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Abstract

We study the large-scale structure of alternative cosmologies, which intrinsically

avoid the theoretical problems of the cosmological constant in the standard Λ cold

dark matter (ΛCDM) cosmology. We focus on early dark energy (EDE) models and

f(R) gravity, which are the typical examples of dark energy and modified gravity

models respectively. We constrain the EDE model using measurements of cosmic

microwave background and baryon acoustic oscillations, then use large-volume N-

body simulations to study the structure formation and growth. EDE and ΛCDM

can be distinguished through the shape of matter power spectrum on large scales,

as well as the halo mass function at high redshift. We run high-resolution N-body

simulations of f(R) gravity in order to study in detail the properties of haloes and

their environment. We find that halos less massive than 1013M�/h have a more com-

pact inner structure in f(R) gravity than in ΛCDM. These low-mass haloes grow

faster and contain substantially more subhaloes in f(R) gravity. We also measure

the correlation between different halo environment definitions used in observations

and the fifth force potential in f(R) gravity. Although the different ways to define

environment do not agree with one another perfectly, they can provide useful guid-

ance about how well a dark matter halo is screened. We also find that the screening

of subhaloes in dark matter haloes is primarily determined by the environment,

with the subhalo mass playing a minor role. Finally, we investigate and improve

the Hα luminosity function predicted by semi-analytical galaxy formation model,

GALFORM. The result is important for accessing the performance of Euclid red-

shift survey, which is one of the missions cosmological probe of accelerating cosmic

expansion.
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Chapter 1

Introduction

In 1929, Edwin Hubble discovered the expansion of the Universe by measuring the

relation between the distances to galaxies and their redshifts (Hubble, 1929). Galax-

ies are actually flying away from one another rather than fixed in a static Universe.

This surprising discovery marks the birth of modern cosmology. Since then, the ‘hot

big bang’ gradually became the most popular hypothesis of cosmology. At the end

of twentieth century, observations of distant supernovae type Ia (SNIa) revealed a

even more unexpected phenomenon that the expansion of the Universe is accelerat-

ing (Riess et al., 1998; Perlmutter et al., 1999). This is not just the first suggestion

of the mysterious energy source which competes against standard gravity which is

called “dark energy”, but also the beginning of a new era in cosmology. The Λ cold

dark matter (ΛCDM) model is the standard theoretical paradigm, and treats dark

energy as a cosmological constant, Λ, which is assumed to be the vacuum energy.

The Universe is thought to have evolved from a compact and dense early state after

the big bang to a vast and sparse current state with galaxies. Dark energy dom-

inates the energy budget of the Universe and drives the accelerating expansion in

recent cosmological history. Despite the great success of the ΛCDM model, the fine

tuning problem and cosmic coincidence problem still leave big question marks over

the cosmological constant. Understanding the nature of dark energy is one of the

biggest challenges in modern cosmology. Cosmic structure formation is driven by

a competition between gravitational attraction and the expansion of the Universe.

Hence, the large scale structure of the Universe can be useful tool to probe funda-

1



1.1. The standard ΛCDM model of cosmology 2

mental physics including the nature of dark energy and the theory of gravity. By

measuring the growth rate of overdensities and the clustering statistics of galaxies,

we can distinguish between different cosmological models. Precision modelling of

the evolution of cosmic structure and galaxy formation in both standard and non-

standard cosmologies provides accurate theoretical predictions for the interpretation

of future galaxy surveys and other cosmological observations.

This chapter reviews the standard cosmological model and discusses viable ways

to improve it. We also give a brief introduction about modelling and simulating the

cosmic structure growth and galaxy formation.

1.1 The standard ΛCDM model of cosmology

The Λ cold dark matter (ΛCDM) model assumes the cosmological principle, which

is the notion that the Universe is statistically homogeneous and isotropic on large

scales. The model can be divided into four main ingredients: (i) the standard model

of particle physics; (ii) cold dark matter (CDM); (iii) dark energy, Λ; and (iv) general

relativity (GR) as the theory of gravity. There are plenty of cosmological observa-

tions that support the ΛCDM model. These include temperature anisotropies in the

cosmic microwave background (CMB) (Hinshaw et al., 2013; Planck Collaboration

et al., 2016a), baryonic acoustic oscillations (BAO) (Cole et al., 2005; Eisenstein

et al., 2005), galaxy cluster abundances (Allen et al., 2011; Planck Collaboration

et al., 2016b) etc. The energy density of the Universe today is composed of approx-

imately 4% baryons, 26% dark matter and 70% dark energy. In this model, dark

energy is assumed to be a negative pressure component in the Universe which acts

against the gravitational attraction and drives the accelerated expansion, behaving

as a fluid with a constant equation of state, w = P/ρ = −1. It is the most familiar

and the simplest candidate for dark energy (see the review, e.g. Carroll 2001), and

simply requires adding a cosmological constant, Λ, into general relativity.

The Einstein-Hilbert action with a cosmological constant is given by

S[g] =

∫ [
1

16πG
(R− 2Λ) + Lm

]√
−g d4x, (1.1.1)
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where R is the Ricci tensor, g is the space-time metric, G is Newton’s constant and

Lm is the matter field. The stationary point of the variation of S[g] with respect to

the metric then yields the Einstein equation,

Rµν −
1

2
gµνR =

8π

c4
GTµν − Λgµν , (1.1.2)

where Tµν is the energy-momentum tensor and c is speed of light. On assuming the

cosmological principle and a perfect fluid, the Einstein equation has an exact solution

for the Friedmann-Lematre-Robertson-Walker (usually FRW in short) metric, which

is

ds2 = dt2 + a2(t)[(1− kr2)−1dr2 + r2dθ2 + sin2 θ dφ2], (1.1.3)

where r, θ and φ are spherical polar coordinates and k describes the spatial curvature

and usually takes on the values 0, 1, -1 to represent a flat, closed or open universe

respectively. The a(t) is the comic scale factor which is normalized such that at the

present time, a = 1.

On inserting the FRW metric into the Einstein equations, after some tedious

algebra, we obtain the Friedmann equations:

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λ

3
, (1.1.4)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
, (1.1.5)

where the dot denotes the time derivative. The first equation is from the 00 compo-

nent of the Einstein equation and the second is from the ii component. The Hubble

parameter is defined as H = ȧ/a. For a given value of H, a special value of the

density would be required to make a flat universe, k = 0. This is known as the

critical density,

ρc =
3H2

8πG
. (1.1.6)

It is conventional to express density in units of the critical density. If we define H0

as the Hubble “constant” at the present time and ρc,0 as the critical density at the
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present time, then Eq. 1.1.4 becomes:

H2 = H2
0

(
ρm
ρc,0

+
ρr
ρc,0

+
ρΛ

ρc,0
+
ρk/a

2

ρc,0

)
, (1.1.7)

where ρm and ρr are the matter density and radiation density respectively, ρΛ =

Λ/8πG is the dark energy density and ρk = 3kc2/8πG is the “curvature density”.

It is convenient to introduce the dimensionless density parameter,

Ωi = ρi/ρc. (1.1.8)

Ω can be used to rewrite the Friedmann equation. As we also know that the matter

density evolves as 1/a3, radiation as 1/a4 and Λ retains a constant density, we can

write

H2 = H2
0

(
Ωm,0

a3
+

Ωr,0

a4
+ ΩΛ,0 +

Ωk,0

a2

)
. (1.1.9)

The additional cosmological constant term is interpreted as a new fluid com-

ponent to the Universe which is referred to as dark energy. This negative pressure

component is generally assumed to be the vacuum energy arising from the zero point

fluctuations of quantum fields.

1.2 Beyond ΛCDM

In ΛCDM, the negative pressure component is generally assumed to be the vacuum

energy arising from the zero point fluctuations of quantum fields. Despite the success

of ΛCDM at fitting much of the available observational data, this model fails to

address two important issues: the fine-tuning problem and the cosmic coincidence

problem. The fine-tuning problem arises from the huge discrepancy between the

vacuum energy level predicted by particle physics, and the value measured from

cosmological observations, ρ ∼ 10−47GeV4. However, in the standard model of

particle physics, a plausible value for the vacuum energy level is approximately 120

orders of magnitude higher than the measured energy density. The coincidence

problem refers to the fact that the dark energy density has a comparable energy
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density to matter, ρde ∼ ρm, and has just emerged as the dominant component

of the Universe. It implies that we live in a intermediate phase when the gravity

and anti-gravity effects are of comparable size, i.e. the expansion of the Universe

has ‘just’ begun to accelerate. Given the enormous age of the universe, this is a

relatively short and special period of time. If the acceleration began earlier in the

universe, structures such as galaxies would never have had time to form. To solve

the fine-tuning and cosmic coincidence problems, many alternative models have been

introduced. These models can be generally divided into two categories: (alternative)

dark energy and modified gravity.

1.2.1 Dark energy

To find an alternative explanation of the accelerating expansion, perhaps the most

straight forward option is to assume that dark energy is a dynamical field rather

than a constant. An abundance of models has been proposed in the literature

(e.g. the review by Copeland et al., 2006). Although these models can have very

different potentials, what they share is the presence of a degree of freedom which

in result drives the background cosmological evolution and late-time accelerating

expansion. This kind of model, which introduces a fifth contribution to the cosmic

energy density, is defined as “quintessence”. For example, the simplest option is to

replace the Λ in Eq. 1.1.1 by a canonical scalar field with a potential,

S[g] =

∫ [
1

16πG
R− 1

2
(∂φ)2 − V (φ) + Lm

]√
−g d4x. (1.2.10)

The scalar field behaves as a perfect fluid with an equation of state,

w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (1.2.11)

where dots denote derivatives with respect to time. The quintessence equation of

state is generally time-dependent as the scalar field evolves with time. If the field

is potential-dominated at the present time, the quintessence model will agree with

the observational constraint that w is very close to −1 in the present universe.
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There is an interesting property that a wide class of quintessence models show,

the so-called “tracking” behavior, where the energy density in the field traces the

matter energy density until recent times. This behavior provides a possible expla-

nation of the cosmic coincidence problem. The Ratra-Peebles potential, V (φ) =

M4+n/φn with n > 0, is one typical example (Ratra & Peebles, 1988).

1.2.2 Modified gravity

General relativity has passed all the precision tests performed in the Solar system

(Will, 2014), including the famous observation that the Sun bends the light from

background stars and the anomalous perihelion of Mercury, as well as the Shapiro

time-delay effect measured by the Cassini spacecraft and Lunar laser ranging exper-

iments which measure the rate of change of the strength of gravitation. Recently,

the LIGO consortium has also confirmed the existence of gravitational waves, a

GR predicted phenomena, by measuring a merger event of two black holes (Abbott

et al., 2016a). However, the length scales probed by all these measurements are

much smaller than cosmological scales. Whether GR still works on large scales is

unclear. Weaker gravity on large scales may explain the accelerating expansion of

the Universe. This idea is the starting point of modifying gravity.

General relativity describes gravity as the relationship between matter and cur-

vature in the Universe. Unlike the dark energy model which adds a new matter-like

component to the Einstein equation, an alternative way to explain the accelerat-

ing expansion is to change the matter and curvature relation, or in other words, to

modify general relativity itself. There are lots of modified gravity models on the

market. These models generally introduce new degrees of freedom in the gravita-

tional sector, which can be motivated by low energy limits of string theory, or by

higher dimensional gravity theories, etc. (Koyama, 2016).

The simplest and probably best-studied modifications to Einstein’s gravity are

scalar-tensor theories (Boisseau et al., 2000). For a canonical scalar field, φ, the

general form of these theories can be derived by minimising the action:

S =

∫ [
1

16πG
R− 1

2
(∂φ)2 − V (φ) + Lm(A2(φ)gµν , ψ)

]√
−g d4x. (1.2.12)
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Here, the arbitrary function A2(φ) can be absorbed into the metric by a conformal

transformation of the form, A2(φ)gµν → g̃µν , which is usually referred to as the

Jordan frame (Dicke, 1962). ψ represents the matter fields which couple to the

Jordan-frame metric g̃µν . Thus, test particles in the Newtonian regime would feel a

force,

−~∇(Φ + lnA(φ)), (1.2.13)

which is sourced by both the Einstein-frame potential, Φ, and the scalar field, φ.

In principle, it is possible to pass Solar System tests of gravity, while still having

interesting phenomenology for the scalar field by carefully designing suitable forms of

V (φ) and A(φ). For example, the Brans-Dicke theory defines V (φ) = 0 and A2(φ) =

exp[φ/
√

(2/3 + ω)/8πG], where ω is a constant (Brans & Dicke, 1961). Interestingly,

under the Solar System constraints, this scalar field couples very weakly to matter,

which makes Brans-Dicke theory practically equivalent to a dark energy model.

We will focus on the so-called f(R) gravity in this thesis (Carroll et al., 2004).

The Einstein-Hilbert action of f(R) gravity is modified as

S[g] =

∫ [
1

16πG
(R− f(R)) + Lm

]√
−g d4x, (1.2.14)

where f(R) is a general function only of the Ricci scalar. Although Eq. 1.2.14

does not look like a scalar-tensor theory at all, in fact, f(R) gravity is classically

equivalent to a scalar-tensor theory on performing a field redefinition and conformal

transformation (see e.g. Joyce et al. 2015 for details). Again, mathematically, f(R)

can be any arbitrary function. But, in order to drive the accelerating expansion,

f(R) is required to become significant in the low-curvature regime. A simple example

of these theories is f(R) ∝ 1/R (Carroll et al., 2004). Besides this, there are some

other limits on the form of f(R), for instance, the effective gravitational constant,

Geff = G/(1+f(R)), should remain positive for all R to avoid the graviton becoming

a ghost (Amendola et al., 2007).

No matter what particular form of modified gravity model is adopted, the ex-

tra amount of force in addition to Newtonian gravity force is introduced because

of the new degrees of freedom in the gravitational sector (as shown in Eq. 1.2.13).
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In order to evade the tight Solar System constraints on gravity, which are in the

high-curvature regime and on small scales, the theory must employ some ‘screen-

ing mechanism’. This dynamically suppresses the additional degrees of freedom in

regions like the Solar System. There are plenty of screening mechanisms in the lit-

erature. Based on the nature of the screening criterion, we can classify them into

three cases: i) screening based on the local field value φ, like the chameleon (Khoury

& Weltman, 2004), symmetron (Hinterbichler & Khoury, 2010; Pietroni, 2005; Olive

& Pospelov, 2008) and dilaton (Damour & Polyakov, 1994; Brax et al., 2010); ii)

screening based on the first derivative ∂φ, like K-mouflage (Babichev et al., 2009);

and iii) screening based second derivative ∂2φ, like Vainshtein mechanism (Vain-

shtein, 1972). We note that there is another way to build the screen mechanism, by

confining the extra interaction to act only on dark energy and dark matter. This is a

valid way to reconcile the Solar System tests. More details of this type of screening

mechanism can be found in Amendola (2000).

It is only a rough classification to divide non-standard cosmological models into

dark energy and modified gravity. There is no strict boundary between them. If

the “quintessence” in a dark energy model can couple to matter, the gravity is

phenomenological being modified. On the other hand, if the extra amount of force

in a modified gravity model is highly screened or couples very weakly to matter,

this model is more likely to be a dark energy model. Actually, dark energy is for-

mally equivalent to modified gravity, because modifying or adding a term on either

left-hand side or right-hand side of Einstein equation (Eq. 1.1.2) is mathematically

equivalent. In this thesis, we study two typical examples of dark energy and mod-

ified gravity models: 1) the early dark energy model, in which dark matter and

baryon obey the same gravity law as GR, but the cosmic background evolution is

modified; 2) the f(R) gravity, in which gravity at low density region is enhanced,

but the background evolution is almost the same as ΛCDM. We will have detailed

introduction of these models in subsequent chapters.
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1.3 The linear growth of density fluctuations

The formation of inhomogeneous structure in the Universe is thought to be seeded by

tiny quantum fluctuations in the early Universe that ultimately appear as anisotropies

in the CMB. The overdensity of matter can be defined as

δ(x) =
ρ(x)

ρ̄
− 1, (1.3.15)

where the bar denotes the mean density of the Universe, i.e. the unperturbed

(homogeneous) matter density. Assuming an ideal fluid, in the Newtonian limit, the

linear approximation of cosmological perturbation growth is described by

Euler:
∂v

∂t
+ v · ~∇v + 2

ȧ

a
v = −

~∇P
ρ
−
~∇Φ

a2
, (1.3.16)

Continuity:
∂δ

∂t
+ ~∇ · [(1 + δ)v] = 0, (1.3.17)

Poisson: ~∇2Φ = 4πGρ̄a2δ, (1.3.18)

where Φ is the gravitational potential and differentiation with respect to x is de-

noted by ~∇ (see the derivation of these equations in e.g. Dodelson & Efstathiou

2004). We can combine the three equations above to describe the growth of mat-

ter perturbations in an expanding universe. For example, if we assume that the

pressure gradients are negligible, ~∇P/ρ � ~∇Φ, then taking the divergence of the

Euler equation, and eliminating v by taking the time derivative of the continuity

equation and substituting ~∇2Φ using Poisson’s equation, gives the growth equation

for density perturbations,

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGρ̄δ. (1.3.19)

Here, the expansion rate introduces an effective friction term into Eq. 1.9 corre-

sponding to the Hubble drag term,

This second-order differential equation (Eq. 1.3.19) has the general solution:

δ(x, t) = A(x)D+(t) +B(x)D−(t), (1.3.20)
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where D+ and D− are the growing and decaying modes respectively. In a flat,

matter-dominated universe, Ωm = 1, D+(t) ∝ t2/3 and D2(t) ∝ t−1. After some

time, the decaying mode vanishes and the perturbation grows as

δ ∝ D(t) ∝ a(t). (1.3.21)

We ignore the subscript + for D+ hereafter. Because the matter density perturba-

tions are small (i.e. the density contrast δ(x, t) � 1) at early times, the structure

growth can be written as

δ(x, t) =
D(t)

D(ti)
δ(x, ti), (1.3.22)

where D is defined as linear growth factor.

In observations and simulations, it is convenient to use the matter power spec-

trum to describe the density fluctuation in the Universe. The power spectrum is

the Fourier transform of the correlation function. The matter overdensity in Fourier

space is given as,

δ(k) = (2π)−2/3

∫
d3xδ(x)eik·x. (1.3.23)

Assuming that the overdensities are isotropic, the two-point statistic can be written

as

〈δ(k)δ(k′)〉 = 〈|δ(k)|2〉δ3(k− k′) ≡ P (k)δ3(k− k′). (1.3.24)

Here, P (k) is the power spectrum. As Eq. 1.3.22, in linear regime, the power

spectrum is a function only of time,

P (k, t) =
D(t)2

D(t0)2
P (k, t0), (1.3.25)

where D(t0) is the present-day linear growth factor, which is usually normalised to

unity.
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1.4 Simulations of the formation of cosmic struc-

tures

The linear growth of overdensities is theoretically well understood. However, once

the evolution of fluctuations becomes non-linear (where δ 6� 1) it becomes sig-

nificantly more complicated and difficult to describe by analytical equations. The

non-linear behaviour of structure formation appears in high density regions where

galaxies form. So precise and accurate modelling of the non-linear growth is crucial

to study the predictions of particular models, and can only be done by numerical

simulation.

The basic procedure to simulate the formation of cosmic structures is as follows:

i) divide a representative portion of the Universe into “particles”; ii) compute the

gravitational forces on these particles from all the other particles; iii) evolve the

system forward in discrete time steps and then go back to procedure ii and repeat.

This portion of the Universe is usually a cube with periodic boundary conditions.

The “particles” are not physical particles, but actually represent some large quan-

tity of physical particles. The chosen of particle mass is a compromise between

numerical accuracy and computational cost. The simulation is set up by applying

a perturbation to an initially uniform distribution of particles, so that the resulting

density distribution has the appropriate power spectrum at the starting redshift.

The N-body code is essentially a gravity solver. The gravitational potential

is given by the Poisson equation (Eq. 1.3.18). The equations are usually solved

in a comoving frame. The expansion rate of the Universe is calculated using the

Friedmann equation (Eq. 1.1.4). For cosmological simulations, because the General

Relativity corrections are generally negligible, the Newtonian equations are actually

solved. The näıve way to construct the gravitational potential for each particle is by

directly summing up the contributions made by each of the remaining particles. This

method is called the Particle-Particle (PP) method, and obviously not appropriate,

as O((N −1)!) operations are required to compute all forces on N particles. A more

efficient algorithm needs to be applied.

One way to simplify the calculation is to approximate the gravitational force of
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a distant group of particles by the force due to a single pseudo particle located at

the centre of mass of the group, with mass equal to the total mass of the group of

particles. In particular, the particles are organised into a hierarchical tree structure

(Barnes & Hut, 1986). The process starts with a cubical cell containing the entire

simulation box. Then this cell is divided into eight equal-sized sub-cells. The process

is executed recursively in each sub-cell at every stage until the smallest cells only

have one particle in them. The resulting tree structure is then used to calculate an

approximation to the gravitational force felt by each particle. For a single particle,

if a cell satisfies the criterion, r > l/θ, the cell is regarded as a pseudo particle to

calculate the gravitational force. Otherwise, the criterion is tested for each sub-cell.

Here, r is the distance between the particle and the cell, l is the size of the cell,

and θ is the tree opening angle. Again, this process starts with the largest cell and

continues recursively until all the particles have contributed. This criterion means

that long-range forces are approximated by grouping particles into larger-scale cells.

The short-range force is more accurately computed, because, for the nearby particles,

the tree is walked to greater depth and the cell contains fewer particles. Actually, if

a cell only has one particle, the calculation is back to the PP method. O(N logN )

operations are required to compute the forces on N particles.

Another method is the particle-mesh (PM) technique (e.g. Hockney & Eastwood,

1988), which works by assigning particle mass to Cartesian grids. The PM algorithm

has three steps. Firstly, the mass density field is computed on each grid cell. Then,

the Poisson equation is solved on the grid for the gravity field. Finally, the gravity

field on the grid is interpolated back to the particles. In the first step, the mass

density of the grid is computed from discrete particle positions and masses. The

simplest mass assignment method is the nearest grid point (NGP), where the mass

is allocated to the grid cell in which the particle resides. Obviously, this method

loses the small-scale information and could produce large truncation errors. These

can be reduced by using a higher order interpolation scheme such as the cloud-

in-cell (CIC) or triangular-shaped-cloud (TSC). In the CIC scheme, the particle is

treated as a uniform-density cubical cloud and assigned to the 8 nearest grid cells

depending on the overlap, while the TSC scheme uses the nearest 27 grid cells.
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The gravitational potential on a grid is obtained by solving the Poisson equation

in k space, as follows: i) Fourier transform the density field on the grid; ii) apply

Green’s function to convolve the density field; iii) solve the gravitational potential;

and iv) transform it back to real space. Using the Fast Fourier Transform (FFT)

algorithm (Cooley & Tukey, 1965), this requires O(Ng logNg) operations to solve

Poisson equation in Ng grid cells.

Tree codes can resolve the force on particles accurately down to the softening

length, while PM codes are limited in resolution to the grid cell size. However, the

PM code is faster per time step and requires less memory than the tree algorithm.

The Gadget-2 (Springel, 2005) code uses a TreePM algorithm, which is a hybrid of

the tree and PM methods. The potential at large-scales is evaluated using the PM

method, whereas the potential on smaller-scales is calculated from the hierarchical

tree. Gadget-2 exploits the advantages of the two methods. The simulations in

Chapter 2 use variants of the Gadget-2 code. Instead of using a tree algorithm

to improve the small-scale resolution in PM method, Ramses code (Teyssier, 2002)

makes use of the adaptive mesh refinement (AMR) method. This adaptively refines

the grid in regions requiring higher resolution. For example, in a high density region,

the grid is divided into sub-grids and then Poisson equation is sloved locally. The

more deeply the grid is spilt into sub-grids, the higher force resolution is obtained.

The simulations in Chapter 3 & 4 use a modified gravity version of Ramses code

(Li et al., 2012).

1.5 Galaxy formation modelling

The N-body codes introduced in the previous section model the growth of structure

in collisionless matter. Baryons behave quite differently compared to the dark mat-

ter. In order to model galaxy formation and evolution, theorists have developed a

wide range of different tools (Somerville & Davé, 2015). We now briefly introduce

the most commonly used tools.

One class of galaxy model is to assign galaxies to dark matter halos according

to some rules based on a mapping between the properties of the dark matter halos
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and the observable properties of galaxies. Halo occupation distribution models (e.g.

Berlind & Weinberg, 2002) and subhalo abundance matching (SHAM) models (e.g.

Tasitsiomi et al., 2004) are two widely used empirical techniques. These models

do not actually model any physical processes. Because no heavy computation is

required, they are extremely useful to gain insight into the connection between

simulated dark matter halos and observed galaxies.

