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conditions on LiDAR derived estimations of forest structural 

diversity 

Sophie Tanith Davison 

ABSTRACT 
 

UK legislation aims to conserve and enhance biological diversity within the UK and so accurate 
measurements of forest biodiversity are important to assess efficacy of management activities in 
this context. Forest structural diversity metrics can be used as indicators of biodiversity and 
airborne LiDAR data provide a means of producing these metrics. Forest structure metrics derived 
from LiDAR can be significantly affected by the canopy conditions the datasets are collected under. 
Existing studies have combined and compared leaf-on and leaf-off LiDAR datasets in existing 
analyses, however the majority of these utilise field sites where climate, species and terrain are 
very different to those found in the UK. Additionally, studies comparing leaf-on and leaf-off LiDAR 
over forested areas assess the changes in pulse penetration through the canopy and how this 
effects forest structure metrics and not the effect on modelled forest structure diversity. The novel 
aim of this research is to assess and compare the accuracy of forest structural diversity modelled 
from two LiDAR surveys collected under leaf-on and leaf-off conditions, and do so in a UK forest 
environment.  

A robust methodology for correcting the absolute and relative accuracy between datasets was 
adopted and comparative analysis of ground detection and return height metrics (maximum, mean 
and percentiles of return height) and return height diversity (L-CV, CV, kurtosis, standard deviation, 
skewness and variance) was undertaken. Regression models describing the field tree size diversity 
measurements were constructed using diversity metrics from each LiDAR dataset in isolation and, 
where appropriate, a mixture of the two.  

Both surveys were consistently effected by growth and differing survey parameters making the 
isolation and assessment of the effects of seasonal change difficult. Despite this, models created 
using diversity variables from both LiDAR datasets were generally very similar. Both leaf-on and 
leaf-off LiDAR dataset models described 65% of the variance in tree height diversity (R² 0.65, 
RMSE 0.05, p <0.0001), however models utilising leaf-off LiDAR diversity variables described DBH 
diversity, crown length diversity and crown width diversity more successfully than leaf-on (leaf-on 
models resulted in R² values of 0.68, 0.41 and 0.19 respectively and leaf-off models 0.71, 0.62 and 
0.26 respectively). When diversity variables calculated from both LiDAR datasets were combined 
into one model to describe tree height diversity and DBH diversity their efficacy was increased (R² 
of 0.77 for tree height diversity and 0.72 for DBH diversity). 

The results suggest strongly that tree height diversity models derived from airborne LiDAR collected 
(and where appropriate combined) under any seasonal conditions can be used to differentiate 
between single and multiple storey UK forest structure with confidence. However, leaf-off LiDAR 
acquisitions can generate models with the ability to better explain the diversity of crown shapes in 
a forest stand than leaf-on, with no improvement in model performance when the two are 
combined.  
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NOTATION 
 

SI units include the metre (m) and the hectare (ha). An additional unit used is degrees (°). Symbols 

and abbreviations are defined when they first appear however the following are used frequently: 

 

Field notation 
 

Variable Name Description 

DBH Diameter at breast height Tree diameter 1.5m above the ground 

L-CV Coefficient of L-variation Analogous to the coefficient of variation, but 

based on L-moments. Identical to the Gini 

Coefficient. Measures the inequality among 

values of a frequency distribution. 

THdiv  Tree height Diversity Coefficient of L-variation of Tree height (across a 

plot) 

DBHdiv DBH Diversity Coefficient of L-variation of DBH (across a plot) 

CLdiv Crown length Diversity Coefficient of L-variation of Crown length (across 

a plot) 

CWdiv Crown width diversity Coefficient of L-variation of Crown width (across 

a plot) 

 

LiDAR notation 
 

Variable Name Description 

x Easting  

y Northing  

z  Height  

CV Coefficient of variation Relative dispersion of a frequency 

distribution. The ratio of standard 

deviation and mean and is expressed 

as a percentage. 

skew Skewness A measure of the asymmetry of a 

frequency distribution 

https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Frequency_distribution


 

x 

kurt Kurtosis The sharpness of the peak of a 

frequency distribution. 

var Variance A measure of the spread from the 

mean. The average of the squared 

differences from the mean. 

SD / σ Standard deviation A measure of the variation or 

dispersion of a distribution. The 

square root of the variance. 

L-CV Coefficient of L-variation Analogous to the coefficient of 

variation, but based on L-moments. 

Identical to the Gini Coefficient. 

Measures the inequality among 

values of a frequency distribution. 

P99 99th percentile of return height  

P90 90th percentile of return height  

P75 75th percentile of return height  

P50 50th percentile of return height  

P25 25th percentile of return height  

P99/90 Ratio of the 99th and 90th percentile of 

return height 

 

P99/75 Ratio of the 99th and 75th percentile of 

return height 

 

P99/50 Ratio of the 99th and 50th percentile of 

return height 

 

P99/25 Ratio of the 99th and 25th percentile of 

return height 

 

𝑥𝑙𝑜𝑛   The ‘lon’ denotation indicates a 

variable has been calculated from 

the leaf-on LiDAR dataset 

𝑥𝑙𝑜𝑓𝑓   The ‘loff’ denotation indicates a 

variable has been calculated from 

the leaf-off LiDAR dataset 
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1. INTRODUCTION 

 

Biodiversity, or variability within nature, allows species to adapt to changing conditions. The very 

rapid changing conditions observed in forests due to human interference and climate change (such 

as habitat fragmentation, species extinctions and spread of invasive species) all have a detrimental 

effect on biodiversity (Butchart et al., 2010). Forest regrowth following disturbance can restore 

habitat to some extent, but the success of this depends on sufficient conservation management 

knowledge for species habitat requirements and their relationships to vegetation vertical structure 

and biomass (Martinuzzi et al., 2009). A better understanding of the vulnerability of vegetation and 

forest dwelling animal species to climate change and changes to the structure and extent of forests 

is essential to facilitate conservation and management efforts that can counter any decline forest 

biodiversity (Hall et al., 2011).  

 

Many countries now have some form of plan or policies in place to safeguard and promote 

biodiversity. The national Biodiversity Action Plan (BAP) is the UK government’s manifestation of 

such a plan, instigated in response to the convention on Biodiversity (signed at the Rio Earth Summit 

(1992)). The BAP has the overall goal of conserving and enhancing biological diversity within the UK 

and contributing to the conservation of global biodiversity. This is to be undertaken through all 

appropriate mechanisms, such as preserving and where practical enhancing species, habitats and 

natural and managed ecosystems.  

 

Within the UK BAP it is recognised that sensitive management of existing forests and woodlands 

through restructuring of even-aged plantations can enhance biodiversity.  Introducing species and 

age diversity can enhance the structural diversity of a forest stand and in general the more diverse 

the vertical structure of a forest the more diverse its biota (Brokaw and Lent, 1999). For example 

vegetation structure has been observed to influence bird habitat selection in a variety of ways: it 

may impede the movement of foraging birds (Brodmann et al., 1997) and may influence foraging 
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proficiency through its effects on birds’ ability to find and reach food items (Whittingham and 

Markland, 2002). Jansson and Andrén (2003) found that in Boreal Swedish forests the number of 

bird species increased as the proportion of older mixed trees and tree heights increased and the 

bird species numbers decreased as forest fragmentation increased. Beier and Drennan (1997) found 

that Northern Goshawks (Accipiter gentilis) selected foraging sites based on forest structure rather 

than prey abundance and preferred areas with higher canopy closure (>40%), high tree densities 

and higher tree heights regardless of more open stands displaying higher prey abundance. Vertical 

positioning, mixture and age distribution of vegetation elements have also been shown to affect 

insect and herbaceous plant diversity (Berger and Puettmann, 2000; Recher et al., 1996).  

 

Although the assessment of vegetation structure is critical to managing forested ecosystems, 

conventional methods remain unable to facilitate all management goals (Jones et al., 2012). In lieu 

of destructive methods (less than ideal when trying to conserve the biodiversity present) forest 

structure can be reliably estimated in the field using allometry with much less damage, but 

considerable labour. Allometry uses measures (for example tree height and diameter) with which 

biomass or structural characteristics can be calculated.  The data is then typically aggregated from 

sample plots over spatially and structurally continuous groups of trees growing under similar soil 

and climatic conditions, also known as stands (Oliver and Larson, 1990) within (Bergen et al., 2009). 

These measurements are scaled up in this way as complete censuses of every tree are too costly, 

both in time and resources (Bergen et al., 2009). Because of this, when relying on field 

measurements alone, a trade-off always exists between amount of vertical detail measured and 

the horizontal extent of these measurements (Bergen et al., 2009; Bradbury et al., 2005). 

Furthermore, field measurements are not always standardised, are lacking for many remote areas 

that are difficult to access, and are inefficient in capturing change (Bergen et al., 2009). 

 

Remote Sensing can be used as an alternative to such field based methods. Passive multispectral 

optical sensors such as Landsat and MODerate-resolution Imaging Spectroradiometer (MODIS) are 
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useful for classifying vegetation type and horizontal forest structure at low resolutions for larger 

landscape scales (Bergen et al., 2009) and stereo-photogrammetry can also provide vegetation 

height information (Bradbury et al., 2005). Active sensors such as SAR (Synthetic Aperture Radar) 

and InSAR (Interferometric SAR) can also provide observations related to forest aboveground 

biomass and vegetation structure (Waring et al., 1995; Saatchi et al., 2007). For valuable 

biodiversity assessment, SAR, InSAR and airborne Light Detection And Ranging (LiDAR) hold an 

advantage; forest canopies present a surface porous to the emitted energy, allowing information 

to be collected from the top of the canopy and lower canopy layers (Chasmer et al., 2006; Lefsky et 

al., 2002). This allows the height and sometimes density of vegetation elements or layers to be 

calculated in relation to the ground (Lindberg et al., 2012). Like other remote sensing techniques 

LiDAR provides a means of data collection in areas of restricted or limited access and can generate 

high density sampling data rapidly and more efficiently than field methods. This is particularly 

evident at landscape levels (Lefsky et al., 2002; Bradbury et al., 2005). 

 

This research had the opportunity to utilise two airborne LiDAR datasets collected over Chopwell 

Woodland Park in the North-East of England under leaf-on and leaf-off conditions to investigate the 

relationship between LiDAR derived and field measured forest structure diversity under different 

seasonal capture conditions. Chopwell Woodland Park is comprised of stands ranging in 

biodiversity, maturity and level of management and also encompasses areas of ancient woodland 

(woodland that has been continually present since 1600, a category only 16% of UK woodland can 

claim to be a part of).  

 

The following sections within Chapter 2 aim to contextualise this study within the literature through 

the analysis of key studies and outlining of important concepts. This review was critical in the 

formulation of the aims and objectives which are stated in Chapter 3 after a full appraisal of the 

literature enabled a detailed premise to be set.  
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2. LITERATURE REVIEW 

 

2.1 The LiDAR System 

 

An airborne LiDAR system is mounted upon an aircraft equipped with a Global Positioning System 

(GPS) and Inertial Measuring Unit (IMU) which allow calculation of precise location in easting (x) 

northing (y) and height (z) and angular orientation (the pitch, roll and heading) of the sensor with 

respect to the ground (Wehr and Lohr, 1999). The laser scanning system itself is comprised of the 

laser source, the laser detector, the scanning mechanism, the timing mechanism and the computing 

power to process and record vast amounts of data in real-time to extract the geo-referenced points 

(Thiel and Wehr, 2004). Aside from this, as with any GPS activity, airborne LiDAR capture requires 

a surveyed ground base location to be established in or near to the project area (Lillesand et al., 

2014). LiDAR systems emit repetitive laser pulses towards the earth’s surface and measure the time 

taken for them to return. Scanning takes place as the aircraft motion displaces the laser beam. The 

laser is also deflected across the flight path by a device such as an oscillating mirror to create a 

swathe of pulses following the aircraft’s line of flight (Wagner et al., 2004). Different systems 

perform different swath patterns (z pattern, parallel pattern, sinusoidal pattern) which are 

generally acquired in many overlapping parallel strips to enable dense point clouds and adequate 

data coverage (Mallet and Bretar, 2009). The travelling time taken by the emitted pulse to reach 

the earth’s surface and return to the system directly relates to the distance from the sensor to the 

ground or whatever may be above the ground (Wagner et al., 2004) using the formula: 

 

𝑹 = 𝒄
 𝒕

𝟐
          R = range (distance between sensor and target) 

c = speed of light or 0.3m/nanosecond 

t = time interval between pulse emission and detection  

     (Baltsavias, 1999) 
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Such distances are then mapped into 3D point clouds representative of the surface beneath the 

scanner, typically accurate to 100-150mm in plan and height (Mallet and Bretar, 2009). The received 

signal intensity of backscattered pulses is additionally measured providing radiometric information 

about the surveyed data that can later be utilised during classficiation or edge detection (Höfle and 

Pfeifer, 2007; Jutzi and Stilla, 2006). As these are active systems (they provide their own energy 

source and do not rely on light energy from the sun) the data do not suffer from illumination 

shadows that may be present in photogrammetrically derived data, however object occlusion is still 

present.  

 

Light from LiDAR scanner laser sources is highly collimated (strong and tightly focused) and 

monochromatic with a very narrow spectral width typically within the near infrared region of the 

electromagnetic spectrum (Wagner et al., 2004). The laser diverges from the source into a 

diffraction cone making the footprint approximately circular but varying with scan angle and 

topography (Baltsavias, 1999). Typically, laser footprints are classed as large or small. Large 

footprint systems such as NASA’s Land Vegetation and Ice Scanner (LVIS) and the Scanning LiDAR 

Imager of Canopies by Echo Recovery (SLICER) have a wide divergence angle for the laser beam so 

that it illuminates a large (10 – 30 metre) footprint (Chasmer et al., 2006). Often few footprints are 

recorded for each scan line but the entire return pattern of energy versus time (height) is recorded 

in great detail. Most large footprint systems are confined to use in research and are less available 

for commercial use (Mallet and Bretar, 2009). Small footprint systems use a narrow divergence 

angle resulting in footprints typically 10cm-1m and operate at a much higher frequency and can 

also distinguish multiple returns from each fired pulse. 
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2.2 Airborne LiDAR and Forestry 

 

As highlighted in Chapter 1, LiDAR data are incredibly valuable for monitoring forestry 

characteristics and parameters. Each laser pulse fired can provide returns from differing layers of 

the canopy. Returns that arrive back first may come from the very top of the canopy and 

subsequent returns may represent lower layers or even the ground. The application of airborne 

LiDAR in forestry can offer a wealth of forest characterisation and measurement data which can be 

of critical importance in forest growth models, biodiversity assessment and in the derivation of 

estimates of carbon sequestration, standing timber volume, and biomass (Lim et al., 2003).  

 

2.2.1 Study Scale  

 

LiDAR forestry studies are undertaken at scales varying from individual tree level to country-wide 

or international investigations. Stand level LiDAR data are considered to produce information on 

the physical dimensions of timber volume, or large structural characteristics and features typically 

derived are height percentiles and densities calculated from the height distributions. This ignores 

any spatial x/y distributions over the plot extent (Næsset, 2002). Conversely an individual tree 

approach can be advantageous when classifying individual species or delineating individual trees as 

structural features, which can be separated from the point cloud using assumptions based on the 

physiology of different types and species of tree. 

 

Li et al. (2013) undertook tree species identification by analysing tree crown structural features to 

capture detailed foliage and branching patterns that differ systematically among species. Results 

were compared to trees in the field and analysis of the clustering of returns in 3D space showed 

they were related to the biomass distribution within different species crowns. This study 

demonstrated the incredible amount of detail that can be captured for each individual tree but 
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raises questions surrounding how such detail can be utilised at larger scales without incurring 

significant time and processing power. Morsdorf et al. (2004) suggest that single tree metrics can 

be aggregated to cover larger scales. This is akin to how field measurements of individual trees are 

often aggregated to larger scales and again introduces the trade-off between amount of detail in 

metrics calculated from individual trees and the horizontal extent of these metrics can be 

extrapolated to. 

 

It is, however, important to note that this level of detail would likely be superfluous in larger scale 

studies. For example, Zimble et al. (2003) investigated the separation of structure classes at the 

stand and landscape level. Simply undertaking statistical analysis of LiDAR data over a given area 

produced valid and valuable conclusions without having to undertake a computationally expensive 

methodology. Ideally there needs to be a compromise between the quantity and duration of 

analysis techniques and the real level of detail required for any research project. Much 

management in the UK is undertaken at the stand level and it may be argued that remote sensing 

measurements for biodiversity assessment would ideally be related to this scale. If no further 

spatial detail is necessary, less time and effort in data analysis is spent whilst information relevant 

to the management of a stand can still be obtained (Townsend Peterson and Kluza, 2003). 

 

2.2.2 Full Waveform and Discrete Return LiDAR Systems 

 

LiDAR systems themselves can be grouped into two main categories: full waveform or discrete 

return. Some systems have both full waveform and discrete return capabilities. Both of these 

systems continuously emit light and measure the phase difference between the transmitted and 

received signal to determine distance of occlusive objects from the system (Mallet and Bretar, 

2009). The difference between the two system types comes in the way the returning signal is 

recorded. Full waveform systems digitise the continuous returning signal, recording the entire 
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shape of the returning wave. Discrete return systems record discrete echoes where the return 

signal has exceeded a set threshold (Jutzi and Stilla, 2006).  

 

Each have their advantages and disadvantages when used in forestry analysis. By recording the 

power of the entire return signal, full waveform systems are often able to obtain height information 

beneath the tallest canopy. For discrete return systems, the return signal diminishes in power as it 

intercepts canopy surfaces making returns from the ground sometimes more difficult. However 

with larger footprint systems a signal is still recorded from the ground in nearly all footprints, 

providing estimates of total canopy height (Lefsky et al., 1999a). Lefsky et al. (1999a) used full-

waveform LiDAR data to ascertain the age of forest stands using the vertical distribution of the 

canopy produced within a waveform. Older stands (characterized by canopy gaps and trees of 

multiple ages and sizes) exhibited a more even vertical distribution of canopy components 

compared to younger, even-aged stands which had a majority of their canopy materials in the top 

portion of the canopy. 

 

Discrete return systems are more commonly small in footprint and can provide exact locations and 

detailed information on scales as small as a singular tree crown (Lefsky et al., 2002). However due 

to their spatially focused nature these systems can encounter problems such as missing the very 

tops of trees and, in forests with much understory vegetation, never reaching the ground (Lim et 

al., 2003). Lindberg et al. (2012) used discrete return and the full-waveform digitisation LiDAR data 

to estimate vegetation volume profiles. Both systems showed good agreement with ground data 

however it was shown that waveform data provided the best results by compensating for the 

shielding effects of higher vegetation layers that discrete return data suffered from. 
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Figure 1. a) Laser hits within a tree crown footprint, with frequency and intensity vertical profiles; b) A model 

of the canopy height with the highlighted location of the tree crown shown in “a”;  c) The tree crown footprint 

shown in 3D (Popescu and Zhao, 2008) 

 

Issues such as occlusion when using discrete return systems can often be ameliorated by increasing 

the point density. There are studies which have taken discrete return LiDAR data integrated over a 

test site at an individual tree scale (Popescu and Zhao, 2008) or stand scale (Chasmer et al., 2006), 

and then plotted these returns as frequency by height (see Figure 1). This technique provides a 
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distribution similar to intensity waveforms acquired from full waveform LiDAR systems and can 

provide general summaries of the vertical forest structure and canopy layers at stand scales.  

 

2.2.2 Utilising the Point Cloud vs. Point Cloud Products 

 

LiDAR studies of forest structure often attempt to derive metrics such as tree height and crown 

dimensions and then utilise allometric relationships or statistical analysis to derive other valuable 

characteristics such as biomass, volume, crown bulk density, and canopy fuel parameters. For 

example, tree or vegetation height is a function of species composition, climate and site quality and 

can also be used to model stand biomass and volume (Lim et al. 2003). Lefsky et al. (1999b) 

calculated stem diameter of trees from LiDAR data which could then be used as an input for many 

traditional predictive models of biomass and volume. These characteristics can be calculated from 

either the LiDAR point cloud or by constructing surfaces or grid based metrics. Choosing to work 

with the LiDAR point cloud itself involves pre-processing the data to ensure questionable returns 

caused by errors in time registration, or from atmospheric effects, are removed. These errors are 

easily identified as exaggerated depressions or spikes with improbable ranges in the three-

dimensional point cloud (Axelsson, 2000). 

 

A high proportion of studies involving utilisation of LiDAR datasets to estimate forest structure 

metrics at a stand scale do so by constructing models of the relationship between the response 

variable of interest and LiDAR derived auxiliary variables from the point cloud. Hall et al. (2005) 

used the LiDAR point cloud to estimate variables including stand height, total aboveground 

biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. 

Metrics developed from the LiDAR point cloud were used in regression models, which were fit to 

field estimates of the stand structural variables. A regression model for mean stand height 

explained slightly under 60% of the variability of the 41 sites, based on the mean height of the upper 

50% of first returns and the standard deviation of all first returns greater than 3 metres.  



 

11 

Amable et al. (2004) integrated small footprint discrete pulse LiDAR data over forest stands within 

the UK into histograms of return heights and plots of laser height against easting per stand. Plots 

of height against easting enabled distinct boundary layers between differing canopy components 

to be identified (see Figure 2). In addition to characterising vertical structure, the cumulative height 

distributions from the histograms also provided very clear discrimination between the vegetation 

classes involved. The techniques used in this study can provide sound qualitative information about 

vegetation structure and layering in forest stands. Comparison to more detailed ground data would 

have added an additional element of great interest to this research. 

 

  

 

 

Figure 2. a) and b): Histograms displaying LiDAR return heights from two structurally different woodland 

environments. c) and d): Corresponding plots of LiDAR return height by Easting. First returns are the darker 

markings, last returns are the lighter markings. Distinct canopy boundary layers can be identified in both plots 

(Amable et al., 2004). 

 

a) b) 

c) d) 
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Instead of working with the LiDAR points themselves one may choose to further visualise data by 

creating 2D or 3D gridded datasets. Much focus has rested on the ability of LiDAR data to be used 

to calculate canopy tree height and models of canopy height (CHMs) can be constructed from the 

point clouds. This is after interpolation of ground and none ground returns into separate surfaces 

to create a Digital Terrain Model (DTM) and Canopy Surface Model (CSM) respectively, which can 

be differenced to create a CHM. CHMs can be used in conjunction with algorithm controlled 

segmentation which aims to isolate individual trees or tree groups and analyse their structural 

metrics (Solberg et al., 2006). Popescu and Zhao (2008) delineated individual tree locations from 

CHMs which they then combined with vertical segmentations of the point cloud at each location. 

The frequency points within each vertical segment was plotted (see Figure 1 page 9), with the 

vertical components of the individual tree clearly described. Coops et al. (2007) used a “canopy 

volume” modelling approach involving the assessment of the absence or presence of LiDAR returns 

(taken to represent returns from foliage) and their relative occlusiveness within volumetric pixels 

(voxels) which test sites were divided into.  

 

Care must always be taken when solely working with models and gridded datasets as information 

from the original 3D point cloud can be lost when data are interpolated or generalised. The loss of 

information can be significant, especially in the case of forested areas where multiple echoes are 

registered. Points at different elevations but with similar x, y coordinates are difficult to represent 

in such a form (Axelsson, 2000). On the other hand as discussed earlier in this section, using point 

data alone can involve long processing times. Morsdorf et al. (2004) utilised both surface models 

and the point cloud itself to limit information loss and speed up processing. Iterative cluster analysis 

to delineate tree crowns (a process usually run on the CSM or CHM) was undertaken on the point 

cloud itself to divide the feature spaces into areas containing values similar to each other. They did 

however utilise local maxima derived from the CSM as seed points from which to run the cluster 

analysis; a process faster than determination of the seed points from the raw data itself. Geometric 
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properties were then derived from the individual tree clusters. Using the data in this way integrates 

the best of using both surfaces and the point cloud.  

 

Utilisation of 3D and 2D grids and surfaces can simplify complex forested environments in a way 

that makes them easy to conceptualise but this inevitably leads to the loss of data precision. The 

scale of such loss may be acceptable considering how much information is needed to achieve a 

study’s aims and objectives and at what scale a study is operating at. Often integration of some 

form of 3D grid, especially DTMs, during LiDAR analysis can be a useful ‘tool’.  

