD600 = 

0.01. Leaves were incubated for either 2 or 3 days after infiltration. Protein was then 

extracted from the leaves and visualised via Western blotting (see Materials and 

Methods 2.3) using an HRP linked anti-HA antibody. 

 

 

 

Figure 42: Western blot of a trial NbMLHP-HA expression extracted from N benthamiana 

leaves incubated for either 2 or three days in the either the presence or absence of P19 plant 

viral suppressor. Protein visualised using a HRP linked rat anti-HA antibody. 
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The strongest NbMLHP1 band was produced when the construct was co-infiltrated 

with P19 and then incubated for 2 days before protein expression (Figure 42). A 3-day 

incubation period resulted in a significant decrease in protein production. A 2-day 

incubation in the absence of p19 also decreased the strength of the NbMLHP1 band at 

70 kDa. It was therefore decided to perform the co-immunoprecipitation on leaf 

material co-infiltrated with p19 after a 2-day incubation period.  

 

5.10.2 Screen of Salt Concentration on Co-immunoprecipitation of Rx1 and 

NbMLHP 

Section 4.7.4 describes a screen of resin wash buffer salt concentrations for a co-

immunoprecipitation between NbGLK1 and Rx1-CC. Resin wash buffers containing 

80mM, 60mM and 40mM NaCl were all trialled. The experiment failed to establish 

conditions under which NbGLK1 would immunoprecipitate with Rx1-CC that would 

not also immunoprecipitate Rx1-CC with the negative control AvrRPS4 (section 

4.7.4.) This section describes an experiment aiming to determine if a resin wash buffer 

salt concentration condition could be found that would immunoprecpipitate NbMLHP 

with Rx1-CC but not an AvrRPS4 negative control. 

 Three different combinations of constructs were transiently expressed in N. 

benthamiana leaves; NbMLHP-HA with Rx1-CC-myc, AvrRPS4 with Rx12-CC-myc 

(negative control), and Rx1-CC-myc (negative control) (see Materials and Methods 

2.3.1, Table 4). Protein was extracted, and a co-immunoprecipitation performed using 

the same methodology as previously described (see Materials and Methods 2.4.3). 

Anti-HA resin wash buffer containing either 60mM or 70mM NaCl was trialled on 
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each set of constructs. Samples were taken and visualised via Western blotting using 

both anti-HA and anti-myc antibodies after protein extraction, after the sephadex 

column, after washing the resin, and after eluting protein from the resin.  

Lane                1    2    3   4   5    6        7   8    9  10  11 12 

20 

Myc 

Antibody 

Western 

Leaf Extract Column Eluent 

CC-myc 

NbMLHP-HA                                 +  +                          +  + 
AVRRps4-HA                      +  +                          +  + 
CC-MYC                     +  +   +  +   +  +        +  +  +  +   +  + 

[NaCl] (mM)               70 60  70 60  70 60       70 60  70 60  70 60 

B. 

Lane       1   2   3   4   5    6            7   8    9  10  11 12 

70 

50 

20 

HA 

Antibody 

Western 

Resin Eluent Resin Wash 

NbMLHP-HA 

AVRRps4-HA 

NbMLHP-HA                        +  +                            +  + 
AVRRps4-HA              +  +                            +  + 
CC-MYC             +  +   +  +   +  +          +  +   +  +  +  + 

[NaCl] (mM)       70 60 70 60  70 60           70 60  70 60 70 60 

C. 

A. 

Lane                1    2    3   4   5    6         7   8   9   10  11 12 

70 

50 

20 

HA 

Antibody 

Western 

Leaf Extract Column Eluent 

NbMLHP-HA 

AVRRps4-HA 

NbMLHP-HA                                 +  +                          +  + 
AVRRps4-HA                      +  +                          +  + 
CC-MYC                     +  +   +  +   +  +        +  +   +  +   +  + 

[NaCl] (mM)               70 60  70 60  70 60        70 60  70 60  70 60 
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Figure 43: Western blot of a co-immunoprecipitation on N. benthamiana leaf material 

expressing solely Rx1-CC-myc, Rx1-CC-myc with NbMLHP1-HA or Rx1 CC-myc with an 

AVRRps4-HA negative control. Samples taken after protein extraction, sephadex G-25 

column, washing the HA antibody resin, or eluting from the HA antibody resin. Anti HA 

antibody resin wash buffer contained either 60 or 70 mM NaCl as indicated. Protein was 

visualised using either a goat anti-myc 1° antibody and an anti-goat HRP linked 2° antibody 

or using a HRP linked rat anti-HA antibody.  

 

Lanes A 1-12 showed all the samples successfully expressed CC-myc and that this 

protein was eluted from the sephadex column (Figure 43). The anti-HA western blot 

of ground leaf material and column eluent showed AvrRPS4-HA expressing in lanes 

B3 and B4 and eluting from the column in lanes B9 and B10. No NbMLHP-HA was 

visualised in this western (lanes B5, B6, B11, B12).  

However, large amounts of NbMLHP-HA were visualised eluting from the resin in 

lanes C5 and C6. Likewise, AvrRPS4-HA was visualised eluting in lanes C3 and C4. 

I was concluded that the NbMLHP-HA was expressing in amounts to low to detect 

and then being concentrated on the resin. Hence it was not seen in B5, 6, 11 or 12, but 

visualised in C5 and 6 upon elution. Little to none of either protein was seen being 

washed of the resin in lanes C7-12. 

Lane           1    2    3   4   5   6         7   8   9  10  11 12 

20 

Myc 

Antibody 

Western 

CC-myc 

NbMLHP-HA                            +  +                          +  + 
AVRRps4-HA                  +  +                        +  + 
CC-MYC                 +  +   +  +   +  +       +  +  +   +   +  + 

[NaCl] (mM)           70 60  70 60  70 60       70 60 70 60  70 60 

Resin Eluent Resin Wash 

D. 
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All samples showed CC-myc both washing off the resin (lanes D7-12) and eluting 

from the resin (D1-6). No selectivity in binding was shown by samples containing 

NbMLHP-HA over the negative controls under either salt concentration. It was 

concluded CC-myc was interacting non-specifically with the resin itself and no 

protein-protein interaction was being demonstrated.  

 

5.11 Conclusion 

A Yeast 2-hybrid screen identified NbMLHP as a potential mediator of Rx1 DNA 

binding interactions. FRET-FLIM analysis of the impact of NbMLHP on Rx1 DNA 

binding in planta found that it had no effect. However, FRET-FLIM analysis of the 

effect of Rx1 on NbMLHP DNA binding in planta suggested that Rx1 might inhibit 

NbMLHP DNA binding. CP106 without Rx1 also inhibited NbMLHP DNA binding, 

suggesting that any immune response inhibition of binding may not be specific to Rx1. 

A fluorescent viral replication assay showed that NbMLHP inhibited Rx1 mediated 

extreme resistance to PVX. Mutation of putative acetyl lysine binding sites in the 

NbMLHP bromodomain either negated or reversed this inhibition. This would suggest 

that this inhibition is mediated by an NbMLHP acetyl lysine binding activity. The 

presence of a putative SANT domain in the protein implies that this acetyl lysine 

binding activity alters gene transcription via chromatin remodelling to repress plant 

immunity. 
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Further fluorescent viral replication assays showed that NbMLHP also inhibited 

NbGLK1 mediated immunity to PVX, and that bromodomain mutation also reversed 

this effect. It was concluded that any NbMLHP binding to acetyl lysine suppresses 

immunity parallel to Rx1. 

Analysis of Rx1 mediated HR showed that NbMLHP does not suppress HR. Rx1 

mediated HR must therefore be activated by a separate signal transduction pathway to 

extreme resistance, unaffected by NbMLHP. Co-immunoprecipitation failed to 

demonstrate a protein-protein interaction between NbMLHP and Rx1-CC in planta. 

This chapter concludes that NbMLHP does not regulate Rx1 DNA binding, but does 

act as a suppressor of Rx1 mediated extreme resistance to PVX. It is hypothesised that 

this binding to acetyl lysine has a chromatin remodeling effect. However, further work 

is required to establish whether an interaction occurs between the two proteins in 

planta (see section. 6.4.3), whether NbMLHP does bind acetyl lysine as predicted (see 

section 6.4.2), and both the target and effect of any acetyl lysine binding (see section 

6.4.2). 

 

5.12 Discussion 

Transient expression of NbMLHP in N. benthamiana leaves reversed suppression of 

GFP:PVX fluorescence by Rx1 and NbGLK1. This suggests NbMLHP inhibits both 

Rx1 and NbGLK1 mediated extreme resistance to PVX. Virus induced silencing of 

NbMLHP in N. benthamiana plants has also been shown to suppress viral replication 

of PVX using GFP:PVX (Townsend et al., unpublished data) supporting this 

observation and showing that it is not an artefact of overexpression. 
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NbMLHP has no effect on Rx1 DNA binding. FRET-FLIM analysis on the impact of 

Rx1 on GFP-NbMLHP binding in fixed leaf material showed a low lifetime ratio 

characteristic of DNA binding when NbMLHP is expressed by itself. This then rises 

in the presence of Rx1, CP106, and Rx+CP106. This suggests that these constructs 

inhibit NbMLHP DNA binding.  

 

Bromodomain mutations designed to inactivate putative acetyl lysine binding result in 

the suppression of GFP:PVX viral fluorescence when expressed in N. benthamiana, 

independently of Rx1 and NbGLK1, suggesting that overexpression of these mutants 

may trigger extreme resistance to PVX. Such a result would be expected if NbMLHP 

inhibits N. benthamiana resistance to PVX through lysine acetylation. Transfer of 

lysine acetyl groups on histones is associated with chromatin remodelling linked 

changes in gene expression. Usually histone lysine acetylation results in the unfolding 

of chromatin, promoting gene expression (Shogren-Knaak et al., 2006). But the 

reverse, i.e. condensation of chromatin to suppress gene expression, is also known 

(Choi et al., 2012). 