Numerical hydrodynamic simulation is the most explicit way to model galaxy

formation (Schaye et al., 2015; Vogelsberger et al., 2014). It requires solving the

equations of hydrodynamics and thermodynamics in addition to Poisson equation,

because baryonic gas particles carry more information like an intrinsic internal en-

ergy besides their position, velocity and mass. Similarly, as with a dark-matter-only

simulation, these equations are concurrently solved for particles and/or grid cells

which represent dark matter, gas, and stars. Obviously, hydrodynamic simulations

can provide more physical and accurate predictions within the limitations of numer-

ical resolution. However, the extremely heavy computational exigencies seriously

restrict the resolution of simulations. Furthermore, the small-scales physics, like

star formation, black hole growth and feedback, is not fully understood. We have

to apply uncertain and even arbitrary subgrid recipes for these important processes

of galaxy formation (Schaye et al., 2015). Worse still, due to the computational

limitations, it is nearly impossible to extensively test different subgrid recipes or

widely explore the multidimensional parameter space of the these recipes. Both the

Gadget-2 and Ramses codes have hydrodynamical solver. But we do not use the

hydrodynamical part of these two codes in the simulations of this thesis.

Another technique that is widely used for modeling galaxy formation is semi-

analytic modelling (SAMs) which treats the various physical processes associated

with galaxy formation using approximate, and analytic techniques (see e.g. Baugh,

2006; Benson, 2010, for reviews). These models work on the halo merger trees ob-

tained from N-body simulations or generated by a Monte-Carlo method. Gas is

assumed to be initially spatially distributed in the same way as the dark matter. A

typical SAM tracks how much gas accretes into halos, how much hot gas cools down

and turns into stars, how feedback processes remove cold gas from the galaxy or
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heat the halo gas, and how mergers transform disk galaxies into spheroidal galaxies,

etc. Because SAMs do not explicitly solve the hydrodynamical equations, the com-

putational cost of SAMs is much smaller than that of hydrodynamic simulations.

This make it possible to apply SAMs to very large-volume simulations. Although

the numerical resolution is a disadvantage, the modeling of small-scales physics is

somewhat more reliable than subgrid recipes in hydrodynamical simulations, be-

cause the rapid exploration of parameter space and model space is practicable in

SAMs. We use the Durham semi-analytical galaxy formation model, GALFORM, in

the simulations of chapter 5. A more detailed description of GALFORM is provided

in that chapter.

1.6 Outline of thesis

In this thesis, we study the structure growth in the alternative cosmologies using

N-body simulations. We also explore how many galaxies the Euclid redshift survey

will detect using semi-analytical galaxy formation model. The rest of this thesis is

organized as follows.

In Chapter 2, we investigate the power spectrum, halo mass function and redshift

distortion effects in early dark energy cosmologies using a set of large-volume N-body

simulations. Chapters 3 and 4 are devoted to the predictions in a ‘borderline’ f(R)

gravity model using high-resolution N-body simulations. In Chapter 3, we study

the properties of halo and subhalo in f(R) gravity. Then, in Chapter 4, we measure

the correlation between different halo environment definitions used by observers

and the fifth force potential in f(R) gravity. In Chapter 5, we use Durham semi-

analytical galaxy formation model, GALFORM, to estimate the number of galaxies

the Euclid survey will see. Particularly, we test and improve the prediction of Hα

luminosity functions in GALFORM. Finally, we summarize our results and outline

future research directions in Chapter 6.



Chapter 2

Can we distinguish early dark

energy from a cosmological

constant?

2.1 Introduction

One of the key objectives of future galaxy surveys is to determine the nature of the

dark energy behind the accelerating cosmic expansion. In particular, does the dark

energy take the form of a cosmological constant, which is hard to explain from a

theoretical perspective, or is it a dynamical field, with a time dependent equation

of state? What is the best way to distinguish between these scenarios for the dark

energy? Here we demonstrate that this is a remarkably challenging problem, once

the competing models have been set up to reproduce what we already know about

the Universe.

The standard Λ Cold Dark Matter (ΛCDM) cosmological model, in which dark

energy is time independent, provides a good description of current data (e.g. Efs-

tathiou et al., 2002; Sánchez et al., 2009, 2012; Planck Collaboration et al., 2014,

2016a). However, the cosmological constant lacks theoretical motivation and throws

up issues such as the fine-tuning and the coincidence problems. Many alternatives

have been proposed to alleviate these problems (e.g. the review by Copeland,

Sami, & Tsujikawa, 2006). A number of these are based on time-evolving scalar

16
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fields, which are usually referred to as quintessence models (Ratra & Peebles, 1988;

Wetterich, 1988; Caldwell, Dave, & Steinhardt, 1998; Ferreira & Joyce, 1998).

In ΛCDM, the impact of the cosmological constant on the cosmic expansion

can be ignored once the energy density of the dark energy falls below ∼ 1% of

the critical density, which occurs above z ∼ 5. In contrast, a class of quintessence

models called early dark energy (EDE) display a small but non-negligible amount of

dark energy at early times which can change the expansion rate appreciably, even as

early as the epoch of matter-radiation equality. These models can be divided into

two classes: the so called “tracker fields” (Steinhardt, Wang, & Zlatev, 1999) and

“scaling solutions” (Halliwell, 1987; Wetterich, 1995).

Previous simulations of EDE cosmologies, such as those by Grossi & Springel

(2009), Francis, Lewis, & Linder (2009) and Fontanot et al. (2012), focused on

the impact on structure formation of the different expansion history with EDE

compared with ΛCDM, whilst keeping the same linear theory power spectrum and

background cosmological parameters as used in ΛCDM. However, to produce a fully

self-consistent model two further steps are necessary in addition to changing the

expansion history (Jennings et al., 2010). First, the best fitting cosmological pa-

rameters will be different in EDE cosmologies than they are in ΛCDM. Second, the

input power spectrum used to set up the initial conditions for the N-body simulation

should be different in EDE from that used in ΛCDM. The change in the expansion

history alters the width of the break in the power spectrum around the scale of

the horizon at matter - radiation equality (Jennings et al., 2010). This change in

the power spectrum is compounded by the changes in the cosmological parameters

between the best fitting EDE and ΛCDM models. If we are to compare models

that satisfy the current observational constraints to look for measurable differences

which can be probed by new observations, we need to take all three of these effects

into account.

EDE models can be described in terms of a scalar field potential, with the dy-

namical properties obtained by minimizing the action that includes the scalar field

potential. We take a more practical view and consider parametrizations of EDE

models which allow us to explore the parameter space more efficiently. Corasaniti &
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Copeland (2003) presented four and six parameter models for the time dependence

of the equation of state parameter of the dark energy, w, which give very accurate

reproductions of the results of the full Lagrangian minimisation. However, with

current data it is not feasible to constrain such a large number of additional param-

eters in addition to the standard cosmological parameters. Instead we investigate

two parameter formulations of the dark energy.

We demonstrate that current observations of temperature fluctuations and the

polarization of the cosmic microwave background (CMB) radiation and the apparent

size of baryon acoustic oscillations (BAO) in the galaxy distribution already put tight

constraints on EDE models. In fact, the best fitting models are consistent with no

early dark energy, a conclusion that has been reached by other studies (Planck

Collaboration et al., 2014, 2016c). Nevertheless, models with appreciable amounts

of dark energy remain formally consistent with the current data. We consider two

cases which have one and two percent of the critical density in dark energy back to

the epoch of matter radiation equality.

In the standard lore, EDE models display a more rapid expansion at high redshift

than ΛCDM and so, if they are normalised to have the same fluctuations on 8h−1Mpc

today (ie the same value of σ8), structures form earlier in these models. We find that

this is not a generic feature of EDE. The EDE models we consider have growth rates

that are very similar to that in ΛCDM, even lagging behind ΛCDM at intermediate

redshifts. This results in these cosmologies actually displaying fewer massive haloes

than ΛCDM at high redshifts.

This chapter is organized as follows. In Section 2.2 we discuss the parametriza-

tion of EDE models (§ 2.1), the constraints derived on cosmological parameters

using CMB and BAO data (§ 2.2), compare the rate at which fluctuations grow in

EDE and ΛCDM (§ 2.3) and describe the N-body simulations carried out (§ 2.4).

The simulation results, namely the matter power spectrum, distribution function

of counts-in-cells and halo mass function are presented in Section 2.3. Finally, in

Section 2.4, we give a summary of our results.
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2.2 Theoretical background

In this section we explain the behaviour of EDE cosmologies and how this is parametrized

(§ 2.2.1), and then present constraints on the cosmological parameters in EDE and

ΛCDM (§ 2.2.2). The rate at which fluctuations grow in the different cosmologies

is calculated in § 2.2.3. The numerical simulations used are described in § 2.2.4.

2.2.1 Early Dark Energy cosmologies

The dark energy equation of state, w(z) = P/ρ, where P is pressure and ρ is

density, determines how dark energy influences the expansion of the universe. In

the standard ΛCDM model, the equation of state of the dark energy is a constant,

wΛ = −1, and the dark energy density parameter Ωde(z) falls rapidly to zero with

increasing redshift (see Fig. 2.1). The cosmological constant can be completely

ignored beyond z ∼ 5, once it accounts for less than 1% of the critical density.

However, if the dark energy equation of state is such that w > −1, Ωde will decrease

more slowly and the consequences of dark energy will be felt earlier.

Quintessence originates from theoretical models which treat the dark energy as

a slowly evolving scalar field. The scalar field can be described by potentials with

different properties. Viable models share common features such as reproducing the

observed magnitude of the present-day energy density and producing an accelerating

expansion at late times. Due to the time-dependent scalar field, the dark energy

equation of state evolves. The ratio of the energy density of dark energy to the

critical density in quintessence models, Ωde, will be different from that in the ΛCDM

model. This affects the growth of structure (see Fig. 2.1 for a comparison between

Ωde in ΛCDM and in the EDE models simulated here; the choice of EDE model

is discussed later in § 2.2.2). Observations constrain the present-day dark energy

equation of state to be w0 < −0.8 (Sánchez et al., 2012). So, EDE models which

agree with this constraint should display a transition in w from the present day

value (w ≈ −1) to the early-time value (usually close to zero). How and when this

transition happens is the main difference between the various EDE models.

Ideally, the dark energy equation of state should be derived from the potential
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Figure 2.1: The dark energy density parameter, Ωde, as a function of scale factor,
a, for the two EDE models studied here, the EDE1 model (red line), EDE2 model
(blue line), the Wetterich model (green line) and ΛCDM (black line). (See Table 2.1
for the model parameters.) The two black dashed lines indicate, as labelled, redshift
200 when our simulations are started and the CMB redshift, z ∼1090.
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energy associated with a time dependent scalar field. However, the motivation

behind the form of the potential is weak which means that a wide variety of cases

have been considered (Corasaniti & Copeland, 2003). One way to carry out a

systematic study of the EDE parameter space is to use a parametrization for the

dark energy equation of state, w, or the dark energy density parameter, Ωde. This

approach offers a model-independent and efficient way to investigate the properties

of EDE models which display similar behaviour for w.

The most commonly used and simplest parametrization to describe the evolution

of the equation of state is the two-parameter equation, w = w0 + (1− a)wa, where

a is the expansion parameter (Chevallier & Polarski, 2001; Linder, 2003). However,

Bassett, Corasaniti, & Kunz (2004) have shown that a two-parameter equation is

not sufficiently accurate to describe the equation of state of the scalar field to better

than 5 per cent beyond z ∼ 1. This problem is even worse when if a two-parameter

model is to be used in an N-body simulation which might start at a very high

redshift (e.g. z ≈ 100). More complex parametrizations with more parameters have

been proposed which can capture the behaviour seen in a wide range of quintessence

models (Corasaniti & Copeland, 2003). However, the additional parameters are hard

to constrain in practice given current observations.

Instead we investigate empirical parametrizations of EDE which have three pa-

rameters. One was introduced by Wetterich (2004) and is given in terms of the

equation of state parameter,

w(a) = − w0

(1− b ln(a))2
, (2.2.1)

where

b = − 3w0

ln
(

1−Ωde,e

Ωde,e

)
+ ln

(
1−Ωm,0

Ωm,0

) . (2.2.2)

Here w0 is the dark energy equation of state today, Ωm,0 is the matter (i.e. baryons

and cold dark matter) density parameter at z = 0. Ωde,0 and Ωde,e are, respectively,

the dark energy density parameters today and as z →∞.

The other empirical parametrization we consider was proposed by Doran & Rob-

bers (2006) and is written in terms of the time evolution of the dark energy density
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parameter

Ωde(a) =
Ωde,0 − Ωde,e(1− a−3w0)

Ωde,0 + Ωm,0a3w0
+ Ωde,e(1− a−3w0). (2.2.3)

Both parametrizations mimic ΛCDM at low redshift and can provide non-negligible

amounts of EDE at early times, depending upon the parameter values adopted. The

Doran & Robbers parametrization allows rapid transitions in the dark energy equa-

tion of state. The variation of w(a) in the Wetterich parametrization is more gradual

as shown in Fig. 2.2. If we assume Ωm + Ωde = 1 at z = 0, the two parametrizations

yield ΛCDM, w(a) = w0 = −1, in the limit when Ωde,e = 0.

2.2.2 Parameter fitting

Changing the equation of state, w, from a constant to being time-dependent will

affect the evolution of the Universe. The cosmological distance-redshift relation also

changes. Cosmological constraints derived for ΛCDM will not necessarily apply in an

EDE universe. We need to re-fit the cosmological parameters for an EDE cosmology

and use the best-fitting values in a simulation of such a model rather those derived

for ΛCDM. Here we use observations of the CMB and BAO to find the best-fitting

cosmological parameters for EDE models. Using the CMB and BAO data in this

way not only allows us to determine the cosmological parameters we should use in

simulations, but is also a preliminary test of the viability of EDE parametrization.

To derive the constraints on EDE parameters, we use the CMB measurement

from the Planck 2013 data release (Planck Collaboration et al., 2014), which con-

tains the Planck temperature angular power spectrum (TT) and WMAP9 polar-

ization data (WP), in the form of likelihood software1. We adapted the Markov

Chain Monte-Carlo code, CosmoMC, to work for EDE cosmologies (Lewis & Bri-

dle, 2002). Some studies, such as Wang & Mukherjee (2006), use CMB distance

priors which condense the full temperature fluctuation power spectrum into three

quantities which depend on an assumed cosmological model to describe the peak

positions and peak height ratios (Komatsu et al., 2009; Wang & Wang, 2013). Al-

1We note that the Planck 2015 results show a somewhat tighter constraint on Ωde,e for the
Doran & Robbers (2006) model than we find using the 2013 data release (Planck Collaboration
et al., 2016c).



2.2. Theoretical background 23

10-310-210-1100

a

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

w
(a

)

z=
2

0
0

z=
1

0
9

0

ΛCDM

EDE1

EDE2

Wetterich

Figure 2.2: The dark energy equation of state, w, as a function of the scale factor, a,
for the EDE1 model (red line), EDE2 model (blue line), a Wetterich model (green
line) and ΛCDM (black line). (See Table 2.1.) The two black dashed lines indicate
the redshift when the simulations are started (z = 200) and the CMB redshift
(z ∼ 1090).



2.2. Theoretical background 24

0.000 0.005 0.010 0.015 0.020 0.025

Ωde,e

1.6

1.4

1.2

1.0

w
0

PlanckTT +WP +BAO

EDE1

EDE2
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parameter, w0, and the critical density in dark energy at early times, Ωde, using the
Doran & Robbers EDE parametrization for the Planck TT, WMAP polarization
and BAO data combination. The constraint is compatible with ΛCDM. The solid
black lines show the 68% and 95% confidence intervals. The red cross and green
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simulations. The black dashed lines indicate the values of Ωde in these models.
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though this method is faster, we do not use it here because it results in weaker

constraints than using the full data set.

We also use the BAO feature in the galaxy distribution which depends on the

horizon scale at matter-radiation decoupling and angular diameter distance to a

given redshift. The BAO measurements used are the z = 0.106 result from the

6dF Galaxy Survey (6dFGS, Beutler et al., 2011), the z = 0.35 measurement from

Sloan Digital Sky Survey Data Release 7 (SDSS DR7, Percival et al., 2010) and the

z = 0.57 measurement from the Baryon Oscillation Spectroscopic Survey (BOSS,

Sánchez et al., 2012).

Fig. 2.3 shows the 2D marginalized distribution for w0 and Ωde,e using the Doran

& Robbers parametrization of EDE. ΛCDM (w0 = −1,Ωde,e = 0) is within the 68%

confidence level. The Doran & Robbers cosmologies with 1 and 2 percent EDE

are respectively roughly 1 and 2 σ away from the best-fitting value. In order to

maximize the effects of EDE, here, we choose w0 = −1.2 and Ωde,e = 0.01 as the

“EDE1” model, Ωde,e = 0.02 as the “EDE2” model rather than using the best fitting

values and keep the other cosmological parameters the same between the two models.

The EDE1 and EDE2 models are therefore somewhat in tension with the current

observational constraints but are formally consistent with the data.

Table 2.1 summarizes the constraints for the ΛCDM and EDE cosmologies, as-

suming a flat universe. In the EDE models, the cosmological parameters show small

departures from the best fitting ΛCDM values. The best fitting result obtained

using the Wetterich parametrization gives a negligible amount of EDE, Ωde,e ∼ 0,

corresponding to ΛCDM if we fix w0 = −1. The Wetterich parametrization does not

yield any EDE when constrained using current observations. The Doran & Robbers

parametrization can reproduce the step-like transition in the dark energy equation

of state that results from solving the equations of motion for an EDE potential, so

we focus on this parametrization from hereon.

Fig. 2.2 shows the dark energy equation of state as a function of scale factor

for the EDE1 and EDE2 models, along with the ΛCDM model. The corresponding

dark energy density parameter as a function of scale factor is shown in Fig. 2.1.

Here, we plot the Wetterich model with Ωde,e = 10−5, which is much larger than
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Figure 2.4: The upper panel shows the cosmic microwave background temperature
fluctuation spectra of the EDE1, EDE2, ΛCDM and Wetterich models from Table 2.1
compared with the Planck 2013 data (Planck Collaboration et al., 2014) (see legend).
Two variants of the ΛCDM model are also shown, which depart from the best fitting
model by similar amounts to the EDE models. The lower panel shows the ratio of
these models to ΛCDM.

Table 2.1: Summary of the best fitting values using CMB and BAO data for the
dark energy parametrizations of Doran & Robbers (labelled EDE1 and EDE2) and
Wetterich, along with ΛCDM. All models have σ8 = 0.8.

Parameter ΛCDM EDE1 EDE2 Wetterich
H0 67.7 71.9 71.9 70.7
Ωde 0.687 0.719 0.719 0.716
Ωb 0.0488 0.0424 0.0424 0.044
w0 -1 -1.2 -1.2 -1.16

Ωde,e - 0.01 0.02 < 10−7
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the value listed in Table 2.1, but retain the other best-fitting cosmological parame-

ters for comparison. At late times the EDE1 and EDE2 models show very similar

behaviour to ΛCDM, with a rapid transition to w ≈ 0 at early times. The dark

energy parameter remains nearly constant at early times (z & 9). Even for the tiny

amount of EDE considered, the Wetterich model deviates from ΛCDM from very

low redshift. The BAO data probe low redshifts which is why the observational

constraints do not allow Wetterich model to have non-negligible EDE.

Since the EDE1 and EDE2 models are not best-fitting models, in order evaluate

the effect of the deviations before running simulations, we look at two variant ΛCDM

models for comparison. One is a ΛCDM model with a value of Ωm which deviates by

1σ from the best-fitting value, labelled “ΛCDM 1σ Ωm”. The other one is a ΛCDM

model with H0 deviating by 1σ from the best-fitting value, named “ΛCDM 1σ H0”.

We use the Camb code (Lewis & Bridle, 2002) to generate the CMB temperature

spectra for those models. Fig. 2.4 shows the comparison between all the models and

the Planck CMB data. It is clear that the CMB peaks of the Wetterich model are

shifted to lower multipoles compared to ΛCDM. All the other models have similar

CMB spectra and fit the Planck data reasonably well. At very low multipoles,

l < 50, the “ΛCDM 1σ Ωm” and “ΛCDM 1σ H0” models are almost the same as

ΛCDM. However, the two Doran & Robbers models deviate from ΛCDM by up to

4 percent at these multipoles. Hence the differences between the EDE1 and EDE2

models and ΛCDM are not due to the fact that the EDE models are not formally

the best fitting models but rather arise because of the different expansion histories.

Fig. 2.4 also shows that the acoustic oscillations appear at slightly different l in

EDE1 and EDE2 than in ΛCDM, as shown by the oscillations in the ratio of power

spectra shown in the lower panel.

2.2.3 Linear growth rate

The evolution of linear growth rate reflects the different growth histories of structure

between the EDE and ΛCDM cosmologies. If we assume the dark matter perturba-

tions are small, i.e., the density contrast � 1, the power spectrum, P (k, t) can be
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Figure 2.5: The ratio of the linear growth factor in the EDE models considered here
compared to ΛCDM as labelled. The linear growth factor is normalized to unity at
z = 0 in all models.
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2.2. Theoretical background 30

written as a function of time,

P (k, t) =
D(t)2

D(t0)2
P (k, t0). (2.2.4)

Here, D(t0) is the linear growth factor today and is obtained by solving the differ-

ential equation (Linder, 1998):

D′′ +
2

3

(
1− w(a)

1 +X(a)

)
D′

a
− 3

2

X(a)

1 +X(a)

D

a2
= 0, (2.2.5)

where

X(a) =
Ωm

1− Ωm

e−3
∫ 1
a d ln a′w(a′). (2.2.6)

The linear growth rate is defined as f = d lnD/d ln a. Fig. 2.5 shows the ratio of

the linear growth factor in the EDE1 and EDE2 models to that in ΛCDM. Before

z = 10, the growth factor is enhanced by a few percent in the EDE1 and EDE2

compared with ΛCDM, before showing a reduction for z ∼ 2–10.

Although it is straightforward to obtain the linear growth factor by solving

Eq. 2.2.5, some parametrizations of linear growth rate have become popular. Pee-

bles (1976) proposed a widely used parametrization, f(z) ≈ Ωγ
m, where γ = 0.6 is

the growth index. Linder (2005) suggested the more accurate form

γ = 0.55 + 0.05[1 + w(z = 1)], (2.2.7)

which gives f = Ω0.55
m for a ΛCDM cosmology.

In order test the accuracy of the Linder parametrization for the growth factor,

we plot in Fig 2.6 the approximate growth rate, fapprox, given by Eq. 2.2.7 divided

by the value fanalytical calculated from Eq. 2.2.5. For the EDE1 and EDE2 models

and ΛCDM, the approximation reproduces the linear growth rate to better than

1% over the redshift range from z = 0 up to z = 10. Nevertheless, at late times

the inaccuracy in the growth rate obtained from Eq. 2.2.7 is comparable to the

magnitude of the departure from the ΛCDM growth rate, which means that the full

calculation should be used.
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Figure 2.7: The matter power spectra measured in the EDE1, EDE2 and ΛCDM
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ferent colours show the measurements at different redshifts, as indicated by the
key. The smooth black curves show the predictions of linear perturbation theory in
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2.2.4 N-body Simulations

We have carried out three large volume, moderate resolution N-body simulations for

ΛCDM and the EDE1 and EDE2 cosmologies, using a memory-efficient version of the

TreePM code Gadget-2(Springel, 2005), called L-Gadget2. The code was used

in Jennings et al. (2010) and has been modified in order to allow a time dependent

equation of state for dark energy. We assume a flat universe and use the cosmological

parameters in Table 2.1. The simulations use grid initial conditions with N = 20483

dark matter particles in a computational box of a comoving length of 1500 h−1Mpc.

The particle mass is 3.413× 1010h−1M� for ΛCDM and 3.064× 1010h−1M� for the

EDE1 and EDE2 models. The initial mean inter-particle separation is 0.732 h−1Mpc.

We adopt a comoving softening length of ε = 15 h−1kpc. The initial conditions were

generated using the L-Genic code (Springel et al., 2005), which has also been

adapted to handle a time variable equation of state. A self-consistent linear theory

power spectrum for each model is generated using Camb (Lewis & Bridle, 2002).

The normalisation extrapolated to z = 0 is σ8 = 0.8 for all simulations. The starting

redshift is z = 199. We have tested that the results presented have converged for

these choices of particle number, softening length and starting redshift. In EDE

model, matter obeys the same gravity and only the cosmic background evolution is

modified comparing to ΛCDM. We expect the difference between EDE and ΛCDM

is mainly on large scales. So we chose a relatively large simulation box in order to

study large-scale structure, redshift space distortions and rare objects.

2.3 Results

Here we present a range of results from our N-body simulations: the matter power

spectrum in real and redshift space (§ 2.3.1), the dark matter halo mass function

(§ 2.3.2), and the distribution of counts-in-cells (§ 2.3.3).