 

2.3 Airborne LiDAR for Biodiversity Studies 

 

As described in Clawges et al. (2008) applications of LiDAR data in biodiversity research are focused 

on three main areas: 

 

1) Correlating LiDAR-derived data with potential species occurrence  

2) Utilizing LiDAR-derived estimates to examine aspects of habitat quality 

3) Establishing correlations between LiDAR-derived and field-based estimates of vegetation 

structure 

 

These areas provide the structure for this section. 

 

2.3.1 Correlating LiDAR-Derived Metrics with Species Presence 

 

Swatantran et al. (2008) provides a good example of a study that utilises LiDAR to calculate forest 

structure attributes and then uses these to delineate potential habitat areas. They processed LVIS 

data to produce maps of forest structure and later combined these with stressed and dead 
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vegetation maps from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data. This in turn 

was used to pin point habitat ‘hotspots’ based on historical records of habitat preferences of the 

Ivory Billed Woodpecker (Campephilus principalis). 

 

Nelson et al. (2005) provide a further example of LiDAR in this application as they used airborne 

LiDAR to measure canopy height and canopy closure to create habitat suitability maps. These 

delineated potential habitat areas for the Delmarva fox squirrel (Sciurus niger cinereus), usually 

prevalent in tall dense forests with an open understory. LiDAR data often must be integrated with 

other datasets to pinpoint actual habitat, but workflows such as this are a practical tool to identify 

potential habitats.  

 

2.3.2 Utilising LiDAR-Derived Estimates to Examine Aspects of Habitat Quality 

 

Studies also endeavour to link LiDAR derived forest metrics with habitat quality assessment (usually 

for a specific species) so areas associated with high habitat quality might be linked to the possibility 

of species prevalence. Hinsley et al. (2002) examined the relationship between LiDAR derived mean 

vegetation height around Great tit (Parus major) and Blue tit (Cyanistes caeruleus) nest boxes to 

mean chick mass (used as a surrogate for breeding success and, therefore indirectly, habitat 

quality). These researchers found that for Great Tits mean chick mass decreased with mean 

vegetation height and for Blue Tits mean chick mass increased with mean vegetation height. Hill et 

al. (2004) then produced a predictive map of reproductive performance in Great Tits based on a 

LiDAR-derived woodland canopy height model and the statistical relation between mean canopy 

height and mean nestling body mass. 

 

Broughton et al. (2006) evaluated detailed territory maps of Marsh Tits (Poecile palustris) using 

airborne LiDAR data and found substantial differences between the vegetation structure within 
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Marsh tit territories and that of adjacent locations not occupied by the bird. In particular, Marsh 

Tits were found to occupy sites comprised of mature trees with a sub-canopy shrub layer and to 

avoid sites containing many small, young trees  

 

Goetz et al. (2007) derived canopy structure metrics including canopy height and the vertical 

distribution of canopy elements from LVIS data taken over temperate Maryland, USA, forests. They 

then assessed the suitability of using said metrics as predictors for bird species presence with 

reference to bird survey data collected at referenced grid locations. The vertical canopy distribution 

information was consistently found to be the strongest predictor of species richness. 

 

2.3.3 Establishing Correlations between LiDAR-Derived and Field-Based Estimates of 

Vegetation Structure 

 

Research in this field also concentrates on analysis between LiDAR-derived and field-based 

estimates of vegetation structure important to various species. Clawges et al. (2008) examined the 

relationship between vegetation structure indices calculated from LiDAR-derived vegetation 

heights and corresponding field-based measurements to establish the utility of LiDAR data in 

representing vegetation structure in a Pine (Pinus)/Aspen (Populus) forest in South Dakota, USA. In 

this study, an index of tree vegetation density estimated from LiDAR data was significantly 

correlated with two field-based indices. The tree vegetation density index had a higher correlation 

than a tree stem density index, perhaps because the former came closer to representing the 

vegetation volume associated with trees, which may correspond better to the number of LiDAR 

returns from all parts of the tree (not just the trunk). 

 

Hyde et al. (2005) and Hyde et al. (2006) also found a significant correlation between measures of 

vegetation structure derived from LiDAR, such as canopy height, canopy cover and biomass, and 
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on-the-ground field observations. These were then used in the creation of habitat maps to guide 

management of common forest species. This indicated that LiDAR-derived data could be used to 

replace field-derived vegetation data traditionally used to characterize avian habitat.   

 

Structural diversity is the most straightforward measurement that indicates the potential 

biodiversity and habitat suitability of a forest stand. Ozdemir and Donoghue (2013) assessed the 

relationship between tree height, DBH, crown length and crown width diversity measured in the 

field and LiDAR derived variables and texture measures generated from the point cloud and CHMs. 

Models constructed accounted for up to 85% of the variance of tree height diversity, 68% of the 

variance of DBH diversity and around half of the variance for crown shape diversity measures.  

Measurement of forest vertical structure and structural diversity is vital in many forest biodiversity 

studies and LiDAR datasets can be invaluable tools with which this can be measured.  

 

2.4 LiDAR Datasets Collected during Leaf-on and Leaf-off Conditions 

 

Sections 2.2 and 2.3 demonstrate the abundance of studies utilising LiDAR datasets to explore 

forest structure. Most studies tend to use leaf-on LiDAR datasets to assess forest biophysical 

parameters as during leaf-on canopy conditions one may expect a greater chance of the laser pulse 

being returned from the highest parts of the canopy due to the presence of occlusive leaves (Hill 

and Broughton, 2009). However, some studies have also identified advantages that leaf-off LiDAR 

datasets could provide in forested environments. The differences between variables derived from 

seasonally different LiDAR datasets will be explored in this section. 

 

The intensity data derived from LiDAR data are directly related to the spectral reflectance of the 

target material (Ahokas et al., 2006). Because deciduous species lose leaves during winter this 

directly affects their reflectance and can provide a more obvious distinction between coniferous 
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and deciduous species during winter months. Reitberger et al. (2008) found that when utilising the 

intensity and pulse width of full waveform LiDAR datasets to classify trees to deciduous or 

coniferous groups the best case classification accuracy for the leaf-on dataset was 85% but a 96% 

accuracy level was achieved using the leaf-off dataset. Kim et al. (2009) also found better species 

separation in the intensity data from a leaf-off LiDAR dataset as opposed to a leaf-on dataset. 

 

In deciduous woodland it is expected that laser pulse penetration will differ greatly between leaf-

on and –off canopy conditions with the possibility of increased penetration to lower canopy layers 

and the ground likely during leaf-off periods (Hill and Broughton, 2009). Hill and Broughton (2009) 

demonstrated that the integration of a leaf-off LiDAR dataset with a leaf-on made it possible to map 

the understorey layer in broad-leaf deciduous woodland to a high level of accuracy. It has also been 

suggested that despite the increased penetration in leaf-off conditions a significant portion of 

returns may still be reflected from the upper canopy layers of deciduous stands.  Brandtberg et al. 

(2003) found no significant underestimation of the true deciduous tree heights by the maximum 

laser-derived heights when utilising a leaf-off LiDAR dataset. This could be because leaf-off LiDAR 

datasets with increased numbers of ground returns are likely to produce more accurate DTMs and 

in turn could produce more accurate tree height estimations (Ørka et al., 2010). In coniferous 

stands, where the leaves are not lost from the trees in winter, penetration of the laser pulse through 

the upper canopy layers may not change but penetration through a decreased understorey to the 

ground is likely (Hill and Broughton, 2009).  

 

2.4.1 Investigating LiDAR Derived Forest Metrics from Leaf-on and Leaf-off LiDAR 

Datasets 

 

A selection of studies directly compare the ability of leaf-on and leaf-off LiDAR datasets to assess 

forest biophysical parameters. In the coastal Pacific Northwest Gatziolis et al. (2010) evaluated the 
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accuracy and precision of LiDAR derived estimates of tree height under both leaf-on and –off 

canopy conditions. With a study area comprised of both coniferous and deciduous species under 

varying degrees of management and spread over complex terrain and steep slopes, the LiDAR 

associated error in tree height estimation from both the leaf-on and leaf-off datasets were larger 

than that seen in most studies. The authors did note that the LiDAR error accounted for less of the 

total tree height whilst utilising the leaf-off dataset (LiDAR error exceeded 10% of tree height for 

55% of the trees the authors had precise measurements for and 38% of the plots distributed across 

the study area) as opposed to the leaf-on (LiDAR error exceeded 10% of tree height for 60% of the 

trees and 43% of the plots). 

 

In the North-eastern USA Wasser et al. (2013) compared leaf-on and leaf-off LiDAR estimates of 

canopy height and fractional canopy cover with plot measurements collected within riparian buffer 

zones with a diverse range of trees and vegetation. Mean height, coefficient of variation (CV) of 

LiDAR points and decile and quartile percentile height values were calculated from each dataset.  

Histograms illustrating the frequency distribution of laser pulse returns throughout the canopy 

were also constructed. CV describes the overall spread of returns throughout the canopy (a larger 

dispersion generating a larger CV) while percentile height values often show strong relationships to 

tree height. Canopy height, canopy base height, diameter at breast height (DBH), fractional canopy 

cover and species were collected from the eighty test plots in the field.  The overall dispersion of 

laser pulses throughout the canopy (CV) under leaf-off conditions was 6.9% greater than that found 

in the leaf-on canopies but varied depending on tree type. Observed differences between leaf-on 

and leaf-off CV values in conifer plots were small (difference of 1.1%) whereas largest differences 

between leaf-off and leaf-on CV values were observed in deciduous plots with a more open canopy 

(difference of 11.4%).  

 

When comparing the LiDAR derived metrics and field measurements it was found that the LiDAR 

percentile values estimated field measurements well in both leaf-off and leaf-on conditions but 
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again varied with vegetation type. Differences between leaf-on and -off were largest again in the 

open deciduous canopies where returns were triggered lower down in the canopy during leaf-off 

conditions. Despite the differences in the pulse distribution throughout the canopy there were large 

similarities in LiDAR top of the canopy percentile estimates under both canopy conditions within 

deciduous plots, in agreement with Brandtberg et al. (2003). This demonstrates the potential ability 

of LiDAR datasets to still produce returns from the very top of the canopy even under leaf-off 

conditions.  

 

A small collection of studies have touched on this subject in Europe. Whilst investigating the 

capability of small footprint airborne LiDAR to map canopy heights over complex topography 

Hollaus et al. (2006) also compared the products derived from a leaf-on and -off LiDAR dataset 

collected over their field sites in Vorarlberg, Austria. The study had two test areas covered by both 

flight campaigns, the first containing many deciduous trees and some coniferous. In this location 

there were considerably fewer ground hits under forest canopy in summer resulting in too few 

points with which to interpolate a DTM. The authors suggest that this is a result of the large 

numbers of deciduous trees in the study area. Additionally, it is mentioned that coniferous tree 

crowns are more transparent for infrared laser pulses in winter than in summer. When comparing 

the CSMs constructed for both LiDAR datasets the summer CSM was found to be consistently higher 

or roughly of same height as the winter CSM.  A second test site was dominated by coniferous trees 

and allowed the study of the penetration of the laser beam depending on seasonal conditions 

through a canopy that does not greatly differ between seasons. The penetration capability 

(described in this instance as the percentage of total LiDAR returns with height differences to the 

terrain surface less than 0.5m) for the winter first pulse data is 17% and those of the summer data 

13%. The authors summarise that for dense coniferous forests the penetration rate is very low and 

is 4% higher for winter than for summer conditions. 
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Working in broad-leaved, mixed wood and needle leaved forests in Europe Duong et al. (2008) 

compared and combined multiple tracks of large footprint full-waveform LiDAR data collected by 

the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) 

during two different epochs (February 2003 (leaf-off), September 2003 (leaf-on)). This was with the 

aim of determining the change in forest structure by seasonal influences. As the two datasets were 

obtained from repeated tracks many footprints from both datasets overlapped entirely or had 

some common topographic overlap. By comparing the shape of the returned waveform integrated 

across the test sites per dataset differences were observed in the height of median energy (a height 

measure of the median of the intensity in the returned waveform) over broad-leaved areas between 

the two epochs (a 148% change), much smaller than coniferous areas (36% change winter to 

summer). Ratios of ground return energy to canopy return energy also changed noticeably over 

time: 67% in broad-leaved, 62% in mixed-wood, and 47% in conifers. This study highlights the clear 

differences in LiDAR-derived structural metrics that can be obtained from LiDAR datasets collected 

during different seasons.  

 

A large proportion of studies considering the difference between leaf-on and –off LiDAR datasets 

have taken place in Scandinavian Forests. One of the most prominent is that of Næsset (2005) which 

analysed how canopy conditions from a leaf-on and leaf-off LiDAR dataset affected various laser 

derived canopy metrics and biophysical properties of forest stands within a forest inventory in 

Norway. In this study first and last returns were considered separately with percentiles of the 

canopy returns, maximum return height, mean return height and CV of return height created for 

each return type and each LiDAR dataset. These LiDAR derived metrics were used as independent 

variables in multiple regression where relationships were created between these and tree 

mensuration data collected in the field. These estimated regression models were then used to 

predict biophysical tree properties of interest in a further set of field plots not included in the 

training data so they could be independently validated. 
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The Næsset (2005) study found that in mixed forest the last return datasets were generally 

influenced more by the canopy conditions that the first return data and that canopy height 

measurements of the lower and intermediate parts of the canopy are more affected by canopy 

conditions than the maximum canopy heights. Additionally in agreement with Wasser et al. (2013) 

it seemed the CV of return height was significantly higher under leaf-off conditions, and the 

accuracy of estimated biophysical properties in mixed forest was the same or slightly improved 

under leaf-off conditions.  

 

These findings are echoed in Ørka et al. (2010), a similar study assessing the relative abilities of a 

leaf-on and –off datasets to assess biophysical parameters of a single tree in a forest reserve in 

south-eastern Norway. The authors found that the largest discrepancies in LiDAR return height 

between the two LiDAR datasets occurred in deciduous plots where, under leaf-off conditions, a 

larger proportion of last and single returns were reflected from the ground. The first returns 

seemed unaffected by the loss of leaves in deciduous plots as these were still being reflected from 

the same depth in both datasets. Furthermore, significantly more accurate tree species 

discrimination was obtained during the leaf-off conditions. The classification accuracies were in the 

order of 10 percentage points higher in overall accuracy. 

 

In Finnish managed boreal forests, Villikka et al. (2012) tested a leaf-on and –off LiDAR dataset in a 

forest inventory in which deciduous and coniferous trees needed to be separated.  They also 

investigated the appropriateness of mixing leaf-off and leaf-on data for the estimation of plot 

volumes of deciduous and coniferous trees. Using a similar workflow to both Næsset (2005) and 

Ørka et al. (2010) separate height distributions were calculated for the first and last pulse data for 

each plot with various height based LiDAR metrics calculated. Assessing the linear regressions that 

the authors created to estimate plot volume it was found that the leaf-off estimates were always 

more accurate than leaf-on estimates in coniferous-dominated and deciduous-dominated sample 

plots. The authors conclude that the leaf-off regression models applied to leaf-on data caused 
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systematic overestimation and, correspondingly, the leaf-on models applied to leaf-off data caused 

underestimation. When analysing leaf-on and –off affinity for classifying a plot as coniferous or 

deciduous the leaf-off dataset generally provided considerably more accurate estimates than leaf-

on data. This was still the case even after the leaf-on LiDAR dataset had been combined with 

features from aerial imagery. Especially at lower heights, the distributions between coniferous and 

deciduous plots differ considerably in leaf-off data. This tendency cannot be seen in the case of 

leaf-on data. It can also be seen that the distributions of pine and spruce follow each other quite 

closely and do not differ between leaf-on and leaf-off data 

 

There is a wealth of evidence to suggest that LiDAR datasets penetrate through the canopy 

differently under leaf-on and –off canopy conditions. The difference is greater in deciduous and 

mixed stands (Næsset, 2005; Ørka et al., 2010; Villikka et al., 2012; Wasser et al., 2013) but 

differences in penetration have also been witnessed in some coniferous stands (Hollaus et al., 2006; 

Duong et al., 2008). Last and single echoes seem more affected by canopy conditions than first 

echoes suggesting that canopy conditions have a lesser influence on maximum height obtained 

than on the distribution of pulses through the canopy. Increased penetration to the ground in 

winter conditions has been shown to create more accurate DTM models (Hollaus et al., 2006) and 

studies indicated that data acquisition in leaf-off conditions can be a means to improve the accuracy 

of biophysical properties estimated and predicted in a mixed or deciduous forest (Ørka et al., 2010; 

Næsset, 2005; Wasser et al., 2013; Gatziolis et al., 2010). Datasets taken under different canopy 

conditions appear to be so different in cases that their combination could introduce bias and lower 

the accuracy of species estimations (Villikka et al., 2012).  Considering the large differences in 

biophysical parameters generated from seasonally different LiDAR datasets it would be of interest 

to assess the effect specifically on tree size diversity estimations of forest stands. Additionally, a 

large proportion of these studies have taken place in more managed Scandinavian forests with 

lower levels of species diversity or forested areas markedly different to those found in the UK; It 
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would be advantageous to see if significant differences between leaf-on and –off datasets would 

still be present in UK forests.  

 

It is important to note that though the studies in this section largely come to similar conclusions 

after comparing and combining multi-temporal LiDAR datasets the very nature of doing so can 

overlook undesired effects which can confound the assessment of canopy condition on LiDAR 

estimation. Tree growth, systems configurations and positional error between surveys should all be 

assessed in detail when combination or comparison of LiDAR datasets is taking place. These issues 

are covered in detail in the next section.  

 

2.4.2 Difficulties of Comparing and Combining LiDAR Datasets 

 

Differences in LiDAR return distributions obtained using different airborne LiDAR sensors are well 

documented in the literature (Hopkinson, 2007; Næsset, 2005; Næsset et al., 2006; Chasmer et al., 

2006). In addition, differences in flight altitude and speed during survey can result in varying point 

density and canopy penetration between surveys and can confound the analysis of the effects of 

changing canopy conditions alone.  

 

Wasser et al. (2013) utilised two different LiDAR datasets collected with separate scanning 

configurations. To account for the different point densities between the leaf-on and –off LiDAR 

datasets due to the different pulse repetition frequencies, flying height and number of returns 

collected per pulse the leaf-on point cloud was thinned to be comparable to the lower resolution, 

leaf-off LiDAR dataset. This reduced the effect of the varying point densities between the two 

surveys had on LiDAR estimated biophysical parameters. To account for the remaining influence of 

differing LiDAR flight parameterization between datasets, Wasser et al. (2013) compared leaf-off 

and leaf-on LiDAR derived metrics generated from conifer dominated plots where year-round 
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needle retention somewhat negated the influence of changing canopy condition. Differences 

attributed to LiDAR flight configuration detected within these plots were assumed to propagate to 

all other forest plots. In this instance the authors found that sensor and flight altitude effects 

accounted for small differences (less than 0.5 m) in top of the canopy penetration. It is likely the 

effects were more pronounced within and towards the bottom of the canopy. By understanding 

the influence of sensor and flight altitude effects the authors could then better assess to what 

extent variability in LiDAR biophysical parameter estimations between datasets were due to 

changing canopy conditions. 

 

Though Næsset (2005) utilised the same instrument in both leaf-on and –off LiDAR surveys, 

between these surveys the scanner underwent an upgrade affecting the pulse energy and peak 

power. Components associated with signal reception were also replaced or adjusted and altitudes 

between the two survey flights were also very slightly different. The effects of the increased flying 

height when capturing the leaf-on dataset was corrected based on findings from Næsset (2004) and 

used a linear relationship between change in flight altitude and the effects on the laser metrics. It 

is accepted by the authors that this assumption had not been confirmed with further study so there 

lies the potential for inaccuracies with this method. When again comparing datasets within the 

coniferous forest plots, the first return measurements of canopy height tended to be unaffected or 

shifted somewhat upwards by system upgrade and ground penetration was reduced, whereas the 

last return data indicated unaffected or downwards shifted canopy heights and increased 

penetration. Though systematic shifts in canopy heights and canopy penetration were revealed 

these accounted for less than 20–30% of the observed differences between the two acquisitions 

for most of the variables. Overall the effects of canopy conditions on the laser-derived height and 

canopy metrics seem to be of a magnitude on an order of 10–50 times the effects of flying altitude. 

 

In research by Ørka et al. (2010), which utilised leaf-on and leaf-off data acquired using the same 

sensor and identical parameters, and an additional leaf-on dataset acquired using a different  
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sensor, the authors found that estimations of individual tree properties were fairly accurate in all 

acquisitions with RMSE ranging from 0.76 to 0.84 m for tree height and from 3.10 to 3.17 cm for 

stem diameter. This was only after all datasets had been co-registered so that the distributions 

matched spatially. 

 

Co-registration of multi-temporal LiDAR datasets is incredibly important in comparative studies. 

Shifts in x, y and z can be due to LiDAR system errors (originating in the laser instrument, IMU or 

GOS), survey characteristics (point density, flight altitude, scan angle) and interpolation errors. 

Generally little information is included in the studies covered in this section as to how each dataset 

was co-registered if at all. There are a few exceptions, for example Næsset (2005) co-registered all 

returns from each dataset utilised in the study over a public road where systematic shifts by 

datasets away from a DTM created from the leaf-on data were clearly identified on the flat surface 

and corrected.  

 

Authors often utilise a DTM created from one survey to normalise the heights of other surveys.  

Villikka et al. (2012) utilised the DTM created from leaf-on LiDAR data to calculate ‘height above 

ground’ for both the leaf-on and -off datasets so that returns from both datasets were registered 

to the same DTM. Wasser et al. (2013) utilised only the leaf-off ground returns to create a DTM that 

was used to create the CHM for both leaf-on and -off datasets. This method somewhat ignores any 

differences in x, y and z that may have been present between subsequent surveys due to systematic 

shifts.  

 

Hill and Broughton (2009) were also faced with difficulties of co-registration of the leaf-on and –off 

LiDAR datasets used in their study as their point distributions did not match spatially. To overcome 

this both datasets were interpolated into Digital Surface Models (DSMs). A DTM was created from 

the leaf-off last returns and the subtraction per grid cell of the DTM from each of the DSMs created 

normalised DSMs where height was expressed in metres above ground level. The accuracy of the 
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DTM was assessed using terrain measurements recorded throughout the study site with an 

electronic total station. Again, though the authors assess the accuracy of the DTM there is no 

correction of any potential spatial differences between the two datasets. Any spatial differences 

between the datasets will have propagated through to the CHM, DSMs or height normalised LiDAR 

generated using the DTM from a different survey. This could introduce underestimates or 

overestimates of LiDAR point height above ground and therefore effect estimates or pulse 

penetration or canopy height estimation.  

 

A further complication that could influence LiDAR derived heights between surveys is the growth 

or disturbance of the trees and vegetation. To account for this factor field sites could be visited to 

ensure no managed felling or natural tree fall had taken place between data collection and survey 

flights (Næsset, 2005). Additionally, some authors have applied corrections derived from tree 

growth models to the LiDAR data from subsequent surveys to ensure that datasets are comparable 

through time (Wasser et al., 2013; Næsset, 2005). Næsset (2005) applied different corrections to 

the first and last returns in subsequent LiDAR surveys according to the effects of growth on the 

laser-derived metrics observed by Næsset and Gobakken (2005) using the same sensor (ALTM 

1210). 

  

2.5 Literature Review Conclusions and Research Premise 

 

There is a body of evidence linking biodiversity to selected forest structure metrics. It is clear that 

stand variation in tree height, diameter, distribution of biomass, crown characteristics and canopy 

cover are all important considerations in biodiversity conservation in forested landscapes (Hall et 

al., 2011) and can be used as an indicator of overall species diversity (Kimmins, 1997). 

 

http://www.sciencedirect.com/science/article/pii/S0034425705002336?np=y#bib30
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As an alternative to costly field collection of such variables airborne LiDAR survey holds an 

advantage. Vegetation canopies present a surface to the laser which is porous to energy allowing 

realisation of the vertical canopy structure (Lefsky et al., 2002; Chasmer et al., 2006). Like other 

remote sensing techniques LiDAR provides a means of data collection in areas of restricted or 

limited access and can generate high density sampling data rapidly and more efficiently than field 

methods, particularly at landscape levels (Lefsky et al., 2002; Bradbury et al., 2005). The three 

dimensional representations of vegetation structure provided by LiDAR can play an important role 

in ascertaining microclimate conditions, availability of niche space and habitat quality (Brokaw and 

Lent, 1999) and can therefore be a critical component of effective forest ecosystem management 

(Lefsky et al., 2002; Proulx and Parrott, 2009).  