 

The co-immunoprecipitation between NbMLHP and Rx1-CC performed showed no 

evidence of a physical interaction between the two proteins.  However, co-

immunoprecipitation using antibodies immobilised on magnetic beads and elution 

with pre-boiled SDS PAGE loading buffer has returned a positive result (Townsend 

et al., unpublished data). The same experimental design returned a negative result for 

full length Rx with NbMLHP, suggesting Rx1 inter-domain interactions inhibit this 

in the full-length protein. Other work in vitro has shown co-elution of the NbMLHP 

bromodomain with Rx1 CC via size exclusion chromatography (Townsend et al., 
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unpublished data). This also provides evidence of a protein-protein interaction. This 

occurred with both wild type NbMLHP and the Y335F acetyl lysine binding mutant, 

suggesting lysine acetyl binding is not required for the NbMLHP- Rx1 CC 

interaction. These results refute the negative result of the coimmnocprecipitation and 

suggest that this was merely result of an unoptimized experimental setup. 
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Publications 
 

Results from Chapter 3 of this thesis have been published in the following paper; 

 

Fenyk, S., Townsend, P. D., Dixon, C. H., Spies, G. B., Campillo, A. D. S. E., 

Slootweg, E. J., Goverse, A. Takken, F.L. & Cann, M. J. (2015). The Potato 

Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-

dependent DNA-deforming Protein. Journal of Biological Chemistry, 290(41), 24945-

24960. (See Appendix 7.3) 

 

The following Figures were published; Figures 9, 10, (as Figures 7a and b in the 

paper) and Figures 12, 14, 15 and 16 (as Figures 8 a, b, c and d). 
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6. Discussion 

 

6.1 Introduction 

This thesis demonstrates that Rx1 binds DNA in a coat protein dependent manner in 

fixed N. benthamiana leaf material using a FRET-FLIM assay. Two putative 

regulators of Rx1 DNA binding were identified through Yeast 2-hybrid assay; NbGK1 

and NbMLHP. NbGLK1 was shown to be a promoter of Rx1 DNA binding that also 

promotes Rx1 mediated resistance to PVX viral accumulation. NbMLHP was not 

shown to affect Rx1 DNA binding. However, Rx1 suppressed NbMLHP DNA 

binding, and NbMLHP did inhibit Rx1 mediated resistance to PVX virus 

accumulation. This chapter summarises the results presented in chapters 3, 4 and 5, 

discuss the conclusions that can be drawn from them in the context of the current 

literature and other unpublished work, and propose ideas for further studies based on 

the findings. 

 

6.2 Rx1 Binds DNA in vivo in response to CP106 

 

6.2.1 Rx1 Binds DNA in Fixed N. benthamiana Leaf Material 

To assess if Rx1 DNA binding could be measured in fixed N. benthamiana leaf 

material a FRET-FLIM assay was designed to measure energy transfer from transiently 

expressed GFP tagged protein to a DNA binding dye, LDS-751. The positive control 

construct GFP-H2B displayed a statistically significant drop in florescence lifetime 

ratio compared to a free GFP negative control, indicating successful measurement of 

energy transfer upon construct DNA binding. 
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Rx1 DNA binding was then assessed. It displayed a statistically significant drop in 

lifetime ratio upon co-expression with CP106 in fixed N. benthamiana leaf material 

stained with the DNA binding dye LDS-751. This was consistent with DNA binding 

as indicated by the positive control. A drop in lifetime ratio was not observed upon co-

expression with CP105, a virulent form of PVX coat protein that does not trigger Rx1 

mediated immunity. This shows that the drop in lifetime ratio was not an artefact of 

coat protein expression, and was triggered by Rx1 sensing CP106. Co-expression of 

GFP-Rx1 with Pto and AvrPto resulted in no drop in lifetime ratio and rules out this 

change in lifetime being the result of a generic plant immune response. It was 

concluded that Rx1 binds genomic DNA in response to CP106. No drop in lifetime 

ratio was seen with NES or NLS tagged Rx1 protein with or without CP106. This 

suggests that nucleocytoplasmic distribution of the Rx1 is required for DNA binding 

as it is for  Rx1 immune signalling (Slootweg et al., 2010). The results imply that Rx1 

mediated immune signalling may be triggered by DNA binding in the nucleus after the 

elicitor is sensed in the cytosol. 

 

The individual domains of Rx1 were assessed for their DNA binding capabilities using 

the same assay. Any non-full length construct containing the CC or NBARC domains 

displayed a lifetime ratio significantly lower than the free GFP negative control, 

indicating energy transfer. Expression of the LRR domain by itself did not. The DNA 

binding domain of the protein was concluded to be NBARC domain based on 

homology modelling (Fenyk et al., 2015), with the CC domain of the protein more 

likely to be involved with an interaction with another DNA binding protein. This 

association could bring the domain physically close enough to the DNA binding LDS-

751 to facilitate energy transfer. 
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This data is supported in vitro EMSA and FRET-FLIM assays (Fenyk et al., 2015). 

EMSA also demonstrated that CCNBARC Rx1 protein purified from N. benthamiana 

leaves bound DNA (Fenyk et al., 2015). This demonstrates that the FRET-FLIM assay 

was measuring an active DNA binding activity of Rx1 CCNBARC and not an 

association with DNA mediated by another protein. This work also demonstrated that 

Rx1 bends and melts DNA using FRET-FLIM. This suggests that Rx1 DNA binding 

may stimulate gene expression in response to CP106 to trigger plant defence 

signalling.  

 

EMSA, fluorescence anisotropy and FRET-FLIM were also used to demonstrate a 

DNA binding and bending activity using recombinant refolded I-2, an NBLRR protein 

from tomato (Fenyk et al., 2016). This suggests DNA binding may be conserved 

between different NBLRR proteins and not unique to Rx1. That DNA bending is also 

conserved suggest that DNA binding to stimulate DNA melting and gene expression 

is also conserved. 

 

There are, however, differences between I-2 and Rx1 DNA binding. I-2 has been found 

to bend DNA to a lesser degree, 22° as opposed to the 40° seen in Rx1, has a preference 

for binding dsDNA as opposed to the preference to ssDNA seen in Rx1. Its DNA 

binding was also found to be coupled to its ATP hydrolysis activity, with 

immunologically active ATP bound I-2 binding in preference over inactive ADP bound 

I-2. This has not been described for Rx1 (Fenyk et al., 2015, Fenyk et al., 2016). These 

differences suggest DNA binding may be adapted to different immunological roles in 

different proteins. While both appear to be stimulating DNA expression, the differing 
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mechanisms suggest they may be targeting differing genes to induce different immune 

response. 

 

Further work is required to determine the physiological effects of Rx1 DNA binding. 

In vitro work done by Fenyk et al. only demonstrated non-specific DNA binding, 

raising the question of how specificity of Rx1 DNA binding is achieved in vivo. The 

genes targeted by Rx1 DNA binding are also unknown. Further evidence is also 

required to determine whether transcription of these genes is promoted or repressed by 

Rx1, and to ensure that the DNA bending an melting effect measured in vitro was not 

an artefact of using refolded protein from a prokaryotic protein production system. 

Which genes are targeted could be determined by CHIP analysis of Rx1 DNA binding, 

immunoprecipitating Rx1 from plant material with the DNA it binds to and sequencing 

this DNA. Proteomic and genomic analysis could then be used to show which proteins 

and genes are expressed or repressed by this DNA binding, using RNA sequencing to 

determine which gene transcripts are upregulated and mass spectrometry to determine 

which proteins are translated. 

 

6.2.2 Effect of Rx1 mutation on DNA binding 

The Rx1 D460V mutation results in protein autoactivity. Expression of this protein 

results in an immune response in the absence of CP106 (Bendahmane et al., 2002). 

This mutation targets the MHD motif in the NBARC domain, and is proposed to 

disrupt the interaction between the NBARC and LRR domains that maintains the wild 

type protein in an inactive state (Slootweg et al., 2012). FRET-FLIM analysis of GFP-

Rx1 D460V in N. benthamiana leaves showed a significant reduction in lifetime ratio 

compared to wild type protein in the absence of CP106. This indicates that Rx1 D460V 
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was constitutively binding genomic DNA in the absence of CP106. It was concluded 

that the inter-domain interaction that held the protein in an immunologically inactive 

state also held the protein in a conformation that couldn’t bind DNA. This implies that 

Rx1 DNA binding may initiate Rx1 mediated immunity. 

 

Mutation of a putative nucleotide binding motif resulted in no change in DNA binding: 

CCNBARC Rx1 K176R displayed a low fluorescence lifetime ratio in FRET-FLIM 

analysis, indicating that nucleotide hydrolysis is not involved in DNA binding. CC-

NBARC K176R Rx1 was also observed to possess DNA binding capabilities in vitro 

using EMSA and FRET-FLIM assays on recombinant refolded protein made in E. coli 

(Fenyk et al., 2015), but did not bend DNA in response to ATP in vitro as wild type 

recombinant protein was shown to do. This supports the DNA binding of CCNBARC 

K176R shown in the in planta FRET-FLIM experiment. 

 

Mutations to the NBARC domain effecting putative nucleotide binding did result in 

changes to FRET-FLIM analysis of DNA binding; wild type GFP-CCNBARC Rx1 

binds DNA; Rx1 S202F and D225E CCNBARC both showed significantly higher 

lifetime ratios indicating a lack of DNA binding. There has been no work performed 

using recombinant S202F and D225E CCNBARC Rx1 using EMSA or fluorescence 

anisotropy. Further in vitro work could be used to support the in planta data for these 

mutants. 

 

Full-length constructs of K176R, S202F and D225E do not localize to the nucleus in 

N. benthamiana leaves (Slootweg et al., 2010). Co-expression with the LRR was 

intended to make truncated mutant constructs behave like a full-length protein while 
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still localizing to the nucleus. A proof of concept of this was performed on the wild 

type CCNBARC + LRR +/- CP106. The lifetime ratios were not statistically different 

from that of wild type full-length protein both with and without coat protein. 

 

When co-expressed with LRR K176R CCNBARC did bind DNA, both with and 

without CP106. S202F did bind when with LRR, did bind with LRR+CP106. D225E 

did bind when with LRR, did bind when with LRR+CP106. 

 

The immunological effects of S202F and D225E have not been studied and require 

further work to characterise. There is also currently no evidence of an Rx1 nucleotide 

hydrolysis activity for the K176R mutation to disrupt, and this too requires further 

study. The NBARC domain of Rx1 may not hydrolyse or even bind ATP. The effects 

of these mutations could just be structural destabilisation (see Section 3.10). 

Differences in DNA binding between Rx1 and I-2 in response to ATP/ADP have been 

previously observed (Fenyk et al., 2015, Fenyk et al., 2016) and this could be linked 

to different nucleotide binding activities between Rx1 and I-2. The NBLRR proteins 

R1 from rice and N from tobacco have already been show to have different nucleotide 

binding and hydrolysis activities to I-2, showing that no one conserved activity exists 

across all NBLRR proteins (Fenyk at al., 2012, Ueda et al., 2006, see Section 1.5.3) 

 

Further work is required on the impact of these mutations before conclusions can be 

drawn on their effects. A DNA binding assay in vivo using FRET-FLIM performed on 

full length mutant K176R, S202F and D225E would elucidate the effect of the LRR 

on mutant NBARC domains. To avoid interference in signal from the localisation 
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effects of these mutations, lifetime reading would have to be spatially resolved within 

the cell to just the nucleus. 

 

There is also a need for the development of a methodology for the recombinant 

production of LRR Rx1. In vitro analysis of recombinant K176R, S202F and D225E 

CCNBARC Rx1 with LRR DNA binding using EMSA can then be performed.  

 

However, if protein stability is compromised by these NBARC domain mutations, 

expression of protein could problematic. A means of determining of recombinant 

protein folding could be used to assess the impact of mutation on protein stability. 

Circular dichroism (CD) spectroscopy provides a measure of protein secondary 

structure and could be used to determine differences between folding in different Rx1 

mutants. 