2.3.1 Matter power spectrum

The power spectrum of fluctuations in the matter distribution is a key statistic that

encodes information about the cosmological parameters and is the starting point
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for determining many quantities, such as the clustering of galaxies and the weak

gravitational lensing of faint galaxies. The presence of dark energy at early times in

the EDE cosmologies can change the form of the matter power spectrum compared

to that in ΛCDM and may allow us to distinguish between models. The use of N-

body simulations allows this comparison to be extended into the nonlinear regime.

The power spectrum in real space

Fig. 2.7 shows the matter power spectra at redshifts z = 0, 1, 3, 5, 7 measured from

the ΛCDM, EDE1 and EDE2 simulations, together with the linear perturbation

theory power spectra for ΛCDM. At z = 0, the power spectra have very simi-

lar amplitudes at intermediate wavenumbers because the three models have been

normalized to have the same value of σ8 today (σ8 = 0.8). The power spectra, how-

ever, are noticeably different at very small wavenumbers (large scales). There are

also small differences apparent deep into the nonlinear regime at high wavenumbers

(small scales).

The EDE models differ from ΛCDM on large scales at all plotted redshifts.

This is due to the difference in the expansion histories in these models compared

with that in ΛCDM. This changes the rate at which fluctuations grow, particularly

around the transition from radiation to matter domination, which alters the shape

of the turnover in the power spectrum (Jennings et al., 2010). To drill down further

into the comparison between the power spectra in the models we now compare the

simulation measurements after taking into account differences in the linear growth

factor at a given redshift (as plotted in Fig. 2.5). Fig. 2.8 shows the ratio of matter

power spectrum after dividing by the linear growth factor squared, D(a)2, for each

model. The EDE1 and EDE2 models differ from ΛCDM by up to 13% and 17%

on large scales respectively, with the ratio showing a slight dependence on redshift.

But the differences between the models on small scales (high k) are more modest,

reaching at most around 5%. Using the linear growth factor in this way helps to

isolate the impact of the different expansion histories in the models (see Jennings

et al. 2010 for a more extended discussion of this comparison). When plotted in

this way, the ratios of power spectra measured at different redshifts coincide. The
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Figure 2.8: The ratio of matter power spectra measured in real space in the EDE1
and EDE2 simulations to those in ΛCDM. This ratio is plotted after taking into
account differences in the linear growth factor at a fixed redshift between the models.
The differences on large scales (small k) show that it is important to use a linear
theory power spectrum in the simulations that is consistent with the expansion
history and cosmological parameters in the EDE models.
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residual differences at high wavenumbers are due to the different growth histories in

the models.

The non-negligible difference in Fig. 2.8 illustrates the need to use a consistent

linear theory power spectrum to generate the initial conditions in the N-body sim-

ulation rather than using a ΛCDM spectrum in all cases.

The conclusion of this subsection is that it should be possible to distinguish an

EDE model from ΛCDM using the shape of power spectrum on large scales, well

into the linear perturbation theory regime. The bulk of observational measurements

of the power spectrum probe the clustering in ”redshift” space, so next we extend

the comparison to include the contribution from gravitationally induced peculiar

velocities.

The power spectrum in redshift space

We model clustering in redshift space using the distant observer approximation. We

adopt one axis as the line of sight direction and displace the particles along this axis

according to the component of their gravitationally induced peculiar velocity in this

direction. Even though we use a large simulation volume, there is still appreciable

scatter in the clustering when viewed in redshift space, so we repeat this procedure

for each axis in turn and average the results to obtain our estimate of the matter

power spectrum in redshift space.

Fig. 2.9 shows the ratio of the redshift space power spectra measured in the

simulations after removing differences in the linear growth factors of the Doran &

Robbers cosmologies to that in ΛCDM. On large scales, the EDE power spectra are

10% - 20% higher in amplitude than the ΛCDM power spectrum, which is similar to

the result found in real space. On small scales, due to the nonlinear effects, there are

clear differences in the P (k), but these are smaller than 5 per cent. However, unlike

the case of the real space power spectra, dividing by growth factor squared does not

reduce the differences between the ratios measured at different redshifts. Instead, the

difference between the rations measured between the redshift space power spectra

in a given pair of models increases slightly on large scales. This is because the linear

growth factor does not account for all of the linear theory differences between the
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Figure 2.9: The ratio of redshift space power spectra measured in the EDE1 and
EDE2 simulations after dividing by the square of the linear growth factor in each
model at the redshift in question to that in ΛCDM as labelled (note that the range
of redshifts compared in this plot is smaller than in Fig. 2.8).
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power spectra in redshift space.

To further investigate the contributions of the velocity dispersion and nonlinear-

ities to the form of the redshift space power spectrum, we compare the ratio of the

spherically averaged power spectra in redshift space and real space in left column

of Fig. 2.10. The linear theory prediction, known as the “Kaiser formula” given

by P s(k, µ) = P r(k)(1 + µ2β)2, is plotted as black dashed lines in Fig. 2.10. Here

Pr(k) is the power spectrum in real-space, µ is the cosine of the angle between the

line of sight and the peculiar motion of the dark matter particle and β = f for the

dark matter. The linear theory monopole ratio depends on redshift through the

value of the matter density parameter. The value of linear growth rate is calculated

using the parametrization f(z) = Ωγ, where γ is given by Eq. 2.2.7. The error bars

illustrate the scatter in P s(k) obtained by using the x, y, z directions in turn as the

line-of-sight direction. At z = 0, the left panel of Fig. 2.10 shows that the Kaiser

formula only fits the simulation results on very large scales, k < 0.03hMpc−1, as

reported by Jennings et al. (2011). The departure from the linear theory prediction

is due to a combination of nonlinearities and the damping effects of peculiar veloci-

ties, even though this is often modelled as arising solely due to damping. Nonlinear

effects are important for k > 0.03hMpc−1 even though the linear regime is typically

believed to hold out to k ∼ 0.1 – 0.25hMpc−1. The Kaiser prediction agrees with

the simulation results over a slightly wider range of scales at higher redshifts be-

cause the nonlinear effects are smaller than they are that at z = 0. In the right

panel of Fig. 2.10 we plot the ratio of the quadrupole to monopole moments of the

redshift space power spectrum, P s
2 (k)/P s

0 (k), for each cosmology at z = 0, 1 and 2.

The Kaiser limit agrees with the simulation results for k < 0.05hMpc−1 at z = 0

which is a slightly higher wavenumber than was the case for the monopole ratio.

The departures from the redshift space distortions expected in ΛCDM (shown by

the grey lines in Fig. 2.10) are small, and well within our estimated errors.

2.3.2 Halo mass function

The mass function of dark matter halos, defined as the number of halos per unit

volume with masses in the range M to M + dM , n(M, z), is an important charac-



2.3. Results 38

1.0

1.2

1.4

1.6

1.8

2.0 ΛCDM

1.0

1.2

1.4

1.6

1.8

2.0

P
s 0
(k

)/
P

r
(k

)

EDE1

10-2 10-1 100

k [h Mpc−1]

1.0

1.2

1.4

1.6

1.8

2.0

z=0
z=1
z=2

EDE2

0.5

0.0

0.5

1.0

1.5
ΛCDM

0.5

0.0

0.5

1.0

1.5

P
s 2
(k

)/
P
s 0
(k

)

EDE1

10-2 10-1 100

k [h Mpc−1]

0.5

0.0

0.5

1.0

1.5
EDE2

Figure 2.10: The distortion of clustering due to peculiar velocities. Left panel: the
ratio of the monopole redshift power spectra to real space power spectra measured
from the N-body simulations at z = 0, 1 and 2. Different colours show the results for
different redshifts as labelled. The dashed lines show the linear theory prediction.
Right panel: the ratio of the quadrupole to monopole moments of the redshift power
spectra measured from the simulations. Each panel shows the result for a different
model as labeled. For comparison, the ΛCDM measurements are reproduced as grey
lines in the EDE1 and EDE2 panels
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teristic of the dark matter density field which is affected by the expansion rate of

the Universe.

We use the friends-of-friends (FOF) algorithm (Davis et al., 1985) which is built

into the L-Gadget2 code to identify dark matter halos, using a linking length

of b = 0.2 times the mean inter-particle separation. We retain FOF groups down

to 20 particles. In Fig. 2.11 we plot the halo mass functions measured from the

ΛCDM, EDE1 and EDE2 simulations at z = 0, 1, 3, 7. For comparison we also plot

the Jenkins et al. (2001) and Sheth & Tormen (1999) mass functions evaluated for

ΛCDM. The lower panel of Fig. 2.11 shows the ratio of the mass functions measured

in the EDE cosmologies to that in ΛCDM. The differences in the mass functions at

low redshift (z ≤ 1) are small, in agreement with results of Francis, Lewis, & Linder

(2009). The EDE mass functions agree with ΛCDM to within 20% for halos with

masses around 1012.0–1013.5h−1M� at z = 1.

The difference between the halo mass functions in EDE and ΛCDM increases

with increasing redshift. This is due in part to the difference in the linear growth

factors getting larger between the EDE and ΛCDM cosmologies going back in time

from the present day. Also, because the simulations have a fixed mass resolution, the

results probe rarer halos with increasing redshift. The abundance of these objects is

sensitive to the matter power spectrum at smaller wavenumbers, where we found the

largest differences between EDE and ΛCDM. At z = 7, ΛCDM predicts 2.5 times

as many halos as are found in the EDE cosmologies.

This prediction could be tested by using a proxy for the halo mass function at

high redshift, such as the galaxy luminosity function (Jose et al. (2011) proposed

a similar test to probe the mass of neutrinos). To make the connection to the ob-

servable Universe, a model is needed to connect the mass of a dark matter halo to

the properties of the galaxy it hosts. We have evaluated this approach by carry-

ing out an abundance matching exercise between the halo mass functions and the

observed luminosity function of galaxies in the rest-frame ultra-violet. This simple

procedure assigns one galaxy to each dark matter halo, ignoring any contribution

from satellite galaxies. The translation between halo mass and galaxy luminosity

can be described by a mass-to-light ratio. Despite the large differences in the halo
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mass functions between cosmologies, the differences in the implied mass-to-light ra-

tios are quite modest and well within the current uncertainties in our knowledge

of the galaxy formation process. Hence, we conclude that any of these cosmologies

could be made to match the observed galaxy luminosity function at high redshift

with plausible mass to light ratios, and that it would be difficult to use the galaxy

luminosity function to distinguish between the models.

2.3.3 Extreme structures

We have seen in Section 2.3.1 that the power spectra of the ΛCDM and EDE energy

models are similar on small scales, particularly once the differences between the

expansion histories in the models have been taken into account. The power spectrum

is a second moment of the density field and so does not probe the tails of the

distribution of density fluctuations, which could carry the imprint of differences in

the growth history of fluctuations.

Fluctuations in the density field can be quantified by measuring the distribution

of fluctuations smoothed over cells, commonly referred to as counts-in-cells. Rather

than formally measuring the higher order moments of the counts-in-cells distribu-

tion, which rapidly becomes infeasible even with simulations of the volume used

here, we instead compare the high fluctuation tails of the distributions directly in

different cosmologies.

Following Yaryura, Baugh, & Angulo (2011), in order to connect more closely

with observables rather than looking at fluctuations in the overall matter distribu-

tion, we consider the counts-in-cells of cluster-mass dark matter halos. In particular,

we look for “hot” cells that contain a substantial number of massive halos. The

choice of halo mass and the definition of hot cells is motivated by results from the

two-degree field galaxy redshift survey (2dFGRS). Croton et al. (2004) identified

two hot cells in the 2dFGRS. Padilla et al. (2004) found 10 groups with an esti-

mated mass over 5× 1014 h−1M� in each cell, by cross matching the hot cells in the

galaxy distribution with the 2dFGRS Percolation Inferred Galaxy Group catalogue

(2PIGG catalogue, Eke et al., 2004).

Here we use a cubical cell of side 37.5 h−1Mpc, which corresponds to a slightly
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smaller volume than the equivalent size of the spherical cell used by Croton et al.

(2004). We then count the number of dark matter halos with Mhalo > 5×1014 h−1M�

inside each cell. We use the jackknife method to estimate the errors on the distri-

bution of counts (Shao, 1986; Norberg et al., 2009) . Put simply, the jackknife is

a resampling technique which works by systematically leaving out each subset of

data in turn from a whole dataset to generate “new” subsamples. Here a subset is

defined to be a volume within the simulation. Then, the overall jackknife estimate

of δ can be found by averaging over all the subsamples, given by

δJack =
1

N

N∑
i=1

δi, (2.3.8)

where N is the number of subsamples. The jackknife error is calculated as

σJack =

√√√√(N − 1)
N∑
i=1

(δi − δJack)2

N
. (2.3.9)

We use 64 spatial subsamples in our analysis, dividing each side of simulation box

equally into four parts.

Fig. 2.12 shows the distribution of cell counts for the three cosmologies in both

real space and redshift space at z = 0 and 0.5. The x-axis gives the number of halos

per cell above the specified mass limit. The y-axis is the normalized probability to

find such a cell. In redshift space, we also considered the scatter from using the three

axes in turn as the line-of-sight. The high cell count tails are very similar, but ΛCDM

consistently predicts more “hot” cells. The “hottest” cells only contain 7 halos in

ΛCDM at z = 0, which is lower than suggested by the 2dFGRS superclusters. This

could be because the FOF halo mass, which we used to select the halos, does not

match the halo mass estimated from the galaxy group catalog. Yaryura, Baugh,

& Angulo (2011) showed that by perturbing the FOF halo mass by the systematic

bias and scatter expected in the masses returned by a group finder run on a galaxy

catalogue, the number of hot cells increases.

Again, the differences between the predicted count distributions are smaller than

the estimated errors on the measurement and so could only be probed by a survey
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covering a volume that is much larger than our simulations.

2.4 Conclusions

One of the main science goals of future wide field galaxy surveys is to distinguish

a cosmological constant from other scenarios for the acceleration of the cosmic ex-

pansion, such as dynamical dark energy models. Here we have examined a particu-

lar class of dynamical dark energy model which display a small but non-negligible

amount of dark energy at early times, which are referred to as early dark energy

models. Such models could be motivated by a choice of potential for the scalar field

describing the dark energy. Instead, to confront these models with the currently

available cosmological constraints in an efficient way, we chose to use a simple de-

scription in which the density parameter of the dark energy is parametrized as a

function of the expansion factor, the present day values of the dark energy and mat-

ter density parameters, the present equation of state parameter of the dark energy

and the asymptotic value of the density parameter of dark energy at early times.

Once constrained, the model can be described by the resulting time dependence of

the equation of state parameter.

The step of constraining the early dark energy model to reproduce current obser-

vations is a critical one. In fact, the best fitting models, even with the observational

constraints available today favour models without any dark energy at early times,

a conclusion that has already been reached by other studies (Planck Collaboration

et al., 2014). Nevertheless, within the range of models that remain compatible with

current data, it is possible to find examples with interesting amounts of early dark

energy. Increasing the amount of early dark energy in the model tends to favour

a more negative equation of state parameter at the present day than the canonical

w = −1 which corresponds to the cosmological constant. We have investigated two

models which, whilst not best fitting models, are still compatible with the observa-

tions at the 1 − σ (EDE1 with 1% of the critical density in dark energy at early

times) and 2−σ levels (EDE2 with 2% of the critical density in dark energy at early

times); both models have w0 = −1.2.
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Previous simulation work on early dark energy models suggested that a clear

signature that could be testable against ΛCDM is the halo mass function (Francis,

Lewis, & Linder, 2009; Grossi & Springel, 2009). In a simple picture, the presence

of a small but unignorable amount of dark energy at early epochs increases the rate

at which the universe expands, making it harder for structure to form. If the models

are set up to have the same value of σ8 today, this means that structure has to form

at a smaller expansion factor or earlier time in the early dark energy model. Hence,

a larger number density of massive haloes is predicted in early dark energy models

compared to ΛCDM.

Our results show that this simple picture of early structure formation with early

dark matter is not a generic feature of these models. After constraining the models

against current observations, we find that the evolution of the linear growth rate of

fluctuations in the early dark energy models is remarkably close to that in ΛCDM.

At the earliest epochs, the EDE2 growth rate exceeds that in ΛCDM by just 2%

before lagging behind until catching up around z ∼ 0.8 and then exceeding the

ΛCDM growth rate by less than 0.5%.

The dark matter halo mass function in the early dark energy simulations shows

fewer massive haloes than we find in the ΛCDM simulation. This difference in the

halo mass function could be tested using the high redshift galaxy luminosity function

(as suggested by Jose et al. (2011) to probe the nature of massive neutrinos). The

difference in halo abundance is, however, modest, and could be accounted for by

our lack of knowledge of the relevant galaxy formation physics. We find a small

difference in the abundance of “hot cells” in the distribution of dark matter halos

between early dark energy and ΛCDM, though this will be challenging to measure,

requiring huge survey volumes.

The cleanest signature we have found of the presence of dark energy at early

times is in the shape of the matter power spectrum. The more rapid expansion

rate around the epoch of matter radiation equality in early dark energy models

compared to ΛCDM changes the shape of the turn over in the matter power spectrum

(Jennings et al., 2010). This effect is visible in the linear theory power spectrum

and is present on scales on which we would expect scale dependent effects in galaxy
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bias to be small (Angulo et al., 2008). To probe this effect it will necessary to retain

the full shape information for the galaxy power spectrum, rather than isolating the

scale of the baryonic acoustic oscillation feature (Sánchez, Baugh, & Angulo, 2008).

Tentative measurements of the matter power spectrum on the scale of the turnover

have already been made by the WiggleZ Dark Energy survey (Poole et al., 2013).

Future large-area radio surveys conducted with the SKA pathfinder experiments,

MeerKAT and ASKAP have the potential to probe the existence of early dark energy

by providing more accurate measurements of the turnover in the power spectrum.



Chapter 3

Haloes and subhaloes in f (R)

gravity

3.1 Introduction

The observed accelerated cosmic expansion is one of the most puzzling problems

in modern physics (e.g., Weinberg et al., 2013). In less than twenty years, it has

motivated the proposal of a huge number of models. Apart from the current standard

ΛCDM paradigm, in which the acceleration is driven by a cosmological constant Λ,

such models are divided roughly in two classes. The first class introduces new physics

in the particle sector and suggests that the acceleration is due to some new matter

species, often known as dark energy. The second class proposes new physics in the

gravity sector, so that the standard theory of gravity, Einstein’s General Relativity

(GR), is modified on cosmological scales to accommodate the accelerated expansion.

This latter class of theories are commonly referred to as modified gravity (Clifton

et al., 2012; Joyce et al., 2015) which is increasingly becoming an active research

area.

For over a decade, the well-known f(R) gravity (Carroll et al., 2004, 2005) model

has been a leading modified gravity candidate to explain the cosmic acceleration,

although it actually has a much longer history in other contexts. It is a subclass of

the more general theory called the chameleon theory (Khoury & Weltman, 2004), in

which an extra scalar degree of freedom is invoked, that can mediate a modification

47
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to the standard gravitational force of GR (known as the fifth force). This deviation

from GR is not necessarily ruled out by local experiments, as the theory can employ

the chameleon mechanism (Khoury & Weltman, 2004) to suppress the fifth force

in dense environments such as the Solar System (see below for more details about

this so-called chameleon screening). This means that the theory could pass local

gravity tests. However, in less dense environments, such as those encountered on

cosmological scales, the deviation from GR becomes sizeable, which means that

cosmology can provide a unique means to probe new physics of this kind.

There are several important features of f(R) gravity, some of which seem to

have not been emphasised enough. Firstly, it is a well accepted perception that

f(R) gravity is flexible and, thanks to its 4th-order field equations, can, in princi-

ple, accommodate arbitrary background cosmologies (see, for instance, He & Wang,

2013, for a concrete example of ΛCDM background cosmology). In spite of the gen-

eral impression that ‘f(R) gravity can accelerate the cosmic expansion’, it should be

noticed that there is no necessary connection between the ‘acceleration’ and ‘modi-

fied gravity’ parts of f(R) gravity: the well-studied model of Hu & Sawicki (2007),

as an example, can essentially be written as a cosmological constant plus a modifica-

tion to the GR gravitational law. In this sense, f(R) gravity is not a ‘better’ model

than ΛCDM, but rather one with a different nature of gravity, the study of which

can shed light on the question why GR is successful and whether cosmological data

can disapprove it.

Secondly, the chameleon screening in f(R) gravity is a mechanism that ‘could

work’, but not necessarily ‘will work’ – whether it works depends on the system un-

der consideration and the functional form of f(R). Again, taking the Hu & Sawicki

(2007) model for example: how efficiently the screening works is determined by a

model parameter |fR0| (and another parameter n which is often fixed; see below).

Increasing this parameter makes it less likely for the screening to be effective. Val-

ues of |fR0| . 10−6 are more difficult to distinguish from GR using cosmological

observations, implying a limit of cosmological constraints. On the other hand, there

are recent claims that |fR0| = 10−6 could be in tension with astrophysical observa-

tions (see, e.g., Jain et al., 2013). Given that the chameleon mechanism works with
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different efficiency in different environments, it is critical to examine whether these

stringent constraints become weaker when the environments of the astrophysical

systems are more accurately modelled. The same could be said about terrestrial

tests of the chameleon theory (see, e.g., Brax et al., 2007a,b, for references to some

pioneering works in this direction).

For this reason, the Hu & Sawicki (2007) f(R) gravity model with |fR0| = 10−6

could be considered as being borderline between cosmological and astrophysical con-

straints: for higher values the model will probably have trouble with local and

astrophysical tests, and for lower values the model is likely to be no longer inter-

esting cosmologically. Here, we suggest a ‘bisection’ approach to the study of f(R)

gravity: we first conduct a detailed investigation of the cosmological and astrophys-

ical implications of the model with |fR0| = 10−6, and then push the study and the

resulting constraints to larger or smaller values based on the outcome. We hope to

use this chapter, in which we will concentrate on the cosmological aspects, as an

initial step in this direction, to motivate further, more in-depth, studies.

In this work, we employ one of the highest-resolution N-body simulations of f(R)

gravity currently available to study its effects on the properties of dark matter haloes

and their subhaloes. These are the fundamental building blocks of the large-scale

structure of our Universe and are closely connected with cosmological observations

such as galaxy surveys. Previous studies have shown that the model considered here

makes rather similar predictions to GR for many other cosmological observables,

such as the matter and velocity power spectra (Li et al., 2013; Hellwing et al.,

2013b; Zhao, 2014; Taruya et al., 2014), void properties (Cai et al., 2015; Zivick

et al., 2015), redshift space distortions (Jennings et al., 2012), the integrated Sachs

Wolfe effects (Cai et al., 2014) and X-ray scaling relations of clusters (Arnold et al.,

2014), but the simulation resolution used have not been high enough to study haloes

and subhaloes in great detail (see, e.g., Corbett Moran et al., 2015, for a recent high-

resolution zoom-in simulation which has a different focus from that of this chapter).

This chapter is structured as following: In §3.2 we very briefly describe the f(R)

model studied here and summarise the technical specifications of our simulations.

§3.3 and §3.4 present our detailed analyses of halo and subhalo properties respec-
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tively, and comparisons with the ΛCDM model. Finally, we summarise and conclude

in §3.5.

Throughout this chapter, we use the unit c = 1, where c is the speed of light.

3.2 f (R) gravity and simulations

In this section we briefly review the general theory of f(R) gravity (§3.2.1), motivate

the model which we focus on (§3.2.2) and describe the algorithm and technical

specifications of our cosmological simulations (§3.2.3).

3.2.1 f(R) gravity and chameleon screening

The f(R) gravity model is designed as an alternative to dark energy to explain the

accelerated expansion of the Universe. It generalises the Ricci scalar R to a function

of R in the Einstein-Hilbert action,

S =

∫
d4x
√
−g R + f(R)

16πG
, (3.2.1)

where G is Newton’s constant and g is the determinant of the metric gµν .

Minimising the action Eq. (3.2.1) with respect to the metric tensor gµν leads to

the modified Einstein equation

Gµν + fRRµν − gµν
[

1

2
f −�fR

]
−∇µ∇νf(R) = 8πGTmµν , (3.2.2)

where Gµν is the Einstein tensor, fR ≡ df/dR, ∇µ is the covariant derivative,

� ≡ ∇α∇α and Tmµν the energy momentum tensor for matter fields. As R contains

second-order derivatives of gµν , Eq. (3.2.2) has up to fourth-order derivatives. It is

helpful to consider it as the standard Einstein equation for general relativity with

an additional scalar field fR. By taking the trace of Eq. (3.2.2), the equation of

motion for fR can be obtained as

�fR =
1

3
(R− fRR + 2f + 8πGρm) , (3.2.3)



3.2. f(R) gravity and simulations 51

where ρm is matter density.

