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Rydberg atom ensembles under

dephasing and dissipation:

from single- to many-body dynamics

Nikola Šibalić

Abstract
This thesis explores the effects of decoherence and dephasing on single- and many-

body dynamics of spin-systems. A particular realisation of the spin systems that the

work focuses on are highly excited, Rydberg states of atoms.

A software library ARC (Alkali Rydberg Calculator) for calculating properties of

Rydberg states in alkali metals is presented, with particular attention to the multi-

atom and multi-level effects that influence many-body dynamics in realistic systems,

and properties related to terahertz imaging with alkali atom Rydberg states.

Dressed-state electromagnetically induced transparency (EIT) is proposed as a

way of preparing uniform-phase spin-waves in ladder excitation schemes, making

the collective excitation storage insensitive to motional dephasing. Proof of concept

dressed state EIT experiments are presented. Strong resonant dressing is also

theoretically analysed as a way of preparing velocity superposition of spin-waves.

The developed theoretical model is in a good agreement with existing experimental

data on single-photon many-atom quantum beats in diamond excitation schemes.

By modelling the strongly driven Rydberg ensembles, many-body dynamics of

driven-dissipative spin systems is analysed. Working in the limit of strong dephasing,

the effects of fluctuations, the shape of interaction potential, spatial correlations

and motion on non-equilibrium phase diagrams and the occurrence of bistability

are examined. An ensemble averaged mean field model is introduced as an exact

solution for completely uncorrelated ensembles. It is shown that the van der Waals

interaction does not allow the occurrence of bistability, for which a finite dipolar core

is required. The short-range interaction potential shape is found to have a profound

influence on non-equilibrium phase diagrams, controlling the size of fluctuations in

the dynamics. For a frozen system, several methods for identifying and quantifying

bistable phases are introduced, and phase diagrams are reconstructed. It is shown

that the temperature of external degrees of freedom, i.e. spin motion, can drive a

non-equilibrium transition into the bistable phase.
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In Durham, on 4th July 2017

Copyright c© 2017 by Nikola Šibalić.
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Foreword

Making the world more easily understandable.

When one shoots a cannon ball, as it flies, many complex processes happen. As

it spins around and precesses, air streams exert forces on its surface and, in turn,

air starts to move in turbulent vortexes. And yet, to a good approximation, this

amazingly complicated real world example can be reduced and engrasped in our

minds as a simple motion along a parabolic path.

At the same time, there is a suggestion that some systems cannot be computa-

tionally reduced1. That is to say, they themselves implement a minimum amount of

computation necessary to predict their dynamics. Today many systems are reduced

to this category by companies which use statistical analysis of big datasets to try

to guide their decision-making, giving impression that almost all problems can be

solved with enough data and raw computational power.

Physics is still amazingly good in taking seemingly complex phenomena and

reducing it to the conceptually tractable problem. That is immensely important,

because, as we have learned from the limitations of the human brain2, it is rare to

find something more useful to humans than a phenomena that can be described

discussing only half a dozen ideas at a time. Indeed, by careful stacking ideas in a

hierarchy of abstraction levels, we’ve build all the reliable structures in our society.

Guerilla fighting science is maybe the best description of the process of doing

physics. For a given problem, we try very different theoretical approaches and

numerical tools, in process of identifying best concepts that facilitate understanding

of the problem. When we turn to the experiment, we happily misuse latest products

of technology, to control and extract data from various systems. Socially, physicists

are incredibly diverse group, in both ways of thinking and ways of doing things.

That makes scientific discussions hard, but also rewarding experiences.

I am grateful for having the opportunity to enjoy these activities, and hope that

this thesis will allow easier understanding of a few phenomena.

1computational irreducibility is a term coined by Steven Wolfram in A New Kind of Science, Ch. 12,
Champaign, IL: Wolfram Media (2002)

2George A. Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information", Psychological Review 63, 81 (1956)





Introduction CHAPTER 1

Observing modern physics research in the realm of energy and length scales relatively

easily accessible on Earth, one can make a very rough approximation, and identify

at least two big groups of problems currently attracting significant attention.

The first one is concerned with making better devices that will clearly expose, use

and control underlying physics to achieve new goals. Specifically, we are interested

in limits of measurement and control. For that, a perfect control of very few particles

or photons at a time is of crucial importance. An example is development of devices

for performing quantum logic operations, communication and quantum enhanced

measurements. In order to realise such devices, basic storage, state control and

production protocols at single-particle or single-photon level have to be developed.

While we have fundamental understanding of the basic processes for most of the

approaches, it remains an open question how best to combine, control and model

the systems to achieve ultimate goals.

The second group of problems deals with predictions about many-body systems.

Here, our predictive power and understanding are limited, particularly for non-

equilibrium systems, both quantum and classical ones. Developing a better under-

standing and some common ideas for treating these systems is of huge significance.

On the one hand the majority of real-world systems are non-equilibrium. A note-

worthy example is abnormalities in cell differentiation, affecting more than a third

of the population during their lifetime and often grouped under common name

cancer. These can be very-well understood as a many-body non-equilibrium system

transitioning between the attractors of dynamics [1]. On the other hand, unexplored

non-equilibrium phenomena may be harnessed for future technologies.

A dominant idea over the last decades is that understanding, tools and model-

ling (see Fig. 1.1) that allows solving of these two groups of problems will emerge

through a construction of well-controlled quantum systems. That process has many

steps. With electromagnetic radiation being a fast, high-capacity information carrier,

and matter medium providing long-term storage and strong interactions, mapping

information between the two is crucial. That was achieved with both probabilistic

(heralded) [2] and deterministic (adiabatic) [3, 4] control schemes. As a matter me-

dia of choice, atoms, ions [5, 6], molecules [7] and quantum degenerate ultra-cold

atoms [8] have all been used, as well as artificial spin systems [9] like nitrogen-

vacancy centres [10], rare-earth doped crystals [11], superconducting circuits [12]
and nano-fabricated quantum dots [10, 13]. Interactions between the internal de-

grees of freedom (spins) in the matter media are sometimes direct, provided as a

contact interaction as in the case of Bose-Einstein condensates [14] and ultra-cold

atoms on lattices [8, 15]. However, most of the considered systems have spins at



2 Chapter 1 Introduction

large separations, necessitating mediation of interactions via electromagnetic fields.

In order to control interactions between the spins, as well as information encoded

in electromagnetic field modes, atom coupling with selected electromagnetic field

modes has to be enhanced and/or suppressed [16, 17]. To achieve enhanced coup-

ling between the two, one commonly used approach is geometric confinement of

spins and light in cavities [18, 19], at the surface of nano-fibres [20], inside hollow-

core fibres [21], and above planar waveguides [22]. Alternatively, spins can have

enhanced atom-light coupling strength, as in the case of atoms excited to high-lying

electron energy levels, also called Rydberg states [23], or polar molecules [7]. In

the non-confined matter media, like solid-state materials or atomic ensembles, direc-

tionality of the light output is achieved through storage of this spatial information in

a shared excitation (superposition) of many particles in the medium, in a so-called

spin-wave. An additional benefit of the collective storage of information is robustness

of created states against single-particle loss and decoherence [24].
It is worth noting that while this progress brought huge focus on quantum systems,

i.e. systems that can exhibit quantum superposition, particularly non-local, or whose

behaviour is critically dependant on quantum fluctuations and indistinguishably of

particles or excitations, there are interesting, and not fully understood effects that

can be explored in classical systems too. For example, while vortex formation can be

observed and analysed in matter-fields in Bose-Einstein condensates, it can also be

seen in light fields [25]. This is because the phenomena ultimately depends on a field

description of matter or light, and therefore can be explored in the two systems of

vastly different technological complexity. Similarly, topologically protected transport,

being characteristic of delocalized waves in lattice potentials, can be realized in light

and acoustic systems, as well as electron or atom matter-wave systems.

The program of solution as outlined above has one major obstacle to overcome in

any real-world application: dephasing and dissipation mechanisms that occur in the

chosen matter medium (spin-system).

Figure 1.1: Landscape of theoretical model-
ling. Depending on the minimum number of
field modes and spins that we have to consider in
a system, very different theoretical models and
solution approaches are typically used. The top
right rectangle corresponds to many-body physics.
Arrows indicate some typical reasons for chan-
ging solution approach. For example, we will use
exact integration/diagonalization of interactions
for two strongly interacting atoms in chapter 2.
However, if photons emitted in deexcitation of
any spin in the systems are not likely to be reab-
sorbed (weak ph. reabsorption arrow), exciting
some other spin in the system, this often allows
effective treatment of the system within single a
spin picture. Similarly, motional dephasing and
fast dephasing of coherences, to be discussed in
chapters 3 and 4 respectively, can simplify dynam-
ics of the system and allow usage of a different
theoretical framework.
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1.1 Dephasing

Dephasing, also called decoherence, usually occurs due to a coupling of the system

to its environment that perturbs the system’s energy levels. This causes accumulation

of additional phases by the system in time, but doesn’t change the system’s state.

Depending on the self-correlation time of the external perturbation, the impact of

this perturbation can sometimes be reduced.

If the correlation time of the coupling term to the environment is long compared

to the time required to perform spin-flip operations, one can perform spin-echo

protocols [26], and their continuous analogue for decoupling the system’s dynamics

from the environment called “bang-bang” control [27]. This is used, for example, in

long correlation-time environments, like nitrogen-vacancy centres in diamonds [28],
or static stray magnetic and electric fields [29]. An alternative route to reduce deph-

asing, that can be applied even in short correlation-time environments, is to engineer

the environment such that its coupling to the system is reduced in the first place. For

example, both coupling to vibration modes in solids and associated phonon fields,

and coupling to microwave/terahertz black-body photons in electromagnetic fields,

can be suppressed by reducing the number of field excitations through environment

cooling, or alternatively by removing the unwanted modes through geometric con-

strains on the fields, achieved by enclosing the environment in optical [16, 17, 30,

31] or acoustic cavities [32]. Finally, note that well-defined off-resonant coupling to

the environment that gives rise to phase shifts but maintains the system’s state, can

be exploited in well-controlled systems to perform non-demolition measurements

on quantum systems [33–35].
For environment-induced perturbations much faster than the typical times required

to perform spin-flip operations, there is usually no solution for overcoming them.

Examples include atomic collisions, laser noise, and molecular dephasing in Rydberg

molecules [36], where many close lying molecular resonances broaden the energy

level. Usually these are accounted for by an additional dephasing term in open-

system ensemble dynamics, where they provide a limit on how much quantum

phenomena we can expect in the system. As we will see in Chapter 4, this is also a

significant simplification factor in theoretical modelling of the systems, providing

us with a clear limit where we can treat many thousands of particles in numerical

simulations, since the dephasing ensures that coherences reach steady states much

more quickly than populations. Interestingly, however, there are special cases of fast

inhomogeneous noise, when in spite of the fast perturbations we can still see clear

evidence that individual particles evolve under quantum dynamics that continuously

drives them between the discrete states. As we will see in Section (5.1.2), this allows

for fully quantum dynamics to be recovered even in the presence of dephasing

mechanisms, in the limit when the time-correlation of perturbative level shifts is very

short compared to the coherent driving frequencies, while the average pertubative

level shifts are stable in time.

Finally, there is a third type of dephasing that is not due to random events causing

perturbations, fast or slow, but due to the normal, easily-tractable dynamics of the

system ensemble. Examples are Doppler broadening, and a related phenomena for

stored excitations of a motional dephasing of collective atomic excitations. This type

of dephasing can, in principle, be fully accounted for by theory, and to a significant

degree controlled, as we will see in Chapter 3.
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1.2 Dissipation

Dissipative mechanisms describe couplings to the environment that induce energy

level transitions within the system. A familiar example is spontaneous decay of the

excited atomic energy levels due to coupling to the vacuum modes of the electro-

magnetic field. Processes like these can be reduced in a similar way to dephasing, by

removing free field modes for corresponding decays (i.e. modes resonant with the

spin-system). This is done by setting boundary conditions on the field by enclosing

the system in a cavity [16, 17, 30–32]. However, there are additional possible

dissipative processes, like inelastic (non-adiabatic) atomic collisions. Dissipative

processes are particularly hard to control when excited system states can decay to

many different states. For example, to prevent such situations laser cooling of atoms

is done on closed transitions. Since similar transitions in molecules usually don’t

exist due to much more complex energy schemes, direct laser cooling of molecules

is much harder, and can be done only if additional lasers are added to speed up

dissipative processes that drive population from unwanted excited levels back to

the cooling energy-level loop. In Rydberg atomic states, these additional decays can

also be important for many-body physics, since unwanted excitation of many nearby

levels can, under the right conditions, trigger avalanche effects that drastically

change the dynamics [37, 38].
Dissipation also leads to strong projective measurements of the system, and as such

can be used for a system’s state preparation. Photon absorption and measurement

in a detector can be seen as an extremely well controlled case of dissipation that

allows, among the other things, entanglement swapping [39] and quantum eraser

protocols [40], and essentially all the experiments in quantum optics that use post-

selection/heralding. An example of this will be discussed in Chapter 3. Even

when this leaked information about the system is not directly measured by the

experimentator, but is written somewhere in the environment’s degrees of freedom,

dissipation still constitutes a projective measurement. An early example from atomic

physics is optical pumping, which induces stochastic loss of population in all the

unwanted levels, leaving a couple of so called dark states untouched. After a long

enough time, all the atoms will be stochastically projected onto dark states, where

they stay and population accumulates. Prepared states can be hyperfine or magnetic

Zeeman levels, subradiant states, dark states giving rise to electromagnetically

induced transparency (EIT), or a more general class of states called decoherence-

free states [41–45].
Finally, we note a relation between dissipation and dynamics of coherences. In

the simplest example of spontaneous emission in a typical ensemble treatment

using density matrix formalism, coherences are washed away by decays, and thus

dissipation also seems to decohere the system. This is, however, only true in the

ensemble average picture. Individual decay processes map fully coherently the state

probability amplitudes. It is the undetermined timing between decay processes

that in ensemble average, treated in density-matrix picture, reduces coherences.

Preserving of coherences in spontaneous emission will be crucial for the results of the

Chapter 3 that analyse the case of time-resolved measurements (photon-counting).

The particularly important example of this is when there is no information about

the exact emitter in the system, giving rise to collective emission processes. These

are responsible for correlations in photon-pair emission directions in spontaneous
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double-Λ four-wave mixing schemes, directionality of heralded quantum memories

and single-photon sources [46], as well as phase locking between non-interacting

emitters [47].

1.3 Short history of Rydberg atomic physics

The introduction so far described two big questions that we ultimately aim to

contribute to, and two important factors whose implications will be all important for

the further discussion. Although most of the results in this thesis are quite general

and applicable to a wide variety of systems, the stimulation to think about these

questions was provided by a specific matter system that we had in the laboratory:

an atomic caesium thermal vapour contained in a spectroscopic cell, where alkali

vapour can be excited with a cascade of lasers to high-lying Rydberg states. In order

to position our work within the wider developments in Rydberg physics, we will now

give a short general overview of some of the main developments in the field. This

motivates the main questions of this thesis, while more detailed context for each of

the results will be provided in the subsequent chapters.

In the 19th century, spectroscopy provided many observations of absorption and

emission lines. Although there was regularity in their appearance, numerous at-

tempts to explain spectral series failed. One more successful attempt was Balmer’s

equation explaining one of the series in the hydrogen spectrum. However, it couldn’t

reproduce many other observed spectral features. In 1888, Johannes R. Rydberg

(1854-1919) presented a formula that could explain a wide range of spectroscopic

series. In modern notation and interpretation it states that the transition wavelength

λab between two energy levels a and b in an atom is

1
λab
= Ry

�
1
n2

a

− 1
n2

b

�
(1.1)

where na and nb are reduced principal quantum numbers of the energy levels, and

Ry is the (Rydberg) constant of proportionality. This provided some crucial input

for the development of early atomic theory by Niels Bohr at the beginning of 20th

century. All the spectral lines from highly excited atomic states, as they approach

ionization limit, follow this equation. This is true even for complex non-hydrogenic

atoms, since the ionic core will have similar character as the hydrogen system.

These high-lying states are called Rydberg states. They have big electron wave-

functions, scaling as n2 with principal quantum number n, whose radius is ∼ 1 µm

for n= 100. This leads to n2 scaling of strong dipolar coupling strengths for trans-

itions between nearby states. This was recognized in the 1980’s as a resource for

performing precise far-infrared (terahertz) and microwave electrometry [48–52].
The Rydberg states are also very sensitive to applied static electric and magnetic

fields, and exploration of their complex level diagrams in external fields also at-

tracted significant attention. Partly because this was seen as a system exhibiting

“quantum chaos” [53] but also because electric fields can be used to tune transitions

between states, allowing, for example, controllable preparation of states with a high

orbital angular momentum - so-called circular states [54]. Experimentally, access

to high-lying states was provided by tunable dye-lasers [55]. The Rydberg states

have long lifetimes, which increase as nα, where α is between 3 and 5, making
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them difficult targets for direct optical observation via fluorescence. Still, they were

efficiently detected in a state-selective manner in these early experiments through

state-selective field ionization [56].
At around the same time, understanding of light fields that contain only a few

field excitations was improved. From the original photon concept introduced by

Einstein in 1905 [57], the whole field of quantum optics developed. Initial laser

systems [55, 58], were developed in semiconductor technology [59], that provided

compact, simple and stable long-term operation. This allowed a lot of interesting

atom-light interaction proposals to be tested [60, 61], including schemes for slowing

and storing light through interference effects in multilevel atom-field interaction

schemes [61, 62].
Initial explorations of Rydberg atom interactions [63–65] culminated in pioneering

experiments combining strong Rydberg interactions and well-controlled atom-light

interactions [66]. This demonstrated that nonlinearity in the collective excitation

of atomic media can indeed be controlled with individual photons exciting single

Rydberg states as suggested in early theoretical works [67]. This paved the way for

experiments demonstrating interactions between individual photons in mesoscopic

atomic clouds [68–70], demonstrations of deterministic dissipative manipulation at

single-photon level [71] and even interactions between photons in spatially separated

optical channels [70, 72]. Simultaneously, there was a push in exploring atom-atom

interactions as a way to prepare exotic new states. In a few-spin limit, bounding of

ground state atoms to a Rydberg atom through scattering of atoms in the density

cloud of a highly excited electron in the Rydberg-atom have been demonstrated [36,

73]. Molecular attractive potentials have been used to allow binding between two

Rydberg atoms [74], as well as to enhance atomic interactions between dressed

ground-states [75]. This brings excitement since tunable, switchable, long-range

interactions can be exploited for quantum-logic gates [23], as well as many-body

state preparation [75–78]. Prospects for controllable exploration of many-body

physics are particularly exciting. Some proposals for preparation of crystalline

phases through adiabatic tuning of external driving [76] have been demonstrated

in experiments that have single-atom resolution [79]. However, initialization of

unity filled lattices through preparation of Mott insulators [15], as well as optical

resolving of the individual single-atom optical lattice sites [80], are both achieved in

very complicated, hard-to-replicate setups. In addition, standing wave lattices have

limited tunability of interatomic spacing and geometries. An alternative approach for

creating spatially well defined atomic spin ensembles uses optical tweezers, where

tightly focused red-detuned laser beams provide traps whose maximum filling is

limited to one atom per trap, due to collisions within the small trapping volume [81–

83]. Until recently indeterministic filling of these traps prevented preparation of

unity-filled arrays with big spin-numbers [84]. This has been resolved by fast real-

time experimental control, allowing imaging and shuffling of filled traps, so that

arbitrary 1D [85] or 2D [86] patterns can be formed deterministically.

While the future trend is likely to change in favour of site-resolved experiments,

at the moment the majority of experiments that report many-body phenomena

in Rydberg gases do so through indirect measurements of population dynamics.

Among them was observation of bistability of Rydberg population in thermal vapour

experiments in Durham [87]. That, and related findings of aggregate growth [88]
and bimodality in full counting statistics of Rydberg populations [89, 90], motivated
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one of the questions explored in this thesis, namely when and why one can expect

to observe bistability in many-body interacting Rydberg systems. On the other

hand, stimulated by a pioneering work in Durham [91, 92] and Stuttgart [93, 94] on

coherent dynamics in thermal-vapour cells, we were interested to explore possibilities

for control of Rydberg thermal vapours in few-excitation limits, which constituted

the other main question. Working in thermal cells, dephasing and dissipation were

very important factors from the very start of our considerations, and this thesis

explores their consequences both on many-body dynamics, in the limit of many

excitations, and on collective and single atom effects, in the limit of single excitation.

1.4 Thesis layout

Rydberg properties are explored in Chapter 2, providing microscopic understanding

behind the elementary processes that will appear throughout the rest of this thesis.

As part of efforts to establish tools for quantitative treatment of the atomic properties,

an open-source Python library, Alkali Rydberg Calculator (ARC), was developed,

accompanied by extensive documentation and examples. In addition to that, a web

application was also developed, to allow quick access to relevant numbers, as well

as automated scheduling, storing and retrieving of more complex calculations. This

is now a resource available word-wide at https://atomcalc.jqc.org.uk.

Motional dephasing effects in the limit of few excitations, where we try to establish

control of atom and light states, are explored in Chapter 3. Here we go beyond

single- or two- particle models by considering collective excitations of the atomic

medium (spin-waves), but we don’t include inter-atomic interactions. We introduce

a new scheme for creating uniform-phase spin-waves, by using a dressed-state

as a proxy for EIT. We show that the usual storage protocol, combining EIT and

adiabatic following, can be easily generalized for usage in a new four-level scheme,

achieving a number of benefits along the way. This is followed by a proof-of-

concept experimental demonstration. Exploring further influences of spin-wave

motional dephasing and limits of state control, detailed theoretical analysis of an

experiment on cascade photon-pair emission from diamond schemes in thermal

vapours is presented. Full microscopic treatment is in very good agreement with the

experimental data, and provides additional insight into the details of the process that

forms a single-excitation interferometer between two collective excitations moving

with two selected velocities within a thermal vapour. In both examples, strong

resonant dressing of the atomic states provides a valuable experimental tool for

coherent control.

Going into the limit of ensembles with many, densely packed excitations requires

accounting for inter-particle interactions. In Chapter 4, we abstract away all the

microscopic details and keep just the effective spin model, but account for inter-

particle interactions. Exploring this model in the strongly dissipative limit, we will

show that phase transitions in this driven-dissipative system crucially depend on

the form of the interaction potential. Advanced parallel simulations also allow us

also to explore effects of motion, that washes away spatial excitation correlations

in the system. This uncovered a temperature-driven non-equilibrium transition

to the bistable regime. The findings are corroborated by deriving a mean-field

model that is an exact solution in the well defined limit of rapid atomic motion (i.e.

https://atomcalc.jqc.org.uk
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hot atomic ensemble). The derived mean field model has qualitatively different

predictions compared to the simplified mean field models used in the literature for

similar treatments, as it properly accounts for fluctuations in dynamics. Agreement

between a mean field treatment and full many-body dynamics is confirmed through

intensive numeric simulations. The importance of short-range details of the inter-

spin interaction, usually not of qualitative value for thermal-equilibrium systems, is

highlighted for these driven-dissipative systems, where it controls fluctuations of

the system’s dynamics.

Finally, in Chapter 5 we show short-term outlook of the presented research, as

well as possible long-term developments.
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Rydberg atomic states: energy
level structure and dynamics CHAPTER 2

This chapter describes the properties of alkali atom Rydberg states, as well as ways of

controlling atom dynamics. We will firstly discuss some order-of-magnitude estimates

to provide a feeling for the relative importance of various processes, which will be

described in detail in the following sections. The sections follow the development

of the Alkali Rydberg Calculator (ARC), a Python library developed to facilitate

quantitative work with alkali Rydberg atoms. In addition, we will highlight some

specific situations which will be of interest for discussion in the following chapters.

This establishes both a common framework for all the developments, and points

out limiting cases where common approximations breakdown, requiring additional

processes to be taken into account. Finally, we will use ARC to provide simple

analysis of experiments on terahertz imaging.

2.1 Overview: scaling and estimates

For highly-excited electrons in neutral atoms, the positive attractive core can be

treated as hydrogenic central potential ∼ 1/r, with several correcting factors ac-

counting for the core structure. For example, the energies of the states can be

expressed with a standard Rydberg series equation (1.1), by replacing the principal

quantum number n with scaled principal quantum number n∗ = n−δn,`, j reduced

by the quantum defect δn,`, j for the corresponding state |ψ〉= |n,`, j〉. The typical

∆ ∆∝ 1/n3
∗

VvdW ∝ n11
∗

n S n S

n S n P

n S

n P
Γ ∝ 1/n3···5

∗

∝ n2
∗

Vdd∝ n4
∗

⇒ 〈n S| |nP〉 ∝ n2
∗

(a)

(b)

(c)

n′ P n′′ P

Figure 2.1: Rydberg states’ interaction scal-
ing with a principal quantum number n. (a)
Increased size of the wavefunctions leads to en-
hanced electromagnetic coupling between the
neighbouring states, causing strong resonant
dipole-dipole Vdd interactions (b) between di-
polar coupled states n S and n P (solid lines).
At the same time, coupling of the system to the
environment, given by the rate Γ , is reduced,
allowing the system to enter the strong coup-
ling regime Vdd � Γ . Even the states that in
the first order are coupled only to energetically
forbidden states (c), characterised with energy
defect ∆, can be coupled in the second order
with van der Waals interactions VvdW, that also
has strong scaling∝ n11

∗ with scaled principal
quantum number n∗.

radial extent 〈ψ|r|ψ〉 of these states scales as n2
∗ [Fig. 2.1(a)]. These electron wave-

functions, that reach 〈r〉 ∼ 6500 a0 (∼ 350 nm) for n ∼ 70 in caesium, produce

dipole matrix elements for transitions between neighbouring states that scale also

as n2
∗ , reaching values of ∼ 5700 a0e for 70 S1/2→ 70 P3/2 in Cs. If two atoms are

close to each other, one in the |nS〉 state and the other in the |nP〉 state, a photon

emitted in this |n S〉 → |n P〉 transition of one atom can be reabsorbed by the other

atom. The coupling strength Vdd for this resonant dipole-dipole interaction scales as

n4
∗ [Fig. 2.1(b)], reaching Vdd/h∼ 40 MHz for two atoms separated by 5 µm for the

same transition in Cs. At the same time, much smaller overlap with energetically

distant states, and smaller number of vacuum modes for energetically close states

(that are typically ∆ ∝ n−3
∗ far away in energy), means that these states have

lifetimes 1/Γ that scale as nα∗ , where α is between 3 and 5 depending on the orbital

angular momentum of the state. For Cs 70 S1/2, the radiative lifetime of ∼ 0.3 ms is

reached in cold (black-body radiation free) environment.

Comparing the interactions between neighbouring atoms with the vacuum coupling
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Figure 2.2: Overview of Alkali Rydberg Calculator (ARC) modules. The object-oriented
structure of this Python module reflects a hierarchy of abstraction levels in atomic-physics
calculations. This allows quick access to relevant data and functions, facilitating development
of new calculations, for users starting both from low-level atomic properties implemented
in alkali_atom_functions.AlkaliAtom, and from high-level concepts like pair-state
diagrams and Förster resonances, implemented in calculations_atom_pair_state. Nu-
merically intensive primitives, like Numerov integration, are C coded Python extensions.

to the environment, we see that even for experimentally well controllable inter-

atomic distances of several µm, the strong coupling regime Vdd � Γ is reachable.

Even non-resonant interactions [Fig. 2.1(c)] exhibit strong scaling (∝ n11
∗ ) and

comparable absolute strengths. Crucially, since this is an atomic system, we have a

system with fixed, reproducible properties. We will see later an example of how this

can be used in electrometry. This also means that properties can be relatively easily

calculated and even adjusted with external fields, making atoms in Rydberg states

perfect building blocks for exploring many-body physics. Since a single atom in a

Rydberg state can offset other highly-excited states of neighbouring atoms more than

the typical transition linewidths, over µm-distances that are individually addressable

through, for example, focused optical (λ ∼ 1µm) driving fields, there has been

an interest in using them as a platform for quantum information processing [23].
Finally, coherent mapping of weak optical fields into collective atomic excitations

through electromagnetically induced transparency [104], allowed strong effective

interactions between optical photons to be achieved using these strong atom-atom

interactions [105].
Advanced research of Rydberg atomic states requires efficient quantitative analysis

and predictions. In order to allow both quick quantitative estimates, and easy

building up of more complex calculations and their visualisations, we have developed

the Alkali Rydberg Calculator (ARC), an open-source Python library that combines

theoretical calculation models and necessary experimental data into a single research

resource. The hierarchical nature of the library (Fig. 2.2) organises calculations at

several abstraction levels, allowing the user access to information and a platform for

further development at the level of interest for any given project. To facilitate its use,

we provided detailed documentation, and took care that all the naming conventions
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reflect closely the physical content of calculations.

2.2 Energy levels and electron wavefunctions

Binding energies En,`, j of Rydberg states |n,`, j〉 annotated by their principal quantum

number n and orbital ` and total j angular momentum can be expressed using the

Rydberg-Ritz formula [106] as

En,`, j = −
Ry

(n−δn,`, j)2
, (2.1)

where Ry is the Rydberg constant corrected for the reduced mass Ry = M/(M +
me)×Ry∞ where M is mass of the ion core and me is the electron mass. Quantum

defects δn,`, j are given by

δn,`, j = δ0 +
δ2

(n−δ0)2
+

δ4

(n−δ0)4
+ . . . , (2.2)

where δ0, δ2, . . . are modified Rydberg-Ritz coefficients obtained by fitting Eq. (2.1)

to the precise measurements of energy levels [106–115]. The energy levels obtained

in this way (Fig. 2.3) don’t include hyperfine splitting, and they correspond to the

centre of gravity of the hyperfine-split lines. Hyperfine structure for high-lying

states scales as ∼ 1/n3
∗ [116], and is about several MHz for caesium states with

n∼ 30 [117], which is usually negligible in experiments.

In addition to the energies of the states, in order to calculate coupling between the

states due to the interaction with external electromagnetic field, we need to know

the electron wavefunctions ψ. These can be obtained by numerical integration of

the time-independent Schrödinger equation in a central potential V (r) of the ion

core with mass M , in a centre of mass frame of reference where the electron reduced

mass is µ≡ meM/(me +M)

�
−∇

2

2µ
+ V (r)

�
ψ(r,θ ,φ) = En,`, jψ(r,θ ,φ). (2.3)
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Figure 2.3: Comparison of energy levels
of hydrogen and caesium. Wavelengths for
some common transitions used in caesium for
reaching high-lying states are highlighted (blue
arrows).

For motion in central (i.e. angular independent) potentials the solutions for the

wavefunction can be factorised into a radial part R(r) and angular part whose

solutions are spherical harmonics Y`,m(θ ,φ). Replacing ψ = R(r)Y`,m(θ ,ψ) in

Eq. (2.3) we obtain an equation for the radial part of the wavefunction

�
− 1

2µ

�
d2

dr2
+

2
r

d
dr
− `(`+ 1)

r2

�
+ V (r)

�
R(r) = En,`, jR(r). (2.4)

State energies En,`, j can be obtained from experimentally measured values [Eq. (2.1)].
The central potential for high orbital angular momentum states ` > 3 is effectively the

hydrogen-core potential V (r) = 1/r +Vso (in Hartree atomic units), with addition of

Vso = α2L · S/(2r3) accounting for the (relativistic) spin-orbit interaction . However REMINDER: In Hartree atomic units me =
e = ħh = 1/(4πε0) = 1. Speed of light is

c = α−1 e2

4πε0·ħh , where α ≈ 1/137 is the

fine-structure constant.

low-angular momentum states have finite probability to penetrate and probe the

ion-core more closely, which requires modifications to the potential form. For these

states (` ≤ 3) the model central potential V (r) is taken in the following form

(Marinescu et.al. [118])

V (r) = − Z`(r)
r
− αC

2r4

�
1− e−(r/rC)6

�
+ Vso(r), (2.5)
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where αC describes the static dipole polarizability of the positive ion core, while the

effective ion core charge Z`(r) that an electron feels is expressed as

Z` = 1+ (Z − 1)e−a1 r − r(a3 + a4r)e−a2 r , (2.6)

where Z is the nuclear charge. Parameters a1, . . . a4, rC are obtained from parametric

fits of one-electron energy levels [118]. With this all the terms in Eq. (2.4) are

fixed, and one can convert it into a purely second-order differential equation (see

Appendix A.1 for details) that can be efficiently numerically integrated with the

Numerov algorithm [119, 120] to find R(r). Integration is performed from the outer

limit inwards, since we know the initial condition R(r)→ 0 for r →∞. Following

Ref. [121], integration starts at ro = 2n(n + 15), which is much larger than the

classical turning point, and continues inwards down to ri = 3
p
αC. Sometimes, for

some ` > 3 states, divergence occurs before ri is reached. That is detected by

the implemented algorithm, and integration is stopped at the nearest node of the

wavefunction before divergence occurs.Distance to nucleus, r (a0)

En
er

gy
(e

V
)

Model potential, V (r)
State energy, En,`, j

Electron wavefunction, Rn,`, j(r)

Figure 2.4: Numerically calculated radial
wavefunction. Example of Numerov integra-
tion of radial wavefunction Rn,`, j(r) for caesium
18 S1/2 state.

The obtained radial wavefunctions Rn,`, j(r) (Fig. 2.4) can be used for calculation

of dipole and quadrupole matrix elements, as required for calculations of single-

atom energy levels due to external applied fields, as well as pair-state energy level

diagrams under strong inter-atomic interactions. The complete wavefunctions, with

both angular and radial dependence, are

|n,`, j, m j〉(r,θ ,φ) = Rn,`, j(r)
∑

m`+ms=m j

〈l, s, m`, ms|l, s, j, m j〉Y`,m`(θ ,φ), (2.7)

where 〈l, s, m`, ms|l, s, j, m j〉 are Clebsch-Gordon coefficients, s is electron spin and

ms its projection.

These wavefunctions can become so big for high-lying states, that in dense samples

they can encompass several other ground-state atoms. The big electron wavefunction

provides then a background scattering potential for the ground-state atoms, which

sometimes can sustain bound states [122]. In the cold samples this allows formation

of so called Rydberg molecules [36, 73, 123]. This binding lowers the energy of

(Rydberg state atom)-(ground state atom) system, producing additional resonances

that are red-detuned to the usual excitation transition to the Rydberg state. In the

high-density limit, even multiple ground-state atoms can be bound in this electron

potential [123], producing at the end a mean-field level shift and line-broadening,

limiting the Rydberg state coherence time in dense samples.

2.3 Interaction with electromagnetic field

The Hamiltonian for an atom interacting via its valence electron with an electromag-

netic field described with vector potential Â(r) in space without free charges can be

written as
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H =
(p̂− eÂ)2

2m
+ V (r̂) + eφ(r̂) + Ĥfree

=
p̂2

2m
+ V (r̂)

︸ ︷︷ ︸
≡Ĥ0

− e
m

Â · p̂
︸ ︷︷ ︸
≡Ĥint

+
e2

2m
Â2 + Ĥfree, (2.8)

where in the second line we fixed the gauge to be Coulomb in space without free

charges (φ = 0, ∇ · Â = 0 ⇒ [Â, p̂] = 0). We can identify Ĥ0 as a free-atom

Hamiltonian, and Ĥint atom-light interaction Hamiltonian. The term proportional to

Â2 will be neglected in the remaining calculations, since it just adds to the energy

of the field proportionally to the number of dipoles. The last term Hfree is the

free-field energy. By using [ x̂ , Ĥ0( x̂ , p̂x)] = [ x̂ , p̂x]∂ Ĥ0/∂ p̂x = iħhp̂x/m, we obtain

p̂ = −imħh−1[r̂, Ĥ0]. Hence, we can write the coupling between the two atomic states

|a〉 and |b〉 due to Hint as

〈a, f1|Ĥint|b, f2〉= 〈a, f1| −
e
m

Â · im
ħh
[r̂, Ĥ0]|b, f2〉, (2.9)

where f1 and f2 mark the state of the photon field. We will assume now that we are

working with a plane-wave field, which can be factorized into vector and scalar parts

Â = ε̂ Â, where ε̂ denotes the polarization of the field. Further expanding the spatial

dependence of the plane wave in the vicinity of the atom nucleus (r = 0) to the

lowest order (constant term) Â(r̂)≈ Â(0), we can write the atom-field interaction

element as

〈a, f1|Ĥint|b, f2〉 ≈ −〈 f1|Â| f2〉 · 〈a|i
ħhωb −ħhωa

ħh
ε̂ · r̂e|b〉

= 〈 f1| −iωabÂ︸ ︷︷ ︸
=−∂ A/∂ t=E

| f2〉〈a|ε̂ · r̂e|b〉. (2.10)

This is atom-light coupling in the dipole (E1) approximation.

2.3.1 Transition matrix elements

Electric dipole transitions between atomic states occur due to couplings of the form

H = −er̂ · ε̂q, where r̄ · ε̂q =
p

4π/3 Y1,q couples σ−, π and σ+ transitions for

spherical harmonics Y1,q with q = −1,0,1 respectively (r̄ is the unit vector in the

direction of r).

We will first consider matrix elements in the basis |n,`, m`〉 that neglects the fine-

structure. The matrix element can be factorised into a part that couples radial parts

of the wavefunction, and a part that couples to the angular parts of the wavefunction

〈n′,`′, m`′ |r̂ · ε̂q|n,`, m`〉 =
√√4π

3

≡ Rn`→n′`′︷ ︸︸ ︷∫ +∞

0

R∗n′,`′,m`′ rRn,`,m` r2dr

·
∫ π

0

dθ

∫ 2π

0

sinθ dφ Y ∗`′,m`′ Y1,qY`,m` .