 

A true understanding of the impact of these mutations is only likely to be given by an 

in depth structural analysis of Rx1 and Rx1 DNA binding using x-ray crystallography 

or cryo-EM. If performed both for the wild type and for mutants, this would fully 

elucidate how DNA binding occurs, which residues and motifs are responsible for the 

interaction, and how interactions between Rx1 domains change protein conformation 

to affect this.  
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6.3 NbGLK1 as a promoter of Rx1 mediated immunity 

 

6.3.1 NbGLK1 DNA binding 

A Yeast 2-hybrid screen against the Rx1 CC domain identified NbGLK1 as a potential 

interactor of Rx1 with a DNA binding domain. Hence making it a potential regulator 

of Rx1 DNA binding. A drop in GFP-Rx1 fluorescence lifetime is seen in fixed N. 

benthamiana leaf material when co-expressed with NbGLK1 in the absence of coat 

protein. This suggests that NbGLK1 promotes Rx1 DNA binding in the absence of 

CP106. GFP-NbGLK1 displayed a significant decrease in fluorescence lifetime in 

fixed N. benthamiana leaf material when co-expressed with both Rx1 and coat protein, 

but not Rx1 alone. This implies that Rx1 promotes NbGLK1 DNA binding as part of 

an immune response to CP106. 

 

This work performed in fixed N. benthamiana is supported by NbGLK1 DNA binding 

assays in vitro using fluorescence anisotropy (Townsend et al., unpublished data). This 

NbGLK1 DNA binding has also been shown to be sequence specific. Specificity in 

Rx1 DNA binding could therefore be mediated by an Rx-GLK1 interaction. The 

impact of Rx1 on NbGLK1 DNA binding has also be demonstrated in vitro using 

fluorescence anisotropy with fluorescently tagged oligonucleotides. This showed that 

Rx1 CCNBARC and CC both inhibited NbGLK1 DNA binding (Townsend et al., 

unpublished data). The in planta FRET-FLIM data showed full length Rx1 promoting 

NbGLK1 DNA binding in the plant cell. The discrepancy between these two may be 

the result of a third protein that forms part of the complex in the plant cell as seen with 

the NBLRR protein MLA10, which complexes with MYB6 and WRKY1 (Chang et 

al., 2013), or as a result of interactions with the LRR domain in the full length protein. 
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6.3.2 NbGLK1 Viral Immunity 

NbGLK1 decreased GFP:PVX fluorescence upon transient co-expression in N. 

benthamiana leaves. This effect occurs independently of Rx1 expression, suggesting 

GLK1 may act in parallel to Rx1, interacting with multiple NBLRR proteins. This 

supports previous work that describes Arabidopsis thaliana GLK1 giving resistance 

to multiple pathogens (Murmu et al., 2014). Virus induced silencing of NbGLK1 in N. 

benthamiana plants has also been shown to suppress viral replication of PVX using 

GFP:PVX (Townsend et al., unpublished data) supporting this observation, and 

showing that this was not an artefact of overexpression. No NbGLK1 mediated effects 

were observed on Rx1 triggered HR in the cell death-scoring assay. 

 

These results suggest that that NbGLK1 enables site-specific DNA binding of Rx1 and 

this promotes Rx1 triggered extreme immunity to PVX, preventing the accumulation 

of PVX in infected cells. NbGLK1 does not impact Rx1 mediated HR, implying that 

HR is caused by a separate signal transduction pathway, possibly not triggered by Rx1 

DNA binding. 

 

6.3.3 NbGLK1-Rx1 Interaction characterisation 

None of the co-immunoprecipitation conditions screened in this thesis successfully 

demonstrated an NbGLK-Rx1 CC interaction in material extracted from N. 

benthamiana leaves. However the yeast 2-hybrid data and in vitro size exclusion gel 

chromatography (Townsend et al., unpublished data) did. Experiments performed on 

NbMLHP suggest that changes from an agarose linked antibody resin to antibodies 

immobilised on magnetic beads can be used to improve selection for Rx1-CC 

interactions in co-immunoprecipitations (see section 6.4.3). This methodology 
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suggests the current co-immunoprecipitation data may be providing a false negative 

and should be trialled on NbGLK1. A successful co-immunoprecipitation experiment 

is required to demonstrate that this is not an artefact of the refolded recombinant 

protein being partially folded and aggregating together. 

 

If an interaction between NbGLK1 and Rx1 CC is established, the effect of other Rx1 

domains on this interaction should be examined. Whether the interaction occurs 

between full length Rx1 and NbGLK1 should be examined via co-

immunoprecipitation, both in the presence and absence of CP106. This would indicate 

whether the auto-inhibitory effect of Rx1 domain interactions prevents association 

with NbGLK1. If inhibition does occur, the restoration of the Rx1-NbGlk1 interaction 

in the presence of CP106 would link NbGLK1-Rx1 association with an initiation of 

defence signalling. Testing the effect of the D460V autoactivity mutation on the 

interaction using co-immunoprecipitation could be used to further confirm this. 

 

The effect of other Rx1 mutations on the interaction between NbGLK1 and Rx1 could 

also be investigated. Chapter 3 showed putative nucleotide binding and hydrolysis 

mutations (K176R, S202F, D225E) affect Rx1 DNA binding. If they impact either 

nucleotide binding/hydrolysis or protein stability as concluded in section 6.2.2, they 

may also impact Rx1 CC – NbGLK1 interactions in full length Rx1. Co-

immunoprecipitation and in vitro studies on recombinant protein could be used to 

demonstrate this. Deletion of the areas flanking the EDVID motif in the CC domain 

are known to disrupt Rx1 CC binding of RanGAP2 (Rairdan et al., 2013). Analysis of 

CC domain construct with these areas deleted using co-immunoprecipitation could be 

used to determine if these areas are also required for NbGLK1 binding.  
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6.3.4 NbGLK1 Summary 

The results suggest NbGLK1 acts as a promoter of Rx1 mediated viral extreme 

resistance, but not HR, parallel to Rx1, potentially promoting this activity in other 

NBLRR receptors. FRET-FLIM analysis of DNA binding in fixed N. benthamiana 

leaves and unpublished in vitro DNA binding experiments suggest this activity may 

occur through providing specificity to Rx1 DNA binding, allowing it to target the 

activation of immune signalling genes. This fits with what is known of GLK1 

transcription factors in other plants, with transcriptional activity promoting plant 

immunity. (Han et al., 2013, Murmu et al., 2014). Similarly, other proteins in Myb 

transcription factor superfamily are known to have a similar role: the immune 

promoter MYB6 interacts with the NBLRR protein MLA10 and this interaction 

promotes its immune signalling activity (Chang et al., 2013). There is a possibility that 

StGLK1 is a target of CP106 mediated immune repression. Rx1 could then guard 

GLK1 to initiate ETI. The related protein from the Myb superfamily MYB30 promotes 

HR (Raffaele et al., 2008), and is a known target of a bacterial effector protein XopD 

(Canonne et al., 2011). However the fact that a nucleur localisation of CP106 is 

required for HR (Slootweg et al., 2010) makes a transcription factor an unlikely target 

of action. Nor does this explain why NbGLK1 activates an immune response in the 

presence of PVX but without any Rx1 present. A CP106 immune suppressant effect of 

also has not observed in any previous studies. It is most likely that NbGLK1 is simply 

a transcription factor that interacts with Rx1 to provide specificity to  Rx1 DNA 

binding to activate immune signalling gene transcription. However, further work is 

needed to elucidate the nature of the protein-protein interaction demonstrated the Yeast 

2-hybrid assay and ensure that this was not a false positive. 
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6.4 NbMLHP as an inhibitor of Rx1 mediated immunity 

 

6.4.1 NbMLHP DNA binding 

The Yeast 2-hybrid data identified NbMLHP1 as a potential mediator of Rx1 DNA 

binding interactionsFRET FLIM analysis indicated that NbMLHP has no effect on Rx1 

DNA binding, but both Rx1 and CP106 inhibit NbMLHP DNA binding. 

 

Further in vitro characterisation of this DNA binding interaction is required. 

Recombinant NbMLHP DNA binding should be assayed using fluorescence 

anisotropy and EMSA. The impact of CC and full length Rx1 on NbMLHP DNA 

binding can then be assessed to ensure that the results of FRET-FLIM DNA binding 

assay in N. benthamiana were not an artefact of overexpression. 

 

6.4.2 NbMLHP Viral Immunity 

Transient expression of NbMLHP in N. benthamiana leaves reversed suppression of 

GFP:PVX fluorescence by Rx1 and NbGLK1. This suggests NbMLHP inhibits both 

Rx1 and NbGLK1 mediated extreme resistance to PVX. This is supported by virus 

induced silencing of NbMLHP (Townsend et al., unpublished data). Bromodomain 

mutations designed to inactivate putative acetyl lysine binding result in the suppression 

of PVX accumulation independently of Rx1 and NbGLK1, suggesting that 

overexpression of these mutants may trigger extreme resistance to PVX. Such a result 

would be expected if NbMLHP inhibits N. benthamiana resistance to PVX through 

lysine acetylation (see Section 5.12) 
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It should be noted that at this stage the acetyl lysing binding activity of wild type 

NbMLHP remains hypothetical. Further work is required to provide confirmation. This 

could be achieved using in vitro lysine acetyl binding assays on both wild type 

NbMLHP and the bromodomain mutations with fluorescence anisotropy, ITC or gel 

filtration column. A loss of lysine acetyl binding on mutation would link PVX immune 

suppression to lysine acetyl binding activity. 

 

The impact of the bromodomain on NbMLHP DNA binding could also be investigated. 

The SANT domain is the only NbMLHP domain predicted to bind DNA, but this 

currently remains hypothetical. A bromodomain histone acetyl lysine binding activity 

could be the interaction that keeps the protein associated with chromatin, enabling 

energy transfer to the DNA associated LDS-751 measured in chapter 5. The effect of 

both mutations on DNA binding should be assessed in vitro from recombinant protein 

made in E. coli. The impact of the mutations should also be assessed in N. benthamiana 

using the FRET-FLIM assay described in chapter 3. 

 

The protein targeted by NbMLHP lysine acetyl binding is also currently unknown. The 

presence of a SANT domain suggests the target may be histones (Shogren-Knaak et 

al., 2006). Knowing the target of NbMLHP acetyl lysine binding would also elucidate 

its functions. Determining if NbMLHP binds histone acetyl lysine residues through an 

in vitro binding assay or plant co-immunoprecipitation would provide evidence that it 

alters gene expression through chromatin remodelling. If the target is not a histone, 

what protein is targeted, and what impact does NbMLHP binding have on its function 

should be investigated. 
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6.4.3 NbMLHP-Rx1 interaction characterisation 

The co-immunoprecipitation between NbMLHP and Rx1-CC performed showed no 

evidence of a physical interaction between the two proteins. However this result is 

countered by other co-immunoprecipitation data (Townsend et al., unpublished data) 

and  size exclusion chromatography (Townsend et al., unpublished data). These 

combined with the Yeast 2-hybrid data suggest the coimmunoprecipitation result in 

Chapter 5 is a false negative and the two proteins do in fact interact.  