We consider a flat universe and focus on scales well below the horizon. On

these scales, we can apply the quasi-static approximation by neglecting the time

derivatives of fR in all field equations (see, e.g., Bose et al., 2015, for tests which show

that this approximation works well for the model studied here). Then Eq. (3.2.3)

simplifies to

~∇2fR = −1

3
a2
[
R(fR)− R̄ + 8πG(ρm − ρ̄m)

]
, (3.2.4)

in which ~∇ is the three-dimensional gradient operator and an overbar means we

take the cosmological background value of a quantity. a is the cosmic scale factor,

normalised to a = 1 today. Similarly, the modified Poisson equation, which governs

the Newtonian potential Φ in f(R) gravity, can be simplified to

~∇2Φ =
16πG

3
a2(ρm − ρ̄m) +

1

6

[
R(fR)− R̄

]
. (3.2.5)

There are two distinct regimes of solutions to the above equations:

• when |fR| � |Φ|, the GR solution R = −8πGρm holds to a good approximation

and one has ~∇2Φ ≈ 4πGδρm where we have defined δρm ≡ ρm − ρ̄m, as the matter

density perturbation. The effect of modified gravity is suppressed in this regime,

which is a consequence of the scalar field being screened by the chameleon mechanism

(Khoury & Weltman, 2004).

• when |fR| ≥ |Φ|, one has |δR| � δρm where δR ≡ R − R̄, and so ~∇2Φ ≈

16πGδρm/3. Compared with the standard Poisson equation in GR, we see a 1/3

enhancement in the strength of gravity regardless of the functional form of f(R).

This is known as the unscreened regime, in which the chameleon mechanism does

not work efficiently.

The chameleon mechanism is so named because it is most efficient in dense

environments (or, more precisely speaking, regions of deep gravitational potential),

where the scalar field fR acquires a heavy mass and the (Yukawa-type) modified

gravitational force it mediates decays exponentially with distance so that it cannot

be detected experimentally. The Solar System is one example of such an environment
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where f(R) gravity might be in the screened regime and thus viable (i.e., not yet

ruled out by local gravity experiment). However, to determine whether a specific

f(R) model is indeed viable is much more difficult, because this depends on the

large-scale environments of the Solar System, such as the Milky Way Galaxy and its

host dark matter halo. To assess this therefore requires high-resolution numerical

simulations that can accurately describe these environments, and this is one goal

of this chapter. On the other hand, even if an f(R) model passes local tests, there

is still a possibility that it deviates significantly from GR on cosmic scales, where

the chameleon mechanism is not as efficient. To study such deviations also requires

accurate numerical simulations.

3.2.2 The f(R) model of this work

In this work we study the model proposed by Hu & Sawicki (2007, hereafter HS),

which is specified by the following functional form of f(R):

f(R) = −M2 c1 (−R/M2)
n

c2 (−R/M2)n + 1
, (3.2.6)

in which c1, c2 are dimensionless model parameters, and M2 ≡ 8πGρ̄m0/3 = H2
0 Ωm

is another parameter of mass dimension 2; here H is the Hubble rate and Ωm is the

present-day matter energy density in units of the critical density (ρc ≡ 3H2
0/8πG).

We always use a subscript 0 to denote the current value of a quantity unless otherwise

stated.

There is no cosmological constant introduced in this model. However, when the

background value of the Ricci scalar satisfies |R̄| �M2, f(R) may be expanded as

lim
M2/R→0

f(R) ≈ −c1

c2

M2 +
c1

c2
2

M2

(
M2

R

)n
. (3.2.7)

When c1/c
2
2 → 0, f(R) is a cosmological constant.

Under the same limitation, |R̄| �M2, we can simplify the trace of the modified
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Einstein equation of this model as

−R̄ ≈ 8πGρ̄m − 2f̄ ≈ 3M2

(
a−3 +

2c1

3c2

)
. (3.2.8)

This is approximately what we have for the background cosmology in the standard

ΛCDM model, with the following mapping

c1

c2

= 6
ΩΛ

Ωm

, (3.2.9)

where ΩΛ ≡ 1− Ωm.

By taking ΩΛ ≈ 0.7 and Ωm ≈ 0.3, we have |R̄| ≈ 40M2 �M2 today (remember

that |R̄| is even larger at earlier times), and so the above approximation works well.

Moreover, this can be used to further simplify the expression for fR:

fR ≈ −n
c1

c2
2

(
M2

−R

)n+1

< 0. (3.2.10)

This can be easily inverted to obtain R(fR), which appears in the scalar field and

modified Poisson equations as shown above. As a result, two combinations of the

three HS model parameters, namely n and c1/c
2
2, completely specify the model. In

the literature, however, this model is often specified by fR0 instead of c1/c
2
2, because

fR0 has a more physical meaning (the value of the scalar field today), and the two

are related by

c1

c2
2

= − 1

n

[
3

(
1 + 4

ΩΛ

Ωm

)]n+1

fR0. (3.2.11)

We will focus on a particular HS f(R) model with n = 1 and |fR0| = 10−6, which

is sometimes also referred to in the literature as F6. Such a choice of fR0 is made

deliberately as a borderline: models with |fR0| ≥ 10−5 are likely to already be in

tension with cosmological observations (see, e.g., Lombriser, 2014, for a review of

current constraints on f(R) gravity), while those with |fR0| < 10−6 are generally

hard to distinguish from ΛCDM.
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3.2.3 Cosmological simulations of f(R) gravity

The simulation used in this work was executed using the Ecosmog code (Li et al.,

2012). Ecosmog is a modification to the publicly available N-body and hydro

code Ramses (Teyssier, 2002). New routines were added to solve the scalar field

and modified Einstein equations in f(R) gravity. This is a massively parallelised

adaptive mesh refinement (AMR) code, which starts off from a uniform grid (the so-

called domain grid) covering the cubic simulation box with N
1/3
dc cells on each side.

When the effective particle number in a grid cell exceeds a pre-defined criterion

(Nref), the cell is split into 8 daughter cells so that the code hierarchically achieves

higher resolutions in dense environments. Such high resolutions are needed both to

accurately trace the motion of particles and to ensure the accuracy of the fifth force

solutions. The force resolution, εf , is twice the size of the cell which a particle is in,

and we only quote the force resolution on the highest refinement level.

The parameters and technical specifications of our simulations are listed in Ta-

ble 3.1. The cosmological parameters are adopted from the best-fit ΛCDM cos-

mology of WMAP9 (Hinshaw et al., 2013). The simulation was evolved from an

initial redshift zini = 49 to today, and the initial conditions were generated using

the Mpgrafic package (Prunet et al., 2008). For comparison, we ran a f(R) and

a ΛCDM simulation using exactly the same initial conditions and the same techni-

cal specifications (we have used the ΛCDM initial conditions for the f(R) gravity

simulation because these two models are practically indistinguishable at epochs as

early as zini = 49). Unlike the early dark energy model in Chapter 2, f(R) model

has almost the same background evolution as ΛCDM. The gravity is only modified

on low density region at late time of the Universe. So we chose a small simulation

box in order to have high particle mass resolution. The small size of our simulation

box implies that the properties of high-mass objects, such as their number densities,

could be subject to run-by-run variations. However, the fact that our f(R) and GR

simulations start from the same initial conditions helps to suppress the run-by-run

variation when we look at the relative difference between the predictions of the two

models.

With 5123 particles in a box of size Lbox = 64h−1Mpc, this is currently the highest
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Table 3.1: The parameters and technical specifications of the N-body simulations
of this work. εs is the threshold value of the residual (see, e.g., Li et al., 2013, for
a more detailed discussion) for the convergence of the scalar field solver. Note that
Nref is an array because we take different values at different refinement levels, and
that σ8 is for the ΛCDM model and only used to generate the initial conditions –
its value for f(R) gravity is different but is irrelevant here.

parameter physical meaning value
Ωm present fractional matter density 0.281
ΩΛ 1− Ωm 0.719
Ωb present fractional baryon density 0.046
h H0/(100 km s−1Mpc−1) 0.697
ns primordial power spectral index 0.971
σ8 r.m.s. linear density fluctuation 0.820
n HS f(R) parameter 1.0
fR0 HS f(R) parameter −1.0× 10−6

Lbox simulation box size 64 h−1Mpc
Np simulation particle number 5123

mp simulation particle mass 1.52× 108h−1M�
Ndc domain grid cell number 5123

Nref refinement criterion 3, 3, 3, 3, 4, 4, 4, 4...
εs scalar solver convergence criterion 10−8

εf force resolution 1.95 h−1kpc
Nsnap number of output snapshots 122
zini redshift when simulation starts 49.0
zfinal redshift when simulation finishes 0.0
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Figure 3.1: Comparison of differential halo mass functions in GR (red circles) and
F6 (blue triangles) with the Sheth & Tormen (1999) prediction for GR, at three
redshifts – z = 0.0 (left panel), 0.5 (middle panel) and 1.0 (right panel). The
relative difference between the two models is plotted in the bottom panels. Haloes
are identified using a FoF algorithm with linking length 0.2. As we only have one
realisation, the error bars are estimated from subsampling by dividing the simulation
box into eight subboxes of equal size; the difference between F6 and GR mass
functions, ∆ni, was computed for each subbox i, and its mean value (〈∆n〉) and
standard deviations (σ∆n) were obtained using the values from the 8 subboxes; the
relative difference was then calculated as 〈∆n〉/〈nGR〉, with the error bars obtained
in the standard way of error propagation. The vertical dashed line indicates a cut
of our FoF halo catalogue at ∼ 700 particles, or MFoF ∼ 1011h−1M�, for illustrative
purpose, above which there is good agreement between the GR mass functions and
the Sheth-Tormen fitting formulae (better than 10%).
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resolution cosmological simulation of f(R) gravity which runs to z = 0. Another

high-resolution f(R) simulation has been conducted (Corbett Moran et al., 2015), in

which the zoom-in technique was used to study the effects of f(R) gravity on a Virgo-

cluster-scale dark matter halo. Both simulations are purely dark matter. Recently,

a hydrodynamical simulation was carried out by Arnold et al. (2015), which had a

higher particle resolution and focused mainly on a different model parameter and

early times, at which the model studied here is almost indistinguishable from GR.

3.3 Properties of dark matter halos

In this section we will concentrate on the properties of dark matter haloes measured

from our simulations. Dark mater haloes are the most basic blocks of the large-scale

structure and host the formation and evolution of galaxies. Therefore, the study

of their properties is of great importance to the understanding of the fundamental

nature of gravity. A number of halo properties have been studied in detail in the

context of f(R) gravity, such as the angular momentum, spin, velocity dispersion

(Lee et al., 2013; He et al., 2015), velocity profile (Gronke et al., 2015) and screening

(Zhao et al., 2011a; Li et al., 2012; He et al., 2014). The improved resolution of our

simulations enables us to study a wider range of the physical properties of haloes.

3.3.1 Halo mass functions

The differential mass function, dn(M, z)/d logM , defined as the number of dark

matter haloes per unit logarithmic mass found per unit volume, is an important

theoretical and observational statistic of the dark matter density field. Indeed, the

abundance of dark matter haloes is sensitive to the underlying cosmological model.

Both N-body simulations and (semi-)analytical formulae have been used to predict

the halo mass function (see, e.g., Sheth & Tormen, 1999; Jenkins et al., 2001; Reed

et al., 2007, for some examples of analytical mass function fitting formulae).

In order to compare with the above-mentioned fitting formulae, we use the

friends-of-friends (FoF) group-finding algorithm to identify dark matter haloes, us-

ing a linking length of 0.2 times the mean inter-particle separation (Davis et al.,
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1985).

In Fig. 3.1, we plot the differential halo mass function measured from our simu-

lations, along with the theoretical prediction for GR from Sheth & Tormen (1999)

(upper panels), and the relative difference between f(R) gravity and GR (lower pan-

els) at z = 0 (left), 0.5 (middle) and 1.0 (right). For the mass range we consider, the

Sheth & Tormen (1999); Jenkins et al. (2001) & Reed et al. (2007) fitting formulae

all agree reasonably well and so we only plot one of them. We can see from the up-

per panels that the fitting formula describes very well the FOF halo mass function

for GR at the redshifts studied, down to a halo mass of about 2 − 3 × 1010h−1M�

(which corresponds to ∼200 simulation particles). The mismatch at masses above

∼ 1014h−1M� is due to the lack of volume for our small simulation box.

Fig. 3.1 (lower panels) indicates that the differential halo mass function for F6

model studied here is up to ∼20% larger than the result for a ΛCDM model with

the same cosmological parameters. The difference is purely a result of the modified

gravitational force in the F6 model. However, due to the strong chameleon screen-

ing in this model, the enhancement is very mild and hard to detect observationally.

This is why we call F6 a borderline model – it probably represents the limit achiev-

able by many cosmological observations for the near future, even though it might

still potentially be ruled out by employing certain observables (e.g., Schmidt, 2010;

Zhao et al., 2011b; Bel et al., 2015; Lombriser et al., 2015), or using astrophysical

observations (e.g. Jain et al., 2013).

Inspecting the lower panels of Fig. 3.1 more closely, we observe the trend that

for very massive haloes, the mass functions for f(R) gravity and GR agree, which is

because the chameleon mechanism works efficiently for such haloes to suppress the

effects of modified gravity. Disagreement between the two models appears below

some critical mass, which increases with time, because at late times the chameleon

mechanism is less efficient at suppressing modified gravity. Finally, at very low halo

masses, we see the trend that GR starts to produce more haloes than f(R) gravity,

which is a result of a larger fraction of small haloes having been absorbed into big

haloes in f(R) gravity (Li & Efstathiou, 2012).

It is well known that certain properties of dark matter haloes, such as the mass
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Figure 3.2: The ratios of the differential halo mass functions between f(R) grav-
ity and GR, for the same three redshifts as in Fig. 3.1. Here the halo mass is
M200, defined as the mass within the radius at which the average density 200 times
the critical density. The error bars are calculated in the same way as in Fig. 3.1.
The vertical dashed line indicates roughly the smallest halo mass (700 particles, or
M200 ∼ 1011h−1M�) we have used in the analyses of this chapter.
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function, depend on the halo definition used (e.g., White, 2001; Sawala et al., 2013).

In the above, to make comparison with the Sheth-Tormen formulae, we have used

FOF haloes. When studying halo properties, what is more often used in the lit-

erature is M200, the mass inside the radius r200 within which the average density

is 200 times the critical density, ρc. To check whether the choice of the halo def-

inition affects our result, we plot in Fig. 3.2 the difference between the f(R) and

GR mass functions when using M200, again at z = 0.0 (upper panel), 0.5 (middle)

and 1.0 (lower panel). We find the same qualitative features as in the lower panels

of Fig. 3.1, but also some quantitative differences in the curves. In particular, the

curves are smoother and better-behaved when using M200, which may be because the

FOF haloes are too irregular in their shapes and gravity is enhanced with different

efficiency in different parts of the haloes, which can contaminate the screening effect

expected for ideal spherical haloes (see, e.g., Li & Efstathiou, 2012; Li & Lam, 2012;

Lombriser et al., 2013, 2014, for more discussion about the expected behaviour of

the f(R) halo mass function).

We will use M200 in the rest of this chapter, because of its wide use in the litera-

ture. Furthermore, to ensure good resolution of halo structure, we will conservatively

restrict our analysis to haloes with more than 700 particles (M200 & 1011h−1M�).

Even cut at ∼400 particles, we have found that the FoF mass functions at z = 0, 0.5

and 1 show agreements with fitting formulae better than 10%.

3.3.2 Mass distribution inside haloes

The inner structure of dark matter haloes provides invaluable information about

their formation history, which can also be affected by the nature of gravity. In

this subsection, we look at the dark matter density profiles and concentration-mass

relations for haloes in the two models.

In Fig. 3.3, we show the stacked halo dark matter density profiles at three red-

shifts z = 0.0 (left), 0.5 (middle) and 1.0 (right). The distances from halo cen-

tres, as plotted on the horizontal axis, are rescaled by r200, and all haloes with

M ≥ 1011h−1M� in our simulations are divided into 5 mass ranges as indicated in

the legend (the highest mass bin does not show up in the z = 1.0 panel, since at
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Figure 3.3: Stacked dark matter halo density profiles for five mass bins (indicated by
the legend) at three epochs: z = 0.0 (left panel), 0.5 (middle panel) and 1.0 (right
panel). Upper panels: density profiles – results from the GR simulation are shown
as circles while the f(R) results are shown as triangles; the solid curves connect the
symbols and the halo mass increases from the bottom curves to the top curves. Lower
panels: the corresponding ratios between f(R) gravity and GR which deviate from
unity more for smaller mass bins. Open symbols are used when the distance from
halo centre is smaller than the force resolution (which happens only in the lowest
mass bin). The error bars are 1-σ standard deviations for all haloes in each radius
bin. To assist visualisation, in the top panels, we have rescaled the stacked density
profiles of haloes within the mass bins 1014 ∼ 1015h−1M�, 1012 ∼ 1013h−1M�,
3 × 1011 ∼ 1012h−1M� and 1011 ∼ 3 × 1011h−1M� by factors of 10, 0.1, 10−2 and
10−3 respectively. The numbers of haloes in each bin, starting from the most massive
one, are respectively (numbers for the F6 simulation are in parentheses): 7 (7), 72
(78), 200 (232), 509 (586), 1558 (1714), 3758 (3936) at z = 0, 3 (3), 62 (62), 194
(215), 539 (624), 1665 (1968), 4224 (4554) at z = 0.5, and 0 (0), 48 (49), 152 (156),
508 (564), 1730 (2047), 4404 (5177) at z = 1.0.
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Figure 3.4: Dark matter halo concentrations c200 as a functions of M200 at three
redshifts, z = 0.0 (left panel), 0.5 (middle panel) and 1.0 (right panel). Results for
GR (F6) are shown using red circles (blue triangles), and the curves are power-law
fits of the c-M200 relations: in the case of GR (red solid line), the relation can be
fitted using a single power law for the whole mass range, while for F6 this is no
longer true and so we do not show any fitting. The error bars are obtained as the
1-σ standard deviation of all haloes in each given mass bin.

that time the very massive haloes have not formed in great numbers). Note that

the widths of mass bins are different, and we do not make finer subdivisions of the

three most massive bins since the model differences are small there, an observation

we discuss now.

From Fig. 3.3, we see that the density profiles of haloes more massive than

1013h−1M� show almost no difference between the two models at all three redshifts,

because these haloes are very efficiently screened by the chameleon mechanism. The

haloes in the mass bin 1011 ∼ 1012h−1M� have up to 60% higher density towards

their centres in f(R) gravity than in GR, because the screening efficiency is weaker.

Thus, Milky-Way-sized haloes have steeper inner profiles in f(R) gravity. Note,

however, that as the force resolution of our simulations is ∼ 2 h−1kpc, we show the

results within 5 times of it, i.e., ∼ 10 h−1kpc, using open rather than filled symbols.

We have explicitly checked that 10h−1 kpc is roughly equal to the Power convergence

radius (Power et al., 2003; Schaller et al., 2015) in our smallest halo mass bins

(1011 ∼ 1012h−1M�), and is larger than the convergence radius for other halo mass

bins shown in Fig. 3.3. Though the Power radius is found by testing convergence

on simulations with tree (and not AMR) codes, the physics of collisional relaxation
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used in its derivation is the same in our simulations, and so we use it as a reference.

We conclude therefore that the region within 0.1 × r200 of Milky-Way-sized (and

smaller) haloes in f(R) gravity has a significantly steeper density profile than in

GR, and will further confirm this by studying the halo concentration-mass relations

below.

By comparing the three panels in Fig. 3.3, it is also evident that the differences

in the inner density profiles of the two models grow in time. This is as expected

because the effect of modified gravity is cumulative, and also because at late times

the chameleon screening is weaker in general, which leads to stronger modifications

to GR. In particular, haloes with masses below ∼ 3 × 1011h−1M� already show

significant discrepancy between F6 and GR at z = 1, and for haloes from the mass

bin 3 × 1011 ∼ 1012h−1M� the discrepancy starts at later times because of more

efficient chameleon screening, although by z = 0 the model differences have become

roughly the same for these two bins.

Next, we fit the dark matter density profiles in the two models using the Navarro-

Frenk-White (Navarro et al., 1996, 1997, NFW) formula, which is given by

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (3.3.12)

in which ρs and rs are the scale density and scale radius of the halo. The ρs and rs

parameters are connected to the halo mass, M200 (or equivalently, the virial radius

r200), and concentration, c (note that we have neglected the subscript in c200 for

brevity), through

ρs =
200ρc

3

c3

[ln(1 + c)− c/(1 + c)]
, (3.3.13)

c = r200/rs. (3.3.14)

In practice, we obtain the M200 and r200 of each halo according to the spherical

over-density definition, and estimate c using Eq. (3.3.14) from the best-fitting rs.

Lombriser et al. (2013) found that haloes in f(R) gravity can be well described by
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the NFW formula Eq. (3.3.12). In this work, we have further confirmed this by

explicitly checking the χ2 goodness-of-fit, in which we found that Eq. (3.3.12) works

almost equally well in GR and f(R) gravity (with marginally smaller χ2 for haloes

between ∼ 1012−1013h−1M� in f(R) gravity), though the concentration parameters

can be different, as we shall show below.

Fig. 3.4 shows the halo concentration-mass relation, c(M200), also at three red-

shifts z = 0.0 (left), 0.5 (middle) and 1.0 (right), from which one can see clearly

that the most massive haloes have nearly the same concentration in the two models,

because the effects of modified gravity are efficiently screened in these objects. It is

well known from early studies that the halo concentration in ΛCDM simulations is

given by a power-law function of mass (e.g., Bullock et al., 2001; Zhao et al., 2003;

Neto et al., 2007; Duffy et al., 2008; Maccio’ et al., 2008; Giocoli et al., 2010; Dooley

et al., 2014), and our ΛCDM simulation shows the same result as illustrated by the

red curves in Fig. 3.4 (neglecting the scatter at large halo masses, which is due to the

small numbers of haloes there). Recent simulations and modelling have indicated

that the mass dependence of the halo concentration can be more complicated and

is not a simple powerlaw across the whole halo mass range (e.g., Prada et al., 2012;

Sanchez-Conde & Prada, 2014; Ludlow et al., 2014; Ng et al., 2014). However, our

GR simulation has too small a dynamical range to be affected by this.

In f(R) gravity, however, this is no longer true. Indeed, here we find a turning

mass scale M∗, below which the halo c-M200 relation shows a clear deviation from a

single power law and becomes higher than in GR. We have checked this discovery by

running the Amiga Halo Finder (Knollmann & Knebe, 2009, Ahf), which employs

a different method to measure halo concentrations, by using the relation between

the maximum circular velocity and halo mass for NFW haloes, and found good

agreement. We also make an additional test by fitting the halo density profiles to the

Einasto formula (Einasto, 1965; Navarro et al., 2004), because it is known in ΛCDM

that the shape of spherically averaged halo density profiles deviates systematically

(though only slightly) from the two-parameter NFW formula and can be better

described by the three-parameter Einasto formula (Gao et al., 2008). The Einasto

fitting is less sensitive to the radius range used in the fitting, but in the test we only



3.3. Properties of dark matter halos 65

use radial bins outside the Power et al. (2003) convergence radius. Again, we have

found very good agreement with Fig. 3.4. Finally, in Fig. 3.4 we have included all

haloes, and in the last test we have also checked the results for relaxed haloes only,

using the criteria proposed by Neto et al. (2007). We find that such a selection of

relaxed haloes makes very little difference in the concentration-mass relation, which

agrees well with the findings of Gao et al. (2008). Since the main focus of this

chapter is the comparison between f(R) gravity and GR, we shall not show the

plots from those tests.

A possible reason for the difference in the concentration-mass relations of the

two models studied here is the following: the turning mass scale, M∗, which itself

depends time, is roughly a threshold mass for the fifth force screening in f(R)

gravity at each given time. Less massive haloes are unscreened and have deeper

potentials than GR haloes with the same mass, which can make particles move

towards the central regions and lead to higher concentrations. The increase of M∗

with time reflects the simple fact that as time goes on more massive haloes become

unscreened.

Similar behaviour has also been found in other modified gravity theories. As

an example, Barreira et al. (2014a,b) find that, for models in which the strength

of gravity increases rapidly in time, halos tend to be more concentrated (and vice

versa). In chameleon-type theories, including f(R) gravity, the screening makes

the situation more complicated, but the general picture is that haloes tend to be

more concentrated if the model has had an efficient screening at early times (such

as F6) because, at late times when screening is ‘switched off’, the potentials inside

haloes deepen suddenly, and matter particles tend to fall towards the halo centre

(Li & Zhao, 2010; Zhao et al., 2011a). Finally, in the phenomenological ReBEL

model of Nusser et al. (2005), in which a scalar-mediated Yukawa-type fifth force

helps in boosting the structure formation from early times, Hellwing et al. (2013a)

notice that the halo concentration is higher for all halo masses. These authors

compare the kinetic and potential energies in their virialized haloes, and find that

the ratio between the two is actually smaller than in ΛCDM haloes of same masses

(cf. Fig. 11 in that paper). Even though the fifth force in the ReBEL model starts to
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effect from early times, the fact that it has a finite range (not longer than 1h−1Mpc

in the models simulated by Hellwing et al. (2013a)) means that the enhanced gravity

could not affect regions beyond ∼ 1h−1Mpc: this is similar to the behaviour of the

fifth force in F6 for our small haloes, which is possibly why the effect on the halo

concentrations is also similar in the two cases.