 

There have been many studies investigating the relationships between LiDAR derived structure 

metrics and those collected in the field though fewer studies are concerned with assessing tree size 

diversity metrics. There has been very little focused research into the effect of the time of LiDAR 

data collection, be it during the summer leaf-on period or winter leaf-off period, specifically on 

LiDAR derived forest structure diversity metrics. The studies covered in section 2.4 demonstrate 

that LiDAR datasets collected under differing canopy conditions can have a significant effect on the 

derived forest biophysical parameters. The general consensus is that LiDAR datasets collected 

during leaf-off canopy conditions are shown to have the same and higher levels of accuracy when 

estimating forest structure metrics compared to leaf-on LiDAR datasets. However the most focused 

studies investigating this topic are based in managed Scandinavian forests with relatively low levels 

of species diversity. Many of the remaining studies investigating leaf-on and -off LiDAR datasets are 

involved with sites with vegetation conditions that are very different to those found in the UK: 

Though Hill and Broughton (2009) utilised LiDAR datasets collected under different canopy 

conditions to map understorey, no studies directly comparing LiDAR derived tree size diversity 

metrics under leaf-on and off conditions have taken place in forests in the UK. It is uncertain 

whether these observations would hold in the UK forest environment.  
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Undertaking analysis of the structural diversity of a range forest stands applicable to UK species 

composition and management techniques would be advantageous to UK forestry management in 

terms of biodiversity assessment. Additionally, working at the stand level is at a scale which forest 

management bodies like the Forestry Commission make conservation priority decisions and so is 

ideal to provide meaningful analysis that can be practicable in management processes (Townsend 

Peterson and Kluza, 2003). It may also be of use to other airborne LiDAR system users to assess the 

relative accuracy of LiDAR derived tree size diversity metrics obtained during any season and 

combined between seasons. Additionally a robust method of co-registration and standardisation 

between multi-temporal datasets will allow conclusions to be drawn with increased confidence.  
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3. RESEARCH AIM AND OBJECTIVES 

 

The aim of this research is to assess and compare the accuracy of forest structural diversity metrics 

calculated from a purposely wide range of forest stands and LiDAR surveys collected under leaf-on 

and leaf-off conditions. 

 

Key research questions: 

1. How does the seasonal time of capture impact upon the LiDAR point distributions and 

structural diversity metrics generated from the LiDAR point cloud? 

2. What is the relative accuracy of models describing tree size diversity metrics generated 

from leaf-on LiDAR derived diversity metrics, leaf-off LiDAR derived diversity metrics and 

models generated from a mix of the two? 

3. Can this tell us anything about when is best to undertake airborne LiDAR survey when 

modelling forest structure diversity and assessing biodiversity? 

 

In answering these questions this project will attempt to: 

1. Co-register the leaf-on and leaf-off LiDAR datasets sufficiently to remove any systematic 

bias between surveys; 

2. Qualitatively and quantitatively compare forest structure and structural diversity metrics 

calculated from leaf-off and –on LiDAR datasets to one another to better understand the 

potential influence of growth and differing survey characteristics between epochs and 

better isolate the influence of seasonal capture conditions; 

3. Assess the relative capability of leaf-on and -off LiDAR derived structural diversity metrics 

to describe true structural diversity through assessment against field data; 

4. Assess what the outcomes mean for LiDAR survey planning for forest biodiversity 

investigations in the UK.  
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4 MATERIALS AND METHODS  

 

4.1 Data Collection in the Field 

 

4.1.1 Field Site 

 

The field site was chosen in this study aims to cover as full a range of structural variability as 

possible. This is so that the results obtained and techniques used can be applied beyond to a wide 

range of forest types and landscapes throughout the UK. Chopwell Woodland Park, in the North 

East of England, is one such forest which fits this requirement. It is mixed coniferous and deciduous 

woodland of 360 hectares (3.4 km2) located on the northern slopes of the Derwent Valley, 10 miles 

southwest of Gateshead in the North East of England (see Figure 3).  

 

 

Figure 3. Study site location (EDINA, 2013) at latitude -54.916193° longitude -1.791604° 

 

The terrain in Chopwell Woodland Park has minor undulations and an elevation range between 44 

to 222m above sea level, most of which is associated with an escarpment leading to the river 

Derwent. It is classified as an Ancient Woodland site by the UK Forestry Commission (2009), a 
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designation reserved for only 2% of the country’s forested area and one of the rarest habitats in 

the UK.  

 

Initially consisting of a mix of deciduous trees, mainly Oak (Quercus) and Hazel (Corylus), the wood 

has undergone many changes since its original ‘Wildwood’ state. After timber from the wood was 

felled during the 16th and 17th centuries for shipbuilding and bridge repairs it was replanted with 

Larch (Larix), Oak and Elm (Ulmus) and large areas of Scots Pine (Pinus sylvestris). When the Forestry 

Commission took over management of the wood in 1923 further replanting of Pine, Fir (Abies), 

Spruce (Picea) and Larch took place.  In 2005 the wood was designated under the Plantation on 

Ancient Woodland Site (PAWS) scheme which prevents further planting of any trees not native to 

the area. Therefore, despite its varied planting history, the current forest design plan for Chopwell 

Wood is based on natural regeneration of species or planting of native species (Searle, 2000). As a 

result, the Forestry Commission are currently removing areas of conifer to help the forest return to 

its original cover of native trees, whilst thinning forest crops (removing, for example, one in every 

five trees) and occasionally harvesting full areas. Because of this the range of tree species, 

plantation years and silvicultural practices there is a wide variety of structural characteristics and 

stand types (pure conifer, mixed conifer, pure deciduous, mixed deciduous, mixed deciduous and 

conifer, all of varying age class and levels of spacing (Forestry-Commission, 2009)). This variation 

within the site provides an excellent environment to assess the ability of multi-epoch LiDAR 

datasets to calculate variables surrounding forest structural diversity. 

 

Aside from the structural suitability of Chopwell Woodland Park to this study, the forest is also of 

interest to National Grid UK, an electricity transmission network operator and the system operator 

for England and Wales, as its extent encompasses the locations of two electricity transmission line 

corridors. Aerial LiDAR surveys are particularly suited to visualisation of the transmission line towers 

and cables rarely detected using other remote sensing methods.  It is for this reason that Chopwell 

Woodland Park has two airborne LiDAR surveys flown over it, the original aim of which was to cover 
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the transmission lines running through the forest. The requirements for both surveys ensure that 

shared coverage of at least parts of the forest that could be used to assess structural characteristics 

is provided. 

 

4.1.1.1 Existing Sample Plots 

 

In this study measurements collected in the field provide a dataset that can be used to assess the 

accuracy of LiDAR derived forest structure metrics. These metrics were to be calculated from a leaf-

on and leaf-off aerial LiDAR dataset and so coverage of both of these would need to extend over all 

of the sample plots used. Measurements were collected from 30 individual sample plots throughout 

the forest. Nineteen of these were provided by previous research carried out by Ozdemir and 

Donoghue (2013) who utilised them to investigate the relationships between the plot-level tree size 

diversity and diversity variables derived from airborne LiDAR. Though the 2013 study provides 

measurements from 27 sample plots within Chopwell Woodland Park, only nineteen of these were 

fully covered by both the leaf-on and the leaf-off LiDAR datasets analysed in this research (see 

Figure 4 page 33). 

 

Ozdemir and Donoghue (2013) undertook a purposive sampling strategy when selecting sample 

plots based on the criteria of age, percentage canopy cover, tree species and species diversity. As 

the number of sample plots available from the 2013 study was limited, and amounted to only a 

subset of a former full dataset, there were concerns that the structural diversity within the dataset 

was insufficient to provide a comprehensive assessment of the research aim. To investigate this a 

simple assessment of species composition, number of tree stems per square metre and tree height 

statistics was undertaken (see Table 1 page 34). Metrics related to tree height were chosen as 

representations of structure within each plot as tree height is easy to conceptualise and in itself is 

a function of other measured variables such as DBH (Lim et al., 2003). The Coefficient of L Variation 
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(L-CV) of tree height was chosen as a representation of structural heterogeneity. Coefficient of 

Variation (CV), analogous to the L-CV has been shown to be a good indicator of structural 

complexity (Bolton et al., 2013). L-CV, identical to the Gini Coefficient utilised in many studies to 

convey forest structure diversity (Peck et al., 2014; Lei et al., 2009) is more robust to outliers and 

reasonably unbiased  in small samples . This is important as the diversity of species, age and 

management level of the field sites in Chopwell Woodland Park mean that Tree Height outliers, and 

smaller sample sizes are present which would adversely affect many other descriptive statistics. In 

this instance an L-CV value of 1 would indicate the highest heterogeneity and 0 would indicate 

complete homogeneity. 

 

 

Figure 4. Orthomosaic captured July 2009 during the first LiDAR acquisition. LiDAR data from the 2011 

survey is only available within the blue boundaries whereas LiDAR data from the 2009 survey is available 

across the entire forest. Yellow circles represent all Chopwell Woodland field data sample plots available 

from the Ozdemir and Donoghue (2013) study. 
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Table 1. Information surrounding each of the 19 plots available from Ozdemir and Donoghue (2013). 

Plantation year was provided by the Forestry Commission sub-compartment database (Forestry-Commission, 

2013). Green boxes represent a dominance of either evergreen or deciduous (an assemblage above 90%) and 

yellow boxes demonstrate a mix. 

 

Table 1 shows that there are at least three examples of evergreen coniferous dominated plots, 

deciduous dominated plots and plots with an even mix of the two within the pre-existing field data. 

Each of these assemblages are useful in different ways: Field data collected from purely evergreen 

coniferous stands can be used in conjunction with LiDAR derived metrics from multiple datasets to 

identify differences due to possible changing understorey conditions, survey characteristics or 

growth as one would expect the foliage mass between surveys to be similar. Analysis of deciduous 

dominated plots could highlight the differences in LiDAR derived metrics between datasets that are 

     Tree Height 

Plot Plantation Year Deciduous Evergreen Trees Per 
Hectare 

Mean Range L-CV 

1 1908 75 25 525 19.84 34.4 0.276 

2 1963 69 31 438 17.2 25.5 0.201 

3 1985 100 0 1275 17.38 20.6 0.126 

4 1980 46 54 1400 14.61 22 0.175 

5 1954 100 0 275 22.88 7.2 0.048 

6 1949 95 5 525 19.12 22.8 0.155 

7 1944 100 0 567 19.85 12.2 0.088 

8 1924 100 0 1000 21.8 11.8 0.079 

9 1943 100 0 375 24.83 4.3 0.022 

10 1943 96 4 525 18.47 18.6 0.192 

11 1920 3 97 750 19.24 11.9 0.061 

12 1984 0 100 2917 18.53 19 0.112 

13 1908 67 33 875 13.48 18.8 0.215 

14 1923 100 0 900 16.66 17.1 0.196 

15 1969 23 77 475 20.26 13 0.076 

16 1954 100 0 325 22.29 14.6 0.103 

17 1947 88 12 650 17.21 18.5 0.168 

18 1963 6 94 550 19.36 15.7 0.083 

19 1943 100 0 725 14.8 15.3 0.172 
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likely attributed to both changing understorey and overstorey seasonal conditions. Plots which are 

a mixture of the two may be useful as an intermediate comparison. 

 

Figure 5 highlights that the range of tree height diversity (THdiv) in the existing sample plots is 

relatively small (0.022-0.276) with only a small number of plots at the higher, or more diverse, end. 

Therefore, when choosing additional field sample plots to improve the current selection an aim to 

increase this range would increase the structural diversity available to study. As finding incredibly 

low diversity of tree height in complex natural systems is rare, even when they are highly managed, 

additional sample plots were chosen to increase the L-CV of tree height in order to enhance the 

structural heterogeneity of the field dataset.  

 

 

Figure 5. Histogram showing L-CV of Tree Height measurements from the 19 Chopwell Woodland plots 

available from previous research (Ozdemir and Donoghue, 2013) 

 

To identify ways this range could be increased regression analysis was undertaken using potential 

independent variables available from the field data or the Forestry Commissions GIS sub-

compartment dataset (Forestry-Commission, 2013) (which provides density of tree stems, total 

number of discrete species per plot, plantation year and percentage of deciduous trees among 

coupe characteristics) against L-CV as the dependant variable. The only independent variable which 
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significantly (95% significance) described around 30% of the tree height variation was the total 

number of discrete tree species in each plot. Other potential predictor variables showed some 

relationships to L-CV but they were weak and below any confidence levels. 

 

4.1.1.2 Delineating Additional Sample Sites 

 

Through the statistical analyses undertaken in section 4.1.1.1 it was endeavoured that additional 

plots should display high species diversity in order to achieve higher L-CV of tree height and 

therefore structural diversity. In addition, currently underrepresented species in the field sites, such 

as Oak and Birch, widely present in woodland throughout the UK, should be sought to ensure a 

dataset as representative of UK woodland as possible.  As the majority of existing plots were 

dominated by deciduous species it was endeavoured that as many evergreen species dominated 

sites as possible would also be sought. 

 

Potential new plots were isolated with the aforementioned characteristics in mind using the 

Forestry Commission GIS sub-compartment dataset (Forestry-Commission, 2013) providing 

information on plantation year, primary secondary and tertiary species present, habitat and their 

relative abundance within each coupe.  Reconnaissance visits to the forest before additional data 

collection took place enabled any incongruities between the forest itself and the Forestry 

Commission database to be spotted. Chopwell Woodland Park is a working forest with various 

stands thinned each year. These initial visits were also used to identify these areas of recent 

thinning. It is important to note at this point that the potential of thinning at the pre-existing field 

sites between the field data collection and the two LiDAR survey dates was ruled out through 

correspondence with the Forestry Commission. Thinning after LiDAR data collection would cause 

significant forest structure change preventing the use of said areas as ground control plots. Out of 

an initial nineteen candidate areas that were covered by both LiDAR datasets and displayed 
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favourable characteristics, eleven sites were deemed viable after many sites displayed evidence for 

recent thinning. The careful consideration and addition of these eleven sample sites did indeed 

increase the range of L-CV and therefore the range of THdiv from 0.254 to 0.367 (see Figure 6). 

 

 

Figure 6. L-CV of tree height before (a) after (b) addition of new sample sites. 

 

4.1.2 Field Data Collection 

 

Data collected for sites 1-19 took place during May, June and July 2011 and more recent data 

collection for sites 20-30 took place during February and March 2013. Sample plots were of a 

circular shape, the centre of which was referenced using a hand-held GPS (the accuracy of which is 

a) 

b) 
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addressed later in this chapter). As the plots delineate hypothetical boundaries it is likely that trees 

from outside of the perimeter may overhang the boundary or tree stems within the plot may have 

portions of their crowns outside (Frazer et al., 2011).  To compensate for this effect, and any error 

associated with the handheld GPS, approximately 5m of forest exhibiting a similar species 

composition and structural characteristics surrounded every plot to act as a buffer. 

 

Typically Forest management bodies such as the Forestry Commission use plot sizes of 0.01 to 0.05 

hectares (100 to 500 square metres) as a representative sample of trees within a stand depending 

on tree spacing (Mackie and Matthews, 2008). In this study three different plot sizes (100, 400 and 

1256m2) were adopted, some larger than sizes used by the Forestry Commission to ensure a very 

detailed description of each stand. The choice of plot size was, like methods adopted by the Forestry 

Commission, based on the tree spacing and homogeneity of species and age. Particularly densely 

planted homogenous age and species stands were surveyed using the smallest plot size as this was 

time efficient and would still provide an adequate representation of the structure and species in 

the stand. Gobakken and Næsset (2009) found that structural metrics calculated from airborne 

LiDAR data are less sensitive to variations in plot size and GPS error in dense homogenous stands 

than complex and heterogeneous stands.  The largest plot size was used when surveying stands 

with particularly large tree spacing which were generally more species and structurally diverse. In 

these instances using the conventional smaller plot sizes resulted in small tree counts with a species 

mix not completely representative of the larger stand so an increased plot size was chosen. Larger 

plot sizes have been found to exhibit greater spatial overlap between ground-reference and LiDAR 

datasets for any given GPS error. Additionally Hinsley et al. (2009) report that the standard 

deviation (SD) of differences between metrics calculated using incorrect plot positions and ground-

truth positions were smaller for larger field plots.  

 

The field data collection process follows that used by Ozdemir and Donoghue (2013) to ensure 

conformity with existing data and occurred as follows: At each site four biophysical tree 
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characteristics were obtained for each tree (DBH ≥ 8): DBH, Tree Height, Crown Length, and Crown 

Width. The DBH of each tree was measured using a diameter tape at 1.3m above the ground 

surface. When the tree resided on a slope DBH was measured from the uphill side looking downhill 

to ensure conformity throughout the data, though slopes were uncommon and usually very gentle.  

 

The height of each tree was ascertained through the use of a Vertex-III ultrasonic hypsometer, 

widely used for forest mensuration applications. The handheld device works using ultrasonic 

communication with an associated T3 transponder unit. The transponder unit was placed at a 

height 1.3m on the trunk of a tree and then the vertex was used to ascertain tree height. Whilst 

standing in a position where both the transponder and the very top of the tree are visible, the 

Vertex can be used to measure the distance and angles of inclination between the user and the 

transponder and treetop using ultrasound and an embedded digital inclinometer. The system can 

correct the measured height to include the 1.3m the transponder has been placed at. This process 

calculates the height of any tree to the nearest 10cm (Božić et al., 2005). The Vertex was also used 

to collect crown length and crown width. Crown length describes the height from the top of the 

tree to the lowest live branch forming part of the canopy and crown. The crown width was 

calculated by measuring the length of two orthogonal axes of the tree crown (the diameter of the 

maximum axis and the axis at 90°) and taking an average. 

 

Before any use of the Vertex, and intermittently throughout use, the instrument was calibrated as 

changes in humidity, air pressure, and temperature have a distorting effect of the range and 

extension of the ultrasound waves (around 2cm per 1°C). As these atmospheric conditions change 

regularly, regular calibration minimises the detrimental effect (Božić et al., 2005). 
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4.1.3 Resultant Field Metrics 

 

From each of the allometric measurements collected in the field (tree height, DBH, crown length 

and crown width) the L-CV was calculated as a representation of diversity. The variables shown in 

Table 2 were also calculated. 

 

Trees Per Hectare The number of trees per hectare in each plot –from the field data. 

Tree Species 

Number 

The discrete number of species -from the field data. 

Percentage of 

Deciduous Trees 

The relative percentage of deciduous trees per plot - calculated from the 

field data. 

Plot Age An indicator of the average age of trees in each plot - inferred using the 

Forestry Commissions sub-compartmental database (Forestry Commission, 

2009) which, though generalised over large areas, gives an indication of the 

planting year in each stand. 

Table 2. Summaries of secondary field variables 

 

These secondary variables were obtained so that, alongside the primary field diversity metrics, their 

relative influence on the LiDAR derived structure diversity metrics could be assessed. Table 3 shows 

correlations between all field variables and as expected variables such as DBH diversity (DBHdiv), 

Tree Height diversity (THdiv), Crown Length diversity (CLdiv) and Crown Width diversity (CWdiv) are 

highly correlated. On the other hand, the secondary variables are generally less correlated with one 

another. 

 

  n nsp %D age THdiv DBHdiv CLdiv 

Trees per Hectare n 1       

Tree Species Number nsp -0.29 1      

% Deciduous %D -0.27 0.15 1     

Plot Age age -0.36* 0.03 0.03 1    

Tree Height Diversity THdiv -0.13 0.39* 0.23 0.28 1   

DBH Diversity DBHdiv -0.02 0.35 0.11 0.33 0.92** 1  

Crown Length Diversity CLdiv 0.18 0.05 0.02 0.30 0.75** 0.80** 1 

Crown Width Diversity CWdiv 0.06 0.07 0.08 0.32 0.60** 0.72** 0.74** 

Table 3.  The Pearson’s correlation of all field variables. *=statistically significant at the 95% CI **=statistically 

significant at the 99% CI. 
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4.2  LiDAR data 

 

4.2.1. LiDAR Data Acquisition 

 

As shown in Table 4 the 2009 dataset was collected by Network Mapping Ltd during the summer 

leaf-on period for deciduous trees. Trees would have been under full leaf at the time with 

understorey vegetation close to its maximum growth. The 2011 dataset was collected by the 

National Environmental Research Council (NERC) Airborne Research Facility (ARSF) with a sensor 

mounted upon Dornier 228-101 NERC research aircraft in conditions where the understorey was 

advanced but leaves had not begun bud burst.  

 

 Leaf-on LiDAR Survey Leaf-off LiDAR Survey 

Acquisition date 18th-19th July 2009 23rd March 2011 

System Optech ALTM 3100EA Leica ALS50-II 

Platform Helicopter Fixed wing Plane 

Laser Type Discrete Pulse Discrete Pulse 

Beam Deflection Oscillating Mirror Oscillating Mirror 

Wavelength 1064 1064 

Flying Height  300m a.g.l. 800m a.g.l. 

Pulse Rate (kHz) 100 87 

Point Density ~25ppm² ~60ppm² 

Returns up to four first and last 

Survey Characteristics wide area two multiple pass corridors 

Pulse discrimination 
distance 

2.14m 2.8m 

Pulse discrimination 
method 

Constant fraction 
discriminator 

Constant fraction 
discriminator 

Table 4. A summary of the two LiDAR surveys analysed in this research. A.g.l. stands for above ground level 

and ppm² stands for points per square metre. 

 

4.2.2 Pre-Processing of the LiDAR Datasets 

 

The 2009 airborne LiDAR data were pre-processed by Network Mapping Ltd. GPS and IMU data 

were processed through Applanix POSPac 5.0 under the loosely coupled GNSS mode using 
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information from two ground-based stations. Optech’s Dashmap software was used to process the 

trajectory and range information into a georeferenced point cloud in ODN (Ordnance Datum 

Newlyn) and the British National Grid projection. As shown in Table 4 (page 41) this was a wide area 

survey and coverage of the whole of Chopwell Woodland Park and past its boundaries was 

obtained.  

 

The 2011 airborne LiDAR data were delivered as ASCII files containing the x, y, z coordinates of all 

first and last returns in the Universal Transverse Mercator (UTM) zone 36-North projection and 

WGS84 datum. These were transformed to British National Grid projection and Ordnance Datum 

Newlyn to match the 2009 survey. As shown in Table 4 page 41, in contrast to the 2009 survey, this 

flight consisted of multiple passes over transmission line corridors. This provided two survey 

corridors around 300m in width centred along the power lines but capturing the surrounding forest, 

resulting in over 60ppm².  

 

It is important to note that though the NERC ARSF provided some initial quality control observations 

with regards to the 2011 leaf-off LiDAR survey (discussed in section 4.3.2) this dataset was not 

corrected for any geometric distortions. On the other hand, Network Mapping Ltd assessed the 

absolute accuracy of the 2009 dataset using 85 ground truth points and removed a 6cm systematic 

bias from the point cloud.  

 

4.2.3 Initial Assessment of the LiDAR Datasets 

 

There are some notable differences between the two datasets (see Table 4 page 41) such as the 

height of the surveys, the point density achieved, the pulse discrimination distance and the return 

numbers per pulse. As multiple returns were collected during the 2009 survey, only first and last 

returns were used during analysis in this research for the same reason as vertical forest structure 
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could be realised in more detail with multiple LiDAR returns making the derived metrics less directly 

comparable. 

 

The use of only the first and last returns from each survey will also have reduced the effect of the 

different pulse discrimination distances between the two LiDAR sensors. This discrimination 

distance refers to the resolution within which the sensor can identify individual returns from the 

received waveform. The presence of this in each sensor means if there are targets distributed at 

distances less than the range with which the sensors in this study can discriminate returns in the 

LiDAR’s ‘line of sight’, then these targets can be missed (Ussyshkin and Theriault, 2011). Situations 

such as this will most likely be present in the complex vertical distributions of branches and foliage 

natural forest systems are comprised of.  The difference of around 65cm could have resulted in 

differing levels of vertical detail between surveys, but as mentioned it is thought the effect is 

reduced by only using the first and last returns. This might be seen as an unnecessary loss of 

potential vertical detail from the study, however in the authors’ opinion the ability to more directly 

compare the two LiDAR datasets is important, and the very high point densities of the surveys 

potentially negates any detail lost. Within Chopwell Woodland Park the stands with the highest tree 

densities are coniferous (Forestry-Commission, 2013), which, due to the nature of their foliage and 

thin conical shape, are expected to still provide enough penetration of the laser at high point 

densities so that first returns are collected from the lower canopy layers. Deciduous stands with 

more occlusive leaves tend to be widely spaced within the wood, providing a similar expectation of 

returns from the lower layers. 