The radial matrix element Rn`→n′`′ can be calculated from the wavefunctions ob-
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tained in Sec. (2.2), returned by the ARC function getRadialMatrixElement.

For numerical calculations, instead of (0,+∞) formal bounds, the integration

bounds are finite (ri, ro) as outlined in Sec. (2.2). The product of the three spherical

harmonics1 can be expressed via Wigner 3-j (or Clebsch-Gordon) coefficients asREMINDER: Eq. (3.8.73) in Ref. [125]:

∫ π

0

dθ

∫ 2π

0

sinθ dφ Yl1,m1
Yl2,m2

Yl3,m3

=

√√ (2l1 + 1)(2l2 + 1)(2l3 + 1)
4π

·
�

l1 l2 l3
0 0 0

��
l1 l2 l3
m1 m2 m3

�

〈n′,`′, m`′ |r̂ · ε̂q|n,`, m`〉 = (−1)`
′−m`′

�
`′ 1 `

−m`′ q m`

�
〈n′`′||r||n`〉,

〈n′`′||r||n`〉 ≡ (−1)`
′Æ
(2`′ + 1)(2`+ 1)

�
`′ 1 `

0 0 0

�
Rn`→n′`′ ,

(2.11)

where the introduced quantity 〈n′`′||r||n`〉 is the reduced matrix element, returned

by the ARC function getReducedMatrixElementL.

Calculating these dipole matrix elements in the fine basis |n,`, j, m j〉 requires

expansion of wavefunctions in the uncoupled basis |n, l, ml , ms〉 as in Eq. (2.7) since

for these states we can directly calculate dipole matrix elements as demonstrated

above. As a consequence of this, summation over four 3-j coefficients will occur

giving rise to 6-j Wigner coefficient {. . .}. The final result is

〈n′,`′ j′, m j′ |r̂ · ε̂q|n,`, j, m j〉 = (−1) j
′−m j′

�
j′ 1 j

−m j′ q m j

�
〈n′,`′, j′||r||n,`, j〉,

〈n′,`′, j′||r||n,`, j〉 ≡ (−1)l
′+s+ j+1

Æ
(2 j′ + 1)(2 j + 1)

·
¨

j′ 1 j

` s `′

«
〈n′`′ j′||r||n` j〉. (2.12)

The dipole element and reduced dipole matrix element in the J basis can be obtained

from ARC using the getDipoleMatrixElement and getReducedMatrixElementJ
functions. The numerically obtained radial wavefunctions Rn,`, j [Sec. (2.2)] also

allow calculation of a radial matrix element for quadrupole coupling, that will appear

in calculations of coupling matrix elements in static magnetic fields [Sec. (2.4.2)]
and atom-atom interactions [Sec. (2.5.1)], as (getQuadrupoleMatrixElement)

RQ
n`→n′`′ =

∫ ro

ri

Rn′,`′, j′ r2 Rn,`, j r2 dr. (2.13)

The accuracy of calculated dipole-coupling strengths through numerical integration

of the wavefunctions in the model potential can be checked with experimental

measurements of C3 and C6 [126–128], putting an upper boundary of relative

accuracy at ∼ 10−2. For low-lying states that are closer to the core, the relative

accuracy deteriorates, and is of the 10−1 level for transitions from the ground

state. More advanced theoretical models have been developed for calculation of

dipole matrix elements of these lower-lying states [129, 130]. These values are

tabulated in the files used by the ARC library, and can be directly queried by the

getLiteratureDME method. Calculations will use these values by default if they

exist for required transitions, since the expected relative accuracy of these more

advanced approaches is 10−2 or better.

1We use the Condon-Shortley phase convention [124] for spherical harmonics.
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2.3.2 Lifetimes

The lifetime 1/Γn,`, j of the alkali atom population in the state |n,`, j〉 due to radiative

transitions can be calculated by finding the transition rate Γn,`, j from |n,`, j〉 to all

the other states |n′,`′, j′〉 as

Γn,`, j =
∑

n′,`′, j′: E(n′,`′, j′)<E(n,`, j)

An` j→n′`′ j′ +
∑

n′,`′, j′
An` j→n′`′ j′ n̄ω. (2.14)

Here the first summation includes spontaneous decays to states with energies

E(n′`′, j′) lower than the considered state |n,`, j〉. The second term in the sum-

mation includes transitions to all the states, including ones with higher energies,

induced by the black-body radiation at finite temperature T of the environment.

Average per-mode occupation number n̄ω of black-body photons with the correct

energy ħhω= |E(n′,`′, j′)− E(n,`, j)| is given by the Bose-Einstein distribution

n̄ω =
1

exp[ħhω/(kBT )]− 1
. (2.15)

Finally Einstein A coefficients [131] account for vacuum coupling to all the available

EM field modes for each of the given transitions

An` j→n′`′ j′ =
4ω3

3c3

max(`,`′)
2`+ 1

R2
n` j→n′`′ j′ . (2.16)
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Figure 2.5: Black-body induced transition
rates. Transition rates for caesium 25 P3/2 state
(dashed line) to |n S1/2〉 and |n D3/2,5/2〉 states.
At 300 K there is a significant contribution of
black-body radiation (BBR) induced transitions
(red), both to lower- and higher-lying states.

As an example, Figure 2.5 shows transition rates from caesium 25 S1/2 states to

other n P1/2,3/2 states. As we will see in the next Sec. (2.3.3), coupling strengths

between neighbouring states differing by δn in principal quantum number go down

∝ R2
n` j→n′`′ j′ as δn increases. Yet decays to the ground states, if allowed by the

selection rules, still dominate due to higher number of vacuum modes∝ω2 and

stronger vacuum coupling∝ω. For low-angular momentum states, that can decay

to ground states, this gives total scaling of Rydberg state lifetimes as n3
∗ (Fig. 2.6).

Interestingly, even at a room temperature T ∼ 300 K, black-body radiation redistrib-

utes population to the states close in energy [Fig. 2.5 and Fig. 2.6(a)], both below

and above the ground state, contributing ∼10–80% to the total state depopulation
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itions. Radiative lifetimes of caesium states (a), exhibiting scaling∝ n3

∗ (dotted line) for
a low orbital angular momentum states (solid squares), and∝ n5

∗ (dotted line) for a high
orbital angular momentum states (circles). BBR induces significant changes in the radiative
lifetime, shown on the example of n P3/2 states at 300 K (open squares). While rates of BBR
induced transition are reduced for higher-lying states (b), BBR-induced transitions actually
become the dominant factor in radiative decays of high-lying states.
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rate [Fig. 2.6(b)]. We note that this factor is quite an important practical considera-

tion since even in cold, collision-free, atomic ensembles, this redistributes the initial

population excited to a single Rydberg state, among all the nearby states, even the

higher lying ones. For n S, n ∼ 30 states this happens at time scales of ∼ 10 µs,

leaving a fraction of population of the order of several % in states close in energy, as

detected in early experiments [132–135]. This can fundamentally change processes

occurring in the samples, by turning on resonant dipole-dipole interactions, requiring

inclusion in theoretical analysis of the experiments [37, 38]. We will discuss possible

implications in Chapter 4. For higher lying states [Fig. 2.6(b)] black-body rates can

be about an order of magnitude lower than the peak BBR-induced depopulation

rates at room temperature that occur for states with principal quantum number

n ∼ 10− 12. Finally we note that black-body induced transition between bound

states and the continuum, i.e. black-body induced photoionization [136], can also

contribute to the finite lifetime of the states. For example, for sodium 17 D states at

room temperature (300 K) the calculated ionization rate [133, 137] is ∼ 103 s−1.

The longest lived Rydberg states are high orbital angular momentum states ` = n−1,

also called “circular” states [Fig. 2.6(a), circles]. Due to the selection rules for orbital

angular momentum, they have only one decay path to the states with principal

quantum number n− 1, which gives rise to lifetime scaling of n5
∗ [ω

3 goes down as

(1/n3
∗)

3, while the rate of dipolar coupling goes up as (n2
∗)

2].
The lifetimes calculated here include only single-atom processes. In experimental

samples one typically has a large number of atoms that opens up the possibility of

additional processes. For random ensembles at finite temperature we have collisional

processes, for which cross-section σ [as we will see in Sec. (2.6)] typically scales as

the wavefunction size σ ∼ π〈r2〉 ∝ n4
∗ , reaching 1 µm2 for n ∼ 80. For example,

atoms in n ∼ 25 moving with the typical average 1D speed v̄ of atoms in thermal

vapour (MOT) of 200 m/s (10−2 m/s), and typical number densities N of about

1010...13 cm−3 (1010 cm−3) the Rydberg-Rydberg collision rate v̄σρR is about 104...7 s−1

( 1 s−1), assuming that the Rydberg state population has number density ρR of the

same order of magnitude as the initial ground-state atoms (ρR ∼N ). The collisions

result in collisional broadening of lines, population redistribution among different

states, and ionization of some of the Rydberg atoms. Electrons produced in ionization

typically have average velocities v̄e/v̄ ∼ 102...3 higher than ions and atoms, but similar

cross-sections for collisions with Rydberg states [138]. This can result in ionization

avalanche in the time domain [138], since creation of fast electrons can speed-up

the state redistribution process. These processes happen even in the absence of

external driving - i.e. they will happen even if the atom excitation is done in a pulsed

regime. The addition of external driving during collisional processes, as in the case

of continuous laser excitation, can open up new two-atom mechanisms for decay,

even in the case of off-resonant excitation where light assisted collisions can occur,

as we will discuss in Sec. (2.5.2).

2.3.3 Exciting Rydberg states

Coupling strengths between the ground state and high-lying states with principal

quantum numbers differing n typically scale as n−3/2
∗ . As a consequence, for direct

ground state-Rydberg state 5 S1/2
0.003 a0e−−−−−→
297 nm

60 P3/2 transition one needs intensities

∼ 105 W/cm−2 in order to achieve Rabi frequencies of the order of 2π× 10 MHz,
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and requires driving at UV wavelengths of ∼300 nm[38]. Values above and below

arrows in transition indicate reduced dipole matrix element 〈 j′||er|| j〉 and transition

wavelength respectively. More commonly used schemes use excitation with two

driving fields, one typically in the near infrared (NIR) and the other in the blue

part of the spectrum. For rubidium the corresponding transitions are 5S1/2
5.96 a0e−−−−→
780 nm

5P3/2
0.01 a0e−−−−→
480 nm

60S1/2. For caesium the corresponding transition is 6 S1/2
0.576 a0e−−−−−→
455 nm

5P3/2
0.02 a0e−−−−−→
1061 nm

60S1/2. Blue driving coherent fields are typically generated in a

chain, by frequency-doubling in second harmonic generation (SHG) crystals that

are pumped with several watts of infrared light originating from NIR extended

cavity diode lasers (ECDL) amplified in tapered amplifiers (TA). The second step in

the transition still requires intensities of ∼ 104 W/cm−2 to achieve coupling Rabi

frequencies of the order of several MHz. Crucially, with one- and two-photon ladder

excitation schemes, one cannot fulfil the usual Doppler-free condition
∑

i ki = 0 due

to mismatch in excitation laser wave vectors ki , which has fundamental implications

on the nature of the collective Rydberg excitations as we will see in Chapter 3.

The simplest ladder-system excitation scheme that achieves Doppler-free condition

uses three laser beams. Wave vectors ki of the three driving fields can be added in a

triangular configuration, summing them to zero. Example of two such schemes in

caesium used for the experimental results in Sec. (3.2) of this thesis are 6S1/2
6.324 a0e−−−−−→
852 nm

6P3/2
6.479 a0e−−−−−→
1470 nm

7S1/2
0.975 a0e−−−−−→
1394 nm

8P1/2 and 6S1/2 → 6P3/2 → 7S1/2
0.021 a0e−−−−−→
795 nm

23P3/2.

Three photon coupling strengths using S states as a penultimate state have slightly

weaker coupling strengths (Fig. 2.7 diamonds), in spite the used S states being

higher up in the energy then P states in two-photon scheme. This is because the S

state wavefunction, mostly centred around the nucleus, has smaller overlap with

more weakly bound P states than the S and P wavefunctions in the inverse situation

(Rydberg S states and P initial states) is actually better. Yet, in spite of similar

requirements on the laser powers, this situation can be considered simpler since it

doesn’t require an SHG crystal for generating the last driving field in the excitation,

and instead uses just a TA. Further improvement in requirements on driving fields

powers comes with four driving fields, where we gain in coupling strength by

approaching the Rydberg states gradually (Fig. 2.7 circles). An example of this

scheme is 6 S1/2→ 6P3/2→ 7S1/2
0.093 a0e−−−−−→
1769 nm

52D3/2 transition, used in Ref. [100]. Rydberg state p.q.n, n′
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Figure 2.7: Comparison of coupling
strengths to Rydberg state in multi-step lad-
der driving schemes in caesium. Reduced
dipole matrix elements (d.m.e) for coupling to
Rydberg states with principal quantum number
(p.q.n) n′ for different initial states, reached in
single, two, three and four-driving field ladder
excitation schemes.

Driving fields in most cases originate from master lasers that are NIR extended

cavity diode lasers (ECDL) whose cavity lengths and driving currents are locked to the

spectroscopic reference for the relevant transitions, while their temperature is actively

stabilised [139, 140]. Typically this achieves laser linewidths that are of the order

of ∼ 100kHz. Sometimes one wants to achieve smaller phase noise — for example

for optically induced single-spin operations [127], narrow driving of forbidden

transitions [141, 142] or for coherent effects like EIT where ultimate linewidth

is limited by the combined laser linewidth [143]. Achieving narrow combined

linewidth is significantly harder in the ladder-excitation schemes compared to the Λ

schemes used for observation of coherent phenomena between the atomic ground

states. In the latter case, all the driving fields can be derived from a single laser, with

some combination of stable acousto- and electro-optic modulator induced frequency

shifts (of up to several GHz) and injection locking [144], or alternatively, with direct

relative-phase measurement and feedback of two independent lasers [145]. This
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renders the system insensitive to phase drifts of the master laser. This approach

is not possible in the ladder excitations schemes due to a big discrepancy in the

wavelengths used for excitation. Therefore one has to try to reduce the absolute

phase drift of each laser independently, and the remaining phase drifts characterised

by the laser linewidths Ki will all contribute as uncorrelated random variables to

the total phase noise, giving linewidths of K =
∑

i Ki for ground state-Rydberg state

driving. Laser linewidths down to 1 Hz can be achieved by locking to ultra-stable,

temperature stabilised, high-finesse cavities [141, 146, 147].

2.3.4 Atomic contribution to the electromagnetic field

Excited single atoms emit fluorescence whose spatial profile depends on the angle θ

between the quantization axis and the direction of observation. For π transitions

the fluorescence intensity profile2 is∝ sin2 θ , while for σ± it is∝ (1+ cos2 θ)/2,

as shown in Fig. 2.8.

For a medium of many emitters that all have well-defined relative phase, inherited

for example from the external driving field, we calculate the effect of their re-

radiated field on a propagating driving field by calculating the dynamic polarizability

P=
∑

q=0,±1

∫
dω

�
Pq(ω, r)εq exp(−iωt) +P ∗q (ω, r)ε∗q exp(+iωt)

�
of the medium,

where q indexes possible polarisations ε0 = z̄, ε±1 = (x̄± iȳ)/
p

2 . This polarizability

arises from individual dipoles 〈er̂〉, where 〈. . .〉= Tr[ρ . . .] over the density matrix

ρ of the ensemble at the corresponding location r in space. Assume that in the

frequency range of interest there is only one resonance, for example ground-state

excited state resonance |g〉↔ |e〉. For a medium with atom number density N that

is dilute enough that we can neglect inter-atomic interactions, we obtain

Pq(ω, r) =
N
π

∫
dω eiωt〈er̂ · εq〉

=N µ(q)ge ρeg(ω, r), (2.17)
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Figure 2.8: Spatial fluorescence patterns
from single-atom decays in the far-field.
(a)Level scheme of an excited atom decay-
ing under dipolar coupling ∝ 〈L = 0, m` =
0|Y ∗1,q|L = 1, m`〉, q = 0,±1 into the vacuum
modes. Solid line (yellow) on (b) and (c) are
polar plots of fluorescence intensity in ȳ − z̄
plane for q = 0 and q = +1 decays respect-
ively. The scale is same on both plots, and the
fluorescence pattern is z̄-axially symmetric. Po-
larisation of emitted light in several example
directions (wavy lines) is labelled Lin., Circ.
R, Circ. L, corresponding to linear, right-hand
circularly polarised and left-hand circularly po-
larised respectively.

where µ(q)ge ≡ 〈g|er ·εq|e〉 is the corresponding dipole matrix element and ρeg(ω, r) is

the corresponding coherence element of the ω frequency component in the Fourier

transform of the density matrix. Note that this density matrix frequency component

is usually obtained by solving atom dynamics for ρeg in a basis where the excited

state is rotating Û = exp(iωt|e〉〈e|), which is typically done when the probe field

also has frequency ω (for example, see Sec. 2.4.3).

For a weak driving field E = ε[εp exp(ikr− iωt) + ε∗p exp(−ikr+ iωt)]/2, with

amplitude ε and polarisation εp, in the solution of atom dynamics for ρeg we can

keep only term linear in E. This allows for the medium’s response to the applied

electric field to be described by a single constant value of susceptibility χ(ω), defined

with

P= ε0
ε

2
[χεp exp(ikr− iωt) +χ∗ε∗p exp(−ikr+ iωt)]. (2.18)

For an isotropic atomic medium P ‖ E, so χ is a complex scalar. Eq. (2.18) and

Eq. (2.17) can be solved for χ analytically in simpler systems, see for example

2Remember that radiation of a classical dipole p is E(r, t) = µ0
4πr {r̄×[r̄×p̈(t−r/c)]}, see e.g. Eq. (11.56)

in Ref. [148].
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Ref. [149]. In general we can directly numerically calculate χ from ρeg obtained in

solving atomic dynamics. If the polarisation of the field is εp = εq, then we can define

the driving Rabi frequency Ω≡ 〈e|er̂ · εpε|g〉/ħh= µ(q)eg ε/ħh, and combine Eq. (2.17)

and Eq. (2.18), to obtain susceptibility

χ(ω) =
2 N µ(q)ge ρeg(ω)

ε0 ε

= −
2 N |µ(q)eg |2
ε0 ħh Ω

ρeg(ω). (2.19)

When the propagating field and continuous atomic medium have respectively

electric field amplitude ε and polarizability amplitudeP that slowly change3 in space

and time, in the vicinity of the frequency ω̄ (corresponding wave vector k̄ = ω̄/c),

we can write Maxwell equations for the plane-wave electric field propagating in the

z direction as (see Appendix A.2)

∂ ε

∂ z
+

1
c
∂ ε

∂ t
=

ik̄
ε0
P . (2.20)

Using susceptibility χ(δω) at ω≡ ω̄+δω to express polarizability P = ε0χ(δω)
ε
2

in terms of electric field amplitude ε, we can obtain

ε(z, t) =

∫
d(δω) ε(z = 0,δω)e−i δω t ei z{ δω/c+k̄ Re[χ(δω)]/2 }e−z k̄ Im[χ(δω)]/2.

(2.21)

In this slowly-varying envelope limit, we see from the solution that the real part

of the susceptibility matrix causes a phase shift, effectively changing the refractive

index n as n = 1+Re[χ(δω)]/2, while the imaginary part leads to attenuation of the

forward propagating signal. Intensity of the probing field I(z) will be exponentially

attenuated as I(z) = I(0)exp(−α z) upon propagation for distance z, where the

attenuation coefficient is α= k̄ Im(χ). Finally, dispersion of the susceptibility ∂ χ
∂ω

changes the group velocity

vg =
∂ω

∂ k
=

c

1+ ω̄
2 Re

�
∂ χ
∂ω

� . (2.22)

Highly dispersive media Re
�
∂ χ
∂ω

�
� 1, can significantly reduce probe pulse propaga-

tion speeds.

2.3.5 Detecting Rydberg states

Detection of atom population in relatively low-lying (® 30) Rydberg states is possible

directly though observing fluorescence of decaying Rydberg states [150], using a

monochromator to resolve transitions from individual states. This becomes harder for

higher-lying states due to their longer lifetimes (Sec. 2.3.2), however field-ionization

can be used as a state selective Rydberg population detection method [151]. The

method relies on the fact that higher-lying Rydberg states require lower applied DC

electric fields to ionise [56]. Therefore the populations of all the Rydberg states can

3Formally, slowly-varying conditions are |ω̄P |� |∂P /∂ t|, |k̄P |� |∂P /∂ z|, |ω̄ε| � |∂ ε/∂ t| and
|k̄ε| � |∂ ε/∂ z|.
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be recorded by applying an electric field ramp, and measuring the ion signal in time.

Nowadays ion signals are typically detected on multi-channel plates (MCP) detector,

which, in addition to recording total number of ions, can provide spatial resolution

of the detected ions. By accounting for the particle trajectories, this information can

be used to deduce the original spatial distribution of Rydberg atoms [152] down to

1 µm spatial resolution [128]. Such a measurement of Rydberg atom distances after

some variable time following the Rydberg state excitation, allowed direct observation

of repulsive van der Waals inter-atomic forces [128, 153].
Recently, Rydberg states have been detected in coherent detection schemes by

probing locations of EIT and EIA features with laser transmission (Sec. 2.4.3), in

two [63, 66, 91, 92], three [98, 154] and four-step [100] excitation schemes. These

coherent detection schemes have also been extended to systems for imaging spatial

distributions of Rydberg states in cold atomic samples [155, 156]. New opportunities

opened in experiments in controllable atomic arrays [85, 86], whose geometries

are more flexible than those of the lattices achieved through Mott insulator pre-

paration [38]. Exquisite level of coherent control [84] allows population transfer

between Rydberg states and ground states by performing optical π pulses, where

ground-state trapped atoms can be imaged directly by fluorescence imaging with

single-site resolution.

2.4 Tuning the state energies and properties

The single-atom energy levels can be tuned by admixing other states via applied DC

and AC external fields. Changing the composition of the unperturbed bare-states also

changes their properties, allowing states to acquire permanent dipole moments or be-

come coupled to previously forbidden states. Calculations of single-atom properties

like this are implemented in the ARC module calculations_atom_single.

2.4.1 Static electric field: state polarizability and Stark maps

Calculation of energy-level shifts in constant external electric fields (Stark shifts) is

important for both precision electrometry, and tuning atomic interactions to Förster

resonances (Sec. 2.5) which allow use of strong resonant dipole-dipole interactions

between the atoms. Energies and states can be found by finding eigenstates of the

Hamiltonian for an electric field ε applied along the z̄-axis (in Hartree atomic units)

H = H0 + ε ẑ, (2.23)

where H0 is the unperturbed atomic Hamiltonian. The coupling terms

〈n,`, j, m j |εẑ|n′,`′, j′, m j′〉 have the same form as dipole matrix elements [Eq. (2.12)]
for q = 0. Therefore only ∆m j = 0, ∆`= ±1 states will be coupled together. Low

angular momentum states ` ® 4 are non-degenerate, and in low field their level

shift will be dominated by the second-order perturbative corrections α0ε
2/2 to the

state energy quantified by the scalar polarizability

α0 ≈ 2
∑

n′`′ j 6=n` j

��〈n,`, j, m j |ẑ|n′,`′, j′, m j′〉
��2

E(n′,`′, j′)− E(n,`, j)
. (2.24)

In low fields, scalar polarizability scales as α0∝ n7
∗ .
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Figure 2.9: Atom energy levels in applied
static electric field (Stark map). Caesium
35 S1/2 m j = 1/2〉 state is admixed to other atom
eigenstates |µ〉 due to the external static electric
field Ez , leading to energy shifts. ARC package
in interactive use allows “on-click” exploration of
unperturbed states admixed in eigenstates.

For stronger fields, due to strong state admixing, this second-order correction

doesn’t give good predictions any more, and one has to numerically diagonalize the

Hamiltonian [Eq. (2.23)]. Following the approach of Zimmerman et.al [121], this is

implemented in the StarkMap class in ARC. The basis {|n′,`′, j′, m j′〉, . . .} has to be

selected based on the principal quantum number n of the state we are interested in

and the applied field, but typically states with |n− n′| ≤ 5 and, due to strong state

admixing of states with different orbital angular momentum (see Fig. 2.9), states

with |`−`′|® 20 need to be included for convergence of results. Knowledge of state

compositions obtained from diagonalization is also important because laser coupling

strength will be strongly modified by admixing. The ARC class StarkMap can show

the Stark maps as interactive graphs, where users can choose states by clicking

on them and explore their composition. Default colour highlighting of the states,

as seen on Fig. 2.9, shows the contribution of the original target state |n,`, j, m j〉
to other states. One can also set an optional argument drivingFromState and

specify an initial state from which to drive transitions. ARC will then calculate colour

highlighting of states based on initial state dipole coupling to the obtained Stark

eigenstates.

This calculation method has been applied in strong electric fields for the calcu-

lation of complex Rydberg Stark manifolds, showing very good agreement with

experimental measurements [157].

2.4.2 Static magnetic field

The Hamiltonian for an atom interacting with static magnetic field B can be written

as (in SI units, neglecting free field energy)

H = (p̂− eÂ)2

2m
+ V (r̂) + eφ̂ +µBB (gS Ŝ+ gI Î) +HHFS, (2.25)

where gS and gI are gyromagnetic factors corresponding to the magnetic field

interaction with valence electron spin Ŝ and nuclear spin Î, and µB ≡ eħh/(2me) is the

Bohr magneton. The hyperfine interaction term HHFS can be neglected for Rydberg

states [116]. We can fix the gauge for space without free charges φ = 0,∇ · Â= 0.

Setting Â = − 1
2 r̂×B, we can extract an interaction Hamiltonian (similarly to Eq. 2.8)
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Hint = −
µBB
ħh
(L̂+ gS Ŝ+ gI Î)

︸ ︷︷ ︸
≡HP

+
e2

8me
(B× r̂)2

︸ ︷︷ ︸
≡HD

. (2.26)

Terms with linear (HP) and quadratic (HD) dependence on magnetic field B are

paramagnetic and diamagnetic terms respectively. For magnetic fields directed along

the z axis, the matrix elements of HP are easily calculated by expanding states in an

uncoupled ` basis with Eq. (2.7). On the other hand, the diamagnetic term can be

rewritten as

HD =
e2

8me
B2 r̂2 sin2 θ̂ , (2.27)

where angle θ̂ measures direction of r̂ relative to the quantization axis. The non

zero elements of HD are those for which ∆l = 0,±2, and ∆m= 0. Explicit forms of

the matrix elements are [158]

〈nlm|r̂2 sin2 θ |n′lm〉= 2
l2 + l − 1+m2

(2l − 1)(2l + 3)
RQ

n`→n′ l , (2.28)

〈nlm|r̂2 sin2 θ |n′(l + 2)m〉=
�
(l +m+ 2)(l +m+ 1)(l −m+ 2)(l −m+ 1)

(2l + 5)(2l + 3)2(2l + 1)

�1/2

· RQ
n`→n′(`+2) . (2.29)

The ratio of paramagnetic to diamagnetic terms is HP/HD ∼ 105−6 T/(B n4
∗). For

atomic ground states and low-lying states the diamagnetic term is negligible, however

it becomes more important for higher-lying states due to the quadrupole matrix

element scaling as n4
∗ , becoming equal to the paramagnetic term for B ∼ 1 T and

n∼ 20− 30.

The hyperfine interaction in Eq. (2.25) is

HHFS =
AHFS

ħh2 I · J+ BHFS

ħh4

3(I · J)2 + 3/2 (I · J)− I(I + 1) J(J + 1)
2I(2I − 1) J(2J − 1)

, (2.30)

where AHFS and BHFS are experimentally determined magnetic dipole and electric

quadrupole interaction constants. Hyperfine structure is negligible for Rydberg

states as it scales as HHSF ∝ 1/n3
∗ [116], however, it has to be included for low-

lying states, since ground state hyperfine splittings are of the order of several GHz

for alkali atoms. Static magnetic fields are a useful experimental tool as they can

isolate transitions, allowing experimental situations to be more tractable. This is

also true for hot atoms, since relatively cheap and compact permanent magnets

can provide static fields of the order of 0.6− 0.7 T, which induces splitting of the

spectra over tens of GHz range, allowing addressing of individual transitions, since

separations between transitions can be bigger than the room-temperature Doppler

widths. Applications will be discussed in Sections (3.3) and (5.1.1).

2.4.3 Dressing

Finally, we will discuss the important case of atom energy-level tuning due to co-

herent driving with AC electromagnetic fields. Two crucial elements that allow

rich applications of this approach are (i) the existence of resonances for particular

frequencies of the driving, allowing much more precise and state-selective admixing

compared to schemes with static fields; and (ii) the existence of long-coherence driv-



2.4 Tuning the state energies and properties 25

ing field sources (lasers, MW and THz generators) that can prepare superpositions of

atomic states with well defined relative phases, allowing exploration of interference

phenomena in atom-light interactions [104, 159], both within single atoms and

in spatially extended atomic-ensembles. Particular examples will be discussed in

Chapter 3, but here we will introduce the basic concepts.

To start, consider an atom with two dipole-coupled levels, ground state |g〉 and

excited state |e〉, separated in energy by ħhωge = 〈e|H |e〉 − 〈g|H |g〉. The atom

moves with velocity v relative to the classical, coherent driving field with electric

field εd(r) = ε cos(k·r−ωL t) of amplitude ε and frequencyωL propagating along the

wave vector k, k ≡ωL/c. Neglecting the second-order Doppler effect (relativistic),

the atom-light Hamiltonian (ħh= 1) is

Amplitude, A

π/2

π

3π/2
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Figure 2.10: State composition and relative
phase of dressed states. (a) Two-level sys-
tem driven by driving field with Rabi frequency
Ω, detuned ∆ from transition. (b) Dressed
states |±〉 are eigenstates of driving Hamilto-
nian (Eq. 2.32). Colour wheel maps amplitude
and phase, relative to the ground state, of the
excited state admixture.

HAL =ωge|e〉〈e|+ (Ω∗|g〉〈e|+Ω|e〉〈g|)
1
2

�
ei(k·v t−ωL t) + e−i(k·v t−ωL t)

�
, (2.31)

where we have assumed electric-dipole coupling between atoms and field with

Rabi frequency Ω = 〈e|er̂ · ε|g〉. We can switch to a suitable basis that rotates as

Û = exp [i(ωL t − k · vt)|e〉〈e|] and find the Hamiltonian in that basis ÛHALÛ† +
i dÛ

dt Û†. After applying the rotating wave approximation (RWA), that neglects rapidly

oscillating factors in the new Hamiltonian, we find

HRWA = −∆|e〉〈e|+
�
Ω

2
|e〉〈g|+H.c.

�
, (2.32)

where ∆ ≡ ωL − k · v−ωge is the Doppler-shifted driving field detuning from the

transition resonance4 . The eigenenergies of the system are E± = (−∆±
p
∆2 +Ω2)/2.

For far detuned driving ∆� Ω, eigenstates are weakly admixed, causing a ground

state off-set in energy (AC Stark shift) of Ω2/(4∆). For resonant driving ∆ = 0

eigenstates |±〉= (|g〉 ± |e〉)/p2 (dressed states) are symmetric and antisymmetric

superpositions of bare states |g〉 and |e〉 with eigenenergies ±Ω/2 split by the Rabi

driving frequency Ω. An example is resonant dressing of two Rydberg states by a

microwave or terahertz field. Since admixed states |±〉 will have strong permanent

dipole moments, interactions between the atoms separated by R will be of a long

range∝ R−3 type [160]. Off-resonant dressing in the Rydberg state manifold (i.e.

with microwave and terahertz fields), with weak state-selective and interatomic-

distance dependant admixing control, can provide even more refined shaping of

interaction potentials [161].
Now we will consider a slightly more complicated system that has an additional

state |a〉 (Fig 2.11) with energy ωa relative to the ground state |g〉. We’ll also add

an additional driving field εC cos(kC · r−ωC t) with electric field amplitude εC and

frequency ωC (kC = ω/c), and introduce coupling to the environmental modes

allowing decay of state |e〉 with rates Γg, Γa (Fig 2.11). The additional state is easily

incorporated into the Hamiltonian, expressed in the {|g〉, |e〉, |a〉} basis as |g〉
|a〉

|e〉

Ω
ΩC

∆

∆C

ΓaΓg

Figure 2.11: Energy level diagram of a con-
sidered three state system. Two long-lived
states |g〉 and |a〉 are coupled via decaying state
|e〉 with two fields with the Rabi frequencies Ω
and ΩC that have corresponding one- and two-
photon detunings of ∆ and ∆C respectively.

HRWA =




0 Ω/2 0

Ω/2 −∆ Ωc/2

0 Ωc/2 −∆C


 , (2.33)

4For simple cases like this, it is possible to choose a coordinate system such that the Hamiltonian is a
time-independent. In more complicated cases when this is not true, one has to use a Floquet basis, which
is for time-periodic differential analogous to Bloch waves for spatially periodic differential equations.
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where Ωc = 〈a|er̂ · ε|e〉 is a second (control) field Rabi frequency, and ∆C ≡ ωL −
ωC − (k− kC) · v−ωa is the two-photon detuning of the control driving laser. For

the moment, we will neglect decays, and analyse dynamics only as governed by

HRWA [Eq. (2.33)]. A particularly clean solution is obtained for resonant driving

∆=∆C = 0, when we obtain three eigenstates, one of them completely decoupled

from the time-evolution under the applied HamiltonianHRWA|D〉= 0,

|D〉= (ΩC |g〉 −Ω |a〉)/
q
Ω2 +Ω2

C. (2.34)

Since this state |D〉 doesn’t contain a contribution from state |e〉 that can decay,

adding dissipation Γg, Γa doesn’t have an effect on it. This dissipation-less state

is called a dark state. Intuitive understanding can be obtained if we look at the

probability amplitude redistribution in the small time δt due to evolution under

HRWA. Amplitudes of the two bare states are adjusted such that their driving will

map exactly the same amount Ωδt ΩC = ΩCδt Ω of their state amplitude to the

probability amplitude of the bright state |e〉, however their well-defined, opposite

phases will interfere destructively, preventing change of the state |e〉 population.

An interesting case is also the limit of ΩC � Ω, when |D〉 → |g〉. Diagonalizing

only part of the Hamiltonian, keeping the upper left corner corresponding to the |g〉
state unchanged (semi-dressed picture), we find two eigenstates |±〉 = (|e〉± |a〉)/p2

in analogy to the previously discussed two-level system. Depending which one of

the |±〉 states we couple to with the field Ω, the probability amplitude for |a〉 will

pick phase of 0 or π with respect to |e〉, producing opposite phases for probability

amplitudes of state |a〉. We will see direct consequences of this in Chapter 3. This

also implies that for weak dressing ΩC� Γa, Γg, when we can simultaneously couple

to |a〉 over both |±〉 states, these two excitation paths will interfere destructively and

state |a〉 will not be excited.

To account for spontaneous decay of state |e〉 we have to include mixed states in

our description by analysing the evolution of the system’s density matrix ρ̂. The

evolution equations can be obtained by calculating the evolution of both system and

environment that, starting from an initial state ρsystem
⊗
ρenv, becomes entangled

over time due to coupling of the system to the environment. Tracing over environ-

mental degrees of freedom, and assuming the that environment has short memory5,

we obtain the following master equation for the time evolution of the density matrix

dρ̂
dt
= −i[HRWA, ρ̂] + L[ρ̂]︸ ︷︷ ︸

≡L [ρ̂]

, (2.35)

where L[ρ̂] =
∑
α(Lαρ̂L†

α− 1
2 L†
αLαρ̂− 1

2 ρ̂L†
αLα) is the Lindblad superoperator, where

the terms L0 =
p
Γg|g〉〈e|, L1 =

p
Γa|a〉〈e| describe decay of the state |e〉. This

can also be seen as the action of the Liouville superoperator L [. . .] on the system

density matrix. We can formally solve Eq. (2.35) as ρ(t) = exp(L t)ρ(0). Complex

eigenvalues Λi of L determine accumulated phase Im(Λi)t during evolution time

t, and decay of eigen-vectors with rate −Re(Λi) as the system reaches steady state

whose eigen-value is zero.

It is of practical importance to explore time scale on which steady states, like

5Environment has very short correlation time, i.e. it is Markovian; in our case “very short” means that
photons leave local environment (from where they can be reabsorbed) on much faster time-scale then
atom-field coupling strength.



2.5 Two and more atoms 27

the dark state described in the specific case by Eq. (2.34), are reached. If one

considers atoms flying into, and out of the driving field, as in the case of a laser

beam in thermal vapour, atoms initially in the ground state will in general have

only partial overlap with the dark state |〈g|D〉|2 6= 1. Therefore, initially atoms will

absorb light, and the dark state will be eventually populated through stochastic

decay (fluorescence) of bright states, with atomic population being optically pumped

to the dark state. The time scale for this pumping to happen depends on the overlap

of initial and dark states, decay rates and Rabi driving strengths. If it is longer

than the average atom transit time through the driving field, e.g. when using

narrowly focused laser beams, increased probe absorption will be observed in the

probe transmission signal even with the laser on resonance for the EIT peak [162],
because this transient atomic evolution happens on time-scale comparable to the

atom transit time through the beam. An effective way to account for the finite

transit time through the driving region in the formalism above, is to introduce

additional Lindblad operators Lτ,β =
p

1/τ|g〉〈β | producing decay of all the excited

states |β〉 to the ground state with rates corresponding to the average transit time

τ. An alternative way of dark states creation that doesn’t rely on dissipation is by

employing a time-changing Hamiltonian, where one starts with a dark state that

matches the initial state of the atoms |D〉= |g〉. This corresponds to Ωc� Ωp in the

previously discussed three level scheme. With this Hamiltonian change, the dark

state is adiabatically changed to some other state-composition, preparing the system

state deterministically in principle. This will be discussed further in Sec. (2.6). Probe detuning, ∆/Γ
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Figure 2.12: Electromagnetically induced
transparency and Autler-Townes splitting.
The dashed line for ΩC = 0.5 Γ is the best fit of
two Lorentzians centred at ∆ = ±ΩC/2. The
discrepancy between that fit and the full calcu-
lation highlights the importance of interference
between two dressed levels for obtaining a nar-
row EIT window. Parameters: Ωp = Γ/100,
τ= 20 Γ−1. The scale for all plots is the same,
absolute y-scale depends on atom number dens-
ity in the medium.