 

Further work can also be done to investigate the dynamics of this relationship. Co-

immunoprecipitation can be used to show whether CP106 co-expression with full 

length Rx1 activates it to allow interaction with NbMLHP. Co-immunoprecipitation 

can also be used to show the effect of the D460V autoactivity mutation on the Rx1 

CC-NbMLHP interaction. 

 

As with NbGLK1, the effect of other mutations in Rx1 should also be investigated (see 

section 6.3.3). The effect on NbMLHP binding of putative nucleotide binding and 

hydrolysis mutations (K176R, S202F, D225E), and deletion of areas flanking the 

EDVID motif that domain disrupts Rx1 binding of RanGAP2 (Rairdan et al., 2013) 

should be investigated using co-immunoprecipitation. The Rx1 binding activity of 

different NbMLHP constructs should also be investigated; mutation of acetyl lysine 

binding residues in the bromodomain and deletion of the SANT domain would reveal 

how NbMLHP protein function affects Rx1 binding. 
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6.4.4 SANT domain characterisation 

Chapter 4 describes experiments with the aim of investigating the impact of 

bromodomain mutation on NbMLHP function. But the role of the NbMLHP SANT 

domain in DNA binding and immunity was not investigated. SANT domains are 

known to be involved in DNA binding (Boyer et al., 2002), making it probable that 

this domain is responsible for NbMLHP DNA binding activity. Point mutations in 

yeast SANT domains do not affect protein DNA binding. No one residue is responsible 

for DNA binding (Boyer et al., 2002). Instead, deletion of the SANT domain has been 

used to study its DNA binding activity. 

 

The putative DNA binding activity of the NbMLHP SANT domain should be 

demonstrated by investigating the effect of its deletion on NbMLHP DNA binding. 

This can be assessed both in planta using FRET-FLIM, and in vitro using florescence 

anisotropy and EMSA. The effect of the SANT domain on NbMLHP mediated 

immunity should then be investigated. Assuming the SANT domain does provide a 

DNA binding activity, NbMLHP DNA binding could then be linked with an 

immunological impact. NbMLHP constructs with the SANT domain deleted can be 

used in GFP:PVX viral replication assays and on HR cell death scoring assays as 

described in chapters 4 and 5 and compared to a wild type control. 
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6.4.5 NbMLHP conclusion 

NbMLHP appears to be a protein that interacts with Rx1-CC but does not regulate Rx1 

DNA binding. Rx1 does inhibit NbMLHP DNA binding, but so does CP106 in the 

absence of Rx1. PVX viral replication assays suggest this DNA binding suppresses 

extreme resistance to PVX through a putative acetyl lysine binding activity.  

 

It was theorised that NbMLHP either activates or suppresses transcription of genes 

through chromatin remodelling to suppress Rx1 mediated extreme resistance to PVX 

but not HR. The SANT domain is hypothesised to enable the protein to associate with 

the DNA in chromatin, and the bromodomain then acetylates lysine residues on 

histones to either condense chromatin (to suppress gene expression), or to unravel it 

(promoting gene expression). However, more work is required to support this model; 

the acetyl lysine binding activity of NbMLHP and the DNA binding activity of the 

SANT domain both require confirmation.  

 

There are two possible modes of NbMLHP action that fit with this model. Firstly, there 

is evidence that viroids utilise plant RNA binding bromodomain containing proteins 

for use in their own replication (Chaturvedi et al., 2016, Kalantidis et al., 2007, de Alba 

et al., 2003). NbMLHP could be hijacked by PVX to help transcribe its genome. 

NbMLHP overexpression in viral replication assays could then boost viral replication, 

making it appear as if immunity was being suppressed. NbMLHP with mutated acetyl 

lysine sites would then associate with chromatin, but not aid viral transcription 

impeding virus accumulation. The suppression of NbMLHP DNA binding by Rx1 

could be the result Rx1 sensing NbMLHP to trigger immunity. NbMLHP could be the 

guardee protein Rx1 senses to initiate immunity.  
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The NBLRR protein RRS1 uses a similar system. The bacterial effector protein pop2 

uses a lysine acetyl binding activity to deactivate plant WRKY transcription factors 

that trigger PAMP mediated immunity. (Sarris et al., 2015) RRS1 uses an integrated 

WRKY decoy to detect this effector and trigger HR. (Sarris et al., 2015) Similarly, if 

PVX uses NbMLHP to aid bacterial transcription, Rx1 could utilise NbMLHP as a 

guard to detect PVX. 

 

There are several reasons this explanation is the less likely of the two: This model does 

also not explain why a nucleocytoplasmic distribution of Rx1 is required for DNA 

binding and defence signalling (Slootweg et al., 2010). NbMLHP could easily be 

sensed in the nucleus and imitate Rx1 DNA binding there. Nor does this model explain 

why a cytoplasmic localisation of CP106 is required to initiate immunity if the guardee 

is a chromatin remodeller (Slootweg et al., 2010). Or why expression of CP106 in the 

absence of Rx1 inhibited NbMLHP DNA binding. 

 

The second and more probable explanation is that NbMLHP is a native plant 

suppressor of defence signalling that is required to regulate the activity of NBLRR 

proteins and prevent their unwanted activation. It achieves this through chromatin 

remodelling as previously described (see Section 6.4.2). Overexpression hence 

represses Rx1 mediated immunity, and mutation promotes immunity. In this model 

Rx1 would behave similarly to the NBLRR protein MLA10. MLA10 associates with 

the suppressor of plant immunity WRKY1. This association with WRKY1 inhibits 

WRKY1 inhibition of MYB6 immune signalling. MYB6 promotes immunity in a 

manner similar to the way NbGLK1 is hypothesised to in Section 6.3. Neither of these 

proteins has been characterised as a guard thus far (Chang et al., 2013). 
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6.5 NbCHD1 

The Yeast 2-hybrid assay described in chapter 4 (Section 4.2) also returned a third 

protein containing a predicted DNA binding domain, identifying it as a potential 

regulator of Rx1 DNA binding. The protein was determined through bioinformatic 

analysis to show high sequence similarity to the Solanum tuberosum Chromodomain 

helicase DNA binding domain protein 1 (CHD1, see Section 7.1/7.2). 

 

CHD1 proteins have an ATP dependent helicase activity on chromatin (Kingston et al., 

1999). This enables a transition of chromatin between condensed and loosened states. 

Usually CHD1 helicase activity loosens chromatin increase gene expression, often 

through a complex with a transcription factor, or histone lysine acetylase. However, 

the condensation of chromatin to decrease gene expression is also known (Choi et al., 

2012). 

 

NbCHD1 requires characterisation to determine what impact, if any, it has on Rx1 

defence signalling activity. The NbCHD1 interaction with Rx1-CC indicated by the 

yeast 2-hybrid screen requires confirmation via co-immunoprecipitation. The impact 

of CHD1 on Rx1 DNA binding should be investigated and vice versa, both through in 

planta FRET-FLIM and in vitro EMSA. The impact of NbCHD1 expression and 

silencing on PVX viral replication in N. benthamiana and HR should be determined. 
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Figure 44. Schematic model of hypothesised Rx1 mode of action including regulation by GLK1 and 

MLHP. 1. In an uninfected cell Rx1 remains in an autoinhibited, ‘off’ conformation with a 

nucleocytoplasmic distribution. MLHP supresses defence gene transcription through a chromatin 

remodelling activity. 2. Upon infection by PVX, Rx1 Senses CP106 in the cytosol, shifting to an ‘on’ 

conformation and translocates to the nucleus to initiate defence signalling. 3. In the nucleus, Rx1 

interacts with MLHP via the CC domain to inhibit its DNA binding and suppression of defence gene 

transcription. 3. The Rx1-GLK1 interaction provides DNA binding specificity, targeting defence 

genes. Rx1 bends DNA to promote defence gene transcription leading to extreme resistance. 
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 6.6 Conclusion and Further Work 

Plant NBLRR proteins are vital mediators of plant disease resistance. The potato 

NBLRR protein Rx1 mediates resistance to PVX by both preventing viral 

accumulation in infected plant cells and initiating the hypersensitive response 

(Bendahmane et al., 1999). This thesis provides evidence that Rx1 binds plant genomic 

DNA to initiate defence signalling to inhibit viral replication, and possibly HR. Further 

work is required to elucidate the role of any possible Rx1 nucleotide binding and/or 

hydrolysis activity in this via both in vivo and in vitro techniques. 

 

Rx1 DNA binding appears to be positively regulated by the transcription factor 

NbGLK1, which acts as promoter of this DNA binding and may help provide sequence 

specificity to stimulate gene expression. NbMLHP appears to inhibit defence 

signalling through a chromatin remodelling activity. However, both of these proteins 

require further biophysical characterisation. NbCHD1 was also identified as another 

potential regulator of Rx1 DNA binding, hypothetically through a chromatin 

remodelling activity, but remains unstudied. 

 

There is some evidence that this DNA binding action may be conserved between 

NBLRR proteins: The tomato NBLRR protein I-2 has also been shown to possess a 

DNA activity (Fenyk et al., 2016) and other NBLRR proteins possess a DNA binding 

domains at their N-terminus (Milligan et al., 1998). This thesis concludes that Rx1 

DNA binding and chromatin remodelling by associated proteins appears to mediate 

resistance to PVX and that this may be a conserved activity found in other NBLRR 

proteins. 
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7. Appendices 

 

 

 

7.1 Summary of yeast 2-hybrid preliminary screen results 

 
Table 8 Proteins determined to interact with the Rx1 CC domain with a PBS score of ‘C’ or 

above via the preliminary screen of the yeast 2-hybrid screen described in Section 4.2 and 

Section 2.4.4. 