 

There is also a large discrepancy between survey point densities due to the nature of each survey, 

one being a wide area and one confined to two corridors flown multiple times. This resulted in the 

2009 leaf-on wide area dataset having only 50% overlap between neighbouring flight lines but the 

2011 leaf-off dataset having almost 100% overlap of four flight lines in both of the captured 
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corridors. This issue is analysed in more detail and rectified during section 4.3 LiDAR Post-

Processing.  

 

The differences in flying height between surveys will affect the of the laser footprint on the ground. 

Differences in footprint size between datasets can manifest in differing success of laser pulses to 

hit the apices of trees or achieve a high penetration rate through the forest canopy (Wulder and 

Franklin, 2003). Despite this, studies have not found significant differences in canopy structure 

metrics between flying heights (and resultant footprint sizes) where flying heights differ at the scale 

seen in this study (Yu et al., 2004a; Persson et al., 2002; Takahashi et al., 2010). Studies where data 

is compared at higher altitudes are more variable but are usually also under the influence of 

differing point densities (Yu et al., 2004a; Persson et al., 2002), a characteristic which is made 

comparable in this study and documented in section 4.3 LiDAR Post-Processing. 

 

Another main difference is the time between LiDAR surveys likely resulting in vegetation growth. If 

we take for example the species Sitka Spruce (Picea sitchensis), grown commercially for timber due 

to its’ high yield volumes in a comparatively short time, it often has a yield class of 14 (producing 

14 cubic metres per hectare per year (Forestry-Commission, 2015)). Based on Forestry Commission 

growth models of Sitka Spruce between the ages of 20-45 it is possible that this species alone could 

have increased in height by 0.54-1.08m in the time between the two LiDAR surveys (approximately 

one and a half years) (Jenkins, 2009).  These growth rates are heavily dependent on management 

practises and tree age, neither of which can be specified to an acceptable level in this research to 

retrieve an accurate prediction. In terms of tree growth across all sites between LiDAR surveys the 

growth of coniferous species such as Douglas Fir (Pseudotsuga menziesii) and Corsican Pine (Pinus 

nigra) will likely be in this region, however the majority of plots within this study are comprised of 

deciduous trees like Beech (Fagus) and Oak, the latter sometimes having a yield class of only 4 

suggesting significantly less growth volumes (Wasser et al., 2013). 
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A further influence on derived height metrics from the LiDAR datasets is tree removal or damage 

(which there was evidence for in some sites though it was difficult to estimate when this had 

occurred), and the different understorey conditions between surveys.  The changes in understorey 

mass between surveys can affect the penetrability of the laser to the ground. Differences in ground 

penetration between surveys could contribute to tree height underestimation in one and not the 

other. Tree removal or damage between surveys could lead to inconsistencies between the direct 

field measurements (tree height, crown length and width and DBH) and the equivalent LiDAR 

metrics between survey dates. Diversity metrics are not expected to be largely effected during the 

time period however to assess any differences LiDAR derived diversity metrics will be compared in 

purely coniferous plots, to assess the effects of growth, tree removal or damage and changing 

survey characteristics in this research. 

 

4.3 LiDAR Post-Processing 

 

For each survey dataset, all points were loaded into the LiDAR processing package TerraScan 

(Soininen, 2015). The process functions embedded within TerraScan are automated but 

customisable and macros can be quickly written and used to batch process large point clouds. The 

software also allows for multiple flights to be loaded and processed simultaneously but separately. 

This provided an ideal environment for the management and comparison of the two surveys 

analysed in this research. 

 

4.3.1 Initial Filtering of the LiDAR Datasets and Assessment of Relative Accuracy 

 

This research draws comparisons between diversity metrics calculated from two separate LiDAR 

surveys, but it is impractical to expect any two surveys to capture an entire area homogenously, 
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especially when different scanning systems are used as with this study. There may be differences 

in track spacing and overlap along flight strips dependant on how the survey was flown which can 

prevent regular coverage (Baltsavias, 1999; Mallet and Bretar, 2009). The latter was particularly 

apparent in this research, the multiple pass style of survey the 2011 leaf-off dataset meant it 

exhibited, on average, twice the point density of the 2009 leaf-on survey. This was still true when 

the intermediate returns from the 2009 survey were excluded from analysis. There has been much 

research surrounding the effects of point density on the assessment of LiDAR metrics such as tree 

height (Treitz et al., 2012; He and Li, 2012; Lovell et al., 2005; Gobakken and Næsset, 2008). As a 

very general rule, accuracy of calculated structural metrics decreases and RMSE increases as pulse 

density decreases (He and Li, 2012; Lovell et al., 2005; Jakubowski et al., 2013). However, the 

accuracy of these LiDAR derived structure metrics remains relatively high until very small point 

densities, typically less than 1ppm2,  above which little difference is seen (Goodwin et al., 2006; 

Tesfamichael et al., 2010; Takahashi et al., 2010; Jakubowski et al., 2013). The datasets in this 

research demonstrate significantly higher point densities (approximately 25ppm² and 60ppm² 

respectively) and so are not expected to demonstrate any great differences in accuracy of structural 

diversity metrics that could be attributed to the differences in point density. However, as the pulse 

density of the 2011 dataset was twice as numerous as the 2009 and the procedure to reduce it to 

a relative level was moderately simple this process was undertaken regardless. This would eliminate 

even the smallest advantage the larger point density would offer and make structural diversity 

metrics from the two datasets more directly comparable. By removing four of the total eight flight 

strips from the two multiple pass corridors the 2011 survey was comprised of, the average point 

density over the whole 2011 dataset was reduced to approximately 23ppm² from over 60. Figure 7 

(page 47) shows the different proportions of returns from the two datasets at the plot level and 

averaged between all plots. There are plots where there are comparatively greater proportions of 

returns for either the leaf-on and –off datasets. Datasets where a low proportional point density 

does not reflect low frequency (as the lowest point density is around 20ppm²) but should highlight 
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where datasets have a high frequency of returns – the benefits of which are unlikely to be of 

significance (Treitz et al., 2012). On average the datasets have comparable return frequencies. 

 

 

Figure 7. Relative proportions of return numbers from each dataset, separated by plot number. The last bar 

relates to the average across all plots. 

 

Before any further processing could take place a preliminary filtering of outliers and classification 

of the ground was undertaken. LiDAR outlier points were identified as points below the true ground 

surface and significantly above the vegetation canopy. These errors may be caused by recording 

inaccuracies in the IMU or due to some laser pulses being reflected between a number of surfaces 

before returning to the sensor. This causes a time delay, which then means an inaccurate range 

distance is calculated (Watt, 2005). If these points remained the LiDAR returns from each survey 

would have a wide vertical range containing false features significantly affecting the performance 

of ground classification algorithms. 

 

A multi-step macro was written in TerraScan to undertake this initial filtering of outlier points and 

classification of a ground surface (see Table 5 page 48).  This macro was run initially on a flight line 

by flight line basis for each dataset. This is so relative alignment between flight lines could be 
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assessed through spatial analysis of the flight strip ground models per survey and corrected where 

necessary. It was then run over each dataset as a whole to create a seamless ground model. 

 

Step Overview 

1. Classify returns to a 

default point class 

Point classifications held in LiDAR returns are removed as 

classification varies between providers. 

2. Classify low and isolated 

returns to an outliers 

point class 

Enables erroneous points lower than the true ground to be 

removed from further analyses or ground classification. In 

order to avoid misclassifying acceptable LiDAR returns the 

procedure requires user inputted thresholds pertaining to 

distance and radius surrounding each point.  

3. Classify ground returns Described in detail in this section. 

4. Classify outliers by 

distance from ground 

surface 

Returns 5.5 standard deviations below the ground and 

returns above 50m were assigned to the outlier point class. 

Maximum tree height recorded in field was 45.5m so this 

eliminates high altitude outliers caused by weather 

influences or birds. 

5. Assign remaining default 

points to vegetation point 

class 

All returns remaining in the default class (those neither 

assigned to ground or outlier point classes) were classified 

as vegetation. 

Table 5. A summary of the LIDAR filtering and classification macro. 

 

Arguably the most important stage of the classification and filtering stages is the accurate 

classification of the ground. The ground model is a key element used when calculating tree height 

from the LiDAR data. TerraScan employs the progressive densification method (Axelsson, 2000; 

Axelsson, 1999) to classify a ground surface. The powerful algorithm is especially suited to the 

filtering of vegetation. It works by iteratively building a Triangulated Irregular Network surface 

model (TIN) based around determining a neighbourhood minima within a moving window of 

specified size. It is important that the area of the window will enclose at least one confident ground 

hit from a LiDAR return and therefore should be the maximum possible distance between LiDAR 

ground returns (which could be related to the maximum size of an above ground object within the 

dataset for example). The routine then builds up iteratively from the selected low points, adding 

new laser points, and is controlled by specified iteration parameters. These parameters describe 
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the iteration angle (the largest acceptable angle between points and the current TIN surface) and 

the iteration distance (the smallest allowable distance to each triangle node) (see Figure 8). When 

no further points remain within the iteration parameters the iterative process finishes and selected 

points are classified as ground.  

 

 

 

 

 

 

Figure 8. Iteration distance and iteration angle between candidate points (Soininen, 2016). 

 

During ground classification the smaller the iteration parameters the less eager the routine is to 

iterate upwards through the point cloud which could be undesirable in hilly or mountainous terrain 

with steep terrain angles. As a result, the values describing the iteration parameters need to be 

considered in the context of the actual terrain and probable density of ground hits. As objects such 

as buildings will most likely be the largest obstacle to LiDAR ground hits, the maximum length and 

width of buildings in the survey area were considered as the input for the window size (15m). The 

decision to increase this a further 2m to 17m was taken so the chance of obtaining a true ground 

hit was increased, particularly in large areas of dense canopy. If the window size is too small points 

which actually fall on low vegetation or lower canopy layers risk being classified as 'ground' and can 

lead to an overestimation of the terrain surface (Kraus and Pfeifer, 1998; Zakšek et al., 2006; Hyyppä 

et al., 2005; Hollaus et al., 2006). This value was not increased any further amid concerns that it 

would compromise the quality of an interpolated DTM. To further control the iteration process and 

prevent artificial terrain gradient the routine offers an input for terrain angle which was taken as 

50°. This was based on previous terrain measurements collected in the field (Landy, 2011). The 
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iteration distance was set as 1.4m and angle set as 6°, parameters suitable for the sloping but not 

hilly terrain of Chopwell Woodland Park. 

 

Once a ground classification had been obtained for each flight strip it allowed for further filtering 

routines which rely on filtering by distance from ground surface. Often during this initial filtering 

and classification some erroneous returns remain classified as ground. These can be easily 

identified after the macro has completed by visual assessment of the TIN (see Figure 9). 

Additionally, some high outlier points are often misclassified as vegetation (see Figure 9). To fix 

these issues and improve the quality of the classification both datasets were manually checked 

throughout and any misclassified LiDAR reclassified.  

 

           

Figure 9. a) Spurious low LiDAR returns incorrectly classified as ground (brown points). b) Incorrectly classified 

ground points easily identified by spiked depressions in the ground model. c) A return from a bird incorrectly 

classified as vegetation (green). 

 

After achieving a preliminary ground surface for each flight strip an assessment of the relative and 

absolute alignment of the LiDAR flight strips and datasets was possible. Due to the strip-wise 

a) b) c) 
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acquisition of LiDAR surveys, any systematic errors can affect the coordinate offsets for each strip 

separately. Existence of systematic errors in airborne LiDAR data has been acknowledged by both 

users and data providers. These errors can be attributed to the individual components of the data 

acquisition system (GPS, INS, and rangefinder systems) as well as to their integration. With two 

surveys and multiple flight strips it was important at the beginning to identify and solve any relative 

alignment issues between flight strips caused by systematic errors in the LiDAR system. If left in the 

dataset these systematic errors can degrade the accuracy of the laser footprint and create offsets 

between overlapping strips of data (Ma et al., 2014). Initial quality control comments provided by 

the NERC ARSF identified some misalignment between flight strips in the 2011 leaf-off survey 

potentially up to 7cm. Visual analysis of the 2009 leaf-on LiDAR data (see Figure 10) also identified 

flight strips misalignment in this survey. 

 

 

Figure 10. Misaligned LiDAR flight strips (each flight strip coloured differently) from the 2009 LiDAR dataset. 

This cross section is through a pitched roof. 

 

TerraSolid’s TerraMatch software was chosen to automate the assessment and solving of 

misalignment in height between flight strips for each survey individually. The ‘find match’ command 

utilises a triangulated model from the classified ground returns per flight strip and compares any 

overlapping ground surfaces. Any observed differences in gradient are translated into a constant 

elevation correction value for each flight strip which TerraMatch can also apply. Though further 

matching algorithms exist, the TerraMatch software was freely available to the author and has been 

1m 
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utilised and recommended by studies as being suitable for the removal of discrepancies between 

LiDAR flight strips (Shi and Shi, 2011).  

 

After this initial classification and flight strip alignment the filtering and classification macro was 

run once more. There were a few modifications: all but points in the outlier class were classed to 

default to begin the macro and the macro was run over the whole dataset so that the ground 

classification would not be not limited to each flight strip but seamless between the flight strips of 

a survey. Omitting outliers ensured they were not misclassified as ground or vegetation.  

Additionally, they were not able to have an adverse effect on the ground classification routine.  

 

4.3.2 Correction of Absolute Accuracy 

 

Taking steps to correct the misalignment between LiDAR flight strips solves any relative accuracy 

discrepancies. To correct the absolute accuracy, or the accuracy of each survey’s point cloud with 

reference to its’ true location, comparison to ground truth data is necessary. At this point during 

processing only the 2009 survey data had been checked for absolute accuracy by the provider.  The 

data were assessed in x, y and z against 89 ground control points and vectors manually drawn from 

these points describing road markings identifiable in the LiDAR intensity data. Though the 2009 

survey had been analysed against Ordnance Survey vectors before delivery, no correction to the 

absolute accuracy was applied. The notation provided by the NERC ARSF found no misalignment in 

easting or nothing but identified that a correction to height may need to be undertaken. To facilitate 

the standardisation of the two surveys to one another, they were overlaid for visual analysis (see 

Figure 11 page 53). Through taking cross sections over rigid structures such as roads and buildings 

and viewing the intensity data it became clear that the surveys aligned in easting and northings but 

were consistently misaligned in height. As steps had been taken to ensure the 2009 survey was 

correct for absolute accuracy the entire 2011 survey underwent a transformation which ‘shifted’ 
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the data +14cm in height to align with the former. Omitting any discrepancies in x, y and z between 

the two surveys lessens the possibility that differences identified in metrics derived from each 

LiDAR dataset are due to absolute accuracy error (Vepakomma et al., 2008).  

 

  
 

Figure 11. Cross section through the LiDAR data over a road and soft verge. a) Vertical misalignment present 

between the two LiDAR surveys (green is the 2011 leaf-off survey, blue is the 2009 leaf-on survey). b) after 

correction. 

 

4.3.3 LiDAR Data Management 

 

4.3.3.1 Clipped Las Files 

 

Due to the way the LiDAR data had been processed in TerraScan the data from each survey was in 

a tiled format. Though any LiDAR data collected from forest surrounding the sample plots was vital 

during the triangulation of the ground classification algorithm at this stage it was deemed 

superfluous. For ease of management each survey point cloud was clipped to the 30 circular sample 

plots via shapefiles delineating their boundaries. This resulted in 60 LAS files, two for each sample 

plot. Each circular las file held an elevation with reference to the OSGB36 Newlyn datum.  This 

reference elevation is useful for comparison of the interpolated ground models created from each 

dataset, as elevation differences between these would highlight changes in the penetrability of the 

canopy and understorey vegetation. 

 

a) b) 

1m 1m 
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4.3.3.2 Normalising Canopy Height 

 

In order to compare the structural diversity metrics between datasets collected at different dates, 

the standardisation of point heights is obligatory (Vepakomma et al., 2008). This standardisation 

was undertaken by creating normalised canopy heights from the original sample plots from each 

survey. This requires negating the height above Newlyn Datum provided by each plot’s classified 

ground model to the las files for each associated plot. This resulted in each point holding an 

elevation above ground level instead of above the local datum with classified ground points holding 

a height of 0m. 

 

4.3.4 LiDAR Derived Metrics 

 

To assess and describe the empiracle diversity realtionships the LiDAR display with the field data, a 

large variety of variables were calculated from the LiDAR returns within each plot. These variables 

could be directly compared between surveys and plots due to the standardisation of each dataset. 

 

The mean and percentile metrics described in Table 6 (page 55) were chosen to provide insightful 

summaries of the datasets which could be compared between leaf-on and –off datasets and within 

plot types to better understand the pulse penetration between datasets. The diversity metrics 

described in Table 6 page 55 (indicated with a *) were specifically chosen as metrics well suited to 

model tree size diversity in the field plots based on existing studies discussed in section 2.4.1. SD, 

skewness, kurtosis and CV of the height distribution of returns in each plot provide a summary of 

canopy structure based on the shape and dispersion of the distribution (Donoghue et al., 2007). 

Additionally, L-CV of canopy return heights was chosen to provide a diversity statistic less sensitive 

to skewness and small sample sizes. Laser-based height percentile ratios, utilised by Ozdemir and 
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Donoghue (2013), provide information about the diversity of vertical canopy layers and was shown 

to be a good estimator of stand based tree size diversity. 

 

LiDAR return height derived metrics per plot Reference 

Mean mean 

25th percentile P25 

50th percentile P50 

75th percentile P75 

90th percentile P90 

99th percentile P99 

Coefficient of Variation CV* 

Skewness skew* 

Kurtosis kurt* 

Standard Deviation SD* 

Variance var* 

The Coefficient of L Variation L-CV* 

Ratio means of 99th and 25th percentiles P99/25* 

Ratio means of 99th and 50th percentiles P99/50* 

Ratio means of 99th and 75th percentiles P99/75* 

Ratio means of 99th and 90th percentiles P99/90* 

Table 6. LiDAR derived metrics calculated from each plot with the corresponding reference. * specifically 

indicates diversity metrics. 

 

Metrics were derived from the clipped las files which had been normalised to height above ground 

rather than the local datum. Variables were calculated from returns which fell between 2m and 

45m above the ground surface. Those hits with a height of less than 2m above the ground were 

excluded to eliminate the effects of understorey and terrain. This is a commonly used approach, 

utilised to help improve the quality of canopy height metric estimations (Næsset, 2002; Næsset and 

Bjerknes, 2001; Yu et al., 2004b; Hudak et al., 2008). Heights above 45m were excluded as these 

were unlikely to be hits from vegetation, being significantly higher than the tallest trees recorded 

in the field data. 
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4.4  Further Analysis 

 

In order to assess the relationships between field and LiDAR derived diversity Ordinary Least 

Squares regression analysis was undertaken using field derived diversity variables as dependant 

variables and LiDAR derived diversity metrics as independent variables. 

 

4.4.1 Testing Regression Assumptions 

 

In total ten models were constructed using independent variables from one LiDAR dataset at a time 

and a combination of the two where appropriate. Most statistical tests rely upon certain 

assumptions about the both the dependant and independent variables used that need to be 

fulfilled. When these assumptions are not met this may lead to less trustworthy conclusions 

through over- or under-estimation of statistical significance (Weisberg, 2005). 

 

In order to assure the validity of each model the following assumptions should were endeavoured 

to be adhered to: 

 

1. Independent and dependant variables should be normally distributed. 

2. If one expects a valid t-test and F-test result (which in this study we require to directly 

compare models between surveys) then the residuals from the regression models need to 

be normally distributed. 

3. The residuals should display homogeneity of variance as if the model is well fitted there 

should be no pattern to the residuals plotted against the fitted values.  

4. The independent variables should not show strong linear relationships to one another. If 

there is a perfect linear relationship between two (collinearity) or more (multicollinearity) 

independent variables the estimates for a regression model cannot be uniquely computed.  
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5. The independent variables should show a strong linear relationship with the dependant 

variable. If this assumption is violated, the linear regression will try to fit a straight line to 

data that does not follow a straight line 

6. The regression model should be correctly specified and not omit important relevant 

variables that could better describe the variance in the dependant variable. Additionally, if 

irrelevant variables are included in the model the common variance they share with 

included variables may be wrongly attributed to them directly affecting estimation of 

regression coefficients. 

 

Each assumption will be tested statistically and graphically. Though avoided wherever possible, 

selected models violated one or more of these assumptions. These regressions were undertaken 

using the Robust Standard Errors method rather than the Ordinary Least Squares method, a 

regression method designed to not be overly affected by violations of the aforementioned 

assumptions. The following subsections will summarise the statistical and graphical tests 

undertaken and provide example test results and graphics from these, the full set can be found in 

the Appendices. 

 

4.4.1.1 Assessing variables for normality 

 

During regression model construction it became clear that some predictor variables exhibited 

evidence for non-normality and curvilinearity. Variables with a non-normal distribution can distort 

relationships and significance tests so those showing evidence for non-normality were transformed 

to correct this (see Table 7 page 58). Normality was assessed visually against a reference ‘normal’ 

distribution and by statistically testing the skewness and kurtosis for normality. For example, 

kurtosis from the leaf-on dataset displayed a divergence from a normal distribution through visual 

analysis (see Figure 12 page 58). When analysing the relationship between leaf-on kurtosis and 
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other diversity variables (see Figure 13 page 59) leaf-on kurtosis displayed a curvilinear correlation 

with many other variables. 

 

Leaf-on/-off Variable Transformation 

Kurtosis Log 

P99/25 Inverse 

P99/50 1/square 

P99/75 1/cubic 

Table 7. Summary of each transformed variable 

 

 

Figure 12. The density distribution of leaf-on kurtosis (blue) plotted against a “normal” distribution (red).  

 

After a log transformation of leaf-on kurtosis the distribution greatly improved and no longer 

significantly diverged from a normal distribution (see Figure 14 page 60). Not all variables required 

a transformation and for those that did the simplest and easiest to conceptualise transformation 

was chosen. Table 7 summarises the variables that were transformed and Appendix 1 gives further 

detail. The same variables from each survey often shared similar distributions and so to maintain 

continuity the same transformation was applied. Most of the variables that required transformation 

were transformed using as low a complexity transformation function as practical however P99/50 
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and P99/75 underwent a slightly more complex transformation in order to meet normality 

requirements.  

 

   

   

   

Figure 13. Correlations between leaf-on kurtosis and other leaf-on variables with a smoothed line. 
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Figure 14. The density distribution of log transformed leaf-on kurtosis (blue) plotted against a normal 

distribution (red).  

 

4.4.1.2 Assessing residuals for normality 
 

To test the normality of the distributed residuals from each constructed model the density 

distributions were plotted for comparison against a reference normal distribution. In addition, a 

quantile plot (a plot of the ordered values of one or more variables against the quantiles of a 

uniform distribution for the same number of values) was created for each model. Confidence 

bounds have been added at the 95% interval so the reader can interpret the plot with greater ease 

(examples for Models 1 and 2 are shown in Figure 15 page 61).  

 

The statistical test for normality based on skewness and kurtosis was also undertaken on each 

models’ residuals where a significant result (< 0.05) rejects the null hypothesis that this variable is 

normally distributed (see Table 8 page 61). The skewness and kurtosis normality results were 

assessed alongside the graphical representations to judge normal or none normal distributions.  

 

The distributions of residuals for most models created (including Model 2 shown as an example in 

Figure 15 page 61 and Figure 16 page 62) show little or no statistically significant evidence for non-
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normality.  Model 1 displays evidence for non-normality in kurtosis of the density distribution and 

the statistical analysis of the kurtosis (value of 0.03<0.05).  The quantile plot shows residuals for 

Model 1 fall outside of the confidence bounds so this model was constructed using Robust Standard 

Errors. 

 

Model 1     𝑇𝐻𝑑𝑖𝑣 = 0.233905 − 0.090259 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑛) + 0.003075𝑉𝑎𝑟𝑙𝑜𝑛 

 

Model 2     𝑇𝐻𝑑𝑖𝑣 = 0.233218 − 0.091749 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓) + 0.003367𝑉𝑎𝑟𝑙𝑜𝑓𝑓  

 

Figure 15. Example density plots and quantile plots from two models.  The density plots (a and c) show the 

residual density distribution (blue) alongside a normal distribution (red). The quantile plots (b and d) show 

residuals (circles) within normality confidence bounds (lines). 