A steady state solution for the considered three level system (Eq. 2.33) evolved

under Eq. (2.35) can be found as a steady-state density matrix ρ. As we have seen

in Sec. 2.3.4, the real and imaginary parts of coherences in the weak probe regime,

are directly proportional to the real and imaginary parts of the susceptibility for

the probe field (Eq. 2.19), which is shown on Fig. 2.12. Strong dressing (ΩC = 4Γ )

splits the resonance into two, in the so-called Autler-Townes splitting. For ΩC ® Γ ,
we see more than just a split transition: we see the interference between the two

resonances. The dashed line shows the expected excitation profile if this were just

two levels spaced by ΩC. We can clearly see that well defined relative phase for two

excitation paths in the coherent driving scheme causes significant change. The highly

dispersive properties of an atomic medium within the EIT window cause slow group

velocities for probe propagation. This, in combination with adiabatic (Sec. 2.6)

changing of ΩC, allowed slowing down and stopping of light in experiments [163,

164].

2.5 Two and more atoms

Up to now we have been focusing on properties of single, isolated atoms. Now we

will consider what happens when two atoms are close to each other, and see how

we can analyse level shifts and other changes that occur then. Insights into this will

help us understand collisional processes and additional effects that can occur when

many-body systems are driven.
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2.5.1 Interactions

For two atoms separated by a distance R, when kR� 1, where k is the wave vector

of the possible radiative fields originating from each of these atoms, inter-atomic

interactions can be calculated based on electrostatic interactions between the two

atomic charge distributions [165], neglecting the retardation effects. Consider two

charge distributions (Fig 2.13), each with total charge of one (e), indexed with

i = 1, 2, with respective centres of gravity O1 and O2 separated by R> 0 so that they

are not overlapping. If ri measures location of the charge with respect to the origin

R

O1

O2

r2

r1

Figure 2.13: Two charge distributions (vi-
olet). Grey lines indicate two arbitrarily ori-
ented coordinate systems used for description
of the two charge distributions.

Oi then the potential due to charge distribution i = 1 at location R can be expanded

(Laplace expansion) in terms of spherical harmonics

φ(R) =
1

|R− r1|
= 4π

∞∑
L1=0

r L1
1

(2L1 + 1)RL1+1

+L1∑
m=−L1

Y ∗L1,m(r̄1)YL1,m(R̄). (2.36)

The interaction potential between the charges V = r2φ(R + r1) can be expan-

ded [166], in the case of non-overlapping charges r1 + r2 < R, in Taylor series

V (R) =
∞∑

L1,L2=1

VL1,L2
(r1, r2)

RL1+L2+1
, (2.37)

where L1 + L2 = 2,3, 4 corresponds respectively to dipole-dipole, dipole-quadrupole

and quadrupole-quadrupole coupling. In the case when the coordinate systems at

O1 and O2 are parallel (Fig. 2.14), and displaced with respect to each other along

the z axis, i.e. R= Rz̄, the form of VL1,L2
is especially simple [165]

O2

r2

R

O1

r1

z̄

z̄

Figure 2.14: Particular orientation of two
coordinate systems centred at O1 and O2

(grey). For this orientation inter-particle
interactions can be expanded in a simple
form (Eq. 2.38).

VL1,L2
=

(−1)L24πp
(2L1 + 1)(2L2 + 1)

·
L<∑

m=−L<

√√√√
�

L1 + L2

L1 +m

��
L1 + L2

L2 +m

�
r L1

1 YL1,m(r̄1) r L2
2 YL2,m(r̄2), (2.38)

where L< ≡ min(L1, L2) and the
�n

k

�
= n!/[k!(n − k)!] are binomial coefficients.

States and energies of two interacting atoms can be then calculated by considering

the Hamiltonian for two interacting atoms H =
∑

i=1,2 Ĥ(i)0 + V̂ , where Ĥ(i)0 are

uncoupled, single-atom Hamiltonians. A suitable basis is the one formed from linear

combinations of atomic eigenstates in the fine-splitting regime

{|n1,`1, j1, m j1 , n2,`2, j2, m j2〉, . . .}. Matrix elements that occur in calculations of the

form 〈n′1,`′1, j′1, m′j1 |r̂ L
1 YL1,m(θ̂ , φ̂)|n1,`1, j1, m j1〉 can be then calculated in the same

fashion as Eq. (2.12). In practice, it is often convenient to think about the sys-

O2

R

O1

φ

θ

z̄

x̄

ȳ

z̄′

ȳ ′

x̄ ′

( x̄ , ȳ , z̄)
WignerD(1,θ ,φ)†−−−−−−−−−→ ( x̄ ′, ȳ ′, z̄′)

Figure 2.15: Changing the coordinate sys-
tem. Application of WignerD matrix rotates
states, expressed initially in two arbitrary paral-
lel coordinate systems defined by unit-vectors
( x̄ , ȳ , z̄) (solid grey), giving their components
in new basis ( x̄ ′, ȳ ′, z̄′) (dashed yellow) where
atoms are separated along z̄′-axis. This reduces
calculations for the general case of atomic ori-
entation, with states given in parallel coordin-
ate systems, to the case shown on Fig. 2.14.

tem in the basis where quantization axis z̄ points in the direction of the applied

external magnetic or electric field, or where z̄ is directed in the plane of the electric

field, perpendicularly to the linearly polarised EM field, or along the propagation

direction of the drive field, for a circularly polarised EM field. The general orient-

ation R of the two atoms in such a coordinate system, can be described with the

polar and azimuth angles θ and φ (see Fig. 2.15). We can reduce this general

case to the (θ = 0,φ = 0) case, for which VL1,L2
has a simple form [Eq. (2.38)],

by rotating the coordinate system. This is done by applying Wigner-D matrices
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WignerD( j1,θ ,φ)
⊗

WignerD( j2,θ ,φ) to states expressed in the original pair-state

basis, to obtain state-vectors in the rotated pair-state basis (Fig. 2.15), with z̄′ dir-

ection oriented along R. As mentioned above, this multipole expansion analysis

is correct as long as charges don’t overlap. This starts to happen below the so

called Le Roy radius [167], which can be calculated from the knowledge of the

wavefunctions Eq.(2.7) as RLR = 2(〈r̂2
1 〉1/2 + 〈r̂2

2 〉1/2). This can be calculated in

ARC by calling the getLeRoyRadius method of PairStateInteractions. For

example, the Le Roy radius for two Caesium atoms in n S state is ∼ 0.1 µm for

n∼ 20, and reaches 1 µm for n∼ 60, marking minimum inter-atomic distance for

this interaction calculation is valid.

Before we proceed in analysing a realistic case, let’s discuss a simple system of two

two-state atoms, where the pair state6 |r1, r2〉 interacts via a potential V with the

pair state |r ′1, r ′2〉 whose relative energy difference (energy defect) is ∆≡ E(r ′1, r ′2)−
E(r1, r2). In the {|r1, r2〉, |r ′1, r ′2〉} pair-state basis the interaction Hamiltonian is

H =
�

0 V

V ∆

�
. (2.39)

|C6(θ )| (GHz µm6)

60 S1/2 m j , 60 S1/2 m j

m j =
1
2

60 P3/2 m j , 60 P3/2 m j

m j =
1
2

m j =
3
2

60 D5/2 m j , 60 D5/2 m j

m j =
1
2

m j =
3
2

m j =
5
2

Figure 2.16: Anisotropy of van der Waals
interactions. Calculated for rubidium n= 60
`= S, P, D states

The eigenenergies of the system are E±(R) = (∆ ±
p
∆2 + 4V (R)2)/2. Let’s also

assume that the states r1←→ r ′1 and r2←→ r ′2 are dipole coupled in which case the

interaction potential has the form V = C3/R
3, where C3 is constant for a given pair-

state combination and atom orientation. In this case at short distances R� RvdW,

the energy shift of the states will be∝ C3/R
3, which is long-range in 3-dimensional

systems since it decays with the same power-law as the system dimension. At long

distances R � RvdW the potential has the short-range form of ∼ −C6/R
6, where

C6 = C2
3/∆. The cross-over distance is the van der Waals radius RvdW ≡ 3

p|C3/∆|
at which V (RvdW) = ∆. This cross-over distance can be changed by adjusting ∆,

which can be done by external fields [see Sec. (2.5.3)] for example. One special

case of interest is when ∆= 0, which occurs when r1 = r ′2 and r2 = r ′1. In this case,

two atoms initially in state |r1, r2〉 will oscillate between this state and |r2, r1〉 with

frequency set by V .

In realistic situations at long inter-atomic separations, when there are no single

resonantly coupled states, there are many pair-states |r ′1, r ′2〉 with energy defects

∆′. The level shift of the initial state at long-distances R, V (R)�Min[∆′], can be

calculated in the second-order perturbation. Typically the dominant contribution is

from dipole-coupled pair-states, causing an interaction shift of −C6/R
6, where

C6 =
∑

r ′1,r ′2

��〈r ′1r ′2|V (R)|r1r2〉
��2

∆′
. (2.40)

For Eq. (2.40) to converge, only pair-states with small energy defect |∆′| < ∆
and strongly coupled states (|n1 − n′1| < δn, |n2 − n′2| < δn) have to be included,

where typically ∆ is several h · 10 GHz, and δn ∼ 5. All calculations of pair-

state interactions are implemented in ARC class PairStateInteractions and

a perturbative calculation of C6 is implemented as getC6perturbatively. This

can be used for example to calculate C6 for various orientations of interatomic axis

R with respect to the quantization z-axis, illustrating the anisotropy of interactions

(Fig. 2.16).

6We’ve introduced r as short hand notation for n,`, j, m j .
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Figure 2.17: Pair-state energies obtained
by diagonalising the interaction Hamiltonian.
Pair-state energies δEµ relative to the the unper-
turbed rubidium target |60 S1/2 1/2, 60 S1/2 1/2〉,
pair-state. Highlighting is done based on the
coupling of pair states |µ〉, obtained in diagon-
alising the interaction Hamiltonian, to the state
where one of the atoms is already in the target
state and the other atom is in |5P3/2 3/2〉 state,
with driving field coupling to the σ− transition
(set by drivingFromState argument in ARC),
Ωµ = 〈µ|er · εq|60 S1/2 1/2,5 P3/2 3/2〉+ 〈µ|er ·
εq|5 P3/2 3/2, 60 S1/2 1/2〉, q = −1. This driving
field coupling is normalised with coupling Ω to
the maximally coupled state, which in this case
is the target state. Inter-atomic distance, R (µm)
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For short inter-atomic separations, down to the minimum distance given by the

Le Roy radius RLR, it is necessary to do numeric diagonalization of the Hamiltonian

H =
∑

i=0,1 Ĥ0,i + V̂ (R) in the pair-state basis for all interatomic distances R of

interest. The basis considerations are the same as for the perturbative calculations,

except that now we will be including higher order orbital angular momentum states

` = 0, . . . ,`max, due to the strong admixing of states. Typically, for calculation of

S state interactions we include `max ∼ 4. For each distance R we find only neig

eigenstates with eigenenergies closest to the set pair-state energy (relative to the

initial pair-state) by using an efficient ARPACK [168] routine through a Numpy [169]
interface.

An example of calculations obtained by diagonalizingH in the basis of ∼ 2300

states in this way is shown in Fig. 2.17. By default, only dipole-dipole interactions

are included in V (R), but interactions up to the quadrupole-quadrupole term [up toARC NOTE: drivingFromState is an

array [n,`, j, m j , q], where n,`, j, m j spe-

cifies the state, and the q specifies the trans-

ition that is driven by the external field,

with q = −1,0,1 corresponding to σ−, π

and σ+ transitions.

L1 + L2 ≤ 4 in Eq. (2.38)] can be turned on by setting the optional parameter

interactionsUpTo=2 during the initialization of PairStateInteractions.

Quadrupole couplings can be important for short-distance structure of the level dia-

grams [88, 170], where they can affect the formation of short-range potential wells,

which can supporting bound states [74]. Similarly to the Stark maps, default state

colour highlighting is done proportionally to the contribution of the original state in

the obtained eigenstates. Specifying the optional argument drivingFromState
can again be used to obtain highlighting relative to the dipole coupling strength

from a pair state where one of the atoms is already in the target state, and the

other is in the state given in the drivingFromState argument. On a computer,

obtained level diagrams can be explored in the form of interactive graphs, showing

contribution of different states, which is non-trivial and experimentally important

information due to strong state admixing.

After diagonalization, C3 and C6 interaction coefficients can be obtained by fitting

of the energy level shifts, which is done in the methods getC3fromLevelDiagramInter-atomic distance, R (µm)

∼
R −

3

∼ R−6

RvdW = 2.4 µm
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Figure 2.18: Cross-over between ∼ R−3 and
∼ R−6 interactions. Pair-state energy obtained
from the interaction diagonalization (solid red)
is fitted to the simple potential obtained from
simplified Hamiltonian [Eq. (2.39)] (dashed
black). The cross-over distance is given by the
van der Waals radius RvdW (vertical dotted line).

and getC6fromLevelDiagram respectively. They will perform a fit to the eigenen-

ergies of the state that contains the largest admixture of the target state. A method

getVdwFromLevelDiagram for finding a cross-over distance between van der

Waals and resonant dipole-dipole interactions, i.e. van der Waals radius RvdW is also

provided. As can be seen in Fig. 2.18 even after including the full pair-state interac-
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tion potential, we obtain the E±(R) function from the simplified model discussed

before. This will be one reason for choosing a particular form of model interaction

potential in Chapter 4.

2.5.2 Discussion of features: blocking and facilitating dynamics

We will now highlight several features seen in Fig. 2.17. For resonant laser excitation

∆= 0, we see that the probability for excitation of the two atoms into the Rydberg

state rapidly changes once the interatomic distance R goes below the so-called

blockade radius RB ≡ 6
p

C6/Γ . For simple resonant excitation of the Rydberg states,

Γ = Γstate + Γdrive is a combination of laser linewidth Γdrive and natural linewidth

Γstate due to the state decay. In the presence of a single Rydberg excitation, below

the blockade radius, the driving laser is effectively decoupled from the Rydberg

state of the other atom, and no additional Rydberg excitations will be formed. In

the limit of strong driving of atomic ensembles, this causes saturation of resonant

excitation [171] of the Rydberg states, setting a limit on the maximum number of

closely packed Rydberg atoms. As a consequence of this, fluctuations of the number

of excitations7 will be reduced compared to the situation of individually excited

non-interacting atoms [172]. A strong blockade can also be used for preparation of

symmetric collective excitations [67, 84], where atoms are in a coherent superposi-

tion where only one of them is excited. Finally note that in this case, although C6 is

typically anisotropic (Fig. 2.16), due to the rapid level shift∝ R−6, the blockade is

still spherical to a very good approximation, as long as C6 doesn’t cross zero for a

particular angle. The other important case of the blockade occurs when the Rydberg

state is used as a second stable state, to open an electromagnetically induced trans-

parency window. In this case, Γ will be determined by the width of the EIT window.

For vanishing control field, in the limit of an infinitely long-lived Rydberg state, this

will be determined by finite combined laser linewidth (as discussed in Sec. 2.3.3)

and motional induced dephasing (to be discussed in Chapter 3). For atoms closer

than the blockade radius under EIT conditions, the presence of a single Rydberg

excitation will decouple the Rydberg level of the other atom from the control field,

destroying the EIT condition for that atom and causing probe absorption [66].
For off-resonant Rydberg excitation ∆ 6= 0 we see that the presence of a single

Rydberg state excitation can increase the probability of exciting another atom. For

example on Fig. 2.17 for ∆ > 0 at the so called facilitation radius R∆ ≡ 6
p
∆/C6,

the laser will be resonant with the pair-state that corresponds to the two-Rydberg

excitation at a distance R∆. This marks in space around a single Rydberg excitation

a spherical shell of radius R∆ and thickness δR∆ ≈ Γ R7
∆/(6 C6), determined by the

linewidth of transition Γ , in which there is a high probability of exciting another

atom. Note that this shell can be very thin. For example in the Rb 60 S1/2 pair-state,

for detuning of∆ = 2π×200 MHz (2π×20 MHz), even a relatively broad transition

of Γ = 2π×3 MHz will result in shell thickness of only ∼ 7 nm (0.3 µm). In thermal

atomic vapours (see Sec. 2.8) at room temperature atoms traverse this distance

in only 0.04 ns (1 ns), which means that typically effective dephasing due to a

time-dependant level shift will be relatively big ∼ 1− 10 GHz. Even if one includes

7usually expressed through Mandel-Q parameter Q ≡ 〈N2
e 〉−〈Ne〉2
〈Ne〉 − 1, where Ne is the number of

excitations, and angle brackets indicate averaging over experimental or simulation runs. For resonant
excitation of the Rydberg gas the variance of the number of excitations Ne is sub-Poissonian Q < 0.
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Doppler broadening by setting Γ ∼ 2π × 300 MHz, facilitation sphere thickness

averaged over all the thermal velocity classes would be still about 0.9 µm. Note that

full pair-state diagonalization reveals that, due to strong state admixing, there can

be additional states in the blockade region that are coupled to the driving field [173],
as can be seen in Fig. 2.17 at distance R≈ 1.5 µm. However, these states are usually

weakly coupled and, more importantly, the thickness of the facilitation sphere they

create will be much smaller, as it occurs at R< R∆ while facilitation sphere thickness

scales8 with radius at which occurs as R7. Therefore additional resonances are

usually orders of magnitude smaller [99].
One particular case when the facilitation due to additional resonances is more

prominent is the case of avoided crossings. An example is the avoided crossing thatInteratomic distance, R (µm)

δ
E µ
/h

(G
H

z)

(Ω
µ
/Ω
)2

Figure 2.19: Avoided crossings create po-
tential wells in pair-state interaction en-
ergies. Pair-state energies relative to the
|43P3/2m j = 1/2,43P3/2m j = 1/2〉 pair-
state energy in rubidium with highlighting
corresponding to driving π transitions from
5 S1/2m j = 1/2 state. Based on figure 1. in
Ref. [75]. Labels are the same as in Fig. 2.17.

occurs around (∆E/h, R)≈(500 MHz,1.5 µm) on Fig. 2.17 in the blockaded region.

An avoided crossing will make the facilitation sphere thicker for that particular

detuning, resulting in a clearly observable peak in excitation [170, 174]. Some of

these resonances are deep enough to support bound states [175]. Avoided crossings

can also cause potential wells like the one on Fig 2.19, that can be used for control of

interactions e.g. in state dressing approaches [75], since they can increase coupling

in well-defined intervals of inter-atomic distances, again effectively acting as thick

facilitation spheres.

Finally, we note that when facilitation occurs due to attractive interactions, it opens

a loss mechanism. This is because an off-resonant laser will now excite strongly

attractive pairs of atoms that will move into the regions of dense pair-state and

strong mixing, where state redistribution and ionization can happen. This is true

even for low-lying states, where it is responsible for light-assisted collisions [176,

177].

2.5.3 Tuning of interaction potentials

Stark tuned Förster resonances

The energy defects of the pair-states ∆ control the distance RvdW at which cross-over

between long-range, resonant dipole-dipole V (R) ∼ R−3 and off-resonant dipole-

dipole (i.e. van der Waals) interactions will occur, as discussed earlier in Sec. (2.5.1).

Static external electric fields can be used to offset pair-state energies via induced

Stark shifts [Sec. (2.4.1)]. The special case when a given pair of dipole-dipole

coupled pair-states has negligible energy defect ∆/V (R) → 0 is called a Förster

resonance, and corresponds to the case when resonant long-range interactions

(∝ R−3) are obtained [71, 178–182].
Finding resonant states and values of electric field for which these resonances occur

can be done with the StarkMapResonances class of ARC. It takes as initialization

arguments two atom types9, their initial target states, and energy window, and then

performs a Stark map calculation in the pair-state basis. Since pair-state interactions

V (R) [Eq. (2.38)] can couple target pair-state to states that differ in projection of

total angular momentum by ∆m j = 0,±1, it is necessary to calculate Stark maps for

up to nine different manifolds corresponding to all possible combinations (m′j1, m′j2)
for dipole-coupled states. After diagonalization, only pair states which are in the

8This analysis assumes that C6 for all states is of the similar order of magnitude for all dipole coupled
states, which is usually true.

9Atom types can be different to allow for heterogeneous mixtures of atoms.
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Electric field, Ez (V/cm)
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=(Rb-85,Rb-85) = (−1.00|64 P1/2 1/2〉+ . . . , 1.00|65 P3/2 1/2〉+ . . .)

Figure 2.20: Automatic search for Förster res-
onance. ARC automatically searches within a
set range of electric fields and pair-state ener-
gies for resonances with the given pair-state.
An example calculation here shows pair-state
energies relative to the unperturbed pair-state
|66 S1/2 m j = 1/2,64 S1/2 m j = 1/2〉 of two
rubidium-85 atoms. This pair-state (solid red) in
electric-field Ez ≈ 0.165 V/cm becomes resonant
with another Stark-shifted state. In interactive
use of ARC users can select resonant states to
see their composition, here shown marked by a
blue square, that corresponds to an almost pure
|64 P1/2 m j = 1/2,65 P3/2 m j = 1/2〉 pair-state.
These resonances have been detected in Ref. [71].

specified energy window are considered, discarding the pair-states that are not

dipole coupled. Since electric field leads to strong admixing of basis pair-states,

the algorithm identifies states as dipole coupled if the basis state with dominant

contribution in the obtained eigen-state is coupled to the target pair-state provided

in the initialization. That pair-state is also admixed by the electric field, but can

be found as the state with the largest initial state fraction. Finally the interactive

routine allows users to select states, see plots with resonances, and identify state

composition (Fig. 2.20).

Dressing

Coupling of states with AC fields, discussed in the single atom context in Sec. (2.4.3),

can be used for tuning pair-state interaction potentials. In this context, we can

highlight two distinct cases of off-resonant dressing and resonant dressing.

Off-resonant dressing can be used to admix the Rydberg state into the ground state,

introducing interactions between new ground eigenstates [183]. A driving field

with Rabi frequency Ω tuned ∆� Ω off-resonance from the |g〉 ↔ |r〉 resonance,

acting on a single atom, gives rise to a ground eigen-state |g̃〉 ∼ |g〉+ ε|r〉, where

ε = Ω/(2∆) is the admixture of the Rydberg state |r〉. This admixing causes the

usual AC Stark shift [Sec. (2.4.3)], given here for red-detuned driving (∆< 0) as

δAC =
−∆−p∆2 +Ω2

2
. (2.41)

Note that even when the admixed Rydberg state has a finite lifetime τr, it has a

small impact on the ground eigen-state lifetime τg̃ = ε2τr, as typically ε� 1.

Interactions between the Rydberg states will cause changes to this AC Stark shift.

For example, this can be easily calculated in the simple case of two two-level atoms

interacting with van der Waals interactions V = −C6/R
6 [Fig. 2.21(a)]. The system

Hamiltonian in the pair-state basis {|g, g〉, |r, g〉, |g, r〉, |r, r〉} is (h= 1, RWA)

H =




0 Ω/2 Ω/2 0

Ω/2 −∆ 0 Ω/2

Ω/2 0 −∆ Ω/2

0 Ω/2 Ω/2 −(2∆− V )


 . (2.42)



34 Chapter 2 Rydberg atomic states: energy level structure and dynamics

Inter-atomic distance, R/RB

Pa
ir

-s
ta

te
|g̃

g̃〉
St

ar
k

sh
if

t,
δ
/[

2
×δ

A
C
(Ω
)]

Inter-atomic distance, R

Pa
ir

-s
ta

te
en

er
gy

|g, g〉

|g, r〉, |r, g〉

|r, r〉
(a) (b)∼ C6/R

6

Ω

Ω

∼ 1×δAC

�
Ω
p

2
�

∼ 2×δAC (Ω)

∼ ε4C6/R
6

∆

∆ |g, r〉+ |r, g〉

|g, g〉
Ω
p

2

Ω Ω

|g〉

|r〉

|g〉

|r〉

Figure 2.21: Effective potential between ground-state atoms due to Rydberg state ad-
mixing in off-resonant dressing. (a) Pair-state energy diagram where two ground |g〉 state
atoms at distance R are dressed by ∆ off-resonant field with Rabi frequency Ω that admixes
Rydberg state |r〉 into new ground eigen-state |g̃〉 ∼ |g〉+ ε|r〉. Rydberg states are interact-
ing with van der Waals interactions C6/R

6. The new ground pair-state will have AC Stark
shift δ = E(g̃, g̃)− E(g, g) relative to the unperturbed ground-state [solid red (b)]. At large
distances R� RB ≡ 6

p|C6|/Ω AC Stark shift approaches Stark shift value 2×δAC(Ω) (dotted
line) for two independently dressed atoms [(b) right inset ] with Rabi driving field Ω. Below
R® RB atoms start feeling repulsive van der Waals interactions (dashed line), with interaction
strength scaled down by ε4, the probability that both atoms are simultaneously in the excited
state. However, deeply in the blockaded region R� RB only one atom can be excited, at the
same time we don’t know which one. This limit can be seen as dressing of the superatom
consisting of two atoms [(b) left inset], with enhanced driving Ω×p2 between ground and
singly excited, symmetric collective state. Indeed the Stark shift δ saturates in this limit
at value of a single superatom Stark shift δAC(Ω

p
2) (dotted line). Calculation parameters

∆= 20 Ω.

Diagonalizing this Hamiltonian, we obtain the AC Stark shift of the |g̃, g̃〉 pair-state,

shown in Fig. 2.21(b). The effect of the interactions can be seen as an effective

pair-state interaction soft-core potential VD(R)|g̃g̃〉〈g̃g̃| whose amplitude is

Max[VD(R)] = 2δAC(Ω)−δAC(Ω
p

2)≈ Ω4

8∆3
. (2.43)

More complex Rydberg level energies, arising e.g. due to avoided resonances

(Fig. 2.19), can cause reduction of ∆ over a range of inter-atomic distances R,

leading to localised stronger dressing, as discussed in Ref. [75].
Dressing, both resonant and off-resonant, can also be done in the Rydberg state

manifold with microwave and terahertz fields, where it can be exploited for fine-

tuning of Rydberg interaction potentials [160, 161].

2.6 Adiabatic and non-adiabatic transitions

All discussion up to now was analysing static situations, where distances, laser

drivings and other external fields don’t change in time. Now we will consider what

happens when that is not the case.

Almost all Hamiltonian eigenstates calculated so far actually change in time, for

example because atoms move, changing the inter-atomic distance R and hence

the underlying Hamiltonian over time. Also, time-dependant external fields are,
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together with direct coherent driving and dissipative pumping mechanisms, one of

the main practical ways of quantum state preparation and state manipulation. If

the Hamiltonian changes slowly, so that the minimal gap between the energy of the

selected state and the rest of the Hamiltonian eigenstates ∆ is much bigger than

the speed of the eigen-energy E change in time t such that |∆|2 � ħh dE/dt, the

system state will stay in the instantaneous eigenstate. This is so-called adiabatic

following [184]. This is the basic mechanism behind state preparation in STIRAP

protocols, including many-body state preparation [76, 79] and adiabatic quantum

computing [185]. For changes of the Hamiltonian in finite time, there will always

be a “leakage” of system state from the instantaneous eigen-state to other states.

For two-level systems, this is quantified through the Landau-Zener equation[186,

187] which states that a fraction exp[−2π|∆|2/(ħh dE/dt)] of the the state after

transition will leak to the non-instantaneous eigenstate. This is the basic mechanism

leading to collisional state redistributions of atomic population [188], including

ionization [189, 190]. For example, Rydberg autoionization process in dense samples

can be seen [138] as initial creation of ions and electrons in Rydberg-Rydberg

collisions. For collisions to occur, mixing and non-adiabatic transfer has to occur,

which requires two atoms to come close to the dense region of energy-levels, so-called

energy-level “spaghetti” region, that occurs for example on Fig. 2.17 for R< 2 µm.

This distance scales typically as the Le Roy radius∝ n2
∗ , making Rydberg-Rydberg

and Rydberg-electron cross-sections∝ n4
∗ .

2.7 Additional multi-atom effects

In the discussion so far we have had no more than two atoms. It is reasonable to

ask whether knowing all two-atom processes allows for understanding processes in

many-body systems, in a sense that they are just summations of the two level terms?

While that is true in the case of an elementary Hamiltonian (Eq. 2.38), for some other

concepts that we like to think about, like interaction-induced state level-shifts, that

is not always the case. That can be important in writing effective Hamiltonians [191,

192]. For example, in the case of three atoms shown on Fig 2.22(a), it can be that

∆2
∆3

|p〉

|s′〉

|s〉

|p〉

|s′〉
|p′〉

|s〉

(a) (b)

Figure 2.22: Three atom processes. In situ-
ations when two-atom processes (a) are ener-
getically forbidden, three-atom processes (b)
can be resonant. Horizontal lines are single
atom energy levels.

dipole V̂ (Eq. 2.37) allowed coupling |pp〉 → |ss′〉 is forbidden since the energy defect

is too big ∆2 = E(ss′)− E(pp)� V . Therefore the effective interaction Hamiltonian∑
i< j Wi j(R)|pp〉〈pp| could be written as two atoms in state p interacting via the

second-order term giving rise to van der Waals interactions Wi j = −V (R)2/∆2 =
−C2

3/(∆2 R6). For two atoms within a blockaded volume (Sec. 2.5.2), we might

naively expect that addition of the third atom in the blockade volume doesn’t change

anything. However as we can see on Fig 2.22(b) the three-atom process has energy

defect ∆3 = E(ss′p′)− E(ppp) and in principle can even be resonant. In the limit of

∆3� V , the eigenstates will be strong admixtures of |ppp〉 and |ss′p′〉. Writing an

effective interaction Hamiltonian in the basis that includes only p states doesn’t make

sense any more, and blockade can be broken [193] by exciting the |ss′p′〉 state [192],
even though each atom pair, taken separately, might be blockaded. This process can

be seen as a three-body Förster resonance [194]. In the case when the three-photon

process is not resonant ∆3 � V , it will introduce state admixing in the second

order ∼ V 2/∆2
3, that would in principle add a fourth-order three-body correction to

the effective Hamiltonian
∑

i< j<k Wi jk|ppp〉〈ppp|. Similarly, four-body [195] and
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Figure 2.23: Comparison of alkali atomic vapour properties. The vapour pressure is set
by the metal reservoir temperature, that should be the point in the cell with the lowest
temperature.

higher-order resonances can occur.

2.8 Atomic thermal vapours

Thermal vapours of atoms are used both as experimental systems for investigation,

and to provide spectroscopic reference standards for lasers in experiments invest-

igating other systems (e.g. cold atom samples). ARC contains vapour pressure

data [196] for Na, Li, K, Rb and Cs (getPressure), and allows easy access number

densities (getNumberDensity), average interatomic distances

(getAverageInteratomicSpacing), atomic speeds at given temperatures

(getAverageSpeed), etc. A comparison of alkali metal properties is shown on

Figure. 2.23.

2.9 ARC implementation

The Alkali Rydberg Calculator (ARC) library, described in Ref. [95] and used through-

out this thesis for calculations is a part of a project that includes:

• ARC code, open-source code (BSD-3) hosted on GitHub [197]. This is aWWW address

https://github.
com/nikolasibalic/
ARC-Alkali-Rydberg-Calculator

collection of theoretical calculation methods and relevant experimental data,

organised in an object-oriented structure with clear hierarchy following the

physical decomposition of the calculation problems. The choice of Python as

a programming language provides easy integration with many other tools,

and facilitates further development and expansions in a multi-user research

environment.

• Documentation hosted online on Read the Docs [198]. It is generated auto-WWW address http://
arc-alkali-rydberg-calculator.
readthedocs.io

https://github.com/nikolasibalic/ARC-Alkali-Rydberg-Calculator
https://github.com/nikolasibalic/ARC-Alkali-Rydberg-Calculator
https://github.com/nikolasibalic/ARC-Alkali-Rydberg-Calculator
http://arc-alkali-rydberg-calculator.readthedocs.io
http://arc-alkali-rydberg-calculator.readthedocs.io
http://arc-alkali-rydberg-calculator.readthedocs.io
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matically from code comments (docstrings) using the Python Sphinx package

that outputs hyper-linked .html and .pdf, cross-referenced directly to the source

code.

• “An Introduction to Rydberg atoms with ARC”, an interactive IPython note- WWW address: see “Getting started with

ARC” section of the online documentationbook that explores Rydberg physics quantitatively with the ARC package. This

provides many examples of use, and benchmarks the package against literature.

This is accessible from the documentation.

• Atom calculator is a web-application hosted on a dedicated server, that WWW address:

https://atomcalc.jqc.org.ukprovides access to a subsection of ARC functionality. Answers for quick cal-

culations are provided immediately, while ones that require more lengthy

calculations are scheduled, and users are notified via email once the results

are available. All results of long calculations are stored in a growing database,

allowing quick access to all previous calculations. The aim is to increase

accessibility of common atomic-physics quantities and provide quick estimates.

Generated codes can be downloaded as “on-demand-examples” of using the

ARC package, which is also useful for more complicated calculations for which

users have to check convergence themselves if they want more than quick

estimates.

We will now note several details on the implementation of the library. Numerov

integration of the wavefunctions in the model potential, the origin for the majority

of the coupling constants used in the rest of calculation, is an intensive numeric

calculation that was implemented in the C language as a hard-coded Python Numpy

extension. This combines the quickest possible integration with a directly returned

Numpy array used in the rest of the library. Everything else is implemented in pure

Python to allow easy changes and relies on Scipy and Numpy packages [169] that

provide wrappers for optimized numerical methods (often hard-coded in FORTRAN).

Memoization of results is used throughout to provide significant performance im-

provement. For example, all calculated dipole and quadrupole matrix elements are

saved in an in-program SQL database (SQLite). Not being a client-server database,

this doesn’t have good support for concurrency, but has a quick response time. Many

angular coupling factors, such as Wigner-nJ coefficients and WignerD matrices are

also memorized and reused. Thanks to this, the generation of sparse interaction

matrices in 2000 basis-state space takes on the order of a minute on a modern

computer (∼ 3 GHz CPU). Now we will focus on interfacing this library. Within

Python, since calculations are implemented as classes, they are easily saved and

reused with the Python Pickle library. Also, full documentation provides details on

all the internal variables and methods of the ARC classes that can be interfaced if

modules are built on top of them, or if one wants to take and reuse only part of

them, e.g. interaction matrices and basis states. For other interfaces, calculations

can be directly exported as .csv files.

The online interface, Atom calculator (Fig. 2.24), has been in itself a challenging

computational project. In order to provide 1-to-1 compatibility with the standalone

ARC library and allow easy updates of the used library, user queries are parsed with

a combination of regular expressions, and corresponding Python code is generated

in response. If the code can be quickly executed (e.g. calculation of dipole matrix

elements), it is executed on the server and results are returned to the user within

https://atomcalc.jqc.org.uk
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several seconds. However, for lengthy calculations (e.g. pair-state interaction

potentials, Stark maps, angular dependence of C6) this cannot be done. In that case

the Server will check the SQL database (MariaDB) that stores details of previous

calculations, to see if the requested calculation, or anything similar, has been done

in the past, and if it does exist, it will be offered to the user for immediate access.

If, however, the requested calculation doesn’t exist, users can submit an academic

email address to schedule a job. The server then submits this job to the queue. The

queue is implemented as a job queue for distributed computing in the Python Celery

module, with RabbitMQ and Redis based communication layer. This is necessary

since computation is done by separate worker process(es) that can in principle be on

another machine. Workers take jobs from the queue, perform calculations, save their

results in a shared folder, and update the MySQL database. Finally, workers connect � For more information see

MariaDB - www.mariadb.com
Celery - www.celeryproject.org
RabbitMQ - www.rabbitmq.com
Redis - www.redis.io
MathJax - www.mathjax.org
Plotly - www.plot.ly/javascript/

to the email server and send a message to the user about a finished calculation with a

corresponding link. On the user-side, MathJax and Plotly JavaScript libraries are used

for equation rendering and data representation in the form of high-quality interactive

plots. The architecture is summarised on Fig. 2.24. The final implementation uses

a two-core virtual CentOS machine, allowing simultaneous running of server and

worker processes. In terms of lines of code, it is the same order of magnitude as the

ARC package itself, and includes JavaScript, PHP and Python segments, as well as

HTML and CSS for web interface structure and design.