 

 
GenBank Protein Annotation Reference Sequence PRBS Contig(s) Hits 

 
Homolog of Solanum lycopersicum Hop-

interacting protein THI032 (LOC101055519), 

mRNA 
 

 
NM_001279017.1 

525314082 (NCBI) 

 
C 

 
70054343 

 
3 

PREDICTED: Homolog of Solanum tuberosum 

probable transcription factor GLK1-like 
(LOC102587163), mRNA 

 

XM_006348765.1 (NCBI) B 70054304 / 

70053981 

7 

PREDICTED: Homolog of Solanum tuberosum 
serine--glyoxylate aminotransferase-like 

(LOC102592345), mRNA 

 

XM_006349714.1 (NCBI) C 70054322 / 
70054343 

17 

PREDICTED: Homolog of Solanum tuberosum 

chromodomain-helicase-DNA-binding protein 1-

like (LOC102593358), transcript variant X3, 
mRNA 

 

XM_006349719.1 (NCBI) A 70054171 15 

PREDICTED: Homolog of Solanum tuberosum 

ATP synthase delta chain, chloroplastic-like 

(LOC102598933), mRNA 
 

XM_006345483.1 (NCBI) B 70054312 8 

PREDICTED: Homolog of Solanum tuberosum 

micronuclear linker histone polyprotein-like 
(LOC102600407), mRNA 

 

XM_006359105.1 (NCBI) A 70054279 7 

RAN GTPase-activating protein 2 (RanGAP2) 
mRNA, complete cds 

EF396237.1 (GenBank) A 70054294 / 
70054289 / 

70054003 

 

9 

S-adenosyl homocysteine hydrolase mRNA, 

complete cds 

JQ890096.1 (GenBank) A 70054202 20 

Nicotiana benthamiana poly-A binding protein 

mRNA, partial cds 

JQ347293.1 (GenBank) C 70053954 / 

70053951 / 

70054159 
 

2 

Nicotiana benthamiana gfp gene for green 

fluorescent protein and pat gene for 
phosphinothricin acetyltransferase 

 

HF675000.1 (GenBank) A 70054077 10 

Nicotiana benthamiana clone 12-130 unknown 
mRNA 

AY310808.1 (GenBank) A 70054378 37 
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7.2 Yeast 2-hybrid preliminary screen results 
 
Table 9. Complete results of the preliminary screen of the yeast 2-hybrid screen between the 

Rx1 CC domain and the N. benthamiana mixed tissue cDNA library described in Section 4.2 

and Section 2.4.4. IF = in frame, OOF = out of frame, + = sense, - = antisense 

 

Clone Name 
Contig(s) 

Name 

Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 

Antisense 

(+/-) 

% Id 

5p/3p 

pB27_A-21 
70054007 / 

70054005 

Nicotiana benthamiana 

- ARF1 
296278601 D IF + 

72.2 / 

77.5 

pB27_A-102 70053976 
Nicotiana benthamiana 
- ATG9 

468186891 N/A ?? - 92.1 

pB27_A-263 70054030 

Nicotiana benthamiana 

- Homolog of 24K 

germin like protein 
(Nicotiana tabacum) 

31711506 D IF + 
99.5 / 

100.0 

pB27_A-65 70054365 

Nicotiana benthamiana 

- Homolog of CP12 
(Nicotiana tabacum) 

25990285 N/A OOF2 + 
100.0 / 

100.0 

pB27_A-154 70054129 

Nicotiana benthamiana 

- Homolog of D6 

(Nicotiana tabacum) 

343424520 N/A OOF1 + 
100.0 / 

99.8 

pB27_A-159 70054122 

Nicotiana benthamiana 

- Homolog of DIR2 

(Nicotiana tabacum) 

328685100 D IF + 
100.0 / 
100.0 

pB27_A-148 70054142 
Nicotiana benthamiana 
- Homolog of EIL5 

(Nicotiana tabacum) 

30016901 D IF + 
99.5 / 

100.0 

pB27_A-107 70054142 
Nicotiana benthamiana 
- Homolog of EIL5 

(Nicotiana tabacum) 

30016901 D IF + 
99.2 / 

99.2 

pB27_A-85 70054266 

Nicotiana benthamiana 

- Homolog of Fyn 
(Mus musculus) 

171543840 D IF + 
100.0 / 

100.0 

pB27_A-38 
70053999 / 
70053997 

Nicotiana benthamiana 

- Homolog of 
GenMatch (Nicotiana 

sylvestris) 

48249481 D IF + 
100.0 / 

57.7 

pB27_A-161 70054117 

Nicotiana benthamiana 
- Homolog of 

GenMatch (Nicotiana 

tabacum) 

1617412 D IF + 
99.7 / 

99.3 

pB27_A-259 
70054355 / 

70054353 

Nicotiana benthamiana 
- Homolog of 

GenMatch (Nicotiana 

tabacum) 

148498111 D IF + 
100.0 / 

57.2 

pB27_A-147 70054145 

Nicotiana benthamiana 

- Homolog of 

GenMatch (Nicotiana 
undulata) 

347453879 D IF + 
94.1 / 

98.2 

pB27_A-55 70054373 

Nicotiana benthamiana 

- Homolog of 

GenMatch (Nicotiana 
undulata) 

347453879 D IF + 
100.0 / 

98.2 

pB27_A-160 70054119 

Nicotiana benthamiana 

- Homolog of 
GenMatch (Torricellia 

tiliifolia) 

37778905 D IF + 
99.8 / 
100.0 

pB27_A-146 70053960 

Nicotiana benthamiana 

- Homolog of Histone 
H4 (Medicago 

truncatula) 

357454042 D IF + 100 

pB27_A-225 70054061 

Nicotiana benthamiana 

- Homolog of LHCI 

(Nicotiana tabacum) 

493722 N/A OOF1 + 
98.4 / 

98.8 

pB27_A-44 70054343 

Nicotiana benthamiana 
- Homolog of 

LOC101055519 

(Solanum 
lycopersicum) 

525314082 C IF + 97.3 
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Clone Name 
Contig(s) 

Name 

Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 
Antisense 

(+/-) 

 

% Id 

5p/3p 

pB27_A-77 70054343 

Nicotiana benthamiana 
- Homolog of 

LOC101055519 

(Solanum 
lycopersicum) 

525314082 C IF + 
98.2 / 
98.2 

pB27_A-13 70054343 

Nicotiana benthamiana 

- Homolog of 
LOC101055519 

(Solanum 

lycopersicum) 

525314082 C IF + 
90.9 / 

87.6 

pB27_A-93 
70053980 / 

70053978 

Nicotiana benthamiana 
- Homolog of 

LOC101248270 

(Solanum 
lycopersicum) 

460412768 N/A OOF2 + 
100.0 / 

74.4 

pB27_A-229 70054057 

Nicotiana benthamiana 

- Homolog of 
LOC101248280 

(Solanum 

lycopersicum) 

460415197 D IF + 
96.9 / 

96.3 

pB27_A-119 70054425 

Nicotiana benthamiana 
- Homolog of 

LOC101248941 
(Solanum 

lycopersicum) 

460375949 D IF + 
97.4 / 

96.2 

pB27_A-34 70054425 

Nicotiana benthamiana 

- Homolog of 
LOC101248941 

(Solanum 

lycopersicum) 

460375949 D IF + 
98.7 / 

98.8 

pB27_A-247 70054047 

Nicotiana benthamiana 

- Homolog of 

LOC101251606 
(Solanum 

lycopersicum) 

460399953 D IF + 
100.0 / 

100.0 

pB27_A-152 70054134 

Nicotiana benthamiana 

- Homolog of 
LOC101252253 

(Solanum 

lycopersicum) 

460411429 D IF + 
99.2 / 

100.0 

pB27_A-187 70054100 

Nicotiana benthamiana 

- Homolog of 

LOC101252775 
(Solanum 

lycopersicum) 

460384910 D IF + 
97.7 / 

98.1 

pB27_A-133 
70053970 / 
70053968 

Nicotiana benthamiana 

- Homolog of 
LOC101255271 

(Solanum 
lycopersicum) 

460412472 D IF + 
100.0 / 

58.1 

pB27_A-108 
70053974 / 

70054378 

Nicotiana benthamiana 

- Homolog of 

LOC101265689 
(Solanum 

lycopersicum) 

460407710 N/A OOF2 + 
100.0 / 

81.5 

pB27_A-185 70054024 

Nicotiana benthamiana 
- Homolog of 

LOC101265915 

(Solanum 
lycopersicum) 

460383717 N/A OOF2 + 
96.9 / 
97.4 

pB27_A-265 70054024 

Nicotiana benthamiana 

- Homolog of 

LOC101265915 

(Solanum 

lycopersicum) 

460383717 N/A OOF2 + 
98.0 / 

98.4 

pB27_A-114 70054230 

Nicotiana benthamiana 
- Homolog of 

LOC101265925 

(Solanum 
lycopersicum) 

460387939 D IF + 
99.7 / 
100.0 
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Clone Name 
Contig(s) 

Name 

Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 
Antisense 

(+/-) 

% Id 

5p/3p 

pB27_A-223 70054064 

Nicotiana benthamiana 

- Homolog of 
LOC102577588 

(Solanum tuberosum) 

568214299 N/A OOF2 + 
98.0 / 
98.8 

pB27_A-198 
70054439 / 

70054437 

Nicotiana benthamiana 
- Homolog of 

LOC102578384 

(Solanum tuberosum) 

565393118 N/A OOF2 + 
100.0 / 

64.2 

pB27_A-158 
70053959 / 

70053957 

Nicotiana benthamiana 
- Homolog of 

LOC102579571 

(Solanum tuberosum) 

565385252 D IF + 
100.0 / 

58.6 

pB27_A-214 
70054265 / 

70054261 

Nicotiana benthamiana 

- Homolog of 

LOC102579874 
(Solanum tuberosum) 

565371945 D IF + 
94.6 / 

87.4 

pB27_A-94 
70054265 / 

70054261 

Nicotiana benthamiana 

- Homolog of 

LOC102579874 
(Solanum tuberosum) 

565371945 D IF + 
97.1 / 

81.5 

pB27_A-270 
70054265 / 
70054261 

Nicotiana benthamiana 

- Homolog of 
LOC102579874 

(Solanum tuberosum) 

565371945 D IF + 
99.1 / 
85.1 

pB27_A-123 
70053973 / 

70053971 

Nicotiana benthamiana 
- Homolog of 

LOC102580230 

(Solanum tuberosum) 

568215560 D IF + 
100.0 / 

80.0 

pB27_A-176 70054107 

Nicotiana benthamiana 
- Homolog of 

LOC102580732 

(Solanum tuberosum) 

565361662 D IF + 
98.8 / 

98.1 

pB27_A-100 70054241 

Nicotiana benthamiana 

- Homolog of 

LOC102581057 
(Solanum tuberosum) 

565358447 N/A OOF2 + 
99.5 / 

99.3 

pB27_A-200 70054093 

Nicotiana benthamiana 

- Homolog of 

LOC102581075 
(Solanum tuberosum) 

565403506 D IF + 
99.3 / 

100.0 

pB27_A-264 70054028 

Nicotiana benthamiana 

- Homolog of 
LOC102582052 

(Solanum tuberosum) 

565399087 N/A OOF1 + 
100.0 / 
100.0 

pB27_A-22 70054287 

Nicotiana benthamiana 

- Homolog of 
LOC102582739 

(Solanum tuberosum) 

565362192 N/A OOF1 + 
96.9 / 
97.3 

pB27_A-210 
70054435 / 

70054432 

Nicotiana benthamiana 
- Homolog of 

LOC102583251 

(Solanum tuberosum) 

565347061 N/A OOF2 + 
100.0 / 

93.2 

pB27_A-120 70054198 

Nicotiana benthamiana 

- Homolog of 

LOC102583426 
(Solanum tuberosum) 

565374862 N/A OOF2 + 
97.6 / 

96.0 

pB27_A-2 
70054011 / 

70054009 

Nicotiana benthamiana 

- Homolog of 

LOC102583814 
(Solanum tuberosum) 

565351888 N/A OOF1 + 
100.0 / 

54.5 

pB27_A-242 70054052 

Nicotiana benthamiana 

- Homolog of 
LOC102584643 

(Solanum tuberosum) 

565373761 D IF + 
94.2 / 
95.6 

pB27_A-51 70054419 

Nicotiana benthamiana 

- Homolog of 
LOC102584719 

(Solanum tuberosum) 

565358649 D IF + 
98.3 / 
100.0 
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Clone Name 
Contig(s) 

Name 

Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 
Antisense 

(+/-) 

 