 

 Skewness test result and 
indication of normality 

Kurtosis test result and 
indication of normality 

Model 1 Result: 0.87 
Indicates normal 

skewness 

0.03 
Indicates none normal 

kurtosis 

Model 2 0.35 
Indicates normal 

skewness 

0.49 
Indicates normal 

kurtosis 

Table 8. Results of the skewness and kurtosis normality tests. A value < 0.05 indicates none normality. 
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4.4.1.3 Testing Homogeneity of Residuals  
 

To assess homogeneity of residuals the residuals from each model were plotted against the fitted 

values from the same model. Points on this plot are expected to be randomly distributed around 

the reference line (y=0). Any noticeable pattern in the data such as a narrowing to either side, 

towards the centre or a curvilinearity would indicate heteroscedasticity of residuals (see an 

example in Figure 16). There are also inferences from the Breusch and Pagan (1979) test and the 

Cameron and Trivedi (1990) White's test – where in both a p value <=0.05 indicates a rejection of 

the null hypothesis that the variance of the residuals is homogenous and accepting the alternative 

hypothesis that the variance is not homogenous (see Table 9).  

 

 Model 3 𝑇𝐻𝑑𝑖𝑣 = 0.243932 −

0.103726 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓) + 0.004077𝑉𝑎𝑟𝑙𝑜𝑛 
Model 4 𝐷𝐵𝐻𝑑𝑖𝑣 = 0.13849 −

0.103726 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓) + 0.04351 × 𝑆𝐷𝑙𝑜𝑛 

R
es

id
u

al
s 

  

 Fitted Values Fitted Values 

Figure 16. Plot of residuals against fitted values for models 3 and 4 

 

 Model 3 Model 4 

Breush-Pagan test p=0.05 p=0.01 

White’s test p=0.09 P=0.38 

Table 9. The resultant p-values of the Breusch-Pagan and White’s tests for models 3 and 4 

 

Model 3 (see Figure 16 and Table 9) is an example of a model showing slight statistical evidence of 

heteroscedasticity but little graphically significant evidence with a relatively random point 
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distribution and p-values only just over 0.05. Conversely model 4 shows some graphical evidence 

for non-homogeneity with a widening of the point distribution from y=0 as fitted values increase 

and statistically significant evidence of heteroscedasticity through acceptance of the Breush-Pagan 

test’s alternative hypothesis.  

 

4.4.1.4 Avoidance of Collinearity and Multicollinearity and Correct Specification of Models 
 

 

Model VIF 

Link test 

p-value 

RESET 

p-value 

1 𝑇𝐻𝑑𝑖𝑣 = 0.234 − 0.090 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑛) + 0.003𝑉𝑎𝑟𝑙𝑜𝑛  1.43 0.21 0.22 

2 𝑇𝐻𝑑𝑖𝑣 = 0.233 − 0.092 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓) + 0.003𝑉𝑎𝑟𝑙𝑜𝑓𝑓  1.34 0.43 0.38 

3 𝑇𝐻𝑑𝑖𝑣 = 0.245 − 0.104 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓) + 0.004 ×  𝑉𝑎𝑟𝑙𝑜𝑛  1.08 1.68 0.30 

4 𝐷𝐵𝐻𝑑𝑖𝑣 = 0.139 + 0.087𝑆𝑘𝑒𝑤𝑙𝑜𝑛 + 0.044𝑆𝐷𝑙𝑜𝑛  1.43 0.42 0.78 

5 𝐷𝐵𝐻𝑑𝑖𝑣 = 0.791 + 0.103𝑆𝑘𝑒𝑤𝑙𝑜𝑓𝑓 + 0.048𝑆𝐷𝑙𝑜𝑓𝑓 − 0.576𝑃99/90𝑙𝑜𝑓𝑓  1.58 0.88 0.71 

6 𝐷𝐵𝐻𝑑𝑖𝑣 = 0.115 + 0.004𝑉𝑎𝑟𝑙𝑜𝑓𝑓 + 0.064𝑆𝑘𝑒𝑤𝑙𝑜𝑓𝑓 + 0.433𝐶𝑉𝑙𝑜𝑛  1.25 0.36 0.60 

7 𝐶𝐿𝑑𝑖𝑣 = 0.285 + 0.065𝑆𝑘𝑒𝑤𝑙𝑜𝑛  N/A 0.63 0.97 

8 𝐶𝐿𝑑𝑖𝑣 = 0.35 + 0.568
1

𝑃99/75𝑙𝑜𝑓𝑓
3 − 0.892

1

𝑃99/50𝑙𝑜𝑓𝑓
2 + 0.002𝑉𝑎𝑟𝑙𝑜𝑓𝑓  6.60 0.89 0.67 

9 𝐶𝑊𝑑𝑖𝑣 = 0.267 − 0.051 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑛)  N/A 0.72 0.60 

10 𝐶𝑊𝑑𝑖𝑣 = 0.286 − 0.061 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓)  N/A 0.70 0.84 

Table 10. Equations for constructed models (values all to 3 decimal places) and outputs of tests for model 

specification: inflation factor, RESET and Link Test p-values  

 

The Variance Inflation Factor (VIF) was calculated for independent variables from each model. This 

assesses whether the variance of the coefficient estimate is being inflated by multicollinearity 

(O’brien, 2007). The values shown in Table 10 are well below the level acceptable for multiple 

regression (which should be approximately 10 at the most (StataCorp., 2013)). As some models only 

contain one independent variable this test is not applicable in these cases. The Link Test (Pregibon, 

1979) tests model specification and assesses the hypothesis that no further independent variables 

could have a significant influence within the model except by chance. An insignificant p-value 

greater than 0.05 would indicate the test has failed to reject the assumption that the model is 
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specified correctly. The RESET, or Ramsey (1969) regression specification-error test for omitted 

variables is similar to the Link Test and an insignificant p-value greater than 0.05 would indicate the 

test has failed to reject the assumption that the model has no omitted variables. Table 10  (page 

63) demonstrates that all statistics from these tests indicate no statistical probability of problems 

of multicollinearity, collinearity and misspecification (omitted key variables) in any of the models. 

 

4.4.1.5 Assessing the Linearity of Relationship between Independent and Dependant 

Variables 
 

To assess the linearity of the relationship between the independent and dependant variables, 

augmented component-plus-residual plots (also known as an augmented partial residual plots) as 

described by Mallows (1986) were constructed (see Figure 17 as an example of these from model 

8).  The plots for each independent variable against the model’s dependant variable also include a 

line of best fit and locally weighted smoothing to aid in the reader’s interpretation. If the smoothed 

line differs substantially from the line of best fit it indicates a non-linearity between a dependant 

and independent variable. None of the relationships between dependant and independent 

variables in any of the models showed concerning non-linearity.  

 

C
LD

iv
 

 

         P99/75 (leaf-off)                         P99/50 (leaf-off)                         Variance (leaf-off) 

Figure 17. Augmented component-plus-residual plots for all independent variables in Model 8 describing 
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5. RESULTS AND ANALYSIS 

 

5.1 Field Data 

 

Field data collected in 2013 were combined with field data collected from Ozdemir and Donoghue 

(2013) to provide a comprehensive dataset describing the tree assemblages in each plot. Table 12 

page 66 demonstrates that 16 of 30 field plots are deciduous dominated (where deciduous tree 

species accounted for ≥90% of total species type), four plots are evergreen dominated (where 

evergreen coniferous tree species accounted for ≥90% of total species type) and the remainder are 

mixed. Stem density per hectare ranges from 151 to 2917 and there are 11 discreet dominant tree 

species.  

 

Table 11 shows the ranges between minimum and maximum values for all diversity metrics are 

large with THdiv having a particularly large range. CWdiv does not seem very varied despite the mix 

of evergreen and deciduous tree types in the study. 

 

 Minimum Maximim Mean σ 

THdiv 0.022 0.389 0.156 0.086 

DBHdiv 0.046 0.470 0.224 0.109 

CLdiv 0.094 0.408 0.218 0.072 

CWdiv 0.103 0.375 0.192 0.057 

Table 11. Summary statistics of tree size diversity indices for the 33 survey plots. 



 

6
6

 

Table 12. A summary of the ground truth measurements collected in the field and the resultant diversity metrics (L-CV). Also shown are the inferred plantation dates from the Forestry 

Commission Compartmental Database (Forestry-Commission, 2013). The planting years included in this table are generalised and mostly do not take into account any restocking practises 

which have occurred. Regardless they are included as additional information to provide the initial plantation year of each stand. 

Plot No. of 
Trees 

 Trees per 
Hectare 

Planting Year Primary Species Assemblage Min. TH Max. TH Mean TH THdiv DBHdiv CLdiv CWdiv 

1 21 525 1908 Sycamore Mixed 4.6 39 19.84 0.276 0.33 0.277 0.177 

2 55 438 1963 Birch Mixed 5 30.5 17.2 0.201 0.338 0.235 0.227 

3 51 1275 1985 Japanese Larch Deciduous 5 25.6 17.38 0.126 0.147 0.207 0.195 

4 56 1400 1980 Corsican Pine Mixed 2.6 24.6 14.61 0.175 0.228 0.213 0.207 

5 11 275 1954 Japanese Larch Deciduous 18 25.2 22.88 0.048 0.046 0.172 0.103 

6 21 525 1949 Oak Deciduous 4.4 27.2 19.12 0.155 0.196 0.185 0.157 

7 34 567 1944 Beech Deciduous 12.2 24.4 19.85 0.088 0.146 0.16 0.127 

8 60 1000 1924 Beech Deciduous 14.9 26.7 21.8 0.079 0.145 0.148 0.193 

9 15 375 1943 Japanese Larch Deciduous 23.7 28 24.83 0.022 0.072 0.116 0.143 

10 21 525 1943 Japanese Larch Deciduous 8.2 26.8 18.47 0.192 0.242 0.212 0.182 

11 30 750 1920 Scots Pine Evergreen 10.1 22 19.24 0.061 0.119 0.107 0.132 

12 175 2917 1984 Douglas Fir Evergreen 8.3 27.3 18.53 0.112 0.248 0.276 0.189 

13 35 875 1908 Acer/Birch/Douglas Fir Mixed 4.6 23.4 13.48 0.215 0.34 0.318 0.236 

14 54 900 1923 Beech Deciduous 9.7 26.8 16.66 0.196 0.32 0.337 0.375 

15 19 475 1969 Scots Pine Mixed 12.5 25.5 20.26 0.076 0.119 0.149 0.18 

16 13 325 1954 Japanese Larch Deciduous 12.2 26.8 22.29 0.103 0.153 0.121 0.112 

17 26 650 1947 Oak/Japanese Larch Mixed 4.8 23.3 17.21 0.168 0.222 0.218 0.16 

18 22 550 1963 Scots Pine Evergreen 7.8 23.5 19.36 0.083 0.093 0.094 0.122 

19 29 725 1943 Birch/Acer/Oak Deciduous 6.6 21.9 14.8 0.172 0.256 0.167 0.21 

20 14 350 1925 Ash Deciduous 15.6 33.6 25.49 0.135 0.185 0.209 0.152 

21 19 151 1942 Oak Deciduous 2.8 27.4 18.18 0.243 0.225 0.26 0.197 

22 23 575 1907 Holly Mixed 1.9 37 15.32 0.389 0.47 0.408 0.3 

23 11 275 1910 Beech Mixed 29.7 39.1 34.05 0.046 0.133 0.191 0.252 

24 12 796 1908 Douglas Fir Mixed 3.2 36.2 22.19 0.231 0.296 0.32 0.218 

25 11 275 1934 Japanese Larch Deciduous 5.5 31.9 20.82 0.273 0.327 0.233 0.208 

26 11 275 1988 Beech Deciduous 7.9 31.9 18.81 0.203 0.285 0.257 0.217 

27 14 350 1942 Ash Deciduous 4.5 25.6 14.53 0.273 0.412 0.263 0.262 

28 22 1947 1980 Birch Deciduous 7.2 15.4 12.02 0.101 0.126 0.23 0.161 

29 24 600 1947 Beech Mixed 6.8 31.6 15.58 0.253 0.395 0.247 0.23 

30 15 375 1969 Corsican Pine Evergreen 18.3 24.8 22.47 0.071 0.109 0.212 0.149 
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Table 13 shows that evergreen coniferous plots are the least represented (only 4 plots), most 

densely planted (average of 1148 trees per hectare) and have the lowest tree size diversity metrics 

(0.082 to 0.148) and lowest species diversity (on average 2 species per plot). Deciduous plots on 

the other hand are most prevalent (16 plots) and are the least densely planted plots (an average of 

615 trees per hectare). Mixed plots have higher average diversity metrics than deciduous or 

evergreen plot types (0.194 to 0.287).  

 

 Deciduous Mixed Evergreen 

No. of Plots 16 10 4 

Average Thdiv 0.151 0.194 0.082 

Average DBHdiv 0.205 0.287 0.142 

Average CLdiv 0.205 0.258 0.087 

Average CWdiv 0.187 0.219 0.148 

Average Tree Species per Plot 3 4 2 

Average Trees per Hectare 615 661 1148 

Table 13. A summary of the average diversity, tree species per plot and tree density variables by dominant 

tree type. The highest values are highlighted in red and the lowest in blue. 

 

Figure 18 and Table 14 page 68 demonstrates there is a strong positive correlation (r = 0.90 

significant at the 99% confidence interval (CI)) between the average tree height and DBH in this 

dataset. This differs between deciduous, mixed and coniferous plots (r values of 0.84, 0.99 and 0.91 

respectively) but only deciduous and mixed plots show significant relationship. Plots 28 and 23 have 

the smallest and largest tree sizes respectively. Plot 28 was in a relatively new stand of Birch trees 

and 23 in a well established mixed plot of Beech, Corsican Pine and Sitka Spruce with all of the trees 

measuing taller than 29 metres. There is lateral spread of the plot positions away from the x y 

resulting in a loose distibution.  
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Figure 18. Scatter graph to show the relationship between the average DBH and Tree Height measured for 

each plot. Open circles represent deciduous plots, filled circles evergeen plots and squares mixed plots. 

 

 TH Diversity DBH Diversity CL Diversity CW Diversity 

TH Diversity 1.00    

DBH Diversity 0.92 1.00   

CL Diversity 0.75 0.80 1.00  

CW Diversity 0.60 0.72 0.74 1.00 

Table 14. Pearson’s product-moment correlation (r) matrix of tree size diversity variables (all significant 

p<0.01) 

 

Table 14 and Figure 19 page 69 demonstrate that a significant (99% CI) positive relationship (r=0.92) 

is shown between THdiv and DBHdiv in the dataset indicating increased diversity in tree height per 

plot is highly correlated to an increase in the DBH diversity. Evergreen plots display lower DBHdiv 

and THdiv than most of the mixed and deciduous plots and show no statistically significant 

relationship between THdiv and DBHdiv alone. The mixed and deciduous plots display greater 

relationships (r=0.92 and 0.93 respectively at the 99% CI) with deciduous plots 5 and 9 (both 

comprised of only Japanese Larch) displaying the lowest THdiv and DBHdiv and mixed plot 22 

(located in ancient woodland) the highest. 
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Figure 19. Scatter graph to show relationship between THdiv and DBHdiv. Open circles represent deciduous 

plots, filled circles evergeen plots and squares mixed plots. 

 

The relationship between CLdiv and CWdiv shown in Figure 20 page 70 and Table 14 page 68 in 

evergreen plots is the strongest positive relationship with an r of 0.96 at the 99% CI. This is much 

stronger than the relationship across all plot types between these variables (r = 0.74  99% CI). Mixed 

plots show no statistically significant correlation between CLdiv and CWdiv. The correlation in 

deciduous plots has an r of around 0.81 at the 95% CI. Plots 22 and 14, mixed and deciduous plots 

display the highest CLdiv and CWdiv respectively.  
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Figure 20. Scatter graph to show relationship between CLdiv and CWdiv. Open circles represent deciduous 

plots, filled circles evergeen plots and squares mixed plots. 

 

When assessing which stand types would increase the structural diversity of the dataset in section 

4.1.1.1 species diversity appeared to be a strong contributory factor (describing around 30% of the 

tree height variation at the 95% CI). Figure 21 page 71 shows that a small (r=0.39) but significant 

(90% confidence) correlation is still present with the additional plots added. However, when 

considering each plot type alone no statistically significant correlation is seen.  
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Figure 21. Scatter plot to show the relationship between species diversity and THdiv in each of the sample 

plots. 

 

5.2 LiDAR Data 

 

5.2.1 Initial LiDAR Dataset Observations 

 

Clipped las files (see section 4.3.3.1 Clipped Las Files) were assessed first allowing the direct 

comparison of the distribution of returns throughout both datasets without any ground correction 

to the elevation. As described in section 4.2.3 Initial Assessment of the LiDAR Datasets ground 

returns may be overestimated depending on understorey conditions and so assessing the LiDAR 

before ground elevation correction eliminates this influence on the data.   

 

Figure 22 (page 73) shows that though minimum and maximum return heights from the two surveys 

are similar in each plot, the leaf-off LiDAR dataset displays consistently lower minimum and higher 

maximum return height values than the leaf-on LiDAR dataset. The difference between the 
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maximum returns from leaf-on to leaf-off LiDAR datasets was 0.56-1.07 metres.  The distribution 

of LiDAR returns in the leaf-off datasets are more skewed towards the ground, most obvious in the 

deciduous plots and less apparent in the evergreen plots with the exception of plot 12. Table 15 

shows that upper return height percentiles (P75 and greater) are statistically significantly different 

between surveys for evergreen plots. The difference in height percentiles between leaf-on and –off 

LiDAR metrics in evergreen plots is likely a product of survey system configuration changes or 

capture differences rather than seasonal foliage changes. Therefore, applying a correction of the 

difference in metrics between leaf-on and leaf-off LiDAR datasets over evergreen plots to LiDAR 

metrics in deciduous and mixed plots may negate the influence of changing survey characteristics 

and growth. Corrected values show that in the mixed and deciduous plot percentiles (aside from 

P25 for deciduous plots and P90 for mixed plots) and the mean of return heights were lower under 

leaf-off conditions. 

 

 
 Deciduous  Evergreen Mixed  

 
D  σ Dcorr D  σ D  σ Dcorr 

P25 -0.86 A 2.241 -0.30 -0.56 B 0.52 0.22 A 2.15 0.78 

P50 -0.35 A 0.782 0.20 -0.55 B 0.31 -0.10 A 1.44 0.45 

P75 -0.25 A 0.526 0.45 -0.70 *A 0.25 -0.40 A 1.00 0.30 

P90 -0.25 *B 0.462 0.46 -0.71 *A 0.28 -0.83 *A 0.94 -0.13 

P99 -0.20 B 0.420 0.64 -0.84 **A 0.26 -0.66 *A 0.69 0.18 

mean  -0.36 A 1.159 0.25 -0.61 B 0.41 -0.10 A 1.53 0.51 

Table 15. A summary of the differences ‘D’ between percentiles and the mean calculated from the leaf-on and 

–off LiDAR datasets. A positive ‘D’ indicates that leaf-on metrics were that amount of metres higher than leaf-

off metrics. A negative ‘D’ indicates that leaf-on metrics were that amount of metres lower than leaf-off 

metrics. ‘A’ indicates normally distributed variables that underwent a paired t-test. ‘B’ indicates non-normally 

distributed variables underwent the sign rank test. *=statistically significantly different at the 95% CI 

**=statistically significantly different at the 99% CI. Dcorr corresponds to the difference values corrected for 

the difference between surveys in evergreen coniferous plots. σ represents the standard deviation. 

 

  

http://en.wiktionary.org/wiki/%CF%83
http://en.wiktionary.org/wiki/%CF%83
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Figure 22. Box plots of LiDAR return heights. The whiskers of the box plot represent the range of values within 

1.5 x the interquartile range and grey markings on each graph represent returns outside of these boundaries. 

a: Deciduous plots. b:Mixed plots. c: Evergreen plots.  

 

 

a) Deciduous  

b)   Mixed 

c)   Evergreen Coniferous 
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5.2.2 Ground Classification 

 

With tree growth, leaf loss, understorey growth and potential tree fall all occurring between 

surveys a feature that we can be sure will have stayed more constant is the topography beneath 

the vegetation. As mentioned in section 2.4 overestimation of the ground surface can be a problem 

through dense canopies. Table 16 page 75 presents an assessment of the significance of difference 

between the distribution of ground classified return elevation for each survey.  The table shows the 

average of the ground classified heights is statistically significantly different between the two 

surveys. Leaf-on ground classified points in most (22) plots have a greater mean elevation than the 

leaf-off survey plots. This is not the case over all plots. Some plots (e.g. plot 24) have a statistically 

insignificant difference between average ground classification elevation and some plots display a 

negative difference between average ground classification elevation from leaf-off to -on indicating 

that the average leaf-off LiDAR ground classification elevation was lower than the leaf-on average 

ground classification elevation.   
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When further assessing the distribution of ground returns in plot 22 (see Figure 23 page 76), with 

an average elevation of 153.8m for leaf-on compared to 154.3m from the leaf-off survey, a large 

difference between the density and the elevation range of ground returns between surveys is 

  
Mean z (m nearest cm)  

Table 16. A summary of the mean height 

of the classified ground points in each 

sample plot. A t-test was undertaken to 

assess whether there was any bias in the 

ground height classifications between 

surveys. * indicates <0.05 p value. ** 

indicates <0.001 p value. No * indicates 

the difference between height 

distributions was not statistically 

significant.  

 

  Plot leaf-

on 

leaf-

off 

Leaf-on-

Leaf-off 

 

Deciduous 3 164.64 164.54 0.1**  

5 150.86 150.75 0.11*  

6 165.93 166.07 -0.14**  

7 161.49 161.34 0.15**  

8 163.07 162.86 0.21**  

9 161.26 161.14 0.12**  

10 160.13 160.01 0.12**  

14 130.65 130.84 -0.19**  

16 149.72 149.63 0.09**  

19 165.41 165.29 0.12**  

20 124.54 124.59 -0.05  

21 112.12 111.68 0.34**  

25 157.59 157.4 0.19**  

26 165.18 165.14 0.04**  

27 109.37 109.21 0.16**  

28 116.04 116.03 0.01  

Average 147.36 147.28 0.08  

Mixed 1 96.03 96.01 0.02  

2 162.98 162.97 0.01  

4 163.03 162.94 0.09**  

13 102.16 101.97 0.19**  

15 160.57 160.55 0.02  

17 167.32 167.11 0.22**  

22 153.77 154.28 -0.51**  

23 95.59 95.75 -0.16*  

24 105.92 105.84 0.08  

29 170.24 169.93 0.31**  

Average 137.76 137.74 0.03  

Evergreen 11 157.11 157.08 0.03  

12 N/A N/A N/A  

18 163.43 163.32 0.11**  

30 161.99 161.88 0.11**  

Average 160.84 160.76 0.08  
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apparent. This is also common to plots 23 and 14, which also display a significant negative ground 

difference. Conversely plot 6, again with a negative average ground elevation from leaf-on to -off, 

had a much more comparable ground point density (see Figure 23) and though statistically 

significantly different there is little visually detectable bias between ground classification elevation 

distributions. 

 

   

Figure 23. Histogram showing the height distribution of ground returns from both leaf-on and off datasets at 

plot 22 (left) and plot 6 (right). 

 

Evergreen plots 18 and 30 (see Figure 24) displayed a significant positive difference between the 

ground classification elevations from the leaf-on to –off conditions.  

 

   

Figure 24. Histogram showing the height distribution of ground returns from both leaf-on and off datasets at 

plot 30 (left) and plot 18 (right). 
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5.2.3 First and Last Returns 

 

Sections 5.2.1 and 5.2.2 describe initial observations gathered from each LiDAR dataset as a whole 

and the direct comparison between the two. This section looks in more detail at the differences 

between the first and last pulse penetration through the canopy. This is after normalisation to 

height above ground which makes the data easier to visualise and compare but will be influenced 

by the accuracy of the ground classification. 

 

With reference to Table 16 page 75, the mean elevation of the first and single returns seem higher 

in the leaf-off than leaf-on dataset, hence the negative values displayed here, this is most apparent 

in the deciduous plots. When looking at the corrected maximum return heights (as corrected mean 

return heights stay constant) Table 16 shows that the largest differences in both return types is 

seen in deciduous plots (0.42m difference first and single returns, 0.91m difference last returns). 

 

The mixed and evergreen plots show no statistically significant difference in the ability of the 

first/single and last pulses to penetrate through a leaf-on and –off canopy. This is in agreement with 

Figure 22 (page 74) where little difference is seen in the penetrability of LiDAR pulses in muti-

temporal evergreen plots (aside from plot 12). However, the variable differences between pulse 

distributions in leaf-on –off in mixed plots shown in Figure 22 is not echoed in Table 16 page 75 by 

the grouped LiDAR returns.  