2.10 An application: analysis of THz imaging

In the final section of this chapter, we will consider some of the Rydberg properties

in the context of a recently demonstrated application [97]. The potential of Rydberg

atoms for detection of microwave (MW) and terahertz10 fields, has been recognised

in early experiments [48, 50, 52]. For example, authors in Ref. [48] excited atoms

in a atomic beam to a high-lying state |r1〉, where big dipole matrix elements∝
n2
∗ between nearby states would make the medium optically dense for incoming

black-body radiation in the narrow spectral range corresponding to the transition

|r1〉 → |r2〉 where |r2〉 is Rydberg state with higher energy. Atomic population in

different Rydberg states can be detected with state-selective ionization (Sec. 2.3.5)

providing readout of incoming radiation intensity. The ultimate detection sensitivity

limit of this approach is given by the noise due to the collisional and black-body

radiation induced population redistribution of |r1〉. Authors of Ref. [50] managed to

control the black-body radiation by enclosing the interaction region of the atomic

beam in a cooled (∼ 14 K) box which included metallic meshes in the holes for

beam input that were dense enough to prevent penetration of the MW radiation

from the hot atom source. This background shielded detection region was then used

for directly measuring microwave radiation from black-body sources at different

temperatures, using the same approach as in Ref. [48].
More recently, the intensity of a coherent source was measured with all-optical

methods in a Rydberg vapour. Coherent MW driving between the two Rydberg

states induced dressing of the state, and the corresponding Autler-Townes splitting

can be detected if the transition to either of the Rydberg states is probed with a

laser scan [160, 199]. However, the glass cell reflects microwaves, producing a
10Note that in the early papers the terahertz part of the spectrum was referred to as far-infrared

(FIR) [48] or submillimetre [50] radiation.

www.mariadb.com
www.celeryproject.org
www.rabbitmq.com
www.redis.io
www.mathjax.org
www.plot.ly/javascript/
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complicated interference pattern in the measurement volume [200] that, due to the

integral nature of all-optical detection via transmission measurements, cannot be

directly detected in a single measurement. Also the interference pattern has to be

known in order to correctly model the Autler-Townes splitting spectra.

In recent experiments by C. Wade et.al. [97] that interference pattern was converted

to optical domain and measured along the laser beam in a single shot, by spatially

imaging atomic fluorescence. Thermal caesium vapour enclosed in a quartz glass

Material n α (cm−1)

Silica 1.96 0.62 - 7.8

Pyrex 2.1 7 - >90

BK7 2.5 14 - >90

SF7 3.5 43 - >90

PTFE 1.44 1.4 - 2.8

HDPE 1.53 1.4 - 2.8

Table 2.1: Refractive indexes n and ab-
sorption coefficients α for common glasses
and polymers for EM radiation in range 0.5-
2 THz. All materials exhibit stronger absorp-
tion at higher frequencies. Data for glasses is
from [201] and for polymers from [202].

cell was used as active medium (for details of the experimental setup, see Ref. [97]).

The choice of glass is crucial for efficient sampling of terahertz radiation, since

other common glasses with higher ionic fraction have order of magnitude higher

absorption coefficients (Table 2.1). Common polymers used for THz lenses (PTFE,

HDPE) have similar absorption coefficients as Silica glass. PTFE with maximal usable

temperature up to ∼ 250 ◦C and low thermal conductivity, can also be used as an

insulator for vapour-cell ovens if minimum absorption is needed. Alkali metals have

a number of transitions in the THz regime featuring strong coupling [Fig. 2.26(a)],
that forms a dense frequency comb in the terahertz window (0.3-3.0 THz) of the

EM spectra, allowing measurement of radiation electric field amplitude via Autler-

Townes splitting, as described in the previous paragraph. Measurements are relative

to the fixed atomic standard that, in principle, can be absolutely calibrated. If both

laser and THz driving are detuned from resonance∼ 200 MHz a new regime emerges.

Due to reflections of the THz wave typically a standing wave will form (Fig. 2.25). In

the nodes of the THz field, the laser driving is off-resonant with Rydberg transitions

and therefore no atoms will be excited to this highly excited state. This is different

compared to the previously discussed techniques in Ref. [48, 50], where states

could be always populated through collisional processes, introducing a background

signal11. In the points in space where there is a non-zero THz field present, the

combination of optical and THz fields with equal detunings (Fig. 2.25, inset) will

drive two-photon stimulated Raman transition to the Rydberg state |r〉. The natural

lifetime of that state is 4 µs, but the population from that state will be redistributed

through BBR and collision induced processes to other states, most of them capable of

decaying in the visible spectrum. On these time scales hot atoms (∼ 60 ◦C) can travel

distances of ∼ 1 mm before they emit fluorescence in the visible spectrum. Crucially,

since the experiment uses a three-step ladder excitation scheme, the only atoms that

can be excited to the Rydberg state will be those selected by the resonance condition

of the lasers. If the laser beams are not too strong so as to induce additional dressings,

THz

79
9

nm

21 P3/2

21 S1/2

Figure 2.25: Two-photon optical-terahertz
excitation of the Rydberg atomic states
maps intensity of the terahertz standing
wave into the fluorescence pattern of the
Rydberg atoms. Atoms (blue dots) in the
off-resonant laser beam can be excited (green
spherical clouds) to Rydberg state if they are
in the areas where field of terahertz standing
wave (grey oscillating strip) is non-zero, as the
two-photon resonance condition is fulfilled (in-
sets). Image below illustration is experimental
data from C. Wade [97].

and if they are set on resonance with the zero-velocity class, the atoms’ velocity in

the direction of the laser beam will be significantly reduced (∼ 5 m/s) compared to

the average velocity in the transverse direction (∼ 200m/s). This means that after

excitation the atom motion will not smear the fluorescence pattern in the direction

of laser beam propagation, thus maintaining high-resolution record of THz driving

field in the fluorescence pattern. At the same time lower-lying Rydberg states that

have strong THz transitions, have lifetimes of the order of ∼ 1− 10 µs. That sets an

ultimate theoretical limit on maximum frequency of THz field amplitude modulation

at ∼100 kHz, if intensity changes are to be resolved in time. Realistic rates are also

limited by the finite exposure time required to capture an image with good signal

to noise ratio. This depends on the fluorescence intensity, the detection acceptance

11Note that for very dense vapours collisional redistributions and light-assisted collisions will ultimately
cause populating of high lying states [203].
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Figure 2.26: Relative sensitivity of alkali
metals to terahertz radiation. (a) For reson-
ant detection of coherent radiation measured via
Autler-Townes splitting of the Rydberg-state ex-
citation resonances, reduced dipole matrix ele-
ments |µ̄THz| = |〈r1||er||r2〉| for terahertz trans-
itions between the Rydberg states |r1〉 ↔ |r2〉
gives relative sensitivities in the terahertz range.
For off-resonant imaging schemes, the fluores-
cence rate will depend on both coupling between
the Rydberg states µ̄THz and coupling from the
lower excited state to the Rydberg state µ̄Rydberg

as µ̄2
Rydbergµ̄

2
THz (for the fixed Rydberg laser intens-

ity), calculated on (b) for example of caesium
excitation from the lower excited state 7 S1/2, as
in Ref. [97] (THz transition used there is high-
lighted with a red dot).

angle and efficiency, and dark-noise. Rates of ∼ 12 Hz have been demonstrated

with the standard consumer photo-camera [97], which is already good for real-time

applications.

The excitation rate of Rydberg states in the off-resonant laser beam will be pro-

portional to the square of the two-photon Rabi frequency (ΩoΩTHz/∆)2 where Ωo

and ΩTHz are the Rabi frequencies of the optical and terahertz transitions respect-

ively. The initial Rydberg population will then be proportional to the square of the

corresponding dipole matrix elements. For all possible caesium transitions from

Fig. 2.26(a), that quantifies relative sensitivities for resonant probing of the fields,

Fig. 2.26(b) quantifies this relative Rydberg excitation rates for the off-resonant

fluorescence imaging. The ultimate intensity of the fluorescence depends also on

the lifetimes and decay channels of the state. The resolution of this method in the

axial direction is limited by the residual Doppler-velocity of the excited atoms in

that direction to ∼ 20 µm (theoretical estimate of lower bound). In the other two

dimensions (in the radial direction) resolution is limited by the size of the probing

laser beam, similarly to Ref. [200].
As can be seen on Fig. 2.26(b), this method as it stands offers narrowband detection,

which has limited discrete tunability, achieved by changing the principal quantum

number of the state. Detuning the excitation laser offers limited continuous tunability,

since for bigger detunings ∆ the two-photon transition rate is quickly diminished,

while for smaller detunings the direct single-photon excitation of the states will

cause a background signal. In principle, fluorescence from directly excited P states

will have different frequencies than decays from S states populated in a Raman

transition, but quick population redistribution processes will quickly contaminate all

the fluorescence channels. A viable alternative for expanding detection ranges is

by using Stark shifts of the state (Sec. 2.4.1), as in Ref. [48]. For example, scalar

polarizability of the 21 P3/2 m j = 1/2 and 21 S1/2 m j = 1/2 caesium states are

α
(P)
0 =1.36 MHz cm2/V2 and α(S)0 =0.08 MHz cm2/V2 respectively, providing tuning

of αP −αS = 1.28 MHz cm2/V2 with an applied electric field, i.e. S to P resonance

shift of 6.4 GHz through application of an electric field of 100 V/cm. In stronger

fields, one has to take care of the strong state admixing (Sec. 2.4.1) that would

not only change coupling constants, but also possibly allow driving of two-photon

transitions to states that are normally forbidden by the ` selection rules for the dipole

operator of the unperturbed atomic states.
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2.11 Summary

The ARC project can be seen as an experiment on the ways to increase accessibility

and portability of the knowledge of Rydberg atom properties. It was inspired by

the day-to-day needs of research in the field of Rydberg atoms. Although a lot of

results about Rydberg properties have been published in traditional ways in the form

of various journal articles, the space of possibilities was too big to be exhausted

with several specific examples. This extent also prevents simple tabulation of all the

results. Existing on-line databases and computational engines provide neither all the

necessary information, nor a framework upon which one can build new calculations.

At the time work on ARC started, the only solution was tedious error-prone assembly

of relevant data and re-use of existing theoretical frameworks. We hope that this

project can provide the initial kernel for a community-developed framework, and

inspire more well-documented scientific open-source libraries. Novel aspects are

mostly not in the theoretical approach, which follows established state-of-the art

methods, but in the implementation and organization. Success of projects like this

can be best measured by the number of users, and in particular number of future

extensions built with these tools, which remains to be seen in the future. In building

this computational “brick” of theoretical methods and experimental data we tried to

follow good practices of successful open-source development. Often neglected work

of writing the documentation, and organising architecture of the program was found

to be very good practice in clarifying all details of the theoretical reasoning. Finally,

we note that open-source computational formats like .ipynb will probably allow much

more effective sharing of theoretical and experimental results in the future, allowing

readers of publications hands-on exploration of models, including parameter changes.

This is a significant improvement over the traditional model of several example plots.

Providing computational notebooks like IPython as a supplement to papers would

provide quicker and deeper understanding of both theoretical and experimental

results, a good example being recent results on gravitational wave detection [204].
That could be not just an effective way of sharing knowledge among specialists in the

field, but also allow easier wider dissemination of knowledge. If an effort is made

to provide relatively common interfaces for various calculations, results published

in that way can be used directly as active computational libraries in other projects.

We hope that the ARC library, along with other similar recent projects [205], will

provide some drive in that direction.
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In this chapter we discuss ways to control motional dephasing of collectively stored

excitations. In Sec. 3.2 we present a dressed-state EIT scheme for a four-level

ladder system both experimentally and theoretically. The four-level system can be

mapped, through strong-resonant dressing of the states, to an effective three-level

system which supports converting of optical excitations into uniform-phase spin

waves with adiabatic protocol. A readout efficiency in well-defined spatial channels,

for excitations stored in this type of spin-waves, is insensitive to the motional

dephasing. In addition, the three-step excitation scheme produces momentum kick-

free and Doppler-free excitation giving narrow resonances in thermal vapours. The

scheme achieves spatial selectivity of the atom-light interaction region for all three

driving fields within the atomic medium. We present proof-of-concept experimental

demonstration of the generalised EIT scheme in the caesium thermal vapour, for

6 S1/2 → 6 P3/2 → 7 S1/2 → 8 P1/2 excitation path. Results of exciting the higher-

lying 23 P3/2 state in the Doppler-free geometry are also presented, where we were

able to observe bistability within this small excitation region volume of ≈ (36 µm)3.

In Sec. 3.3 we present a theoretical model of an experiment where a spin-wave

with a non-trivial motional state has been formed. We highlight the importance of

strong dressing for coherent control (i.e. including relative phases of excitations)

of motional degrees of freedom, and perform detailed derivation of the expected

experimental signals. The theoretical prediction matches well with experimental

data across the wide range of parameters. The model reveals interference, at a

single-photon level, of the light emitted from two spin waves moving at two different

velocities. Detailed theory provides insight into conditions for the observation of such

phenomena at the single-photon level, clarifies some of the processes contributing

to the background signal and allows future generalizations.

3.1 Introduction: collective storage of excitations

We have seen in the previous chapter (Sec. 2.5.2) that the presence of a single

Rydberg state excitation can dominate all other experimentally relevant energy

scales in its neighbourhood having a radius on the micrometer scale . Volumes of

µagε̂

Ωc

|g〉

|e〉

|a〉

Figure 3.1: Example level system for EIT
mapping of the weak field ε̂ into atomic de-
grees of freedom. Weak field ε̂ is dipole µag

coupled to the atomic system where a classical
control field with Rabi frequency Ωc controls
the transparency window and group velocity.

that size can contain big numbers (∼ 100...3) of atoms, and can even be individually

optically resolved [64, 72]. This represents potential for non-linear optics, provided

that one can map strong Rydberg-Rydberg interactions into optical and NIR photons

(wavelength ∼ 400− 1600 nm).

The desired mapping is provided by electromagnetically induced transparency (see

Fig. 3.1) that uses the ground and long-lived Rydberg state for storing part of the
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light-field excitation [4, 206]. EIT opens a transparency window ( Fig. 2.12) whose

high dispersion means (Sec. 2.3.4) that the group velocity of the light pulses is slow.

Pulses are therefore compressed inside the medium, with excitation originally in the

ε̂ field mode now coherently coupled to the atomic degrees of freedom, admixing

Rydberg state character to the optical excitation. For dense media1 , discrete atomic

degrees of freedom can be replaced by a field, and the excitation can be formally

described as a polariton [4, 206], i.e. a coherent superposition of excited matter

field and light field. The ratio of light-matter character of excitation is adjustable

in time through adiabatic variation (Sec 2.6) of the control field (Ωc in Fig. 2.12).

This admixing of Rydberg atomic character into optical excitation [207] allowed

observation of strong non-linearities [66, 68], including photon bunching due to

effective attractive interactions between excitations in 1D [69]. However, with

everything happening “in-flight” of the excitation through the medium, with limited

interaction time and variable localization of the excitation, building more involved

schemes can become difficult, both experimentally and theoretically.

Optical excitation can be completely mapped into the atomic degrees of freedom

in two ways. One way is adiabatic turn-off of the control field Ωc that in principle

can deterministically map the excitation pulse to a polariton that in this limit be-

comes purely atomic excitation [164, 206, 208], with no contribution of the field ε̂.

Alternatively, one can stochastically prepare the medium. For example, short laser

pulses can stochastically excite atoms, however unless some additional mechanism

limits the maximum number of excitations (as suggested in Ref. [209]), one cannot

create a non-Poissonian excitation number distribution in this way, and therefore no

non-classical light sources. For deterministic single-excitation preparation, spontan-

eous emission can be used as in DCZL protocol [2], where single-decay events are

detected and used as a herald for the preparation of a singly-excited state. These

are probabilistic methods since exact timing of the state preparation is unknown

and, in contrast to EIT methods, they cannot be used for coherent manipulation

of weak light pulses, although they can provide an initial, non-classical source of

such pulses [210]. In all the cases, there is a lack of information about which atom

within the medium is excited. The prepared atomic collective excitation state is

called a spin-wave (Fig. 3.2), which can be written for a case of a single-excitation

for plane-wave excitation fields as

|ψ〉= 1p
N

N∑
j=1

exp(ik · r j)|g, . . . , e j , . . .〉. (3.1)

Absorption

k

∼ |ψ〉

+eik |g1e2 . . .〉
+ . . .

eik |e1g2 . . .〉 r1

r2

0 1
|ε(r)|exp(ikr)

π

3π/2

π/2 (a)

(b)

Figure 3.2: Spin-wave formation in collect-
ive absorption. (a) Ensemble of ground state
|g〉 atoms irradiated with probe field whose
amplitude |ε(r)| and total phase picked up in
transfer to the excited state |e〉 are mapped
in space with the colour wheel. If in the ab-
sorption process there is no information about
which atom absorbed the excitation, the collect-
ive excitation of the atomic ensemble (b) will
be a superposition of probabilities that atoms
at locations r j are excited. The spatial phase of
the formed state, spin-wave |ψ〉, records direc-
tionality of the input field and allows retrieval
in well defined direction.

This excitation is a coherent superposition state, made of the sum of the probability

amplitudes for the events that any j-th atom, out of a total of N atoms, has been

excited to the Rydberg2 state |e〉. The relative phase of these different excitation

absorption events at atom-locations r j depends on the sum of all wave-vectors

k ≡∑l kl whose corresponding field modes l have been involved in coupling |g〉
and |e〉 states in the storage procedure. This state is robust against single-spin

decoherence and loss, being an example of so-called W states [24]. Light excitation

stored in this way in the Rydberg manifold allows for long interaction times, has

1media is dense, for requirements of continuum approximation applied here, if N σ δz� 1, where
N is atom number density, σ is the characteristic cross-section of the EM field mode, and δz is the
characteristic distance over which slowly-varying envelope (Sec. 2.4.3) of the atomic polarizability and
propagating electric field change.

2or, alternatively, the other stable state used in storage protocol
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strong interactions since light mode excitation is completely mapped into the Rydberg

atomic state, and provides localization of excitation in space and time that allows

building of more complicated control protocols. Finally, at the end of such a control

protocol, light can be retrieved in a well defined spatial mode due to constructive

interference of the emission events from different atoms making up the collective spin-

wave |ψ〉. This allowed filtering of stored excitation pulses by successfully retriving

only excitations stored in singly-excited atomic clouds [211], their manipulation

during the storage time with applied AC fields [212], realization of dissipative

single-photon transistors [71, 213] and measurement of both strong [blockade,

Sec. (2.5.2)] and weak [214], dephasing-induced interactions between two light

excitations stored in two separate optical channels [72]. For readout of the excitation

in a well-defined direction, a phase grating [Fig. 3.2(b)] imprinted in relative atomic

phases k · ri should be preserved. However, the atomic ensemble3 used in these

storage experiments (also called quantum memories) has Boltzmann distributed

velocities due to the finite temperature of the ensemble. Because of the atomic

motion, the lifetime for successful readout in the initially defined direction is limited

by the time (kv̄)−1 required for atoms to smear out the phase grating under thermal

motion with average velocity v̄ (Fig. 2.23). This process is called motional dephasing.

3.2 Uniform phase spin-waves

In early light-storage experiments, initial excitation of the optical field ε̂ was stored

in the Zeeman levels of the ground state [164], or hyperfine states of the ground

state [217]. In both cases, the energy distance between the two states used for

storage, which is also the energy difference of probe and control fields, is maximally

of the order of few GHz. With nearly co-propagating probe and control fields

[Fig. 3.3(a)], typically at an angle of about ∼ 1◦, the imprinted spin-wave has a

period of Λ≡ 2π/|kp − kc| that can be on the order of 100 µm or up to two orders

of magnitude larger, depending on alignment precision, reaching the microwave

wavelengths which corresponding to inter-state |g〉 ↔ |e〉 transition. In an alkali

vapour medium, diffusion of the atoms can be reduced by adding a buffer gas,

reducing motional dephasing. Typical lifetimes reached in thermal vapours are of

the order of ∼ 100 µs [217, 218], limited by the diffusion of the atoms out of the

beam and collisional dephasing (∼ 1 ms). The longest storage time reached for

excitation storage in ground-state atoms to date, was achieved in cold samples. The

atomic motion was reduced by using a 1D optical lattice with 3.2 µm period in

the direction of the formed spin-wave whose period of is ∼ 35 µm. With the help

of additional dynamical decoupling [27] that cancels dephasing from nearly-static

external fields, storage lifetimes of 16 s were reached [29].

(a)

(b)

µagε̂, kp

µagε̂, kp

Ωc, kc

Ωc, kc

Λ� 1 µm

Λ< 1 µm

kc

kp

kp

kc

|g〉

|e〉

|a〉

|g〉 |e〉

|a〉

Figure 3.3: Comparison of ground state
and Rydberg state two-photon collective ex-
citation storage. (a) For storing excitation
between two ground state hyperfine or Zee-
man sub-levels, drive wave vector mismatch
|kp − kc| ≡ (2π)/Λ is typically small, making
spin-waves with long wavelength (Λ� 1 µm).
(b) Storage in Rydberg state, due to wavelength
mismatch between the two fields, limits spin-
wave period to Λ< 1 µm.

For excitation storage in the Rydberg state the situation is, however, much worse.

Typical storage schemes use combination of blue and red laser driving giving,

even in the optimal counter-propagating orientation of the probe and control

fields [Fig. 3.3(b)], spin-waves on the order of Λ ∼ 800 nm. In thermal vapours,

where the average thermal velocity is v̄ ∼ 200− 300 m/s, this gives rise to lifetimes

of Λ/v̄ ∼ 1 ns [219]. Remedies for motional dephasing are limited in these schemes

3Note that realisations of the spin ensemble other than atomic vapour medium can be used. For
example solid state realisation can be done with rare earth doped crystals [11, 215, 216], however atomic
vapours medium has some technological advantages to be discussed in Sec. 3.3.1.



46 Chapter 3 Spin-wave motion

since buffer gas cannot be added as it has strongly perturbing effects on high-lying

states, giving rise to line broadening and shifts [220]. In cold atoms, with absolute

temperatures six orders of magnitude lower, and corresponding velocities three

orders of magnitude lower, lifetimes are ∼ 1 µs [211, 212]. Here the application of

optical lattices for reduction of atomic motion is not effective in reducing motional

dephasing since the lattice period cannot be much smaller than the spin-wave period.

Here we propose an excitation storage approach based on the ladder scheme with

three fields. The fields’ propagation directions kl can be oriented in a plane such that

their wave-vectors cancel
��∑

l kl

�� = 0 [see Fig. 3.4(c)]. In this configuration each

atom will pick-up the same phase, independent of its spatial location r j within the

driving field, creating a spin-wave with uniform phase. A phase-grating [Fig. 3.2(b)]
determining the readout direction is imprinted then only when the readout laser

pulses are applied. The efficiency of selecting a spatial direction for the readout

is therefore unaffected by the motional dephasing during the storage time. The

pulse amplitude can be distorted, since it is stored in relative amplitudes of the

atom excitation within the medium. However, the relevant length-scale over which

variation of the pulse amplitude is stored, determined by the initial length of the

compressed light pulse in the medium, is typically orders of magnitude bigger than

1 µm. Therefore, loading of atoms into optical 1D lattice effectively stops atomic

motion over that scale, preventing pulse distortion. Of course, just orienting three

laser beams in a Doppler-free geometry as on Fig. 3.4(c) doesn’t allow controllable

mapping of excitation between light field and atoms. In the following, we present

such a protocol.

3.2.1 Generalised EIT for 4 level systems

Consider a four-level ladder system driven by three coherent fields, denoted as probe,

dressing and control, shown on Fig. 3.4(a). Their respective intensities are given by

the coupling Rabi frequencies Ωp, Ωd and Ωc. With respective field detunings ∆p,

∆d and ∆c, the coherent dynamics of the system is described in the {|1〉, |2〉, |3〉, |4〉}
basis with Hamiltonian (ħh= 1)

Figure 3.4: Dressed state electromagnetic-
ally induced transparency in Doppler-free
(uniform-phase spin-wave) configuration. (a)
Bare-states level diagram of the system driven by
three coherent fields. (b) Levels in semi-dressed
picture. With three driving fields oriented in
plane as in (c), Doppler-free condition is ful-
filled, and collective excitation of the ensemble
of such four-level systems into state |4〉 will form
uniform-phase spin-wave. Simultaneously, for
∆p = −∆c = Ωd/2 highly dispersive EIT window
opens for probe light (d), theoretically calculated
here for Γ1 = Γ2 ≡ Γ , Γ3 = 0, (Ωd,Ωp,Ωc)/Γ =
(8,0.1,0.5) and (∆d,∆c)/Γ = (0,−4) for a sta-
tionary four-level system.
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H =




0 Ωp/2 0 0

Ωp/2 −∆p Ωd/2 0

0 Ωd/2 −∆p −∆d Ωc/2

0 0 Ωc/2 −∆p −∆d −∆c


 . (3.2)

In addition to the coherent driving, dissipation affecting the system is described by

the Lindblad superoperator L[. . .] acting on the system’s density matrix ρ̂ as L[ρ̂] =∑
α

�
Lkρ̂L†

α − 1
2 L†
αLαρ̂ − 1

2 ρ̂L†
αLα

�
. Spontaneous decays with rates Γi , i = 1, 2, 3 are

included with Li =
p
Γi |i〉〈i + 1|. Overall, the system’s dynamics is governed by the

master equation d
dt ρ̂ = −i[H , ρ̂] + L[ρ̂]. As discussed in Sec. 2.4.3, solving this

in the case when all three beams are resonant will give rise to electromagnetically

induced absorption, instead of transparency. We have to identify parameters for EIT

to occur.

In the following, we focus our attention to the parameter regime where the middle

driving field, resonant with the unperturbed transition |2〉 → |3〉, ∆d = 0, introduces

strong dressing Ωd � Ωp,Ωc of the two intermediate states. The probe field will

then see an Autler-Townes split resonance [Fig. 3.4(d)], corresponding to the two

states |+〉 and |−〉, that appear in the semi-dressed basis [Fig. 3.4(b) and Sec. 2.4.3].
Consider the situation where the probe and control fields are both detuned from

the bare-state resonances ∆p = −∆c = Ωd/2, so that they are resonant with one

of the semi-dressed states |+〉 or |−〉. This engineered dressed-state resonance

can then be used in combination with control Ωc and probe light Ωp to open a

narrow transparency window [Fig. 3.4(d)]. Typically, state |4〉 would be a long-lived

Rydberg state, whose decay (Sec. 2.3.2) is much weaker compared to that of the two

intermediate states Γ3� Γ1 ≈ Γ2. To a very good approximation a dark state |D〉 is

formed, which can be obtained by diagonalising the system Hamiltonian (Eq. 3.2). In

the limiting worst case Ωp = Ωc, when atoms are in an equal-weighted superposition

of the ground |1〉 and excited state |4〉, we can obtain a clean expression for the dark

state

|D〉 = (|1〉 − ξ|2〉 − ξ|3〉+ |4〉)/N , (3.3)

ξ ≡
−Ωd +

q
Ω2

c +Ω
2
d

Ωc
, (3.4)

where N is a normalization factor, and ξ characterises the admixture of the bright

(radiatively coupled) states |2〉 and |3〉. In the limit of strong dressing the contribution

of the bright states 2ξ≈ Ωc/Ωd� 1 is negligible. This is similar to the double-dark

resonance schemes explored in 4-level Λ-like systems [221]. The benefit of using the

engineered state for excitation becomes apparent if one considers momentum-kick

free, Doppler-free excitation. In contrast to typical two-photon driving schemes to

highly excited states that, as discussed in the introduction, cannot fulfil the Doppler-

free condition, this can be achieved with three fields arranged in a plane [Fig. 3.4(c)].
Additional advantages will be discussed in the following sections.

Intuitively, how EIT arises in this situation can be seen in a similar way as for the

usual three-level EIT scheme discussed in Sec. 2.4.3. One can expect that one of the

eigenstates ofH (Eq. 3.2) has dominant composition of a1|1〉+ a2|4〉, so that in a

time δt, evolution underH adds a1 ·Ωpδt and a2 ·Ωcδt to the manifold consisting
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Figure 3.5: Generalisation of dressed-state
EIT for N -middle levels. Example configuration
for the five- (b) and six-level (c) system, shown
in bare and semi-dressed basis. With all dress-
ing beams resonant (yellow) ∆d,i = 0, and much
stronger then probe and control fields Ωd,i �
Ωc,Ωp narrow transparency window opens when
probe and control are resonant with one of the
states in the semi-dressed basis. For example
for Ωd,i = 8Γ , (Ωp,Ωc)/Γ = (0.1,0.5), narrow
transparency window opens for for ∆p = −∆c =
5.65 Γ for five-level system (a) and ∆p = −∆c =
6.45 Γ in six-level system (d). Arrows (a,d) high-
light the transparency window. Probe detuning from the bare-state resonance, ∆p/Γ

Probe detuning from the bare-state resonance, ∆p/Γ
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of the middle two states |2〉 and |3〉. If the coherent driving Ωd between these two
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Figure 3.6: Extension of the dressed-
state EIT scheme for coupling between bi-
chromatic polaritons. (a) A uniform spin-
wave between states |e〉 and |g〉, from light ex-
citation ε̂1 stored over |g〉 → |a〉 → |c〉 → |e〉
levels, can be phase-matched for retrieval as
field ε̂2 of different frequency, by retrieving over
|e〉 → |c〉 → |b〉 → |g〉. This modified diamond
schemes is also interesting for exploring the
influence of EIT on the efficiency of the four-
wave mixing process. For continuous coupling
of two propagating bi-chromatic fields ε̂1 and
ε̂2 the scheme shown on (b) is particularly in-
teresting although the spin-wave between |g〉
and |e〉 is not uniform-phase. That is because
phase matching of spin waves formed over
transitions |g〉 → |a〉 → |c〉 → |b〉 → |e〉 and
|g〉 → |b〉 → |e〉 can be done only by adjusting
the propagation direction of the two dressing
fields on transitions |a〉 → |c〉 and |c〉 → |b〉, al-
lowing co-propagation of the two fields ε̂1 and
ε̂2. Using Rydberg state for |e〉 would addition-
ally open the possibility for non-trivial coup-
lings between the two bi-chromatic quantum
fields.

states is strong enough to coherently mix these two contributions, there has to exist

a combination of the amplitudes a1 and a2 that will in this mixing destructively

interfere in the amplitude for excitation of the middle manifold. Following this

effective image, one would expect that if we have a middle manifold consisting of a

ladder of N states |m1〉
Ωd,1−−→ |m2〉

Ωd,2−−→ . . .
Ωd,N−1−−−→ |mN〉, all of them coupled with strong

dressing fields Ωd,i resonant with the unperturbed transitions, EIT would again

appear if we tune probe and control laser to one of the dressed states. That is indeed

the case, as we show on Fig. 3.5, where the calculation is performed with three and

four middle states, amounting to a total of five and six states respectively. Finally,

we note that these multi-level schemes can also be interesting because they open

up interesting possibilities for coupling multiple weak (quantum) fields (Fig. 3.6),

where a total system’s polariton that forms would have two quantum EM field

modes with very different frequencies. Bi-chromatic quantum field interfacing can

be interesting in several contexts, as different energies can be used as a frequency

encoded qubits [222] or for interfacing and entanglement of heterogenous quantum

systems with different resonant frequencies. Some possibilities will be discussed in

Sec. 3.3.5.

3.2.2 Doppler free excitation

As noted in the introduction, Rydberg state excitation with three field wave-vectors

ki oriented in a Doppler-free configuration, excites atoms with the same relative

phase
∑

i ki · r = 0 independently of the atomic positions r within the medium. The

phase grating determining the output mode is now set only by the readout control
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beams. Any atomic motion before application of the readout control beams (during

the storage time) does not affect the retrieval efficiency [223]. Since only readout

beams set the direction of the output mode, the output mode direction can also

be changed by changing the readout beams direction. Also, since all the schemes

that produce a uniform-phase polariton have the same form of stored spin-wave,

one can use two different dressed states, one for storage and one for readout, to

change the frequency of the readout pulse [Fig. 3.6(b)]. Both of these features can

be important for realizing quantum interconnects [224]. Finally, note that in EIT

achieved under Doppler-free conditions all the atom-velocity classes contribute to

the signal, in contrast to other methods where Doppler-free signals are achieved by

velocity-selective techniques, standard saturation spectroscopy being the simplest

example [225].
We will now focus on extended storage lifetime, which was the original motivation

for pursuing uniform-spin waves. Rydberg-vapour based single-photon sources [209]
are a prominent example in which prolonged storage of excitations in the atomic

degrees of freedom can improve operation. Recently demonstrated memories, where

light was stored as a Rydberg excitation in a thermal vapour, had lifetime of the

readout efficiency of only 1.2 ns[219], limited by motional dephasing of the spin-

wave imprinted in their two-step excitation process. With the proposed Doppler-free

excitation, the lifetime of this atom-vapour memory would be limited to the transit

time of atoms through the excitation region defined by the size of the laser beams.

Taking parameters in Ref. [219] as an example, for Rubidium vapour at 140 ◦C
and a laser waist of 35 µm, two orders of magnitude longer lifetime (∼ 100 ns) is

expected.

The longer storage time can be used to obtain an effectively bigger blockaded

volume. Namely, to obtain single photons from the output, one can rely on strong

Rydberg blockade that dephases states with more than two excitations on the time

scale of the excitation laser pulse [209, 219], or, in continuous excitation schemes,

scale 1/γ defined by transition linewidth γ (typically dominated by laser linewidth).

The dephasing occurs due to atom-atom interactions (see Sec. 2.5) that introduce

additional level shifts Cα/r
α for two atoms at distance r, where α = 3 for reson-

ant dipole-dipole interactions, or α = 6 for non-resonant van der Waals interac-

tions. For short pulses the excitation linewidth Γ = 1/T will be determined by

the pulse duration T . During the excitation time T any two atoms in blockade

radius RB =
α
p

Cα/Γ (Sec. 2.5.2) would acquire a phase shift > π relative to the

phase of the exciting pulse. That prevents creation of excited atom-pairs within

the blockaded volume. In order to achieve strong enough interactions so that only

a single excitation can be created within it, the excitation volume has to be small

∼ R3
B. The longer storage lifetime, achievable with uniform-phase spin-waves, can

provide another mechanism for filtering out cases in which only a single excitation

is stored within the medium. In this weak-blockade regime, multiple excitations will

be created within the storage medium, however, any spin-waves containing two

or more excitations will dephase during the storage time [214]. This is because

each excited atom-pair { j1, j2} with superposition amplitude a j1 j2 in the initially

stored spin-wave |ψ〉 =∑ j1 6= j2
a j1 j2 |g, . . . , e j1 , . . . , e j2 . . .〉 will acquire an additional

phase a j1 j2

τ−→ exp(i τ Cα/r
α
j1 j2
) a j1 j2 during the storage time τ. The phase for each

term will be uncorrelated, depending on the particular atom-pair distance r j1 j2 ,
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which would dephase the initial two-excitation (or more) spin-wave |ψ〉, preventing

readout in a well defined output mode. For an atomic excitation cloud of size d,

this decoupling of multi-photon excitations from the output mode would happen

after ∼ dα/Cα (in units h= 1). For example, if the medium excitation is performed

in 1 ns, a waiting time of τ = 100 ns would increase the excitation volume from

which we expect to retrieve only single-photon output by an factor of 100 or 10, for

dipole-dipole and van der Waals interactions respectively. This corresponds to the

increased effective blockade radius by a factor of 4.6 and 2.1 respectively. Finally,

note that recent experiments which demonstrated interactions between photons in

two separated optical channels [72] relied on the weak-blockade regime for effective

photon-photon interactions.

3.2.3 Coherent transfer: STIRAP over dressed states

For wider applications of the three-photon scheme it is desirable to have coherent

manipulation protocols allowing for deterministic storage and retrieval [4, 206],
in addition to the obtained uniform-phase spin waves. In the previous section we

discussed only stochastic excitation that cannot deterministically perform storage,

and a weak-blockade regime where it was not possible to deterministically store only

spin-waves containing only a single excitation. Off-resonant Doppler-free driving

schemes have been proposed [226] for deterministic, coherent control of populations,

however it’s difficult to achieve strong Rabi driving frequencies in multi-level ladder

schemes due to weak dipole-matrix elements and a requirement that lasers are

detuned from intermediate states in order to avoid populating them. Protocols

relying on direct coherent driving also require precise control of driving power and

time duration of driving. Finally, they cannot be used for manipulation of weak

fields.

Adiabatic following (Sec. 2.6) offers a good alternative, relaxing constraints on pre-

cise pulse duration and power while allowing deterministic atomic state preparation,

as well as mapping of weak quantum fields [4, 206] into excitation of atomic media.

The usual two-field, three-level STIRAP protocol has been used to transfer atomic

population to the Rydberg states [227], and it can be generalized for use with an

engineered dressed state as a mediator. The protocol is shown in Fig. 3.7 (left inset).

We keep laser detunings as in Sec. 3.2.1, with probe and control fields resonant with

one of the dressed states, and the dressing field resonant with the unperturbed trans-

ition between the two middle states. Keeping the dressing field Rabi frequency Ωd

fixed, and pulsing txhe control and probe laser beams achieves population transfer

between the ground and the Rydberg state [Fig. 3.7 (right inset)] without signific-

antly populating any of the two intermediate states. To achieve efficient transfer

two requirements have to be satisfied: (i) the dressing driving has to be stronger

than the probe or control driving Ωd� Ωc,Ωp [228] [Fig. 3.7]; and (ii) the usual

three-level STIRAP adiabaticity condition should be satisfied Γ/(TΩ2)� 1 [229],
where Ω is the control [Max(Ωp,Ωc)] pulse intensity, Γ is the decay constant of the

two middle (dressed) states, and T is the switching time of the two pulses.

The combination of adiabatic following and the existence of a narrow transpar-

ency window (Sec. 3.2.1) that allows pulse slowing down and compression, implies

that this scheme can be used as a simple generalization of the three-level storage

protocols [4, 206] offering the discussed benefits of uniform-phase spin-wave excit-
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Figure 3.7: Deterministic state preparation
with generalised STIRAP in a four-level ladder
system. Transfer efficiency to the excited state
|4〉 (solid line) compared to that of the three-
level scheme (dashed line) for the same control
and probe pulses (left inset). High efficiency is
achieved for strong dressing of the two middle
states with the generalised STIRAP protocol for
four-level ladder scheme (insets). States |1〉 and
|4〉 are assumed to be long-lived, while the decay
rate of each of the two middle states is Γ .

ation (Sec. 3.2.2). In the strong driving limit where both probe and control fields

can be considered as classical driving fields, extended storage times can allow for

testing of proposals that exploit Rydberg-Rydberg interactions within the blockade

volume for deterministic preparation of many-body states containing only a single

excitation [230]. These protocols require localization of the excitation region within

a sphere of blockade radius RB. Such tight localization of the excitation can provided

by this scheme, as will be discussed in the following Section 3.2.4. Finally, note

that the described adiabatic following protocol is only efficient for cold atoms, since

in hot atoms the Doppler effect dephases the system during adiabatic following,

significantly reducing the transfer efficiency. This is because while the dark state

[Eq. (3.3)] is Doppler-free, the Doppler-free condition holds only for the ground |1〉
and Rydberg |4〉 state, not for the two intermediate states over which the transfer

happens.