% Id 

5p/3p 

pB27_A-217 70054070 

Nicotiana benthamiana 
- Homolog of 

LOC102585195 

(Solanum tuberosum) 

565387763 D IF + 
100.0 / 

100.0 

pB27_A-95 70054259 

Nicotiana benthamiana 

- Homolog of 

LOC102585410 
(Solanum tuberosum) 

565381410 D IF + 
95.9 / 

94.1 

pB27_A-74 70054275 

Nicotiana benthamiana 

- Homolog of 

LOC102585527 
(Solanum tuberosum) 

565385461 N/A OOF1 + 
97.4 / 

84.0 

pB27_A-39 70054421 

Nicotiana benthamiana 

- Homolog of 
LOC102585620 

(Solanum tuberosum) 

565372959 N/A OOF2 + 
99.2 / 
100.0 

pB27_A-136 
70053967 / 
70053965 

Nicotiana benthamiana 

- Homolog of 
LOC102586113 

(Solanum tuberosum) 

565391879 D IF + 
100.0 / 

83.3 

pB27_A-33 70054001 

Nicotiana benthamiana 
- Homolog of 

LOC102586241 

(Solanum tuberosum) 

565396859 N/A ?? + 100 

pB27_A-83 70054270 

Nicotiana benthamiana 

- Homolog of 

LOC102586241 
(Solanum tuberosum) 

565396859 N/A OOF1 + 
96.3 / 

97.8 

pB27_A-150 70054139 

Nicotiana benthamiana 

- Homolog of 

LOC102586284 
(Solanum tuberosum) 

565366628 N/A OOF2 + 
96.5 / 

98.4 

pB27_A-82 
70053989 / 
70053986 

Nicotiana benthamiana 

- Homolog of 
LOC102586594 

(Solanum tuberosum) 

565402967 D IF + 
100.0 / 

88.0 

pB27_A-15 70054304 

Nicotiana benthamiana 

- Homolog of 
LOC102587163 

(Solanum tuberosum) 

565364225 B IF + 
97.6 / 
98.5 

pB27_A-23 70054304 

Nicotiana benthamiana 
- Homolog of 

LOC102587163 

(Solanum tuberosum) 

565364225 B IF + 
95.9 / 

96.4 

pB27_A-211 70054304 

Nicotiana benthamiana 
- Homolog of 

LOC102587163 
(Solanum tuberosum) 

565364225 B IF + 
97.3 / 

98.3 

pB27_A-220 70054304 

Nicotiana benthamiana 

- Homolog of 

LOC102587163 
(Solanum tuberosum) 

565364225 B IF + 
94.7 / 

96.4 

pB27_A-92 
70054304 / 
70053981 

Nicotiana benthamiana 

- Homolog of 
LOC102587163 

(Solanum tuberosum) 

565364225 B IF + 
93.6 / 
77.2 

pB27_A-32 70054304 

Nicotiana benthamiana 

- Homolog of 
LOC102587163 

(Solanum tuberosum) 

565364225 B IF + 
96.9 / 
97.2 

pB27_A-98 70054304 

Nicotiana benthamiana 
- Homolog of 

LOC102587163 

(Solanum tuberosum) 

565364225 B IF + 
95.3 / 

95.3 

pB27_A-132 70054162 

Nicotiana benthamiana 
- Homolog of 

LOC102587186 

(Solanum tuberosum) 

565376434 D IF + 
97.4 / 

98.5 
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Clone Name 
Contig(s) 

Name 

Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 
Antisense 

(+/-) 

% Id 

5p/3p 

pB27_A-127 70054167 

Nicotiana benthamiana 

- Homolog of 
LOC102587257 

(Solanum tuberosum) 

565357966 N/A OOF2 + 
100.0 / 
100.0 

pB27_A-139 70054151 

Nicotiana benthamiana 
- Homolog of 

LOC102587717 

(Solanum tuberosum) 

565366808 D IF + 
96.4 / 

95.8 

pB27_A-278 70054255 

Nicotiana benthamiana 
- Homolog of 

LOC102587723 

(Solanum tuberosum) 

565370212 D IF + 100 

pB27_A-75 
70053993 / 

70053990 

Nicotiana benthamiana 

- Homolog of 

LOC102587822 
(Solanum tuberosum) 

565364229 N/A OOF2 + 
100.0 / 

58.7 

pB27_A-164 70054115 

Nicotiana benthamiana 

- Homolog of 

LOC102588954 
(Solanum tuberosum) 

568214951 N/A OOF2 + 
97.1 / 

97.4 

pB27_A-62 70054369 

Nicotiana benthamiana 

- Homolog of 
LOC102589744 

(Solanum tuberosum) 

565353745 D IF + 
100.0 / 

97.0 

pB27_A-70 
70053996 / 

70053994 

Nicotiana benthamiana 
- Homolog of 

LOC102589959 

(Solanum tuberosum) 

565351587 D IF + 
100.0 / 

63.1 

pB27_A-27 70054277 

Nicotiana benthamiana 
- Homolog of 

LOC102590376 

(Solanum tuberosum) 

565392709 N/A OOF2 + 
100.0 / 

100.0 

pB27_A-254 70054322 

Nicotiana benthamiana 

- Homolog of 

LOC102592345 
(Solanum tuberosum) 

565366188 C IF + 
99.7 / 

99.7 

pB27_A-236 70054322 

Nicotiana benthamiana 

- Homolog of 

LOC102592345 
(Solanum tuberosum) 

565366188 C IF + 
96.8 / 

97.2 

pB27_A-234 70054322 

Nicotiana benthamiana 

- Homolog of 
LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
98.9 / 
98.9 

pB27_A-56 70054322 

Nicotiana benthamiana 

- Homolog of 
LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
98.3 / 
98.8 

pB27_A-57 
70054322 / 

70054343 

Nicotiana benthamiana 
- Homolog of 

LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
99.3 / 

99.3 

pB27_A-84 70054322 

Nicotiana benthamiana 

- Homolog of 

LOC102592345 
(Solanum tuberosum) 

565366188 C IF + 
98.1 / 

97.7 

pB27_A-121 
70054322 / 

70054343 

Nicotiana benthamiana 

- Homolog of 

LOC102592345 
(Solanum tuberosum) 

565366188 C IF + 
99.3 / 

99.3 

pB27_A-138 70054322 

Nicotiana benthamiana 

- Homolog of 
LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
98.8 / 
98.8 

pB27_A-143 70054322 

Nicotiana benthamiana 

- Homolog of 
LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
98.8 / 
98.8 
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Clone Name 
Contig(s) 

Name 

Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 
Antisense 

(+/-) 

 

% Id 

5p/3p 

pB27_A-155 70054322 

Nicotiana benthamiana 
- Homolog of 

LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
98.7 / 

98.9 

pB27_A-167 70054322 

Nicotiana benthamiana 

- Homolog of 

LOC102592345 
(Solanum tuberosum) 

565366188 C IF + 
98.3 / 

98.3 

pB27_A-7 70054322 

Nicotiana benthamiana 

- Homolog of 

LOC102592345 
(Solanum tuberosum) 

565366188 C IF + 92.9 

pB27_A-36 
70054322 / 
70054343 

Nicotiana benthamiana 

- Homolog of 
LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
99.3 / 
99.3 

pB27_A-43 70054322 

Nicotiana benthamiana 

- Homolog of 
LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
96.0 / 
97.2 

pB27_A-46 70054322 

Nicotiana benthamiana 
- Homolog of 

LOC102592345 

(Solanum tuberosum) 

565366188 C IF + 
98.5 / 

99.1 

pB27_A-54 70054322 

Nicotiana benthamiana 

- Homolog of 

LOC102592345 
(Solanum tuberosum) 

565366188 C IF + 
93.4 / 

93.0 

pB27_A-241 70054322 

Nicotiana benthamiana 

- Homolog of 

LOC102592345 
(Solanum tuberosum) 

565366188 C IF + 
98.5 / 

98.5 

pB27_A-151 70054137 

Nicotiana benthamiana 

- Homolog of 
LOC102592995 

(Solanum tuberosum) 

565357243 N/A OOF1 + 
97.2 / 
95.8 

pB27_A-124 70054171 

Nicotiana benthamiana 

- Homolog of 
LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
93.8 / 
94.6 

pB27_A-267 70054171 

Nicotiana benthamiana 
- Homolog of 

LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
95.3 / 

95.3 

pB27_A-47 70054171 

Nicotiana benthamiana 
- Homolog of 

LOC102593358 
(Solanum tuberosum) 

565366198 A IF + 
94.8 / 

96.1 

pB27_A-3 70054171 

Nicotiana benthamiana 

- Homolog of 

LOC102593358 
(Solanum tuberosum) 

565366198 A IF + 
92.2 / 

95.6 

pB27_A-52 70054171 

Nicotiana benthamiana 

- Homolog of 
LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
95.4 / 
95.9 

pB27_A-149 70054171 

Nicotiana benthamiana 

- Homolog of 
LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
94.8 / 
95.3 

pB27_A-162 70054171 

Nicotiana benthamiana 
- Homolog of 

LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
95.2 / 

96.8 

pB27_A-183 70054171 

Nicotiana benthamiana 
- Homolog of 

LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 86.5 
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Clone Name 
Contig(s) 

Name 

Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 
Antisense 

(+/-) 

% Id 

5p/3p 

pB27_A-239 70054171 

Nicotiana benthamiana 

- Homolog of 
LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
93.4 / 
94.3 

pB27_A-31 70054171 

Nicotiana benthamiana 
- Homolog of 

LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
94.2 / 

95.4 

pB27_A-202 70054171 

Nicotiana benthamiana 
- Homolog of 

LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
89.8 / 

91.4 

pB27_A-189 70054171 

Nicotiana benthamiana 

- Homolog of 

LOC102593358 
(Solanum tuberosum) 

565366198 A IF + 
97.1 / 

90.9 

pB27_A-141 70054171 

Nicotiana benthamiana 

- Homolog of 

LOC102593358 
(Solanum tuberosum) 

565366198 A IF + 
96.1 / 

98.2 

pB27_A-174 70054171 

Nicotiana benthamiana 

- Homolog of 
LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
96.4 / 
96.4 

pB27_A-235 70054171 

Nicotiana benthamiana 
- Homolog of 

LOC102593358 

(Solanum tuberosum) 

565366198 A IF + 
94.3 / 

93.5 

pB27_A-87 
70053985 / 

70053983 

Nicotiana benthamiana 
- Homolog of 

LOC102595490 

(Solanum tuberosum) 

565388955 N/A OOF2 + 
100.0 / 

68.9 

pB27_A-101 70054239 

Nicotiana benthamiana 

- Homolog of 

LOC102596217 
(Solanum tuberosum) 

565362766 D IF + 
97.5 / 

99.8 

pB27_A-256 70054038 

Nicotiana benthamiana 

- Homolog of 

LOC102596435 
(Solanum tuberosum) 

565365600 D IF + 
95.9 / 

95.2 

pB27_A-170 70054038 

Nicotiana benthamiana 

- Homolog of 
LOC102596435 

(Solanum tuberosum) 