 

To further explore the differences in more detail, visual analysis of a selection of plots was 

undertaken. The leaf-off first returns in plot 7 (see Figure 25 page 79), a deciduous plot primarily 

composed of Beech, intermittently hit the very lowest of the canopy layers, understorey and ground 

whereas a larger proportion of the leaf-on last returns reflect from within the canopy. A higher 
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proportion of first returns have penetrated lower through the canopy and some returns can be 

seen from understorey and ground, more so than the leaf-on first returns. 

 

 

First and Single Returns – difference leaf-on - leaf-off   
 

hmean σ 
 

hmax σ 
 

hmean-

corr 

hmax-

corr 

Deciduous plots -0.45 0.78 * -0.22 0.27 * -0.45 0.42 

Mixed plots -0.65 0.39 NS -0.65 0.39 *** -0.65 -0.01 

Evergreen plots 0.00 0.38 NS -0.64 0.36 NS 0.00 0.00 
       

  

  Last Returns - difference leaf-on - leaf-off   
 

hmean σ 
 

hmax σ 
 

hmean-

corr 

hmax-

corr 

Deciduous plots 7.41 4.91 ** 0.94 1.05 ** 7.71 0.91 

Mixed plots 4.27 6.51 NS -0.21 0.64 NS 4.57 -0.19 

Evergreen plots -0.30 3.72 NS 0.03 0.81 NS 0.00 0.00 

Table 17. Summary of the differences in height metrics for first (and single) and last returns between leaf-on 

and –off datasets. hmean = difference in average mean return height across plot type, hmax = difference in 

average maximum return height across plot type. A positive Hmean or Hmax indicates leaf-on metrics > leaf-

off metrics. A negative Hmean or Hmax indicates that leaf-on metrics < leaf-off metrics. σ = standard deviation 

of the differences. It also describes whether the leaf-on and leaf-off hmean and hmax are significantly 

different. NS=Not significant *=significant 0.05 **=significant 0.01 ***=significant 0.001. hmean-corrected 

and hmax-corrected correspond to values for hmean corr and hmax corr for the differences in evergreen 

coniferous plots. 
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Figure 25. A plot of return height by 

easting from each survey over plot 

7. a) Under leaf-on conditions. b) 

Under leaf-off conditions. 

Figure 26. A plot of return height by 

easting from each survey over plot 

23. a) Under leaf-on conditions. b) 

Under leaf-off conditions. 

a) Plot 7 Leaf-on 

b) Plot 7 Leaf-off 

a) Plot 23 Leaf-on 

b) Plot 23 Leaf-off 
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The representations of plot 23 (see Figure 26 page 79) demonstrate how a mix of deciduous and 

evergreen species that, though present in a relatively even mix and have differing rates of growth, 

result in a low THdiv (see Table 12 page 66). In both survey datasets a clear continuous height 

canopy can be seen from first/single returns with only a few coniferous trees extending above this 

layer. Again the realisation of the lower canopy is much improved in the leaf-off survey without 

compromise of the upper canopy realisation. Penetration to the ground in the leaf-on LiDAR dataset 

is severely limited and the leaf-off maximum return height is noticeably higher (around 33m as 

opposed to around 31m for the leaf-on survey).  

 

  

 

 

The tree species diversity in plot 2 is the highest of the surveyed plots (with 7 different tree species 

surveyed) but it has a low THdiv (see Table 12 page 66). Both coniferous and deciduous tree shapes 

Figure 27. A plot of return height by 

easting from each survey over plot 

2. a) Under leaf-on conditions. b) 

Under leaf-off conditions. 

a) Plot 2 Leaf-on 

b) Plot 2 Leaf-off 



 

81 

 

can be seen clearly in the graphics from both surveys (see Figure 27 page 80) but the leaf-on dataset 

seems to have far more last returns reflecting from the canopy. There does not seem to be a large 

difference in the penetration of first and last returns to the classified ground and both seem to have 

returns from some form of understorey and the lower branches.  

 

Plot 22, shown in Table 12 page 66 to have the highest THdiv and DBHdiv, has a unique structure 

(see Figure 28). Though the point density for the leaf-on dataset in this plot is slightly lower than 

the leaf-off (approximately 21ppm² and 25ppm² respectively) there are large visual differences. 

There is a distinct difference between first and last point distributions between survey conditions. 

The penetration of the first returns through the leaf-on canopy is restricted with few first returns 

reaching the ground. Visibility of the understorey can be found in the leaf-off dataset with smaller 

Holly trees and bushes towards the lower right. 

 

 

 

 

Figure 28. A plot of return height by 

easting from each survey over plot 22. a) 

Under leaf-on conditions. b) Under leaf-off 

conditions. 

 

a) Plot 22 Leaf-on 

b) Plot 22 Leaf-off 
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Plot 11 (see Figure 29) is a good example of evergreen plot pulse distribution under leaf-on and -

off conditions. The only substantial difference that can be spotted between plots is the thickness 

of the low level understorey between surveys. Aside from this the point distributions between 

datasets seem very similar. Plot 12 (see Figure 22 page 73) was identified as having unusual changes 

in pulse penetration from an evergreen plot between seasons, Figure 30 (page 83) displays the 

difference in pulse penetration in more detail. It is clear that the pulse penetration of the first/single 

returns is much higher under leaf-off conditions in contrast to the other evergreen plots. When 

analysing this plot in more detail utilising the maximum heights in a 1x1m gridded format to create 

a rasterised CHM it is clear that multiple lines of thinning from a northwest to southeast direction 

had taken place leading to this openness of canopy (see Figure 31 page 83). Because of this plot 12 

had to be removed from further inclusion in the study. After similar analysis of the remaining plots 

in this way, plot 12 was the only one to display this thinning. This reduced the number of evergreen 

coniferous dominated plots to three.  

 

Figure 29. A plot of return height by 

easting from each survey over plot 

11. a) Under leaf-on conditions. b) 

Under leaf-off conditions. 

a) Plot 11 Leaf-on 

b) Plot 11 Leaf-off 
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Figure 31. 1x1m gridded maximum canopy heights for plot 12. The scale is from dark to light: low to high. a) 

Leaf-on. b) Leaf-off with corridors of removed trees indicated.  

 

This section has demonstrates the differences between the pulse distributions of the leaf-on and –

off datasets. The leaf-off returns over deciduous and some mixed plots seem to be much more 

skewed towards the lower elevations than the leaf-on returns but the point distributions within 

evergreen plots (aside from plot 12 which has been removed from analysis) do not seem to differ 

Figure 30. A plot of return height by 

easting from each survey over plot 12. a) 

Under leaf-on conditions. b) under leaf-

off conditions. 

a) Plot 12 Leaf-on 

b) Plot 12 Leaf-off 

a) b) 
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substantially between seasons. The leaf-off point distributions show a larger height range than the 

leaf-on. 

 

5.2.4 Forest Diversity Metrics 

 

This section focuses on the tree size diversity metrics calculated from the terrain normalised point 

clouds (see section 4.3.3.2 ) using LiDAR >2m from the ground surface. The differences between 

mobilisations has shown to affect all LiDAR point distributions (see sections 5.2.1 to 5.2.3 First and 

Last Returns). Differences in calculated diversity metrics between surveys can be seen in Table 18. 

Table 19 (page 85) explores whether the differences in the diversity metrics averaged over each 

plot group are statistically significantly different between surveys. 

 

Variable Mean SD Min Max   Mean SD Min Max 

Leaf-off 
    

 Leaf-on     

CV 0.265 0.076 0.137 0.407  CV 0.285 0.160 0.145 0.999 

skew -1.199 0.687 -3.240 0.200  skew -1.047 1.325 -6.120 2.520 

kurt 5.266 2.937 2.210 15.530  kurt 4.873 2.503 1.630 10.210 

SD 4.200 1.201 2.120 7.130  SD 4.458 2.500 1.630 15.920 

var 19.008 10.513 4.490 50.900  var 17.454 10.922 3.640 43.440 

P99/25 1.655 0.330 1.240 2.776  P99/25 1.702 0.396 1.278 2.829 

P99/50 1.358 0.173 1.147 1.984  P99/50 1.334 0.213 0.557 1.939 

P99/75 1.208 0.098 1.085 1.493  P99/75 1.211 0.102 1.087 1.548 

P99/90 1.111 0.046 1.050 1.234  P99/90 1.091 0.167 0.255 1.252 

L-CV 0.141 0.046 0.073 0.233  L-CV 0.139 0.05 0.076 0.247 

Table 18. Descriptive statistics surrounding the LiDAR derived diversity metrics 

 

In Table 19 (page 85) the only statistically significant difference in calculated diversity between the 

two surveys (within each group) can be seen in skewness and kurtosis in the deciduous plots and 

the ratio of the 99th and 25th percentile in the mixed plots. Variance and kurtosis have large 

differences within the evergreen plots (-0.558 and -0.520 respectively) (though the difference is not 

significant) but other diversity variables show smaller differences between surveys. 
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 Deciduous Evergreen Mixed 

 
D  σ D  σ D  σ 

SD -0.048 A 0.856 -0.085 A 0.705 -0.433 A 0.849 

var 0.002 A 8.787 -0.558 A 4.023 -4.028 A 7.853 

skew 0.248 **B 0.274 0.083 A 0.596 0.072 A 0.406 

kurt -0.852 *B 1.689 -0.520 A 1.506 0.397 B 1.141 

L-CV 0.004 A 0.042 -0.002 B 0.025 -0.011 A 0.039 

P99/25 0.123 B 0.339 -0.013 B 0.062 -0.059 B 0.239 

P99/50 0.015 A 0.047 -0.012 B 0.026 -0.023 A 0.088 

P99/75 0.005 A 0.022 -0.002 B 0.011 0.002 A 0.041 

P99/90 0.004 A 0.014 -0.004 B 0.005 0.015 *A 0.019 

CV 0.002 A 0.073 -0.003 A 0.053 -0.020 A 0.067 

Table 19. A summary of the differences (D) between selected diversity metrics calculated from the leaf-on 

and –off datasets. A positive ‘D’ indicates that leaf-on metrics were that amount of metres higher than leaf-

off metrics. A negative ‘D’ indicates that leaf-on metrics were that amount of metres lower than leaf-off 

metrics. ‘A’ indicates normally distributed variables that underwent a paired t-test. B indicates non-normally 

distributed variables underwent the sign rank test. *=significantly different at the 95% CI **=significantly 

different at the 99% CI 

 

Aside from comparing metrics between datasets it is also important to investigate the relationship 

between variables within each dataset. Clear relationships between diversity variables, such as that 

exhibited by the CV and L-CV or some of the percentile means (see Figure 32 page 87 and Figure 33 

page 88), are important to note. This is because when creating the predictive models for forest 

diversity, variables displaying such relationships should not be utilised in the same models as they 

would add little additional predictive power. Many of the statistical relationships displayed are 

expected; Strong correlations between percentile means is anticipated as they are calculated in 

similar ways from ratios of specific quantiles in the data. As standard deviation is equal to the square 

root of the variance it is also expected that these would share a curvilinear relationship. The 

correlation of skewness with other variables seems to be much tighter in the leaf-off data than the 

leaf-on. 

 

http://en.wiktionary.org/wiki/%CF%83
http://en.wiktionary.org/wiki/%CF%83
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Any outliers easily identified in the correlations (Figure 32 page 87 and Figure 33 page 88) were 

investigated to ensure they were not the result of data entry errors or errors in calculation. As a 

result, all outliers still present in the dataset are verified results that, though they may not fit the 

general correlations shown between variables, would have no reason to be omitted and are a 

reflection of the diversity within the sample sites.
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Figure 32. Graph matrix showing 

the correlation between the 

diversity variables calculated 

from the Leaf-on dataset.  

 



 

 

 

8
8

 

 

Figure 33. Graph matrix showing the 

correlation between the diversity 

variables calculated from the Leaf-off 

dataset 
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5.3 Investigating Tree Size Diversity 

 

5.3.1 Diversity variable predictive power 

 

It would be expected that due to the visual and statistical differences between the two LiDAR 

datasets there would be differences in the ability of models created from these to describe the field 

diversity variables. The calculated LiDAR metrics from each dataset were regressed against each 

field diversity measurements to assess the descriptive ability of each after normalisation of non-

normal variables. With reference to Table 20 page 90, LiDAR diversity metrics calculated from the 

leaf-off dataset show a greater number of significant relationships (both at the 99 and 95% CI) to 

the field diversity measurements than those calculated from the leaf-on dataset. However, both 

datasets show statistically significant predictive power towards most of the diversity metrics. The 

THdiv and DBHdiv have the strongest relationship with the LiDAR datasets (R2 of above 0.5 in both 

datasets). The Cldiv and CWdiv share significant relationship with the leaf-off CLdiv) but this is not 

the case with the THdiv or DBHdiv where the leaf-on dataset shows generally higher R² values. 

 

The relationships for P99/25, skewness and kurtosis, the three variable that show statistically 

significant relationships with each of the field diversity variables, are shown in more detail in Figure 

34, Figure 35 and Figure 36 pages 91 and 92.  This again reflects the similarities in the predictability 

of both LiDAR datasets despite the visual and statistical differences.   
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LiDAR 

Variables Field tree size diversity indices 

  Tree Height diversity   DBH diversity   CL Diversity   CW diversity 

  leaf-on leaf-off   leaf-on leaf-off   leaf-on leaf-off   leaf-on leaf-off 

  R² 

p-

value R² 

p-

value   R² 

p-

value R² 

p-

value   R² 

p-

value R² 

p-

value   R² 

p-

value R² 

p-

value 

𝑃99/25−1 0.43 <0.001 0.45 <0.001   0.49 <0.001 0.54 <0.001   0.25 0.008 0.52 <0.001   0.14 0.043 0.24 0.006 
1

𝑃99/502  0.19 0.016 0.23 0.009   0.31 0.001 0.32 0.001   0.24 0.007 0.4 <0.001   0.07 0.166 0.12 0.062 
1

𝑃99/753  0.03 0.375 0.08 0.125   0.09 0.117 0.15 0.036   0.09 0.111 0.2 0.013   0.01 0.704 0.03 0.4 

P99/90 0.02 0.491 0.02 0.413   0.06 0.205 0.07 0.151   0.1 0.098 0.07 0.07   0 0.742 0.01 0.574 

CV 0.48 <0.001 0.5 <0.001   0.4 <0.001 0.49 <0.001   0.1 0.085 0.43 <0.001   0.07 0.153 0.21 0.012 

skew 0.24 0.006 0.32 0.001   0.43 <0.001 0.42 <0.001   0.41 <0.001 0.39 <0.001   0.17 0.022 0.18 0.021 

Log(kurt) 0.54 <0.001 0.52 <0.001   0.54 <0.001 0.53 <0.001   0.29 0.002 0.46 <0.001   0.19 0.017 0.26 0.004 

L-CV 0.5 <0.001 0.52 <0.001   0.44 <0.001 0.52 <0.001   0.12 0.057 0.46 <0.001   0.09 0.104 0.23 0.008 

var 0.46 <0.001 0.45 <0.001   0.34 0.001 0.42 <0.001   0.1 0.084 0.34 0.001   0.06 0.119 0.18 0.021 

SD 0.46 <0.001 0.44 <0.001   0.37 <0.001 0.44 <0.001   0.1 0.084 0.33 0.001   0.07 0.145 0.19 0.017 

Table 20. The R2 and p-values from each individual linear regression the field diversity measurements and LiDAR metrics are summarised here. The LiDAR metrics were calculated from 

all returns above 2m to remove the effect of understorey and after normalisation (normalised variables are highlighted blue). R2 values that are significant at a greater than 99% CI are 

highlighted in green, those at the 95% CI are highlighted in yellow
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Figure 34. Scatter plots to demonstrate the relationship between the field diversity metrics and the kurtosis 

of each LiDAR derived diversity metric, leaf-on and –off 

 

Figure 35. Scatter plots to demonstrate the relationship between the field diversity metrics and the means of 

the 99th and 25th percentile of each LiDAR derived diversity metric, leaf-on and –off. 
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Figure 36 Scatter plots to demonstrate the relationship between the field diversity metrics and the Skewness 

of each LiDAR derived diversity metric, leaf-on and –off 

 

5.3.2 Summary of Models 

 

Models describing field measured tree size diversity metrics are summarised in Table 21 page 93 

and further summary statistics are covered in Table 22 page 94. There are 10 models in total, 4 

models constructed of leaf-on variables describing tree size diversity field metrics, 4 models 

constructed of leaf-off variables describing tree size diversity field metrics and 2 models where both 

leaf-on and leaf-off diversity metrics were combined to describe THdiv and DBHdiv. When 

constructing models for CLdiv and CWdiv no suitable combination of variables would produce a 

model describing field diversity with any significance and so these are not present.  
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Model Equation 

1 𝑇𝐻𝑑𝑖𝑣 = 0.234 − 0.090 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑛) + 0.003𝑉𝑎𝑟𝑙𝑜𝑛  

2 𝑇𝐻𝑑𝑖𝑣 = 0.233 − 0.092 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓) + 0.003𝑉𝑎𝑟𝑙𝑜𝑓𝑓  

3 𝑇𝐻𝑑𝑖𝑣 = 0.245 − 0.104 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓) + 0.004 × 𝑉𝑎𝑟𝑙𝑜𝑛  

4 𝐷𝐵𝐻𝑑𝑖𝑣 = 0.139 + 0.087𝑆𝑘𝑒𝑤𝑙𝑜𝑛 + 0.044𝑆𝐷𝑙𝑜𝑛  

5 𝐷𝐵𝐻𝑑𝑖𝑣 = 0.791 + 0.103𝑆𝑘𝑒𝑤𝑙𝑜𝑓𝑓 + 0.048𝑆𝐷𝑙𝑜𝑓𝑓 − 0.576𝑃99/90𝑙𝑜𝑓𝑓  

6 𝐷𝐵𝐻𝑑𝑖𝑣 = 0.115 + 0.004𝑉𝑎𝑟𝑙𝑜𝑓𝑓 + 0.064𝑆𝑘𝑒𝑤𝑙𝑜𝑓𝑓 + 0.433𝐶𝑉𝑙𝑜𝑛  

7 𝐶𝐿𝑑𝑖𝑣 = 0.285 + 0.065𝑆𝑘𝑒𝑤𝑙𝑜𝑛  

8 𝐶𝐿𝑑𝑖𝑣 = 0.35 + 0.568
1

𝑃99/75𝑙𝑜𝑓𝑓
3 − 0.892

1

𝑃99/50𝑙𝑜𝑓𝑓
2 + 0.002𝑉𝑎𝑟𝑙𝑜𝑓𝑓  

9 𝐶𝑊𝑑𝑖𝑣 = 0.267 − 0.051 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑛)  

10 𝐶𝑊𝑑𝑖𝑣 = 0.286 − 0.061 log(𝐾𝑢𝑟𝑡𝑙𝑜𝑓𝑓)  

Table 21. Models constructed for tree size diversity variables. 

 

Throughout model construction various tests of collinearity, normality, model specification and 

homogeneity of residuals (described in Section 4.4.1) were undertaken and those that violated 

some of the assumptions required were undertaken with Robust Standard Errors as discussed.  

From Table 22 (page 94) it is apparent that models 1 and 2 similarly describe approximately 65% of 

the variability in THdiv. However when combining LiDAR derived diversity metrics from both 

datasets in model 3 this increases to 77%. The values for RMSE, signifying the accuracy of the 

models, seem very low. This would usually be an indicator of alarmingly high accuracy however 

considering RMSE depends on the unit of measurement, in this case the diversity metrics or L-CV 

of field variables, these low values are sensible. 

 

Out of the further single survey models (4, 5 and 7-10) leaf-off LiDAR derived variables seem to 

consistently produce models which describe a greater proportion of the field diversity (71% versus 

61% for DBHdiv, 62% versus 41% for CLdiv and 26% versus 19% for CWdiv). Again, the combined 

model describing DBHdiv (model 6) performs better than single survey models 4 and 5, but only 

slightly, accounting for 1-4% more DBH diversity. Models for CWdiv seem to perform poorly 
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compared to the models linked to the other field diversity variables accounting for only 19% and 

26% of the CWdiv variability. As mentioned in Section 5.3.2 no models constructed with combined 

leaf-on and leaf-off diversity variables could describe the field diversity variables with any 

significance and so are omitted here. 

 

 Model Dataset 
Independent 
Variables 

t P>|t| RMSE R² F p  

THdiv  

1 
Leaf-on 

Kurtosis -4.97 0.000 
0.05 0.65 29.12 0.0000 

Robust 
standard 
errors Variance  1.85 0.075 

2 
Leaf-off 

Kurtosis -3.88 0.001 
0.05 0.65 24.68 0.0000  

Variance 3.12 0.004 

3 Leaf-on 
&  Leaf-
off  

Kurtosis (leaf-off) -6.04 0.000 
0.04 0.77 44.98 0.0000  

Variance (leaf-on) 5.41 0.000 

DBHdiv 

4 
Leaf-on 

Skewness 6.37 <0.001 
0.06 0.68 30.76 0.0000 

Robust 
standard 
errors SD 3.44 0.002 

5 

Leaf-off 

Skewness 4.82 0.000 

0.06 0.71 20.82 0.0000  SD 4.96 0.000 

P99/90 -2.34 0.027 

6 Leaf-on 
&  Leaf-
off  

Variance (leaf-off) 3.18 0.004 

0.06 0.72 22.00 0.0000  Skewness (leaf-off) 3.56 0.001 

CV (leaf-on) 2.85 0.008 

CLdiv 

7 
Leaf-on  Skewness 4.36 <0.001 0.06 0.41 19.02 0.0002 

Robust 
standard 
errors 

8 
 

Leaf-off 

P99/75 2.57 0.016 

0.05 0.62 13.94 0.0000  P99/50 -3.63 0.001 

Variance 2.05 0.050 

CWdiv 

9 
Leaf-on Kurtosis -2.47 0.020 0.05 0.19 3.95 0.0197 

Robust 
standard 
errors 

10 
Leaf-off Kurtosis -3.58 0.001 0.05 0.26 9.57 0.0013 

Robust 
standard 
errors 

Table 22. Summary of constructed diversity models. Each field diversity measurement has a corresponding 

model created from leaf-off LiDAR derived diversity metrics and leaf-on LiDAR derived diversity metrics.  

THdiv and DBHdiv also have a corresponding model created from a combination leaf-on and leaf-off LiDAR 

derived diversity metrics where this improved the accuracy of the regression.  Similar models were not 

included for the CLdiv and CWdiv as the predictive ability of these compared to the single dataset model was 

lower. 
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6. DISCUSSION AND CONCLUSIONS 

 

This section will discuss in more detail observations made in Chapter 5 and relate these to relevant 

studies in the literature to answer the following research questions: 

 

1. How does the seasonal time of capture impact upon the LiDAR point distributions and 

structural diversity metrics generated from the LiDAR point cloud? 

2. What is the relative accuracy of models describing tree size diversity metrics generated 

from leaf-on LiDAR derived diversity metrics, leaf-off LiDAR derived diversity metrics and 

models generated from a mix of the two? 

3. Can this tell us anything about when is best to undertake airborne LiDAR survey when 

modelling forest structure diversity and assessing biodiversity? 

 

The layout is outlined to reflect the objectives of the study. Objective 1 (to remove systematic bias 

between surveys) has been carried out within 4.3.1 Initial Filtering of the LiDAR Datasets and 

Assessment of Relative Accuracy and 4.3.2 and this section is organised as follows to realise the 

remaining objectives: 

 

- 6.1 Comparing forest structure and structural diversity metrics calculated from leaf-off and 

–on LiDAR datasets 

As all relevant forest structure metrics and structural diversity metrics have been calculated 

(and displayed in Chapter 5 sections 5.1 and 5.2) this section will directly compare these 

between surveys whilst discussing the potential reasons for similarities and differences based 

around the influence of seasonal changes, growth between surveys and differences in survey 

parameters. This will provide the answer to research question 1. 
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- 6.2 Assessing the relative capacity of leaf-on and -off LiDAR derived structural diversity 

metrics to describe true structural diversity in Chopwell Woodland Park 

In this section the relative capacity of forest diversity metrics calculated from LiDAR datasets 

which have been correlated to the field metrics (section 5.3) will be discussed, assessing the 

individual metrics themselves and also the models derived from these. This will provide the 

answer to research question 2. 

 

- 6.3 Assessing what the outcomes mean for LiDAR survey planning for forest biodiversity 

investigations in the UK 

This section will assess how applicable the results from this study are to forest sites across 

the UK and consider how use of either of the LiDAR datasets in isolation could potentially 

impact on outputs of biodiversity investigations. This will provide the answer to research 

question 3. 