3.2.4 Spatial localization of excitation within the atomic medium

The noncollinear orientation of the three driving fields provides, in addition to

Doppler-free excitation, a well-localized excitation volume whose size is determined

by the overlap of all three beams. Since both probe and control beams are detuned

from the bare-state resonance, the medium is transparent for them everywhere except

in the common overlap region, which is the only place where the population of

atoms in the Rydberg and ground states is changed. Using strong resonant dressing

to provide an engineered state over which interaction happens in this noncollinear

multi-drive field scheme allows excitation and probing of well-localized regions

in any selected location within the atomic medium whose size can be down to

micrometer distances if all the beams are tightly focused.

Well localized excitation of atomic vapours confined in spectroscopic cells in this

scheme, in combination with Doppler-free features, is promising for electrometry

applications in the microwave and terahertz regions (see Sec. 2.10), allowing for sub-

wavelength imaging of fields in the vicinity of the field-perturbing structures that are

either immersed in the atomic vapour or placed next to the spectroscopic cell [231].
Localization of excitations can also allow probing of atom-surface interactions [232]
with patterned surfaces [233] inserted inside the vapour cells, and explorations of
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non-equilibrium phase transitions [87] in small volumes.

The scheme can also be used in cold-atom ensembles to provide excitation of only

a tiny fraction of the bigger cloud, e.g. in Rydberg experiments where one wants

to perform excitation in volumes with linear dimensions of several micrometers

characteristic of a Rydberg blockade, for state preparation [67, 230] or single-ion

creation [234]. In particular, this can be used within larger cold atom clouds not

requiring previous preparation of small cold-atom ensembles. Similarly in cold-atom

arrays, the scheme can be used for single-site addressing [80, 83, 235–237] in

two-dimensional (2D) and three-dimensional (3D) lattices. For ensembles held in

2D lattices, the addressing can be done by moving only the dressing laser focus,

keeping the probe and control beams, that illuminate the whole lattice, unchanged.

3.2.5 Experimental demonstration of dressed-state EIT
ACKNOWLEDGEMENTS: Experimental res-

ults in this section are obtained in collabor-

ation with Massayuki Kondo. The author

designed experiment, and collaboratively

performed setting-up of experiment, and

measurements.

This section presents experimental demonstration of the proposed EIT scheme. As

an atomic medium, an evacuated quartz cell filled with caesium is used. To increase

the atomic vapour pressure within the 2 mm optical path length inside the cell, it is

heated in a PTFE insulated enclosure with ceramic heaters up to 50 ◦C, corresponding

to an atom-number density of 4.6 · 1011 cm−3. The four caesium states selected for

the ladder scheme are 6 S1/2 F = 4→ 6P3/2 F = 5→ 7S1/2 F = 4→ 8P1/2 F = 3, 4,

coherently driven by three laser beams with corresponding wavelengths 852 nm,

1470 nm and 1394 nm respectively. The first two lasers (ECDL) are locked to the

transition using a Doppler-free signal provided by polarisation spectroscopy [154,

238]. The third control laser is not actively stabilised, however since it is a single-chip

based distributed feedback laser (DFB) its short-term drift and linewidth are below

1 MHz. The weak 852 nm probe beam is set 2π× 500 MHz off-resonance from the

transition, outside the usual Doppler-broadened profile (FWHM ∼ 2π× 700 MHz

for Cs at 50 ◦C). The strong second laser beam (Pd = 4.1 mW) on 6P3/2 F = 5↔
7S1/2 F = 4 resonance dresses the corresponding transition by Rabi frequency

Ωd ≈ 2π× 1 GHz bringing the dressed state into resonance with the detuned probe

field.

The three laser beams for the ladder excitation are focused down to beam waists

(1/e2 intensity) of (wp, wd , wc) = (6,28,29) µm and overlapped in plane at a

common focal point inside the cell. To achieve Doppler-free configuration (Fig. 3.8),

the dressing and control beams are focused at an angle of 34◦ and 32◦ respectively,P.q.n of the final state, n
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Figure 3.8: Relative angles for three driving
fields (shown in inset) in the Doppler-free
ladder excitation scheme. Calculated for cae-
sium 6 S1/2 → 6 P3/2 → 7 S1/1 → n P1/2 excit-
ation scheme. Similar angles are obtained for
driving to n P3/2 state. Two principal quantum
numbers (p.q.n) of final states used in this
chapter are highlighted with vertical dashed
lines.

relative to the direction of the probe beam (Fig. 3.9). This requires focusing of

dressing and control beams through a 1.25 mm thick quartz cell wall at an angle,

instead of the usual normal-incidence conditions. That introduces astigmatism [239],
offsetting the foci in the sagittal and tangential planes by as much as ∼ 0.2 mm.

This is compensated by additional quartz windows (AC1 and AC2 in Fig. 3.9), of the

same thickness and at the same incident angle, but now in the beam’s sagittal plane,

i.e. rotated 90◦ around propagation direction with respect to the glass window. The

correction windows are fixed in single-piece 3D printed mounts that keep them fixed

at the correct angles.

Alignment of the three tightly focused beams is quite challenging. Initial alignment

is done in identical empty quartz cell, allowing almost exactly the same beam

propagation to be achieved as with the filled experimental cell. A corner of the

empty cell is removed, so that a razor blade can be inserted inside. A piezo-actuated
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translation stage is continuously driven by a saw-tooth voltage, knife-edging the

beam by moving ≈ 100 µm, and providing real-time information on the beam focal

point location. With the blade set at an angle to all three beams, it is possible to

simultaneously obtain a signal from all three beams, and perform fine alignment

of their focal points in all three dimensions. The empty cell is then replaced with

the caesium-filled experimental cell. Since the probe beam is off-resonant for the

undressed transition probe beam absorption occurs only at location where the second

strong laser dresses the atomic levels. This causes fluorescence at 852 nm that is

imaged through the interference filter on a CCD camera from the side of the cell

to find beam overlap between the first and the second laser. With the three laser

beams overlapped, upon scanning of the control laser over resonance, reduction

of 852 nm fluorescence can be observed. It is also possible to replace third fibre-

coupled laser output with 1470 nm laser driving 6P3/2 → 7S1/2 or 794 nm laser

driving 6P3/2→ 8S1/2, both of which can induce dressing and associated fluorescence

to help with visually (with CCD camera) locating beam position inside the vapour

cell.

A theoretical prediction for the probe absorption is presented in Fig. 3.10(a). The

steady state for model’s dynamics described in Sec. 3.2.1 is calculated with a simple

four level system, excluding hyperfine states F and different coupling constants for

all possible mF sub-levels. The model does include averaging over atom-velocity

classes in two-dimensional plane (defined by the laser beams propagation directions),

each with the corresponding Doppler shift of driving-field detunings, for Boltzmann

velocity distribution at 50 ◦C. Decay rates Γ1...3 are taken to match the natural

lifetimes of 6 P3/2, 7S1/2 and 8P1/2 states respectively (Sec. 2.3.2). Additionally,

each of the states decays to the ground state with rate Γτ = 1/τ due to the finite

transit time τ. The transparency peak that opens on one of the dressed state [|+〉
on Fig. 3.10(a)] does not reach full transparency, being limited in visibility by the

transit time (see Sec. 2.4.3 for discussion on the time required to populate the dark

state).

The experimentally obtained level splitting is shown in Fig. 3.10(b-d). An avalanche

photodiode (APD) records the probe beam absorption through the 2 mm thick vapour

that includes ∼ 100 times smaller common interaction region defined by the overlap

of the three focal points. In the interaction region, a dressing beam induces Autler-

Townes (AT) splitting of the 6P3/2→ 7S1/2 resonance, which additionally broadens

+500 MHz

C
C

D

APD

AC2

OC1

laser lock

AC1

1470 nm

1394 nm

Ωp, 852 nm

33.91◦

31.95◦
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ΩcOC220 µm

to lock-in
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Figure 3.9: Schematics of experimental
setup for demonstrating dressed-state EIT in
Doppler-free configuration. The probe beam,
offset with acousto-optic modulator (AOM) from
the atomic resonance by +500 MHz, passes
through 2 mm of caesium vapour and its trans-
mission is recorded on an avalanche photo-
diode (APD). Dressing (1470 nm) and con-
trol (1394 nm) laser beams pass through the
achromatic lenses and astigmatism correction
plates (AC1 and AC2) before reaching a common
focus inside the vapour cell. There, the frequency-
shifted probe field becomes resonant with the
dressed-state transition, causing strong 852 nm
fluorescence imaged through the interference fil-
ter on the camera (CCD) from the side of the
cell. The dynamics from the beam-overlap region
(zoom-in shown in the bottom left inset) can be
extracted by performing transmission detection
locked-in to the modulation of dressing or control
fields, provided by optical chopper wheels OC1
and OC2 respectively.



54 Chapter 3 Spin-wave motion

Figure 3.10: Dressed-state Doppler-free EIT
in thermal vapour - theory and experiment.
(a) A four-level theoretical calculation of the ima-
ginary part of the electric susceptibility for the
Doppler-broadened medium (see main text for
details). The dotted (solid) line shows line pro-
file without (with) a dressing laser beam Ωd = 0
(Ωd = 2π × 1 GHz). The solid line shows EIT
window in the dressed state |+〉 resonance for
∆d = 0, ∆c = −2π× 500 MHz for a transit time
of τ = 26 ns, (Ωd,Ωc)/(2π) = (1,80) MHz. Ex-
perimental results in caesium thermal vapour are
shown on panels (b-d). The dotted line on (b)
shows the total probe transmission through the
cell. Lock-in detection with the dressing-beam
power modulation shows AT splitting (dashed
line). Addition of the control laser opens a trans-
parency window (solid line) when the control
field is tuned to one of the dressed states [(b)
and (d)]. For control laser on resonance, EIA is
observed (c).
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the wings of the Doppler-broadened D2 transmission spectrum. The dressing beam

can be modulated by switching it on and off with an optical chopper wheel (OC1

on Fig. 3.9). Demodulating the APD signal in-phase with this dressing beam power

modulation, we can obtain the change of probe transmission δT due to the presence

of the dressing beam in the common interaction region. This reveals two AT peaks

[Fig. 3.10(b), dashed line], the red detuned one being smaller due to the contribution

of other hyperfine states (F = 3, 4) of the D2 transition. One also notes [Fig. 3.10(b-

d)] that with the dressing beam turned on the absorption for the probe field, resonant

with bare-state transition, is reduced. This can also be explained in the dressing

picture, as the dressing laser shifts resonance away from the bare-stateresonance

due to AT splitting. Indeed, camera images of the fluorescence from 6P1/2 state

decay for the resonant probe reveal a dark spot at the location of the dressing laser

in the otherwise bright fluorescence beam.

Finally, adding the control laser (Pc = 8.8 mW) causes a transparency peak to

appear when the control field is on resonance with either of the semi-dressed states,

|+〉 and |−〉 respectively on Fig. 3.10(b) and Fig. 3.10(d) (solid line). With absorption

in the demodulated signal normalized with maximum absorption, we see that we

can achieve transparency of ∼ 30%. The two observed peaks correspond to the two

hyperfine states 8P1/2 F = 3, 4 of the final state, split by 2π× 171 MHz. Note that if

the control laser is left on resonance, enhanced absorption is observed [Fig. 3.10(c)

solid line], which is explained as the usual four-level ladder electromagnetically

induced absorption [100, 154, 240].
To obtain further insight into the nature of the observed resonances, scans of the

control laser were performed, keeping the probe laser locked, with the probe beam

blue detuned by 2π× 500 MHz from the 6S1/2 F = 4→ 6P3/2 F = 5 resonance, and
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Figure 3.11: EIT and EIA of a strongly dressed
state. (a) EIT resonances in probe transmission
signal for off-resonant probe and control ∆p =
−δc = 2π× 500 MHz. (b) The full-width at half-
maximum (FWHM) of EIT varies linearly with
control power. (c) EIA resonances are observed
when probe and control fields are resonant with
bare state transitions ∆p = −δc ≈ 0, and their
FWHM also has linear scaling with control power
(d).

the dressing laser locked on resonance 6P3/2 F = 5→ 7S1/2 F = 4. Now the optical

chopper wheel OC2 (Fig. 3.9) is used to modulate the power of the control laser,

while the dressing beam power is kept constant. Note that with this modulation one

probes a different spatial part of the interaction region (Fig. 3.9 inset) compared

to modulation with OC1, although in the present case the two regions are almost

the same since wd ≈ wc. The lock-in amplifier demodulated probe absorption

signal is presented in Fig. 3.11(a). Analysis of the full-width at half-maximum

(FWHM) extracted from the Gaussian fits of one of the resonances [marked with

a dot on Fig. 3.11(a)], reveals a linear scaling of the transparency widths with

control power [Fig. 3.11(b)], in accordance with the theoretical prediction [241].
Extrapolating the obtained FWHM to the limit of Ωc → 0, we obtain a prediction

for the narrowest features of about 2π× 36 MHz. A similar result with unlocked

lasers, and the probe on resonance ∆p ≈ 0, yields a minimum EIA linewidth of

about 2π× 29 MHz [Figs. 3.11(c-d)]. Dominant contributions to the linewidth of

these features are: (i) the finite time the atoms spend in the interaction region,

estimated as time of flight through the probe beam, that broadens every transition

by Γt = v̄/d̄ ≈ 2π× 6 MHz, where v̄ is the average atomic speed, and d̄ = πD/4

is the average transit path length through the beam of diameter D (corresponding
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Figure 3.12: Origin of spatial averaging over
dressing powers in probe transmission signal.
(a) Spatially varying dressing laser power (back-
ground shading) pushes the dressed state |+〉
closer to the probe laser energy, causing increased
scattering of the probe laser (colour of the hori-
zontal line marking probe laser energy corres-
ponds to the fluorescence rate). (b) If the peak
dressing laser power causes dressed state en-
ergy to shift more than a probe detuning ∆p,
two peaks in fluorescence appears, corresponding
to the wings of the dressing laser beam where
probe laser and dressed state are on resonance.
(c) Measured 852 nm fluorescence, integrated
over vertical pixels, imaged for different dressing
powers. Insets show two examples of imaged
fluorescence.
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to the probe beam in our case); and (ii) averaging of the dressing beam power,

that determines location of semi-dressed state resonance, over the region where

probe and control beams intersect (Fig. 3.12). The latter can be resolved using a

top-hat shaped dressing beam. Alternatively, one can select a dressing beam much

wider than the control and probe beams such that overlap region of the probe and

control beams probes only a small region of the dressing beam, over which the

variation of the dressing beam power is much reduced. Dynamics from only that

region can be conveniently extracted by modulating the control beam (with OC2

in our setup on Fig. 3.9). Under conditions like that wd > wp, wc (28 µm, 6 µm

and 13 µm respectively), without astigmatism compensation, linewidths of down to

2π× 16 MHz were observed (Fig. 3.13).Control detuning (∆c −δc)/(2π) (MHz)
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Figure 3.13: Narrowest observed EIT res-
onances. Less tight focusing of dressing beam
compared to two other beams reduces dressing-
beam power averaging, allowing narrower fea-
tures to be observed. Dashed lines are Lorent-
zian fits, with their FWHM marked on the fig-
ure.

Alternative possible experimental implementations

There are many suitable alternative ladder-systems that can be used for achieving

the proposed dressed-state EIT. In rubidium a siutable scheme would be

5S1/2
5.96 a0e−−−−→
780 nm

5P3/2
10.6 a0e−−−−−→
1529 nm

4D5/2
∼ 0.01 a0e−−−−−−→
∼700 nm

nP, nF.

Here, dressing in the middle step is easily achieved since it corresponds to a strong

transition in the range where erbium-doped fibre amplifiers can provide high power.

Regarding the geometric constraints, while the Doppler-free condition
∑

i ki = 0

can be satisfied for many three-field transitions by orienting three beams in a plane,

there are special cases where almost complete Doppler cancellation can be achieved

in a collinear configuration of three driving fields. That is the case in the caesium

ladder scheme

6S1/2
4.49 a0e−−−−→
895 nm

6P1/2
0.56 a0e−−−−→
635 nm

9S1/2
∼0.01 a0e−−−−−→
∼2.2 µm

nP,

where almost complete Doppler cancellation is achieved in collinear regime, with

wavevector mismatch corresponding to a spin-wave period of Λ ≈ 590 µm. In

comparison, the in-plane Doppler-free scheme in caesium, 6S1/2→ 6P3/2→ 7S1/2→
nP, for laser beam angles misaligned from a perfect Doppler-free condition by

∼ 1 mrad, would produce a spin-wave with a comparable period of Λ ≈ 100 µm.

Similarly in lithium

2S1/2
3.4 a0e−−−−→
671 nm

2P1/2
1.9 a0e−−−−→
460 nm

4D3/2
∼0.009a0e−−−−−→
1465 nm

(∼ n= 54)P

collinear orientation of ladder-driving fields would result in a spin-wave with period

of Λ≈ 1 mm. In comparison with non-collinear schemes where driving fields are in

plane, the collinear schemes restrict the choice of excitation lasers and associated

dipole coupling strengths. However, they are very promising for achieving the

narrowest possible spectral features of interest for electrometry [97, 199], allowing

driving of big atomic volumes, resolving the problem of transit broadening due to

atomic motion through small volumes. In practice for Λ∼ 1 mm in thermal vapours,

in addition to finite transit time through the excitation region, additional effects

like collisional broadening etc, start limiting the maximum achievable storage time

and linewidth, not spin-wave motional dephasing. In cold, dense atomic clouds,

the remaining dephasing mechanism that would limit storage time are Rydberg

molecular interactions [123].
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3.2.6 Exciting caesium 23 P3/2 in Doppler-free configuration

The Doppler-free excitation was also used to excite the higher-lying caesium state

23 P3/2. For this state, dressing and control driving propagation direction angles

(Fig. 3.8), relative to the probe (labels as on Fig. 3.9) are 80.8◦ and 32.3◦ respectively.

Three driving beams with waists (wp, wd, wc) = (12, 18, 28), are overlapped at their

common focal points. The probe and dressing lasers are locked on resonance as in the

previous section. An AOM derived probe beam is detuned by 2π×500 MHz, to be on

resonance with one of the dressed states. With the control field on, we were able to

observe narrow (FWHM ∼ 18 MHz, Fig. 3.14) absorption peaks. However, detailed Rydberg laser detuning, ∆c/(2π) (MHz)
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Figure 3.14: Rydberg resonance in 3-
driving field ladder-scheme in Doppler-free
configuration. See main text for more details.

analysis of possible dephasing mechanisms preventing observation of transparency

resonances was not performed. Rydberg excitation was confirmed via fluorescence

imaging: with the control laser on resonance, fluorescence on the probe D2 transition

(852 nm) was reduced, while fluorescence in the visible (330-750 nm) would appear

from the common interaction point. As expected, due to the longer lifetimes of the

Rydberg states, the imaged visible fluorescence occurs from a slightly bigger volume

than reduced 852 nm fluorescence.

The regime with many excited Rydberg states is also explored by increasing probe

and Rydberg laser power and observing probe transmission directly. For these meas-

urements, the optical choppers are not used in order to provide uninterrupted driving

during detuning scans. Recording of the probe transmission for detuning in positive

and negative direction (Fig. 3.15) reveals bistability of excitation in this small inter-

action volume, with sharp transition points indicating avalanche-like (de)excitation.

In the hysteresis window of about ∼ 30 MHz, the change of transmission depends Rydberg laser detuning, ∆c/(2π) (MHz)
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Figure 3.15: Bistability of Rydberg ex-
citation upon control detuning ∆c change.
Measured change in probe transmission upon
scans with positive and negative direction
(chirp rate). Atoms are excited to 23 P3/2 in
a caesium thermal vapour at 78 ◦C, corres-
ponding to the atom number density N =
3.8 · 1012 cm−3.

on the history of the system — i.e. from which direction in control detuning we

reached that point. This is a small excitation volume demonstration of the effect

first observed in Ref. [87]. Observation of this effect provides one motivation for the

theoretical analysis in Chapter 4, which explores conditions under which bistability

can appear.

For the benefit of future experiments we note several points about the current

setup that provide ideas for possible future improvements. With good, high NA

collection optics and real-time image analysis for quantitative readout, fluorescence

imaging provides a quick response and good signal-to-noise ratio, and presents

a better method than direct measurement of probe transmission. In particular,

with a selection of interference filters it is possible to observe changes in atomic

population. The simplest example of this is fluorescence on the D1 transition,

indicating the presence of 6 P1/2 population due to decay from the 7 S1/2 state

excited in common interaction region. Observing real-time camera images of the

fluorescence, it is possible to directly see resonances of the control laser. At the

moment, extracting same information from probe transmission signals requires

either averaging of multiple laser scans or use of lock-in-amplifiers, both of which

have limitations, not least slow response time. Therefore software that could analyse

fluorescence from different parts of the recorded camera image in real-time would be

a significant improvement for future experiments. Another significant consideration

in improving the signal-to-noise ratio of directly recorded transmission signals is the

huge temperature gradient between the cell, heated to 50− 120 ◦C, and the rest of

the laboratory (typically at ≈ 20 ◦C). This has implications on cell heater design,

where thermal insulation provided by PTFE and narrow slits for the laser beams
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provide some improvement. Still, with the current setup, air-current drifts that

occur due to this temperature gradient, caused refraction and offsets of the beams,

preventing detection of probe transmission with a balanced-photodetector. Finally,

the transparency signals are sensitive to the residual magnetic field, and especially

presence of permanent magnets in proximity of the cell. Magnetic shielding of cells

with µ-metal can be a consideration. With these improvements the experimental

setup described in this section provides a flexible platform for future exploration of

non-equilibrium phase transitions, electrometry and coherent atom-light interaction

phenomena in small-volumes and narrow-linewidth Doppler-free configurations.
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3.3 Coherent velocity superposition of spin waves

In the previous section we discussed a special case of spin-waves where all atomic

excitations have the same relative phase. The dressed-state EIT scheme was creating ACKNOWLEDGEMENTS: The theoretical

model in this section was developed by

the author to explain and model results of

the experiment of Daniel Whiting.

a Doppler-free dark state to which all the atoms, independent of their velocity, were

contributing. Here we will discuss a case where one can do velocity selection of

the excited atoms within a thermal atomic vapour ensemble. Yet it will be highly

non-trivial selection, where one excites a superposition of two velocities, with both

atom velocity groups being in a collectively excited (spin-wave) state. This is another

example where strong dressing of states (discussed in Sec. 2.4.3) is crucial, providing

selection of two velocity groups and a way of setting a well defined relative phase

between them.

3.3.1 Internal state pre-selection in a strong magnetic field

In performing qualitative modelling in the previous Section 3.2.5, we neglected the

complex hyperfine structure F that was within the Doppler-broadened spectrum,

as well as all the possible degenerate state projections mF , and focused on a min-

imal four-level model that captured the essential physics. For closer quantitative

comparison with theory, inclusion of all states would be necessary. However, even

in the cases when this is possible, experimental systems requiring that are usually

not reliably controllable to be readily used as a building blocks for more complex

schemes for coherent control of atom-light states. The cold-atom experiments allow

for state preparation and good control over dynamics, making them good systems for

detailed quantitative modelling. Their current technological complexity is, however,

a serious obstacle in scaling up this research for everyday applications. On the other

hand, more compact solid state based systems, even with their internal dissipation

controlled by cooling in cryostats, experience dephasing and resonance shifts due to

impurities and sample-to-sample spread in the production process, that also makes

scaling up of these systems difficult. That is why thermal atomic vapours, being a

simple, easily scalable technology with reproducible atom-fixed properties, are still

in the spotlight for applied research.

Vapour cells can be miniaturised [242] into compact volumes below 1 cm3, and

reproducibly manufactured. Thermal alkali vapours are already used for magneto-

metry [243], electrometry [97, 244], in chip-scale atomic-clocks [245] and recently

even for matter-wave interferometry [246]. Various interfaces with quantum light
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Figure 3.16: Atomic internal state pre-
selection in a strong magnetic field. A pair
of niobium magnets (b) creates strong mag-
netic field in the gap between them (a). For the
given geometry (b, dimensions in mm), calcu-
lated axial field Bz and its maximal variation
over 2 mm vapour cell ∆Bz is calculated on
(b). The field splits energy levels of 2 mm thick
rubidium vapour, placed in the gap between
them, more then a Doppler-broadened trans-
ition linewidth, allowing isolation of the given
four-level system (c).

have also been demonstrated, including single photon sources and memories [247–

249], and squeezed-light sources [250, 251]. However, state preparation in atomic

vapours is difficult, and usually relies on optical pumping [252]. For pumping to

be efficient, atom-spin relaxation on the cell walls has to be prevented, which is

difficult in small volume cells. Coatings on the cell walls can be used to prevent

relaxation, or a buffer gas can be added to slow-down atom diffusion to the walls.

Both approaches have important limitations. Wall-coatings are often limited to

low-temperature operation (paraffin) or difficult to consistently apply (OTS [253,

254]), while buffer gases can perturb highly-excited states in collisions [220].
The alternative to state preparation is state selection, which can easily be done in

high magnetic fields (Sec. 2.4.2) that can split energies of the states enough to allow

individual addressing of the transitions even in presence of Doppler broadening. This
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old approach to achieving clean atom dynamics [255] entered into a renaissance

recently thanks to the availability of compact strong permanent Neodymium magnets

and several mm thick vapour cells. Compact pairs (on the∼ 1 cm scale) of these mag-

nets [Fig. 3.16(b)] provide fields of ∼ 0.6 T in the gap between them [Fig. 3.16(a)],
that can split individual transitions by more than the Doppler-broadened linewidth in

this hyperfine Paschen-Back regime. That allows addressing of individual transitions

between |mJ mI 〉 states. The simplicity of the isolated experimental level structure

allows fine quantitative comparisons with theory [256] and precise measurements

of quantities like dipole-matrix elements between excited states [257].
In a recent experiment by Dan Whiting et.al. [96], the diamond scheme presented

on Fig. 3.16(c) was isolated in a rubidium thermal vapour (for more details about

experiment see Ref. [96]). Coherent laser driving of |g〉↔ |a〉↔ |b〉 was supposed

to initialize the system for operation as a heralded single-photon source, whereby

detection of a single fluorescence photon (herald) on |b〉 → |e〉 indicates imminent

emission of the second photon (signal) on the |e〉 → |g〉 transition. However close

inspection of the measurements showed that the probability for detection of the

signal photon at time t, conditioned on detection of the herald photon on t = 0,

showed oscillations in time t. This was reminiscent of time-domain interference

(beats) of two waves. However, what was interfering in this simple four-level system?

3.3.2 Coherent selection of motional state with strong dressing

In the experiments [96] with the diamond scheme presented on Fig. 3.16(c), the

driving laser Ωd was strongly dressing states |a〉 and |b〉. In the semi-dressed basis, as

we have seen in Sec. (2.4.3), transition resonances for the two dressed states |±〉 that

probe field sees will be split. Within atomic thermal vapour with a Boltzmann distri-

bution of atomic velocities, two different velocity groups will have a Doppler shift

that will bring them into resonance with one of the two dressed states [Fig. 3.17(a)].
Importantly, as we noted in Sec. (2.4.3), strong dressing also sets a well defined

relative phase for the excitation of state |b〉, which will be exactly π out of phase

between the dressed-states |+〉 and |−〉.
Now we can piece together the full picture of what happens in the experiment [96].

Detection of a herald photon maps excitation initially in state |b〉 into state |e〉, as a

D
re

ss
in

g
de

tu
ni

ng
,∆

d

Atom velocity, v

herald detection

〈b|±〉

v

ωs

ωs − ksv

(a)

(b)

Figure 3.17: A simple model of collective
beats. (a) Depending on the strength Ωd and
detuning ∆d of the dressing, two different ve-
locity classes v will be resonantly excited, with
relative phase of excited |b〉 state in each of the
two dressed-state resonances |±〉 beingπ out of
phase. For off resonant dressing (dashed line),
one velocity class is nearly stationary, while the
other moves away with velocity v. Herald detec-
tion maps that phase and velocity distribution
into the spin-wave in between |e〉 and |g〉 states
(b). Due to Doppler effect, emission between
the two spins-waves, initially set out of phase,
will have frequency offset of ksv, causing beats
in signal photon detection probability.

collective, spin-wave excitation, as we will see in the following section. However,

since we don’t know which of the two atom velocity groups decayed, the excitation

is stored as a superposition of the two spin-waves that move relative to each other

with velocity v. This velocity is fixed by the resonance conditions for |±〉 states,

controlled by the strength and detuning of the dressing. For off-resonant driving ∆d

the two velocity classes will correspond to one spin-wave moving with velocity v,

while the other spin-wave is nearly stationary, illustrated by the car and house in

Figure 3.17(b). Their initial phase is fixed to be π out of phase by strong dressing,

causing destructive interference between the signal emission events from the two

spin-waves. However, the relative phase of the emission events from the two classes

will evolve in time as ks · v due to the Doppler effect (or, equivalently due to relative

motion of the two spin-waves), causing observed beats. With this picture in mind,

we will proceed to analyse the situation quantitatively.
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3.3.3 Theoretical derivation

In the following we derive a theoretical prediction for quantum beats in the single

photon emission from the diamond level scheme due to spin-wave motion. The

aim is to find the herald-signal joint-detection expectation value 〈Ê†
s (t + τ)Ês(t +

τ)Ê†
h(t)Êh(t)〉 from a spatially extended atomic ensemble, where Ê†

h...s(t)Êh...s(t) is

the photon count at time t in herald and signal channels respectively.

Consider the dynamics of an ensemble of N four-level atoms, enumerated with j,

located at r j and moving with velocities v j , coupled to electromagnetic field (EM)

modes (Fig. 3.18). Two of these modes are the strong pump and dressing laser fields

that will be treated as classical driving fields, directed along the wave-vectors kp

and kd with driving strengths given by Rabi frequencies Ωp and Ωd. All the empty

(vacuum) EM modes, except the two corresponding to the kh and ks, will be treated

as usual Markovian reservoir. Coupling to these modes gives rise to spontaneous

emission with rates Γ j,β . Dynamics of the two field modes, whose energies correspond

to the |b〉 → |e〉 and |e〉 → |g〉 transitions, and whose spatial directions, labelled by

the wave vectors kh and ks respectively, are defined by the directions of the single-

mode inputs of the single-photon detectors used for detection of herald and signal

photons in the experiment, will be considered separately. The system is analysed

in the
⊗

j |α j , r j ,v j〉
⊗ |n̂kh

〉⊗ |n̂ks
〉, α ∈ {g, a, b, e}, basis. Dynamics of the internal

degrees of freedom is described with the Hamiltonian H̄ = H̄1+ H̄2 (h = 1), where

H̄1 =
∑

j

�
ωa|a j〉〈a j |+ωb|b j〉〈b j |+ωe|e j〉〈e j |

�

+
∑

j

�Ωp

2
eikp·r j(t)−iωp t |a j〉〈g j |+

Ωd

2
eikd·r j(t)−iωd t |b j〉〈a j |+H.c.

�
(3.5)

describes driving in the rotating wave approximation (RWA) of an ensemble of four

level systems by strong probe and dressing driving fields treated as classical fields

with respective frequencies ωp and ωd, driving |g〉↔ |a〉 and |a〉↔ |b〉 transitions

respectively. Energies of the states |α〉 are ωα. Additionally

H̄2 =
∑

j

�
gh e−ikh·r j+iωh t â†

kh
|b j〉〈e j |+ gs e−iks·r j+iωs t â†

ks
|g j〉〈e j |+H.c.

�
(3.6)
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Figure 3.18: Structure of single-photon
source based on diamond scheme. Spatially
extended (max[|ri − r j |]> 2π/ks) medium con-
taining N atoms, enumerated by j, located at r j ,
and moving with velocities v j . Internally (right
inset) atoms have four levels, and are driven by
pump and dressing fields with Rabi frequencies
Ωp and Ωd. Atoms can decay to the herald mode
kh and the signal mode ks with under the influ-
ence of gh âkh

and gp âks
, or to one of the other

modes β with rate Γ j,β . The system is analysed
in
⊗

j |α j , r j ,v j〉
⊗ |n̂kh

〉⊗ |n̂ks
〉, α ∈ {g, a, b, e},

basis coupled to the Markovian bath of other va-
cuum modes.
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describes coupling of an ensemble of atoms in the RWA to the two vacuum modes

aligned with herald and signal detector directions. Coupling strengths between

atoms and the herald and signal detector field modes, gh and gs respectively, are

formally given by gs =
∑

k∈ks±∆k gbe (similarly for gh) where |∆k| � |k| defines the

range of emitted photon directions that hit the detector’s sensitive area, and gbe

is the vacuum Rabi coupling frequency. Atom-field coupling to modes other than

the herald and signal mode is described by the Lindblad superoperator L[ρ̂N ] =∑
j,β (L j,β ρ̂N L†

j,β − 1
2 L†

j,β L j,β ρ̂N − 1
2 ρ̂N L†

j,β L j,β ), acting on the system’s density matrix

ρ̂N , where L j,β are decay channels of atom j, enumerated by β . Since the atom

coupling to the single spatial modes kh and ks described by H̄2 (Eq. 3.6), is negligible

compared to the coupling to all the other spatial modes with energies corresponding

to decays |b〉 → |e〉 and |e〉 → |g〉, the decay of the |b〉 and |e〉 states is still described

to an excellent approximation by the usual spontaneous decay rates Γb and Γe. Finally,

evolution of the external degrees of freedom due to atomic motion, is accounted for

by classical dynamics r j(t) = r j(0) + v j t.

Before solving the dynamics, we will choose a convenient rotating basis by applying

the unitary transformation

Û = exp
�
i
∑

j

��
ωp t − kp · (r j(0) + v j t)

� |a j〉〈a j |
+
�
(ωp +ωd)t − (kp + kd) · (r j(0) + v j t)

� |b j〉〈b j |
+ωe t |e j〉〈e j |

	�
. (3.7)

In the new basis, the evolution Hamiltonian isH1 +H2 = ÛH̄ Û† + i dÛ
dt Û†, where

H1 =
∑

j

�−∆1|a j〉〈a j | −∆2|b j〉〈b j |
�

+
∑

j

�Ωp

2
|a j〉〈g j |+

Ωd

2
|b j〉〈a j |+H.c.

�
, (3.8)

H2 =
∑

j

¦
gh e−i(kh−kp−kd)·r j(0)+i[ωh+ωe−ωp−ωd+(kp+kd−kh)·v j]t â†

kh
|e j〉〈b j |

+gs e−iks·r j+i(ωs−ωe)t â†
ks
|g j〉〈e j |+H.c.

©
, (3.9)

where ∆1 ≡ωp − kp · v j −ωa and ∆2 ≡ωp +ωd − (kp + kd) · v j −ωb are the single

and two-photon driving field detunings respectively.

Since we are interested in the interference of amplitudes for photon emission

originating from two spatially separated locations within our medium, we solve

dynamics for all N atoms in the thermal ensemble. Since gh, gs� Ωp,Ωd, we can

treat dynamics due toH2 perturbatively. In the zero-order approximation (H2 = 0),

the system density matrix evolves just under drivingH1 and dissipation L[. . .], as

described by the master equation d
dt ρ̂N = −i[ρ̂N ,H1] + L[ρ̂N ]≡L [ρ̂N ], reaching

a steady state ρ̂(0)N under Liouvillian L . The system evolution underH1 [Eq. (3.8)]
decomposes into evolution of individual atoms ρ̂N =

⊗
j ρ̂ j

⊗ |0kh
0ks
〉〈0kh

0ks
|, where

ρ̂ j is the single atom density matrix for the j-th atom. In particular, atoms with the

same velocity v at different locations will evolve underH1 to the same single-atom

density matrix ρ̂(v). From this it seems that relative atomic positions are irrelevant.

We shall see, however, that relative positions of the atoms in the ensemble play a
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crucial role, imprinting important relative phase factors through the action ofH2

(Eq. 3.9).

In order to obtain the herald-signal joint-detection correlation function g(2)h,s (τ)
we are interested in calculating 〈Ê†

s (t +τ)Ês(t +τ)Ê
†
h(t)Êh(t)〉. The first non-zero

contribution to this element originates from the second order perturbation byH2

(Fig. 3.19). Initially,H2 acts on ρ̂(0)N , causing a herald photon emission at some time

t. The system will subsequently evolve under L for some time τ, before a signal

photon is emitted under the influence ofH2(t +τ). These two emission events give

〈Ê†
s (t +τ)Ês(t +τ)Ê

†
h(t)Êh(t)〉= Tr

�
Ê†

s (t +τ)Ês(t +τ)Ê
†
h(t)Êh(t) ρ̂

(2)
N

�
, (3.10)

ρ̂
(2)
N =H2(t +τ) e−iLτ[H2(t) ρ

(0)
N H †

2 (t)]H †
2 (t +τ),

where the trace is over all atomic degrees of freedom, as well as herald and signal

modes.