Another possible reason for the different c-M relations in F6 and GR is the

different halo formation histories in the two models. As is mentioned above, haloes

which form at earlier times generally have higher concentration because the mean

matter density is higher when they collapse. Consider two (small) haloes of the

same mass in GR and in F6: it is more likely that the latter has a larger fraction of

its present-day mass assembled at later times, and thus its inner region is smaller,

forms earlier and is more concentrated (in other words, a halo with mass M1 in F6 is

likely to have a mass M2 < M1 in GR and thus have a higher concentration than a

GR halo of mass M1). It would be useful to disentangle the two effects affecting halo

concentrations, but this is difficult because a modified gravitational force will always

simultaneously affect both the halo accretion history and halo potential, except in

cases where the screening is very strong inside haloes, such as in the cubic Galileon

model (Barreira et al., 2014b). We shall leave such a study for future work.

We caution that the result for F6 may not quantitatively hold for HS f(R) models

with other values of n or fR0, or to other f(R) or chameleon models. The complicated

physics that determines the concentration implies that the c-M200 relation needs to

be studied on a case-by-case basis in general.

3.3.3 Halo formation histories

The formation of dark matter haloes is a complicated process, in which frequent

mergers and the accretion of smaller haloes hierarchically lead to the formation of

larger haloes. In this picture, large haloes form later when the environmental density

is lower, and thus have lower concentrations than small haloes, as we have seen in

the previous subsection.

As the gravitational force is enhanced in f(R) gravity, is has been speculated that

the matter clustering is stronger and as a result dark matter haloes form earlier in
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Figure 3.5: The halo formation time zf as a function of M200, from our GR (red
circles and curve) and F6 (blue triangles and curve) simulations. Error bars are 1-σ
standard deviations.
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our f(R) model than in GR. For example, a previous study by Hellwing et al. (2010)

found that in the ReBEL model, the Yukawa-type fifth force helps to form haloes

at higher redshift than in the standard ΛCDM model, and therefore can potentially

move reionization to earlier times as implied by CMB observations. Here, we want

to study the halo formation times in our F6 simulations.

In order to follow the growth of a halo with time, we start with the halo at the

present time and identify its most massive progenitor from the previous snapshot.

We repeat this procedure until the halo mass is too small to be resolved anymore,

and define the halo formation time as the redshift, zf , at which the most massive

progenitor halo has assembled half of its mass at z = 0.0. This formation time

has been widely used in the literature (e.g., Lacey & Cole, 1993; Gao et al., 2004),

although other definitions have also been used (e.g., Wechsler et al., 2002).

In Fig. 3.5, we plot the halo formation time zf as a function of M200. In both

models, the results agree with the above hierarchical picture that low-mass haloes

form earlier. When comparing the two models, we can see that haloes more massive

than 1013h−1M� form at nearly the same redshift in GR and F6, showing again

that the chameleon mechanism works efficiently for these haloes to suppress the

effects of modified gravity. Less massive haloes, on the other hand, form slightly

earlier in GR than in F6. This result seems to disagree with the general pattern

found in Hellwing et al. (2010) in the ReBEL model, and seems in contrast to the

naive expectation that the enhanced gravitational force in F6 boosts the hierarchical

structure formation.

To explain this behaviour, we need to again carefully examine the subtle dif-

ferences between different models. In ReBEL, there is a Yukawa-type fifth force

between particles, whose strength decays with distance but does not change in time.

This implies that the fifth force starts to boost structure formation from early times,

resulting in haloes forming earlier. In the case of F6, gravity is suppressed at redshift

z & 1, and even at z . 1 it is only enhanced for smaller haloes. This means that:

(i) the formation history of very massive haloes (e.g., M & 1013h−1M�) does

not see the effect of an enhanced gravity, as we have seen above;

(ii) less massive haloes evolve in a similar manner as in GR at z & 1, but grow
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Figure 3.6: The stacked velocity dispersion profiles from our f(R) (filled triangles)
and GR (filled circles) simulations, at three redshifts: z = 0 (left panel), z = 0.5
(middle panel) and z = 1 (right panel). We show the results for four bins of the
host halo mass increasing from the bottom curves to the top curves, and indicated
in the legend (we have divided the mass bin 1012 ∼ 1013h−1M� into two sub-bins
because this is the only bin which shows difference between F6 and GR). The solid
curves simply connect the symbols, and the error bars show the 1-σ scatter around
the mean.

more rapidly at z . 1, and as such they are more massive than their GR counter-

parts at present. As zf is defined to be the time when a halo has gained half of its

current mass (denoted by M1/2), the halo would have a larger M1/2 in F6 than in

GR. But small haloes typically grow to M1/2 at z & 1, before when there is little

difference between GR and F6, and so it takes the halo longer to acquire a mass

of M1/2 in F6 than in GR, which means that the halo forms later in f(R) gravity.

This, of course, is purely a result of the definition of zf , and does not imply that

matter clusters more slowly in F6.

Therefore, like the concentration, the halo formation time also depends sensi-

tively on the nature of gravity. Even for two models in both of which gravity is

enhanced, the behaviour of c (M200) or zf (M200) can be qualitatively different. For

this same reason, the results for zf for F6 can not be generalised to other variants

of the HS f(R) model or other f(R) models without careful tests.
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3.3.4 Halo velocity dispersion profiles

Before leaving this section, we study the velocity dispersion profile in our simula-

tions, which is defined as

σv(r)
2 ≡ 1

∆Np

∑
i∈∆r

(~vi − ~vh)2, (3.3.15)

in which i ∈ ∆r means that particle i sits in a spherical shell from radius r −∆r/2

to r + ∆r/2, and Np is the number of particles within this shell. ~vi and ~vh are

the particle and host halo velocities respectively, and the latter is calculated as the

average of the velocities of the 25% most bound particles in the host halo. The halo

velocity dispersion is a more direct characterisation of the potential inside a halo; it

is determined by the dynamical (Schmidt, 2010; Zhao et al., 2011b) or effective (He

et al., 2015) mass of a halo, and is enhanced by the modified force for unscreened

haloes (Lee et al., 2013; He et al., 2015).

In Fig. 3.6 we show the velocity dispersion profiles measured from our simulations

at z = 0.0 (left), 0.5 (middle) and 1.0 (right). Thanks to the chameleon screening,

the difference between the two models for haloes more massive than ∼ 1013h−1M�

is almost undetectable. Haloes in the mass range 1012 − 1013h−1M� can have sig-

nificantly higher velocity dispersion in f(R) gravity than in GR, and the deviation

increases with the distance from the halo centre, since the screening in f(R) gravity

is relatively weak inside small halos, particularly in their outer regions in which

matter density is low. We also notice that the enhancement of velocity dispersion

is weaker at earlier times, due to stronger chameleon screening and less time for the

fifth force to take effect.

The result confirms that particles bound in unscreened haloes have higher kinetic

energy to balance the extra potential produced by the fifth force. This implies that

measurements of galaxy velocity dispersions in galaxy groups, such as the Local

Group, may not be able to give reliable estimates of the true masses of the systems.

For example, to use such measurements to find the underlying mass requires a good

understanding of the screening, which in turn requires an accurate knowledge of

the true mass (as well as the environmental effects). Therefore, a trial-and-error
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procedure would be needed to improve the mass estimation iteratively from some

initial guess, and each iteration needs to be calibrated by high-resolution simulations

which take into account the full environmental effects and other complexities such

as irregular shapes of haloes and distributions of their massive satellites.

On the other hand, if we indeed live in an unscreened region in f(R) gravity, but

choose to interpret our measurements of galaxy velocity dispersions in the incorrect

framework of GR, then the estimated mass will be biased high compared with its

true value. We will briefly mention one of its implications below. In any case, it

is clear that f(R) gravity would make the already uncertain estimates of the Milky

Way mass even more complicated.

3.4 Properties of substructures

In the previous section we analysed the simulation results of various halo properties

in our F6 and GR simulations. In this section, we turn our attention to the properties

of subhaloes in these models.

In hierarchical structure formation, halo merger events leave plenty of remnant

structures that survive as subhaloes in the descendent haloes. As galaxies form in-

side haloes and migrate with them, subhaloes then exist as the host sites of satellite

galaxies in galaxy groups and clusters. The properties of subhaloes and their evolu-

tion history (i.e., the subhalo merger tree) provide the backbone for models of galaxy

formation (see, e.g., Baugh, 2006, for a review). The abundance and distribution of

subhaloes also has important implications for the indirect detection of dark matter,

for example by boosting the dark matter annihilation signal (e.g., Gao et al., 2012;

Han et al., 2012a).

The fact that subhaloes form through hierarchical mergers can also be utilised

to identify them. Here we will use the tracking subhalo finder Hierarchical Bound-

Tracing (Han et al., 2012b, HBT) to identify subhaloes. Starting from isolated

haloes at an earlier snapshot, HBT identifies their descendants at subsequent snap-

shots and keeps track of their growth. As soon as two haloes merge, HBT starts to

track the self-bound part of the smaller progenitor as a subhalo in each subsequent
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Figure 3.7: The differential subhalo mass function dN/dMsub as a function of the
subhalo mass Msub, at three redshifts – z = 0.0 (left panel), z = 0.5 (middle panel)
and z = 1.0 (right panel). The lower subpanels show the ratio between the F6 and
GR results, and the binning scheme of host halo masses is indicated by different
colours as shown in the legends (note that the highest mass bin does not exist in
the right panels because at z = 1 haloes more massive than 1014h−1M� does not
exist in great numbers). The error bars (only shown in the lower subpanels for
clarity) are 1-σ standard deviations in each subhalo mass bin similarly as in the
halo mass function plots. For guide eyes, we also plot the power-law fitting results
of the subhalo mass functions using lines with the same colours (solid for GR and
dashed for F6).

snapshot. With a single walk through all the snapshots, all the subhaloes formed

from halo mergers can be identified in this way. Such a unique tracking algorithm

enables HBT to largely avoid the resolution problem suffered by configuration space

subhalo finders (Muldrew et al., 2011; Han et al., 2012b; Onions et al., 2012). By

construction, HBT also produces clean and self-consistent merger trees that natu-

rally avoid subtle defects such as missing links and central-satellite swaps common

to many other tree builders (Srisawat et al., 2013; Avila et al., 2014).

3.4.1 Subhalo mass functions

Similar to haloes, the abundance of subhaloes can be described by a subhalo mass

function (SHMF). The SHMF is known to depend on the size of their host haloes

(Gao et al., 2004; van den Bosch et al., 2005) in ΛCDM simulations, but is close to
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a universal power law function of the subhalo mass, Msub, when normalised by the

host halo mass, Mhost.

In Fig. 3.7 we plot the SHMF for three bins of host halo mass, 1012 ∼ 1013h−1M�,

1013 ∼ 1014h−1M�, 1013 ∼ 1014h−1M� (see the legends), at three redshifts, z = 0

(left), 0.5 (middle) and 1 (right). For clarity, the results for the highest (lowest)

mass bin are shifted upwards (downwards) by a decade. A quick visual inspection

of Fig. 3.7 indicates that the power-law relation holds true for the ΛCDM (circles

and solid lines) and F6 (triangles and dashed lines) simulations as well, though

the slope has a weak dependence on the host halo mass (lower for low-mass host

haloes). To check this result, we tested HBT on a simulation using a different N-

body code (described in Jing & Suto, 2002) and found the same tendency. We also

tested our simulations using the Rockstar code (Behroozi et al., 2013) to identify

subhaloes, but did not notice any dependence of this slope on the host halo mass.

Therefore, we conclude that this is likely due to the subhalo finding algorithm we use,

which finds more massive and extended subhaloes than some other algorithms (Han

et al., 2012b). We note that, even though the SHMF from HBT has a lower slope

than the result from Rockstar, it is consistently higher for the range of subhalo

mass shown in Fig. 3.7. Because we are mainly interested in the relative differences

between models in this chapter, we will leave a more detailed comparison of different

algorithms to a future separate work and not show a plot for the comparison.

From Fig. 3.7 we find that the difference between F6 and GR is smaller for

more massive host haloes and at earlier times, because in both cases the chameleon

screening is more efficient and effects of modified gravity more strongly suppressed.

Differences between the two models also tend to be larger for small subhaloes, with

F6 predicting 20 ∼ 50% more subhaloes with Msub between 1011 and 1010h−1M�

than GR in host haloes of mass 1012 ∼ 1013h−1M�. This implies that the enhanced

gravity in the f(R) model studied here can help produce a substantially higher

abundance of substructures in Milky-Way-sized dark matter haloes. We will discuss

the implication of this in the context of Milky Way satellite abundances below when

discussing the subhalo velocity function.

Note that an enhanced gravity will not only boost the clustering of matter and
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formation of subhaloes, but can also increase the stripping of matter from subhaloes

inside haloes (and thus decrease subhalo masses). Our results above suggest that

the latter effect is subdominant.

3.4.2 Subhalo spatial distributions

Next we focus on the spatial distribution of subhaloes inside their host haloes.

Naturally, one expects this distribution to depend on the nature of gravity,though

this dependence can be weakened by the chameleon screening by the host haloes in

f(R) gravity.

Gao et al. (2004) showed that the spatial distribution of subhaloes does not have

a significant dependence on their host halo masses. In our ΛCDM simulations we

have found the same result, as shown in Fig. 3.8, in which we plot the cumulative

radial number distributions of subhaloes as circles for ΛCDM. We show in different

colours the results for three mass bins of host haloes, all at z = 0, which agree well

with each other.

To see the effect of f(R) gravity, we also plot the corresponding results from the

F6 simulation in Fig. 3.8 using triangles. There is very little difference from the GR

results, possibly because of the efficient screening. Notice that here we have only

shown results for host haloes more massive than 1013h−1M�, in which the modified

gravity effects are strongly suppressed as we have seen above. The results for smaller

host haloes are not shown since they are noisier due to resolution limitations.

3.4.3 Subhalo velocity function

Subhaloes reside in the high-density environments within their host haloes, and

experience constant tidal stripping, which strips mass from their outer parts. Their

mass could change significantly during their evolution. Therefore, in the literature

people often use the maximum circular velocity Vmax instead, because it depends

primarily on the inner part of a (sub)halo.

Following Gao et al. (2004), in Fig. 3.9 we plot the differential abundance of

subhaloes as a function of Vmax, also known as the subhalo velocity function (SHVF).
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The ΛCDM results in the range of 30 km/s . Vmax . 200 km/s are well described

by a universal power-law function, in agreement with findings in the literature (e.g.,

Gao et al., 2004; Dooley et al., 2014) (note that we have shifted the curves for

different host halo mass bins for clarity), and drop off at small (large) Vmax is due

to the resolution limit (finite box size).

In f(R) gravity, the qualitative behaviour of the SHVF is similar, but the en-

hanced gravity leads to quantitative differences. For more massive host haloes, the

difference is most significant at small Vmax, which correspond to smaller subhaloes

that are less screened and therefore have formed in higher abundances; in contrast,

larger subhaloes, with larger Vmax, are better screened and so their abundances do

not change significantly from the GR predictions. For less massive host haloes, there

is a noticeable boost in the subhalo abundance even for large subhalo Vmax, since

the host haloes have become less screened since earlier times and substructures have

more time to grow there. This dependence on host halo mass in principle implies

a deviation from a universal SHVF, although the effect we see in Fig. 3.9 is fairly

weak.
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The enhanced SHVF at Vmax & 30 km/s for host haloes with mass of∼ 1012h−1M�

seems to suggest that the missing massive satellite problem of the Milky Way galaxy

is worse in f(R) gravity, since in the latter the observed number of dwarf galaxies

remains the same while the theoretically predicted number of massive subhaloes is

larger. Wang et al. (2012) argue that the missing satellite problem is not serious

enough to motivate a revision to the ΛCDM paradigm, but what we saw above

in Fig. 3.9 certainly seems to make f(R) gravity disfavoured. However, there are

complicated issues which preclude a definite conclusion. For example, most mea-

surements of the Milky Way halo actually predict its dynamical mass, which can be

1/3 heavier than the true mass in f(R) gravity – hence, with a given rotation speed

of the Milky Way disk, the actual mass of the halo could be smaller than what we

currently think. Also, galaxy formation can also be different in f(R) gravity, so that

the way in which galaxies populate massive subhaloes might be different, making a

direct comparison with ΛCDM even harder. We will leave detailed studies of these

issues to future works.

3.5 Discussions and conclusions

To briefly summarise, in this chapter we have employed a very high-resolution simu-

lation to study the properties of dark matter haloes and subhaloes of a f(R) gravity

model. This model is a variant of that proposed by Hu & Sawicki (2007), with

parameters n = 1 and |fR0| = 10−6. We argue that this is a borderline model that

should be studied as a first step towards a more rigorous constraint on fR0 combin-

ing cosmological and astrophysical observations. We regard this as a realistic model

which is not yet apparently ruled out by current data.

The simulations we use in our analyses have 5123 particles in a cubic box of size

Lbox = 64h−1Mpc, with a background cosmology chosen to be that of the best-fit

WMAP9. This cosmology is more updated and more realistic than those of the

previous f(R) simulations conducted by us (e.g., Li et al., 2013), and the resolution

here is also significantly higher, making it possible to study subhaloes in detail. Our

halo catalogue is constructed using a standard friend-of-friend linking method, and
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the subhaloes were found using the HBT algorithm of Han et al. (2012b).

Due to the efficient chameleon screening, this f(R) model shows small deviations

from ΛCDM in general. For example, the halo mass function shows at most ∼ 20%

enhancement compared with the ΛCDM result between z = 0 and z = 1, with the

deviation propagating to more massive haloes as time passes, in agreement with the

semi-analytical predictions of Li & Efstathiou (2012). The dark matter distribution

inside halos is almost identical in this f(R) model as in ΛCDM for haloes more

massive than ∼ 1013h−1M�, again due to the chameleon screening; however, for

smaller haloes, the screening is less efficient, which results in a deepening of the

total potential and subsequently a steepening of the density profile. As a result, the

halo concentration-mass relation is enhanced for such low-mass haloes and can no

longer be described by a simple power law (as for ΛCDM). The stronger gravitational

force in this f(R) model also enhances the growth of small haloes, but mainly at

late times and as a result the halo formation time (i.e., the time by which a halo

has gained half of its present-day mass) is actually later than in ΛCDM. We stress

that these conclusions hold only for this specific f(R) model, and there is evidence

suggesting that other models could behave qualitatively differently because of the

complicated behaviour of gravity. We also notice enhanced halo velocity profiles in

this f(R) model, confirming various previous work (e.g., Corbett Moran et al., 2015;

Gronke et al., 2015; He et al., 2015).

The stronger gravity also helps to produce more substructures, mainly in host

haloes less massive than ∼ 1013h−1M� because of the weaker screening therein, and

for subhaloes less massive than 1012h−1M�. We find that Milky Way-sized haloes

could host up to 20 ∼ 50% more subhaloes in the mass range 1010 ∼ 1011 h−1M�

in the studied f(R) model than in ΛCDM. The subhalo mass function can be fitted

using a simple power law, as in ΛCDM, but with different parameters. We do not

find a noticeable difference in the radial distribution of subhaloes inside their host

haloes between the two models, though. The higher abundance of substructures

is confirmed in the subhalo velocity functions, which seems to make the missing

satellite problem of the Milky Way worse. However, we stress that there are caveats

in interpreting the result at its face, due to the further complexities in observationally
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determining halo mass in the context of modified gravity.

Overall, we find that halo and subhalo properties of this borderline f(R) model

are close to the ΛCDM predictions for massive haloes, confirming previous results

that this model is difficult to distinguish from ΛCDM using cosmological observa-

tions. However, a substantial deviation might be found in less massive haloes such

as that of our Milky Way, which is in agreement with the findings of previous low

resolution simulations. This indicates that the dynamics of systems such as the

Local Group can be sensitive to modifications of gravity of this kind and strength.

This should be a focus of further studies in the future, following the recent progress

in zoom simulations made by Corbett Moran et al. (2015).

As mentioned above, this is a first step of a more detailed study of this borderline

model, and here we have not touched the topic of astrophysical constraints, which is

much more complicated. Studies of Jain et al. (2013) and Vikram et al. (2014) have

demonstrated the potential of using astrophysical systems to improve the constraints

on fR0. It would be useful to have a better understanding of the impact that

environmental screening could have on those constraints. As in f(R) models the local

behaviour of gravity usually depends on its environment at much larger scales, high-

resolution or zoom simulations are important for calibrating the interpretation of

astrophysical observations. They are also important because they can provide more

realistic quantifications of the environments for stellar evolution, which depends on

the nature of gravitation sensitively (Davis et al., 2012).

Obviously, improved constraints may or may not rule out this f(R) gravity

model. However, with the progress in both numerical simulations and theoretical

modelling, we are on a path towards better understanding. In such a sense, we are

currently in the state of liminality1, and much effort is still in need to pass it.

1In the literature of Education, liminality refers to the suspended state of partial understand-
ing, which is unsettling and lacks of authenticity. Such a state can be crossed and re-crossed many
times, and its final crossing marks the opening of a world of new knowledge.



Chapter 4

Halo environment and screening in

f (R) gravity

4.1 Introduction

One class of models used to explain the mysterious accelerating cosmic expansion,

without invoking the addition of an exotic dark energy component (Copeland et al.,

2006), assume that the standard model of gravity, general relativity (GR), breaks

down on cosmological scales and needs to be modified. Such ‘modified gravity’

theories (Clifton et al., 2012; Joyce et al., 2015) have generated considerable interest

in the cosmological community in recent years. Even though so far there has been no

widely-accepted alternative to the standard GR+ΛCDM model, in which the cosmic

acceleration is driven by a positive cosmological constant, the study of possible

alternatives could shed light on a question to which an answer is long over-due:

does GR hold on cosmological scales (Koyama, 2016; Joyce et al., 2016)? With

a number of large cosmological surveys having finished, on going, kicking off and

being planned (e.g., Heymans et al., 2012; Anderson et al., 2014; Abbott et al.,

2016b; Laureijs et al., 2011; Levi et al., 2013; Merloni et al., 2012; LSST Dark

Energy Science Collaboration, 2012), it is optimistic that we will soon enter a new

era of research in this field.

Usually, it is assumed that a single gravitational equation governs the behaviour

of gravity in the whole classical regime, which covers a huge range from the smallest

80
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scales where gravity has ever been tested (sub-millimetre) to scales comparable to

the observable Universe. Therefore, any model of gravity can be tested on various

scales and must pass all these tests in order to be viable. Given that GR has been

well-established in the Solar system or other systems of relatively small size, such as

binary pulsars (Taylor & Weisberg, 1982) and black holes (Abbott et al., 2016a), the

behaviour of modified gravity models is expect to make the transition from being

GR-like on small scales to predicting a cosmic acceleration on large scales. One way

to achieve this, which has been the topic of intensive study in recent years, is via

a screening mechanism, which suggests an environmental dependence of gravity: in

environments similar to the solar system GR is recovered, while allowing the scope

for deviations in environments beyond the reach of current gravity experiments. In

such models, two atoms would feel different gravitational forces due to one another

depending on whether they are on Earth or in a low-density region.

The presence of a screening mechanism, in certain classes of modified gravity

theories, not only leads to theoretical difficulties, such as highly nonlinear gravita-

tional field equations which render linear perturbation analyses more or less useless,

but also has very practical implications for the testing of such models. Using the

example above, the mutual gravity of the two atoms depends on their location. In

other words, it is possible that the accurate prediction of the behaviour of grav-

ity on the smallest scales (e.g., in lab experiments) depends on the actual status

(and knowledge) of the much larger-scale environment, such as the hosting galaxy

or whether or not the galaxy is in a group or cluster.