 

To maintain continuity and clarity throughout each section will be concluded separately. 

 

6.1 Comparing Forest Structure and Structural Diversity Metrics Calculated from 

Leaf-on and –off LiDAR Datasets 

 

6.1.1 Comparing Leaf-on and –off LiDAR Point Distributions 

 

6.1.1.1 Canopy return point distributions 

 

As discussed in section 5.2.1 and shown in Figure 22, reproduced on page 98 for reference, the 

minimum and maximum of all LiDAR return heights between the leaf-on and leaf-off plot datasets 
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do not show very large differences. This could reflect the rigorous co-registration process 

undertaken (see Chapter 4 section 4.3.2) where datasets where corrected for absolute alignment 

over hard surfaces to make them directly comparable. However, the maximum heights across all 

plots are consistently larger under the 2011 leaf-off conditions by an average of approximately 

57cm across all plots. In deciduous plots the increase is on average 41cm from leaf-on to –off but 

this rises to an average of 87cm in coniferous evergreen plots. It is accepted in this study that a 

proportion or all of this increase in maximum return height in evergreen plots between surveys is 

due to tree growth and/or changing survey parameters. Evergreen plots are of high interest as they 

allow the opportunity to isolate the growth and sensor/flight parameter variations between surveys 

for assessment. Using the average difference in maximum height between surveys over evergreen 

plots and negating this from the differences in return height in the remaining plot groups provides 

some indication of the influence of seasonal canopy change without further complication.  

 

Using this principle results could suggest there would be a decrease in maximum return heights 

from leaf-on to –off datasets of around 7cm in mixed and 42cm in deciduous plots. It is likely that 

the correction to be applied from the evergreen plot return height differences is simplistic (as the 

number of useable plots is low and merchantable coniferous species in Chopwell Woodland Park 

have purposefully faster growth rates) but it is utilised to infer what the results could potentially 

have been had the survey parameters been identical and the surveys taken within months of one 

another. 
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Figure 22. (Reproduced from section 5.2.1) Box plots of LiDAR return heights. The arms of the box plot 

represent all values within 1.5 x the interquartile range and grey markings on each graph represent returns 

outside of these boundaries. a: Deciduous plots. b:Mixed plots. c: Evergreen plots.  

 

 

b. 

a) Deciduous 

b)   Mixed 

c)    Evergreen 
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 Deciduous  Evergreen Mixed  

 
D  σ Dcorr D  σ D  σ Dcorr 

P75 -0.25 A 0.526 0.45 -0.70 *A 0.25 -0.40 A 1.00 0.30 

P90 -0.25 *B 0.462 0.46 -0.71 *A 0.28 -0.83 *A 0.94 -0.13 

P99 -0.20 B 0.420 0.64 -0.84 **A 0.26 -0.66 *A 0.69 0.18 

Table 23. A subset of Table 15 in section 5.2.1. A summary of the differences (D) between selected statistics 

calculated from the leaf-on and –off datasets. A positive ‘D’ indicates that leaf-on metrics were that amount 

of metres higher than leaf-off metrics. A negative ‘D’ indicates that leaf-on metrics were that amount of 

metres lower than leaf-off metrics.  ‘A’ indicates normally distributed variables that underwent a paired t-

test. B indicates non-normally distributed variables underwent the sign rank test. *=statistically significantly 

different at the 95% CI **=statistically significantly different at the 99% CI. Dcorr corresponds to the 

difference values corrected for the difference in the evergreen coniferous plots. 

 

The upper percentiles of return height (P99, P90 and P75) originally show a negative difference 

from leaf-on to leaf-off (see Table 23) but after correction these change to positive values, the 

largest in the deciduous plots (an increase of up to 64cm in return height from leaf-off to leaf-on). 

These results show some increase in penetration through deciduous and mixed canopies under 

leaf-off conditions, with a much greater effect in deciduous plots. This indicates that the absence 

of deciduous leaves during winter months may present a more porous upper canopy, resulting in 

maximum LiDAR return heights reflecting from lower canopy layers than during leaf-on conditions. 

It could be possible that smaller differences between mixed plots from leaf-on to off could be due 

to laser pulses reflecting off the relatively abundant coniferous trees compared to the complete 

absence of coniferous trees in many of the deciduous plots. This pattern is also reflected in the 

maximum return heights of first returns after correction (see Table 17 page 100) where in 

deciduous plots maximum first return heights were around 42cm higher under leaf-on conditions. 

This is inconsistent with findings from Ørka et al. (2010) and Næsset (2005) where maximum return 

heights from first returns (which are reflected from the upper canopy layers) were not significantly 

different between leaf-on and –off acquisitions when accounting for changes due to growth and 

http://en.wiktionary.org/wiki/%CF%83
http://en.wiktionary.org/wiki/%CF%83
http://en.wiktionary.org/wiki/%CF%83
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survey characteristics. However, in the case of Ørka et al. (2010), these comparisons were made 

from ground height corrected datasets which could be influenced by ground classification accuracy.  

 

First and Single Returns – difference leaf-on - leaf-off   
 

hmean σ 
 

hmax σ 
 

Hmean-

corr 

Hmax-

corr 

Deciduous plots -0.45 0.78 * -0.22 0.27 * -0.45 0.42 

Mixed plots -0.65 0.39 NS -0.65 0.39 *** -0.65 -0.01 

Evergreen plots 0.00 0.38 NS -0.64 0.36 NS 0.00 0.00 
       

  

Last Returns - difference leaf-on - leaf-off   
 

hmean σ 
 

hmax σ 
 

Hmean-

corr 

Hmax-

corr 

Deciduous plots 7.41 4.91 ** 0.94 1.05 ** 7.71 0.91 

Mixed plots 4.27 6.51 NS -0.21 0.64 NS 4.57 -0.19 

Evergreen plots -0.30 3.72 NS 0.03 0.81 NS 0.00 0.00 

Table 17. (Reproduced from section 5.2.3).  A summary of the differences in mean and maximum return 

height of the first and single and last returns between the leaf-on and –off datasets. hmean = difference in 

average mean return height across plot type, hmax = difference in average maximum return height across 

plot type. σ = standard deviation of the differences. A positive hmax or hmean indicates that leaf-on metrics 

were that amount of metres higher than leaf-off metrics. A negative hmax or hmean  indicates that leaf-on 

metrics were that amount of metres lower than leaf-off metrics. It also describes whether the leaf-on and 

leaf-off hmean and hmax are significantly different. NS=Not significant *=significant 0.05 **=significant 0.01 

***=significant 0.001. Hmean-corr and Hmax-corr correspond to values for Hmean and Hmax corrected for 

the differences in evergreen coniferous plots. 

 

It is interesting to note that the mean of first return heights in mixed and deciduous plots (after 

correction) show a negative difference from leaf-on to –off (Table 17). This means on average first 

returns could have been 45-65cm higher in the canopy during leaf-off conditions. It is difficult to 

explain the reasoning behind this, it could be an indication of the imprecise nature of the correction 

applied to the means from the evergreen plots or a result of tree growth. What is more convincing 

is the large positive difference between surveys between the means of the last returns before and 

after correction (up to 7.71 metres in deciduous plots and 4.57 metres in mixed plots though only 
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the deciduous plot difference is significant). This is in agreement with Næsset (2005) where it was 

shown that last return pulse measurements are in general more affected by canopy conditions than 

the first return data. Comparing the mean and maximum return height differences from the two 

surveys in evergreen plots also suggests that last returns are influenced more by growth and survey 

characteristics than first returns. Last return mean and maximum height difference also show much 

greater variability (σ = 0.64-6.51) than that of the first returns (σ = 0.27-0.78). This is also again in 

agreement with Wasser et al. (2013) who found laser pulse penetration lower in the canopy 

appeared more variable compared to top of the canopy penetration between survey conditions. In 

support of the patterns shown in the LiDAR metrics the selected visual representations of LiDAR 

return height against easting (Figures 25-30 section 5.2.3) visually demonstrate the clear 

differences between the penetrability of last returns between the two surveys in mixed and 

deciduous plots. This is in agreement to the study by Ørka et al. (2010) where it was found that the 

‘last of many’ return height category showed a larger difference in height distributions which were 

shifted ground-wards under leaf-off conditions. These visualisations also highlight differences in 

understorey conditions between the surveys with greater levels of understorey seemingly present 

under leaf-off conditions due to the point in the season when the leaf-off dataset was collected. 

The additional understorey does not seem to have affected the distribution of last returns 

penetrating through the canopy during leaf-off conditions.   

 

The interquartile range in deciduous and mixed plots generally increases in leaf-on conditions and 

the mean is lower in the canopy compared to leaf-off conditions (see Figure 22 page 98). This is in 

agreement with the findings of Wasser et al. (2013) who found laser pulse penetration lower in the 

canopy appeared more variable compared to top of the canopy penetration between survey 

conditions under hardwood trees. In contrast differences in point distribution shapes through the 

evergreen plots (after exclusion of plot 12) are minimal (see Figure 22 page 98). The differences in 
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deciduous and mixed plot interquartile range and mean highlights the influence of seasonal canopy 

coverage on the point distributions.  

 

6.1.1.2 Ground Return Point Distributions 

 

As shown in Figure 22 page 98 the minimum return height appears lower during the leaf-off 

conditions, even without correction of growth and survey variables. This is in agreement with 

statistics in Table 24 showing leaf-on LiDAR generally overestimated the ground height in 

comparison to leaf-off (hence the many positive differences). Gatziolis et al. (2010) also found that 

DTMs derived from LiDAR datasets were affected by canopy conditions (leaf-on and –off) and that 

using leaf-on LiDAR generally overestimated the ground surface while using leaf-off led to less 

overestimation. However, it should be noted that though leaf-on datasets tended to overestimate 

the ground surface, often statistically significantly more than leaf-off, these differences generalised 

come to only sub-10cm.  

 

 

 

 

 

Table 24. A summary of Table 16 from section 5.2.2 showing the mean height of the classified ground points 

in each plot group and the average difference.. 

 

There were, however, some exceptions to the leaf-on overestimation of ground classification, such 

as plots 22 and 6 which show negative differences converse to most other plots and the literature. 

However, these negative differences in average ground classified return heights between leaf-on 

and -off datasets are either insignificant or the number of ground returns per plot was so 

  
Mean z (m nearest cm) 

  Plot leaf-on leaf-off Leaf-on-Leaf-off 

Deciduous Average 147.36 147.28 0.08 

Mixed Average 137.76 137.74 0.03 

Evergreen Average 160.84 160.76 0.08 
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incomparable it was likely this affected the significance of the distribution difference. A similar 

result was shown by Hollaus et al. (2006) as though the authors expected the summer DTM to be 

higher than the winter DTM they found positive and negative differences between the two were 

equally abundant. This was due to the comparatively low amount of ground classified returns in the 

leaf-on dataset leading to over and underestimation of the ground as it was interpolated across the 

gaps.  

 

It is interesting to note that there is a significant difference between the ground models from some 

evergreen plots where the leaf-on DTM is around 11cm higher than the leaf-off. Both Hollaus et al. 

(2006) and Hadley and Smith (1986) have considered the fact that the coniferous tree crowns are 

more transparent for infra-red laser pulses in winter than in summer due to higher needle mortality 

during this time. Though these results are based on forests in the Rocky Mountains USA and 

changes in climate for Chopwell Woodland Park winter to summer will be less extreme it may play 

a small part in the increased evergreen coniferous penetration during this time. 

 

6.1.2 Comparing Leaf-on and –off LiDAR Derived Structural Diversity Metrics 

 

The LiDAR derived diversity metrics primarily provide information regarding forest structure 

diversity in each plot. However, these metrics, like the point height distributions, are also influenced 

by scanner/flight parameters and growth, which can be investigated by looking at the difference 

between diversity statistics derived from the leaf-on and –off LiDAR dataset over evergreen plots, 

similar to sections 6.1.1 and 6.1.2. As noted in section 6.1.1.1 there are differences in return height 

distributions in evergreen plots between surveys however there are no significant effects seen in 

the diversity metrics (see Table 19 page 104). Evergreen plots generally show small and non-

significant differences in diversity metrics calculated between surveys. Mixed and deciduous plots 

are more variable, showing some larger and statistically significant differences between surveys, 
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indicating the influence of changing canopy conditions on the derived diversity metrics. Næsset 

(2005) found that the CV of LiDAR canopy height was significantly higher under leaf-off conditions 

and Wasser et al. (2013) found that the CV of all none ground returns differed significantly between 

surveys for all plot types aside from evergreen coniferous plots. Only small and insignificant 

differences are seen in this study however. The study by Wasser et al. (2013) appears less affected 

by vegetation growth (with surveys less than a year apart) and sees no significant differences 

between percentile heights over what they term ‘deciduous simple’ plots but some significant 

differences between surveys in what they term ‘deciduous compound’ plots. This study does not 

differentiate between the two. 

 

 
 Deciduous Evergreen Mixed 

 
D  σ D  σ D  σ 

SD -0.048 A 0.856 -0.085 A 0.705 -0.433 A 0.849 

Variance 0.002 A 8.787 -0.558 A 4.023 -4.028 A 7.853 

Skewness 0.248 **B 0.274 0.083 A 0.596 0.072 A 0.406 

Kurtosis -0.852 *B 1.689 -0.520 A 1.506 0.397 B 1.141 

L-CV 0.004 A 0.042 -0.002 B 0.025 -0.011 A 0.039 

P99/25 0.123 B 0.339 -0.013 B 0.062 -0.059 B 0.239 

P99/50 0.015 A 0.047 -0.012 B 0.026 -0.023 A 0.088 

P99/75 0.005 A 0.022 -0.002 B 0.011 0.002 A 0.041 

P99/90 0.004 A 0.014 -0.004 B 0.005 0.015 *A 0.019 

CV 0.002 A 0.073 -0.003 A 0.053 -0.020 A 0.067 

Table 19. (Reproduced from section 5.2.4) A summary of the differences (D) between selected diversity 

metrics calculated from the leaf-on and –off datasets. A positive ‘D’ indicates that leaf-on metrics were that 

amount of metres higher than leaf-off metrics. A negative ‘D’ indicates that leaf-on metrics were that amount 

of metres lower than leaf-off metrics. ‘A’ indicates normally distributed variables that underwent a paired t-

test. B indicates non-normally distributed variables underwent the sign rank test. *=significantly different at 

the 95% CI **=significantly different at the 99% CI 

  

http://en.wiktionary.org/wiki/%CF%83
http://en.wiktionary.org/wiki/%CF%83
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It is interesting to note that the diversity variables which show significant differences from leaf-on 

to -off (skewness and kurtosis) are also shown to be common variables chosen for inclusion in the 

regression models which highlights the sensitivity of these metrics to changes in forest structure.  

 

6.1.3 Summary and Conclusions: How does the seasonal time of capture impact 

upon the LiDAR point distributions and structural diversity metrics generated 

from the LiDAR point cloud? 

 

Leaf-off LiDAR metrics in all plots seem to be consistently affected by growth and change of survey 

parameters compared to the leaf-on dataset, making the isolation and assessment of the effects of 

seasonal change difficult. However, by assessing the change from leaf-on to –off in evergreen 

coniferous plots and negating the same scale of differences from the remaining plot types this study 

attempts to go some ways to diminish these influences. After corrections were applied it appeared 

returns from mixed and deciduous plots would likely have higher maximum heights under leaf-on 

conditions, likely due to the reduction of the tree crown size in deciduous species due to leaf loss. 

Ground classification though slightly overestimated under leaf-on conditions, was comparable 

between surveys and therefore was not found to be influenced by canopy cover in this study 

(potentially due to the high point densities). Last return heights are shifted downward penetrating 

further into leaf-off canopies.  All of these conclusions match expectations regarding the 

relationship between canopy openness. 

 

None of the structural diversity metrics seemed to be significantly different between leaf-on and –

off datasets in the evergreen plots, though variance and kurtosis seemed to be most affected by 

growth and survey parameters showing the largest change between surveys. There were however 

significant differences between some of the deciduous and mixed variables: skewness and kurtosis 

in deciduous plots and P99/90 in mixed plots.  
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6.2 Assessing the relative capability of leaf-on and leaf-off LiDAR derived 

structural diversity metrics to describe actual structural diversity 

 

6.2.1 Assessing the relative relationships between metrics calculated from leaf-on 

and –off LiDAR datasets and the field derived structural diversity variables 

 

Both leaf-on and -off datasets appear to provide diversity variables which correlate significantly 

with the field structural diversity variables (see Table 25 page 109). Metrics calculated from the 

leaf-off LiDAR dataset show a greater number of significant relationships (p value < 0.05) to field 

diversity metrics than leaf-on derived metrics (see Table 25 page 109). Relationships between 

kurtosis and THdiv or DBHdiv display slightly stronger relationships under leaf-on conditions 

(R²=0.54; 0.52 (leaf-off; leaf-on kurtosis and THdiv), R²=0.54; 0.53 (leaf-on; leaf-off kurtosis and 

DBHdiv). Variance and standard deviation also display slightly stronger relationships with THdiv 

under leaf-on conditions however the remaining metrics generally share stronger and more 

significant relationships with tree size diversity variables under leaf-off conditions. Both Ørka et al. 

(2010) and Næsset (2005) found that estimation of biophysical properties under leaf-off conditions 

(in coniferous and mixed deciduous plots) was slightly improved compared to leaf-on. Gatziolis et 

al. (2010) and Wasser et al. (2013) found that under hardwood canopies (which describes the 

majority of the survey plots in this study) leaf-on LiDAR was less accurate at describing biophysical 

forest parameters due to the underestimation of tree heights. Despite the apparent greater 

descriptive abilities offered by the leaf-off LiDAR dataset in this study, the metrics derived from this 

share more collinearity (Figures 32 and 33 pages 87 and 88) with one another and so many are 

restricted from inclusion in the same models. 
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It might be expected that as the chosen LiDAR derived structure metrics are directly related to the 

height distribution of returns the predictive ability of these variables would be most effective for 

THdiv and CLdiv field variables – both directly related to the vertical heights of trees in each plot. 

Though THdiv is well described by many metrics, DBHdiv looks to be described slightly better in 

both leaf-on and -off datasets (table 25 page 109). There is a strong correlation between THdiv and 

DBHdiv (r=0.92 see Table 3 section 5.1 page 40). Strong relationships between tree height and DBH 

are well documented in the forestry literature and practice (Martin and Flewelling, 1998) but this 

relationship can get complicated when considering multiple species, stand densities and tree ages 

and so this unexpected result may be somehow related to the diverse field dataset. Conversely, 

though CWdiv is significantly correlated to a selection of LiDAR variables, the significance of these 

relationships is relatively low compared to others in the study. This is somewhat in agreement with 

regression analysis undertaken in Ozdemir and Donoghue (2013) where CWdiv could only be 

described statistically significantly by skewness and P99/25 at the 95% level of confidence. 

 

The LiDAR metrics CV, skewness, kurtosis and L-CV of return height correlate to many field diversity 

variables well whilst mostly maintaining a relatively low correlation amongst one another (aside 

from CV and L-CV which are understandably highly related). Though Watt et al. (2013) did not assess 

LiDAR diversity metrics against the same specific tree size diversity variables used in this study, the 

authors found that many metrics such as CV, SD, skewness and kurtosis of the LiDAR return heights 

displayed significant correlations to structural variables such as volume, mean top height and stand 

density. Similarly, Simonson et al. (2012) found that skewness of last returns was highly correlated 

with foliage height density (or the proportion of foliage in the canopy layers), mean understorey 

height and vegetation volume (R²  -0.69, -0.75 and -0.63 respectively p<0.01). Simonson et al. (2012) 

also investigated the relationship between standard deviation of first return heights and various 

forest structure metrics and could not identify any significant correlations. Conversely in this 

research standard deviation showed a significant relationships with all field structure variables 
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(though only the leaf-off versions of the metrics show a significant relationship to CLdiv and CWdiv). 

These differences could be due to the differences in point distributions analysed in this and the 

Simonson et al. (2012) study, the latter of which only considers standard deviation of first returns, 

and the differences in field metrics, this study focuses on diversity whereas the Simonson et al. 

(2012) study deals with direct biophysical measurements. Donoghue et al. (2007) found that the CV 

of LiDAR return height produced a negative relationship to proportion of Sitka Spruce (R² =0.914) 

and related this to the denser forest canopies that species provide inhibiting LiDAR pulse 

penetration creating lower CV.  

 

Ozdemir and Donoghue (2013) found that P99/90 appeared sensitive to changes in diversity indices 

compared to the other point-based LiDAR variables (see Table 25 page 109), this is in contrast to 

the findings of this study where this metric shows few significant relationships with any of the field 

diversity metrics despite the fact that the field and leaf-on datasets in both studies were comprised 

of around two thirds of the same data. 
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Variables Field tree size diversity indices 

  THdiv   DBHdiv   CLdiv   CWdiv 

  

leaf-

on 

leaf-

off 

 Ozdemir 

and 

Donoghue 

(2013)   

leaf-

on 

leaf-

off 

 Ozdemir 

and 

Donoghue 

(2013)   

leaf-

on 

leaf-

off 

 Ozdemir 

and 

Donoghue 

(2013)   

leaf-

on 

leaf-

off 

 Ozdemir 

and 

Donoghue 

(2013) 

  R² R²  R²   R² R²  R²   R² R²  R²   R² R²  R² 

𝑃99/25−1 0.43 0.45  0.36   0.49 0.54  0.34   0.25 0.52  0.15   0.14 0.24  0.05 
1

𝑃99/502  0.19 0.23  0.35   0.31 0.32 
 

0.42   0.24 0.4 
 

0.26   0.07 0.12 
 

0.12 
1

𝑃99/753  0.03 0.08  0.17   0.09 0.15 
 

0.19   0.09 0.2 
 

0.28   0.01 0.03 
 

0.06 

P99/90 0.02 0.02  0.41   0.06 0.07  0.43   0.1 0.07  0.35   0 0.01  0.1 

CV 0.48 0.5  0.3   0.4 0.49  0.25   0.1 0.43  0.04   0.07 0.21  0.01 

skew 0.24 0.32  0.31   0.43 0.42  0.35   0.41 0.39  0.31   0.17 0.18  0.15 

Log(kurt) 0.54 0.52  0.34   0.54 0.53  0.3   0.29 0.46  0.19   0.19 0.26  0.08 

L-CV 0.5 0.52  0.33   0.44 0.52  0.28   0.12 0.46  0.05   0.09 0.23  0.01 

var 0.46 0.45     0.34 0.42     0.1 0.34     0.06 0.18   

SD 0.46 0.44     0.37 0.44     0.1 0.33     0.07 0.19   

Table 25. (Table 20 from section 5.3.1 altered to include corresponding results from Ozdemir and Donoghue (2013)) The R2 values from each univariate linear regression between 

the field diversity measurements and LiDAR metrics are summarised here. The LiDAR metrics from both studies were calculated from all returns above 2m to remove the effect of 

understorey and the results from this study refer to the metrics after normalisation. R2 values that are significant at a greater than 99% CI are highlighted in green, those at the 95% 

CI are highlighted in yellow
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6.2.2 Assessing the Capacity for Models Constructed from Leaf-on and –off LiDAR 

Derived Metrics to Describe Tree Size Diversity Variables 

 

I believe this research can be confident that, through validation involving statistical analysis and 

analysis of graphical representations shown in Section 4.4.1, the regression models constructed are 

valid and largely describe tree diversity variables to a significant degree. The models were kept as 

simple as possible in order to be easy to conceptualise whilst not sacrificing any substantial 

accuracy. 