We will now analyse the emission process step-by-step. Looking into the time

dependence of atom coupling to the herald mode, i.e. the terms containing âkh
in

H2 (Eq. 3.9), we see that for atoms with velocity v the dominant decay is in the

mode with frequency ωh =ωp+ωd−ωe− (kp+kd−kh) ·v j . Starting from a steady

state density matrix ρ̂(0)N achieved underL , emission of a photon into a herald mode

acts on the states as

ρ̂
(1)
N (t)≡H2ρ̂

(0)
N H †

2 ∝
∑

i

ci


∑

j1

c′j1 gh e−i(kh−kp−kd)·r j1
(t)| . . . e j1 . . . 1kh

〉



·

∑

j2

c′j2 gh ei(kh−kp−kd)·r j2
(t)〈. . . e j2 . . . 1kh

|

 . (3.11)

We see that emission, and subsequent detection of the herald photon, projects the

system in a state where single excitation is stored collectively as a coherent spin-wave

with a phase period variation given by the wave vector kh−kp−kd. Since the broad-

band detection scheme does not discern the frequency of the herald photon ωh, we

have Êh =
∑
ωh

âkh
where the sum over ωh encompasses the full Doppler broadened
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Figure 3.19: Collective decay leading to inter-
ference in signal emission amplitude. (a) Ini-
tial strong driving and spontaneous decays under
L prepare the system in the steady state ρ̂(0)N , part
of which are states where atoms j1 and j2 are in
the superposition of being in ground |g〉 and bare
state |b〉. Herald detection maps the steady state
amplitudes and phases into a superposition of
excited states |e〉. The imprinted relative phase
of the medium changes due to atomic motion (b,
shown in insets). Since both of these decays con-
tribute to the amplitude of the same ground state
(a, bottom inset) there appears a time-dependant
factor in the collective emission amplitude. That
leads to beats in the probability of signal photon
emission (c) over time τ.
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emission profile from the vapour, and the system state will be projected into a state

where excitation is stored in all atomic velocity classes. In the experiment, for large

dressing field detunings, two velocity groups provide dominant contributions: one

nearly stationary, and the other with a narrow velocity distribution centred around

non-zero velocity (Fig. 3.20). Subsequently, during time τ atoms move to new

locations r j(τ) = r j(0) + v jτ. The internal system state evolves only due to the

atoms in state |e〉, since other atoms are already in a steady state of L . State |e〉 is

decoupled fromH1 (Eq. 3.8), but evolves due to spontaneous decay and dephasing

collisions under L[. . .], resulting in the amplitude reduction of exp(−γτ) given by

a rate γ. Some time τ later, a signal photon will be emitted, leaving the system in

state

ρ̂
(2)
N ≡H2(τ) ρ̂

(1)
N (t +τ)H †

2 (τ)

∝ exp(−2γτ)

×
(∑

j1

exp[−i(kh + ks − kp − kd) · r j1(t) + i(ωs − ks · v j1 −ωe)τ]

· | . . . g j1 . . . 1kh
1ks
〉
ª

×
(∑

j2

exp[i(kh + ks − kp − kd) · r j2(t)− i(ωs − ks · v j2 −ωe)τ]

· 〈. . . g j2 . . . 1kh
1ks
|
ª

+ (. . .), (3.12)

where omitted terms (. . .) do not contribute to the correlated emission of photons in

the signal and idler channels4. We see that in order for this event to have significant

probability at any time τ, the emitted signal photon will have frequencies centred

around ωs = ωe + ks · v j , i.e. velocity classes differing by δv will emit photons

with frequencies differing by ks · δv, with well defined initial relative phases and

amplitudes inherited from the initial dressed states in ρ̂(0)N through the emission of

an initial herald photon. Crucially, since the signal detector does not discern the

close energies of the emitted photons, in calculating the amplitude for the detection

event Ês =
∑
ωs

âks
we have to sum over the range of ωs corresponding to the

detector bandwidth, and in this way we do not measure which velocity class emitted

the signal photon. In order for amplitudes of single photon detection from different
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Figure 3.20: Calculation of ρbg coherence
for dressed system. Parameters Ωd = 2π ×
170 MHz, Ωp = 2π× 30 MHz, ∆p = 0 for sys-
tem shown on Fig. 3.16(c) are same as in exper-
iment in Ref. [96]. For large dressing detunings
∆d ≈ 2π× 330 MHz (dashed horizontal line)
normalized coherence shown on plot ρ̄bg(v,∆d)
has two peaks centred around phases π/2 and
3π/2 (left and right circle respectively), that
correspond to the car and house in the simple
conceptual image presented in Fig. 3.17.

velocity classes to interfere in time causing beats in the detected signal photon count

following herald detection, photons must not leave information in the atomic medium

about which atom stored the excitation. Initial steady states that fulfil this condition

are the ones in which atoms j1 and j2 are in a coherent superposition, where one of

them is excited to |b〉 and the other is in the ground state |g〉, i.e. | . . . g j1 . . . b j2 . . .〉
and | . . . b j1 . . . g j2 . . .〉. Since after two-photon decay both of the states end up with

both of the atoms in the ground state | . . . g j1 . . . g j2 . . .〉, there is no which-path

information left in the medium about which of the two atoms decayed, leading to

interference of amplitudes for decay over different atoms [Fig. 3.19(a)]. Therefore,

4Omitted terms are of the form | . . . 2kh
0ks
〉〈. . . |+H.c..
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we see that in evaluating Eq. 3.10, non-zero interfering elements5 will originate

from 〈. . . g j1 . . . b j2 . . . |ρ̂(0)N | . . . b j1 . . . g j2 . . .〉 and the corresponding conjugate. Given

the decomposition of dynamics under L to single-atom dynamics, contributing

matrix elements traced over atoms other than j1, j2 are equal to ρ̂gb(v j1) ρ̂bg(v j2),
where ρ̂(v) is the single-atom density matrix reached as a steady-state solution

for evolution under L . Therefore the relative initial phase and amplitude of the

emission from state |e〉 is inherited in the herald emission process from ρ̂bg.

Overall, the joint detection probability (Eq. 3.10) can be written as

〈Ê†
s (t +τ)Ês(t +τ)Ê

†
h(t)Êh(t)〉=

�����
∑

j

gs gh ρ̂bg(v j) exp(−γτ) exp(−iks · v jτ)

exp[i(kp + kd − kh − ks) · r j(t)]

����
2

. (3.13)

In order to obtain non-zero values, summation over random atomic positions r j has

to produce a constant value, which gives rise to the condition kp + kd − kh − ks = 0

which is the usual wave matching condition for wave-mixing processes in extended

mediums, responsible for directional emission from spin-waves. When this condition

is fulfilled, the remaining time dependent part can be written as an integral over

different velocity classes

〈Ê†
s (t +τ)Ês(t +τ)Ê

†
h(t)Êh(t)〉 ∝

��������

∫

v

dv p(v) ρbg(v)exp(−γτ) exp(−iks · vτ)
︸ ︷︷ ︸

≡Ψ

��������

2

,

(3.14)

where p(v) is the probability density function that an atom has velocity v. Note that

this calculation only includes contributions from the correlated decays. There is also a

constant background of uncorrelated decays produced by other events. For example,

in this derivation we neglected term proportional to 〈. . . b j . . . |ρ̂(0)N | . . . b j . . .〉. Since

these terms do not contribute to interference of photon-emission amplitudes from

multiple atoms in space, they don’t cause beats in time, nor is their emission direction

enhanced in any particular direction6. However these terms, ultimately proportional

to ρ̂bb(v j), contribute to the background signal, since they will cause emissions to

the signal spatial mode even when the |b〉 → |e〉 decay photon is not emitted in

the herald spatial mode. Also, in general, following herald emission in channels

other than kh, there is no clear phase matching condition for the signal emission,

which can also end up in ks. This processes can happen since the initial herald

emission in a spatially extended medium is not enhanced in any particular direction,

any more than the usual fluorescence directionality of single-atom σ transition

decays (Sec. 2.3.4), as can be seen from Eq. 3.11 since kh − kp − kd 6= 0 for nearly

parallel kd and kp as in this experiment [96]. Furthermore, in collisional processes,

population can be transferred non-radiatively from |a〉 to |e〉 (see Sec. 2.6), causing

additional background emission. Due to this, the normalised signal for detection

5There will be other terms that don’t contribute to the beat signal since they don’t interfere, but add
to the background level of uncorrelated emission events. See discussion following Eq. (3.14).

6Their radiation has the same spatial dependence as single-atom fluorescence patterns discussed in
Sec. 2.3.4.
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with low heralding efficiency will have the form

〈Ê†
s (t +τ)Ês(t +τ)Ê

†
h(t)Êh(t)〉

〈Ê†
s Ês〉〈Ê†

h Êh〉
= 1+ c|Ψ|2, (3.15)

where c is a constant dependant on the background level.

3.3.4 Comparison of theory and experimental results1.0
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Figure 3.21: Collective beats: comparison
of theory and experiment. Data and fitting
by Daniel Whiting [96].

On Fig. (3.21) we show comparison between the theoretical prediction from the

previous section and experimental results (data by Dan Whiting, for comparison

over wider range of parameters see Ref. [96]). The signals match very well with

theory, and exhibit coherence times on the order of the natural lifetime of |e〉.
This compares positively with the pulsed four-wave mixing without a good state

selection [258], where similar interference effects have been observed but with

much shorter lifetimes, limited by motional dephasing.

3.3.5 Possible generalizations of the protocol

herald
detection

signal
detection

δφ = ksvτ

Figure 3.22: Interferometric measurement
of phase between two atom velocity groups.
Herald detection splits a single photon into col-
lective excitation of the two velocity groups and
measures their relative phase after recombin-
ing the excitation paths in signal detection after
time τ. Relative velocity of the two collective
excitations is v. External AC field (wavy line)
can perturb only one of the velocity classes,
imprinting a phase on it.

The very good agreement between data and theory raises a question whether this

system can be used as a building block for quantum state manipulation, using maybe

bi-chromatic single photon as a quantum resource as in Ref. [222] or for interfacing

and entenglement of heterogenous systems with different resonant frequencies (see

also discussion at the end of Sec. 3.2.1). We note that the setup is effectively an

interferometer, where starting from an initial steady state, herald detection prepares

the medium in a superposition of the two collective velocity classes. The signal

detection at some time later provides recombination of these two interferometer

branches and allows measurement of the relative phase. Probably the best state for

interferometric measurements would be one achieved under resonant dressing∆p =
∆d = 0. Then the two excited spin-waves would have equal amplitudes, and equal

and opposite velocities set by the dressing laser power. Since two different velocity

classes have two different, Doppler-shifted resonances, they will acquire different

phase shifts upon application of, for example, off-resonant AC fields. However,

|g〉
|e〉

|a〉

|b〉

Ωp

Ωd

herald

|g〉
|e〉

|a〉

|b〉

signal

Ωd

readout

(a) (b)

Figure 3.23: Inverted Y scheme for determ-
inistic readout. (a) Herald detection prepares
a system state where single excitation is col-
lectively stored as spin-wave between |g〉 and
|e〉 states, with two different spin-wave velocit-
ies set by dressing beam Ωd. (b) After some
time, readout pulse can be applied to determ-
ine relative phase, accumulated during excit-
ation storage in two different velocity groups,
by measuring the signal beats.

with the current setup, the total time that the excitation spends split between

the two spin-waves is not controlled and is limited by the lifetime of state |e〉.
Effectively, the diamond scheme implements DCZL single-photon source [2] where

readout, driven by the empty ks mode, starts immediately after the storage of an

excitation in |e〉. In principle this scheme can be made closer to the original DLCZ

protocol, by using an inverted Y scheme as shown on Fig. 3.23. Dressing of the upper

transition with Ωd again provides two dressed states, which are resonantly coupled

with Ωp in two different, Doppler-shifted velocity classes. The main difference

now is that detection a of herald photon, since it happens from state |a〉, will

prepare two spin-waves with initially non-shifted (zero) relative phase, compared

to π shifted relative phase in the protocol discussed above. Importantly, if |g〉 and

|e〉 are selected from the ground-state hyperfine manifold, the |e〉 doesn’t decay

radiatively. Readout is then under experimental control, requiring application of a

readout pulse [Fig. 3.23(b)]. Due to narrow velocity selection, the limited storage

lifetime due to motional dephasing (Sec. 3.1) is also improved. Finally, note that the

relative phase of the two velocity groups is insensitive to non-resonant perturbative
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effects, since they offset atomic phases equally irrespective of atomic velocities,

although they can reduce readout efficiency. Among such effects are atom-atom and

atom-wall collisions, and static magnetic and electric fields.

3.3.6 Comparison of single-atom, many-atom quantum beats and

Doppler superradiant beats

Beats in herald-signal joint-detection probability have many similarities with re-

lated single-atom beats [259]. Beats in herald-signal joint-detection probability ACKNOWLEDGEMENTS: single-quantum

beats are done in collaboration with Chris-

topher Wade. In particular, the author

discussed underlying modelling approach,

and highlighted importance of polarisa-

tion selection in experiment and theoret-

ical treatment. The author designed and

assembled laser locking electronics.

are essentially many-atom beats happening due to emission-probability amplitudes

from many atoms interfering, whereas in single-atoms beats, emission-probability

amplitudes from several energy levels within single atom interfere. They were both

discussed in a major review by S. Haroche in 1976. [259], when many-atom beats

were expected to be non-observable in room-temperature atomic ensembles due to

rapid atomic motion that would, as we have discussed in Sec. 3.2, dephase a spin

wave in Λ/v̄ ∼ 1 ns. At the time coherent dressing (Sec. 3.3.2) was not discussed.

Here we will review single-atom quantum beats through the specific case of a recent

experiment from Ref. [101]. We will then look at the simplest two models of single-

and many- atom quantum beats, highlighting similarities and important differences.

An example of quantum beats observation is the recent experiment by Wade et.al

[101], where caesium thermal vapour was exposed to a short laser pulse on D2

transition corresponding to 852 nm laser wavelength. Within the∼ 1GHz bandwidth

of the pulse, set by the short (≈ 1 ns) pulse duration, are several hyperfine states

of the 6 P3/2 state [Fig. 3.24(a)]. Pulses are made with a Pockels cell, from a

continuous (CW) laser locked to 6 S1/2 F = 4 ↔ 6 P3/2 F = 5 transition with

polarisation spectroscopy. In addition, a counter propagating 1470 nm CW laser,

locked to 6 P3/2 F = 5↔ 7 S1/2 F = 4 transition, is driving Rabi oscillations to the

7 S1/2 F = 4 state. The fluorescence from the 6 P3/2 excited state is monitored with

a single-photon detector to the side of the cell [Fig. 3.24(b)], that provides sub-ns

resolution of the photon arrival times measured relative to the 852 nm laser pulses.

For more details on the experimental setup, see Ref. [101].
For the moment we will neglect the CW 1470 nm laser. The broadband 852 nm

laser pulse will excite each of the atoms in the superposition of the hyperfine levels.

The initial phase for the amplitudes for excitation of different states is set by the drive

laser pulse and the dipole matrix-elements 〈6 S1/2 F = 4 mF |er̂ · εq|6 P3/2 F ′ m′F 〉 for

coupling between the relevant states . If fluorescence detection is broadband, such

|6 S1/2 F = 4 mF 〉

1470 nm, CW

(a)

(b)

852 nm
pulse

|6 P3/2 F mF 〉

|7 S1/2 F = 4 mF 〉

F = 2,3, 4,5

852 nm filter
polariser transmits

or
π σ±to photon

FWHM∼ 1 ns

852 nm 1470 nm, CW

counter fluorescence

Figure 3.24: Experimental setup for obser-
vation of single-atom beats. (a) Relevant
transitions in caesium. Short 852 nm pulse
transfers population in superposition of hyper-
fine levels |6 P3/2 F mF 〉, F = 3,4,5, while
1470 nm laser continuously (CW) drives pre-
dominantly |6 P3/2 F = 5 mF 〉 population to
|7S1/2 F = 4 mF 〉 state. (b) Both lasers have
same linear polarisation (out of plane). With
polariser on the side of the caesium filled va-
pour cell, one can select 852 nm fluorescence
originating from π or σ± transitions.

that it detects decay from all 6 P3/2 hyperfine states without differentiating between

them, we don’t have which path information for the decay event. Therefore, the

amplitude of decay for every single atom will have to be calculated as a sum of the

probability amplitudes from all the excited states. During a time τ in which an atom

is excited, the probability amplitudes will acquire a relative phase τ∆ corresponding

to the energy differences ∆ between the hyperfine states. Therefore, the probability

for the corresponding photon emission events will exhibit oscillations in time τ

(beats) with frequency ∆/h. Note that there is no contribution to the beats due to

interference effects for photon emission from two different atoms (sharing single

excitation or having two independent excitations). This is because the broadband

laser pulse excites all the atom-velocity classes in the thermal vapour, resulting

in motional dephasing (Sec. 3.1) that quickly destroys any well-defined average
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Figure 3.25: A simplified model of single-atom beats and comparison with experimental
data. (a) Toy-model system of the experiment consists of four-levels (i), which excitation
pulse prepares in the superposition state where two middle levels, separated in energy
by ∆, are excited (iii). Fluorescence probability amplitude from both of this levels has
individually exponentially decaying envelopes, however for broadband detection that cannot
discern between the two frequencies, decay channels interfere, causing oscillatory fluorescence
redistribution betweenπ andσ± fluorescence channel (inset, bottom right). Constant coherent
driving periodically shelves population of the upper middle level to the top level (ii), turning-
off the interference of decays and associated beats temporarily. Inset shows amplitude of
Fourier transformF (ω) of the signal, with leftmost peak corresponding to the Rabi frequency
of continuous drivingΩ1470, and the right peak, also split byΩ1470, is centred around frequency
∆/h. (b) Full multi level model is more complicated due to mF manifold and in total three
middle levels F = 3, 4, 5, whose relative energy splittings are labelled on the inset with dashed
lines. While the main features are captured with simplified model, ensemble averaging over
all transitions and Doppler velocity classes reduces contrast. Experimental data and the multi
level model fit are from Christopher Wade [101].

relative phase between different atoms.

Additionally the CW 1470 nm laser coherently drives population, preferentially

from F = 5 state, to 7 S1/2 state and back, through Rabi oscillations. In the simplest

picture, presented on Fig. 3.25(a), this causes a periodic turn-off of the beats,

whenever the probability amplitude for population of 6 P3/2 F = 5 state is mapped

through Rabi oscilations into amplitude of 7 S1/2 state [Fig. 3.25(a.ii)]. Interestingly

this is coherent manipulation, not a projective measurement of the atom-state,

even thought photon is absorbed from the driving field which leaves information

concerning whether the atom was in the F = 5 hyperfine state or some other state.

This is because for a strong (α� 1) coherent field |α〉 = exp(−|α|2/2)∑n
αnp

n!
|n〉,

overlap between states with average photon number of α and α− 1 is essentially

unity 〈α|α−1〉 ≈ 1. Single photon absorption from strong coherent field is therefore

not measurable in a single shot measurement, and therefore unable to reveal atom

state. Signals expected based on this simplified picture [Fig. 3.25(a)] are observed

in experiments too [Fig. 3.25(b)], however due to presence of many velocity classes

and mF states, visibility is reduced, and the oscillation pattern is more complicated.

Yet, the essential dynamics is the same as revealed by the Fourier transforms of the

signal [insets on Fig. 3.25(a-b)]. Full modelling, accounting for fine basis manifold

|F, mF 〉 can also be done. On the time-scales of the experiment (∼ 30 ns) any

residual magnetic fields in the lab introduce negligible state mixing through Larmor
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precession7, so we can choose to direct the quantization (z) axis along the electric

field vector of the linearly polarised drive lasers, and examine each mF manifold

separately, since coherent dynamics driving π transitions factorises into action on

individual subspaces defined by the mF quantum number. The complexity of the

obtained signals [full line on Fig. 3.25(b)] is another motivation for pursuing state

selection as discussed in Sec. (3.3.1).

Similarities and differences of single-atom and many-atom beats, when a single

excitation is shared among atoms, are presented and discussed in Figure. 3.26.

An important thing to note is that in both cases the lifetime of the excitation (in

the excited level) is neither changed nor modulated in the process. Instead, in

both processes there is just interference occurring between different possible decay

channels, increasing and reducing amplitudes for some of them in the process, but

keeping decay in full space (4π steradians) fixed. In the single atom case, beats

redistribute fluorescence between π and σ± decay channels, but the atomic decay

is still described by a single exponential decay with lifetime Γ corresponding to

the natural lifetime of the excited state (5 P3/2 in the example above). Similarly,

from the spatially extended sample discussed in section (3.3.3) the spin-wave of

the form given in Eq. (3.1) does not cause superradiance, i.e. the atomic excitation

doesn’t decay faster as would be expected for the Dicke state [260]. Indeed, Dicke’s

argument, that a symmetric state like Eq. (3.1) for k = 0 decays faster, is for an

ensemble of dipoles within λ. Even in that limit of a densely localized system, in

most cases it cannot directly be applied [47] as it neglects dipole-dipole interactions

that are strong precisely in that limit. The problem is ultimately solvable with full

diagonalization, at least for small, interacting dipolar samples, revealing sub-radiant

and super-radiant modes [261, 262], however strong interactions between the

dipoles play an important role in that case (i.e. the effect becomes cooperative). For

spatially-extended systems (Max j1, j2 |r j1 − r j2 | � λ), where we can neglect photon

re-absorption (i.e. atom-atom interactions), spin-wave will have increased collective

coupling in a particular direction, and simultaneously reduced decays in other spatial

directions8. Overall, the decay of the stored excitation will again be described by a

single non-modulated exponential, with the medium decaying equally in all spatial

modes when the spin-wave is dephased, as in the case of many-atom quantum

beats when signal detection probability is reduced [Fig. 3.26(b)]. Note that this is

consistent with a
p

N enhancement of the Rabi-driving frequency for N atoms in a

blockaded volume [84], since the particular direction of the chosen field mode is that

of the driving laser, and a blockaded ensemble has reduced collective coupling to the

perpendicular electromagnetic field modes of the same frequency. Finally, this leads

us to an important difference between the two types of beats, which is the possibility

for an ensemble of atoms to emit light in a well-defined mode, whereas for a single

atom in free space the choice is just between two polarisation modes with broad

distribution (Fig. 2.8) in space. If the atomic superposition and state manipulation

is done on the single-atom level as in Refs. [263, 264], one needs to use cavities

to perform the efficient readout of the atomic state, whereas collective excitations

7Larmor frequency for electrons is egeB/(2me) which for residual fields of B < 1 G= 10−4 T yields
2.8 MHz� 1/(30 ns).

8Although this in the literature is also sometimes called superradiance, it is different compared to
Dicke case, since in the latter case Dicke arguments leads to faster decay of stored excitations, whereas
in the former case, while we can realistically have build-up of coherence through collective decays,
the ultimate result is only spatial (directional) and temporal compression of the emitted radiation, an
interference affect that does not affect lifetime of stored excitation.



70 Chapter 3 Spin-wave motion

achieve that on their own, and don’t require complicated setups for trapping single

atoms in small EM-mode volume optical cavities.

The final important thing to note in the discussion of many-atom quantum beats

is their difference between beats occurring due to a single excitation being stored

collectively [as in Eq. (3.1)] and situations when many excitations are stored within a
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Figure 3.26: Comparison of single-atom (a) and many-atom quantum beats (b). (a)
Minimal model for single-atom quantum beats demonstrating redistribution of fluorescence
between the two decay channels over time. (b) Many-atom quantum beats when, when two
spin waves are completely out of phase at τ= 0 end up being directional in the same degree
as single-atom quantum beats, however, in all other situations, radiation pattern is much
more well localised in spatial direction. In both cases excitation decays over time given by
individual single-atom decay.
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medium. For many excitations coherent delocalization of single excitation among the

states is not required and results can be understand in terms of interfering classical

antennas. For example, in Ref. [265] the authors excited a caesium atomic system

using the energy-level scheme presented on Fig. 3.27. The excitation was pulsed, but

narrowband enough that the pulse bandwidth encompassed only one of the hyperfine

states. Yet, since two hyperfine states are within the Doppler-broadened window,

both states can be excited with a pulse, but they will correspond to two different

velocity classes. Beats have been observed due to interference of fluorescence on

400 MHz

|g〉

|a〉

|b〉

|e〉
pulse
spectral width
∼ 100 MHz

Figure 3.27: Scheme for observation of
Doppler beats in superradiance. Narrow-
band pulse excites atoms in vapour into two hy-
perfine levels, |a〉 or |b〉, depending on Doppler-
shifted resonance condition. Doppler beats in
superradiance are observed due to interference
of decays |a〉 → |e〉 and |b〉 → |e〉 happening
in two different velocity groups of the atoms.
Adopted from Ref. [265].

|a〉 → |e〉 and |b〉 → |e〉 transitions. This looks similar to the earlier discussed beats

from two spin-waves, however in Ref. [265] beats cannot be observed here if there is

only a single excited atom, even though the medium can be in a superposition where

one excitation is shared between two velocity classes. This is because these states

don’t decay to the ground state, but to state |e〉 that is initially completely empty. This

effectively measures which-path information, since one could in principle measure

which velocity group contains the excited state |e〉, determining which atom decayed.

Interference in this case still exists, but it crucially depends on the fact that the

excited spin-wave initially contains multiple excited atoms that can decay. Initially

the spin wave also does not have well defined phase of emitted radiation9, let alone

phase matching condition for spatial direction of this emission10, for decay to state

|e〉. However, since initially multiple excitations are present, the gradual build-up of

coherence and phase matching condition, responsible for directional emission11, is

possible under subsequent collective decays, described for decay in mode k by the

action of operator Lk∝
∑

j exp(−ik · r j)(|e〉〈a|+ |e〉〈b|). However, this superradiant

beats scheme cannot support beats in fluorescence statistics if initially only a single

excitation in the {|a〉, |b〉}manifold is present, as it requires multiple collective decays

for the build up of coherence.

9Initially there is no spin-wave between (|a〉, |b〉) and |e〉, only between (|a〉, |b〉) and |g〉.
10As there is no coherence between (|a〉, |b〉〉) and |e〉, there cannot be well-defined phase for emited

radiation on that transition, and hence no interference effects and associated phase-matched directions
exists.

11Symmetry of emitted radiation is then broken by the shape of the atomic ensemble, with the
superradiant emission then directed along the longest axis of the sample, or by external seed field [266].
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3.4 Summary

In this chapter we discussed two examples of controlling the motion of collective

excitations (spin-waves). In the first example, we introduced a protocol for produc-

tion of uniform-phase spin-waves that are insensitive to motion, through coherent

four-level adiabatic-following state preparation. Uniform phase spin-waves are a

universal resource for coupling multiple level schemes and different frequency fields,

as they are independent of the particular field wave-vectors used in their production.

For practical implementations of advanced deterministic protocols with this scheme,

small scale (∼1 mm) cold-atom clouds are the most promising. In addition, narrow

spectral features and good spatial localization can find applications in electrometry

and selective small-volume probing and preparation. The second example is based on

indeterministic state preparation through dissipative proces (spontaneous emission).

There the spin-wave was sensitive to motion, but the selective, coherent preparation

of this collective excitation was crucial for obtaining non-trivial dynamics. A detailed

microscopic model of the dynamics was presented. It compares very well with ex-

perimental results, but also provides insights into the elementary processes involved.

It highlights limitations, possible extensions for thermal-vapour based applications,

and differences compared to some other schemes. Both examples discussed in this

chapter relied crucially on strong state dressing in multi-step excitation schemes in

order to achieve well-controllable collective excitations.
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This chapter explores many-body dynamics of strongly driven Rydberg atomic en-

sembles which contain many Rydberg excitations. In this regime we have to include

inter-atomic interactions [Sec (2.5)] since they can qualitatively change the system’s

dynamics. There are two important properties that make dynamics of this system

highly non-trivial, stimulating interest in their research. Firstly, this is a continu-

ously driven system that releases energy through fluorescence decay, making it a

many-body driven-dissipative system. Not only is this a region of non-equilibrium

statistical physics1 where we don’t have powerful concepts like free energy in equi-

librium statistical mechanics to provide, in principle, a recipe for finding system

states, but it’s also a region where we still have to appreciate which quantities

are relevant, and possibly accept some new features stemming from the dynamic,

driven-dissipative nature of the system. The second important property of the system

is a range of interactions. In particular, dipole-dipole interactions (∝ R−3 in 3D

systems) introduce interactions that diverge logarithmically with the system size,

making them long-range. Even in classical, equilibrium systems, this brings about

several new features that are fundamentally changing the usual preconceptions in

statistical physics: their energy no longer has to be additive, the state space is not

necessarily convex, systems don’t have to be ergodic, and thermodynamic ensembles

are not thermodynamically equivalent [267–269]. These two elements, the range of

interactions and the driven-dissipative nature of the system, make driven Rydberg

atomic ensembles very interesting for studying fundamental physics in this regime.

This is true even before we allow for their full quantum dynamics.

Motivated by some recent experimental observations, we will focus firstly on trying

to understand predictions of simple models for driven-dissipative Rydberg ensembles.

Then, in the latter part of this chapter, we will discuss more closely the connection

between model and experiment. Both of these steps, from model to prediction,

and from experiment to model, are highly non-trivial, and are topics of very active

current research, of which the work described herein is only a small part.

1In this chapter we use word non-equilibrium in a strong sense of driven-dissipative systems, where non-
thermal steady states are formed. This is different to e.g. non-driven systems brought with rapid change
(quench) of external parameters out of the (equilibrium) ground state, where one can explore the system
thermalisation and decay to ground state. While these situations are also often called non-equilibrium,
they are usually still understandable within an equilibrium-statistical physics framework.
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4.1 Introduction: observation of bistability in Rydberg

gases and early theoretical work

In equilibrium statistical physics, the concepts of free-energy and rapid decay of many

systems to the thermal equilibrium state allowed explanation of many phenomena.

Excited states in these systems are of interest for exploring thermalisation, which forACKNOWLEDGEMENTS: Work described in

this chapter was done in collaboration with

Thomas Pohl.

some, exhibiting so called glassy behaviour, can be quite long due to a rugged free-

energy landscape [270] . In non-equilibrium systems, non-thermal non-equilibrium

steady states can form, possibly several for the same external system parameters.

Transitions between these multiple attractors are governed by the system dynamics

noise, which can be very small either because the number of underlying individual

spins driving the dynamics is large (simple mean-field limit) or because the spatial

extent of the system prevents fluctuations from changing the whole system state

(many-body limit). In the first case changes in the system’s dynamics that bring

about the existence of these multiple attractors are called bifurcations, while in the

second case they correspond to phase transitions. Numerous examples of multi-

stable behaviour (in both cases) giving rise to hysteresis in the system dynamics

include coupled phonic cavities [271], biological cell decision-making [272–274],
ecology [275] and economics [276].

Recent development of new experimental platforms, based on atom-light inter-

actions, gave new momentum to research of non-equilibrium states in a driven-

dissipative regime, possibly allowing the extension of research to the regime where

the underlying quantum dynamics has a non-trivial impact on the states of these

systems. Examples include cold atoms in cavities [277], semiconductor exciton-

polariton condensates [278], trapped ion crystals [279, 280], and Rydberg gases [84].
In particular, Rydberg atomic systems are promising due to the tunability of their

properties (Chapter 2). Recently bistability has been reported in this system, both

for thermal [87, 102, 281] and cold ensembles [89]. We have seen example observa-

tions of small-volume thermal vapour bistability in the previous Chapter [Fig. 3.15].
Theoretically these systems are usually analysed as a model dissipative spin en-

semble [77, 282–293]. We will discuss to what degree such models capture all

the relevant physics in the mentioned experiments in the later part of this chapter.

For the moment, we will focus on the predictions of these models. Various theor-

etical approaches used to extract their behaviour, employing different additional

simplifying assumptions, provided inconsistent predictions. For example, a mean

field description on lattices [285, 287] explains cold-atom observations [89] as the

emergence of bistability, while variational approaches [290, 291] would suggest

only the emergence of a first-order phase transition. While mean field predictions

agree with experiments [87, 287] for one-dimensional spin-chains [282] they are

in conflict with field-theoretical [292] and exact numerical results [286]. Even

for 2D spin ensembles, where both mean-field and variational approaches predict

antiferromagnetic phase at strong dissipation [282, 285, 291], exact numerical

simulations [77] show the absence of such a phase. The exact numerical results [77]
also showed that exact details of the nearest-neighbour interactions are important

qualitatively for the phase diagram prediction, something that is also confirmed in

the study described in this chapter [99], as well as other more recent studies that

were done in the regime where full quantum dynamics was accounted for [294]. This
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is in contrast to expectations from equilibrium statistical physics, where short-range

details usually have only quantitative effect on phase diagrams, and suggest that

this is characteristic of the non-equilibrium, driven-dissipative nature of the system

states [294].
Differences between models occur due to different underlying assumptions, whose

range of validity is yet to be precisely determined. In order to elucidate conditions

that can give rise to bistability in driven-dissipative Rydberg ensemble we will use

a model that allows the full interaction potential spatial dependence to be taken

into account (Fig. 2.18), as well as spatial and temporal fluctuations in excited state

population. Both effects are often neglected early on in the theoretical treatment

with other approaches although they affect local dynamics. In particular, we would

like to explore the effects of atomic motion, which is expected to have a big influence

on thermal atomic vapour ensembles, smearing out spatial correlations. To do

so, we will examine the system in the strong dephasing limit, where full quantum

dynamics can be approximated with classical rate equations [172, 295–297]. The

exact tracking of dynamics for ∼ 104 atoms allows us to account for fluctuations and

approach the thermodynamic limit. The latter is important in order to go away from

small-sample sizes of ∼ 16 two-level atoms that are the limit of Quantum Monte

Carlo trajectory approaches [284, 285, 288], where Poissonian statistics inevitably

introduces big shot-noise that drives transitions between any obtained steady states,

preventing full characterisation of their stability in the thermodynamic limit.

4.2 Theoretical framework in the limit of strong de-

phasing: Rate equations

Consider an ensemble of N two-level systems with ground state |gi〉 and excited

state |ei〉 (i = 1, . . . , N) coupled by a driving field with Rabi frequency Ω, detuned

∆ in frequency from the transition resonance [Fig 4.1(a)]. Spin positions ri in

3-dimensional space are randomly distributed with uniform distribution. To account

for the effects of atomic motion for an ensemble at finite temperature, spins are

assigned velocities vi from a normal distribution characterised with (1D) speed

standard deviation of vth. To model Rydberg-level interactions (Sec. 2.5.1), excited

levels of spins i and j at respective locations ri and r j will interact with potential

V (|ri − r j |) introducing a level shift. The effect of interactions between the atoms

on atomic motion is neglected. Unitary dynamics of the internal degrees of freedom

of the system is described by the Hamiltonian (ħh= 1)

H = Ω
2

∑
i

(|ei〉〈gi |+ |gi〉〈ei |)−∆
∑

i

|ei〉〈ei |+
∑
i< j

V (|ri − r j |)|eie j〉〈eie j |. (4.1)

To account for dissipation and dephasing, the N -body density matrix ρ̂ is evolved

according to the master equation dρ̂/dt = −i[H , ρ̂] + L[ρ̂], where the Lindblad

superoperator L[ρ̂] =
∑

i,α(Li,αρ̂L†
i,α− 1

2 L†
i,αLi,αρ̂− 1

2 ρ̂L†
i,αLi,α), describes dissipation

due to one-body decay Li,0 =
p
Γ |gi〉〈ei | with rate Γ , and additional dephasing

Li,1 =
p
γ|ei〉〈ei | due to finite drive-field linewidth γ (laser linewidth). From now

on, we will use dimensionless quantities, measuring (scaling) the time in units of

excited state decay rate Γ−1, and the length in units of radius rb, defined as the
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blockade radius for zero detuning of the drive field V (rb)≡ Γ + γ.

The form of the interaction potential V (r) [Fig 4.1(c)] is taken to match realistic

interaction potentials (see Fig. 2.18 in Sec 2.5.2),

V (r̄)
Γ + γ

=
1−p1+ ξ6/r̄6

1−p1+ ξ6
, (4.2)

which has V ∝ r−3 distance r dependence for short inter-spin separations r < rvdW

below the van der Waals distance rvdW (Sec. 2.5.1), and asymptotic behaviour

V ∝ r−6 at long distances r > rvdW, characteristic for van der Waals interactions.

Here r̄ ≡ r/rb, and ξ ≡ rvdW/rb measures the characteristic cross-over distance

between these two asymptotic regimes relative to the blockade radius, quantifying

the importance of dipolar interactions for the system dynamics.

Following the approach of Refs. [172, 295–297], we derive effective rate equations

in the strong dephasing limit. For a non-interacting gas, evolution of the N -body

density matrix can be factorised ρ̂ =
⊗

i ρ̂i into the evolution of single-spin density

matrices ρ̂i where individual density elements will evolve in time τ as

d
dτ
ρ̂i,ee = − iΩ

2
(ρ̂i,ge − ρ̂i,eg)− Γ ρ̂i,ee , (4.3)

d
dτ
ρ̂i,ge = − iΩ

2
(2ρ̂i,ee − 1)− i∆iρ̂i,ge −

Γ + γ
2
ρ̂i,ge . (4.4)

Rabi oscillations are damped on a time-scale determined by Γ+γ due to the dephasing

and coupling to the reservoir, and for |Ω| � Γ +γ the coherences ρge will be evolving

much faster than the populations, adiabatically following changes in populations.