Although the term ‘environment’ has been used extensively in the literature, its

precise meaning varies substantially both in theory and in practice. First of all,

when we stated above that screening happens in dense environments similar to that

of the Solar System, the similarity can be in terms of local matter density (as in the

case of the symmetron model, Hinterbichler & Khoury, 2010), the local Newtonian

potential (as in the chameleon model, Khoury & Weltman, 2004; Mota & Shaw,

2007), or derivatives of the potential (as in the cases of the Galileon (Dvali et al.,

2000; Nicolis et al., 2009; Deffayet et al., 2009) and K-mouflage (Brax & Valageas,

2014b,a) models).
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On top of that, in reality, environment is often defined in terms of what one has

from simulations or observations. For example, in a simulation with particle data,

it is natural to define the environment of a halo as the average matter density in a

spherical region of a given size around the halo, but this will be difficult to repro-

duce in observations, where instead one can quantify the environment by looking

at how many galaxies are neighbouring a given galaxy (having more neighbours is

usually an indication that a galaxy is in a high-density environment). Alternatively,

using weak lensing one can construct maps of gravitational potential, by which the

environment can also be quantified. Although the different measurements of envi-

ronment rely on different physical quantities – density, potential or derivatives of

the potential – and are therefore presumably suitable for testing the different the-

oretical screening mechanisms as mentioned above, as we shall see, there is a good

correlation among them (e.g., a high-density region often has deeper gravitational

potential and larger derivatives of the potential). This, together with the fact that

there are only a limited number of ways to measure environment in observations,

suggests that pragmatically all definitions of environment should be tried to see how

best to understand the screening of modified gravity.

In addition, for objects with extensive sizes, such as those encountered in cos-

mology, depending on what we look at, the objects themselves can be part of the

environment. For example, if we consider a massive galaxy cluster which hosts a

galaxy, then the cluster itself (excluding the galaxy) serves as part of the environ-

ment of the galaxy, along with the larger-scale environment that in which cluster is

embedded. It can sometimes be useful to distinguish between the self-screening and

environmental screening of the cluster, with the former defined as the screening of

modified gravity caused by the cluster assuming that it is embedded in a vacuum. In

practice, definitions of environment do not always separate the two effects cleanly,

as we shall see below.

The effect of environmental screening in modified gravity was investigated previ-

ously for the chameleon (Zhao et al., 2011b) and symmetron (Winther et al., 2012)

models, but these studies used one particular definition of environment, and were

based on relatively low-resolution N -body simulations. It is our purpose to further
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these studies in two ways: (i) We will try other definitions of environment in addi-

tion to the one adopted in Zhao et al. (2011b) and Winther et al. (2012), to study

how robust the qualitative conclusions of these studies are to the various definitions.

In particular, this will tell us whether the different ways to measure environment

observationally can corroborate or complement each other; (ii) Our study here is

based on a higher-resolution simulation, which will enable us to resolve smaller dark

matter haloes to study the screening in different parts (e.g., inner vs outer) of a halo,

and to investigate the screening of subhaloes as well. The study of these low-mass

objects will be useful for accurately understanding how gravity behaves in such sys-

tems, which have been suggested to provide the strongest astrophysical constraints

on potential deviations from GR (e.g., Jain et al., 2013). The screening of modified

gravity from these low mass halo also depends more sensitively and complicatedly

on their environments.

The model studied here is a variant of f(R) gravity (Carroll et al., 2004, 2005)

as proposed by Hu & Sawicki (2007). With suitable model parameters, this model

is a special case of the chameleon-type theory studied by Zhao et al. (2011b) and

many other authors. Despite being a special case with a rather ad-hoc form of

the gravitational action, the model is quite representative in the sense that similar

qualitative behaviours can be found in other variants of viable f(R) models, or more

generally chameleon models (see, e.g., Brax et al., 2012a, 2013), or even symmetron

or dilaton (Brax et al., 2010, 2012b) models. Therefore, it can be used as a test case

to estimate constraints on certain classes of deviations from GR.

The layout of this chapter is as follows: in §4.2 we briefly describe the model, the

simulation and the way used to find haloes/subhaloes; in §4.3 we briefly introduce

the different definitions of environment to be tested, and have a look at their cor-

relations with each other using the simulation; in §4.4 we show the environmental

screening effects using these different environment definitions and in §4.6 we discuss

the implications of our results and conclude.

Throughout the chapter we use the convention that a subscript 0 (overbar) de-

notes the current (cosmic mean) value of a quantity. We use the unit c = 1 (c is the

speed of light) unless otherwise stated.
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4.2 Simulations of f (R) gravity

f(R) gravity is the most well-studied modified gravity theory in the context of

understanding the origin of the cosmic acceleration, and there is a large body of

literature on various aspects of this model. In order to avoid unnecessary repetition,

we shall restrain from devoting space to yet another introduction to it. Interested

readers are referred to the review articles (e.g., De Felice & Tsujikawa, 2010; Sotiriou

& Faraoni, 2010) for full details, or to one of the research papers for shorter but still

self-contained descriptions, e.g. Shi et al. (2015), which not only concisely describes

the essential ingredients of f(R) gravity sufficient for understanding this chapter,

but also introduces the liminality simulation which this work is based on.

The liminality simulation is a dark matter only N -body simulation of a certain

variant of the Hu-Sawicki f(R) gravity model (Hu & Sawicki, 2007). It was run

using the Ecosmog code (Li et al., 2012), which itself is based on the publicly

available N -body code Ramses (Teyssier, 2002), but includes new modules and

subroutines to solve the modified Einstein equations in f(R) gravity. This is an

effectively parallelised adaptive mesh refinement (AMR) code, which starts with a

uniform grid (the domain grid) covering the cubic simulation box with N
1/3
dc cells

on a side. If the effective particle number in a grid cell becomes greater than a pre-

defined criterion (Nref), the cell is split into eight “son” cells, and in this way the

code hierarchically achieves ever higher resolution in dense environments. Such high

resolution is necessary to accurately trace the motion of particles and guarantee the

accuracy of the fifth force solutions. The force resolution, denoted by εf , is taken as

twice the size of the cell where a particle is physically located, and we quote εf on

the highest refinement level. The simulation and model parameters are summarised

in Table 3.1.

In f(R) models, the strength of gravity is enhanced compared to GR, and the

size of the enhancement depends on the local gravitational potential (e.g., Khoury

& Weltman, 2004), ranging from 0 inside deep potential wells (where screening

takes place) to a maximum of enhancement 1/3 in regions with shallow potential.

The maximally 1/3 enhancement of gravity is a generic property of the models,
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regardless of the technical details (e.g., whether it is Hu-Sawicki or some other

variant), the latter only affecting the transition between 0 and 1/3 (e.g., whether

at a given spacetime position the modification to GR is screened or not). Following

the convention used in the literature, we call the difference between the modified

and standard GR gravitational forces the fifth force. If screening happens, the fifth

force vanishes, and in unscreened regions it is an attractive force 1/3 the strength

of standard Newtonian gravity, giving a total force of 4/3 the GR force.

The Hu-Sawicki f(R) model studied is a particular case specified by a parameter

fR0 ≡
[
df(R̄)/dR̄

]
0

= −10−6. This case is of particular interest here, since the

deviations from GR it predicts on cosmological scales are still allowed by current

observations (see, e.g., Cataneo et al., 2015; Liu et al., 2016, for some of the latest

cosmological constraints on |fR0|; note that a smaller |fR0| indicates a weak deviation

from GR); while stronger constraints are suggested from smaller scales, a precise

quantification of the constraints requires a good knowledge about whether (and

how well) dark matter haloes and subhaloes are screened (Jain et al., 2013). In

the literature, this model is often called F6; throughout the chapter, when we talk

about f(R) model, we mean F6 unless clearly otherwise stated. With 5123 particles

in a box of size Lbox = 64 h−1Mpc, the liminality simulation is currently the

highest resolution cosmological simulation of f(R) gravity that runs from z = 49

until z = 0, with full information of the fifth force recorded. As a result, it is ideal

for the analysis of the screening of dark matter haloes and their substructures (which

would be poorly resolved should the resolution be too low).

The dark matter halo catalogue used in our analyses was obtained using the

friends-of-friends (FoF) group-finding algorithm, with a linking length of 0.2 times

the mean inter-particle separation (Davis et al., 1985). We used the tracking subhalo

finder Hierarchical Bound-Tracing (Han et al., 2012b, HBT) to identify subhaloes.

HBT works in the following way: (i) starting from isolated haloes at a previous

snapshot, it finds their descendants in subsequent snapshots and keeps track of

their evolution; (ii) when two haloes merge, it tracks the self-bound part of the

less massive progenitor as a subhalo in subsequent snapshots. In this way, all the

subhaloes formed from halo mergers can be identified with a single walk through all
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Table 4.1: The different definitions of environment used in this chapter. See the
main text for more details (§4.3).

name symbol parameter(s) equation
conditional nearest neighbour DN,f f = 1, N = 1, 10 Eq. (4.3.1)
spherical overdensity δR R = 5, 8h−1Mpc Eq. (4.3.2)
shell overdensity δR,Rmin

Rmin = Rhalo Eq. (4.3.3)
experienced gravity Φ? None Eq. (4.3.8)
total gravity Φ+ None Eq. (4.3.8)

the snapshots. This algorithm enables HBT to largely avoid the resolution problem

encountered by configuration-space subhalo finders.

4.3 Environment definitions

As directly measuring the distribution of mass is not always possible, observers

usually use the distribution of galaxies to estimate the density around galaxies.

There are quite a few different methods to estimate the environmental dependence

of galaxy properties. Table 1 in Haas et al. (2012) briefly summarised the environ-

mental measures used in the literature. In simulations, using similar environmental

measure makes it convenient to compare with observational results. On the other

hand, the density field can be directly measured using simulation particles. These

quantities are in principle more accurate than indirect environmental measures.

In this section, we briefly introduce the different definitions of environment we

use.

4.3.1 Conditional nearest neighbour

Galaxies that live in denser environments preferentially have closer neighbours. Fol-

lowing this principle, the conditional nearest neighbour environment measure of a

halo with mass ML is defined as the distance d to its Nth nearest neighbour halo

whose mass is at least f times as large as ML (Haas et al., 2012). This quantity is

rescaled by the virialized radius rNB of the neighbouring halo to define DN,f as

DN,f =
dN,MNB/ML≥f

rNB
. (4.3.1)
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A halo with large value of DN,f indicates a paucity of nearby halos, implying that

the halo lives in a low-density environment.

In the context of modified gravity, this environment definition was previously

used in Zhao et al. (2011b) and Winther et al. (2012). It has the added freedom of

varying the values of N and f to allow continuous quantitative changes in DN,f . It

is also more directly connected to observations, as we can treat haloes and subhaloes

are proxies to clusters and galaxies in the real Universe.

DN,f is also a more faithful definition of environment, because the halo of mass

ML itself is not counted as a neighbour (in other words, DN,f 6= 0). However,

this definition is not completely independent of ML, as ML is used in the condition

MNB/ML ≥ f (which is why we name it the conditional nearest neighbour). This

could lead to the unphysical consequence that for very massive haloes, which are

likely to live in dense environments, it is more difficult to find neighbours with

MNB ≥ fML. Hence DN,f is large, implying that such halos are in low-density

environments. We shall bear this in mind when analysing our results.

4.3.2 Spherical & shell overdensity

In observations, counting the number of neighbouring galaxies in a fixed volume

around a galaxy is another way to measure the environment, as a higher galaxy

number density indicates a denser environment. Although galaxies are biased tracers

of the underlying matter density field, techniques have been developed to reconstruct

the density field from observational distributions of galaxies (e.g., Kitaura et al.,

2010; Platen et al., 2011; Ata et al., 2017).

Given our purely theoretical interest, we measure the dark matter density in

a spherical volume around a halo, which we define as the spherical overdensity

environment. This is expressed as

1 + δR ≡
ρ(≤ R)

ρ̄
=
N(≤ R)

N̄
, (4.3.2)

where the R is the radius (in units of h−1Mpc) of the spherical volume, N is the

number of particles found in this volume and N̄ is the mean number of dark matter
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particles in a volume of size 4πR3/3.

By definition, the spherical overdensity environment measure δR includes the

contribution from the halo at the centre of the spherical volume. One can define

similarly a ‘shell overdensity’ environment as

1 + δR,Rmin
≡ ρ(Rmin ≤ r ≤ R)

ρ̄
=
N(Rmin ≤ r ≤ R)

N̄
, (4.3.3)

where we exclude the particles within a minimum radius Rmin given by Rhalo ≤

Rmin < R, with Rhalo being the radius of the central halo.

4.3.3 Experienced gravity

While the dark matter density as used in defining δR and δR,Rmin
is not directly

measurable, its effects can be observed in various ways, such as gravitational lensing

and galactic dynamics, that probe the lensing and dynamical potential respectively.

Even though the two potentials may not coincide with each other in theories of

modified gravity, they both serve as a good characterisation of environment. Indeed,

lensing and galaxy dynamics are governed respectively by the potential and its

derivative, so using these to define the environment may be particularly useful for

models in which the screening depends on these quantities.

In our simulation, the potentials of the Newtonian gravity and the total grav-

itational force in f(R) gravity on every simulation particle are output separately.

Here, we use only the Newtonian potential as an environment measure, since in the

f(R) model studied the lensing potential (which can be reconstructed from lensing

observations) satisfies the standard Poisson equation as the Newtonian potential in

GR subject to corrections which are negligible in practice.

The Newtonian potential at any given position inside a dark matter halo receives

contributions from both self gravity (i.e., the potential due to the halo itself) and

environment (i.e., that caused by material outside the halo). The self-gravity con-

tribution can be calculated analytically given that haloes satisfy the usual Navarro-

Frenk-White (Navarro et al., 1996, 1997, NFW) density profile even in f(R) gravity

(Lombriser et al., 2012; Shi et al., 2015). Subtracting this from the total Newtonian
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potential at the position, which is given by our simulation, leads to the environment

measure which we dub “experienced gravity”.

To be explicit, the Newtonian potential of a spherical halo is given as

Φ(r) =

∫ r

0

GM(r′)

r′2
dr′ + C, (4.3.4)

in which GM(r)/r2 is the gravitational force at distance r from the centre of the

halo, and C is an integration constant that can be fixed using Φ(r →∞) = Φ∞, the

Newtonian potential infinitely far away from the halo.

The NFW density profile of a spherical halo is given by

ρ(r)

ρc
=

β

r
Rs

(
1 + r

Rs

)2 , (4.3.5)

where ρc is the critical density for matter, β and Rs are two fitting parameters.

Plugging this into Eq. (4.3.4), it can be derived that

∫ r

0

GM(r′)

r′2
dr′ = 4πGβρcR

3
s

 1

Rs

−
ln
(

1 + r
Rs

)
r

 , (4.3.6)

and so

C = Φ∞ − 4πGβρcR
2
s. (4.3.7)

Here, if halo is isolated, then Φ∞ = 0. But in N -body simulations or the real

Universe, no halo is totally isolated from the others. So Φ∞ does not always go to

zero. Therefore, we replace Φ∞ by Φ?, which is the potential produced by all the

other haloes at the position of a given halo. The Newtonian potential in the halo

can then be written as

Φ(r) = Φ? − 4πGβρc
R3
s

r
ln

(
1 +

r

Rs

)
, (4.3.8)

in which Φ? is our definition of the experienced gravity environment measure, and

Φ(r) is directly measured from our simulation. The second term on the right-hand

side of Eq. (4.3.8) is the self-gravity contribution which is calculated from the NFW
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fitting parameters (i.e, β,Rs) of every individual dark matter halo, cf. Eq. (4.3.5).

This way to compute Φ? was previously used in, e.g., Li et al. (2011).

Assuming that the size of a given halo is much smaller than the Universe or

the simulation box, we would expect the environment measure Φ? to stay roughly

constant inside a halo. In Eq. (4.3.8), both Φ(r) and the self-gravity term on the

right-hand side take different values at different r (r ≤ Rhalo), which means that

there is no a priori guarantee that Φ? is the same everywhere at r ≤ Rhalo. In

Appendix A, we perform a check of the constancy of Φ? and show that the Φ?

environment measure works quite well.

Finally, we note that Φ?, although a good measurement of the environment of

a dark matter halo, is not what gravitational lensing reconstructions give us as the

latter do not distinguish between self and environmental contributions. For this

reason we define another measure, called total gravity, or Φ+, which is the average

of Φ(r), cf. Eq. (4.3.8), inside the halo (r ≤ Rhalo). Neither Φ? nor Φ+ have free

parameters, unlike DN,f , δR and δR,Rmin
.

Table 4.1 summarises our environment measures. Before looking at how the

screening depends on environment, in Fig. 4.1 we first have a look at the correlation

between the different environment measures themselves. Note that a strong corre-

lation is present between the spherical overdensity (δ) and experienced gravity (Φ)

definitions, which is as expected given the relationship between the gravitational

potential and local matter density. D1,1, on the other hand, correlates much less

tightly with the other measures, because of the complexities in inferring matter

density from the galaxy number density (or in our case, the halo density). D10,1,

in contrast, seems to correlate more tightly with the other measures, due to two

reasons:

(1) D10,1 encompasses more (10 rather than 1) massive haloes, and so for the

same value it characterises a denser environment than D1,1; it is also less affected

by outliers such as haloes residing in a low-density environment but which happen

to have a neighbour nearby.

(2) For the same reason above, D10,1 takes on a different range of values than

D1,1. Because D10,1 is shown using a logarithmic scale in Fig. 4.1, the variation is
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Figure 4.1: The correlations between the different environment measures defined
in §4.3. The different panels compare different pairs of environment definitions,
whose values are shown on the two axes of the panel. The number density of haloes
in a given environment is colour coded, with darker (lighter) blue meaning more
(fewer) haloes having that environment. The results are obtained using the ΛCDM
version of the liminality simulation. Note that due to space limitations not all
environments used in the latter part of this chapter are compared here.
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actually larger on the range of 1.5 < logD10,1 < 2 than that for 0.5 < logD1,1 < 1.5.

This makes D10,1 appear to be more strongly correlated with the other measures

visually.

Overall, the conclusion is that the different environment measures tested here do

correlate reasonably well with one another.

4.4 Environment measures and screening

We use M200 as halo mass, which is the mass inside the radius r200 within which the

average density is 200 times the critical density, ρc. In our analysis, dark matter

haloes are binned into four mass ranges as 1 ∼ 3 × 1011M�/h, 3 × 1011 ∼ 1 ×

1012M�/h, 1× 1012 ∼ 1× 1013M�/h and 1× 1013 ∼ 1× 1014M�/h. Note that the

1011 ∼ 1012M�/h haloes are divided into two smaller bins. As the effects of modified

gravity are efficiently screened in massive haloes, the main difference between F6

and GR is in these low-mass halos.

Here, we study how the modified gravitational force and potential behave in

different environments, for the environment measures introduced above. To this

end, we define the fifth-force-to-gravity ratio (or fifth force ratio in short) as the

ratio between the magnitude of the fifth force in f(R) gravity (see §4.2) and that of

the standard Newtonian force. This quantity approaches 0 in screened regions and

1/3 in unscreened regions, but can take any value in between (the transition region).

We will also use the fifth force potential which is expressed in units of 2ΦN/3, where

ΦN is the potential for the standard Newtonian gravity (Zhao et al., 2011a). Note

that the fifth force potential is dimensionless, going to 0 in screened regions and 1/2

in unscreened regions.

Our simulation outputs the fifth force and potential at the positions of all sim-

ulation particles. We measure the fifth force ratio and fifth force potential in two

ways: the average over the values at the positions of all particles inside Rhalo = R200,

and the value at halo centres, the latter being obtained by averaging all the particles

within r ≤ 0.2R200 given the uncertainty in defining the halo centre, and call these

Rc200 and ‘halo centre’ respectively. The second case is relevant for the screening of
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Figure 4.2: The fifth force ratio (top panels) and fifth force potential (bottom panels)
as a function of the conditional nearest neighbour halo environment D1,1 (filled
symbols) and D10,1 (open symbols) at z = 0 (red), 0.5 (green) and 1 (blue). The
halo samples are divided in to four mass bins as indicated on the top of each panel.
The solid lines show the results measured from all particles within r200, and the
dashed lines are measured from the halo centres only (see the text for more details).

the fifth force inside central galaxies which are at the centres of their host haloes,

while the first case can be used for satellite galaxies.

4.4.1 Conditional nearest neighbour

In GR, D1,1 is known to represent the local dark matter density well and to be

almost uncorrelated with the mass of the halo. In f(R) gravity, Zhao et al. (2011b)

confirmed that the mass independence of D1,1 still holds. We adopt both D1,1 and

D10,1, which are derived from the first and tenth nearest neighbours heavier than

the halo, respectively, as the conditional nearest neighbour environment definitions.

Fig 4.2 shows the fifth force ratio (upper panels) and the fifth force potential

(lower panels) against these two conditional nearest neighbour halo environmental

measures, in the four halo mass bins (as indicated on the top of the different panels)

at z = 0 (red circles), 0.7 (green triangles) and 1(blue squares). At all three redshifts

and in all four mass bins, there is a noticeable trend that the fifth force ratio and

potential both increase with D. As larger values of D correspond to lower-density
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environments, this agrees with the naive theoretical prediction that the haloes living

in low-density regions are more likely to be unscreened. Also, we can see clearly

that the most massive halos have negligible fifth force potentials, because of the

efficient screening in these objects. The increase of fifth force ratio from 0 to 1/3

represents the transition from unscreened to screened haloes. At the same redshift,

the transition occurs at smaller D for lower-mass haloes. Inside the same halo mass

bin, the screening is stronger at higher redshifts, because the Universe is denser at

early times.

The halo centre (dashed curve) always has a smaller fifth force ratio and potential

than the average in the whole halo (solid curve). This is as expected, as the NFW

profile has higher density in the inner region of a halo than at its outskirts, which

means that screening is stronger in the inner part. The difference between halo

centre and Rc200 is particularly strong for the halo mass bin 1012 ∼ 1013M�/h at

z < 0.5, which is also true for less massive haloes at higher redshifts (0.5 < z < 1;

blue and green curves in the two left columns). This is again because at a given

redshift the fifth force inside haloes with a certain mass goes through a transition

from screened to unscreened, and these haloes can be in a state such that their inner

parts are well screened while the outer regions remain unscreened. This transition

starts from smaller haloes first, and progressively affects more massive haloes at later

times. This observation is relevant if one is interested in the screening of central

galaxies in haloes.

As the tenth nearest larger neighbouring halo of a given halo is always farther

away than the nearest larger neighbour, and yet is not necessarily larger in size,

for a given halo we have D1,1 < D10,1. Conversely, D1,1 represents a less dense

environment than the same value of D10,1 does. In Fig. 4.2, the fifth force ratio

curves corresponding to the D10,1 environment measure (open symbols) are always

below those for D1,1 (filled symbols), confirming that screening is stronger for denser

environments. Note that the D10,1 curves shift to larger values along the x-axis

compared to the D1,1 curves.
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Figure 4.3: The fifth force ratio (top panels) and fifth force potential (bottom panels)
as a function of the spherical overdensity halo environment δ5 (filled symbols) and
δ8 (open symbols) at z = 0 (red), 0.5 (green) and 1 (blue). The halo samples are
divided in to four mass bins as indicated on the top of each panel. The solid lines
show the results measured from all particles within R200, and the dashed lines are
measured from the halo centres only (see the text for more details).

4.4.2 Spherical overdensity

We use spherical volumes with radii of 5h−1Mpc and 8h−1Mpc around the dark

matter halo centre to measure the density contrast, devoted δ5 and δ8. These values

are used in Li et al. (2012) to ensure the spherical volumes are neither too large

(otherwise they will not be a faithful representation of the local environment) nor

too small (otherwise the definition of environment will be too noisy and sensitive to

the presence of the central halo in the spherical volume). Physically, these numbers

are up to a few times the Compton wavelength of the scalar field for the redshift

range we are interested in, and the region enclosed is most relevant to the dynamical

state of the scalar field1.

Fig. 4.3 plots the spherical overdensity measures against the fifth force ratio and

1Although, if the region is too small, e.g., smaller than the scalar field’s Compton wavelength,
then the scalar field will be affected by matter outside, making the environment definition insuffi-
cient. Similarly, if the spherical region is too large, it may contain matter which does not have a
significant impact on the scalar field in the central halo, again making the definition less relevant.
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potential, which has the same format as Fig. 4.2. We can see clearly the similar

overall trend that the fifth force ratio and potential decrease with δR. Here, a larger

value of δR means higher density region, which in turn means the fifth force is more

likely to be screened, again, as expected.

For the same value of δ5 and δ8, δ8 represents an environment with higher matter

density because it manages to have the same δ in a bigger volume even though

matter over-density is generally expected to be lower at larger radii from the centre.

Correspondingly, Fig. 4.3 shows that the screening is stronger for δ8. However, the

difference is small, because even 5h−1Mpc is already significantly bigger than the

halo radius.

Comparing Fig. 4.3 to Fig. 4.2, it can be seen that these two plots are quali-

tatively similar to each other. This serves as a cross check that both environment

definitions can be applied to infer the screening of galaxies for an observed galaxy

catalogue. We also checked the results by using the shell overdensity definition,

δR,Rmin
, where Rmin = Rhalo = R200 and R = 5h−1Mpc, 8h−1Mpc, and found only

tiny differences from Fig. 4.3; so we will not show them here.

4.4.3 Experienced and total gravity

Finally, we consider the experienced and total gravity measures of halo environment,

which are defined using the Newtonian potential produced at the position of a halo

by matter outside the halo and by all matter (including that from the halo itself)

respectively.