565365600 D IF + 93.7 

pB27_A-168 70054038 

Nicotiana benthamiana 

- Homolog of 
LOC102596435 

(Solanum tuberosum) 

565365600 N/A ?? - 
94.2 / 
94.5 

pB27_A-275 
70054321 / 

70054301 

Nicotiana benthamiana 
- Homolog of 

LOC102596966 

(Solanum tuberosum) 

568214797 N/A OOF2 + 
100.0 / 

78.0 

pB27_A-129 70054164 

Nicotiana benthamiana 

- Homolog of 

LOC102598876 
(Solanum tuberosum) 

565342363 N/A OOF1 + 
99.0 / 

99.2 

pB27_A-169 70054312 

Nicotiana benthamiana 

- Homolog of 

LOC102598933 
(Solanum tuberosum) 

565357427 B IF + 
89.6 / 

92.3 

pB27_A-268 70054312 

Nicotiana benthamiana 

- Homolog of 
LOC102598933 

(Solanum tuberosum) 

565357427 B IF + 
95.3 / 
97.0 

pB27_A-68 70054312 

Nicotiana benthamiana 

- Homolog of 
LOC102598933 

(Solanum tuberosum) 

565357427 B IF + 
99.0 / 
99.2 
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Clone Name 
Contig(s) 

Name 

Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 
Antisense 

(+/-) 

 

% Id 

5p/3p 

pB27_A-125 70054312 

Nicotiana benthamiana 
- Homolog of 

LOC102598933 

(Solanum tuberosum) 

565357427 B IF + 
94.9 / 

95.0 

pB27_A-97 70054312 

Nicotiana benthamiana 

- Homolog of 

LOC102598933 
(Solanum tuberosum) 

565357427 B IF + 
91.3 / 

95.4 

pB27_A-237 70054312 

Nicotiana benthamiana 

- Homolog of 

LOC102598933 
(Solanum tuberosum) 

565357427 B IF + 
97.3 / 

96.0 

pB27_A-255 70054312 

Nicotiana benthamiana 

- Homolog of 
LOC102598933 

(Solanum tuberosum) 

565357427 B IF + 
96.7 / 
97.3 

pB27_A-240 70054312 

Nicotiana benthamiana 

- Homolog of 
LOC102598933 

(Solanum tuberosum) 

565357427 B IF + 
97.1 / 
96.7 

pB27_A-283 70054013 

Nicotiana benthamiana 
- Homolog of 

LOC102599206 

(Solanum tuberosum) 

565386733 D IF + 
93.1 / 

98.1 

pB27_A-30 70054268 

Nicotiana benthamiana 

- Homolog of 

LOC102599526 
(Solanum tuberosum) 

565342734 N/A OOF2 + 
98.8 / 

99.2 

pB27_A-28 70054272 

Nicotiana benthamiana 

- Homolog of 

LOC102599631 
(Solanum tuberosum) 

565382323 D IF + 
93.6 / 

97.4 

pB27_A-24 70054272 

Nicotiana benthamiana 

- Homolog of 
LOC102599631 

(Solanum tuberosum) 

565382323 D IF + 
99.8 / 
99.6 

pB27_A-72 70054279 

Nicotiana benthamiana 

- Homolog of 
LOC102600407 

(Solanum tuberosum) 

565386739 A IF + 
96.9 / 
97.1 

pB27_A-209 70054279 

Nicotiana benthamiana 
- Homolog of 

LOC102600407 

(Solanum tuberosum) 

565386739 A IF + 
94.4 / 

97.2 

pB27_A-16 70054279 

Nicotiana benthamiana 
- Homolog of 

LOC102600407 
(Solanum tuberosum) 

565386739 A IF + 
96.0 / 

94.3 

pB27_A-179 70054279 

Nicotiana benthamiana 

- Homolog of 

LOC102600407 
(Solanum tuberosum) 

565386739 A IF + 
96.2 / 

92.8 

pB27_A-88 70054279 

Nicotiana benthamiana 

- Homolog of 
LOC102600407 

(Solanum tuberosum) 

565386739 A IF + 
97.9 / 
100.0 

pB27_A-226 70054279 

Nicotiana benthamiana 

- Homolog of 
LOC102600407 

(Solanum tuberosum) 

565386739 A IF + 
98.6 / 
98.2 

pB27_A-40 70054279 

Nicotiana benthamiana 
- Homolog of 

LOC102600407 

(Solanum tuberosum) 

565386739 A IF + 
94.8 / 

96.6 

pB27_A-165 70054113 

Nicotiana benthamiana 
- Homolog of 

LOC102601433 

(Solanum tuberosum) 

565387535 N/A OOF2 + 
99.7 / 

100.0 
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Contig(s) 
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Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
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Sense/ 
Antisense 

(+/-) 

% Id 

5p/3p 

pB27_A-277 70054020 

Nicotiana benthamiana 

- Homolog of 
LOC102601925 

(Solanum tuberosum) 

565400596 N/A OOF1 + 
100.0 / 
100.0 

pB27_A-252 70054042 

Nicotiana benthamiana 
- Homolog of 

LOC102602229 

(Solanum tuberosum) 

565350375 N/A OOF2 + 
99.7 / 

100.0 

pB27_A-196 70054095 

Nicotiana benthamiana 
- Homolog of 

LOC102602408 

(Solanum tuberosum) 

565376678 N/A OOF1 + 
97.7 / 

97.3 

pB27_A-231 70054055 

Nicotiana benthamiana 

- Homolog of 

LOC102604573 
(Solanum tuberosum) 

565389935 D IF + 
99.7 / 

100.0 

pB27_A-213 
70054431 / 

70054429 

Nicotiana benthamiana 

- Homolog of 

LOC102604617 
(Solanum tuberosum) 

565363138 N/A OOF1 + 
100.0 / 

68.6 

pB27_A-61 70054371 

Nicotiana benthamiana 

- Homolog of 
LOC102604680 

(Solanum tuberosum) 

565391346 N/A OOF2 + 
99.4 / 
99.8 

pB27_A-245 70054049 

Nicotiana benthamiana 
- Homolog of 

LOC102604815 

(Solanum tuberosum) 

565351842 N/A OOF1 + 
94.3 / 

97.7 

pB27_A-145 70054148 

Nicotiana benthamiana 
- Homolog of 

LOC102604882 

(Solanum tuberosum) 

565341786 N/A OOF2 + 
100.0 / 

100.0 

pB27_A-244 
70054362 / 

70054360 

Nicotiana benthamiana 

- Homolog of 

LOC102604919 
(Solanum tuberosum) 

565351684 D IF + 
100.0 / 

58.4 

pB27_A-111 70054232 

Nicotiana benthamiana 

- Homolog of 

LOC102605062 
(Solanum tuberosum) 

568214452 D IF + 
94.7 / 

93.7 

pB27_A-199 
70054124 / 
70054436 

Nicotiana benthamiana 

- Homolog of 
LOC102606384 

(Solanum tuberosum) 

565352653 D IF + 
97.9 / 
72.2 

pB27_A-156 70054124 

Nicotiana benthamiana 

- Homolog of 
LOC102606384 

(Solanum tuberosum) 

565352653 D IF + 96.1 

pB27_A-67 70054363 

Nicotiana benthamiana 
- Homolog of 

LOC543976 (Solanum 

lycopersicum) 

460412300 N/A OOF1 + 
95.1 / 

96.3 

pB27_A-115 70054227 

Nicotiana benthamiana 

- Homolog of MIP2 

(Nicotiana glauca) 

12006840 D IF + 
99.8 / 
100.0 

pB27_A-203 70054091 
Nicotiana benthamiana 
- Homolog of NtGT2 

(Nicotiana tabacum) 

20146092 D IF + 
100.0 / 

100.0 

pB27_A-171 70054109 
Nicotiana benthamiana 
- Homolog of NtROS3 

(Nicotiana tabacum) 

138996993 D IF + 94.8 

pB27_A-216 
70054109 / 

70054428 

Nicotiana benthamiana 

- Homolog of NtROS3 
(Nicotiana tabacum) 

138996993 D IF + 
100.0 / 

85.9 

pB27_A-99 70054243 

Nicotiana benthamiana 

- Homolog of PHA2 
(Solanum tuberosum) 

568214506 D IF + 
95.3 / 

96.1 

pB27_A-253 70054356 

Nicotiana benthamiana 

- Homolog of PSY2 

(Solanum 
lycopersicum) 

350534779 N/A ?? + 100 
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Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 
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(+/-) 

% Id 

5p/3p 

pB27_A-184 70053955 

Nicotiana benthamiana 

- Homolog of 
chlorophyll a/b 

bindingprotein 

(Nicotiana tabacum) 

29123377 N/A OOF1 + 100 

pB27_A-218 70054423 

Nicotiana benthamiana 

- Homolog of 

glyceraldehyde-3-
phosphate 

dehydrogenaseA-

subunit (Nicotiana 
tabacum) 

170236 D IF + 100 

pB27_A-261 70054033 

Nicotiana benthamiana 

- Homolog of 

hypothetical protein 
(Populus trichocarpa) 

566183522 D IF + 
99.0 / 

98.5 

pB27_A-280 70054016 

Nicotiana benthamiana 

- Homolog of 
jasmonate ZIM domain 

protein b (Nicotiana 

attenuata) 

389986096 D IF + 
98.5 / 

98.9 

pB27_A-243 70054016 

Nicotiana benthamiana 
- Homolog of 

jasmonate ZIM domain 
protein b (Nicotiana 

attenuata) 

389986096 D IF + 
100.0 / 

100.0 

pB27_A-257 70054035 

Nicotiana benthamiana 

- Homolog of ked 
(Nicotiana tabacum) 

8096268 N/A OOF2 + 
98.5 / 

98.6 

pB27_A-106 70054234 

Nicotiana benthamiana 

- Homolog of plastid 
transketolase 

(Nicotiana tabacum) 

194396260 N/A OOF2 + 
100.0 / 
100.0 

pB27_A-191 70054098 

Nicotiana benthamiana 

- Homolog of putative 
60S ribosomal protein 

L9 (Leishmania 

mexicana 
MHOM/GT/2001/U11

03) 

401425990 N/A OOF2 + 
95.6 / 
96.6 

pB27_A-208 70054073 

Nicotiana benthamiana 
- Homolog of putative 

phosphate-induced 

protein (Capsicum 
chinense) 

171854680 N/A OOF1 + 
100.0 / 

99.8 

pB27_A-222 70054066 

Nicotiana benthamiana 

- Homolog of unnamed 

protein (Petunia x 
hybrida) 