We can therefore set ˙̂ρ1,ge = 0, to obtain the evolution of the populations

d
dt
ρ̂i,ee =

Ω̄2

4∆̄i + 1
ρ̂i,gg −

�
Ω̄2

4∆̄i + 1
+ 1

�
ρ̂i,ee , (4.5)
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Figure 4.1: Driven-dissipative interacting
system in the strong dephasing limit with
rate equation modelling of dynamics. (a)
Randomly distributed ensemble of two-level
systems interacting with pair-potential V (r),
driven with field Rabi frequency Ω, dissipat-
ing energy with individual excited state decay
rate Γ . In strong dephasing limit (b) dynamics
can be described with rate equations. Inter-
action potential (c) is assumed to have cross-
over between R−3 and R−6 spatial dependence
at rvdW. Background shading is proportional to
γ↑, indicating regions where dynamics is block-
aded (i), facilitated (ii) and weakly perturbed
(iii).

where we introduced the scaled Rabi frequency Ω̄ ≡ Ω/pΓ (Γ + γ) and scaled de-

tuning ∆̄i ≡∆i/(Γ + γ), while time is measured in earlier introduced units of Γ−1,

t = τΓ . Importantly, note the assumption |Ω| � Γ + γ still permits Ω̄¦ 1 for γ� Γ
which is typical in experiments2. Similar adiabatic elimination of the fast evolution

of coherences can be done even in the full many-body case with interactions V

turned on, giving evolution equations that depend only on diagonal elements of the

density matrix. If we neglect higher-order processes, like multi-photon excitations

of two or more atoms simultaneously, as discussed in Refs. [172, 295–297], we can

obtain a master equation that couples only states whose excitation numbers differs

by one. If we introduce vectors S ≡ (s1, . . . , sN ) labelling many-body states, with

si = 1 standing for the excited i-th spin in the many-body state | . . . ei . . .〉, and si = 0

for the i-th spin in the ground state, and label the neighbouring vectors where the

single spin i has a different state as Si ≡ (s1, . . . , 1− si , . . . , sN ), we can write the

effective master equation governing evolution of the diagonal elements ρS,S of the

density matrix as

2For example γ≈ 103 Γ for experimental parameters in Refs. [89, 298]



4.2 Theoretical framework in the limit of strong dephasing: Rate equations 77

d
dt
ρS,S = −

∑
i

�
siγ
(i)
↓ (S) + (1− si)γ

(i)
↑ (S)

�
ρS,S

+
∑

i

�
siγ
(i)
↑ (S) + (1− si)γ

(i)
↓ (S)

�
ρSi ,Si

, (4.6)

where the single-spin excitation rate of spin i is given by γ(i)↑ ≡ Ω̄2/(1+ 4∆̄i(S)2),
and the corresponding de-excitation rate is γ(i)↓ ≡ 1+ γ(i)↑ . The interactions will now

be accounted for through scaled frequency detunings ∆̄i(S) =∆i(S)/(Γ + γ) as an

interaction-induced level shift ∆i(S) = ∆−
∑

j 6=i V (ri j) s j due to the presence of

neighbouring excited spins [Fig 4.1(b)]. The validity of this approach for Ω� Γ + γ
has been confirmed by comparing the rate-equation evolution (Eq. 4.6) of small

systems with evolution under the full master equation accounting for the time-

evolution of all the coherences and multi-photon excitations [299].
Using the dynamics explained above to find hysteresis and state bistability, the

system state is continuously evolved while the drive detuning ∆̄ is scanned (chirped)

with rate ±κ, corresponding to increasing and decreasing drive detuning.

4.2.1 Implementation of numerical solution - serial algorithm

Evolution under Eq. (4.6) can be efficiently solved for large ensembles (N ∼ 104)

using Monte Carlo sampling for integration of dynamics [295, 300]. Initial atom

positions are sampled uniformly within a cubic volume with periodic boundary

conditions and edge L, selected in all simulations to be much larger than both

rb and rvdW. The density of the atomic medium is given by the dimensionless

density ρ = N r3
b/L3, corresponding to the number of spins per blockade volume

r3
b . Observables are calculated as ensemble averages over multiple realisations of

particle disorder configurations. Note however that individual realisations are also

used to obtain distribution probabilities for system state variables, characterising

their time-domain fluctuations. Two different algorithms are used, one for a frozen

system, where atom positions ri don’t evolve in time, and one for hot systems, where

atoms move along linear trajectories according to their velocities.

In the case of the frozen system, the transition rates γ(i)↑,↓(S) for a given internal sys-

tem state S don’t change in time. This allows use of a kinetic Monte Carlo algorithm,

that dynamically determines discrete time steps for the simulation, sampling directly

the time required for the next change in the system to occur. The algorithm steps are

1. Initialize spin positions ri from uniformly distributed random numbers

2. Calculate rates pi = γ
(i)
↑ (S)(1− si) + γ

(i)
↓ (S) si for flipping of spin si and store

them in an array [Ci] of cumulative spin-flip rates Ci =
∑i

j=0 p j , C0 = 0;

3. The probability for no spin-flips occurring during time t is 1
CN

exp(−CN t);
Find when the next state change happens by sampling the time for the next

spin-flip from that distribution as τ = 1
CN

ln(1/u), where u ∈ [0, 1) is a uniform

distribution;

4. Find which spin i was flipped, by sampling u′ ∈ [0, 1) from a uniform distribu-

tion, and then doing a binary search for i such that Ci−1 < u′CN < Ci; Flip the

state of spin i (si = 1− si);
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5. Record quantities of interest (this step is not required every time);

6. Change detuning to ∆̄ = ∆̄+ κτ. If current simulation time is smaller than

the total simulation time go to step (2.), otherwise end simulation.

For hot samples, atoms move along linear paths ri(t) = ri(0) + vi t according

to their velocities v whose components are given by a normal distribution with

standard deviation vth. Transition rates will now depend on time, and this too has

to be integrated. Numerically intensive fixed time-step δt Monte Carlo sampling

is performed. The time step has to be small enough such that CNδt � 1 and that

atomic motion is small on the blockade radius length-scale vthδt � rb. In performed

simulations, δt = 10−4. In this case the algorithm steps are

1. Initialize spin positions ri from uniformly distributed random numbers, and

spin velocities vi based on normally distributed random numbers with zero

mean and vth variance.

2. Calculate rates pi = γ
(i)
↑ (S)(1− si) + γ

(i)
↓ (S) si for flipping of spin si and store

them in an array [Ci] of cumulative spin-flip rates Ci =
∑i

j=0 p j , C0 = 0;

3. Sample u′ ∈ [0, 1) from a uniform distribution; If CNδt < u′ , go to step (4.),

otherwise find which spin i was flipped by doing a binary search for i such

that Ci−1 < u′/δt < Ci; Flip state of spin i (si = 1− si);

4. Record quantities of interest (this step is not required every time);

5. Update spin positions r(t+δt) = r(t)+vδt and driving detuning ∆̄ = ∆̄+κδt.

If current simulation time is smaller than the total simulation time go to step

(2.), otherwise end simulation.

4.2.2 Implementation of numerical solution - parallel algorithm

Reaching convergence required large systems that pushed the run-times of imple-

mented algorithms in C++ to the limits of what is realistically acceptable. For

such large systems, typical execution times were of the order of a week per single

trace. The total execution time on the clusters used was not calculated, but probably

amounts to several years of continuous running. However, since the run-time of

fixed step Monte-Carlo algorithm for the biggest explored systems was too long for

serial execution, a parallel algorithm was implemented with C++ and MPI. A master

node would divide the problem to worker nodes. Each worker node calculates

probabilities and locations of its own subset of spins, communicating with the master

only its own partial cumulative probability. In addition, in order to minimize the

inter-process communication, each worker node had full list of excited spins, whose

positions are calculated on each node. Given that typically only a small fraction of

the medium is excited, this duplication of calculation is probably more efficient than

relying on inter-process communication to obtain all the excited spin locations. The

algorithm steps for the master node are:

1. Initialize spin positions ri from uniformly distributed random numbers, and

spin velocities vi based on normally distributed random numbers;

2. Divide subsets of spins among worker nodes and set their initial values;
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3. Request from workers the calculation of partial cumulative rates for their

subset of spins (worker state 1) Pi , i = 1, . . . , Nw, where Nw is the number of

worker nodes; Assemble meta cumulative rates Mi =
∑i

j=1 Pj (M0 = 0) for

each of the nodes;

4. Sample u′ ∈ [0, 1) from a uniform distribution; If MNw
δt < u′ , go to step (4.),

otherwise find which node i contains the spin that changed its state by doing

a binary search for i such that Mi−1 < u′/δt < Mi; Request node i to locate

the changed spin, and to change its state based on value u′′ = u′/δt −Mi−1

(worker state 2); Wait for response and update information about the spin

states;

5. Record quantities of interest (this step is not required every time);

6. Change ∆̄ on nodes (worker state 3), and go to step (2.) if current simulation

time is smaller then the total simulation time, otherwise request worker nodes

to terminate simulation (worker state 4).

The algorithm steps for worker nodes are oriented around several state machines.

Transitions between states are prompted by the master node:

• Receive information about relevant spin subset containing Ns spins; Wait for

state switch command from master node;

• State 1. Evolve spin positions, including own copy of excited spins, and

calculate cumulative rates Ci , returning the last one to the master CNs
→ Pi

• State 2. Find which spin i within your subset was flipped based on received

u′′, by a binary search for i such that Ci−1 < u′′ < Ci; Flip state of spin i

(si = 1− si); Notify all nodes about changes; If new excited spin is added to

the array of excited spins, add it at the end of the current array. If some spin

is de-excited, remove that spin from array of excited spins, and if it is not the

last spin in the array, copy into its place the last spin in array.

• State 3. Update the local drive detuning based on received values from the

master node.

• State 4. Memory clean-up and exit.

To get a sense of the time-scales involved for some of the results, note that this

parallelized version of the algorithm, for a single scan over detuning range of δ∆̄ =
0.75, with scan speed κ = 2.2×10−3 and a system of size L = 12 and density ρ = 10

(total number of spins N = 17280; other parameters ξ = 2, Ω̄ = 0.8), required

≈ 53 hours (wall-time) running on 32 CPUs (Intel Xeon E5 2.6 GHz) to achieve

convergence on Fig. 4.2 in the following section.

4.3 Hot ensemble limit

As was noted in the introduction (Sec. 4.1), there are several examples in which mean-

field theories give predictions that were inconsistent with full numerical simulations,

including some done with rate equations integrated as described in Sec. 4.2.1. That

is partially due to a known limitation of mean-field theory, that neglects fluctuations,
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however we will see that, at least in the cases treatable with rate equations, the

usual mean-field model fails but can be corrected within a framework which we

introduce here.

4.3.1 Ensemble averaged mean field

The idea of the mean field in its simplest form is to consider a subspace containing

only a single spin, and account for the environment in some effective manner. In

the textbook case of magnetic spins in lattice geometries, described by the Ising

model, one would seek to find an effective magnetisation field that a single selected

spin i feels due to the spins on the nearest lattice sites. Usually at this point all

correlations in the environment would be neglected, and it would be assumed that

nearest neighbours have average behaviour described by some microscopic quantity

like magnetisation. In very much the same spirit, finding a mean field model for a

Rydberg ensemble interacting with the Hamiltonian given by Eq. (4.1) would consist

of finding an average interaction V̄ that a single spin i feels when immersed in the

given ensemble. We can neglect correlations in the environment, and assume that

excited spins are completely randomly distributed, giving an average interaction

shift

V̄ =

∫ +∞

rs

V (ri j)ρe · 4πr2 dr (4.7)

where ρe is the excited state density. For random ensembles atoms can be arbitrarily

close together, so we take the lower integration limit to be rs = 0. This gives an

indication of the problem as the result will diverge at 0 since V ∝ R−α, α = 3,6.

Related theoretical works thus far either didn’t express V̄ directly as a function of

elementary interactions, or they introduce a minimum integration distance of the

blockade radius rs = rb. However we note that this is not the usual failure of the

mean-field, but a mathematical indication that, at least in this case, we are focusing

on the wrong quantity. Typically in experiments we directly measure average Rydberg

population, and that depends on the average transition rates. Since dynamics given

by the rates γ↑,↓ depends non-linearly on V̄ , exhibiting non-monotonic, resonant

behaviour, it is clear that the results of averaging dynamics, which as we will see

completely describe population evolution in a non-correlated system, can be very

different to the dynamics obtained by inserting an average level shift into the

equations for transition rates.

We will focus on a completely uncorrelated ensemble that arises due to, for example,

rapid thermal motion that randomizes spatial excitation structures. Formally, if

we neglect correlations between the spins we can factorise the system state as

ρS,S =
∏N

i=1ρ
(i)
si ,si

, where ρ(i)si ,si
are diagonal elements of the single spin density

matrix. Inserting this in Eq. (4.6) we obtain

d
dt
ρ
(i)
1,1 = γ

(i)
↑ − (1+ 2γ(i)↑ ) ρ

(i)
1,1 . (4.8)

From this we can find the rate of change for the excitation density ρe =
1
L3

∑N
i=1ρ

(i)
1,1

as
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d
dt
ρe =

N
L3

∑
i γ
(i)
↑

N
− 1

L3

∑
i

(1+ 2γ(i)↑ )ρ
(i)
1,1

= ργ̄↑ −
1
L3

∑
i

�
1+ 2

�
γ̄↑ +δγ

(i)
↑
���
ρ̄1,1 +δρ

(i)
1,1

�
, (4.9)

where we have introduced density ρ ≡ N/L3, average excitation rate γ̄↑ ≡ 1
N

∑
i γ
(i)
↑

and the average excited state population element of the single-spin density matrix

ρ̄1,1 ≡ 1
N

∑
i ρ
(i)
1,1, with respective spin-to-spin fluctuations of δγ(i)↑ and δρ(i)1,1. In

the limit of fast motion (vth/rb � Ω) the spin environment that determines γ(i)↑
will be completely uncorrelated with the spin-state ρ(i)1,1, which allows us to set∑

i δγ
(i)
↑ δρ

(i)
1,1→ 0. Further using N ρ̄1,1/L3 = ρe, we obtain from Eq. (4.9)

d
dt
ρe = ρ γ̄↑ − (1+ 2γ̄↑)ρe . (4.10)

Driving field detuning, ∆̄

Ex
ci

te
d

st
at

e
de

ns
it

y,
ρ

e

ρ̇e

Figure 4.2: Ensemble averaged mean field
(eaMF) compared with results from full nu-
merical integration. Change in population
ρ̇e for a given (∆̄,ρe) as calculated by eaMF
(Eq. 4.10) is mapped with colour. For compar-
ison results of numerical integration of dynam-
ics (Eq. 4.6) for a big, hot ensemble (L = 12,
vth = 20, κ = 2.2 × 10−3) are shown (black),
for a detuning chirp in the positive (solid black)
and negative (dashed black) directions. The
solid green line shows results of full numer-
ical integration of dynamics for a frozen system
(vth = 0). Parameters Ω̄ = 0.8, ξ = 2.0, ρ = 10.
Unit length is rb.

Here the excited state population depends on the excitation rate averaged over the

ensemble γ̄↑, so we will refer to this model as the ensemble averaged mean field

(eaMF). This is an exact solution of Eq. (4.6) in the limit of a hot atomic ensemble,

where rapid atomic motion prevents formation of spatial patterns from excited

particles. In Figure 4.2 we show comparison of the eaMF (4.10) prediction given

as the colour map, and exact numerical integration as described in Sec. (4.2.1). As

expected, for the hot case (vth = 20, black line in Fig. 4.2), the numerical simulation

matches with eaMF, where steady states form an S-shaped curve (white part of the

colour map on Fig 4.2). In the region where three equilibrium solutions (ρ̇e = 0)

exist, two of them are stable under small perturbations in ρe. Note that the big

system size is important to capture the full hysteresis curve occurring due to the

existence of two stable states. Smaller systems have stronger shot-noise, causing

destabilisation of the state before the edge of the hysteresis predicted by the S-shaped

curve is reached. Note that for a frozen system (vth = 0, green line in Fig. 4.2) the

numerical solution is very different, and actually doesn’t show bistability at all (even

with expanded detuning range ∆̄). The frozen case will be discussed in detail in the

following Section (4.4), and the important cross-over regime between the two will

be explored in Section (4.5).

The prediction of the usual mean field (MF) analysis, that just uses V̄ (Eq. 4.7)

limiting integration down to the blockade distance rs = r∆, V (r∆) = ∆̄ is shown

on Fig. 4.3. As expected from the introductory discussion, it completely misses Driving field detuning, ∆̄
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Figure 4.3: Simple mean field with cut-
off at blockade radius compared with nu-
merical results. Prediction of simple mean
field (solid red) that uses average interaction
(Eq. 4.7) for calculation of dynamics, with a cut-
off rs at blockade radius r∆ for given detuning
V (r∆) = ∆̄. Results of numerical integration of
dynamics for hot, uncorrelated ensemble are
shown in solid black. Parameters as in Fig. 4.2.

both the shape of the solution and the hysteresis width. In particular MF seems to

significantly underestimate fluctuations, predicting a much wider hysteresis window.

This is the usual mean-field fallacy. For example, in the few-excitations branch of

the bistable curve, breaking down of point-excitations to a field, and smearing them

in space, effectively done by Eq. (4.7), misses the effect that a few concentrated

excitations can have on their local environment. This effect is more pronounced

compared to for example the mean field in magnetic materials, due to the resonant

dependence of dynamics (transition rates) on V .

Introduced eaMF by averaging directly dynamics maintains fine-grained sensitivity

to the point nature of excitations. Yet it keeps the computational and conceptual

simplicity of the mean-field, allowing potential extensions to multi-level, multi-
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component systems. The ensemble averaged rate γ̄↑ can then be efficiently found by

doing simple Monte Carlo sampling of the environment. In the special case of the

currently considered two-level system it is also possible to derive a closed analytical

solution (see Appendix A.3 for details) for the averaged transition rate

γ̄↑ =
Ω̄

2

∫ +∞

0

dk e−k{1/2+Re[ f (k)]} cos
�
k
�
∆̄+ Im [ f (k)]

	�
, (4.11)

where f (k) ≡ k−1ρe

∫ {1− exp[ikV (r)]} dr. The real and imaginary parts of f (k)
can be interpreted as an interaction-induced shift (Im[ f ]) and broadening (Re[ f ])
respectively. In the special case when interactions V (r) have pure van der Waals

spatial dependence r−6, corresponding to ξ→ 0, one finds Re[ f ] = Im[ f ]∝ ρe

p
k.

This implies that the level shift will always be matched by line broadening, preventing

the formation of bistable phases for pure van der Waals interactions. This will be

further explored numerically in Sec. 4.4.3.

Finally, we comment on possible extensions of this approach. In a similar manner

we can treat arbitrary strong driving (Ω> Γ + γ) by applying a full quantum model

to a single particle, and averaging over the other spins (environment) whose initial

states are sampled from distributions defined by macroscopic observables, until we

have a self-consistent approximation for the environment. This is possible since

the full dynamics is only solved for a single atom, and the rest is treated as a

self-consistent perturbing environment, which is fine as long as motion induced

dephasing limits the growth of many-body coherences. Again, in contrast to usual MF

analysis, this sampling of environments and direct averaging of dynamics captures

the impact of fluctuations on dynamics. A related recent theoretical approach is

cluster mean field in Ref. [294]. It accounts for full quantum evolution and short-

range correlations in the local environment (cluster), however it still uses the usual

mean-field approach for treatment of the cluster environment, partially neglecting

the effect of fluctuations on dynamics.

4.3.2 Phase diagrams

Here we use the previously introduced ensemble averaged mean field to explore

parameter ranges over which bistability can occur. Scans of detuning ∆̄ were

performed, in both the positive and negative direction, and for each detuning value

the excited state population density ρe was evolved according to Eq. (4.10), starting

with an equilibrium value obtained from the previous detuning step. The local

equilibrium value was found numerically, through adjustments of ρe until ρ̇e→ 0,

as evaluated by Eq. (4.10). For each value of ρe, the average rate γ̄↑ was found by

direct ensemble average of ∼ 106 randomly generated environments, as this was

found to be faster than numerical evaluation of Eq. (4.11).Driving field detuning, ∆̄
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Figure 4.4: Excited state population of an
uncorrelated (hot) ensemble, upon detun-
ing scan in positive and negative direction.
Calculated with eaMF for Ω̄ = 0.8, ξ = 2.0,
ρ = 10.

Example of the excitation density profile obtained is shown on Fig 4.4. The obtained

hysteresis can be characterised by calculating a surface area A0 enclosed in (ρe, ∆̄)
space by the excited state populations ρ→e and ρ←e found for detuning scans in the

positive and negative direction respectively, i.e.

A0 =

∫ Max[∆̄]

Min[∆̄]
|ρ→e −ρ←e | d∆̄ . (4.12)

Obtained hysteresis surface areas A0 for a range of spin densities ρ and cross-over
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Figure 4.5: Phase diagram for hot ensemble in (ρ,ξ) plane. The phase diagram is recon-
structed by integrating dynamics with eaMF and extracting hysteresis area A for each ξ [blue
dots (a)]. This uncovers a second order transition into the bistable regime that occurs for
critical ξcrit [red dots (a)], that is extracted for each ρ as an intersection of linear fits (dashed
lines) of the subsets of the data in the vincinity of transition. These critical ξcrit are plotted on
the phase diagram (b). Calculated for Ω̄= 1.

distances ξ are shown on Fig. 4.5(a). For small values of ξ there is no observable

hysteresis, even though ρe can start to feature a sharp transition point. Approaching

such a transition point means that the excited state becomes localized in a larger,

shallower basin of attractor dynamics. Shallower basins require progressively more

precise determination of γ̄↑ in order to find a steady state. For a fixed number of

sampled environments (∼ 106) this leads to increased error in the determination

of the local equilibrium value of ρe. We can see that in the numerically extracted

enclosed area A0 that increases ever so slightly with increasing ξ [Fig. 4.5(a)], as

evident from the linear fits of A0 for small ξ. However, there is always a clear

transition point in ξ when the hysteresis area experiences a second-order phase

transition, and starts to rapidly grow with increasing ξ.

The critical point ξcrit can be extracted from linear fits of the extracted hysteresis

Driving field detuning, ∆̄

Va
n

de
r

W
aa

ls
ra

di
us

,ξ

ρ = 2 ρ = 10

ρ = 10 ρ = 15

ρ = 20 ρ = 30

Figure 4.6: Phase diagram for hot (uncorrel-
ated) ensemble in (∆̄,ξ) plane. Purple points
show ∆̄ for which half of the maximum excited
state is reached for blue detuned driving. With
increasing dipolar core ξ, the bistability window
opens (yellow shading) with separate jump-up
(blue dots) and jump down (red dots) points.
Parameter Ω̄= 1.



84 Chapter 4 Driven-dissipative systems with power-law interactions

areas A0 in the vicinity of the transition. Obtained values for ξcrit shown as red

points on Fig. 4.5(a), are represented on a bistability phase diagram in the (ρ,ξ)
plane in Fig. 4.5(b). We see that numerical results indicate that bistability doesn’t

occur for ξ < 1. This confirms the conclusion reached analytically in the previous

Section 4.3.1 and extends the region with no bistability to ξ→ 1. Changes in the

location of the hysteresis, for different spin densities ρ and cross-overs ξ are shown

on Fig. 4.6. There we recorded driving field detunings ∆̄ for which half-maximum

value of ρe is crossed on the blue-detuned side, marking turn-on (blue circles) and

turn-off (red circles) point of the hysteresis.

4.4 Frozen ensemble

In the previous chapter we have shown how bistability can arise in a hot atomic

ensemble if a finite dipolar core is present (ξ= 2 for simulations in Fig. 4.2). Two

non-equilibrium steady states identified in the bistable loop are stable under small

fluctuations, but transitions between these two attractors of dynamics can easily occur

in finite systems due to occasional big fluctuations, making them metastable. The

size of fluctuations can be simply reduced by considering big systems, which makes

states infinitely long-lived in the limit of L, N →∞. This is very similar to the usual

cavity bistability extensively explored both theoretically and experimentally [301–

304] for the last forty years, where an all-to-all mean interaction field in an atomic

medium is provided by the cavity-trapped field.

Bistability in the frozen, spatially extended, locally interacting many-body sys-

tem would be of a fundamentally different nature. For finite systems, similarly as

discussed in the eaMF picture, switching between two states is inevitable. How-

ever, for spatially extended systems the question whether two states, metastable

in finite systems, can become stable in the thermodynamic limit, and if so, under

which conditions, is very complicated. In contrast to eaMF bistability, this is a

non-trivial question since local fluctuations of dynamics cannot be prevented. The

local fluctuations in spatially extended systems can cause inhomogeneities, that can

act as a nucleation centre for an avalanche that spreads and changes the state of

the system. In thermal equilibrium systems, mechanisms like this usually prevent

observation of metastable phases [305], like superheated water and supercooled

vapour in gas-liquid transitions. Thermal equilibrium systems in a metastable state

are stable under small perturbations, and the states are well defined by the current

external parameters (unlike in the glassy systems), however, once the system leaves

the metastable state, the probability of returning is very low [306]. Inhomogenuities,

local nucleation and phase separation followed by an avalanche, prevents easy

calculation of metastable state lifetimes based on mean-field based estimates for

crossing free-energy barriers between states [306–308]. A fact that complicates

analysis of metastable states in driven-dissipative systems even more, and a reason

for caution when drawing comparisons to thermal-equilibrium systems, is the lack

of a formally defined equivalent to free energy. However, transitions can still be

seen occurring due to local, fluctuation induced changes of state, if such changes

can spread and span the whole system size.

There are two types of question one can ask about metastability/bistability in the

discussed spin system (Eq. 4.1). The first one is a fundamental question: can two
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states become infinitely long lived in the thermodynamic limit, and how that can

be understood? The second is pragmatic, asking if we have any long-lived states,

which on experimental time-scales are effectively stable and completely dominate

the dynamics, how can we identify and characterise these states? For the former

question we cannot provide a definitive answer, but we can highlight two frameworks

within which one can understand the origin of bistability. Within the Liouvillian

formalism (Sec. 2.4.3), for the bistable regime to occur an eigenstate of the Liouvillian

should have a real part3 that vanishes in the thermodynamic limit, making that state

also exactly infinitely long-lived, as discussed in Refs. [271, 309]. However, since

the rate equation model is fully classical, we should be also able to understand the

occurrence of the two phases from the point of view of percolation and changes

in percolation tresholds with detuning and system state, required for apperance of

(non)excited clusters that span the whole system size on the hysteresis edges where

sharp changes in excited state population occur. These should provide a transparent

way of understanding the occurrence of dynamic phase transitions in spatially

extended systems. In order to answer the latter question, we introduced a number

of precisely defined quantities, that can be directly measured experimentally. We

showed that clear transition points can be identified with them. Intensive numerical

efforts allowed reconstruction of phase diagrams, identification of bistable states,

and identification of persistent state switching, a separate phenomena from transient

bistability. We also analysed a microscopic basis for the importance of short-range

potential form which, in contrast to expectations based on equilibrium statistical

physics, has a qualitative influence on phase diagrams in these non-equilibrium

situations. We showed that it has a profound influence on the size of dynamics

fluctuations, which bears some resemblance to the influence that temperature has

on equilibrium systems.
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Figure 4.7: Snapshot of low (a) and high
(b) excited state density phase of a frozen
non-equilibrium bistable system. Two non-
equilibrium steady states are shown in space, with
wire-frame marking limits of periodic-boundary
simulation space. Low excited state density phase
(a) features small clusters [correlation function
shown on (c)] of excited spins (red spheres), that
facilitate excitation of other neighbouring spins as
indicated by the shading (d) of the ground state
spins (blue spheres). High excited state density
phase (b) features a cluster that spans the whole
system. The cluster consists of excited spins (red)
and ground state spins whose dynamics is highly
facilitated (strong blue) being brought into res-
onance with off-resonant driving due to interac-
tions with excited spins. The phase has liquid
like correlations (e). Note that both (a) and (b)
have same number of spins, with the same spatial
distribution, however on (a) a majority of them
is invisible, just as it would be for off-resonant
driving field, since they are far detuned from the
driving resonance.
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4.4.1 Hysteresis scaling: static v.s. dynamic hysteresis

For a finite dipolar core, as measured by ξ, we were able to find regions where

hysteresis in the excited state density ρe opens upon a detuning ∆̄ scan, where

two well defined states [Fig 4.7(a-b)] persisted for a long time. The low-excitation

density state [Fig 4.7(a)] features small clusters of excitation, indicated also in

the excitation density correlation function [Fig. 4.7(c)] that shows pairs of hard-

core spheres being formed. The short-range exclusion zone corresponds to the

blockade (Sec. 2.5.2), where the level shift caused by interactions between two

excited states decouples states featuring two or more excitations from the driving

field, effectively freezing dynamics at short distances. The peak in the correlation

function corresponds to the facilitation radius r∆ (Sec. 2.5.2) where the presence of

a single excitation compensates driving detuning ∆ through an interaction induced

level shift V (r∆) =∆ of the spins, bringing them into resonance with the driving

field [Fig. 4.7(d) for shading]. The high-density phase consists of one giant excited

cluster that spans the whole system. Note that Fig. 4.7(b) shows a snapshot of such

a cluster in time. This is a non-equilibrium steady state, and for maintenance of

the cluster its structure, consisting of interleaved excited spins (red) and ground-

state spins whose states are brought into resonance with driving (blue), is of crucial

importance. In subsequent time steps excited spins will decay, and somewhere in their

neighbourhood some resonant spins will be excited, maintaining the total excited

state density ρe. Note that each blockaded volume in the figure contains multiple

spins whose dynamics is effectively frozen due to interactions. In such a dynamically

grown cluster there is nothing that would maintain long-range ordering over a

length-scale r∆, and this is indeed seen in the correlation function on Fig. 4.7(e),

which resembles a liquid of hard core particles.

To determine the nature of hysteresis, we observed a scaling of hysteresis area

for different chirp rates κ of detuning ∆̄. If the external parameters are changed

very quickly, faster than the characteristic response time of the system, hysteresis

will always occur. In the region of first-order phase transitions, hysteresis can occur

due to the existence of meta-stable states. If one waits for long-enough, the system

should find its equilibrium state, and the hysteresis usually closes. Indeed, we can see

on Fig. 4.8(a) that hysteresis becomes smaller for slower chirp rates. However, we

consider whether, in addition to this inevitable dynamic hysteresis, one can identify

appearance of long-lived states giving time-persistent static hysteresis and bistability.

To this end we fitted numerically obtained hysteresis areas A(κ) for different chirp

rates κ to

A(κ) = A0 + aκ−b, (4.13)

Driving field detuning, ∆̄

Ex
ci

te
d

st
at

e
de

ns
it

y,
ρ

e

Detuning chirp rate, κ

H
ys

te
re

si
s

ar
ea

,A

ξ=

ξcrit

2.0 2.8 3.4 4.0

(b)

κ=

ξ= 2.8

0.4 0.2 0.02 0.0004

Figure 4.8: Scaling of hysteresis size for dif-
ferent chirp (drive detuning scan) rates κ.
While hysteresis becomes smaller for slower
chirp rates (a), below critical value of the van
der Waals radius ξcrit there is non-zero static
hysteresis A0 (b). Parameters: ρ = 10, Ω̄ = 0.8.

where a, b and A0 are free parameters. Dynamic hysteresis corresponds to aκ−b,

while A0 corresponds to static hysteresis, that persists in the limit of infinitely slow

(adiabatic) sweep rates κ→ 0. As shown on Fig. 4.8(b), below the critical point

ξcrit hysteresis completely closes for infinitely slow scans. However for ξ > ξcrit we

see persistence of non-zero static hysteresis. The dependence of static hysteresis on

cross-over radius A0(ξ) can be used for determining ξcrit and bistability regions in

a similar method as the one used for hot ensemble in Sec. (4.3.2). The obtained

3this characterises lifetime of the state, see Sec. 2.4.3
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phase diagrams will be explored in Sec. (4.4.3).

4.4.2 Divergence of transition time between bistable states

To examine closely the emergence of static hysteresis, the characteristic times for

leaving the state corresponding to the metastable part of the hysteresis loop, in the

region of detunings where hysteresis is dynamic and closes for κ→ 0, are measured.

The system is prepared in the high- or low- excited state density ρe regime, and with

a fast detuning chirp it is brought to some detuning ∆̄ within the metastable part of

the curve. The time for switching to the other state is then measured. This closely

follows the experimental protocol used to measure switching times between bistable

states in Ref. [87].
Above the critical van der Waals radius ξ > ξcrit, times for the jump-up from low

to high density regime 〈T↑〉 and vice versa 〈T↓〉 are found to diverge with a power

law

T = c · |∆̄− ∆̄c|α, (4.14)

where c, α and ∆̄c are fit parameters. Importantly, the critical detunings ∆̄↑c and ∆̄↓c at

which jump-up and jump-down times diverge were different [Fig. 4.9], indicating the

existence of two long-lived states in the window (∆̄↑c , ∆̄↓c) of driving field detunings.

The width of the static hysteresis window obtained in this way matches with the

estimated static hysteresis surface area A0 obtained with the finite-time scaling of

hysteresis areas in previous Section (4.4.1).

It is possible to hypothesise that in the identified bistable regime the system switches

to some new scaling of the state lifetime, and eventually still decays. This relates

back to the question raised in the introduction of this section about the possibility

that many-body character stabilises multiple non-equilibrium steady states in driven-

dissipative states. We do not see evidence for slow-decay of obtained states in the

current numerical simulations, and for practical system description this question

is irrelevant since the obtained state lifetimes > 104 Γ−1 are many times longer

than the characteristic single-excitation lifetime Γ−1, exceeding the experimental

observation time-scale in any cold or hot atomic ensembles to date.

Regarding the decay of metastable states in the dynamic hysteresis, there are

several important differences of this many-body meta-stable state decay compared

to the mean field results. In contrast to mean field results [287, 310], we don’t find
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Figure 4.9: Divergence of lifetimes for high
and low excited state density phase. For a sys-
tem initialised in low (high) excited state density
phase average switching time T↑ (T↓) to the high
(low) excited state density phase are measured
and shown in blue (red). Insets show that these
diverge with a power-law dependence, indicat-
ing critical detuning ∆̄↑c (∆̄↓c) at which transitions
to the high (low) excited state density stop. In-
between two critical detunings (yellow shading),
system has two long-lived non-equilibrium steady
states, i.e. it is bistable. Parameters ρ = 10,
Ω̄= 0.8, ξ= 4.0.
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a single, universal value for the jump time scaling exponent α. A difference with

MF is also seen in predicted transition paths ρe(t) during the time of transition t.

Transitions between the states in a frozen sample are stochastic events, defined by

a single average jump time 〈T↑,↓〉. This is in contrast to the mean field [287] that

predicts deterministic trajectories with a well defined transition after some initial,

deterministic time delay. The fact that the universal mean field exponent of α= 0.5

was observed in experiments [87], as well as measured transition paths having a

well defined initial delay, is a strong indication that motional effects, often neglected

in treatment of the systems, brought the system into the mean field (eaMF) regime,

as described in Sec. (4.3).

4.4.3 Phase diagrams

With the well defined transition points to bistable behaviour based on determination

of a static hysteresis through hysteresis scaling (Sec. 4.4.1) and identification of the

divergent switching times (Sec. 4.4.2), we can now explore a range of parameters

to determine the phase diagram of the frozen system.Driving field detuning, ∆̄
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Figure 4.10: Phase diagram for a frozen
system in (∆̄,ξ) plane, reconstructed from
switching times of non-equilibrium steady
states. Critical detunings at which state life-
time diverges ∆̄↑c (blue circles) and ∆̄↓c (blue
circles) delineate bistable area (yellow shad-
ing). Parameters Ω̄= 0.8, ρ = 10.

Extracting critical switching times ∆̄↑,↓ for a range of van der Waals radii ξ allows

identification of the bistable regime in the (∆̄,ξ) plane, as shown on Fig. 4.10.

However, this approach is slightly harder to implement automatically for a wide

range of parameters, since it requires some previous knowledge of the range of

detuning ∆̄ over which hysteresis occurs. Therefore, in the remaining part of this

section we will focus on results obtained through hysteresis scaling.

For each choice of (ξ,ρ), multiple simulations are done to determine the dynamic

hysteresis area A, and then the procedure is repeated for a range of sweep rates κ.

The static hysteresis area is then obtained from hysteresis scaling analysis (Sec. 4.4.1).

This can be repeated for a range of van der Waals radii ξ, revealing a clear continuous

transition to the bistable regime. Similarly to the hot case (Sec 4.3.2), critical ξcrit

for which a non-zero static hysteresis area occurs can be identified. This is labelled

as a single blue point on Fig. 4.11. Repeating this procedure for a range of densities

ρ reveals the bistable phase in the (ρ,ξ) plane. The intensive numerical calculations

required for this were done by Thomas Pohl using computational resources of MPIPKS

Figure 4.11: Phase diagram of the driven dis-
sipative spin system in (ρ,ξ) plane. Blue solid
circles delineate the area where frozen system is
bistable, as obtained from numerical integration
of dynamics (Eq. 4.6). Red solid circles delin-
eate the area when completely uncorrelated, in-
finitely hot system (external degrees of freedom),
is bistable, as obtained from eaMF (Sec. 4.3). In
between, whether the system is bistable or not
depends on the temperature of its external de-
grees of freedom (i.e. spin motion). Data for
frozen system is from simulations by T. Pohl [99].
Parameters Ω̄= 1, ρ = 10.
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in Dresden. We note that both the eaMF prediction (red circles) which is an exact

solution in the limit of very hot atomic ensembles (Sec. 4.3.2), and the numeric

solution for the case of a frozen gas which maintains all spatial correlations and

fluctuations of local dynamics (blue circles), predict the same qualitative behaviour.

In particular, critical ξcrit initially decreases with increasing densityρ, only to saturate

for high densities, indicating no bistability for pure van der Waals interactions ξ→ 0.

As expected, there are quantitative differences, with the two bistable regions being

shifted relative to each other. The behaviour in the gap arising from this offset will

be explored in detail in Sec. (4.5).