In order to fit the NFW profile, we divide the halo radius, R200, into twenty

bins equally spaced in logarithmic scale (see Shi et al. (2015) for more details),

and then measure the mass density of every spherical shell. Φ? is then calculated

using Eq. (4.3.8) and the NFW parameters resulting from the fit, in which Φ(r) is

read from the simulation output and spherically averaged for every shell. The Φ?

calculated in this way has small fluctuations across different shells, mostly due to

numerical noise, but in Appendix A we can see that the fluctuations are insignificant.

The value of Φ? used is the average over all spherical shells.

Fig. 4.4 shows how the fifth force ratio and fifth force potential depend on Φ? for
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Figure 4.4: The fifth force ratio (top panels) and fifth force potential (bottom panels)
as a function of the experienced gravity halo environment Φ? (filled symbols) at z = 0
(red), 0.5 (green) and 1 (blue). The halo samples are divided into four mass bins as
indicated on the top of each panel. The solid lines show the results measured from
all particles within R200, and the dashed lines are measured from the halo centres
only (see the text for more details).

the four mass bins considered. We can see a similar overall trend to that in Figs. 4.2

and 4.3, that more massive haloes living in denser environments (i.e., larger |Φ?|)

are better screened, but there is also a noticeable difference, namely the curves in

Fig. 4.4 are smoother and the scatter smaller. The latter, in particular, implies that

this definition of environment is better for the study of the chameleon screening.

This is not unexpected, since it is well known that the condition for screening – the

thin-shell condition (Khoury & Weltman, 2004) – is explicitly determined by the

Newtonian potential that an object feels.

In Fig. 4.5 we present the same result as in Fig. 4.4, but with Φ? replaced by

Φ+. All features discussed in Fig. 4.4 remain, with only slight quantitative changes.

In particular, the curves are smooth and the scatter is small. As Φ+ is the total

potential at the position of a dark matter halo, it is what weak lensing (tomography)

observations will give us; this is unlike Φ?, which is the potential at the position of

the halo produced by everything but the halo itself, and thus is a more theoretical

definition of ‘environment’.
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Figure 4.5: The fifth force ratio (top panels) and fifth force potential (bottom panels)
as a function of the total gravity potential halo environment Φ+ (filled symbols) at
z = 0 (red), 0.5 (green) and 1 (blue). The halo samples are divided into four
mass bins as indicated on the top of each panel. The solid lines show the results
measured from all particles within R200, and the dashed lines are measured from the
halo centres only (see the text for more details).

4.5 Environmental screening of subhaloes

With the current knowledge of galaxy formation, galaxies mostly form from the

cooled gas inside dark matter substructures in haloes. Thus, instead of arbitrary

positions inside haloes, we are more interested in the substructures (or subhaloes),

where galaxies and stars reside such that tests of gravity are possible, for example,

by studying the effect of modified gravity on stellar evolution and properties (Davis

et al., 2012; Jain et al., 2013). Since subhaloes represent small density peaks inside

a halo, with densities higher than their immediate surroundings, it is reasonable to

expect the chameleon screening inside them to be stronger than outside them. Many

modified gravity simulations, however, do not have sufficient resolution to resolve

subhaloes. As a result, Corbett Moran et al. (2015) propose to approximate the

fifth force ratio inside a subhalo, which is at a distance r from the centre of its host

halo, to be the average value at all dark matter simulation particles inside a thin

shell with radius range [r −∆r/2, r + ∆r/2]. The liminality simulation has high
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Figure 4.6: The stacked fifth force ratio (upper panels) and fifth force potential
(bottom panels) profiles within halo radius R200 at z = 0 (red circles), 0.5 (green
triangles) and 1 (blue squares). In each panel we show the comparison between the
quantities measured by all simulation particles (filled symbols) and that measured
by subhaloes (open symbols).

enough resolution for us to check the validity of this approximation.

In Fig. 4.6, we show the fifth force ratio and fifth force potential as a function

of the radial distance from the halo centre (r/R200), for subhaloes (open symbols)

and dark matter particles (filled symbols). We can see that inside the most massive

haloes (the rightmost column) and the least massive haloes (the leftmost column),

the degree of screening is similar for dark matter particles and subhaloes. For the

former, both particles and subhaloes are perfectly screened, which is why there is

little difference; for the latter, at low redshifts, both particles and subhaloes are

unscreened, such that again there is no difference.

For haloes of intermediate masses (the middle columns), however, the screening

is consistently stronger in subhaloes where densities are higher than their immedi-

ately surroundings, as expected. However, the difference is generally small, because

the Newtonian potential inside subhaloes is not dramatically deeper than outside.

Although the curves for subhaloes are noisier due to poor statistics, they follow the

trend of the curves for dark matter particles, which suggests that the approximation

of Corbett Moran et al. (2015) can provide a reasonable conservative estimate of
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screening in subhaloes even for lower-resolution simulations where subhaloes may

be unresolved.

Fig 4.6 (filled symbols) also helps to visualise the ‘screening profile’ inside dark

matter haloes. We can see how the inner parts of haloes are completely screened for

massive haloes, while more and more volume becomes unscreened for smaller haloes

and at lower redshifts. In particular, we note that the transition from screened to

unscreened regions is quite slow.

4.6 Discussion and conclusions

We have investigated the effect of environment on the efficiency of chameleon screen-

ing in f(R) gravity. Based on a high-resolution N -body simulation (Shi et al., 2015),

we have checked the various ways to define the ‘environment’ of a dark matter halo.

The definitions can be roughly put into three categories:

1. counting how many galaxies or, in N -body simulations, haloes, a given halo

has as neighbours which satisfy certain requirements on their mass and/or distance

from the considered halo;

2. estimating the underlying (nonlinear) dark matter density given the halo/galaxy

number density;

3. using the Newtonian potential caused by the matter density field at the

positions and surroundings of a given halo.

Each of these classes of environment definitions can be further divided depending

on the precise physics included and parameters used, and the resulting definitions are

given in Table 4.1. In Fig. 4.1 we show the correlations of the different environment

measures, where we find overall a good agreement between all of them.

We then study how the screening of the fifth force inside dark matter haloes

depends on the environment that these haloes live in. Our analysis reconfirms the

well known result that the screening is stronger for more massive haloes which live in

dense environments. More importantly, the result also shows a reasonable agreement

between the different environment definitions, hence verifying the robustness of the

latter. This will have important implications for the construction of ‘screening maps’
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from observed galaxy catalogues (see, e.g., Jain et al., 2013), which is an essential

step for predicting precisely how gravity changes its behaviour inside galaxies, which

in turn can be used to constrain any deviations from GR. Since the model we study,

F6, deviates only slightly from GR, being able to confidently rule it out will push

the boundary of cosmological tests of gravity firmly into a new regime.

These different environment measures require different analyses of observation

data: the conditional nearest neighbour measure can be directly applied to observed

galaxy catalogues, the spherical overdensity measure requires a reconstruction of the

matter density field from the observed galaxy field, while the experienced gravity

measure requires a derivation of the 3-dimensional Newtonian (and lensing) poten-

tial, which can be obtained by using weak lensing tomography. Because systematical

errors in these analyses could lead to mis-identification of the environment, one can

combine the different environment definitions if observational data allow.

We have also considered the screening of the fifth force inside dark matter sub-

haloes, and confirmed that the screening is stronger than in their host main haloes

on average, as subhaloes have higher densities than their surroundings. However,

the difference is small and the fifth force at the positions of simulation particles can

act as a reasonable upper bound of subhaloes at the same positions. This result is

useful, since it means that lower-resolution simulations of chameleon f(R) gravity,

even though unable to accurately resolve subhaloes, can still provide useful infor-

mation about how well the fifth force is screened inside subhaloes and the galaxies

in them.

Using our results, we will be able to make screening maps of the Universe. This

will be left for a future work.



Chapter 5

How many galaxies will the Euclid

redshift survey see?

5.1 Introduction

Understanding galaxy formation and the nature of dark energy are two of the most

important and challenging problems in modern astrophysics and cosmology. Galaxy

surveys provide powerful tools to investigate both issues. One of the lessons learned

from previous surveys is the paramount importance of careful modelling of the sur-

vey data for the extraction of robust astrophysical results. Such modelling is best

achieved using large cosmological N-body simulations to create mock versions of the

real survey. Mock catalogues is essential to fully exploit and interpret the observed

data from galaxy surveys. Mocks can help in various ways. For example, they

can help to study selection biases and incompleteness arising from the selection of

galaxies, to calibrate errors and explore systematic effects, to test new techniques

to constrain cosmological parameters, etc. Building mock catalogues for different

cosmological models can make direct predictions for dark energy surveys in order to

distinguish ΛCDM and non-standard models.

The Euclid survey, which is scheduled for launch in 2021, will map the 3-

dimensional distribution of matter in the Universe in order to show how dark energy

affects the expansion history. To achieve this, Euclid is designed to measure accurate

redshifts of tens of millions of galaxies and the shapes of more than a billion galax-
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ies to study galaxy clustering and weak gravitational lensing. These measurements

will constrain cosmological parameters and alternative gravity models. The Euclid

survey is designed to measure the near infrared spectroscopy in wavelength range

1100− 2000nm. The corresponding Hα emitters in the redshift range 0.7 < z < 2.1

are one of the main targets of Euclid survey. In this chapter, we use the Durham

semi-analytical galaxy formation model, GALFORM (Cole et al., 2000), to predict

the luminosity function of Hα emitters (HαLF). This is important because current

surveys of Hα emitters cover solid angles that are orders of magnitude smaller than

Euclid. It is hard to match an empirical prediction of how many galaxies Euclid will

see. Current version of the GALFORM models are calibrated mostly using local ob-

servations in the optical and near-IR, but no emission line data. We test and explore

the validation of the GALFORM predictions for Hα emitters, in order to determine

the number of objects above the Euclid mission’s flux sensitivity threshold. This

number, along with the clustering of Hα emitters determines the signal-to-noise in

power spectrum measurement of galaxy clusters, which influences the dark energy

figure of merit.

5.2 GALFORM

The Durham semi-analytical galaxy formation model, GALFORM, was firstly in-

troduced in Cole et al. (2000). It builds on the ideas from Cole (1991) and White &

Frenk (1991). Based on the initial inception, the subsequent revisions, as described

in Bower et al. (2006), Lagos et al. (2011), Gonzalez-Perez et al. (2014) and Lacey

et al. (2016), introduce more detailed and improved modelling of physical processes

and galaxy properties. In this section, we give a brief introduction to GALFORM.

GALFORM models galaxy formation from its beginning, the linear power spec-

trum of density fluctuations in a specific cosmology, to the end, predicted properties

for the galaxy population at different redshifts. The general picture of galaxy for-

mation is gas collecting and cooling in dark matter haloes, which then leads to

star formation; this process is regulated by feedback such as supernovae. Modelling

galaxy formation in GALFORM is treated in two stages. Firstly, the formation of
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dark matter haloes is modelled according to the gravitational collapse of the dark

matter. The cosmic structure grows hierarchically such that smaller halos form ear-

lier and then accrete or merge over time to create larger halos. The halo merger

tree is built using the outputs of N-body simulations or a Monte Carlo technique

based on the extended Press-Schechter theory (Peacock & Heavens, 1990), to track

the growth and merger of dark matter haloes. In the second stage, GALFORM de-

scribes the baryonic physics using a set of equations within the dark matter merger

tree. These semi-analytical equations are designed to model the complicated and

important physical processes related to galaxy formation. The baryonic matter in

GALFORM falls into five components: (i) hot halo gas, (ii) cold gas in galaxies, (iii)

ejected gas outside the virial radius of haloes, (iv) stars and (v) supermassive black

holes. GALFORM essentially tracks the exchange of mass and metals between them.

Disc galaxies form through the cooling of hot gas, whereas the bulge or spheroidal

galaxies form either by a galaxy merger event or following a disc instability. Star

formation happens in the cold molecular. The feedback from supernovae reheats the

cold gas to hot gas, whilst the heating from active galactic nuclei (AGNs) stops the

gas cooling in the first place. As these physical processes are complex and somewhat

poorly understood, GALFORM introduces a number of “free” parameters. These

parameters are physical and not statistical, and are calibrated by comparing the

predictions of the model against a set of observational data. Also, the available pa-

rameter space is also highly depending on the model itself. A more powerful model

which can predict a wider range of galaxy properties would have a smaller parameter

space available than a more naive model.

In this chapter, we use the halo mergers tree from Millennium simulation (Springel

et al., 2005), and MillGas simulation which has the same particle number and box

size as the but use the WMAP7 cosmology (Guo et al., 2013). The GALFORM

recipes, Bow06, Lagos12, Gonzalez13 and Lacey14 (Bower et al., 2006; Lagos et al.,

2011; Gonzalez-Perez et al., 2014; Lacey et al., 2016), are used to make predictions

for the number and properties of Hα emitters.
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5.3 Emission lines in GALFORM

Hα emission originates from the HII region of galaxies, and its luminosity is pro-

portional to the number of Lyman continuum photons. In GALFORM, the HII

regions are assumed to have a uniform density of 10 hydrogen particles per cm3,

and each HII region has one ionising star in the center with an effective temperature

of 45000 K. GALFORM calculates the number of Lyman continuum photons using

eight HII region models, which are developed by Stasińska (1990), spanning a range

of metallicities. The ionising parameter of these HII region models is depending on

their metallicity, but the actual value is nearly invariant around 10−3.

The main uncertainty in Hα line is the dust extinction. In GALFORM, the

attenuation by dust at a given wavelength is computed using the results of a radia-

tive transfer model, in which the inclination of the galaxy, the cold gas mass and

metallicity are required to input. GALFORM treats the dust in galaxies as two

components: diffuse dust (75%) and molecular clouds (25%). The diffuse compo-

nent is assumed to follow the distribution of stars. Stars are assumed to have the

same metallicity as their birth molecular clouds, and will escape from their birth

molecular clouds after 1 million years time. The more detailed modelling of dust

extinction can be seen in Gonzalez-Perez et al. (2013).

5.4 Empirical luminosity functions

Apart from semi-analytical models, empirical luminosity functions can be employed

to make forecasts for galaxy redshift surveys. The Euclid survey will use the Hα

emission line to measure the redshifts of galaxies. The HαLF at z > 0.7 is one of

the major inputs to forecast cosmological constraints from Euclid. There are plenty

of existing HαLF measurements since Gallego et al. (1995), which cover a wide

redshift range from 0 to 2.3. However, these measurements show large uncertainties

and are often inconsistent with one another. It is impossible to recommend a unique

model with only its statistical error associated, because this would be based on a

predefined evolutionary and luminosity function shape. In this chapter, following

Pozzetti et al. (2016), we use three different forms of empirical functions (named
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“Model 1”, “Model 2” and “Model 3”) to describe the evolution in redshift of the

observed HαLFs. Different subsets of input data and treatment of systematic errors

are used to explore the uncertainties and robustness of the predictions. Full details

can be found in Table 1 of Pozzetti et al. (2016). In this section, we give a brief

review of the three empirical luminosity functions in turn.

5.4.1 Model 1

This model uses the Schechter parametrization (Schechter, 1976) for the LFs,

φ(log10 L, z)d log10 L = ln 10 φ?
(
L

L?

)(α+1)

e−L/L
?

d log10 L, (5.4.1)

where φ?(z) is the characteristic density of Hα emitters, α is the faint-end slope and

L?(z) is the luminosity at which the HαLF falls exponentially from the extrapolated

faint-end power law.

The time evolution for L?(z) was introduced in Geach et al. (2010).

L?(z) = L?0 × (1 + z)δ, (5.4.2)

and the evolution of φ? used is

φ?(z) =

φ
?
0 × (1 + z)ε, for z < zbreak

φ?0 ×
(1+zbreak)2ε

(1+z)ε
. for z > zbreak

(5.4.3)

The subscript 0 represents z = 0.

The model parameters are constrained using the observed luminosity functions

at different luminosities and redshifts using a χ2 approach. The best-fitting values

are: α = −1.35, L?0 = 1041.5erg/s, φ?0 = 10−2.8Mpc−3, δ = 2, ε = 1, zbreak = 1.3.
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5.4.2 Model 2

Model 2 uses the same Schechter function for the LFs, but adopts a different evolu-

tionary form for L?(z)

log10 L
?(z) = −c(z − zbreak)2 − log10 L

?
zbreak

, (5.4.4)

and φ?(z) is regarded as a constant.

The fitting method and observational data used to constrain Model 2 is the same

as Model 1. The value of the parameters are α = −1.4, φ? = 10−2.7Mpc−3, c =

0.22, zbreak = 2.23, L?zbreak = 1042.59erg/s.

5.4.3 Model 3

This model takes a broken power law functional form for the LFs:

φ(log10 L, z)d log10 L = ln 10 φ?
(
L

L?

)(α+1)
[

1 + (e− 1)

(
L

L?

)∆
]−1

d log10 L,

(5.4.5)

where L? is a function of redshift:

log10 L
?(z) = log10 L

?
∞ +

(
1.5

1 + z

)β
log10

L?0.5
L?∞

, (5.4.6)

and φ?(z) is a constant. In this model, ∆ is the difference between the bright and

faint-end slopes. β controls the sharpness of the fall-off in L? at low redshift.

The parameters of Model 3 are constrained using the data from HiZELS (So-

bral et al., 2013), WISP (Colbert et al., 2013), and NICMOS (Yan et al., 1999;

Shim et al., 2009) only. The procedure was designed specifically for use only in

the redshift ranges under consideration for the Euclid and WFIRST-AFTA slitless

surveys (in particular at 0.7 < z < 2.23). The best-fitting values obtained using a

Monte Carlo Markov chain are α = 1.587, φ? = 102.920Mpc−3, ∆ = 2.288, L?∞ =

1042.956erg/s, L?0.5 = 1041.733erg/s, β = 1.615. Model 3 is not recommended for use

at z < 0.6 because it does not incorporate the low-redshift data.
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Figure 5.1: The Hα luminosity functions of model 1, 2, and 3, compared to observed
LFs. The dotted lines mark the nominal flux limit of Euclid (3 × 1016erg/cm2/s)
in the lower bound of each redshift range. Observed Schechter LFs are shown as
thin lines and squares in the observed luminosity range and listed in the labels. For
comparison, the LFs from empirical models 1, 2, and 3 are shown (in yellow, cyan,
and pink, respectively) as thick lines in the same redshift range (shown in the two
extremes of each redshift bin). Reproduced from Pozzetti et al. (2016).

5.5 Empirical models vs observed Hα luminosity

functions

The three empirical models are plotted in Fig. 5.1 in different redshift bins, and

compared to the observed HαLFs. Note that all the observed HαLFs used in the

fitting and comparison are shown in terms of observed Hα flux, i.e. with no correc-

tion for extinction in the target galaxy. Generally, the measurements of extinction

are unavailable. Usually, an average extinction of 1 magnitude is adopted by most

the observers. In cases, where such corrections have been applied in the literature,

we have undone the correction.
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Overall, all of the empirical models from Pozzetti et al. (2016) can provide a

good description of the observed HαLFs. However, this is due to the large scatter

in the observed LFs covering similar redshift ranges. We note that at z > 0.9 the

various empirical HαLFs start to disagree, as is clear from their Schechter param-

eters. Despite the empirical uncertainties, the strong luminosity evolution of the

bright end of the HαLF with increasing redshift is clearly evident, as confirmed by

the evolution of L? by about an order of magnitude over the whole redshift range.

On the other hand, the amount of density evolution is still not completely clear, as

well as the exact value and evolution of the faint end slope.

5.6 Empirical models vs GALFORM

We use the semi-analytical galaxy formation model, GALFORM, to predict the

HαLF for Euclid. Fig 5.2 shows the comparison between the GALFORM variants,

Gonzalez13 (Gonzalez-Perez et al. 2013), Lacey14 (Lacey et al. 2015, in prepara-

tion), Lagos12 (Lagos, Lacey & Baugh 2012) and Bow06 (Bower et al. 2006), and

the three empirical models. The Gonzalez13 and Lacey14 models use the cosmology

and merger trees of the MillGas simulation (H0 = 70.4 km/s/Mpc, Ωm = 0.272 and

ΩΛ = 0.728). The Lagos12 and Bow06 models use the cosmology and merger trees

of the Millennium simulation (H0 = 73 km/s/Mpc, Ωm = 0.25 and ΩΛ = 0.75). We

can see in Fig 5.2 that, at z = 0.83 and higher redshifts, the GALFORM predictions

are generally below the empirical models, especially at the bright end. Here the

GALFORM predictions include the effect of dust extinction, as calculated for the

continuum at the wavelength of Hα.

Because there are large uncertainties in the empirical HαLF parameters, it is

possible to make the empirical models agree with the GALFORM predictions by

tuning these parameters. However, as our goal is to test and improve the GALFORM

predictions, we use three empirical HαLFs with the best-fit values as the reference

models. Since these have been tuned to match various data sets, the GALFORM

predictions of HαLF are lower than the empirical models at the bright end, we apply

two approaches to improve the GALFORM predictions: one is modifying the dust
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extinction model, and the other is tuning GALFORM parameters. Hereafter in this

section, we focus on the GALFORM Gonzalez13 model.

The effect of dust extinction can change the bright end of the HαLF. As we

know, there is no direct measurement of dust extinction in Hα emitters. The dust

extinction can be inferred if we have measurement of other H lines. Intrinsically

these lines are expected to have a particular luminosity ratio without dust. The

actual line ratio measured let us estimate the dust extinction. The uncertainty of

GALFORM dust extinction model depends on the prediction for the galaxy shapes.

There are incorrect for galaxies’ luminosity, e.g. some galaxies have unreasonably

small disks which can lead to very high extinctions. Hence, we decide to modify the

dust model phenomenologically. In Fig. 5.3, we make a scatter plot of the extinct

Hα luminosity against Hα luminosity without dust for all the galaxies at z = 1.5

as predicted by Gonzalez13 model. For galaxies which are brighter than 1041 erg/s,

13.3% of them (3385 out of 25315) shows more dust extinction than 1 magnitude

(marked by the red dashed line). This is extremely different from the observers’

assumed dust extinction.

Following the dust extinction correction used by observers, we set a upper limit,

1 magnitude, to the dust extinction, i.e. if a galaxy is presented to have more

than 1 magnitude of dust extinction, we force it to be 1 magnitude. Fig. 5.4 shows

the HαLF of Gonzalez13, Gonzalez13 without dust and Gonzalez13 with maximum

1 magnitude dust extinction, which is labelled as “max 1 mag dust” in the plot.

Comparing with the original Gonzalez13, this “max 1 mag dust” model changes

a little at the bright end, but is still not consistent with the empirical models.

However, it is clear that the predictions of the Gonzalez13 model without the effect

of dust agree with the empirical models much better. Although there is a bump at

brightest end of HαLF. Considering the low number density, these bumps will not

affect the number counts, which depends on the LF around L?, but could influence

the tail of the redshift distribution of Hα emitters.

By varying the galaxy formation parameters which relate to star-forming galaxies

in GALFORM, we can try to bring the HαLF prediction into closer agreement with

to the empirical models. We build a new model, called “Hα tuned” by varying the
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Figure 5.3: The extinct Hα luminosity (y-axis) plotted against the Hα luminosity
without dust (x-axis) for all galaxies at z = 1.5 as predicted by Gonzalez13 model.
The red solid line and dashed line indicate the galaxies without dust extinction and
galaxies with 1 magnitude of dust extinction, respectively.
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Gonzalez13 model, the Gonzalez13 model without dust extinction (labelled as “no
dust”) and the Gonzalez13 model with the maximum applied extinction capped at
1 magnitude.
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AGN feedback parameter and minimum star formation rate timescale for star burst

in Gonzalez13. Fig 5.5 shows the comparison between Gonzalez13, Hα tuned and

the three empirical models. The Hα tuned model fits with empirical models much

better for z ≥ 0.83 and does not have the bump at bright end. We have tested

that the tuned version of Gonzalez13 does not change the clustering of Hα emitters,

as quantified using the effective halo mass of the Hα emitters that will be seen by

Euclid. Despite the great success in HαLF, this model is only a preliminary test

of tuning GALFORM parameters. Modifying these parameters would potentially

bring influences to many other galaxy properties, which we have not fully tested yet.

For example, this model does not match the present-day LF. However, at least, the

“Hα tuned” model gives us an positive example about the possibility to tune and

constrains the GALFORM by emission line observed LFs.

5.7 The surface density of Hα emitters

Fig. 5.6 and Fig. 5.7 show the cumulative galaxy counts as a function of Hα flux

limit predicted by the empirical models and GALFORM in the redshift range 0.7 <

z < 1.5 covered by the WISP slitless data, and 0.9 < z < 1.74 which is defined by

the Euclid red grism (1.25 < λ < 1.8m). The three original GALFORM models

underestimate the number counts compared to the empirical models. The no dust

model works much better. It agrees with empirical models quite well below a flux

limit of 5× 10−16 erg/s/cm2. But again, there is a bump at the bright end. Similar

behaviour is seen in the no dust version of the Lagos12 model. The Hα tuned model

nearly mimics model 3 and converge with WISP data. It meets our expectation

because the LFs of Hα tuned model are pretty close to the LFs of empirical models

in both redshift range (see Fig 5.5).