169213 D IF + 
99.8 / 

100.0 

pB27_A-63 70054367 
Nicotiana benthamiana 

- Impa1 
119866034 D IF + 

99.6 / 

99.6 

pB27_A-142 70054349 
Nicotiana benthamiana 

- NbROS1 
478620804 D IF + 

67.0 / 

74.5 

pB27_A-45 70054349 
Nicotiana benthamiana 

- NbROS1 
478620804 D IF + 

68.0 / 

74.4 

pB27_A-5 70054349 
Nicotiana benthamiana 

- NbROS1 
478620804 D IF + 

68.0 / 

74.5 

pB27_A-116 70054224 
Nicotiana benthamiana 

- NbWIPK 
27374987 N/A ?? - 

94.9 / 

98.1 

pB27_A-269 
70054294 / 

70054289 

Nicotiana benthamiana 

- RanGAP2 
147882992 A IF + 

97.1 / 

92.8 

pB27_A-71 
70054294 / 

70054289 

Nicotiana benthamiana 

- RanGAP2 
147882992 A IF + 

93.7 / 

95.1 

pB27_A-59 70054294 
Nicotiana benthamiana 

- RanGAP2 
147882992 A IF + 

96.0 / 

99.6 

pB27_A-17 70054294 
Nicotiana benthamiana 

- RanGAP2 
147882992 A OOF1 + 

100.0 / 

100.0 

pB27_A-193 70054294 
Nicotiana benthamiana 

- RanGAP2 
147882992 A IF + 

100.0 / 

100.0 

pB27_A-25 
70054294 / 

70054003 

Nicotiana benthamiana 

- RanGAP2 
147882992 A OOF1 + 

98.2 / 

97.9 
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Clone Name 
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Gene Name (Best 

Match) 

GenBank 

ID 

Global 

PRBS 
Frame 

Sense/ 
Antisense 

(+/-) 

% Id 

5p/3p 

pB27_A-113 70054294 
Nicotiana benthamiana 

- RanGAP2 
147882992 A OOF1 + 

98.2 / 

98.2 

pB27_A-37 70054294 
Nicotiana benthamiana 

- RanGAP2 
147882992 A OOF1 + 

98.2 / 

98.2 

pB27_A-221 70054294 
Nicotiana benthamiana 

- RanGAP2 
147882992 A OOF1 + 

98.2 / 

98.2 

pB27_A-118 70054202 

Nicotiana benthamiana 

- S-adenosyl 

homocysteine 
hydrolase 

387861273 A IF + 
91.7 / 

92.8 

pB27_A-178 70054202 

Nicotiana benthamiana 

- S-adenosyl 

homocysteine 
hydrolase 

387861273 A IF + 
90.8 / 

95.5 

pB27_A-204 70054202 

Nicotiana benthamiana 

- S-adenosyl 
homocysteine 

hydrolase 

387861273 A IF + 
98.2 / 
98.3 

pB27_A-1 70054202 

Nicotiana benthamiana 

- S-adenosyl 
homocysteine 

hydrolase 

387861273 A OOF2 + 
90.4 / 
92.7 

pB27_A-10 70054202 

Nicotiana benthamiana 
- S-adenosyl 

homocysteine 

hydrolase 

387861273 A OOF2 + 
94.8 / 

93.0 

pB27_A-182 70054202 

Nicotiana benthamiana 

- S-adenosyl 

homocysteine 
hydrolase 

387861273 A IF + 93.4 

pB27_A-144 70054202 

Nicotiana benthamiana 

- S-adenosyl 

homocysteine 
hydrolase 

387861273 A IF + 
94.7 / 

94.6 

pB27_A-78 70054202 

Nicotiana benthamiana 

- S-adenosyl 
homocysteine 

hydrolase 

387861273 A IF + 
94.3 / 
97.0 

pB27_A-103 70054202 

Nicotiana benthamiana 

- S-adenosyl 
homocysteine 

hydrolase 

387861273 A IF + 
90.3 / 
96.6 

pB27_A-29 70054202 

Nicotiana benthamiana 
- S-adenosyl 

homocysteine 

hydrolase 

387861273 A IF + 
91.5 / 

95.5 

pB27_A-42 70054202 

Nicotiana benthamiana 

- S-adenosyl 

homocysteine 
hydrolase 

387861273 A IF + 
94.9 / 

95.2 

pB27_A-249 70054202 

Nicotiana benthamiana 

- S-adenosyl 

homocysteine 
hydrolase 

387861273 A IF + 
90.1 / 

94.5 

pB27_A-232 70054202 

Nicotiana benthamiana 

- S-adenosyl 
homocysteine 

hydrolase 

387861273 A IF + 
94.7 / 
95.2 

pB27_A-233 70054202 

Nicotiana benthamiana 

- S-adenosyl 
homocysteine 

hydrolase 

387861273 A IF + 
95.0 / 
95.7 

pB27_A-212 70054202 

Nicotiana benthamiana 
- S-adenosyl 

homocysteine 

hydrolase 

387861273 A IF + 
93.7 / 

96.1 

pB27_A-227 70054202 

Nicotiana benthamiana 
- S-adenosyl 

homocysteine 

hydrolase 

387861273 A IF + 
92.3 / 

93.5 
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ID 
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(+/-) 

% Id 

5p/3p 

pB27_A-207 70054202 

Nicotiana benthamiana 

- S-adenosyl 
homocysteine 

hydrolase 

387861273 A IF + 
94.4 / 
95.2 

pB27_A-8 70054202 

Nicotiana benthamiana 
- S-adenosyl 

homocysteine 

hydrolase 

387861273 A IF + 
95.0 / 

94.6 

pB27_A-6 70054202 

Nicotiana benthamiana 
- S-adenosyl 

homocysteine 

hydrolase 

387861273 A IF + 94.2 

pB27_A-26 70054202 

Nicotiana benthamiana 

- S-adenosyl 

homocysteine 
hydrolase 

387861273 A IF + 
90.8 / 

93.7 

pB27_A-131 70054202 

Nicotiana benthamiana 

- S-adenosyl 

homocysteine 
hydrolase 

387861273 A ?? + 90.7 

pB27_A-135 70054156 
Nicotiana benthamiana 

- TRXh 
257222627 N/A ?? - 

100.0 / 

100.0 

pB27_A-140 70053962 

Nicotiana benthamiana 

- No Match 

(no match 

found in 

GenBank) 

D IF + 100 

pB27_A-228 70054059 
Nicotiana benthamiana 
- No Match 

(no match 
found in 

GenBank) 

D IF + 
100.0 / 

100.0 

pB27_A-137 70054154 
Nicotiana benthamiana 
- No Match 

(no match 
found in 

GenBank) 

D IF + 
98.2 / 

99.5 

pB27_A-285 
70054247 / 

70054245 

Nicotiana benthamiana 

- No Match 

(no match 

found in 
GenBank) 

D IF + 
100.0 / 

75.5 

pB27_A-284 
70054250 / 

70054248 

Nicotiana benthamiana 

- No Match 

(no match 

found in 
GenBank) 

D IF + 
100.0 / 

76.0 

pB27_A-281 70054251 

Nicotiana benthamiana 

- No Match 

(no match 

found in 

GenBank) 

D IF + 100 

pB27_A-279 70054253 

Nicotiana benthamiana 

- No Match 

(no match 

found in 

GenBank) 

D IF + 100 

pB27_A-276 70054257 
Nicotiana benthamiana 
- No Match 

(no match 
found in 

GenBank) 

D IF + 100 

pB27_A-272 
70054347 / 

70054341 

Nicotiana benthamiana 

- No Match 

(no match 

found in 

GenBank) 

D IF + 
100.0 / 

57.7 

pB27_A-188 
70053954 / 

70053951 

Nicotiana benthamiana 
- poly-A binding 

protein 

400234897 C OOF2 + 
70.0 / 

66.8 

pB27_A-134 70054159 

Nicotiana benthamiana 

- poly-A binding 
protein 

400234897 C OOF2 + 
93.5 / 

92.6 

pB27_A-248 70054045 
Nicotiana benthamiana 

- psbQ1 
384038828 D IF + 

96.6 / 

97.6 

pB27_A-180 70054103 
Nicotiana benthamiana 
- s/s2 

18920395 N/A OOF1 + 
79.9 / 
85.6 

pB27_A-130 70054103 
Nicotiana benthamiana 

- s/s2 
18920395 N/A ?? - 

77.2 / 

73.0 

pB27_A-219 70054068 
Nicotiana benthamiana 
- translation elongation 

factor 1 alpha 

37783254 N/A OOF2 + 
91.2 / 

78.9 

pB27_A-274 70054022 
Nicotiana benthamiana 
- GenMatch 

576528492 D IF + 
99.7 / 
100.0 

pB27_A-206 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A IF + 

96.8 / 

99.3 

pB27_A-64 70054077 
Nicotiana benthamiana 
- GenMatch 

576528492 A OOF1 + 
97.3 / 
100.0 
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ID 
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pB27_A-128 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A OOF1 + 

99.8 / 

100.0 

pB27_A-41 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A OOF1 + 

100.0 / 

99.3 

pB27_A-195 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A OOF1 + 99.5 

pB27_A-60 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A OOF1 + 98.7 

pB27_A-282 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A OOF1 + 98 

pB27_A-18 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A OOF1 + 

98.7 / 

100.0 

pB27_A-112 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A OOF1 + 

100.0 / 

100.0 

pB27_A-186 70054077 
Nicotiana benthamiana 

- GenMatch 
576528492 A OOF1 + 

100.0 / 

99.4 

pB27_A-153 70054131 
Nicotiana benthamiana 

- GenMatch 
32478710 D IF + 

98.0 / 

100.0 

pB27_A-122 70054195 
Nicotiana benthamiana 

- GenMatch 
576528492 D IF + 

99.0 / 

100.0 

pB27_A-104 70054237 
Nicotiana benthamiana 

- GenMatch 
32478725 D IF + 

98.8 / 

100.0 

pB27_A-19 70054292 
Nicotiana benthamiana 

- GenMatch 
32478716 D IF + 

100.0 / 

100.0 

pB27_A-250 
70054378 / 
70054358 

Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 

92.2 

pB27_A-266 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

99.8 / 

100.0 

pB27_A-238 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 

pB27_A-126 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-173 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 

pB27_A-224 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-230 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 

pB27_A-20 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

99.6 / 

99.8 

pB27_A-197 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 

pB27_A-105 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 91.3 

pB27_A-192 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
99.6 / 
99.1 

pB27_A-181 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

94.6 / 

96.0 

pB27_A-12 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 99.4 

pB27_A-273 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

99.8 / 

100.0 

pB27_A-90 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 

97.7 

pB27_A-80 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-49 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 

pB27_A-48 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-35 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 

pB27_A-53 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-177 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 

pB27_A-81 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-194 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 
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pB27_A-201 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

97.8 / 

97.3 

pB27_A-117 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

99.8 / 

100.0 

pB27_A-58 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

99.7 / 

99.7 

pB27_A-69 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

90.7 / 

96.2 

pB27_A-50 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-11 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

99.6 / 

100.0 

pB27_A-163 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

91.6 / 

95.9 

pB27_A-110 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 96.5 

pB27_A-258 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-260 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-271 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

94.1 / 

97.4 

pB27_A-91 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

100.0 / 

100.0 

pB27_A-246 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
100.0 / 
100.0 

pB27_A-96 70054378 
Nicotiana benthamiana 

- GenMatch 
32478741 A IF + 

97.4 / 

94.8 

pB27_A-9 70054378 
Nicotiana benthamiana 
- GenMatch 

32478741 A IF + 
99.6 / 
98.5 
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