We can obtain further insight into nature of the identified non-equilibrium phase

transition into the bistable state by observing the system state for individual realiza-

tions of the disorder. The ensemble average over several very slow scans (κ = 10−8)

produces the phase diagram shown on Fig. 4.12(a). We can identify three regions

of ξ on this phase diagram. Below the critical point (marked with open circle) there

is no discontinuity in the excited state density ρe. What can be noted, however, by

observing the probability distribution of ρe [shown as shading on Fig. 4.12(b-d)] ob-

tained from recording population oscillations in time, is that the system experiences

pronounced fluctuations. This is reminiscent of the thermal-equilibrium system’s

approach to the second order phase transition.

In the region 1.8® ξ® 2, just above the critical point, the system experiences a

first order phase transition, indicated by the dashed line in Fig. 4.12(a), but there

is still no discontinuity in ρe. This is due to time-averaging of a single system

trajectory, as shown on Fig. 4.12(c) (line). The transition can be seen however if

one observes the probability distribution for ρe that now separates into two well-

defined attractors of dynamics. The system doesn’t spent significant time between

these two attractors. Keeping in mind that red and blue shading corresponds to the

probability density (single realisation, time averaged) functions of ρe for positive

and negative chirp rates κ, we see that the system persistently switches between

these two attractors of dynamics, as indicated by the purple colour of the probability

density distribution. This is very different behaviour to the usual metastable states

in thermal equilibrium, for which the probability of re-entry once the system leaves

the state to the stable equilibrium state, is very low [306]. Although the switching
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Figure 4.12: Phase diagram for the frozen
system in (∆̄,ξ) plane and individual trans-
ition trajectories. Phase diagram (a) obtained
from ensemble average of multiple slow scans
(κ= 10−8) with critical point marked with open
white circle, and bistable regime with yellow
shading. Individual slow-scan trajectories (b-d)
show time-averaged populations for scans in pos-
itive (solid red) and negative (dashed blue) dir-
ection, while shading shows probability density
function for system state obtained from time evol-
ution of the single realisation of the system for
slow scans for positive (red) and negative (blue)
direction. Persistent switching between the two
non-equilibrium steady states is obtained near the
dashed purple line. Data from numerical simula-
tions by T. Pohl [99]. Parameters Ω̄= 1, ρ = 10.
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between states is happening on long time scales, the fact that there is constant

intermittent switching between them underlines the need for describing both states

within the theoretical framework for modelling of the system. This driven-dissipative

aspect is in contrast to the usual thermal-equilibrium situations, where knowledge

only of a single lowest energy state is often sufficient. In this case that is not true even

after infinite time. Note also that this persistent bimodality in the ρe distribution

is very different to the transient bimodality, theoretically discussed in Ref. [299,

311] and experimentally observed in off-resonant excitation of Rydberg atoms [89,

298]. The transient bimodality occurs purely due to the slow initial relaxation of the

system, which requires creation of the first Rydberg excitation, usually a stochastic

process in time, to act as an initial nucleus driving further Rydberg excitation. If one

waits for a long time, there won’t be bimodality in the excitation number. Finally,

going back to the phase diagram [Fig. 4.12(a)], for ξ¦ 2, fluctuations are reduced

and the system exhibits a sharp transition between the high and low excited state

density ρe state, with a clear hysteresis window.

4.4.4 Importance of short range interactions for non-equilibrium

phase diagrams of driven-dissipative systems

Both eaMF results in Section (4.3.2), and results in the frozen system in the pre-

vious Section (4.4.3), highlighted the crucial impact of short-range details of the

interaction potential. Although the asymptotic long-range behaviour of the potential

is always V ∼ R−6, the inner dipolar-core characterized by the van der Waals radius

ξ introduced qualitative new features on the non-equilibrium phase diagram. This

is very much in contrast to the expectations based on thermal-equilibrium statistical

physics, where short-range details of interactions usually have only quantitative

impact on details of phase-diagrams. This characteristic of driven-dissipative systems

has been recently noted [294] even in the case where full quantum dynamics is

accounted for in system evolution. In the strong decoherence limit, the importance

of extended range of the interactions (i.e. beyond nearest-neighbour interactions)

on non-equilibrium phase diagrams was also highlighted in Ref. [77].
The reason for the importance of short-range potential details in the present study

can be seen by considering the effect of the interaction potential form V (r) on energy

level fluctuations, which through flip rates γ↑,↓ causes fluctuations in spin dynamics.

Figure 4.13: Fluctuations in the non-
equilibrium dynamics controlled by the short
range potential shape. (a-b) Excited state dens-
ity upon drive detuning scans in positive (solid
red) and negative (dashed blue) direction for
Ω̄ = 1,0.5,0.25. For finite dipolar core ξ = 2.5
(b) bistability window opens. Distribution P(δ)
of maximal fluctuations in the level shift δ of
the excited states due to spin de-excitation for
ξ = 0.5 (c) and ξ = 2.5 (d) calculated for system
in the state marked with solid purple circle (a-b).
Data from numerical simulations by T. Pohl [99].
Parameter ρ = 10. Driving field detuning, ∆̄
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Individual spin decays, due to inevitable spontaneous decay or driving accounted

for in γ↓, cause level shifts ∆̄i of the neighbouring spins i. For ξ ® 1, a level shift

∆̄i of every spin is dominated by a small number of excited spins in its immediate

neighbourhood. De-excitation of a single spin from that neighbourhood will cause a

large change in ∆̄i , causing corresponding fluctuations in excitation rates γ(i)↑,↓. The

resulting large density fluctuations seen on Fig. 4.12(b) prevent the formation of the

bistable phase. For large ξ, the total level shift ∆̄i depends on a number of excited

spins within distance ® ξ. Single spin decays will therefore have a much smaller

influence on level detuning. This effective averaging of dynamics over a volume of

∼ ξ3 reduces variance in ∆̄i and fluctuations in corresponding dynamics.

This qualitative description can be quantified by observing the maximum level

shift δ of excited spins caused by de-excitation of a single excited spin. This can

be obtained by following the time dynamics of a non-equilibrium steady state for

fixed detuning. For example, Fig. 4.13(a–b) show the selected point at which

measurements are done. In both cases the system is in the same state (ρe, ∆̄).
However we see that while for ξ = 2.5 the probability distribution P(δ) for a

maximum level shift δ of the excited states has a well localized peak at small values

δ� 〈V 〉 [Fig. 4.13(d)], for ξ = 0.5 it exhibits a pronounced long tail [Fig. 4.13(c)],
with significant level shifts even on the scale of the ensemble averaged level shift

〈V 〉 of the excited states.

Finally, we note how the initial surprise regarding the importance of the de-

tailed shape of the short-range interaction potential can be reconciled with thermal

statistical physics intuition. While formally temperature is not defined for driven-

dissipative non-equilibrium steady states, we note that in these non-equilibrium

situations ξ plays a similar role to the temperature in equilibrium systems. Both

parameters determine relative fluctuations in dynamics, one in the driven-dissipative

case, the other in the thermal-equilibrium case. Indeed, even the transition shown

on Fig. 4.12(a), is in many ways reminiscent of changes in magnetisation upon tem-

perature tuning in the Ising model of magnetics. We stop short of formally pursuing

this analogy, because finding formal mapping of non-equilibrium system parameters

to temperature alone is of questionable use for practical system description without

formal mapping of the free energy potential concept.

4.5 Temperature driven non-equilibrium phase trans-

itions
Thermal velocity, vth
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Figure 4.14: Non-equilibrium phase trans-
ition into the bistable phase driven by the
temperature of the external degrees of free-
dom (spin motion). Blue dots are results of
full numerical integration of Eq. 4.6 for L = 12,
ρ = 10, κ = 2.2× 10−3. Red line shows predic-
tion of the eaMF for the corresponding system
size and chirp rate.

In Section 4.4.3 (Fig. 4.11), we noted a gap between the bistable phase in the hot

atom limit (eaMF predictions) and simulations for frozen systems. Numerically

solving the dynamics of the system (Sec. 4.2.1) we can continuously interpolate

between these two limits by changing the velocity of the spins in the simulations.

Under the assumption that inter-atomic interactions have negligible influence on

the spin motion, we can completely decouple the evolution of external and internal

degrees of freedom. This allows us to assign temperature to the external degrees of

freedom of the spin ensemble even in the presence of driving of its internal degrees

of freedom, and use a normal velocity distribution defined by mean velocity vth.

On Fig. 4.14 we show hysteresis areas A obtained for slow κ = 2.2× 10−3 evol-

ution of the system. For slow motion, the hysteresis areas don’t change, and the
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extrapolated static hysteresis area goes to zero, indicating closing of the hysteresis

loop. However at vth ≈ 0.4, measured in units of rbΓ , a continuous transition to

non-zero hysteresis occurs, which then gradually saturates to the eaMF value which

is the exact solution for vth→∞. To account for finite scan speed and finite system

size, introducing inevitable fluctuations, eaMF prediction is based on evolution of

the same number of particles ρL3 under Eq. (4.10), accounting for the expected

reduction in hysteresis area due to the finite size of the simulated system. Taking

the typical cold-atom experimental parameters from Ref. [89], with rb ≈ 11 µm and

Γ−1 ≈ 200 µs, the unit velocity rbΓ
−1 would correspond to an atom temperature

of only ∼ 30 µK, indicating that motion and the predicted temperature induced

phase-transition can be observed even in cold atom systems.

4.6 Comparison with experiments

Up to now we’ve been focusing on a link between a spin-description of the system

and predictions that can be derived under strong dephasing conditions. Now we will

discuss a link between the spin-model and the realistic driven-dissipative Rydberg

atomic ensemble. In order to draw conclusions based on the theoretical predictions

so far, it is important to discuss how closely the initial spin model (Eq. 4.1) matches

the experiments. The spin-description introduced here in Section (4.2), accounting

for the full potential in spin interactions and allowing for motion, is the most

complicated model used so far, and provides important insight in various effects

(i.e. of atomic motion). Yet, it is still a very simplified picture of the real system.

In particular, the complex Rydberg state manifold, population redistribution under

collisions and black-body radiation, corresponding strong resonant dipole-dipole

interactions and possible ionization (Chapter 2) have all been neglected. This is a

common weakness in relating any spin models directly to observations in Rydberg

experiments. We will try to estimate the influence of these additional effects, and

also discuss the cleanest possible preparation for direct observation of the predictions

exposed herein.

In Ref. [89] bimodal counting statistics of cold rubidium atoms excited to the 70 S1/2

state has been reported. The quoted laser linewidth of γ/(2π)≈ 500 kHz and Rabi

driving frequencies Ω< Γ + γ are within the range of validity of the present theory.

The scaled van der Waals radius ξ ≈ 0.3 implies that the bistable state cannot be

observed according to the results of this model. The observed bimodality is not then

caused by the emergence of bistability [285, 288] or a phase transition [290] in the

steady state of the system. However, in the transient regime, for the finite excitation

time τ it can emerge due to the finite relaxation time of the system, dominated by

the creation of the initial Rydberg “seed” excitation. On long time-scales, black-body

radiation induced population of the neighbouring levels (Sec. 2.3.2) can significantly

affect excitation dynamics, as was seen in recent experiments [37, 312, 313].
In Ref. [311] cold Rubidium atoms were prepared in a three-dimensional optical

lattice, with a single atom per lattice site, and atoms were excited to the 25 P3/2 state.

No bistability was observed. Again the quoted laser linewidth of γ/(2π)≈ 300 kHz

and Rabi frequency Ω/(2π) = 77 kHz are within the range of validity of the rate

equation model. With the calculated interaction potential V ∝ R−9, which has faster

decay than that of pure van der Waals interactions for which ξ→ 0, no bistability
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is predicted within the model presented in this chapter, which is consistent with

experimental observations. Also, the low density per blockade volume would prevent

observation of bistability (see phase diagram on Fig. 4.11). The density is further

reduced during the experimental sequence due to additional loss of the atoms from

the lattice due to ionization. This problem is less pronounced in atomic clouds, and

completely absent in thermal vapours.

Finally, we turn our attention to thermal vapour experiments where bistability has

been observed [87, 102, 281, 314]. Based on the sign of the van der Waals shift

and the side on which the bistability is observed experimentally, it was concluded in

recent study [281] that bistability is not due to van der Waals interactions, which is

in agreement with the presented model. It was also argued that bistability originates

purely from the creation of ions. Ion creation is inevitable in thermal vapours due to

collisional processes, and since Coloumb potential is even longer range then potential

V (r) considered here even in the limit of ξ → ∞, it could produce bistability.

However, we note that in experiments in Ref. [314] bistability for both positive and

negative detunings was observed. Also for low-lying 12 P3/2 states in caesium, sharp

turn-on is observed for both positive and negative detunings at equal but opposite

detunings from the line centre (C. Wade private communication), allowing for some

parameters even double bistability, for both red and blue detunings, to be observed.

Also, fluorescence for nearby 11 D states (ibid.), that provides readout of relative

population in this state, also has a symmetric profile around the centre of the line.

These symmetric features, sometimes allowing observation of double bistability,

cannot be explained purely with an ion-induced shift that shifts energy levels only

in one direction, and suggest contribution of dipole-dipole interactions [315].
Putting thermal vapour experiments in the context of the presented theory requires

checks of both the domain of validity of rate equations and questioning of the

form of potential V (r). The strong dephasing limit required for validity of the

rate equations is easily satisfied due to rapid thermal motion which introduces

collisional and other effects [88] that result in rapid dephasing of the excited states.

The system is treatable within the ensemble averaged mean-field model (eaMF).

However, since low-lying states don’t have van der Waals interactions with ξ > 1,

this would indicate the absence of bistability in our model. We note however that

collisional processes (Sec. 2.6) quickly populate neighbouring opposite parity states.

The same is true for black-body induced transitions (Sec. 2.3.2), which happen

even in the absence of collisions, leading to fast avalanche excitation as seen in the

off-resonant excitation of lattices [37, 38]. These give rise to resonant dipole-dipole

interactions, which would be effectively modelled as level shifts due to V (r) for

ξ� 1, that would produce bistability. The important difference is that for resonant

dipole-dipole interactions, levels are split, i.e. shifted in both positive and negative

detuning direction. This can be easily accounted for with the jump-up rate

γdd
↑ →

Ω̄2

1+ 4∆̄+i (S)2
+

Ω̄2

1+ 4∆̄−i (S)2
, (4.15)

and corresponding γdd
↓ = γ

dd
↑ +1, where ∆±i (S) =∆±

∑
j 6=i V (ri j) s j . This excitation

rate now produces a symmetric lineshape and bistability. The presence of ions,

neglected so far, can introduce additional uni-directional energy level shifts∆±i (S)→
∆±i (S) +

∑
k 6=i α/r

2
ik, where k is a sum over all ions in the environment, and α is

proportional to the scalar polarizability of the state (Sec. 2.4.1). This would explain
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why in high-densities of high-lying states, only one branch of bistability is visible.

Yet for states with lower polarizability, like 12 P, the ion induced shift is not strong

enough to completely wash-away strong turn-on at a particular detuning, sometimes

allowing even observation of double bistability.

Therefore, it seems likely that at least for some thermal vapour experiments, the

bistability occurs due to dipole-dipole interactions, which themselves occur due

to the excitation of states of opposite parity within the Rydberg manifold. This is

indicated by the symmetric turn-on points of excited 12 P states, and symmetric

fluorescence for neighbouring opposite parity 11 D states in caesium (C. Wade

private communication). For highly polarizable states, an ion-induced shift would

make one branch of the bistable curve more pronounced as in Ref. [314], consistent

with the sign of state polarizability, while for a high-density of excitations the ion-

induced shift dominates allowing only a single bistable curve to be seen [87, 281].
Finally, dephasing effects [102] can reduce the effective driving strength Ω̄ closing

the bistability.

Finally we note that possible direct realization of the V (r) potential [Eq. (4.2)],
and tuning of the ξ value can be achieved experimentally by selecting states with

different energy defects (Sec. 2.5.1) or by selective admixing of other states through

AC and DC applied fields (Sec. 2.5.3).
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4.7 Summary

In this chapter we explored a spin model of driven-dissipative Rydberg atomic

ensembles. Being particularly interested in fluctuations and correlations in dynamics,

controlled both though the inter-atomic interaction potential dependence on distance

as well as atomic motion, we solved the model in the strong dephasing case. That

allowed us to track the large number of atoms necessary to capture these effects.

In the limit of a very hot ensemble, where atomic motion destroys any spatial

correlations among excited particles, we have introduced a new exact solution of

the ensemble averaged mean field (eaMF). By correctly accounting for the resonant

nature of excitation dynamics, eaMF does not suffer from the divergences of simple

early mean field treatments. Directly averaging the dynamics, eaMF also captures

the effects of temporal fluctuations in the excitation dynamics. This solution was

benchmarked against the full dynamics from numerical simulation of hot ensembles,

providing a very good agreement. It also showed that for the emergence of bistability,

and indeed associated phase transitions, the dipolar core of the interaction potential

has to be taken into account, as pure van der Waals interactions do not produce

bistability.

For frozen ensembles that keep correlations among created excitations, we intro-

duced hysteresis scaling and observed changes in jump times that allowed us to

provide clear criteria for the emergence of long-lived bistable solutions. No universal

features in transition dynamics were observed, indicating that atomic motion is

crucial for the emergence of universal mean-field exponents seen in experiments.

Reconstructed phase diagrams show transition through a critical point into a first

order phase-transition, where the system does not have a unique steady state but

exhibits persistent switching between a high-excitation density and low-excitation

density branch, which can be detected as persistent bistability in the full counting

distribution. Persistent switching and lack of a unique steady state highlights the

need that any practical theoretical treatment of these systems has to account for the

existence of both of these states to be a sufficient system description. This first-order

transition region then continues into region where long-lived bistable solution exists.

Qualitatively, phase diagrams of both frozen and infinitely hot systems are the same.

In the region where they differ, temperature-driven non-equilibrium phase transition

was detected.

Experiments have been discussed in view of these results. While a simple interpret-

ation of cold atom experiments is possible, at least before the black-body radiation

induced processes start to have a crucial role, for thermal vapour experiments ana-

lysis is harder due to the collisional and black-body induced redistribution of the

initial Rydberg state. At the moment, it seems that the resonant dipolar interactions

that arise in this processes can play a crucial role in the appearance of bistability.

This work highlighted the importance of potential shape at short-range for phase

diagrams of driven-dissipative systems. Although the considered potential always

had the same short-range form (∼ R−6) at long distances, the short range details

control the impact of fluctuations on non-equilibrium dynamics, playing a similar

role to temperature in thermal equilibrium systems, and have significant qualitative

impact on the non-equilibrium phase diagrams.
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In this chapter we show two simple ideas that can be used in the future short-term

development of work described in this thesis. One of them is technological, as a

way forward to laser locking in high magnetic fields, that as we will see, might be

used in special cases even for Rydberg state excitation. The second is an interesting

phenomena that illustrates another way in which the dynamical nature of the

dephasing and noise, e.g. due to atomic motion, can actually recover coherent

quantum behaviour. Building on these ideas, and other results exposed in the thesis,

we will conclude by looking at possible long-term developments.

5.1 Short term outlook

Here we show some immediate extensions of experimental and theoretical work

presented in the thesis.

5.1.1 Drift-free atomic frequency reference with ∼ 30 GHz of

continuous tuning

The experiment in strong magnetic fields outlined in Sec. 3.3.4 didn’t use active

laser locking, and the dressed-state EIT (Sec. 3.2) also didn’t have a frequency

reference for locking the last control laser. We recently demonstrated that usual ACKNOWLEDGEMENTS: Work described in

this section was done in collaboration with

Massayuki Kondo.

saturation spectroscopy can be easily extended in the hyperfine Paschen-Back regime,

providing both a solution for laser locking in strong-magnetic fields and possibly a

frequency reference for at least one particular Rydberg state transition. On Fig. 5.2(a-

b) we see a theoretical prediction for the D1 transition frequencies of rubidium in a

variable magnetic field, that can be easily tuned by adjusting the distance between

the two permanent magnets (see Fig. 3.16). Of course, Doppler broadening still

produces ∼ 300 MHz wide features. However if a probe light is used in conjunction

a with circularly polarised counter-propagating pump [Fig. 5.1(a)], it is possible

to perform saturation spectroscopy, generating a frequency comb of clear narrow

peaks [Fig. 5.1(b)]. Using a standard frequency modulation setup [316], side-

bands can be added to the probe laser which is then detected on a fast avalanche

photodiode (APD). The differential absorption of the light at side-band frequencies

can be extracted by phase-sensitive detection, implemented by simple probe signal

mixing with the local oscillator signal from which a near DC component is extracted

by a low-pass filter [Fig. 5.1(a)]. This generates narrow (∼ 10 MHz) dispersive

features suitable for laser locking [Fig. 5.1(c)]. Similar dispersive features can also

be formed by polarisation-spectroscopy [317] [Fig. 5.1(b)].
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Figure 5.1: Saturation spectroscopy in the hyperfine Paschen-Back regime. (a) Schem-
atics of optical setup and electronics. Probe light is split on polarising beam splitter (PBS) into
weak probe and stronger pump beam. Electro-optic modulator (EOM) adds side-bands to the
probe frequency, as indicated on insets (yellow). Pump, whose polarisation can be adjusted
with quarter wave-plate (λ/4), is overlapped with counter-propagating probe inside the Ru-
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with saturation spectroscopy (b), polarisation spectroscopy (c) and frequency modulation
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Figure 5.2: D1 transitions in 85Rb (a) and 87Rb
(b) in a magnetic field of up to 0.75 T. Calcu-
lated with ElecSus [318]. Colour intensity is lin-
ear maping of normalized relative strength∝ Ω2

of σ± transitions. Dashed vertical line marks
transition in caesium 7 S1/2↔ 23 P1/2 for which
rubidium ground state transition might provide
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In contrast to Faraday rotation spectroscopy [319] that is an alternative locking

method for off-resonant locking and for use in strong magnetic fields, this approach is

insensitive to atom-vapour number density [see Sec (2.8)], and is thus insensitive to

any temperature drifts. The location of the atomic spectral features is set only by the

strength of the magnetic field, determined by the mechanical position of permanent

magnets, providing an essentially drift-free atomic reference. The location of the

peaks can be, in principle, tuned continuously over more than ∼ 30 GHz by moving

permanent magnets. If the magnetic field used is pre-calibrated, one can calculate

the transmission spectrum from the ElecSus [318] program package, easily achieving

∼ 1 MHz frequency calibrated laser scan covering this whole range. We expect that

this will find use in future experiments in the hyperfine Paschen-Back regime. In the

experiment, the tuning range was limited purely by the maximum field we could

reach with the given permanent magnets. Since the strength of the transition lines

doesn’t show signs of weakening [Fig. 5.2], we can expect that one can use incidental

near resonance of rubidium-87 5S1/2 → 5P1/2 transition with transition caesium

transition to Rydberg states 7S1/2 → 23P1/2, providing a simple way to lock the

Rydberg laser on resonance, or at an arbitrary detuning. The results achieved with

the current magnets [Fig. 5.2(c)] show that we can tune the Rubidium transition

to be 1.4 GHz from the transition in caesium, with the reference beam shifted

2π× 0.5 GHz closer to the Rubidium transition with an AOM. With slightly bigger

magnets, providing a stronger field of about ∼ 0.7 T, we should be able to lock

on resonance, providing a resource for future caesium Rydberg thermal vapour

experiments.

5.1.2 Coherent dynamics under fast, low-drift noise

In chapter 3 we’ve seen how atomic motion dephases collective excitations. It is

also interesting to consider how atomic motion can influence single-atom excitation

dynamics, e.g. due to changing level-shifts as an atom travels through an atomic

medium filled with other atoms with whom it interacts [Fig 5.3(a)]. One motivation

for considering such a system is the dynamics of an atom as it flies through the

facilitation sphere during off-resonant excitation (Sec. 2.5.2). To get some insight

into this problem, we will consider the simplest model, where motion induces a

dynamic change of the excited state detuning ∆(t) =∆+ f (t), where ∆ is driving

field detuning and f (t) is a noise term, effectively reproducing the interaction

contribution to the level shift from the rapidly changing atom’s environment. We

will consider Gaussian noise, with zero-mean1 〈 f 〉t = 0, and standard deviation

σN [5.3(b)] . The noise has a correlation time of τ, which is implemented numerically
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Figure 5.3: Driven two-level system in rap-
idly varying environment. (a) Two-level sys-
tem, whose upper level decays with rate Γ is
driven with field whose Rabi frequency is Ω.
As the system travels through the environment
with speed v, environment will induce time-
varying level shift V (t). The simple model for
this shift V (t) is Gaussian distributed process
(b), where each value of the noise lasts some
time τ that would depend on the speed v that
characterises system motion.

by sampling a new value for f at time steps τ from the corresponding normal

distribution.

Let’s consider the regime Ω/Γ = 0.2, which is within the domain of validity of the

rate equations. We will evolve single atom dynamics both under the rate equations,

and under full quantum dynamics, implemented with the Monte Carlo wavefunction

(QMC) approach [320]. The QMC approach results are shown on Fig 5.4(a), for

different correlation times τ. For static atoms, 1/τ→ 0, an atomic ensemble will

have just a broadened line, which can be accounted for by adding some additional

1we’ll do calculations for noise with fixed mean value, but in principle similar considerations apply for
slowly-drifting mean value
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Figure 5.4: Motional averaging of single-spin dynamics. (a) Resonance lines for system
driven with Rabi frequency Ω/Γ = 0.2. Unperturbed line (black) is broadened after intro-
ducing level shifts (blue), but, fast dynamic level shifts recover narrow linewidths (red).
Results of ensemble average over multiple Quantum Monte Carlo (QMC) simulations. (b)
Comparison of excited state population for resonant driving ∆ = 0, for dynamics under QMC
and rate equations. Solid black line is population for unperturbed state.

inhomogeneous dephasing γ ∼ σN. In this limit, rate-equations will also give the

correct prediction, as seen on Fig. 5.4(b). If we now introduce dynamic noise, the

results are however very different. We will see that QMC predicts significant line

narrowing, approaching an unperturbed line.

This can be understood to be a consequence of the fundamentally continuous

nature of quantum evolution. Changes in detuning ∆ with correlation time-scales

τ much faster than the internal dynamics τ� Ω−1, Γ−1 cannot be recorded in the

system’s internal state. In the Bloch-sphere picture of two-level system evolution,

the system cannot react instantaneously to rapid changes in direction of the driving

vector Ω, and instead the effective evolution will be around some driving vector 〈Ω〉t
averaged over time t ∼Max[Ω−1, Γ−1]. Indeed, this phenomena has been discussed

by P. W. Anderson [321] in the 1950’s in the context of motional narrowing in nuclear

magnetic resonance spectra.

Rate equations, as derived in Sec. (4.2), depend only on instantaneous detunings,

and thus always predict the same population on resonance, independent of the

correlation time τ of any noise. This is of course un-physical, and the reason

is that we must now consider an additional time scale τ when we assume that

coherences in Eq. (4.3) have evolved to their steady states. For τ < γ + Γ , we

cannot assume that coherence is following fast changes in detuning. In this example

the dynamical nature of inhomogeneities in environment-induced detuning shifts

exposes continuous evolution of the two-state system, and prevents description

purely in terms of a single parameter σN describing a static image of environment

induced dephasing.

Similarly, in many-body systems, the dynamic nature of the noise in coupling

strengths (or, equivalently, detunings) can reduce their effect on dephasing co-

herent dynamics of the system. To see this we can consider a simple example

of an excitation travelling in a spin chain |e1, g2, . . . , gN 〉 → |g1, e2, . . . , gN 〉 of N

two-level (|ei〉 and |gi〉) spins, coupled with nearest neighbour interactions V̂ =∑
i<N V (|giei+1〉〈eigi+1|+ h.c.). We account for the noise in spin levels due to for

example different AC Stark shifts of individual atoms trapped in optical tweezers,

or similarly for noise in coupling strength due to disorder in exact spin locations
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Figure 5.5: Motional averaging of many-body dynamics. A spin-chain with nearest-
neighbour coupling that induces hopping of excitation initially located in the middle spin
[schematics above (a)]. Evolution under coherent dynamics produces quantum random
walk with characteristic interference in probability amplitude and characteristic ballistic
expansion of the excitation. Static noise in the spin levels (b) localises excitation, preventing
also observation of interference in probability amplitude. However dynamic noise, recovers
characteristic coherent transport (c-d).

in the potential wells of 1D optical tweezer chain, by the same Gaussian noise as

described in the previous paragraph. We see on Fig. 5.5 that while static noise on

spin detunings completely destroys coherent transport of excitation [Fig. 5.5(b)],
if dynamic changes are fast, with zero mean, the coherence time of the system is

longer, increasing the time over which coherent transport can be seen [Fig. 5.5(c-d)].
Two simple models discussed here showed two interesting cases where system

induced dephasing cannot be accounted for with an additional parameter describing

static dephasing, but actually recover more coherent dynamics than what one expects

from such a static description of dephasing. This can motivate further exploration

of the dynamic nature of various fluctuations, and their influence on the quantum

evolution of the systems. The mechanism described here, most closely described

in Ref. [321], is effectively the same mechanism that brings about spin-exchange

narrowing [322] in dense thermal vapours used in magnetometry, exchange nar-

rowing in paramagnetic resonance [323], and Dicke narrowing [324] under fast

collisions. This mechanism can be interesting to explore further in context of atomic

motion in both off-resonantly (van der Waals) and resonantly (dipolar) coupled Ry-

dberg ensembles, as well as dense dipolar samples achieved in high-density thermal

vapours.
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5.2 Conclusion: long term outlook

The tunability of Rydberg states (Chapter 2), combined with control of dissipation,

dephasing, and good spatial localization, provides a good test of our understanding

of single- and many-body aspects of atom-light interactions. Equally, if not more

importantly, they can provide an insight into deficiencies of the current models.

The sometimes unwanted, incidental knowledge in the current era of quantum

simulators, about various dissipation and dephasing mechanisms, can be our biggest

future asset in building atomic-physics technology. This is because it will allow

better understanding and thus much better control of atomic vapours (Chapter 3),

that already have production-ready, widely-deployable real-world applications. In

particular, for advanced future applications of dense thermal vapours, we have to

develop better understanding of atom-light interactions in the presence of strong

atom-atom interactions.

For the long-lived states of driven-dissipative many body system, regardless of

their origin, be it dissipation gap closing in the thermodynamic limit or emergence

of high dynamical barriers for transitioning between the states, identification of

good quantities and concepts through which we can quantify their behaviour, and

predict their occurrence and dynamics is important. We don’t have to look far to

new technologies to see this. In fact, we have to look no further than ourselves to

be persuaded of this: life is a transient dynamical driven-dissipative phenomena.

And this is not meant in poetic way, but in a deeply technical one. Cell decision

making and function in our bodies is determined by the noisy chemical circuits and

their dynamics attractors, as well as it is evolution on the longer scale. Similarly,

the critical and metastable nature of our neural circuitry allows the very thoughts

we have. In all of them attractors of many-body dynamics and their metastable

nature is the very reason for what on a macroscopic scale we recognise as well-

defined functioning. We are trying to build frameworks for understanding of driven-

dissipative processes, and develop more precise understanding of limits of various

simplifying assumptions (Chapter 4). At the end, better understanding of these

processes might also allow for building fundamentally new types of hardware for

adaptable and responsive (“smart”) future technology. The current development

of so-called Artificial Intelligence looks impressive, but is mainly based on patter

recognition (through Deep Learning in Neural networks) and Natural Language

Processing algorithms. While both of these extend previous applications, technology

is still based around old-style, deterministic, sequential electronics hardware. Taking

inspiration from the functioning of the human brain, it would be interesting to

explore what can be done with hardware that can exhibit criticality, avalanches,

multiple stochastic attractors and similar complex dynamics in a strongly parallel

way. Can such hardware provide more interesting, original responses to various

environmental inputs? The answer is uncertain, but to even try to respond to that we

need new ideas since the language (i.e. concepts for thinking about) used for building

and programming old electronics hardware is not best suited for new systems. While

it seems unlikely that Rydberg atoms will be the ultimate implementation of such

a hardware, it is certain that we need to develop new concepts for better, easier

understanding of driven-dissipative non-equilibrium systems.



Appendix CHAPTER A

A.1 Numerov numeric integration of radial wavefunc-

tions

Here we describe a simple way of radial wavefunction integration with Numerov

method.

Equation for the radial wavefunction (Eq. 2.4) can be writen in terms of u(r)≡
rR(r) as

d2

dr2
u(r) = −[2µ(E − V )− `(`+ 1)/r2] u(r)

≡ −g(r) u(r). (A.1)

This is a purely second order differential equation, that can be integrated using a

Numerov[119, 120] approach as

u(r −δr) =
2
�
1− 5

12δr2 g(r)
�

u(r)− �1+ 1
12δr2 g(r +δr)

�
u(r +δr) +O (δr6)

1+ 1
12δr2 g(r −δr)

.

(A.2)

If required, non-linear mesh can be used for integration points, see e.g. Refs. [121,

325].
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A.2 Derivation of equations for propagation of elec-

tromagnetic field in a slowly varying amplitude

approximation

Here we derive Maxwell equtions for medium where both electric field and medium

polarisability are slowly varying.

Starting from the Maxwell equations for electric field E propagation in space

without free charges

∇2E− 1
c2

∂ 2E
∂ t2

=
1
ε0c2

∂ 2P
∂ t2

, (A.3)

we can factor out fast oscilations of electric field E and polarisation B around some

center frequency ω̄ with corresponding wave vector k̄ = ω̄/c

E=
ε

2
eik̄z−iω̄t + c.c., (A.4)

P=P eik̄z−iω̄t + c.c., (A.5)

and find equations govering dynamics of envelope of these oscilations ε(r, t),P (r, t),
which is slowly changing in the propagation direction and in time compared to the

factored out part

����
∂ ε

∂ z

����� |k̄ε|,
����
∂ ε

∂ t

����� |ω̄ε|,
����
∂P
∂ z

����� |k̄P |,
����
∂P
∂ t

����� |ω̄P |. (A.6)

Replacing factored electric field E (Eq. A.4) and polarisability P (Eq. A.5) into

Maxwell equations (Eq. A.3), and keeping only the first order terms (in expansion

in terms of small values from Eq. A.6)

1

2ik̄

�
∂ 2

∂ x2
+
∂ 2

∂ y2

�
ε +

∂ ε

∂ z
+

1
c
∂ ε

∂ t
=

ik̄
ε0
P . (A.7)

For plane-wave we can neglect first part of this equaiton characterising field variation

in transverse diraction to the propagation (x − y plane), and we obtain Eq. 2.20.



A.3 Derivation of analytical solution for ensamble averaged Mean Field 105

A.3 Derivation of analytical solution for ensamble av-

eraged Mean Field

Here we present derivation of analyitical closed form of excitation rate γ̄↑ averaged

over completely uncorrelated ensemble. This derivation follows closely original

derivation by T. Pohl (private communication) and it is stated here for completeness.

Average excitation rate can be calculated as

γ̄↑ = Ω̄
2

∫
P(W ) dW

1+ 4(∆−W )2
, (A.8)

where P(W ) is probability density for the interaction-induced level shift of W in

uniform, uncorrelated ensamble

P(W ) =

®
δ

�
W −

∑
i

V (ri)

�¸

ensemble

(A.9)

=
1

L3Ne

∫
δ

�
W −

∑
i

V (ri)

�
dr1 . . . drNe

, (A.10)

where 〈. . .〉 denotes average over ensemble, and Ne is number of excited spins. Using

Fourier transformed form of δ function, we obtain

P(W ) =
1

L3Ne

∫
1

2π

∫
e−i[W−∑i V (ri)]kdk dr1 . . . drNe

=
1

2π

∫
dk e−iW k

�
1
L3

∫
eiV (r)kdr

�Ne

=
1

2π

∫
dk e−iW k

�
1+

ρe

Ne

∫ �
eiV (r)k − 1

�
dr

�Ne

, (A.11)

where we have introduced desity of excited states ρe ≡ Ne/L3. Going into the limit

L3, Ne→∞, we obtain

P(W ) =
1

2π

∫
dk e−iW k exp

�
ρe

∫
[eiV (r)k − 1]dr

�
(A.12)

1
2π

∫
dk e−iW k exp[−k f (k)], (A.13)

where we have defined f (k) ≡ ρek−1
∫ {1− exp[ikV (r)]} dr. Note that real and

imaginary part of the f (k) have odd and even parity respectively, Re[ f (k)] =
−Re[ f (k)], Im[ f (k)] = Im[ f (−k)]. Inserting obtained probability density (Eq. A.13)

into expression for average rate (Eq. A.8) we obtain
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γ̄↑ =
Ω̄2

2π

∫
dk e−k f (k)

∫
e−ikW dW

1+ 4(∆−W )2︸ ︷︷ ︸
=πexp(−i∆k−|k|/2)/2

=
Ω̄2

4

∫
dk exp{−|k|/2− kRe[ f (k)]}︸ ︷︷ ︸

≡A

·

cos(−k{∆+ Im[ f (k)]})︸ ︷︷ ︸

≡B

+i sin(−k{∆+ Im[ f (k)]})︸ ︷︷ ︸
≡C


 . (A.14)

In integration over k from −∞ to +∞ imaginary part dissapears, as expected, due

to odd parity of A · C . Real part we can write, using even parity of A · B, as

γ̄↑ =
Ω̄2

2

∫ +∞

0

dk e−k{1/2+Re[ f (k)]} cos(k{∆+ Im[ f (k)]}). (A.15)



Bibliography

[1] Sui Huang, Ingemar Ernberg and Stuart Kauffman, “Cancer attractors: a

systems view of tumors from a gene network dynamics and developmental

perspective.” Semin. Cell Dev. Biol. 20, 869 (2009) (p. 1).

[2] L.-M. Duan, M. D. Lukin, J. I. Cirac and P. Zoller, “Long-distance quantum

communication with atomic ensembles and linear optics.” Nature 414, 413

(2001) (pp. 1, 44, 66).
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