 

Model 3 describes up to 77% of THdiv utilising only leaf-off kurtosis and leaf-on variance (see Table 

22 page 111). It is likely that the combination of metrics from the two separate datasets was able 

to offer some form of advantage, due to the high value of the Link test (Link test value of 1.68, the 

largest of all of the models) suggesting that these variables could describe the variability in the field 

data very well. However, Villikka et al. (2012) mention that utilising leaf-on and –off LiDAR data 

within the same model would often be impractical. When isolating each dataset to construct 

models 1 and 2 these were able to describe 65% of the variability in THdiv.  
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 Model Dataset 
Independent 
Variables 

t P>|t| RMSE R² F p  

THdiv  

1 
Leaf-on 

Kurtosis -4.97 0.000 
0.05 0.65 29.12 0.0000 

Robust 
standard 
errors Variance  1.85 0.075 

2 
Leaf-off 

Kurtosis -3.88 0.001 
0.05 0.65 24.68 0.0000  

Variance 3.12 0.004 

3 Leaf-on 
&  -off  

Kurtosis (leaf-off) -6.04 0.000 
0.04 0.77 44.98 0.0000  

Variance (leaf-on) 5.41 0.000 

DBHdiv 

4 
Leaf-on 

Skewness 6.37 <0.001 
0.06 0.68 30.76 0.0000 

Robust 
standard 
errors SD 3.44 0.002 

5 

Leaf-off 

Skewness 4.82 0.000 

0.06 0.71 20.82 0.0000  SD 4.96 0.000 

P99/90 -2.34 0.027 

6 
Leaf-on 
&  -off  

Variance (leaf-off) 3.18 0.004 

0.06 0.72 22.00 0.0000  Skewness (leaf-off) 3.56 0.001 

CV (leaf-on) 2.85 0.008 

CLdiv 

7 
Leaf-on  Skewness 4.36 <0.001 0.06 0.41 19.02 0.0002 

Robust 
standard 
errors 

8 
 

Leaf-off 

P99/75 2.57 0.016 

0.05 0.62 13.94 0.0000  P99/50 -3.63 0.001 

Variance 2.05 0.050 

CWdiv 

9 
Leaf-on Kurtosis -2.47 0.020 0.05 0.19 3.95 0.0197 

Robust 
standard 
errors 

10 
Leaf-off Kurtosis -3.58 0.001 0.05 0.26 9.57 0.0013 

Robust 
standard 
errors 

Table 22. (Reproduced from section 5.3.2). Each field diversity measurement has a corresponding model 

created from leaf-off LiDAR derived diversity metrics and leaf-on LiDAR derived diversity metrics.  THdiv and 

DBHdiv also have a corresponding model created from a combination leaf-on and leaf-off LiDAR derived 

diversity metrics where this improved the accuracy of the regression.  Similar models were not included for 

the CLdiv and CWdiv as the predictive ability of these compared to the single dataset model was lower. 

 

Converse to expectations that regression models of THdiv would describe the most variability of all 

of the tree size diversity variables, it seems that single dataset models of DBHdiv (R²= 0.68, 0.71 

leaf –on and –off) surpass THdiv (R²= 0.65 for both leaf-on and –off). This mirrors what was shown 

in Table 25 (page 109) in the correlation of LiDAR diversity metrics and tree size diversity variables 

and is in agreement with Mura et al. (2015) who modelled DBHdiv and THdiv (or standard deviation 

of DBH and tree height respectively) from various height summary statistics and found the best to 
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describe DBHdiv (with an R²=0.63 utilising minimum, CV, skewness and 20th percentile of return 

height). This surpassed that describing THdiv (R² 0.52 utilising minimum, CV and 20th percentile of 

return height).  The large descriptive ability displayed by the THdiv and DBHdiv models is consistent 

with natural forest dynamics. Greater DBHdiv is linked to variability in tree size and shape, greater 

THdiv is more indicative of complex vertical forest structures and can be an excellent indicator of 

trees of different ages and species (Mura et al., 2015).  

 

Considering how the significance and strength of relationships between LiDAR return height metrics 

and field derived diversity variables differed between this research and the study conducted by 

Ozdemir and Donoghue (2013) (see section 6.2.1) it is not surprising that when constructing their 

own models to describe forest structural diversity the authors chose different point based metrics 

to be incorporated (such as P99/90, CV and P99/25). Often these variables are included together in 

the models which would not have been possible in this study due to the high correlation between 

them in both LiDAR datasets. When comparing models constructed in this study to models 

constructed by Ozdemir and Donoghue (2013) it is clear that their inclusion of gridded texture 

measures greatly improved the descriptive ability (for example describing THdiv they achieved an 

R² 0.85 and 0.75 compared to 0.65 in this study using a single dataset). Ozdemir and Donoghue 

(2013) found that texture measures were in fact superior to point based LiDAR metrics in explaining 

tree size diversity. Despite this, many additional authors have found point based metrics still of use 

to describe forest structure variables. Clawges et al. (2008) found that a LiDAR derived index of tree 

vegetation volume was highly correlated with the field-based tree vegetation density index (r²= 

0.68, r= 0.822, p<0.001, n= 204). 

 

Models describing CLdiv under leaf-on conditions and CWdiv under both survey conditions (7, 9 and 

10) show comparably lower and less significant descriptive abilities compared to models describing 

THdiv and DBHdiv. It is likely that the wide species diversity in the field dataset and the inability of 
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field methods to accurately constrain the whole crown footprint may have contributed to the 

models’ low descriptive power. Crown width and length can be highly related to variables such as 

tree spacing (Smith and Reukema, 1986; Khan and Chaudhry, 2007) which were not utilised as 

dependant variables in the models. 

 

Across the board leaf-off models seem to describe the variability in the field derived diversity 

variables to the same level as leaf-on models if not better. Villikka et al. (2012) also found that leaf-

off LiDAR derived variables created more accurate regression models of stand volume and could 

distinguish between coniferous and deciduous trees. However regression models created to 

estimate above ground biomass and species richness using leaf-on and –off LiDAR datasets in a 

study by Hernández‐Stefanoni et al. (2015) showed that a larger percentage of both was described 

by leaf-on data though the differences between the two were insignificant and use of either would 

be comparably accurate. 

 

Despite the differences identified between regression models constructed between the two LiDAR 

datasets, the metrics chosen for inclusion in all models were a consistently small group: kurtosis, 

variance, skewness and SD. Though L-CV and CV also displayed consistently high R² values when 

regressed against the independent diversity variables (0.46 – 0.53 for THdiv for example) these 

variables showed high levels of collinearity with many other variables and so could not be included 

alongside these.  

 

6.2.3 Summary and Conclusions: What is the relative accuracy of models describing 

tree size diversity metrics generated from the LiDAR datasets? 

 

Both leaf-on and -off datasets appear to provide diversity variables which correlate significantly 

with the field data. These are generally at a comparable level of correlation though selected leaf-
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on or –off survey derived variables may be higher when regressed against specific field diversity 

variables. Leaf-off variables generally more significantly account for greater proportions of tree size 

diversity than leaf-on, especially with CLdiv and CWdiv. Variables which described tree size diversity 

well and were compatible for inclusion into multivariate models included kurtosis, variance, 

skewness and SD. 

 

The regression models constructed from both datasets largely describe tree diversity variables to a 

significant degree.  Leaf-off models tend to account for the same or greater amounts of variability 

in the field metrics than leaf-on, especially when considering crown shape diversity indices such as 

CLdiv and CWdiv. When the datasets are combined the regression model is able to describe over 

10% more of the variance in THdiv than the leaf-on or –off datasets alone, though the practicality 

of creating such regression models is called into question due to the low cost effectiveness of 

multiple LiDAR surveys over the same area for research purposes alone.  

 

6.3 Understanding What the Outcomes of Sections 6.1 and 6.2 Mean for LiDAR 

Survey Planning for Forest Biodiversity Investigations in the UK 

 

6.3.1 Assessing how widely the applicability of observations obtained from this 

study could extend across the UK 

 

Though a purposive strategy for choosing additional sample plots that would increase structural 

diversity was utilised (see section 4.1.1.2) this was limited by the coverage of both datasets and 

recent management activity at Chopwell Woodland Park. This meant that a very small selection of 

primarily evergreen coniferous plots could be included representing only a small selection of 
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evergreen coniferous species, limiting the applicability of the summary statistics describing these 

regression models to be applicable across the UK. Inclusion of more evergreen coniferous plots may 

have increased the accuracy of growth and sensor parameter corrections, enabling clearer 

assessments of the seasonal changes in tree biophysical parameters.  Despite this it is questionable 

whether inclusion of more evergreen coniferous plots would have significantly improved the 

assessments of tree size diversity in this study. This is because the evergreen forested areas covered 

by both LiDAR campaigns over Chopwell Woodland Park do not incorporate more diverse age and 

species mixes than those already included due to their commercial management. Therefore it is 

unlikely that addition of further evergreen plots within the capture area would enhance the 

structural variability of the field dataset or the robustness of the regression models. The range of 

structural diversity in the field sites could still be seen as relatively large (THdiv range 0.156) in 

comparison to the Ozdemir and Donoghue (2013) where the range of variables such as THdiv was 

smaller (0.136).   

 

Despite the apparent range of structural variability in the field dataset it would be naïve to assume 

that the selection of test sites within Chopwell Woodland Park is fully representative of all UK 

woodland. There are numerous environments which are not represented in the field data such as 

upland or wet woodlands comprising of species absent from this study. However, when considering 

low lying woodland comprised of common UK species, this dataset provides a satisfactory 

representation encompassing a range of management levels and additionally some stands of 

relatively rare ancient woodland. 
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6.3.2 Understanding How Differences Between Leaf-on and –off LiDAR Derived 

Forest Structure Metrics can Affect Estimates of Forest Biodiversity 

 

In this study, after a basic correction for the effects of survey parameters and growth, leaf-on LiDAR 

data appear to better realise the upper canopy layers than leaf-off returns which penetrate further 

into the canopy layers of deciduous and mixed forest types during the leaf-off months. This led to 

maximum return heights from the leaf-on LiDAR dataset being higher than the leaf-off (by an 

average of 42cm in deciduous plots as discussed in section 6.1.1.1) and with comparable ground 

classifications between surveys indications are that leaf-on LiDAR datasets could provide better 

estimations of canopy height. Direct measurements of canopy height have been correlated to the 

suitability of habitat for birds and mammals (North et al., 1999; Nelson et al., 2005) and can be used 

as an important indicator of forest successional stage (Morgan and Freedman, 1986).  

 

For modelling tree size diversity leaf-off LiDAR data appear to have an equal or better capacity to 

describe tree size diversity indices providing an important advantage. Vertical forest structure can 

in itself be used as a conceptual framework for habitat structure (McCoy and Bell, 1991) and so 

accurate LiDAR representations of this can be incredibly important. Clawges et al. (2008) and Goetz 

et al. (2010) found that LiDAR derived vegetation structure diversity data were positively and 

significantly correlated with indices of bird species diversity. Low diversity in overstorey structure 

has been linked to low understorey diversity in temperate forests by Lenière and Houle (2006)]. 

Greater tree height variability indicates trees of different ages and species that are more suitable 

to host multiple species of animals (Sullivan et al., 2001; Svensson and Jeglum, 2001; Zenner and 

Hibbs, 2000). Conversely, DBH diversity is a measure of the variability in tree size, and is considered 

indicative for the presence and for the diversity of micro-habitats within a forest (Acker et al., 1998; 

Van Den Meersschaut and Vandekerkhove, 2000). 
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6.3.3 Summary and Conclusions: When is best to undertake airborne LiDAR survey 

when modelling forest structure diversity? 

 

The results suggest strongly that both leaf-on and off airborne LiDAR datasets provide the capacity 

to describe the structural diversity of comparative lowland woodland across the UK. The results 

(see Table 22 page 111) and discussion in section 6.3.2 also should provide guidance into when may 

be most appropriate to undertake LiDAR acquisition flights for biodiversity analysis depending on 

the forest structural diversity metrics of interest. If diversity in tree height or DBH across a stand is 

used to facilitate mapping of habitat suitability for example (Sullivan et al., 2001; Svensson and 

Jeglum, 2001; Zenner and Hibbs, 2000) then it is unlikely that any significant improvements in LiDAR 

diversity estimations would be gained by undertaking a LiDAR survey at a particular time of year. 

However, some advantage may be gained in such a scenario when combining multi-seasonal LiDAR 

datasets as demonstrated by the greater ability of models to describe height and DBH diversity 

where leaf-on and –off diversity variables are combined. This would only be appropriate after 

careful co-registration of the multiple LiDAR datasets to avoid incorporating bias. Additionally, the 

advantages provided by combining datasets should be weighed up against the increased costs of 

additional surveys and time and effort taken to process additional datasets. 

 

This is not the case for crown shape diversity indices, better estimates of crown shape diversity 

(CLdiv and CWdiv) can be obtained from LiDAR data collected over deciduous and mixed 

deciduous/evergreen coniferous plots during leaf-off periods (see Table 25 page 109 and Table 22 

page 111). As discussed combining crown shape diversity metrics obtained from multi-season LiDAR 

datasets in models does not appear to provide an advantage.   
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7. EVALUATION AND FURTHER WORK 

 

7.1 Evaluation of methodology 

 

7.1.1 Potential Sources of Error 

 

7.1.1.1 Field Data  

 

The two field data collection campaigns utilised in this research were undertaken with the gap 

between spanning just under two years. The first field data collection period collected by Ozdemir 

and Donoghue (2013) spanned the period May-July 2011 and additional data collection to facilitate 

this study was undertaken in February and March 2013. Between field data collections and LiDAR 

surveys tree growth will have inevitably made the accuracy of representation of vegetation during 

LiDAR surveys variable. However, though analysis of tree size indices from the LiDAR were made 

and compared to the field data the main focus of the study was on diversity measures. It is 

demonstrated in Table 19 pages 85 and 104 that in plots with the fastest growing tree species 

(coniferous evergreen) the growth between surveys did not make a significant difference to the 

diversity metrics. 

 

The earlier field data collection took place under leaf-on conditions (May, June and July 2011) and 

could have affected the ability of the Vertex hypsometer to reach the very top of the tree crown 

through the occlusive canopy. This could result in underestimation of tree heights though it was 

endeavoured during fieldwork that the very top of the tree was visible to minimise these issues. 

Additionally as the Vertex hypsometer has the ability to travel around some small occlusive 

branches and leaves this further minimises this issue. 
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Finally, tree death, disease or tree fall could have occurred between field surveys or LiDAR surveys 

again reducing the relevance to the representations of the plots in the LiDAR surveys. However 

communication with the Forestry Commission indicated that it was unlikely any harvesting or 

management had taken place since the first round of field data collection this was independently 

assessed in the field and also checked in the LiDAR data (see section 5.2.3) and as a result plot 12 

was removed from analysis. 

 

7.1.1.2 LiDAR Data 

 

A large amount of effort was made to reduce both the systematic error between LiDAR datasets 

through co-registration, and random error through manual check of the point clouds for each plot. 

The only remaining potential source of error from the LiDAR dataset was the classification of the 

ground returns and correcting the corresponding point clouds to height above ground. Due to the 

differing levels of canopy openness it could be possible that one or both of the LiDAR datasets did 

not hold a true representation of the LiDAR ground surface.  This was taken into account by this 

study and added an additional factor to the performance assessment of each dataset. 

 

Though not necessarily an error, the time between surveys and change in survey parameters has 

shown to have greatly influenced the LiDAR derived metrics as discussed in detail in section 6. 

Though an immediately obvious significant influence on the tree size diversity metrics is not seen, 

this influence may have weakened the strength of the regression models in this study. 
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7.1.1.3 Contextual Data 

 

Due to the low precision in the Forestry Commission sub-compartment database delineating 

additional sample plots which encompassed the required tree size diversity was difficult in the field 

but will not have introduced error as no measurements came directly from this database. Though 

some contextual data such as plantation dates were incorporated into the study to aid the selection 

of new survey sites, again these were not directly used in analysis.  

 

7.1.2 Improvements 

 

If presented with the same LiDAR and field dataset again an improvement on the current methods 

could include resurvey of a large range of the field data plots after a set amount of time had passed 

(for example two years). This could provide vital growth information for the entire range of species 

present in the field plots and would allow for correction of growth between field data collections 

and between LiDAR surveys. This however would have required a significantly longer amount of 

time in the field which was unlikely to be accommodated during a master’s degree program 

timescale. 

 

An additional interesting task could have included isolation of the regression models by plot type, 

to see if seasonality influenced deciduous and mixed plots more than evergreen coniferous. 

However, this would have produced just under twice as many regression models to analyse and 

with ten models constructed within the study already allowing for a wealth of observations to be 

discussed this could be considered instead for future work.  

 

Despite the valuable conclusions drawn within this study there are further avenues that could be 

explored to reinforce or potentially challenge these. It would be incredibly useful to undertake a 
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similar study but with a much shorter time gap between LiDAR data and field data acquisitions to 

dramatically reduce the influence of tree growth. LiDAR surveys taken a matter of months apart 

still allowing for leaf-on and –off data acquisition would be ideal though these scenarios are likely 

to be incredibly rare due to the lack of cost effectiveness. In addition, if field data collection took 

place in one campaign this would remove the uncertainty introduced by a prolonged time period 

between field mobilisations. 

 

Ideally further research would aim to include a larger proportion of evergreen coniferous plots, to 

better understand the effects of growth and survey parameters if these cannot be controlled, and 

also field sites from further UK woodland environments, in order to extend the applicability of 

conclusions across the UK. 

 

Investigation of the comparable effects of seasonal canopy closure on point based metrics (as in 

this study) and grid based and raster based metrics of diversity would allow a full understanding of 

the effects of canopy closure on all diversity metrics and aid survey planning decisions. 

 

7.2 Further Work 

 

This study has explored the effect of seasonal changes in canopy conditions on aerial LiDAR derived 

forest structure diversity metrics, ground classification and direct LiDAR measurements of tree 

biophysical parameters. It would be interesting to extend this research to consider the terrestrial 

LiDAR perspective to see if these systems are similarly effected by canopy conditions. Additionally 

extending this research to consider technologies such as multi-spectral, full-waveform LiDAR 

systems and SAR systems would be incredibly interesting as systems of this nature are increasing 

in use and capability. Furthermore, assessing the seasonal differences in the intensity of returning 
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discrete pulses or waveforms or multi-spectral data collected from advanced LiDAR systems could 

aid assessments of vegetation health or species classification.  
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APPENDICES 
 

Appendix 1 
 

Summaries of each of the LiDAR derived diversity variables which were transformed to increase the normality of the distribution. 

Leaf-on variables   

 

Variable Transf. Min Max Mean pre-transform post-transform 

Kurtosis Log 0.49 2.32 1.46 

  

P99/25 inverse 0.35 0.78 0.61 
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Variable Transf. Min Max Mean pre-transform post-transform 

P99/50 1/square 0.27 0.73 0.56 

 
 

P99/75 1/cubic 0.27 0.78 0.58 
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Leaf-off variables 

 

Variable Transf. Min Max Mean pre-transform post-transform 

Kurtosis Log 0.79 2.74 1.54 

  

P99/25 inverse 0.36 0.81 0.62 
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Variable Transf. Min Max Mean pre-transform post-transform 

P99/50 1/square 0.25 0.76 0.56 

  

P99/75 1/cubic 0.30 0.78 0.59 
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Appendix 2 
 

Graphical and statistical indicators of normality of residuals from each constructed regression model. 

The kernel density and quantile plots display graphically whether the distribution of residuals differs from normal. Significant values of 0.05 or greater associated with 

skewness and kurtosis statistical tests rejects the null hypothesis of normality. 

 

Model Distribution Quantile Plot with CI (95%) Skewness and Kurtosis 

1 

  

 
Skewness: 0.87 

Kurtosis: 0.03 

 

Evidence for non-

normality in kurtosis of 

distribution and 

statistical analysis. 

Distribution also strays 

outside the quantile 

confidence. 
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Model Distribution Quantile Plot with CI (95%) Skewness and Kurtosis 

2 

  

Skewness: 0.35 

Kurtosis: 0.49 

 

No significant evidence 

of none normality. 
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Skewness: 0.35 

Kurtosis: 0.53 

 

No significant evidence 

of none normality. 
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Model Distribution Quantile Plot with CI (95%) Skewness and Kurtosis 
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Skewness: 0.28 

Kurtosis: 0.69 

 

No significant evidence 

of none normality. 
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Skewness: 0.98 

Kurtosis: 0.07 

 

Though the kernel 

density graph displays 

the residuals having a 

more reduced kurtosis 

than the normal the 

quantile plot and 

statistical analysis 

indicate this is not a 
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Model Distribution Quantile Plot with CI (95%) Skewness and Kurtosis 
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Skewness: 0.83 

Kurtosis: 0.19 

 

No significant evidence 

of none normality. 
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Skewness: 0.01 

Kurtosis: 0.01 

 

There is every 

indication of a 

significantly none 

normal distribution 
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Model Distribution Quantile Plot with CI (95%) Skewness and Kurtosis 

8 

 

 

Skewness: 0.94 

Kurtosis: 0.98 

 

No significant evidence 

of none normality. 
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Skewness: 0.02 

Kurtosis: 0.03 

 

Though the kernel 

density distribution 

shows a generally 

normal shape there is 

significant evidence for 

both none normal 

skewness and kurtosis 
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Model Distribution Quantile Plot with CI (95%) Skewness and Kurtosis 

10 

  

Skewness:0.01 

Kurtosis:0.02 

 

Again, though the 

kernel density 

distribution shows a 

generally normal shape 

there is significant 

evidence for both none 

normal skewness and 

kurtosis 
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Appendix 3 
 

Summary of tests of homogeneity of residuals.  

Residuals plotted against the fitted values in each model should be randomly distributed around 

the reference line as any patterns seen in the data, such as a narrowing to either side, towards the 

centre or a curvilinearity would indicate heteroscedasticity or none homogeneity of residuals. In 

the Breusch-Pagan (1979) and the Cameron and Trivedi (1990) White's test a p value <=0.05 

indicates a rejection of the null hypothesis that the variance of the residuals is homogenous and 

accepting the alternative hypothesis that the variance is not homogenous.  

 

 Residuals verses fitted values Breusch
-Pagan 
test p 

White’s 
test p 

Comments 

1 

 

<0.001 0.001 Residuals display 
narrowing to the 
left of the plot 
and both tests 
display very low 
p-values. There is 
significant 
evidence for non-
homogenous 
variance in the 
residuals for this 
model. 

2 

 

0.04 0.05 Though the 
statistical tests 
show some 
evidence of non- 
homogeneity the 
graph does not. 
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 Residuals verses fitted values Breusch
-Pagan 
test p 

White’s 
test p 

Comments 

3 

 

0.05 0.09 No evidence for 
non-homogeneity 
of residuals. 

4 

 

0.01 0.38 Though the 
Breusch-Pagan 
test p-value is very 
low, there is less of 
a clear pattern of 
non-homogeneity 
of residuals in the 
graph. 

5 

 

0.49 0.54 No evidence for 
non-homogeneity 
of residuals. 

6 

 

0.23 0.36 No evidence for 
non-homogeneity 
of residuals. 
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 Residuals verses fitted values Breusch
-Pagan 
test p 

White’s 
test p 

Comments 

7 

 

0.99 0.42 No evidence for 
non-homogeneity 
of residuals. 
 
 
 
 
 
 
 
 
 
 

8 

 

0.76 0.97 There is a 
thinning towards 
the right of the 
plot but little 
statistical 
evidence of 
heteroscedasticity. 

9 

 

0.45  0.38 No evidence for 
none 
homogeneity of 
residuals. 

1
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0.39 0.51 No evidence for 
none 
homogeneity of 
residuals. 
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Appendix 4 
 

Summary of the linearity of relationships between dependant and independent variables for each regression model. 

The augmented component-plus-residual plot (a.k.a. augmented partial residual plots) include a line of best fit and a locally weighted smoothing to aid in the reader’s 

interpretation. If the smoothed line differed substantially from the line of best fit it would indicate non-linearities between dependant and independent variables.  

 

Model 1      LiDAR variables 

Field 
variable 

Kurtosis (leaf-on)  Variance (leaf-on) N/A 
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Model 2      LiDAR variables 

Field 
variable 

Kurtosis (leaf-off) Variance (leaf-off) N/A 

THdiv 

  

 
 
 
 
 
 
 
 
 
 
 
 

Model 3      LiDAR variables 

Field 
variable 

Kurtosis (leaf-off) Variance (leaf-on) N/A 

THdiv 
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Model 4      LiDAR variables 

Field 
variable 

SD (leaf-on) Skewness (leaf-on) N/A 

DBHdiv 

  

 

Model 5      LiDAR variables 

Field 
variable 

SD (leaf-off) Skewness (leaf-off) P99/90 (leaf-off) 

DBHdiv 
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Model 6      LiDAR variables 

Field 
variable 

Variance (leaf-off) Skewness (leaf-off) CV (leaf-on) 

DBHdiv 

  

 

Model 7      LiDAR variables 

Field 
variable 

Skewness (leaf-on N/A N/A 

CLdiv 
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Model 8      LiDAR variables 

Field 
variable 

P99/75 (leaf-off) P99/50 (leaf-off) Variance (leaf-off) 

CLdiv 

 
 

  

Model 9      LiDAR variables 

Field 
variable 

Kurtosis (leaf-on) N/A N/A 

CWdiv 
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Model 10      LiDAR variables 

Field 
variable 

Kurtosis (leaf-off) N/A N/A 

CWdiv 
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