We use two flux limits: one is the depth of the Euclid Wide survey, > 3 ×

10−16erg/s/cm2; the other one is > 2× 10−16erg/s/cm2 corresponding to the 4 RED

grism option, i.e. 4 position angles and therefore double the exposure time compared

with the red book (Laureijs et al., 2011). Table 5.1 shows the number counts of Hα

emitters at these two flux limits in the redshift range 0.9 < z < 1.74. The no
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Figure 5.5: The Hα LFs of empirical model 1, 2, and 3 plotted in thin solid lines
labelled according to the legend in the top left panel, compared to LFs of GAL-
FORM Gonzalez13 model and the Hα tuned model developed from varying selected
parameters from Gonzalez13, as labelled in the bottom left panel.
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Table 5.1: The summary of the number counts of Hα emitters at redshift range
0.9 < z < 1.74 for the models as labeled. The first line and second line are the
number counts per square degree at flux limits of 3× 10−16 and 2× 10−16erg/s/cm2

Model1 Model2 Model3 Gonalez13 no dust Hα tuned Lacey14 Lagos12 Bow06
1500 2150 1000 300 2000 950 800 230 180
3800 4650 2450 800 4100 2450 1400 680 500

dust model predicts similar number counts to model 2 for the lower flux limit, but

extremely over-estimates the counts under the higher flux limit. Meanwhile, the

“Hα tuned” model has very similar prediction to Model 3 in both flux limits.

5.8 The redshift distribution of Hα emitters

The corresponding redshift distributions of Hα emitters at 2 flux limits (3 × 10−16

and 2 × 10−16erg/s/cm2) for the Euclid Wide surveys are shown in Fig 5.8 and

Fig 5.9. It is clear that the original GALFORM models predicts much fewer Hα

emitters than the empirical models at z > 0.25. Meanwhile, the “Hα tuned” model

agrees slightly better with the empirical models, but still obviously underestimates

number of Hα emitters when z > 1. The no dust model is similar to model 1

and model 2 at z < 1.5. But at higher redshifts, the redshift distribution remains

constant which is not consistent with empirical models. This is because at higher

redshifts, only the extremely bright galaxies can be observed. Hence, the bumps at

bright end of the LFs in no dust models becomes the main source of these galaxies.

5.9 Conclusions $ discussions

In this chapter, we review the Hα emitter predictions made using a semi-analytical

galaxy formation model, GALFORM, and investigate the possibilities to improve

the model in order to make reliable forecasts for the Euclid survey. As GALFORM

has not be calibrated using emission line data or high-redshift observations, the orig-

inal GALFORM models generally underestimate the number of bright Hα emitters,

comparing to the empirical LFs. We adopt two methods to improve the prediction of

GALFORM model: one is to modify the dust extinction model in GALFORM and
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Figure 5.6: Cumulative Hα flux number counts of the empirical models, GALFORM
Gonzalez13 model, the Gonzalez13 model without dust extinction, Hα tuned model
and Lacey14 model. These models are integrated over two redshift ranges, 0.7 <
z < 1.5 (left panel) and 0.9 < z < 1.74 (right panel). The red dotted lines indicate
the two Euclid flux limits, 2 × 10−16 and 3 × 10−16 erg/s/cm2. The observational
data is obtained from WISP by Colbert et al. (2013).
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the other one is to tune the GALFORM parameters which relates to star-forming

galaxies. Here we conclude that the GALFORM predictions can match the number

counts of Hα emitters with the empirical models either by removing dust extinction

or re-calibrating the galaxy formation model. But the redshift distribution of Hα

emitters is still a problem. Re-calibrating the galaxy formation model would poten-

tially change other galaxy properties, which has not be studied. We recommend the

GALFORM Hα emitters without dust extinction as a best-bet prediction for the

Euclid survey. The mock catalog made by GALFORM can be used to forecast the

number counts and redshift distribution of Hα emitters at z < 2, after removing the

dust extinctions.

Only ΛCDM model is investigated in this chapter. We shall use GALFORM

to build mock catalogues for non-standard cosmological models in the future. In

the early dark energy cosmology (studied in Chapter 2), due to the non-negligible

amount of dark energy at very high redshift, the fast expansion of the Universe

suppress the growth of structure. The abundance of Hα emitters in EDE should

be smaller than that in ΛCDM, especially at high redshifts. In the f(R) cosmology

(see Chapter 3), there are more Milky Way size haloes at low redshift than that in

ΛCDM. We shall expect to observe more Hα emitters at the fainter side of luminosity

function. However, not only the expansion history and halo abundance, but also

the halo merger history, halo inner structure and enhanced gravity can affect galaxy

formation. To accurate building the dark energy or modified gravity mock catalogues

needs more detailed modelling of the galaxy formation.



Chapter 6

Overall Conclusions & Future

Work

In this Chapter we summarise the main conclusions of this thesis and outline some

future work.

The standard cosmological model, ΛCDM, has been remarkably successful at fit-

ting many observational results. But the cosmological constant, Λ, which is thought

to describe the dark energy, is afflicted by the “fine-tuning” problem and “coinci-

dence” problem. This thesis is concerned with the study of alternative cosmological

models which could explain the accelerating expansion of Universe. There are mainly

two ways to revise the standard cosmological model: one is to replace the cosmo-

logical constant with other form of dark energy, like a dynamic scalar field. These

fields are usually motivated theoretically and can avoid the fine-tuning and coinci-

dence problems; the other is to modify the theory of gravity itself. In these modified

gravity models, the accelerating expansion is cause by gravity theory at very large

scales where it has not been test yet. In this thesis, we apply N-body simulations

to explore these alternatives to ΛCDM.

In Chapter 2, we study a typical example of dynamical dark energy model.

There is a non-negligible amount of dark energy at early times of cosmic expansion

history, whilst the effect of dark energy can be ignored in ΛCDM when z > 3.

Considering the function formats proposed for these early dark energy models can

be quite different, it is impossible to do simulations for every single model. We

122
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parametrize the behaviour of early dark energy models phenomenologically using

the functions introduced by Doran & Robbers (2006) and Wetterich (2004). Firstly,

we use CMB and BAO data to constrain the two parameterizations. The Wetterich

model is ruled out as the fittings to current observations returns a existing of early

dark energy that is 10−7 times the critical density. We then run N-body simulations

to investigate the difference between ΛCDM and Doran & Robberts model with

1% and 2% early dark energy. We find that, the early dark energy cosmology has

obviously fewer halos than ΛCDM at high redshifts due to the faster expansion and

more than 15% difference in the large-scale power spectrum. Measuring the shape

of large-scale power spectrum is a promising way to distinguish early dark energy

from a cosmological constant in future galaxy surveys.

In Chapter 3, we concentrate on a modified gravity model, in which the Ricci

tensor, R, in general relativity is replaced with a function of R. In particular, we

study the f(R) model, which was developed by Hu & Sawicki (2007), with parameter

n = 1, |fR0| = 10−5 (F6 model). This results in 1/3 extra amount gravity force

in low density region and uses the Chameleon screening mechanism to suppress

the enhancement of gravity in high density regions. We run high-resolution N-

body simulations (liminality) of F6 and GR. We find that, at low redshift, halos

less massive than 1013M�/h in the F6 model have a much more condensed inner

structure than in standard ΛCDM. The halo concentration is remarkably enhanced

for low-mass haloes in this model due to a deepening of the total gravitational

potential. Contrary to the naive expectation, the halo formation time is later for

low-mass haloes in this model, a consequence of these haloes growing faster than

their counterparts in ΛCDM at late times. Subhaloes, especially those less massive

than 1011M�/h, are substantially more abundant in the F6 model for host haloes

less massive than 1013M�/h. We discuss the implications of these results for the

Milky Way satellite abundance problem. Although the overall halo and subhalo

properties in this borderline f(R) model are close to the ΛCDM predictions, our

results suggest that studies of the Local Group and astrophysical systems, aided by

high-resolution simulations, can provide valuable for further tests of gravity.

We further study the halo environment in F6 gravity using the liminality
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simulations in Chapter 4. We test the validity of different definitions of environment

by measuring the correlation between one another and to the fifth-force potential

which is calculated directly from the high-resolution N-body simulation. We find

that, although the different ways to define environment in practice do not agree with

one another perfectly, they can provide useful guidance, and cross checks about how

well a dark matter halo is screened. In addition, the screening of subhaloes in dark

matter haloes is primarily determined by the environment, with the subhalo mass

playing a minor role, which means that lower-resolution simulations where subhaloes

are not well resolved can still be useful for understanding the modification of gravity

inside subhaloes. This result can be used in existing and future galaxy surveys

to constrain f(R) gravity and will also affect galaxy formation modelling in f(R)

cosmology. It also worth to extend this work to other gravity models.

Galaxy surveys are a powerful tool to investigate the nature of dark energy. How-

ever, only bright galaxies rather than dark matter can be directly observed. The

modelling of galaxy formation is essential to connect the dark matter simulations to

the observables. The Euclid survey will measure the redshifts of a large number of

galaxies through the Hα emission. In Chapter 5, we studied the Hα luminosity func-

tion predicted by the semi-analytical galaxy formation model, GALFORM, which is

used to build mock galaxy catalogs for the Euclid survey. Although GALFORM has

not been calibrated using emission line data, the HαLFs predicted by GALFORM

roughly agree with the empirical models of observed luminosity functions in the

redshift range Euclid survey will cover, except for an underestimate at the bright

end. We apply two ways to improve GALFORM HαLFs, one is modifying the dust

extinction model and the other is tuning the galaxy formation parameters which

affect the star-forming galaxies. We find that switching off the dust extinction in

GALFORM can make the HαLFs match the empirical models and predicts similar

Hα emitter number counts and redshift distribution up to z = 2. Refining the galaxy

formation model is also a possible way to improve the GALFORM HαLFs. But the

potential side effects to other galaxy properties needs to be further investigated.

For example, it remains to be seen if the refined model can reproduce the z = 0

observational luminosity function.
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Overall, we study the typical alternative cosmological models in this thesis. The

early dark energy model mainly affects the large-scale structure of the Universe,

due to its distinct expansion history from ΛCDM. On the other hand, the major

effects of f(R) model is on small scales at late time of the Universe, because of the

enhancement of gravity on low density region. Both the large-scale and small-scale

effects would have imprints in the galaxy surveys. Although the galaxy formation

modelling in dark energy or modified gravity model is complicated. The abundance

of Hα emitters would be different if we do not live in ΛCDM universe. In early dark

energy cosmology, less Hα emitters will be observed because of the smaller number

of dark matter haloes. In the f(R) model, more faint Hα emitters are expected

at low redshifts. Building mock catalogues for alternative cosmological models can

give a light to distinguish them from ΛCDM.

The next generation of galaxy surveys, like DESI (Levi et al., 2013), Euclid and

WFIRST (Spergel et al., 2013), aims to measure the linear perturbation theory

relation between the density and velocity fields to roughly 1 per cent precision. The

high-precision linear growth rate estimated from these surveys provides a direct

constraint on the expansion history which is then used to test cosmological models.

The detailed modelling of redshift space distortions caused by the peculiar velocity

is required to achieve such high precision. In Chapter 2, we have measured the

redshift-space power spectrum of early dark energy cosmology. There are obvious

differences between early dark energy and ΛCDM at large scales in monopole and

quadrupole moments. We are planning to apply the study to f(R) and normal

branch of DGP modified gravity models. Furthermore, we examine the full 2D

power spectrum in order to in order to isolate the impact of non-linear growth and

redshift space distortion effects. Some preliminary results are shown in Appendix

B.

More interestingly, sterile neutrino, which is a candidate of warm dark matter,

has some very similar cosmological effects as early dark energy. Sterile neutrino

behaves like radiation at early universe and rapidly transit to zero pressure particles,

like dark matter, at later time. A ΛCDM universe with sterile neutrino would have

very similar background evolution history with early dark energy universe. We did
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not consider the sterile neutrino effects in our N-body simulations in Chapter 2

and 3. Studying the degeneracies between sterile neutrino and early dark energy

effects is a very promising project to reduce the complexity of numerous alternative

cosmological models.
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Appendix A

Consistency check of the Φ?

environment measure

While defining the experienced gravity environment measure, Φ?, we have subtracted

the self Newtonian potential due to a halo itself from the total potential inside the

halo, so that Φ? is created by all matter outside the halo, including the large-

scale structure. Since the size of the halo is generally negligible compared with the

effective size of surrounding environment, we would expect Φ? to vary little inside

it. As a result, an important consistency check is to check that the Φ? numerically

obtained from the simulation does indeed have very little fluctuation inside haloes,

for example, across the different bins of radial distance.

For this check, we divide the halo radius, r200, into 20 bins equally spaced in

logarithmic scale and calculate the values of Φ?(r) in each spherical shell according

to Eq. (4.3.8). The value of Φ? for a halo quoted in Chapter 4 is the average of these

20 values. The left panel of Fig. A.1 shows the distribution of this average value for

all haloes in the lowest halo mass bin (just for example). We see that the environment

potential of haloes Φ? peaks at around |Φ?| = 10−5.5, and is between 10−7 ∼ 10−5

for most haloes. There is very little redshift evolution of this distribution.

We also calculate the standard deviation of the log |Φ?| values in all bins for each

halo. The right panel displays the distribution of standard deviation of log10 |Φ?|

for the same haloes as considered in the left panel. Although the values of log10 |Φ?|

mostly fall between −7 and −5, the variation in the different radius bins is fairly
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Figure A.1: The probability distribution of the average value of Φ? inside dark
matter haloes (left panel) and the standard deviation of log10 |Φ?| across 20 different
radius bins (right panel). The mass range of the haloes is 1 ∼ 3 × 1011M�/h. The
variation of Φ? is very small inside haloes, confirming that Φ? is mainly determined
by the larger-scale structures, and therefore is a good environment measure.

small, peaking at ∼ 0.02 and smaller than 0.1 for most haloes. This indeed confirms

that Φ? is almost a constant within dark matter haloes, and not affected by the fairly

strong dependence of the total gravitational potential Φ(r) on the radial distance r.



Appendix B

Redshift Distortion in Modified

Gravity

Peculiar velocity distorts the measurement of the mass distribution on Mpc scales in

galaxy surveys. The redshift-space distortion (RSD) is a fundamental cosmological

observable to constrain the cosmological parameters and allow us to look for devi-

ations from standard ΛCDM model. The halo bias is one of the key parameters in

modeling RSD effects or interpreting observational results. We study the halo bias

and redshift distortion effects in two modified gravity theories from N-body simula-

tions. We measure the halo bias by matter power spectra and two-point correlation

functions and examining the redshift distortion effects in 2D matter power spectra.

This appendix shows some preliminary results of this work.

B.1 Modified Gravity Models

We study two modified gravity in this work. One is the f(R) gravity model proposed

by Hu & Sawicki (2007), and focus on the “F5” model with parameter n = 1, |fR0| =

10−5 and “F6” model with n = 1, |fR0| = 10−6. The F6 models is the same model as

liminality simulation in Chapter 3 and 4. The brief review of the general theory

of f(R) gravity and this f(R) model we study can be seen in §3.2.1.

The other model we study is “nDGP” model, which refers to the normal branch

solution of DGP gravity (Dvali et al., 2000). The DGP model is an example of a
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braneworld model. Matter in DGP gravity is confined to live in a four-dimensional

brane, embedded in a five-dimensional bulk spacetime. DGP model obeys In the

simulations of this work, we consider two parameter values, rcH0 = 1 and rcH0 = 5

as “nDGP5” and “nDGP6” models. These were chosen to roughly match the F5

and F6 models, respectively, in terms of the values of σ8 at z = 0.

B.2 Simulations

We run a set of N-body simulations in GR, f(R) and DGP cosmologies, using Ecos-

mog code with 10243 particles in a comoving cubic box of side length 1024 h−1Mpc

(Li et al., 2012). The particle mass is 7.80×1010 h−1M�. RockStar is used to iden-

tify the dark matter halos and measure their properties (Behroozi et al., 2013). We

measure power spectra using the code Powmes (Colombi et al., 2009) and 2-point

correlation function using the code Cute (Alonso, 2012).

B.3 Results

We bin the halo catalog into 6 mass ranges, 1 ∼ 5 × 1012, 5 × 1012 ∼ 1 × 1013, 1 ∼

5 × 1013, 5 × 1013 ∼ 1 × 1014, 1 ∼ 5 × 1014M�/h as bin0, bin1, bin2, bin3 and bin4

respectively.

B.3.1 Matter power spectrum

In Fig. B.1, we plot the real space dark matter power spectra at z = 0 (upper panel)

and their relative difference (lower panel) measured from GR and the modified

gravity model simulations. Due to the enhanced gravity, fR and DGP models have

much higher P (k) magnitude than GR at small scales (k > 0.1 h/Mpc). Although

the simulations start from the same initial condition, the modified gravity models

also have slightly higher P (k) signal than GR at large scales. The difference between

nDGP5 and GR is about 30% at k < 0.1 h/Mpc.
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Figure B.1: Upper panel: the real space dark matter power spectrum in GR and
4 modified gravity models (solid lines), comparing to the GR linear theory (black
dashed line). Lower panel: The ratio of the power spectrum measured from simula-
tion to the GR linear theory.
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B.3.2 Halo mass function

Fig. B.2 shows the differential halo mass functions of GR and modified gravity

models (upper panel) and their relative differences (lower panel) at z = 0, 0.7 and 1

from the simulations. Due to the mass resolution and the AMR N-body simulation,

only halo massive than 1013M�/h can be trusted. F6 model has very similar halo

mass function with GR because its very weak enhancement of gravity in low-density

place at low redshift. Whilst F5, nDGP5 and nDGP6 models have rather more

haloes than GR from z = 1 to 0. The difference is increasing with cosmic time. At

z = 0, F5, nDGP5 and nDGP6 model has up to 20% more haloes within mass range

1013 − 1014M�/h than GR.

B.3.3 Linear halo bias

The dark matter halo only lives in high-density region of the Universe. The statistics

measured from this peak distribution is biased. In order to correctly estimate the

true matter density, a halo bias arising from this incomplete selection has to be

introduced. At large scales, the bias is nearly a constant. To measure the linear halo

bias, we need to decided the “linear regime” first, which is depending on both redshift

and sample incompleteness. Fig. B.3 shows how the range of k (kmin < k < kmax)

affects the linear halo bias measured by auto power spectrum in GR at z = 0. We fix

the lower bound kmin = 0.01h/Mpc. The upper bound kmax is plotted as the x axis.

It is clear that the shot noise affects linear bias measurement at all scales. But after

subtracting the shot noise, the bias curve keeps almost flat up to kmax = 0.1h/Mpc

for all the five halo bins. Here, we conclude that k < 0.01h/Mpc can be treated as

linear scale in auto power spectrum measurements.

Halo bias measurements comparison

Beside the power spectrum, the two-point correlation function can be used to mea-

sure halo bias, as well. Fig. B.4 shows the comparison of linear halo bias mea-

sured from power spectrum and two-point correlation function. We use the linear

range, 0.01 < k < 0.10h/Mpc for auto power spectrum, 0.01 < k < 0.04h/Mpc
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Figure B.2: Upper panel: the differential halo mass function in GR and 4 modified
gravity models at z = 0, 0.7 and 1. Lower panels: The ratio of halo mass function
between modified gravity models and GR.
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Figure B.3: The linear halo bias measured from auto power spectrum in GR
against the upper bound of linear regime, kmax. The lower bound is fixed as
kmin = 0.01h/Mpc.

for cross power spectrum and 5 < r < 40Mpc/h for correlation function. All the

four measurements have very similar results at low mass halos. The auto power

spectrum, auto and cross two-point correlation functions have extremely agreement

up to 1014M�/h halo mass. All measurements in Fig. B.4 have subtracted the shot

noise. Hereinafter, we will only use the halo bias measured from auto power spectra.

Halo bias in different cosmologies

Fig. B.5 shows the comparison of auto power spectrum bias among GR, nDGP and

f(R). F6 model has very similar halo bias as GR, while F5 model has a slightly

smaller bias at z = 0. nDGP5 and nDGP5 have fairly smaller halo bias than GR for

1012 ∼ 5 × 1014M�/h halos at all three redshifts. This is mainly because the same

halo bin in different model has different halo abundance (see halo mass function in

Fig. B.2). Therefore, the linear halo bias in GR cannot be used in modified gravity

cosmologies.
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Figure B.4: The halo bias against halo mass at z = 0, 0.7 and 1. The halo bias is
measured from simulations in different ways: auto power spectrum in range 0.01 <
k < 0.10h/Mpc, cross power spectrum in range 0.01 < k < 0.04h/Mpc, auto and
cross 2-point correlation function in range 5 < r < 40Mpc/h.
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Figure B.5: The halo bias measured from auto power spectrum correlation in range
of 0.01 < r < 0.1 h/Mpc against halo mass at z = 0, 0.7 and 1. The halo mass is
plotted as median of the bin.

B.3.4 Redshift-space distortion results

The redshift-space distortion at large scales only affects to the line-of-sight direction.

Examining the 2D redshift-space galaxy power spectrum, P (k, µ), could isolate the

impact of RSD effects. Here, µ is cosine of the angle to the line of sight. We

have binned the measured power spectra into five µ bins that are centred at µ =

0.1, 0.3, 0.5, 0.7 and 0.9.

Fig. B.6 shows the ratio of the anisotropic 2D power spectra in redshift space,

P s(k, µ), to 3D power spectra real space, P r(k, µ), in the five models. It is clear

that the µ = 0.1 bin is almost not affected by RSD, and µ = 0.9 bin have more

than 50% enhancement compared to the real space power spectra. The dashed lines
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correspond to the linear-theory prediction (1 + f/bLµ
2)2 for each µ bin. On the left

panel, each set of P s and P r is measured from the same cosmology. The departures

at large scales between different models are tiny and negligible if considering the

big statistic error at large scales. The linear-theory predictions roughly agree with

the simulation results at large scales. The best-fit linear bias is measured as bL =√
Phalo/PDM |k<0.05 for each model. On the right panel, we compare P s in all five

models to P r in GR. These departures between different model become fairly larger,

especially for the F5 model. In this circumstance, linear-theory predictions for GR

(black dashed line) cannot used in modified gravity cosmologies, even for µ = 0.1

bin.

Fig. B.7 shows the ratio of the anisotropic 2D redshift-space power spectrum,

P s(k, µ), compared to the linear theory Kaiser prediction, P s(k, µ) = (bL+fµ2)2PlinearGR,

where PlinearGR is the linear-theory power spectrum in GR at z = 0. In this circum-

stance, we assume the underlying gravity theory is GR. However, the linear theory

prediction will not agreed with measured power spectrum measured from a modi-

fied gravity cosmology. The nDGP5 model has 30% departure from linear theory

prediction. It is mainly because the power spectrum in modified gravity model is

different from that in GR (see Fig. B.1).

We replace the halo bias with a ‘fake’ bias which is defined as bL =
√
Phalo/PDM,GR|k<0.05

in order to compensate the different P (k) in different cosmologies. In Fig. B.8, all

the modified gravity model agree with linear theory Kaiser prediction quite well at

large scales. It implies that if using a GR based model to intercept a modified gravity

cosmology, we must to apply this ‘fake’ bias to compensate the model differences. In

addition, the non-linear difference at k < 0.2h/Mpc is significant between GR and

modified gravity models, especially in high µ bins. This gives a light to distinguish

cosmological models. Further study of RSD non-linear effects is our future work.
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Figure B.6: The ratio of the anisotropic power spectra in redshift space to real
space, P s(k, µ)/P r(k), for GR and 4 modified gravity models. The colors of each
line represent the µ bin plotted as given in the legend. The dashed lines are the
linear-theory prediction (1 + f/bLµ

2)2. The best-fit linear bias is measured as bL =√
Phalo/PDM |k<0.05 for each model. In the left panel, for each model, both redshift

power spectrum and real space power spectrum are measured from simulation. In
the right panel, we use GR real space power spectrum as real space P (k) in all
models.
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Figure B.7: The ratio of the anisotropic redshift space power spectrum P s(k, µ), for
GR and 4 modified gravity models, compared to the linear theory Kaiser prediction
P s(k, µ) = (bL + fµ2)2PlinearGR. Here, PlinearGR is the linear-theory power spectrum
in GR, and bL =

√
Phalo/PDM |k<0.05 is the best-fit linear bias for each model. This

plot shows the impact of nonlinear growth.
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Figure B.8: The same ratio as Fig. B.7. But here uses the “fake” bias, bL =√
Phalo/PDM,GR|k<0.05.


